Skip to main content
Log in

Stationary distribution and density function expression for a stochastic SIQRS epidemic model with temporary immunity

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Recently, considering the temporary immunity of individuals who have recovered from certain infectious diseases, Liu et al. (Phys A Stat Mech Appl 551:124152, 2020) proposed and studied a stochastic susceptible-infected-recovered-susceptible model with logistic growth. For a more realistic situation, the effects of quarantine strategies and stochasticity should be taken into account. Hence, our paper focuses on a stochastic susceptible-infected-quarantined-recovered-susceptible epidemic model with temporary immunity. First, by means of the Khas’minskii theory and Lyapunov function approach, we construct a critical value \({\mathscr {R}}_0^S\) corresponding to the basic reproduction number \({\mathscr {R}}_0\) of the deterministic system. Moreover, we prove that there is a unique ergodic stationary distribution if \({\mathscr {R}}_0^S>1\). Focusing on the results of Zhou et al. (Chaos Soliton Fractals 137:109865, 2020), we develop some suitable solving theories for the general four-dimensional Fokker–Planck equation. The key aim of the present study is to obtain the explicit density function expression of the stationary distribution under \({\mathscr {R}}_0^S>1\). It should be noted that the existence of an ergodic stationary distribution together with the unique exact probability density function can reveal all the dynamical properties of disease persistence in both epidemiological and statistical aspects. Next, some numerical simulations together with parameter analyses are shown to support our theoretical results. Last, through comparison with other articles, results are discussed and the main conclusions are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from €37.37 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Norway)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Khan, T., Zaman, G., Chohan, M.I.: The transmission dynamic of different hepatitis B-infected individuals with the effect of hospitalization. J. Biol. Dyn. 12, 611–631 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Sasaki, S., Suzuki, H., Fujino, Y., Kimura, Y., Cheelo, M.: Impact of drainage networks on cholera outbreaks in Lusaka, Zambia. Am. J. Public Health 99, 1982–1989 (2009)

    Article  Google Scholar 

  3. Ma, X., Wang, W.: A discrete model of avian influenza with seasonal reproduction and transmission. J. Biol. Dyn. 4, 296–314 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. A 115, 700–21 (1927)

    Article  MATH  Google Scholar 

  5. Liu, X., Takeuchi, Y., Iwami, S.: SVIR epidemic models with vaccination strategies. J. Theor. Biol. 253, 1–11 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Li, J., Teng, Z., Wang, G., Zhang, L., Hu, C.: Stability and bifurcation analysis of an SIR epidemic model with logistic growth and saturation treatment. Chaos Soliton Fractals 99, 63–71 (2017)

    Article  MATH  Google Scholar 

  7. Jerubet, R., Kimathi, G.: Analysis and modeling of tuberculosis transmission dynamics. J. Adv. Math. Comput. Sci. 32, 1–14 (2019)

    Article  Google Scholar 

  8. Li, M.Y., Smith, H.L., Wang, L.: Global dynamics of an SEIR epidemic model with vertical transmission. SIAM. J. Appl. Math. 62, 58–69 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hove-Musekwa, S.D., Nyabadza, F.: The dynamics of an HIV/AIDS model with screened disease carriers. Comput. Math. Method Med. 10, 287–305 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Iwami, S., Takeuchi, Y., Liu, X.: Avian-human influenza epidemic model. Math. Biosci. 207, 1–25 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cai, L., Wu, J.: Analysis of an HIV/AIDS treatment model with a nonlinear incidence. Chaos Soliton Fractals 41, 175–182 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Vincenzo, C., Gabriella, S.: A generalization of the Kermack–McKendrick deterministic epidemic model. Math. Biosci. 42, 43–61 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  13. Carter, E., Currie, C.C., Asuni, A., et al.: The first six weeks-setting up a UK urgent dental care centre during the COVID-19 pandemic. Br. Dent. J. 228, 842–848 (2020)

    Article  Google Scholar 

  14. Liu, J., Zhou, Y.: Global stability of an SIRS epidemic model with transport-related infection. Chaos Soliton Fractals 40, 145–158 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hethcode, H., Ma, Z., Liao, S.: Effect of quarantine in six endemic models for infectious diseases. Math. Biosci. 180, 141–160 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ma, Y., Liu, J., Li, H.: Global dynamics of an SIQR model with vaccination and elimination hybrid strategies. Mathematics 6, 328 (2018)

