Abstract
Shear-induced contact area reduction is a common phenomenon across scales. The corresponding contact morphology controls almost all the macroscopic features of the interface, including adhesion, wear, viscoelastic properties, stiffness, and even electric resistance. It is a long-standing challenge to predict the contact morphology of nonlinear soft elastomer contact since there has been no available analytical solution. The work presented in this paper aims to fill the blank. Here, we first establish a new framework for contact morphology, which involves two evolution equations of the contact boundary. The framework decouples nonlinear contact kinematics and contact forces to formulate the corresponding initial-value problem in a modular approach. Based on this, we present analytical solutions to the shear-induced anisotropic area reduction in elastomer contact by using the method of undetermined coefficient and Boussinesq type models. We theoretically demonstrate that the shear-induced normal deformation (originated from Poynting’s effect), but not tangential deformation, governs the anisotropic area reduction. Also, the power laws of the reduction parameters for both contact area and size are provided. The results show quantitative agreement with recent simulations and experiments. Our approaches to the contact morphology of frictional contact involving soft materials may shed some light on the theoretical modeling of large deformation contact mechanics.
Similar content being viewed by others
References
W. Chen, X. Huang, Q. Yuan, and Y. P. Zhao, Int. J. Eng. Sci. 205, 104166 (2024).
W. Chen, and Y. P. Zhao, Int. J. Eng. Sci. 195, 103991 (2024).
M. Zhang, W. Chen, X. Huang, Q. Yuan, and Y. P. Zhao, J. Mech. Phys. Solids 193, 105886 (2024).
X. Zhu, and G. Dui, Acta Mech. Solid Sin. 34, 632 (2021).
Q. Zhou, X. Jin, Z. Wang, J. Wang, L. M. Keer, and Q. Wang, J. Elast. 118, 39 (2015).
W. Yang, Q. Liu, Z. Yue, X. Li, and B. Xu, J. Mech. Phys. Solids 101, 285 (2017).
Y. Wang, J. Zhao, Y. He, M. Yang, J. Chu, J. Yuan, X. Li, and W. Chen, J. Mech. Phys. Solids 188, 105659 (2024).
W. Yang, Q. Zhou, Y. Huang, J. Wang, X. Jin, and L. M. Keer, Tribol. Int. 131, 33 (2019).
Y. P. Zhao, L. S. Wang, and T. X. Yu, J. Adh. Sci. Tech. 17, 519 (2003).
E. Koren, E. Lortscher, C. Rawlings, A. W. Knoll, and U. Duerig, Science 348, 679 (2015).
S. Nezamabadi, F. Radjai, J. Averseng, and J. Y. Delenne, J. Mech. Phys. Solids 83, 72 (2015).
M. Scaraggi, and D. Comingio, Int. J. Solids Struct. 125, 276 (2017).
R. Sahli, G. Pallares, A. Papangelo, M. Ciavarella, C. Ducottet, N. Ponthus, and J. Scheibert, Phys. Rev. Lett. 122, 214301 (2019).
W. Ouyang, Y. Cheng, M. Ma, and M. Urbakh, J. Mech. Phys. Solids 137, 103880 (2020).
V. De Zotti, K. Rapina, P. P. Cortet, L. Vanel, and S. Santucci, Phys. Rev. Lett. 122, 068005 (2019).
C. Mandriota, N. Menga, and G. Carbone, Int. J. Solids Struct. 290, 112685 (2024).
H. Wei, Z. Wang, X. Tu, X. Cheng, L. Li, S. Wang, and C. Li, Int. J. Solids Struct. 305, 113087 (2024).
Y. W. Liu, Y. G. Wei, and H. Long, Sci. China-Phys. Mech. Astron. 63, 244612 (2020).
Q. Jia, Q. Xia, Q. Zhou, Y. Wang, Y. Ren, Y. Meng, H. Wang, and F. Zhou, Sci. China-Phys. Mech. Astron. 67, 266111 (2024).
