Skip to main content
Log in

Light emitting mechanisms dependent on stoichiometry of Si-rich-SiNx films grown by PECVD

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Light emission and morphology of silicon-rich silicon nitride films grown by plasma-enhanced chemical vapor deposition were investigated versus film’s stoichiometry. The excess silicon content in the films was controlled varying the NH3/SiH4 gas flow ratio from 0.45 up to 1.0. High-temperature annealing was employed to form the silicon quantum dots (QDs) and to enhance the photoluminescence (PL) in visible spectral range. The PL spectrum was found to be complex. The competition of five PL bands leads to the non-monotonous variation of total PL peak position in the range of 1.55–2.95 eV when the Si excess content increases. The shape of PL spectra depends also on an excitation light wavelength. It is shown that for the films fabricated with R ≤ 0.56 and R ≥ 0.67 the dominant contribution into PL spectra is given by native SiNx defects, whereas in the films obtained with R = 0.59–0.67 the Si-QDs form the main radiative channel. The highest PL intensity is detected in Si-rich SiNx films grown at R = 0.59–0.67 as well. PL mechanisms are discussed in terms of the contribution of different radiative channels in the light emission process that can show the ways for the optimization of SiNx light-emitting properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from €37.37 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Norway)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C. Bonafos, M. Carrada, G. Benassayag, S. Schamm-Chardon, J. Groenen, V. Paillard, B. Pecassou, A. Claverie, P. Dimitrakis, E. Kapetanakis, V. Ioannou-Sougleridis, P. Normand, B. Sahu, A. Slaoui, Mater. Sci. Semicond. Process 15, 615 (2012)

    Article  Google Scholar 

  2. M.S. Yang, K.S. Cho, J.H. Jhe, S.Y. Seo, J.H. Shin, K.J. Kim, D.W. Moon, Appl. Phys. Lett. 85, 3408 (2004)

    Article  Google Scholar 

  3. G.-R. Lin, Y.-H. Pai, Ch-T Lin, Ch-Ch. Chen, Appl. Phys. Lett. 96, 263514 (2010)

    Article  Google Scholar 

  4. Ch-D Lin, Ch-H Cheng, Y.-H. Lin, Ch-L Wu, Y.-H. Pai, G.-R. Lin, Appl. Phys. Lett. 99, 243501 (2011)

    Article  Google Scholar 

  5. J. Carreras, J. Arbiol, B. Garrido, C. Bonafos, J. Monserrat, Appl. Phys. Lett. 92, 091103 (2008)

    Article  Google Scholar 

  6. B.S. Sahu, F. Delachat, A. Slaoui, M. Carrada, G. Ferblantier, D. Muller, Nanoscale Res. Lett. 6, 178 (2011)

    Article  Google Scholar 

  7. C. Liu, C. Li, A. Ji, L. Ma, Y. Wang, Z. Cao, Nanotechnology 16, 940 (2005)

    Article  Google Scholar 

  8. Z. Pei, Y.R. Chang, H.L. Wang, Appl. Phys. Lett. 80, 2839 (2002)

    Article  Google Scholar 

  9. T.V. Torchynska, in Nanocrystals and Quantum Dots of Group IV Semiconductors, ed. by T.V. Torchynska, Y. Vorobiev (American Scientific Publisher, Stevenson Ranch, 2010), pp. 42–84

    Google Scholar 

  10. A. Meldrum, A. Hryciw, A.N. Mac Donald, C. Blois, T. Clement, R. De Corby, J. Wang, Quan Li, J. Lumin. 121, 199 (2006)

    Article  Google Scholar 

  11. U. Kahler, H. Hofmeister, Opt. Mater. 17, 83 (2001)

    Article  Google Scholar 

  12. G.Y. Sung, N.M. Park, J.H. Shin, K.H. Kim, T.Y. Kim, K.S. Cho, C. Huh, IEEE J. Sel. Top. Quantum. Electron. 12, 1545 (2006)

