
MITIGATING THE EFFECT OF MISSPECULATIONS IN SUPERSCALAR

PROCESSORS

By

Zhaoxiang Jin

A DISSERTATION

Submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

In Computer Science

MICHIGAN TECHNOLOGICAL UNIVERSITY

2018

© 2018 Zhaoxiang Jin

This dissertation has been approved in partial fulfillment of the requirements for the

Degree of DOCTOR OF PHILOSOPHY in Computer Science.

Department of Computer Science

Dissertation Advisor: Dr. Soner Onder

Committee Member: Dr. Zhenlin Wang #1

Committee Member: Dr. Saeid Nooshabadi #2

Committee Member: Dr. David Whalley #3

Department Chair: Dr. Min Song

Dedication

To my parents: Jin, Jianmin (Dad) and Xu, Huizhu (Mom)

You always encourage me to pursue my dreams and provide me everything I need.

Without your inspiration and help, there was no way for me to get this far.

To my advisor: Önder, Soner

Who didn’t hesitate to criticize my work at every stage - without which I would

neither be who I am nor would this work be what it is today.

To my friends

Thank you for being my friends and never giving up on me. I have learned a lot things

which you can never learn from any book in this world, from all of you. Without you,

it’s impossible for me to come with these innovative ideas.

Contents

List of Figures . xv

List of Tables . xix

Author Contribution Statement . xxi

List of Abbreviations . xxiii

Abstract . xxv

1 Introduction . 1

1.1 A Superscalar Processor . 5

1.1.1 The Front-end . 5

1.1.2 The Back-end . 6

1.1.3 Register Alias Table . 7

1.2 Speculative Execution . 8

1.2.1 Branch Prediction . 8

1.2.2 Memory Ordering Prediction 11

1.3 Misspeculation Recovery . 14

vii

1.3.1 Recovering Branch Predictor State 16

1.3.2 Restoring the Map Tables 18

1.3.3 Eliminating Stale Instructions 19

1.4 Recovery Penalty Analysis . 19

1.4.1 Misspeculation Detection Delay 20

1.4.2 Stale Instruction Elimination Delay 21

1.4.3 State Restoration Delay . 21

1.4.4 Pipeline Fill Delay . 22

1.5 Summary . 23

2 Mower : A Walking-based Misspeculation Recovery Mechanism 25

2.1 Overview . 25

2.1.1 Recovering F-RAT by Walking 26

2.1.2 Checkpointing Architectures 29

2.1.3 Motivation . 31

2.2 Control Dependence Tracking . 35

2.2.1 Branch Renaming . 35

2.2.2 Disambiguating the Branch Ordering 36

2.2.3 Tracking Affected F-RAT entries 38

2.3 A Reverse Walking Procedure . 39

2.3.1 Recovering F-RAT in a gradual manner 39

2.3.2 Eliminating Stale Instructions 40

viii

2.4 Microarchitecture . 42

2.4.1 Branch Tag Allocation and Release 43

2.4.2 Branch and Mapping Dependence Matrices 44

2.4.3 Reclaiming the Resources using a single Read Port 46

2.5 Evaluation . 47

2.5.1 Evaluation Methodology . 48

2.5.2 Branch Tag Size Effect . 51

2.5.3 Invalid Register Mappings 52

2.5.4 Eliminating Invalid Instructions 53

2.5.5 The Front-end and Back-end depth 54

2.5.6 Energy Efficiency . 55

2.6 Summary . 58

3 Two-Phase Misspeculation Recovery 61

3.1 Overview . 61

3.1.1 A Basic Recovery Mechanism 62

3.1.2 Analysis and Related Work 64

3.1.3 Key Observation . 67

3.2 Preliminary Analysis . 70

3.3 Microarchitecture . 73

3.3.1 Initialization . 73

3.3.2 Three Different Flushing Policies 75

ix

3.3.3 Fetch Policy . 76

3.3.4 F-RAT and Free Register Pool 77

3.3.5 Speculative Recovery . 77

3.3.6 Complexity Comparison . 78

3.4 Evaluation . 80

3.4.1 Simulation Methodology . 80

3.4.2 Recover Afterwards and Two-Phase 85

3.4.3 Recover Beforehand and Two-Phase 87

3.4.4 Allocation Algorithms in Checkpointing Architectures 89

3.4.5 Memory Latency Effect . 90

3.4.6 ROB Size Effect . 91

3.4.7 Issue Width Effect . 92

3.4.8 Power Efficiency . 92

3.5 Summary . 93

4 Passing Loop : Reducing the Pipeline Fill Delay 95

4.1 Overview . 95

4.1.1 Control Independence . 96

4.1.2 The Convergence Point Prediction 97

4.1.3 The Affected Register Mapping 98

4.1.4 Correct Instruction Insertion 99

4.2 Related Work . 99

x

4.2.1 Eager Execution . 100

4.2.2 Control Independence . 104

4.3 The Concept of Passing Loop . 106

4.4 Microarchitecture . 110

4.4.1 Front-end: Fetching Algorithm 112

4.4.2 Handling Memory Instructions 115

4.4.3 Back-end: Misprediction Recovery 116

4.4.4 CIDD redundancy . 120

4.5 Experimental Results . 121

4.5.1 Simulation Methodology . 121

4.5.2 Performance Analysis . 124

4.5.3 Energy Efficiency . 132

4.5.4 Design Complexity . 134

4.6 Summary . 135

5 Dynamic Memory Dependence Predication 137

5.1 Overview . 138

5.2 Motivation . 140

5.3 The Concept of Memory Predication 144

5.4 Microarchitecture . 148

5.4.1 Store Vulnerability Window 149

5.4.2 Tagged Store Sequence Bloom Filter 150

xi

5.4.3 Load Re-execution . 151

5.4.4 Memory Dependence Prediction 152

5.4.5 Memory Cloaking . 153

5.4.6 Predication Insertion . 155

5.4.7 Physical Register Reference Counter 157

5.4.8 Load Re-execution Filter . 159

5.4.9 Silent Store Effect . 160

5.4.10 Partial-Word Forwarding . 161

5.4.11 Confidence Predictor . 163

5.4.12 Memory Consistency . 164

5.5 Evaluation Methodology . 165

5.6 Experimental Results . 169

5.6.1 NoSQ VS. Baseline . 169

5.6.2 DMDP VS. Baseline . 171

5.6.3 DMDP VS. NoSQ . 172

5.6.4 DMDP VS. Perfect . 173

5.6.5 Case Study in bzip2 . 176

5.6.6 Store Buffer Size Effect . 177

5.6.7 Alternative Configurations 178

5.6.8 Energy Efficiency . 179

5.7 Related Work . 180

xii

5.8 Summary . 183

6 Conclusion . 185

References . 189

A Copyright Permission . 205

xiii

List of Figures

1.1 The block diagram of a superscalar processor 5

1.2 From logical register space to physical register space 7

1.3 Gshare branch predictor . 9

1.4 Branch Target Buffer . 10

1.5 Return Address Stack . 10

1.6 Store Queue . 12

1.7 Load Queue . 13

1.8 Store Set mechanism . 14

1.9 Branch misprediction recovery . 15

1.10 Recover Branch History Register 17

1.11 Recover Register Alias Table . 19

2.1 Restoring the mapping table by history buffer 27

2.2 Renaming with a not fully correct F-RAT 33

2.3 The different walking direction in Mower 34

2.4 The branch dependence matrix . 37

2.5 The mapping dependence matrix 38

xv

2.6 Recovering F-RAT by walking from the misprediction to ROB tail . 40

2.7 Reclaiming the back-end resources via the walking process 42

2.8 The block diagram of Mower . 43

2.9 Branch Dependence Register, tracking all of the unresolved branches 44

2.10 Branch Dependence Register collaborates with Branch Dependence

Matrix . 45

2.11 Sharing of one access port by the walker and the ROB tail 47

2.12 IPC vs number of unresolved branches 51

2.13 The number of invalid register mappings through the walking process 52

2.14 The average number of invalid instructions left in the pipeline when a

misprediction is detected . 53

2.15 Spec2006 Integer Speedup (Normalized to Baseline) 55

2.16 Spec2006 Float Speedup (Normalized to Baseline) 55

2.17 Power Evaluation (Normalized to Baseline) 56

2.18 EDP normalized to the baseline configuration 58

3.1 A basic recovery mechanism . 63

3.2 The issue to dispatch new instructions into the LSQ when it is not

fixed . 66

3.3 The second phase of the recovery 68

3.4 Timeline of Recovery . 69

3.5 Phase one to Phase two delay . 72

xvi

3.6 The number of instructions between the cache miss load and the mis-

prediction . 73

3.7 Two phase recovery state machine 74

3.8 Overwriting the prediction . 76

3.9 Misprediction due to speculative recoveries 77

3.10 The branch path tag for selective flushing 79

3.11 Recover Afterwards with/without executing bogus instructions vs.

Two-Phase, normalized to Inf . 86

3.12 RB-8-GA vs. RB-8-LA vs. Two-Phase, normalized to Inf 88

3.13 The extra cycles caused by Two-Phase compared with Inf 89

3.14 The Geometric mean of different checkpoint allocation algorithms, nor-

malized to Inf. 90

3.15 The Geometric mean on different memory speed, normalized to Inf. 91

3.16 The Geometric mean on different rob size, normalized to Inf. 91

3.17 The Geometric mean on different issue width, normalized to Inf. . . 92

4.1 Control Dependence/Independence 97

4.2 CDCF . 108

4.3 Passing Loop Microarchitecture Block Diagram 110

4.4 Recovery through walking . 118

4.5 Detecting the damaged register mappings 120

4.6 Spec 2006 IPC speedup . 125

xvii

4.7 Number of affected instructions per 1000 valid committed instructions 126

4.8 Speedup if all instructions retired are valid 127

4.9 The geometric speedup over different configurations for integer bench-

marks . 129

5.1 OC dependence caused strict ordering. 141

5.2 Load instruction distribution . 142

5.3 Delayed loads vs. bypassing loads 143

5.4 Three different ways to read data for loads. 144

5.5 Memory dependence prediction results over low confidence loads . . 147

5.6 DMDP Microarchitecture . 148

5.7 Memory Cloaking . 154

5.8 Memory predication insertion . 156

5.9 The producer counter . 158

5.10 Load re-execution incurred by silent store 160

5.11 The decision tree of partial-word forwarding detection 161

5.12 Spec 2006 Speedup over the baseline 169

5.13 A bzip2 code snapshot . 176

5.14 32,64-entry SB VS. 16-entry SB . 177

5.15 The EDP of DMDP, normalized to NoSQ 179

xviii

List of Tables

2.1 The processor configurations . 50

2.2 Energy consumption and Power dissipation in Mower and Baseline . 57

3.1 The average misspeculation recovery ratio and the corresponding back-

end recovery time . 71

3.2 Processor Configuration . 83

3.3 The misspeculations which have checkpoints 88

3.4 The EDP results of 2-phase with or without instruction reuse, com-

pared with a 8-checkpoint architecture 93

4.1 Spec 2006 Benchmark Suite . 122

4.2 The Processor Configuration . 123

4.3 The branch predictor performance 124

4.4 The percentage of increased mispredictions by non-speculative Passing

Loop . 128

4.5 The speedup comparison between Gshare and TAGE, geometric mean

over integer benchmarks . 129

4.6 The speedup of different branch coverage (speculative RWalker) . . 130

xix

4.7 The CIDD redundancy . 131

4.8 The EDP compared with the baseline processor 133

4.9 Design Resource classification . 134

5.1 The difference between NoSQ and DMDP on different loads 145

5.2 Load re-execution policy for different loads. 159

5.3 Baseline Processor Configuration 167

5.4 Average execution time of all loads 171

5.5 Average execution time of low confidence loads 173

5.6 Memory dependence misprediction rate 174

5.7 Load re-execution related stalls per 1k committed instructions . . . 175

xx

Author Contribution Statement

The work in Chapter 2 was published in Proceedings of the 29th ACM on Interna-

tional Conference on Supercomputing. I am the first author of the publication and I

contributed all of the ideas and the evaluations of the work.

The work in Chapter 3 will be published in Proceedings of the 32nd ACM on Inter-

national Conference on Supercomputing. I am the first author of the publication and

I contributed all of the ideas and the evaluations of the work.

The work in Chapter 5 will be published in Proceedings of the 45th Annual Interna-

tional Symposium on Computer Architecture. I am the first author of the publication

and I contributed all of the ideas and the evaluations of the work.

xxi

List of Abbreviations

ROB Reorder Buffer

RS Reservation Station

LSQ Load-Store Queue

RAT Register Alias Table

F-RAT Front-end Register Alias Table

R-RAT Retirement Register Alias Table

CD Control Dependent

CI Control Independent

CIDD Control Independent Data Dependent

CIDI Control Independent Data Independent

RISC Reduced Instruction Set Computer

CISC Complex Instruction Set Computer

ILP Instruction Level Parallelism

TLP Thread Level Parallelism

BTB Branch Target Buffer

PC Program Counter

BHR Branch History Register

PHT Pattern History Table

xxiii

RAS Return Address Stack

SSID Store Set ID

SSIT Store Set ID Table

LFST Last Fetched Store Table

WPE Wrong Path Events

CAM Content Addressable Memory

ISA Instruction Set Architecture

IPC Instructions Per Cycle

EDP Energy Delay Product

CFG Control Flow Graph

LLC Last Level Cache

MPKI Mispredictions Per 1k Instructions

DDG Dynamic dependency graph

DMDP Dynamic Memory Dependence Predication

xxiv

Abstract

Modern superscalar processors highly rely on the speculative execution which spec-

ulatively executes instructions and then verifies. If the prediction is different from

the execution result, a misspeculation recovery is performed. Misspeculation recovery

penalties still account for a substantial amount of performance reduction. This work

focuses on the techniques to mitigate the effect of recovery penalties and proposes

practical mechanisms which are thoroughly implemented and analyzed.

In general, we can divide the misspeculation penalty into four parts: misspeculation

detection delay; stale instruction elimination delay; state restoration delay

and pipeline fill delay. This dissertation does not consider the detection delay,

instead, we design four innovative mechanisms. Some of these mechanisms target

a specific recovery delay whereas others target multiple types of delay in a unified

algorithm.

Mower was designed to address the stale instruction elimination delay and the

state restoration delay by using a special walker. When a misprediction is de-

tected, the walker will scan and repair the instructions which are younger than the

mispredicted instruction. During the walking procedure, the correct state is restored

and the stale instructions are eliminated.

xxv

Based on Mower, we further simplify the design and develop a Two-Phase recovery

mechanism. This mechanism uses only a basic recovery mechanism except for the case

in which the retire stage was stalled by a long latency instruction. When the retire

stage is stalled, the second phase is launched and the instructions in the pipeline are

re-fetched. Two-Phase mechanism recovers from an earlier point in the program and

overlaps the recovery penalty with the long latency penalty.

In reality, some of the instructions on the wrong path can be reused during the

recovery. However, such reuse of misprediction results is not easy and most of the time

involves significant complexity. We design Passing Loop to reduce the pipeline fill

delay. We applied our mechanism only for short forward branches which eliminates

a substantial amount of complexity.

In terms of memory dependence speculation and associated delays due to memory

ordering violations, we develop a mechanism that optimizes store-queue-free archi-

tectures. A store-queue-free architecture experiences more memory dependence mis-

predictions due to its aggressive approach to speculations. A common solution is to

delay the execution of an instruction which is more likely to be mispredicted. We

propose a mechanism to dynamically insert predicates for comparing the address of

memory instructions, which is called “Dynamic Memory Dependence Predication”

(DMDP). This mechanism boosts the instruction execution to its earliest point and

reduces the number of mispredictions.

xxvi

Chapter 1

Introduction

In recent years, more and more processor cores are integrated on a single chip to

exploit more thread level parallelism. During this period, it became clear to pro-

cessor designers that the clock frequency can no longer be increased due to physical

limitations. About ten years ago, we had Intel Pentium 4 (Cedar Mill) which was

running under 3.6GHz at 65nm process node. Nowadays the top of the line desktop

processor, Intel Skylake, is working under 4GHz at 14nm process node. We can have

more transistors on a single die, but we can not make the transistors switch faster.

On the other hand, it is inefficient to invest all of the on-chip resources on a sin-

gle processor core in terms of performance and energy. Given the same amount of

resources, a 2-core processor can easily outperform a single core processor in many

parallel applications.

1

As a result, the number of cores per processor continued to increase gradually through

the years. From the industry side, we saw 2-core, 4-core and 8-core processors released

to the market. From the academic side, 100-core, 1000-core processors are foreseen in

the future landscape [1, 2]. Surprisingly, the number of the cores haven’t changed for

a long time since the first 8-core processor was introduced, as the dominant desktop

processor currently available is still an 8-core processor. Does multi-core processor fail

the future computer architecture design? We need to take one step back to analyze

the performance model first for a better understanding.

Amdahl’s Law [3] is introduced to explain how parallelism helps to improve the per-

formance. Amdahl’s Law separates the program execution into 2 parts, one part that

can be parallelized and the other that can not. The overall speedup is then expressed

by formula (1.1), where f is the fraction of the program which can be parallelized

by a factor of S. Ideally, if the parallelized section takes no time to execute, it yields

the second equation (1.2). Obviously, the roof of the speedup is constrained by the

sequential code in the program.

Speedup(f, S) =
1

(1 − f) + f
S

(1.1)

Speedup(f, S)S→∞ =
1

(1 − f)
(1.2)

2

Amdahl’s Law has been used to study the performance of multi-core processors exten-

sively. In [4, 5], three different multi-core processor models were evaluated, namely,

Symmetric, Asymmetric and Dynamic. Symmetric means all of the processor cores

have the same resources. Asymmetric means a big core is coupled with several small

cores. Dynamic means the processor can form a single super-core during the serial

execution and can be decoupled to multiple cores during parallel execution. The

conclusion of these papers are that even for a parallelism rich application, it is still

worthwhile to build an “energy inefficient” big core, since every second it saves from

the serial section can be translated to more parallel work in the rest of the “energy

efficient” small cores. In typical parallel programs, the parallel part of the program

is thoroughly optimized but the serial part remains on the critical path. Therefore,

this dissertation focuses on the techniques to optimize the single-thread program

performance in the superscalar processor.

Speculative execution is the key component for modern superscalar processors to reach

high performance. Predicting branch direction and the target address [6, 7, 8] helps

the processor to keep fetching subsequent instructions when the branch is not resolved.

Value prediction [9, 10, 11] is used to overcome the data dependence limitation in

exploiting instruction level parallelism (ILP). Memory dependence prediction [12, 13]

is designed to bridge the in-flight stores and the loads. With the given progress of

speculative execution, it is believed that more and other types of speculations will be

involved in designing future architectures.

3

Although speculation is a powerful mechanism for exploiting ILP, if the speculation

is wrong, the instructions fetched after the misspeculation have to be eliminated.

The processor has to roll back to the misspeculation point and restart fetching from

the correct path. There are two ways to improve the performance, either improving

the speculation accuracy or recovering the misspeculations more quickly. The former

approach has been broadly investigated and there is not much room left for improve-

ment. For example, Geometric History Length branch predictor [14, 15] provides very

high branch prediction accuracy and the memory dependence predictor [16, 17, 18]

achieves very high memory dependence prediction accuracy. The latter approach,

namely, recovering from a misspeculation has not been thoroughly investigated and

this dissertation concentrates on techniques to recover misspeculations quickly and

efficiently.

The rest of this chapter is organized as follows. Section 1.1 gives background informa-

tion about superscalar processors. We then describe speculation mechanisms used in

superscalar processors in Section 1.2. Widely used recovery mechanisms are discussed

in Section 1.3. Finally, we give a taxonomy of recovery penalties in Section 1.4.

4

1.1 A Superscalar Processor

A typical superscalar processor is composed of two major parts: the front-end and

the back-end, as shown in Figure 1.1. The front-end of the pipeline is in charge of

fetching, decoding, renaming and dispatching. The back-end of the pipeline is in

charge of instruction execution and retirement. The instructions which are in-flight

in the pipeline (front-end and back-end) are speculative. Roughly speaking, their

results are invisible to the outside until they are retired. Thereafter, the results are

committed to the in-order state which contains all the valid execution outcomes. The

future state in the figure represents the state obtained by combining the in-order state

with the speculative instructions left in the pipeline.

Decode Rename Dispatch

Front−end Pipeline

Reorder Buffer

Reservation
Station

ALU

FLU

Load/Store

Branch

Back−end Pipeline

ROB tail ROB head

Fetch

Future
state

Cache

Instruction

In−order
state

Figure 1.1: The block diagram of a superscalar processor

1.1.1 The Front-end

The front-end follows the program order so that the instructions flow sequentially

similar to a queue. The fetch unit first fetches instructions from the instruction

5

cache. The fetched instructions are then decoded. For a fixed-length instruction

set, the decode stage is very straightforward. For a variable-length instruction set,

decoding is much more difficult. Since the length of each instruction varies, most

processors require a multi-cycle decode stage. The next stage is renaming and both

instruction operands and destination are mapped to the physical space from the logical

space. The details of the renaming process is explained later in Section 1.1.3. The

last stage dispatches instructions to the corresponding components in the back-end.

1.1.2 The Back-end

The back-end of the pipeline is constructed to execute instructions in an out-of-order

manner to exploit Instruction Level Parallelism (ILP). An instruction from the front-

end is assigned to Reservation Station (RS) and Reorder Buffer (ROB) in parallel. RS

acts like a shelf which maintains all the unexecuted instructions. Once the operands

of an instruction are ready, the instruction is woken up to execute. Therefore, the

execution obeys the data dependence and may change the original program order.

The ROB maintains the instruction state before they are retired. Instructions are

allocated to ROB positions following the program order and they retire in program

order as well. However, only completed instructions are allowed to retire. When

an instruction is executed, its completion bit in ROB is set. Hence, an executed

instruction is not retired until all preceding instructions are retired.

6

1.1.3 Register Alias Table

Before an instruction is dispatched to the back-end, it has to be renamed. Every

destination logical register is renamed to a dedicated physical register in order to

eliminate false data dependencies. A simple example is illustrated in Figure 1.2.

$1 P7
$2
$3
$4

P10
P11
P9

RAT

I1:$1 = $2 + $3
I2:$2 = $1 − $3
I3:$1 = $4
I4:$4 = 200

logcial space

P1 = P10 + P11
$1
$2
$3
$4

P10
P11
P9

RAT

P7 P1 $1 P1
$2
$3
$4

P11
P9

RAT

P1 = P10 + P11
P2 = P1 − P11

P2P10
$1
$2
$3
$4

P2
P11
P9

RAT

P1 = P10 + P11
P2 = P1 − P11
P3 = P9

P1 P3 $1 P3
$2
$3
$4

P2
P11

RAT

P1 = P10 + P11
P2 = P1 − P11
P3 = P9
P4 = 200

P9 P4

Figure 1.2: From logical register space to physical register space

The rename process consists two steps. First, the operands are renamed by reading

the Register Alias Table (RAT). Second, the destination register of the instruction is

assigned a new physical register from the free register pool and the new mapping is

updated in the RAT. In the figure, the first instruction reads the current mappings of

$2 and $3 and the instruction’s destination register is assigned to P1. The updated

mapping of $1 is written back to the RAT to replace the old one (P7). The follow-

ing instructions can find the correct physical register of $1 through RAT. The fully

renamed code is shown on the right of the figure as well as the corresponding RAT

contents.

7

1.2 Speculative Execution

Speculative execution is a key component of superscalar processors. Generally speak-

ing, an instruction’s result is predicted upfront before its execution. Therefore, the

dependent instructions are executed earlier with this prediction. In this work, two

major speculation techniques have been evaluated, branch prediction and memory

dependence prediction.

1.2.1 Branch Prediction

The branch result is unknown until it is resolved. However, the fetch unit needs to

know the result immediately in order to fetch the subsequent instructions. Conse-

quently, the branch is predicted once it is fetched. A common superscalar processor

has a branch predictor to predict the direction of the branch instruction and a Branch

Target Buffer (BTB) to predict the target address when the branch is predicted to

be taken.

Typically the branch predictor considers the history information to make the predic-

tion. Both the local history and the global history are considered. The local history

can simply be the Program Counter (PC) of the branch or it can be a recorded history

8

of this branch. The global history is usually the most recent branch predictions.

Pattern History Table

Branch History Register

Branch PC
n bits

0 0

Prediction
m bits

max(m,n) bits

max(m,n)
2

Figure 1.3: Gshare branch predictor

Figure 1.3 shows the structure of a correlating branch predictor called Gshare branch

predictor. The Pattern History Table (PHT) is used to provide the prediction and it is

indexed by exclusive ORing the branch PC and the Branch History Register (BHR).

BHR keeps the recent branch prediction history. Every time a new prediction is

made, the prediction is pushed into the BHR and the oldest prediction is eliminated.

When a branch is mispredicted, the corresponding entry in PHT is updated. More

advanced branch predictors are invented to consider a much larger number of history

bits [19, 20].

The Branch Target Buffer (BTB) [21] provides the target address when the branch

is predicted taken. Figure 1.4 illustrates a simple BTB design which works as a

cache. The low bits of the branch PC are used to index BTB and the corresponding

9

Branch target addressBranch instruction tag

111

011

1100 00

Access
I−cache

Predicted

PC

Use the predicted PC if the branch is predicted taken

Branch Target Buffer (BTB)

tag index

byte offset

1100 0000

111 01100 : branch

Figure 1.4: Branch Target Buffer

branch instruction tag entry contains the high bits. If the branch PC hits in BTB,

the corresponding branch target address is read to fetch the subsequent instructions.

In the figure, the branch located in 1110 1100 is predicted to jump to address 1100

0000.

} }

push 0x38

pop 0x38

return;

print () {main () {

print()

print()

0x38 :

0x34 :

Figure 1.5: Return Address Stack

Other than the BTB, another dedicated component is designed to predict the return

address of the function call, namely the Return Address Stack (RAS). Figure 1.5

shows a simple program in which the function “print” is called twice at different

places. The return instruction in “print” has a single PC but two target addresses.

A BTB does not work well when the target address varies and the RAS is designed

10

to address this issue. When the first “print” is called, the PC of the next instruction,

0x38, is pushed into the RAS. When the return instruction is executed, the target

address is popped out of the RAS. Since the RAS is a stack, it always provides the

return address of the most recent function call.

1.2.2 Memory Ordering Prediction

Memory instructions are different from other instructions as the data dependencies

are unknown until load and store are computed. A load instruction is dependent on

a prior store when they access the same memory address. However, in superscalar

processors, instructions are executed in an out-of-order manner which makes memory

disambiguation very difficult.

For the purpose of bridging the in-flight stores and loads, a typical superscalar pro-

cessor contains a store queue and a load queue. The store queue maintains all the

in-flight stores in program order. Once a store’s operands are ready, the store ad-

dress and the store data are written into the corresponding entry in the store queue.

The load queue maintains all the in-flight loads in program order. When a load is

executed, the load address is written into the corresponding entry in the load queue.

When a load is executed, it simultaneously sends its address to the cache and the

store queue. If the store queue does not have any store instruction matching the

11

address, the data read from the cache is forwarded to the load. Otherwise, the closest

preceding store’s data is used.

SW1

SW2

SW3

SW4

LW

SW5

SW1SW2SW3SW4SW5 Store Queue

LW
match match

Figure 1.6: Store Queue

Figure 1.6 shows a simple example about how a load obtains its value from the store

queue. The left side of the figure lists all the memory instructions in program order.

When the load is decoded, the entry of the last store is kept with the load. In

this example, LW knows the last store is SW4 so the load only searches the stores

which are older than LW (SW1-SW4). The youngest store is selected if there are

multiple matching stores. In the figure, if both SW3 and SW1 match the address

of LW, then SW3 is selected. On the other hand, when a load is executed before a

prior matching store updates the store queue, the load may read a wrong value and

broadcast it to the dependent instructions. This load and the following instructions

need to be re-executed. The memory ordering violation is detected through the load

queue.

Figure 1.7 illustrates a load queue. The left side of the figure shows the original

instructions following the program order. When SW is decoded, the location of the

most recent load, LW2, is kept with the store. When a store updates the store queue,

12

LW1

LW2

LW5

Load QueueLW4

LW3

SW

LW1LW2LW3LW4LW5

SW

Figure 1.7: Load Queue

it only searches the loads which are younger than SW in the load queue. Any load

instructions that executed before the store and had the same address violates the

memory ordering. In this example, LW5 which has the same address is younger than

SW and had executed before SW. Therefore, this load has been misspeculated and

a misspeculation recovery needs to be performed.

If a load executes without considering the prior stores, it is possible to have a memory

ordering violation. However, if the load is forced to wait for all prior stores to execute,

the resulting delay will be detrimental to the performance. Therefore, a feasible

solution is to predict the dependencies for memory instructions. Roughly speaking,

load instructions are blindly executed at the beginning assuming they are independent

of prior store instructions. Once a dependence violation is detected, a correlation

between the load and the conflicting store can be established. Thereafter, the load

can wait for this particular store.

There are many mechanisms which maintain the correlations among load and store

instructions, one such mechanism is the Store Set algorithm [16]. Store Set algorithm

renames memory instructions using Store Set ID (SSID). If the store and the load

13

had collided before, they are assigned the same SSID. The load will have to wait if

any prior store with the same SSID has not executed.

Load/Store PC

Index

SSID

(SSIT)

Store Set ID Table

(LFST)

Last Fetched Store Table

Store Inum

Figure 1.8: Store Set mechanism

Figure 1.8 illustrates the Store Set mechanism. Both store and load instructions get

their SSIDs by reading the Store Set ID Table (SSIT). The store instruction uses its

SSID to write a unique identity called Store Inum in the Last Fetched Store Table

(LFST). The Store Inum is a hardware pointer such as the ROB entry number. The

load instruction uses its SSID to read LFST to check if there is an in-flight store with

the same SSID. If the store exists, the load can find the store using its Store Inum.

Otherwise, the load can execute whenever the load address is known.

1.3 Misspeculation Recovery

Not every speculative execution is correct. Once a misspeculation happens, the re-

covery process is initiated: I) The branch predictor’s state is restored back to the

misspeculation point so that the correct instructions can be predicted properly; II)

14

The fetch engine redirects to the misspeculation point and fetches the valid instruc-

tion; III) The Register Alias Table (RAT) is reverted back to the misspeculation

point so as to correctly rename the valid instructions; IV) The resources which are

occupied by the invalid instructions are released. We have discussed two major types

of misspeculations, branch mispredictions and memory dependence misspeculations.

Although the same recovery process can be utilized for both types of misspeculations,

memory dependence mispredictions can be handled by re-executing instructions which

received the incorrect values, whereas in case of branch misspeculations incorrectly

fetched instructions need to be eliminated from the pipeline.

I1

I2

I3

I4: BNE

I10

I11

I12

I5

I6

I7

T NT

In−order state

Future state

I1

I2

I3

I4: BNE

I10

I11

I12

I5

I6

I7

T NT

In−order state
Future state =

I1

I2

I3

I4: BNE

I10

I11

I12

I5

I6

I7

T NT

Future state

In−order state

(a) (b) (c)

Figure 1.9: Branch misprediction recovery

Figure 1.9 shows a basic recovery process for a mispredicted branch. The process

states described in Section 1.1 are also shown here. The in-order state represents the

valid execution results. The future state represents the combination of the in-order

state with the speculative state. In Figure 1.9(a), the branch BNE is predicted taken

which turns out to be a misprediction. Therefore, instructions I1 -I4 are still valid but

the following instructions I5 -I7 are invalid. The future state is damaged at this point,

15

so the fetch engine stops. The valid instructions are allowed to retire and update the

in-order state. When the last valid instruction I4 is retired, the instructions left in

the pipeline are all invalid and can be immediately eliminated. Simultaneously, the

future state is restored back to the in-order state in Figure 1.9(b). Since the correct

branch result is known, the fetch engine restarts to fetch the valid instructions I10 -I12

in Figure 1.9(c).

The basic recovery process for memory dependence misspeculation is similar. When

a load instruction conflicts with a store instruction, the instructions before the load

are still valid and retired. Remaining instructions are eliminated and the future state

is rolled back to the misspeculation point. The misspeculated load is re-executed and

will retrieve the correct value since all prior stores have retired.

1.3.1 Recovering Branch Predictor State

After a branch misprediction, the branch predictor would have been updated with the

wrong values. Without correcting the branch predictor state, new branch predictions

will be very inaccurate. Therefore, the first task in recovery process is to repair the

branch predictor state. Typically, Pattern History Table (PHT) is designed to be

updated at the retire stage by only valid instructions. Hence, PHT does not need

to be modified. Since the Branch History Register (BHR) and the Return Address

16

Stack (RAS) are speculatively modified, these components need to be repaired.