    Article  MATH  Google Scholar 

  17. Joshi, H., Sharma, R.K., Prajapati, G.L.: Global dynamics of an SIQR epidemic model with saturated incidence rate. Asian J. Math. Comput. Res. 21, 156–166 (2017)

    Google Scholar 

  18. Feng, Z., Thieme, H.R.: Recurrent outbreaks of childhood diseases revisited: the impact of isolation. Math. Biosci. 128, 93–130 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wu, L., Feng, Z.: Homoclinic bifurcation in an SIQR model for childhood diseases. J. Differ. Equ. 168, 150–167 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhang, X., Huo, H., Xiang, H., Meng, X.: Dynamics of the deterministic and stochastic SIQS epidemic model with non-linear incidence. Appl. Math. Comput. 243, 546–558 (2014)

    MathSciNet  MATH  Google Scholar 

  21. Ma, Z., Zhou, Y., Wu, J.: Modeling and Dynamic of Infectious Disease. Higher Education Press, Beijing (2009)

    Book  Google Scholar 

  22. Shuai, Z., Tien, J.H., Driessche, P.: Cholera models with hyperinfectivity and temporary immunity. Bull. Math. Biol. 74, 2423–2445 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, X., Gray, A., Jiang, D., Mao, X.: Sufficient and necessary conditions of stochastic permanence and extinction for stochastic logistic populations under regime switching. J. Math. Anal. Appl. 376, 11–28 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu, Q., Jiang, D., Hayat, T., Ahmad, B.: Analysis of a delayed vaccinated SIR epidemic model with temporary immunity and Lévy jumps. Nonlinear Anal. Real. 27, 29–43 (2018)

    Article  MATH  Google Scholar 

  25. Cai, Y., Kang, Y.: A stochastic epidemic model incorporating media coverage. Commun. Math. Sci. 14, 893–910 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhao, Y., Jiang, D.: The threshold of a stochastic SIS epidemic model with vaccination. Appl. Math. Comput. 243, 718–727 (2014)

    MathSciNet  MATH  Google Scholar 

  27. Khan, T., Khan, A.: The extinction and persistence of the stochastic hepatitis B epidemic model. Chaos Soliton Fractals 108, 123–128 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. Han, B., Jiang, D., et al.: Stationary distribution and extinction of a stochastic staged progression AIDS model with staged treatment and second-order perturbation. Chaos Soliton Fractals 140, 110238 (2020)

    Article  MathSciNet  Google Scholar 

  29. Zhang, X.: Global dynamics of a stochastic avian–human influenza epidemic model with logistic growth for avian population. Nonlinear Dyn. 90, 2331–2343 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Caraballo, T., Fatini, M.E., Khalifi, M.E.: Analysis of a stochastic distributed delay epidemic model with relapse and Gamma distribution kernel. Chaos Soliton Fractals 133, 109643 (2020)

    Article  MathSciNet  Google Scholar 

  31. Wang, Y., Jiang, D.: Stationary distribution of an HIV model with general nonlinear incidence rate and stochastic perturbations. J. Frankl. I(356), 6610–6637 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang, L., Wang, K., et al.: Nontrivial periodic solution for a stochastic brucellosis model with application to Xinjiang, China. Physica A 510, 522–537 (2018)

    Article  MathSciNet  Google Scholar 

  33. Liu, Q., Jiang, D., Hayat, T., Alsaedi, A.: Dynamical behavior of a stochastic epidemic model for cholera. J. Frankl. I(356), 7486–7514 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhou, B., Zhang, X., Jiang, D.: Dynamics and density function analysis of a stochastic SVI epidemic model with half saturated incidence rate. Chaos Soliton Fractals 137, 109865 (2020)

    Article  MathSciNet  Google Scholar 

  35. Qi, K., Jiang, D.: The impact of virus carrier screening and actively seeking treatment on dynamical behavior of a stochastic HIV/AIDS infection model. Appl. Math. Model. 85, 378–404 (2020)

    Article  MathSciNet  Google Scholar 

  36. Zhang, X., Jiang, D., Alsaedi, A.: Stationary distribution of stochastic SIS epidemic model with vaccination under regime switching. Appl. Math. Lett. 59, 87–93 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. Mao, X.: Stochastic Differential Equations and Applications. Horwood Publishing, Chichester (1997)

    MATH  Google Scholar 

  38. Liu, Q., Jiang, D., Shi, N., Hayat, T., Ahmad, B.: Stationary distribution and extinction of a stochastic SEIR epidemic model with standard incidence. Physica A 476, 58–69 (2017)

