Skip to main content
Log in

PD Control of Reaction-Diffusion Systems with Neumann Boundary in Coupled Map Lattices

  • Research
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Reaction-diffusion systems often exhibit complex spatiotemporal behaviors such as bifurcations and chaotic dynamics, posing challenges for effective control. This study focuses on developing a discrete control framework based on coupled map lattices (CMLs) to analyze and stabilize such behaviors. By introducing a proportional-derivative (PD) control strategy, we investigate its influence on the suppression of Flip and Neimark-Sacker bifurcations as well as Turing pattern formation. Additionally, this paper incorporates Neumann boundary conditions into CMLs system for the first time, providing a more realistic representation of boundary effects in physical and biological systems. Numerical simulations demonstrate that appropriate tuning of PD parameters can significantly delay the onset of instabilities and reduce spatial chaos. These results provide insights into the control of reaction-diffusion systems and offer references for discrete modeling and stabilization strategies in related contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from €37.37 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Norway)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Turing, A.M.: The chemical basis of morphogenesis. Bull. Math. Biol. 237, 37–72 (1952)

    MathSciNet  Google Scholar 

  2. Volterra, V.: Fluctuations in the abundance of a species considered mathematically. Nature 118, 558–560 (1926)

    Article  ADS  Google Scholar 

  3. Gilpin, M.: A model of the predator-prey relationship. Theor. Popul. Biol. 5(3), 333–44 (1974)

    Article  Google Scholar 

  4. Wang, F., Yang, R.: Spatial pattern formation driven by the cross-diffusion in a predator-prey model with holling type functional response. Chaos, Solitons & Fractals 174, 113890 (2023)

    Article  MathSciNet  Google Scholar 

  5. Hu, D., Cao, H.: Stability and bifurcation analysis in a predator–prey system with michaelis–menten type predator harvesting. Nonlinear Analysis-real World Applications 33, 58–82 (2017)

    Article  MathSciNet  Google Scholar 

  6. Owolabi, K.M., Jain, S.: Spatial patterns through diffusion-driven instability in modified predator-prey models with chaotic behaviors. Chaos, Solitons & Fractals 174, 113839 (2023)

    Article  MathSciNet  Google Scholar 

  7. Klausmeier, C.A.: Regular and irregular patterns in semiarid vegetation. Science 284(5421), 1826–1828 (1999)

    Article  Google Scholar 

  8. von Hardenberg, J., Meron, E., Shachak, M., Zarmi, Y.: Diversity of vegetation patterns and desertification. Phys. Rev. Lett. 87, 198101 (2001)

    Article  ADS  Google Scholar 

  9. Sun, G., Zhang, H., Song, Y., Li, L., Jin, Z.: Dynamic analysis of a plant-water model with spatial diffusion. J. Differential Equations 329, 395–430 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  10. Gilad, E., von Hardenberg, J., Provenzale, A., Shachak, M., Meron, E.: Ecosystem engineers: from pattern formation to habitat creation. Phys. Rev. Lett. 93(9), 098105 (2004)

    Article  ADS  Google Scholar 

  11. Gierer, A., Meinhardt, H.: A theory of biological pattern formation. Kybernetik 12, 30–39 (1972)

    Article  Google Scholar 

  12. Li, Y., Wang, J., Hou, X.: Stripe and spot patterns for the gierer-meinhardt model with saturated activator production. J. Math. Anal. Appl. 449, 1863–1879 (2017)

    Article  MathSciNet  Google Scholar 

  13. Xing, Y., Jiang, W.: Normal form formulae of turing-turing bifurcation for partial functional differential equations with nonlinear diffusion. Mathematical Methods in the Applied Sciences 48, 5660–5680 (2025)

    Article  ADS  MathSciNet  Google Scholar 

  14. Zhong, S., Wang, J., Xia, J., Li, Y.: Spatiotemporal dynamics and pattern formations of an activator-substrate model with double saturation terms. International Journal of Bifurcation and Chaos 31, 2150129 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  15. Wang, J., Li, Y., Zhong, S., Hou, X.: Analysis of bifurcation, chaos and pattern formation in a discrete time and space gierer meinhardt system. Chaos, Solitons & Fractals 118, 1–17 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  16. Zhong, S., Wang, J., Li, Y, Jiang, N.: “Bifurcation, chaos and turing instability analysis for a space-time discrete toxic phytoplankton-zooplankton model with self-diffusion,” International Journal of Bifurcation and Chaos, vol. 29, pp. 1 950 184:1–1 950 184:23, (2019)