Although the BHR keeps the m most recent predictions in order to predict the next

branch, in a real hardware design, BHR is made larger so that it can be rolled back

to a previous position.

shift selector

(a) (b)

b7

section B

b1

section A

b5b0 b1 b2 b3 b4

Figure 1.10: Recover Branch History Register

Figure 1.10(a) illustrates a BHR design in which the younger branches are listed

to the right of the figure. When branch b1 is predicted, section A in the BHR is

the most recent branch history and this section is used to make a prediction. The

following branches, b2 -b7, are then predicted and pushed into the BHR. Branch b1

is a misprediction, thus, the processor has to shift section A to the right in the BHR.

Figure 1.10(b) shows a shifter design which can shift the BHR to the right by a

variable number of bits.

The second part of the branch predictor recovery is the Return Address Stack (RAS)

which is used to predict the return address from a function call. It is mentioned in

[22] that it is possible to corrupt RAS during the misspeculation recovery. In most

scenarios, a younger return instruction may overwrite an RAS entry which keeps

17

another return address. Therefore, there is no way to roll back to a previous point

during the recovery.

Dixon et al. implemented a practical solution to fix RAS. They used the same tech-

nique from Register Alias Table (Section 1.1.3) to map RAS entries to physical regis-

ters. By doing this, two different return addresses which are written to the same RAS

entry are mapped to two different physical registers. In the recovery, the processor

only needs to restore the correct mapping to fix RAS. The method to restore the

mapping is similar to the RAT correction which is described in Section 1.3.2.

1.3.2 Restoring the Map Tables

We mentioned at the beginning of this section that the future state is restored by

copying from the in-order state and RAT is repaired in this way. In most superscalar

processors, there are two RATs serving different roles. The Front-end RAT (F-RAT)

is located at the rename stage and is speculative. The Retirement RAT (R-RAT)

is located at the retire stage which keeps the in-order state [23]. During the recov-

ery, R-RAT is copied to F-RAT when the misspeculated instruction is retired. This

mechanism is shown in Figure 1.11.

18

Fetch Decode Rename Dispatch

Head

ROB

Tail

Register
Alias Table

R1
R2
R3
R4

P3
P8

P1
P2

Register
Alias Table

R1
R2
R3
R4

P7
P8

P6
P9

Misspeculation
RecoveryFront−end Retirement

Figure 1.11: Recover Register Alias Table

1.3.3 Eliminating Stale Instructions

The instructions following the misspeculated instruction are marked as stale and

cannot change the in-order state. The resources which were occupied by the stale

instructions are released during recoveries. When a misspeculation is detected, the

instructions left in the front-end are all stale. Consequently, the front-end is reset to

eliminate all stale instructions. The situation in the back-end is different since it is

mixed with valid and stale instructions. The basic recovery mechanism will not reset

the back-end until all valid instructions are retired.

1.4 Recovery Penalty Analysis

We have described the basic recovery mechanism. In this section, the recovery penalty

resulting from misspeculations is analyzed and a taxonomy of misspeculation recovery

19

is given. This work divides the recovery penalty into different parts. These are the

misspeculation detection delay, stale instruction elimination delay, state

restoration delay and finally pipeline fill delay. For each part, we also give some

of the related work in this section.

1.4.1 Misspeculation Detection Delay

A speculative instruction does not know its result until it is fetched, decoded, renamed

and finally executed. Therefore, the misspeculation detection delay is the time spent

for misspeculation to be detected since that misspeculation was fetched. In most

cases, it is very difficult to reduce the misspeculation detection delay since the tasks

associated with each instruction’s execution cannot be reduced.

Armstrong et al. presented a mechanism to speculatively predict a misspeculation [24]

by observing Wrong Path Events (WPE). WPE is classified into two categories: mem-

ory instructions and control flow instructions. Memory instructions include derefer-

ences of NULL pointers, reads or writes to unaligned addresses, writes to a read-only

page, reads from an executable page or TLB misses, etc. Control flow instructions

include branch mispredictions and RAS underflow. When a WPE is observed, it is

highly likely that there is a misspeculation. Therefore, even if the exact misspecu-

lation point is not found, their mechanism can predict the misspeculation point and

start to recover before the misspeculation is resolved.

20

1.4.2 Stale Instruction Elimination Delay

Section 1.3.3 has described a basic mechanism to eliminate stale instructions and

release the occupied resources. This mechanism does not eliminate stale instructions

until all the valid instructions are retired. If the retirement is halted by some long

latency operations, such as a cache missing load instruction, the elimination delay

may significantly affect the overall performance.

McIlvaine et al. designed a specific rename algorithm [25] to assign a dedicated

branch flush tag to each branch. The tag is a bit vector which has only one

bit set to high. Hence, the width of the bit vector is equivalent to the number of

tags. Other than the branch flush tag, a branch path tag is also implemented.

Each instruction has its own branch path tag indicating which unresolved branches

it is dependent on. When a branch misprediction is detected, its branch flush tag

is broadcast and the instructions which are dependent on this branch are selectively

flushed.

1.4.3 State Restoration Delay

The basic recovery mechanism explained in Section 1.3 restores the future state by

copying the in-order state and this is the state restoration delay. The retirement

21

of the valid instructions also constrains the state restoration delay due to the same

reason described before.

Checkpointing architectures [26, 27] were designed and developed to construct a larger

instruction window. This mechanism also shortens the state restoration delay. When

a branch is at the rename stage, a copy of the current F-RAT is kept as a checkpoint.

If this branch is mispredicted, the checkpoint is used to instantly restore the F-RAT.

To keep a checkpoint for every branch is very costly. So a practical solution is to

allocate a checkpoint only when a particular branch is likely to be mispredicted. A

confidence predictor is used to predict how likely the coming branch is going to be a

misprediction.

1.4.4 Pipeline Fill Delay

A misspeculation may cause the processor to eliminate a substantial amount of stale

instructions. It takes many cycles to fill an empty pipeline and this is the pipeline fill

delay. One of the solutions is to reuse the stale instruction computations.

Usually a program forks at the branch instruction and joins at a later point. The

instructions fetched after the join point are control independent of the branch result.

In other words, the control independent instructions are always executed regardless

22

of the branch direction. In consequence, if the branch is mispredicted, some of the

control independent instruction results can be reused. Such reuse mechanisms exploit

Control Independence [28] of instructions.

1.5 Summary

In this chapter, we went over the basic components of a superscalar processor and

explained the speculative execution including branch prediction and memory depen-

dence speculation. We also elaborated in detail, a basic recovery mechanism and

outlined the recovery process to restore branch predictor, return address stack and

the front-end RAT. We also provided a taxonomy which classifies the recovery penalty

into four parts: misspeculation detection delay; stale instruction elimination

delay; state restoration delay; pipeline fill delay. In the rest of the dissertation,

the proposed mechanisms are illustrated and analyzed thoroughly to address each of

these delays.

23

Chapter 2

Mower : A Walking-based

Misspeculation Recovery

Mechanism

2.1 Overview

In the previous chapter we have described a basic recovery mechanism and presented

a taxonomy of misspeculation recovery penalties. In this taxonomy, one of the delays

is the state restoration delay, such as restoring the correct F-RAT. The basic

0The material contained in this chapter was previously published in Proceedings of the 29th ACM
on International Conference on Supercomputing (ICS ”15) [29]. The copyright permission is listed
in Appendix A.

25

recovery mechanism outlined in Chapter 1 does not recover F-RAT until all the valid

instructions are retired. Therefore, the state restoration delay is highly dependent on

the speed of valid instruction retirement. If the retirement is impeded by some long

latency operation then the misspeculation penalty is exacerbated.

For the purpose of breaking the dependence between the recovery penalty and the

valid instruction retirement, many innovative techniques were proposed. These tech-

niques can be classified into two categories: walking and checkpointing. We briefly

review both techniques in this section and bring in the concept of Mower, a walking-

based recovery mechanism.

2.1.1 Recovering F-RAT by Walking

F-RAT contains the correct mapping table at the misspeculation point and the up-

dates done by the instructions after the misspeculation point. A easy approach to

restore F-RAT is to undo all the updates after the misspeculation. This mechanism

acts like a walker walking back toward the misspeculation. When it is walking, any

updates made by instructions to F-RAT is undone.

Moudgill et al. first designed a register renaming algorithm which is similar to the

one widely used in contemporary superscalar processors [30]. Their work consists

26

of a register mapping algorithm, a physical register release algorithm and an algo-

rithm to handle precise interrupts. In order to recover F-RAT, a history buffer is

implemented to keep the old physical register mapping of each instruction. During

recovery, correct mapping table is restored by using the history buffer contents.

R1

R2

R3 P9

P10

P12

R2

P2

R3

P3

R1

P1

R3

P6

R2

P4

History Buffer

R3 : P6

R1 : P10

R3 : P9

R2 : P12

R2 : P4

R2

P2

R3

P3

R1

P1

R3

P6

R2

P4

R3 : P6

R1 : P10

R3 : P9

R2 : P12

R2 : P4

Undo mapping

R1

R2

R3 P9

P10

P4

R1

R2

R3 P3

P2

P1 R3 : P6

R1 : P10

R3 : P9

R2 : P4

R1

R2

R3

P10

P4

Undo mapping

R2

P2

R3

P3

R1

P1

R3

P6

P6

(a) (b) (c)

Figure 2.1: Restoring the mapping table by history buffer

Figure 2.1 is a simple example demonstrating how the history buffer mechanism works.

Initially, R1, R2 and R3 are mapped to P1, P2 and P3 respectively in Figure 2.1(a).

Whenever an instruction is renamed, its newly assigned physical register modifies the

mapping table. Simultaneously, the old physical register number is pushed into the

history buffer. For example, the first instruction maps R2 to P4 and the old

mapping, R2 to P2, is pushed into the history buffer. The resulting mapping table

and history buffer contents are depicted on the right side of the figure.

When a misspeculation is detected, the walking process is triggered. Since the walking

process operates in the reverse order, the update done by the last instruction is undone

first as shown in Figure 2.1(b). The history buffer works like a stack and the last

pushed content is popped out first. Therefore, the mapping of R2 is restored to P4.

27

Walking on the history buffer eventually restores F-RAT back to the misspeculation

point. The time consumed by the walking process is dependent on the number of

instructions between the misprediction point and the end of the buffer.

As it can be seen, in case of history buffer, walking is done from F-RAT to the

misspeculation point. On the other hand, it is also possible to “walk” from R-RAT

(Retirement RAT) to the misspeculation point [26, 27]. In this case, the walker needs

to have its own RAT, W-RAT(Walker RAT) and copies R-RAT to W-RAT at the

beginning of the recovery. Thereafter, the walker goes through the valid instructions

from the ROB head to the misspeculation. When an instruction is scanned, its current

physical register rather than the previous physical register is used to update W-RAT.

At the end, W-RAT has the correct mapping table, which is copied back to F-RAT.

As we have previously mentioned, the overhead of any walking mechanism depends

on the number of instruction to scan. These two walking mechanisms which starts

from F-RAT or R-RAT are selected due to the misspeculation position. In terms of

state, if the misspeculation point is closer to F-RAT, the walker starts from F-RAT.

Otherwise, the walker starts from R-RAT.

28

2.1.2 Checkpointing Architectures

An essential task for every recovery mechanism is to restore the future state back to a

previous known state. Walking mechanism accomplishes this by undoing the incorrect

updates. Checkpointing, on the other hand, can revert the future state back to any

point as long as it has a checkpoint of the processor state at that point.

Hwu et al. proposed to use checkpoints for repairing misspeculations [31]. They

also described the usage of history buffer to do a low overhead recovery. Akkary

et al. designed an ROB-free architecture which uses checkpoints to recover from

misspeculations [26, 27]. In order to better utilize resources, a branch confidence

predictor can be implemented to allocate checkpoints for the branches which are

likely to be mispredicted.

Other than a pure checkpointing architecture, many ROB-based architectures also

incorporate a checkpoint-based design to optimize the state restoration delay. The

MIPS R10000 [32] and Alpha 21264 [33] processors integrated checkpoints to do a

fast repair of F-RAT.

Cristal et al. further optimized the checkpointing architecture [34, 35]. In their

29

technique, a pseudo-ROB was implemented to reduce the number of necessary check-

points. This pseudo-ROB could retire instructions disregarding their completion sta-

tus and only assigned a checkpoint if a retired branch was not executed.

Zhou et al. proposed a special mechanism to allocate checkpoints at the misspecu-

lation detection time [36]. Later when the correct F-RAT is restored, the difference

between the correct F-RAT and the checkpoint is selected out which is the incorrect

mapping updated by the invalid instructions. Additional MOV instructions are fi-

nally inserted to transfer the correct value to the physical registers mapped by the

checkpoint. Since the incorrect mapping is marked ahead, this mechanism does not

have state restoration delay.

BranchTap [37] was designed to allocate checkpoints efficiently in a different way.

BranchTap would throttle the fetch stage when the number of unresolved, low confi-

dence branches without checkpoints exceeds a threshold. The insight of their mech-

anism is as follows: the penalty to recover a misspeculation without a checkpoint is

higher than the one with a checkpoint. Thus, the number of unresolved branches

without checkpoints should be controlled since their recovery would do more damage

to the performance. Turbo-ROB [38] was later developed to better recover a misspec-

ulation without a checkpoint. The mechanism packed the ROB storage so that only

the necessary mapping information is kept in Turbo-ROB. By doing this, the walking

distance became much shorter. As a result, a much quicker recovery is achieved. A

30

similar approach was also presented in CROB [39].

Other than compressing ROB to shorten the walking distance, Golander et al. de-

signed an approach to reuse the instructions on the walking path [40]. Their mecha-

nism can reuse the results of instructions and the outcome of branches obtained during

the first run. They then designed an enhanced checkpoint allocation algorithm [41]

which would allocate checkpoints according to dynamic events, such as second-level

cache misses and rollback history.

Another cost efficient mechanism, CPROB [42], was proposed to release the physical

registers belonging to a checkpoint even before the corresponding branch is resolved.

In which case, the physical registers are released much earlier at the cost of a poten-

tially more costly misspeculation recovery.

2.1.3 Motivation

Walking is a very general mechanism. Given the contents of history buffer, the

processor can travel back in time to any point as long as the related record is still

in the history buffer. The drawback of this approach is that the recovery delay is

highly dependent to the walking distance. Furthermore, history buffer size restricts

the number of speculative instructions. On the other hand, checkpointing based ar-

chitectures can recover instantly when a misspeculated instruction has a checkpoint.

31

Even if the misspeculated instruction does not have a checkpoint, the recovery can

start from a position closer to the misspeculation and therefore have a shorter walk-

ing distance. The shortcoming of this technique is the extra overhead in terms of

hardware cost and energy consumption. For each checkpoint, a full copy of F-RAT

is required and each allocation of the checkpoint consumes extra energy. As a result

the mechanism is not efficient.

Mower is designed to address these problems in an efficient way. It is a walking-based

algorithm so there is no checkpoints need to take, saving energy and design cost. No

checkpointing means no instant F-RAT recovery, but that does not mean a longer

state restoration delay. Mower has two unique features to curtail the delay. One is

that it can rename instructions even before F-RAT is fully restored. The other one is

that Mower can fully restore F-RAT in a much shorter distance than a conventional

walking algorithm.

F-RAT used in Mower is different in that each logical register’s mapping is treated

as an individual entity. Therefore, even when the F-RAT is not fully recovered, the

renaming continues as long as the instruction’s operands have the correct mapping.

One simple example is shown in Figure 2.2. The branch is predicted to take the left

path so that R3 and R4 update F-RAT. When the misprediction of the branch is

detected, the mapping in F-RAT updated by invalid instructions are marked to be

invalid (R3 and R4). The rest of the map table is still valid. The first newly fetched

32

instruction reads the mapping of R1 and R2 which, in this example, are still valid.

In other words, this instruction is allowed to go through the rename stage. The next

instruction which reads the mapping of R3 is stalled as the mapping is invalid at

that point.

R1 <−

R2 <−

BNE

R3 <−

R4 <−

R2 <− R1 + R2

R3 <− R3 + 5

predicted

path R1

R2

R3

R4

F−RAT

Figure 2.2: Renaming with a not fully correct F-RAT

With the knowledge of F-RAT changes in Mower, it becomes much easier to explain

the walking process that is employed in Mower. A conventional walking process is

shown in Figure 2.3(a). For simplicity, only R3’s updates are shown in the figure.

When a misspeculation is detected, the walking process will undo the updates in

reverse program order. Whenever an R3’s entry is encountered, F-RAT is changed.

The correct mapping of R3 is not determined until the walking process is finished

since the walker has no knowledge which logical register will be changed next. At the

end, F-RAT is fully recovered.

It is easy for Mower to have a short-cut because Mower can identify the valid mapping

at a finer grain. Figure 2.3(b) shows the walking process of Mower in which the walker

follows the program order starting from the misspeculation. When R3 is encountered

33

R3

P7

R3 R3 R3

P1 P9 P3 R3 P10

misspeculation

Head
walk

P7 P1 P9

History Buffer

F−RAT

R3

P7

R3 R3 R3

P1 P9 P3 R3

misspeculation

Head
walk

History Buffer

(a)

(b)

P10 P9

F−RAT

I V

Figure 2.3: The different walking direction in Mower

the first time, Mower checks F-RAT and finds that it is an invalid mapping. Hence,

Mower updates R3 with P9 and sets the mapping to valid. Because the mapping

becomes valid, it is not changed any more for the rest of the walking process. The

insight is, if the walking process follows the program order, the first entry of the

invalid mapping register contains the correct mapping, since this entry holds the

update made before the misspeculation.

If we consider both of the algorithms described above, it becomes clear that Mower

can recover the register mapping much faster because each mapping has its own valid

bit. Besides, when a single register mapping is recovered, it helps to rename the

instruction which reads this logical register and everything is done without a fully

recovered F-RAT.

34

2.2 Control Dependence Tracking

When a misspeculation is detected in Mower, invalid register mappings have to be

identified immediately since the walker needs the validation information to recover.

Thus in Mower, every branch is given a special tag. When the branch is mispredicted,

the branch tag is broadcast and the affected register mappings are marked to be

invalid. In this section, the related structures are thoroughly explained.

2.2.1 Branch Renaming

For every decoded branch, a special tag, branch flush tag, is allocated. A normal

rename policy such as the register renaming algorithm does not fit well to rename

branches. This is because, a single instruction may depend on multiple unresolved

branches and this one to N mapping does not exist in register renaming.

McIlvaine et al. had a patent [25] to rename branches and their approach can solve

this one to N dependence tracking effectively. The branch flush tag is a bit vector

which has only one bit set high. Therefore, the width of the vector determines the

total number of flush tags. For example, if the vector is 4-bit wide, the complete tag

set is 1000, 0100, 0010, 0001. In other words, four branches at most can be renamed.

35

When a branch is executed, its flush tag is not needed any more so the tag is released

and the tag can be allocated to a new branch. In summary, the branch flush tag’s

width decides the number of unresolved branches.

2.2.2 Disambiguating the Branch Ordering

In general, there are multiple unresolved branches in the pipeline and it is possible

that more than one branch is mispredicted. Consequently, when a recovery process

is underway, another misprediction can be detected. At that moment, the branch

ordering is very important. An older misprediction should overwrite the current

recovery process and a younger misprediction should be ignored. Normally, a super-

scalar processor would compare the sequence number of the branches to decide the

branch age [43]. Instead, each branch instruction in Mower has a dedicated tag. This

approach enables the use of a control dependence matrix to implement proper branch

ordering.

Such dependency matrices were first proposed to replace the CAM-based reservation

stations [44, 45]. Each row in the matrix represents an individual instruction and

each column represents a dependent component. Whenever all the dependencies are

cleared in one row, the corresponding instruction is ready to issue.

In Mower, a Branch Dependence Matrix (BDM) is used to identify the ordering of

36

the branches. Figure 2.4(a) shows a simple example in which there are three branches

renamed to “001”, “010” and “100”. The branch dependence matrix shown on the

right side is a 3X3 matrix. Each row represents a branch and the values in the row

represent the dependencies of this branch. If the value is high that means the branch

is dependent on another branch which is on that column. For example, branch B2 is

dependent on B1 as B2 is fetched after B1. In the matrix, the row of B2 is “001”

and the corresponding column is B1. Branch B3 is dependent on both B1 and B2,

its row then is “011”.

10 0

0 1 0

01 0

(b) (c)

Branch Flush Tag

1

11

00

0

0 0 0

1

11

00

0

0 0 0

1

11

00

0

0 0 0

B3 B2 B1 B3 B2 B1 B3 B2 B1

B1:

B2:

B3:

(a)

Figure 2.4: The branch dependence matrix

When a branch instruction is mispredicted, its flush tag is broadcast to invalidate

those branches which were fetched afterwards. For example, in Figure2.4(b), branch

B2 is mispredicted and its column is invalidated. Wherever the entry is set high,

the corresponding row will be invalidated. In this example, branch B3 is invalidated.

When B1 is mispredicted, both B2 and B3 are invalidated (Figure 2.4(c)). Only a

valid branch instruction can trigger a misprediction recovery.

37

2.2.3 Tracking Affected F-RAT entries

The dependence matrix can also be used to track the register mappings. As we have

discussed before, Mower treats each logical register mapping as an individual entity.

When a misprediction is detected, the mapping which is updated after the mispre-

diction is invalidated. This is accomplished by using another dependence matrix.

0 0 0 0

0 0 0 0

1 0 0 0

Valid

0 0 0 0 0

1

0

1

0

1

1

1

1

1

R0

R1

R2

R3

R31

B1 B2 B4B3 Bn

Figure 2.5: The mapping dependence matrix

Figure 2.5 shows a Mapping Dependence Matrix (MDM) which has 32 rows and

n columns. Each row represents a logical register’s dependencies and each column

represents an unresolved branch. Thus at most n unresolved branches are included.

When a logical register is renamed, all unresolved branch tags are written into the

corresponding register row and the row is also marked as valid. Whenever a mispre-

diction is detected, the corresponding column is broadcast and any row which has the

dependence bit set is invalidated. In Figure 2.5, the mapping of R2 is invalidated

when branch B2 is mispredicted.

38

2.3 A Reverse Walking Procedure

The walker in Mower has two major tasks during the recovery procedure. First,

it scans the history buffer to restore F-RAT and second, it eliminates the stale in-

structions and reclaims the occupied resources. The walking process starts from the

misprediction and moves towards the ROB tail. This walking direction is opposite to

the previous walking mechanisms and it accelerates the F-RAT recovery.

2.3.1 Recovering F-RAT in a gradual manner

Once a misprediction is detected, MDM is searched and the register mappings which

were modified after the misprediction are marked invalid. Figure 2.6 illustrates this

recovery procedure. The instructions are placed in program order from left to right.

The register mappings (from logical registers to physical registers) are shown in the

first two rows. The row of “Previous” contains the previous physical register identity

of the logical registers. For example, R1 is mapped to P6 in the first instruction and

then mapped to P8 in the 4th instruction. The previous register identity P6 is kept

in the 4th instruction. This approach works similar to a history buffer.

The register mappings of R1 and R3 are modified after B1, thus these two mappings

39

Logical

Physical

Previous

P6

P6

P7

P1

P8 P9

P3P2

R1 R2 B1 R1 R3

ROB tailwalker

R1

R2

R3

Tag

P8

P7

P9

P6

P3

B1

B1

0 1

0 1

1

Valid Mapping

Figure 2.6: Recovering F-RAT by walking from the misprediction to ROB
tail

are marked invalid before the walking process by broadcasting through MDM. When

walker scans the invalid instructions, it undoes the updates with the previous physical

registers. R1’s mapping is substituted with P6 and this is the up-to-date definition

before the misprediction. Since R1’s mapping has changed, its valid bit is set to high

which means this mapping will not be modified by the walker during the recovery.

This mechanism is also explained in Figure 2.3.

2.3.2 Eliminating Stale Instructions

In the back-end of the processor, the resources occupied by invalid instructions have

to be released. Mower accomplishes this task when the walker scans the invalid

instructions. The invalid instruction may be in one of the pipeline stages in the

back-end. If the instruction has not been executed yet, it is still in the reservation

station. If the instruction is woken up but not completed, it is in the execution unit.

40

A memory instruction always occupies an entry in LSQ. Based on the instruction

state, a different elimination operation is triggered. Therefore, Mower keeps these

states in ROB to track the resources occupied by every instructions.

If the scanned instruction holds a physical register, the physical register should be

reclaimed as no valid instruction will read its value. The register number is pushed

into the free register pool so that it can be reused by incoming instructions.

When the walker scans an ROB entry, it first checks the state of the instruction.

The completed instructions are cleared from the ROB entry and if it is a memory

instruction, the LSQ entry number is read to eliminate the instruction from LSQ

as memory instructions are not removed from LSQ until they are retired. If the

instruction has not issued yet, the corresponding RS entry number is read to eliminate

it from RS. Other than these two cases, the instruction must have been issued but

the computation has not finished yet. A naive solution is waiting for the computation

to complete. The drawback of this solution is the potential long latency due to the

operation time. Some of the floating point operations may take up to tens of cycles

to complete. A more common case is a cache miss load which may end up with a

delay of hundreds of cycles. In order to have a quicker walking process, the walker

marks the destination physical registers of these instructions as invalid and skips these

instructions. These invalid instructions are still allowed to execute, but when they

complete, their physical registers are reclaimed instead of writing back their results.

41

Note that these physical registers are not reclaimed during the walking process but

rather at their computation time.

Reservation Station Execution Unit

Misprediction

Free Register

Rob Head

PR

LoadQ StoreQ

Rob Tail

Figure 2.7: Reclaiming the back-end resources via the walking process

Figure 2.7 shows the mechanism to reclaim resources. The instruction state related

information is held inside ROB such as the issued bit, the completion bit and the

corresponding entry number.

2.4 Microarchitecture

In this section, a detailed hardware design of Mower is given. Figure 2.8 demonstrates

the block diagram of Mower and distinguishes it from a normal superscalar processor.

Mower has a valid bit for every register mapping in F-RAT. It scans the ROB entries

to reclaim resources and eliminate invalid instructions.

42

Fetch

Decode

Rename

Dispatch

Mower

LSQ
Reservation

Station

Jump
Unit

Execution Unit
Free

Register

Pool

retire and reclaim

invalid inst complete

PRF

F
la

g
 B

it

Baseline Superscalar

F
la

g
 B

it

Mower

invalid the destroyed mapping

fix mapping by reclamation

F−RAT

Unit

allocate new instructions reclamation

2 to 1

Reorder Buffer

head tail

Figure 2.8: The block diagram of Mower

2.4.1 Branch Tag Allocation and Release

Mower renames branches with branch flush tags. Each branch has a dedicated flush

tag which is composed of a bit vector. When all of the flush tags are allocated,

the processor has to stop if it encounters another branch instruction. Whenever a

branch is resolved, its flush tag is reclaimed irrespective of the outcome, whether it

is mispredicted or correctly predicted.

The tag allocation happens at the rename stage. Another global structure, Branch

Dependence Register (BDR), is also located at the rename stage which tracks all of the

unresolved branch flush tags. Whenever a new flush tag is assigned, the corresponding

bit is set and the bit is reset when the branch is resolved.

43

0 0 0 1

1

1

1

0

0

0 0

0

0 0 0

0

0 0 1 1

1

B1

B2

BDR

B2

Jump

Unit

B1

Free Flush Tag Pool

B3

Figure 2.9: Branch Dependence Register, tracking all of the unresolved
branches

Figure 2.9 shows a complete example about how a branch flush tag is assigned and

released as well as the operations of BDR. Branch B3 arrives at the rename stage

and obtains a flush tag (0100) from the free flush tag pool. Simultaneously, this tag

is written into BDR to indicate a new unresolved branch. Note this BDR update is

a bit operation. Thus, only one bit is set to high. Branch B2 is resolved and its tag

(0010) is pushed into the free flush tag pool. The corresponding bit in BDR is also

reset. Finally in the next cycle, the BDR value is 0101 which means B1 and B3 are

unresolved. Branch flush tags 0010 and 1000 are available.

2.4.2 Branch and Mapping Dependence Matrices

The BDR holds the tags of all the unresolved branches, thus the BDR value is updated

to the value in BDM when a branch is renamed. Figure 2.10 shows a simple example

about how the BDR works with the BDM. In the first part, Branch B1 is renamed to

0100. But before the tag is updated to BDR, the current BDR is written into BDM

44

in the row of B1 indicating its branch dependence. This is because there is only one

unresolved branch 0001 on which B1 is dependent. Next, the BDR is updated to

0101 after B1 is renamed.

rename B1 to 0100

BDR

0 0 0 1

BDM

0 0 0 1

OR

0 1 0 0

01 10 updated BDR

1 2

3

rename B2 to 1000

BDR
BDM

0 0 0 1
0 1 0 1

OR

1 0 0 0

1 1 0 1 updated BDR

0 1 0 1

be correct

branch 0001 verified to

0 0 0 1

BDR

BDM

1 1 0 1 0

0 1 0 1 0

0 0 0 1 0

4 branch B1 is misprediction

1 0

0 0 0 0BDM

0 1 0 0

1 00

0 1 0 0 0
invalidate

B2

BDR

Figure 2.10: Branch Dependence Register collaborates with Branch De-
pendence Matrix

In the second part of the figure, branch B2 is renamed and the current BDR is written

into the row of B2. Part three shows the first branch 0001 is resolved and the tag

is reclaimed. Part four depicts that branch B1 is resolved and it is a misprediction.

Therefore its flush tag is reclaimed and branch B2 is invalidated.

MDM works similar to BDM in that the mispredicted branch broadcasts its flush tag

and invalidates the mappings which are dependent on this branch. During the walking

process, the walker scans through the invalid instructions. If it is an incomplete branch

instruction, its branch flush tag is reclaimed as well. Therefore the tag is broadcast

through BDM and MDM to clear the dependence.

45

2.4.3 Reclaiming the Resources using a single Read Port

In general, walker needs an access port to read the instruction state from the ROB

such as the logical register and physical register number, the completion bit and the

entry number of RS. A conventional superscalar processor typically implements two

ports, one is for the ROB tail to allocate new instructions and the other is for the ROB

head to retire completed instructions. If the walker is implemented with a dedicated

port, then this may result in a very complex hardware design and can potentially

affect the cycle time.

As it is known, the front-end of the pipeline is flushed at the beginning of the recovery.

Therefore, the ROB tail will not allocate any instruction until the first newly fetched

instruction arrives at the dispatch stage. In other words, the port which is occupied

by the ROB tail is free and can be leveraged by the walker. It is possible that the

number of invalid instructions is too large that the walking process is still in progress

when the ROB tail needs to allocate new instructions. When this happens, Mower

can still share the single port in a time sharing fashion. The first cycle, the walker

uses the port and the next cycle, the ROB tail uses the port. Since the total number

of invalid instructions is limited (no more than the ROB size), the sharing phase will

not last too long.

46

new tail

old tail

roll back ROB tail

Time Line

switch pointer

Mower

Figure 2.11: Sharing of one access port by the walker and the ROB tail

Figure 2.11 illustrates the sharing operations through the timeline. The walker is

initially at the point of the misprediction and scans towards the old ROB tail. When

the new instructions arrive at the dispatch stage, the control of the port is switched to

the ROB tail, thus the dashed line indicates that new instructions are dispatched to

the ROB entries starting from the point of the misprediction. Thereafter, the control

of the port is switched between the walker and the ROB tail until all the invalid

instructions are eliminated by the walker, then the control of the port is exclusively

turned to the ROB tail.

2.5 Evaluation

The evaluation of Mower shows that it can outperform other recovery techniques in an

effective and efficient way. In this section, the evaluation methodology and a detailed

analysis of the results are provided.

47

2.5.1 Evaluation Methodology

The Architecture Description Language (ADL) [46] is used to design the processor

models. ADL is a language designed to simulate modern processor performance. It

gives researchers the flexibility to design their own ISA (Instruction Set Architecture).

With the given ISA, researchers can use ADL to develop the processor model and

generate the simulator, assembler and disassembler in a simple step.

In this work, we choose to use MIPS-I as our simulation ISA [47]. It is a 32-bit RISC

instruction set which has 32 integer registers and a co-processor to deal with floating

point computation. The delay slot of the branch instructions is removed to simplify

the design.

SPEC 2006 [48] benchmark suite is selected for our evaluation. Since our linker

cannot handle some of the benchmarks, these benchmarks are excluded. The workable

benchmarks are listed below. We simulated the benchmarks with their “ref” input.

