Skip to main content
Log in

Dynamics and vibration analysis of agricultural machinery systems: recent advances and future perspectives

  • Review Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This review systematically examines advances in dynamics and vibration analysis of agricultural machinery systems, aiming to optimize their modern design theoretical frameworks and markedly enhance operational efficacy and holistic machine reliability. Distinctively, this paper synthesizes recent interdisciplinary modeling and experimental techniques, and for the first time, provides a comparative evaluation of their applicability, precision, and integration potential in addressing complex real-world operational scenarios. Novel approaches for multi-physics-coupling analysis and validation are discussed, introducing innovative prospects for model-based intelligent optimization. It elucidates three principal research thrusts: machine–soil interactions, vehicle-ground mechanics, and the dynamic characteristics of powertrain systems. The paper investigates prevalent modeling methodologies, including analytical methods, numerical simulations, and multibody dynamics, alongside experimental validation techniques such as field tests, bench experiments, and virtual prototyping. The synergistic advantage of integrating these methods to ensure model fidelity is emphasized. Furthermore, advanced dynamic optimization strategies are explored, encompassing vibration and noise mitigation, intelligent fault diagnosis, and predictive maintenance, which are vital for prolonging service life and ensuring operational safety. A major contribution of this review is the prospective roadmap it outlines for the coupling of agricultural machinery dynamics with frontier technologies such as intelligent control, remote teleoperation, and machine vision, thereby identifying key scientific challenges and opportunities for precision agriculture. These advancements will provide critical theoretical and technological foundations for agricultural modernization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from €37.37 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Norway)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Bettucci F, Sozzi M, Benetti M, Sartori L (2024) A data-driven approach to agricultural machinery working states analysis during ploughing operations. Smart Agric Technol 8:100511

    Article  Google Scholar 

  2. Zhao S, Adade SY-SS, Wang Z, Jiao T, Ouyang Q, Li H, Chen Q (2025) Deep learning and feature reconstruction assisted vis-NIR calibration method for on-line monitoring of key growth indicators during kombucha production. Food Chem 463:141411

    Article  Google Scholar 

  3. Zhao Z, Huang H, Yin J, Yang SX (2018) Dynamic analysis and reliability design of round baler feeding device for rice straw harvest. Biosyst Eng 174:10–19

    Article  Google Scholar 

  4. Walunj A, Chen Y, Tian Y, Zeng Z (2023) Modeling soil–plant–machine dynamics using discrete element method: a review. Agronomy 13(5):1260

    Article  Google Scholar 

  5. Zhao H, Huang Y, Liu Z, Liu W, Zheng Z (2021) Applications of discrete element method in the research of agricultural machinery: a review. Agriculture (Basel) 11(5):425

    Article  Google Scholar 

  6. Yu Y, Kim Y, Noguchi N (2025) A non-linear dynamic model for agricultural vehicles constructed in digital space. Smart Agric Technol 11:100891

    Article  Google Scholar 

  7. Jin Y, Liu J, Xu Z, Yuan S, Li P, Wang J (2021) Development status and trend of agricultural robot technology. Int J Agric Biol Eng 14(4):1–19

    Google Scholar 

  8. Jin X, Li D, Ma H, Ji J, Zhao K, Pang J (2018) Development of single row automatic transplanting device for potted vegetable seedlings. Int J Agric Biol Eng 11(3):67–75

    Google Scholar 

  9. Li Y, Xu L, Gao Z, Lu E, Li Y (2021) Effect of vibration on rapeseed header loss and optimization of header frame. Trans ASABE 64(4) 1247-1258

    Article  Google Scholar 

  10. Chen Y, Chen L, Huang C, Lu Y, Wang C (2019) A dynamic tire model based on HPSO-SVM. Int J Agric Biol Eng 12(2):36–41

    Google Scholar 

  11. Cutini M, Deboli R, Calvo A, Preti C, Brambilla M, Bisaglia C (2017) Ground soil input characteristics determining agricultural tractor dynamics. Appl Eng Agric 33(4):509

    Article  Google Scholar 

  12. Cardei P, Vladutoiu L, Chisiu G, Tudor A, Sorica C, Gheres M, Gheorghe G, Muraru S (2018) Research on friction influence on the working process of agricultural machines for soil tillage. In: IOP conference series: materials science and engineering. IOP Publishing, p 022014

  13. Yuexia C, Long C, Ruochen W, Xing X, Yujie S, Yanling L (2016) Modeling and test on height adjustment system of electrically-controlled air suspension for agricultural vehicles. Int J Agric Biol Eng 9(2):40–47

    Google Scholar 

  14. Wang B, Du X, Wang Y, Mao H (2024) Multi-machine collaboration realization conditions and precise and efficient production mode of intelligent agricultural machinery. Int J Agric Biol Eng 17(2):27–36

    Google Scholar 

  15. Kazakov YF, Medvedev V, Ivanov V (2020) On the development of combined tillage working bodies-mechanisms. In: IOP conference series: earth and environmental science. IOP Publishing, p 012019

  16. Vinod Chandra SS, Hareendran A, Albaaji GF (2024) Precision farming for sustainability: an agricultural intelligence model. Comput Electron Agric 226:109386

    Article  Google Scholar 

  17. Ahmad F, Qiu B, Ding Q, Ding W, Khan ZM, Shoaib M, Chandio FA, Rahim A, Khaliq A (2020) Discrete element method simulation of disc type furrow openers in paddy soil. Int J Agric Biol Eng 13(4):103–110

    Google Scholar 

  18. Tang Z, Zhang H, Li H, Li Y, Ding Z, Chen J (2020) Development of crawler steering gearbox for combine harvester straight forward and steering in situ. Int J Agric 13(1):120–126

    Google Scholar 

  19. Chen Y, Qian Y, Lu Z, Zhou S, Xiao M, Bartos P, Xiong Y, Jin G, Zhang W (2021) Dynamic characteristic analysis and clutch engagement test of HMCVT in the high-power tractor. Complexity 2021(1):8891127

    Article  Google Scholar 

  20. Hu C, Gao J, Song X, Zhang M, Tan X (2021) Analytical modeling and DEM analysis of soil–wheel interaction under cornering and skidding conditions in off-road vehicles. AIP Adv 11(8):085122

    Article  Google Scholar 

  21. Sharma K, Shivandu SK (2024) Integrating artificial intelligence and Internet of Things (IoT) for enhanced crop monitoring and management in precision agriculture. Sens Int 5:100292

    Article  Google Scholar 

  22. Liu H, Yan S, Shen Y, Li C, Zhang Y, Hussain F (2021) Model predictive control system based on direct yaw moment control for 4WID self-steering agriculture vehicle. Int J Agric Biol Eng 14(2):175–181

    Google Scholar 

  23. Li X, Yu S, Lei Y, Li N, Yang B (2024) Dynamic vision-based machinery fault diagnosis with cross-modality feature alignment. IEEE/CAA J Autom Sin 11(10):2068–2081

    Article  Google Scholar 

  24. Liang Z, Li J, Liang J, Shao Y, Zhou T, Si Z, Li Y (2022) Investigation into experimental and DEM simulation of guide blade optimum arrangement in multi-rotor combine harvesters. Agriculture 12(3):435

    Article  Google Scholar 

  25. Ding B, Liang Z, Qi Y, Ye Z, Zhou J (2022) Improving cleaning performance of rice combine harvesters by DEM–CFD coupling technology. Agriculture 12(9):1457

