Skip to main content
Log in

Vibration suppression of a stay cable using a time-delayed nonlinear energy sink under multi-source external excitation

  • Research
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Stay cables can exhibit undesirable vibrations under external excitations. This paper studies the vibration control of a stay cable structure via a time-delayed nonlinear energy sink with nonlinear damping. The system dynamics are modeled separately for uniformly distributed load and support motion. The Galerkin method is used to discretize the original partial differential equations. The dynamic responses of the system under the two cases are obtained. The reasonable intervals for the control parameters are determined through a bifurcation analysis of the trivial solution. To elucidate the parametric influence, the effects of nonlinear damping, excitation amplitude, and frequency on the displacement amplitude are quantified through numerical analysis. The influences of the control parameters on the dynamic responses and energy of the system are explored. The genetic algorithm for parameter optimization is employed and the controller exhibits high performance with tunable parameters. The bifurcation diagram is given and the complicated dynamical features are observed. These results demonstrate that time-delayed feedback control plays a key role in improving the vibration reduction performance of nonlinear energy sink for cable system vibration mitigation, with specific manifestations including the suppression of resonant peaks and the alleviation of complicated dynamic behaviors in the stay cable. The novelty of this work lies in leveraging the interplay between these nonlinear elements to control the dynamics of the stay cable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from €37.37 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Norway)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. Shen, G., Macdonald, J., Coules, H.: Nonlinear cable-deck interaction vibrations of cable-stayed bridges. J. Sound Vib. 544, 117428 (2023)

    Article  Google Scholar 

  2. Cong, Y., Kang, H., Guo, T., Su, X.: Energy transfer between components of a cable stayed beam model under the concentrated excitation: 1: 2 modal resonance. Acta. Mech. Sin. 38(7), 521579 (2022)

    Article  MathSciNet  Google Scholar 

  3. Wang, L., Zhang, X., He, K., Peng, J.: Revisited dynamic modeling and eigenvalue analysis of the cable-stayed beam. Acta. Mech. Sin. 36, 950–963 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  4. Taranath, B.: Structural analysis and design of tall buildings: Steel and composite construction, CRC press, (2016)

  5. Dai, K., Jiang, Z., Fang, C., Li, P., Zhang, S.: A tuned cable-inerter system for vibration reduction of towers. Int. J. Mech. Sci. 248, 108199 (2023)

    Article  Google Scholar 

  6. Sayed, A., Yousef, A., Saudi, G., Hassan, E.: Seismic analysis of a full scaled self-supported tower using ambient vibration testing. Innovative Infrastructure Solutions 8(1), 26 (2023)

    Article  Google Scholar 

  7. Kang, H., Wang, Y., Zhao, Y.: Nonlinear vibration analysis of a double-cable beam structure with nonlinear energy sinks. Commun. Nonlinear Sci. Numer. Simul. 142, 108529 (2025)

    Article  MathSciNet  Google Scholar 

  8. Shi, J., Wu, Z., Tsukimoto, S., Shimoda, M.: Design optimization of cable-membrane structures for form-finding and stiffness maximization. Compos. Struct. 192, 528–536 (2018)

    Article  Google Scholar 

  9. Li, N., Ji, J.: Analysis and design of cable-membrane architectural structure. Appl. Mech. Mater. 351, 22–25 (2013)

    Google Scholar 

  10. Wu, Z., Zhang, C., Mou, L., Mei, G., Garg, A.: Dynamic performance of submerged floating tunnel with different mooring styles subjected to anchor cable failure. Front. Struct. Civ. Eng. 17(10), 1443–1464 (2023)

    Article  Google Scholar 

  11. Jang, M., Lee, Y., Kim, S., Kang, Y.: Dynamic behavior of a long-span cable-stayed bridge with floating towers after the sudden failure of tethers and cables under irregular waves. J. Mar. Sci. Technol. 28(6), 14 (2020)

    Google Scholar 

  12. Bazarra, N., Bochicchio, I., Fernández, J., Vuk, E.: Asymptotic behavior and numerical approximation of a double-suspended bridge system. Commun. Nonlinear Sci. Numer. Simul. 124, 107302 (2023)

    Article  MathSciNet  Google Scholar 

  13. Han, H., Li, X., Zhou, H.: 3d mathematical model and numerical simulation for laying marine cable along prescribed trajectory on seabed. Appl. Math. Model. 60, 94–111 (2018)

    Article  MathSciNet  Google Scholar 

  14. Zhang, J., He, B., Zhang, L., Nie, R., Ma, X.: High surface accuracy and pretension design for mesh antennas based on dynamic relaxation method. Int. J. Mech. Sci. 209, 106687 (2021)

    Article  Google Scholar 

  15. El Ouni, M., Ben Kahla, N., Preumont, A.: Numerical and experimental dynamic analysis and control of a cable stayed bridge under parametric excitation. Engineering Structures 45, 244–256 (2012)

    Article  Google Scholar 

  16. Su, X., Kang, H., Chen, J., Guo, T., Sun, C., Zhao, Y.: Experimental study on in-plane nonlinear vibrations of the cable-stayed bridge. Nonlinear Dyn. 98, 1247–1266 (2019)

    Article  Google Scholar 

  17. Javanbakht, M., Cheng, S., Ghrib, F.: Multimode vibration control of stay cables using optimized negative stiffness damper. Struct. Control. Health Monit. 27(4), e2503 (2020)

    Article  Google Scholar 

  18. Nakamura, A., Kasuga, A., Arai, H.: The effects of mechanical dampers on stay cables with high-damping rubber. Constr. Build. Mater. 12(2–3), 115–123 (1998)

    Article  Google Scholar 

  19. Main, J., Jones, N.: Evaluation of viscous dampers for stay-cable vibration mitigation. J. Bridg. Eng. 6(6), 385–397 (2001)

    Article  Google Scholar 

  20. Weber, F., Feltrin, G., Maślanka, M., Fobo, W., Distl, H.: Design of viscous dampers targeting multiple cable modes. Eng. Struct. 31(11), 2797–2800 (2009)

    Article  Google Scholar 

  21. Chen, L., Sun, L., Nagarajaiah, S.: Cable vibration control with both lateral and rotational dampers attached at an intermediate location. J. Sound Vib. 377, 38–57 (2016)

    Article  ADS  Google Scholar 

  22. Di, F., Sun, L., Chen, L.: Suppression of vortex-induced high-mode vibrations of a cable-damper system by an additional damper. Eng. Struct. 242, 112495 (2021)

    Article  Google Scholar 

  23. Su, X., Kang, H., Guo, T.: Modelling and energy transfer in the coupled nonlinear response of a 1: 1 internally resonant cable system with a tuned mass damper. Mech. Syst. Signal Process. 162, 108058 (2022)

    Article  Google Scholar 

  24. Yoon, J., Lim, S., Yoo, J., Park, N.: Vibration reduction of cables with pendulum-type elastic metamaterials. Int. J. Mech. Sci. 220, 107169 (2022)

    Article  Google Scholar 

  25. Cao, Y., Zhao, Y., Shu, C.: Nonlinear dynamic behavior research of a coupling thin beam system by designing a magnetic internal beam-type coupling nonlinear energy sink in theoretical and experimental. Chaos, Solitons Fractals 200, 117156 (2025)

    Article  Google Scholar 

  26. Gendelman, O.: Transition of energy to a nonlinear localized mode in a highly asymmetric system of two oscillators. Nonlinear Dyn. 25, 237–253 (2001)

    Article  Google Scholar 

  27. Shu, C., Zhao, Y., Wang, Y.: Experiment and simulation research on the vibration reduction of a dual-beam system equipped with a wire-type coupling nonlinear energy sink. Mech. Syst. Signal Process. 237, 113148 (2025)

    Article  Google Scholar 

  28. Farid, M.: Dynamics of a hybrid cubic vibro-impact oscillator and nonlinear energy sink. Commun. Nonlinear Sci. Numer. Simul. 117, 106978 (2023)

    Article  MathSciNet  Google Scholar 

  29. Zhao, Y., Mi, X., Yin, C., Chen, M., Wu, H.: Nonlinear vibration energy harvesting-suppressing simulating and experimental research of a two-layer beam system by utilizing a vibration energy harvesting-suppressing module. Mech. Syst. Signal Process. 237, 112731 (2025)

    Article  Google Scholar 

  30. Ding, H., Shao, Y.: Nes cell. Appl. Math. Mech. 43, 1793–1804 (2022)

    Article  MathSciNet  Google Scholar 

  31. Zhao, Y., Cui, H.: Vibration suppressing and energy harvesting research of an elastic beam by utilizing an adjustable imperfect nonlinear energy sink. Energy 322, 135663 (2025)

    Article  Google Scholar 

  32. Zhao, D., Li, Y., Liu, Q., Kurths, J., Xu, Y.: Extreme events suppression in a suspended aircraft seat system under extreme environment. Commun. Nonlinear Sci. Numer. Simul. 145, 108707 (2025)

    Article  Google Scholar 

  33. Nešić, N., Karličić, D., Cajić, M., Simonović, J., Adhikari, S.: Vibration suppression of a platform by a fractional type electromagnetic damper and inerter-based nonlinear energy sink. Appl. Math. Model. 137, 115651 (2025)

    Article  MathSciNet  Google Scholar 

  34. Zhao, Y., Guo, F., Sun, Y., Shi, Q.: Modeling and vibration analyzing of a double-beam system with a coupling nonlinear energy sink. Nonlinear Dyn. 112, 9043–9061 (2024)

    Article  Google Scholar 

  35. Ding, H., Chen, L.: Designs, analysis, and applications of nonlinear energy sinks. Nonlinear Dyn. 100(4), 3061–3107 (2020)

    Article  Google Scholar 

  36. Zhao, Y., Cao, Y., Wu, Z., Chen, M., Yin, C.: A theoretical and experimental study on the dynamic behavior and vibration control of a nonlinear coupling beam system under double excitation sources. Mech. Syst. Signal Process. 241, 113459 (2025)

    Article  Google Scholar 

  37. Li, Z., Zhao, Y., Zhang, D.: Simulation-experimental study on vibration control of elastic dual-beam system with coupled nonlinear energy sink under dual-source excitation. Mech. Syst. Signal Process. 238, 113217 (2025)

    Article  Google Scholar 

  38. Karličić, D., Cajić, M., Paunović, S., Adhikari, S.: Periodic response of a nonlinear axially moving beam with a nonlinear energy sink and piezoelectric attachment. Int. J. Mech. Sci. 195, 106230 (2021)

    Article  Google Scholar 

  39. Wang, Y., Kang, H., Cong, Y., Guo, T., Zhu, W.: Vibration suppression of a cable under harmonic excitation by a nonlinear energy sink. Commun. Nonlinear Sci. Numer. Simul. 117, 106988 (2023)

    Article  MathSciNet  Google Scholar 

  40. Andersen, D., Starosvetsky, Y., Vakakis, A., Bergman, L.: Dynamic instabilities in coupled oscillators induced by geometrically nonlinear damping. Nonlinear Dyn. 67, 807–827 (2012)

    Article  MathSciNet  Google Scholar 

  41. Philip, R., Santhosh, B., Balaram, B., Awrejcewicz, J.: Vibration control in fluid conveying pipes using nes with nonlinear damping. Mech. Syst. Signal Process. 194, 110250 (2023)

    Article  Google Scholar 

  42. Durdu, A., Uyaroğlu, Y.: Comparison of synchronization of chaotic burke-shaw attractor with active control and integer-order and fractional-order pc method. Chaos, Solitons & Fractals 164, 112646 (2022)

    Article  Google Scholar 

  43. Wu, K., Ren, C., Li, L., Sun, Z.: Theoretical and experimental research on active suspension system with time-delay control. Advanced Theory and Simulations 6(12), 2300442 (2023)

    Article  Google Scholar 

  44. Olgac, N., Holm, H.: A novel active vibration absorption technique: delayed resonator. J. Sound Vib. 176(1), 93–104 (1994)

    Article  ADS  Google Scholar 

  45. Pilbauer, D., Vyhlídal, T., Olgac, N.: Delayed resonator with distributed delay in acceleration feedback design and experimental verification. IEEE/ASME Trans. Mechatron. 21(4), 2120–2131 (2016)

    Article  Google Scholar 

  46. Zhao, Y., Xu, J.: Effects of delayed feedback control on nonlinear vibration absorber system. J. Sound Vib. 308(1–2), 212–230 (2007)

    Article  ADS  Google Scholar 

  47. Šika, Z., Vyhlídal, T., Neusser, Z.: Two-dimensional delayed resonator for entire vibration absorption. J. Sound Vib. 500, 116010 (2021)

    Article  Google Scholar 

  48. Peng, J., Wang, L., Zhao, Y., Lenci, S.: Time-delay dynamics of the mr damper-cable system with one-to-one internal resonances. Nonlinear Dyn. 105, 1343–1356 (2021)

  49. Mao, X., Ding, W.: Nonlinear dynamics and optimization of a vibration reduction system with time delay. Commun. Nonlinear Sci. Numer. Simul. 122, 107220 (2023)

    Article  MathSciNet  Google Scholar 

  50. Mohanty, S., Dwivedy, S.: Traditional and non-traditional active nonlinear vibration absorber with time delay combination feedback for hard excitation. Commun. Nonlinear Sci. Numer. Simul. 117, 106919 (2023)

