Zusammenfassung
Hintergrund
Arthrose (Osteoarthritis [OA]) zählt mit mehr als 500 Mio. Betroffenen weltweit zu den häufigsten Gelenkerkrankungen. In den letzten Jahrzehnten gab es nur begrenzte Fortschritte bezüglich Diagnostik und Therapie. Während die OA lange Zeit primär als mechanisch bedingte Verschleißerkrankung betrachtet wurde, zeigen neuere Studien, dass es sich vielmehr um ein heterogenes Krankheitsbild handelt, welches sich in unterschiedlichen Phänotypen manifestiert. Obwohl die Künstliche Intelligenz (KI) in der medizinischen Forschung zunehmend an Bedeutung gewinnt, bleibt ihre konkrete Anwendung im Bereich der OA klinisch bislang noch wenig genutzt.
Ziel der Arbeit
Ziel dieser Übersichtsarbeit ist, die derzeitigen Ansätze zur Phänotypisierung der OA zusammenzufassen und dabei insbesondere die Rolle der KI bei der Identifikation und Klassifikation von OA-Phänotypen hervorzuheben.
Material und Methoden
Selektive Literaturrecherche
Ergebnisse
Es gibt verschiedene vielversprechende Anwendungen von KI in der Diagnose und Bewertung der OA, wie die automatisierte Beurteilung von Knorpelschäden oder die Vorhersage der späteren Notwendigkeit der endoprothetischen Versorgung. Eine enge Kooperation zwischen Orthopädie, Radiologie und KI-Expertinnen und Experten ist notwendig, um KI-Modelle in die Praxis zu integrieren.
Schlussfolgerung
Die Anwendung von KI zur Erkennung und Beurteilung OA-typischer Veränderungen bietet enormes Potenzial, um sowohl die diagnostische Bildgebung als auch die klinische Interpretation und Verlaufsvorhersage der Erkrankung entscheidend zu verbessern. Durch präzisere Diagnosen und individuellere Prognosen könnten KI-basierte Verfahren maßgeblich dazu beitragen, Therapieentscheidungen effektiver zu gestalten und damit die Patientenversorgung zu optimieren.
Abstract
Background
Osteoarthritis (OA) is one of the most common joint diseases, affecting more than 500 million people worldwide. In recent decades, there has only been limited progress in terms of diagnosis and treatment. For a long time, OA was considered to be primarily a mechanically induced degenerative disease. However, more recent work has shown that OA is a heterogeneous condition that manifests in different phenotypes. Although artificial intelligence (AI) is becoming increasingly important in medical research, its specific application in the field of OA remains limited in clinical use.
Objectives
The aim of this review is to summarize the current approaches to phenotyping OA and to highlight the role of AI in the identification and classification of OA phenotypes.
Materials and methods
Selective literature review
Results
There are several promising applications of AI in OA diagnosis and assessment, such as automated assessment of cartilage damage or prediction of the need for arthroplasty. Close cooperation between orthopaedics, radiology, and AI experts is necessary to integrate AI models into clinical practice.
Conclusions
The use of AI to detect and assess OA-typical changes offers major potential to improve diagnostic imaging, clinical interpretation, and disease prognosis. Through more precise diagnoses and individualized prognoses, AI-based methods could significantly contribute to making treatment decisions more effective and, thus, optimizing patient care overall.