    Article  Google Scholar 

  26. Wang X, Fang W, Han D, Chen X (2022) Review of the research on soil disturbance by tools. Appl Sci 13(1):338

    Article  Google Scholar 

  27. Jiang JD, Hoogmoed W, Tao GX, Gao J, Zhang X (2012) Research on a special scarifier mechanism with finite element analysis method. Adv Mater Res 433:1044–1051

    Article  Google Scholar 

  28. Karunathilake E, Le AT, Heo S, Chung YS, Mansoor S (2023) The path to smart farming: innovations and opportunities in precision agriculture. Agriculture 13(8):1593

    Article  Google Scholar 

  29. Badgujar C, Das S, Figueroa DM, Flippo D (2023) Application of computational intelligence methods in agricultural soil–machine interaction: a review. Agriculture 13(2):357

    Article  Google Scholar 

  30. AlZubi AA, Galyna K (2023) Artificial intelligence and internet of things for sustainable farming and smart agriculture. IEEE Access 11:78686–78692

    Article  Google Scholar 

  31. Akkem Y, Biswas SK, Varanasi A (2023) Smart farming using artificial intelligence: a review. Eng Appl Artif Intell 120:105899

    Article  Google Scholar 

  32. Din A, Ismail MY, Shah B, Babar M, Ali F, Baig SU (2022) A deep reinforcement learning-based multi-agent area coverage control for smart agriculture. Comput Electr Eng 101:108089

    Article  Google Scholar 

  33. Cheng C, Fu J, Su H, Ren L (2023) Recent advancements in agriculture robots: benefits and challenges. Machines 11(1):48

    Article  Google Scholar 

  34. Wu P, Lei X, Zeng J, Qi Y, Yuan Q, Huang W, Ma Z, Shen Q, Lyu X (2024) Research progress in mechanized and intelligentized pollination technologies for fruit and vegetable crops. Int J Agric Biol Eng 17(6):11–21

    Google Scholar 

  35. Gao J, Qi H (2017) Soil throwing experiments for reverse rotary tillage at various depths, travel speeds, and rotational speeds. Trans ASABE 60(4):1113–1121

    Article  Google Scholar 

  36. Lu Y, Liu P, Montazar A, Paw U K, Hu Y (2019) Soil water infiltration model for sprinkler irrigation control strategy: a case for tea plantation in Yangtze River region. Agriculture (Basel) 9(10):206

    Article  Google Scholar 

  37. Wang J, Tian Z, Yang T, Li X, He Q, Wang D, Chen R (2024) Characteristics of limited flow and soil water infiltration boundary of a subsurface drip irrigation emitter in silty loam soil. Agric Water Manag 291:108636

    Article  Google Scholar 

  38. Wildemeersch JC, Vermang J, Cornelis WM, Diaz J, Gabriels D, Ruiz ME (2014) Tillage erosion and controlling factors in traditional farming systems in Pinar del Río, Cuba. CATENA 121:344–353

    Article  Google Scholar 

  39. Jia L, Zhang J, Zhang Z, Wang Y (2017) Assessment of gravelly soil redistribution caused by a two-tooth harrow in mountainous landscapes of the Yunnan-Guizhou Plateau, China. Soil Tillage Res 168:11–19

    Article  Google Scholar 

  40. Zhang J, Li F (2013) Soil redistribution and organic carbon accumulation under long-term (29 years) upslope tillage systems. Soil Use Manag 29(3):365–373

    Article  Google Scholar 

  41. Zhao P, Li S, Wang E, Chen X, Deng J, Zhao Y (2018) Tillage erosion and its effect on spatial variations of soil organic carbon in the black soil region of China. Soil Tillage Res 178:72–81

    Article  Google Scholar 

  42. Jafarı R, Karparvarfard SH, Hosseını SA (2011) The effect of geometry and motion characteristics of narrow tillage tool on soil disturbance efficiency. Tarım Makinaları Bilimi Dergisi 7(3):253–258

    Google Scholar 

  43. Ucgul M, Fielke JM, Saunders C (2014) Three-dimensional discrete element modelling of tillage: determination of a suitable contact model and parameters for a cohesionless soil. Biosyst Eng 121:105–117

    Article  Google Scholar 

  44. Van Muysen W, Van Oost K, Govers G (2006) Soil translocation resulting from multiple passes of tillage under normal field operating conditions. Soil Tillage Res 87(2):218–230

    Article  Google Scholar 

  45. Torri D, Borselli L (2002) Clod movement and tillage tool characteristics for modeling tillage erosion. J Soil Water Conserv 57(1):24–28

    Article  Google Scholar 

  46. Hirai H (2016) Analysis of piles subjected to lateral soil movements using a three-dimensional displacement approach. Int J Numer Anal Meth Geomech 40(2):235–268

    Article  Google Scholar 

  47. Mu L, Huang M (2016) Small strain based method for predicting three-dimensional soil displacements induced by braced excavation. Tunn Undergr Space Technol 52:12–22

    Article  Google Scholar 

  48. Armin A, Fotouhi R, Szyszkowski W (2014) On the FE modeling of soil–blade interaction in tillage operations. Finite Elem Anal Des 92:1–11

    Article  Google Scholar 

  49. Jia J (2018) Soil dynamics and foundation modeling. Springer, Berlin

    Book  Google Scholar 

  50. Zhang B, Bai T, Wu G, Wang H, Zhu Q, Zhang G, Meng Z, Wen C (2024) Fatigue analysis of shovel body based on tractor subsoiling operation measured data. Agriculture 14(9):1604

    Article  Google Scholar 

  51. Zhao Z, Li H, Liu J, Yang SX (2020) Control method of seedbed compactness based on fragment soil compaction dynamic characteristics. Soil Tillage Res 198:104551

    Article  Google Scholar 

  52. Chandio FA, Li Y, Xu L, Ma Z, Ahmad F, Cuong DM, Lakhiar IA (2020) Predicting 3d forces of disc tool and soil disturbance area using fuzzy logic model under sensor based soil-bin. Int J Agric Biol Eng 13(4):77–84

    Google Scholar 

  53. Guan C, Fu J, Xu L, Jiang X, Wang S, Cui Z (2022) Study on the reduction of soil adhesion and tillage force of bionic cutter teeth in secondary soil crushing. Biosyst Eng 213:133–147

    Article  Google Scholar 

  54. He C, You Y, Wang D, Wang G, Lu D, Kaji JMT (2016) The effect of tine geometry during vertical movement on soil penetration resistance using finite element analysis. Comput Electron Agric 130:97–108

    Article  Google Scholar 

  55. Kešner A, Chotěborský R, Linda M, Hromasová M, Katinas E, Sutanto H (2021) Stress distribution on a soil tillage machine frame segment with a chisel shank simulated using discrete element and finite element methods and validate by experiment. Biosyst Eng 209:125–138

    Article  Google Scholar 

  56. Sun J, Wang Y, Ma Y, Tong J, Zhang Z (2018) DEM simulation of bionic subsoilers (tillage depth> 40 cm) with drag reduction and lower soil disturbance characteristics. Adv Eng Softw 119:30–37

    Article  Google Scholar 

  57. Ma Y, Wang A, Zhao J, Hao J, Li J, Ma L, Zhao W, Wu Y (2019) Simulation analysis and experiment of drag reduction effect of convex blade subsoiler based on discrete element method. Trans CSAE 35(3):16–23

    Google Scholar 

  58. Mudarisov S, Gabitov I, Lobachevsky YP, Mazitov N, Rakhimov R, Khamaletdinov R, Rakhimov I, Farkhutdinov I, Mukhametdinov A, Gareev R (2019) Modeling the technological process of tillage. Soil Tillage Res 190:70–77