  17. Salman, S.M., Han, R.: Complex patterns in a space–time discrete mathematical model of antibiotic resistance in hospitals with self-diffusion. Commun. Nonlinear Sci. Numer. Simul. 127, 107534 (2023)

    Article  MathSciNet  Google Scholar 

  18. Han, R., Salman, S.M.: Nonlinear dynamics and pattern formation in a space–time discrete diffusive intraguild predation model. Physica D 468, 134295 (2024)

    Article  MathSciNet  Google Scholar 

  19. Huang, T., Zhang, H., Yang, H.: Spatiotemporal complexity of a discrete space-time predator-prey system with self-and cross-diffusion. Appl. Math. Model. 47, 637–655 (2017)

    Article  MathSciNet  Google Scholar 

  20. Li, Y.-Y., Zhang, F.-X., Zhuo, X.: Flip bifurcation of a discrete predator-prey model with modified leslie-gower and holling-type iii schemes. Mathematical biosciences and engineering: MBE 17(3), 2003–2015 (2019)

    Article  MathSciNet  Google Scholar 

  21. Liu, X., Xiao, D.: Complex dynamic behaviors of a discrete-time predator–prey system. Chaos Solitons & Fractals 32, 80–94 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  22. Jing, Z., Yang, J.: Bifurcation and chaos in discrete-time predator–prey system. Chaos Solitons & Fractals 27, 259–277 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  23. Xiao, M., Jiang, G., Zhao, L.: State feedback control at hopf bifurcation in an exponential red algorithm model. Nonlinear Dyn. 76, 1469–1484 (2014)

    Article  MathSciNet  Google Scholar 

  24. Ren, W., Cheng, R., Ge, H., Wei, Q.: “Bifurcation control in an optimal velocity model via double time-delay feedback method,” IEEE Access, vol. 8, pp. 216 162–216 175, (2020)

  25. Wang, Y.: PD control at neimark-sacker bifurcations in a mackey-glass system. Adv. Difference Equ. 2018, 1–16 (2018)

    Article  MathSciNet  Google Scholar 

  26. Ding, D., Zhang, X., Cao, J., Wang, N., Liang, D.: Bifurcation control of complex networks model via PD controller. Neurocomputing 175, 1–9 (2016)

    Article  Google Scholar 

  27. He, H., Xiao, M., He, J., Zheng, W.: Regulating spatiotemporal dynamics for a delay gierer-meinhardt model. XXPhys. A 637, 129603 (2024)

    Article  MathSciNet  Google Scholar 

  28. Li, P., Gao, R., Xu, C., Ahmad, S., Li, Y., Akgül, A.: Bifurcation behavior and PD\(^\gamma \) control mechanism of a fractional delayed genetic regulatory model. Chaos, Solitons & Fractals 168, 113219 (2023)

    Article  MathSciNet  Google Scholar 

  29. Huang, T., Zhang, H., Yang, H., Wang, N., Zhang, F.: Complex patterns in a space- and time-discrete predator-prey model with beddington-deangelis functional response. Commun. Nonlinear Sci. Numer. Simul. 43, 182–199 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  30. Huang, T., Zhang, H.: Bifurcation, chaos and pattern formation in a space- and time-discrete predator-prey system. Chaos Solitons & Fractals 91, 92–107 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  31. Mistro, D.C., Rodrigues, L.A.D., Petrovskii, S.V.: Spatiotemporal complexity of biological invasion in a space- and time-discrete predator–prey system with the strong allee effect. Ecol. Complex. 9, 16–32 (2012)

    Article  Google Scholar 

  32. Punithan, D., Kim, D.-K., McKay, R.I.: Spatio-temporal dynamics and quantification of daisyworld in two-dimensional coupled map lattices. Ecol. Complex. 12, 43–57 (2012)