S. Singh, J. A. Krishnaswamy, and R. Melnik, J. Mech. Behav. Biomed. Mater. 110, 103859 (2020).
M. Gonzalez, and A. M. Cuitino, J. Mech. Phys. Solids 60, 333 (2012).
A. Agarwal, and M. Gonzalez, Int. J. Eng. Sci. 133, 26 (2018).
G. V. Dedkov, and A. A. Kyasov, Surf. Sci. 700, 121681 (2020).
I. I. Argatov, X. Jin, and L. M. Keer, J. Mech. Phys. Solids 149, 104297 (2021).
X. P. Zheng, D. H. Liu, and Y. H. Liu, Sci. China-Phys. Mech. Astron. 54, 666 (2011).
W. Chen, and Y. P. Zhao, Int. J. Eng. Sci. 178, 103730 (2022).
Q. Meng, H. Song, Y. Zhou, X. Liu, and X. Shi, J. Mech. Phys. Solids 196, 105975 (2025).
Y. V. Petrov, B. L. Karihaloo, V. V. Bratov, and A. M. Bragov, Int. J. Eng. Sci. 61, 3 (2012).
S. Gilbert, T. Chen, I. D. Hutchinson, D. Choi, C. Voigt, R. F. Warren, and S. A. Maher, J. Biomech. 47, 2006 (2014).
M. N. Balci, and S. Dag, Tribol. Int. 124, 70 (2018).
I. I. Argatov, and Y. S. Chai, Int. J. Solids Struct. 193–194, 213 (2020).
R. A. Sauer, T. X. Duong, and K. K. Mandadapu, Math. Mech. Solids 27, 711 (2022).
R. Sahli, G. Pallares, C. Ducottet, I. E. Ben Ali, S. Al Akhrass, M. Guibert, and J. Scheibert, Proc. Natl. Acad. Sci. USA 115, 471 (2018).