    Article  MathSciNet  Google Scholar 

  51. Mao, X., Ding, W.: Dynamics of a nonlinear vibration absorption system with time delay. Nonlinear Dyn. 112(7), 5177–5193 (2024)

    Article  Google Scholar 

  52. Liu, Z., Mao, X.: Dynamical analysis of a stay cable with a nonlinear energy sink and time-delayed feedback control. Eng. Struct. 310, 118074 (2024)

    Article  Google Scholar 

  53. Raj, P., Santhosh, B.: Parametric study and optimization of linear and nonlinear vibration absorbers combined with piezoelectric energy harvester. Int. J. Mech. Sci. 152, 268–279 (2019)

    Article  Google Scholar 

  54. Vyhlídal, T., Pilbauer, D., Alikoc, B., Michiels, W.: Analysis and design aspects of delayed resonator absorber with position, velocity or acceleration feedback. J. Sound Vib. 459, 114831 (2019)

    Article  Google Scholar 

  55. Huan, R., Chen, L., Sun, J.: Multi-objective optimal design of active vibration absorber with delayed feedback. J. Sound Vib. 339, 56–64 (2015)

  56. Liu, C., Yan, Y., Wang, W., Wang, D.: Optimal time delayed control of the combination resonances of viscoelastic graphene sheets under dual-frequency excitation. Chaos, Solitons & Fractals 165, 112856 (2022)

  57. Cai, J., Gao, Q., Liu, Y., Olgac, N.: Control design, analysis, and optimization of fractional-order delayed resonator for complete vibration absorption. J. Sound Vib. 571, 118083 (2024)

    Article  Google Scholar 

  58. Jin, Y., Meng, J.: Dynamical analysis of an optimal velocity model with time-delayed feedback control. Commun. Nonlinear Sci. Numer. Simul. 90, 105333 (2020)

    Article  MathSciNet  Google Scholar 

  59. Chen, J., Yang, C.: Experiment and theory on the nonlinear vibration of a shallow arch under harmonic excitation at the end. J. Appl. Mech. 74(6), 1061 (2007)

    Article  ADS  Google Scholar 

  60. Wang, L., Zhao, Y.: Large amplitude motion mechanism and non-planar vibration character of stay cables subject to the support motions. J. Sound Vib. 327, 121–133 (2009)

    Article  ADS  Google Scholar 

  61. Wang, Z., Hu, H.: Stability switches of time-delayed dynamic systems with unknown parameters. J. Sound Vib. 233(2), 215–233 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  62. Whitley, D.: A genetic algorithm tutorial. Stat. Comput. 4, 65–85 (1994)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous reviewers for their helpful comments and suggestions that have helped to improve the presentation.

Funding

The authors declare that no funds were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Zhiqun Liu: Data curation, Formal analysis, Investigation, Software, Validation, Writing - original draft. Weijie Ding: Conceptualization, Formal analysis, Funding acquisition, Investigation, Methodology, Project administration, Resources, Supervision, Writing - review & editing.

Corresponding author

Correspondence to Weijie Ding.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The elements of \(\mathbf {\Psi }\) and \(\mathbf {\Theta }\) in Eq. (12) are

