Skip to main content
Log in

Nonparametric estimation of conditional expectile-based risk measures

  • Original Paper
  • Published:
Statistical Methods & Applications Aims and scope Submit manuscript

Abstract

This article discusses nonparametric estimation of some conditional expectile-based risk measures using local polynomial fitting. The focus is on estimating conditional expectile-based Value-at-Risk and conditional expectile-based Expected Shortfall. Estimation of the latter is also discussed in a framework of heavy-tailed distributions, which involves a data-driven choice of the number of tail observations used in the estimation. The finite-sample performance of the proposed conditional risk measure estimators is investigated in a simulation study. The practical use of the developed methods is illustrated in three real data examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from €37.37 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Norway)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  • Adam C, Gijbels I (2022) Local polynomial expectile regression. Ann Inst Stat Math 74(2):341–378

    Article  MathSciNet  Google Scholar 

  • Adam C, Gijbels I (2021) Partially linear expectile regression using local polynomial fitting. In: Advances in contemporary statistics and econometrics: Festschrift in Honor of Christine Thomas-Agnan, vol 8, pp 139–160, Springer, New York

  • Adam C, Gijbels I (2021b) locpolExpectile: local polynomial expectile regression. R package version 0.1-1. Available at https://CRAN.R-project.org/package=locpolExpectile

  • Arbel J, Girard S, Nguyen HD, Usseglio-Carleve A (2023) Multivariate expectile-based distribution: properties, Bayesian inference, and applications. J Stat Plann Inference 225:146–170

    Article  MathSciNet  Google Scholar 

  • Artzner P, Delbaen F, Eber J-M, Heath D (1999) Coherent measures of risk. Math Financ 9(3):203–228

    Article  MathSciNet  Google Scholar 

  • Barry A, Oualkacha K, Charpentier A (2023) Alternative fixed-effects panel model using weighted least squares regression. Stat Methods Appl 32:819–841

    Article  MathSciNet  Google Scholar 

  • Beirlant J, Goegebeur Y, Segers J, Teugels J (2004) Statistics of extremes: theory and applications. Wiley, Hoboken

    Book  Google Scholar 

  • Bellini F, Di Bernardino E (2017) Risk management with expectiles. Eur J Financ 23(6):487–506

    Article  Google Scholar 

  • Bellini F, Bignozzi V (2014) Elicitable risk measures. Quant Financ 15(5):725–733

    Article  MathSciNet  Google Scholar 

  • Bellini F, Klar B, Müller A, Gianin ER (2014) Generalized quantiles as risk measures. Insurance Math Econom 54:41–48

    Article  MathSciNet  Google Scholar 

  • Blansche A (2021) fdm2id: data mining and R programming for beginners. R package version 0.9.6. Available at https://CRAN.R-project.org/package=fdm2id

  • Bouezmarni T, Doukali M, Taamouti A (2024) Testing granger non-causality in expectiles. Economet Rev 43(1):30–51

    Article  MathSciNet  Google Scholar 

  • Breckling J, Chambers R (1988) M-quantiles. Biometrika 75(4):761–771

    Article  MathSciNet  Google Scholar 

  • Cabrera JLO (2018) locpol: Kernel local polynomial regression. R package version 0.7-0. Available at https://CRAN.R-project.org/package=locpol

  • Cascos I, Ochoa M (2021) Expectile depth: theory anbd computation for bivariate datasets. J Multivar Anal 184:104757

    Article  Google Scholar 

  • Chun SY, Shapiro A, Uryasev S (2012) Conditional value-at-risk and average value-at-risk: estimation and asymptotics. Oper Res 60(4):739–756

    Article  MathSciNet  Google Scholar 

  • Daouia A, Girard S, Stupfler G (2018) Estimation of tail risk based on extreme expectiles. J Roy Stat Soc B 80:263–292

    Article  MathSciNet  Google Scholar 

  • Daouia A, Gijbels I, Stupfler G (2019) Extremiles: a new perspective on asymmetric least squares. J Am Stat Assoc 114(527):1366–1381

    Article  MathSciNet  Google Scholar 

  • Daouia A, Girard S, Stupfler G (2020) Tail expectile process and risk assessment. Bernoulli 26(1):531–556

    Article  MathSciNet  Google Scholar 

  • Daouia A, Girard S, Stupfler G (2021) Expecthill estimation, extreme risk and heavy tails. J Econom 221:97–117

    Article  MathSciNet  Google Scholar 

  • Daouia A, Gijbels I, Stupfler G (2022) Extremile regression. J Am Stat Assoc 117(539):1579–1586

