From e354d5cdff86242a76d3e444f433c7825cec602d Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Thu, 22 Aug 2024 16:51:26 -0700 Subject: [PATCH 01/94] Reorganizing --- 0-coursework/grades.csv | 2 + 0-coursework/nasas fireballs.csv | 916 ++++++++++++++++++ 0-coursework/simple_text.txt | 1 + 0-coursework/stundent_grades.json | 1 + EXAMPLES/.hangman.py.swp | Bin 12288 -> 0 bytes fireballs.ipynb | 390 ++++++++ .../1-git_and_github}/.ignore/git-model.png | Bin .../.ignore/graph_reference.png | Bin .../1-git_and_github}/README.md | 0 .../2-python_basics}/README.md | 0 .../2-python_basics}/problems.py | 0 .../3-files_and_paths}/README.md | 0 .../3-files_and_paths}/problems.py | 0 .../4-system_and_env}/README.md | 0 .../4-system_and_env}/problems.py | 0 .../5-data_manipulation}/README.md | 0 .../5-data_manipulation}/problems.py | 0 .../6-exception_handling}/README.md | 0 .../7-unit_testing}/README.md | 0 {8-pandas => legacy/8-pandas}/README.md | 0 {EXAMPLES => legacy/EXAMPLES}/args.py | 0 {EXAMPLES => legacy/EXAMPLES}/hangman.py | 0 {EXAMPLES => legacy/EXAMPLES}/loop_else.py | 0 {EXAMPLES => legacy/EXAMPLES}/readfiles.py | 0 .../EXAMPLES}/universal_nogui_widget.py | 0 .../EXAMPLES}/variable_scope.py | 0 {EXAMPLES => legacy/EXAMPLES}/wordlist | 0 {EXAMPLES => legacy/EXAMPLES}/writefile.py | 0 0-coursework/week_1.ipynb => week_1.ipynb | 0 0-coursework/week_2.ipynb => week_2.ipynb | 0 0-coursework/week_3.ipynb => week_3.ipynb | 0 0-coursework/week_4.ipynb => week_4.ipynb | 0 week_5.ipynb | 38 + 33 files changed, 1348 insertions(+) create mode 100644 0-coursework/grades.csv create mode 100644 0-coursework/nasas fireballs.csv create mode 100644 0-coursework/simple_text.txt create mode 100644 0-coursework/stundent_grades.json delete mode 100644 EXAMPLES/.hangman.py.swp create mode 100644 fireballs.ipynb rename {1-git_and_github => legacy/1-git_and_github}/.ignore/git-model.png (100%) rename {1-git_and_github => legacy/1-git_and_github}/.ignore/graph_reference.png (100%) rename {1-git_and_github => legacy/1-git_and_github}/README.md (100%) rename {2-python_basics => legacy/2-python_basics}/README.md (100%) rename {2-python_basics => legacy/2-python_basics}/problems.py (100%) rename {3-files_and_paths => legacy/3-files_and_paths}/README.md (100%) rename {3-files_and_paths => legacy/3-files_and_paths}/problems.py (100%) rename {4-system_and_env => legacy/4-system_and_env}/README.md (100%) rename {4-system_and_env => legacy/4-system_and_env}/problems.py (100%) rename {5-data_manipulation => legacy/5-data_manipulation}/README.md (100%) rename {5-data_manipulation => legacy/5-data_manipulation}/problems.py (100%) rename {6-exception_handling => legacy/6-exception_handling}/README.md (100%) rename {7-unit_testing => legacy/7-unit_testing}/README.md (100%) rename {8-pandas => legacy/8-pandas}/README.md (100%) rename {EXAMPLES => legacy/EXAMPLES}/args.py (100%) rename {EXAMPLES => legacy/EXAMPLES}/hangman.py (100%) rename {EXAMPLES => legacy/EXAMPLES}/loop_else.py (100%) rename {EXAMPLES => legacy/EXAMPLES}/readfiles.py (100%) rename {EXAMPLES => legacy/EXAMPLES}/universal_nogui_widget.py (100%) rename {EXAMPLES => legacy/EXAMPLES}/variable_scope.py (100%) rename {EXAMPLES => legacy/EXAMPLES}/wordlist (100%) rename {EXAMPLES => legacy/EXAMPLES}/writefile.py (100%) rename 0-coursework/week_1.ipynb => week_1.ipynb (100%) rename 0-coursework/week_2.ipynb => week_2.ipynb (100%) rename 0-coursework/week_3.ipynb => week_3.ipynb (100%) rename 0-coursework/week_4.ipynb => week_4.ipynb (100%) create mode 100644 week_5.ipynb diff --git a/0-coursework/grades.csv b/0-coursework/grades.csv new file mode 100644 index 0000000..6ef211c --- /dev/null +++ b/0-coursework/grades.csv @@ -0,0 +1,2 @@ +name,math,science,history +Stanley,85,90,92Casey,75,80,85Taylor,95,100,100 \ No newline at end of file diff --git a/0-coursework/nasas fireballs.csv b/0-coursework/nasas fireballs.csv new file mode 100644 index 0000000..9814ea4 --- /dev/null +++ b/0-coursework/nasas fireballs.csv @@ -0,0 +1,916 @@ +date/time for peak brightness,latitude,longitude,altitude(km),velocity(km/s),velocity in x direction,velocity in y direction,velocity in z direction,radiated energy,total impact energy +2022-04-21 22:15:28,55.5S,68.9W,28.4,12.7,-4.2,11.6,3.2,3.9e10,0.13 +2022-04-12 21:59:12,8.2S,57.8E,23.8,20.6,-19.3,-6.3,3.6,5.2e10,0.17 +2022-04-04 00:30:39,3.2S,64.3W,31.5,19.7,-17.6,5.3,-7.2,2.7e10,0.095 +2022-03-30 18:19:18,45.9S,171.4W,74.0,2.0e10,0.073,,,, +2022-03-28 10:20:24,7.7S,74.3E,29.0,19.6,-16.6,-10.4,0.1,37.8e10,0.98 +2022-03-24 03:43:42,1.9N,20.6W,56.7,18.2,-12.4,11.4,6.9,7.6e10,0.24 +2022-03-11 21:22:46,70.0N,9.1W,33.3,17.2,-11.5,-5.3,-11.7,185.1e10,4 +2022-03-06 15:06:15,4.1S,99.5W,2.0e10,0.073,,,,, +2022-03-03 00:03:03,50.4S,45.9E,72.0,2.1e10,0.076,,,, +2022-02-17 12:08:06,33.5N,38.9W,41.0,2.7e10,0.095,,,, +2022-02-17 03:53:24,5.4N,56.4E,32.4,21.5,-4.4,-19.6,-7.7,6.5e10,0.21 +2022-02-07 20:06:26,28.7S,11.4E,26.5,13.1,-8.9,-7.3,-6.3,348.0e10,7 +2022-02-03 19:50:40,13.3S,142.2E,36.0,22.8,17.6,9.7,-10.8,15.2e10,0.44 +2022-01-30 02:06:18,50.0N,38.0W,36.6,20.0,-10.8,16.8,1.0,5.4e10,0.18 +2022-01-28 05:04:45,4.5S,73.9W,37.0,34.1e10,0.9,,,, +2022-01-11 03:33:13,58.4S,160.2W,40.8,22.8,-2.5,5.3,22.0,126.4e10,2.9 +2022-01-01 20:23:04,66.1N,152.6W,35.5,14.5e10,0.42,,,, +2021-12-29 