    Article  Google Scholar 

  59. Hu M, Gao T, Dong X, Tan Q, Yi C, Wu F, Bao A (2023) Simulation of soil-tool interaction using smoothed particle hydrodynamics (SPH). Soil Tillage Res 229:105671

    Article  Google Scholar 

  60. Nikolov N, Sinapov P (2018) Determination of the internal resistance of a hammer drill chisel. J Theor Appl Mech 56(1):169–178

    Article  Google Scholar 

  61. Adamchuk VI, Skotnikov AV, Speichinger JD, Kocher MF (2004) Development of an instrumented deep-tillage implement for sensing of soil mechanical resistance. Trans ASAE 47(6):1913–1919

    Article  Google Scholar 

  62. Mouazen AM, Nemenyi M (1999) Tillage tool design by the finite element method: Part 1. Finite element modelling of soil plastic behaviour. J Agric Eng Res 72(1):37–51

    Article  Google Scholar 

  63. He C, You Y, Wang D, Wu H (2018) Estimating soil failure due to torsion via vane shear test by varying vane diameter and soil properties. Soil Tillage Res 177:68–78

    Article  Google Scholar 

  64. Fielke JM (1999) Finite element modelling of the interaction of the cutting edge of tillage implements with soil. J Agric Eng Res 74(1):91–101

    Article  Google Scholar 

  65. Tagar A, Changying J, Adamowski J, Malard J, Qi CS, Qishuo D, Abbasi N (2015) Finite element simulation of soil failure patterns under soil bin and field testing conditions. Soil Tillage Res 145:157–170

    Article  Google Scholar 

  66. Skonieczny K (2018) Modeling the effects of surcharge accumulation on terrestrial and planetary wide-blade soil–tillage tool interactions. Soil Tillage Res 176:104–111

    Article  Google Scholar 

  67. Osman MS (1964) The mechanics of soil cutting blades. Trans ASAE 9(4):318–328

    Google Scholar 

  68. Reece A (1964) Paper 2: the fundamental equation of earth-moving mechanics. In: Proceedings of the institution of mechanical engineers, conference proceedings. SAGE Publications Sage UK: London, England, pp 16–22

  69. Hettiaratchi D, Witney B, Reece A (1966) The calculation of passive pressure in two-dimensional soil failure. J Agric Eng Res 11(2):89–107

    Article  Google Scholar 

  70. Perumpral J, Grisso R, Desai C (1983) A soil-tool model based on limit equilibrium analysis. Trans ASAE 26(4):991–0995

    Article  Google Scholar 

  71. Al-Neama AKA, Hertzilius T (2017) Draft forces prediction model for standard single tines by using principles of soil mechanics and soil profile evaluation. Landtechnik 72(3):157–164

    Google Scholar 

  72. Chirende B, Li JQ, Vheremu W (2019) Application of finite element analysis in modeling of bionic harrowing discs. Biomimetics 4(3):61

    Article  Google Scholar 

  73. Tesliuk H, Volik B, Sokol S, Ponomarenko N (2019) Design of working bodies for tillage tools using the methods of bionics. East Eur J Enterp Technol 3(1):49–54

    Google Scholar 

  74. Kešner A, Chotěborský R, Linda M, Hromasová M (2019) Methodology of the stress detemination in the tool module during the work of the agriculture machine. Agron Res 17(2):481–490

    Google Scholar 

  75. Jiang X, Tong J, Ma Y, Sun J (2020) Development and verification of a mathematical model for the specific resistance of a curved subsoiler. Biosyst Eng 190:107–119

    Article  Google Scholar 

  76. Mattetti M, Varani M, Molari G, Morelli F (2017) Influence of the speed on soil-pressure over a plough. Biosyst Eng 156:136–147

    Article  Google Scholar 

  77. Askari M, Abbaspour-Gilandeh Y (2019) Assessment of adaptive neuro-fuzzy inference system and response surface methodology approaches in draft force prediction of subsoiling tines. Soil Tillage Res 194:104338

    Article  Google Scholar 

  78. Azimi-Nejadian H, Karparvarfard SH, Naderi-Boldaji M, Rahmanian-Koushkaki H (2019) Combined finite element and statistical models for predicting force components on a cylindrical mouldboard plough. Biosyst Eng 186:168–181

    Article  Google Scholar 

  79. Vajda MZ, Oláh Z, Orosz Á (2019) Evaluating the stress field on sweep during tillage process applying coupled finite-discrete element method. In: ECMS, pp 358–363

  80. Rehman TU, Mahmud MS, Chang YK, Jin J, Shin J (2019) Current and future applications of statistical machine learning algorithms for agricultural machine vision systems. Comput Electron Agric 156:585–605

    Article  Google Scholar 

  81. Chen S, Zhou Y, Tang Z, Lu S (2020) Modal vibration response of rice combine harvester frame under multi-source excitation. Biosyst Eng 194:177–195

    Article  Google Scholar 

  82. Lu E, Ma Z, Li Y, Xu L, Tang Z (2020) Adaptive backstepping control of tracked robot running trajectory based on real-time slip parameter estimation. Int J Agric Biol Eng 13(4):178–187

    Google Scholar 

  83. Yuan L, Tang Z, Liu S, Wang T, Ding Z (2024) Basel: design for copying grouser and bionic convex hull patterns on track surfaces of crawler combine harvesters. Agriculture 14(7):1079

    Article  Google Scholar 

  84. Yu Y, Wang G, Tang Z, Cao Y, Zhao Y (2023) Structural form and field operation effect of crawler type Broccoli harvester. Eng Agric 43(6):e20230132

    Google Scholar 

  85. Jing T, Tang Z, Ding Z, Liang Y, Fang M, Wang T (2024) Paddy soil compaction effect undergoing multi-dimensional dynamic load of combine harvester crawler. Agriculture 14(2):202

    Article  Google Scholar 

  86. Choi J, Campanelli M, Shabana A, Wehage R (1998) Approximation methods in the nonlinear analysis of planar tracked vehicles. Veh Syst Dyn 29(3):181–211

    Article  Google Scholar 

  87. Wang P, Rui X, Yu H, Wang G, Chen D (2021) Adaptive control of track tension estimation using radial basis function neural network. Def Technol 17(4):1423–1433

    Article  Google Scholar 

  88. Wang P, Rui X, Yu H, Li B (2020) Dynamics modeling and control of active track tensioning system for tracked vehicle. J Vib Control 26(11–12):989–1000

    Article  MathSciNet  Google Scholar 

  89. Wang P, Rui X, Liu F, Wang G, Yu H, He B, Gu J (2023) Generation mechanism and control of high-frequency vibration for tracked vehicles. Int J Mech Syst Dyn 3(2):146–161

    Article  Google Scholar 

  90. Nicolini A, Mocera F, Soma A (2019) Multibody simulation of a tracked vehicle with deformable ground contact model. Proc Inst Mech Eng Part K J Multi-Body Dyn 233(1):152–162

    Google Scholar 

  91. Wasfy TM, Jayakumar P, Mechergui D, Sanikommu S (2018) Prediction of vehicle mobility on large-scale soft-soil terrain maps using physics-based simulation. Int J Veh Perform 4(4):347–381

    Article  Google Scholar 

  92. Edwin P, Shankar K, Kannan K (2018) Soft soil track interaction modeling in single rigid body tracked vehicle models. J Terramech 77:1–14

    Article  Google Scholar 

  93. Yang L, Li J, Lai Q, Zhao L, Li J, Zeng R, Zhang Z (2024) Discrete element contact model and parameter calibration for clayey soil particles in the Southwest hill and mountain region. J Terramech 111:73–87

