Skip to main content
Log in

Stochastic modeling for an SIVR coronavirus epidemic model with distributed delay: dynamic properties and optimal control

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This paper develops a stochastic SIVR epidemic model with distributed delay to analyze the dynamics of coronavirus spread. We first derive the basic reproduction number and equilibrium points for the deterministic version of the model. For the stochastic model, we establish sufficient conditions for disease persistence using a Lyapunov approach and define a critical threshold \(\mathcal {R}_0^c\), proving the existence of a unique stationary distribution via Khasminskii theory. Moreover, we obtain the exact probability density function around the quasi-equilibrium by solving the associated Fokker–Planck equation. To support intervention planning, we formulate a stochastic optimal control problem with three targeted strategies for susceptible, vaccinated, and infected subpopulations and characterize optimal controls using the stochastic maximum principle. These analytical results clarify key mechanisms driving disease persistence from an epidemiological standpoint. Theoretical findings are validated through numerical simulations, where key parameters are estimated via the Markov chain Monte Carlo method using real-time data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from €37.37 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Norway)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data used in this study can be obtained from the corresponding author for a reasonable request.

References

  1. S. Sasaki, H. Suzuki, Y. Fujino, Y. Kimura, M. Cheelo, Impact of drainage networks on cholera outbreaks in Lusaka Zambia. Am. J. Public Health 99, 1982–7 (2009)

    Article  Google Scholar 

  2. X. Ma, W. Wang, A discrete model of avian influenza with seasonal reproduction and transmission. J. Biol. Dyn. 4, 296–314 (2010)

    Article  MathSciNet  Google Scholar 

  3. H. Lee, A. Lao, Transmission dynamics and control strategies assessment of avian influenza A (H5N6) in the Philippines. Infect. Disease Model. 3, 35–59 (2018)

    Article  Google Scholar 

  4. F. Rao, J. Luo, Stochastic effects on an HIV/AIDS infection model with incomplete diagnosis. Chaos Solitons Fractals 152, 111344 (2021)

    Article  MathSciNet  Google Scholar 

  5. S. Hove-Musekwa, F. Nyabadza, The dynamics of an HIV/AIDS model with screened disease carriers. Comput. Math. Methods Med. 10, 287–305 (2009)

    Article  MathSciNet  Google Scholar 

  6. F. Rao, Y. Tan, X. Lian, Stochastic analysis of an HIV model with various infection stages. Adv. Contin. Discrete Models 2025, 38 (2025)

    Article  MathSciNet  Google Scholar 

  7. J. Cohen, D. Normile, New SARS-like virus in China triggers alarm. Science 367, 234–235 (2020)

    Article  ADS  Google Scholar 

  8. H. Lu, C. Stratton, Y. Tang, Outbreak of pneumonia of unknown etiology in Wuhan, China: the mystery and the miracle. J. Med. Virol. 92, 401–402 (2020)

    Article  Google Scholar 

  9. J. Parry, China coronavirus: cases surge as official admits human to human transmission. BMJ 368, m236 (2020)

    Article  Google Scholar 

  10. F. Rao, A. Wang, Z. Wang, The impact of stochastic environment on psychological health dynamics. J. Biol. Syst. 32(2), 547–584 (2024)

    Article  MathSciNet  Google Scholar 

  11. S. Tang, X. Wang, Q. Li, N. Bragazzi, Y. Xiao, J. Wu, Estimation of the transmission risk of the 2019-nCov and its implication for public health interventions. J. Clin. Med. 9, 462–13 (2020)

    Article  Google Scholar 

  12. M. Shen, J. Zu, C. Fairley, J. Pagán, A. Li, Z. Du, Y. Guo, L. Rong, Y. Xiao, G. Zhuang, Y. Li, L. Zhang, Projected COVID-19 epidemic in the United States in the context of the effectiveness of a potential vaccine and implications for social distancing and face mask use. Vaccine 39, 2295–2302 (2021)

    Article  Google Scholar 

  13. X. Liu, Y. Takeuchi, S. Iwami, SVIR epidemic models with vaccination strategies. J. Theor. Biol. 2531, 1–11 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  14. J. Li, Y. Yang, Y. Zhou, Global stability of an epidemic model with latent stage and vaccination. Nonlinear Anal. Real World Appl. 12, 2163–2173 (2011)

