Skip to main content
Log in

Analytical solutions to the shear-induced anisotropic area reduction in frictional elastomer contact

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Shear-induced contact area reduction is a common phenomenon across scales. The corresponding contact morphology controls almost all the macroscopic features of the interface, including adhesion, wear, viscoelastic properties, stiffness, and even electric resistance. It is a long-standing challenge to predict the contact morphology of nonlinear soft elastomer contact since there has been no available analytical solution. The work presented in this paper aims to fill the blank. Here, we first establish a new framework for contact morphology, which involves two evolution equations of the contact boundary. The framework decouples nonlinear contact kinematics and contact forces to formulate the corresponding initial-value problem in a modular approach. Based on this, we present analytical solutions to the shear-induced anisotropic area reduction in elastomer contact by using the method of undetermined coefficient and Boussinesq type models. We theoretically demonstrate that the shear-induced normal deformation (originated from Poynting’s effect), but not tangential deformation, governs the anisotropic area reduction. Also, the power laws of the reduction parameters for both contact area and size are provided. The results show quantitative agreement with recent simulations and experiments. Our approaches to the contact morphology of frictional contact involving soft materials may shed some light on the theoretical modeling of large deformation contact mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from €37.37 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Norway)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Chen, X. Huang, Q. Yuan, and Y. P. Zhao, Int. J. Eng. Sci. 205, 104166 (2024).

    Article  Google Scholar 

  2. W. Chen, and Y. P. Zhao, Int. J. Eng. Sci. 195, 103991 (2024).

    Article  Google Scholar 

  3. M. Zhang, W. Chen, X. Huang, Q. Yuan, and Y. P. Zhao, J. Mech. Phys. Solids 193, 105886 (2024).

    Article  Google Scholar 

  4. X. Zhu, and G. Dui, Acta Mech. Solid Sin. 34, 632 (2021).

    Article  Google Scholar 

  5. Q. Zhou, X. Jin, Z. Wang, J. Wang, L. M. Keer, and Q. Wang, J. Elast. 118, 39 (2015).

    Article  Google Scholar 

  6. W. Yang, Q. Liu, Z. Yue, X. Li, and B. Xu, J. Mech. Phys. Solids 101, 285 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  7. Y. Wang, J. Zhao, Y. He, M. Yang, J. Chu, J. Yuan, X. Li, and W. Chen, J. Mech. Phys. Solids 188, 105659 (2024).

    Article  Google Scholar 

  8. W. Yang, Q. Zhou, Y. Huang, J. Wang, X. Jin, and L. M. Keer, Tribol. Int. 131, 33 (2019).

    Article  Google Scholar 

  9. Y. P. Zhao, L. S. Wang, and T. X. Yu, J. Adh. Sci. Tech. 17, 519 (2003).

    Article  ADS  Google Scholar 

  10. E. Koren, E. Lortscher, C. Rawlings, A. W. Knoll, and U. Duerig, Science 348, 679 (2015).

    Article  ADS  Google Scholar 

  11. S. Nezamabadi, F. Radjai, J. Averseng, and J. Y. Delenne, J. Mech. Phys. Solids 83, 72 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  12. M. Scaraggi, and D. Comingio, Int. J. Solids Struct. 125, 276 (2017).

    Article  Google Scholar 

  13. R. Sahli, G. Pallares, A. Papangelo, M. Ciavarella, C. Ducottet, N. Ponthus, and J. Scheibert, Phys. Rev. Lett. 122, 214301 (2019).

    Article  ADS  Google Scholar 

  14. W. Ouyang, Y. Cheng, M. Ma, and M. Urbakh, J. Mech. Phys. Solids 137, 103880 (2020).

    Article  MathSciNet  Google Scholar 

  15. V. De Zotti, K. Rapina, P. P. Cortet, L. Vanel, and S. Santucci, Phys. Rev. Lett. 122, 068005 (2019).

    Article  ADS  Google Scholar 

  16. C. Mandriota, N. Menga, and G. Carbone, Int. J. Solids Struct. 290, 112685 (2024).

    Article  Google Scholar 

  17. H. Wei, Z. Wang, X. Tu, X. Cheng, L. Li, S. Wang, and C. Li, Int. J. Solids Struct. 305, 113087 (2024).

    Article  Google Scholar 

  18. Y. W. Liu, Y. G. Wei, and H. Long, Sci. China-Phys. Mech. Astron. 63, 244612 (2020).

    Article  ADS  Google Scholar 

  19. Q. Jia, Q. Xia, Q. Zhou, Y. Wang, Y. Ren, Y. Meng, H. Wang, and F. Zhou, Sci. China-Phys. Mech. Astron. 67, 266111 (2024).

    Article  ADS  Google Scholar 

  20. S. Singh, J. A. Krishnaswamy, and R. Melnik, J. Mech. Behav. Biomed. Mater. 110, 103859 (2020).

    Article  Google Scholar 

  21. M. Gonzalez, and A. M. Cuitino, J. Mech. Phys. Solids 60, 333 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  22. A. Agarwal, and M. Gonzalez, Int. J. Eng. Sci. 133, 26 (2018).

