View source on GitHub
|
Initializer capable of adapting its scale to the shape of weights tensors.
tf.compat.v1.variance_scaling_initializer(
scale=1.0,
mode='fan_in',
distribution='truncated_normal',
seed=None,
dtype=tf.dtypes.float32
)
Migrate to TF2
Although it is a legacy compat.v1 API, this symbol is compatible with eager
execution and tf.function.
To switch to TF2 APIs, move to using either
tf.initializers.variance_scaling or tf.keras.initializers.VarianceScaling
(neither from compat.v1) and
pass the dtype when calling the initializer.
Structural Mapping to TF2
Before:
initializer = tf.compat.v1.variance_scaling_initializer(
scale=scale,
mode=mode,
distribution=distribution
seed=seed,
dtype=dtype)
weight_one = tf.Variable(initializer(shape_one))
weight_two = tf.Variable(initializer(shape_two))
After:
initializer = tf.keras.initializers.VarianceScaling(
scale=scale,
mode=mode,
distribution=distribution
seed=seed)
weight_one = tf.Variable(initializer(shape_one, dtype=dtype))
weight_two = tf.Variable(initializer(shape_two, dtype=dtype))
How to Map Arguments
| TF1 Arg Name | TF2 Arg Name | Note |
|---|---|---|
scale |
scale |
No change to defaults |
mode |
mode |
No change to defaults |
distribution
|
distribution
|
No change to defaults. 'normal' maps to 'truncated_normal' |
seed |
seed |
|
dtype
|
dtype
|
The TF2 api only takes it
as a __call__ arg, not a constructor arg. |
partition_info |
- | (__call__ arg in TF1) Not supported |
View source on GitHub