03:15:35,69.7S,115.0E,44,22.0,7.4,-8.6,18.8,2.0e10,0.073 +2021-12-23 21:27:58,4.9S,29.6W,37,2.1e10,0.076,,,, +2021-12-20 23:15:55,62.7N,60.3E,56,18.2,10.3,-7.1,-13.2,3.2e10,0.11 +2021-12-10 01:19:06,47.5S,172.6E,27.5,5.0e10,0.16,,,, +2021-11-28 18:06:50,32.6N,113.5E,38.4,19.7,0.2,-2.2,-19.6,4.0e10,0.13 +2021-11-17 15:53:21,6.8S,119.1E,35.0,23.0,7.0,-18.3,-12.0,2.4e10,0.086 +2021-11-08 05:28:28,33.8S,7.7W,36,3.3e10,0.11,,,, +2021-10-28 09:10:30,4.1S,138.7W,35.2,3.0e10,0.1,,,, +2021-10-21 10:32:02,51.5N,51.4E,30,15.9,-14.1,-7.0,-1.9,3.7e10,0.13 +2021-10-20 08:41:50,13.8N,140.4W,28,6.0e10,0.19,,,, +2021-10-20 00:43:57,59.0N,154.3E,31.4,27.5,12.9,4.2,-23.9,2.0e10,0.073 +2021-09-29 10:50:59,53.9N,148.0W,28.0,21.2,-3.5,-9.0,-18.9,13.7e10,0.4 +2021-09-06 17:55:42,2.1S,111.8W,26.0,13.6,-4.4,6.9,10.9,3.1e10,0.11 +2021-07-30 08:06:34,7.8S,90.1E,63.0,14.6e10,0.42,,,, +2021-07-29 13:19:57,42.4N,98.4E,26.4,14.7,-1.6,-11.9,-8.4,3.7e10,0.13 +2021-07-07 13:41:14,3.3e10,0.11,,,,,,, +2021-07-05 03:46:24,44.3N,164.2W,43.4,15.7,0.7,15.7,-0.5,74e10,1.8 +2021-06-09 05:43:59,17.9S,55.3W,2.3e10,0.082,,,,, +2021-05-16 15:51:08,52.1S,171.2W,37.0,3.8e10,0.13,,,, +2021-05-06 05:54:27,34.7S,141.0E,31.0,26.6,9.6,-24.4,-4.6,2.1e10,0.076 +2021-05-02 14:12:49,12.3N,43.4W,2.5e10,0.089,,,,, +2021-04-13 02:16:47,26.8N,79.1W,44.4,14.1,-2.8,12.6,5.6,2.1e10,0.076 +2021-04-02 15:52:58,71.2N,106.7E,40.0,-8.9,6.3,-9.0,13.7e10,0.4,14.1 +2021-03-06 08:43:06,48.6S,90.4E,31.1,12.7,-4.7,12.0,14.1e10,0.41,18.1 +2021-03-05 13:50:01,81.1S,141.1E,32.5,10.1,-8.4,19.2,3.9e10,0.13,23.3 +2021-02-28 03:47:37,9.2N,64.1W,2.8e10,0.098,,,,, +2021-02-09 23:27:29,75.8N,92.8W,31.0,-5.2,6.3,-10.3,3.0e10,0.1,13.1 +2021-02-02 10:03:21,48.7N,80.1E,20,4.0,-6.7,-10.1,3.1e10,0.11,12.8 +2021-01-31 02:59:39,5.3N,115.2E,39.4,14.0,-5.8,1.7,26.7e10,0.72,15.2 +2021-01-29 16:12:47,38.8N,51.3W,30.0,-14.2,1.9,-.6,7.7e10,0.24,14.3 +2021-01-25 03:01:37,38.5N,47.6W,19.1,7.5e10,0.23,,,, +2021-01-24 07:33:43,45.0S,95.5E,37.5,13.3,-3.7,13.3,6.1e10,0.2,19.2 +2020-12-29 20:32:22,14.9N,158.2W,33.0,-3.0,10.2,-9.7,4.9e10,0.16,14.4 +2020-12-28 17:27:53,36.8N,54.7W,28.3,1.5,3.5,-14.7,5.7e10,0.18,15.2 +2020-12-22 23:23:33,31.9N,96.2E,35.5,13.6,-2.6,5.9,-12.1,489.8e10,9.5 +2020-11-28 16:34:11,33.3N,135.1E,28.1,19.6,1.8,-16.5,-10.4,2.6e10,0.092 +2020-11-25 12:20:50,30.5S,81.0W,2.1e10,0.076,,,,, +2020-11-07 21:27:04,59.8N,16.8E,22.3,16.7,-10.8,1.2,-12.7,11.1e10,0.33 +2020-10-26 15:09:10,5.9S,160.4E,28.5,17.6,10.9,-13.8,-0.1,11.4e10,0.34 +2020-10-23 20:51:39,30.0N,71.9W,48.0,8.0e10,0.25,,,, +2020-10-22 17:39:33,22.0N,133.5W,40.0,17.6,-9.4,14.1,-4.9,4.4e10,0.15 +2020-10-21 18:57:33,12.9N,150.2W,2.2e10,0.079,,,,, +2020-10-21 06:38:49,29.7S,93.9W,39,2.7e10,0.095,,,, +2020-10-19 07:05:47,48.6N,93.9E,40.7,2.1e10,0.076,,,, +2020-10-18 10:52:43,11.4S,135.8W,36.0,16.4,15.6,1.5,4.9,3.6e10,0.12 +2020-09-18 08:05:27,2.4N,169.7W,46.0,11.7,10.2,2.9,-4.9,4.1e10,0.14 +2020-08-30 16:08:22,26.0N,133.5E,27.8,23.4,7.8,-21.7,3.7,6.4e10,0.2 +2020-08-02 16:36:25,35.1S,34.2W,38.0,11.1,0.5,6.0,9.3,7.4e10,0.23 +2020-07-22 02:55:40,20.0S,103.8W,36.0,2.2e10,0.079,,,, +2020-07-20 21:25:09,51.8S,11.2W,31.6,14.1,-2.9,-1.0,-13.8,5.0e10,0.16 +2020-07-12 07:50:32,48.7S,74.0E,29.4,18.3,-5.0,-13.0,-11.9,7.5e10,0.23 +2020-05-27 17:30:18,40.8N,41.7E,29.3,14.9,-6.0,-7.3,-11.5,5.7e10,0.18 +2020-05-18 01:11:09,38.7S,77.2E,25,16.2e10,0.46,,,, +2020-05-12 23:22:56,15.9N,174.2E,8.3e10,0.26,,,,, +2020-05-09 09:37:15,7.2N,44.2W,52.5,4.1e10,0.14,,,, +2020-05-09 02:56:11,44.8N,131.0W,31.2,14.5,-13.0,-4.0,-5.0,4.1e10,0.14 +2020-04-28 05:43:17,20.1N,109.4W,2.1e10,0.076,,,,, +2020-04-18 13:08:38,12.5N,49.8W,2.7e10,0.095,,,,, +2020-04-14 11:11:16,65.6S,45.6W,2.0e10,0.073,,,,, +2020-03-26 23:27:56,38.3S,23.5E,26.5,20.7,-10,3.2,17.8,12.4e10,0.37 +2020-03-23 16:51:51,24.4S,67.9W,25,13.3e10,0.39,,,, +2020-03-22 06:44:29,2.5e10,0.089,,,,,,, +2020-03-04 20:25:59,53.3S,90.8E,24.3,19.8,-5.2,2.2,19.0,39.4e10,1 +2020-02-28 09:30:34,45.7N,15.1E,34.5,21.5,-18.2,-11.3,-2.1,11.5e10,0.34 +2020-02-24 22:21:28,3.6N,96.0W,2.0e10,0.073,,,,, +2020-02-10 23:48:17,28.2N,76.7E,41.7,31.7,-27.8,-14.3,-5.2,2.7e10,0.095 +2020-01-27 05:39:15,30.4N,1.5E,32.5,19.8,-2.0,-16.6,-10.6,4.4e10,0.15 +2020-01-24 11:13:31,28.0N,35.8W,32.0,21.2,-18.6,-9.0,-4.7,2.6e10,0.092 +2020-01-21 20:07:44,33.1N,34.3E,43.3,27.4,-7.5,-23.5,-11.9,2.8e10,0.098 +2020-01-17 21:29:49,19.4N,66.0W,14.5,15.5,-13.2,8.1,1.2,9.7e10,0.29 +2020-01-16 09:31:42,71.7S,116.4W,27.8,12.9,9.8,-4.5,7.0,5.9e10,0.19 +2020-01-15 06:31:39,23.7S,125.2W,31.5,19.6e10,0.55,,,, +2020-01-06 11:03:50,70.4S,17.5W,4.5e10,0.15,,,,, +2019-12-21 14:30:52,56.5N,147.6W,35.5,22.2,14.9,-8.1,-14.3,6.5e10,0.21 +2019-12-11 01:19:11,47.7N,161.7E,37,17.8,13.7,-10.9,-3.3,3.9e10,0.13 +2019-12-06 10:19:57,3.3S,37.7W,19.5,4.6e10,0.15,,,, +2019-12-03 06:46:27,5.6N,52.2W,61.5,4.2e10,0.14,,,, +2019-11-28 20:30:54,35.7N,31.7W,35,13.0,-11.6,-2.5,-5.4,2.7e10,0.095 +2019-11-28 13:22:10,2.6e10,0.092,,,,,,, +2019-11-28 11:55:02,22.1S,25.7E,22.5,24.7,-22.8,-5.5,7.6,2.5e10,0.089 +2019-11-05 11:24:51,10.4S,143.3W,38.0,27.4,5.2,12.3,23.9,11.0e10,0.33 +2019-10-22 22:21:15,12.0N,76.0W,40.7,2.7e10,0.095,,,, +2019-10-10 16:16:36,44.3N,122.9E,47.3,14.1,1.5,-12.9,-5.4,20.6e10,0.57 +2019-09-28 10:40:20,12.5S,107.2W,52,20.4,-10.1,11.2,13.7,2.3e10,0.082 +2019-09-27 