Skip to main content
Log in

Fault-tolerant control for vessel systems with intermittent constraints and event-triggered mechanism

  • Research
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This research focuses on the problem of tracking with intermittent output constraints under external disturbances by presenting a novel fault-tolerant control methodology for surface ship systems. To optimize resource usage, a dynamic memory event-triggered mechanism (DMETM) is introduced that features a longer triggering interval compared to traditional mechanisms, which helps implement the proposed control scheme. Since the given output constraints differ from ordinary continuous constraints, the quadratic and log-type Lyapunov functions are used to convert the constrained and unconstrained systems by introducing an auxiliary switching function. Furthermore, different actuator defects are efficiently handled by the fault-tolerant control. By selecting appropriate design parameters, the suggested control scheme ensures all system signals in the closed-loop are bounded and the tracking error remains within a small range near zero, without violating the output constraints. A simulation example demonstrates the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from €37.37 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Norway)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availibility

No datasets were generated or analysed during the current study.

References

  1. Fossen, T.I.: A survey on nonlinear ship control: From theory to practice. IFAC Pap. 33(21), 1–16 (2000)

    Google Scholar 

  2. Moreira, L., Fossen, T.I., Soares, C.G.: Path following control system for a tanker ship model. Ocean Eng. 34(14–15), 2074–2085 (2007)

    Article  ADS  Google Scholar 

  3. Zhang, Z., Wu, Y.: Further results on fixed-time stabilization and tracking control of a marine surface ship subjected to output constraints. IEEE Trans. Syst. Man. Cybern. Syst. 51(9), 5300–5310 (2019)

    Article  ADS  Google Scholar 

  4. Papadimitrakis, M., Stogiannos, M., Sarimveis, H., Alexandridis, A.: Multi-ship control and collision avoidance using MPC and RBF-based trajectory predictions. Sensors. 21(21), 6959 (2021)

    Article  ADS  Google Scholar 

  5. Chwa, D.: Global tracking control of underactuated ships with input and velocity constraints using dynamic surface control method. IEEE Trans. Control Syst. Technol. 19(6), 1357–1370 (2010)

    Article  Google Scholar 

  6. Zhang, G., Huang, C., Zhang, X., Tian, B.: Robust adaptive control for dynamic positioning ships in the presence of input constraints. J. Mar. Science Technol. 24, 1172–1182 (2019)

    Article  ADS  Google Scholar 

  7. Van, M., Do, V.T., Khyam, M.O., Do, X.P.: Tracking control of uncertain surface vessels with global finite-time convergence. Ocean Eng. 241, 109974 (2021)

    Article  Google Scholar 

  8. Peng, Z., Wang, C., Yin, Y., Wang, J.: Safety-certified constrained control of maritime autonomous surface ships for automatic berthing. IEEE Trans. Veh. Technol. 72(7), 8541–8552 (2023)

    Article  ADS  Google Scholar 

  9. Bolbot, V., Sandru, A., Saarniniemi, T., Puolakka, O., Kujala, P., Valdez Banda, O.A.: Small Unmanned Surface Vessels-A Review and Critical Analysis of Relations to Safety and Safety Assurance of Larger Autonomous Ships. J. Mar. Science Eng. 11(12), 2387 (2023)

    Article  Google Scholar 

  10. Tao, G., Joshi, S.M., Ma, X.: Adaptive state feedback and tracking control of systems with actuator failures. IEEE Trans. Automat. Control. 46(1), 78–95 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  11. Li, P., Yang, G.: Backstepping adaptive fuzzy control of uncertain nonlinear systems against actuator faults. J. Control Theor. Appl. 7(3), 248–256 (2009)

    Article  MathSciNet  Google Scholar 

  12. Liu, Z., Han, Z., Zhao, Z., He, W.: Modeling and adaptive control for a spatial flexible spacecraft with unknown actuator failures. Sci. China Inform. Sci. 64, 1–16 (2021)

    MathSciNet  Google Scholar 

  13. Tao, G., Chen, S., Joshi, S.M.: An adaptive actuator failure compensation controller using output feedback. IEEE Trans. Automat. Control. 47(3), 506–511 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  14. Su, Y., Zheng, C., Mercorelli, P.: Nonlinear PD fault-tolerant control for dynamic positioning of ships with actuator constraints. IEEE-ASME T Mechatronics. 22(3), 1132–1142 (2016)

    Article  Google Scholar 

  15. Sabeti, F., Shahrokhi, M., Moradvandi, A.: Adaptive asymptotic tracking control of uncertain fractional-order nonlinear systems with unknown quantized input and control directions subject to actuator failures. J. Vib. Control 28(19–20), 2625–2641 (2022)