Integer: perlbench, bzip2, gcc, mcf, gobmk, hmmer, sjeng, libquantum, h264ref, astar.

Float: bwaves, milc, gromacs, leslie3d, namd, GemsFDTD, tonto, lbm, wrf, sphinx3.

This work also incorporated a power model from Wattch [49] to evaluate the energy

consumption. The event counters were collected during the simulations and reported

48

to Wattch which can generate a complete energy consumption file. The simulated

results were validated against McPAT [50] with a very similar superscalar pipeline

to ensure the correctness. Additionally, non-ideal clock gating option is enabled in

Wattch (cause only 10% power usage when a particular memory port is not used) as

well as the dynamic activity factors (precharging the bit line only if the content is

zero in the last cycle). BDM and MDM were implemented with CAM in Wattch to

simulate their power behavior.

We used GCC 4.3 to compile SPEC 2006 benchmarks with the highest optimization

flag (-O3) turned on. Binutils 2.22 was used as the software environment and UClibC

0.9.33 was used to link the benchmarks. Operating system kernel was not simulated.

For each benchmark, the first 500 million instructions were simulated as warm-up

phase and their results were not collected. The next one billion instruction results

were reported.

Baseline: An 8-issue superscalar processor with a Gshare branch predictor. The

detailed configurations is listed in Table 2.1.

EMR: Eager Misprediction Recovery (EMR) [36] was proposed to take a checkpoint

of the current F-RAT whenever a misprediction is detected. This checkpoint would

compare with the correct F-RAT which was repaired later. If the register mapping

is different in these two tables that means the register mapping is damaged. EMR

would need the second checkpoint only if another misprediction is detected during

49

Table 2.1
The processor configurations

Processor Configuration
Physical Register size 128
LSQ size 32
Fetch width 8
Decode width 8
Issue width 8
Int adder/subtractor 1 cycle
Int multiplier 3 cycles
Int divider 7 cycles
Float adder/subtractor 7 cycles
Float multiplier 7 cycles
Branch Predictor 4KB GShare

14 bits global branch history shift register

the first misprediction recovery procedure. In this evaluation, EMR is implemented

with 4 checkpoints. The invalid instructions are immediately eliminated.

CPR: A checkpoint architecture [26] was used which has 8 checkpoints altogether.

Whenever a misprediction is detected, the program is rolled back to the closest check-

point prior to the misprediction. The checkpoint is not released until all the instruc-

tions between this checkpoint and the next checkpoint are completed without an

exception.

Perfect: The invalid instructions are removed instantly and F-RAT is also restored

immediately. This shows the performance upper limit of any misprediction recovery

technique.

50

2.5.2 Branch Tag Size Effect

When a branch is renamed, it requires a flush tag. When there is no flush tag available,

the processor has to stall. Therefore a large number of flush tags is preferred. On the

other hand, the matrix (BDM, MDM) size is highly related to the number of flush

tags. A smaller matrix is preferred from a hardware perspective.

0 5 10 15 20 25 30 35

1.6

1.8

2

IP
C

Figure 2.12: IPC vs number of unresolved branches

Figure 2.12 illustrates the performance of Mower with different numbers of flush tags.

We use IPC (Instructions Per Cycle) to measure the performance which counts the

number of executed instructions per clock cycle. Even when Mower is provided with

4 tags, the processor can still achieve 98.2% of the performance as a processor with

infinite number of tags. In the rest of the evaluation, 12 flush tags are implemented

in Mower as at this number the performance approaches to the upper limit of the

performance (99.99%) and the size is reasonable.

51

2.5.3 Invalid Register Mappings

p
er

lb
en

ch

b
zi

p
2

gc
c

m
cf

go
b

m
k

h
m

m
er

sj
en

g

li
b

q
u

a
n
tu

m

h
26

4
re

f

a
st

a
r

b
w

av
es

m
il

c

g
ro

m
ac

s

le
sl

ie
3d

n
a
m

d

G
em

sF
D

T
D

to
n
to

lb
m

w
rf

sp
h

in
x
3

0

2

4

6

8

6 5 4 3 2 1 0

Figure 2.13: The number of invalid register mappings through the walking
process

Mower is able to repair invalid register mappings through the walking process. Fig-

ure 2.13 shows the average number of invalid mappings through the walking process.

The top bar which is marked as “0” is the number of invalid mappings when mispre-

dictions are detected. The second from the top bar which is marked as “1” represents

the number of invalid mappings left after one cycle of walking recovery. Accord-

ingly, the bar of “6” represents the number of invalid mappings left after six cycles

of walking recovery. Apparently, most of the benchmarks have fewer than 0.1 invalid

mappings after six cycles of repairs. In other words, if the front-end of the pipeline

has six or more stages, the correct F-RAT is mostly restored before the first new

instruction arrives at the dispatch stage.

52

In Figure 2.13, most of the invalid mappings are corrected at the beginning of re-

covery. The first cycle of the walking recovers the most number of mappings in all

benchmarks. This explains that most of the invalid mappings are defined very close

to the misprediction point, thus walking from the misprediction instead of the ROB

tail can significantly improve the recovery efficiency.

2.5.4 Eliminating Invalid Instructions

p
er

lb
en

ch

b
zi

p
2

gc
c

m
cf

go
b

m
k

h
m

m
er

sj
en

g

li
b

q
u

an
tu

m

h
26

4r
ef

as
ta

r

b
w

av
es

m
il

c

gr
om

ac
s

le
sl

ie
3d

n
am

d

G
em

sF
D

T
D

to
n
to

lb
m

w
rf

sp
h

in
x
3

20

40

60

Figure 2.14: The average number of invalid instructions left in the pipeline
when a misprediction is detected

Figure 2.14 shows the average number of invalid instructions left in the pipeline

when mispredictions are detected. This is also the number of instructions walker has

to eliminate in each recovery. Some benchmarks, such as libquantum, have up to

60 invalid instructions to be eliminated and other benchmarks, such as bwaves and

tonto, have fewer than 20 invalid instructions.

53

Note that the number of invalid instructions are much greater than the invalid map-

pings (Figure 2.13 and 2.14). This is partially because some instructions do not

require physical registers, like branches. Another reason is the same logical regis-

ter is defined multiple times. A conventional walking process has to undo all the

modifications but Mower only needs to undo at most once on any logical register.

2.5.5 The Front-end and Back-end depth

Figure 2.15 and 2.16 show the geometric mean (Gmean) of the performance nor-

malized to the baseline. The x-axis is the pipeline depth which is composed of two

parts, the front-end depth and the back-end depth. The first number is the front-end

depth and the second number is the back-end depth. The back-end depth means the

number of cycles for an instruction to commit after it is computed. For example, the

configuration of “3-1” indicates the processor has a 3-stage front-end and takes one

cycle to commit an executed instruction.

Mower works much better than the baseline when the processor has a short front-

end and a long back-end. This is because a longer front-end can help to overlap

more recovery delay in the baseline. In other words, the benefits provided by Mower

are diminished. On the other hand, a higher back-end depth is detrimental to the

performance of the baseline as baseline has to wait for each invalid instruction to

54

3-1 4-1 5-1 6-1 3-2 4-2 5-2 6-2

1.01

1.02

1.03

EMR Mower Perfect CPR

Figure 2.15: Spec2006 Integer Speedup (Normalized to Baseline)

3-1 4-1 5-1 6-1 3-2 4-2 5-2 6-2

1.000

1.005

1.010

1.015

EMR Mower Perfect CPR

Figure 2.16: Spec2006 Float Speedup (Normalized to Baseline)

retire. Most notably, Mower performs very close to the perfect recovery in every

scenarios.

2.5.6 Energy Efficiency

Mower consumes less energy as it reclaims invalid instructions much earlier than

baseline. Figure 2.17 illustrates the energy consumption and the power dissipation

of Mower normalized to baseline. Mower consumes less power in every benchmark

55

except libquantum and lbm. In those two benchmarks, very few mispredictions are

observed, therefore very few invalid instructions are eliminated. On the other hand,

branches are still renamed and assigned flush tags, BDM and MDM are still updated

which all consume extra energy.

p
er

lb
en

ch

b
zi

p
2

gc
c

m
cf

go
b
m

k

h
m

m
er

sj
en

g

li
b

q
u
an

tu
m

h
26

4r
ef

as
ta

r

b
w

av
es

m
il
c

gr
om

ac
s

le
sl

ie
3d

n
am

d

G
em

sF
D

T
D

to
n
to

lb
m

w
rf

sp
h
in

x
3

0.950

1.000

1.050

Energy Power

Figure 2.17: Power Evaluation (Normalized to Baseline)

Since Mower can recover mispredictions much quicker which leads to more instruction

executions per cycle. In terms of the power dissipation, Mower is worse than the

baseline in most benchmarks. On the other hand, the baseline would just stall the

pipeline until the misprediction is recovered. Furthermore, Mower needs to access

BDM and MDM every cycle which consumes extra energy.

The detailed energy and power results are listed in Table 2.2. MDM dominates the

additional power dissipation due to its large size compared with BDM. Moreover,

56

Table 2.2
Energy consumption and Power dissipation in Mower and Baseline

Mower Baseline

energy power BDM MDM energy power
power power

perlbench 39414282.82 23.0847 0.0178 0.3418 41711982.94 22.9941

bzip2 19912545881 36.5107 0.0099 0.4674 20209901773 36.4707

gcc 20577678552 31.064 0.0177 0.4205 21044400878 30.3547

mcf 24399551282 23.9638 0.0125 0.2964 24962176205 23.9732

gobmk 21246144709 30.1403 0.0116 0.4082 22043497993 29.7116

hmmer 20169386181 52.1055 0.0108 0.7009 20578874932 51.9498

sjeng 20952348479 45.881 0.0243 0.5581 21498326343 45.7369

libquantum 18367126463 56.8546 0.014 0.7518 18062344589 55.7114

h264ref 19009792993 44.2755 0.015 0.5757 19321361564 44.6614

astar 25288238076 47.5951 0.0157 0.6439 26039881396 47.5177

bwaves 23545019645 49.1315 0.0012 0.5251 23570556909 49.1887

milc 22033327175 40.0966 0.004 0.4567 22017599284 39.7845

gromacs 20251109581 41.9003 0.0329 0.5177 20689221337 40.9992

leslie3d 22490620504 44.733 0.0043 0.5086 22515068357 44.3398

namd 19011620317 47.6229 0.0348 0.5776 19297024881 47.6767

GemsFDTD 18450836352 42.359 0.0428 0.5504 18700506380 40.4183

tonto 21579146650 45.8823 0.022 0.605 23147948645 47.7491

lbm 21052658006 34.911 0.003 0.3709 20799850538 34.4426

wrf 23438584264 56.3007 0.015 0.5877 23322660370 55.017

sphinx3 20007152673 45.5453 0.0387 0.5723 20354623969 45.564

MDM is updated more frequently than BDM as there are more ALU and Load in-

structions than branch instructions. An alternative solution would be to use banking

to access a sub-matrix in MDM [51].

Figure 2.18 illustrates the Energy Delay Product (EDP) of Mower normalized to

baseline. When Mower eliminates more invalid instructions, it reduces the energy

consumption and improves the performance. As a result, it is more power efficient.

The same result is also observed in Figure 2.17 that only libquantum and lbm are less

power efficient (<1%).

57

b
zi

p
2

gc
c

b
w

av
es

m
cf

m
il

c

gr
o
m

ac
s

le
sl

ie
3d

n
am

d

g
ob

m
k

h
m

m
er

sj
en

g

G
em

sF
D

T
D

li
b

q
u

a
n
tu

m

h
2
64

re
f

to
n
to

lb
m

as
ta

r

w
rf

sp
h

in
x
3

0.900

0.950

1.000

Figure 2.18: EDP normalized to the baseline configuration

2.6 Summary

Mower is an innovative mechanism to provide better branch misprediction recovery

for superscalar processors. It has mainly three distinct properties to achieve this

target: I) A reverse walker is used to repair F-RAT along with the front-end fill time;

II) During the walking process, the resources occupied by the invalid instructions are

reclaimed; III) A single access port is shared between the ROB tail and the walker in

order to maximize the resource utilization.

Comparing with a checkpointing architecture, Mower does not require any checkpoints

and still can provide a quick F-RAT recovery. The evaluation results showed that its

recovery penalty is very close to a perfect recovery mechanism which can instantly

recover F-RAT. Mower is also very energy efficient due to the fact that it can eliminate

invalid instructions through the walking process. Mower provides a new method for

58

efficiently recovering branch mispredictions.

59

Chapter 3

Two-Phase Misspeculation

Recovery

3.1 Overview

In Chapter 2, we have developed a general mechanism which targets the state

restoration delay. The mechanism affects the delay on two parts. First, it de-

velops a microarchitecture mechanism where the state restoration delay can be

partially overlapped with new instruction fetching. This is accomplished by devel-

oping an effective fine-grain state maintenance algorithm [36] which can maintain a

0The material contained in this chapter will be published in Proceedings of the 32nd ACM on
International Conference on Supercomputing (ICS ”18).

61

fine-grain state at all times. Second, it develops an effective walking mechanism which

reduces the state restoration delay itself.

In this chapter, we target the stale instruction elimination delay. Doing so, we

first revisit the basic recovery mechanism and show that due to the deep front-end

and back-end, this mechanism works well in most cases, except when the back-end

is blocked by cache miss loads. We then develop a “two-phase recovery” mechanism

which keeps the simplicity of the basic recovery technique while significantly short-

ening the stale instruction elimination delay. Furthermore, this mechanism can

completely overlap misspeculation and cache miss penalties with each other.

3.1.1 A Basic Recovery Mechanism

A basic recovery mechanism is illustrated in Figure 3.1. The left hand side of the figure

represents the instruction state in the pipeline. The front-end includes fetch, decode,

rename and dispatch stages. The back-end includes the Reorder Buffer (ROB), Reser-

vation Station (RS) and Load/Store Queue (LSQ). The right hand side of the figure

depicts the control flow graph (CFG) of the executing program fragment, including

all the instructions currently in the pipeline.

Figure 3.1(a) shows the initial state at which I1 is the oldest instruction in the

back-end. I5 is a branch which was predicted to take the left path followed by

62

I1

I5

I6

I10

IF

I1

I5

I6

I10

IF

Front End Back End

valid

invalid

Front End Back End

valid

invalid

I1I5I10

I1I10

misspeculation

(b)

Front End Back End

valid

invalid

I20

I29IF

I20

(d)

(a)

Front End Back End

valid

invalid

I4

I5

I6

I10

I10 I5 I4 I20

I29IF

I20

(c)

Figure 3.1: A basic recovery mechanism

I6. This branch is found to be a misprediction in Figure 3.1(b). Therefore, the

instructions following I5 all become invalid and the fetch engine is rolled back to the

mispredicted branch I5. Since the instructions left in the front-end are invalid, they

can be cleared immediately. However, the back-end contains a mixture of valid and

invalid instructions. Therefore, it can not be flushed. In Figure 3.1(c), I1, I2 and I3

are retired and new instructions starting with I20 fill the front-end. Since the back-

end has not fully recovered, new instructions are not allowed to be dispatched to the

back-end. Finally, in Figure 3.1(d), the last two valid instructions left in the back-

end, I4 and I5, are retired followed by a flush to clear the entire back-end. From this

point on, the recovery procedure is completed and the new instructions will move

forward to the back-end and start executing. This mechanism combines the stale

instruction elimination delay with state restoration delay and is very simple

63

to implement.

3.1.2 Analysis and Related Work

The stale instruction elimination delay is not necessarily longer than the time to

fill the front-end with new instructions. However, if the back-end recovery is stalled by

some long latency operation such as an LLC (last level cache) load miss, the penalty

can be detrimental to the overall performance.

As a result, several techniques were designed to address this issue specifically. One ap-

proach is to selectively flush the invalid instructions once a misprediction is detected.

For example, the mechanism described in Section 2.2.1 uses branch flush tags to

rename every branch [25]. When a misprediction is detected, the flush tag of the mis-

predicted branch is broadcast through the entire pipeline to selectively eliminate the

dependent instructions. Golander et al. uses checkpoint tags, instead of branch flush

tags, to selectively flush misprediction dependent instructions [52]. Their mechanism

has to broadcast all of the checkpoint tags following the misprediction sequentially

as each tag can only control the instructions in its own section.

Another approach is to mark instructions differently such that valid and invalid in-

structions can be simultaneously executed. Kyker et al. proposed a mechanism to

assign each instruction with a path color [53]. When a misprediction is detected, the

64

new instruction stream is assigned a different path color. Hence, the new instruction

stream can be dispatched to the back-end even if it has not been cleared. At the retire

stage, the instructions which belong to the old path are retired until the mispredicted

instruction is reached. Thereafter, the back-end contains stale instructions belonging

to the old path and the valid instructions belonging to the new path. The stale in-

structions are retired without updating any architectural state. In order to accelerate

the process of retiring stale instructions, several approaches are proposed. One of

these mechanisms is to broadcast the old color to eliminate every instruction on the

old path simultaneously. The second is to give the old path instructions priority to

execute regardless of their operand availability.

One drawback of this mechanism is, it can delay the elimination process for ROB and

RS, but not for LSQ since it is searched associatively. For example in Figure 3.2, a

new path (blue) is assigned when the misprediction in the old path (red) is detected.

The instructions between the head and the misprediction are valid and the rest of the

instructions (red) are invalid. If the new load instructions (blue) are dispatched to the

damaged LSQ, they may receive incorrect values. In this example, correct execution

requires forwarding of the value from SW1 to LW. However, SW2 is closer and its

value may be incorrectly forwarded to LW. Since SW1 and SW2 have the same

path color, there is no easy way for the processor to distinguish them. In summary,

the LSQ needs to be repaired or at least marked differently before any new memory

instruction are dispatched.

65

Tail Head

misprediction
Load Store Queue

LW SW2 SW1

Figure 3.2: The issue to dispatch new instructions into the LSQ when it
is not fixed

We assessed these techniques and found that all of them require special storage and/or

a broadcasting network to eliminate stale instructions dynamically. For example,

in [25], each unresolved branch has its own branch tag. The instructions have a set of

branch tags indicating which branch they are dependent on. However, unlike Mower,

when a branch is mispredicted, the corresponding branch tag is broadcast to the entire

pipeline which either selectively eliminates or marks its dependent instructions. All

of these mechanisms also have to allocate renaming tags up-front for each instruction

which may lead to a misspeculation, such as branches. On the other hand, if the

instruction is not assigned a special tag, such as a load instruction, the correspond-

ing misspeculation has to be recovered using a different mechanism. Furthermore,

the hardware cost of selective flushing is non-negligible. For every entry within the

components in the back-end, a tag storage and a comparator needs to be added. A

typical superscalar processor might have hundreds of these entries (Intel Skylake, 224

entry ROB, 97 entry RS, 72 entry Load Buffer, 56 entry Store Buffer). Moreover,

these comparator matrices consume additional energy during the recovery.

66

3.1.3 Key Observation

A neglected fact is that selective flushing speeds-up recovery only when the back-

end recovery is blocked by some long latency operation and this is not the common

case in real execution. Back in Figure 3.1, if the mispredicted instruction I5 can be

retired fast enough, the back-end can be reset without blocking the front-end. The

reset process efficiently eliminates every instruction left in the back-end. In summary,

when the back-end recovery time is short, the basic recovery mechanism works well.

When the back-end recovery is long, a better recovery mechanism which is also cost-

effective is desirable. We therefore develop a two-phase recovery mechanism which

optimizes the recovery time for these two scenarios.

In our two-phase mechanism, when a misprediction is detected, the first phase of

the recovery is initiated. This phase is nothing but the basic recovery mechanism

shown in Figure 3.1. The second phase will not be triggered until the back-end

recovery procedure is stalled by a long latency operation. Among all the long latency

operations, loads which miss in the LLC are the most detrimental to the back-end

recovery. Therefore, when the ROB head reaches an LLC miss load, the second phase

of recovery is triggered. The second phase simply treats the missing load as if

it is a load misspeculation and restarts fetching the stream from the load.

When the newly fetched stream arrives at the end of the front-end, the back-end is

67

reset and the recovery procedure terminates. During the second phase of recovery,

the load and the following instructions left in the back-end can neither be retired nor

update any architectural state. When the mispredicted instruction which triggered

the recovery procedure is fetched again during the second phase of recovery, instead

of the predicted values, the correctly computed values are substituted. For example,

a mispredicted branch will use its computed result instead of the prediction provided

by the branch predictor.

Front End Back End

valid

invalid

I4

I5

I6

I10

I10 I5 I4 I20

I25IF
(a)

I20

Front End Back End

valid

invalid

I4

I5

I20

IF

I4I5I20

(d)

Front End Back End

valid

invalid

I4

I5

I6

I10

I10 I5 I4

(b)

IF

Front End Back End

valid

invalid

I4

I5

I20

IF I25

I4I5I20

(c)

Figure 3.3: The second phase of the recovery

Figure 3.3 illustrates the second recovery phase. The first phase is shown in Fig-

ure 3.3(a) in which I4 is an LLC miss load which stalls the retire stage. This load

triggers the second phase which is shown in Figure 3.3(b). The front-end is flushed

again and this time the fetch engine is redirected to the instruction which stalls the

back-end, I4. When the mispredicted instruction I5 is fetched, it uses its computed

68

result and takes the right path. Figure 3.3(c) shows that when the front-end is filled

with the correct instructions, the back-end is reset and the recovery procedure termi-

nates. If the memory response time of I4 is long enough, the whole pipeline is stalled

in Figure 3.3(d). When that happens, the branch misprediction recovery penalty

completely overlaps with the cache miss delay.

Basic

Selective
Flushing

T0

Two−phase

T2T1

T3

T4

Figure 3.4: Timeline of Recovery

For the three recovery techniques, basic, selective flushing and two-phase, the recovery

timeline is shown in Figure 3.4. T0 is the point at which the misspeculation is

detected and the recovery procedure commences. T1 is the time when ROB head

reaches the load that missed in the cache and T2 is the time the load obtains its data

from the memory. For the basic mechanism, from T0 to T2, the processor cannot

dispatch new instructions to the back-end as the back-end has not recovered. In case

of selective flushing mechanism, the assumption is the flushing operation takes place

instantly. Therefore, it takes T0∼T3 to fetch and dispatch the new stream starting

from the misprediction point and fill the back-end. For the two-phase mechanism,

the second phase does not launch until T1 is reached. Thereafter the processor takes

T1∼T4 to fetch and dispatch instructions starting with the missed load and fill the

pipeline. Since the two-phase mechanism dispatches more instructions, (T4-T1) is

69

greater than (T3-T0). As long as the cache miss latency is longer than this time,

the performance of selective flushing and the two-phase recovery would be identical.

3.2 Preliminary Analysis

In this section, a preliminary analysis is provided to quantitatively assess the differ-

ences between the proposed mechanism and other techniques.

Table 3.1 lists the recovery related statistics. The evaluation is accomplished by sim-

ulating a basic recovery mechanism using the configuration specified in Section 3.4.1.

The first part of the data shows the number of mispredictions per 1k retired instruc-

tions (MPKI). The data is divided into two subcategories, the back-end recoveries

stalled by missing loads and the recoveries which are not stalled. Clearly, those cases

which are not stalled represent the common case and the conclusion is that the ba-

sic recovery mechanism should work well in most cases. The second part of the data

shows the number of cycles spent between the misprediction detection and retirement

of the mispredicted instruction, namely, the back-end recovery time. This result is

also divided into two subcategories. Note that the back-end recovery has a very large

delay when it is stalled by cache miss loads except in libquantum and h264ref. The

average delay is 105.3 cycles through all simulated benchmarks. On the other hand,

the average recovery delay is only 4 cycles for those which are not blocked by a cache

70

miss. Given that modern superscalar processors have 10 or more pipeline stages to

fetch, decode, rename and dispatch instructions, the back-end recovery delay will be

mostly overlapped by the front-end fill delay when the back-end is not stalled by a

cache miss.

Table 3.1
The average misspeculation recovery ratio and the corresponding back-end

recovery time

misprediction ratio average cycles
w/ miss w/o miss w/ miss w/o miss
(MPKI) (MPKI) (Cycles) (Cycles)

perlbench 0.1972 7.6372 140.7410 4.1971
bzip2 0.2008 10.7664 87.5747 3.3479
gcc 0.1965 2.0736 121.0998 4.0351
mcf 2.2920 7.0885 117.3951 2.9718
gobmk 0.0900 11.4311 90.9878 4.0375
hmmer 1.1071 10.0676 101.7260 2.8986
sjeng 0.0668 8.9227 121.4520 4.2428
libquantum 0.0445 0.0234 7.9040 2.0131
h264ref 0.1252 1.6037 27.2903 4.9313
astar 0.5413 10.7609 84.3921 2.5816
bwaves 0.0254 0.4362 113.1180 2.2977
milc 0.0002 0.3065 145.5395 2.3869
zeusmp 0.0329 2.4058 112.1057 2.8289
gromacs 0.0011 28.6441 104.3921 2.2456
leslie3d 0.0164 12.0679 125.6261 2.1740
namd 0.0066 1.2174 93.2071 4.9071
GemsFDTD 0.0024 0.0064 124.3514 20.4624
tonto 0.0099 4.0393 136.5524 2.9060
lbm 0.0061 0.0103 141.6629 2.0402
wrf 0.0116 1.0228 125.1721 3.1938
sphinx3 0.3948 1.3044 89.9858 3.3013
Average 0.2557 5.8017 105.3465 4.0000

Figure 3.5 shows the average number of cycles spent between misspeculation detection

and the point when the back-end is blocked by a long latency instruction. In our

71

simulation, the long latency instruction is an LLC miss load. The corresponding

delay is equivalent to the data shown in Figure 3.4 as T0∼T1. It is clear that if

the recovery procedure is blocked by a cache miss, the time to arrive at that point is

very short. The average delay through all benchmarks is only 2.57 cycles. Moreover,

hmmer and gromacs have smaller than one cycle delay, which means in most cases

the back-end has already stalled when the misprediction is detected.

p
er

lb
en

ch

b
zi

p
2

gc
c

m
cf

go
b
m

k

h
m

m
er

sj
en

g

li
b

q
u
an

tu
m

h
26

4r
ef

as
ta

r

b
w

av
es

m
il
c

ze
u
sm

p

gr
om

ac
s

le
sl

ie
3d

n
am

d

G
em

sF
D

T
D

to
n
to

lb
m

w
rf

sp
h
in

x
3

A
v
g

0

2

4

6

C
y
cl

es

Figure 3.5: Phase one to Phase two delay

Figure 3.6 illustrates the number of instructions left in the ROB between the mispre-

diction and the missing load. This number varies from 8.43 to 201.35 and the average

is 86.92. The basic recovery mechanism simulated in this work is an 8-issue super-

scalar processor. Approximately, 10.86 cycles are used to fetch the extra instructions

compared to a selective flushing mechanism. When we combine this delay with the

time used to enter phase two recovery in Figure 3.5, the average number of additional

cycles is 13.4. This is the extra delay for the two-phase recovery mechanism, com-

pared against an architecture which can instantly eliminate invalid instructions. This

72

delay can also be found in Figure 3.4 as T4 - T3.

p
er

lb
en

ch

b
zi

p
2

gc
c

m
cf

go
b
m

k

h
m

m
er

sj
en

g

li
b

q
u
an

tu
m

h
26

4r
ef

as
ta

r

b
w

av
es

m
il
c

ze
u
sm

p

gr
om

ac
s

le
sl

ie
3d

n
am

d

G
em

sF
D

T
D

to
n
to

lb
m

w
rf

sp
h
in

x
3

A
v
g

0

100

200
in

st
ru

ct
io

n
n
u
m

b
er

Figure 3.6: The number of instructions between the cache miss load and
the misprediction

3.3 Microarchitecture

In this section, the microarchitecture details of the two-phase recovery mechanism is

elaborated. Figure 3.7 demonstrates the state machine diagram of the mechanism.

The phase one of the recovery is so pervasive that we will not describe it. We are

going to focus on the explanation of the phase two recovery.

3.3.1 Initialization

The fetch engine is redirected to the PC of the load which blocks the ROB head.

The instructions left in the front-end and the back-end are all treated as invalid

73

normal

phase
one

phase
two

1

2

3

4

1. A misprediction is detected.

2. The misprediction is retired, the back−end is flushed.

3. The ROB head is stalled by a cache miss load.

4. The mispredicted instruction is re−fetched and the

 invalid instructions are flushed.

Figure 3.7: Two phase recovery state machine

instructions. Hence, they are not allowed to retire nor update any architectural state.

The state of the branch predictor also needs to be recovered. The most important

component is the branch history register (BHR) which contains the previous branch

predictions. We have explained the recovery process for BHR in Section 1.3.1. Each

branch instruction has a pointer pointing at the BHR position when the branch is

predicted. So if the branch is mispredicted, its pointer is used to recover the BHR. In

order to recover the BHR during phase two recovery, we need a new pointer to keep

the pointer of the most recent retired branch. It is the retirement BHR pointer (R-

BP) which works similar to R-RAT. Whenever a branch is retired, its BHR pointer

is copied to the R-BP. At the beginning of the phase two recovery, the R-BP is used

to recover the BHR. Another very important component is the Return Address Stack

(RAS) which is used to provide the return address after a function is called. It is

possible that RAS is corrupted if the branch inside the function is mispredicted and

the return address in RAS has been overwritten. A renamed version of RAS [54] is

implemented to overcome this problem, hence the processor can restore RAS after

74

any misprediction. We implement a retirement mapping table for the RAS similar to

R-RAT. Therefore, RAS can be repaired in phase two of the recovery.

3.3.2 Three Different Flushing Policies

Since instructions left in the pipeline are invalid, they can be immediately evicted

during phase two recovery. However, in many cases the two paths diverging from a

mispredicted branch instruction converge. As a result, even after a misspeculation

was detected, the execution of invalid instructions might still warm up the data cache

correctly. Consequently, we investigate three different flushing policies. The conser-

vative policy is to flush both the front-end and the back-end, which wastes the least

energy to execute stale instructions. The moderate policy only flushes the front-end

so that stale instructions left in the back-end are allowed to execute. The aggressive

policy does not remove any instructions and keeps dispatching stale instructions left

in the front-end until the back-end fills up. If the dispatch stage is stalled by stale

instructions, these instructions left in the front-end are removed. In this policy, the

front-end is mixed with newly fetched valid instructions and invalid ones. A one bit

coloring mechanism is thus added. Once valid instructions reach the back-end, all

stale instructions are eliminated irrespective of the policy that is used.

75

3.3.3 Fetch Policy

In phase two recovery, the misspeculated instruction will be re-fetched and re-

executed. If the default prediction is used, this instruction will be mispredicted again

and cause a deadlock. Therefore, the execution result should be used to overwrite

the prediction for mispredicted instructions.

R
en

am
e

D
is

p
at

ch

D
ec

o
d
e

F
et

ch

Reorder Buffer

R
O

B
h
ea

d

misspeculation

Branch
Queue

Queue
Load

Figure 3.8: Overwriting the prediction

Figure 3.8 illustrates the overwriting mechanism. The task of finding the first misspec-

ulation is done by scanning the ROB entries. Each ROB entry has one bit indicating

the misspeculation status. Every fetched instruction has to read its corresponding

entry in the ROB and if the entry has the misspeculation bit set, the executed result is

reused instead of the prediction. From this point on, no instructions are reused. The

scan operations are already implemented in the basic recovery mechanism, thus, there

is no extra overhead. The misspeculation bit is set when the instruction is executed

and reset when the ROB entry is assigned to a newly dispatched instruction.

76

3.3.4 F-RAT and Free Register Pool

While the new instruction stream reaches the rename stage, F-RAT is repaired by

copying from R-RAT. This is exactly the same procedure which is used in the basic

recovery mechanism. There is no need to take checkpoints or implement a walking

process. The free register pool is repaired in the same way as the basic recovery

mechanism.

3.3.5 Speculative Recovery

Br

Predict

ROB head

Not taken

Br

Predict

Taken

ROB headLW

value 5

Load

LW

value 0

Load

SW

value 0

Store

SW

Figure 3.9: Misprediction due to speculative recoveries

Most recovery mechanisms recover in program order such that the oldest misspecula-

tion is repaired. In our mechanism, we assume the instructions between the misspec-

ulation and the ROB head do not cause any more misspeculations during a phase

two recovery. Therefore, it is speculative and has its own side effects. For example,

the top half in Figure 3.9 shows a branch which was predicted taken. This branch

is mispredicted as one of its operands comes from a load and the load reads a value

77

of five. Thus a recovery procedure is initiated and finally a phase two recovery is

issued. The bottom half shows the instruction execution after recovery. The load

has the same address as the store which was not executed before the recovery. This

time the load is forwarded from the store through the store queue and gets a value

of zero. As a result, the branch is mispredicted again. The fact is, although the

original prediction was correct, due to the load misspeculation, this is not correctly

detected. Therefore, the branch instruction ends up triggering the recovery procedure

twice. Our evaluation shows that such cases are rare (fewer than 0.01% of the total

misspeculations), so their impact is negligible.