M. K. Salehani, N. Irani, and L. Nicola, J. Mech. Phys. Solids 130, 320 (2019).
A. Papangelo, J. Scheibert, R. Sahli, G. Pallares, and M. Ciavarella, Phys. Rev. E 99, 053005 (2019).
A. Papangelo, and M. Ciavarella, J. Mech. Phys. Solids 124, 159 (2019).
N. Menga, G. Carbone, and D. Dini, J. Mech. Phys. Solids 112, 145 (2018).
N. Menga, G. Carbone, and D. Dini, J. Mech. Phys. Solids 133, 103744 (2019).
B. Weber, T. Suhina, A. M. Brouwer, and D. Bonn, Sci. Adv. 5, eaav7603 (2019).
R. M. McMeeking, M. Ciavarella, G. Cricri, and K. S. Kim, J. Appl. Mech. 87, 031016 (2020).
J. Wang, A. Tiwari, I. M. Sivebaek, and B. N. J. Persson, J. Mech. Phys. Solids 143, 104094 (2020).
J. C. Mergel, R. Sahli, J. Scheibert, and R. A. Sauer, J. Adh. 95, 1101 (2019).
J. C. Mergel, J. Scheibert, and R. A. Sauer, J. Mech. Phys. Solids 146, 104194 (2021).
S. Yin, G. Costagliola, and J. F. Molinari, Tribol. Lett. 70, 124 (2022).
Y. Xu, J. Scheibert, N. Gadegaard, and D. M. Mulvihill, J. Mech. Phys. Solids 164, 104878 (2022).
C. Oliver, D. Dalmas, and J. Scheibert, J. Mech. Phys. Solids 181, 105445 (2023).
S. Tirapat, and T. Senjuntichai, Int. J. Appl. Mech. 15, 2350085 (2023).
A. Savkoor, and G. Briggs, Proc. R. Soc. Lond. A 356, 103 (1977).
Z. Q. Wang, Y. P. Zhao, and Z. P. Huang, Int. J. Eng. Sci. 48, 140 (2010).
K. L. Johnson, Langmuir 12, 4510 (1996).
K. L. Johnson, Proc. R. Soc. Lond. A 453, 163 (1997).
J. F. Waters, and P. R. Guduru, Proc. R. Soc. A 466, 1303 (2010).
M. Ciavarella, Facta Univ. Ser.-Mech. Eng. 16, 87 (2018).
K. Johnson, K. Kendall, and A. Roberts, Proc. R. Soc. Lond. 324, 301 (1971).
L. Ma, Y. Chen, and D. A. Hills, J. Mech. Phys. Solids 184, 105528 (2024).
J. Lengiewicz, M. de Souza, M. A. Lahmar, C. Courbon, D. Dalmas, S. Stupkiewicz, and J. Scheibert, J. Mech. Phys. Solids 143, 104056 (2020).
J. R. Barber, and M. Ciavarella, Int. J. Solids Struct. 37, 29 (2000).
M. Shillor, M. Sofonea, and J. J. Telega, Models and Analysis of Quasistatic Contact (Springer, Dordrecht, 2004).
J. R. Barber, Contact Mechanics (Springer, Dordrecht, 2018).
L. E. Andersson, and A. Klarbring, Philos. Trans. R. Soc. A 359, 2519 (2001).
A. Oinonen, and G. Marquis, Eur. J. Mech.-A Solids 49, 205 (2015).
R. A. Sauer, and L. De Lorenzis, Numer. Meth Eng. 101, 251 (2015).
H. Zhang, W. Wang, S. Zhang, and Z. Zhao, Tribol. Int. 113, 224 (2017).
V. T. Nguyen, and C. Hwu, Int. J. Mech. Sci. 184, 105836 (2020).
S. R. Wopschall, and M. M. Rashid, Comput. Methods Appl. Mech. Eng. 348, 356 (2019).
F. Aldakheel, B. Hudobivnik, E. Artioli, L. Beirao da Veiga, and P. Wriggers, Comput. Methods Appl. Mech. Eng. 372, 113394 (2020).
M. Brun, R. Rezakhani, and J. F. Molinari, Finite Elem. Anal. Des. 174, 103402 (2020).
D. P. Rahmi, R. Fleischhauer, and M. Kaliske, Numer. Meth Eng. 124, 5471 (2023).
J. Cen, and K. Komvopoulos, J. Appl. Mech. 90, 071011 (2023).
L. I. Sedov, Foundations of the Non-Linear Mechanics of Continua (Pergamon Press, Oxford, 1966).
B. Audoly, and J. W. Hutchinson, J. Mech. Phys. Solids 136, 103720 (2020).
B. Audoly, and Y. Pomeau, Elasticity and Geometry: From Hair Curls to the Non-Linear Response of Shells (Oxford University Press, Oxford, 2008).
J. R. Barber, Elasticity (Solid Mechanics and Its Applications) (Springer, Dordrecht, 2009).
R. C. Batra, Arch. Ration. Mech. Anal. 48, 163 (1972).
M. Kachanov, B. Shafiro, and I. Tsukrov, Handbook of Elasticity Solutions (Springer, Dordrecht, 2003).
K. L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, 1985).
V. V. Novozhilov, Foundations of the Nonlinear Theory of Elasticity (Graylock Press, Rochester, 1953).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest The authors declare that they have no conflict of interest.
Additional information
This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDB0620101, and XDB0620103), the National Natural Science Foundation of China (Grant Nos. 12241205, and 12032019), and the National Key Research and Development Program of China (Grant No. 2022YFA1203200). The authors are grateful to Professor Quanzi Yuan and Associate Professor Xianfu Huang for their valuable discussions, insightful suggestions, and financial support.
Rights and permissions
About this article
Cite this article
Xu, M., Zhang, M., Chen, W. et al. Analytical solutions to the shear-induced anisotropic area reduction in frictional elastomer contact. Sci. China Phys. Mech. Astron. 68, 284611 (2025). https://doi.org/10.1007/s11433-025-2680-4
Received:
Accepted:
Published:
Version of record:
DOI: https://doi.org/10.1007/s11433-025-2680-4