$$\begin{aligned} \mathbf {\chi }_{11}&={a_{15}} {d_{1}}^2 \varphi (l_1)/4 + {a_{15}} \varphi (l_1)^3 {b_{1}}^2/4 \nonumber \\&\quad + (3 {a_{15}} {c_{1}}^2 \varphi (l_1))/4 + (3 {a_{15}} \varphi (l_1)^3 {a_{1}}^2)/4 + \mu \nonumber \\&\quad - {a_{15}} \varphi (l_1)^2 {b_{1}} {d_{1}}/2 - (3 {a_{15}} \varphi (l_1)^2 {a_{1}} {c_{1}})/2 \nonumber \\&\quad + {a_{18}} \varphi (l_1) \cos (\varpi {\gamma }) + {a_{16}} \varphi (l_1); \end{aligned}$$
(A.1)
$$\begin{aligned} \mathbf {\chi }_{12}&=2 \varpi + {a_{15}} \varphi (l_1)^3 {a_{1}} {b_{1}}/2 \nonumber \\&\quad - {a_{15}} \varphi (l_1)^2 {b_{1}} {c_{1}}/2 - {a_{15}} \varphi (l_1)^2 {a_{1}} {d_{1}}/2 \nonumber \\&\quad + {a_{15}} {c_{1}} {d_{1}} \varphi (l_1)/2 \nonumber \\&\quad - {a_{18}} \varphi (l_1) \sin (\varpi {\gamma }); \end{aligned}$$
(A.2)
$$\begin{aligned} \mathbf {\chi }_{13}&=-{a_{15}} \varphi (l_1)^2 {b_{1}}^2/4 - (3 {a_{15}} \varphi (l_1)^2 {a_{1}}^2)/4 - {a_{18}} \cos (\varpi {\gamma }) \nonumber \\&\quad - {a_{16}} + {a_{15}} \varphi (l_1) {b_{1}} {d_{1}}/2 \nonumber \\&\quad + (3 {a_{15}} \varphi (l_1) {a_{1}} {c_{1}})/2 \nonumber \\&\quad - (3{a_{15}} {c_{1}}^2)/4 - {a_{15}} {d_{1}}^2/4; \end{aligned}$$
(A.3)
$$\begin{aligned} \mathbf {\chi }_{14}&=-{a_{15}} {c_{1}} {d_{1}}/2 + {a_{18}} \sin (\varpi {\gamma }) \nonumber \\&\quad - {a_{15}} \varphi (l_1)^2 {a_{1}} {b_{1}}/2 + {a_{15}} \varphi (l_1) {b_{1}} {c_{1}}/2 \nonumber \\&\quad + {a_{15}} \varphi (l_1) {a_{1}} {d_{1}}/2; \end{aligned}$$
(A.4)
$$\begin{aligned} \mathbf {\chi }_{21}&=-{a_{15}} \varphi (l_1)^2 {a_{1}} {d_{1}}/2 - {a_{15}} \varphi (l_1)^2 {b_{1}} {c_{1}}/2 \nonumber \\&\quad + {a_{15}} {c_{1}} {d_{1}} \varphi (l_1)/2 \nonumber \\&\quad + {a_{15}} \varphi (l_1)^3 {a_{1}} {b_{1}}/2 - 2 \varpi \nonumber \\&\quad + {a_{18}} \varphi (l_1) \sin (\varpi {\gamma }); \end{aligned}$$
(A.5)
$$\begin{aligned} \mathbf {\chi }_{22}&=-(3 {a_{15}} \varphi (l_1)^2 {b_{1}} {d_{1}})/2 \nonumber \\&\quad - {a_{15}} \varphi (l_1)^2 {a_{1}} {c_{1}}/2 + u + (3 {a_{15}} {d_{1}}^2 \varphi (l_1))/4 \nonumber \\&\quad + (3 {a_{15}} \varphi (l_1)^3 {b_{1}}^2)/4 \nonumber \\&\quad +(3 {a_{15}} \varphi (l_1)^3 {b_{1}}^2)/4 + {a_{15}} {c_{1}}^2 \varphi (l_1)/4 \nonumber \\&\quad + {a_{15}} \varphi (l_1)^3 {a_{1}}^2/4 + {a_{18}} \varphi (l_1) \cos (\varpi {\gamma }) + {a_{16}} \varphi (l_1); \end{aligned}$$
(A.6)
$$\begin{aligned} \mathbf {\chi }_{23}&={a_{15}} \varphi (l_1) {a_{1}} {d_{1}}/2 - {a_{15}} \varphi (l_1)^2 {a_{1}} {b_{1}}/2 \nonumber \\&\quad + {a_{15}} \varphi (l_1) {b_{1}} {c_{1}}/2 - {a_{18}} \sin (\varpi {\gamma }) \nonumber \\&\quad - {a_{15}} {c_{1}} {d_{1}}/2; \end{aligned}$$
(A.7)
$$\begin{aligned} \mathbf {\chi }_{24}&=(3 {a_{15}} \varphi (l_1) {b_{1}} {d_{1}})/2 + {a_{15}} \varphi (l_1) {a_{1}} {c_{1}}/2 \nonumber \\&\quad - {a_{16}} - {a_{18}} \cos (\varpi {\gamma }) \nonumber \\&\quad - (3 {a_{15}} \varphi (l_1)^2 {b_{1}}^2)/4 \nonumber \\&\quad - {a_{15}} \varphi (l_1)^2 {a_{1}}^2/4 - {a_{15}} {c_{1}}^2/4 \nonumber \\&\quad - (3 {a_{15}} {d_{1}}^2)/4; \end{aligned}$$
(A.8)
$$\begin{aligned} \mathbf {\chi }_{31}&={\zeta _{n}} \varphi (l_1)^2 {b_{1}} {d_{1}}/2 + (3 {\zeta _{n}} \varphi (l_1)^2 {a_{1}} {c_{1}})/2 \nonumber \\&\quad - {\zeta _{n}} {d_{1}}^2 \varphi (l_1)/4 - {\zeta _{n}} \varphi (l_1)^3 {b_{1}}^2/4 - (3 {\zeta _{n}} \nonumber \\&\quad \varphi (l_1)^3 {a_{1}}^2)/4- (3 {\zeta _{n}} {c_{1}}^2 \varphi (l_1))/4 \nonumber \\&\quad - {\zeta _{nl}} \varphi (l_1) - g_v \varphi (l_1) \cos (\varpi {\gamma }); \end{aligned}$$
(A.9)
$$\begin{aligned} \mathbf {\chi }_{32}&={\zeta _{n}} \varphi (l_1)^2 {a_{1}} {d_{1}}/2 - {\zeta _{n}} {c_{1}} {d_{1}} \varphi (l_1)/2 \nonumber \\&\quad + {\zeta _{n}} \varphi (l_1)^2 {b_{1}} {c_{1}}/2 - {\zeta _{n}} \varphi (l_1)^3 {a_{1}} {b_{1}}/2 \nonumber \\&\quad + g_v \varphi (l_1) \sin (\varpi {\gamma }); \end{aligned}$$
(A.10)
$$\begin{aligned} \mathbf {\chi }_{33}&=-{\zeta _{n}} \varphi (l_1) {b_{1}} {d_{1}}/2 - (3 {\zeta _{n}} \varphi (l_1) {a_{1}} {c_{1}})/2 \nonumber \\&\quad + g_v \cos (\varpi {\gamma }) + {\zeta _{nl}} + (3 {\zeta _{n}} \varphi (l_1)^2 {a_{1}}^2)/4 \nonumber \\&\quad + {\zeta _{n}} \varphi (l_1)^2 {b_{1}}^2/4 + (3 {\zeta _{n}} {c_{1}}^2)/4 + {\zeta _{n}} {d_{1}}^2/4; \end{aligned}$$
(A.11)
$$\begin{aligned} \mathbf {\chi }_{34}&=-{\zeta _{n}} \varphi (l_1) {a_{1}} {d_{1}}/2 - {\zeta _{n}} \varphi (l_1) {b_{1}} {c_{1}}/2 \nonumber \\&\quad + {\zeta _{n}} \varphi (l_1)^2 {a_{1}} {b_{1}}/2 + 2 \varpi - g_v \sin (\varpi {\gamma }) \nonumber \\&\quad + {\zeta _{n}} {c_{1}} {d_{1}}/2; \end{aligned}$$
(A.12)
$$\begin{aligned} \mathbf {\chi }_{41}&=-g_v \varphi (l_1) \sin (\varpi {\gamma }) - {\zeta _{n}} \varphi (l_1)^3 {a_{1}} {b_{1}}/2 + {\zeta _{n}} \varphi (l_1)^2 {a_{1}} {d_{1}}/2 \nonumber \\&\quad - {\zeta _{n}} {c_{1}} {d_{1}} \varphi (l_1)/2 \nonumber \\&\quad + {\zeta _{n}} \varphi (l_1)^2 {b_{1}} {c_{1}}/2; \end{aligned}$$
(A.13)
$$\begin{aligned} \mathbf {\chi }_{42}&=-{\zeta _{nl}} \varphi (l_1) - g_v \varphi (l_1) \cos (\varpi {\gamma }) + (3 {\zeta _{n}} \varphi (l_1)^2 {b_{1}} {d_{1}})/2 \nonumber \\&\quad + {\zeta _{n}} \varphi (l_1)^2 {a_{1}} {c_{1}}/2 \nonumber \\&\quad - (3 {\zeta _{n}} \varphi (l_1)^3 {b_{1}}^2)/4 - {\zeta _{n}} \varphi (l_1)^3 {a_{1}}^2/4 \nonumber \\&\quad - (3 {\zeta _{n}} {d_{1}}^2 \varphi (l_1))/4 \nonumber \\&\quad - {\zeta _{n}} {c_{1}}^2 \varphi (l_1)/4; \end{aligned}$$
(A.14)
$$\begin{aligned} \mathbf {\chi }_{43}&=-{\zeta _{n}} \varphi (l_1) {a_{1}} {d_{1}}/2 - {\zeta _{n}} \varphi (l_1) {b_{1}} {c_{1}}/2 \nonumber \\&\quad + {\zeta _{n}} \varphi (l_1)^2 {a_{1}} {b_{1}}/2 \nonumber \\&\quad + {\zeta _{n}} {c_{1}} {d_{1}}/2 - 2 \varpi + g_v \sin (\varpi {\gamma }); \end{aligned}$$
(A.15)
$$\begin{aligned} \mathbf {\chi }_{44}&={\zeta _{n}} {c_{1}}^2/4 + (3 {\zeta _{n}} {d_{1}}^2)/4 \nonumber \\&\quad - (3 {\zeta _{n}} \varphi (l_1) {b_{1}} {d_{1}})/2 - {\zeta _{n}} \varphi (l_1) {a_{1}} {c_{1}}/2 \nonumber \\&\quad + {\zeta _{nl}} + g_v \cos (\varpi {\gamma }) \nonumber \\&\quad + {\zeta _{n}} \varphi (l_1)^2 {a_{1}}^2/4 \nonumber \\&\quad + (3 {\zeta _{n}} \varphi (l_1)^2 {b_{1}}^2)/4; \end{aligned}$$
(A.16)
$$\begin{aligned} \mathbf {\Theta }_{1}&={a_{11}} {a_{1}} - {a_{1}} \varpi ^2 - {a_{17}} \nonumber \\&\quad + {a_{16}} \varphi (l_1) {b_{1}} \varpi \nonumber \\&\quad - {a_{18}} {c_{1}} \varpi \sin (\varpi {\gamma })\nonumber \\&\quad - {a_{18}} {d_{1}} \varpi \cos (\varpi {\gamma }) + \mu {b_{1}} \varpi - {a_{16}} {d_{1}} \varpi \nonumber \\&\quad + {a_{18}} \varphi (l_1) {a_{1}} \varpi \sin (\varpi {\gamma }) + {a_{18}} \varphi (l_1) {b_{1}} \varpi \cos (\varpi {\gamma }) \nonumber \\&\quad + (3 {a_{14}} \varphi (l_1) {b_{1}} {c_{1}} {d_{1}})/2 \nonumber \\&\quad - (3 {a_{15}} \varphi (l_1)^2 {b_{1}}^2 {d_{1}} \varpi )/4 - (3 {a_{14}} \varphi (l_1)^2 {a_{1}} {b_{1}} {d_{1}})/2 \nonumber \\&\quad + (3 {a_{15}} \varphi (l_1) {b_{1}} {d_{1}}^2 \varpi )/4 \nonumber \\&\quad + {a_{15}} {c_{1}}^2 \varphi (l_1) {b_{1}} \varpi /4 {a_{15}} \varphi (l_1)^2 {a_{1}}^2 {d_{1}} \varpi /4 \nonumber \\&\quad + {a_{15}} \varphi (l_1)^3 {a_{1}}^2 {b_{1}} \varpi /4 - (3 {a_{14}} {c_{1}} {d_{1}}^2)/4 \nonumber \\&\quad + (3 {a_{14}} \varphi (l_1)^3 {a_{1}}^3)/4 - {a_{15}} {d_{1}}^3 \varpi /4 \nonumber \\&\quad + (3 {a_{13}} {a_{1}} {b_{1}}^2)/4 + (3 {a_{14}} \varphi (l_1) {a_{1}} {d_{1}}^2)/4 \nonumber \\&\quad - {a_{15}} {c_{1}}^2 {d_{1}} \varpi /4 - (3 {a_{14}} \varphi (l_1)^2 {b_{1}}^2 {c_{1}})/4 \nonumber \\&\quad - (9 {a_{14}} \varphi (l_1)^2 {a_{1}}^2 {c_{1}})/4+(3 {a_{14}} \varphi (l_1)^2 {b_{1}}^2 {c_{1}})/4 \nonumber \\&\quad - (9 {a_{14}} \varphi (l_1)^2 {a_{1}}^2 {c_{1}})/4 + (9 {a_{14}} \varphi (l_1) {a_{1}} {c_{1}}^2)/4 \nonumber \\&\quad + {a_{15}} \varphi (l_1)^3 {b_{1}}^3 \varpi /4 \nonumber \\&\quad + (3 {a_{14}} \varphi (l_1)^3 {a_{1}} {b_{1}}^2)/4 - (3 {a_{14}} {c_{1}}^3)/4 \nonumber \\&\quad - {a_{15}} \varphi (l_1)^2 {a_{1}} {c_{1}} {b_{1}} \varpi /2 \nonumber \\&\quad + {a_{15}} \varphi (l_1) {a_{1}} {c_{1}} {d_{1}} \varpi /2 + (3 {a_{13}} {a_{1}}^3)/4; \end{aligned}$$
(A.17)
$$\begin{aligned} \mathbf {\Theta }_{2}&={a_{15}} {c_{1}}^3 \varpi /4 + (3 {a_{13}} {a_{1}}^2 {b_{1}})/4 \nonumber \\&\quad - (3 {a_{14}} {c_{1}}^2 {d_{1}})/4 - {b_{1}} \varpi ^2 + {a_{11}} {b_{1}} + {a_{15}} {c_{1}} {d_{1}}^2 \varpi /4 \nonumber \\&\quad + (3 {a_{13}} {b_{1}}^3)/4- (3 {a_{14}} {d_{1}}^3)/4 \nonumber \\&\quad + {a_{15}} \varphi (l_1)^2 {b_{1}} {d_{1}} {a_{1}} \varpi /2 \nonumber \\&\quad - {a_{15}} \varphi (l_1) {b_{1}} {d_{1}} {c_{1}} \varpi /2 \nonumber \\&\quad - {a_{15}} \varphi (l_1)^3 {a_{1}}^3 \varpi /4 + (3 {a_{14}} \varphi (l_1)^3 {a_{1}}^2 {b_{1}})/4 \nonumber \\&\quad + (3 {a_{14}} \varphi (l_1) {b_{1}} {c_{1}}^2)/4 - (3 {a_{14}} \varphi (l_1)^2 {a_{1}}^2 {d_{1}})/4 \nonumber \\&\quad - (3 {a_{14}} \varphi (l_1)^2 {a_{1}}^2 {d_{1}})/4 \nonumber \\&\quad - (9 {a_{14}} \varphi (l_1)^2 {b_{1}}^2 {d_{1}})/4 + (9 {a_{14}} \varphi (l_1) {b_{1}} {d_{1}}^2)/4 \nonumber \\&\quad + (3 {a_{14}} \varphi (l_1)^3 {b_{1}}^3)/4 - {a_{15}} \varphi (l_1)^3 {b_{1}}^2 {a_{1}} \varpi /4 \nonumber \\&\quad - (3 {a_{15}} \varphi (l_1) {a_{1}} {c_{1}}^2 \varpi )/4 - {a_{16}} \varphi (l_1) {a_{1}} \varpi \nonumber \\&\quad + {a_{18}} {c_{1}} \varpi \cos (\varpi {\gamma }) - {a_{18}} {d_{1}} \varpi \sin (\varpi {\gamma }) \nonumber \\&\quad - \mu {a_{1}} \varpi + {a_{16}} {c_{1}} \varpi + {a_{15}} \varphi (l_1)^2 {b_{1}}^2 {c_{1}} \varpi /4\nonumber \\&\quad - (3 {a_{14}} \varphi (l_1)^2 {a_{1}} {b_{1}} {c_{1}})/2 + (3 {a_{15}} \varphi (l_1)^2 {a_{1}}^2 {c_{1}} \varpi )/4 \nonumber \\&\quad - {a_{18}} \varphi (l_1) {a_{1}} \varpi \cos (\varpi {\gamma }) \nonumber \\&\quad + {a_{18}} \varphi (l_1) {b_{1}} \varpi \sin (\varpi {\gamma }) - {a_{15}} {d_{1}}^2 \varphi (l_1) {a_{1}} \varpi /4 \nonumber \\&\quad + (3 {a_{14}} \varphi (l_1) {a_{1}} {c_{1}} {d_{1}})/2; \end{aligned}$$
(A.18)
$$\begin{aligned} \mathbf {\Theta }_{3}&= (3 {k_n} {c_{1}}^3)/4 - {\zeta _{n}} {c_{1}}^2 \varphi (l_1) \varpi {b_{1}}/4 - \varpi ^2 {c_{1}} \nonumber \\&\quad - {\zeta _{n}} \varphi (l_1)^3 {a_{1}}^2 \varpi {b_{1}}/4 + {\zeta _{n}} {d_{1}}^3 \varpi /4 \nonumber \\&\quad - (3 {k_n} \varphi (l_1)^3 {a_{1}}^3)/4+ (3 {k_n} {c_{1}} {d_{1}}^2)/4 + {\zeta _{n}} {c_{1}}^2 {d_{1}} \varpi /4 \nonumber \\&\quad - (3 {k_n} \varphi (l_1) {a_{1}} {d_{1}}^2)/4 \nonumber \\&\quad + (3 {k_n} \varphi (l_1)^2 {b_{1}}^2 {c_{1}})/4 \nonumber \\&\quad - (3 {\zeta _{n}} \varphi (l_1) {b_{1}} {d_{1}}^2 \varpi )/4 + (3 {\zeta _{n}} \varphi (l_1) {b_{1}} {d_{1}}^2 \varpi )/4 \nonumber \\&\quad + (3 {\zeta _{n}} \varphi (l_1)^2 {b_{1}}^2 {d_{1}} \varpi )/4 + {\zeta _{n}} \varphi (l_1)^2 {a_{1}}^2 {d_{1}} \varpi /4 \nonumber \\&\quad + (9 {k_n} \varphi (l_1)^2 {a_{1}}^2 {c_{1}})/4 \nonumber \\&\quad - (9 {k_n} \varphi (l_1) {a_{1}} {c_{1}}^2)/4 - (3 {k_n} \varphi (l_1)^3 {a_{1}} {b_{1}}^2)/4 \nonumber \\&\quad + (3 {k_n} \varphi (l_1)^2 {a_{1}} {b_{1}} {d_{1}})/2 \nonumber \\&\quad + {\zeta _{n}} \varphi (l_1)^2 {a_{1}} {b_{1}} {c_{1}} \varpi /2 - {\zeta _{n}} \varphi (l_1) {a_{1}} {d_{1}} {c_{1}} \varpi /2 \nonumber \\&\quad - {\zeta _{n}} \varphi (l_1)^3 {b_{1}}^3 \varpi /4 - {\zeta _{nl}} \varphi (l_1) \varpi {b_{1}} \nonumber \\&\quad + g_v {c_{1}} \varpi \sin (\varpi {\gamma })+ g_v {d_{1}} \varpi \cos (\varpi {\gamma }) + {\zeta _{nl}} {d_{1}} \varpi \nonumber \\&\quad - g_v \varphi (l_1) {a_{1}} \varpi \sin (\varpi {\gamma }) \nonumber \\&\quad - g_v \varphi (l_1) {b_{1}} \varpi \cos (\varpi {\gamma }) \nonumber \\&\quad - (3 {k_n} \varphi (l_1) {b_{1}} {c_{1}} {d_{1}})/2; \end{aligned}$$
(A.19)
$$\begin{aligned} \mathbf {\Theta }_{4}&= -(3 {k_n} \varphi (l_1) {b_{1}} {c_{1}}^2)/4 \nonumber \\&\quad + (3 {k_n} \varphi (l_1)^2 {a_{1}}^2 {d_{1}})/4 - {d_{1}} \varpi ^2 \nonumber \\&\quad + g_v \varphi (l_1) {a_{1}} \varpi \cos (\varpi {\gamma }) \nonumber \\&\quad - g_v \varphi (l_1) {b_{1}} \varpi \sin (\varpi {\gamma }) - (9 {k_n} \varphi (l_1) {b_{1}} {d_{1}}^2)/4 \nonumber \\&\quad + (9 {k_n} \varphi (l_1)^2 {b_{1}}^2 {d_{1}})/4 - {\zeta _{n}} {c_{1}} {d_{1}}^2 \varpi /4 \nonumber \\&\quad - {\zeta _{n}} {c_{1}}^3 \varpi /4 + (3 {k_n} {c_{1}}^2 {d_{1}})/4 \nonumber \\&\quad - (3 {k_n} \varphi (l_1)^3 {b_{1}}^3)/4 + {\zeta _{nl}} {a_{1}} \varphi (l_1) \varpi \nonumber \\&\quad - {\zeta _{nl}} {c_{1}} \varpi \nonumber \\&\quad - g_v {c_{1}} \varpi \cos (\varpi {\gamma }) + g_v {d_{1}} \varpi \sin (\varpi {\gamma })\nonumber \\&\quad + (3 {k_n} {d_{1}}^3)/4 + {\zeta _{n}} \varphi (l_1) {b_{1}} {c_{1}} {d_{1}} \varpi /2 \nonumber \\&\quad - {\zeta _{n}} \varphi (l_1)^2 {a_{1}} {b_{1}} {d_{1}} \varpi /2 \nonumber \\&\quad + (3 {k_n} \varphi (l_1)^2 {a_{1}} {b_{1}} {c_{1}})/2 \nonumber \\&\quad + {\zeta _{n}} {d_{1}}^2 {a_{1}} \varphi (l_1) \varpi /4\nonumber \\&\quad - (3 {k_n} \varphi (l_1) {a_{1}} {c_{1}} {d_{1}})/2 + {\zeta _{n}} \varphi (l_1)^3 {a_{1}}^3 \varpi /4 \nonumber \\&\quad - (3 {k_n} \varphi (l_1)^3 {a_{1}}^2 {b_{1}})/4\nonumber \\&\quad + (3 {k_n} \varphi (l_1) {a_{1}} {c_{1}} {d_{1}})/2 + {\zeta _{n}} \varphi (l_1)^3 {a_{1}}^3 \varpi /4\nonumber \\&\quad - (3 {k_n} \varphi (l_1)^3 {a_{1}}^2 {b_{1}})/4 + {\zeta _{n}} \varphi (l_1)^3 {b_{1}}^2 {a_{1}} \varpi /4 \nonumber \\&\quad + (3 {\zeta _{n}} \varphi (l_1) {a_{1}} {c_{1}}^2 \varpi )/4 \nonumber \\&\quad - (3 {\zeta _{n}} \varphi (l_1)^2 {a_{1}}^2 {c_{1}} \varpi )/4 \nonumber \\&\quad - {\zeta _{n}} \varphi (l_1)^2 {b_{1}}^2 {c_{1}} \varpi /4; \end{aligned}$$
(A.20)

