Skip to main content

Effects of Climate Change on Bacterial and Viral Pathogens

  • Chapter
  • First Online:
Plant Quarantine Challenges under Climate Change Anxiety

Abstract

Changes in the hydrosphere, biosphere, and other climatic variables result in climate fluctuations. These are mainly attributed to human factors arising from economic, demographic, technological, and social advancements. Climate significantly affects the geographical distribution of plant diseases. For the survival of natural ecosystems and the security of the world’s food supply, it is essential to understand how climate change could influence infectious viral and bacterial epidemics in both cultivated plants and wild vegetation. This chapter focuses on the urgent threat posed by viral and bacterial plant pathogens to the global food resource and diverse natural vegetation, particularly in the perspective of escalating climate change. The insufficient attention given to this issue in previous research on environmental change and plant disease underscores its urgency. The study begins by providing historical context for current predictions of changing climate and the increasing global impact of viral and bacterial infections. It outlines the essential components of their pathosystems and how environmental factors typically affect them. The research aims to evaluate the potential effects of direct and indirect climate-related factors on a wide variety of viral and bacterial pathosystems, which include various vectors, hosts, and pathogens. To achieve this objective, the study develops comprehensive climatic and biological frameworks. This strategy has effectively identified relevant international research information and highlighted areas where further study is needed. Climate change is likely to affect key aspects of viral and bacterial epidemics in various ways, often exacerbating outbreaks but sometimes having a mitigation impact depending on the pathosystem and other factors. To protect biodiversity and ensure global food security, significant scientific effort is required to address the growing challenges of managing dangerous plant viral and bacterial outbreaks expected due to future climate instability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from €37.37 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
EUR 29.95
Price includes VAT (Norway)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 196.87
Price includes VAT (Norway)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 229.99
Price excludes VAT (Norway)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR 229.99
Price excludes VAT (Norway)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdullahi, I., & Lawrence, T. (2022). Accelerated in vitro thermotherapy and indexing against apple chlorotic leaf spot virus in Shiro plum. Canadian Journal of Plant Science, 44, 136–146.

    CAS  Google Scholar 

  • Agrios, G. N. (2005). Induced biochemical defenses in the hypersensitive response resistance. In Plant pathology (5th ed., pp. 233–243). Elsevier Academic Press.

    Google Scholar 

  • Aguilar, E., Allende, L., Del Toro, F. J., et al. (2015). Effects of elevated CO2 and temperature on pathogenicity determinants and virulence of Potato virus X/Potyvirus-associated synergism. Molecular Plant-Microbe Interactions, 28(12), 1364–1373.

    Google Scholar 

  • Ahanger, R. A., Bhat, H. A., Bhat, T. A., et al. (2013). Impact of climate change on plant diseases. International Journal of Modern Plant and Animal Sciences, 1, 105–115.

    Google Scholar 

  • Altizer, S., Ostfeld, R. S., Johnson, P. T., et al. (2013). Climate change and infectious diseases: From evidence to a predictive framework. Science, 341, 514–519.

    Article  CAS  PubMed  Google Scholar 

  • Andersen, A. S., Hauggaard-Nielsen, H., Christensen, T. B., et al. (2023). Interdisciplinary perspectives on socioecological challenges. Routledge.

    Book  Google Scholar 

  • Anderson, P. K., Cunningham, A. A., Patel, N. G., et al. (2004). Emerging infectious diseases of plants: Pathogen pollution, climate change and agrotechnology drivers. Trends in Ecology & Evolution, 19, 535–544.

    Article  Google Scholar 

  • Anyamba, A., Small, J. L., Britch, S. C., et al. (2014). Recent weather extremes and impacts on agricultural production and vector-borne disease outbreak patterns. PLoS One, 21, 92538.

    Article  Google Scholar 

  • Ashfaq, M., Khan, M. A., & Javed, N. (2008). Characterization of environmental factors conducive for Urdbean leaf crinkle (ULCV) disease development. Pakistan Journal of Botany, 40, 2645–2653.

    Google Scholar 

  • Balint-Kurti, P. (2019). The plant hypersensitive response: Concepts, control and consequences. Molecular Plant Pathology, 20, 1163–1178.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bancroft, J. B., & Pound, G. S. (1956). Cumulative concentrations of tobacco mosaic virus in tobacco and tomato at different temperatures. Virology, 2, 29–43.

    Article  CAS  PubMed  Google Scholar 

  • Barbetti, M. J., Banga, S. S., & Salisbury, P. A. (2012). Challenges for crop production and management from pathogen biodiversity and diseases under current and future climate scenarios–case study with oilseed Brassicas. Field Crops Research, 127, 225–240.

    Article  Google Scholar 

  • Barboza, N., Hernández, E., Inoue-Nagata, A. K., et al. (2019). Achievements in the epidemiology of begomoviruses and their vector Bemisia tabaci in Costa Rica. Revista de Biología Tropical, 67, 419–453.

    Google Scholar 

  • Barker, I., Gamarra, H., Fuentes, S., et al. (2007). Risk of spread and vector relations of Potato yellow vein virus in the Andes. In Proceedings of 10th International Plant Virus Epidemiology Symposium (p. 50). ICRISAT.

    Google Scholar 

  • Barouki, R., Kogevinas, M., Audouze, K., et al. (2021). The COVID-19 pandemic and global environmental change: Emerging research needs. Environment International, 146, 106272.

    Article  CAS  PubMed  Google Scholar 

  • Bartholomew, H. P. (2020). In planta studies of the corn pathogen Pantoea stewartii subsp. stewartii and applications of a corn-based industrial byproduct [Dissertation, Virginia Polytechnic Institute and State University].

    Google Scholar 

  • Bastas, K. K. (2022). Impact of climate change on food security and plant disease. In Kumar (Ed.), Microbial biocontrol: Food security and post harvest management (pp. 1–22). Springer.

    Google Scholar 

  • Bernal, X. E., & Page, R. A. (2023). Tactics of evasion: Strategies used by signallers to deter eavesdropping enemies from exploiting communication systems. Biological Reviews, 98, 222–242.

    Article  PubMed  Google Scholar 

  • Bettoni, J. C., Fazio, G., Carvalho Costa, L., et al. (2022). Thermotherapy followed by shoot tip cryotherapy eradicates latent viruses and apple hammerhead viroid from in vitro apple rootstocks. Plants, 11, 582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boland, G. J., Melzer, M. S., Hopkin, A., et al. (2004). Climate change and plant diseases in Ontario. Canadian Journal of Plant Pathology, 26, 335–350.

    Article  Google Scholar 

  • Bragard, C., Caciagli, P., Lemaire, O., et al. (2013). Status and prospects of plant virus control through interference with vector transmission. Annual Review of Phytopathology, 51, 177–201.