Similar content being viewed by others
Abbreviations
- AUC:
-
„Area under the curve“
- CNN:
-
„Convolutional neural networks“
- DL:
-
„Deep learning“
- KI:
-
Künstliche Intelligenz
- Knie-TEP:
-
Knietotalendoprothese
- ML:
-
Maschinelles Lernen („machine learning“)
- OA:
-
Arthrose (Osteoarthritis)
- ROC:
-
„Receiver operating characteristic“
- WORMS:
-
Whole-Organ Magnetic Resonance Imaging Score
Literatur
Kloppenburg M, Namane M, Cicuttini F (2025) Osteoarthritis. Lancet 405:71–85
Long H, Liu Q, Yin H et al (2022) Prevalence Trends of Site-Specific Osteoarthritis From 1990 to 2019: Findings From the Global Burden of Disease Study 2019. Arthritis Rheumatol 74:1172–1183
Martel-Pelletier J, Barr AJ, Cicuttini FM et al (2016) Osteoarthritis. Nat Rev Dis Primers 2:16072
Mobasheri A, Loeser R (2024) Clinical phenotypes, molecular endotypes and theratypes in OA therapeutic development. Nat Rev Rheumatol 20:525–526
Roemer FW, Jarraya M, Collins JE et al (2023) Structural phenotypes of knee osteoarthritis: potential clinical and research relevance. Skelet Radiol 52:2021–2030
Van Spil WE, Kubassova O, Boesen M et al (2019) Osteoarthritis phenotypes and novel therapeutic targets. Biochem Pharmacol 165:41–48
Dell’isola A, Steultjens M (2018) Classification of patients with knee osteoarthritis in clinical phenotypes: Data from the osteoarthritis initiative. Plos One 13:e191045
Horii M, Kubo T, Hirasawa Y (2000) Radial MRI of the hip with moderate osteoarthritis. J Bone Joint Surg Br 82:364–368
Stelzeneder D, Mamisch TC, Kress I et al (2012) Patterns of joint damage seen on MRI in early hip osteoarthritis due to structural hip deformities. Osteoarthritis Cartilage 20:661–669
Lee S, Nardo L, Kumar D et al (2015) Scoring hip osteoarthritis with MRI (SHOMRI): A whole joint osteoarthritis evaluation system. J Magn Reson Imaging 41:1549–1557
Sergooris A, Verbrugghe J, Bonnechère B et al (2024) Beyond the Hip: Clinical Phenotypes of Hip Osteoarthritis Across the Biopsychosocial Spectrum. J Clin Med 13:6824
Kellgren JH, Lawrence JS (1957) Radiological assessment of osteo-arthrosis. Ann Rheum Dis 16:494–502
Roemer FW, Hunter DJ, Winterstein A et al (2011) Hip Osteoarthritis MRI Scoring System (HOAMS): reliability and associations with radiographic and clinical findings. Osteoarthritis Cartilage 19:946–962
Neumann G, Mendicuti AD, Zou KH et al (2007) Prevalence of labral tears and cartilage loss in patients with mechanical symptoms of the hip: evaluation using MR arthrography. Osteoarthritis Cartilage 15:909–917
Roemer FW, Guermazi A, Demehri S et al (2022) Imaging in Osteoarthritis. Osteoarthritis Cartilage 30:913–934
Fu MC, Buerba RA, Long WD 3rd et al (2014) Interrater and intrarater agreements of magnetic resonance imaging findings in the lumbar spine: significant variability across degenerative conditions. Spine J 14:2442–2448
Holzinger A, Langs G, Denk H et al (2019) Causability and explainability of artificial intelligence in medicine. Wiley Interdiscip Rev Data Min Knowl Discov 9:e1312
Caliva F, Namiri NK, Dubreuil M et al (2022) Studying osteoarthritis with artificial intelligence applied to magnetic resonance imaging. Nat Rev Rheumatol 18:112–121
Choi RY, Coyner AS, Kalpathy-Cramer J et al (2020) Introduction to Machine Learning, Neural Networks, and Deep Learning. Transl Vis Sci Technol 9:14
Krizhevsky A, Sutskever I, Hinton GE (2017) ImageNet classification with deep convolutional neural networks. Commun ACM 60:84–90
Zeng DY, Shaikh J, Holmes S et al (2019) Deep residual network for off-resonance artifact correction with application to pediatric body MRA with 3D cones. Magn Reson Med 82:1398–1411
Smith CP, Harmon SA, Barrett T et al (2019) Intra- and interreader reproducibility of PI-RADSv2: A multireader study. J Magn Reson Imaging 49:1694–1703
Fernquest S, Park D, Marcan M et al (2018) Segmentation of hip cartilage in compositional magnetic resonance imaging: A fast, accurate, reproducible, and clinically viable semi-automated methodology. J Orthop Res
Liukkonen MK, Mononen ME, Tanska P et al (2017) Application of a semi-automatic cartilage segmentation method for biomechanical modeling of the knee joint. Comput Methods Biomech Biomed Engin 20:1453–1463
Jaremko JL, Cheng RW, Lambert RG et al (2006) Reliability of an efficient MRI-based method for estimation of knee cartilage volume using surface registration. Osteoarthritis Cartilage 14:914–922
Gaj S, Yang M, Nakamura K et al (2020) Automated cartilage and meniscus segmentation of knee MRI with conditional generative adversarial networks. Magn Reson Med 84:437–449
Norman B, Pedoia V, Majumdar S (2018) Use of 2D U‑Net Convolutional Neural Networks for Automated Cartilage and Meniscus Segmentation of Knee MR Imaging Data to Determine Relaxometry and Morphometry. Radiology 288:177–185
