View source on GitHub
|
A preprocessing layer that maps strings to (possibly encoded) indices.
Inherits From: Layer, Operation
tf.keras.layers.StringLookup(
max_tokens=None,
num_oov_indices=1,
mask_token=None,
oov_token='[UNK]',
vocabulary=None,
idf_weights=None,
invert=False,
output_mode='int',
pad_to_max_tokens=False,
sparse=False,
encoding='utf-8',
name=None,
**kwargs
)
Used in the notebooks
| Used in the guide | Used in the tutorials |
|---|---|
This layer translates a set of arbitrary strings into integer output via a
table-based vocabulary lookup. This layer will perform no splitting or
transformation of input strings. For a layer than can split and tokenize
natural language, see the keras.layers.TextVectorization layer.
The vocabulary for the layer must be either supplied on construction or
learned via adapt(). During adapt(), the layer will analyze a data set,
determine the frequency of individual strings tokens, and create a
vocabulary from them. If the vocabulary is capped in size, the most frequent
tokens will be used to create the vocabulary and all others will be treated
as out-of-vocabulary (OOV).
There are two possible output modes for the layer.
When output_mode is "int",
input strings are converted to their index in the vocabulary (an integer).
When output_mode is "multi_hot", "count", or "tf_idf", input strings
are encoded into an array where each dimension corresponds to an element in
the vocabulary.
The vocabulary can optionally contain a mask token as well as an OOV token
(which can optionally occupy multiple indices in the vocabulary, as set
by num_oov_indices).
The position of these tokens in the vocabulary is fixed. When output_mode
is "int", the vocabulary will begin with the mask token (if set), followed
by OOV indices, followed by the rest of the vocabulary. When output_mode
is "multi_hot", "count", or "tf_idf" the vocabulary will begin with
OOV indices and instances of the mask token will be dropped.
Args |
|---|
max_tokens
pad_to_max_tokens=True. If None, there is no cap on the size of
the vocabulary. Note that this size includes the OOV
and mask tokens. Defaults to None.
num_oov_indices
1.
mask_token
output_mode is
"int", the token is included in vocabulary and mapped to index 0.
In other output modes, the token will not appear
in the vocabulary and instances of the mask token
in the input will be dropped. If set to None,
no mask term will be added. Defaults to None.
oov_token
invert is True. The token to return for OOV
indices. Defaults to "[UNK]".
vocabulary
adapt() the layer.
vocabulary_dtype
"int64" or "int32". Defaults to "int64".
idf_weights
output_mode is "tf_idf".
A tuple, list, 1D NumPy array, or 1D tensor or the same length
as the vocabulary, containing the floating point inverse document
frequency weights, which will be multiplied by per sample term
counts for the final TF-IDF weight.
If the vocabulary argument is set, and output_mode is
"tf_idf", this argument must be supplied.
invert
output_mode is "int".
If True, this layer will map indices to vocabulary items
instead of mapping vocabulary items to indices.
Defaults to False.
output_mode
"int", "one_hot", "multi_hot", "count", or "tf_idf"
configuring the layer as follows:"int": Return the vocabulary indices of the input tokens."one_hot": Encodes each individual element in the input into an array the same size as the vocabulary, containing a 1 at the element index. If the last dimension is size 1, will encode on that dimension. If the last dimension is not size 1, will append a new dimension for the encoded output."multi_hot": Encodes each sample in the input into a single array the same size as the vocabulary, containing a 1 for each vocabulary term present in the sample. Treats the last dimension as the sample dimension, if input shape is(..., sample_length), output shape will be(..., num_tokens)."count": As"multi_hot", but the int array contains a count of the number of times the token at that index appeared in the sample."tf_idf": As"multi_hot", but the TF-IDF algorithm is applied to find the value in each token slot. For"int"output, any shape of input and output is supported. For all other output modes, currently only output up to rank 2 is supported. Defaults to"int".pad_to_max_tokensOnly applicable when output_modeis"multi_hot","count", or"tf_idf". IfTrue, the output will have its feature axis padded tomax_tokenseven if the number of unique tokens in the vocabulary is less thanmax_tokens, resulting in a tensor of shape(batch_size, max_tokens)regardless of vocabulary size. Defaults toFalse.sparseBoolean. Only applicable to "multi_hot","count", and"tf_idf"output modes. Only supported with TensorFlow backend. IfTrue, returns aSparseTensorinstead of a denseTensor. Defaults toFalse.encodingOptional. The text encoding to use to interpret the input strings. Defaults to "utf-8".