    Article  CAS  PubMed  Google Scholar 

  • Burdon, J. J., Thrall, P. H., & Ericson, A. L. (2006). The current and future dynamics of disease in plant communities. Annual Review of Phytopathology, 44, 19–39.

    Article  CAS  PubMed  Google Scholar 

  • Butterworth, M. H., Semenov, M. A., Barnes, A., et al. (2010). North–South divide: Contrasting impacts of climate change on crop yields in Scotland and England. Journal of the Royal Society Interface, 7, 123–130.

    Article  PubMed  Google Scholar 

  • Büttner, C., Landgraf, M., Colino, H. L., et al. (2023). Forest microbiology. Academic Press.

    Google Scholar 

  • Canto, T., & Palukaitis, P. (2002). Novel N gene-associated, temperature-independent resistance to the movement of tobacco mosaic virus vectors neutralized by a cucumber mosaic virus RNA1 transgene. Journal of Virology, 76, 12908–12916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caradus, J. R., Goldson, S. L., Moot, D. J., et al. (2023). Pastoral agriculture, a significant driver of New Zealand’s economy, based on an introduced grassland ecology and technological advances. Journal of Royal Society of New Zealand, 53, 259–303.

    Article  Google Scholar 

  • Cárceles Rodríguez, B., Durán Zuazo, V. H., Franco Tarifa, D., et al. (2023). Irrigation alternatives for avocado (Persea americana Mill.) in the Mediterranean Subtropical region in the context of climate change: A review. Agriculture, 13, 1049.

    Article  Google Scholar 

  • Catto, M. A., Mugerwa, H., Myers, B. K., et al. (2022). A review on transcriptional responses of interactions between insect vectors and plant viruses. Cell, 11, 693.

    Article  CAS  Google Scholar 

  • Chakrabarti, D. K., & Mittal, P. (2023). Plant disease forecasting systems: Procedure, application and prospect. Springer Nature.

    Book  Google Scholar 

  • Chakraborty, S. (2013). Migrate or evolve: Options for plant pathogens under climate change. Global Change Biology, 19, 1985–2000.

    Article  PubMed  Google Scholar 

  • Chakraborty, S., & Newton, A. C. (2011). Climate change, plant diseases and food security: An overview. Plant Pathology, 60, 2–14.

    Article  Google Scholar 

  • CHANGE, O. C. (2007). Intergovernmental panel on climate change (p. 104). World Meteorological Organization.

    Google Scholar 

  • Chapman, S., Bacon, J., Birch, C. E., et al. (2023). Change impacts on extreme rainfall in Eastern Africa in a convection-permitting climate model. Journal of Climate, 36, 93–109.

    Article  Google Scholar 

  • Chu, D., Tao, Y. L., Zhang, Y. J., et al. (2012). Effects of host, temperature and relative humidity on competitive displacement of two invasive Bemisia tabaci biotypes [Q and B]. Insect Sciences, 19, 595–603.

    Article  Google Scholar 

  • Chung, B. N., San Choi, K., Ahn, J. J., et al. (2015). Effects of temperature on systemic infection and symptom expression of Turnip mosaic virus in Chinese cabbage (Brassica campestris). Plant Pathology Journal, 31, 363.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cline, W. R. (2007). Global warming and agriculture: Impact estimates by country. Peterson Institute.

    Google Scholar 

  • Combes, S. A., Gravish, N., & Gagliardi, S. F. (2023). Going against the flow: Bumblebees prefer to fly upwind and display more variable kinematics when flying downwind. The Journal of Experimental Biology, 226, 245374.

    Article  Google Scholar 

  • Congdon, B. S., & Australia, W. (2017). Understanding, forecasting and managing Pea seed-borne mosaic virus in field pea [Dissertation, University of Western Austrailia].

    Google Scholar 

  • Contreras-Angulo, L. A., Emus-Medina, A., et al. (2023). Stressed plants: An improved source for bioactive phenolics. In Lone (Ed.), Plant phenolics in abiotic stress management (pp. 195–214). Springer.

    Chapter  Google Scholar 

  • Cooper, I., & Jones, R. A. (2006). Wild plants and viruses: Under-investigated ecosystems. Advances in Virus Research, 67, 1–47.

    Article  PubMed  Google Scholar 

  • Cooper, P. J., Figueiredo, C. A., Rodriguez, A., et al. (2023). Understanding and controlling asthma in Latin America: A review of recent research informed by the SCAALA programme. Clinical and Translational Allergy, 13, e12232.

    Article  PubMed  PubMed Central  Google Scholar 

  • Corrales Cabra, E. M. (2020). Genomic characterization of the viruses that infect gulupa (Passiflora edulis f. edulis) crops in Antioquia to support seed certification programs [Dissertation, National University of Colombia].

    Google Scholar 

  • Coutts, B. A., & Jones, R. A. (2002). Temporal dynamics of spread of four viruses within mixed species perennial pastures. The Annals of Applied Biology, 140, 37–52.

    Article  Google Scholar 

  • Debrot, E. A. (1964). Studies on a strain of raspberry ringspot virus occurring in England. The Annals of Applied Biology, 54, 183–191.

    Article  Google Scholar 

  • Dedryver, C. A., Le Ralec, A., & Fabre, F. (2010). The conflicting relationships between aphids and men: A review of aphid damage and control strategies. Comptes Rendus Biologies, 333, 539–553.

    Article  PubMed  Google Scholar 

  • Dell’Olmo, E., Tiberini, A., & Sigillo, L. (2023). Leguminous seedborne pathogens: Seed health and sustainable crop management. Plants, 12, 2040.

    Article  PubMed  PubMed Central  Google Scholar 

  • Drebenstedt, I., Marhan, S., Poll, C., et al. (2023). Annual cumulative ambient precipitation determines the effects of climate change on biomass and yield of three important field crops. Field Crops Research, 290, 108766.

    Article  Google Scholar 

  • Duchenne-Moutien, R. A., & Neetoo, H. (2021). Climate change and emerging food safety issues: A review. Journal of Food Protection, 84, 1884–1897.

    Article  CAS  PubMed  Google Scholar 

  • Dutta, T. K., & Phani, V. (2023). The pervasive impact of global climate change on plant-nematode interaction continuum. Frontiers in Plant Science, 14, 1143889.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ejaz, M. R., Jaoua, S., Ahmadi, M., & Shabani, F. (2023). An examination of how climate change could affect the future spread of Fusarium spp. around the world, using correlative models to model the changes. Environmental Technology and Innovation, 31, 103177.

    Article  Google Scholar 

  • Elad, Y., & Pertot, I. (2014). Climate change impacts on plant pathogens and plant diseases. Journal of Crop Improvement, 28, 99–139.