Yang M, Colak C, Chundru KK et al (2022) Automated knee cartilage segmentation for heterogeneous clinical MRI using generative adversarial networks with transfer learning. Quant Imaging Med Surg 12:2620–2633
Yang Z, Fripp J, Chandra SS et al (2015) Automatic bone segmentation and bone-cartilage interface extraction for the shoulder joint from magnetic resonance images. Phys Med Biol 60:1441–1459
Xia Y, Fripp J, Chandra SS et al (2013) Automated bone segmentation from large field of view 3D MR images of the hip joint. Phys Med Biol 58:7375–7390
Deniz CM, Xiang S, Hallyburton RS et al (2018) Segmentation of the Proximal Femur from MR Images using Deep Convolutional Neural Networks. Sci Rep 8:16485
Brui E, Efimtcev AY, Fokin VA et al (2020) Deep learning-based fully automatic segmentation of wrist cartilage in MR images. NMR Biomed 33:e4320
Ronneberger O, Fischer P, Brox T (2015) U‑net: Convolutional networks for biomedical image segmentation. In: Medical image computing and computer-assisted intervention–MICCAI 2015: 18th international conference. Springer, Munich, Germany, S 234–241
Isensee F, Jaeger PF, Kohl SA et al (2021) nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods 18:203–211
Hesamian MH, Jia W, He X et al (2019) Deep Learning Techniques for Medical Image Segmentation: Achievements and Challenges. J Digit Imaging 32:582–596
Shin HC, Roth HR, Gao M et al (2016) Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning. IEEE Trans Med Imaging 35:1285–1298
Yosinski J, Clune J, Bengio Y et al (2014) How transferable are features in deep neural networks? Advances in Neural Information Processing Systems (NIPS) Bd 27
Akinci D’antonoli T, Berger LK, Indrakanti AK et al (2025) TotalSegmentator MRI: Robust Sequence-independent Segmentation of Multiple Anatomic Structures in MRI. Radiology 314:e241613
Cardoso MJ, Li W, Brown R et al (2022) Monai: An open-source framework for deep learning in healthcare. arXiv preprint arXiv:2211.02701
Peterfy CG, Guermazi A, Zaim S et al (2004) Whole-Organ Magnetic Resonance Imaging Score (WORMS) of the knee in osteoarthritis. Osteoarthritis Cartilage 12:177–190
Hunter DJ, Lo GH, Gale D et al (2008) The reliability of a new scoring system for knee osteoarthritis MRI and the validity of bone marrow lesion assessment: BLOKS (Boston Leeds Osteoarthritis Knee Score). Ann Rheum Dis 67:206–211
Hunter DJ, Guermazi A, Lo GH et al (2011) Evolution of semi-quantitative whole joint assessment of knee OA: MOAKS (MRI Osteoarthritis Knee Score). Osteoarthritis Cartilage 19:990–1002
Tibrewala R, Ozhinsky E, Shah R et al (2020) Computer-Aided Detection AI Reduces Interreader Variability in Grading Hip Abnormalities With MRI. J Magn Reson Imaging 52:1163–1172
Liu F, Zhou Z, Samsonov A et al (2018) Deep Learning Approach for Evaluating Knee MR Images: Achieving High Diagnostic Performance for Cartilage Lesion Detection. Radiology 289:160–169
Felfeliyan B, Wichuk S, Hareendranathan AR et al (2024) OMERACT validation of a deep learning algorithm for automated absolute quantification of knee joint effusion versus manual semi-quantitative assessment. Semin Arthritis Rheum 66:152420
Pedoia V, Norman B, Mehany SN et al (2019) 3D convolutional neural networks for detection and severity staging of meniscus and PFJ cartilage morphological degenerative changes in osteoarthritis and anterior cruciate ligament subjects. J Magn Reson Imaging 49:400–410
Schiratti JB, Dubois R, Herent P et al (2021) A deep learning method for predicting knee osteoarthritis radiographic progression from MRI. Arthritis Res Ther 23:262
Tolpadi AA, Lee JJ, Pedoia V et al (2020) Deep Learning Predicts Total Knee Replacement from Magnetic Resonance Images. Sci Rep 10:6371
Förderung
T. Rolvien erhält Förderung durch die Deutsche Forschungsgemeinschaft (DFG) im Rahmen der Klinischen Forschungsgruppe ProBone (RO 5925/5-1).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Interessenkonflikt
K. Schleid, A.-R. Alimy, T. Hoenig, S. Westfechtel, S. Nebelung, F.T. Beil und T. Rolvien geben an, dass kein Interessenkonflikt besteht.
Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.
Additional information
Hinweis des Verlags
Der Verlag bleibt in Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutsadressen neutral.

QR-Code scannen & Beitrag online lesen
Rights and permissions
About this article
Cite this article
Schleid, K., Alimy, AR., Hoenig, T. et al. Differenzierung MR-tomographischer Arthrosephänotypen mithilfe von Techniken der Künstlichen Intelligenz. Orthopädie (2025). https://doi.org/10.1007/s00132-025-04751-3
Received:
Accepted:
Published:
Version of record:
DOI: https://doi.org/10.1007/s00132-025-04751-3