    Article  MathSciNet  Google Scholar 

  15. X. Duan, S. Yuan, X. Li, Global stability of an SVIR model with age of vaccination. Appl. Math. Comput. 226, 528–540 (2014)

    MathSciNet  Google Scholar 

  16. J. Yang, M. Martcheva, L. Wang, Global threshold dynamics of an SIVS model with waning vaccine-induced immunity and nonlinear incidence. Math. Biosci. 268, 1–8 (2015)

    Article  MathSciNet  Google Scholar 

  17. F. Rao, P. Mandal, Y. Kang, Complicated endemics of an SIRS model with a generalized incidence under preventive vaccination and treatment controls. Appl. Math. Model. 67, 38–61 (2019)

    Article  MathSciNet  Google Scholar 

  18. D. Gilan, M. Birkenbach, M. Wossidlo, P. Sprengholz, C. Betsch, O. Hahad, K. Lieb, Fear of COVID-19 disease and vaccination as predictors of vaccination status. Sci. Rep. 13, 8865 (2023)

    Article  ADS  Google Scholar 

  19. H. Xu, K. Zou, J. Dent, K. Wiens, E. Malembaka, G. Bwire, P. Okitayemba, L. Hampton, A. Azman, E. Lee, Enhanced cholera surveillance to improve vaccination campaign efficiency. Nat. Med. 30, 1104–1110 (2024)

    Article  Google Scholar 

  20. J. Pušnik, J. Zorn, W. Monzon-Posadas, K. Peters, E. Osypchuk, S. Blaschke, H. Streeck, Vaccination impairs de novo immune response to omicron breakthrough infection, a precondition for the original antigenic sin. Nat. Commun. 15, 3102–13 (2024)

    Article  ADS  Google Scholar 

  21. R. May, Time-delay versus stability in population models with two and three trophic levels. Ecology 54, 315–325 (1973)

    Article  Google Scholar 

  22. G. Samanta, Analysis of a delayed epidemic model with pulse vaccination. Chaos Solitons Fractals 66, 74–85 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  23. D. Glass, X. Jin, I. Riedel-Kruse, Nonlinear delay differential equations and their application to modeling biological network motifs. Nat. Commun. 12, 1788–19 (2021)

    Article  ADS  Google Scholar 

  24. A. Teslya, G. Wolkowicz, Dynamics of a predator-prey model with distributed delay to represent the conversion process or maturation. Differ. Equ. Dyn. Syst. 31, 613–649 (2023)

    Article  MathSciNet  Google Scholar 

  25. C. Fang, H. Yang, J. Pi, W. Wu, The stability of imitation dynamics with continuously distributed delays. J. Syst. Sci. Complex. 36, 2067–2081 (2023)

    Article  MathSciNet  Google Scholar 

  26. N. MacDonald, Time Lags in Biological Models (Springer, Berlin, Heidelberg, 1987)

    Google Scholar 

  27. B. Wen, Z. Teng, Z. Li, The threshold of a periodic stochastic SIVS epidemic model with nonlinear incidence. Phys. A 508, 532–549 (2018)

    Article  MathSciNet  Google Scholar 

  28. Z. Chang, X. Meng, T. Zhang, A new way of investigating the asymptotic behaviour of a stochastic SIS system with multiplicative noise. Appl. Math. Lett. 87, 80–86 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  29. X. Zhang, L. Zheng, Complex dynamics of a stochastic SIR epidemic model with vertical transmission and varying total population size. J. Nonlinear Sci. 33, 108–26 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  30. A. Wang, D. Xue, Z. Wang, J. Zhao, F. Rao, Dynamics of a stochastic tumor-immune interaction system. Eur. Phys. J. Plus 139, 1081 (2024)