    Article  MathSciNet  Google Scholar 

  • Daouia A, Padoan SA, Stupfler G (2024) Extreme expectile estimation for short-tailed data. J Econom 241:105770

    Article  MathSciNet  Google Scholar 

  • Daouia A, Stupfler G, Usseglio-Carleve A (2024) Bias-reduced and variance-corrected asymptotic gaussian inference about extreme expectiles. Stat Comput 34:130

    Article  MathSciNet  Google Scholar 

  • Daouia A, Stupfler G, Usseglio-Carleve A (2024) An expectile computation cookbook. Stat Comput 34:103

    Article  MathSciNet  Google Scholar 

  • Daouia A, Girard S, Stupfler G (2019) Extreme M-quantiles as risk measures: from l1 to lp optimization. Bernoulli 25(1):209–264

  • Dellini F, Cesarone F, Colombo C, Tardella F (2021) Risk parity with expectiles. Eur J Oper Res 291:1149–1163

    Article  MathSciNet  Google Scholar 

  • Di Bernardino E, Laloë T, Pakzad C (2024) Estimation of extreme multivariate expectiles with functional covariates. J Multivar Anal 202:105292

    Article  MathSciNet  Google Scholar 

  • Drapeau S, Tadese M (2020) Relative bound and asymptotic comparison of expectile with respect to expected shortfall. Insurance Math Econom 93:387–399

    Article  MathSciNet  Google Scholar 

  • Drapeau S, Tadese M (2019) Dual representation of expectile based expected shortfall and its properties. arXiv:1911.03245v1

  • Ehm W, Gneiting T, Jordan A, Krüger F (2016) Of quantiles and expectiles: consistent scoring functions, Choquet representations and forecast rankings. J Roy Stat Soc B 78(3):505–562

    Article  MathSciNet  Google Scholar 

  • Fan J, Gijbels I (1996) Local polynomial modelling and its applications. In: Number 66 in monographs on statistics and applied probability series, Chapman and Hall, London

  • Gao S, Yu Z (2023) Parametric expectile regression and its application for premium calculation. Insurance Math Econom 111:242–256

    Article  MathSciNet  Google Scholar 

  • Girard S, Stupfler G, Usseglio-Carleve A (2020) Nonparametric extreme conditional expectile estimation. Scand J Stat 49:1–38

    MathSciNet  Google Scholar 

  • Girard S, Stupfler G, Usseglio-Carleve A (2022) On automatic bias reduction for extreme expectile estimation. Stat Comput 32:64

    Article  MathSciNet  Google Scholar 

  • Girard S, Stupfler G, Usseglio-Carleve A (2021) Extreme Lp-quantile kernel regression. In: Advances in contemporary statistics and econometrics: Festschrift in Honor of Christine Thomas-Agnan, vol 11, pp 197–219, Springer, New York

  • Gneiting T (2011) Making and evaluating point forecasts. J Am Stat Assoc 106(494):746–762

    Article  MathSciNet  Google Scholar 

  • He XD, Kou S, Peng X (2022) Risk measures: robustness, elicitability, and backtesting. Ann Rev Stat Appl 9:141–166

    Article  MathSciNet  Google Scholar 

  • Herrmann K, Hofert M, Mailhot M (2018) Multivariate geometric expectiles. Scand Actuar J 2018(7):629–659

    Article  MathSciNet  Google Scholar 

  • Janczura J (2025) Expectile regression averaging method for probabilistic forecasting of electricity prices. Comput Stat 40:683–700

    Article  MathSciNet  Google Scholar 

  • Jiang R, Hu X, Yu K (2022) Single-index expectile models for estimating conditional value at risk and Expected Shortfall. J Financ Economet 20:345–366

    Article  Google Scholar 

  • Koenker R (2005) Quantile regression. In: Econometric society monographs, Cambridge University Press, Cambridge

  • Koenker R, Bassett G (1978) Regression quantiles. Econometrica 46(1):33–50

    Article  MathSciNet  Google Scholar 

  • Krätschmer V, Zähle H (2017) Statistical inference for expectile-based risk measures. Scand J Stat 44(2):425–454

    Article  MathSciNet  Google Scholar 

  • Newey W, Powell J (1987) Asymmetric least squares estimation and testing. Econometrica 55(4):819–847

    Article  MathSciNet  Google Scholar 

  • Osipenko M, Ren R (2025) Investor opinion formation and the distribution of stock returns. J Behav Financ 1–20

  • Otto-Sobotka F, Spiegel E, Schnabel S, Waltrup LS, Eilers (contrib.) P, Kneib (contrib.) T, Kauermann (contrib.) G (2019) expectreg: Expectile and Quantile Regression. R package version 0.50. Available at https://CRAN.R-project.org/package=expectreg