    Article  CAS  Google Scholar 

  • El-Beltagi, H. S., Basit, A., Mohamed, H. I., et al. (2022). Mulching as a sustainable water and soil saving practice in agriculture: A review. Agronomy, 12, 1881.

    Article  CAS  Google Scholar 

  • Erayya, Sarkhel, S., Managanvi, K., et al. (2023). Emerging diseases of vegetables due to changing climate. In Solankey (Ed.), Advances in research on vegetable production under a changing climate (Vol. 2, pp. 323–340). Springer.

    Chapter  Google Scholar 

  • Fargette, D., Konate, G., Fauquet, C., et al. (2006). Molecular ecology and emergence of tropical plant viruses. Annual Review of Phytopathology, 44, 235–260.

    Article  CAS  PubMed  Google Scholar 

  • Fatnassi, H., Pizzol, J., Senoussi, R., et al. (2015). Within-crop air temperature and humidity outcomes on spatio-temporal distribution of the key rose pest Frankliniella occidentalis. PloS One, 10, e0126655.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fermin, G., Verchot, J., Azizi, A., et al. (2015). Virus diseases of tropical and subtropical crops. CABI.

    Google Scholar 

  • Ferraz Tavares, M. P. D. M. A., & Oliveira, G. M. T. D. S. (2023). Climate change and transmissible diseases. In Climate change and health hazards: addressing hazards to human and environmental health from a changing climate (pp. 99–113). Springer Nature Switzerland.

    Google Scholar 

  • Ferreira, C., Doursout, M. F., & Balingit, J. S. (2023). 2000 years of pandemics: Past, present, and future. Springer.

    Book  Google Scholar 

  • Ford, R. E., & Ross, A. F. (1962). Effect of temperature on the interaction of potato viruses X and Y in inoculated tobacco leaves. Phytopathology, 52, 71–77.

    Google Scholar 

  • Fu, X., Ye, L., Kang, L., et al. (2010). Elevated CO2 shifts the focus of tobacco plant defences from cucumber mosaic virus to the green peach aphid. Plant, Cell & Environment, 33, 2056–2064.

    Article  CAS  Google Scholar 

  • Fuhrer, J. (2003). Agroecosystem responses to combinations of elevated CO2, ozone, and global climate change. Agriculture, Ecosystems and Environment, 97, 1–20.

    Article  CAS  Google Scholar 

  • Gallinat, A. S., Primack, R. B., & Wagner, D. L. (2015). Autumn, the neglected season in climate change research. Trends in Ecology & Evolution, 30, 169–176.

    Article  Google Scholar 

  • Garbelotto, M. (2008). Molecular analysis to study invasions by forest pathogens: Examples from Mediterranean ecosystems. Phytopathologia Mediterranea, 47, 183–203.

    CAS  Google Scholar 

  • Garbelotto, M., Linzer, R., et al. (2010). Comparing the influences of ecological and evolutionary factors on the successful invasion of a fungal forest pathogen. Biological Invasions, 12, 943–957.

    Article  Google Scholar 

  • Garrett, K. A., Dendy, S. P., Frank, E. E., et al. (2006). Climate change effects on plant disease: Genomes to ecosystems. Annual Review of Phytopathology, 44, 489–509.

    Article  CAS  PubMed  Google Scholar 

  • Gasparini, K., Brito, F. A., Peres, L. E., et al. (2023). The complex interaction between elevated CO2 and hormones on the control of plant growth. In Ahammed (Ed.), Plant hormones and climate change (pp. 17–53). Springer.

    Chapter  Google Scholar 

  • Gilbert, G. S., & Parker, I. M. (2023). How to be an oomycete. The evolutionary ecology of plant disease (Vol. 16, pp. 45–50). Oxford University Press.

    Google Scholar 

  • Grubaugh, N. D., Ladner, J. T., Lemey, P., et al. (2019). Tracking virus outbreaks in the twenty-first century. Nature Microbiology, 4, 10–19.

    Article  CAS  PubMed  Google Scholar 

  • Hajek, A. E., & Eilenberg, J. (2018). Natural enemies: An introduction to biological control. Cambridge University Press.

    Book  Google Scholar 

  • Hamilton, R. I., & Nichols, C. (1977). The influence of bromegrass mosaic virus on the replication of tobacco mosaic virus in Hordeum vulgare. Phytopathology, 67, 484–489.

    Google Scholar 

  • Hanada, K., & Harrison, B. D. (1997). Effects of virus genotype and temperature on seed transmission of nepoviruses. The Annals of Applied Biology, 85, 79–92.

    Article  Google Scholar 

  • Harrington, R., Clark, S. J., Welham, S. J., et al. (2007). Environmental change and the phenology of European aphids. Global Change Biology, 13, 1550–1564.

    Article  Google Scholar 

  • Harvey, J. A., Tougeron, K., Gols, R., et al. (2023). Scientists’ warning on climate change and insects. Ecological Monographs, 93, e1553.

    Article  Google Scholar 

  • He, H. F., Zhao, C. C., Zhu, C. Q., et al. (2023). Discovery of novel whitefly vector proteins that interact with a virus capsid component mediating virion retention and transmission. International Journal of Biological Macromolecules, 226, 1154–1165.

    Article  CAS  PubMed  Google Scholar 

  • Hill, C. B., Li, Y., & Hartman, G. L. (2006). A single dominant gene for resistance to the soybean aphid in the soybean cultivar Dowling. Crop Science, 46, 1601–1605.

    Article  Google Scholar 

  • Hulle, M., d’Acier, A. C., Bankhead-Dronnet, S., et al. (2010). Aphids in the face of global changes. Comptes Rendus Biologies, 333, 497–503.

    Article  PubMed  Google Scholar 

  • Jeger, M. J. (2020). The epidemiology of plant virus disease: Towards a new synthesis. Plants, 14, 1768.

    Article  Google Scholar 

  • Jeger, M. J., Hamelin, F., & Cunniffe, N. J. (2023). Emerging themes and approaches in plant virus epidemiology. Phytopathology, 113(9), 1630–1646.

    Google Scholar 

  • Joern, A., & Mole, S. (2005). The plant stress hypothesis and variable responses by blue grama grass (Bouteloua gracilis) to water, mineral nitrogen, and insect herbivory. Journal of Chemical Ecology, 31, 2069–2090.

    Article  CAS  PubMed  Google Scholar 

  • Jones, R. A. (2004). Using epidemiological information to develop effective integrated virus disease management strategies. Virus Research, 100(1), 5–30.

    Google Scholar 

  • Jones, R. A. (2006). Control of plant virus diseases. Advances in Virus Research, 67, 205–244.

