Skip to main content
Log in

Optimizing day-ahead bid curves in hydropower production

  • Original Paper
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

In deregulated electricity markets, hydropower producers must bid their production into the day-ahead market. For price-taking producers, it is optimal to offer energy according to marginal costs, which for hydropower are determined by the opportunity cost of using water that could have been stored for future production. At the time of bidding, uncertainty of future prices and inflows may affect the opportunity costs and thus also the optimal bids. This paper presents a model for hydropower bidding where the bids are based on optimal production schedules from a stochastic model. We also present a heuristic algorithm for reducing the bid matrix into the size required by the market operator. Results for the optimized bids and the reduction algorithm are analyzed in a case study showing how uncertain inflows may affect the bids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from €37.37 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Norway)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Fosso, O.B., Gjelsvik, A., Haugstad, A., Mo, B., Wangensteen, I.: Generation scheduling in a deregulated system. The Norwegian case. IEEE Trans. Power Syst. 14(1), 75–81 (1999)

    Article  Google Scholar 

  2. Pereira, M.V.F., Pinto, L.M.V.G.: Stochastic optimization of a multireservoir hydroelectric system: a decomposition approach. Water Resour. Res. 21(6), 779–892 (1985)

    Article  Google Scholar 

  3. Fleten, S.-E., Kristoffersen, T.K.: Stochastic programming for optimizing bidding strategies of a Nordic hydropower producer. Eur. J. Oper. Res. 181(2), 916–928 (2007)

    Article  MATH  Google Scholar 

  4. Pritchard, G., Zakeri, G.: Market offering strategies for hydro-electric generators. Oper. Res. 51, 602612 (2003)

    Article  Google Scholar 

  5. Pritchard, G., Philpott, A.B., Neame, P.J.: Hydroelectric reservoir optimization in a pool market. Math. Program. 103(3), 445461 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fleten, S.-E., Kristoffersen, T.K.: Short-term hydropower production planning by stochastic programming. Comput. Oper. Res. 35, 2656–2671 (2008)

    Article  MATH  Google Scholar 

  7. Séguin, S., Fleten, S.-E., Côté, P., Pichler, A., Audet, C.: Stochastic short-term hydropower planning with inflow scenario trees. Technical Report G-2015-97. GERAD, Montreal, Canada (2015)

  8. Belsnes, M.M., Wolfgang, O., Follestad, T., Aasgård, E.K.: Applying successive linear programming for stochastic short-term hydropower optimization. Electr. Power Syst. Res. 130, 167–180 (2016)

    Article  Google Scholar 

  9. Padhy, N.P.: Unit commitment—a bibliographical survey. IEEE Trans. Power Syst. 19(2), 1196–1205 (2004)

    Article  MathSciNet  Google Scholar 

  10. Steeger, G., Barroso, L.A., Rebennack, S.: Optimal bidding strategies for hydro-electric producers: a literature survey. IEEE Trans. Power Syst. 29(4), 17581766 (2014)

    Article  Google Scholar 

  11. Fosso, O.B., Belsnes, M.M.: Short-term hydro scheduling in a liberalized power system. Int. Conf. Power Syst. Technol. 2, 1321–1326 (2004)

    Google Scholar 

  12. SHOP info site, [online]. https://www.sintef.no/en/sintef-energy/softwareenglish/allsoftware_english/shop/. Accessed 21 Feb 2016

  13. Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming. Springer, New York (1997)

    MATH  Google Scholar 

  14. Gjelsvik, A., Belsnes, M.M., Haugstad, A.: An algorithm for stochastic medium-term hydrothermal scheduling under spot price uncertainty. In: Proceedings 13th Power System Computation Conference, Trondheim, 28 June–2 July 1999

  15. Fodstad, M., Henden, A.L., Helseth, A.: Hydropower scheduling in day-ahead and balancing markets. In: 12th International Conference on the European Energy Market (2015)

  16. Plazas, M.A., Conejo, A.J., Prieto, F.J.: Multimarket optimal bidding for a power producer. IEEE Trans. Power Syst. 20(4), 2041–2049 (2005)

    Article  Google Scholar 

  17. Ottesen, S.Ø., Tomasgard, A., Fleten, S.-E.: Prosumer bidding and scheduling in electricity markets. Energy 94, 828843 (2016)

    Article  Google Scholar 

  18. SKM Market Predictor AS P.O Box 2637, 7414 Trondheim, Norway. Tel: (+47) 73 80 58 00, Fax: (+47) 73 80 58 01. Contact: info@skmenergy.com

  19. Bergström, S.: The HBV model—its structure and applications. SMHI Reports RH, No. 4, Norrköping (1992)

  20. Heitsch, H., Römisch, W.: Scenario reduction algorithms in stochastic programming. Comput. Optim. Appl. 24(2–3), 187–206 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen Krohn Aasgård.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aasgård, E.K., Naversen, C.Ø., Fodstad, M. et al. Optimizing day-ahead bid curves in hydropower production. Energy Syst 9, 257–275 (2018). https://doi.org/10.1007/s12667-017-0234-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s12667-017-0234-z

Keywords