  • Ouhourane M, Oualkacha K, Yong AY (2024) Group penalized expectile regression. Stat Methods Appl 33:1251–1313

    Article  MathSciNet  Google Scholar 

  • Raubenheimer H (2017) Using sas proc severity to evaluate quantile approximation techniques for compound distributions popular in operational risk. Report 1039, SAS

  • Rockafellar R, Uryasev S (2000) Optimization of conditional value-at-risk. J Risk 2:21–41

    Article  Google Scholar 

  • Rossello D (2022) Performance measurement with expectiles. Decisi Econ Finan 45:343–374

    Article  MathSciNet  Google Scholar 

  • Said K (2023) Expectile-based captial allocation. Int J Anal Appl 21:79

    Article  Google Scholar 

  • Sangal P, Biswas AK (1970) The 3-parameter lognormal distribution and its applications in hydrology. Water Resour Res 6:505–515

    Article  Google Scholar 

  • Schnabel S, Eilers P (2009) Optimal expectile smoothing. Comput Stat Data Anal 53(12):4168–4177

    Article  MathSciNet  Google Scholar 

  • Schulze Waltrup L, Kauermann G (2017) Smooth expectiles for panel data using penalized splines. Stat Comput 27:271–282

    Article  MathSciNet  Google Scholar 

  • Schulze Waltrup L, Sobotka F, Kneib T, Kauermann G (2015) Expectile and quantile regression-David and Goliath? Stat Model 15(5):433–456

    Article  MathSciNet  Google Scholar 

  • Spiegel E, Kneib T, Otto-Sobotka F (2020) Spatio-temporal expectile regression models. Stat Model 20:386–409

    Article  MathSciNet  Google Scholar 

  • Spiegel E, Kneib T, von Gablenz P, Otto-Sobotka F (2021) Generalized expectile regression with flexible response function. Biom J 63(5):1028–1051

    Article  MathSciNet  Google Scholar 

  • Stupfler G, Methni JE (2017) Extreme versions of Wang risk measures and their estimation for heavy-tailed distributions. Stat Sin 27:907–930

    MathSciNet  Google Scholar 

  • Taylor JW (2008) Estimating value at risk and expected shortfall using expectiles. J Financ Econom 6:231–252

    Google Scholar 

  • Tyralias H, Papacharalampous G, Khatami S (2023) Expectile-based hydrological modelling for uncertainty estimation: life after mean. J Hydrol 617:128986

    Article  Google Scholar 

  • Usseglio-Carleve A (2020) Expectrem: bias-reduced estimation of extreme value index and extreme quantiles and expectiles. https://rdrr.io/github/AntoineUC/Expectrem/

  • Weissman I (1978) Estimation of parameters and larger quantiles based on the k largest observations. J Am Stat Assoc 73(364):812–815

    Google Scholar 

  • Wolny-Dominiak A, Trzesiok M (2014) insuranceData: A collection of insurance datasets useful in risk classification in non-life insurance. R package version 1.0. Available at https://CRAN.R-project.org/package=insuranceData

  • Yao Q, Tong H (1996) Asymmetric least squares regression estimation: a nonparametric approach. J Nonparametric Stat 6(2):273–292

    Article  MathSciNet  Google Scholar 

  • Zaevski TS, Nedeltchev DC (2023) From BASEL III to BASEL IV and beyond: expected shortfall and expectile risk measures. Int Rev Financ Anal 87:102645

    Article  Google Scholar 

  • Zhang L, Mei C (2008) Testing heteroscedasticity in nonparametric regression models based on residual analysis. Appl Math 23:265–272

    Article  MathSciNet  Google Scholar 

  • Ziegel J (2016) Coherence and elicitability. Math Financ 26(4):901–918

    Article  MathSciNet  Google Scholar 

  • Zwingmann T, Holzmann H (2020) Weak convergence of quantile and expectile processes under general assumptions. Bernoulli 26(1):323–351

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the editor, an associate editor and the reviewers for their valuable comments that led to an improvement of the paper.

Funding

The authors gratefully acknowledge support from the Flemish Science Foundation [Research GrantFWO G0D6619N] and from Research Fund KU Leuven [C16/20/002 project].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Gijbels.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Data availability

Numerical experiments have been carried out using the R packages mentioned in the text. Data sets are publicly available, and url addresses for these are included in the text.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adam, C., Gijbels, I. Nonparametric estimation of conditional expectile-based risk measures. Stat Methods Appl 34, 939–977 (2025). https://doi.org/10.1007/s10260-025-00807-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1007/s10260-025-00807-y

Keywords

Mathematics Subject Classification

JEL Classification