Skip to main content
Log in

A stochastic analysis for a triple delayed SIQR epidemic model with vaccination and elimination strategies

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, a delayed SIQR epidemic model with vaccination and elimination hybrid strategies is analysed under a white noise perturbation. We prove the existence and the uniqueness of a positive solution. Afterwards, we establish a stochastic threshold \({\mathcal {R}}_s\) in order to study the extinction and persistence in mean of the stochastic epidemic system. Then we investigate the existence of a stationary distribution for the delayed stochastic model. Finally, some numerical simulations are presented to support our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from €37.37 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Norway)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Berrhazi, B., El Fatini, M., Laaribi, A.: A stochastic threshold for an epidemic model with Beddington–DeAngelis incidence, delayed loss of immunity and Lévy noise perturbation. Phys. A 507, 312–320 (2018)

    Article  MathSciNet  Google Scholar 

  2. Berrhazi, B., El Fatini, M., Lahrouz, A., Settati, A., Taki, R.: A stochastic SIRS epidemic model with a general awareness-induced incidence. Phys. A 512, 968–980 (2018)

    Article  MathSciNet  Google Scholar 

  3. Cao, Z., Feng, W., Wen, X., Zu, L., Cheng, M.: Dynamics of a stochastic SIQR epidemic model with standard incidence. Phys. A 527, 121180, 12 (2019)

    Article  MathSciNet  Google Scholar 

  4. Cao, Z., Zhou, S.: Dynamical behaviors of a stochastic SIQR epidemic model with quarantine-adjusted incidence, p. 13. Discrete Dyn. Nat. Soc. (2018)

  5. Caraballo, T., El Fatini, M., Sekkak, I., Taki, R., Laaribi, A.: A stochastic threshold for an epidemic model with isolation and a non linear incidence. Commun. Pure Appl. Anal. 19(5), 2513–2531 (2020)

    Article  Google Scholar 

  6. Caraballo, T., Settati, A., El Fatini, M., Lahrouz, A., Imlahi, A.: Global stability and positive recurrence of a stochastic SIS model with Lévy noise perturbation. Phys. A 523, 677–690 (2019)

    Article  MathSciNet  Google Scholar 

  7. El Fatini, M., El Khalifi, M., Gerlach, R., Laaribi, A., Taki, R.: Stationary distribution and threshold dynamics of a stochastic SIRS model with a general incidence. Phys. A 534, 120696 (2019)

    Article  MathSciNet  Google Scholar 

  8. El Fatini, M., Sekkak, I.: Lévy noise impact on a stochastic delayed epidemic model with Crowly-Martin incidence and Crowding effect. Phys. A, Accepted (2019)

  9. El Fatini, M., Sekkak, I., Laaribi, A.: A threshold of a delayed stochastic epidemic model with Crowly-Martin functional response and vaccination. Phys. A 520, 151–160 (2019)

    Article  MathSciNet  Google Scholar 

  10. Fan, K., Zhang, Y., Gao, S., Wei, X.: A class of stochastic delayed SIR epidemic models with generalized nonlinear incidence rate and temporary immunity. Phys. A 481, 198–208 (2017)

    Article  MathSciNet  Google Scholar 

  11. Guo, Y.: Stochastic regime switching SIS epidemic model with vaccination driven by lévy noise. Adv. Difference Equ. No. 375, 15 pp (2017)

  12. Hattaf, K., Mahrouf, M., Adnani, J., Yousfi, N.: Qualitative analysis of a stochastic epidemic model with specific functional response and temporary immunity. Phys. A 490, 591–600 (2018)

    Article  MathSciNet  Google Scholar 

  13. Hethcote, H.W., Zhien, M., Shengbing, L.: Effects of quarantine in six endemic models for infectious diseases. Math. Biosci. 180, 141–160 (2002)

    Article  MathSciNet  Google Scholar 

  14. Ji, C., Jiang, D., O’Regan, D.: Threshold behaviour of a stochastic SIR model. Appl. Math. Comput. 38, 5067–5079 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Kinnally, M., Williams, R.: Stationary distributions for stochastic delay differential equations with non-negativity constraints. Electron. J. Probab. 15, 409–451 (2010)

    Article  MathSciNet  Google Scholar 

  16. Lan, G., Chen, Z., Wei, C., Zhang, S.: Stationary distribution of a stochastic SIQR epidemic model with saturated incidence and degenerate diffusion. Phys. A 511, 61–77 (2018)