    Article  Google Scholar 

  94. Mocera F, Somà A, Nicolini A (2020) Grousers effect in tracked vehicle multibody dynamics with deformable terrain contact model. Appl Sci 10(18):6581

    Article  Google Scholar 

  95. Elnashar G, Bhat RB, Sedaghati R (2019) Modeling and dynamic analysis of a vehicle-flexible pavement coupled system subjected to road surface excitation. J Mech Sci Technol 33:3115–3125

    Article  Google Scholar 

  96. Wasfy T, Wasfy H, Jayakumar P, Sanikommu S (2020) Finite element model for prediction of ground vehicle mobility over vegetation covered terrains. In: International design engineering technical conferences and computers and information in engineering conference. American Society of Mechanical Engineers, p V002T02A024

  97. Tota A, Velardocchia M, Rota E, Novara A (2020) Steering behavior of an articulated amphibious all-terrain tracked vehicle. SAE technical paper

  98. Kotiev G, Padalkin B, Miroshnichenko A, Stadukhin A, Kositsyn B (2020) A theoretical study on the high-speed electric tracked vehicle mobility. In: IOP conference series: materials science and engineering. IOP Publishing, p 012012

  99. Abishev K, Assylova K, Kassenov A, Baltabekova A (2023) Determination of the value of tangential force for the half-track traction vehicle with rubber tracks. J Appl Eng Sci 21(2):411–417

    Article  Google Scholar 

  100. Badgujar CM, Flippo D, Brokesh E, Welch S (2022) Experimental investigation on traction, mobility, and energy usage of a tracked autonomous ground vehicle on a sloped soil bin. J ASABE 65(4):835–847

    Article  Google Scholar 

  101. Li Y, He D, Si Q, Meng X (2021) Effect of track shoes structural parameters on traction performance of unmanned underwater tracked bulldozer. Ocean Eng 237:109655

    Article  Google Scholar 

  102. Kim J, Choi H, Oh J, Park Y (2023) Optimization of grouser shape ratio for coastal terrain driving device using discrete element method. J Terramech 110:27–37

    Article  Google Scholar 

  103. Wong YCD, Lim H, Chan W (2016) An assessment of land vehicles’ trafficability. DSTA Horiz 54–63

  104. Micklethwait E (1944) Soil mechanics in relation to fighting vehicles

  105. Bekker MG (1956) Theory of land locomotion: the mechanics of vehicle mobility. University of Michigan press, Ann Arbor

    Book  Google Scholar 

  106. Xia K, Yang Y (2012) Three-dimensional finite element modeling of tire/ground interaction. Int J Numer Anal Methods Geomech 36(4):498–516

    Article  Google Scholar 

  107. Michael M, Vogel F, Peters B (2015) DEM–FEM coupling simulations of the interactions between a tire tread and granular terrain. Comput Methods Appl Mech Eng 289:227–248

    Article  MathSciNet  Google Scholar 

  108. El-Sayegh Z, El-Gindy M, Johansson I, Öijer F (2018) Improved tire-soil interaction model using FEA-SPH simulation. J Terramech 78:53–62

    Article  Google Scholar 

  109. Karpman E, Kövecses J, Holz D, Skonieczny K (2020) Discrete element modelling for wheel-soil interaction and the analysis of the effect of gravity. J Terramech 91:139–153

    Article  Google Scholar 

  110. Md-Tahir H, Zhang J, Xia J, Zhang C, Zhou H, Zhu Y (2019) Rigid lugged wheel for conventional agricultural wheeled tractors–optimising traction performance and wheel–soil interaction in field operations. Biosyst Eng 188:14–23

    Article  Google Scholar 

  111. Li H, Schindler C (2013) Analysis of soil compaction and tire mobility with finite element method. Proc Inst Mech Eng Part K J Multi-body Dyn 227(3):275–291

    Google Scholar 

  112. Liu J, Xia C, Jiang D, Sun Y (2020) Development and testing of the power transmission system of a crawler electric tractor for greenhouses. Appl Eng Agric 36(5):797–805

    Article  Google Scholar 

  113. Zhu Z, Zeng L, Chen L, Zou R, Cai Y (2022) Fuzzy adaptive energy management strategy for a hybrid agricultural tractor equipped with HMCVT. Agriculture 12(12):1986

    Article  Google Scholar 

  114. Wang G, Zhu S, Wang S, Shi L, Ni X, Ouyang D (2013) Speed ratio control of tractor hydraulic mechanical CVT. Trans Chin Soc Agric Eng 29(7):17–23

    Google Scholar 

  115. Cheng Z, Lu Z, Dai F (2019) Research on HMCVT efficiency model based on the improved SA algorithm. Math Probl Eng 2019(1):2856908

    Article  Google Scholar 

  116. Awadallah M, Tawadros P, Walker P, Zhang N (2017) Dynamic modelling and simulation of a manual transmission based mild hybrid vehicle. Mech Mach Theory 112:218–239

    Article  Google Scholar 

  117. Cheng Z, Lu Z, Qian J (2019) A new non-geometric transmission parameter optimization design method for HMCVT based on improved GA and maximum transmission efficiency. Comput Electron Agric 167:105034

    Article  Google Scholar 

  118. Rossetti A, Macor A (2013) Multi-objective optimization of hydro-mechanical power split transmissions. Mech Mach Theory 62:112–128

    Article  Google Scholar 

  119. Zhang Q, Sun D, Qin D (2019) Optimal parameters design method for power reflux hydro-mechanical transmission system. Proc Inst Mech Eng Part D J Automob Eng 233(3):585–594

    Article  Google Scholar 

  120. Ince E, Güler MA (2020) On the advantages of the new power-split infinitely variable transmission over conventional mechanical transmissions based on fuel consumption analysis. J Clean Prod 244:118795

    Article  Google Scholar 

  121. Cheng Z, Lu K, Qian L, Lu Z, Lu Z (2019) New method of MAP fixed-point selection based on improved PSO algorithm. Appl Res Comput J 10:1–6

    Google Scholar 

  122. Zhang M, Wang J, Wang J, Guo Z, Guo F, Xi Z, Xu J (2020) Speed changing control strategy for improving tractor fuel economy. Trans Chin Soc Agric Eng 36(1):82–89

    Google Scholar 

  123. Rossetti A, Macor A, Benato A (2017) Environment: impact of control strategies on the emissions in a city bus equipped with power-split transmission. Transp Res Part D Transp Environ 50:357–371

    Article  Google Scholar 

  124. Ahn S, Choi J, Kim S, Lee J, Choi C, Kim H (2015) Development of an integrated engine-hydro-mechanical transmission control algorithm for a tractor. Adv Mech Eng 7(7):1687814015593870

    Article  Google Scholar 

  125. Xiao M, Zhao J, Wang Y, Zhang H, Lu Z, Wei W (2018) Fuel economy of multiple conditions self-adaptive tractors with hydro-mechanical CVT. Int J Agric Biol Eng 11(3):102–109

    Google Scholar 

  126. Lu Z, Lu Z, Cheng Z (2021) Research on tracking speed control of HMCVT stepless segment. Mech Sci Technol Aerosp Eng 40:518–526

    Google Scholar 

  127. Cui J (2024) A hydraulic control system integrating adaptive and PWM algorithms for hydro-mechanical continuously variable transmission. Front Mech Eng 10:1431009

    Article  Google Scholar 

  128. Wei X, Wang L, Ni X, Han S, Zhao X, Li S (2021) Speed control strategy for pump-motor hydraulic transmission subsystem in hydro-mechanical continuously variable transmission. J Mech Sci Technol 35:5665–5679