    Article  MathSciNet  Google Scholar 

  39. Has’miniskii, R.Z.: Stochastic Stability of Differential equations. Sijthoff Noordhoff, Alphen aan den Rijn (1980)

    Book  Google Scholar 

  40. Gardiner, C.W.: Handbook of Stochastic Methods for Physics. Chemistry and the Natural Sciences. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  41. Roozen, H.: An asymptotic solution to a two-dimensional exit problem arising in population dynamics. SIAM J. Appl. Math. 49, 1793 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  42. Higham, D.J.: An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. 43, 525–546 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  43. Ma, Z., Zhou, Y., Li, C.: Qualitative and Stability Methods for Ordinary Differential Equations. Science Press, Beijing (2015)

    Google Scholar 

  44. Liu, Q., Jiang, D., Hayat, T., Alsaedi, A.: Long-time behaviour of a stochastic chemostat model with distributed delay. Stochastics 91, 1141–1163 (2019)

    Article  MathSciNet  Google Scholar 

  45. Li, M.Y., Shuai, Z., Wang, C.: Global stability of multi-group epidemic models with distributed delays. J. Math. Anal. Appl. 361, 38–47 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  46. Liu, Q., Jiang, D., Shi, N., Hayat, T., Alsaedi, A.: Asymptotic behavior of stochastic multi-group epidemic models with distributed delays. Physica A 467, 527–541 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  47. Liu, Q., Jiang, D., Shi,N., Hayat,T., et al.: A stochastic SIRS epidemic model with logistic growth and general nonlinear incidence rate. Phys A Stat Mech Appl 551, 124152 (2020)

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 11871473) and Shandong Provincial Natural Science Foundation (Nos. ZR2019MA010, ZR2019MA006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daqing Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

(I)Proof of Lemma 2.3: Consider the algebraic equation \( G_0^2+A_0\theta _0+\theta _0A_0^{\tau }=0 \), where \( \theta _0 \) is a symmetric matrix. By direct calculation, we have

$$\begin{aligned} \theta _0=\left( \begin{array}{cccc} \sigma _{11}&{} 0 &{}\sigma _{13} &{} 0 \\ 0&{} \sigma _{22} &{} 0 &{}\sigma _{24} \\ \sigma _{13}&{} 0 &{} \sigma _{33} &{} 0 \\ 0&{} \sigma _{24} &{} 0 &{}\sigma _{44} \end{array} \right) , \end{aligned}$$
(6.1)

where \( \sigma _{22}=\frac{a_3}{2[a_1(a_2a_3-a_1a_4)-a_3^2]},\ \sigma _{13}=-\sigma _{22},\ \sigma _{33}=\frac{a_1}{a_3}\sigma _{22},\ \sigma _{24}=-\frac{a_1}{a_3},\ \sigma _{11}=\frac{a_2a_3-a_1a_4}{a_3}\sigma _{22}, and\ \sigma _{44}=\frac{a_1a_2-a_3}{a_3a_4}\sigma _{22}\). Assume that \(a_1>0,\ a_3>0,\ a_4>0,\ a_1(a_2a_3-a_1a_4)-a_3^2>0\). Then we can show that

$$\begin{aligned}&\sigma _{11}>0,\ \sigma _{11}\sigma _{22}>0,\ \sigma _{22}(\sigma _{11}\sigma _{33}-\sigma _{13}^2)>0,\\&(\sigma _{11}\sigma _{33}-\sigma _{13}^2)(\sigma _{22}\sigma _{44}-\sigma _{24}^2)>0. \end{aligned}$$

This means all the leading principal minors of matrix \( \theta _0 \) are positive. Consequently, \( \theta _0 \) is positive definite.

The proof is completed.

(II) Proof of Lemma 2.4: Consider the algebraic equation \( G_0^2+B_0\theta _1+\theta _1B_0^{\tau }=0 \), where \( \theta _1 \) is a symmetric matrix. We can get by direct computation that

$$\begin{aligned} \theta _1=\left( \begin{array}{cccc} \theta _{11}&{} 0 &{}\theta _{13} &{} 0 \\ 0&{} \theta _{22} &{} 0 &{}0 \\ \theta _{13}&{} 0 &{} \theta _{33} &{} 0 \\ 0&{} 0 &{} 0 &{}0, \end{array} \right) , \end{aligned}$$
(6.2)

where

$$\begin{aligned}&\theta _{22}=\frac{1}{2(b_1b_2-b_3)},\ \theta _{13}=-\theta _{22},\ \theta _{11}=b_2\theta _{22},\\&\theta _{33}=\frac{b_1}{b_3}\theta _{22}. \end{aligned}$$

If \(b_1>0,\ b_3>0,\ b_1b_2-b_3>0\), noting that

$$\begin{aligned} \theta _{11}>0,\ \theta _{11}\theta _{22}>0,\ \theta _{22}(\theta _{11}\theta _{33}-\theta _{13}^2)>0, \end{aligned}$$

which means three leading principal minors of matrix \( \theta _1 \) are positive. Hence, \( \theta _1 \) is semi-positive definite. The proof is confirmed.