    Article  Google Scholar 

  23. G. V. Dedkov, and A. A. Kyasov, Surf. Sci. 700, 121681 (2020).

    Article  Google Scholar 

  24. I. I. Argatov, X. Jin, and L. M. Keer, J. Mech. Phys. Solids 149, 104297 (2021).

    Article  Google Scholar 

  25. X. P. Zheng, D. H. Liu, and Y. H. Liu, Sci. China-Phys. Mech. Astron. 54, 666 (2011).

    Article  ADS  Google Scholar 

  26. W. Chen, and Y. P. Zhao, Int. J. Eng. Sci. 178, 103730 (2022).

    Article  Google Scholar 

  27. Q. Meng, H. Song, Y. Zhou, X. Liu, and X. Shi, J. Mech. Phys. Solids 196, 105975 (2025).

    Article  Google Scholar 

  28. Y. V. Petrov, B. L. Karihaloo, V. V. Bratov, and A. M. Bragov, Int. J. Eng. Sci. 61, 3 (2012).

    Article  Google Scholar 

  29. S. Gilbert, T. Chen, I. D. Hutchinson, D. Choi, C. Voigt, R. F. Warren, and S. A. Maher, J. Biomech. 47, 2006 (2014).

    Article  Google Scholar 

  30. M. N. Balci, and S. Dag, Tribol. Int. 124, 70 (2018).

    Article  Google Scholar 

  31. I. I. Argatov, and Y. S. Chai, Int. J. Solids Struct. 193–194, 213 (2020).

    Article  Google Scholar 

  32. R. A. Sauer, T. X. Duong, and K. K. Mandadapu, Math. Mech. Solids 27, 711 (2022).

    Article  MathSciNet  Google Scholar 

  33. R. Sahli, G. Pallares, C. Ducottet, I. E. Ben Ali, S. Al Akhrass, M. Guibert, and J. Scheibert, Proc. Natl. Acad. Sci. USA 115, 471 (2018).

    Article  ADS  Google Scholar 

  34. M. K. Salehani, N. Irani, and L. Nicola, J. Mech. Phys. Solids 130, 320 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  35. A. Papangelo, J. Scheibert, R. Sahli, G. Pallares, and M. Ciavarella, Phys. Rev. E 99, 053005 (2019).

    Article  ADS  Google Scholar 

  36. A. Papangelo, and M. Ciavarella, J. Mech. Phys. Solids 124, 159 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  37. N. Menga, G. Carbone, and D. Dini, J. Mech. Phys. Solids 112, 145 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  38. N. Menga, G. Carbone, and D. Dini, J. Mech. Phys. Solids 133, 103744 (2019).