Examples:
Creating a lookup layer with a known vocabulary
This example creates a lookup layer with a pre-existing vocabulary.
vocab = ["a", "b", "c", "d"]data = [["a", "c", "d"], ["d", "z", "b"]]layer = StringLookup(vocabulary=vocab)layer(data)array([[1, 3, 4],[4, 0, 2]])
Creating a lookup layer with an adapted vocabulary
This example creates a lookup layer and generates the vocabulary by analyzing the dataset.
data = [["a", "c", "d"], ["d", "z", "b"]]layer = StringLookup()layer.adapt(data)layer.get_vocabulary()['[UNK]', 'd', 'z', 'c', 'b', 'a']
Note that the OOV token "[UNK]" has been added to the vocabulary.
The remaining tokens are sorted by frequency
("d", which has 2 occurrences, is first) then by inverse sort order.
data = [["a", "c", "d"], ["d", "z", "b"]]layer = StringLookup()layer.adapt(data)layer(data)array([[5, 3, 1],[1, 2, 4]])
Lookups with multiple OOV indices
This example demonstrates how to use a lookup layer with multiple OOV indices. When a layer is created with more than one OOV index, any OOV values are hashed into the number of OOV buckets, distributing OOV values in a deterministic fashion across the set.
vocab = ["a", "b", "c", "d"]data = [["a", "c", "d"], ["m", "z", "b"]]layer = StringLookup(vocabulary=vocab, num_oov_indices=2)layer(data)array([[2, 4, 5],[0, 1, 3]])
Note that the output for OOV value 'm' is 0, while the output for OOV value
"z" is 1. The in-vocab terms have their output index increased by 1 from
earlier examples (a maps to 2, etc) in order to make space for the extra OOV
value.
One-hot output
Configure the layer with output_mode='one_hot'. Note that the first
num_oov_indices dimensions in the ont_hot encoding represent OOV values.
vocab = ["a", "b", "c", "d"]data = ["a", "b", "c", "d", "z"]layer = StringLookup(vocabulary=vocab, output_mode='one_hot')layer(data)array([[0., 1., 0., 0., 0.],[0., 0., 1., 0., 0.],[0., 0., 0., 1., 0.],[0., 0., 0., 0., 1.],[1., 0., 0., 0., 0.]], dtype=float32)
Multi-hot output
Configure the layer with output_mode='multi_hot'. Note that the first
num_oov_indices dimensions in the multi_hot encoding represent OOV values.
vocab = ["a", "b", "c", "d"]data = [["a", "c", "d", "d"], ["d", "z", "b", "z"]]layer = StringLookup(vocabulary=vocab, output_mode='multi_hot')layer(data)array([[0., 1., 0., 1., 1.],[1., 0., 1., 0., 1.]], dtype=float32)
Token count output
Configure the layer with output_mode='count'. As with multi_hot output,
the first num_oov_indices dimensions in the output represent OOV values.
vocab = ["a", "b", "c", "d"]data = [["a", "c", "d", "d"], ["d", "z", "b", "z"]]layer = StringLookup(vocabulary=vocab, output_mode='count')layer(data)array([[0., 1., 0., 1., 2.],[2., 0., 1., 0., 1.]], dtype=float32)
TF-IDF output
Configure the layer with output_mode="tf_idf". As with multi_hot output,
the first num_oov_indices dimensions in the output represent OOV values.
Each token bin will output token_count * idf_weight, where the idf weights
are the inverse document frequency weights per token. These should be
provided along with the vocabulary. Note that the idf_weight for OOV
values will default to the average of all idf weights passed in.
vocab = ["a", "b", "c", "d"]idf_weights = [0.25, 0.75, 0.6, 0.4]data = [["a", "c", "d", "d"], ["d", "z", "b", "z"]]layer = StringLookup(output_mode="tf_idf")layer.set_vocabulary(vocab, idf_weights=idf_weights)layer(data)array([[0. , 0.25, 0. , 0.6 , 0.8 ],[1.0 , 0. , 0.75, 0. , 0.4 ]], dtype=float32)
To specify the idf weights for oov values, you will need to pass the entire vocabulary including the leading oov token.
vocab = ["[UNK]", "a", "b", "c", "d"]idf_weights = [0.9, 0.25, 0.75, 0.6, 0.4]data = [["a", "c", "d", "d"], ["d", "z", "b", "z"]]layer = StringLookup(output_mode="tf_idf")layer.set_vocabulary(vocab, idf_weights=idf_weights)layer(data)array([[0. , 0.25, 0. , 0.6 , 0.8 ],[1.8 , 0. , 0.75, 0. , 0.4 ]], dtype=float32)
When adapting the layer in "tf_idf" mode, each input sample will be
considered a document, and IDF weight per token will be calculated as
log(1 + num_documents / (1 + token_document_count)).