    Article  PubMed  Google Scholar 

  • Jones, R. A. (2009). Plant virus emergence and evolution: Origins, new encounter scenarios, factors driving emergence, effects of changing world conditions, and prospects for control. Virus Research, 141, 113–130.

    Article  CAS  PubMed  Google Scholar 

  • Jones, R. A. (2013). Virus diseases of perennial pasture legumes in Australia: Incidences, losses, epidemiology, and management. Crop & Pasture Science, 64, 199–215.

    Article  Google Scholar 

  • Jones, R. A. (2014). Virus disease problems facing potato industries worldwide: Viruses found, climate change implications, rationalizing virus strain nomenclature, and addressing the Potato virus Y issue. In Navarre (Ed.), The potato: Botany, production and uses (pp. 202–224). CABI.

    Chapter  Google Scholar 

  • Jones, R. A. (2016). Future scenarios for plant virus pathogens as climate change progresses. Advances in Virus Research, 95, 87–147.

    Article  CAS  PubMed  Google Scholar 

  • Jones, R. A. (2018). Plant and insect viruses in managed and natural environments: Novel and neglected transmission pathways. Advances in Virus Research, 101, 149–187.

    Article  PubMed  Google Scholar 

  • Jones, R. A. (2020). Disease pandemics and major epidemics arising from new encounters between indigenous viruses and introduced crops. Viruses, 12, 1388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones, R. A. (2021). Global plant virus disease pandemics and epidemics. Plants, 10, 233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones, R. A., & Barbetti, M. J. (2012). Influence of climate change on plant disease infections and epidemics caused by viruses and bacteria. CABI Review, 18, 1–33.

    Article  Google Scholar 

  • Jones, R. A., & Naidu, R. A. (2019). Global dimensions of plant virus diseases: Current status and future perspectives. Annual Review of Virology, 6, 387–409.

    Article  CAS  PubMed  Google Scholar 

  • Jones, R. A., Salam, M. U., & Maling, T. J. (2010). Principles of predicting plant virus disease epidemics. Annual Review of Phytopathology, 48, 179–203.

    Article  CAS  PubMed  Google Scholar 

  • Kashyap, R., Grover, S., Puri, H., et al. (2023). Insect and pest management for sustaining crop production under changing climatic patterns of drylands. In Naorem (Ed.), Enhancing resilience of dryland agriculture under changing climate (pp. 441–457). Springer.

    Chapter  Google Scholar 

  • Kassanis, B. (1952). Some effects of high temperature on the susceptibility of plants to infection with viruses. The Annals of Applied Biology, 39, 358–369.

    Article  Google Scholar 

  • Kaur, B., Singh, J., Sandhu, K. S., et al. (2023). Potential effects of future climate changes in pest scenario (pp. 459–473). Springer Nature Singapore.

    Google Scholar 

  • Kazan, K. (2018). Plant-biotic interactions under elevated CO2: A molecular perspective. Envionmental and Experimental Botany, 153, 249–261.

    Article  CAS  Google Scholar 

  • Khan, S. A., Kumar, S., Hussain, M. Z., & Kalra, N. (2009). Climate change, climate variability and Indian agriculture: Impacts vulnerability and adaptation strategies. In Singh (Ed.), Climate change and crops. Environmental science and engineering (pp. 19–38). Springer.

    Chapter  Google Scholar 

  • Khanal, N., Vitek, C., & Kariyat, R. (2023). The known and unknowns of Aphid biotypes, and their role in mediating host plant defenses. Diversity, 15, 186.

    Article  CAS  Google Scholar 

  • Kövics, G. J., Irinyi, L., & Rai, M. (2022). Overview of Phoma-Like fungi on important legumes (Papilionaceous Plants). In Rai (Ed.), Phoma: Diversity, taxonomy, bioactivities, and nanotechnology (pp. 65–89). Springer.

    Chapter  Google Scholar 

  • Krishna, G. V. (2023). Impact of climate change on plant viral diseases. In Naorem (Ed.), Enhancing resilience of dryland agriculture under changing climate (pp. 475–486). Springer.

    Chapter  Google Scholar 

  • Krokene, P., Børja, I., Carneros, E., et al. (2023). Effects of combined drought and pathogen stress on growth, resistance, and gene expression in young Norway spruce trees. Tree Physiology, 12, 62.

    Google Scholar 

  • Kudela, V. (2009). Potential impact of climate change on geographic distribution of plant pathogenic bacteria in Central Europe. Plant Protection Science, 45, 27–32.

    Article  Google Scholar 

  • Kumar, S., Bhowmick, M. K., & Ray, P. (2021). Weeds as alternate and alternative hosts of crop pests. Indian Journal of Weed Science, 53, 14–29.

    Article  Google Scholar 

  • La Porta, N., Hietala, A. M., & Baldi, P. (2023). Bacterial diseases in forest trees (pp. 139–166). Academic Press.

    Google Scholar 

  • Lamichhane, J. R., Barzman, M., Booij, K., et al. (2015). Robust cropping systems to tackle pests under climate change. A review. Agronomy for Sustainable Development, 35, 443–459.

    Article  Google Scholar 

  • Latake, P. T., Pawar, P., & Ranveer, A. C. (2015). The greenhouse effect and its impacts on environment. International Journal of Innovative Research and Creative Technology, 1, 333–337.

    Google Scholar 

  • LaTora, A. G., Lai, P. C., Chen, Y. J., et al. (2022). Frankliniella fusca (Thysanoptera: Thripidae), the vector of tomato spotted wilt orthotospovirus infecting peanut in the Southeastern United States. Journal of Integrated Pest Management, 13, 3.

    Article  Google Scholar 

  • Lefèvre, T., Sauvion, N., Almeida, R. P., et al. (2022). The ecological significance of arthropod vectors of plant, animal, and human pathogens. Trends in Parasitology, 7.

    Google Scholar 

  • Legg, J. P., Jeremiah, S. C., Obiero, H. M., et al. (2011). Comparing the regional epidemiology of the cassava mosaic and cassava brown streak virus pandemics in Africa. Virus Research, 159, 161–170.

    Article  CAS  PubMed  Google Scholar 

  • Lindahl, J. F., & Grace, D. (2015). The consequences of human actions on risks for infectious diseases: A review. Infection Ecology & Epidemiology, 5, 30048.

    Article  Google Scholar 

  • Lindow, S. (2023). History of discovery and environmental role of ice nucleating bacteria. Phytopathology, 113, 605–615.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Wang, Z. U., & Zhou, H. C. (2012). Recent advances in carbon dioxide capture with metal-organic frameworks. Greenhouse gases: Science and technology, 2, 239–259.

    Article  CAS  Google Scholar 

  • Luck, J., Spackman, M., Freeman, A., et al. (2011). Climate change and diseases of food crops. Plant Pathology, 60, 113–121.