    Article  ADS  Google Scholar 

  31. Q. Liu, D. Jiang, T. Hayat, A. Alsaedi, Dynamics of a stochastic SIR epidemic model with distributed delay and degenerate diffusion. J. Franklin Inst. 356, 7347–7370 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  32. T. Caraballo, M. Fatini, M. Khalifi, R. Gerlach, R. Pettersson, Analysis of a stochastic distributed delay epidemic model with relapse and Gamma distribution kernel. Chaos Solitons Fractals 133, 109643 (2020)

    Article  MathSciNet  Google Scholar 

  33. W. Zuo, Y. Zhou, Density function and stationary distribution of a stochastic SIR model with distributed delay. Appl. Math. Lett. 129, 107931 (2022)

    Article  MathSciNet  Google Scholar 

  34. X. Zhang, T. Su, D. Jiang, Dynamics of a stochastic SVEIR epidemic model incorporating general incidence rate and Ornstein-Uhlenbeck process. J. Nonlinear Sci. 33, 45–76 (2023)

    Article  MathSciNet  Google Scholar 

  35. S. Chen, Y. Guo, C. Zhang, Stationary distribution of a stochastic epidemic model with distributed delay under regime switching. J. Appl. Math. Comput. 70, 789–808 (2024)

    Article  MathSciNet  Google Scholar 

  36. F. Rao, X. Li, D. Xue, Dynamics of a stochastic SAIVR epidemic model with vaccination. Commun. Nonlinear Sci. Numer. Simul. 152, 109113 (2026)

    Article  MathSciNet  Google Scholar 

  37. O. Diekmann, J. Heesterbeek, J. Metz, On the definition and the computation of the basic reproduction ratio \(R_0\) in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28, 365–382 (1990)

    Article  MathSciNet  Google Scholar 

  38. P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180(1–2), 29–48 (2002)

    Article  MathSciNet  Google Scholar 

  39. J. Heffernan, R. Smith, L. Wahl, Perspectives on the basic reproductive ratio. J. R. Soc. Interface 2, 281–293 (2005)

    Article  Google Scholar 

  40. X. Mao, G. Marion, E. Renshaw, Environmental brownian noise suppresses explosions in population dynamics. Stochast. Process. Appl. 97, 95–110 (2002)

    Article  MathSciNet  Google Scholar 

  41. R. Khasminskii, Stochastic Stability of Differential Equations (Springer, Berlin, Heidelberg, 2012)

    Book  Google Scholar 

  42. Q. Liu, D. Jiang, N. Shi, T. Hayat, B. Ahmad, Stationary distribution and extinction of a stochastic SEIR epidemic model with standard incidence. Phys. A 476, 58–69 (2017)

    Article  MathSciNet  Google Scholar 

  43. B. Zhou, D. Jiang, Y. Dai, T. Hayat, Stationary distribution and density function expression for a stochastic SIQRS epidemic model with temporary immunity. Nonlinear Dyn. 105, 931–955 (2021)

    Article  Google Scholar 

  44. H. Roozen, An asymptotic solution to a two-dimensional exit problem arising in population dynamics. SIAM J. Appl. Math. 49, 1793–1810 (1989)

    Article  MathSciNet  Google Scholar 

  45. X. Tian, C. Ren, Linear equations, superposition principle and complex exponential notation, College. Physica 23, 23–25 (2004)

    Google Scholar 

  46. D. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. 43, 525–546 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  47. G. Brown, A. Porter, J. Oleson, J. Hinman, Approximate bayesian computation for spatial SEIR(S) epidemic models. Spatial Spatio Temp. Epidemiol. 24, 27–37 (2018)

    Article  Google Scholar 

  48. X. Mu, D. Jiang, T. Hayat, A. Alsaedi, B. Ahmad, Dynamical behavior of a stochastic Nicholson’s blowflies model with distributed delay and degenerate diffusion. Nonlinear Dyn. 103, 2081–2096 (2021)

    Article  Google Scholar 

  49. S. Marino, I. Hogue, C. Ray, D. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology. J. Theor. Biol. 254, 178–196 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  50. M. Ratto, A. Pagano, P. Young, State dependent parameter metamodelling and sensitivity analysis. Comput. Phys. Commun. 177, 863–876 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is partially supported by Qing Lan Project of Jiangsu Province and Postgraduate Research & Practice Innovation Program of Jiangsu Province (SJCX23_0427). XZL is supported in part by the Zhejiang Provincial Natural Science Foundation of China under Grant LZ23A010003.