Appendix B

The elements of \(\mathbf {\Xi }\) and \(\mathbf {\Sigma }\) in Eq. (13) are

$$\begin{aligned} \mathbf {\psi }_{11}&=\mu + a_{16} \varphi (l_1) + a_{18} \varphi (l_1) \cos (\varpi \gamma ) \nonumber \\&- 2 a_{15} \varphi (l_1)^2 r_{1} r_2 + (3 a_{15} \varphi (l_1) c_{1}^2)/4 + a_{15} \varphi (l_1)^3 b_{1}^2/4 \nonumber \\&+ (3 a_{15} \varphi (l_1)^3 a_{1}^2)/4 + a_{15} \varphi (l_1) d_{1}^2/4 \nonumber \\&+ a_{15} \varphi (l_1)^3 r_{1}^2 + a_{15} \varphi (l_1) r_{2}^2 + a_{15} \varphi (l_1) f_{sp}^2 l1^2 \cos (2 \alpha )/8 \nonumber \\&- a_{15} \varphi (l_1)^2 b_{1} d_{1}/2 + a_{15} \varphi (l_1) f_{sp}^2 l_1^2/8 \nonumber \\&- (3 a_{15} \varphi (l_1)^2 a_{1} c_{1})/2 \nonumber \\&- a_{15} \varphi (l_1) f_{sp} l_1 d_{1} \cos (\alpha )/2 \nonumber \\&+ a_{15} \varphi (l_1)^2 b_{1} f_{sp} l_1 \cos (\alpha )/2; \end{aligned}$$
(B.1)
$$\begin{aligned} \mathbf {\psi }_{12}&=2 \varpi - a_{18} \varphi (l_1) \sin (\varpi \gamma ) \nonumber \\&- a_{15} \varphi (l_1)^2 a_{1} d_{1}/2 + a_{15} \varphi (l_1) c_{1} d_{1}/2 \nonumber \\&+ a_{15} \varphi (l_1)^3 a_{1} b_{1}/2 \nonumber \\&- a_{15} \varphi (l_1)^2 b_{1} c_{1}/2 - a_{15} \varphi (l_1) f_{sp} l_1 c_{1} \cos (\alpha )/2 \nonumber \\&+ a_{15} \varphi (l_1)^2 a_{1} f_{sp} l_1 \cos (\alpha )/2; \end{aligned}$$
(B.2)
$$\begin{aligned} \mathbf {\psi }_{13}&=-a_{16} - a_{18} \cos (\varpi \gamma ) - (3 a_{15} c_{1}^2)/4 - a_{15} d_{1}^2/4 \nonumber \\&- a_{15} r_{2}^2 + 2 a_{15} \varphi (l_1) r_{1} r_{2} - a_{15} \varphi (l_1)^2 b_{1}^2/4 \nonumber \\&- (3 a_{15} \varphi (l_1)^2 a_{1}^2)/4 - a_{15} f_{sp}^2 l_1^2/8 - a_{15} f_{sp}^2 l_1^2 \cos (2 \alpha )/8 \nonumber \\&- a_{15} \varphi (l_1)^2 r_{1}^2 + a_{15} f_{sp} l_1 d_{1} \cos (\alpha )/2\nonumber \\&+ a_{15} \varphi (l_1) b_{1} d_{1}/2 + (3 a_{15} \varphi (l_1) a_{1} c_{1})/2 \nonumber \\&- a_{15} \varphi (l_1) b_{1} f_{sp} l_1 \cos (\alpha )/2; \end{aligned}$$
(B.3)
$$\begin{aligned} \mathbf {\psi }_{14}&=a_{18} \sin (\varpi \gamma ) \nonumber \\&+ a_{15} \varphi (l_1) a_{1} d_{1}/2 - a_{15} c_{1} d_{1}/2 + a_{15} f_{sp} l_1 c_{1} \cos (\alpha )/2 \nonumber \\&- a_{15} \varphi (l_1)^2 a_{1} b_{1}/2 \nonumber \\&+ a_{15} \varphi (l_1) b_{1} c_{1}/2 \nonumber \\&- a_{15} \varphi (l_1) a_{1} f_{sp} l_1 \cos (\alpha )/2; \end{aligned}$$
(B.4)
$$\begin{aligned} \mathbf {\psi }_{15}&=2 a_{1} a_{15} \varphi (l_1)^3 r_{1} \nonumber \\&- 2 a_{1} a_{15} \varphi (l_1)^2 r_{2} \nonumber \\&- 2 a_{15} c_{1} \varphi (l_1)^2 r_{1}\nonumber \\&+ 2 a_{15} c_{1} \varphi (l_1) r_{2}; \end{aligned}$$
(B.5)
$$\begin{aligned} \mathbf {\psi }_{16}&=-2 a_{1} a_{15} \varphi (l_1)^2 r_{1} \nonumber \\&+ 2 a_{1} a_{15} \varphi (l_1) r_{2} \nonumber \\&+ 2 a_{15} c_{1} \varphi (l_1) r_{1} \nonumber \\&- 2 a_{15} c_{1} r_{2}; \end{aligned}$$
(B.6)
$$\begin{aligned} \mathbf {\psi }_{21}&=-2 \varpi + a_{18} \varphi (l_1) \sin (\varpi \gamma ) \nonumber \\&+ a_{15} \varphi (l_1) c_{1} d_{1}/2 + a_{15} \varphi (l_1)^3 a_{1} b_{1}/2 \nonumber \\&- a_{15} \varphi (l_1)^2 b_{1} c_{1}/2\nonumber \\&- a_{15} \varphi (l_1)^2 a_{1} d_{1}/2 - a_{15} \varphi (l_1) f_{sp} l_1 c_{1} \cos (\alpha )/2 \nonumber \\&+ a_{15} \varphi (l_1)^2 a_{1} f_{sp} l_1 \cos (\alpha )/2; \end{aligned}$$
(B.7)
$$\begin{aligned} \mathbf {\psi }_{22}&=\mu + a_{16} \varphi (l_1) + a_{18} \varphi (l_1) \cos (\varpi \gamma ) \nonumber \\&+ a_{15} \varphi (l_1) c_{1}^2/4 + (3 a_{15} \varphi (l_1)^3 b_{1}^2)/4 \nonumber \\&+ a_{15} \varphi (l_1)^3 a_{1}^2/4\nonumber \\&+ (3 a_{15} \varphi (l_1) d_{1}^2)/4 + a_{15} \varphi (l_1)^3 r_{1}^2 \nonumber \\&+ a_{15} \varphi (l_1) r_{2}^2 + (3 a_{15} \varphi (l_1) f_{sp}^2 l_1^2 \cos (2 \alpha ))/8 \nonumber \\&- (3 a_{15} \varphi (l_1)^2 b_{1} d_{1})/2 \nonumber \\&- a_{15} \varphi (l_1)^2 a_{1} c_{1}/2 \nonumber \\&- 2 a_{15} \varphi (l_1)^2 r_{1} r_{2}\nonumber \\&+ (3 a_{15} \varphi (l_1) f_{sp}^2 l_1^2)/8 \nonumber \\&- (3 a_{15} \varphi (l_1) f_{sp} l_1 d_{1} \cos (\alpha ))/2 \nonumber \\&+ (3 a_{15} \varphi (l_1)^2 b_{1} f_{sp} l_1 \cos (\alpha ))/2; \end{aligned}$$
(B.8)
$$\begin{aligned} \mathbf {\psi }_{23}=&-a_{18} \sin (\varpi \gamma ) \nonumber \\&- a_{15} c_{1} d_{1}/2 + a_{15} f_{sp} l_1 c_{1} \cos (\alpha )/2 \nonumber \\&- a_{15} \varphi (l_1)^2 a_{1} b_{1}/2 \nonumber \\&+ a_{15} \varphi (l_1) b_{1} c_{1}/2 + a_{15} \varphi (l_1) a_{1} d_{1}/2 \nonumber \\&- a_{15} \varphi (l_1) a_{1} f_{sp} l_1 \cos (\alpha )/2; \end{aligned}$$
(B.9)
$$\begin{aligned}&\mathbf {\psi }_{24}=-a_{16} - a_{18} \cos (\varpi \gamma ) \nonumber \\&- a_{15} r_{2}^2 - (3 a_{15} d_{1}^2)/4 - a_{15} c_{1}^2/4 \nonumber \\&- (3 a_{15} \varphi (l_1)^2 b_{1}^2)/4 - (3 a_{15} f_{sp}^2 l_1^2)/8\nonumber \\&- a_{15} \varphi (l_1)^2 a_{1}^2/4 - (3 a_{15} f_{sp}^2 l_1^2 \cos (2 \alpha ))/8 \nonumber \\&- a_{15} \varphi (l_1)^2 r_{1}^2 + (3 a_{15} f_{sp} l_1 d_{1} \cos (\alpha ))/2 \nonumber \\&+ (3 a_{15} \varphi (l_1) b_{1} d_{1})/2 + a_{15} \varphi (l_1) a_{1} c_{1}/2 \nonumber \\&+ 2 a_{15} \varphi (l_1) r_{1} r_{2} - (3 a_{15} \varphi (l_1) b_{1} f_{sp} l_1 \cos (\alpha ))/2; \end{aligned}$$
(B.10)
$$\begin{aligned}&\mathbf {\psi }_{25}=2 a_{15} \varphi (l_1)^3 r_{1} b_{1} - 2 a_{15} \varphi (l_1)^2 r_{1} d_{1} \nonumber \\&- 2 a_{15} \varphi (l_1)^2 b_{1} r_{2} + 2 a_{15} \varphi (l_1) r_{2} d_{1} \nonumber \\&- 2 a_{15} \varphi (l_1) f_{sp} l_1 r_{2} \cos (\alpha ) \nonumber \\&+ 2 a_{15} \varphi (l_1)^2 r_{1} f_{sp} l_1 \cos (\alpha ); \end{aligned}$$
(B.11)
$$\begin{aligned}&\mathbf {\psi }_{26}=-2 a_{15} r_{2} d_{1} + 2 a_{15} f_{sp} l_1 r_{2} \cos (\alpha )\nonumber \\&- 2 a_{15} \varphi (l_1)^2 r_{1} b_{1} + 2 a_{15} \varphi (l_1) r_{1} d_{1} + 2 a_{15} \varphi (l_1) b_{1} r_{2} \nonumber \\&- 2 a_{15} \varphi (l_1) r_{1} f_{sp} l_1 \cos (\alpha ); \end{aligned}$$
(B.12)
$$\begin{aligned}&\mathbf {\psi }_{31}=-\xi _{n} \varphi (l_1)^2 b_{1} f_{sp} l_1 \cos (\alpha )/2 \nonumber \\&+ \xi _{n} \varphi (l_1) f_{sp} l_1 d_{1} \cos (\alpha )/2 - \xi _{n} \varphi (l_1) f_{sp}^2 l_1^2/8 \nonumber \\&+ \xi _{n} \varphi (l_1)^2 b_{1} d_{1}/2 \nonumber \\&+ 2 \xi _{n} \varphi (l_1)^2 r_{1} r_{2} - g_v \varphi (l_1) \cos (\varpi \gamma ) \nonumber \\&- \xi _{nl} \varphi (l_1) - (3 \xi _{n} \varphi (l_1)^3 a_{1}^2)/4 - (3 \xi _{n} \varphi (l_1) c_{1}^2)/4 \nonumber \\&- \xi _{n} \varphi (l_1) d_{1}^2/4 - \xi _{n} \varphi (l_1)^3 r_{1}^2 \nonumber \\&- \xi _{n} \varphi (l_1) r_{2}^2 - \xi _{n} \varphi (l_1)^3 b_{1}^2/4\nonumber \\&- \xi _{n} \varphi (l_1) f_{sp}^2 l_1^2 \cos (2 \alpha )/8\nonumber \\&+ (3 \xi _{n} \varphi (l_1)^2 a_{1} c_{1})/2; \end{aligned}$$
(B.13)
$$\begin{aligned}&\mathbf {\psi }_{32}=\xi _{n} \varphi (l_1) f_{sp} l_1 c_{1} \cos (\alpha )/2 \nonumber \\&- \xi _{n} \varphi (l_1)^2 a_{1} f_{sp} l_1 \cos (\alpha )/2 - \xi _{n} \varphi (l_1)^3 a_{1} b_{1}/2 \nonumber \\&+ \xi _{n} \varphi (l_1)^2 a_{1} d_{1}/2 \nonumber \\&+ g_v \varphi (l_1) \sin (\varpi \gamma ) - \xi _{n} \varphi (l_1) c_{1} d_{1}/2 \nonumber \\&+ \xi _{n} \varphi (l_1)^2 b_{1} c_{1}/2; \end{aligned}$$
(B.14)