    Article  Google Scholar 

  • Mahato, A. (2014). Climate change and its impact on agriculture. International Journal of Scientific and Research Publications, 4, 1–6.

    Google Scholar 

  • Makkouk, K. M., Kumari, S. G., van Leur, J. A., et al. (2014). Control of plant virus diseases in cool-season grain legume crops. Advances in Virus Research, 90, 207–253.

    Article  PubMed  Google Scholar 

  • Malavika, M., Prakash, V., & Chakraborty, S. (2023). Recovery from virus infection: Plant’s armory in action. Planta, 257, 103.

    Article  CAS  PubMed  Google Scholar 

  • Maliano, M. R., Rojas, M. R., Macedo, M. A., et al. (2022). The invasion biology of tomato begomoviruses in Costa Rica reveals neutral synergism that may lead to increased disease pressure and economic loss. Virus Research, 317, 198793.

    Article  CAS  PubMed  Google Scholar 

  • Malla, F. A., Mushtaq, A., Bandh, S. A., et al. (2022). Understanding climate change: Scientific opinion and public perspective. In Bandh (Ed.), Climate change (pp. 1–20). Springer.

    Google Scholar 

  • Malmström, C. M., & Field, C. B. (1977). Virus-induced differences in the response of oat plants to elevated carbon dioxide. Plant, Cell & Environment, 20, 178–188.

    Article  Google Scholar 

  • Manzoor, S., Summuna, B., Bhat, F. A., et al. (2022). Plant virus-ecology and epidemiology. The Pharma Innovation Journal, 11, 1328–1336.

    Google Scholar 

  • Mapuranga, J., Zhang, N., Zhang, L., et al. (2022). Harnessing genetic resistance to rusts in wheat and integrated rust management methods to develop more durable resistant cultivars. Frontiers Plant Science, 13, 951095.

    Article  Google Scholar 

  • Matiyas, D. (2019). Review on: The role of improving soil carbon sequestration to mitigate global climatic change and optimize biogeochemical cycle of carbon. WORLD, 9(7).

    Google Scholar 

  • Matthews, R. (1970). Plant virology. Academic Press.

    Google Scholar 

  • McErlich, C., McDonald, A. J., Renwick, J. A., et al. (2023). An assessment of extra-tropical cyclone precipitation extremes over the Southern Hemisphere using ERA5. Geophysical Researcg Letters, 50, 1–10.

    Google Scholar 

  • McKirdy, S. J., Jones, R. A., & Nutter, F. W., Jr. (2002). Quantification of yield losses caused by barley yellow dwarf virus in wheat and oats. Plant Disease, 86, 769–773.

    Article  CAS  PubMed  Google Scholar 

  • Misselhorn, A., Aggarwal, P., Ericksen, P., et al. (2012). A vision for attaining food security. Current Opinion in Environment Sustainability, 4, 7–17.

    Article  Google Scholar 

  • Mitchell, P. L., Zeilinger, A. R., & Medrano, E. G. (2018). Pentatomoids as vectors of plant pathogens (pp. 611–640). CRC Press.

    Google Scholar 

  • Mohammed, A. N. (2023). Potential influence of climate change on the occurrence and distribution of vector-borne diseases among animal populations. Egyptian Journal of Veterinary Sciences, 54, 395–402.

    Article  Google Scholar 

  • Molotoks, A., Smith, P., & Dawson, T. P. (2021). Impacts of land use, population, and climate change on global food security. Food and Energy Security, 10, e261.

    Article  Google Scholar 

  • Morales, F. J. (2006). History and current distribution of begomoviruses in Latin America. Advances in Virus Research, 67, 127–162.

    Article  PubMed  Google Scholar 

  • Morales, F. J., & Jones, P. G. (2004). The ecology and epidemiology of whitefly-transmitted viruses in Latin America. Virus Research, 100, 57–65.

    Article  CAS  PubMed  Google Scholar 

  • Myers, J., Davis, J., II, Lollo, M., et al. (2023). More’s the same—multiple hosts do not select for broader host range phages. Viruses, 15(2), 518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nadeem, M., Khalid, R., Kanwal, S., et al. (2023). Soil microbes and climate-smart agriculture (pp. 107–147). Springer.

    Google Scholar 

  • Nakato, G. V., Okonya, J. S., Kantungeko, D., et al. (2023). Influence of altitude as a proxy for temperature on key Musa pests and diseases in watershed areas of Burundi and Rwanda. Heliyon, 18, 1384.

    Google Scholar 

  • Nancarrow, N., Constable, F. E., Finlay, K. J., et al. (2014). The effect of elevated temperature on Barley yellow dwarf virus-PAV in wheat. Virus Research, 186, 97–103.

    Article  CAS  PubMed  Google Scholar 

  • Neilson, R., & Boag, B. (1996). The predicted impact of possible climatic change on virus-vector nematodes in Great Britain. European Journal of Plant Pathology, 102, 193–199.

    Article  Google Scholar 

  • Norse, D. (2023). Climate change and agriculture: Physical and human dimensions. FAO Rome and Earthscan.

    Google Scholar 

  • Nyalugwe, E. P., Barbetti, M. J., & Jones, R. A. (2014). Preliminary studies on resistance phenotypes to Turnip mosaic virus in Brassica napus and B. carinata from different continents and effects of temperature on their expression. European Journal of Plant Pathology, 139, 687–706.

    Article  Google Scholar 

  • Ogero, K., Okuku, H. S., Wanjala, B., et al. (2023). Degeneration of cleaned-up, virus-tested sweetpotato seed vines in Tanzania. Crop Protection, 169, 106261.

    Article  CAS  Google Scholar 

  • Olczak, M., Piebalgs, A., & Balcombe, P. (2023). A global review of methane policies reveals that only 13% of emissions are covered with unclear effectiveness. One Earth, 6, 519–535.

    Article  Google Scholar 

  • Oliveira, G. D., & Schneider, M. (2016). The politics of flexing soybeans: China, Brazil and global agroindustrial restructuring. Journal of Peasant Studies, 43, 167–194.

    Article  Google Scholar 

  • Oliver, T. H., & Morecroft, M. D. (2014). Interactions between climate change and land use change on biodiversity: Attribution problems, risks, and opportunities. Wiley Interdisciplinary Reviews: Climate Change, 5, 317–335.

    Google Scholar 

  • Ortiz, R., Sayre, K. D., Govaerts, B., et al. (2008). Climate change: Can wheat beat the heat? Agriculture, Ecosystems and Environment, 126, 46–58.

    Article  Google Scholar 

  • Pappu, H. R., Jones, R. A., & Jain, R. K. (2009). Global status of tospovirus epidemics in diverse cropping systems: Successes achieved and challenges ahead. Virus Research, 141, 219–236.