13:35:46,25.7N,28.4W,3.4e10,0.12,,,,, +2019-09-14 12:39:34,38.6S,33.5W,38,15.9,-12.9,8.1,4.6,10.9e10,0.33 +2019-09-13 02:02:04,18.6S,126.9E,27.4,13.5,5.2,-8.1,9.5,4.2e10,0.14 +2019-09-12 12:49:48,54.5N,9.2E,42,18.5,-18.1,-0.4,3.7,16.9e10,0.48 +2019-09-12 02:34:58,24.9N,47.8W,30.6,17.2,-11.7,11.7,4.6,5.9e10,0.19 +2019-08-24 12:02:59,21.9N,130.4W,39.8,13.4,11.1,-5.2,5.4,4.0e10,0.13 +2019-08-22 21:47:29,24.4S,92.9W,30.2,2.0e10,0.073,,,, +2019-08-16 20:36:05,38.9N,7.0E,36.0,14.9,-3.9,4.0,-13.8,2.5e10,0.089 +2019-07-23 20:42:58,44.6N,147.6W,30.6,16.1,1.5,15.1,-5.5,25.5e10,0.69 +2019-06-30 16:52:58,21.2N,129.5W,59.0,42.3,25.2,31.2,-13.3,3.2e10,0.11 +2019-06-30 08:11:29,2.5S,168.7E,2.1e10,0.076,,,,, +2019-06-22 21:25:48,14.9N,66.2W,25.0,14.9,-13.4,6.0,2.5,294.7e10,6 +2019-06-20 06:07:32,7.3N,67.6W,37.0,2.8e10,0.098,,,, +2019-05-26 10:07:55,56.6N,25.3W,24.4,17.5,3.8,-5.8,16.1,4.2e10,0.14 +2019-05-25 06:44:04,19.2S,89.4E,29.2,15.8,0.2,-15.7,2.1,4.9e10,0.16 +2019-05-22 15:16:49,10.8N,37.3W,32.6,9.5e10,0.29,,,, +2019-05-21 13:21:35,38.8S,137.5E,31.5,11.5,4.4,-8.5,6.4,65.6e10,1.6 +2019-05-19 14:47:03,23.6S,132.8E,33.3,15.2,7.3,-12.2,5.3,3.3e10,0.11 +2019-05-12 22:41:48,6.2N,57.1W,2.1e10,0.076,,,,, +2019-05-04 15:35:46,28.4N,88.3W,26.5,2.2e10,0.079,,,, +2019-04-22 21:42:11,48.8S,67.8E,33.3,11.4,3.4,-4.2,10.0,12.4e10,0.37 +2019-04-14 17:54:33,18.3N,74.6W,30.6,15.9,-2.5,5.9,-14.6,2.9e10,0.1 +2019-04-06 11:59:09,56.5N,94.9E,41.5,18.1,6.2,11.1,-12.9,7.0e10,0.22 +2019-04-04 22:19:01,35.3N,93.9W,2.8e10,0.098,,,,, +2019-03-27 12:50:34,41.8S,7.4W,2.2e10,0.079,,,,, +2019-03-19 02:06:39,24.0S,140.3E,28.7,16.2,10.2,0.4,12.6,2.0e10,0.073 +2019-03-15 12:26:56,63.7N,95.7E,31.5,14.4,5.4,-13.2,1.7,4.6e10,0.15 +2019-02-18 10:00:43,15.5S,25.3E,26,20.8,-16.6,-12.6,0.6,195.8e10,4.2 +2019-02-01 18:17:10,22.5N,83.8W,23.7,16.3,-2.4,13.6,8.7,57.9e10,1.4 +2019-01-29 20:47:20,2.5e10,0.089,,,,,,, +2019-01-22 09:18:01,18.0N,6.5E,42.5,11.6,-8.6,-5.9,5.0,3.6e10,0.12 +2018-12-23 23:38:03,47.5S,174.4W,31.8,16.5,9.9,7.6,10.8,8.9e10,0.27 +2018-12-18 23:48:20,56.9N,172.4E,26.0,13.6,6.3,-3.0,-31.2,3.13e13,49 +2018-11-20 17:30:28,25.3N,6.7W,27.4,17.4,-10.1,13.9,3.0,42.2e10,1.1 +2018-11-17 21:48:24,47.3N,172.9W,32.5,19.1,7.6,17.3,-2.7,22.0e10,0.61 +2018-11-15 08:02:44,42N,57W,2.0e10,0.073,,,,, +2018-11-14 04:03:47,37.6S,83.5E,37,3.8e10,0.13,,,, +2018-10-24 21:19:07,6.7S,148.6W,33.3,4.7e10,0.16,,,, +2018-10-22 07:11:03,2.6e10,0.092,,,,,,, +2018-10-05 00:27:04,39.8S,31.7W,31.5,14.7,-13.2,-6.5,-0.4,3.8e10,0.13 +2018-09-25 14:10:33,23.5S,56.8E,33.0,16.5,-16.2,2.8,0.6,80.6e10,1.9 +2018-09-25 00:16:59,34.3S,44.9E,40.7,12.5,-11.0,2.5,-5.5,5.3e10,0.17 +2018-09-20 18:29:03,67.3S,75.1E,11.1,-5.6,-7.9,5.5,8.3e10,0.26, +2018-09-17 01:08:02,6.8S,27.8W,15.0e10,0.43,,,,, +2018-09-13 00:51:21,42.5N,50.1W,4.2e10,0.14,,,,, +2018-08-27 04:36:45,1.7S,141.4E,33.0,16.1,9.8,-9.6,-8.4,2.4e10,0.086 +2018-08-21 12:26:14,39.2S,162.9W,37.0,2.2e10,0.079,,,, +2018-07-27 09:35:14,58.8S,105.8E,32.0,10.5e10,0.32,,,, +2018-07-25 21:55:26,76.9N,69.0W,43.3,24.4,20.4,12.9,-3.8,87.7e10,2.1 +2018-07-17 15:17:37,82.5N,136.7W,21.1e10,0.59,,,,, +2018-06-26 17:51:53,32.0N,12.1E,63.0,14.1,-10.0,-1.0,-9.9,2.9e10,0.1 +2018-06-21 01:16:20,52.8N,38.1E,27.2,14.4,-8.9,-4.3,-10.5,122.4e10,2.8 +2018-06-02 16:44:12,21.2S,23.3E,28.7,16.9,0.9,-16.4,3.9,37.5e10,0.98 +2018-05-12 03:26:46,6.5S,173.7E,34,19.3e10,0.54,,,, +2018-05-08 02:27:13,32N,60.7W,7.3e10,0.23,,,,, +2018-05-03 07:23:59,46.9N,7.5W,39,11.5,1.3,-2.1,-11.2,3.8e10,0.13 +2018-04-30 13:17:57,45.5S,1.4W,34,13.1,8.7,-9.5,2.5,3.0e10,0.1 +2018-04-21 12:06:04,59.0S,45.8E,28.2,14.6,7.1,-4.6,11.9,3.6e10,0.12 +2018-04-19 14:02:27,7.5N,3.6E,30,20.9,-9.1,-2.5,18.6,7.2e10,0.23 +2018-04-19 13:39:38,22.2S,72.6E,31.5,10.9,-5.9,-9.1,1.4,51.2e10,1.3 +2018-04-07 03:05:09,72.4N,78.7W,31.5,8.6e10,0.27,,,, +2018-02-21 01:28:03,13.5S,37.1W,31.5,13.1,-0.9,13.1,-0.4,7.1e10,0.22 +2018-02-15 13:38:22,43.8S,1.1W,50.7,2.7e10,0.095,,,, +2018-02-12 02:15:19,15.9S,58.9W,3.9e10,0.13,,,,, +2018-02-08 22:21:41,42.9N,179.7E,43.5,25.9e10,0.7,,,, +2018-02-01 12:21:36,19.4S,104.3E,37.0,16.5,8.1,-8.4,-11.7,19.0e10,0.53 +2018-01-22 22:06:30,14.0N,17.4W,3.2e10,0.11,,,,, +2018-01-15 02:18:38,52.0S,57.2E,43.6,23.7,18.6,-12.1,8.4,19.9e10,0.56 +2018-01-06 21:24:22,55.8N,52.5E,26.0,21.0,0.8,2.2,-20.9,2.8e10,0.098 +2018-01-06 18:24:28,39.5S,12.8E,26.0,3.6e10,0.12,,,, +2017-12-31 09:36:10,63.5S,101.3W,64.5,4.4e10,0.15,,,, +2017-12-29 12:47:31,14.6N,49.5W,38.0,11.0e10,0.33,,,, +2017-12-28 17:45:44,11.4e10,0.34,,,,,,, +2017-12-15 13:14:37,60.2N,170.0E,20.0,31.4,27.8,-4.7,-13.9,311.4e10,6.4 +2017-11-19 04:17:32,24.2S,135.0E,33.3,11.4,6.7,-3.4,8.6,2.8e10,0.098 +2017-10-26 22:05:35,21.3S,177.6E,42.5,55.8e10,1.4,,,, +2017-10-23 15:31:23,28.8N,44.6E,35.4,16.7,-5.7,-10.7,-11.5,2.4e10,0.086 +2017-10-15 04:33:16,65.2S,128.2E,24.1,15.9,9.5,-8.3,9.7,3.3e10,0.11 +2017-10-09 12:51:48,18.3S,64.1W,3.0e10,0.1,,,,, +2017-10-04 12:07:05,28.1N,99.4E,37.0,14.6,-8.5,-9.0,7.8,19.2e10,0.54 +2017-09-05 05:11:27,49.3N,116.9W,36.0,14.7,12.7,-6.1,-4.2,3.8e10,0.13 +2017-07-31 22:01:35,24.7N,118.5W,5.8e10,0.19,,,,, +2017-07-23 06:12:38,6.6S,69.7W,38.0,17.2,-0.4,8.7,-14.8,3.5e10,0.12 +2017-07-13 09:30:36,23.1N,60.7E,35.0,13.7,-10.0,-6.5,-6.8,7.3e10,0.23 +2017-06-30 14:26:45,34.3S,134.5E,20.0,15.2,10.9,-9.7,4.2,9.4e10,0.29 +2017-06-23 