$$\begin{aligned}&\mathbf {\psi }_{33}=\xi _{nl} + g_v \cos (\varpi \gamma ) \nonumber \\&+ \xi _{n} \varphi (l_1) b_{1} f_{sp} l_1 \cos (\alpha )/2 - \xi _{n} \varphi (l_1) b_{1} d_{1}/2 \nonumber \\&- 2 \xi _{n} \varphi (l_1) r_{1} r_{2} \nonumber \\ &- \xi _{n} f_{sp} l_1 d_{1} \cos (\alpha )/2 \nonumber \\&+ (3 \xi _{n} c_{1}^2)/4 + \xi _{n} r_{2}^2 + \xi _{n} d_{1}^2/4 \nonumber \\&+ \xi _{n} f_{sp}^2 l_1^2/8 + (3 \xi _{n} \varphi (l_1)^2 a_{1}^2)/4 \nonumber \\&+ \xi _{n} f_{sp}^2 l_1^2 \cos (2 \alpha )/8 + \xi _{n} \varphi (l_1)^2 r_{1}^2 \nonumber \\&+ \xi _{n} \varphi (l_1)^2 b_{1}^2/4 - (3 \xi _{n} \varphi (l_1) a_{1} c_{1})/2; \end{aligned}$$
(B.15)
$$\begin{aligned}&\mathbf {\psi }_{34}=2 \varpi - g_v \sin (\varpi \gamma ) \nonumber \\&+ \xi _{n} \varphi (l_1) a_{1} f_{sp} l_1 \cos (\alpha )/2 - \xi _{n} f_{sp} l_1 c_{1} \cos (\alpha )/2\nonumber \\ &+ \xi _{n} \varphi (l_1)^2 a_{1} b_{1}/2 \nonumber \\&- \xi _{n} \varphi (l_1) a_{1} d_{1}/2 + \xi _{n} c_{1} d_{1}/2 \nonumber \\&- \xi _{n} \varphi (l_1) b_{1} c_{1}/2; \end{aligned}$$
(B.16)
$$\begin{aligned}&\mathbf {\psi }_{35}=-2 a_{1} \varphi (l_1)^3 r_{1} \xi _{n} + 2 a_{1} \varphi (l_1)^2 r_{2} \xi _{n} \nonumber \\&+ 2 c_{1} \varphi (l_1)^2 r_{1} \xi _{n}\nonumber \\&- 2 c_{1} \varphi (l_1) r_{2} \xi _{n}; \end{aligned}$$
(B.17)
$$\begin{aligned}&\mathbf {\psi }_{36}=2 a_{1} \varphi (l_1)^2 r_{1} \xi _{n} - 2 a_{1} \varphi (l_1) r_{2} \xi _{n} \nonumber \\&- 2 c_{1} \varphi (l_1) r_{1} \xi _{n} + 2 c_{1} r_{2} \xi _{n}; \end{aligned}$$
(B.18)
$$\begin{aligned}&\mathbf {\psi }_{41}=\xi _{n} \varphi (l_1) f_{sp} l_1 c_{1} \cos (\alpha )/2 \nonumber \\&- \xi _{n} \varphi (l_1)^2 a_{1} f_{sp} l_1 \cos (\alpha )/2 - g_v \varphi (l_1) \sin (\varpi \gamma ) \nonumber \\&+\xi _{n} \varphi (l_1)^2 b_{1} c_{1}/2 - \xi _{n} \varphi (l_1)^3 a_{1} b_{1}/2 \nonumber \\&+ \xi _{n} \varphi (l_1)^2 a_{1} d_{1}/2 - \xi _{n} \varphi (l_1) c_{1} d_{1}/2; \end{aligned}$$
(B.19)
$$\begin{aligned}&\mathbf {\psi }_{42}=-(3 \xi _{n} \varphi (l_1)^2 b_{1} f_{sp} l_1 \cos (\alpha ))/2 \nonumber \\&+ (3 \xi _{n} \varphi (l_1) f_{sp} l_1 d_{1} \cos (\alpha ))/2 - g_v \varphi (l_1) \cos (\varpi \gamma ) \nonumber \\&- \xi _{nl} \varphi (l_1) - \xi _{n} \varphi (l_1)^3 r_{1}^2 - \xi _{n} \varphi (l_1) r_{2}^2 - (3 \xi _{n} \varphi (l_1)^3 b_{1}^2)/4 \nonumber \\&- \xi _{n} \varphi (l_1)^3 a_{1}^2/4 - \xi _{n} \varphi (l_1) c_{1}^2/4\nonumber \\&- (3 \xi _{n} \varphi (l_1) d_{1}^2)/4 + 2 \xi _{n} \varphi (l_1)^2 r_{1} r_{2} \nonumber \\&- (3 \xi _{n} \varphi (l_1) f_{sp}^2 l_1^2)/8 + (3 \xi _{n} \varphi (l_1)^2 b_{1} d_{1})/2 \nonumber \\&- (3 \xi _{n} \varphi (l_1) f_{sp}^2 l_1^2 \cos (2\alpha ))/8 \nonumber \\&+ \xi _{n} \varphi (l_1)^2 a_{1} c_{1}/2; \end{aligned}$$
(B.20)
$$\begin{aligned}&\mathbf {\psi }_{43}=-2 \varpi + g_v \sin (\varpi \gamma ) + \xi _{n} \varphi (l_1) a_{1} f_{sp} l_1 \cos (\alpha )/2 \nonumber \\&+ \xi _{n} c_{1} d_{1}/2 - \xi _{n} \varphi (l_1) b_{1} c_{1}/2\nonumber \\&+ \xi _{n} \varphi (l_1)^2 a_{1} b_{1}/2 \nonumber \\&- \xi _{n} \varphi (l_1) a_{1} d_{1}/2\nonumber \\&- \xi _{n} f_{sp} l_1 c_{1} \cos (\alpha )/2; \end{aligned}$$
(B.21)
$$\begin{aligned}&\mathbf {\psi }_{44}=(3 \xi _{n} \varphi (l_1) b_{1} f_{sp} l_1 \cos (\alpha ))/2 \nonumber \\&+ \xi _{nl} + g_v \cos (\varpi \gamma ) + \xi _{n} r_{2}^2 + \xi _{n} c_{1}^2/4 + (3 \xi _{n} d_{1}^2)/4 \nonumber \\&+ (3 \xi _{n} f_{sp}^2 l_1^2 \cos (2 \alpha ))/8 + \xi _{n} \varphi (l_1)^2 r_{1}^2 \nonumber \\&+ \xi _{n} \varphi (l_1)^2 a_{1}^2/4 + (3 \xi _{n} \varphi (l_1)^2 b_{1}^2)/4 \nonumber \\&+ (3 \xi _{n} f_{sp}^2 l_1^2)/8 \nonumber \\&- 2 \xi _{n} \varphi (l_1) r_{1} r_{2} - (3 \xi _{n} \varphi (l_1) b_{1} d_{1})/2 - \xi _{n} \varphi (l_1) a_{1} c_{1}/2 \nonumber \\&- (3 \xi _{n} f_{sp} l_1 d_{1} \cos (\alpha ))/2; \end{aligned}$$
(B.22)
$$\begin{aligned}&\mathbf {\psi }_{45}=2 \xi _{n} \varphi (l_1) f_{sp} l_1 r_{2} \cos (\alpha ) \nonumber \\&- 2 \xi _{n} \varphi (l_1)^2 r_{1} f_{sp} l_1 \cos (\alpha ) - 2 \xi _{n} \varphi (l_1) r_{2} d_{1} \nonumber \\&+ 2 \xi _{n} \varphi (l_1)^2 b_{1} r_{2} \nonumber \\&+ 2 \xi _{n} \varphi (l_1)^2 r_{1} d_{1} - 2 \xi _{n} \varphi (l_1)^3 r_{1} b_{1}; \end{aligned}$$
(B.23)
$$\begin{aligned}&\mathbf {\psi }_{46}=2 \xi _{n} \varphi (l_1) r_{1} f_{sp} l_1 \cos (\alpha ) \nonumber \\&+ 2 \xi _{n} r_{2} d_{1} + 2 \xi _{n} \varphi (l_1)^2 r_{1} b_{1} - 2 \xi _{n} \varphi (l_1) b_{1} r_{2} \nonumber \\&- 2 \xi _{n} f_{sp} l_1 r_{2} \cos (\alpha )\nonumber \\&- 2 \xi _{n} \varphi (l_1) r_{1} d_{1}; \end{aligned}$$
(B.24)
$$\begin{aligned}&\mathbf {\psi }_{51}=a_{1} a_{15} \varphi (l_1)^3 r_{1} - a_{1} a_{15} \varphi (l_1)^2 r_{2} \nonumber \\&- a_{15} c_{1} \varphi (l_1)^2 r_{1} \nonumber \\&+ a_{15} c_{1} \varphi (l_1) r_{2}; \end{aligned}$$
(B.25)
$$\begin{aligned}&\mathbf {\psi }_{52}=-a_{15} \varphi (l_1) f_{sp} l_1 r_{2} \cos (\alpha ) \nonumber \\&+ a_{15} \varphi (l_1)^2 r_{1} f_{sp} l_1 \cos (\alpha )\nonumber \\&+ a_{15} \varphi (l_1) r_{2} d_{1} + a_{15} \varphi (l_1)^3 r_{1} b_{1} \nonumber \\&- a_{15} \varphi (l_1)^2 r_{1} d_{1} \nonumber \\&- a_{15} \varphi (l_1)^2 b_{1} r_{2}; \end{aligned}$$
(B.26)
$$\begin{aligned}&\mathbf {\psi }_{53}=-a_{1} a_{15} \varphi (l_1)^2 r_{1} \nonumber \\&+ a_{1} a_{15} \varphi (l_1) r_{2} + a_{15} c_{1} \varphi (l_1) r_{1} \nonumber \\&- a_{15} c_{1} r_{2}; \end{aligned}$$
(B.27)
$$\begin{aligned}&\mathbf {\psi }_{54}=-a_{15} r_{2} d_{1} - a_{15} \varphi (l_1) r_{1} f_{sp} l_1 \cos (\alpha ) \nonumber \\&- a_{15} \varphi (l_1)^2 r_{1} b_{1} + a_{15} \varphi (l_1) r_{1} d_{1} \nonumber \\&+ a_{15} \varphi (l_1) b_{1} r_{2} \nonumber \\&+ a_{15} f_{sp} l_1 r_{2} \cos (\alpha ); \end{aligned}$$
(B.28)
$$\begin{aligned}&\mathbf {\psi }_{55}=a_{18} \varphi (l_1) + a_{16} \varphi (l_1) + \mu \nonumber \\&- a_{15} \varphi (l_1)^2 a_{1} c_{1} + a_{15} \varphi (l_1) f_{sp}^2 l_1^2/4 \nonumber \\&- a_{15} \varphi (l_1)^2 b_{1} d_{1} \nonumber \\&+ a_{15} \varphi (l_1) d_{1}^2/2 + a_{15} \varphi (l_1) c_{1}^2/2 + a_{15} \varphi (l_1)^3 a_{1}^2/2 \nonumber \\&+ a_{15} \varphi (l_1)^3 b_{1}^2/2 + a_{15} \varphi (l_1)^3 r_{1}^2 \nonumber \\&+ a_{15} \varphi (l_1) r_{2}^2 + a_{15} \varphi (l_1) f_{sp}^2 l_1^2 \cos (2 \alpha )/4 \nonumber \\&+ a_{15} \varphi (l_1)^2 b_{1} f_{sp} l_1 \cos (\alpha ) \nonumber \\&- a_{15} \varphi (l_1) f_{sp} l_1 d_{1} \cos (\alpha )\nonumber \\&- 2 a_{15} \varphi (l_1)^2 r_{1} r_{2}; \end{aligned}$$
(B.29)
$$\begin{aligned}&\mathbf {\psi }_{56}=-a_{15} c_{1}^2/2 - a_{15} d_{1}^2/2 \nonumber \\&- a_{15} r_{2}^2 - a_{16} - a_{18} \nonumber \\&+ a_{15} \varphi (l_1) a_{1} c_{1} \nonumber \\&- a_{15} f_{sp}^2 l_1^2 \cos (2 \alpha )/4 \nonumber \\&+ a_{15} \varphi (l_1) b_{1} d_{1} \nonumber \\&- a_{15} \varphi (l_1)^2 a_{1}^2/2 \nonumber \\&- a_{15} \varphi (l_1)^2 b_{1}^2/2 \nonumber \\&- a_{15} f_{sp}^2 l_1^2/4 - a_{15} \varphi (l_1)^2 r_{1}^2 \nonumber \\&+ a_{15} f_{sp} l_1 d_{1} \cos (\alpha ) - a_{15} \varphi (l_1) b_{1} f_{sp} l_1 \cos (\alpha ) \nonumber \\&+ 2 a_{15} \varphi (l_1) r_{1} r_{2}; \end{aligned}$$
(B.30)
$$\begin{aligned}&\mathbf {\psi }_{61}=-a_{1} \varphi (l_1)^3 r_{1} \xi _{n} \nonumber \\&+ a_{1} \varphi (l_1)^2 r_{2} \xi _{n} + c_{1} \varphi (l_1)^2 r_{1} \xi _{n} \nonumber \\&- c_{1} \varphi (l_1) r_{2} \xi _{n}; \end{aligned}$$