Author information

Authors and Affiliations

Contributions

XL contributed to writing—original draft, visualization, and reviewing. SFW was involved in visualization and reviewing. XZL contributed to visualization and reviewing. FR was involved in writing, visualization, formal analysis, reviewing, and editing and provided software. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Feng Rao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix

Appendix

1.1 Proof of Theorem 2.1

Proof

Observing the coefficient of Model (5), we find it satisfies the local Lipschitz condition. Hence, there exists a unique local solution for \(t \in [0, \tau _e)\), with \(\tau _e\) denoting the explosion time. Utilizing Itô’s formula, it can be demonstrated that the singular local solution of (5) maintains positivity. Next, we aim to demonstrate that this solution is global, implying \(\tau _e = \infty\) almost certainly.

Let \(n_0 > 0\) be sufficiently large such that the initial values of S(0), I(0), V(0), and U(0) lie within the interval \([\frac{1}{n_0}, n_0]\). For each integer \(n \ge n_0\), we define a sequence of stopping times as follows:

$$\begin{aligned} \tau _n = \inf \left\{ t \in [0, \tau _e]: S(t) \notin (\frac{1}{n}, n ) \text { or } I(t) \notin (\frac{1}{n}, n ) \text { or } V(t) \notin (\frac{1}{n}, n ) \text { or } U(t) \notin (\frac{1}{n}, n )\right\} , \end{aligned}$$

where we define \(\inf \emptyset = \infty\) (with \(\emptyset\) representing the empty set). Since the sequence \(\{\tau _n\}\) is nondecreasing as \(n \rightarrow \infty\), there exists a limit given by

$$\begin{aligned} \tau _\infty = \lim _{n\rightarrow \infty }\tau _n. \end{aligned}$$

Next, our objective is to demonstrate that \(\tau _\infty = \infty\) almost surely. If this assertion were false, it would imply that there exist \(T > 0\) and \(\varepsilon \in (0,1)\) such that

$$\begin{aligned} \mathcal {P} (\tau _\infty \le T ) > \varepsilon . \end{aligned}$$

Thus, there is an integer \(n_1 \ge n_0\) that satisfies the inequality:

$$\begin{aligned} \mathcal {P} (\tau _n \le T ) \ge \varepsilon , \quad \forall n \ge n_1. \end{aligned}$$
(56)

Let a and b denote two positive constants, and let \(\mathcal {V}: \mathbb {R}_+^4 \rightarrow \mathbb {R}_+\) be a nonnegative \(\mathcal {C}^4\) function defined as follows:

$$\begin{aligned} \mathcal {V}(S, I, V, U)=\left( S-a-a \ln \frac{S}{a}\right) + ( I-1-\ln I)+(V-1-\ln V)+ b(U-1-\ln U). \end{aligned}$$

Since \(-\ln x\) approaches \(\infty\) as x tends to \(0^+\), and \((-x-m-m) \ln \frac{x}{m}\) also tends to \(\infty\) for any \(m > 0\) as x approaches \(0^+\), it follows that

$$\begin{aligned} \mathop {\textrm{lim inf}}\limits _{n\rightarrow \infty ,(S,I,V,U)\in \mathbb {R}_{+}^4\backslash \mathbb {D}_n}\mathcal {V} \left( S,I,V,U\right) =\infty , \end{aligned}$$

where \(\mathbb {D}_n=(\frac{1}{n},n)\times (\frac{1}{n},n)\times (\frac{1}{n},n)\times (\frac{1}{n},n)\) for each integer \(n \ge n_0\).