3.3.6 Complexity Comparison

The hardware complexity should be taken into account when we are designing a re-

covery mechanism. Therefore, the overhead among different techniques are compared

in this section.

The first part is the overhead to eliminate stale instructions. The selective flushing

mechanism which uses the branch path tag [25] has to keep a tag for every entry

in the back-end, such as ROB, RS, LSQ, etc. Whenever a branch is resolved, a

single bit is broadcast to reclaim the bit in the branch path tag. If the branch is

mispredicted, another bit is broadcast to selectively flush the entries which have the

78

corresponding tag bit set. Figure 3.10 shows a branch path tag with three bits which

are implemented by D-type registers. Initially, the tag was 111 which means the

corresponding instruction was dependent on branch 001, 010 and 100. The right side

of the figure shows the waveform of the simulation. In the first cycle, branch 001 is

resolved and it broadcasts X[0] to reclaim the bit. In the second cycle, branch 010

resolves and it is mispredicted. Therefore, the misprediction bit is set. Since the tag

indicates this instruction is dependent on the branch 010, then the “reset entry” signal

is triggered to flush the corresponding entry. The number of the D-type registers is

determined by the maximum number of unresolved branches and the number of the

entries in the back-end.

D

CK

R

Q[0] D

CK

R

D

CK

R

Q[1] Q[2]

misprediction

X[0] X[1] X[2]

entry
reset

CK

X[2]

X[1]

X[0]

misprediction

Q[0]

Q[1]

Q[2]

reset entry

Figure 3.10: The branch path tag for selective flushing

The second part is the overhead to recover F-RAT. We assessed two commonly used

mechanisms, checkpointing and walking. Each checkpoint has to have the same

amount of storage as F-RAT. When a checkpoint is allocated, the copy process from

F-RAT to the checkpoint has to be done in one cycle or an extra delay will be in-

curred at the rename stage. Since keeping a checkpoint for every branch is costly, a

selective checkpoint allocation algorithm is widely used [26]. Therefore, a confidence

79

predictor is required and its accuracy will have an immense impact on the utilization

of checkpoints. On the other hand, the walking process needs at least an additional

RAT to walk with. At the beginning of the recovery, this RAT is copied from R-RAT

or F-RAT depending on the walking direction. The walker then walks through the

ROB entries to collect the updates of register mappings. If the ROB head is retiring

instructions and updating R-RAT at the same time, a second read port to the ROB is

necessary for the walker. Mower [29] solves this problem by sharing the port

between the ROB tail and the walker.

The two-phase recovery mechanism reuses most of the resources needed for a basic

recovery technique. The only additions are a two-phase state machine and a detection

structure to overwrite the prediction of mispredicted instruction. Table 3.1 shows that

less than 5% of the recoveries were obstructed by LLC miss loads. The total overhead

to optimize these 5% cases should be minimized.

3.4 Evaluation

3.4.1 Simulation Methodology

The two-phase recovery mechanism is simulated by using the MIPS-I ISA without

delayed branching. This ISA is very similar to PISA ISA, used by SimpleScalar [55].

80

GCC 4.9.2 tailored to this ISA is used to compile the benchmarks and generate

binary code with the highest optimization (“-O3”) set. We choose Spec 2006 as our

benchmark suite. All simulation models were designed with Architecture Description

Language (ADL) [46]. The ADL compiler can automatically generate the assembler,

the disassembler and a cycle-accurate simulator which respects timing at the register

transfer level from the description of the microarchitecture and its ISA specified in

ADL.

In order to efficiently simulate our mechanisms, we incorporated Simpoint 3.2 [56, 57]

to minimize the simulation time. For each benchmark, a set of checkpoint images were

generated where each checkpoint image contains the complete memory data segments,

the register file and the program counter (PC). Other architecture related structures

were not included, such as cache, branch predictor, memory dependence predictor, etc.

Hence, the simulation of each interval has a cold start. In order to compensate for this

effect, a large section of 100 million retired instructions was selected to simulate each

interval. Since each interval simulation was independent of others, all of the intervals

can be simultaneously simulated to further shorten the simulation time. Currently,

the file descriptors are not kept in the checkpoint. Therefore, if the interval has file

operations and the file descriptor was created before the checkpoint, the simulation

of that interval will be wrong. When this happened, that checkpoint interval is

replaced with the dominant checkpoint in that benchmark. In h264ref, one checkpoint

(0.92% weight) was substituted with the dominant checkpoint (18.14% weight) and in

81

hmmer, two checkpoints (0.22%, 0.43% weight) were substituted with the dominant

checkpoint (98.9% weight). As the replaced intervals have very limited weights (<1.0

%), the impact of this substitution is expected to be negligible. The power evaluation

was finished by a modified version of McPAT 1.4 [50] to evaluate the dynamic energy

consumption. DRAMSim2 [58] was also embedded to evaluate the memory subsystem

behavior.

82

The benchmarks we simulated in this work are:

Integer: perlbench, bzip, gcc, mcf, gobmk, hmmer, sjeng, libquantum, h264ref, astar.

Float: bwaves, milc, zeusmp, gromacs, leslie3d, namd, GemsFDTD, tonto, lbm, wrf,

sphinx3.

Table 3.2
Processor Configuration

ROB / RS / PRF 256 / 64 / 320
Fetch / Decode / Issue 8 / 8 / 8

Cache

32KB 8-way set associative iL1;
32KB 8-way set associative dL1;
512KB 8-way set associative L2,
10 cycles hit latency;

Memory
16GB DDR3L-1600, 2 channels, 2
ranks, 8 banks, open page, up to
64 pending requests [59]

Recovery Penalty minimum 15 cycles
Int ALU / Int Mul 1 cycle / 3 cycles
Int Div, FP ALU 7 cycles
Branch Predictor 8 kB TAGE [60]
Memory Ordering Store Sets [16]
Tech node 22nm
Clock frequency 3.2GHz

All of the benchmarks were simulated with the “ref” input. The remaining miss-

ing benchmarks were not included due to the linker’s inability to link them. The

configuration shown in Table 3.2 was shared by all the simulation models. The im-

plementation details of different recovery mechanisms are as follows:

83

1. Recover Afterwards: In this model, the stale instructions are handled after the

misprediction is retired. Path information [53] is carried by every instruction. The

new instruction stream fetched after a misprediction was detected is assigned a new

path color. So after the mispredicted instruction retires, the remaining instructions

belonging to the wrong path are invalid. A walker is implemented to recover F-RAT

walking from the ROB head towards the misprediction. The stale instructions are

retired without updating any architectural state. There are two methods implemented

to retire stale instructions sooner. One is to eliminate them when the mispredicted

instruction is retired. This policy is named as Recover Afterwards without executing

Bogus instructions (RA-WOB). The other is to execute a stale instruction unless it

is an LLC miss load where the load is forwarded with a bogus value. This policy is

called Recover Afterwards with executing Bogus instructions (RA-WB).

2. Recover Beforehand: This architecture selectively flushes the stale instructions

before the misprediction is retired. A branch flush tag is assigned to the branch when

it is renamed and a checkpoint of F-RAT is taken with this branch. If this branch

is mispredicted, its tag is used to evict the stale instructions and its checkpoint is

used to recover F-RAT. There are two different configurations to assign flush tags.

One is to greedily assign whenever the flush tags are available. The other is to assign

tags only for the low confidence branches. The confidence predictor implemented in

this work is derived from a TAGE branch predictor with its internal storage [61].

These two policies are Recover Beforehand with Greedy Allocation (RB-X-GA) and

84

Recover Beforehand with Low confidence Allocation (RB-X-LA). The ‘X’ represents

the number of flush tags which is also equivalent to the number of checkpoints. Both

configurations keep dispatching branches with no checkpoints when there is no free

checkpoint. Note, these approaches cannot recover other types of misspeculations

and are limited to the branch mispredictions which have been assigned flush tags. A

basic recovery mechanism is used for the misspeculations which are not covered by

checkpoints.

3. Two-Phase: This is the proposed mechanism which can recover from any type

of misspeculation and does not need special tags or checkpoints.

4. Inf: This simulation model has an infinite number of checkpoints. Therefore, it

can recover from any type of misspeculation.

3.4.2 Recover Afterwards and Two-Phase

Figure 3.11 shows the IPC results normalized to the Inf configuration for RA-WOB,

RA-WB and Two-Phase. Using geometric means, the results in RA-WOB, RA-WB

and Two-Phase are 98.84%, 99.75% and 99.42% respectively. In the figure, RA-WB

outperforms the architecture with an infinite number of checkpoints in gcc and mcf.

The reason is RA-WB can execute stale instructions and is able to warm up the cache.

However, Inf has to flush stale instructions and the future loads experience a longer

85

latency. From our experiments, the average load latency in RA-WB is 36.6 cycles for

gcc and 104.7 cycles for mcf. The latency in Inf is 37.7 cycles for gcc and 108.1 cycles

for mcf.
p

er
lb

en
ch

b
zi

p
2

gc
c

m
cf

go
b
m

k

h
m

m
er

sj
en

g

li
b

q
u
an

tu
m

h
26

4r
ef

as
ta

r

b
w

av
es

m
il
c

ze
u
sm

p

gr
om

ac
s

le
sl

ie
3d

n
am

d

G
em

sF
D

T
D

to
n
to

lb
m

w
rf

sp
h
in

x
3

G
m

ea
n

95%

100%

105%

109.19% RA-WOB RA-WB Two-Phase

Figure 3.11: Recover Afterwards with/without executing bogus instruc-
tions vs. Two-Phase, normalized to Inf

RA-WB surpasses RA-WOB in most benchmarks except in bzip2 where executing

stale instructions negatively affects the performance. Stale instruction execution may

warm up the cache, but it can also evict some useful cache lines. From the experi-

ments, the average load latency for bzip2 is 26.9 cycles in RA-WOB and 28.7 cycles

in RA-WB. It is clear that more useful cache lines were evicted by stale instruction

execution in bzip2.

Using geometric means, RA-WB works better than Two-Phase, but only marginally.

Note that this advantage is mostly contributed by a single benchmark, mcf. Therefore,

we calculated the Gmean again excluding mcf and Two-Phase was about 0.1% better

86

than RA-WB. The performance of RA-WB highly relies on the behavior of stale

instruction execution. The additional simulation showed that an architecture with

the basic recovery mechanism is able to outperform RA-WB in bzip2. On the other

hand, Two-Phase consistently worked better than this basic recovery mechanism in

all benchmarks.

3.4.3 Recover Beforehand and Two-Phase

Figure 3.12 shows the IPC for RB-8-GA, RB-8-LA and Two-Phase normalized to the

Inf models. The Gmean is 99.53%, 99.23% and 99.42% respectively. The performance

gap between a checkpointing architecture and Inf is caused by the misspeculations

which are not covered by checkpoints. The number of the misspeculations which

have checkpoints in RB-8-GA is shown in Table 3.3. The column of “total” means the

total number of Misspeculations Per 1k retired Instructions (MPKI), including branch

misspeculations and memory ordering misspeculations in this work. The column of

“ratio” represents the percentage of misspeculations which have checkpoints. As

shown, a very large number of misspeculations are assigned checkpoints in hmmer,

thus the performance is very close to Inf. On the other hand, perlbench, mcf and

astar have fewer misspeculations covered by the checkpoints so the performance gap

enlarges.

87

p
er

lb
en

ch

b
zi

p
2

gc
c

m
cf

go
b
m

k

h
m

m
er

sj
en

g

li
b

q
u
an

tu
m

h
26

4r
ef

as
ta

r

b
w

av
es

m
il
c

ze
u
sm

p

gr
om

ac
s

le
sl

ie
3d

n
am

d

G
em

sF
D

T
D

to
n
to

lb
m

w
rf

sp
h
in

x
3

G
m

ea
n

96%

98%

100%

RB-8-GA RB-8-LA Two-Phase

Figure 3.12: RB-8-GA vs. RB-8-LA vs. Two-Phase, normalized to Inf

Table 3.3
The misspeculations which have checkpoints

total ratio total ratio
(MPKI) (MPKI)

perlbench 7.9478 88.48% bzip2 10.9672 89.85%
gcc 2.2935 85.64% mcf 9.3805 77.87%
gobmk 11.5669 94.08% hmmer 11.1747 96.86%
sjeng 9.0844 87.42% libquantum 0.0679 42.00%
h264ref 1.7351 90.45% astar 11.3023 93.09%
bwaves 0.4615 97.23% milc 0.3066 99.07%
zeusmp 2.4386 97.35% gromacs 28.6453 99.78%
leslie3d 12.0843 98.04% namd 1.224 98.47%
GemsFDTD 0.0088 99.93% tonto 4.0508 98.20%
lbm 0.0163 99.90% wrf 1.0344 97.40%
sphinx3 1.6993 89.92% Average 6.0710 91.48%

The performance gap between Two-Phase and Inf in Figure 3.12 is due to the extra

delay in phase one and phase two of the recovery. In phase one, even if the ROB

head is not blocked by any LLC cache miss load, retiring instructions before the

misprediction may still take a long time. If the time to retire these instructions

88

is longer than the time it takes for the valid instructions to go through the front-

end, the front-end has to stall. In phase two, it takes extra cycles to enter phase

two (Figure 3.5) and additional cycles to re-fetch the valid instructions before the

misprediction (Figure 3.6).

Figure 3.13 depicts the extra cycles incurred by Two-Phase for every 1k retired in-

structions. This delay is divided into two parts, phase one and phase two. Apparently,

the delay in phase two dominates the total delay. In the figure, mcf, hmmer and astar

have the most extra delays, thus Two-Phase has the largest performance gap in these

benchmarks compared with Inf.

p
er

lb
en

ch

b
zi

p
2

gc
c

m
cf

go
b
m

k

h
m

m
er

sj
en

g

li
b

q
u
an

tu
m

h
26

4r
ef

as
ta

r

b
w

av
es

m
il
c

ze
u
sm

p

gr
om

ac
s

le
sl

ie
3d

n
am

d

G
em

sF
D

T
D

to
n
to

lb
m

w
rf

sp
h
in

x
3

0

20

40

cy
cl

es

Phase two Phase one

Figure 3.13: The extra cycles caused by Two-Phase compared with Inf

3.4.4 Allocation Algorithms in Checkpointing Architectures

Figure 3.14 illustrates the Gmean of architectures with different checkpoint sizes and

different allocation algorithms, normalized to Inf. Note that with 4 checkpoints, the

89

low confidence allocation algorithm works slightly better than the greedy algorithm.

But in case of 8 checkpoints, the greedy algorithm works better. This is because

when the resources are constrained, a more efficient allocation algorithm is better.

Otherwise, allocating resources greedily is better as the low confidence allocation may

not fully utilize the available resources.

RB-4-GA RB-4-LA RB-8-GA RB-8-LA

98.8%

99%

99.2%

99.4%

99.6%

Figure 3.14: The Geometric mean of different checkpoint allocation algo-
rithms, normalized to Inf.

3.4.5 Memory Latency Effect

The performance of Two-Phase is very sensitive to the memory response time, thus we

simulated Two-Phase with different memory frequencies and the results are shown in

Figure 3.15. Note that Two-Phase gets closer to Inf as the memory latency increases.

From the timeline in Figure 3.4, it is clear that Two-Phase is more likely to enter the

same state as Inf if the memory latency is longer. As a result, more recovery penalties

overlap with cache miss penalties.

90

0.5xSpeed 1xSpeed 2xSpeed

99.4%

99.5%

99.6%

99.7%

Figure 3.15: The Geometric mean on different memory speed, normalized
to Inf.

3.4.6 ROB Size Effect

Figure 3.16 shows the performance of Two-Phase with different ROB sizes, normalized

to Inf. The performance gets closer to Inf when the ROB size is reduced. The reason

is similar to the case of memory frequency. A smaller ROB is much easier to fill when

a cache miss load blocks the commit stage. Therefore, more branch mispredictions

overlap with the cache miss latency. On the other hand, Inf can fetch and execute

instructions earlier than Two-Phase when the pipeline is not stalled with a larger

ROB.

128ROB 256ROB 512ROB

99%

99.2%

99.4%

99.6%

99.8%

Figure 3.16: The Geometric mean on different rob size, normalized to Inf.

91

3.4.7 Issue Width Effect

We simulated the effect of issue width as well and the results are illustrated in Fig-

ure 3.17, normalized to Inf. A more aggressive processor works better as the time to

re-fetch and re-execute valid instructions decreases. Moreover, the retire width is set

to be the same as the issue width. Therefore, the time to enter the phase two mode

is also reduced in a more aggressive processor.

4-issue 6-issue 8-issue 10-issue

99%

99.2%

99.4%

Figure 3.17: The Geometric mean on different issue width, normalized to
Inf.

3.4.8 Power Efficiency

The EDP of Two-Phase was simulated and compared with an 8-checkpoint, greedy

allocation architecture. The column of “2-phase” in Table 3.4 shows the relative

results. Two-Phase algorithm saves about 1% of the EDP using geometric means.

The Two-Phase algorithm has to re-fetch and re-execute valid instructions during

92

phase two recovery, thus the wasted energy increases when more instructions are

re-executed, such is the case with hmmer. An alternative solution is to reuse the

instruction results between the cache miss load and the misprediction. When the valid

instructions are re-dispatched to the back-end, they are assigned the same entries in

the ROB and LSQ. Therefore, the computed result is reused if the instruction has

been executed. The column of “reuse” in the Table shows the EDP result compared

with the checkpoint architecture. This new design is more energy efficient.

Table 3.4
The EDP results of 2-phase with or without instruction reuse, compared

with a 8-checkpoint architecture

2-phase reuse 2-phase reuse
perlbench 96.99% 96.49% bzip2 98.99% 98.35%
gcc 97.82% 97.42% mcf 100.30% 98.19%
gobmk 97.65% 97.48% hmmer 106.06% 103.02%
sjeng 97.37% 97.20% libquantum 98.23% 98.23%
h264ref 98.66% 98.61% astar 101.07% 99.16%
bwaves 99.57% 99.53% milc 100.12% 100.04%
zeusmp 98.62% 98.54% gromacs 96.63% 96.63%
leslie3d 97.66% 97.63% namd 99.31% 99.30%
GemsFDTD 99.96% 99.96% tonto 98.89% 98.86%
lbm 99.96% 99.95% wrf 99.84% 99.79%
sphinx3 99.61% 99.04% gmean 99.19% 98.72%

3.5 Summary

The proposed architecture Two-Phase attempts to reduce the misprediction recovery

penalty in two different scenarios. For the most common case, a simple and efficient

93

basic recovery mechanism is used. For the case in which the retire stage is blocked

by a long latency operation, a refetch-all recovery mechanism is used to overlap with

the long latency execution. This Two-Phase recovery algorithm has a performance

very close to the state-of-the-art recovery mechanisms but its implementation is sig-

nificantly simpler. The structures which are used in phase one recovery can be fully

reused during phase two of the recovery in an efficient way. No special tags nor

checkpoints are necessary and no selective flushing is required.

94

Chapter 4

Passing Loop : Reducing the

Pipeline Fill Delay

4.1 Overview

Reducing the pipeline fill delay is possible by exploiting the control independence of

instructions [28, 62]. This is because after a branch misprediction, instructions which

are control independent of the mispredicted instruction are fetched again. Since

many of the instructions’ operands also remain the same during the misprediction,

re-executing them will yield the same results. Exploiting control independence can be

accomplished by either reusing the result of the instructions or fetching only control

95

dependent instructions and re-executing them. Therefore, we classify the recovery

techniques into two categories. If the computation results on the wrong path are

reused during the recovery, the technique is classified as Repair-Recovery. If the

computation results are all eliminated during the recovery, the technique is classified

as Restart-Recovery.

4.1.1 Control Independence

Repair-Recovery is attractive since a large fraction of instructions have the same

computation results irrespective of the branch direction. This is because the diverged

paths after a branch instruction converge at a later point and the instruction exe-

cution on this converged path is not controlled by this branch instruction. If these

instructions are both Control Independent and Data Independent (CIDI), they do

not need to be re-executed.

Figure 4.1 shows an example. When the branch at the top of the hammock is mispre-

dicted to be taken, it follows the left path and incorrectly executes I1 in the Control

Dependent (CD) region. In the figure, I2 and I3 are in the CD region of the alternative

path, which is also the correct path. I4 and I5 are in the Control Independent (CI)

region but their operands come from the CD region so they are Control Independent

but Data Dependent (CIDD). I6 is CIDI as its operands do not come from either CD

96

Predicted

(incorrect)

Path

Alternative

(correct)

Path
Branch

I3: SW R9, A

Not TakenTaken

CD

CI

B1

B2

I1: R2 =

B3

I8: LW R12, B CIDI

I7: LW R10, A CIDD (Mem)

I5: = R3 + 10 CIDD (Reg)
I4: = R2 + 20 CIDD (Reg)

I6: = R4 * 3 CIDI

B4

I2: R3 =

Figure 4.1: Control Dependence/Independence

region. In addition, memory instructions such as I7 and I8 pose a specific challenge

since identifying the set of memory instructions which need to be replayed requires

further analysis. In the above example, although I7 computes the same address in

both paths, a write to this address by a store alongside the alternative path incurs the

re-execution of I7 whereas I8 does not need to be replayed as it is a CIDI instruction.

With appropriate mechanisms in place, the misprediction can be repaired by fetching

and executing the correct CD region and re-executing the CIDD section.

4.1.2 The Convergence Point Prediction

In order to reuse the squashed instructions, the first task is to provide the convergence

point after which the CI instructions are located. The convergence point is not a fixed

97

position for every branch in the run time. Therefore, the convergence point has to

be predicted ahead and verified later. Even though the accuracy of the convergence

point prediction is very high, the related hardware cost is not avoidable.

4.1.3 The Affected Register Mapping

The detection of the CIDD instructions is relied on the CD instructions’ observation.

The logical registers which are defined in the CD region, including the correct and

incorrect paths, are all marked poisoned. Any CI instructions which consume the

poisoned registers are labeled as CIDD as their computation results are still dependent

on the branch direction. Moreover, the logical registers which are defined by the CIDD

instructions are also marked poisoned. Other than CIDD instructions, the rest CI

instructions are CIDI instructions.

In reality, each branch has its own CD region and CI region. It is very costly to keep

the poisoned register numbers and the CIDD instructions for every branch. Therefore,

a typical procedure is to predict the poisoned registers and CIDD instructions when

a misprediction is detected. The hardware cost for the number of CIDD instructions

can be enormous.

98

4.1.4 Correct Instruction Insertion

A common control independence recovery is composed of several steps: eliminating

the wrong path instructions in the CD region; inserting the correct path instructions

in the CD region; re-executing the CIDD instructions with the correct operands.

Notice that the correct CD instructions are older than the CI instructions in program

order. Therefore the insertion is out-of-order and has to be cautiously handled.

For a ROB-based superscalar processor, the instructions are maintained in program

order in ROB. Therefore, the resources required by the wrong path instructions have

to be preserved upfront. By doing this, the processor will have enough room to insert

the correct CD instructions and still maintain the instructions in program order.

However, if the branch is correctly predicted, the preserved resources will not be

used. This can be detrimental to the overall performance as the effective ROB entries

shrink.

4.2 Related Work

In the last section, a brief overview about control independence is described. In this

section, the detailed history and related work is explained. In general, there are two

99

different approaches aiming at control flow instruction execution: Eager Execution

and Control Independence. Eager Execution would execute both paths of instructions

when a branch was encountered. The processor would eliminate the wrong path

instructions while the branch is resolved. Control Independence would only execute

the predicted path instructions and reuse the CIDI instructions during the recovery.

4.2.1 Eager Execution

Riseman and Foster did a limited study assuming a machine had infinite resources

and could execute each instruction at the earliest possible moment [63]. What they

found is that even with a machine that has infinite resources, the control dependence

immensely restricts the potential ILP (Instruction Level Parallelism). Their evalua-

tion showed that if the instructions after a branch had to wait until the branch was

resolved, this infinite machine only ran 1.72 times as fast as a conventional machine.

On the contrary, if the branch directions were known ahead, this infinite machine ran

51 times as fast as a conventional machine. The assumption in this work seemed to be

impractical but it showed the potential to go beyond control dependence limitation.

Lam and Wilson did another study to analyze a more reasonable processor [64]. Their

conclusions were that: I) Local regions of instructions have limited parallelism; II)

Higher performance can be achieved by executing independent regions of instructions

100

concurrently; III) Speculative execution is very important to break control dependence

constraints. Their work had a similar conclusion as the previous one (Riseman and

Foster). It also gave a new perspective to exploit different region parallelism which

is the TLP (Thread Level Parallelism).

Todd and Gurindar [65] designed the dynamic dependency graph (DDG) to analyze a

sequential execution of the program. Their studies indicated that there was a useful

amount of parallelism in the benchmarks. But to fully expose this parallelism requires

large instruction windows and the ability to rename both registers and memory.

Augustus described a hardware solution to reduce control-flow inhibitors of concur-

rency in sequential instruction streams in his dissertation [66]. Thereafter, ShouHan

and Augustus proposed Eager Evaluation to insert predicates to convert control de-

pendence into data dependence [67, 68]. The idea of eager execution is to execute

the instructions on both paths after a branch and only commit the correct path in-

structions when the branch is resolved. When multiple unresolved branches are in the

pipeline, this is multi-level eager execution. Uht et al. then developed Disjoint Ea-

ger Execution (DEE) to more efficiently exploit instruction level parallelism [69, 70].

DEE combined branch prediction with eager execution and a cascaded branch pre-

diction accuracy is provided. Due to the increase of the depth of branch predictions,

this accuracy is significantly decreased. Therefore, an alternate path from a previous

branch may have a more competitive prediction accuracy and should be fetched next.

101

A similar approach was implemented later [71].

Since DEE was developed, many other multi-path execution techniques were imple-

mented. Heil and Smith proposed Selective Dual Path Execution (SDPE) [72] to exe-

cute the instructions from both paths when a low confidence branch was encountered.

A branch forking policy was incorporated when a low confidence branch prediction

was met while two paths were already being executed. Tyson et al [73] evaluated the

potential of dual path execution coupled with a branch confidence predictor. their re-

sults implied that dual path execution, which was thought to be excessively resource

consuming, might be a worthy approach if restricted with an appropriate predicting

set. Ahuja et al. did a similar research to assess the potential of multi-path exe-

cution [74]. They showed in their evaluation that using four paths and a relatively

simple confidence predictor, multi-path execution gathered speedup of 14.4% for the

Spec Int suite. Klauser et al. designed PolyPath architecture to execute instructions

from multiple paths simultaneously in the same processor pipeline [75].

Dual path or multiple path execution requires the processor to have a high throughput

fetch unit as more instructions are fetched. Artur and Dirk [76] designed a mechanism

to support multi-path instruction fetching with realizable hardware cost. In order to

efficiently execute dual-path instructions and minimize the design overhead, Aragon

et al. designed Dual Path Instruction Processing (DPIP) [77]. The alternative path

instructions were fetched, decoded, renamed but not executed. These instructions

102

were not executed until the branch is mispredicted.

Mahlke et al. considered a partial predicated execution and compared it against

a fully predicated execution [78]. Partial predicated execution, such as conditional

moves, requires very little change to the existing architectures and still can provide

substantial performance improvement. Modern processors have the ability to execute

multi-thread programs in one core. Therefore, a more effective way to execute dual-

path instructions is to dispatch the different paths onto different threads. Wallace et

al. proposed to use multi-thread processor to execute multiple path instructions [79].

Selective predication execution is an alternative of eager execution. Srinivas and

Alexandru had a method by using profile data to selectively do if-conversion [80].

Similarly, Weihaw and Brad developed a mechanism to predict predication [81]. Their

mechanism could provide a predicted value for the predicate before it is computed.

Therefore, the data dependence was collapsed. The recovery process was also very

simple since the data dependence was already integrated in the predicate code. Kim

et al. designed the mechanism of Wish Branches [82] to include both branches and

predications in the binary code. During the run time, the selection was done by the

branch confidence prediction. If a branch was less likely to be correctly predicted, its

predicated code would be issued. Quinones et al. optimized the predicate prediction

mechanism [83].

103

4.2.2 Control Independence

First of all, Avinash and Gurindar proposed dynamic instruction reuse [84] to reuse

any instructions which have the same inputs. Clearly, CIDI instructions have the

same inputs and their computation results were reused in this technique. Rotenberg

et al. then adopted this idea and applied it to exploit control independence [28, 62].

In their work, they discussed the important implementation issues and some possible

hardware solutions. They showed that exploiting control independence can close the

performance gap between real and perfect branch prediction by as much as half. Chou

et al. had a similar study to exploit the benefit of control independence [85].

Since the concept of control independence was first introduced, many related mech-

anisms were proposed to take advantage of it. Chen-Yong and Vijaykumar designed

Skipper [86] to skip over control dependent region when a low confident branch was

encountered. Therefore, the CI section was fetched first and the correct CD section

was not fetched until the branch was resolved. This mechanism is very similar to the

idea of branch delay slot [87] except Skipper can fetch CI section dynamically and

branch delay slot has to do it in the compiling time and the number of CI instructions

is also limited.

In all techniques which exploit control dependence, the convergence point is needed

104

and should be provided in an efficient way. Collins et al. developed a method to

predict the convergence point [88] which can achieve 95% accuracy with 4KB storage.

Gandhi et al. had a different perspective and designed selective branch recovery

(SBR) [89] to focus on the exact convergence. The exact convergence means the

convergent point happens to be at the beginning of the alternative path. In other

words, the alternative path does not have any instruction in the CD region. SBR does

not need to insert correct CD instructions and the detection of CIDI instructions is

also straightforward.

Al-Zawawi et al. proposed transparent control independence (TCI) [90] to maintain

all of the potential CIDD instructions in an external buffer. Therefore, during the

recovery, the CIDD instructions were filtered out from this buffer which is much faster

than scanning the whole CI section. Andrew and Amir designed Ginger [91] to exploit

control independence. Ginger could rewrite the dependent operands for the CIDD

instructions so that the re-execution phase was much quicker during the recovery

process.

SYRANT [92] was proposed later by Nathanael and Andre. This mechanism was

used to preallocate resources for alternative path instructions and one unique feature

of SYRANT is the CI instructions would be allocated to their original entries in ROB

and LSQ. This simplified the recovery procedure significantly.

105

4.3 The Concept of Passing Loop

At a high level, a branch can control two CD dependent blocks of code, such as

blocks B2 and B3 in Figure 4.1. But at the machine-level, a branch instruction

can only control the execution of a single block of code, namely, the code in its fall-

through. More complicated control-flow structures are synthesized by placing control-

flow instructions such as branches and jumps in the CD section of another control-

flow instruction. Such instructions are defined as Control Dependent Control Flow

instructions (CDCF). Without CDCF instructions, repair-recovery is fairly straight-

forward. Either the branch was predicted not-taken and is actually taken, or, it was

predicted taken and is actually not taken. The former is named as Scenario-1 and the

latter as Scenario-2. A Scenario-1 misprediction can be handled by invalidating the

fall-through block and a Scenario-2 misprediction can be handled by inserting back

the omitted fall-through block while establishing correct data dependencies.

Unfortunately, the presence of CDCF instructions makes such a simple repair-recovery

impossible to implement, unless the control-flow structure of the program is analyzed

and the hardware is designed appropriately to handle a specific control-flow structure,

such as an if-then-else construct.

Passing Loop approaches this problem from a unique perspective. Instead of targeting

106

specific high-level control-flow structures and recognizing them, we attempt to buffer

the CD section of all short-distance control-flow instructions and attach a validity

guard to each fetched instruction. Supported by a guarded processor back-end, the

processor continues to fetch sequentially upon encountering a short-distance forward

branch irrespective of its predicted direction. If the branch is predicted to be not-

taken, any instructions fetched until the target is reached are marked valid. Otherwise,

they are marked invalid. In other words, each short-distance forward branch guards its

CD section with the inverse of the predicted direction. If there is a misprediction, the

validity bit of the corresponding CD instructions can be toggled. Hence a Scenario-1

misprediction is handled by simply changing the validity of the fall-through block

to invalid and a Scenario-2 misprediction is handled by changing the marking of the

block to valid.