(III) Proof of Lemma 2.5: For the algebraic equation \( G_0^2+C_0\theta _2+\theta _2C_0^{\tau }=0 \), since \( \theta _2 \) is a symmetric matrix, we obtain

$$\begin{aligned} \theta _2=\left( \begin{array}{cccc} \vartheta _{11}&{} 0 &{}0 &{} 0 \\ 0&{} \vartheta _{22} &{} 0 &{}0 \\ 0&{} 0 &{} 0 &{} 0 \\ 0&{} 0 &{} 0 &{}0 \end{array} \right) , \end{aligned}$$
(6.3)

where \( \vartheta _{11}=\frac{1}{2c_1},\ \vartheta _{22}=\frac{1}{2c_1c_2}\).

If \(c_1>0\) and \( c_2>0\), then \( \theta _2 \) is a semi-positive definite matrix. This completes the proof.

Appendix B (Theory in obtaining standardized transformation matrix)

By means of the invertible linear transformations, we will derive the corresponding standardized transformation matrices of standard \(R_1, R_2\), and \(R_3\) matrices.

(I) The theory of obtaining standard \( R_1 \) matrix: For the algebraic equation \( G^2+A\Sigma +\Sigma A^{\tau }=0 \), where \( G=diag(\sigma ,0,0,0)\), and

$$\begin{aligned} A=\left( \begin{array}{cccc} a_{11}&{} a_{12} &{}a_{13} &{} a_{14} \\ a_{21}&{} a_{22} &{} a_{23} &{}a_{24} \\ 0&{} a_{32} &{} a_{33} &{} a_{34} \\ 0&{} 0 &{} a_{43} &{}a_{44} \end{array} \right) . \end{aligned}$$
(6.4)

First, we assume that

$$\begin{aligned} a_{21}\ne 0\text {, } a_{32}\ne 0\text {, } a_{43}\ne 0. \end{aligned}$$

Define \(X=(x_1,x_2,x_3,x_4)^{\tau }\) which follows \( dX=AXdt \). Considering the following vector \(Y=(y_1,y_2,y_3,y_4)^{\tau }\),

$$\begin{aligned} \begin{aligned} y_4&=x_4,\ y_3=y_4'=a_{43}x_3+a_{44}x_4,\\ y_2&=y_3'=a_{43}dx_3+a_{44}dx_4=a_{32}a_{43}x_2+(a_{33}\\&\quad +a_{44})a_{43}x_3+(a_{44}^2+a_{34}a_{43})x_4,\\ y_1&=y_2'=a_{21}a_{32}a_{43}x_1+[(a_{22}\\&\quad +a_{33}+a_{44})a_{32}a_{43}]x_2\\&\quad +[a_{43}(a_{23}a_{32}+a_{34}a_{43}\\&\quad +a_{33}a_{44}+a_{33}^2+a_{44}^2)]x_3\\&\quad + [a_{24}a_{32}a_{43}+(a_{33}+a_{44})a_{34}a_{43} \\&\quad +(a_{34}a_{43}+a_{44}^2)a_{44}]x_4:=m_1x_1\\&\quad +m_2x_2+m_3x_3+m_4x_4. \end{aligned} \end{aligned}$$

Then the corresponding standardized transformation matrix is given by

$$\begin{aligned} M=\left( \begin{array}{cccc} m_1&{} m_2 &{}m_3 &{} m_4 \\ 0&{} a_{32}a_{43} &{} (a_{33}+a_{44})a_{43} &{}a_{44}^2+a_{34}a_{43} \\ 0&{} 0 &{} a_{43} &{} a_{44} \\ 0&{} 0 &{}0 &{}1 \end{array} \right) . \end{aligned}$$
(6.5)