    Article  MathSciNet  Google Scholar 

  39. B. Weber, T. Suhina, A. M. Brouwer, and D. Bonn, Sci. Adv. 5, eaav7603 (2019).

    Article  ADS  Google Scholar 

  40. R. M. McMeeking, M. Ciavarella, G. Cricri, and K. S. Kim, J. Appl. Mech. 87, 031016 (2020).

    Article  ADS  Google Scholar 

  41. J. Wang, A. Tiwari, I. M. Sivebaek, and B. N. J. Persson, J. Mech. Phys. Solids 143, 104094 (2020).

    Article  MathSciNet  Google Scholar 

  42. J. C. Mergel, R. Sahli, J. Scheibert, and R. A. Sauer, J. Adh. 95, 1101 (2019).

    Article  Google Scholar 

  43. J. C. Mergel, J. Scheibert, and R. A. Sauer, J. Mech. Phys. Solids 146, 104194 (2021).

    Article  Google Scholar 

  44. S. Yin, G. Costagliola, and J. F. Molinari, Tribol. Lett. 70, 124 (2022).

    Article  Google Scholar 

  45. Y. Xu, J. Scheibert, N. Gadegaard, and D. M. Mulvihill, J. Mech. Phys. Solids 164, 104878 (2022).

    Article  Google Scholar 

  46. C. Oliver, D. Dalmas, and J. Scheibert, J. Mech. Phys. Solids 181, 105445 (2023).

    Article  Google Scholar 

  47. S. Tirapat, and T. Senjuntichai, Int. J. Appl. Mech. 15, 2350085 (2023).

    Article  Google Scholar 

  48. A. Savkoor, and G. Briggs, Proc. R. Soc. Lond. A 356, 103 (1977).

    Article  ADS  Google Scholar 

  49. Z. Q. Wang, Y. P. Zhao, and Z. P. Huang, Int. J. Eng. Sci. 48, 140 (2010).

    Article  Google Scholar 

  50. K. L. Johnson, Langmuir 12, 4510 (1996).

    Article  Google Scholar 

  51. K. L. Johnson, Proc. R. Soc. Lond. A 453, 163 (1997).

    Article  ADS  Google Scholar 

  52. J. F. Waters, and P. R. Guduru, Proc. R. Soc. A 466, 1303 (2010).

    Article  ADS  Google Scholar 

  53. M. Ciavarella, Facta Univ. Ser.-Mech. Eng. 16, 87 (2018).

    Google Scholar 

  54. K. Johnson, K. Kendall, and A. Roberts, Proc. R. Soc. Lond. 324, 301 (1971).

    ADS  Google Scholar 

  55. L. Ma, Y. Chen, and D. A. Hills, J. Mech. Phys. Solids 184, 105528 (2024).

    Article  Google Scholar 

  56. J. Lengiewicz, M. de Souza, M. A. Lahmar, C. Courbon, D. Dalmas, S. Stupkiewicz, and J. Scheibert, J. Mech. Phys. Solids 143, 104056 (2020).

    Article  MathSciNet  Google Scholar 

  57. J. R. Barber, and M. Ciavarella, Int. J. Solids Struct. 37, 29 (2000).

    Article  Google Scholar 

  58. M. Shillor, M. Sofonea, and J. J. Telega, Models and Analysis of Quasistatic Contact (Springer, Dordrecht, 2004).

    Book  Google Scholar 

  59. J. R. Barber, Contact Mechanics (Springer, Dordrecht, 2018).

    Book  Google Scholar 

  60. L. E. Andersson, and A. Klarbring, Philos. Trans. R. Soc. A 359, 2519 (2001).

    Article  ADS  Google Scholar 

  61. A. Oinonen, and G. Marquis, Eur. J. Mech.-A Solids 49, 205 (2015).

    Article  MathSciNet  Google Scholar 

  62. R. A. Sauer, and L. De Lorenzis, Numer. Meth Eng. 101, 251 (2015).

    Article  Google Scholar 

  63. H. Zhang, W. Wang, S. Zhang, and Z. Zhao, Tribol. Int. 113, 224 (2017).

    Article  Google Scholar 

  64. V. T. Nguyen, and C. Hwu, Int. J. Mech. Sci. 184, 105836 (2020).

    Article  Google Scholar 

  65. S. R. Wopschall, and M. M. Rashid, Comput. Methods Appl. Mech. Eng. 348, 356 (2019).

    Article  ADS  Google Scholar 

  66. F. Aldakheel, B. Hudobivnik, E. Artioli, L. Beirao da Veiga, and P. Wriggers, Comput. Methods Appl. Mech. Eng. 372, 113394 (2020).

    Article  ADS  Google Scholar 

  67. M. Brun, R. Rezakhani, and J. F. Molinari, Finite Elem. Anal. Des. 174, 103402 (2020).

    Article  MathSciNet  Google Scholar 

  68. D. P. Rahmi, R. Fleischhauer, and M. Kaliske, Numer. Meth Eng. 124, 5471 (2023).

    Article  Google Scholar 

  69. J. Cen, and K. Komvopoulos, J. Appl. Mech. 90, 071011 (2023).

    Article  ADS  Google Scholar 

  70. L. I. Sedov, Foundations of the Non-Linear Mechanics of Continua (Pergamon Press, Oxford, 1966).

    Google Scholar 

  71. B. Audoly, and J. W. Hutchinson, J. Mech. Phys. Solids 136, 103720 (2020).

    Article  MathSciNet  Google Scholar 

  72. B. Audoly, and Y. Pomeau, Elasticity and Geometry: From Hair Curls to the Non-Linear Response of Shells (Oxford University Press, Oxford, 2008).

    Google Scholar 

  73. J. R. Barber, Elasticity (Solid Mechanics and Its Applications) (Springer, Dordrecht, 2009).

    Google Scholar 

  74. R. C. Batra, Arch. Ration. Mech. Anal. 48, 163 (1972).

    Article  Google Scholar 

  75. M. Kachanov, B. Shafiro, and I. Tsukrov, Handbook of Elasticity Solutions (Springer, Dordrecht, 2003).

    Book  Google Scholar 

  76. K. L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, 1985).

    Book  Google Scholar 

  77. V. V. Novozhilov, Foundations of the Nonlinear Theory of Elasticity (Graylock Press, Rochester, 1953).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weiting Chen or Ya-Pu Zhao.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDB0620101, and XDB0620103), the National Natural Science Foundation of China (Grant Nos. 12241205, and 12032019), and the National Key Research and Development Program of China (Grant No. 2022YFA1203200). The authors are grateful to Professor Quanzi Yuan and Associate Professor Xianfu Huang for their valuable discussions, insightful suggestions, and financial support.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, M., Zhang, M., Chen, W. et al. Analytical solutions to the shear-induced anisotropic area reduction in frictional elastomer contact. Sci. China Phys. Mech. Astron. 68, 284611 (2025). https://doi.org/10.1007/s11433-025-2680-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1007/s11433-025-2680-4