A transition from valid to invalid can be handled by undoing the effects of those

instructions and eliminating them while a transition from invalid to valid necessitates

re-execution of the instructions in the block. Passing Loop’s novelty rests on how

CDCF instructions are treated and handled since it can “re-execute” a short-distance

CDCF instruction, just like any other instruction by toggling the validity information

of dependent instructions.

Figure 4.2 shows an example where all control-flow instructions jump a short-distance.

The validity of instructions for any branch direction combination is illustrated on

107

branch1

branch2

jump1

NN TN TT

valid invalid

Figure 4.2: CDCF

the right. If a misprediction is detected, Passing Loop will transition the validity

information from the predicted direction (say TT) to the actual column (e.g., TN

or NN). When all CDCF instructions are short-distance, the mechanism can recover

from any misprediction with repair-recovery. The fetch unit combines the current

validity information with the branch predictor output to set-up the initial validity

bits. For example, if branch1 is not taken, CDCF instruction jump1 will be valid.

Since it is valid, its CD section will be invalid, making branch2 an invalid CDCF

instruction, which in turn makes NT an invalid combination. Passing Loop therefore

forces all invalid CDCF instructions to be not-taken, ignoring the branch-predictor

output. If the invalid CDCF instruction jumps a short distance and becomes valid

later, repair-recovery can wait for the actual outcome (non-speculative repair), or, use

the branch predictor’s initial prediction at repair time (speculative repair) to repair

it. If the invalid CDCF jumps a long distance, a restart-recovery may be necessary

108

when such a branch becomes valid.

As it can be seen, this fetch mechanism hits many birds with one stone: (1) Since the

mechanism always yields a sequential image of the relevant section of the code in the

issue window, it permits “re-execution” of CDCF type branch instructions. In order

to “re-execute” any branch, it is sufficient to toggle the validity status of instructions

encapsulated in the CD section of that branch. (2) Due to its ability to “re-execute”

branches, Passing Loop can recover from a misprediction of any short-distance branch

without detecting the shape of the control-flow; (3) Although we can recover from the

misprediction of any short-distance forward branch, there is no exponentially growing

state complexity as in multi-way fetching; (4) The confluence point is always the target

address of the branch and there is no need to predict the confluence point; (5) Finally,

due to sequential fetching and allocation of resources such as reorder buffer positions

or load store queue entries to all instructions irrespective of their validity, there is no

need to pre-calculate the necessary resources and reserve them up-front in preparation

for a misprediction.

109

4.4 Microarchitecture

Figure 4.3 illustrates the Passing Loop microarchitecture. The architecture incor-

porates a Store Set memory dependence predictor [16] for handling memory depen-

dencies and the Global Branch History Register (GHR) is updated speculatively as

illustrated. The architecture is a guarded architecture. A valid bit is kept in each

ROB and LSQ entry. Only valid instructions can update the Front Register Alias

Table (F-RAT), Reservation Station (RS), Last Fetched Store Table (LFST) and

Global Branch History Register (GHR) in the front-end and only valid instructions

are renamed by the renamer. Invalid instructions are allocated a physical register but

their source operands are not renamed. A special register called Dummy Fetch Target

(DFT) is used to track the target address of predicted taken short distance control

flow-instructions. In the back-end, only valid instructions can update the Retirement

Register Alias Table (R-RAT) and write to memory.

����
����
����
����
����

����
����
����
����
����

����������������������

Icache

Unit
Fetch

I1I2I3I4I7 I5I6I10I11I12I13 I8I9

ROB headROB tail

Predicted taken

Branch Target = I13

GHR

LSQ
MMMM

I1I5I10I13

Branch Target Status Table(BTST)

Branch

I2

I8

Target

I13

I6

headtail

LFST

Decode
RenamerF−RAT

W−RAT

F
ro

n
t−

en
d

valid bit

R−RAT

RWalker

P
o

is
o

n
b

it
s

Predicted not−taken
Branch Target = I6

RS

PC

valid

invalid

DFT

Predictor

Branch

Fetched

Fetched

Status WDT

0

0

Re−execution Queue

Reservation
Station

Results Broadcast

Wakeup

Wakeup

Wakeup

Wakeup

Wakeup

Figure 4.3: Passing Loop Microarchitecture Block Diagram

A set of Re-execution Queues shown on the right of the figure are used to dispatch

110

instructions which need to be re-executed during a repair-recovery. Only the head

instruction is checked for readiness. These queues are manipulated in-order in a

manner similar to [93] with the exception that queue heads are not directly connected

to execution units. Instead, each queue head is treated as if it is a reservation station

entry by the superscalar issue logic. As a result, the re-execution path shares the same

select logic and adds minimal complexity. We also use slightly modified heuristics

during instruction steering: a dependent instruction is always steered to the queue

where the producer is. The instructions in Re-execution Queues are given priority

during selection as they are usually older than the instructions in RS.

The fetch unit shown in the middle of the figure supplies the PC to the I-cache, BTB

and the Branch Predictor. A very small, fully associative table called Branch Target

Status Table (BTST) is used for tracked control-dependent blocks and establishing in-

struction validity information. Only short-distance forward control-flow instructions

update the BTST.

In the figure, the shaded entries represent invalid instructions. I2 is a branch which

is predicted to be not-taken and I8 is another branch which is predicted to be taken.

As a result, I3 to I5 are valid and I9 to I12 are invalid. I1, I5, I10 and I13 are memory

instructions marked in the ROB and the LSQ. Since I10 is invalid its corresponding

entry in LSQ is also shaded.

111

In order to properly rename and execute CD and CIDI instructions, Passing Loop re-

lies on in-order processing by using a special Walker which we refer to as the Recovery

Walker (RWalker) to differentiate it from the Walker in prior work which speeds-up

restart-recovery [26]. Rwalker shown at the bottom of the figure scans the instructions

between the ROB head and the ROB tail using its own register alias table (W-RAT)

where each entry is extended with a single poison bit. In this manner, CIDD in-

structions which are register dependent are easily detected using the poison bit and

tracked poisoned instructions, also in program order. By walking from the head of

the ROB towards its tail, RWalker renames the alternative CD path and CIDD in-

structions to their correct mappings and if any instruction needs to be re-executed,

sends it to the re-execution queue from which the instruction is rescheduled to issue

and execute. Required in-order processor state for RWalker for renaming and issuing

is always available in W-RAT which runs ahead of R-RAT and permits misprediction

recovery before branches reach the head of ROB.

4.4.1 Front-end: Fetching Algorithm

Passing loop follows a very simple fetch policy. Whenever a short-distance forward

control-flow instruction is encountered, the target address of the instruction is saved

in BTST and the fetch unit continues to fetch sequentially until the target is encoun-

tered.

112

Each entry in the table contains information about a short-distance, forward, unre-

solved branch, supplying 4 fields, Branch, Target, Status and Timer. The Branch

field contains the unresolved branch tag which is used to signal the status changes

to the branch. The Target field contains the branch target address. The Status field

indicates the current state of the branch, and can assume one of two values, Pending

and Fetched. An initial allocation sets the value to Pending and when the branch tar-

get is reached, the entry is updated to Fetched. Allocated BTST entries are removed

when the corresponding branch instruction resolves or the branch is disqualified. The

information that the current control-flow instruction is a short-forward branch or an

unconditional direct jump is kept in the Branch Target Buffer (BTB) by using a single

bit and all qualified branches are allocated BTST entries unless BTST is full.

As each instruction is fetched, it searches BTST using its PC and a hit signals the

end of the block to the fetcher. However, this algorithm alone does not guarantee

that the branch target will be met before a misprediction is detected. For instance, if

there is a function call in the CD section of a short forward branch and the function

contains more instructions than the processor pipeline can hold, the branch target

may not be met before the misprediction is signalled. BTST Status bit must be

therefore set to Fetched before a repair-recovery can be initiated. The Timer entry is

used by a watchdog timer which counts the cycles used for meeting the target. If the

timer exceeds a pre-configured threshold, the associative branch is disqualified. As

it should be clear, this timer is not required for correctness but it helps to minimize

113

unnecessary buffering of large CD sections under such scenarios. Note that if a

branch is disqualified from repair-recovery, the processor state is always appropriate

for applying a conventional restart-recovery. Therefore, when a branch is disqualified,

no further action is necessary.

During the fetching process, if a conditional branch instruction is predicted to be

taken, or an unconditional jump is being handled, the code in the fall-through is the

alternative path and these instructions are marked as invalid in the ROB. All other

instructions will be valid. In the predicted taken cases, while seeking the branch

target, it is possible that additional branch instructions are encountered in the region

that would be marked as invalid, such as the section(I9-I12) in Figure 4.3. The

invalid branch instructions are treated as if they are predicted not-taken including

unconditional jumps and the output from the branch predictor is ignored as discussed

previously. This approach guarantees that the target address of the branch (i.e., I13)

is definitely reached and becomes part of the program execution path. As a result,

there will be at most one pending predicted taken branch instruction which target is

being sought. This target is kept in the Dummy Fetch Target (DFT) register. Once

the fetch stream reaches the DFT value, the following instructions are marked as valid

and new branch instructions are predicted normally.

Passing Loop implements a unified resource allocation policy. All fetched instruc-

tions are allocated an ROB entry and all fetched memory instructions are allocated

114

an LSQ entry. Similarly, all result producing instructions are allocated a physical

register, irrespective of their validity status. These reserved resources are used when

the corresponding branch is mispredicted and invalid instructions become valid. This

approach significantly simplifies the resource management during the recovery pro-

cess, particularly for ROB and LSQ. When invalid instructions are retired, their

physical registers are released except that they release their current physical registers

instead of the physical registers previously assigned to the same logical register. All

instructions release their ROB and LSQ entries when they retire.

4.4.2 Handling Memory Instructions

When a load instruction is decoded, it consults the store set memory dependence

predictor. If the load is not dependent to any prior stores, it is free to issue when its

operands are ready. A speculative load buffer is implemented as the one described

in [94]. This algorithm saves the address and the hardware pointer for the load into a

Speculative Loads Table (SLT) whenever a load issues. The allocated entry is removed

when the load is committed. Committing store instructions write to the data cache

and check SLT with their addresses. A hit indicates a memory order violation and

the exception bit of the corresponding load instruction is set.

Load misspeculations are treated as CIDD instructions by RWalker. Therefore when

115

RWalker encounters a load with its exception flag set, it re-executes the load and

poisons its destination logical register, which in turn forces to re-execute load in-

struction’s dependent instructions.

In Passing Loop, a store instruction in the CD section may alter memory ordering. If a

store instruction’s validity changes from valid to invalid, RWalker clears its dependent

loads so that these loads can issue earlier. It also needs to flag as exception any of

the dependent loads to which store might have forwarded the store data. To identify

any of the dependent load instructions, RWalker searches SLT and sets the exception

flag for any matching stores. If the validity of the store instruction changes from

invalid to valid, it is impossible to signal the younger load instructions which may be

dependent on this store and as a result a memory order violation may occur. The

SLT mechanism detects such violations at load retire time.

4.4.3 Back-end: Misprediction Recovery

Repair-recovery is implemented by RWalker which runs ahead of the ROB head

pointer, examines and recovers each instruction in program order towards the tail.

During this process any incomplete non-branch instruction can be skipped over since

the design incorporates a separate R-RAT and ROB head pointer. If a skipped in-

complete instruction gets an exception later, exceptions will still be precise and taken

116

care of in a conventional manner.

Upon encountering an unresolved branch instruction, there are two options for

RWalker. Either the walker waits for the branch resolution before moving to the

next instruction, or the walker can rely on initial branch prediction and continue.

The drawback of waiting for branch resolution is the extra delay on recovery process.

The drawback of speculative processing is, a repair-recoverable branch left behind

is no longer repair-recoverable. In order to minimize the number of restart-recovery

recovered mispredictions in the speculative case, we reset RWalker back to the ROB

head when a walk is completed, reset the poison bits, copy R-RAT onto W-RAT

and resume walker operation. We evaluate both the non-speculative and speculative

versions as outlined.

Another design configuration is RWalker Fetch Unit interaction. Since repair-recovery

uses instructions already in the pipeline, it is possible to continue fetching new in-

structions while the repair-recovery proceeds, unlike restart-recovery. Alternatively,

instruction fetching can be halted until the recovery is completed, as it is the case with

restart-recovery. The former maximizes fetch utilization but will result in inaccurate

global branch history. The latter misses the opportunity to fetch more instructions

during recovery but when the recovery is complete the processor state is precise. We

have experimentally verified that the former almost always results in worse perfor-

mance due to additional branch mispredictions. Therefore, when a repair-recoverable

117

misprediction is detected by RWalker, new instruction fetching is stopped until the

recovery is complete, i.e., RWalker reaches ROB tail. At that time, the precise state

is copied from W-RAT to F-RAT and instruction fetching resumes.

LW $4,0($8)

BEQ $4,$0,T1

ADDI $4,$4,1
JMP T2

T1:

SW $4,0($10)T2:

ADDI $6,$6,1

V

V

V

V

V
V
V

V

IV

I
I

(T)

1

2

Walker

(N)

Figure 4.4: Recovery through walking

To illustrate RWalker’s operation, we use the code fragment shown on the left in

Figure 4.4 which adds one to the non-zero elements of an array and counts zero

elements. The example contains a CDCF, JMP T2 in the CD section of BEQ. The

validity bits are shown next to each instruction for both taken and not taken scenarios.

A misprediction implies the fetch unit assigned bits were the set (N) but should have

been (T) for Scenario-1 and they were the set (T) but should have been (N) for

Scenario-2.

When RWalker encounters the branch at point 1, it will wait for the branch to execute

since it is a valid branch. If the computation result is taken, RWalker will record its

target PC and mark the following instructions as invalid until the branch target

is encountered in T1. Otherwise, the instructions will be marked as valid. If an

instruction becomes invalid, the instruction is invalidated in the rest of the pipeline,

118

including ROB and LSQ. If the invalid instruction is still in RS it will be removed.

The destination physical registers of these instructions are also marked as unavailable.

A typical case involving a Jump instruction is at 2. If the Jump is invalid as it would

be in the taken case, it is ignored like any other invalid instruction. Otherwise, it is

treated as a taken branch, the instructions between the JMP’s target and JMP are

marked as invalid.

During the recovery process, W-RAT supplies the correct processor state for renaming

instructions and tracking damaged values through the poison bits attached to each

logical register entry. A simple state machine drives the updating of poison bits.

Upon an invalid to valid transition, the instruction is renamed using W-RAT, the

poison bit of the destination logical register is set in W-RAT and the instruction is

sent for execution. A valid to invalid transition causes the destination logical register

of the instruction to be poisoned. Finally, upon a valid to valid transition, the source

operands of the instruction are checked. If they are poisoned, the instruction is CIDD.

The destination logical register is poisoned, then the instruction is renamed by W-

RAT and scheduled for re-execution. If the source operands of the instruction were

not poisoned, the instruction is CIDI and the poison bit of its destination logical

register is cleared.

The renaming of instructions during recovery is illustrated in Figure 4.5. Initial valid

bits and the updated valid bits are displayed in the middle of the figure and the

119

1

2

3

1

2

3

LW $4,0($8)

BEQ $4,$0,T1

ADDI $4,$4,1
JMP T2

T1:

SW $4,0($10)T2:

ADDI $6,$6,1

V

V

V

V

I
I

F
et

ch

V

V

W
al

k
er

(P4)

(P7)

(P5)

V
V

V

I

W−RAT Poison

$4 P7

0

1

$6 P1

$4 P7

1

1

$6 P1

$4 P4

0

0

$6 P1

Figure 4.5: Detecting the damaged register mappings

corresponding W-RAT and poison bits are shown on the right. At point 1, $4 is

mapped to P4 and $6 is mapped to P1 and neither of them are poisoned. At point 2,

the instruction becomes valid. Therefore, $4 is mapped to P7 and it is now poisoned.

This instruction needs to be executed. In 3, the instruction becomes invalid and $6 is

poisoned. Any future reference to $6 needs to be re-executed and the correct mapping

is P1. The last store instruction reads a poisoned operand $4 so it is renamed to P7

and re-executed.

4.4.4 CIDD redundancy

In some cases, poisoning logical registers is unnecessary due to value redundancy.

The first case is when an instruction transitions from a valid state to an invalid

state. If the value the invalid instruction updates is the same as the correct value,

the destination logical register does not need to be poisoned. Although the register

mapping is incorrect, the register value is correct. The second case occurs when

RWalker finds an incomplete CIDD instruction, which implies none of the dependent

120

instructions have executed yet. Under this condition, the CIDD instruction needs to

be renamed and re-executed but its destination logical register does not need to be

poisoned since its dependent instructions can get their operands from the re-executed

result.

4.5 Experimental Results

4.5.1 Simulation Methodology

MIPS I Instruction Set with delayed branching removed is used as the simulation

ISA. GCC 4.9.2 has been modified to generate and optimize for this instruction set.

To evaluate the performance of Passing Loop, ADL [46] is used to generate both the

baseline and Passing Loop cycle-accurate simulators. These simulators respect timing

at the RTL level. The baseline processor uses centralized scheduling to broadcast

computation results and wake-up/select is completed in a single cycle. Load and

store instructions are issued directly to memory units since address computation is

done via splitting the computation into another µ-op.

Power values have been obtained by adapting Wattch[49] to the ADL simulator frame-

work. The power results have been validated against the McPAT[50] tool tested with

a very similar superscalar pipeline to ensure correctness using the baseline processor

121

model. Passing Loop design power evaluation was carried out by collecting different

structures’ active counters and feeding them into the core of Wattch through which the

power consumption is evaluated. Wattch is configured to consume less power(10%)

when a particular port is not used in that cycle. For Passing Loop, extra energy

is consumed by RWalker when it repairs the pipeline. The energy consumption for

re-renaming an instruction is equivalent to a front-end renaming and the re-issuing

energy consumption is equivalent to front-end issuing. The expanded ROB is fully

modelled and the BTST is modelled as a CAM structure.

Table 4.1
Spec 2006 Benchmark Suite

Spec 2006 Int
perlbench bzip2 gcc mcf gobmk hmmer sjeng libquan-
tum h264ref astar

Spec 2006 Float
bwaves milc zeusmp gromacs leslie3d namd GemsFDTD
lbm wrf sphinx3

For power and performance evaluations, Spec2006 benchmark suite has been used

(Table 4.1). The suite was compiled with gcc version 4.9.2 and the maximum opti-

mization setting(-O3). Binutils 2.24 was used as the software environment and the

benchmarks were linked to the compact system library uClibC version 0.9.33. All of

the benchmarks were run with the ref inputs and the first 500 million instructions

were used to warm up the branch predictor and the cache. Performance data was

collected over the next 1 billion instructions.

The baseline superscalar processor configuration is listed in Table 4.2. Passing Loop

has an identical configuration with the exception of structures specific to Passing

122

Table 4.2
The Processor Configuration

ROB / RS / LSQ / PRF 128 / 64 / 32 / 128
Fetch / decode / issue 8 / 8 / 8

Cache
32KB L1 Icache/Dcache,
512KB L2 Cache, 10 cycles L1
miss, 100 cycles L2 miss

Pipeline length 15 cycles
Int ALU / Int Mul 1 cycle / 3 cycles
Int Div, FP ALU 7 cycles
Branch Predictor 8 kB TAGE
Minimal Recovery 15 cycles
Memory Ordering Store Set, 4K SSIT, 256 LFST
Branch Recovery Run-ahead Walker

Loop. Passing Loop has a 16 entry BTST and 2 re-execution queues as a default

setting. The walker implemented in Passing Loop has the same width as the fetch

unit allowing it to scan 8 instructions per cycle. Additionally, the recoverable forward

branches can only contain up to 16 instructions between the branch target and the

branch itself. The watchdog timer is set to 4 cycles. Moreover the CIDD redundancy

mechanism mentioned in Section 4.4.4 is also implemented in Passing Loop to reduce

the number of unnecessary CIDD instructions.

A TAGE predictor was integrated [14] and the simulation result of the 1st Champi-

onship Branch Prediction matched the reported log file attached with the design file.

Table 4.3 illustrates our 8kB TAGE predictor misprediction rates compared with a

4kB Gshare predictor and the one reported in SYRANT [92]. In most of the bench-

marks, TAGE predictor has less than half the mispredictions provided by the Gshare

123

predictor with exception of 401.bzip2, 456.hmmer and 473.astar. These 3 bench-

marks contain a large number of unpredictable branches. The TAGE predictor used

in SYRANT works much better than our TAGE predictor. Possible reasons include

the larger storage used to track a longer history in SYRANT implementation as well

as the use of Simpoints in SYRANT implementation.

Table 4.3
The branch predictor performance

MPKI
4kB
Gshare

8kB
TAGE

32kB
SYRANT

perlbench 4.80 2.17 0.33
bzip2 11.12 9.05 2.91
gcc 7.40 2.42 0.78
mcf 3.05 1.67 8.32
gobmk 21.04 11.86 6.93
hmmer 11.81 11.01 9.05
sjeng 11.20 5.61 4.01
libquantum 0.01 0.01 0.05
h264ref 5.15 2.52 0.60
astar 31.90 26.86 11.14

4.5.2 Performance Analysis

Figure 4.6 illustrates the IPC speedup normalized to the baseline processor for both

non-speculative and speculative RWalker. The geometric means for integer bench-

marks are 3.29% (non-speculative) and 5.85% (speculative), for FP benchmarks are

4.14% (non-speculative) and 3.73% (speculative). Figure 4.7 shows the distribution

124

p
er

lb
en

ch

b
zi

p
2

gc
c

m
cf

go
b
m

k

h
m

m
er

sj
en

g

li
b

h
26

4r
ef

as
ta

r

b
w

av
es

m
il
c

ze
u
sm

p

gr
om

ac
s

le
sl

ie
3d

n
am

d

G
em

sF
D

T
D

to
n
to

lb
m

w
rf

sp
h
in

x
3

0

5

10

21.84% 32.78%

-5.99%

32.37% 12.66%
13.52%

S
p

ee
d
u
p

(%
)

Non-speculative RWalker Speculative RWalker

Figure 4.6: Spec 2006 IPC speedup

of 5 affected types of instructions per 1000 committed instructions for both non-

speculative and speculative RWalker simulations. Wasted CD instructions are invalid

when they are fetched and retired meaning they do not contribute anything and even

occupy some resources. V2I instructions were valid in the fetch phase but they were

invalidated during the recovery. Similarly, I2V instructions are those which were val-

idated during the recovery. Through all the benchmarks, astar has more than 1000

affected instructions per 1000 instructions due to only counting valid instructions.

Instructions such as wasted CD and V2I CD instructions are not counted as valid

committed instructions.

In most of the benchmarks, the speculative RWalker performs much better than the

non-speculative version since it can bypass unresolved branches and recover more

quickly. The only exception is zeusmp where non-speculative RWalker improves the

125

p
er

l-
n

o
n

p
er

l-
sp

ec
b

zi
p

2-
n

o
n

b
zi

p
2
-s

p
ec

gc
c-

n
on

g
cc

-s
p

ec
m

cf
-n

on
m

cf
-s

p
ec

go
b

m
k
-n

on
go

b
m

k
-s

p
ec

h
m

m
er

-n
o
n

h
m

m
er

-s
p

ec
sj

en
g
-n

on
sj

en
g
-s

p
ec

li
b

-n
on

li
b

-s
p

ec
h

26
4
re

f-
n

o
n

h
2
64

re
f-

sp
ec

a
st

a
r-

n
o
n

as
ta

r-
sp

ec
b
w

av
es

-n
on

b
w

av
es

-s
p

ec
m

il
c-

n
o
n

m
il

c-
sp

ec
ze

u
sm

p
-n

o
n

ze
u

sm
p

-s
p

ec
g
ro

m
-n

o
n

g
ro

m
-s

p
ec

le
sl

ie
3d

-n
on

le
sl

ie
3d

-s
p

ec
n

a
m

d
-n

on
n

am
d

-s
p

ec
G

em
s-

n
on

G
em

s-
sp

ec
to

n
to

-n
o
n

to
n
to

-s
p

ec
lb

m
-n

on
lb

m
-s

p
ec

w
rf

-n
o
n

w
rf

-s
p

ec
sp

h
in

x
3
-n

o
n

sp
h

in
x
3-

sp
ec

0

500

1,000

N
u

m
b

er
of

In
st

ru
ct

io
n
s CIDD CIDI Wasted CD V2I CD I2V CD

Figure 4.7: Number of affected instructions per 1000 valid committed
instructions

performance by 32.37% but the speculative RWalker has less than 10% speedup. This

large performance gap is caused by the number of skipped unresolved branches. It was

noticed that speculative RWalker skips unresolved branches and these branches would

not be re-scanned until RWalker recovers the whole pipeline and resets back to ROB

head. If these skipped branches are mispredicted and reached by ROB head ahead

of RWalker, they have to pay a full flushing misprediction penalty. This explanation

is also supported by Figure 4.7. In zeusmp, the speculative RWalker has less than

half the CIDI instructions of the non-speculative version. The rest of the benchmarks

show similar behavior. Speculative RWalker skipping of unresolved branches result

in fewer repair-recovery actions and hence fewer CIDI instructions. In Figure 4.6,

some of the benchmarks perform worse, such as bwaves, in which the non-speculative

RWalker is 5.99% worse than the baseline processor. We have described that before

the pipeline is recovered, Passing Loop blocks the front-end to fetch and decode. In

126

this scenario, a baseline processor can continue the fetch process although it has to

reset its pipeline. Therefore if it takes too long for Passing Loop to recover, the

baseline processor performs better. Speculative RWalker helps but not every time,

such as in milc, lbm and wrf.

bzip2 mcf
hmmer sjeng

libquantum astar

−5

0

5

10

0.39

−4.17

−0.54 −0.6

0.17

11.69

S
p

ee
d
u
p

(%
)

Figure 4.8: Speedup if all instructions retired are valid

Figure 4.7 shows a large number of wasted instructions were fetched, which consumed

a substantial amount of resources such as ROB entries, which prevent other useful

instructions. We analyzed this effect further and present it in Figure 4.8. We traced

all the branch outputs and used a trace file to decide when the invalid fall-through

instructions were fetched. This trace based mechanism does not work with some

benchmarks which use random functions. Therefore those integer benchmarks are

not shown. Once a qualified branch is predicted taken and the trace file confirms it is

a correct prediction, no fall-through instructions are fetched and the program jumps

to the branch target directly. Otherwise Passing loop would fetch the fall-through

parts as they are required for recovery. From the figure, we see that astar achieves

11.69% speedup and Figure 4.7 shows a large amount of wasted instructions in astar.

127

We also found that mcf, hmmer and sjeng lose performance instead of gaining. We

traced this to an unexpected effect of wasted instructions. They can warm up the

instruction cache and do not affect the performance so long as the pipeline is not

stalled by insufficient resources.

Table 4.4
The percentage of increased mispredictions by non-speculative Passing

Loop

perlbench -0.27% bzip2 6.82%
gcc 3.77% mcf 11.14%
gobmk 8.61% hmmer 10.31%
sjeng 5.24% libquantum 0.0%
h264ref 1.51% astar 69.03%

Passing Loop has more branch mispredictions than the baseline processor and Ta-

ble 4.4 displays the percentage of increased mispredictions compared to the baseline

processor. Note that a recoverable misprediction is also counted as a misprediction

in Passing Loop. The increased mispredictions are due to imprecise branch history

information. Once a misprediction is detected, the younger branches in the pipeline

have been predicted based on an incorrect branch history and there is no easy way

to re-predict these branches. As a result, they are more likely to be mispredicted as

the baseline processor can always use the correct history to predict branches due to

its restart-recovery mechanism. We found that astar has close to 70% more mispre-

dictions which explains why its speedup is limited even though it has a large number

of CIDI instructions.

In order to examine the impact of issue width and ROB size, we evaluated Passing

128

4-128 4-256 8-128 8-256

0

5

P
er

ce
n
ta

ge
(%

)

Non-speculative Speculative

Figure 4.9: The geometric speedup over different configurations for integer
benchmarks

Loop with issue widths of 4 and 8, and ROB sizes of 128 and 256 and the results are

presented in Figure 4.9. RWalker width is equivalent to issue width and the physical

register file size, LSQ entries are doubled in 256 ROB cases. Obviously, issue width

significantly affects the performance, which means Passing Loop is highly dependent

on the speed of RWalker recovery. Generally speaking, Passing Loop performs better

with a larger ROB size as more mispredictions can be discovered and repaired in this

configuration.

Table 4.5
The speedup comparison between Gshare and TAGE, geometric mean over

integer benchmarks

Non-
speculative

Speculative

4kB
Gshare

4.05% 5.76%

8kB TAGE 3.29% 5.85%

Originally we speculated that since a better branch predictor would have fewer mis-

predictions, Passing Loop’s speed-up would be smaller. However from our evaluation

129

results, it is clear that the prediction accuracy is not correlated to the potential

speedup. Table 4.5 shows the two different branch predictor outcomes and the miss

rates are presented in Table 4.3. Apparently, the speedup of the two different pre-

dictors are very close to each other, especially in speculative RWalker mode. The

reason is Passing Loop’s ability to recover short forward branch mispredictions and

a significant fraction of these branch instructions are data dependent. Neither the

Gshare predictor nor the TAGE predictor can predict these branches well. Hence

Passing Loop is able to cover the mispredictions which are likely to be mispredicted.

Table 4.6
The speedup of different branch coverage (speculative RWalker)

PL PL+NDC PL+NDC+BW
perl 2% 1.96% 2.19%
bzip2 1.86% 2.69% 2.83%
gcc 0.7% 0.64% 0.68%
mcf 7.06% 7.06% 7.06%
gobmk 2.98% 3.52% 3.68%
hmmer 32.78% 32.76% 32.77%
sjeng 6.52% 6.76% 7.15%
libquantum -0.08% -0.08% -0.08%
h264 3.25% 3.3% 3.43%
astar 4.9% 4.9% 4.9%
Gmean 5.85% 6.01% 6.12%

Passing Loop only recovers short forward branches which are necessary for predicted

taken branches. However in a predicted not taken case, the branch does not need to

be a short distance forward branch, so long as the branch target can be met quickly.

In other words, the diverged program can converge quickly which can be inspected by

the watchdog timer. Therefore, we simulated a Passing Loop design in which every

130

predicted not taken branch is qualified to assign a BTST entry and the speedup

result is illustrated in Table 4.6 (No Distance Check). These results are normalized

to the baseline processor. On the other hand, we found that a lot of mispredictions

come from short backward branches such as a loop which has variable number of

iterations at run time. These backward branches can also be covered by Passing

Loop with some easy modifications. If a backward branch is predicted not taken,

Passing Loop is unable to recover this misprediction as the CD instructions are not

in the pipeline. If a backward branch is predicted taken, Passing Loop can record

the next instruction address in BTST and jump to the branch target. If the recorded

address is encountered within the watchdog timer threshold, it can be recovered by

Passing Loop when it is mispredicted. We also evaluate Passing Loop covered by

No Distance Check and Backward branch in Table 4.6. From the table, most of

the benchmarks have the same performance improvements or very similar outcomes

which means that short forward branches dominate the recoverable branches.

Section 4.4.4 discusses CIDD redundancy and we evaluate the value redundancy dis-

tribution in Table 4.7. It shows the fraction of CIDD instructions eliminated if the

registers of some qualified instructions are not poisoned. The data is collected with a

non-speculative RWalker as it has more CIDD instructions than speculative RWalker

configuration. CD means that V2I CD instructions may not poison their destination

logical registers if they compute the same results as the correct value. CI means

a CIDD instruction does not need to poison its register if the instruction is not

131

Table 4.7
The CIDD redundancy

CD CI CD & CI
perl -0.46% -0.52% -0.97%
bzip2 -0.82% -1.19% -1.89%
gcc -1.14% -13.44% -14.78%
mcf 0% 0% 0%
gobmk -6.92% -5.02% -11.79%
hmmer -0.29% -7.82% -8.02%
sjeng -11.24% -13.48% -22.24%
libquantum 0% -0.28% -0.28%
h264 0.08% -5.47% -4.52%
astar -3.14% -1.13% -4.26%
Gmean -2.46% -4.97% -7.15%

completed at the time RWalker visited the instruction. The last column shows the

combined results. Obviously, CI can reduce almost twice the number of CIDD in-

structions than CD and in 458.sjeng close to one quarter of CIDD instructions are

eliminated by this technique which reduces the pressure on the Re-execution Queues

immensely.