(B.31)
$$\begin{aligned}&\mathbf {\psi }_{62}=\xi _{n} \varphi (l_1) f_{sp} l_1 r_{2} \cos (\alpha ) \nonumber \\&- \xi _{n} \varphi (l_1)^2 r_{1} f_{sp} l_1 \cos (\alpha ) + \xi _{n} \varphi (l_1)^2 r_{1} d_{1} \nonumber \\&- \xi _{n} \varphi (l_1)^3 r_{1} b_{1} \nonumber \\&- \xi _{n} \varphi (l_1) r_{2} d_{1} + \xi _{n} \varphi (l_1)^2 b_{1} r_{2}; \end{aligned}$$
(B.32)
$$\begin{aligned}&\mathbf {\psi }_{63}=a_{1} \varphi (l_1)^2 r_{1} \xi _{n}\nonumber \\&- a_{1} \varphi (l_1) r_{2} \xi _{n} - c_{1} \varphi (l_1) r_{1} \xi _{n} \nonumber \\&+ c_{1} r_{2} \xi _{n}; \end{aligned}$$
(B.33)
$$\begin{aligned}&\mathbf {\psi }_{64}=-\xi _{n} f_{sp} l_1 r_{2} \cos (\alpha ) \nonumber \\&+ \xi _{n} r_{2} d_{1} \nonumber \\&+ \xi _{n} \varphi (l_1) r_{1} f_{sp} l_1 \cos (\alpha ) - \xi _{n} \varphi (l_1) r_{1} d_{1} \nonumber \\&+ \xi _{n} \varphi (l_1)^2 r_{1} b_{1} \nonumber \\&- \xi _{n} \varphi (l_1) b_{1} r_{2}; \end{aligned}$$
(B.34)
$$\begin{aligned}&\mathbf {\psi }_{65}=-\xi _{n} \varphi (l_1) f_{sp}^2 l_1^2 \cos (2 \alpha )/4 \nonumber \\&- g_v \varphi (l_1) - \xi _{nl} \varphi (l_1) + \xi _{n} \varphi (l_1) f_{sp} l_1 d_{1} \cos (\alpha ) \nonumber \\&- \xi _{n} \varphi (l_1)^2 b_{1} f_{sp} l_1 \cos (\alpha ) - \xi _{n} \varphi (l_1) c_{1}^2/2 \nonumber \\&- \xi _{n} \varphi (l_1) d_{1}^2/2 - \xi _{n} \varphi (l_1)^3 a_{1}^2/2 \nonumber \\&- \xi _{n} \varphi (l_1)^3 b_{1}^2/2 - \xi _{n} \varphi (l_1)^3 r_{1}^2 \nonumber \\&- \xi _{n} \varphi (l_1) r_{2}^2 + \xi _{n} \varphi (l_1)^2 a_{1} c_{1} + \xi _{n} \varphi (l_1)^2 b_{1} d_{1} \nonumber \\&- \xi _{n} \varphi (l_1) f_{sp}^2 l_1^2/4 + 2 \xi _{n} \varphi (l_1)^2 r_{1} r_{2}; \end{aligned}$$
(B.35)
$$\begin{aligned}&\mathbf {\psi }_{66}=-\xi _{n} f_{sp} l_1 d_{1} \cos (\alpha ) + \xi _{n} c_{1}^2/2 \nonumber \\&+ \xi _{n} d_{1}^2/2 + \xi _{n} r_{2}^2 + \xi _{n} \varphi (l_1) b_{1} f_{sp} l_1 \cos (\alpha ) \nonumber \\&+ g_v + \xi _{nl} \nonumber \\&+ \xi _{n} \varphi (l_1)^2 a_{1}^2/2 + \xi _{n} \varphi (l_1)^2 b_{1}^2/2 + \xi _{n} f_{sp}^2 l_1^2/4 \nonumber \\&+ \xi _{n} \varphi (l_1)^2 r_{1}^2 + \xi _{n} f_{sp}^2 l_1^2 \cos (2 \alpha )/4 \nonumber \\&- \xi _{n} \varphi (l_1) a_{1} c_{1} - \xi _{n} \varphi (l_1) b_{1} d_{1} \nonumber \\&- 2 \xi _{n} \varphi (l_1) r_{1} r_{2}; \end{aligned}$$
(B.36)
$$\begin{aligned}&\mathbf {\Sigma }_{1}=\mu b_{1} \varpi - a_{16} d_{1} \varpi + 2 a_{12} r_{1} a_{1} \nonumber \\&+ 3 a_{13} r_{1}^2 a_{1} - 3 a_{14} r_{2}^2 c_{1} + a_{18} \varphi (l_1) a_{1} \varpi \sin (\varpi \gamma ) \nonumber \\&+ a_{18} \varphi (l_1) b_{1} \varpi \cos (\varpi \gamma ) - (9 a_{14} \varphi (l_1)^2 a_{1}^2 c_{1})/4 \nonumber \\&- (3 a_{14} \varphi (l_1)^2 b_{1}^2 c_{1})/4 \nonumber \\&+ (3 a_{14} \varphi (l_1)^2 a_{1} b_{1} f_{sp} l_1 \cos (\alpha ))/2 + (9 a_{14} \varphi (l_1) a_{1} c_{1}^2)/4 \nonumber \\&- (3 a_{14} f_{sp}^2 l_1^2 c_{1})/8+ (3 a_{15} \varphi (l_1)^2 b_{1}^2 \varpi f_{sp} l_1 \cos (\alpha ))/4 \nonumber \\&- (3 a_{14} f_{sp}^2 l_1^2 c_{1} \cos (2 \alpha ))/8 \nonumber \\&- (3 a_{14} \varphi (l_1)^2 a_{1} b_{1} d_{1})/2\nonumber \\&+ (3 a_{15} \varphi (l_1) b_{1} \varpi d_{1}^2)/4 \nonumber \\&- a_{18} c_{1} \varpi \sin (\varpi \gamma ) \nonumber \\&- a_{18} d_{1} \varpi \cos (\varpi \gamma ) - 3 a_{14} \varphi (l_1)^2 r_{1}^2 c_{1} \nonumber \\&+ 3 a_{14} \varphi (l_1)^3 r_{1}^2 a_{1} - a_{15} d_{1} \varpi r_{2}^2 + 3 a_{14} \varphi (l_1) a_{1} r_{2}^2 \nonumber \\&+ a_{16} \varphi (l_1) b_{1} \varpi \nonumber \\&+ (3 a_{15} f_{sp} l_1 \varpi d_{1}^2 \cos (\alpha ))/4 \nonumber \\&+ a_{18} f_{sp} l_1 \varpi (\cos (\varpi \gamma ) \cos (\alpha )+ \sin (\varpi \gamma ) \sin (\alpha ))/2 \nonumber \\&+ a_{16} f_{sp} l_1 \varpi \cos (\alpha ) - a_{15} c_{1}^2 \varpi d_{1}/4 \nonumber \\&+ a_{15} f_{sp}^3 l_1^3 \varpi \cos (3 \alpha )/16- 2 a_{15} f_{sp} l_1 \varpi \varphi (l_1) r_{1} r_{2} \cos (\alpha ) \nonumber \\&- (3 a_{15} f_{sp}^2 l_1^2 \varpi d_{1})/8 + a_{15} \varphi (l_1) a_{1} \varpi c_{1} d_{1}/2 \nonumber \\&+ a_{18} f_{sp} l_1 \varpi (\cos (\varpi \gamma ) \cos (\alpha ) \nonumber \\&- \sin (\varpi \gamma ) \sin (\alpha ))/2 \nonumber \\&- a_{15} d_{1} \varpi \varphi (l_1)^2 a_{1}^2/4 - (3 a_{15} \varphi (l_1) b_{1} \varpi f_{sp} l_1 d_{1} \cos (\alpha ))/2 \nonumber \\&+ a_{15} f_{sp} l_1 \varpi \varphi (l_1)^2 a_{1}^2 \cos (\alpha )/4 \nonumber \\&- (3 a_{14} c_{1}^3)/4 + a_{19} + a_{15} f_{sp} l_1 \varpi \varphi (l_1)^2 r_{1}^2 \cos (\alpha ) \nonumber \\&- 6 a_{14} \varphi (l_1)^2 r_{1} a_{1} r_{2} - a_{15} d_{1} \varpi \varphi (l_1)^2 r_{1}^2\nonumber \\&+ a_{15} \varphi (l_1) b_{1} \varpi r_{2}^2 + 6 a_{14} \varphi (l_1) r_{1} r_{2} c_{1} \nonumber \\&+ a_{15} \varphi (l_1)^3 b_{1} \varpi r_{1}^2 + (3 a_{14} \varphi (l_1)^3 a_{1}^3)/4 \nonumber \\&+ (3 a_{15} \varphi (l_1) b_{1} \varpi f_{sp}^2 l_1^2)/8 \nonumber \\&- a_{15} \varphi (l_1)^2 a_{1} \varpi b_{1} c_{1}/2\nonumber \\&- (3 a_{15} f_{sp}^2 l_1^2 \varpi d_{1} \cos (2 \alpha ))/8 \nonumber \\&+ (3 a_{14} \varphi (l_1) a_{1} f_{sp}^2 l_1^2 \cos (2 \alpha ))/8 + a_{15} \varphi (l_1)^3 b_{1}^3 \varpi /4 \nonumber \\&+ (3 a_{15} \varphi (l_1) b_{1} \varpi f_{sp}^2 l_1^2 \cos (2 \alpha ))/8 \nonumber \\&- (3 a_{14} \varphi (l_1) b_{1} f_{sp} l_1 c_{1} \cos (\alpha ))/2 \nonumber \\&+ (3 a_{15} f_{sp}^3 l_1^3 \varpi \cos (\alpha ))/16 + 2 a_{15} d_{1} \varpi \varphi (l_1) r_{1} r_{2} \nonumber \\&+ a_{15} f_{sp} l_1 \varpi r_{2}^2 \cos (\alpha ) \nonumber \\&- 2 a_{15} \varphi (l_1)^2 b_{1} \varpi r_{1} r_{2} + (3 a_{13} a_{1} b_{1}^2)/4 \nonumber \\&- (3 a_{14} c_{1} d_{1}^2)/4 + a_{11} a_{1} \nonumber \\&+ b_{12} a_{1} - a_{1} \varpi ^2 + a_{15} f_{sp} l_1 \varpi c_{1}^2 \cos (\alpha )/4 \nonumber \\&- (3 a_{14} \varphi (l_1) a_{1} f_{sp} l_1 d_{1} \cos (\alpha ))/2 \nonumber \\&+ (3 a_{14} \varphi (l_1) a_{1} f_{sp}^2 l_1^2)/8 + a_{15} \varphi (l_1)^3 b_{1} \varpi a_{1}^2/4 \nonumber \\&+ a_{15} \varphi (l_1) b_{1} \varpi c_{1}^2/4 + (3 a_{14} f_{sp} l_1 c_{1} d_{1} \cos (\alpha ))/2 \nonumber \\&- (3 a_{15} \varphi (l_1)^2 b_{1}^2 \varpi d_{1})/4 + (3 a_{14} \varphi (l_1) b_{1} c_{1} d_{1})/2\nonumber \\&- a_{15} d_{1}^3 \varpi /4 + (3 a_{14} \varphi (l_1)^3 a_{1} b_{1}^2)/4\nonumber \\&+ (3 a_{13} a_{1}^3)/4 - a_{15} f_{sp} l_1 \varpi \varphi (l_1) a_{1} c_{1} \cos (\alpha )/2 \nonumber \\&- (3 b_{11} a_{1})/4 + (3 a_{14} \varphi (l_1) a_{1} d_{1}^2)/4; \end{aligned}$$
(B.37)