    Article  CAS  PubMed  Google Scholar 

  • Parija, S. C. (2023). Introduction to viruses (pp. 687–713). Springer.

    Google Scholar 

  • Parker, T. A., Gallegos, J. A., Beaver, J., et al. (2022). Genetic resources and breeding priorities in Phaseolus beans: Vulnerability, resilience, and future challenges. Plant Breeding Reviews, 46, 289–420.

    Article  Google Scholar 

  • Parvez, M. K., & Parveen, S. (2017). Evolution and emergence of pathogenic viruses: Past, present, and future. Intervirology, 60, 1–7.

    Article  PubMed  Google Scholar 

  • Patel, R., Mukherjee, S., Gosh, S., et al. (2023). Climate risk management in dryland agriculture: Technological management and institutional options to adaptation (pp. 55–73). Springer.

    Google Scholar 

  • Perkins, L. B., Leger, E. A., & Nowak, R. S. (2011). Invasion triangle: An organizational framework for species invasion. Ecology and Evolution, 1, 610–625.

    Article  PubMed  PubMed Central  Google Scholar 

  • Perombelon, M. C., & Kelman, A. (1980). Ecology of the soft rot erwinias. Annual Review of Phytopathology, 18, 361–387.

    Article  Google Scholar 

  • Perrone, G., Ferrara, M., Medina, A., et al. (2020). Toxigenic fungi and mycotoxins in a climate change scenario: Ecology, genomics, distribution, prediction and prevention of the risk. Microorganisms, 8, 1496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrov, N. M., Stoyanova, M. I., & Gaur, R. K. (2023). Biodiversity and characterization of economically important viruses on potato cultivars (pp. 245–270). Academic Press.

    Google Scholar 

  • Picciotti, U., Araujo Dalbon, V., Ciancio, A., et al. (2023). “Ectomosphere”: Insects and microorganism interactions. Microorganisms, 11, 440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pradhan, A. K., Mishra, A., & Pang, H. (2018). Relevant pathogenic and spoilage microorganisms in vegetable products. In Pérez-Rodríguez (Ed.), Quantitative methods for food safety and quality in the vegetable industry (Food microbiology and food safety) (pp. 29–58). Springer.

    Chapter  Google Scholar 

  • Praveen, B., & Sharma, P. (2019). A review of literature on climate change and its impacts on agriculture productivity. Journal of Public Affairs, 19, e1960.

    Article  Google Scholar 

  • Raja, I., & Tennyson, J. (2023). Small RNA–regulator of biotic stress and pathogenesis in food crops (pp. 233–269). Academic Press.

    Book  Google Scholar 

  • Régnière, J. (2018). Invasive species, climate change and forest health. In Schlichter (Ed.), Forests in development: A vital balance (pp. 27–37). Springer.

    Google Scholar 

  • Rehman, H. U., & Atiq, R. A. (2022). Disease predictive model based on epidemiological factors for the management of bacterial leaf blight of rice. Brazilian Journal of Biology, 84, 259.

    Google Scholar 

  • Reid, W., & O’Brochta, D. A. (2016). Applications of genome editing in insects. Current Opinion in Insect Science, 13, 43–54.

    Article  PubMed  Google Scholar 

  • Reinhold, L. A., & Pscheidt, J. W. (2023). Diagnostic and historical surveys of sweet cherry (Prunus avium) virus and virus-like diseases in Oregon. Plant Disease, 107, 633–643.

    Article  CAS  PubMed  Google Scholar 

  • Reynaud, B., Delatte, H., Peterschmitt, M., et al. (2009). Effects of temperature increase on the epidemiology of three major vector-borne viruses. European Journal of Plant Pathology, 123, 269–280.

    Article  Google Scholar 

  • Reynolds, T. W., Waddington, S. R., Anderson, C. L., et al. (2015). Environmental impacts and constraints associated with the production of major food crops in Sub-Saharan Africa and South Asia. Food Security, 7, 795–822.

    Article  Google Scholar 

  • Roudine, S., Le Lann, C., Bouvaine, S., et al. (2023). Can biological control be a strategy to control vector-borne plant viruses? Journal of Pest Science, 96, 451–470.

    Article  Google Scholar 

  • Saki, N., Ghaffari, M., & Nikoo, M. (2023). Effect of active ice nucleation bacteria on freezing and the properties of surimi during frozen storage. LWT, 176, 114548.

    Article  CAS  Google Scholar 

  • Salam, M. U., Davidson, J. A., Thomas, G. J., et al. (2011). Advances in winter pulse pathology research in Australia. Australasian Plant Pathology, 40, 549–567.

    Article  Google Scholar 

  • Salmaninezhad, F., Mostowfizadeh-Ghalamfarsa, R., & Cacciola, S. O. (2022). Major plant diseases caused by Phoma sensu lato species and their integrated management strategies. In Rai (Ed.), Phoma: Diversity, taxonomy, bioactivities, and nanotechnology (pp. 135–159). Springer.

    Chapter  Google Scholar 

  • Salwan, R., Sharma, M., Sharma, A., et al. (2023). Insights into plant beneficial microorganism-triggered induced systemic resistance. Plant Stress, 18, 100140.

    Article  Google Scholar 

  • Samuel, G. (1931). Some experiments on inoculating methods with plant viruses, and on local lesions. The Annals of Applied Biology, 18, 494–507.

    Article  Google Scholar 

  • Savary, S., Nelson, A., Sparks, A. H., et al. (2011). International agricultural research tackling the effects of global and climate changes on plant diseases in the developing world. Plant Disease, 95, 1204–1216.

    Article  PubMed  Google Scholar 

  • Schaad, N. W. (2008). Emerging plant pathogenic bacteria and global warming. In Fatmi (Ed.), Pseudomonas syringae Pathovars and related pathogens – Identification, epidemiology and genomics (pp. 369–379). Springer.

    Chapter  Google Scholar 

  • Schultz, H. R. (2016). Global climate change, sustainability, and some challenges for grape and wine production. Journal of Wine Economics, 11, 181–200.

    Article  Google Scholar 

  • Schumann, G. L., & D’Arcy, C. J. (2010). Essential plant pathology. APS Press.

    Google Scholar 

  • Schuster, M. L., & Coyne, D. P. (1974). Survival mechanisms of phytopathogenic bacteria. Annual Review of Phytopathology, 12, 199–221.

    Article  Google Scholar 

  • Shah, M. A., Jandrajupalli, S., Venkateshwarlu, V., et al. (2018). Population ecology of aphid pests infesting potato. Sustainable Agriculture Reviews: Ecology for Agriculture, 28, 153–181.