    Article  MathSciNet  Google Scholar 

  16. Kamali, S., Tabatabaei, S.M., Arefi, M.M., Yin, S.: Prescribed performance quantized tracking control for a class of delayed switched nonlinear systems with actuator hysteresis using a filter-connected switched hysteretic quantizer. IEEE Trans. Neural Netw. Learn. Syst. 33(1), 61–74 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  17. Nuño, E., Sarras, I., Yin, H., Jayawardhana, B.: Consensus of Euler-Lagrange Agents with Internal Model Disturbance Rejection and Interconnection Delays. IEEE Trans. Automat. Control. 69(6), 4066–4071 (2024)

    Article  ADS  MathSciNet  Google Scholar 

  18. Shen, Z., Wang, Q., Dong, S., Yu, H.: Dynamic surface control for tracking of unmanned surface vessel with prescribed performance and asymmetric time-varying full state constraints. Ocean Eng. 253, 111319 (2022)

    Article  Google Scholar 

  19. Islam, S., Liu, P.X., El Saddik, A.: Robust control of four-rotor unmanned aerial vehicle with disturbance uncertainty. IEEE Trans. Ind. Electron. 62(3), 1563–1571 (2014)

    Article  ADS  Google Scholar 

  20. Tao, G.: Model reference adaptive control with \(L^{1+\alpha }\) tracking. Int. J. Control 64(5), 859–870 (1996)

    Article  Google Scholar 

  21. Chen, Y., Liang, J., Wu, Y., Miao, Z., Zhang, H., Wang, Y.: Adaptive sliding-mode disturbance observer-based finite-time control for unmanned aerial manipulator with prescribed performance. IEEE Trans. Cybern. 53(5), 3263–3276 (2022)

    Article  Google Scholar 

  22. Wang, X., Guo, J., Tang, S., Qi, S.: Fixed-time disturbance observer based fixed-time back-stepping control for an air-breathing hypersonic vehicle. ISA Trans. 88, 233–245 (2019)

    Article  Google Scholar 

  23. Rojas, H.D., Cortés-Romero, J., Rojas, H.E.: Active disturbance rejection control based on a cascade estimator composed of reduced-order and full-order extended state observers. ISA Trans. 151, 296–311 (2024)

    Article  Google Scholar 

  24. Peng, C., Li, F.: A survey on recent advances in event-triggered communication and control, Inform. Sciences. 457, 113–125 (2018)

    MathSciNet  Google Scholar 

  25. Behera, A.K., Bandyopadhyay, B., Cucuzzella, M., Ferrara, A., Yu, X.: A survey on event-triggered sliding mode control, IEEE. J. Emerg. Sel. Top. Ind. Electron. 2(3), 206–217 (2021)

    Article  Google Scholar 

  26. Mu, C., Wang, K., Qiu, T.: Dynamic event-triggering neural learning control for partially unknown nonlinear systems. IEEE Trans. Cybern. 52(4), 2200–2213 (2020)

    Article  Google Scholar 

  27. Gu, Z., Huang, X., Sun, X., Xie, X., Park, J.H.: Memory-event-triggered tracking control for intelligent vehicle transportation systems: A leader-following approach. IEEE Trans. Intell. Transp. Syst. 25(5), 4021–4031 (2024)

    Article  Google Scholar 

  28. Hou, Q., Dong, J.: Finite-Time Membership Function-Dependent \( H_ {\infty } \) Control for T-S Fuzzy Systems via a Dynamic Memory Event-Triggered Mechanism. IEEE Trans. Fuzzy Syst. 31(11), 4075–4084 (2023)

    Article  Google Scholar 

  29. Liu, Y., Chen, Y.: Dynamic memory event-triggered adaptive control for a class of strict-feedback nonlinear systems, IEEE Trans. Circuits Syst. II Express Briefs. 69(8), 3470–3474 (2022)

    Google Scholar 

  30. Yang, J., Zhong, Q., Shi, K., Zhong, S.: Dynamic-memory event-triggered \( H_ {\infty } \) load frequency control for reconstructed switched model of power systems under hybrid attacks. IEEE Trans. Cybern. 53(6), 3913–3925 (2022)

    Article  Google Scholar 

  31. Zeilinger, M.N., Morari, M., Jones, C.N.: Soft constrained model predictive control with robust stability guarantees. IEEE Trans. Automat. Control. 59(5), 1190–1202 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  32. Liu, Y.J., Tong, S.: Barrier Lyapunov functions-based adaptive control for a class of nonlinear pure-feedback systems with full state constraints. Automatica 64, 70–75 (2016)