    Article  Google Scholar 

  33. Rodrigues, L.A.D., Mistro, D.C., Petrovskii, S.V.: Pattern formation in a space- and time-discrete predator–prey system with a strong allee effect. Thyroid Res. 5, 341–362 (2012)

    Google Scholar 

  34. Nayfeh, AH., Balachandran, B.:“Applied nonlinear dynamics : analytical, computational, and experimental methods,” (1995)

  35. Guckenheimer, JM., Holmes, P.: “Nonlinear oscillations, dynamical systems, and bifurcations of vector fields,” in Applied Mathematical Sciences, (1983)

  36. Wiggins, S.: “Introduction to applied nonlinear dynamical systems and chaos,” (1989)

  37. Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.M.: Lyapunov characteristic exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15, 9–20 (1980)

    Article  ADS  Google Scholar 

  38. Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.M.: Lyapunov characteristic exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. part 2: Numerical application. Meccanica 15, 21–30 (1980)

    Article  Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

All Authors (X.Ma., Y.Zhu. and J.Wang.) have contributed as follows: methodology, X.Ma.; formal analysis, X.Ma., and Y.Zhu.; software, X.Ma.; validation, J.Wang.; writing – original draft preparation, X.Ma., and Y.Zhu.; writing – review and editing, X.Ma., Y.Zhu. and J.Wang. All authors have read and approved the published version of the manuscript.

Corresponding author

Correspondence to Jinliang Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A

$$\begin{aligned} F_1(W, Z, \tau ) =&\;((-a_{100} + \lambda _{2})a_{101} - a_{010}b_{101})\\&\times a_{010}(W + Z)\tau \\&+ ((-a_{100} + \lambda _{2})a_{200} - a_{010}b_{200})\\&\times a_{010}^2(W + Z)^2\\&+ ((-a_{100} + \lambda _{2})a_{201} - a_{010}b_{201})\\&\times a_{010}^2(W + Z)^2\tau \\&+ ((-a_{100} + \lambda _{2})a_{300} - a_{010}b_{300})\\&\times a_{010}^3(W + Z)^3\\&- ((-a_{100} + \lambda _{2})a_{011} - a_{010}b_{011})\\&\times (W + (W + Z)a_{100} - Z\lambda _{2})\tau \\&- ((-a_{100} + \lambda _{2})a_{110} - a_{010}b_{110})\\&\times a_{010}(W + Z)(W + (W + Z)a_{100}\\&- Z\lambda _{2}) - ((-a_{100} + \lambda _{2})a_{111} - a_{010}b_{111})\\&\times a_{010}(W + Z)(W + (W + Z)a_{100} \\&- Z\lambda _{2})\tau - ((-a_{100} + \lambda _{2})a_{210} - a_{010}b_{210})\\&\times a_{010}^2(W + Z)^2(W + (W + Z)a_{100}\\&- Z\lambda _{2}) + ((-a_{100} {+} \lambda _{2})a_{020} {-} a_{010}b_{020})\\&\times (W + (W + Z)a_{100} - Z\lambda _{2})^2\\&+ ((-a_{100} + \lambda _{2})a_{021} - a_{010}b_{021})\\&\times (W + (W + Z)a_{100} - Z\lambda _{2})^2\tau \\&+ ((-a_{100} + \lambda _{2})a_{120} - a_{010}b_{120})\\&\times a_{010}(W + Z)(W + (W + Z)a_{100}\\&- Z\lambda _{2})^2 {-} ((-a_{100} {+} \lambda _{2})a_{030} - a_{010}b_{030})\\&\times (W + (W + Z)a_{100} - Z\lambda _{2})^3\\&\times +O(|W,Z,\tau |^4), \end{aligned}$$
$$\begin{aligned} G_1(W, Z, \tau )=&\;((1+a_{100})a_{101} - a_{010}b_{101})\\&\times a_{010}(W + Z)\tau \\&+ ((1+a_{100})a_{200} - a_{010}b_{200})\\&\times a_{010}^2(W + Z)^2\\&+ ((1+a_{100})a_{201} - a_{010}b_{201})\\&\times a_{010}^2(W + Z)^2\tau \\&+ ((1+a_{100})a_{300} - a_{010}b_{300})\\&\times a_{010}^3(W + Z)^3\\&- ((1+a_{100})a_{011} - a_{010}b_{011})\\&\times (W + (W + Z)a_{100} - Z\lambda _{2})\tau \\&- ((1+a_{100})a_{110} - a_{010}b_{110})\\&\times a_{010}(W + Z)(W + (W + Z)\\&\times a_{100} - Z\lambda _{2})\\&- ((1+a_{100})a_{111} - a_{010}b_{111})\\&\times a_{010}(W + Z)(W + (W + Z)\\&\times a_{100} - Z\lambda _{2})\tau \\&- ((1+a_{100})a_{210} - a_{010}b_{210})\\&\times a_{010}^2(W + Z)^2(W + (W + Z)\\&\times a_{100} - Z\lambda _{2})\\&+ ((1+a_{100})a_{020} - a_{010}b_{020})\\&\times (W + (W + Z)a_{100} - Z\lambda _{2})^2\\&+ ((1+a_{100})a_{021} - a_{010}b_{021})\\&\times (W + (W + Z)a_{100} - Z\lambda _{2})^2\tau \\&+ ((1+a_{100})a_{120} - a_{010}b_{120})\\&\times a_{010}(W + Z)(W + (W + Z)\\&\times a_{100} - Z\lambda _{2})^2 \\&- ((1+a_{100})a_{030} - a_{010}b_{030})\\&\times (W + (W + Z)a_{100} - Z\lambda _{2})^3\\&\times +O(|W,Z,\tau |^4). \end{aligned}$$