By applying Itô’s formula to \(\mathcal {V}\), we derive:

$$\begin{aligned} \textrm{d}\mathcal {V}&=\bigg ((1-\frac{a}{S})(\Lambda -\beta C_0 S U - (\omega _1+\mu )S)+(1-\frac{1}{I})(\beta C_0 S U +\gamma _0 V U -(\delta +\mu +r_1) I) \\&\quad +(1-\frac{1}{V})(\omega _1 S - \gamma _0 V U -\mu V)+ \alpha b(1-\frac{1}{U})( I- U)+\frac{a}{2}\sigma _1^2 +\frac{\sigma _2^2}{2}+\frac{\sigma _3^2}{2}\bigg )\textrm{d}t \\&\quad +\sigma _1 S(1-\dfrac{ a }{ S })\textrm{d} B_1(t)+\sigma _2 I (1-\dfrac{1}{ I })\textrm{d} B_2(t)+\sigma _3 V (1-\dfrac{1}{ V })\textrm{d} B_3(t) \\&=\bigg (\Lambda +a(\omega _1+\mu )+(\delta +\mu +r_1)+\mu +\alpha b +\frac{a \sigma _1^2}{2} +\frac{\sigma _2^2}{2}+\frac{\sigma _3^2}{2}+(\alpha \beta C_0 +\gamma _0- \alpha b)U \\&\quad +(\alpha b -(\delta +\mu +r_1))I-(\mu (S+V) +a\frac{\Lambda }{S} +\beta C_0 \frac{SU}{I}+ \gamma _0 \frac{VU}{I} +\omega _1 \frac{S}{V} + \alpha b\frac{I}{U})\bigg ) \textrm{d}t \\&\quad +\sigma _1 S(1-\dfrac{ a }{ S })\textrm{d} B_1(t)+\sigma _2 I(1-\dfrac{1}{ I })\textrm{d} B_2(t)+\sigma _3 V(1-\dfrac{1}{ V })\textrm{d} B_3(t)\\&=\mathscr {L}\mathcal {V}\textrm{d}t + \sigma _1 S(1-\dfrac{ a }{ S })\textrm{d} B_1(t)+\sigma _2 I(1-\dfrac{1}{ I })\textrm{d} B_2(t)+\sigma _3 V(1-\dfrac{1}{ V })\textrm{d} B_3(t), \end{aligned}$$

where

$$\begin{aligned} \mathscr {L}\mathcal {V}&=(1-\frac{a}{S})(\Lambda -\beta C_0 S U - (\omega _1+\mu )S)+(1-\frac{1}{I})(\beta C_0 S U +\gamma _0 V U -(\delta +\mu +r_1) I) \\&\quad +(1-\frac{1}{V})(\omega _1 S - \gamma _0 V U -\mu V)+ \alpha b(1-\frac{1}{U})( I- U)+\frac{a}{2}\sigma _1^2 +\frac{\sigma _2^2}{2}+\frac{\sigma _3^2}{2} \\&=(\Lambda +a(\omega _1+\mu )+(\delta +\mu +r_1)+\mu +b \alpha +\frac{a\sigma _1^2}{2} +\frac{\sigma _2^2}{2}+\frac{\sigma _3^2}{2})+(\alpha \beta C_0 +\gamma _0- \alpha b)U \\&\quad +(\alpha b-(\delta +\mu +r_1))I-(\mu (S+V) +a\frac{\Lambda }{S} +\beta C_0 \frac{SU}{I}+ \gamma _0 \frac{VU}{I} +\omega _1 \frac{S}{V} + \alpha b\frac{I}{U}). \end{aligned}$$

Choosing \(a=\frac{\delta +\mu +r_1-\gamma _0}{\beta C_0}\) and \(b=\frac{\delta +\mu +r_1}{\alpha }\) yields

$$\begin{aligned} \mathscr {L}\mathcal {V}&=(\Lambda +a(\omega _1+\mu )+(\delta +\mu +r_1)+\mu + \alpha b+\frac{a\sigma _1^2}{2} +\frac{\sigma _2^2}{2}+\frac{\sigma _3^2}{2}) \\&\quad -(\mu (S+V) +a\frac{\Lambda }{S} +\beta C_0 \frac{SU}{I}+ \gamma _0 \frac{VU}{I} +\omega _1 \frac{S}{V} + \alpha b\frac{I}{U}) \\&< \Lambda +2\mu +\delta +r_1 +a(\omega _1+\mu ) +\alpha b+\frac{a \sigma _1^2}{2} +\frac{\sigma _2^2}{2}+\frac{\sigma _3^2}{2} \\&=\Lambda +3\mu +2(\delta +r_1) +\frac{(\omega _1+\mu )(\delta +\mu +r_1-\gamma _0)}{\beta C_0}+\frac{(\delta +\mu +r_1-\gamma _0)}{2\beta C_0}\sigma _1^2 +\frac{\sigma _2^2}{2}+\frac{\sigma _3^2}{2} \\&:= K, \end{aligned}$$

