Skip to main content
Log in

Penalized distributed lag non-linear models for small area data using Laplacian-P-splines

  • Original Paper
  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

Distributed lag non-linear models (DLNMs) have gained popularity for modeling nonlinear lagged relationships between exposures and outcomes. When applied to spatially referenced data, these models must account for spatial dependence, a challenge that has yet to be thoroughly explored within the penalized DLNM framework. This gap is mainly due to the complex model structure and high computational demands, particularly when dealing with large spatio-temporal datasets. To address this, we propose a novel Bayesian DLNM-Laplacian-P-splines (DLNM-LPS) approach that incorporates spatial dependence using conditional autoregressive (CAR) priors, a method commonly applied in disease mapping. Our approach offers a flexible framework for capturing nonlinear associations while accounting for spatial dependence. It uses the Laplace approximation to approximate the conditional posterior distribution of the regression parameters, eliminating the need for Markov chain Monte Carlo (MCMC) sampling, often used in Bayesian inference, thus improving computational efficiency. The methodology is evaluated through simulation studies and applied to analyze the relationship between temperature and mortality in London.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from €37.37 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Norway)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data and R codes used to generate the results are available on GitHub using the following link: https://github.com/Rutten-Sara/DLNM---Laplace.

References

  • Analitis, A., Katsouyanni, K., Biggeri, A., Baccini, M., Forsberg, B., Bisanti, L., Kirchmayer, U., Ballester, F., Cadum, E., Goodman, P., et al.: Effects of cold weather on mortality: results from 15 european cities within the phewe project. Am. J. Epidemiol. 168(12), 1397–1408 (2008)

    Article  Google Scholar 

  • Besag, J.: Spatial interaction and the statistical analysis of lattice systems. J. Roy. Stat. Soc.: Ser. B (Methodol.) 36(2), 192–225 (1974)

    Article  MathSciNet  Google Scholar 

  • Besag, J., York, J., Mollié, A.: Bayesian image restoration, with two applications in spatial statistics. Ann. Inst. Stat. Math. 43, 1–20 (1991)

    Article  MathSciNet  Google Scholar 

  • Chien, L.-C., Guo, Y., Li, X., Yu, H.-L.: Considering spatial heterogeneity in the distributed lag non-linear model when analyzing spatiotemporal data. J. Expo. Sci. Environ. Epidemiol. 28(1), 13–20 (2018)

    Article  Google Scholar 

  • Eilers, P.H.C., Marx, B.D.: Flexible smoothing with B-splines and penalties. Stat. Sci. 11(2), 89–121 (1996)

    Article  MathSciNet  Google Scholar 

  • Eilers, P.H.C., Marx, B.D., Durbán, M.: Twenty years of P-splines. SORT: Statistics and Operations Research Transactions 39(2), 0149–0186 (2015)

    MathSciNet  Google Scholar 

  • Fahrmeir, L., Lang, S.: Bayesian inference for generalized additive mixed models based on Markov random field priors. J. R. Stat. Soc.: Ser. C: Appl. Stat. 50(2), 201–220 (2001)

    Article  MathSciNet  Google Scholar 

  • Gasparrini, A.: A tutorial on the case time series design for small-area analysis. BMC Med. Res. Methodol. 22, 129 (2022)

    Article  Google Scholar 

  • Gasparrini, A., Armstrong, B., Kenward, M.: Distributed lag non-linear models. Stat. Med. 29(21), 2224–2234 (2010)

    Article  MathSciNet  Google Scholar 

  • Gasparrini, A., Leone, M.: Attributable risk from distributed lag models. BMC Med. Res. Methodol. 14, 55 (2014)

    Article  Google Scholar 

  • Gasparrini, A., Scheipl, F., Armstrong, B., Kenward, M.G.: A penalized framework for distributed lag non-linear models. Biometrics 73(3), 938–948 (2017)

    Article  MathSciNet  Google Scholar 

  • Gressani, O., Lambert, P.: Fast Bayesian inference using Laplace approximations in a flexible promotion time cure model based on P-splines. Comput. Stat. Data Anal. 124, 151–167 (2018)

    Article  MathSciNet  Google Scholar 

  • Gressani, O., Lambert, P.: Laplace approximations for fast Bayesian inference in generalized additive models based on P-splines. Comput. Stat. Data Anal. 154, 107088 (2021)

    Article  MathSciNet  Google Scholar 

  • Jullion, A., Lambert, P.: Robust specification of the roughness penalty prior distribution in spatially adaptive Bayesian P-splines models. Comput. Stat. Data Anal. 51(5), 2542–2558 (2007)