20:21:55,57.0N,143.7E,35.1,24.3,17.7,13.1,-10.3,18.4e10,0.52 +2017-06-20 13:41:32,54.2S,133.0E,33.3,13.6,8.7,-5.7,8.8,63.6e10,1.6 +2017-05-24 07:03:03,9.1S,101.8E,46.0,18.4,-6.5,-16.5,-5.0,9.0e10,0.28 +2017-05-22 17:44:39,49.6S,157.6W,33.0,3.5e10,0.12,,,, +2017-05-14 09:30:35,26.0S,32.4E,33.0,3.5e10,0.12,,,, +2017-04-30 21:28:28,25.7S,56.2E,32.4,21.5,-13.4,-14.2,8.9,15.0e10,0.43 +2017-03-11 04:51:21,28.3N,60.2W,28.0,126.3e10,2.9,,,, +2017-03-09 04:16:37,40.5N,18.0W,23.0,36.5,-15.3,25.8,-20.8,40.0e10,1 +2017-03-08 22:21:59,26.1S,174.9E,37.0,7.2e10,0.23,,,, +2017-02-25 01:22:59,29.5N,13.5E,25.4,12.2,-7.6,-9.3,2.2,6.5e10,0.21 +2017-02-22 18:47:30,50.7S,66.0W,3.8e10,0.13,,,,, +2017-02-18 19:48:29,6.2N,60.4E,38.0,24.2,-6.6,-22.7,-5.3,29.5e10,0.79 +2017-02-07 17:37:31,27.4S,14.8W,54.0,2.0e10,0.073,,,, +2017-02-06 06:09:59,10.4N,131.6E,33.5,6.6e10,0.21,,,, +2016-12-23 03:29:09,21.3N,49.3E,42.0,29.7,-22.4,16.4,-10.5,3.8e10,0.13 +2016-12-07 04:51:39,34.5S,126.6W,11.7e10,0.35,,,,, +2016-11-29 08:05:38,30.6S,93.1W,3.1e10,0.11,,,,, +2016-11-24 14:10:34,15.2S,80.3E,30.6,17.4,9.1,-11.2,9.7,13.8e10,0.4 +2016-11-03 17:14:29,39.6S,16.3W,37,7.6e10,0.24,,,, +2016-10-01 20:23:45,36.2N,6.7E,27.8,14.2,-10.0,3.9,-9.3,3.1e10,0.11 +2016-09-22 04:57:49,51.8S,178.5E,40.0,17.5,-2.5,-3.3,17.0,7.1e10,0.22 +2016-09-14 15:01:51,3.5S,44.6E,54.0,18.3,3.5,-16.2,7.7,7.6e10,0.24 +2016-08-27 21:45:13,56.9S,162.2E,42.0,14.2e10,0.41,,,, +2016-08-11 05:59:58,43.7S,53.8E,34.3,14.9,-0.7,-11.4,9.6,18.4e10,0.52 +2016-08-05 18:02:44,46.4N,171.6E,32.4,12.1e10,0.36,,,, +2016-07-21 00:48:53,7.8N,1.6W,37.0,4.5e10,0.15,,,, +2016-07-05 01:24:26,1.0N,48.6E,38.2,25.1,-10.3,-2.0,-22.8,15.3e10,0.44 +2016-06-27 10:02:42,15.8N,11.9W,33.3,29.1,-29.1,1.5,0.7,45.8e10,1.2 +2016-06-05 06:12:55,17.4S,138.3E,28.7,14.5,6.0,-11.9,5.7,33.1e10,0.87 +2016-06-02 10:56:32,33.8N,110.9W,17.2e10,0.49,,,,, +2016-05-29 12:14:55,10.2N,48.8W,32.0,6.9e10,0.22,,,, +2016-05-20 11:59:46,32.8S,15.1E,30.6,20.8,5.4,-9.9,17.5,2.0e10,0.073 +2016-05-16 10:09:41,3.2N,6.6E,41.7,12.2,-6.7,-3.3,-9.6,51.9e10,1.3 +2016-05-13 00:34:01,26.2N,122.3W,33.0,10.1e10,0.31,,,, +2016-04-24 05:39:24,9.8N,42.8W,50.0,14.6e10,0.42,,,, +2016-04-18 11:59:10,20.7N,14.5W,31.5,17.1,-3.5,2.2,-16.6,22.4e10,0.62 +2016-04-12 09:51:40,38.3N,162.2E,2.0e10,0.073,,,,, +2016-04-10 14:57:53,22.0N,149.0E,35.2,15.1,4.7,-12.9,-6.4,65.5e10,1.6 +2016-03-16 23:54:20,49.2S,6.3W,42.0,13.3,-7.6,9.1,6.0,3.2e10,0.11 +2016-03-03 01:32:43,48.0S,51.0E,31.8,11.7,4.8,-7.1,7.9,5.8e10,0.19 +2016-02-23 03:59:13,32.3N,67.2E,44.0,17.9,-8.5,-1.6,-15.7,3.5e10,0.12 +2016-02-21 05:58:53,36.5N,37.2W,32.0,36.9e10,0.96,,,, +2016-02-19 08:15:02,0.7N,11.6W,39.4,15.5,-14.9,-0.5,4.1,20.2e10,0.56 +2016-02-13 00:10:13,3.1N,117.9E,5.1e10,0.17,,,,, +2016-02-06 13:55:09,30.4S,25.5W,31.0,15.6,2.7,14.5,5.0,685.3e10,13 +2016-01-27 09:59:16,45.8S,53.6E,37,11.5,-10.0,-4.4,3.6,5.0e10,0.16 +2016-01-21 16:44:54,10.8S,0.7E,42.5,18.1,-3.8,-17.7,-1.2,4.6e10,0.15 +2015-12-30 13:07:50,33.8N,160.7W,39.0,2.2e10,0.079,,,, +2015-12-21 02:32:48,5.9N,143.0E,42.2,12.1,6.4,-10.0,2.5,8.3e10,0.26 +2015-12-08 00:34:23,69.9S,150.5E,38.0,19.7e10,0.55,,,, +2015-11-13 14:59:27,16.0N,124.3E,28.0,10.2e10,0.31,,,, +2015-11-02 21:34:20,41.4S,33.0E,37.0,7.8e10,0.24,,,, +2015-10-31 11:34:30,9.0N,138.0W,71.0,9.7e10,0.29,,,, +2015-10-30 07:07:12,85.0S,161.7W,18.0e10,0.51,,,,, +2015-10-13 12:23:08,8.0S,52.5W,38.9,12.9,-6.6,3.8,10.4,2.3e10,0.082 +2015-10-11 00:07:46,55.4S,18.8W,3.0e10,0.1,,,,, +2015-10-10 09:57:51,51.0S,21.1W,51.8,11.8,-1.3,-5.1,10.6,3.6e10,0.12 +2015-10-04 21:02:17,22.0N,171.6W,36.1,4.4e10,0.15,,,, +2015-09-17 21:03:14,43.1S,94.9E,9.8e10,0.3,,,,, +2015-09-14 23:50:50,5.8N,15.2W,7.0e10,0.22,,,,, +2015-09-08 13:46:42,6.3N,29.9E,44.4,16.1,-11.5,-11.3,-0.9,2.0e10,0.073 +2015-09-07 01:41:19,14.5N,98.9E,29.3,21.0,16.8,-12.0,-3.8,179.8e10,3.9 +2015-09-02 20:10:30,39.1N,40.2E,39.8,24.1,10.3,-12.2,-18.0,3.7e10,0.13 +2015-08-04 10:24:59,9.6S,125.9E,2.9e10,0.1,,,,, +2015-07-19 07:06:26,20.6N,87.6W,22.0,17.8,9.4,13.0,7.8,2.3e10,0.082 +2015-07-12 22:23:14,31.0N,159.6E,41.0,2.2e10,0.079,,,, +2015-07-04 01:40:11,38.6N,103.1E,46.3,49.0,0.9,-40.4,-27.7,5.6e10,0.18 +2015-06-14 03:03:06,6.3N,124.1E,32.4,31.9,-4.7,-17.8,-26.0,7.1e10,0.22 +2015-06-12 17:03:35,1.3S,32.1W,43.5,17.6e10,0.5,,,, +2015-06-10 17:43:03,11.5S,161.9W,61.1,38.4e10,1,,,, +2015-06-02 08:44:50,6.4S,142.7W,38.0e10,0.99,,,,, +2015-05-20 10:20:41,1.0N,172.6E,32.4,3.6e10,0.12,,,, +2015-05-18 17:13:51,32.4N,139.1E,29.0,4.3e10,0.14,,,, +2015-05-10 07:45:01,46.3S,179.3W,29.6,12.2,11.2,0.9,4.7,14.3e10,0.42 +2015-05-07 20:34:34,21.5S,29.3W,37.0,17.3,-16.2,-5.8,1.4,5.2e10,0.17 +2015-04-30 10:21:01,48.7S,139.1E,26.7,12.9,12.2,-4.2,0.9,10.5e10,0.32 +2015-04-21 01:42:51,37.7N,39.6W,37.4,21.3,-15.3,12.8,7.4,8.8e10,0.27 +2015-04-10 01:14:27,42.8S,8.2E,6.5e10,0.21,,,,, +2015-04-08 04:06:31,25.5S,51.5E,36.3,19.2,8.0,-15.6,-7.9,17.3e10,0.49 +2015-04-03 01:39:38,8.4N,157.9W,4.2e10,0.14,,,,, +2015-03-30 21:33:52,36.1S,5.5W,33.1,13.8,-13.7,-1.7,0.8,6.4e10,0.2 +2015-03-18 00:04:50,5.4S,159.3E,50.0,12.1e10,0.36,,,, +2015-03-11 06:18:59,8.0N,119.1E,35.2,19.9,5.5,-10.5,-16.0,7.2e10,0.23 +2015-03-08 04:26:28,39.1S,118.6W,2.0e10,0.073,,,,, +2015-03-04 04:30:05,15.9S,88.1E,39.8,18.0,7.8,-16.0,-2.5,5.5e10,0.18 +2015-02-26 22:06:24,68.0N,149.0W,33.7,21.1,5.6,-2.3,-20.2,18.8e10,0.53 +2015-02-25 10:53:24,12.4N,122.4W,42,5.8e10,0.19,,,, +2015-02-17 13:19:50,8.0S,11.2W,39,28.8,-28.2,3.4,4.6,3.3e10,0.11 +2015-01-09 17:31:47,23.3S,49.2W,2.2e10,0.079,,,,, +2015-01-09 10:41:11,2.0N,28.8E,36.0,17.5,-10.7,-7.6,11.6,13.9e10,0.41 +2015-01-07 01:05:59,45.7N,26.9E,45.5,35.7,-35.4,1.8,-4.4,13.6e10,0.4 +2015-01-02 13:39:19,31.1S,140.0E,38.1,18.1,4.5,-14.4,-10.0,2.0e10,0.073 +2014-12-13 02:53:52,86.7N,162.1W,30.7,21.7,15.3,-13.3,-7.8,4.4e10,0.15 +2014-12-12 06:48:11,33.5N,144.9E,26.3,12.0,11.5,-2.8,-2.2,3.3e10,0.11 +2014-12-09 21:19:18,76.6N,96.3E,26.3,7.8e10,0.24,,,, +2014-11-28 11:47:18,45.8S,172.7W,26.1,13.4,0.4,-1.4,13.3,70.0e10,1.7 +2014-11-27 12:12:52,18.8S,73.4W,38.0,5.5e10,0.18,,,, +2014-11-26 23:16:51,69.5S,179.7W,23.3,25.3,21.3,2.2,13.4,11.8e10,0.35 +2014-11-26 17:40:16,68.2S,24.0W,37.0,19.9,-7.0,16.1,9.4,10.5e10,0.32 +2014-11-04 20:13:30,43.1N,115.8E,22.2,16.0,-7.2,-12.1,-7.7,15.6e10,0.45 +2014-10-21 18:55:37,22.2N,132.9W,3.4e10,0.12,,,,, +2014-10-17 14:07:36,4.6S,66.3W,39.0,7.2e10,0.23,,,, +2014-10-14 10:25:03,2.0S,119.2E,27.2,16.9,15.0,-6.9,-3.5,2.9e10,0.1 +2014-10-06 20:02:15,43.7S,85.7E,3.9e10,0.13,,,,, +2014-09-09 18:55:46,3.2N,137.2E,32.5,2.8e10,0.098,,,, +2014-09-05 21:37:26,22.7N,150.0W,3.5e10,0.12,,,,, +2014-08-29 23:15:39,6.2S,49.9W,2.6e10,0.092,,,,, +2014-08-28 03:07:45,3.2N,45.4W,3.4e10,0.12,,,,, +2014-08-23 06:29:41,61.7S,132.6E,22.2,16.2,-2.3,5.7,16.5,381.9e10,7.6 +2014-07-29 07:38:07,49.2S,172.2W,7.3e10,0.23,,,,, +2014-07-29 03:07:43,33.9S,115.9W,5.3e10,0.17,,,,, +2014-06-28 02:40:07,18.9N,141.2E,26.3,12.4,12.0,3.5,-10.5,24.5e10,0.67 +2014-06-26 05:54:41,71.5S,93.4E,28.5,11.2,7.0,2.9,8.3,6.1e10,0.2 +2014-05-29 01:12:36,21.9N,131.1W,28.7,5.8e10,0.19,,,, +2014-05-16 20:06:28,39.4S,95.9W,30.8,18.0,2.9,13.4,-12.5,13.6e10,0.4 +2014-05-16 12:42:48,44.2S,176.2W,44.0,16.5,14.4,4.6,6.5,30.9e10,0.82 +2014-05-08 19:42:37,36.9S,87.3E,35.4,19.0,-2.0,-16.1,9.9,105e10,2.4 +2014-03-29 13:45:41,28.7S,121.5E,30.7,16.3,10.0,-12.7,2.2,3.9e10,0.13 +2014-03-18 11:02:37,0.0N,111.8W,30.5,54e10,1.3,,,, +2014-03-03 15:00:21,29.0S,94.9W,9.4e10,0.29,,,,, +2014-02-18 12:50:44,32.8S,61.5W,2.6e10,0.092,,,,, +2014-02-13 06:47:42,13.3N,110.7W,25.0,63e10,1.5,,,, +2014-01-15 02:46:19,18.5S,141.8E,29.6,14.0e10,0.41,,,, +2014-01-12 16:00:48,2.9N,64.4E,37.0,16.2,-5.2,-15.1,2.6,7.8e10,0.24 +2014-01-08 17:05:34,1.3S,147.6E,18.7,44.8,-3.4,-43.5,-10.3,3.1e10,0.11 +2013-12-23 08:30:57,39.5N,2.0E,34.3,15.1,-1.1,11.4,-9.9,14.7e10,0.43 +2013-12-08 03:10:09,32.8N,165.1W,23.5,11.8,2.3,2.5,-11.3,6.4e10,0.2 +2013-11-21 01:50:35,44.7N,35.3E,59.3,12.4,-5.0,-11.0,-2.7,7.5e10,0.23 +2013-10-12 16:06:45,19.1S,25.0W,22.2,12.8,-8.0,8.4,-5.5,161.0e10,3.5 +2013-10-09 17:27:36,6.0e10,0.19,,,,,,, +2013-09-24 15:31:16,10.3S,164.7W,40.7,16.0e10,0.46,,,, +2013-08-12 18:08:02,34.4S,118.2E,66.6,4.4e10,0.15,,,, +2013-07-31 07:00:38,3.9e10,0.13,,,,,,, +2013-07-31 03:50:14,31.8S,137.1E,29.1,17.8,17.7,-2.3,-0.1,6.9e10,0.22 +2013-07-30 02:36:58,50.2S,90.2E,25.6,18.8,15.9,-8.6,5.1,39.0e10,1 +2013-07-27 08:30:36,0.3N,156.2E,26.5,22.1,16.0,14.9,-3.3,12.0e10,0.36 +2013-07-26 11:32:26,21.0N,178.5W,37.0,2.0e10,0.073,,,, +2013-07-18 00:46:37,2.2e10,0.079,,,,,,, +2013-06-13 02:51:14,2.2e10,0.079,,,,,,, +2013-06-01 22:49:48,65.6S,138.4E,28.9,3.4e10,0.12,,,, +2013-05-14 23:20:21,3.0S,76.4E,2.0e10,0.073,,,,, +2013-04-30 08:40:38,35.5N,30.7W,21.2,12.1,1,9,-8,511e10,10 +2013-04-21 06:23:12,28.1S,64.6W,40.7,14.9,5,14,1,106.6e10,2.5 +2013-03-12 10:32:59,32.7S,17.1E,26.0,2.9e10,0.1,,,, +2013-02-20 13:13:07,23.0S,38.8W,13.6,-11,-8,-1,3.2e10,0.1, +2013-02-15 03:20:33,54.8N,61.1E,23.3,18.6,+12.8,-13.3,-2.4,3.75e14,440 +2013-02-07 13:12:24,18.8S,158.6W,6.5e10,0.21,,,,, +2013-01-25 07:40:18,60.3N,64.6W,340e10,6.9,,,,, +2013-01-12 03:04:21,15.1S,155.6W,36.1,4.8e10,0.16,,,, +2012-12-30 07:25:35,17.3N,83.6W,19.8e10,0.55,,,,, +2012-12-18 11:19:17,2.7e10,0.095,,,,,,, +2012-11-20 20:37:31,2.5N,29.6E,33.3,14.3,-12.2,-5.3,5.3,2.5e10,0.089 +2012-11-20 06:25:11,8.0S,86.0W,12.0e10,0.36,,,,, +2012-10-25 15:57:19,3.0e10,0.1,,,,,,, +2012-10-19 16:26:22,75.4S,49.6E,29.3,13.2,-2.3,-3.9,12.4,2.3e10,0.082 +2012-10-09 00:54:55,51.2N,84.6W,27.8,13.5,3.4,12.0,5.1,21.0e10,0.58 +2012-10-03 22:50:12,41.5S,21.9W,17.0,-2.4,5.5,15.9,28.0e10,0.75, +2012-10-02 16:38:38,8.1S,111.9W,35.0,15.4,1.4,15.3,1.0,47.0e10,1.2 +2012-09-28 05:44:12,6.9S,73.7E,3.8e10,0.13,,,,, +2012-09-18 19:34:39,1.2N,52.2W,28.1,18.3,-1.9,14.1,-11.5,24.4e10,0.67 +2012-09-11 22:07:30,18.9S,105.2E,5.2e10,0.17,,,,, +2012-09-10 01:03:32,69.8S,111.7W,23.8,16.9,-10.2,-5.2,12.4,2.3e10,0.082 +2012-08-27 06:57:43,18.3S,64.2E,38.7,28.9,-8.0,-23.7,-14.5,6.8e10,0.22 +2012-08-26 14:55:47,11.8N,117.0E,36.0,12.7,5.0,-11.6,-0.7,24.9e10,0.68 +2012-08-13 05:31:53,3.3e10,0.11,,,,,,, +2012-07-27 04:19:50,63.1N,172.3E,27.2,3.4e10,0.12,,,, +2012-07-25 07:48:20,36.4N,41.5E,26.8,18.5,0.8,2.0,-18.4,13.3e10,0.39 +2012-06-05 07:44:54,2.4e10,0.086,,,,,,, +2012-05-25 11:31:24,41.8S,36.2W,6.0e10,0.19,,,,, +2012-05-22 08:31:42,21.1e10,0.59,,,,,,, +2012-05-15 11:04:17,61.8S,135.5W,33.3,17.1,-0.8,1.1,17.0,13.2e10,0.39 +2012-05-04 21:54:49,76.7N,10.6W,22.9e10,0.63,,,,, +2012-04-23 22:01:10,36.2N,107.4E,25.2,4.4e10,0.15,,,, +2012-04-21 16:08:23,15.8S,174.8W,14.3e10,0.42,,,,, +2012-04-19 22:12:10,5.5N,16.8E,3.0e10,0.1,,,,, +2012-04-02 