B

$$\begin{aligned}&A_{20}=\left( a_{02} a_{10}^2 - a_{01} a_{10} a_{11} + a_{01}^2 a_{20} \right. \\&\qquad \quad \left. - 2 a_{02} a_{10} \alpha + a_{01} a_{11} \alpha + a_{02} \alpha ^2\right) \beta ,\\&A_{11}=\left( 2 a_{02} a_{10} - a_{01} a_{11} - 2 a_{02} \alpha \right) ,A_{02}= a_{02}\beta ^3,\\&A_{30}=\left( a_{01} a_{10}^2 a_{12} -a_{03} a_{10}^3 - a_{01}^2 a_{10} a_{21} \right. \\&\qquad \quad \left. + a_{01}^3 a_{30} + 3 a_{03} a_{10}^2 \alpha - 2 a_{01} a_{10} a_{12} \alpha \right. \\&\left. + a_{01}^2 a_{21} \alpha - 3 a_{03} a_{10} \alpha ^2 + a_{01} a_{12} \alpha ^2 + a_{03} \alpha ^3 \right) \beta ,\\&A_{21}=\left( 2 a_{01} a_{10} a_{12} -3 a_{03} a_{10}^2 - a_{01}^2 a_{21} \right. \\&\qquad \quad \left. + 6 a_{03} a_{10} \alpha - 2 a_{01} a_{12} \alpha - 3 a_{03} \alpha ^2\right) \beta ^2 ,\\&A_{12}=\left( a_{01} a_{12} -3 a_{03} a_{10} + 3 a_{03} \alpha \right) \beta ^3 ,\\&A_{03}=- a_{03}\beta ^4.\\&B_{20}=\frac{a_{01}}{a_{10}} \left( a_{02} a_{10}^3 + a_{01} a_{10}^2 a_{11} - a_{01}^2 a_{10} a_{20} \right. \\&\qquad \quad \left. - a_{10}^3 b_{02} + a_{01} a_{10}^2 b_{11} - a_{01}^2 a_{10} b_{20} \right. \\&\qquad \quad +3 a_{02} a_{10}^2 \alpha - 2 a_{01} a_{10} a_{11} \alpha + a_{01}^2 a_{20} \alpha \\&\qquad \quad + 2 a_{10}^2 b_{02} \alpha - a_{01} a_{10} b_{11} \alpha - 3 a_{02} a_{10} \alpha ^2 \\&\qquad \quad \left. +a_{01} a_{11} \alpha ^2 - a_{10} b_{02} \alpha ^2 + a_{02} \alpha ^3 \right) ,\\&B_{11}=\frac{a_{01} }{a_{10}} \left( 2 a_{02} a_{10}^2 + a_{01} a_{10} a_{11} \right. \\&\qquad \quad \left. - 2 a_{10}^2 b_{02} + a_{01} a_{10} b_{11} + 4 a_{02} a_{10} \alpha - a_{01} a_{11} \alpha \right. \\&\qquad \quad \left. +2 a_{10} b_{02} \alpha - 2 a_{02} \alpha ^2 \right) \beta ,\\&B_{02}= \frac{a_{01} }{a_{10}} \left( a_{02} a_{10} - a_{10} b_{02} + a_{02} \alpha \right) \beta ^2, \\&B_{30}=\frac{ a_{01} }{a_{10}} \left( a_{03} a_{10}^4 - a_{01} a_{10}^3 a_{12} + a_{01}^2 a_{10}^2 a_{21} \right. \\&\qquad \quad \left. - a_{01}^3 