    Article  Google Scholar 

  13. M.V. Wolkin, J. Jorne, P.M. Fauchet, G. Allan, C. Delerue, Phys. Rev. Lett. 82, 197 (1999)

    Article  Google Scholar 

  14. N.M. Park, C.J. Choi, T.Y. Seong, S.J. Park, Phys. Rev. Lett. 86, 1355 (2001)

    Article  Google Scholar 

  15. L. Dal Negro, J.H. Yi, V. Nguyen, Y. Yi, J. Michel, L.C. Kimerling, Appl. Phys. Lett. 86, 261905 (2005)

    Article  Google Scholar 

  16. T.Y. Kim, N.M. Park, K.H. Kim, G.Y. Sunga, Y.W. Ok, T.Y. Seong, C.J. Choi, Appl. Phys. Lett. 85, 5355 (2004)

    Article  Google Scholar 

  17. T.V. Torchynska, J.L. Casas Espinola, E. Vergara Hernandez, L. Khomenkova, F. Delachat, A. Slaoui, Thin Solid Films 581, 65 (2015)

    Article  Google Scholar 

  18. T.V. Torchynska, J.L. Casas Espinola, L. Khomenkova, E. Vergara Hernandez, J.A. Andraca Adame, A. Slaoui, Mater. Sci. Semicond. Process. 37, 46–50 (2015)

    Article  Google Scholar 

  19. M. Wang, D. Li, Zh Yuan, D. Yang, D. Que, Appl. Phys. Lett. 90, 131903 (2007)

    Article  Google Scholar 

  20. J. Kistner, X. Chen, Y. Weng, H.P. Strunk, M.B. Schubert, J.H. Werner, J. Appl. Phys. 110, 023520 (2011)

    Article  Google Scholar 

  21. M. Molinari, H. Rinnert, M. Vergnat, J. Appl. Phys. 101, 123532 (2007)

    Article  Google Scholar 

  22. A. Rodriguez-Gómez, A. García-Valenzuela, E. Haro-Poniatowski, J.C. Alonso-Huitrón, J. Appl. Phys. 113, 233102 (2013)

    Article  Google Scholar 

  23. T.V. Torchynska, Y. Goldstein, A. Many, J. Jedrzejewskii, A.V. Kolobov, Microelectron. Eng. 66, 83–90 (2003)

    Article  Google Scholar 

  24. L. Khomenkova, F. Gourbilleau, J. Cardin, O. Jambois, B. Garrido, R. Rizk, J. Lumin. 129, 1519 (2009)

    Article  Google Scholar 

  25. S.V. Deshpande, E. Gulari, S.W. Brown, S.C. Rand, J. Appl. Phys. 77, 6534–6541 (1995)

    Article  Google Scholar 

  26. C.M. Mo, L.D. Zhang, C.Y. Xie, T. Wang, J. Appl. Phys. 73, 5185 (1993)

    Article  Google Scholar 

  27. W.I. Warren, P.M. Lenahan, S.E. Curry, Phys. Rev. Lett. 65, 207 (1990)

    Article  Google Scholar 

  28. B. Sain, D. Das, Phys. Chem. Chem. Phys. 15, 3881 (2013)

    Article  Google Scholar 

  29. H.L. Hsiao, A.B. Yang, H.L. Hwang, J. Phys. Chem. Sol. 69, 278 (2008)

    Article  Google Scholar 

  30. V. Alex, S. Finkbeiner, J. Weber, J. Appl. Phys. 79, 6943 (1996)

    Article  Google Scholar 

  31. C.H. Cho, B.H. Kim, T.W. Kim, S.J. Park, N.M. Park, G.Y. Sung, Appl. Phys. Lett. 86, 143107 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Secretary of Investigation and Postgraduate Study of National Polytechnic Institute (SIP-IPN) of Mexico (Project 20160285), National Council of Science and Technology (CONACYT) of Mexico (Project 258224), the National Academy of Sciences of Ukraine and Center of National Scientific Research (CNRS) of France for the financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Torchynska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torchynska, T.V., Casas Espinola, J.L., Jaramillo Gomez, J.A. et al. Light emitting mechanisms dependent on stoichiometry of Si-rich-SiNx films grown by PECVD. J Mater Sci: Mater Electron 28, 6977–6981 (2017). https://doi.org/10.1007/s10854-016-5864-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s10854-016-5864-8

Keywords