    Google Scholar 

  • Shahzad, A., Ullah, S., Dar, A. A., et al. (2021). Nexus on climate change: Agriculture and possible solution to cope future climate change stresses. Environmental Science and Pollution Research, 28, 14211–14232.

    Article  PubMed  Google Scholar 

  • Shan, Y., Gao, X., Hu, X., et al. (2023). Current and future potential distribution of the invasive scale Ceroplastes rusci (L., 1758)(Hemiptera: Coccidae) under climate niche. Pest Management Science, 79, 1184–1192.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, S., Hooda, K. S., & Goswami, P. (2019). Scenario of plant diseases under changing climate. Journal of Pharmacognosy and Phytochemistry, 8, 2490–2495.

    CAS  Google Scholar 

  • Shuja, N. N., & Tahir, M. (2019). Molecular characterization of cotton infecting Begomovirus (es) and DNA satellites associated with Cotton leaf curl disease in Pakistan. EC Microbiology, 15, 545–560.

    Google Scholar 

  • Sinclair, V. A., Rantanen, M., Haapanala, P., et al. (2020). The characteristics and structure of extra-tropical cyclones in a warmer climate. Weather and Climate Dynamics, 1, 1–25.

    Article  Google Scholar 

  • Singh, D. P. (2023a). Integrated pest management in diverse cropping systems. Apple Academic Press.

    Google Scholar 

  • Singh, P. (2023b). Crop models for assessing impact and adaptation options under climate change. Journal of Agrometeorology, 25, 18–33.

    Google Scholar 

  • Singh, A. P., Kumar, J., Chauhan, I., et al. (2023a). Role of climate change in disasters occurrences: Forecasting and management options (pp. 149–180). Elsevier.

    Google Scholar 

  • Singh, B. K., Delgado-Baquerizo, M., Egidi, E., et al. (2023b). Climate change impacts on plant pathogens, food security and paths forward. Nature Reviews Microbiology, 2, 1–7.

    Google Scholar 

  • Singh, B. K., Delgado-Baquerizo, M., Egidi, E., et al. (2023c). Climate change impacts on plant pathogens, food security and paths forward. Nature Reviews Microbiology, 21(10), 640–656.

    Google Scholar 

  • Sivarathnakumar, S., Adhitiyan, T., & Gubendhiran, S. (2021). Ecological and economic impacts on biofuel production. Springer.

    Google Scholar 

  • Srinivasa Rao, M., Shaila, O., Abdul Khadar, B., et al. (2016). Impact of elevated CO2 and temperature on aphids. International Quarterly Journal of Life Science, 11, 2055–2062.

    Google Scholar 

  • Srivastava, A., Pandey, V., & Gaur, R. K. (2022). Climate change and agriculture: Perspectives, sustainability and resilience (Vol. 18, pp. 373–398). Wiley.

    Book  Google Scholar 

  • Stengel, A., Drijber, R. A., Carr, E., et al. (2022). Rethinking the roles of pathogens and mutualists: Exploring the continuum of symbiosis in the context of microbial ecology and evolution. Phytobiomes Journal, 6, 108–117.

    Article  Google Scholar 

  • Stern, N. H. (2007). The economics of climate change: The Stern review. Cambridge University Press.

    Book  Google Scholar 

  • Strange, R. N., & Scott, P. R. (2005). Plant disease: A threat to global food security. Annual Review of Phytopathology, 43, 83–116.

    Article  CAS  PubMed  Google Scholar 

  • Suman, R., Singh, M. K., & Rishi, N. (2023). Century of plant virus management: A way forward (pp. 591–606). Academic Press.

    Google Scholar 

  • Sutherst, R. W., Constable, F., Finlay, K. J., et al. (2011). Adapting to crop pest and pathogen risks under a changing climate. Wiley Interdisciplinary Reviews: Climate Change, 2, 220–237.

    Google Scholar 

  • Szulc, J. (2020). Biological agents. In Respiratory protection against hazardous biological agents (pp. 9–58). CRC Press.

    Google Scholar 

  • Tan, J. L., Trandem, N., Fránová, J., et al. (2022). Known and potential invertebrate vectors of raspberry viruses. Viruses, 14, 571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatineni, S., & Hein, G. L. (2023). Plant viruses of agricultural importance: Current and future perspectives of virus disease management strategies. Phytopathology, 113, 117–141.

    Article  CAS  PubMed  Google Scholar 

  • Thackray, D. J., Diggle, A. J., & Jones, R. A. (2009). BYDV PREDICTOR: A simulation model to predict aphid arrival, epidemics of Barley yellow dwarf virus and yield losses in wheat crops in a Mediterranean-type environment. Plant Pathology, 58, 186–202.

    Article  Google Scholar 

  • Thresh, J. M. (2006). Control of tropical plant virus diseases. Advances in Virus Research, 67, 245–295.

    Article  CAS  PubMed  Google Scholar 

  • Thresh, J. M., & Fargette, D. (2003). The epidemiology of African plant viruses: Basic principles and concepts. In Plant virology in Sub-Saharan Africa (pp. 61–111). International Institute of Tropical Agriculture, Ibadan, Nigeria

    Google Scholar 

  • Tiedje, J. M., Bruns, M. A., Casadevall, A., et al. (2022). Microbes and climate change: A research prospectus for the future. MBio, 13(3), e00800-22.

    Google Scholar 

  • Trebicki, P. (2020). Climate change and plant virus epidemiology. Virus Research, 286, 198059.

    Article  CAS  PubMed  Google Scholar 

  • Trębicki, P., Dáder, B., Vassiliadis, S., et al. (2017). Insect–plant–pathogen interactions as shaped by future climate: Effects on biology, distribution, and implications for agriculture. Insect Science, 24, 975–989.

    Article  PubMed  Google Scholar 

  • Trinh, T. A., Feeny, S., & Posso, A. (2021). The impact of natural disasters and climate change on agriculture: Findings from Vietnam. In Economic effects of natural disasters (pp. 261–280). Academic Press.

    Chapter  Google Scholar 

  • Ullman, D. E., Mutschler, M. A., & Kennedy, G. G. (2023). Acylsugar-mediated resistance as part of a multilayered defense against thrips, orthotospoviruses, and beyond. Current Opinion in Insect Science, 15, 101021.

    Google Scholar 

  • Uniyal, A. P., Yadav, S. K., & Kumar, V. (2019). The CRISPR–Cas9, genome editing approach: A promising tool for drafting defense strategy against begomoviruses including cotton leaf curl viruses. Journal of Plant Biochemistry and Biotechnology, 28, 121–132.

    Article  CAS  Google Scholar 

  • Van Etten, J. (2020). Red algal extremophiles: Novel genes and paradigms. Microscopy Today, 28, 28–35.