    Article  Google Scholar 

  129. Dong J, Li W, Yang Z (2018) Analysis and optimization of torsional vibration of 3-cylinder engine crankshaft system based on virtual prototype. Automot Eng 235(02):64–70

    Google Scholar 

  130. Ran X, Mathkour C (2021) Analysis of crankshaft mechanism of agricultural engine under the application of compound supercharging technology. INMATEH-Agric Eng 63(1):375–384

    Article  Google Scholar 

  131. Meng R, Zhang C, Liang J (2018) Applications of advanced PSO-Elman in engine crankshaft pulse width predictions. China Mech Eng 29(07):766

    Google Scholar 

  132. Zeng Q, Qi G, Wan L, Wang J, Yu X, Li Z (2023) Numerical research on dynamic responses of the emulsion pump crankshaft under multiple working conditions. Eng Fail Anal 154:107712

    Article  Google Scholar 

  133. Mourelatos ZP (2001) A crankshaft system model for structural dynamic analysis of internal combustion engines. Comput Struct 79(20–21):2009–2027

    Article  Google Scholar 

  134. Ipci D, Karabulut H (2016) Thermodynamic and dynamic modeling of a single cylinder four stroke diesel engine. Appl Math Model 40(5–6):3925–3937

    Article  Google Scholar 

  135. Babagiray M, Solmaz H, Ipci D, Aksoy F (2022) Modeling and validation of crankshaft speed fluctuations of a single-cylinder four-stroke diesel engine. Proc Inst Mech Eng Part D J Automob Eng 236(4):553–568

    Article  Google Scholar 

  136. Yu V, Chien W, Choi K, Pan J, Close D (2004) Testing and modeling of frequency drops in resonant bending fatigue tests of notched crankshaft sections. SAE Trans 113:619–627

    Google Scholar 

  137. Klemenz M, Schulze V (2010) Application of the concept of local fatigue strength after shot peening of notched components based on numerical simulations. In: Materials science forum. Trans Tech Publ, pp 912–917

  138. Spiteri PV, Lee Y-L, Segar R (2005) An exploration of failure modes in rolled, ductile, cast-iron crankshafts using a resonant bending testing rig. SAE Tech Pap Ser 114:837–844

    Google Scholar 

  139. Hao Z-Y, Lin Q, Duan X-B (2006) Analysis on crankshaft system’s dynamical behavior based on simulation and experimental methods. Neiranji Gongcheng 27(1):38–40

    Google Scholar 

  140. Sokolovski VV (1960) Statics of soil media. Butterworths Scientific Publications, London

    Google Scholar 

  141. Kutílek M, Jendele L, Krejča M (2009) Comparison of empirical, semi-empirical and physically based models of soil hydraulic functions derived for bi-modal soils. J Contam Hydrol 104(1–4):84–89

    Article  Google Scholar 

  142. Salahou MK, Jiao X, Lü H (2020) Assessment of empirical and semi-empirical models for estimating a soil infiltration function. Trans ASABE 63(4):833–845

    Article  Google Scholar 

  143. Koo S, Tan H, Tomizuka M (2004) Nonlinear tire lateral force versus slip angle curve identification. In: Proceedings of the 2004 American control conference. IEEE, pp 2128–2133

  144. Canudas-de-Wit C, Tsiotras P, Velenis E, Basset M, Gissinger G (2003) Dynamic friction models for road/tire longitudinal interaction. Veh Syst Dyn 39(3):189–226

    Article  Google Scholar 

  145. Bauer R, Leung W, Barfoot T (2005) Experimental and simulation results of wheel-soil interaction for planetary rovers. In: 2005 IEEE/RSJ international conference on intelligent robots and systems. IEEE, pp. 586–591

  146. Claeys X, Yi J, Alvarez L, Horowitz R, De Wit CC (2001) A dynamic tire/road friction model for 3D vehicle control and simulation, ITSC 2001. In: 2001 IEEE intelligent transportation systems. Proceedings (Cat. No. 01TH8585). IEEE, pp. 483–488

  147. Molisani LR, Burdisso RA, Tsihlas D (2003) A coupled tire structure/acoustic cavity model. Int J Solids Struct 40(19):5125–5138

    Article  Google Scholar 

  148. Liu Y, Li Y, Zhang T, Huang M (2022) Effect of concentric and non-concentric threshing gaps on damage of rice straw during threshing for combine harvester. Biosyst Eng 219:1–10

    Article  Google Scholar 

  149. Liang R, Chen X, Zhang B, Wang X, Kan Z, Meng H (2022) Calibration and test of the contact parameters for chopped cotton stems based on discrete element method. Int J Agric Biol Eng 15(5):1–8

    Google Scholar 

  150. El-Emam MA, Zhou L, Omara AI (2023) Predicting the performance of aero-type cyclone separators with different spiral inlets under macroscopic bio-granular flow using CFD–DEM modelling. Biosyst Eng 233:125–150

    Article  Google Scholar 

  151. Yang Q, Shi L, Shi A, He M, Zhao X, Zhang L, Addy M (2023) Determination of key soil characteristic parameters using angle of repose and direct shear stress test. Int J Agric Biol Eng 16(3):143–150

    Google Scholar 

  152. Wang L, Chai X, Huang J, Hu J, Cui Z (2024) Efficient and low-loss cleaning method for non-uniform distribution of threshed materials based on multi-wing curved combination air screen in computational fluid dynamics/discrete element method simulations. Agriculture (Basel) 14(6):895

    Article  Google Scholar 

  153. Yang W, Zhao W, Liu Y, Chen Y, Yang J (2021) Simulation of forces acting on the cutter blade surfaces and root system of sugarcane using FEM and SPH coupled method. Comput Electron Agric 180:105893

    Article  Google Scholar 

  154. Zhu D, Shi M, Yu C, Yu Z, Kuang F, Xiong W, Xue KJC (2023) Tool-straw-paddy soil coupling model of mechanical rotary-tillage process based on DEM-FEM. Comput Electron Agric 215:108410

    Article  Google Scholar 

  155. Saleh MF, Steven B, Alabaster D (2003) Three-dimensional nonlinear finite element model for simulating pavement response: study at Canterbury accelerated pavement testing indoor facility, New Zealand. Transp Res Rec J Transp Res Board 1823(1):153–162

    Article  Google Scholar 

  156. Schmid IC (1995) Interaction of vehicle and terrain results from 10 years research at IKK. J Terramech 32(1):3–26

    Article  Google Scholar 

  157. Pauwelussen J (2004) The local contact between tyre and road under steady state combined slip conditions. Veh Syst Dyn 41(1):1–26

    Article  Google Scholar 

  158. Olatunbosun O, Bolarinwa O (2004) FE simulation of the effect of tire design parameters on lateral forces and moments. Tire Sci Technol 32(3):146–163

    Article  Google Scholar 

  159. Tanaka H, Momozu M, Oida A, Yamazaki M (2000) Simulation of soil deformation and resistance at bar penetration by the distinct element method. J Terramech 37(1):41–56

    Article  Google Scholar 

  160. Horner DA, Peters JF, Carrillo A (2001) Large scale discrete element modeling of vehicle–soil interaction. J Eng Mech 127(10):1027–1032

    Google Scholar 

  161. Hofstetter K (2002) Analytic method to predict the dynamic interaction of dozer blade with earthen material. In: Proceedings of the 14th international conference of the ISTVS, Vicksburg, MS, USA, pp 6–7

  162. Yi R, Hanzhen F, Hang L, Peng L, Shoutai L, Man H (2025) Three-dimensional SPH model for soil–soil engaging components interaction. Trans Chin Soc Agric Eng 41(3):53–62