    Article  MathSciNet  Google Scholar 

  • Lang, S., Brezger, A.: Bayesian P-splines. J. Comput. Graph. Stat. 13(1), 183–212 (2004)

    Article  MathSciNet  Google Scholar 

  • Lee, D.: A comparison of conditional autoregressive models used in Bayesian disease mapping. Spatial and Spatio-temporal Epidemiology 2(2), 79–89 (2011)

    Article  Google Scholar 

  • Leroux, B., Lei, X., Breslow, N.: Estimation of disease rates in small areas: A new mixed model for spatial dependence. In: Halloran, M.E., Berry, D. (eds.) Statistical Models in Epidemiology, the Environment and Clinical Trials, pp. 135–178. Springer-Verlag, New York (1999)

    Google Scholar 

  • Lowe, R., Lee, S.A., O’Reilly, K.M., Brady, O.J., Bastos, L., Carrasco-Escobar, G., de Castro Catão, R., Colón-González, F.J., Barcellos, C., Carvalho, M.S., et al.: Combined effects of hydrometeorological hazards and urbanisation on dengue risk in Brazil: a spatiotemporal modelling study. The Lancet Planetary Health 5(4), e209–e219 (2021)

    Article  Google Scholar 

  • Met Office, Hollis, D., McCarthy, M., Kendon, M., Legg, T., Simpson, I.: Hadukgrid gridded climate observations on a 1km grid over the uk, v1.2.0.ceda (1836-2022). Centre for Environmental Data Analysis, (2019)

  • Montero, J.C., Mirón, I.J., Criado-Álvarez, J.J., Linares, C., Díaz, J.: Mortality from cold waves in Castile - La Mancha, Spain. Sci. Total Environ. 408, 5768–5774 (2010)

    Article  Google Scholar 

  • Obermeier, V., Scheipl, F., Heumann, C., Wassermann, J., Küchenhoff, H.: Flexible distributed lags for modelling earthquake data. J. Roy. Stat. Soc.: Ser. C (Appl. Stat.) 64(3), 395–412 (2015)

    MathSciNet  Google Scholar 

  • Office for National Statistics. Super output area population (LSOA, MSOA), London: Land area and population density for MSOA and LSOA (2011) for most recent year. https://data.london.gov.uk/dataset/super-output-area-population-lsoa-msoa-london. Last accessed: 15 July 2024, (2014)

  • Quijal-Zamorano, M., Martinez-Beneito, M.A., Ballester, J., Marí-Dell’Olmo, M.: Spatial Bayesian distributed lag non-linear models (SB-DLNM) for small-area exposure-lag-response epidemiological modelling. Int. J. Epidemiol. 53(3), dyae061 (2024)

    Article  Google Scholar 

  • Rue, H., Martino, S., Chopin, N.: Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 71(2), 319–392 (2009)

    Article  MathSciNet  Google Scholar 

  • Samet, J. M., Zeger, S. L., Dominici, F., Dockery, D., Schwartz, J.: The national morbidity, mortality, and air pollution study (nmmaps). Part 1. methods and methodological issues. Technical report. Health Effects Institute, (2015)

  • Wood, S., Goude, Y., Shaw, S.: Generalized additive models for large datasets. J. R. Stat. Soc. Ser. C 64(1), 139–155 (2015)

    Article  MathSciNet  Google Scholar 

  • Wood, S.N.: Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. Journal of the Royal Statistical Society. Series B (Statistical Methodology) 73(1), 3–36 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation - Flanders (FWO) and the Flemish Government - department EWI.

Funding

TN gratefully acknowledges funding by the Research Foundation - Flanders (grant number G0A3M24N).

Author information

Authors and Affiliations

Authors

Contributions

S.R. and B.S. contributed equally to this work. They were responsible for writing the main manuscript text and developing the computational code. O.G., T.N., E.D., N.H. and C.F. provided conceptual guidance, supervised the research, critically reviewed and revised the manuscript, and verified the methodology and results.

Corresponding author

Correspondence to Sara Rutten.

Ethics declarations

Competing Interest Statement

The authors have declared no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 2072 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rutten, S., Sumalinab, B., Gressani, O. et al. Penalized distributed lag non-linear models for small area data using Laplacian-P-splines. Stat Comput 36, 38 (2026). https://doi.org/10.1007/s11222-025-10790-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1007/s11222-025-10790-9

Keywords