    Article  MathSciNet  Google Scholar 

  33. Yang, J., Zhang, J., Zhang, Z., Wu, Y.: Barrier Lyapunov Functions-based Output Feedback Control for a Class of Nonlinear Cascade Systems With Time-varying Output Constraints. Int J Control Autom. 22(2), 517–526 (2024)

    Article  Google Scholar 

  34. Cao, Y., Cao, J., Song, Y.: Practical prescribed time control of Euler-Lagrange systems with partial/full state constraints: A settling time regulator-based approach. IEEE Trans. Cybern. 52(12), 13096–13105 (2021)

    Article  Google Scholar 

  35. Fan, D., Zhang, X., Liu, S., Duan, Z.: Adaptive asymptotic tracking for uncertain nonlinear systems with deferred full state constraints. Nonlinear Dyn. 111(20), 19003–19019 (2023)

    Article  Google Scholar 

  36. Tee, K.P., Ge, S.S., Tay, E.H.: Barrier Lyapunov functions for the control of output-constrained nonlinear systems. Automatica 45(4), 918–927 (2009)

    Article  MathSciNet  Google Scholar 

  37. Tee, K.P., Ren, B., Ge, S.S.: Control of nonlinear systems with time-varying output constraints. Automatica 47(11), 2511–2516 (2011)

    Article  MathSciNet  Google Scholar 

  38. Li, F., Luo, S., He, S., Ouakad, H.M.: Dynamical analysis and accelerated adaptive backstepping control of MEMS triaxial gyroscope with output constraints. Nonlinear Dyn. 111(18), 17123–17140 (2023)

    Article  Google Scholar 

  39. Jin, X., Xu, J.X.: Iterative learning control for output-constrained systems with both parametric and nonparametric uncertainties. Automatica 49(8), 2508–2516 (2013)

    Article  MathSciNet  Google Scholar 

  40. Wang, Z., Chen, Z., Liang, B.: Fixed-time velocity reconstruction scheme for space teleoperation systems: Exp Barrier Lyapunov Function approach. Acta Astronaut. 157, 92–101 (2019)

    Article  ADS  Google Scholar 

  41. An, L., Yang, G.H., Wasly, S.: Obstacle Avoidance in Distributed Optimal Coordination of Multi-Robot Systems: A Trajectory Planning and Tracking Strategy. IEEE Trans. Control Netw. Syst. 11(3), 1335–1344 (2024)

    Article  MathSciNet  Google Scholar 

  42. Jia, F., Yan, X., Wang, X., Lu, J., Li, Y.: Robust adaptive prescribed performance dynamic surface control for uncertain nonlinear pure-feedback systems. J. Franklin Inst. 357(5), 2752–2772 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  43. Apostolikas, G., Tzafestas, S.: On-line RBFNN based identification of rapidly time-varying nonlinear systems with optimal structure-adaptation. Math. Comput. Simulat. 63(1), 1–13 (2003)

    Article  MathSciNet  Google Scholar 

  44. Zhao, Z., He, W., Ge, S.S.: Adaptive neural network control of a fully actuated marine surface vessel with multiple output constraints. IEEE Trans. Control Syst. Technol. 22(4), 1536–1543 (2013)

    Article  Google Scholar 

  45. Cai, Z., Huang, L.: Generalized Lyapunov approach for functional differential inclusions. Automatica 113, 108740 (2020)

    Article  MathSciNet  Google Scholar 

  46. Luo, A., Zhou, Q., Ren, H., Ma, H., Lu, R.: Reinforcement learning-based consensus control for MASs with intermittent constraints. Neural Netw. 172, 106105 (2024)

    Article  Google Scholar 

  47. Hosseinzadeh, M., Yazdanpanah, M.J.: Performance enhanced model reference adaptive control through switching non-quadratic Lyapunov functions. Syst. Control Lett. 76, 47–55 (2015)

Download references

Funding

This work was supported in part by the National Natural Science Foundation of China under Grants 62473228.

Author information

Authors and Affiliations

Authors

Contributions

Yang Jing wrote the main manuscript text and prepared Figs. 17. All authors reviewed the manuscript.

Corresponding author

Correspondence to Yuqiang Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest concerning the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Wu, Y. Fault-tolerant control for vessel systems with intermittent constraints and event-triggered mechanism. Nonlinear Dyn 114, 33 (2026). https://doi.org/10.1007/s11071-025-11920-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1007/s11071-025-11920-8

Keywords