    Google Scholar 

  163. Han MJ, Lee CH, Park TW (2020) Vibro-acoustic response in vehicle interior and exterior using multibody dynamic systems due to cleat impacts. Int J Automot Technol 21:591–602

    Article  Google Scholar 

  164. Tian Q, Flores P, Lankarani HM (2018) A comprehensive survey of the analytical, numerical and experimental methodologies for dynamics of multibody mechanical systems with clearance or imperfect joints. Mech Mach Theory 122:1–57

    Article  Google Scholar 

  165. Daniel GB, Cavalca KL (2011) Analysis of the dynamics of a slider–crank mechanism with hydrodynamic lubrication in the connecting rod–slider joint clearance. Mech Mach Theory 46(10):1434–1452

    Article  Google Scholar 

  166. Khemili I, Romdhane L (2008) Dynamic analysis of a flexible slider–crank mechanism with clearance. Eur J Mech A/Solids 27(5):882–898

    Article  Google Scholar 

  167. Gomes J, Gaivota N, Martins RF, Silva PP (2018) Failure analysis of crankshafts used in maritime V12 diesel engines. Eng Fail Anal 92:466–479

    Article  Google Scholar 

  168. Liu Z, Lu C, Wang Y, Lee H, Koh Y, Lee K (2006) Prediction of noise inside tracked vehicles. Appl Acoust 67(1):74–91

    Article  Google Scholar 

  169. Rubinstein D, Hitron R (2004) A detailed multi-body model for dynamic simulation of off-road tracked vehicles. J Terramech 41(2–3):163–173

    Article  Google Scholar 

  170. Hu H, Song C, Feng F, Zhu J (2024) Modeling and simulation analysis of a certain type of tracked vehicle based on RecurDyn. In: Third international conference on electronic information engineering, big data, and computer technology (EIBDCT 2024). SPIE, pp 954–964

  171. Miao Y, Rui X, Wang P, Zhu H, Zhang J, Wang J (2024) Nonlinear dynamic modeling and analysis of magnetorheological semi-active suspension for tracked vehicles. Appl Math Model 125:311–333

    Article  MathSciNet  Google Scholar 

  172. Wagner P (1994) Vehicle noise testing problems due to vehicle/tire/road interactions. ASTM International, West Conshohocken

    Book  Google Scholar 

  173. Göhring E, von Glasner EC, Pflug HC (1991) Contribution to the force transmission behavior of commercial vehicle tires. SAE Tech Pap Ser 100:555–571

    Google Scholar 

  174. Lee C, Hedrick K, Yi K (2004) Real-time slip-based estimation of maximum tire-road friction coefficient. IEEE ASME Trans Mechatron 9(2):454–458

    Article  Google Scholar 

  175. Bwambale E, Abagale FK, Anornu GK (2023) Data-driven model predictive control for precision irrigation management. Smart Agric Technol 3:100074

    Article  Google Scholar 

  176. Tang Z, Li Y, Cheng C (2017) Development of multi-functional combine harvester with grain harvesting and straw baling. Span J Agric Res 15(1):e0202–e0202

    Article  Google Scholar 

  177. Liu J, Zhao S, Li N, Faheem M, Zhou T, Cai W, Zhao M, Zhu X, Li P (2019) Development and field test of an autonomous strawberry plug seeding transplanter for use in elevated cultivation. Appl Eng Agric 35(6):1067–1078

    Article  Google Scholar 

  178. Hu Y, Chen Y, Wei W, Hu Z, Li P (2021) Optimization design of spray cooling fan based on CFD simulation and field experiment for horticultural crops. Agriculture 11(6):566

    Article  Google Scholar 

  179. Shi Q, Pan Y, He B, Zhu H, Liu D, Shen B, Mao H (2021) The airflow field characteristics of UAV flight in a greenhouse. Agriculture 11(7):634

    Article  Google Scholar 

  180. Wen C, Xie B, Song Z, Yang Z, Dong N, Han J, Yang Q, Liu J (2021) Methodology for designing tractor accelerated structure tests for an indoor drum-type test bench. Biosyst Eng 205:1–26

    Article  Google Scholar 

  181. Qu HR, Su WH (2024) Deep learning-based weed–crop recognition for smart agricultural equipment: a review. Agronomy 14(2):363

    Article  Google Scholar 

  182. Wang Q, Cheng M, Huang S, Cai Z, Zhang J, Yuan H (2022) A deep learning approach incorporating YOLO v5 and attention mechanisms for field real-time detection of the invasive weed Solanum rostratum Dunal seedlings. Comput Electron Agric 199:107194

    Article  Google Scholar 

  183. Avello Fernández L, Maraldi M, Mattetti M, Varani M (2022) A computational tool for three-point hitch geometry optimisation based on weight-transfer minimisation. Agriculture (Basel) 12(4):460

    Article  Google Scholar 

  184. de Melo RR, Tofoli FL, Daher S, Antunes FLM (2022) Wheel slip control applied to an electric tractor for improving tractive efficiency and reducing energy consumption. Sensors 22(12):4527

    Article  Google Scholar 

  185. Li X, Oviedo-Trespalacios O, Rakotonirainy A, Yan X (2019) Collision risk management of cognitively distracted drivers in a car-following situation. Transp Res Part F Traffic Psychol Behav 60:288–298

    Article  Google Scholar 

  186. Bham GH, Leu MC (2018) A driving simulator study to analyze the effects of portable changeable message signs on mean speeds of drivers. J Transp Saf Secur 10(1–2):45–71

    Google Scholar 

  187. Liang Z, Li Y, De Baerdemaeker J, Xu L, Saeys W (2019) Development and testing of a multi-duct cleaning device for tangential-longitudinal flow rice combine harvesters. Biosyst Eng 182:95–106

    Article  Google Scholar 

  188. Liang Z, Xu L, De Baerdemaeker J, Li Y, Saeys W (2020) Optimisation of a multi-duct cleaning device for rice combine harvesters utilising CFD and experiments. Biosyst Eng 190:25–40

    Article  Google Scholar 

  189. Zhu Q, Zhang H, Zhu Z, Gao Y, Chen L (2022) Structural design and simulation of pneumatic conveying line for a paddy side-deep fertilisation system. Agriculture 12(6):867

    Article  Google Scholar 

  190. Liu W, Zeng S, Chen X (2024) Design and experiment of adaptive profiling header based on multi-body dynamics–discrete element method coupling. Agriculture 14(1):105

    Article  Google Scholar 

  191. Ma Z, Zhang Z, Zhang Z, Song Z, Liu Y, Li Y, Xu L (2023) Durable testing and analysis of a cleaning sieve based on vibration and strain signals. Agriculture (Basel) 13(12):2232

    Article  Google Scholar 

  192. Jin X, Chen K, Ji J, Zhao K, Du X, Ma H (2019) Intelligent vibration detection and control system of agricultural machinery engine. Measurement 145:503–510

    Article  Google Scholar 

  193. Hostens I, Anthonis J, Kennes P, Ramon H (2000) PM—power and machinery: six-degrees-of-freedom test rig design for simulation of mobile agricultural machinery vibrations. J Agric Eng Res 77(2):155–169

    Article  Google Scholar 

  194. Lee JW, Kim SC, Oh J, Chung WJ, Han HW, Kim JT, Park YJ (2019) Engine speed control system for improving the fuel efficiency of agricultural tractors for plowing operations. Appl Sci 9(18):3898

    Article  Google Scholar 

  195. Liu Z, Zhang G, Chu G, Niu H, Zhang Y, Yang F (2021) Design matching and dynamic performance test for an HST-based drive system of a hillside crawler tractor. Agriculture (Basel) 11(5):466