Given the above, we derive that \( Y=MX \), which implies that \( dY=MdX=MAXdt=(MAM^{-1})Ydt \). Meanwhile, based on the relationship of the vector Y’s components, one has

$$\begin{aligned} dY= d\left( \begin{array}{c} y_1 \\ y_2\\ y_3\\ y_4\end{array}\right) = \left( \begin{array}{cccc} -a_1&{} -a_2 &{}-a_3 &{} -a_4 \\ 1&{} 0 &{} 0 &{}0 \\ 0&{} 1 &{} 0 &{} 0 \\ 0&{} 0 &{} 1 &{} 0 \end{array} \right) \left( \begin{array}{c} y_1 \\ y_2\\ y_3\\ y_4\end{array}\right) dt. \end{aligned}$$

Obviously, we obtain the corresponding standard \( R_1 \) matrix \( MAM^{-1}:=A_0\), which refers to (2.3). Let \( \rho _1=a_{21}a_{32}a_{43}\sigma \) and \( \theta _0=\rho _1^{-2}M\Sigma M^{\tau }\). Then the above equation can be equivalently transformed into the following equation:

$$\begin{aligned} G_0^2+A_0\theta _0+\theta _0 A_0^{\tau }=0. \end{aligned}$$
(6.6)

(II) The method of transforming standard \( R_2 \) matrix: For the algebraic equation \( G^2+B\Sigma +\Sigma B^{\tau }=0 \), where \( G=diag(\sigma ,0,0,0)\), and

$$\begin{aligned} B=\left( \begin{array}{cccc} b_{11}&{} b_{12} &{}b_{13} &{} b_{14} \\ b_{21}&{} b_{22} &{} b_{23} &{}b_{24} \\ 0&{} b_{32} &{} b_{33} &{} b_{34} \\ 0&{} 0 &{} 0 &{}b_{44} \end{array} \right) . \end{aligned}$$
(6.7)

Similarly, we stipulate that

$$ b_{21}\ne 0\text {, } b_{32}\ne 0. $$

Let the vector \(X=(x_1,x_2,x_3,x_4)^{\tau }\) follow \( dX=BXdt\). For the following vector \(Y=(y_1,y_2,y_3,y_4)^{\tau }\),

$$\begin{aligned} \begin{aligned} y_4&=x_4,\ \ y_3=x_3,\ \ y_2=y_3'=b_{32}x_2+b_{33}x_3+b_{34}x_4,\\ y_1&=y_2'=b_{32}dx_2+b_{33}dx_3+b_{34}dx_4\\&=b_{21}b_{32}x_1+(b_{22}+b_{33})b_{32}x_2\\&+(b_{33}^2+b_{23}b_{32})x_3+[(b_{33}+b_{44})b_{34}+b_{24}b_{32}]x_4. \end{aligned} \end{aligned}$$

Then the relevant standardized transformation matrix M is described by

$$\begin{aligned} M=\left( \begin{array}{cccc} b_{21}b_{32}&{} (b_{22}+b_{33})b_{32} &{} b_{33}^2+b_{23}b_{32} &{} (b_{33}+b_{44})b_{34}+b_{24}b_{32} \\ 0&{} b_{32} &{} b_{33} &{} b_{34} \\ 0&{} 0 &{} 1 &{} 0 \\ 0&{} 0 &{}0 &{}1 \end{array} \right) . \end{aligned}$$
(6.8)

Moreover, we get that \( Y=MX \), which means \( dY=MdX=MBXdt=(MBM^{-1})Ydt \). Similarly, according to the relationship of the vector Y’s components, we obtain a standard \( R_2 \) matrix \( MBM^{-1}:=B_0 \), which refers to (2.4). Denote \( \rho _2=b_{21}b_{32}\sigma \), \( \theta _1=\rho _2^{-2}M\Sigma M^{\tau } \). Then the above equation is equivalent to

$$\begin{aligned} G_0^2+B_0\theta _1+\theta _1 B_0^{\tau }=0. \end{aligned}$$
(6.9)

(III) The method of transforming standard \( R_3 \) matrix: Consider the algebraic equation \( G^2+C\Sigma +\Sigma C^{\tau }=0 \), where \( G=diag(\sigma ,0,0,0)\), and

$$\begin{aligned} C=\left( \begin{array}{cccc} c_{11}&{} c_{12} &{}c_{13} &{} c_{14} \\ c_{21}&{} c_{22} &{} c_{23} &{}c_{24} \\ 0&{} 0 &{} c_{33} &{} c_{34} \\ 0&{} 0 &{} c_{43} &{}c_{44} \end{array} \right) . \end{aligned}$$
(6.10)