4.5.3 Energy Efficiency

The energy-delay product (EDP) results are listed in Table 4.8 for both the non-

speculative RWalker and the speculative RWalker. Passing Loop saves up to 40.49%

EDP in 456.hmmer. Given the IPC improvement of 32.78% from Table 4.6, we know

that in this specific benchmark Passing Loop not only reduces the execution time but

also saves the total energy consumption. This achievement is reached by reducing the

132

Table 4.8
The EDP compared with the baseline processor

non-
speculative

speculative

perlbench 3.75% -2.08%
bzip2 0.7% 4.07%
gcc 3.89% 0.9%
mcf -6.13% -9.56%
gobmk 0.46% -2.51%
hmmer -35.77% -40.49%
sjeng -1.14% -4.93%
libquantum 1.67% 1.57%
h264ref 0.04% -1.81%
astar -17.84% -11.76%
Gmean -5.92% -7.65%

number of misprediction flushing penalties. If there are not a lot of recoverable mis-

predictions, Passing Loop might have a worse EDP such as 462.libquantum. Table 4.6

shows that Passing Loop can barely have any speedup with 462. libquantum but since

BTST and other additional structures consume energy consistently, Passing Loop is

not as power efficient with such benchmarks. Note that in most benchmarks, specula-

tive RWalker is more power efficient than non-speculative RWalker except in 401.bzip2

and 473.astar. In speculative mode, one CIDD instruction may be re-executed mul-

tiple times if there are several preceding mispredicted branches. From Table 4.4 we

know that 401.bzip2 and 473.astar have relatively more mispredictions. As a result

the likelihood that CIDD instructions are executed multiple times increases, leading

to more energy consumption.

133

4.5.4 Design Complexity

Table 4.9 shows the extra design resources implemented for these techniques and

make a comparison between them.

Table 4.9
Design Resource classification

Front-end Back-end

Passing
Loop

1 extra bit per BTB entry for
short forward branch identi-
fication, CAM-like structure
for BTST and each entry con-
tain 30 bits target PC, 1 bit
status, 2 bits watchdog timer
and 7 bits target tag.

For each ROB entry, both
operands’ logical register
numbers are added, plus
one valid bit. Each logical
register has 1 poison bit.
Re-execution Queue.

Predicate
Prediction

Multiple checkpoints of regis-
ter mapping table in Rename-
Replay mode or 2 dedicated
tags per operand 1 dedi-
cated tag per destination in
Selective-Replay mode.

Recovery Queue which is the
ROB in Passing Loop.

TCI

Re-convergent points pre-
dictor, influenced register
set(IRS), Control-Flow
Stack(CFS), 16-bit poison
vector per logical regis-
ter, Selective Re-execution
Buffer(RXB) in which source
operand’s value is stored

Another CFS to detect the
end of correct CD section, re-
pair rename map, another set
of poison vectors

SYRANT

Re-convergent points detec-
tion ABL/SBL, Resource Al-
location on Not-taken and
Taken paths table(RANT).
Rename Sequence tag

The detail of the re-execution
functionality is not elaborated
in the paper.

134

4.6 Summary

As it is well-known, contrary to other types of speculation such as load speculation

and value speculation, control speculation has the undesired property that after a

misspeculation, the validity of instructions already in the pipeline becomes uncertain.

We believe one of the most important contributions of the Passing Loop concept is

its ability to make control-misspeculations similar to load or value misspeculations,

albeit for a subset of control misspeculations. Because of this, it is possible to aim for

a unified replay mechanism built around simplicity which can recover from all types of

misspeculations. Indeed, Passing Loop’s recovery mechanism built around a RWalker

is a practical design which favors simplicity over performance. Speculative RWalker is

an augmented design to further speed up the recovery process. The only shortcoming

is RWalker has to reach ROB tail before it can be reset which is unnecessary and

may not work well if the ROB size is too large. In the future, this issue should be

discussed and further improved.

It is shown that Passing Loop is good at unpredictable branch recovery as evidenced

by our experiments involving two different branch predictors. Passing Loop can al-

ways provide significant improvement in terms of performance and power efficiency,

especially with a wider issue width and a large ROB.

135

Passing Loop takes advantage of both speculation and predication. It predicts the

branch result to speculatively execute the following instructions. If the prediction is

right, no penalty is triggered. Otherwise, Passing Loop has the ability to re-execute

affected instructions instead of flushing away everything after the misprediction. Pass-

ing Loop can recover mispredictions in any kind of complex control-flow structure so

long as it is built by short forward branches.

136

Chapter 5

Dynamic Memory Dependence

Predication

Store-queue-free architectures remove the store queue and use memory cloaking to

communicate in-flight stores instead. In these architectures, frequent mispredictions

may occur when the store to load dependencies are inconsistent. This work, Dy-

namic Memory Dependence Predication (DMDP), is implemented to mitigate these

misprediction effects.

0The material contained in this chapter will be published in Proceedings of the 45th International
Symposium on Computer Architecture (ISCA ”18).

137

5.1 Overview

In superscalar processors, store instructions do not update the memory subsystem

until they commit. Therefore, a mechanism to bridge in-flight stores to in-flight loads

is necessary and critical. Without this mechanism, in-flight loads and their dependent

instructions would have to wait until all preceding stores commit. Most processors

implement an associatively searched, age-ordered store queue to deal with the store-

load communication. When a load is executed, the store queue and the data cache

are simultaneously accessed. If the store queue does not contain a store instruction

with the same address, the data read from the cache is used. Otherwise, the youngest

matching store data is selected. This search latency dramatically increases as the

number of in-flight stores grows. Although processor manufacturers do not release

the search latency of their mechanisms, it is unlikely to be one cycle [18].

Despite the increase in access latency, each processor generation incorporates a larger

store queue than its predecessors in order to exploit more instruction-level parallelism

(Sandy Bridge 36, Haswell 42, SkyLake 56). In an attempt to reduce the access

latency and improve scalability, several mechanisms were proposed to simplify the

associative search operations [95, 96, 97, 98, 99, 100, 101, 102]. Others were designed

to completely remove the store queue [17, 103, 104].

138

NoSQ [17] is one of these mechanisms which completely eliminates the store queue.

The store in NoSQ is executed at the commit stage and then updates the cache.

Therefore, the store is never issued to the out-of-order core. The in-flight store-

load communication is accomplished through a memory dependence predictor. A

load which is predicted to be dependent on a prior store is renamed to the physical

register of that store (memory cloaking [12]). This collapses the DEF-store-load-USE

dependence chain into a DEF-USE dependence chain. In order to verify the memory

dependence prediction, the load is re-executed at the retire stage if necessary. Given

prior history, if the memory dependence prediction confidence is low, NoSQ delays

the execution of the load until the store is committed and the cache is updated.

Therefore, these delayed loads need to be kept in a reservation station like structure

and woken up by committed stores.

This work, Dynamic Memory Dependence Predication (DMDP), completely elimi-

nates the unnecessary delays and the overhead of keeping delayed loads. The basic

idea is to create a new MicroOp to compare the addresses of the predicted load-store

pair. If the addresses match, the load uses the store data directly. Otherwise, the

data read from the cache is used. As a result, the false dependence between the load

execution and the store commit is removed.

Removal of this false dependence is significant because the store commit latency

139

increases drastically when memory consistency models [105] are considered. Store-

queue-free architectures eliminate the store queue which holds speculative stores be-

fore they are retired, but a store buffer still has to be provided to hold the retired

stores until they update the cache. This buffer is essential for overlapping the penalty

of store misses and properly implementing consistency models.

5.2 Motivation

It is possible to classify load-store dependencies into three categories: 1. Never Col-

liding (NC); 2. Always Colliding (AC); 3. Occasionally Colliding (OC). In NC, loads

can always read from the cache without touching the store queue. For example,

sweeping accesses through an array without changing the array values will generate

many NC loads. Store-queue-free mechanisms also work perfectly in AC scenario due

to the high dependence prediction accuracy. Examples of AC include register spilling,

global variable accesses, stack accesses, etc. In contrast, OC is hard to predict since a

correct prediction can not be achieved by simply observing the history of the memory

dependencies. Figure 5.1(a) shows a code example of OC cases. In each iteration,

a new pointer is read from an array and the pointed content is incremented. Fig-

ure 5.1(b) shows two nearby iterations in which the increment instructions collide

whenever the two pointers are the same.

140

for() {

ptr = a[i].addr;

x[ptr]++;

}

ptr = a[n].addr;

x[ptr]++;

x[ptr]++;

(a) (b)

ptr = a[n+1].addr;

(c)

x[ptr]++;

x[ptr]++;

x[ptr]++;

x[ptr]++;

Figure 5.1: OC dependence caused strict ordering.

A common store queue free mechanism such as NoSQ initially would always read

from the cache. When the first collision happens, the dependence is added and the

increment instruction will be predicted to read the value from the previous iteration

instead of the cache. However, if the pointers mismatch the next time, the forwarded

data is probably wrong and the memory dependence is mispredicted as well. Frequent

mispredictions on a certain load would impose a strict memory ordering. That is the

load can not execute until the potentially aliasing store is committed. Figure 5.1(c)

shows that the increment instruction will not execute until the previous one com-

mits. This strict ordering makes sure the load reads the correct value regardless of

whether or not the store and load addresses match. However, this strict ordering may

significantly impede the program performance. First of all, if the store and the load

addresses are different, the load and its dependent instructions suffer unnecessary

latency. Even if the addresses are identical, the load has to wait until the store com-

mits. Many unrelated events such as cache misses may delay the store committing

and consequently affect the load execution time.

Figure 5.2 illustrates a breakdown of load instructions based on how they get their

141

p
er

l

b
zi

p
2

gc
c

m
cf

go
b
m

k

h
m

m
er

sj
en

g

li
b

q
u
an

tu
m

h
26

4r
ef

as
ta

r

b
w

av
es

m
il
c

ze
u
sm

p

gr
om

ac
s

le
sl

ie
3d

n
am

d

G
em

sF
D

T
D

to
n
to

lb
m

w
rf

sp
h
in

x
30%

50%

100%

Direct access Bypassing Delayed access

Figure 5.2: Load instruction distribution

values in NoSQ. The configuration of the evaluation is described in detail in Sec-

tion 5.5. In the figure, Direct access means the load gets its value directly from the

cache. Bypassing means the load gets its value through memory cloaking. Delayed

access means the load cannot get its value from the cache until the conflicting store

commits. Note that bzip2, gcc, mcf, hmmer, h264ref and astar have more than 10%

Delayed access loads.

We also simulate the average execution time of Bypassing and Delayed access

loads where the load execution time is defined to be the number of cycles spent

between renaming of the load and the load result becoming available. In Bypassing

cases, the execution time might be negative since the store data is available even

before the load is renamed, on which case its execution time is set to zero. The

comparison is illustrated in Figure 5.3.

142

p
er

l

b
zi

p
2

gc
c

m
cf

go
b
m

k

h
m

m
er

sj
en

g

li
b

q
u
an

tu
m

h
26

4r
ef

as
ta

r

b
w

av
es

m
il
c

ze
u
sm

p

gr
om

ac
s

le
sl

ie
3d

n
am

d

G
em

sF
D

T
D

to
n
to

lb
m

w
rf

sp
h
in

x
3

A
v
g

0

10

20

D
A

a
v
g

/
B
Y
a
v
g

-
1

Figure 5.3: Delayed loads vs. bypassing loads

In this figure, if the ratio is greater than zero, Delayed access loads have longer

average execution time. Otherwise, Bypassing loads are longer. The figure shows

that Delayed access loads take significantly more cycles to execute in most bench-

marks, except mcf. In mcf, the average execution time of Delayed access loads is

117.6 cycles and is 159.3 for Bypassing loads. This is because the colliding stores

are always dependent on some other cache miss loads so that memory cloaking does

not effectively work in these cases. Overall, the execution time of Delayed access

loads is about 7 times longer than the Bypassing loads. If these Delayed access

loads are on the critical path, the program will be forced to execute in an in-order

manner.

143

5.3 The Concept of Memory Predication

Predication is a technique to convert control dependencies into data dependencies.

It is widely applied in branch elimination where the branch result is computed as a

predicate which can then be used to select the correct operand [106, 107]. When the

store and load dependence is not consistent, NoSQ needs to conservatively wait until

the data source becomes unambiguous or, on the other hand, risk frequent mispre-

dictions. Clearly, this problem is analogous to branch prediction where a difficult to

predict branch is encountered. DMDP therefore dynamically inserts a predicate to

compare the store and load addresses. The comparison result can then be used to

guide the load to obtain the correct operand from either the cache or the in-flight

store in a manner similar to a conditional move instruction.

Load

A
d
d
r

Load

A
d
d
r

Load

A
d
d
r

Store

A
d
d
r

D
at
a

CacheA
d
d
r

D
at
a

Store

== P8P7

P
1
0

P
8

P
1
1

co
n
fi
d
en
ce

h
ig
h

In
d
ep
en
d
en
t

D
ep
en
d
en
t

D
ep
en
d
en
t

lo
w

co
n
fi
d
en
ce

Figure 5.4: Three different ways to read data for loads.

Figure 5.4 shows how the load gets its data in three different ways. The first load

does not find any dependent store so it gets its data from the cache. The second

144

load has a colliding store and the predictor is confident. Therefore, memory cloaking

is applied and the load reuses the same physical register (P8) as its own destination

physical register. The third load also has a colliding store except its prediction is not

confident. The store and the load addresses are compared to drive a multiplexer for

selecting the correct data. Since the multiplexer’s output is a new definition, the load

is assigned a new physical register (P10) as usual.

Table 5.1
The difference between NoSQ and DMDP on different loads

NoSQ DMDP
No dependence or the
store has committed

The data is read from the cache directly.

Aliased store is
predicted (high confi-
dence)

The load reuses the physical register from the
store. No cache read is necessary.

Aliased store is
predicted (low confi-
dence)

The data is not
read from the
cache until the
store is commit-
ted.

Predication is inserted so that
both the store’s data and the data
from the cache are forwarded to
the predicate instruction. The
correct one is selected to bypass
to the load’s physical register.

Table 5.1 illustrates the difference between NoSQ and DMDP. The primary dif-

ference is how inconsistent store-load dependencies are handled. To be specific, the

first row describes the situation when the load has never observed any dependence

violation or the aliased store has committed and updated the cache when the load is

renamed. DMDP converts all memory dependencies into register data dependencies

so that loads do not need to check any store when it commits.

The use of the store data and address physical registers are not included in the original

145

program semantics. These registers might have been released and re-allocated to

other instructions before the predicated instruction is created. DMDP delays the

release time of store registers until the store is committed and updates the cache

so that any in-flight store can be utilized to create the predicate. For this purpose,

DMDP assigns an extra physical register to each memory instruction to hold the

computed address. This change simplifies the address comparison and the resulting

microarchitecture as well, since the memory address can be directly read from the

physical register file instead of doing a base register plus offset computation. The

details of the implementation are described in the next section.

Note, when a load is predicted to be dependent on a store, there are two possible types

of mispredictions. Either the load is independent of any in-flight store or the load is

dependent on a different in-flight store. DMDP can only handle the former case, not

the latter one. From the simulation, it is found that the first type of misprediction

dominates the mispredictions. Therefore, applying predication can save most of the

memory dependence mispredictions.

Figure 5.5 illustrates the memory dependence prediction results for low confidence

loads. In this figure, IndepStore means the load is predicted to be dependent on a

store but it is actually independent of any in-flight store; DiffStore means the load is

dependent on a different in-flight store. Correct means the prediction is correct. It

is apparent that IndepStore dominates every benchmark. In other words, if a load

146

p
er

l

b
zi

p
2

gc
c

m
cf

go
b
m

k

h
m

m
er

sj
en

g

li
b

q
u
an

tu
m

h
26

4r
ef

as
ta

r

b
w

av
es

m
il
c

ze
u
sm

p

gr
om

ac
s

le
sl

ie
3d

n
am

d

G
em

sF
D

T
D

to
n
to

lb
m

w
rf

sp
h
in

x
3

A
v
g0%

50%

100%

IndepStore DiffStore Correct

Figure 5.5: Memory dependence prediction results over low confidence
loads

has a low confidence prediction, the load is most likely independent of any in-flight

store. A naive solution would treat low confidence loads as independent loads and

make them read directly from the cache. However, DiffStore and Correct would

be mispredicted in this algorithm and the misprediction rate is considerable in some

benchmarks such as lbm(28.6%) and milc(23.5%). The average misprediction rate

is 11.4%. DMDP can correctly execute IndepStore and Correct which results

in a misprediction rate of 3.7%. The delayed execution in NoSQ can also cover

IndepStore and Correct. It can also cover some of DiffStore if the actual colliding

store is older than the predicted store at the cost of drastically increased load latency.

147

5.4 Microarchitecture

The microarchitecture of DMDP is shown in Figure 5.6. It tracks each store using

a unique store sequence number (SSN) [108] and three globally observable registers,

SSNrename, SSNretire and SSNcommit are used to track the store instruction states.

Store

LoadLoad

SSN retire

Load

Store

SSN rename

Store
Distance
Predictor

SSN byp

Reorder Buffer

T−SSBF

commitSSN
nvulSSN

Counter

Reference

Register

Physical

Store Register Buffer

=

Store Buffer Cache

SSNcommit

−distrenameSSN
=

Load

Store

Figure 5.6: DMDP Microarchitecture

When a store is renamed, the SSNrename is incremented and set as the store’s SSN,

hence a younger store has a larger SSN. When a store retires and commits, its SSN

updates SSNretire and SSNcommit respectively. The store buffer works like a queue to

hold retired stores before they commit and loads never search the store buffer. Store

Register Buffer holds the physical register numbers of every in-flight store instruction

before they are committed. When a predicated MicroOp is created, the store’s data

and address physical register numbers are read from this buffer. In DMDP, store

instructions have an extended physical register lifetime since the register might be

148

read even after the store is retired. Therefore DMDP includes a Physical Register

Reference Counter to manage the register release operations. For a load, its colliding

store’s SSN (SSNbyp) is predicted when the load is renamed. The relative store

distance is predicted by the Store Distance Predictor and SSNbyp equals SSNrename

minus the store distance. When a load is executed and reads the data from the

cache, the current SSNcommit is kept with the load as SSNnvul. SSNnvul indicates

the youngest store to which the load is not vulnerable. At the retire stage, the

speculative load needs to verify its value by re-execution. In order to minimize the

number of re-executions, a Tagged Store Sequence Bloom Filter (T-SSBF) is added.

In the rest of the section, we are going to elaborate on the microarchitecture details

starting with the basic operations.

In order to minimize the overhead of speculative load verification, Store Vulnerability

Window (SVW) [108] was adopted which only re-executes the load if necessary. The

second part is a path-sensitive store distance predictor [17].

5.4.1 Store Vulnerability Window

When a load is speculative, its value has to be verified before the load is retired.

A simple mechanism re-executes every load at the retire stage which doubles the

149

bandwidth requirement for the cache. SVW substantially reduces the number of re-

executions by only re-executing the load if the colliding store committed after the

load was executed.

While a store commits, it writes the data to the cache and updates the SSNcommit.

Therefore, any store whose SSN is smaller than or equal to SSNcommit has updated

the cache. When a load reads the data from the cache, it also reads SSNcommit and

keeps it as SSNnvul. During the retire time, if the colliding store’s SSN is greater

than the load’s SSNnvul, that means the colliding store updated the cache after the

load read from the cache. A potential RAW hazard is possible and the load needs

to re-execute. If the re-execution provides a different value, a full penalty recovery is

initiated. Otherwise, if the colliding store’s SSN is smaller than or equal to the load’s

SSNnvul, that means the colliding store has committed its change to the cache and

the load read the correct value. Hence, no re-execution is required.

5.4.2 Tagged Store Sequence Bloom Filter

As it is described before, when a load is retired, the processor needs to identify its

colliding store’s SSN. Tagged Store Sequence Bloom Filter [109] (T-SSBF) is used

to efficiently detect the store’s SSN. T-SSBF is similar to an N-way set-associative

150

cache indexed by the (hashed) memory address. The difference is each set in T-

SSBF is organized like a FIFO, containing the last N store’s SSNs which map to that

set. When a store is retired (not committed), it writes its SSN into the T-SSBF

(T-SSBF[st.addr] = st.SSN). When a load is retired, it reads the T-SSBF to find

its colliding store’s SSN. If multiple instances with the same address are found, the

largest SSN (the youngest) is selected. On the other hand, if no matching address is

found, the smallest SSN in the same set is selected.

In order to detect collisions on partial-word accesses, each memory access maintains

a word address and a Byte Access Bits (BAB). BAB is used to indicate which bytes

in that word are accessed. BAB is also written into the T-SSBF along with the SSN.

When the word address matches and storeBAB & loadBAB is greater than zero, this

load-store pair collides.

5.4.3 Load Re-execution

When the colliding store’s SSN is larger than the load’s SSNnvul, a load re-execution

is scheduled. Since the store buffer still holds some pending stores which have not

yet updated the cache, the load re-execution is not issued until the store buffer is

drained. This impact caused by the store buffer can significantly deteriorate the

overall performance. Optimization in reducing the number of load re-executions is

desirable and we will describe it later.

151

5.4.4 Memory Dependence Prediction

In DMDP, Store Distance Predictor [110] is used to predict the memory dependence.

This structure is indexed using the load’s PC and predicts how many stores there are

between the aliased store and the load, assuming this distance is constant so the

same load will always collide with the store at the same distance. With the predicted

store distance, the colliding store’s SSN is calculated as ld.SSNbyp = SSNrename -

ld.distbyp. At the retire stage, the store distance prediction needs to be verified. The

actual store distance is computed as SSNretire - T-SSBF[ld.addr]. If the prediction

is wrong, the store distance predictor is updated with the actual distance.

Multiple branches between the store and the dependent load may cause the store

distance to vary if the branches lead to different paths. A path-sensitive memory

dependence predictor [17] is used to handle the change in control flow which uses

an identical structure except indexing its table by an XOR of load’s PC and branch

history bits. The path-sensitive predictor and the path-insensitive predictor are read

simultaneously. Prediction from the path-sensitive predictor is selected if it is avail-

able. Otherwise, the path-insensitive prediction is used. If the load misses both

predictors, the load is predicted to be independent and can directly read the cache

when its address is available.

152

5.4.5 Memory Cloaking

Once a colliding store’s SSN is predicted, the physical register which produces the

store data is read from the Store Register Buffer. The load uses this physical register

as its destination register. As a result, this load does not need to access the cache

and only computes its address. In this approach, the DEF-store-load-USE dependence

chain now is collapsed to DEF-USE and this is called memory cloaking [12]. Memory

Cloaking is a very powerful method, because the data is forwarded to the load even

without knowing the address.

DMDP splits memory operations at the decode stage into two MicroOps: an address

computation and a memory access. In this design, the store queue and the load

queue are completely eliminated. Figure 5.7 illustrates the MicroOps creation and

the renaming procedure. Figure 5.7(a) shows the original assembly code of the store

and the load. In Figure 5.7(b), an address generation MicroOp, ADDI, is added before

each memory access, which eliminates the offset field in the memory MicroOps. Note

that the logical destination register of the ADDI is $32, which is not defined in MIPS

ISA ($0-$31). This register is only visible in the hardware and facilitates physical

register renaming and release in the same way as a normal superscalar processor.

Figure 5.7(c) shows the renamed MicroOps. The store does not write to the cache

153

SW $7, 8($8)

LW $9, 4($3)

SW $7, ($32)
ADDI $32, $8, 8

LW $9, ($32)
ADDI $32, $3, 4

ADDI P3, P2, 8
SW P1, (P3)

ADDI P5, P4, 4
LW P1, (P5)

execute at the
commit stage

only verify at the
retire stage

does not execute,

(a) (b) (c)

Figure 5.7: Memory Cloaking

until it is committed, hence it is not dispatched to the out-of-order core. Both the

data physical register identity (P1) and the address physical register identity (P3)

are kept in the Store Register Buffer so that when this store is committed it can

read these two values from the register file and update the cache. The store queue is

removed at the cost of an additional address physical register (in a typical superscalar

processor, the address does not require a dedicated physical register but instead an

entry in the store queue).

Load instructions operate in a similar manner such that a dedicated address physical

register is allocated. At the retire stage, both the data and the address physical

registers are read to verify the memory dependence prediction (the data is required if

a load re-execution verification is issued, and the address is required to read T-SSBF).

The load queue is removed since the address is kept in the register file. Figure 5.7(c)

shows a bypassing load which reuses the store data register (P1) as its own destination

physical register. Hence, this load is not dispatched to the out-of-order core either.

The processor only verifies its value at the retire stage.

DMDP is different from NoSQ in the memory address computation. In NoSQ,

154

the address offset is kept in the ROB and the address is calculated at the retire

stage (for non-bypassing loads, these are extra computations). In DMDP, address

computation is finished in the out-of-order core and a register file read is required

at the retire/commit stage in order to eliminate the store queue and the load queue.

Furthermore, the address generation instruction (AGI) translates the virtual address

to a physical address by setting a special MicroOp flag, making it different from a

normal ADDI. When the AGI is computed, it searches the TLB to find the physical

address and stores the physical address in the address register. Therefore, at the

retire/commit stage, physical addresses are available for memory ordering violation

detection and no extra translation is needed. The drawback of this approach is the

non-bypassing loads have to wait for the address translation and an extra delay is

imposed. In order to remove this side effect, the virtual address is used to read the

data array and the tag array simultaneously with the address translation. In the next

cycle, the translated physical address is compared with the tag array output and the

correct data is selected. This approach takes advantage of a VIPT cache organization.

5.4.6 Predication Insertion

A predicate is inserted at the load if the memory dependence prediction is not confi-

dent. Figure 5.8 shows an example of predicate creation and renaming. Figure 5.8(a)

shows the original assembly code of the store and the load. Figure 5.8(b) presents

155

the decoded MicroOps alongside with address generation MicroOps. Figure 5.8(c)

illustrates the predicate creation before renaming. Note that, in reality the predica-

tion insertion uses physical registers. the logical registers in Figure 5.8(c) are used to

improve readability.

SW $7, 8($8)

LW $9, 4($3)

SW $7, ($32)

ADDI $32, $8, 8

LW $9, ($32)

ADDI $32, $3, 4

ADDI $32, $8, 8

SW $7, ($32)

ADDI $32, $3, 4

LW $33, ($32)

CMP $34, $32, ?

CMOV $9, $34, ?

CMOV $9, !$34, $33

ADDI P3, P2, 8

SW P1, (P3)

ADDI P5, P4, 4

CMP P7, P5, P3

CMOV P8, P7, P1

CMOV P8, !P7, P6

LW P6, (P5)

(a) (b) (c) (d)

Figure 5.8: Memory predication insertion

In the figure, there are three new MicroOps inserted after the load: a comparison,

CMP, which produces the predicate $34 and two conditional moves, one of which

would update the load destination register $9. Logical register $33 keeps the data

read from the cache and $34 serves as the predicate. The store address and the store

data sections are marked with a question mark in the figure. Because logical register

$7 and $32 may be modified after the store, only physical registers are available during

the predication insertion process. The CMP instruction compares the store address

with the load address and sets the predicate $34 to one if the addresses match. If the

predicate is set, the CMOV instruction forwards the store data to $9. Otherwise, the

loaded data $33 is forwarded.

Figure 5.8(d) shows the renamed predication code. Note that the two CMOVs are

156

mapped to the same physical register P8 since only one of them will write to the RF.

Both CMOVs are dispatched to the out-of-order core. When the CMOV is woken

up to execute, it first checks the predicate and only executes if the predicate is set.

Otherwise, the CMOV is treated as a NOP and does not update the RF. The benefit

of sharing one physical register is it reduces the data dependence and the number of

the operands is two instead of three (a predicate and two operands selected by the

predicate). The physical register P8 is defined twice, similar to a memory cloaking

destination register. Its release algorithm is the same and is elaborated on the details

next.

5.4.7 Physical Register Reference Counter

In superscalar processors, a physical register is defined once in its lifetime and is never

read again after it is released. Since neither of these conditions are valid in DMDP,

the mechanism, Physical Register Reference Counters, is incorporated to guide the

physical register allocation and release policy.

In DMDP, a given physical register might be defined multiple times in its lifetime.

For example, a load might reuse the colliding store’s data register as its own desti-

nation register in memory cloaking. A predication insertion creates two conditional

moves which have the same destination register. A counter based algorithm [111]

157

is implemented in DMDP to track the number of definitions through the regis-

ter’s lifetime. This producer counter is incremented when the register is defined and

decremented when the register is virtually released. Figure 5.9 demonstrates a simple

example. P7 is defined twice so the counter number is two at the beginning. When the

second instruction is retired, it virtually releases the previous definition, P7. Hence,

the counter value is decremented to one. When the last instruction is retired, it also

decrements the producer count of P7 and the register is released as the counter is

zero.

$8

P7

$8

P17

$10

P7

$10

P20

cnt=2 cnt=1 cnt=0

Figure 5.9: The producer counter

On the other hand, a physical register might be read even after it is released. For

example, in Figure 5.8(d), P1 contains the store data and could be released before it is

read by the conditional move. Another case happens in the write buffer. When a store

is retired and transferred to the store buffer, its data and address physical registers

might be released before the store is committed. We have to extend the lifetime of

these physical registers in order to guarantee correct memory forwarding. A consumer

counter is added for each physical register. When a consumer operand is renamed,

the renamed physical register’s counter is incremented. When the instruction which

has that operand executes, the counter is decremented. The store executes when it is

committed. The consumer counter was first proposed in [112] which is used to make

158

early physical register release. But in our scenario, it is used to delay the register

release.

Overall, when a physical register has a producer counter of zero and a consumer

counter of zero, it is released. During a misprediction recovery, the walking mechanism

described in [18] is implemented to restore the counters.

5.4.8 Load Re-execution Filter

When a speculative load is about to retire, its loaded data needs to be verified by a

re-execution. The cost of load re-execution is too high as loads can not be issued until

the write buffer is drained. As a result, a filter algorithm is desirable for minimizing

the number of load re-executions. All of the loads are classified into two categories:

i) the loads which read their data from the cache; ii) the loads which get their data

from an in-flight store.

Table 5.2
Load re-execution policy for different loads.

re-execution condition
Data from a cache T-SSBF[ld.addr] > ld.SSNnvul

Data from a store T-SSBF[ld.addr] != ld.SSNbyp

Table 5.2 lists the re-execution policy for these two kinds of loads. If the data is

coming from the cache, ld.SSNnvul indicates the SSNcommit when the load is executed.

Therefore, if the actual colliding store’s SSN is larger than ld.SSNnvul, a re-execution

159

verification is required. If the data is forwarded by a predicted colliding store, then

the actual colliding store’s SSN must match with the predicted one. Otherwise, a

re-execution verification is issued.

5.4.9 Silent Store Effect

Silent stores [113] can be detected in many programs, in which multiple stores write

the same value into a particular memory location. This is mainly caused by the

program redundancy. In DMDP, silent stores impose a lot of unnecessary load

re-executions. Figure 5.10 shows a simple example, in which the two stores write

the same value to the same address. The load also reads this address. This figure

displays the status when the load is executed. Since store1 has committed (st1.SSN

< SSNcommit), the load reads the data updated by store1 from the cache. When the

load is about to retire, it finds itself colliding with store2 (st2.SSN > ld.SSNnvul).

Thus, a load re-execution is issued and no exception is set since the reloaded data is

the same. The original NoSQ design does not update the Store Distance Predictor

unless an exception is reached. Consequently, this load will incur re-execution many

times without creating any exception.

Load Store2 Store1

olderyounger

SSNcommit

SSN=8 SSN=4=7

Figure 5.10: Load re-execution incurred by silent store

160

In order to solve this problem, the memory dependence should be created even when

no exception is observed. Whenever a load re-execution occurs, the Store Distance

Predictor is updated. In Figure 5.10, the store distance between store2 and the load

is kept in the predictor. Thus, store2 will forward the data to the load and no load

re-execution is required based on the policy in Table 5.2.

5.4.10 Partial-Word Forwarding

For memory predication to work, it must handle any kind of store-load forwarding,

including partial-word forwarding. DMDP uses word address plus byte access bits

(BAB) to detect partial-word forwarding violation. On a 32-bit machine, a word is

composed of 4 bytes so 4 bits (BAB) are used to indicate which bytes are accessed.

This BAB can be expanded to 8 bits for a 64-bit machine. When a store retires,

its BAB, storeBAB is written into the T-SSBF with other information. When a load

retires, not only the word address but also the BAB is compared. Figure 5.11 shows

how a partial-word forwarding is verified.

No conflict

BAB

== 0

F

T

T

F

No conflict

BAB

Store. BAB & Load.