    Article  Google Scholar 

  196. Kim WS, Kim YJ, Kim YS, Baek SY, Baek SM, Lee DH, Nam KC, Kim TB, Lee HJ (2020) Development of control system for automated manual transmission of 45-kW agricultural tractor. Appl Sci 10(8):2930

    Article  Google Scholar 

  197. Chen Y, Tang Z, Li B, Wang S, Liu Y, Zhou W, Jing J, He X (2025) Analysis of damage characteristics and fragmentation simulation of soybean seeds based on the finite-element method. Agriculture 15(7):780

    Article  Google Scholar 

  198. Liu J, Yuan Y, Gao Y, Tang S, Li Z (2019) Virtual model of grip-and-cut picking for simulation of vibration and falling of grape clusters. Trans ASABE 62(3):603–614

    Article  Google Scholar 

  199. Sim K, Lee H, Yoon JW, Choi C, Hwang S-H (2017) Effectiveness evaluation of hydro-pneumatic and semi-active cab suspension for the improvement of ride comfort of agricultural tractors. J Terramech 69:23–32

    Article  Google Scholar 

  200. Zardin B, Borghi M, Gherardini F, Zanasi N (2018) Modelling and simulation of a hydrostatic steering system for agricultural tractors. Energies 11(1):230

    Article  Google Scholar 

  201. Hwang SJ, Jang MK, Nam JS (2021) Application of lateral overturning and backward rollover analysis in a multi-purpose agricultural machine developed in South Korea. Agronomy 11(2):297

    Article  Google Scholar 

  202. Cutini M, Bisaglia C, Brambilla M, Bragaglio A, Pallottino F, Assirelli A, Romano E, Montaghi A, Leo E, Pezzola M (2023) A co-simulation virtual reality machinery simulator for advanced precision agriculture applications. Agriculture (Basel) 13(8):1603

    Article  Google Scholar 

  203. Zhao X, Du Y, Mao E, Zhu Z, Song Z (2022) Agricultural tractor dynamics simulation research based on a driving simulator with real-time human–machine interaction. Comput Electron Agric 203:107443

    Article  Google Scholar 

  204. Wen M, Park J, Sung Y, Park YW, Cho K (2021) Virtual scenario simulation and modeling framework in autonomous driving simulators. Electronics 10(6):694

    Article  Google Scholar 

  205. Dai D, Chen D, Wang S, Li S, Mao X, Zhang B, Wang Z, Ma Z (2023) Compilation and extrapolation of load spectrum of tractor ground vibration load based on CEEMDAN-POT model. Agriculture (Basel) 13(1):125

    Article  Google Scholar 

  206. Faheem M, Liu J, Chang G, Abbas I, Xie B, Shan Z, Yang K (2021) Experimental research on grape cluster vibration signals during transportation and placing for harvest and post-harvest handling. Agriculture 11(9):902

    Article  Google Scholar 

  207. Ding Z, Tang Z, Zhang B, Ding Z (2024) Vibration response of metal plate and shell structure under multi-source excitation with welding and bolt connection. Agriculture 14(6):816

    Article  Google Scholar 

  208. Gao Y, Yang Y, Fu S, Feng K, Han X, Hu Y, Zhu Q, Wei X (2024) Analysis of vibration characteristics of tractor–rotary cultivator combination based on time domain and frequency domain. Agriculture 14(7):1139

    Article  Google Scholar 

  209. Dong L, Zhao Y, Xiao J, Liu H (2017) Change mechanism of vibration and noise characteristics before and after cavitation in hydraulic retarder. Trans Chin Soc Agric Eng 33(14):56–62

    Google Scholar 

  210. Pang J, Li Y, Ji J, Xu L (2019) Vibration excitation identification and control of the cutter of a combine harvester using triaxial accelerometers and partial coherence sorting. Biosyst Eng 185:25–34

    Article  Google Scholar 

  211. Hu F, Cai Y, Zhong Q, Yang J (2007) Analysis and experimental research on two-layer vibration isolation of diesel generating set. Noise Vib Control 4:10–13

    Google Scholar 

  212. Duan X, Liang Q, Chen S, Wang Y (2010) Evaluation and experiment on vibration-isolation effect of double-stage vibration-isolation system. J Vib Meas Diagn 30(6):694–697

    Google Scholar 

  213. Choi W, Xiong Y, Shenoi R (2009) Power flow analysis for a floating sandwich raft isolation system using a higher-order theory. J Sound Vib 319(1–2):228–246

    Article  Google Scholar 

  214. Ghotbi MR, Monazzam MR, Khanjani N, Nadri F, Fard SMB (2013) Driver exposure and environmental noise emission of Massey Ferguson 285 tractor during operations with different engine speeds and gears. Afr J Agric Res 8(8):652–659

    Google Scholar 

  215. Saito T, Miyamoto K (2012) Study of self-induced vibration in an operating metal pushing V-belt CVT. SAE Technical Paper

  216. Van Der Noll E, Van Der Velde A, Ribbers P, Kurz G (2015) Optimising the acoustics of the pushbelt CVT. ATZ Worldwide 117(2):36–39

    Article  Google Scholar 

  217. Gomez-Gil J, Gomez-Gil FJ, Martin-de-Leon R (2014) The influence of tractor-seat height above the ground on lateral vibrations. Sensors 14(10):19713–19730

    Article  Google Scholar 

  218. de Rochambeau M, Ichchou M, Troclet B (2012) On a structural–acoustic panel cavity modelling in the mid-high frequency domain. Proc Inst Mech Eng C J Mech Eng Sci 226(4):900–912

    Article  Google Scholar 

  219. Langer TH, Ebbesen MK, Kordestani A (2015) Experimental analysis of occupational whole-body vibration exposure of agricultural tractor with large square baler. Int J Ind Ergonom 47:79–83

    Article  Google Scholar 

  220. Armentani E, Giannella V, Parente A, Pirelli M (2020) Design for NVH: topology optimization of an engine bracket support. Procedia Struct Integrity 26:211–218

    Article  Google Scholar 

  221. Anthonis J, Ramon H (2003) Design of an active suspension to suppress the horizontal vibrations of a spray boom. J Sound Vib 266(3):573–583

    Article  Google Scholar 

  222. Deprez K, Anthonis J, Ramon H (2003) System for vertical boom corrections on hilly fields. J Sound Vib 266(3):613–624

    Article  Google Scholar 

  223. Tahmasebi M, Rahman RA, Mailah M, Gohari M (2013) Roll movement control of a spray boom structure using active force control with artificial neural network strategy. J Low Freq Noise Vib Act Control 32(3):189–201

    Article  Google Scholar 

  224. Hao S, Tang Z, Guo S, Ding Z, Su Z (2022) Model and method of fault signal diagnosis for blockage and slippage of rice threshing drum. Agriculture 12(11):1968

    Article  Google Scholar 

  225. Liao J, Hewitt AJ, Wang P, Luo X, Zang Y, Zhou Z, Lan Y, O’Donnell C (2019) Development of droplet characteristics prediction models for air induction nozzles based on wind tunnel tests. Int J Agric Biol Eng 12(6):1–6

    Google Scholar 

  226. Borghesani P, Pennacchi P, Randall R, Sawalhi N, Ricci R (2013) Application of cepstrum pre-whitening for the diagnosis of bearing faults under variable speed conditions. Mech Syst Signal Process 36(2):370–384

    Article  Google Scholar 

  227. Li Z, Jiang Y, Guo Q, Hu C, Peng Z (2018) Multi-dimensional variational mode decomposition for bearing-crack detection in wind turbines with large driving-speed variations. Renew Energy 116:55–73