16:50:33,28.1N,95.2W,3.2e10,0.11,,,,, +2012-03-12 06:40:44,2.5N,139.8E,25.0,11.8,0.1,-11.8,0.3,9.9e10,0.3 +2012-03-03 21:28:24,7.8N,2.7E,20.4,10.1e10,0.31,,,, +2012-03-01 03:12:40,46.9N,29.8W,2.2e10,0.079,,,,, +2012-02-24 19:11:41,22.7S,30.8E,3.7e10,0.13,,,,, +2012-02-17 10:47:16,3.2S,39.9W,45.6,15.4e10,0.44,,,, +2012-02-16 04:50:52,9.8N,151.8E,9.8e10,0.3,,,,, +2012-02-12 05:25:52,31.7S,54.9E,61.0,14.0e10,0.41,,,, +2012-02-04 14:42:51,32.4N,0.1E,34.2,12.2,-3.9,10.9,4.0,15.0e10,0.43 +2012-01-15 12:26:20,64.1S,109.9E,26.3,12.3,-1.9,5.1,11.0,2.1e10,0.076 +2012-01-11 02:23:15,32.2N,88.5E,8.5e10,0.26,,,,, +2011-12-19 11:35:39,30.2S,52.6E,36.1,13.5e10,0.4,,,, +2011-12-14 05:01:38,62.9S,89.6E,32.4,5.0e10,0.16,,,, +2011-12-11 17:29:33,2.9e10,0.1,,,,,,, +2011-11-20 05:25:05,27.9S,116.3E,2.3e10,0.082,,,,, +2011-10-12 07:13:20,26.4S,78.4W,3.6e10,0.12,,,,, +2011-09-13 23:36:47,19.9S,13.8W,21.3,16.7,-3.7,1.8,16.2,6.7e10,0.21 +2011-08-31 09:44:13,18.6N,5.1W,2.7e10,0.095,,,,, +2011-08-20 20:01:37,27.2S,2.8W,2.3e10,0.082,,,,, +2011-08-18 14:55:45,2.3e10,0.082,,,,,,, +2011-08-11 02:56:08,3.5e10,0.12,,,,,,, +2011-08-04 07:25:57,40.7S,86.7W,63.0,2.8e10,0.098,,,, +2011-07-27 23:00:36,45.3S,63.5E,29.6,4.4e10,0.15,,,, +2011-07-07 23:25:54,3.3e10,0.11,,,,,,, +2011-07-05 15:42:41,29.1N,139.7E,40.7,6.5e10,0.21,,,, +2011-07-04 09:18:04,51.7S,175.0E,2.9e10,0.1,,,,, +2011-06-16 11:51:50,67.3N,21.4W,40.5,2.4e10,0.086,,,, +2011-05-25 05:40:02,4.1N,14.0E,59.0,11.6,-3.4,-10.8,2.4,228.0e10,4.8 +2011-05-16 13:39:06,1.2S,92.8E,2.0e10,0.073,,,,, +2011-04-27 20:38:09,1.4N,126.6W,28.7,22.0e10,0.61,,,, +2011-04-27 11:21:44,2.4e10,0.086,,,,,,, +2011-04-17 11:21:44,2.4e10,0.086,,,,,,, +2011-04-11 21:43:40,3.8e10,0.13,,,,,,, +2011-04-06 08:30:55,71.1N,43.5W,22.2,12.7,3.3,11.8,-3.5,14.8e10,0.43 +2011-03-24 20:23:58,0.6N,127.5W,59.0,5.8e10,0.19,,,, +2011-03-23 04:24:46,3.1e10,0.11,,,,,,, +2011-03-23 04:16:32,16.8S,85.6W,2.2e10,0.079,,,,, +2011-03-01 10:37:54,53.5N,103.9E,30.6,11.9,-6.7,-1.1,-9.8,3.7e10,0.13 +2011-02-21 05:07:03,26.3N,43.7E,44.4,18.0,10.3,-14.8,0.1,3.9e10,0.13 +2011-02-12 11:00:12,7.8N,95.3W,2.0e10,0.073,,,,, +2011-01-21 15:11:43,18.9N,44.6W,61.0,7.2e10,0.23,,,, +2011-01-08 19:38:44,33.3N,125.8W,48.0,2.9e10,0.1,,,, +2010-12-25 23:24:00,38.0N,158.0E,26.0,18.1,18,-2,-4,2.00e13,33 +2010-12-14 00:27:53,4.9S,175.5E,24.0,3.9e10,0.13,,,, +2010-12-09 02:54:07,54.5S,169.7W,66.0,6.3e10,0.2,,,, +2010-12-01 06:31:46,72.5S,144.9E,33.3,13.3e10,0.39,,,, +2010-11-21 14:45:27,1.9N,143.3E,50.0,8.1e10,0.25,,,, +2010-11-19 07:25:56,10.3S,148.8E,30.0,3.3e10,0.11,,,, +2010-11-10 08:26:35,74.5N,77.7W,6.8e10,0.22,,,,, +2010-11-09 13:05:46,56.3S,16.7W,37.0,8.6e10,0.27,,,, +2010-11-09 06:56:52,14.0S,160.0W,26.0,2.0e10,0.073,,,, +2010-10-27 11:27:39,14.1S,67.7E,35.2,14.5e10,0.42,,,, +2010-10-08 09:58:01,2.0e10,0.073,,,,,,, +2010-09-24 12:02:07,67.4S,50.6W,5.0e10,0.16,,,,, +2010-09-18 05:04:41,7.4N,36.7E,6.7e10,0.21,,,,, +2010-09-08 19:51:36,13.9S,65.5W,46.3,6.5e10,0.21,,,, +2010-09-05 23:37:33,25.9S,49.0E,35.2,68.3e10,1.7,,,, +2010-09-03 12:04:58,61.0S,146.7E,33.3,12.3,9.8,-3.5,6.5,175.0e10,3.8 +2010-08-17 04:19:37,20.7N,114.3W,33.3,2.1e10,0.076,,,, +2010-08-12 02:59:36,2.8e10,0.098,,,,,,, +2010-08-05 19:31:48,21.5S,46.6E,3.6e10,0.12,,,,, +2010-07-15 01:49:56,60.9N,178.1W,2.4e10,0.086,,,,, +2010-07-06 23:54:43,34.1S,174.5W,26.0,15.7,12.1,10.0,0.2,756.0e10,14 +2010-06-26 06:04:38,0.5S,133.2E,50.0,11.3e10,0.34,,,, +2010-06-21 06:42:00,22.5S,120.9W,16.3e10,0.47,,,,, +2010-06-17 04:24:45,26.1S,100.0E,42.0,11.9e10,0.35,,,, +2010-04-17 02:21:58,13.1N,173.0W,5.6e10,0.18,,,,, +2010-04-16 04:38:52,1.8N,176.9W,22.2,18.8,12.4,-13.2,-5.2,84.4e10,2 +2010-04-06 18:33:12,52.8N,146.5W,8.0e10,0.25,,,,, +2010-03-18 16:11:16,32.4S,51.8W,17.5e10,0.5,,,,, +2010-03-15 15:55:43,8.0e10,0.25,,,,,,, +2010-03-14 18:44:42,33.8N,90.2W,35.6,4.2e10,0.14,,,, +2010-03-08 22:44:41,18.2N,110.1E,53.0,3.0e10,0.1,,,, +2010-03-08 22:02:07,32.0N,92.9W,52.0,24.5,19.1,11.0,10.7,32.3e10,0.85 +2010-02-28 22:24:50,48.7N,21.0E,37.0,15.1,-11.7,2.7,-9.1,15.3e10,0.44 +2010-02-26 22:46:13,37.3S,166.0W,23.7e10,0.65,,,,, +2010-02-24 19:55:58,2.6S,102.2W,9.3e10,0.28,,,,, +2010-01-15 19:17:54,8.3S,27.0E,25.0,14.0,-9.1,6.0,8.8,49.2e10,1.2 +2009-12-31 16:24:23,8.3e10,0.26,,,,,,, +2009-12-31 12:50:25,37.9N,178.3W,20.7,10.2e10,0.31,,,, +2009-11-25 01:36:20,52.8S,136.5E,6.4e10,0.2,,,,, +2009-11-21 20:53:00,22.0S,29.2E,38.0,32.1,3,-17,27,1.00e13,18 +2009-11-18 17:36:07,8.5e10,0.26,,,,,,, +2009-11-18 07:07:19,40.4N,113.2W,31.5,73.6e10,1.8,,,, +2009-11-14 19:58:55,2.3e10,0.082,,,,,,, +2009-11-07 11:31:59,45.5N,157.7W,2.2e10,0.079,,,,, +2009-11-07 10:41:38,24.0N,64.1E,37.0,4.2e10,0.14,,,, +2009-10-11 12:49:51,78.3S,70.2E,27.8,7.1e10,0.22,,,, +2009-10-08 02:57:00,4.2S,120.6E,19.1,19.2,14,-16,-6,2.00e13,33 +2009-09-27 22:22:48,36.0S,67.6W,37.0,8.9e10,0.27,,,, +2009-09-18 20:13:56,7.7N,29.5W,14.4e10,0.42,,,,, +2009-09-04 02:23:18,42.5N,110.0E,28.3,24.0,19.2,-11.6,-8.5,96.5e10,2.3 +2009-08-23 21:17:19,67.7S,18.3E,34.0,12.2,-6.9,5.3,8.5,28.0e10,0.75 +2009-07-31 02:13:19,8.9N,121.9W,2.5e10,0.089,,,,, +2009-07-16 06:39:05,24.4S,59.8W,32.2,72.7e10,1.8,,,, +2009-07-03 04:02:00,2.7e10,0.095,,,,,,, +2009-06-27 13:08:05,26.6S,12.6W,26.1,15.2,-11.6,1.6,9.7,3.2e10,0.11 +2009-06-20 11:04:41,2.7e10,0.095,,,,,,, +2009-06-18 04:39:00,23.7S,16.0W,57.4,3.3e10,0.11,,,, +2009-06-09 