View source on GitHub
|
Represents the type of the elements in a Tensor.
Inherits From: TraceType
tf.dtypes.DType(
type_enum, handle_data=None
)
DType's are used to specify the output data type for operations which
require it, or to inspect the data type of existing Tensor's.
Examples:
tf.constant(1, dtype=tf.int64)<tf.Tensor: shape=(), dtype=int64, numpy=1>tf.constant(1.0).dtypetf.float32
See tf.dtypes for a complete list of DType's defined.
Attributes |
|---|
as_datatype_enum
types_pb2.DataType enum value based on this data type.
as_numpy_dtype
type object based on this DType.
base_dtype
DType based on this DType (for TF1).Programs written for TensorFlow 2.x do not need this attribute.
It exists only for compatibility with TensorFlow 1.x, which used
reference DTypes in the implementation of tf.compat.v1.Variable.
In TensorFlow 2.x, tf.Variable is implemented without reference types.
is_bool
is_complex
is_floating
is_integer
is_numeric
is_numpy_compatible
is_quantized
is_unsigned
Non-numeric, unordered, and quantized types are not considered unsigned, and
this function returns False.
limits
(min, max) tuple, of the dtype. Args: clip_negative : bool, optional If True, clip the negative range (i.e. return 0 for min intensity) even if the image dtype allows negative values. Returns min, max : tuple Lower and upper intensity limits.
max
min
name
real_dtype
DType corresponding to this DType's real part.
size
Methods
experimental_as_proto
experimental_as_proto() -> types_pb2.SerializedDType
Returns a proto representation of the Dtype instance.
experimental_from_proto
@classmethodexperimental_from_proto( proto: types_pb2.SerializedDType ) -> 'DType'
Returns a Dtype instance based on the serialized proto.
experimental_type_proto
@classmethodexperimental_type_proto() -> Type[types_pb2.SerializedDType]
Returns the type of proto associated with DType serialization.
is_compatible_with
is_compatible_with(
other
)
Returns True if the other DType will be converted to this DType (TF1).
Programs written for TensorFlow 2.x do not need this function.
Instead, they can do equality comparison on DType objects directly:
tf.as_dtype(this) == tf.as_dtype(other).
This function exists only for compatibility with TensorFlow 1.x, where it
additionally allows conversion from a reference type (used by
tf.compat.v1.Variable) to its base type.
| Args |
|---|
other
DType (or object that may be converted to a DType).
| Returns | |
|---|---|
True if a Tensor of the other DType will be implicitly converted to
this DType.
|
is_subtype_of
is_subtype_of(
other: tf.types.experimental.TraceType
) -> bool
See tf.types.experimental.TraceType base class.
most_specific_common_supertype
most_specific_common_supertype(
types: Sequence[tf.types.experimental.TraceType]
) -> Optional['DType']
See tf.types.experimental.TraceType base class.
__eq__
__eq__(
other
)
Returns True iff this DType refers to the same type as other.
__ne__
__ne__(
other
)
Returns True iff self != other.
View source on GitHub