    Article  Google Scholar 

  228. Sakthivel N, Sugumaran V, Babudevasenapati S (2010) Vibration based fault diagnosis of monoblock centrifugal pump using decision tree. Expert Syst Appl 37(6):4040–4049

    Article  Google Scholar 

  229. Kankar PK, Sharma SC, Harsha SP (2011) Fault diagnosis of ball bearings using machine learning methods. Expert Syst Appl 38(3):1876–1886

    Article  Google Scholar 

  230. Amar M, Gondal I, Wilson C (2014) Vibration spectrum imaging: a novel bearing fault classification approach. IEEE Trans Ind Electron 62(1):494–502

    Article  Google Scholar 

  231. Seera M, Lim CP, Nahavandi S, Loo CK (2014) Condition monitoring of induction motors: a review and an application of an ensemble of hybrid intelligent models. Expert Syst Appl 41(10):4891–4903

    Article  Google Scholar 

  232. Liu X, Zhang X, Luan Z, Xu X (2019) Rolling bearing fault diagnosis based on EEMD sample entropy and PNN. J Eng 2019(23):8696–8700

    Article  Google Scholar 

  233. Hosseinpour-Zarnaq M, Omid M, Biabani-Aghdam E (2022) Fault diagnosis of tractor auxiliary gearbox using vibration analysis and random forest classifier. Inf Process Agric 9(1):60–67

    Google Scholar 

  234. Buono D, Siano D, Frosina E, Senatore A (2017) Gerotor pump cavitation monitoring and fault diagnosis using vibration analysis through the employment of auto-regressive-moving-average technique. Simul Model Pract Theory 71:61–82

    Article  Google Scholar 

  235. Fan Z, Li H (2015) A hybrid approach for fault diagnosis of planetary bearings using an internal vibration sensor. Measurement 64:71–80

    Article  Google Scholar 

  236. Dolenc B, Boškoski P, Juričić Đ (2016) Distributed bearing fault diagnosis based on vibration analysis. Mech Syst Signal Process 66:521–532

    Article  Google Scholar 

  237. Brkovic A, Gajic D, Gligorijevic J, Savic-Gajic I, Georgieva O, Di Gennaro S (2017) Early fault detection and diagnosis in bearings for more efficient operation of rotating machinery. Energy 136:63–71

    Article  Google Scholar 

  238. Xiao M, Wang W, Wang K, Zhang W, Zhang H (2020) Fault diagnosis of high-power tractor engine based on competitive multiswarm cooperative particle swarm optimizer algorithm. Shock Vib 2020(1):8829257

    Google Scholar 

  239. Bahrami M, Javadikia H, Ebrahimi E (2016) Application of a continuous wavelet transforms and ANFIS to fault diagnosis of a gearbox of tractor. J Mech Eng 46(1):9–15

    Article  Google Scholar 

  240. Ebrahimi E, Mollazade K (2010) Intelligent fault classification of a tractor starter motor using vibration monitoring and adaptive neuro-fuzzy inference system. Insight-Non-Destruct Test Cond Monitor 52(10):561–566

    Article  Google Scholar 

  241. Wu Q, Gu J (2017) Design and research of robot visual servo system based on artificial intelligence. Agro Food Ind Hi-Tech 28(1):125–128

    Google Scholar 

  242. Chen J, Zhang M, Xu B, Sun J, Mujumdar AS (2020) Artificial intelligence assisted technologies for controlling the drying of fruits and vegetables using physical fields: a review. Trends Food Sci Technol 105:251–260

    Article  Google Scholar 

  243. Wang H, Gu J, Wang M (2023) A review on the application of computer vision and machine learning in the tea industry. Front Sustain Food Syst 7:1172543

    Article  Google Scholar 

  244. Mohamed ES, Belal A, Abd-Elmabod SK, El-Shirbeny MA, Gad A, Zahran MB (2021) Smart farming for improving agricultural management. Egypt J Remote Sens Space Sci 24(3):971–981

    Google Scholar 

  245. Pagano A, Croce D, Tinnirello I, Vitale G (2022) A survey on LoRa for smart agriculture: current trends and future perspectives. IEEE Internet Things J 10(4):3664–3679

    Article  Google Scholar 

  246. Rohmah RN, Supriyono H, Supardi A, Asyari H, Rahmadi R, Oktafianto Y (2021) IoT application on agricultural area surveillance and remote-controlled irrigation systems. In: 2021 9th international conference on information and communication technology (ICoICT). IEEE, pp 522–527

  247. Kayode JF, Amudipe SO, Nwodo CW, Afolalu SA, Akinola AO, Ikumapayi OM, Oladapo BI, Akinyoola JO (2024) Development of remote-controlled solar-powered pesticide sprayer vehicle. Discover Appl Sci 6(3):101

    Article  Google Scholar 

  248. Vallikannu R, Gao X, Rao NNSS, Asif YM, Chowdary SSK (2024) Modern agriculture farming: rack and pinion mechanism-based remote controlled seed sowing robot. In: Advanced technologies for smart agriculture. River Publishers, pp 31–54

  249. Xu P, Tan Q, Zhang Y, Zha X, Yang S, Yang R (2022) Research on maize seed classification and recognition based on machine vision and deep learning. Agriculture 12(2):232

    Article  Google Scholar 

  250. Dhanush G, Khatri N, Kumar S, Shukla PK (2023) A comprehensive review of machine vision systems and artificial intelligence algorithms for the detection and harvesting of agricultural produce. Sci Afr 21:e01798

    Google Scholar 

  251. Maharlooei M, Sivarajan S, Bajwa SG, Harmon JP, Nowatzki J (2017) Detection of soybean aphids in a greenhouse using an image processing technique. Comput Electron Agric 132:63–70

    Article  Google Scholar 

  252. Liu H, Chahl JS (2018) A multispectral machine vision system for invertebrate detection on green leaves. Comput Electron Agric 150:279–288

    Article  Google Scholar 

  253. Gao F, Sa J, Wang Z, Zhao Z (2021) Cassava disease detection method based on EfficientNet. In: 2021 7th international conference on systems and informatics (ICSAI). IEEE, pp 1–6

  254. Sabzi S, Abbaspour-Gilandeh Y, García-Mateos G (2018) A fast and accurate expert system for weed identification in potato crops using metaheuristic algorithms. Comput Ind 98:80–89

    Article  Google Scholar 

  255. Rico-Fernández M, Rios-Cabrera R, Castelán M, Guerrero-Reyes H-I, Juarez-Maldonado A (2019) A contextualized approach for segmentation of foliage in different crop species. Comput Electron Agric 156:378–386

    Article  Google Scholar 

  256. Fahmi F, Trianda D, Andayani U, Siregar B (2018) Image processing analysis of geospatial uav orthophotos for palm oil plantation monitoring. J Phys Conf Ser 012064

  257. Zhang Q, Chen S, Yu T, Wang Y (2017) Cherry recognition in natural environment based on the vision of picking robot. In: IOP conference series: earth and environmental science. IOP Publishing, p 012021

Download references

Acknowledgements

This work was supported by Science Challenge Project (No. JDZZ2016006-0102) and the National Natural Science Foundation of China (Grant No. 52105101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Chang.

Additional information

Technical Editor: Lucas Vignoli.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Z., Chang, Y., Shehzad, A. et al. Dynamics and vibration analysis of agricultural machinery systems: recent advances and future perspectives. J Braz. Soc. Mech. Sci. Eng. 48, 67 (2026). https://doi.org/10.1007/s40430-025-06024-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1007/s40430-025-06024-8

Keywords