where \(K\) represents a positive constant. In this case, we observe that

$$\begin{aligned} \textrm{d}\mathcal {V}(S,I,V,U)\le K \textrm{d}t+\sigma _1 S(1-\dfrac{ a }{ S })\textrm{d} B_1(t)+\sigma _2 I(1-\dfrac{1}{ I })\textrm{d} B_2(t)+\sigma _3 V(1-\dfrac{1}{ V })\textrm{d} B_3(t). \end{aligned}$$

Integrating both sides of the inequality above over the interval from 0 to \(\tau _n\wedge T\), we obtain:

$$\begin{aligned} \int _0^{\tau _n\wedge {T}}\textrm{d}\mathcal {V}&\le \int _0^{\tau _n\wedge {T}}K\textrm{d}t+\int _0^{\tau _n\wedge {T}} \sigma _1 S(1-\frac{ a }{ S })\textrm{d} B_1(s)+\int _0^{\tau _n\wedge {T}}\sigma _2 I(1-\frac{1}{ I })\textrm{d} B_2(s)\\&+\int _0^{\tau _n\wedge {T}} \sigma _3 V(1-\frac{1}{ V })\textrm{d} B_3(s), \end{aligned}$$

where \(\tau _n\wedge T=\min \{ \tau _n, T \}\). Taking the expectations of both sides, we get:

$$\begin{aligned} \textbf{E}\mathcal {V} (S (\tau _n\wedge T), I(\tau _n\wedge T ), V(\tau _n\wedge T ) , U(\tau _n\wedge T )) \le \mathcal {V}(S(0), I(0), V(0), U(0))+KT. \end{aligned}$$

Let \(\Omega _n=\left\{ \tau _n\le T \right\}\) for \(n \ge n_1\). From Eq. (56), we have \(\mathcal {P}(\Omega )\ge \varepsilon\). For every \(v\in \Omega _n\), there exists some i such that \(x_i(\tau _n,v)\) equals either n or \(\dfrac{1}{n}\) for \(i=1,2,3,4\). Therefore, \(\mathcal {V} (S (\tau _n, v ),I (\tau _n, v ),V (\tau _n, v ), U (\tau _n, v ) )\) is no less than \(\min \{ n-1-\ln n,\frac{1}{n}-1-\ln \frac{1}{n}\}\). Thus, we obtain

$$\begin{aligned} \mathcal {V} (S(0), I(0), V(0), U(0))+KT \ge \textbf{E} (\textbf{I}_{\Omega _{n}(v)}\mathcal {V} (S(\tau _{n}),I(\tau _{n}),V(\tau _{n}),U(\tau _{n}) )) \ge \varepsilon \theta _n, \end{aligned}$$

where

$$\begin{aligned} \theta _{n}=\min \{n-a- \ln \frac{n}{a}, \frac{1}{n}-a+a \ln (na), n-1- \ln n, \frac{1}{n} -1 +\ln n,b(n-1-\ln n), b(\frac{1}{n} -1 +\ln n) \}, \end{aligned}$$

where \(\textbf{I}_{\Omega _{n}(v)}\) is the indicator function of \(\Omega _{n}\). Letting \(n\rightarrow \infty\) results in the contradiction \(\infty =\mathcal {V}(S(0),I(0),V(0),U(0))+KT<\infty\). This completes the proof. \(\square\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Wei, S., Lian, X. et al. Stochastic modeling for an SIVR coronavirus epidemic model with distributed delay: dynamic properties and optimal control. Eur. Phys. J. Plus 140, 1154 (2025). https://doi.org/10.1140/epjp/s13360-025-07097-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1140/epjp/s13360-025-07097-z