aria-details
ã°ãã¼ãã«ãª aria-details 屿§ã¯ããªãã¸ã§ã¯ãã«é¢é£ããè¿½å æ
å ±ãæä¾ããè¦ç´ ãèå¥ãã¾ãã
解説
aria-details 屿§ã¯ããªãã¸ã§ã¯ãã«è¿½å æ
å ±ãè¤éãªèª¬æãæä¾ããããã«ä½¿ç¨ã§ãã¾ããã³ã³ãã³ããç¾å¨ã®ããã¥ã¡ã³ãå
ã«ãããã追å ã®ã¢ã»ããã¸ã®ãªã³ã¯ã§ãããã«é¢ããããããè©³ç´°ãªæ
å ±ãæä¾ãããã¨ã§ãæ¯æ´æè¡ã¦ã¼ã¶ã¼ã«ã³ã³ãã³ãã«ã¤ãã¦ç¥ãããããã«ä½¿ç¨ããã¾ãã
åæ§ã®ç®çãæã¤ HTML ããã³ WAI-ARIA 屿§ãä»ã«ãããã¾ããHTML ã® <label> è¦ç´ 㨠aria-label ããã³ aria-labelledby 屿§ã¯ããªãã¸ã§ã¯ãã®çãã©ãã«ãæä¾ããããã«ä½¿ç¨ããã¾ããHTML ã® title 屿§ã¨ aria-description ããã³ aria-describedby 屿§ã¯ããªãã¸ã§ã¯ãã®ããé·ããã¬ã¼ã³ããã¹ãã®èª¬æãæä¾ãã¾ãããã ãããªãã¸ã§ã¯ãã«é¢é£ããè¿½å æ
å ±ãè¤éãªèª¬æãã¾ãã¯ããã²ã¼ãå¯è½ãªã³ã³ãã³ããå¿
è¦ã§ãããããå©ç¨å¯è½ãªå ´åã¯ãaria-details 屿§ã使ç¨ããå¿
è¦ãããã¾ãã
ãã®å±æ§ã¯ããµãã¼ãä¸è¶³ã¨èª¤ç¨ã«ãã鿍奍ã¨ãªã£ããHTML ã§å®å
¨ã«ãµãã¼ãããããã¨ã®ãªã longdesc 屿§ï¼ç½®ãæããããè¦ç´ ã®ã³ã³ãã³ãã¸ã®é·ã説æã® URLï¼ã¨åæ§ã®ç®çãæããã¾ãã
aria-details 屿§ã¯ãããè©³ç´°ãªæ
å ±ãåå¾ããããã®è¦ç´ ã® idãã¾ãã¯ã¹ãã¼ã¹ã§åºåããã id ã®ãªã¹ããå¤ã¨ãã¦åãåãã¾ããaria-details ãè¦ç´ ã«å«ã¾ãã¦ããå ´åãæ¯æ´æè¡ã¯è¿½å ã®æ
å ±ãå©ç¨å¯è½ã§ãããã¨ãã¦ã¼ã¶ã¼ã«éç¥ããã¦ã¼ã¶ã¼ãåç
§å
ã®ã³ã³ãã³ãã«ç§»åã§ããããã«ãã¾ãã
aria-details ã«ãã£ã¦åç
§ãããè¦ç´ ã«ã¯ãé常 aria-describedby ãä»ãã¦æä¾ãããæ
å ±ãããå¤ãã®æ
å ±ãå«ã¾ãããã¨ãæå³ããã¦ãã¾ãã
aria-detials ã«ãã£ã¦åç
§ãããè¦ç´ ã¯ãå
¨ã¦ã®ã¦ã¼ã¶ã¼ã«è¡¨ç¤ºãããå¿
è¦ãããã¾ããaria-detailsã¯ãç»é¢ãè¦ã¦èª¬æã³ã³ãã³ããå©ç¨å¯è½ã§ãããã¨ãããã«å¤æã§ããªãå¯è½æ§ãããã¦ã¼ã¶ã¼ã«ã説æçãªã³ã³ãã³ããå©ç¨å¯è½ã§ãããã¨ãéç¥ãã¾ãã
ã¡ã¢:
aria-details ã¯ã¢ã¯ã»ã·ãã«èª¬æã«ã¯å½±é¿ãã¾ããã
aria-describedby ã¨ã¯ç°ãªããaria-details ã«ãã£ã¦åç
§ãããè¦ç´ ã¯ãã¢ã¯ã»ã·ãã«èª¬æã§ã¯ä½¿ç¨ããããæ¯æ´æè¡ã¦ã¼ã¶ã¼ã«è¡¨ç¤ºãããã¨ãã«ãã¬ã¼ã³ãªæååã«å¤æããã¾ãããé¢é£ä»ãããã¦ããã³ã³ãã³ããé·ããããåç
§ãããè¦ç´ ã®ã³ã³ãã³ããåç´ãªããã¹ãæååã«å¹³å¦åãã¦ãæ
å ±ã失ãããªãå ´åã¯ã代ããã« aria-describedby ã使ç¨ãããã¨ãæ¤è¨ãã¦ãã ããããã ããè¦ç´ ã« aria-details ã«å ãã¦ãaria-describedby ããã㯠aria-description ã®ããããã§èª¬æãæå®ããã¦ãããã¨ã¯æå¹ã§ãã
ä¾
definition ãã¼ã«ã¨ term ãã¼ã«ã«ã¤ãã¦ãaria-details 㯠definition ãã¼ã«ã®è¦ç´ ã® id ãæã¤ term ãã¼ã«ã®è¦ç´ ã«å«ã¾ãã¾ãã
<p>The <strong>cubic-bezier()<strong> functional notation defines a cubic
<span role="term" aria-details="bezier bezImg">Bézier curve</span>. As
these curves are continuous, they are often used to smooth down the start and
end of the curve and are therefore sometimes called easing functions.
</p>
<p role="definition" id="bezier">A <strong>Bézier curve</strong>,
(Pronounced \ Ëbe-zÄ-ËÄ \)
<i aria-description="English pronunciation">BEH-zee-ay</i>) is a mathematically
described curve used in computer graphics and animation. The curve is defined
by a set of control points with a minimum of two. Web related graphics
and animations use Cubic Béziers, which are curves with four control
points P<sub>0</sub>, P<sub>1</sub>, P<sub>2</sub>, and P<sub>3</sub>.
</p>
<a href="bezierExplanation.html" id="bezImg"
aria-label="Explanation of Bézier curve in CSS easing functions">
<img alt="Animated Bézier curve showing 4 control points." src="bezier.gif">
</a>
å¤
- ID reference list
-
追å ã®é¢é£æ å ±ãæä¾ã¾ãã¯ãªã³ã¯ããè¦ç´ ã®
idãã¾ã㯠id ãã¹ãã¼ã¹ã§åºåããããªã¹ãã
é¢é£ä»ãããããã¼ã«
ãã¹ã¦ã®ãã¼ã«ã§ä½¿ç¨ããã¾ãã
仿§æ¸
| Specification |
|---|
| Accessible Rich Internet Applications (WAI-ARIA) > # aria-details > |
é¢é£æ å ±
- HTML id 屿§
aria-labelledbyaria-describedbyaria-description- ç»åã®
alt屿§ - HTML title 屿§