Skip to main content

An Optimal Control Approach for Public Health Interventions on an Epidemic-Viral Model in Deterministic and Stochastic Environments

  • Chapter
  • First Online:
Mathematics of Public Health

Part of the book series: Fields Institute Communications ((FIC,volume 88))

  • 538 Accesses

Abstract

Dynamical models for within-host infectious diseases and between-host propagation behave differently with respect to time scale. Although, they represent a challenge for learning more about the impact of a viral load on the behavior of an epidemic model in a certain population. In this paper, we investigate pharmaceutical and non-pharmaceutical interventions in a framework that couples a viral and an epidemic model. We propose an optimal control for both deterministic and stochastic models, where we show the existence of deterministic and stochastic optimal controls for public health interventions with quarantine. Then, using Pontryagin’s maximum principle, we characterize an optimal control for non-pharmaceutical interventions, vaccination campaigns, and treatment strategies. Finally, numerical simulations and sensitivity analysis are conducted to illustrate our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from €37.37 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
EUR 29.95
Price includes VAT (Norway)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Norway)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 149.99
Price excludes VAT (Norway)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR 149.99
Price excludes VAT (Norway)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Berrhazi, B.e., El Fatini, M., Laaribi, A., Pettersson, R.: A stochastic viral infection model driven by lévy noise. Chaos, Solitons Fractals 114, 446–452 (2018)

    Google Scholar 

  2. Berrhazi, B.e., El Fatini, M., Laaribi, A., Pettersson, R., Taki, R.: A stochastic SIRS epidemic model incorporating media coverage and driven by lévy noise. Chaos, Solitons Fractals 105, 60–68 (2017)

    Google Scholar 

  3. Caraballo, T., El Fatini, M., Sekkak, I., Taki, R., Laaribi, A.: A stochastic threshold for an epidemic model with isolation and a non linear incidence. Commun. Pure Appl. Anal. 19(5), 2513 (2020)

    Article  MathSciNet  Google Scholar 

  4. Van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180(1-2), 29–48 (2002)

    Article  MathSciNet  Google Scholar 

  5. El Fatini, M., Pettersson, R., Sekkak, I., Taki, R.: A stochastic analysis for a triple delayed siqr epidemic model with vaccination and elimination strategies. J. Appl. Math. Comput. 64(1), 781–805 (2020)

    Article  MathSciNet  Google Scholar 

  6. El Fatini, M., Sekkak, I., Laaribi, A., Pettersson, R., Wang, K.: A stochastic threshold of a delayed epidemic model incorporating lévy processes with harmonic mean and vaccination. Int. J. Biomath. 13(07), 2050069 (2020)

    Article  MathSciNet  Google Scholar 

  7. Feng, Z., Velasco-Hernandez, J., Tapia-Santos, B.: A mathematical model for coupling within-host and between-host dynamics in an environmentally-driven infectious disease. Math. Biosci. 241(1), 49–55 (2013)

    Article  MathSciNet  Google Scholar 

  8. Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. Ser. A Contain. Papers Math. Phys. Char. 115(772), 700–721 (1927)

    Google Scholar 

  9. Kirk, D.E.: Optimal Control Theory: An Introduction. Courier Corporation, North Chelmsford (2004)

    Google Scholar 

  10. Kushner, H.: Existence results for optimal stochastic controls. J. Optim. Theory Appl. 15(4), 347–359 (1975)

    Article  MathSciNet  Google Scholar 

  11. Lahrouz, A., Settati, A.: Necessary and sufficient condition for extinction and persistence of SIRS system with random perturbation. Appl. Math. Comput. 233, 10–19 (2014)

    MathSciNet  Google Scholar 

  12. Liu, Q., Jiang, D.: Threshold behavior in a stochastic SIR epidemic model with logistic birth. Physica A Stat. Mech. Appl. 540, 123488 (2020)

    Article  MathSciNet  Google Scholar 

  13. Lukes, D.L.: Differential equations: classical to controlled (1982)

    Google Scholar 

  14. Nowak, M., May, R.M.: Virus Dynamics: Mathematical Principles of Immunology and Virology: Mathematical Principles of Immunology and Virology. Oxford University Press, UK (2000)

    Book  Google Scholar 

  15. Øksendal, B., Sulem, A.: Stochastic Control of Jump Diffusions. Springer, New York (2005)

    Google Scholar 

  16. Pitchaimani, M., Devi, M.B.: Stochastic probical strategies in a delay virus infection model to combat covid-19. Chaos, Solitons Fractals 152, 111325 (2021)

    Article  MathSciNet  Google Scholar 

  17. Rajaji, R., Pitchaimani, M.: Analysis of stochastic viral infection model with immune impairment. Int. J. Appl. Comput. Math. 3(4), 3561–3574 (2017)

    Article  MathSciNet  Google Scholar 

  18. Rajaji, R., Pitchaimani, M.: Analysis of stochastic viral infection model with lytic and nonlytic immune responses. Stoch. Anal. Appl. 38(3), 490–505 (2020)

    Article  MathSciNet  Google Scholar 

  19. Wang, K., Jin, Y., Fan, A.: The effect of immune responses in viral infections: A mathematical model view. Discrete Contin. Syst. B 19(10), 3379 (2014)

    Article  MathSciNet  Google Scholar 

  20. Wodarz, D., Christensen, J.P., Thomsen, A.R.: The importance of lytic and nonlytic immune responses in viral infections. Trends Immunol. 23(4), 194–200 (2002)

    Article  Google Scholar 

  21. Yong, J., Zhou, X.Y.: Stochastic Controls: Hamiltonian Systems and HJB Equations, vol. 43. Springer Science & Business Media, Berlin (1999)

    Book  Google Scholar 

  22. Zhou, B., Han, B., Jiang, D.: Ergodic property, extinction and density function of a stochastic SIR epidemic model with nonlinear incidence and general stochastic perturbations. Chaos, Solitons Fractals 152, 111338 (2021)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sekkak, I., Nasri, B.R. (2023). An Optimal Control Approach for Public Health Interventions on an Epidemic-Viral Model in Deterministic and Stochastic Environments. In: David, J., Wu, J. (eds) Mathematics of Public Health. Fields Institute Communications, vol 88. Springer, Cham. https://doi.org/10.1007/978-3-031-40805-2_5

Download citation

Publish with us

Policies and ethics