a_{10} a_{30} + a_{10}^4 b_{03} - a_{01} a_{10}^3 b_{12} \right. \\&\qquad \quad +a_{01}^2 a_{10}^2 b_{21} - a_{01}^3 a_{10} b_{30} - 4 a_{03} a_{10}^3 \alpha \\&\qquad \quad + 3 a_{01} a_{10}^2 a_{12} \alpha - 2 a_{01}^2 a_{10} a_{21} \alpha + a_{01}^3 a_{30} \alpha \\&\qquad \quad -3 a_{10}^3 b_{03} \alpha + 2 a_{01} a_{10}^2 b_{12} \alpha - a_{01}^2 a_{10} b_{21} \alpha \\&\qquad \quad + 6 a_{03} a_{10}^2 \alpha ^2 - 3 a_{01} a_{10} a_{12} \alpha ^2 + a_{01}^2 a_{21} \alpha ^2 \\&\qquad \quad \left. + 3 a_{10}^2 b_{03} \alpha ^2 - a_{01} a_{10} b_{12} \alpha ^2 - 4 a_{03} a_{10} \alpha ^3 \right. \\&\qquad \quad \left. + a_{01} a_{12} \alpha ^3 - a_{10} b_{03} \alpha ^3 + a_{03} \alpha ^4 \right) ,\\&B_{21}= \frac{ a_{01}}{a_{10}} \left( 3 a_{03} a_{10}^3 - 2 a_{01} a_{10}^2 a_{12} + a_{01}^2 a_{10} a_{21} \right. \\&\qquad \quad \left. + 3 a_{10}^3 b_{03} - 2 a_{01} a_{10}^2 b_{12} +a_{01}^2 a_{10} b_{21} \right. \\&\qquad \quad - 9 a_{03} a_{10}^2 \alpha + 4 a_{01} a_{10} a_{12} \alpha - a_{01}^2 a_{21} \alpha \\&\qquad \quad - 6 a_{10}^2 b_{03} \alpha + 2 a_{01} a_{10} b_{12} \alpha \\&\qquad \quad \left. +9 a_{03} a_{10} \alpha ^2 - 2 a_{01} a_{12} \alpha ^2 \right. \\&\left. + 3 a_{10} b_{03} \alpha ^2 - 3 a_{03} \alpha ^3 \right) \beta ,\\&B_{12}= \frac{a_{01} }{a_{10}} \left( 3 a_{03} a_{10}^2 - a_{01} a_{10} a_{12} + 3 a_{10}^2 b_{03} \right. \\&\qquad \quad \left. - a_{01} a_{10} b_{12}- 6 a_{03} a_{10} \alpha + a_{01} a_{12} \alpha \right. \\&\qquad \quad \left. - 3 a_{10} b_{03} \alpha + 3 a_{03} \alpha ^2 \right) \beta ^2 ,\\&B_{03}= \frac{a_{01} }{a_{10}} \left( a_{03} a_{10} + a_{10} b_{03} - a_{03} \alpha \right) \beta ^3. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Zhu, Y. & Wang, J. PD Control of Reaction-Diffusion Systems with Neumann Boundary in Coupled Map Lattices. Nonlinear Dyn 113, 33649–33670 (2025). https://doi.org/10.1007/s11071-025-11755-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1007/s11071-025-11755-3

Keywords