    Article  Google Scholar 

  • Varela, R. P., Balanay, R. M., & Capangpangan, R. Y. (2023). Biofuel economy, development, and food security (pp. 17–30). Springer.

    Google Scholar 

  • Von Braun, J. (2009). Addressing the food crisis: Governance, market functioning, and investment in public goods. Food Security, 1, 9–15.

    Article  Google Scholar 

  • Wang, Y., Wang, Y., Tang, Y., & Zhu, X. G. (2022). Stomata conductance as a goalkeeper for increased photosynthetic efficiency. Current Opinion in Plant Biology, 11, 102310.

    Article  Google Scholar 

  • Wang, Z., Xu, D., Liao, W., Xu, Y., & Zhuo, Z. (2023). Predicting the current and future distributions of Frankliniella occidentalis (Pergande) based on the MaxEnt species distribution model. Insects, 14, 458.

    Article  PubMed  PubMed Central  Google Scholar 

  • Webb, K. M., Ona, I., Bai, J., et al. (2010). A benefit of high temperature: Increased effectiveness of a rice bacterial blight disease resistance gene. The New Phytologist, 185, 568–576.

    Article  CAS  PubMed  Google Scholar 

  • Webber, B. L., Raghu, S., & Edwards, O. R. (2015). Is CRISPR-based gene drive a biocontrol silver bullet or global conservation threat? Proceedings of the National Academy of Sciences of the United States of America, 112, 10565–10567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wells, J. M. (1974). Growth of Erwinia carotovora, Erwinia atroseptica and Pseudomonas fluorescens in low oxygen and high carbon dioxide atmospheres. Phytopathology, 64, 1012–1015.

    Article  Google Scholar 

  • Wessel, M., & Quist-Wessel, P. F. (2015). Cocoa production in West Africa, a review and analysis of recent developments. NJAS: Wageningen Journal of Life Sciences, 74, 1–7.

    Google Scholar 

  • West, J. S., Townsend, J. A., Stevens, M., et al. (2012). Comparative biology of different plant pathogens to estimate effects of climate change on crop diseases in Europe. European Journal of Plant Pathology, 133, 315–331.

    Article  Google Scholar 

  • Woolhouse, M. E., Haydon, D. T., & Antia, R. (2005). Emerging pathogens: the epidemiology and evolution of species jumps. Trends in Ecology & Evolution, 20, 238–244.

    Article  Google Scholar 

  • Wosula, E. N., McMechan, A. J., & Hein, G. L. (2015). The effect of temperature, relative humidity, and virus infection status on off-host survival of the wheat curl mite (Acari: Eriophyidae). Journal of Economic Entomology, 108, 1545–1552.

    Article  CAS  PubMed  Google Scholar 

  • Wu, S., Xing, Z., Ma, T., et al. (2021). Competitive interaction between Frankliniella occidentalis and locally present thrips species: A global review. Journal of Pest Science, 94, 5–16.

    Article  Google Scholar 

  • Wudil, A. H., Usman, M., Rosak-Szyrocka, J., et al. (2022). Reversing years for global food security: A review of the food security situation in sub-saharan africa (ssa). International Journal of Environmental Research and Public Health, 19, 14836.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie, M., Chen, Y. H., & Wan, F. H. (2008). Responses of two whitefly species, Trialeurodes vaporariorum (Westwood) and Bemisia tabaci (Gennadius) B-biotype, to low temperatures. Journal of Insect Science, 8, 52–52.

    Google Scholar 

  • Xu, W. (2022). Interactions between Nicotiana benthamiana and yellow tailflower mild mottle virus, and spillover of YTMMV [Dissertation, Murdoch University].

    Google Scholar 

  • Yadav, M., Gosai, H. G., & Singh, G. (2023). Global climate change and environmental refugees: Nature, framework and legality. Springer.

    Google Scholar 

  • Yamamura, K., & Kiritani, K. (1998). A simple method to estimate the potential increase in the number of generations under global warming in temperate zones. Applied Entomology and Zoology, 33, 289–298.

    Article  Google Scholar 

  • Yáñez-López, R., Torres-Pacheco, I., Guevara-González, R. G., et al. (2012). The effect of climate change on plant diseases. African Journal of Biotechnology, 11, 2417–2428.

    Article  Google Scholar 

  • Yang, P., Zhao, L., Gao, Y. G., et al. (2023). Detection, diagnosis, and preventive management of the bacterial plant pathogen Pseudomonas syringae. Plants, 12, 1765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yebeyen, D., Nemomissa, S., Hailu, B. T., et al. (2022). Modeling and mapping habitat suitability of highland bamboo under climate change in Ethiopia. Forests, 13, 859.

    Article  Google Scholar 

  • Yogesh, P. (2013). Effect of environmental factors on population dynamics of Aphis gossypii (Glover)(Aphididae; Hemiptera), in cotton under agro-climatic condition of Madhya Pradesh. International Journal of Plant Protection, 6, 394–397.

    Google Scholar 

  • Yoon, J. Y., Chung, B. N., & Choi, S. K. (2011). High-temperature-mediated spontaneous mutations in the coat protein of cucumber mosaic virus in Nicotiana tabacum. Archives of Virology, 156, 2173–2180.

    Article  CAS  PubMed  Google Scholar 

  • Zandalinas, S. I., Rivero, R. M., Martínez, V., et al. (2016). Tolerance of citrus plants to the combination of high temperatures and drought is associated to the increase in transpiration modulated by a reduction in abscisic acid levels. BMC Plant Biology, 16, 1–6.

    Article  Google Scholar 

  • Zavala, J. A., Casteel, C. L., DeLucia, E. H., & Berenbaum, M. R. (2008). Anthropogenic increase in carbon dioxide compromises plant defense against invasive insects. Proceeding of the National Academy of Sciences USA, 105, 5129–5133.

    Article  CAS  Google Scholar 

  • Zayan, S. A. (2019). InPlant diseases-current threats and management trends. Intech Open.

    Google Scholar 

  • Zinati, Z., Assad, M. T., Masumi, M., Alemzadeh, A., Razi, H., & Izadpanah, K. (2012). The effect of high temperature treatment on wheat streak mosaic virus resistance and certain resistance-related chemicals in bread wheat. Iranian Journal of Virology, 6, 27–35.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirza Abid Mehmood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rauf, A., Mehmood, M.A., Ashfaq, M., Kayani, S.B., Mushtaq, I., Javeed, S. (2024). Effects of Climate Change on Bacterial and Viral Pathogens. In: Abd-Elsalam, K.A., Abdel-Momen, S.M. (eds) Plant Quarantine Challenges under Climate Change Anxiety. Springer, Cham. https://doi.org/10.1007/978-3-031-56011-8_8

Download citation

Keywords

Publish with us

Policies and ethics