The 65 books list:
-
The Elements of Statistical Learning Trevor Hastie, Robert Tibshirani, Jerome Friedman
-
Introductory Time Series with R Paul S.P. Cowpertwait, Andrew V. Metcalfe
-
A Beginner’s Guide to R Alain Zuur, Elena N. Ieno, Erik Meesters
-
Introduction to Evolutionary Computing A.E. Eiben, J.E. Smith
-
Data Analysis Siegmund Brandt
-
Linear and Nonlinear Programming David G. Luenberger, Yinyu Ye
-
Introduction to Partial Differential Equations David Borthwick
-
Fundamentals of Robotic Mechanical Systems Jorge Angeles
-
Data Structures and Algorithms with Python Kent D. Lee, Steve Hubbard
-
Introduction to Partial Differential Equations Peter J. Olver
-
Methods of Mathematical Modelling Thomas Witelski, Mark Bowen
-
LaTeX in 24 Hours Dilip Datta
-
Introduction to Statistics and Data Analysis Christian Heumann, Michael Schomaker, Shalabh
-
Principles of Data Mining Max Bramer
-
Computer Vision Richard Szeliski
-
Data Mining Charu C. Aggarwal
-
Computational Geometry Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars
-
Robotics, Vision and Control Peter Corke
-
Statistical Analysis and Data Display Richard M. Heiberger, Burt Holland
-
Statistics and Data Analysis for Financial Engineering David Ruppert, David S. Matteson
-
Stochastic Processes and Calculus Uwe Hassler
-
Statistical Analysis of Clinical Data on a Pocket Calculator Ton J. Cleophas, Aeilko H. Zwinderman
-
Clinical Data Analysis on a Pocket Calculator Ton J. Cleophas, Aeilko H. Zwinderman
-
The Data Science Design Manual Steven S. Skiena
-
An Introduction to Machine Learning Miroslav Kubat
-
Guide to Discrete Mathematics Gerard O’Regan
-
Introduction to Time Series and Forecasting Peter J. Brockwell, Richard A. Davis
-
Multivariate Calculus and Geometry Seán Dineen
-
Statistics and Analysis of Scientific Data Massimiliano Bonamente
-
Modelling Computing Systems Faron Moller, Georg Struth
-
Search Methodologies Edmund K. Burke, Graham Kendall
-
Linear Algebra Done Right Sheldon Axler
-
Linear Algebra Jörg Liesen, Volker Mehrmann
-
Algebra Serge Lang
-
Understanding Analysis Stephen Abbott
-
Linear Programming Robert J Vanderbei
-
Understanding Statistics Using R Randall Schumacker, Sara Tomek
-
An Introduction to Statistical Learning Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani
-
Statistical Learning from a Regression Perspective Richard A. Berk
-
Applied Partial Differential Equations J. David Logan
-
Robotics Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, Giuseppe Oriolo
-
Regression Modeling Strategies Frank E. Harrell , Jr.
-
A Modern Introduction to Probability and Statistics F.M. Dekking, C. Kraaikamp, H.P. Lopuhaä, L.E. Meester
-
The Python Workbook Ben Stephenson
-
Machine Learning in Medicine — a Complete Overview Ton J. Cleophas, Aeilko H. Zwinderman
-
Object-Oriented Analysis, Design and Implementation Brahma Dathan, Sarnath Ramnath
-
Introduction to Data Science Laura Igual, Santi Seguí
-
Applied Predictive Modeling Max Kuhn, Kjell Johnson
-
Python For ArcGIS Laura Tateosian
-
Concise Guide to Databases Peter Lake, Paul Crowther
-
Digital Image Processing Wilhelm Burger, Mark J. Burge
-
Bayesian Essentials with R Jean-Michel Marin, Christian P. Robert
-
Robotics, Vision and Control Peter Corke
-
Foundations of Programming Languages Kent D. Lee
-
Introduction to Artificial Intelligence Wolfgang Ertel
-
Introduction to Deep Learning Sandro Skansi
-
Linear Algebra and Analytic Geometry for Physical Sciences Giovanni Landi, Alessandro Zampini
-
Applied Linear Algebra Peter J. Olver, Chehrzad Shakiban
-
Neural Networks and Deep Learning Charu C. Aggarwal
-
Data Science and Predictive Analytics Ivo D. Dinov
-
Analysis for Computer Scientists Michael Oberguggenberger, Alexander Ostermann
-
Excel Data Analysis Hector Guerrero
-
Advanced Guide to Python 3 Programming John Hunt