Store. BAB & Load.
== Load.BAB

T

F

complete
Data is

Data is
separated

Word address

match?

Figure 5.11: The decision tree of partial-word forwarding detection

161

If storeBAB & loadBAB is equivalent to loadBAB, that means the prior store contains

the whole data section required by the load. The data forwarding is correct. On the

other hand, if the store only modifies part of the data section, which means the needed

data is separated by multiple stores, then a load re-execution is triggered when the

load is retired.

A partial-word forwarding may cause the forwarded data to be shifted. For example,

a store writes a whole word into the cache and the dependent load only reads the

upper half word. In which case, the store data is right shifted 16 bits before the

forwarding. In MIPS, the shift amount is decided by the least significant two bits

of the memory address. The value of these two bits times eight is the shift amount.

The store shifts left and the load shifts right. DMDP has a dedicated MicroOp,

CMP, to compare the store and load address. When a CMP is executed, DMDP

also puts the shift amount and direction information into the predicate (the predicate

is a word-wide register, only one bit is used to guard the predicated instruction, other

bits can be used). Therefore, the CMOV knows how to shift the operand before it is

forwarded.

Other than address alignment, the forwarded data may be masked and sign/zero

extended based on the load type. DMDP keeps the load type in the CMOV when it

is created. So when CMOV is executed, the operand is trimmed properly. Moreover,

partial-word loads, such as half word load or byte load, are prohibited from doing

162

memory cloaking due to the alignment or sign/zero extension. Thus, these loads are

forced to use predication for store-load communications. NoSQ inserts special “shift

& mask instruction” for partial-word communication. However, the store and the

load addresses are unknown at the rename stage, thus the shift amount has to be

predicted. This partial-word mechanism can be easily adopted to other ISAs, since

the store address, load address, store type and load type can be integrated into the

predicate.

5.4.11 Confidence Predictor

When a load is predicted to be dependent on a store, DMDP consults the confidence

predictor to decide whether memory cloaking or memory predication should be used.

The confidence predictor is embedded in the Store Distance Predictor and updated

at the retire stage. The loads which cause load re-executions or are predicted to be

dependent on a store can update the confidence predictor. When the prediction is

correct, the corresponding confidence counter is increased. Otherwise, the confidence

counter is decreased. A common confidence predictor modifies the counter with a

balanced strategy. In other words, it increases and decreases the counter by the

same amount, for example, one. In DMDP, pushing instructions to predication only

causes a trivial data dependence increase, but a dependence misprediction results in

a full recovery penalty. Because the cost is biased, the confidence counter update

163

should be biased as well. DMDP right shifts the counter by one bit (divided by two)

whenever a misprediction is detected and only increments the counter by one in other

cases. By applying this strategy, fewer mispredictions are experienced at the cost of

more predications.

5.4.12 Memory Consistency

In a multi-core system, the cache lines might be invalidated by other cores. Therefore,

even if the load satisfies the local memory dependence check, it may still need to be

re-executed due to the stores from other cores [109]. This makes two changes to the

design: i) When a cache line is invalidated by another core, all the words in that cache

line should update the T-SSBF; ii) The word invalidated by another core should write

SSNcommit+1 as its SSN in the T-SSBF. In other words, all of the in-flight loads which

were executed before the invalidation should re-execute if their addresses match.

Different memory consistency models were considered in the design of DMDP, such

as total store order (TSO) and relaxed memory order (RMO). In TSO, the stores in

the store buffer are committed following the program order. When the store buffer

is full, stores are not allowed to retire from the ROB. RMO mitigates the pressure of

the store buffer and permits the stores to commit in any order. In either model, the

load in NoSQ has to wait for the colliding store and its preceding stores to commit

164

if the memory dependence prediction is not confident. DMDP is not constrained by

the committing of the stores.

5.5 Evaluation Methodology

This work was simulated by using MIPS-I ISA without delayed branching. This ISA

is very similar to PISA ISA, used by SimpleScalar [55]. GCC 4.9.2 tailored to this

ISA was used to compile the benchmarks and generate binary code with the highest

optimization (“-O3”) set. Spec 2006 was selected as the benchmark suite. All sim-

ulation models were designed with Architectural Description Language (ADL) [46].

The ADL compiler can automatically generate the assembler, the disassembler and a

cycle-accurate simulator which respects timing at the register transfer level from the

description of the microarchitecture and its ISA specified in ADL language.

In order to efficiently simulate these mechanisms, Simpoint 3.2 [56, 57] was incor-

porated to minimize the simulation time. For each benchmark, a set of checkpoint

images were generated and each checkpoint image contained the complete memory

data segment, the register file and the program counter (PC). Other architecture

related structures were not included, such as cache, branch predictor, memory de-

pendence predictor, etc. Hence, the simulation of each interval had a cold start. In

order to compensate for this effect, a large size, 100 million retired instructions, was

165

selected to simulate each interval. Since each interval simulation is independent of

others, all of the intervals were simultaneously simulated to further shorten the to-

tal simulation time. Currently, the file descriptors are not kept in the checkpoint.

Thus, there is no way to simulate an interval if it had file operations and the file

descriptor was created before the checkpoint. When this happened, that checkpoint

interval was replaced with the dominant checkpoint in that benchmark. In h264ref,

one checkpoint was substituted (0.92% weight) for the dominant checkpoint (18.14%

weight) and in hmmer, two checkpoints (0.22%, 0.43% weight) were substituted for

the dominant checkpoint (98.9% weight). As the replaced intervals have very limited

weights (<1.0 %), the impact of this substitution is minimal. McPAT 1.4 [50] was

also modified to evaluate the dynamic energy consumption. T-SSBF and the memory

dependence predictor which replace the load queue and the store queue were both

modeled. DRAMSim2 [58] was also embedded to evaluate the memory subsystem

behavior.

The benchmarks simulated in this work are:

Integer: perl, bzip, gcc, mcf, gobmk, hmmer, sjeng, libquantum, h264ref, astar.

Float: bwaves, milc, zeusmp, gromacs, leslie3d, namd, GemsFDTD, tonto, lbm, wrf,

sphinx3.

166

These benchmarks were simulated with the “ref” input. The remaining missing bench-

marks were not included due to the linker’s inability to link them. The processor

configuration of the baseline architecture is listed in Table 5.3 which is used as a ref-

erence for comparing with other models. The baseline architecture has a store queue

and a load queue with unlimited entries. A store buffer is also implemented obeying

TSO model. Store coalescing was implemented to alleviate the write port pressure.

Since TSO is considered, only consecutive stores are coalesced.

Table 5.3
Baseline Processor Configuration

ROB / RS / PRF 256 / 64 / 320
Fetch / Decode / Issue 8 / 8 / 8
Store Queue unlimited entries, 4 cycles search latency
Store Buffer 16 entries, store coalesce
Memory Dependence
Prediction

Store Sets [16]

Cache

32KB 8-way set associative iL1; 32KB 8-way
set associative dL1, 4 cycles hit latency, 2
read ports, 1 write port; 512KB 8-way set
associative L2, 10 cycles hit latency;

Memory
16GB DDR3L-1600, 2 channels, 2 ranks,
8 banks, open page, up to 64 pending re-
quests [59]

Recovery Penalty minimum 15 cycles
Int ALU / Int Mul 1 cycle / 3 cycles
Int Div, FP ALU 7 cycles
Branch Predictor 8 kB TAGE [14]
Tech node 22nm
Clock frequency 3.2GHz

A similar configuration from the baseline was adopted to the following models except

their store-load communication mechanism.

167

1. NoSQ: This architecture has no store and load queue which are replaced with

a 4-way set associative, 128 entry T-SSBF. Each entry contains a 20 bit SSN, a 4

bit BAB and a 25 bit tag. The total size of T-SSBF is 6.125 Kbits. The Store

Distance Predictor uses two 4-way associative, 1K entry tables. One of the tables is

for path-insensitive predictions and the other is for path-sensitive predictions. The

path-insensitive table is indexed by the load PC. The path-sensitive table is indexed

by the XOR of the load PC and an 8 bit branch history. Each entry of the tables

contains a 7 bit confidence counter, a 22 bit tag and a 6 bit distance part. The

predictor’s total size is 8.75KB. The confidence counter is set to 64 by default. If

the value is greater than 63, memory cloaking is used, or the load has to wait for

the colliding store to commit. The number of delayed loads which can be kept in the

core is unlimited. Silent-store-aware predictor update policy is used to match with

DMDP.

2. DMDP: DMDP has the same T-SSBF and dependence predictor as NoSQ.

The only difference is that NoSQ will decrease the confidence counter by one if a

misprediction is detected. But DMDP will divide the counter by two in the same

cases. Predicate is added when a low confidence prediction is made.

3. Perfect: This model has a perfect memory dependence predictor so that every

load gets its data from either a colliding store or the cache. No delayed executions or

mispredictions are experienced.

168

5.6 Experimental Results

p
er

l

b
zi

p
2

gc
c

m
cf

go
b
m

k

h
m

m
er

sj
en

g

li
b

q
u
an

tu
m

h
26

4r
ef

as
ta

r

b
w

av
es

m
il
c

ze
u
sm

p

gr
om

ac
s

le
sl

ie
3d

n
am

d

G
em

sF
D

T
D

to
n
to

lb
m

w
rf

sp
h
in

x
3

G
m

ea
n

80%

100%

120%

NoSQ DMDP Perfect

Figure 5.12: Spec 2006 Speedup over the baseline

Figure 5.12 illustrates the speed-up of NoSQ, DMDP and Perfect models over

the baseline superscalar model. The geometric means of the Integer benchmarks

are 97.5%, 104.5% and 106.8%, for NoSQ, DMDP and Perfect respectively, and

the corresponding floating point benchmark performances are 100.8%, 105.3% and

106.6%. Clearly, DMDP is much closer to Perfect in terms of IPC performance.

5.6.1 NoSQ VS. Baseline

NoSQ can forward store data to the load by memory cloaking. That is the reason

why it outperforms the baseline in some of the benchmarks. On the other hand,

169

NoSQ has to stall the retire stage when a load re-execution is issued when the store

buffer is not drained. Moreover, NoSQ may experience more memory dependence

mispredictions due to its aggressive prediction strategy. Figure 5.12 shows NoSQ

works more than 20% worse in hmmer. Analyzing the result, we found that NoSQ

has a significant amount of memory dependence mispredictions (3.06 Mispredictions

Per 1k Instructions). Further analysis showed that the silent store predictor update

policy, which was described before, had a substantial impact in this benchmark. This

policy would update the Store Distance Predictor whenever a load re-execution

was triggered. If the original mechanism was used, which only updates the predictor

if the re-execution leads to an exception (the reloaded data is different), NoSQ has

fewer mispredictions and higher performance in hmmer. However, it reduces the

performance of other benchmarks.

The silent-store-aware predictor update policy is a double-edged sword. It reduces

the number of load re-executions immensely but also might cause the increase of mis-

predictions. DMDP could compensate this shortcoming by using predication. From

our evaluation, DMDP had much fewer mispredictions (1.03MPKI VS. 3.06MPKI)

and it only had 1% lower performance than the baseline in hmmer.

170

5.6.2 DMDP VS. Baseline

DMDP surpasses the baseline in every benchmark except hmmer which is caused

by the nontrivial memory dependence mispredictions as mentioned before. In the

baseline model, loads have to read the data from the cache, store queue or store buffer.

All of these structures have a constant access latency (4 cycles in the simulation).

DMDP can use memory cloaking to bridge stores with loads if the predictions are

confident. Even a low confidence load can obtain its data quicker if the data is from

an in-flight store.

Table 5.4
Average execution time of all loads

baseline DMDP baseline DMDP
(Cycles) (Cycles) (Cycles) (Cycles)

perl 15.86 12.45 bzip2 36.67 19.48
gcc 44.98 35.04 mcf 112.44 104.00
gobmk 13.51 11.52 hmmer 11.20 7.47
sjeng 12.60 10.62 libquantum 125.23 124.73
h264ref 22.68 17.32 astar 21.18 13.77
bwaves 42.56 36.76 milc 73.40 61.18
zeusmp 26.97 21.21 gromacs 32.13 11.41
leslie3d 36.55 32.91 namd 20.22 18.94
GemsFDTD 14.78 11.62 tonto 20.31 12.89
lbm 72.17 31.15 wrf 18.17 9.19
sphinx3 51.95 50.47 Average 39.31 31.15

Table 5.4 lists the average execution time of the loads in the baseline and DMDP.

DMDP has a shorter execution time in every single benchmark and on average, saves

more than 20% of the execution time for loads. Figure 5.12 shows that DMDP has

171

the most improvements in wrf and bzip2 and in these two benchmarks, DMDP saves

about half of the execution time of the loads.

5.6.3 DMDP VS. NoSQ

DMDP outperforms NoSQ in every single benchmark. The geometric mean of the

speed-up is 7.17% (Int) and 4.48% (FP). If a low confidence load is renamed, NoSQ

has to wait until the predicted colliding store commits. DMDP can steer the load to

find its correct data by predication, disregarding the store commit states. Table 5.5

lists the average execution time of the low confidence loads in NoSQ and DMDP.

DMDP saves up to 79.25% execution time and the average is 54.48%. Libquantum

is the only benchmark in which DMDP has a longer execution time. This data is

not representative due to the fact libquantum has so few low confidence loads.

In Figure 5.12, DMDP surpasses NoSQ in wrf by 34.1%, which is the highest

improvement. NoSQ works worse than not only DMDP but also the baseline.

From our evaluation, the average execution time of all loads is 18.17 cycles, 13.85

cycles and 9.19 cycles for the baseline, NoSQ and DMDP respectively. NoSQ has

a shorter execution time, but still works worse than the baseline. One possible reason

is the delayed loads in NoSQ are on the critical path of the program and slow down

the rest of the instructions. Therefore, even the average load execution time is saved,

172

Table 5.5
Average execution time of low confidence loads

NoSQ DMDP NoSQ DMDP
(Cycles) (Cycles) (Cycles) (Cycles)

perl 63.79 14.54 bzip2 65.29 22.34
gcc 60.69 18.14 mcf 111.40 52.39
gobmk 23.73 11.58 hmmer 37.19 8.91
sjeng 24.54 12.36 libquantum 9.11 13.38
h264ref 41.29 19.17 astar 85.47 25.16
bwaves 103.90 36.17 milc 141.28 85.72
zeusmp 118.72 24.66 gromacs 68.10 65.94
leslie3d 53.76 20.59 namd 22.53 16.33
GemsFDTD 11.11 9.98 tonto 35.85 10.75
lbm 129.69 100.76 wrf 61.59 12.78
sphinx3 49.93 18.68 Average 62.81 28.59

the whole program runs slower. The average execution time of all instructions is 19.53

cycles, 21.47 cycles and 12.74 cycles for the baseline, NoSQ and DMDP respectively.

5.6.4 DMDP VS. Perfect

On geometric mean, DMDP loses 2.19% (Int) and 1.25% (FP) IPC compared to

Perfect. There are three reasons why Perfect outperforms DMDP: i) DMDP

has a large amount of memory dependence mispredictions in some benchmarks which

Perfect does not have; ii) When a load verification triggers a load re-execution,

DMDP has to wait for the store buffer to be drained whereas Perfect never re-

executes any loads; iii) For low confidence loads, DMDP still needs to wait for

the addresses being computed even if the addresses match. Perfect only has high

173

confidence loads which receive their data by memory cloaking.

Table 5.6
Memory dependence misprediction rate

NoSQ DMDP NoSQ DMDP
(MPKI) (MPKI) (MPKI) (MPKI)

perl 0.144 0.141 bzip2 0.784 1.409
gcc 0.301 0.250 mcf 0.232 0.147
gobmk 0.305 0.198 hmmer 3.061 1.029
sjeng 0.420 0.357 libquantum 0.000 0.000
h264ref 0.226 0.118 astar 0.110 0.086
bwaves 0.039 0.002 milc 0.363 0.363
zeusmp 0.021 0.024 gromacs 0.070 0.057
leslie3d 0.063 0.056 namd 0.004 0.003
GemsFDTD 0.007 0.001 tonto 0.160 0.130
lbm 0.101 0.089 wrf 0.057 0.066
sphinx3 0.020 0.046 Average 0.309 0.218

Table 5.6 lists the memory dependence misprediction rate in NoSQ and DMDP mea-

sured in terms of Mispredictions Per 1k Instructions (MPKI). On one hand, DMDP

would have more low confidence loads since the confidence predictor has a biased up-

date policy (Section 5.4.11). As a result, DMDP should have fewer mispredictions.

On the other hand, NoSQ would delay the execution of low confidence loads. As a

result, some mispredictions which can not be covered by DMDP can be covered by

NoSQ. For example, if the load depends on a different in-flight store and that store is

older than the predicted one, NoSQ can read the correct data through the cache. In

the same case, DMDP might read the cache earlier but potentially the wrong value.

When a load is re-executed, the retire stage is stalled until the store buffer drains.

Table 5.7 lists the number of stalled cycles per 1000 committed instructions in NoSQ

174

Table 5.7
Load re-execution related stalls per 1k committed instructions

NoSQ DMDP NoSQ DMDP
(cycles) (cycles) (cycles) (cycles)

perl 4.532 11.258 bzip2 3.999 30.235
gcc 5.031 12.182 mcf 4.205 9.173
gobmk 0.679 0.951 hmmer 32.675 101.631
sjeng 1.118 1.485 lib 0.001 0.001
h264ref 1.002 15.038 astar 0.881 54.548
bwaves 0.720 6.231 milc 16.997 32.113
zeusmp 5.629 18.389 gromacs 0.262 0.526
leslie3d 2.430 3.925 namd 0.040 0.338
Gems 0.004 0.028 tonto 0.419 0.882
lbm 154.956 155.260 wrf 0.575 5.027
sphinx3 0.161 0.200

and DMDP. DMDP has more stalled cycles in every benchmark due to its early

load execution. Since NoSQ delays the low confidence load execution, it has a much

narrower vulnerable window and fewer load re-executions are issued.

DMDP loses the most performance in these three benchmarks: hmmer (91.29%),

bzip2 (93.17%) and lbm (94.77%) when compared with Perfect. The first two bench-

marks have the most memory dependence mispredictions (Table 5.6) and lbm has the

most re-execution related stalls (Table 5.7). These are the two major obstructions

impeding DMDP to reach a higher performance.

175

5.6.5 Case Study in bzip2

Note that DMDP has more dependence mispredictions than NoSQ in bzip2. A

snapshot of the code which causes the most mispredictions is demonstrated in Fig-

ure 5.13. In this figure, LHU sequentially reads an array which contains a pointer

($9). After a series of computation, the pointed value is incremented by one. If the

array has two identical values, they point to the same memory location and the incre-

ment operations collide with each other. During the execution, the distance between

the colliding store and the load kept changing. Therefore, a lot of mispredictions were

observed in bzip2.

LW $10,$9,−20128
ADDIU $10,$10,1

LHU $9,8($8)
SW $10,$9,−20128

ADDU $9,$3,$9
SLL $9,$9,2
ADDU $9,$22,$9
ADDU $9,$9,$31
LW $10,$9,−20128

The offset keeps changing
{0,2,4,6,8,10,.....}

Figure 5.13: A bzip2 code snapshot

Let us assume the colliding store is randomly distributed. Thus, when a misprediction

happens, half of the time the actual colliding store is older than the predicted colliding

store and the other half is younger. NoSQ can cover the former cases and DMDP

mispredicts both cases. Table 5.6 shows NoSQ has about half of the mispredictions

of DMDP.

176

5.6.6 Store Buffer Size Effect

The loads in DMDP and NoSQ do not associatively search the store buffer which

simplifies the design significantly. As a result, a much larger store buffer is imple-

mented with the same cost and hide more cache misses imposed by stores. The store

buffer size has a substantial impact on performance, especially for a multiproces-

sor [105, 114]. Even DMDP is designed and evaluated for single-thread processors,

it can easily be adopted to a multiprocessor and boost the performance for multi-

threaded workloads.

p
er

l

b
zi

p
2

gc
c

m
cf

go
b
m

k

h
m

m
er

sj
en

g

li
b

q
u
an

tu
m

h
26

4r
ef

as
ta

r

b
w

av
es

m
il
c

ze
u
sm

p

gr
om

ac
s

le
sl

ie
3d

n
am

d

G
em

sF
D

T
D

to
n
to

lb
m

w
rf

sp
h
in

x
3

100%

110%

120%
32-entry 64-entry

Figure 5.14: 32,64-entry SB VS. 16-entry SB

Figure 5.14 depicts the speed-up of DMDP with a 32-entry store buffer and a 64-

entry store buffer over another one with a 16-entry store buffer. Using a geomet-

ric mean, the 32-entry model outperforms the 16-entry model by 2.07% (Int) and

3.81%(FP), the 64-entry model outperforms the 16-entry model by 2.77% (Int) and

177

5.01% (FP). Through all the benchmarks, lbm has the highest performance improve-

ment with a larger store buffer. Moreover, the number of stalled cycles incurred by a

full store buffer is 503.1 cycles, 220.5 cycles and 75.0 cycles per 1000 committed in-

structions for a 16-entry, 32-entry and 64-entry store buffer accordingly. Apparently,

a larger store buffer can immensely help for single-thread performance and it is more

fruitful in multi-threaded workloads.

5.6.7 Alternative Configurations

A 4-issue width configuration was also simulated. The IPC improvement over NoSQ

shrunk to 4.56% (Int) and 2.41% (FP). This is because with a smaller issue width, the

vulnerable window gets narrower and the in-flight store-load communication reduces.

The number of the low confidence loads drops as well (23.4% is removed). As a result,

it is less likely for DMDP to save delayed load executions.

A 512-entry ROB is also simulated, which yields more IPC improvement (7.56%

Int, 6.35%). A larger ROB would help DMDP to bridge long distance store-load

communications. This long distance store-load dependence is more difficult to predict

and DMDP has slightly fewer mispredictions.

Consistency model RMO was simulated as well. Stores were allowed to commit in an

out-of-order manner. SSNcommit is set to the one preceding the oldest store in store

178

buffer. When a store is committed, its corresponding entry in Store Register Buffer

is invalidated and forwarding is prohibited. The results shows DMDP surpasses

NoSQ by 7.67% (Int) and 4.08% (FP).

5.6.8 Energy Efficiency

Figure 5.15 illustrates the EDP (Energy Delay Product) of DMDP normalized to

NoSQ.

p
er

l

b
zi

p
2

gc
c

m
cf

go
b
m

k

h
m

m
er

sj
en

g

li
b

q
u
an

tu
m

h
26

4r
ef

as
ta

r

b
w

av
es

m
il
c

ze
u
sm

p

gr
om

ac
s

le
sl

ie
3d

n
am

d

G
em

sF
D

T
D

to
n
to

lb
m

w
rf

sp
h
in

x
3

70%

80%

90%

100%

Figure 5.15: The EDP of DMDP, normalized to NoSQ

As is observed, DMDP reduces the total execution time in every benchmark (Fig-

ure 5.12) and slightly consumes more energy due to the extra predicated instructions.

Overall, DMDP is more power efficient than NoSQ and saves 8.5% (Int) and 5.1%

EDP on average. The EDP result is correlated to the memory dependence mispre-

diction rate (Table 5.6), more mispredictions result in more energy consumption.

179

DMDP has more mispredictions in bzip2 and that costs DMDP to consume about

3% more energy. On the other hand, DMDP saves around 2 MPKI in hmmer which

leads to a 15% energy saving.

5.7 Related Work

Instruction predication was initially used to convert control dependencies to data

dependencies [115], so that vectorization could be applied even if a loop contained

conditional branches. With the mechanism, qualified branches are converted to pred-

icate computation instructions statically during the compilation. The control depen-

dent instructions are guarded by these predicates to eliminate conditional branches.

No branches means no mispredictions and no recovery penalties at all, especially if

the eliminated branches are hard to predict. Dynamic predication is also proposed

to insert predicates during the run time [107] for processors which do not have a

predicated Instruction Set Architecture (ISA).

Store-queue-free architectures were proposed when memory dependence prediction

accuracy became acceptable. Sha et al. designed NoSQ [17] to completely remove

the store queue by using memory cloaking to communicate the in-flight stores and

loads. When the dependence is inconsistent, NoSQ delays the load execution, there-

fore, NoSQ still needs a structure to hold all the delayed loads until they are ready

180

to execute. In contrast, DMDP inserts predication which converts load-store depen-

dencies into simple data dependencies, therefore it does not need this extra storage

at the expense of executing additional operations.

Subramaniam et al. proposed Fire-and-Forget (FnF) [103] to eliminate the store

queue in a different way. Instead of predicting the load, FnF predicts the store so

that when a store is decoded, its consumer load is predicted and the store forwards

its data to that load. We selected NoSQ as our reference design since some mem-

ory dependencies are path sensitive. When FnF is predicting a store, the branches

between the store and the dependent load are not considered.

Several related works attempt to reduce the size of store queue or simplify it. The

mechanism proposed by Sha et al. predicted the index of the colliding store in the

store queue [97]. This approach eliminates the need to search the store queue when

a load is executed. Their mechanism is similar to DMDP in that both techniques

require address comparison. The load retrieves its data from either the store queue

or the data cache. The difference is that the address comparison is not triggered until

the store is executed in their mechanism, whereas DMDP only waits for the store

address computation.

Stone et al. separated the function of the store queue into three different struc-

tures [96]: store forwarding cache (SFC) for memory forwarding; memory disam-

biguation table (MDT) for memory ordering violation detection; and a store FIFO

181

for in-order store retirement. CAM structures are completely replaced by RAM struc-

tures since no associative search is needed. Garg et al. had a different view of the

store queue and proposed SMDE (Slackened Memory Dependence Enforcement) [100].

Their mechanism uses an L0 cache to bridge the in-flight loads and stores similar to a

store queue. This simple design does not need any associative search so the size scales

well. Sethumadhavan et al. proposed Late-Binding [116] to allocate LSQ at the issue

stage instead of the dispatch stage which reduces the demand for LSQ entries. Since

the LSQ allocation is completely out-of-order, an age tag is explicitly integrated into

each LSQ entry. The current commercial processors are still using store queue to

disambiguate memory ordering. Kim et al. designed a mechanism, store dependence

prediction (SDP) [117], to indicate which store is not likely to collide with any younger

load so that the load does not need to wait for this store address computation.

Perais et al. expanded the store-load bypassing to load-load bypassing with a new

register sharing mechanism [18]. They introduced an Instruction Distance Predictor

to predict the instruction which produces the load result. A TAGE-like [14] predictor

was designed and could also be tuned as a Store Distance Predictor and adopted to

DMDP.

182

5.8 Summary

Although predication was proposed a long time ago to mitigate the branch mispre-

dictions, it has never been employed to convert data dependencies through memory

to register dependencies.

DMDP is the first mechanism which does not require any special buffer or queue

to keep memory instructions. Therefore, the operation of memory instructions only

needs to consider data dependence, similar to ALU instructions. DMDP converts a

load to i) direct access to cache; ii) reuse of the colliding store data; iii) predication

between cache and the colliding store data. Therefore, the only hardware change is

predication insertion at the rename stage and a consumer counter for expanding the

lifetime of store’s physical registers.

Our evaluation of the mechanism shows that DMDP surpasses NoSQ in all bench-

marks (7.17% Int, 4.48% FP). Meanwhile, DMDP works more power efficiently as

well and saves EDP (8.5% Int, 5.1% FP).

183

Chapter 6

Conclusion

In this work, we designed and implemented four innovative techniques to effectively

mitigate the misspeculation recovery penalties. The current superscalar processors

highly rely on speculative execution and we expect more speculative mechanisms will

be involved in the future. Instead of working on a more accurate prediction, how

to efficiently recover from a misspeculation have become an increasingly important

issue. This dissertation includes all of our efforts to address this concern and excellent

results have been achieved and presented.

Mower (Chapter 2) was first proposed to mitigate the state restoration delay. Two

dependence matrices are designed to track the branch and register mapping depen-

dencies. With these matrices, F-RAT (Front-end Register Alias Table) do not need

185

to be treated as a single entity. Instead, each register mapping has its own valid bit

to indicate if this mapping is correct after a misprediction is detected. Therefore, the

rename process continues as long as the operands of the newly fetched instructions

still have a correct mapping.

In addition to the dependence mechanism, Mower also has a broadcast network to

selectively eliminate invalid instructions left in the back-end of the pipeline. A special

walker is used to walk from the misprediction to the ROB tail to eliminate invalid

instructions. Simultaneously, F-RAT is recovered by undoing the mapping updates.

Because the walking direction in Mower is reversed, the mapping recovery is much

faster than a conventional walking mechanism.

Mower is a general recovery mechanism which can effectively shorten the state restora-

tion delay. Its drawback is, it requires extra hardware overhead and many design

modifications. In order to simplify the design, we proposed a two-phase recovery

algorithm in Chapter 3.

In two-phase recovery mechanism, the first phase is exactly the same as a basic

recovery mechanism which can cover most of the recovery scenarios. The second phase

is launched only when the retire stage is stalled by a long latency execution such as

an LLC (Last Level Cache) miss. In the second phase, all of the instructions left in

the pipeline are treated as invalid instructions and will be eliminated. Therefore, the

186

penalty to recover the misspeculation is overlapped with cache miss penalty. Two-

phase reuses many structures in the basic recovery mechanism and is very simple and

efficient.

Other than state restoration delay, pipeline fill delay is also covered. We designed and

described Passing Loop in Chapter 4. In order to exploit control independence, the

convergence point is usually predicted. In Passing Loop, only short forward branches

are considered. Therefore, the convergence point is always the branch target. Before

the misprediction is detected, the CD (Control Dependent) instructions on both paths

are fetched and only predicted path instructions are executed. During the recovery,

the predicted path (wrong) instructions are eliminated and the alternative path (cor-

rect) instructions are inserted to the reservation station and executed. Passing Loop

is much simpler than other techniques which exploit control independence. It focuses

on the short forward branches to simplify the necessary hardware.

Memory dependence mispredictions account for another part of misspeculations. Dy-

namic Memory Dependence Predication (DMDP) is proposed to minimize the number

of memory dependence mispredictions (Chapter 5). In a store-queue-free architecture,

when the dependence of a store-load pair is inconsistent, the load instruction has to

wait for the related store to commit. This extra delay is detrimental to the overall

performance.

DMDP inserts a predicate to compare the address of the load and the store. If the

187

addresses match, the store data is forwarded to the load instruction. Otherwise, the

data read from the cache is forwarded to the load instruction. As a result, the load is

executed at its earliest time. DMDP works even better in a multi-core system where

store instructions have to commit in program order.

These four innovative mechanisms cover most of the design space of misspeculation

recoveries, including branch mispredictions and memory dependence mispredictions.

This work provides a quantitative view over the concerned problems and have a

thorough quantitative analysis for the proposed mechanisms. A technique such as the

two-phase recovery mechanism is very practical and we believe it can be implemented

in a real hardware and improve the computation performance.

188

References

[1] Held, J.; Bautista, J.; Koehl, S. white paper, Intel 2006.

[2] Asanovic, K.; Bodik, R.; Demmel, J.; Keaveny, T.; Keutzer, K.; Kubiatowicz,

J.; Morgan, N.; Patterson, D.; Sen, K.; Wawrzynek, J.; Wessel, D.; Yelick, K.

Vol. 52, pages 56–67, New York, NY, USA, 2009. ACM.

[3] Amdahl, G. M. In Proceedings of the April 18-20, 1967, Spring Joint Computer

Conference, AFIPS ’67 (Spring), pages 483–485, New York, NY, USA, 1967.

ACM.

[4] Hill, M. D.; Marty, M. R. Computer 2008, 41(7), 33–38.

[5] Woo, D. H.; Lee, H.-H. S. Computer 2008, 41(12), 24–31.

[6] Lee, J. K. F.; Smith, A. J. Computer 1984, 17(1), 6–22.

[7] Perleberg, C. H. Branch target buffer design Technical report, Berkeley, CA,

USA, 1989.

189

[8] Yeh, T.-Y.; Patt, Y. N. In Proceedings of the 24th Annual International Sym-

posium on Microarchitecture, MICRO 24, pages 51–61, New York, NY, USA,

1991. ACM.

[9] Lipasti, M. H.; Shen, J. P. In Proceedings of the 29th Annual ACM/IEEE Inter-

national Symposium on Microarchitecture, MICRO 29, pages 226–237, Wash-

ington, DC, USA, 1996. IEEE Computer Society.

[10] Sazeides, Y.; Smith, J. E. In Proceedings of the 30th Annual ACM/IEEE Inter-

national Symposium on Microarchitecture, MICRO 30, pages 248–258, Wash-

ington, DC, USA, 1997. IEEE Computer Society.