First, we assume that \( c_{21}\ne 0 \). For a vector \(X=(x_1,x_2,x_3,x_4)^{\tau }\) determined by \( dX=CXdt \), the following vector \(Y=(y_1,y_2,y_3,y_4)^{\tau }\) satisfies

$$\begin{aligned} \begin{aligned} y_4&=x_4\text {, }y_3=x_3\text {, } y_2=c_{21}x_1\\&\quad +c_{22}x_2+c_{23}x_3+c_{24}x_4,\\ y_1&=y_2'=c_{21}(c_{11}+c_{22})x_1+(c_{12}c_{21}+c_{22}^2)x_2\\&\quad +[c_{13}c_{21}+c_{23}(c_{22}+c_{33})+c_{24}c_{43}]x_3\\&\quad +[c_{14}c_{21}+c_{24}(c_{22}+c_{44})+c_{23}c_{34}]x_4. \end{aligned} \end{aligned}$$

By defining the corresponding standardized transformation matrix

$$\begin{aligned} M= & {} \left( \begin{array}{cccc} c_{21}(c_{11}+c_{22})&{} c_{12}c_{21}+c_{22}^2 &{} c_{13}c_{21}+c_{23}(c_{22}+c_{33})+c_{24}c_{43} &{} c_{14}c_{21}+c_{24}(c_{22}+c_{44})+c_{23}c_{34} \\ c_{21}&{} c_{22} &{} c_{23} &{} c_{24} \\ 0&{} 0 &{} 1 &{} 0 \\ 0&{} 0 &{}0 &{}1 \end{array} \right) , \end{aligned}$$
(6.11)

we can obtain \( Y=MX \). That is to say, \( dY=MdX=MCXdt=(MCM^{-1})Ydt \). Hence, the standard \( R_3 \) matrix \( MCM^{-1}:=C_0 \) is obtained, which refers to (2.5). Let \( \rho _3=c_{21}\sigma \) and \( \theta _2=\rho _3^{-2}M\Sigma M^{\tau } \). Then it can be equivalently transformed into the following equation:

$$\begin{aligned} G_0^2+C_0\theta _2+\theta _2 C_0^{\tau }=0. \end{aligned}$$
(6.12)

Appendix C

Consider the following k-dimensional stochastic differential equation

$$\begin{aligned} dX(t)=f(X(t),t)dt+g(X(t),t)dB(t)\qquad \text {for } t\ge t_0, \end{aligned}$$

with the initial value \( X(0)=X_0 \in {\mathbb {R}}^k \), where B(t) depicts a k-dimensional standard Brownian motion defined in the above complete probability space. The common differential operator \( {\mathscr {L}} \) is described by

$$\begin{aligned} {\mathscr {L}}= & {} \frac{\partial }{\partial t}+\sum _{i=1}^{k}f_i(X(t),t)\frac{\partial }{\partial X_i}\\&+\frac{1}{2}\sum _{i,j=1}^{k}\bigl [g^{\tau }(X(t),t)g(X(t),t)\bigr ]_{ij}\frac{\partial ^2}{\partial X_i\partial X_j}. \end{aligned}$$

Let the operator \( {\mathscr {L}} \) act on a function \( V\in C^{2,1}({\mathbb {R}}^k\times [t_0,\infty ];{\mathbb {R}}_+^1) \). Then one can determine that

$$\begin{aligned}&{\mathscr {L}}V(X,t)=V_t(X(t),t)+V_X(X(t),t)f(X(t),t)\\&\quad +\frac{1}{2}trace\bigl [g^{\tau }(X(t),t)V_{XX}(X(t),t)g(X(t),t)\bigr ], \end{aligned}$$

where \( V_t=\frac{\partial V}{\partial t} \), \( V_X=(\frac{\partial V}{\partial x_1},\ldots ,\frac{\partial V}{\partial x_k}) \), and \( V_{XX}=(\frac{\partial ^2V}{\partial x_i \partial x_j})_{k\times k} \). If \( X(t) \in {\mathbb {R}}^k\), we have

$$\begin{aligned}&dV(X(t),t)={\mathscr {L}}V(X(t),t)dt\\&\quad +V_X(X(t),t)g(X(t),t)dB(t). \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, B., Jiang, D., Dai, Y. et al. Stationary distribution and density function expression for a stochastic SIQRS epidemic model with temporary immunity. Nonlinear Dyn 105, 931–955 (2021). https://doi.org/10.1007/s11071-020-06151-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1007/s11071-020-06151-y

Keywords

Profiles

  1. Baoquan Zhou