    Article  MathSciNet  Google Scholar 

  17. Liu, Q., Chen, Q., Jiang, D.: The threshold of a stochastic delayed SIR epidemic model with temporary immunity. Phys. A 450, 115–125 (2016)

    Article  MathSciNet  Google Scholar 

  18. Liu, Q., Jiang, D., Hayat, T., Ahmad, B.: Analysis of a delayed vaccinated SIR epidemic model with temporary immunity and Lévy jumps. Nonlinear Anal. Hybrid Syst. 27, 29–43 (2018)

    Article  MathSciNet  Google Scholar 

  19. Liu, Q., Jiang, D., Shi, N., Hayat, T.: Dynamics of a stochastic delayed SIR epidemic model with vaccination and double diseases driven by Lévy jumps. Phys. A 492, 2010–2018 (2018)

    Article  MathSciNet  Google Scholar 

  20. Liu, Q., Jiang, D., Hayat, T., Alsaedi, A.: Dynamics of a stochastic multigroup SIQR epidemic model with standard incidence rates. J. Franklin Inst. 356(5), 2960–2993 (2019)

    Article  MathSciNet  Google Scholar 

  21. Mao, X.: Stochastic differential equations and applications. Second edn. Horwood Publishing Limited, Chichester, 2008, pp. xviii+422, ISBN 978-1-904275-34-3 (2010)

  22. Qun, L., Daqing, J., Ningzhong, S.: Threshold behavior in a stochastic SIQR epidemic model with standard incidence and regime switching. Appl. Math. Comput. 316, 310–325 (2018)

    MathSciNet  MATH  Google Scholar 

  23. Ruschel, S., Tiago, P., Serhiy, Y., Lai-Sang, Y.: An SIQ delay differential equations model for disease control via isolation. J. Math. Biol. 79(1), 249–279 (2019)

    Article  MathSciNet  Google Scholar 

  24. Wang, L.-L., Huang, N.-J., O’Regan, D.: Dynamics of a stochastic SIQR epidemic model with saturated incidence rate. Filomat 32(15), 5239–5253 (2018)

    Article  MathSciNet  Google Scholar 

  25. Zhang, X.-B., Huo, H.-F., Xiang, H., Li, D.: The dynamical behavior of deterministic and stochastic delayed SIQS model. J. Appl. Anal. Comput. 8(4), 1061–1084 (2018)

    MathSciNet  Google Scholar 

  26. Zhang, X.-B., Huo, H.-F., Xiang, H., Meng, X.-Y.: Dynamics of the deterministic and stochastic SIQS epidemic model with non linear incidence. Appl. Math. Comput. 243, 546–558 (2014)

    MathSciNet  MATH  Google Scholar 

  27. Zhang, X.-B., Huo, H.-F., Xiang, H., Shi, Q., Li, D.: The threshold of a stochastic SIQS epidemic model. Phys. A 482, 362–374 (2017)

    Article  MathSciNet  Google Scholar 

  28. Zhang, X., Yuan, R.: The existence of stationary distribution of a stochastic delayed chemostat model. Appl. Math. Lett. 93, 15–21 (2019)

    Article  MathSciNet  Google Scholar 

  29. Zhang, Q., Zhou, K.: Stationary distribution and extinction of a stochastic SIQR model with saturated incidence rate. Math. Probl. Eng., Art. ID 3575410, 12 pp (2019)

  30. Zhu, Z., Leung, H.: Optimal synchronization of chaotic systems in noise. IEEE Trans. Circ. Syst. I Fund. Theory Appl. 46, 1320–1329 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the Editor and the Reviewers for their helpful and constructive comments and suggestions. The authors are also thankful to the laboratory MAD (Management de l’ agriculture Durable) of EST Sidi Bannour, the Faculty of sciences, Ibn Tofail University, Kenitra and Linnaeus University, \(V\ddot{a}xj\ddot{o}\) for their help and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed El Fatini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Fatini, M., Pettersson, R., Sekkak, I. et al. A stochastic analysis for a triple delayed SIQR epidemic model with vaccination and elimination strategies. J. Appl. Math. Comput. 64, 781–805 (2020). https://doi.org/10.1007/s12190-020-01380-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1007/s12190-020-01380-1

Keywords

Mathematics Subject Classification

Profiles

  1. Roger Pettersson
  2. Regragui Taki