Inverse lookup
This example demonstrates how to map indices to strings using this layer.
(You can also use adapt() with inverse=True, but for simplicity we'll
pass the vocab in this example.)
vocab = ["a", "b", "c", "d"]data = [[1, 3, 4], [4, 0, 2]]layer = StringLookup(vocabulary=vocab, invert=True)layer(data)array([[b'a', b'c', b'd'],[b'd', b'[UNK]', b'b']], dtype=object)
Note that the first index correspond to the oov token by default.
Forward and inverse lookup pairs
This example demonstrates how to use the vocabulary of a standard lookup layer to create an inverse lookup layer.
vocab = ["a", "b", "c", "d"]data = [["a", "c", "d"], ["d", "z", "b"]]layer = StringLookup(vocabulary=vocab)i_layer = StringLookup(vocabulary=vocab, invert=True)int_data = layer(data)i_layer(int_data)array([[b'a', b'c', b'd'],[b'd', b'[UNK]', b'b']], dtype=object)
In this example, the input value "z" resulted in an output of "[UNK]",
since 1000 was not in the vocabulary - it got represented as an OOV, and all
OOV values are returned as "[UNK]" in the inverse layer. Also, note that
for the inverse to work, you must have already set the forward layer
vocabulary either directly or via adapt() before calling
get_vocabulary().
Attributes |
|---|
input
Only returns the tensor(s) corresponding to the first time the operation was called.
output
Only returns the tensor(s) corresponding to the first time the operation was called.
Methods
adapt
adapt(
data, steps=None
)
Computes a vocabulary of integer terms from tokens in a dataset.
Calling adapt() on a StringLookup layer is an alternative to passing
in a precomputed vocabulary on construction via the vocabulary
argument. A StringLookup layer should always be either adapted over a
dataset or supplied with a vocabulary.
During adapt(), the layer will build a vocabulary of all string tokens
seen in the dataset, sorted by occurrence count, with ties broken by
sort order of the tokens (high to low). At the end of adapt(), if
max_tokens is set, the vocabulary will be truncated to max_tokens
size. For example, adapting a layer with max_tokens=1000 will compute
the 1000 most frequent tokens occurring in the input dataset. If
output_mode='tf-idf', adapt() will also learn the document
frequencies of each token in the input dataset.
| Arguments |
|---|
data
tf.data.Dataset, as a list of strings,
or as a NumPy array.
steps
None.
Total number of steps (batches of samples) to process.
If data is a tf.data.Dataset, and steps is None,
adapt() will run until the input dataset is exhausted.
When passing an infinitely
repeating dataset, you must specify the steps argument. This
argument is not supported with array inputs or list inputs.
finalize_state
finalize_state()
from_config
@classmethodfrom_config( config )
Creates a layer from its config.
This method is the reverse of get_config,
capable of instantiating the same layer from the config
dictionary. It does not handle layer connectivity
(handled by Network), nor weights (handled by set_weights).
| Args |
|---|
config
| Returns | |
|---|---|
| A layer instance. |
get_vocabulary
get_vocabulary(
include_special_tokens=True
)
Returns the current vocabulary of the layer.
| Args |
|---|
include_special_tokens
True, the returned vocabulary
will include mask and OOV tokens,
and a term's index in the vocabulary
will equal the term's index when calling the layer.
If False, the returned vocabulary will not include
any mask or OOV tokens.
load_assets
load_assets(
dir_path
)
reset_state
reset_state()
save_assets
save_assets(
dir_path
)
set_vocabulary
set_vocabulary(
vocabulary, idf_weights=None
)
Sets vocabulary (and optionally document frequency) for this layer.
This method sets the vocabulary and idf weights for this layer directly,
instead of analyzing a dataset through adapt. It should be used
whenever the vocab (and optionally document frequency) information is
already known. If vocabulary data is already present in the layer, this
method will replace it.
| Args |
|---|
vocabulary
idf_weights
output_mode
is "tf_idf". Should not be set otherwise.
symbolic_call
symbolic_call(
*args, **kwargs
)
update_state
update_state(
data
)
vocabulary_size
vocabulary_size()
Gets the current size of the layer's vocabulary.
| Returns | |
|---|---|
| The integer size of the vocabulary, including optional mask and oov indices. |
View source on GitHub