$$\begin{aligned}&\mathbf {\Sigma }_{2}=(3 a_{14} f_{sp} l_1 c_{1}^2 \cos (\alpha ))/4 \nonumber \\&- \mu a_{1} \varpi + a_{16} c_{1} \varpi + 3 a_{13} r_{1}^2 b_{1} \nonumber \\&+ 2 a_{12} r_{1} b_{1} - 3 a_{14} r_{2}^2 d_{1} \nonumber \\&+ a_{15} \varphi (l_1)^2 b_{1}^2 \varpi c_{1}/4 - (3 a_{14} \varphi (l_1)^2 a_{1} b_{1} c_{1})/2 \nonumber \\&- (9 a_{14} f_{sp}^2 l_1^2 d_{1} \cos (2 \alpha ))/8 \nonumber \\&+ (3 a_{15} \varphi (l_1)^2 a_{1}^2 \varpi c_{1})/4 + a_{15} f_{sp}^2 l_1^2 \varpi c_{1}/8 \nonumber \\&- (3 a_{15} \varphi (l_1) a_{1} \varpi c_{1}^2)/4 + (9 a_{14} f_{sp} l_1 d_{1}^2 \cos (\alpha ))/4 \nonumber \\&- a_{15} \varphi (l_1) b_{1} \varpi c_{1} d_{1}/2 + (3 a_{14} \varphi (l_1) a_{1} c_{1} d_{1})/2 \nonumber \\&- a_{15} \varphi (l_1) a_{1} \varpi d_{1}^2/4 \nonumber \\&- (9 a_{14} \varphi (l_1) b_{1} f_{sp} l_1 d_{1} \cos (\alpha ))/2 \nonumber \\&- (3 a_{14} \varphi (l_1) a_{1} f_{sp} l_1 c_{1} \cos (\alpha ))/2 \nonumber \\&- a_{15} \varphi (l_1) a_{1} \varpi f_{sp}^2 l_1^2 \cos (2 \alpha )/8 \nonumber \\&+ 3 a_{14} \varphi (l_1)^3 r_{1}^2 b_{1} - 3 a_{14} \varphi (l_1)^2 r_{1}^2 d_{1} \nonumber \\&+ 3 a_{14} \varphi (l_1) b_{1} r_{2}^2 \nonumber \\ &+ a_{15} c_{1} \varpi r_{2}^2 - a_{16} \varphi (l_1) a_{1} \varpi + a_{18} c_{1} \varpi \cos (\varpi \gamma ) \nonumber \\&- a_{18} d_{1} \varpi \sin (\varpi \gamma ) - a_{15} \varphi (l_1)^3 b_{1}^2 \varpi a_{1}/4 \nonumber \\&+ (9 a_{14} \varphi (l_1) b_{1} f_{sp}^2 l_1^2)/8 + a_{15} \varphi (l_1) a_{1} \varpi f_{sp} l_1 d_{1} \cos (\alpha )/2 \nonumber \\&+ (9 a_{14} \varphi (l_1)^2 b_{1}^2 f_{sp} l_1 \cos (\alpha ))/4 \nonumber \\&+ (9 a_{14} \varphi (l_1) b_{1} f_{sp}^2 l_1^2 \cos (2 \alpha ))/8 \nonumber \\&- a_{15} \varphi (l_1) a_{1} \varpi f_{sp}^2 l_1^2/8 + (3 a_{14} \varphi (l_1)^2 a_{1}^2 f_{sp} l_1 \cos (\alpha ))/4 \nonumber \\&+ a_{18} f_{sp} l_1 \varpi (\sin (\varpi \gamma ) \cos (\alpha ) - \cos (\varpi \gamma ) \sin (\alpha ))/2 \nonumber \\&+ a_{18} f_{sp} l_1 \varpi (\sin (\varpi \gamma ) \cos (\alpha ) + \cos (\varpi \gamma ) \sin (\alpha ))/2\nonumber \\&+ (3 a_{14} f_{sp}^3 l_1^3 \cos (3 \alpha ))/16 + (9 a_{14} f_{sp}^3 l_1^3 \cos (\alpha ))/16 \nonumber \\&- (9 a_{14} f_{sp}^2 l_1^2 d_{1})/8 - (9 a_{14} \varphi (l_1)^2 b_{1}^2 d_{1})/4 \nonumber \\&+ a_{15} d_{1}^2 \varpi c_{1}/4 - (3 a_{14} \varphi (l_1)^2 a_{1}^2 d_{1})/4 \nonumber \\&+ (9 a_{14} \varphi (l_1) b_{1} d_{1}^2)/4 \nonumber \\&+ (3 a_{14} \varphi (l_1) b_{1} c_{1}^2)/4 \nonumber \\&- a_{15} \varphi (l_1)^3 a_{1}^3 \varpi /4 \nonumber \\&+ (3 a_{14} \varphi (l_1)^3 a_{1}^2 b_{1})/4 \nonumber \\&+ a_{15} c_{1} \varpi \varphi (l_1) b_{1} f_{sp} l_1 \cos (\alpha )/2\nonumber \\&- a_{15} \varphi (l_1)^2 a_{1} \varpi b_{1} f_{sp} l_1 \cos (\alpha )/2 \nonumber \\&+ a_{15} c_{1}^3 \varpi /4 - (3 a_{14} c_{1}^2 d_{1})/4 \nonumber \\&+ (3 a_{13} a_{1}^2 b_{1})/4 \nonumber \\&+ (3 a_{14} \varphi (l_1)^3 b_{1}^3)/4 - (3 a_{14} d_{1}^3)/4 - b_{11} b_{1}/4 \nonumber \\&+ (3 a_{13} b_{1}^3)/4 - a_{15} f_{sp} l_1 \varpi c_{1} d_{1} \cos (\alpha )/2\nonumber \\&+ a_{15} c_{1} \varpi \varphi (l_1)^2 r_{1}^2 + 3 a_{14} f_{sp} l_1 r_{2}^2 \cos (\alpha ) \nonumber \\&+ 6 a_{14} \varphi (l_1) r_{1} r_{2} d_{1} - a_{15} \varphi (l_1) a_{1} \varpi r_{2}^2 \nonumber \\&- 6 a_{14} \varphi (l_1)^2 r_{1} b_{1} r_{2} + a_{20} - a_{18} \varphi (l_1) a_{1} \varpi \cos (\varpi \gamma ) \nonumber \\&+ a_{18} \varphi (l_1) b_{1} \varpi \sin (\varpi \gamma ) \nonumber \\&- a_{15} \varphi (l_1)^3 a_{1} \varpi r_{1}^2\nonumber \\&+ a_{15} \varphi (l_1)^2 b_{1} \varpi a_{1} d_{1}/2 \nonumber \\&+ a_{15} f_{sp}^2 l_1^2 \varpi c_{1} \cos (2 \alpha )/8 \nonumber \\&- 6 a_{14} \varphi (l_1) r_{1} f_{sp} l_1 r_{2} \cos (\alpha ) \nonumber \\&+ a_{11} b_{1} - b_{1} \varpi ^2 + b_{12} b_{1} + 3 a_{14} \varphi (l_1)^2 r_{1}^2 f_{sp} l_1 \cos (\alpha ) \nonumber \\&+ 2 a_{15} \varphi (l_1)^2 a_{1} \varpi r_{1} r_{2} \nonumber \\&- 2 a_{15} c_{1} \varpi \varphi (l_1) r_{1} r_{2}; \end{aligned}$$
(B.38)
$$\begin{aligned}&\mathbf {\Sigma }_{3}=3 k_n r_{2}^2 c_{1} + \xi _{nl} d_{1} \varpi \nonumber \\&- (3 k_n \varphi (l_1) a_{1} f_{sp}^2 l_1^2 \cos (2 \alpha ))/8 \nonumber \\&- (3 \xi _{n} f_{sp}^3 l_1^3 \varpi \cos (\alpha ))/16 - c_{1} \varpi ^2\nonumber \\&- \xi _{n} c_{1}^2 \varpi f_{sp} l_1 \cos (\alpha )/4 \nonumber \\&- (3 \xi _{n} \varphi (l_1)^2 b_{1}^2 \varpi f_{sp} l_1 \cos (\alpha ))/4 \nonumber \\&- \xi _{nl} \varphi (l_1) b_{1} \varpi \nonumber \\&+ g_v c_{1} \varpi \sin (\varpi \gamma ) \nonumber \\&+ Gv d_{1} \varpi \cos (\varpi \gamma ) \nonumber \\&- 3 k_n \varphi (l_1)^3 r_{1}^2 a_{1} \nonumber \\&+ 3 k_n \varphi (l_1)^2 r_{1}^2 c_{1} \nonumber \\&- 3 k_n \varphi (l_1) a_{1} r_{2}^2 \nonumber \\&+ \xi _{n} d_{1} \varpi r_{2}^2 \nonumber \\&+ (9 k_n \varphi (l_1)^2 a_{1}^2 c_{1})/4 + (3 k_n \varphi (l_1)^2 b_{1}^2 c_{1})/4 \nonumber \\&- \xi _{n} c_{1}^2 \varpi \varphi (l_1) b_{1}/4 \nonumber \\&- (3 \xi _{n} \varphi (l_1) b_{1} \varpi f_{sp}^2 l_1^2 \cos (2 \alpha ))/8 \nonumber \\&+ (3 k_n \varphi (l_1) a_{1} f_{sp} l_1 d_{1} \cos (\alpha ))/2 \nonumber \\&+ \xi _{n} d_{1} \varpi \varphi (l_1)^2 r_{1}^2 \nonumber \\&- 6 k_n \varphi (l_1) r_{1} r_{2} c_{1} - \xi _{n} \varphi (l_1) b_{1} \varpi r_{2}^2 \nonumber \\&+ 6 k_n \varphi (l_1)^2 r_{1} a_{1} r_{2} \nonumber \\&- g_v \varphi (l_1) a_{1} \varpi \sin (\varpi \gamma ) \nonumber \\&- g_v \varphi (l_1) b_{1} \varpi \cos (\varpi \gamma ) \nonumber \\&- \xi _{n} \varphi (l_1)^3 b_{1} \varpi r_{1}^2 \nonumber \\&+ 2 \xi _{n} f_{sp} l_1 \varpi \varphi (l_1) r_{1} r_{2} \cos (\alpha )\nonumber \\&- \xi _{n} \varphi (l_1)^3 b_{1}^3 \varpi /4 \nonumber \\&- (9 k_n \varphi (l_1) a_{1} c_{1}^2)/4 - \xi _{nl} f_{sp} l_1 \varpi \cos (\alpha ) \nonumber \\&+ (3 k_n f_{sp}^2 l_1^2 c_{1} \cos (2 \alpha ))/8 \nonumber \\&- g_v f_{sp} l_1 \varpi (\cos (\varpi \gamma ) \cos (\alpha ) \nonumber \\&+ \sin (\varpi \gamma ) \sin (\alpha ))/2 - \xi _{n} f_{sp} l_1 \varpi \varphi (l_1)^2 r_{1}^2 \cos (\alpha ) \nonumber \\&+ (3 \xi _{n} f_{sp}^2 l_1^2 \varpi d_{1})/8 - \xi _{n} \nonumber \\&\varphi (l_1)^3 a_{1}^2 \varpi b_{1}/4 \nonumber \\&- \xi _{n} f_{sp} l_1 \varpi r_{2}^2 \cos (\alpha ) + 2 \xi _{n} \varphi (l_1)^2 b_{1} \varpi r_{1} r_{2} \nonumber \\&- 2 \xi _{n} d_{1} \varpi \varphi (l_1) r_{1} r_{2} + \xi _{n} \varphi (l_1)^2 a_{1}^2 \varpi d_{1}/4 \nonumber \\&- (3 k_n \varphi (l_1) a_{1} f_{sp}^2 l_1^2)/8 \nonumber \\&+ (3 k_n \varphi (l_1) b_{1} f_{sp} l_1 c_{1} \cos (\alpha ))/2 + (3 k_n \varphi (l_1)^2 a_{1} b_{1} d_{1})/2 \nonumber \\&- (3 \xi _{n} \varphi (l_1) b_{1} \varpi d_{1}^2)/4 + (3 k_n f_{sp}^2 l_1^2 c_{1})/8 \nonumber \\&- \xi _{n} f_{sp}^3 l_1^3 \varpi \cos (3 \alpha )/16 \nonumber \\&- (3 k_n \varphi (l_1) a_{1} d_{1}^2)/4 + \xi _{n} d_{1} \varpi c_{1}^2/4 \nonumber \\&+ (3 k_n c_{1}^3)/4 + (3 \xi _{n} \varphi (l_1) b_{1} \varpi f_{sp} l_1 d_{1} \cos (\alpha ))/2 \nonumber \\&+ \xi _{n} \varphi (l_1) a_{1} \varpi f_{sp} l_1 c_{1} \cos (\alpha )/2\nonumber \\&- (3 k_n \varphi (l_1)^3 a_{1} b_{1}^2)/4 + \xi _{n} \varphi (l_1)^2 a_{1} \varpi b_{1} c_{1}/2 \nonumber \\&+ (3 k_n c_{1} d_{1}^2)/4 + \xi _{n} d_{1}^3 \varpi /4 - (3 k_n \varphi (l_1)^3 a_{1}^3)/4 \nonumber \\&- (3 k_n \varphi (l_1)^2 a_{1} b_{1} f_{sp} l_1 \cos (\alpha ))/2 \nonumber \\&+ (3 \xi _{n} f_{sp}^2 l_1^2 \varpi d_{1} \cos (2 \alpha ))/8 \nonumber \\&- (3 k_n f_{sp} l_1 c_{1} d_{1} \cos (\alpha ))/2 \nonumber \\&+ (3 \xi _{n} \varphi (l_1)^2 b_{1}^2 \varpi d_{1})/4 - \xi _{n} f_{sp} l_1 \varpi \varphi (l_1)^2 a_{1}^2 \cos (\alpha )/4 \nonumber \\&- (3 \xi _{n} f_{sp} l_1 \varpi d_{1}^2 \cos (\alpha ))/4 \nonumber \\&- g_v f_{sp} l_1 \varpi (\cos (\varpi \gamma ) \cos (\alpha ) \nonumber \\&- \sin (\varpi \gamma ) \sin (\alpha ))/2 \nonumber \\&- \xi _{n} \varphi (l_1) a_{1} \varpi c_{1} d_{1}/2 \nonumber \\&- (3 k_n \varphi (l_1) b_{1} c_{1} d_{1})/2 \nonumber \\&- (3 \xi _{n} \varphi (l_1) b_{1} \varpi f_{sp}^2 l_1^2)/8; \end{aligned}$$