22:42:28,54.9N,152.7W,34.2,28.1e10,0.76,,,, +2009-05-31 06:05:47,19.7N,121.0W,14.3e10,0.42,,,,, +2009-05-13 20:20:16,7.3e10,0.23,,,,,,, +2009-05-04 11:39:03,36.4N,160.4W,40.7,14.0e10,0.41,,,, +2009-04-20 04:01:39,6.0N,84.3E,2.2e10,0.079,,,,, +2009-04-10 18:42:45,44.7S,25.7E,32.4,19.1,-18.9,2.6,0.3,27.0e10,0.73 +2009-03-15 05:44:33,21.7S,98.6W,3.2e10,0.11,,,,, +2009-03-04 00:38:05,17.0e10,0.48,,,,,,, +2009-03-01 09:00:59,2.0e10,0.073,,,,,,, +2009-02-20 12:15:57,64.9S,70.0W,5.0e10,0.16,,,,, +2009-02-07 19:51:32,56.6N,69.8E,40.0,15.4,-2.4,-1.9,-15.1,160.0e10,3.5 +2009-01-12 22:24:56,47.8N,44.3W,4.8e10,0.16,,,,, +2009-01-10 07:42:39,64.0S,122.8E,26.5,2.3e10,0.082,,,, +2008-12-24 15:51:58,68.9S,102.0W,21.1,24.1,-13.4,18.0,8.8,3.5e10,0.12 +2008-12-12 11:36:36,7.0S,9.7W,50.0,21.6e10,0.6,,,, +2008-12-09 06:08:16,3.4e10,0.12,,,,,,, +2008-11-24 22:01:19,57.9S,146.1E,34.8,23.7,21.5,10.0,0.4,14.6e10,0.42 +2008-11-21 00:26:44,53.1N,109.9W,28.2,12.9,3.9,-4.1,-11.6,14.2e10,0.41 +2008-11-18 09:41:51,29.4S,75.9E,35.2,22.4,-4.0,-15.2,-16.0,2.5e10,0.089 +2008-11-09 02:38:34,14.5N,112.7E,29.6,22.2e10,0.61,,,, +2008-10-21 02:20:25,32.8N,165.6W,29.6,11.3,9.6,5.8,1.5,4.6e10,0.15 +2008-10-10 09:34:18,57.3S,17.0E,21.4,18.0e10,0.51,,,, +2008-10-07 02:45:45,20.9N,31.4E,38.9,13.3,-9.0,9.0,3.8,39.5e10,1 +2008-09-09 09:49:41,5.9e10,0.19,,,,,,, +2008-08-16 14:40:24,11.3N,97.2E,13.1e10,0.38,,,,, +2008-08-12 11:44:10,11.6S,175.0W,2.0e10,0.073,,,,, +2008-08-07 06:07:10,18.5N,180.0E,45.4,13.8,6.5,-12.1,1.7,4.1e10,0.14 +2008-07-23 14:45:25,38.6N,68.0E,31.5,14.5,-7.7,-8.2,-9.1,12.1e10,0.36 +2008-07-22 19:34:00,17.8S,89.2W,54.4,6.1e10,0.2,,,, +2008-07-11 14:35:28,5.2e10,0.17,,,,,,, +2008-07-08 15:55:30,72.8N,147.3E,52.2,21.7,-12.9,1.9,-17.4,6.6e10,0.21 +2008-07-01 17:40:19,37.1N,115.7W,36.1,9.8,2.8,1.7,-9.2,3.6e10,0.12 +2008-06-27 02:01:23,26.9S,17.7W,33.7,23.1,-17.9,13.0,6.6,17.2e10,0.49 +2008-06-18 13:45:36,6.1N,103.1E,2.1e10,0.076,,,,, +2008-05-29 21:23:56,15.7N,83.5W,2.1e10,0.076,,,,, +2008-05-24 10:18:10,0.8N,162.0E,37.0,14.2,7.9,3.1,11.4,15.0e10,0.43 +2008-05-22 20:50:28,46.9N,134.5E,2.1e10,0.076,,,,, +2008-05-15 11:29:55,28.0N,41.5W,8.0e10,0.25,,,,, +2008-05-06 01:08:56,5.7e10,0.18,,,,,,, +2008-04-30 01:18:38,33.6S,35.1W,2.0e10,0.073,,,,, +2008-04-07 01:22:28,31.8S,58.5W,2.1e10,0.076,,,,, +2008-04-06 16:03:34,7.7e10,0.24,,,,,,, +2008-03-15 11:29:55,28.0N,41.5W,26.7,12.9,-4.1,4.8,-11.2,5.0e10,0.16 +2008-02-24 19:33:14,7.4e10,0.23,,,,,,, +2008-02-19 13:30:30,48.9N,119.8W,2.0e10,0.073,,,,, +2008-02-18 08:51:12,5.0e10,0.16,,,,,,, +2008-02-17 12:19:16,74.9N,73.4W,40.4,13.9,-5.8,-10.7,-6.7,11.0e10,0.33 +2008-02-16 08:38:39,7.1e10,0.22,,,,,,, +2008-01-18 01:17:39,4.4e10,0.15,,,,,,, +2008-01-09 03:53:15,66.8S,67.3W,31.5,11.6,4.3,5.7,9.1,4.1e10,0.14 +2007-12-26 06:46:20,61.6S,158.9W,13.6e10,0.4,,,,, +2007-12-20 17:00:48,51.3N,115.4E,12.2e10,0.36,,,,, +2007-10-25 19:35:38,40.9S,91.3E,46.3,5.8e10,0.19,,,, +2007-10-12 09:14:03,88.5N,116.6E,37.0,18.4,-4.5,-14.1,-10.9,3.3e10,0.11 +2007-10-07 13:31:01,35.2S,125.6E,5.8e10,0.19,,,,, +2007-09-22 17:57:12,49.2S,85.5W,30.2,16.9,-9.2,13.6,3.8,23.7e10,0.65 +2007-06-11 09:47:05,23.4S,170.9W,35.2,17.0,16.7,-2.1,-2.2,4.9e10,0.16 +2007-06-08 13:32:00,52.0S,175.3E,38.9,23.5e10,0.65,,,, +2007-06-07 21:28:12,21.9N,53.1E,29.6,3.1e10,0.11,,,, +2007-05-16 16:20:58,4.5S,111.7E,3.8e10,0.13,,,,, +2007-05-16 04:45:52,42.4S,164.0E,31.5,40.0e10,1,,,, +2007-05-04 17:52:39,22.9N,109.4E,48.0,17.5e10,0.5,,,, +2007-04-18 12:44:23,83.7S,171.2W,38.0,24.4,-5.3,-2.5,23.7,11.2e10,0.33 +2007-04-16 14:56:51,2.4e10,0.086,,,,,,, +2007-03-17 06:48:35,7.1N,4.1E,32.5,14.5,-7.3,-1.9,-12.4,4.0e10,0.13 +2007-03-15 02:20:15,44.1S,148.4W,2.5e10,0.089,,,,, +2007-03-07 15:16:49,2.7e10,0.095,,,,,,, +2007-02-02 12:48:41,24.0N,37.2W,35.5,34.0e10,0.89,,,, +2007-01-26 22:22:21,3.7N,99.7E,14.7e10,0.43,,,,, +2007-01-22 07:24:56,45.4N,53.5E,32.0,13.4,-3.3,-12.8,-1.9,7.6e10,0.24 +2007-01-18 13:51:10,5.3N,164.3W,34.1,3.2e10,0.11,,,, +2007-01-17 09:50:46,8.7S,50.8E,33.3,54.8e10,1.4,,,, +2007-01-01 11:43:29,44.4N,116.5E,53.0,3.6e10,0.12,,,, +2006-12-09 06:31:12,26.2N,26.0E,26.5,15.9,4.9,-15.0,1.6,741.0e10,14 +2006-12-07 11:42:00,14.0N,140.0W,2.1e10,0.076,,,,, +2006-12-01 06:09:25,13.0S,30.7E,6.3e10,0.2,,,,, +2006-11-13 15:16:34,44.0S,43.3E,2.3e10,0.082,,,,, +2006-10-24 08:42:52,1.9S,2.7W,43.0,22.5e10,0.62,,,, +2006-10-14 18:10:49,49.4N,175.0W,44.4,23.9,4.9,23.4,-1.0,25.8e10,0.7 +2006-10-09 04:45:30,47.0S,78.9E,22.2,4.1e10,0.14,,,, +2006-10-07 12:18:53,23.0S,61.8W,40.7,4.1e10,0.14,,,, +2006-10-02 19:10:27,14.0N,53.1E,42.0,9.0e10,0.28,,,, +2006-09-27 08:33:43,32.0S,60.2E,48.1,10.7e10,0.32,,,, +2006-09-23 18:52:58,29.0S,108.0W,12.1e10,0.36,,,,, +2006-09-02 17:57:58,2.2e10,0.079,,,,,,, +2006-09-02 04:26:15,14.0S,109.1E,44.1,14.2,10.0,-9.9,1.5,123.0e10,2.8 +2006-08-29 01:38:36,44.0S,162.0W,40.7,9.2e10,0.28,,,, +2006-08-18 00:03:18,43.0S,33.4E,47.2,3.2e10,0.11,,,, +2006-08-17 10:43:34,11.0S,165.7E,48.2,25.6e10,0.7,,,, +2006-08-15 10:52:24,4.9N,49.6E,32.7,4.7e10,0.16,,,, +2006-08-09 04:30:44,23.1S,53.7E,37.0,102.0e10,2.4,,,, +2006-07-15 23:55:45,78.3S,5.0W,29.6,12.4,0.1,2.0,12.2,8.5e10,0.26 +2006-07-15 15:22:49,31.1N,45.6E,38.9,30.2,9.2,-1.2,-28.7,16.3e10,0.47 +2006-06-07 00:06:28,69.2N,22.5E,40.7,19.6,6.1,4.6,-18.0,5.9e10,0.19 +2006-05-28 