[11] Wang, K.; Franklin, M. In Proceedings of the 30th Annual ACM/IEEE Inter-

national Symposium on Microarchitecture, MICRO 30, pages 281–290, Wash-

ington, DC, USA, 1997. IEEE Computer Society.

[12] Moshovos, A.; Sohi, G. S. Int. J. Parallel Program. 1999, 27(6), 427–456.

[13] Moshovos, A. I. Memory Dependence Prediction PhD thesis, The University of

Wisconsin - Madison, 1998.

[14] Seznec, A. In Proceedings of the 32Nd Annual International Symposium on

Computer Architecture, ISCA ’05, pages 394–405, Washington, DC, USA, 2005.

IEEE Computer Society.

[15] Seznec, A.; Michaud, P. Journal of Instruction Level Parallelism 2006, 8, 1–23.

190

[16] Chrysos, G. Z.; Emer, J. S. In Proceedings of the 25th Annual International

Symposium on Computer Architecture, ISCA ’98, pages 142–153, Washington,

DC, USA, 1998. IEEE Computer Society.

[17] Sha, T.; Martin, M. M. K.; Roth, A. In Proceedings of the 39th Annual

IEEE/ACM International Symposium on Microarchitecture, MICRO 39, pages

285–296, Washington, DC, USA, 2006. IEEE Computer Society.

[18] Perais, A.; Seznec, A. In 2016 IEEE International Symposium on High Perfor-

mance Computer Architecture (HPCA), pages 694–706, 2016.

[19] Seznec, A. In Proceedings of the 44th Annual IEEE/ACM International Sym-

posium on Microarchitecture, MICRO-44, pages 117–127, New York, NY, USA,

2011. ACM.

[20] Seznec, A. In JILP - Championship Branch Prediction, Minneapolis, United

States, 2014.

[21] Shen, J. P.; Lipasti, M. H. Modern processor design: fundamentals of super-

scalar processors; Waveland Press, 2013.

[22] Jourdan, S.; Stark, J.; Hsing, T.-H.; Patt, Y. N. Int. J. Parallel Program. 1997,

25(5), 363–383.

[23] Hinton, G.; Sager, D.; Upton, M.; Boggs, D.; others. In Intel Technology Jour-

nal. Citeseer, 2001.

191

[24] Armstrong, D. N.; Kim, H.; Mutlu, O.; Patt, Y. N. In Proceedings of the 37th

Annual IEEE/ACM International Symposium on Microarchitecture, MICRO

37, pages 119–128, Washington, DC, USA, 2004. IEEE Computer Society.

[25] Method and apparatus for managing instruction flushing in a microprocessor’s

instruction pipeline. McIlvaine, M. S.; Dieffenderfer, J. N.; Sartorius, T. A.

2011.

[26] Akkary, H.; Rajwar, R.; Srinivasan, S. T. In Proceedings of the 36th Annual

IEEE/ACM International Symposium on Microarchitecture, MICRO 36, pages

423–, Washington, DC, USA, 2003. IEEE Computer Society.

[27] Akkary, H.; Rajwar, R.; Srinivasan, S. T. IEEE Micro 2003, 23(6), 11–19.

[28] Rotenberg, E.; Jacobson, Q.; Smith, J. In Proceedings of the 5th International

Symposium on High Performance Computer Architecture, HPCA ’99, pages

115–, Washington, DC, USA, 1999. IEEE Computer Society.

[29] Jin, Z.; Aşilioğlu, G.; Önder, S. In Proceedings of the 29th ACM on International

Conference on Supercomputing, ICS ’15, pages 285–294, New York, NY, USA,

2015. ACM.

[30] Moudgill, M.; Pingali, K.; Vassiliadis, S. In Proceedings of the 26th Annual

International Symposium on Microarchitecture, MICRO 26, pages 202–213, Los

Alamitos, CA, USA, 1993. IEEE Computer Society Press.

192

[31] Hwu, W. W.; Patt, Y. N. In Proceedings of the 14th Annual International

Symposium on Computer Architecture, ISCA ’87, pages 18–26, New York, NY,

USA, 1987. ACM.

[32] Yeager, K. C. IEEE Micro 1996, 16(2), 28–40.

[33] Kessler, R. E. IEEE Micro 1999, 19(2), 24–36.

[34] Cristal, A.; Ortega, D.; Llosa, J.; Valero, M. In Proceedings of the 10th Inter-

national Symposium on High Performance Computer Architecture, HPCA ’04,

pages 48–, Washington, DC, USA, 2004. IEEE Computer Society.

[35] Cristal, A.; Santana, O. J.; Valero, M.; Mart́ınez, J. F. ACM Trans. Archit.

Code Optim. 2004, 1(4), 389–417.

[36] Zhou, P.; Önder, S.; Carr, S. In Proceedings of the 19th Annual International

Conference on Supercomputing, ICS ’05, pages 41–50, New York, NY, USA,

2005. ACM.

[37] Akl, P.; Moshovos, A. In Proceedings of the 20th Annual International Con-

ference on Supercomputing, ICS ’06, pages 36–45, New York, NY, USA, 2006.

ACM.

[38] Akl, P.; Moshovos, A. In Proceedings of the 3rd International Conference on

High Performance Embedded Architectures and Compilers, HiPEAC’08, pages

258–272, Berlin, Heidelberg, 2008. Springer-Verlag.

193

[39] Latorre, F.; Magklis, G.; González, J.; Chaparro, P.; González, A.; Springer-

Verlag: Berlin, Heidelberg, 2011; chapter CROB: Implementing a Large In-

struction Window Through Compression, pages 115–134.

[40] Golander, A.; Weiss, S.; Springer-Verlag: Berlin, Heidelberg, 2009; chapter

Reexecution and Selective Reuse in Checkpoint Processors, pages 242–268.

[41] Golander, A.; Weiss, S. ACM Trans. Archit. Code Optim. 2009, 6(3), 10:1–

10:27.

[42] Hilton, A.; Eswaran, N.; Roth, A. In Proceedings of the 2009 18th International

Conference on Parallel Architectures and Compilation Techniques, PACT ’09,

pages 159–168, Washington, DC, USA, 2009. IEEE Computer Society.

[43] Dual prediction branch system having two step of branch recovery process which

activated only when mispredicted branch is the oldest instruction in the out-

of-order unit. Hoyt, B. D.; Hinton, G. J.; Papworth, D. B.; Gupta, A. K.;

Fetterman, M. A.; Natarajan, S.; Shenoy, S.; D’sa, R. V. 1998.

[44] Goshima, M.; Nishino, K.; Kitamura, T.; Nakashima, Y.; Tomita, S.; Mori,

S.-i. In Proceedings of the 34th Annual ACM/IEEE International Symposium

on Microarchitecture, MICRO 34, pages 225–236, Washington, DC, USA, 2001.

IEEE Computer Society.

194

[45] Sassone, P. G.; Rupley, II, J.; Brekelbaum, E.; Loh, G. H.; Black, B. In Proceed-

ings of the 34th Annual International Symposium on Computer Architecture,

ISCA ’07, pages 335–346, New York, NY, USA, 2007. ACM.

[46] Önder, S.; Gupta, R. In Proceedings of the 1998 International Conference on

Computer Languages, ICCL ’98, pages 80–, Washington, DC, USA, 1998. IEEE

Computer Society.

[47] Patterson, D. A.; Hennessy, J. L. Computer Organization and Design MIPS

Edition: The Hardware/Software Interface; Newnes, 2013.

[48] Henning, J. L. SIGARCH Comput. Archit. News 2006, 34(4), 1–17.

[49] Brooks, D.; Tiwari, V.; Martonosi, M. In Proceedings of the 27th Annual In-

ternational Symposium on Computer Architecture, ISCA ’00, pages 83–94, New

York, NY, USA, 2000. ACM.

[50] Li, S.; Ahn, J. H.; Strong, R. D.; Brockman, J. B.; Tullsen, D. M.; Jouppi,

N. P. In Proceedings of the 42Nd Annual IEEE/ACM International Symposium

on Microarchitecture, MICRO 42, pages 469–480, New York, NY, USA, 2009.

ACM.

[51] Cruz, J.-L.; González, A.; Valero, M.; Topham, N. P. In Proceedings of the 27th

Annual International Symposium on Computer Architecture, ISCA ’00, pages

316–325, New York, NY, USA, 2000. ACM.

195

[52] Golander, A.; Weiss, S. ACM Trans. Archit. Code Optim. 2008, 4(4), 6:1–6:32.

[53] Branch recovery mechanism to reduce processor front end stall time by provid-

ing path information for both correct and incorrect instructions mixed in the

instruction pool. Kyker, A. B.; Boggs, D. D. 2000.

[54] Dixon, M.; Hammarlund, P.; Jourdan, S.; Singhal, R. Intel Technology Journal

2010, 14(3).

[55] Burger, D.; Austin, T. M. SIGARCH Comput. Archit. News 1997, 25(3), 13–25.

[56] Perelman, E.; Hamerly, G.; Van Biesbrouck, M.; Sherwood, T.; Calder, B.

SIGMETRICS Perform. Eval. Rev. 2003, 31(1), 318–319.

[57] Sherwood, T.; Perelman, E.; Calder, B. In Proceedings of the 2001 International

Conference on Parallel Architectures and Compilation Techniques, PACT ’01,

pages 3–14, Washington, DC, USA, 2001. IEEE Computer Society.

[58] Rosenfeld, P.; Cooper-Balis, E.; Jacob, B. IEEE Comput. Archit. Lett. 2011,

10(1), 16–19.

[59] Micron. https://www.micron.com/resource-details/

e570d65b-2664-4037-a141-620a6f2e58e7.

[60] Branch prediction research. INRIA, T. https://team.inria.fr/alf/

members/andre-seznec/branch-prediction-research/.

196

https://www.micron.com/resource-details/e570d65b-2664-4037-a141-620a6f2e58e7
https://www.micron.com/resource-details/e570d65b-2664-4037-a141-620a6f2e58e7
https://team.inria.fr/alf/members/andre-seznec/branch-prediction-research/
https://team.inria.fr/alf/members/andre-seznec/branch-prediction-research/

[61] Seznec, A. In Proceedings of the 2011 IEEE 17th International Symposium on

High Performance Computer Architecture, HPCA ’11, pages 443–454, Wash-

ington, DC, USA, 2011. IEEE Computer Society.

[62] Rotenberg, E.; Smith, J. In Proceedings of the 32Nd Annual ACM/IEEE Inter-

national Symposium on Microarchitecture, MICRO 32, pages 4–15, Washington,

DC, USA, 1999. IEEE Computer Society.

[63] Riseman, E. M.; Foster, C. C. IEEE Trans. Comput. 1972, 21(12), 1405–1411.

[64] Lam, M. S.; Wilson, R. P. In Proceedings of the 19th Annual International

Symposium on Computer Architecture, ISCA ’92, pages 46–57, New York, NY,

USA, 1992. ACM.

[65] Austin, T. M.; Sohi, G. S. In Proceedings of the 19th Annual International

Symposium on Computer Architecture, ISCA ’92, pages 342–351, New York,

NY, USA, 1992. ACM.

[66] Uht, A. K. Hardware Extraction of Low-level Concurrency from Sequential In-

struction Streams (Parallelism, Implementation, Architecture, Dependencies,

Semantics) PhD thesis, Pittsburgh, PA, USA, 1985.

[67] Wang, S. S.; Uht, A. K. In Proceedings of the 23rd Annual Workshop and

Symposium on Microprogramming and Microarchitecture, MICRO 23, pages

125–134, Los Alamitos, CA, USA, 1990. IEEE Computer Society Press.

197

[68] Uht, A. K. IEEE Trans. Parallel Distrib. Syst. 1992, 3(5), 573–581.

[69] Uht, A. K. SIGARCH Comput. Archit. News 1993, 21(3), 5–12.

[70] Uht, A. K.; Sindagi, V.; Hall, K. In Proceedings of the 28th Annual International

Symposium on Microarchitecture, MICRO 28, pages 313–325, Los Alamitos,

CA, USA, 1995. IEEE Computer Society Press.

[71] Chen, T.-F. In Proceedings of the 4th International Symposium on High-

Performance Computer Architecture, HPCA ’98, pages 185–, Washington, DC,

USA, 1998. IEEE Computer Society.

[72] Heil, T. H.; Smith, J. E. Selective dual path execution Technical report, Tech-

nical report, University of Wisconsin-Madison, 1996.

[73] Tyson, G.; Lick, K.; Farrens, M. Limited dual path execution Technical report,

Technical Report CSE-TR 346-97, University of Michigan, 1997.

[74] Ahuja, P. S.; Skadron, K.; Martonosi, M.; Clark, D. W. In Proceedings of the

12th International Conference on Supercomputing, ICS ’98, pages 101–108, New

York, NY, USA, 1998. ACM.

[75] Klauser, A.; Paithankar, A.; Grunwald, D. In Proceedings of the 25th Annual

International Symposium on Computer Architecture, ISCA ’98, pages 250–259,

Washington, DC, USA, 1998. IEEE Computer Society.

198

[76] Klauser, A.; Grunwald, D. In Proceedings of the 32Nd Annual ACM/IEEE In-

ternational Symposium on Microarchitecture, MICRO 32, pages 38–47, Wash-

ington, DC, USA, 1999. IEEE Computer Society.

[77] Aragón, J. L.; González, J.; González, A.; Smith, J. E. In Proceedings of the

16th International Conference on Supercomputing, ICS ’02, pages 220–229, New

York, NY, USA, 2002. ACM.

[78] Mahlke, S. A.; Hank, R. E.; McCormick, J. E.; August, D. I.; Hwu, W.-M. W.

In Proceedings of the 22Nd Annual International Symposium on Computer Ar-

chitecture, ISCA ’95, pages 138–150, New York, NY, USA, 1995. ACM.

[79] Wallace, S.; Calder, B.; Tullsen, D. M. SIGARCH Comput. Archit. News 1998,

26(3), 238–249.

[80] Mantripragada, S.; Nicolau, A. In Proceedings of the 14th International Confer-

ence on Supercomputing, ICS ’00, pages 206–214, New York, NY, USA, 2000.

ACM.

[81] Chuang, W.; Calder, B. In Proceedings of the 17th Annual International Con-

ference on Supercomputing, ICS ’03, pages 183–192, New York, NY, USA, 2003.

ACM.

[82] Kim, H.; Mutlu, O.; Stark, J.; Patt, Y. N. In Proceedings of the 38th Annual

IEEE/ACM International Symposium on Microarchitecture, MICRO 38, pages

43–54, Washington, DC, USA, 2005. IEEE Computer Society.

199

[83] Quiñones, E.; Parcerisa, J.-M.; Gonzalez, A. In Proceedings of the 20th Annual

International Conference on Supercomputing, ICS ’06, pages 46–54, New York,

NY, USA, 2006. ACM.

[84] Sodani, A.; Sohi, G. S. In Proceedings of the 24th Annual International Sym-

posium on Computer Architecture, ISCA ’97, pages 194–205, New York, NY,

USA, 1997. ACM.

[85] Chou, Y.; Fung, J.; Shen, J. P. In Proceedings of the 13th International Confer-

ence on Supercomputing, ICS ’99, pages 109–118, New York, NY, USA, 1999.

ACM.

[86] Cher, C.-Y.; Vijaykumar, T. N. In Proceedings of the 34th Annual ACM/IEEE

International Symposium on Microarchitecture, MICRO 34, pages 4–15, Wash-

ington, DC, USA, 2001. IEEE Computer Society.

[87] Kane, G. Chapter 1989, 2, 2–6.

[88] Collins, J. D.; Tullsen, D. M.; Wang, H. In Proceedings of the 37th Annual

IEEE/ACM International Symposium on Microarchitecture, MICRO 37, pages

129–140, Washington, DC, USA, 2004. IEEE Computer Society.

[89] Gandhi, A.; Akkary, H.; Srinivasan, S. T. In Proceedings of the 10th Inter-

national Symposium on High Performance Computer Architecture, HPCA ’04,

pages 254–, Washington, DC, USA, 2004. IEEE Computer Society.

200

[90] Al-Zawawi, A. S.; Reddy, V. K.; Rotenberg, E.; Akkary, H. H. In Proceedings

of the 34th Annual International Symposium on Computer Architecture, ISCA

’07, pages 448–459, New York, NY, USA, 2007. ACM.

[91] Hilton, A. D.; Roth, A. In Proceedings of the 34th Annual International Sym-

posium on Computer Architecture, ISCA ’07, pages 436–447, New York, NY,

USA, 2007. ACM.

[92] Premillieu, N.; Seznec, A. ACM Trans. Archit. Code Optim. 2012, 8(4), 43:1–

43:20.

[93] Palacharla, S.; Jouppi, N. P.; Smith, J. E. In Proceedings of the 24th Annual

International Symposium on Computer Architecture, ISCA ’97, pages 206–218,

New York, NY, USA, 1997. ACM.

[94] Onder, S.; Gupta, R. In Proceedings of the 32Nd Annual ACM/IEEE Interna-

tional Symposium on Microarchitecture, MICRO 32, pages 170–176, Washing-

ton, DC, USA, 1999. IEEE Computer Society.

[95] Torres, E. F.; Ibanez, P.; Vinals, V.; Llaberia, J. M. In Proceedings of the 32Nd

Annual International Symposium on Computer Architecture, ISCA ’05, pages

469–480, Washington, DC, USA, 2005. IEEE Computer Society.

[96] Stone, S. S.; Woley, K. M.; Frank, M. I. In Proceedings of the 38th Annual

IEEE/ACM International Symposium on Microarchitecture, MICRO 38, pages

171–182, Washington, DC, USA, 2005. IEEE Computer Society.

201

[97] Sha, T.; Martin, M. M. K.; Roth, A. In Proceedings of the 38th Annual

IEEE/ACM International Symposium on Microarchitecture, MICRO 38, pages

159–170, Washington, DC, USA, 2005. IEEE Computer Society.

[98] Sethumadhavan, S.; Desikan, R.; Burger, D.; Moore, C. R.; Keckler, S. W.

In Proceedings of the 36th Annual IEEE/ACM International Symposium on

Microarchitecture, MICRO 36, pages 399–, Washington, DC, USA, 2003. IEEE

Computer Society.

[99] Park, I.; Ooi, C. L.; Vijaykumar, T. N. In Proceedings of the 36th Annual

IEEE/ACM International Symposium on Microarchitecture, MICRO 36, pages

411–, Washington, DC, USA, 2003. IEEE Computer Society.

[100] Garg, A.; Rashid, M. W.; Huang, M. In Proceedings of the 33rd Annual In-

ternational Symposium on Computer Architecture, ISCA ’06, pages 142–154,

Washington, DC, USA, 2006. IEEE Computer Society.

[101] Gandhi, A.; Akkary, H.; Rajwar, R.; Srinivasan, S. T.; Lai, K. In Proceedings

of the 32Nd Annual International Symposium on Computer Architecture, ISCA

’05, pages 446–457, Washington, DC, USA, 2005. IEEE Computer Society.

[102] Baugh, L.; Zilles, C. IBM J. Res. Dev. 2006, 50(2/3), 287–297.

[103] Subramaniam, S.; Loh, G. H. In Proceedings of the 39th Annual IEEE/ACM In-

ternational Symposium on Microarchitecture, MICRO 39, pages 273–284, Wash-

ington, DC, USA, 2006. IEEE Computer Society.

202

[104] Hilton, A.; Roth, A. In Proceedings of the 36th Annual International Symposium

on Computer Architecture, ISCA ’09, pages 245–254, New York, NY, USA, 2009.

ACM.

[105] Wenisch, T. F.; Ailamaki, A.; Falsafi, B.; Moshovos, A. In Proceedings of the

34th Annual International Symposium on Computer Architecture, ISCA ’07,

pages 266–277, New York, NY, USA, 2007. ACM.

[106] Mahlke, S. A.; Lin, D. C.; Chen, W. Y.; Hank, R. E.; Bringmann, R. A. In

Proceedings of the 25th Annual International Symposium on Microarchitecture,

MICRO 25, pages 45–54, Los Alamitos, CA, USA, 1992. IEEE Computer Soci-

ety Press.

[107] Klauser, A.; Austin, T.; Grunwald, D.; Calder, B. In Proceedings of the 1998

International Conference on Parallel Architectures and Compilation Techniques,

PACT ’98, pages 278–, Washington, DC, USA, 1998. IEEE Computer Society.

[108] Roth, A. In Proceedings of the 32Nd Annual International Symposium on Com-

puter Architecture, ISCA ’05, pages 458–468, Washington, DC, USA, 2005.

IEEE Computer Society.

[109] Roth, A. Journal of Instruction Level Parallelism 2006, 8, 22.

[110] Yoaz, A.; Erez, M.; Ronen, R.; Jourdan, S. In Proceedings of the 26th Annual

International Symposium on Computer Architecture, ISCA ’99, pages 42–53,

Washington, DC, USA, 1999. IEEE Computer Society.

203

[111] Roth, A. IEEE Comput. Archit. Lett. 2008, 7(1), 9–12.

[112] Ergin, O.; Balkan, D.; Ponomarev, D.; Ghose, K. In Proceedings of the IEEE

International Conference on Computer Design, ICCD ’04, pages 480–487, Wash-

ington, DC, USA, 2004. IEEE Computer Society.

[113] Lepak, K. M.; Lipasti, M. H. In Proceedings of the 33rd Annual ACM/IEEE

International Symposium on Microarchitecture, MICRO 33, pages 22–31, New

York, NY, USA, 2000. ACM.

[114] Chou, Y.; Spracklen, L.; Abraham, S. G. In Proceedings of the 38th Annual

IEEE/ACM International Symposium on Microarchitecture, MICRO 38, pages

183–196, Washington, DC, USA, 2005. IEEE Computer Society.

[115] Allen, J. R.; Kennedy, K.; Porterfield, C.; Warren, J. In Proceedings of the

10th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Lan-

guages, POPL ’83, pages 177–189, New York, NY, USA, 1983. ACM.

[116] Sethumadhavan, S.; Roesner, F.; Emer, J. S.; Burger, D.; Keckler, S. W. In

Proceedings of the 34th Annual International Symposium on Computer Archi-

tecture, ISCA ’07, pages 347–357, New York, NY, USA, 2007. ACM.

[117] Method and apparatus for store dependence prediction. Kim, H.-S.; Chappell,

R. S.; Soo, C. Y. 2017.

204

Appendix A

Copyright Permission

205

ASSOCIATION FOR COMPUTING MACHINERY, INC. LICENSE
 TERMS AND CONDITIONS

Mar 15, 2018

This Agreement between Michigan Technological University -- Zhaoxiang Jin ("You") and Association for Computing
Machinery, Inc. ("Association for Computing Machinery, Inc.") consists of your license details and the terms and
conditions provided by Association for Computing Machinery, Inc. and Copyright Clearance Center.

All payments must be made in full to CCC. For payment instructions, please see information listed at the bottom
of this form.

License Number 4310301417821

License date Mar 15, 2018

Licensed Content
Publisher

Association for Computing Machinery, Inc.

Licensed Content
Publication

Proceedings

Licensed Content Title Mower: A New Design for Non-blocking Misprediction Recovery

Licensed Content
Author

Zhaoxiang Jin, et al

Licensed Content Date Jun 8, 2015

Type of Use Thesis/Dissertation

Requestor type Author of this ACM article

Is reuse in the author's
own new work?

Yes

Format Print and electronic

Portion Full article

Will you be translating? No

Order reference
number
Title of your
thesis/dissertation

Mitigating the effect of Misspeculations in Superscalar Processors

Expected completion
date

May 2018

Estimated size (pages) 180

Requestor Location Michigan Technological University
 2001F, Woodmar Dr

HOUGHTON, MI 49931
 United States

 Attn: Zhaoxiang Jin
Billing Type Credit Card

Credit card info Master Card ending in 7794

Credit card expiration 10/2018

Total 8.00 USD

206

Terms and Conditions
Rightslink Terms and Conditions for ACM Material

1. The publisher of this copyrighted material is Association for Computing Machinery, Inc. (ACM). By clicking
"accept" in connection with completing this licensing transaction, you agree that the following terms and conditions
apply to this transaction (along with the Billing and Payment terms and conditions established by Copyright
Clearance Center, Inc. ("CCC"), at the time that you opened your Rightslink account and that are available at any
time at).
2. ACM reserves all rights not specifically granted in the combination of (i) the license details provided by you and
accepted in the course of this licensing transaction, (ii) these terms and conditions and (iii) CCC's Billing and
Payment terms and conditions.
3. ACM hereby grants to licensee a non-exclusive license to use or republish this ACM-copyrighted material* in
secondary works (especially for commercial distribution) with the stipulation that consent of the lead author has
been obtained independently. Unless otherwise stipulated in a license, grants are for one-time use in a single
edition of the work, only with a maximum distribution equal to the number that you identified in the licensing process.
Any additional form of republication must be specified according to the terms included at the time of licensing.
*Please note that ACM cannot grant republication or distribution licenses for embedded third-party material. You
must confirm the ownership of figures, drawings and artwork prior to use.
4. Any form of republication or redistribution must be used within 180 days from the date stated on the license and
any electronic posting is limited to a period of six months unless an extended term is selected during the licensing
process. Separate subsidiary and subsequent republication licenses must be purchased to redistribute copyrighted
material on an extranet. These licenses may be exercised anywhere in the world.
5. Licensee may not alter or modify the material in any manner (except that you may use, within the scope of the
license granted, one or more excerpts from the copyrighted material, provided that the process of excerpting does
not alter the meaning of the material or in any way reflect negatively on the publisher or any writer of the material).
6. Licensee must include the following copyright and permission notice in connection with any reproduction of the
licensed material: "[Citation] © YEAR Association for Computing Machinery, Inc. Reprinted by permission." Include
the article DOI as a link to the definitive version in the ACM Digital Library. Example: Charles, L. "How to Improve
Digital Rights Management," Communications of the ACM, Vol. 51:12, © 2008 ACM, Inc.
http://doi.acm.org/10.1145/nnnnnn.nnnnnn (where nnnnnn.nnnnnn is replaced by the actual number).
7. Translation of the material in any language requires an explicit license identified during the licensing process.
Due to the error-prone nature of language translations, Licensee must include the following copyright and
permission notice and disclaimer in connection with any reproduction of the licensed material in translation: "This
translation is a derivative of ACM-copyrighted material. ACM did not prepare this translation and does not guarantee
that it is an accurate copy of the originally published work. The original intellectual property contained in this work
remains the property of ACM."
8. You may exercise the rights licensed immediately upon issuance of the license at the end of the licensing
transaction, provided that you have disclosed complete and accurate details of your proposed use. No license is
finally effective unless and until full payment is received from you (either by CCC or ACM) as provided in CCC's
Billing and Payment terms and conditions.
9. If full payment is not received within 90 days from the grant of license transaction, then any license preliminarily
granted shall be deemed automatically revoked and shall be void as if never granted. Further, in the event that you
breach any of these terms and conditions or any of CCC's Billing and Payment terms and conditions, the license is
automatically revoked and shall be void as if never granted.
10. Use of materials as described in a revoked license, as well as any use of the materials beyond the scope of an
unrevoked license, may constitute copyright infringement and publisher reserves the right to take any and all action
to protect its copyright in the materials.
11. ACM makes no representations or warranties with respect to the licensed material and adopts on its own behalf
the limitations and disclaimers established by CCC on its behalf in its Billing and Payment terms and conditions for
this licensing transaction.
12. You hereby indemnify and agree to hold harmless ACM and CCC, and their respective officers, directors,
employees and agents, from and against any and all claims arising out of your use of the licensed material other
than as specifically authorized pursuant to this license.
13. This license is personal to the requestor and may not be sublicensed, assigned, or transferred by you to any
other person without publisher's written permission.
14. This license may not be amended except in a writing signed by both parties (or, in the case of ACM, by CCC on
its behalf).

207

15. ACM hereby objects to any terms contained in any purchase order, acknowledgment, check endorsement or
other writing prepared by you, which terms are inconsistent with these terms and conditions or CCC's Billing and
Payment terms and conditions. These terms and conditions, together with CCC's Billing and Payment terms and
conditions (which are incorporated herein), comprise the entire agreement between you and ACM (and CCC)
concerning this licensing transaction. In the event of any conflict between your obligations established by these
terms and conditions and those established by CCC's Billing and Payment terms and conditions, these terms and
conditions shall control.
16. This license transaction shall be governed by and construed in accordance with the laws of New York State. You
hereby agree to submit to the jurisdiction of the federal and state courts located in New York for purposes of
resolving any disputes that may arise in connection with this licensing transaction.
17. There are additional terms and conditions, established by Copyright Clearance Center, Inc. ("CCC") as the
administrator of this licensing service that relate to billing and payment for licenses provided through this service.
Those terms and conditions apply to each transaction as if they were restated here. As a user of this service, you
agreed to those terms and conditions at the time that you established your account, and you may see them again at
any time at http://myaccount.copyright.com
18. Thesis/Dissertation: This type of use requires only the minimum administrative fee. It is not a fee for permission.
Further reuse of ACM content, by ProQuest/UMI or other document delivery providers, or in republication requires a
separate permission license and fee. Commercial resellers of your dissertation containing this article must acquire a
separate license.
Special Terms:

Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) or +1-978-646-2777.

208

	Contents
	List of Figures
	List of Tables
	Author Contribution Statement
	List of Abbreviations
	Abstract
	Introduction
	A Superscalar Processor
	The Front-end
	The Back-end
	Register Alias Table

	Speculative Execution
	Branch Prediction
	Memory Ordering Prediction

	Misspeculation Recovery
	Recovering Branch Predictor State
	Restoring the Map Tables
	Eliminating Stale Instructions

	Recovery Penalty Analysis
	Misspeculation Detection Delay
	Stale Instruction Elimination Delay
	State Restoration Delay
	Pipeline Fill Delay

	Summary

	Mower : A Walking-based Misspeculation Recovery Mechanism
	Overview
	Recovering F-RAT by Walking
	Checkpointing Architectures
	Motivation

	Control Dependence Tracking
	Branch Renaming
	Disambiguating the Branch Ordering
	Tracking Affected F-RAT entries

	A Reverse Walking Procedure
	Recovering F-RAT in a gradual manner
	Eliminating Stale Instructions

	Microarchitecture
	Branch Tag Allocation and Release
	Branch and Mapping Dependence Matrices
	Reclaiming the Resources using a single Read Port

	Evaluation
	Evaluation Methodology
	Branch Tag Size Effect
	Invalid Register Mappings
	Eliminating Invalid Instructions
	The Front-end and Back-end depth
	Energy Efficiency

	Summary

	Two-Phase Misspeculation Recovery
	Overview
	A Basic Recovery Mechanism
	Analysis and Related Work
	Key Observation

	Preliminary Analysis
	Microarchitecture
	Initialization
	Three Different Flushing Policies
	Fetch Policy
	F-RAT and Free Register Pool
	Speculative Recovery
	Complexity Comparison

	Evaluation
	Simulation Methodology
	Recover Afterwards and Two-Phase
	Recover Beforehand and Two-Phase
	Allocation Algorithms in Checkpointing Architectures
	Memory Latency Effect
	ROB Size Effect
	Issue Width Effect
	Power Efficiency

	Summary

	Passing Loop : Reducing the Pipeline Fill Delay
	Overview
	Control Independence
	The Convergence Point Prediction
	The Affected Register Mapping
	Correct Instruction Insertion

	Related Work
	Eager Execution
	Control Independence

	The Concept of Passing Loop
	Microarchitecture
	Front-end: Fetching Algorithm
	Handling Memory Instructions
	Back-end: Misprediction Recovery
	CIDD redundancy

	Experimental Results
	Simulation Methodology
	Performance Analysis
	Energy Efficiency
	Design Complexity

	Summary

	Dynamic Memory Dependence Predication
	Overview
	Motivation
	The Concept of Memory Predication
	Microarchitecture
	Store Vulnerability Window
	Tagged Store Sequence Bloom Filter
	Load Re-execution
	Memory Dependence Prediction
	Memory Cloaking
	Predication Insertion
	Physical Register Reference Counter
	Load Re-execution Filter
	Silent Store Effect
	Partial-Word Forwarding
	Confidence Predictor
	Memory Consistency

	Evaluation Methodology
	Experimental Results
	NoSQ VS. Baseline
	DMDP VS. Baseline
	DMDP VS. NoSQ
	DMDP VS. Perfect
	Case Study in bzip2
	Store Buffer Size Effect
	Alternative Configurations
	Energy Efficiency

	Related Work
	Summary

	Conclusion
	References
	Copyright Permission