(B.39)
$$\begin{aligned}&\mathbf {\Sigma }_{4}=-\xi _{nl} c_{1} \varpi + 3 k_n r_{2}^2 d_{1} \nonumber \\&- \xi _{n} f_{sp} l_1 \varpi \varphi (l_1) a_{1} d_{1} \cos (\alpha )/2 \nonumber \\&- d_{1} \varpi ^2 - g_v f_{sp} l_1 \varpi (\sin (\varpi \gamma ) \cos (\alpha )\nonumber \\&+ \cos (\varpi \gamma ) \sin (\alpha ))/2 - 3 k_n \varphi (l_1)^3 r_{1}^2 b_{1} - 3 k_n \varphi (l_1) b_{1} r_{2}^2\nonumber \\&- \xi _{n} c_{1} \varpi r_{2}^2 + g_v d_{1} \varpi \sin (\varpi \gamma ) \nonumber \\&+ 3 k_n \varphi (l_1)^2 r_{1}^2 d_{1} + \xi _{nl} \varphi (l_1) a_{1} \varpi - g_v c_{1} \varpi \cos (\varpi \gamma ) \nonumber \\&- \xi _{n} \varphi (l_1) b_{1} \varpi f_{sp} l_1 c_{1} \cos (\alpha )/2\nonumber \\&+ (9 k_n f_{sp}^2 l_1^2 d_{1} \cos (2 \alpha ))/8 \nonumber \\&- (9 k_n \varphi (l_1) b_{1} f_{sp}^2 l_1^2 \cos (2 \alpha ))/8 \nonumber \\&- \xi _{n} c_{1} \varpi \varphi (l_1)^2 r_{1}^2 \nonumber \\&+ \xi _{n} \varphi (l_1)^3 a_{1} \varpi r_{1}^2 - 6 k_n \varphi (l_1) r_{1} r_{2} d_{1} \nonumber \\&+ 6 k_n \varphi (l_1)^2 r_{1} b_{1} r_{2} + \xi _{n} \varphi (l_1) a_{1} \varpi r_{2}^2 \nonumber \\&- 3 k_n f_{sp} l_1 r_{2}^2 \cos (\alpha ) \nonumber \\&+ g_v \varphi (l_1) a_{1} \varpi \cos (\varpi \gamma ) \nonumber \\&- g_v \varphi (l_1) b_{1} \varpi \sin (\varpi \gamma ) \nonumber \\&- g_v f_{sp} l_1 \varpi (\sin (\varpi \gamma ) \cos (\alpha ) - \cos (\varpi \gamma ) \sin (\alpha ))/2 \nonumber \\&- \xi _{n} \varphi (l_1)^2 b_{1} \varpi a_{1} d_{1}/2 \nonumber \\&+ \xi _{n} d_{1}^2 \varpi \varphi (l_1) a_{1}/4 - \xi _{n} f_{sp}^2 l_1^2 \varpi c_{1}/8 \nonumber \\&- (9 k_n f_{sp}^3 l_1^3 \cos (\alpha ))/16 + \xi _{n} \varphi (l_1) b_{1} \varpi c_{1} d_{1}/2 \nonumber \\&- (9 k_n \varphi (l_1)^2 b_{1}^2 f_{sp} l_1 \cos (\alpha ))/4 + 6 k_n \varphi (l_1) r_{1} f_{sp} l_1 r_{2} \cos (\alpha ) \nonumber \\&- (3 k_n \varphi (l_1)^2 a_{1}^2 f_{sp} l_1 \cos (\alpha ))/4 \nonumber \\&- (3 k_n \varphi (l_1)^3 a_{1}^2 b_{1})/4 \nonumber \\&- (3 k_n \varphi (l_1) b_{1} c_{1}^2)/4 \nonumber \\&+ \xi _{n} \varphi (l_1)^2 b_{1} \varpi a_{1} f_{sp} l_1 \cos (\alpha )/2 \nonumber \\&+ (9 k_n \varphi (l_1) b_{1} f_{sp} l_1 d_{1} \cos (\alpha ))/2 - (3 k_n f_{sp} l_1 c_{1}^2 \cos (\alpha ))/4 \nonumber \\&- 3 k_n \varphi (l_1)^2 r_{1}^2 f_{sp} l_1 \cos (\alpha ) \nonumber \\&- 2 \xi _{n} \varphi (l_1)^2 a_{1} \varpi r_{1} r_{2} \nonumber \\&+ 2 \xi _{n} c_{1} \varpi \varphi (l_1) r_{1} r_{2} - \xi _{n} c_{1}^3 \varpi /4 + (3 k_n d_{1}^3)/4 \nonumber \\&+ (3 \xi _{n} \varphi (l_1) a_{1} \varpi c_{1}^2)/4 \nonumber \\&+ (3 k_n \varphi (l_1)^2 a_{1} b_{1} c_{1})/2 \nonumber \\&- (3 \xi _{n} \varphi (l_1)^2 a_{1}^2 \varpi c_{1})/4 \nonumber \\&+ \xi _{n} \varphi (l_1) a_{1} \varpi f_{sp}^2 l_1^2/8 \nonumber \\&- (3 k_n \varphi (l_1) a_{1} c_{1} d_{1})/2 \nonumber \\&+ (3 k_n \varphi (l_1) a_{1} f_{sp} l_1 c_{1} \cos (\alpha ))/2 \nonumber \\&+ \xi _{n} \varphi (l_1) a_{1} \varpi f_{sp}^2 l_1^2 \cos (2 \alpha )/8 \nonumber \\&+ \xi _{n} c_{1} \varpi f_{sp} l_1 d_{1} \cos (\alpha )/2 \nonumber \\&- (9 k_n \varphi (l_1) b_{1} d_{1}^2)/4 + (9 k_n \varphi (l_1)^2 b_{1}^2 d_{1})/4 \nonumber \\&- \xi _{n} f_{sp}^2 l_1^2 \varpi c_{1} \cos (2 \alpha )/8 + \xi _{n} \varphi (l_1)^3 a_{1}^3 \varpi /4 \nonumber \\&+ \xi _{n} \varphi (l_1)^3 b_{1}^2 \varpi a_{1}/4 - \xi _{n} \varphi (l_1)^2 b_{1}^2 \varpi c_{1}/4 \nonumber \\&- \xi _{n} c_{1} \varpi d_{1}^2/4 + (3 k_n \varphi (l_1)^2 a_{1}^2 d_{1})/4 \nonumber \\&- (3 k_n \varphi (l_1)^3 b_{1}^3)/4 \nonumber \\&+ (3 k_n c_{1}^2 d_{1})/4 + (9 k_n f_{sp}^2 l_1^2 d_{1})/8\nonumber \\&- (9 k_n f_{sp} l_1 d_{1}^2 \cos (\alpha ))/4 \nonumber \\&- (3 k_n f_{sp}^3 l_1^3 \cos (3 \alpha ))/16 \nonumber \\&- (9 k_n \varphi (l_1) b_{1} f_{sp}^2 l_1^2)/8; \end{aligned}$$
(B.40)
$$\begin{aligned}&\mathbf {\Sigma }_{5}=3 a_{14} f_{sp} l_1 r_{2} d_{1} \cos (\alpha ) \nonumber \\&+ a_{14} \varphi (l_1)^3 r_{1}^3 \nonumber \\&+ (3 a_{14} \varphi (l_1) r_{1} f_{sp}^2 l_1^2 \cos (2 \alpha ))/4 \nonumber \\&- (3 a_{14} \varphi (l_1)^2 b_{1}^2 r_{2})/2 \nonumber \\&- (3 a_{14} f_{sp}^2 l_1^2 r_{2})/4 + 3 a_{14} \varphi (l_1) r_{1} r_{2}^2 \nonumber \\&- 3 a_{14} \varphi (l_1)^2 r_{1}^2 r_{2} - 3 a_{14} \varphi (l_1)^2 r_{1} a_{1} c_{1} \nonumber \\&- 3 a_{14} \varphi (l_1)^2 r_{1} b_{1} d_{1} \nonumber \\&+ 3 a_{14} \varphi (l_1) a_{1} r_{2} c_{1} + 3 a_{14} \varphi (l_1) b_{1} r_{2} d_{1} \nonumber \\&+ a_{17}/2 + a_{12} b_{1}^2/2 + a_{21} - (3 a_{14} r_{2} c_{1}^2)/2 \nonumber \\&+ (3 a_{13} r_{1} b_{1}^2)/2 \nonumber \\&+ (3 a_{13} r_{1} a_{1}^2)/2 - (3 a_{14} r_{2} d_{1}^2)/2 + a_{12} a_{1}^2/2 \nonumber \\&+ (3 a_{14} \varphi (l_1)^3 r_{1} a_{1}^2)/2 + (3 a_{14} \varphi (l_1)^3 r_{1} b_{1}^2)/2 \nonumber \\&+ (3 a_{14} \varphi (l_1) r_{1} c_{1}^2)/2 \nonumber \\&+ a_{11} r_{1} + b_{12} r_{1} \nonumber \\&+ a_{12} r_{1}^2 + a_{13} r_{1}^3 - a_{14} r_{2}^3 - (3 a_{14} f_{sp}^2 l_1^2 r_{2} \cos (2 \alpha ))/4 \nonumber \\&+ 3 a_{14} \varphi (l_1)^2 r_{1} b_{1} f_{sp} l_1 \cos (\alpha ) - 3 a_{14} \varphi (l_1) r_{1} f_{sp} l_1 d_{1} \cos (\alpha ) \nonumber \\&- 3 a_{14} \varphi (l_1) b_{1} f_{sp} l_1 r_{2} \cos (\alpha ) \nonumber \\&+ (3 a_{14} \varphi (l_1) r_{1} d_{1}^2)/2 - (3 a_{14} \varphi (l_1)^2 a_{1}^2 r_{2})/2 \nonumber \\&+ (3 a_{14} \varphi (l_1) r_{1} f_{sp}^2 l_1^2)/4 - b_{11} r_{1}/2; \end{aligned}$$
(B.41)
$$\begin{aligned}&\mathbf {\Sigma }_{6}=-3 k_n f_{sp} l_1 r_{2} d_{1} \cos (\alpha ) \nonumber \\&- k_n \varphi (l_1)^3 r_{1}^3 - (3 k_n \varphi (l_1) r_{1} f_{sp}^2 l_1^2 \cos (2 \alpha ))/4 + k_n r_{2}^3 \nonumber \\&+ (3 k_n r_{2} d_{1}^2)/2 + (3 k_n r_{2} c_{1}^2)/2 - (3 k_n \varphi (l_1)^3 r_{1} a_{1}^2)/2 \nonumber \\&+ (3 k_n \varphi (l_1)^2 a_{1}^2 r_{2})/2 \nonumber \\&- (3 k_n \varphi (l_1)^3 r_{1} b_{1}^2)/2 \nonumber \\&+ (3 k_n \varphi (l_1)^2 b_{1}^2 r_{2})/2 \nonumber \\&- (3 k_n \varphi (l_1) r_{1} c_{1}^2)/2 - (3 k_n \varphi (l_1) r_{1} d_{1}^2)/2\nonumber \\&+ 3 k_n \varphi (l_1)^2 r_{1}^2 r_{2} \nonumber \\&- 3 k_n \varphi (l_1) r_{1} r_{2}^2 + (3 k_n f_{sp}^2 l_1^2 r_{2})/4 + 3 k_n \varphi (l_1)^2 r_{1} a_{1} c_{1} \nonumber \\&- 3 k_n \varphi (l_1) a_{1} r_{2} c_{1} \nonumber \\&+ 3 k_n \varphi (l_1)^2 r_{1} b_{1} d_{1} - 3 k_n \varphi (l_1) b_{1} r_{2} d_{1} \nonumber \\&- (3 k_n \varphi (l_1) r_{1} f_{sp}^2 l_1^2)/4 + (3 k_n f_{sp}^2 l_1^2 r_{2} \cos (2 \alpha ))/4 \nonumber \\&+ 3 k_n \varphi (l_1) b_{1} f_{sp} l_1 r_{2} \cos (\alpha ) \nonumber \\&- 3 k_n \varphi (l_1)^2 r_{1} b_{1} f_{sp} l_1 \cos (\alpha ) \nonumber \\&+ 3 k_n \varphi (l_1) r_{1} f_{sp} l_1 d_{1} \cos (\alpha ); \end{aligned}$$
(B.42)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Ding, W. Vibration suppression of a stay cable using a time-delayed nonlinear energy sink under multi-source external excitation. Nonlinear Dyn 114, 30 (2026). https://doi.org/10.1007/s11071-025-11913-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1007/s11071-025-11913-7

Keywords