01:32:24,2.6e10,0.092,,,,,,, +2006-05-21 07:51:11,11.6S,25.5W,26.3e10,0.71,,,,, +2006-05-07 17:45:14,3.0e10,0.1,,,,,,, +2006-05-06 15:39:06,60.2S,152.3W,35.2,12.8e10,0.38,,,, +2006-04-25 18:46:53,2.0e10,0.073,,,,,,, +2006-04-08 13:16:23,17.3N,113.2W,33.3,12.7e10,0.37,,,, +2006-04-04 11:30:08,26.6N,26.6W,25.0,240.0e10,5,,,, +2006-03-14 03:21:06,7.0N,64.6W,35.2,14.4e10,0.42,,,, +2006-02-26 07:30:06,7.0e10,0.22,,,,,,, +2006-02-06 01:57:37,54.5S,18.1E,35.2,119.0e10,2.7,,,, +2006-02-04 08:38:05,36.9N,143.6W,38.9,19.8,-8.8,3.4,-17.4,10.0e10,0.3 +2006-01-28 03:33:48,51.7S,56.4E,37.0,18.7,8.4,-16.4,3.2,74.0e10,1.8 +2006-01-27 01:27:42,58.7N,74.7E,20.0,4.5e10,0.15,,,, +2006-01-26 00:00:53,79.8S,111.0W,37.0,5.3e10,0.17,,,, +2006-01-10 23:25:28,29.8N,12.7W,32.4,16.9,-9.9,-6.3,-12.2,2.8e10,0.098 +2006-01-08 05:20:19,7.6N,28.2W,9.4e10,0.29,,,,, +2005-12-29 10:05:35,3.0S,154.9W,42.2,20.7,18.6,8.5,3.2,19.0e10,0.53 +2005-12-24 15:30:26,54.0S,17.3E,66.0,18.1e10,0.51,,,, +2005-12-03 12:45:49,33.8S,117.4E,32.2,17.0,-12.1,-9.6,7.2,8.8e10,0.27 +2005-12-01 10:40:20,6.4S,155.8W,3.2e10,0.11,,,,, +2005-11-29 07:33:16,7.6N,58.2W,59.3,3.2e10,0.11,,,, +2005-11-15 05:19:07,26.3N,113.4W,32.4,2.5e10,0.089,,,, +2005-11-11 20:34:23,21.4N,134.1W,29.6,4.2e10,0.14,,,, +2005-11-09 07:33:08,31.0S,145.9E,30.7,13.8,13.5,-2.7,-0.7,7.3e10,0.23 +2005-11-02 07:04:32,33.9N,154.9W,68.5,3.2e10,0.11,,,, +2005-11-02 05:16:47,22.9N,123.8W,74.0,6.7e10,0.21,,,, +2005-10-26 21:30:47,36.3S,80.5W,16.7,13.8e10,0.4,,,, +2005-09-30 19:04:06,2.8S,84.1W,53.0,2.2e10,0.079,,,, +2005-09-14 01:08:52,11.6N,27.3E,33.3,2.5e10,0.089,,,, +2005-09-02 07:59:47,13.5N,73.1E,8.2e10,0.25,,,,, +2005-08-20 12:10:24,2.7e10,0.095,,,,,,, +2005-08-09 14:35:45,21.5S,56.2E,37.0,16.9,-16.3,4.3,1.4,2.5e10,0.089 +2005-07-01 22:36:15,49.8S,33.1E,50.0,3.1e10,0.11,,,, +2005-06-18 19:40:41,47.9N,85.6E,2.3e10,0.082,,,,, +2005-06-05 01:56:09,34.8N,90.9E,4.1e10,0.14,,,,, +2005-06-03 08:15:41,31.0S,90.3W,29.6,26.2,-1.5,25.3,6.7,8.2e10,0.25 +2005-05-27 14:12:13,48.9S,145.1E,50.5,2.0e10,0.073,,,, +2005-05-14 13:02:53,12.9e10,0.38,,,,,,, +2005-05-07 09:31:44,75.8S,163.7E,15.2,16.6,9.6,-9.7,9.4,2.6e10,0.092 +2005-05-02 20:10:36,17.7N,36.0E,4.6e10,0.15,,,,, +2005-04-22 11:18:05,20.9N,36.7W,37.0,2.2e10,0.079,,,, +2005-04-19 07:37:47,50.2S,146.4W,38.5,16.8,9.3,13.8,2.5,23.2e10,0.64 +2005-04-16 10:40:38,2.0e10,0.073,,,,,,, +2005-04-15 06:54:59,43.8S,73.9W,39.0,2.1e10,0.076,,,, +2005-04-14 14:05:22,4.9N,176.0W,26.5,7.1e10,0.22,,,, +2005-04-11 05:20:29,34.2S,95.7W,37.0,10.6e10,0.32,,,, +2005-04-06 01:30:24,42.7S,154.6E,70.0,2.9e10,0.1,,,, +2005-04-05 17:48:07,3.5e10,0.12,,,,,,, +2005-04-03 01:45:29,1.0S,112.4E,59.2,21.9e10,0.61,,,, +2005-04-02 22:52:25,14.1N,169.7E,27.2,20.4e10,0.57,,,, +2005-03-31 22:15:55,42.8N,36.2W,3.8e10,0.13,,,,, +2005-03-18 16:48:32,9.7S,34.7W,33.0,2.7e10,0.095,,,, +2005-03-12 22:16:31,2.2e10,0.079,,,,,,, +2005-03-09 15:47:36,21.4S,157.9W,44.4,5.3e10,0.17,,,, +2005-03-09 12:49:08,14.3N,142.7E,30.7,4.0e10,0.13,,,, +2005-03-06 17:32:51,5.5e10,0.18,,,,,,, +2005-02-22 22:51:06,4.1e10,0.14,,,,,,, +2005-02-17 22:52:36,48.0N,161.5W,42.5,10.0e10,0.3,,,, +2005-01-19 01:43:14,27.5S,164.9W,40.7,14.1e10,0.41,,,, +2005-01-02 23:09:51,21.3S,154.7E,35.2,21.5,20.2,-3.3,6.6,11.9e10,0.35 +2005-01-01 03:44:09,32.7N,12.4E,31.8,45.4e10,1.2,,,, +2004-12-29 07:11:45,8.5S,171.8E,9.0e10,0.28,,,,, +2004-12-13 11:35:55,9.7S,155.3E,3.9e10,0.13,,,,, +2004-12-11 15:36:51,36.0N,104.1E,3.0e10,0.1,,,,, +2004-11-30 08:32:53,61.0N,171.0W,18.1e10,0.51,,,,, +2004-11-17 03:13:04,18.6e10,0.52,,,,,,, +2004-10-14 11:41:01,9.3e10,0.28,,,,,,, +2004-10-10 11:05:28,3.0e10,0.1,,,,,,, +2004-10-07 13:14:43,27.3S,71.5E,35.0,19.2,-15.3,1.0,11.6,1.04e13,18 +2004-10-04 04:39:52,3.7N,150.9W,7.1e10,0.22,,,,, +2004-09-28 08:57:28,0.2N,101.1W,6.2e10,0.2,,,,, +2004-09-03 12:07:22,67.7S,18.2E,31.5,726.0e10,13,,,, +2004-08-22 10:01:33,51.9S,22.7E,37.0,144.0e10,3.2,,,, +2004-07-29 12:41:45,2.5e10,0.089,,,,,,, +2004-07-25 05:29:13,19.7e10,0.55,,,,,,, +2004-07-22 03:34:31,3.5e10,0.12,,,,,,, +2004-07-16 00:11:01,2.9e10,0.1,,,,,,, +2004-07-04 16:58:04,7.9e10,0.25,,,,,,, +2004-07-03 20:47:22,6.5e10,0.21,,,,,,, +2004-06-12 07:13:56,21.7N,175.3E,10.4e10,0.31,,,,, +2004-06-11 15:41:40,10.4e10,0.31,,,,,,, +2004-06-05 20:34:10,1.3N,174.4W,43.0,19.5,9.4,17.0,-1.5,181.0e10,3.9 +2004-06-04 13:41:38,33.9e10,0.89,,,,,,, +2004-06-03 21:59:15,4.7e10,0.16,,,,,,, +2004-06-03 09:40:12,48.9N,120.4W,5.4e10,0.18,,,,, +2004-05-18 11:12:12,28.1S,47.4W,39.4e10,1,,,,, +2004-05-17 02:08:27,18.9S,28.3E,44.0,5.5e10,0.18,,,, +2004-05-06 02:22:49,4.9e10,0.16,,,,,,, +2004-04-23 00:33:41,5.6e10,0.18,,,,,,, +2004-04-22 21:19:55,15.2S,55.1E,13.9e10,0.41,,,,, +2004-04-22 04:21:49,44.3S,83.3E,29.6,16.3,8.5,-12.1,-6.8,62.4e10,1.5 +2004-04-06 03:24:49,12.0S,162.8E,35.0,25.6,10.5,-23.2,-2.9,43.3e10,1.1 +2004-03-26 16:35:45,7.6S,155.1E,46.0,2.4e10,0.086,,,, +2004-03-25 09:39:26,4.8S,21.0E,2.1e10,0.076,,,,, +2004-02-27 01:18:54,6.0e10,0.19,,,,,,, +2004-02-02 18:52:20,18.3S,52.3E,3.0e10,0.1,,,,, +2004-01-22 01:06:43,50.6S,157.8E,37.0,23.2e10,0.64,,,, +2004-01-17 20:11:02,2.8e10,0.098,,,,,,, +2004-01-16 11:17:06,9.8e10,0.3,,,,,,, +2004-01-02 04:27:59,28.2S,3.2E,63.0,13.4e10,0.39,,,, +2003-12-09 22:36:23,67.1S,90.8W,64.3e10,1.6,,,,, +2003-11-26 02:00:04,22.9S,22.7E,32.0,3.5e10,0.12,,,, +2003-11-10 13:54:06,64.5S,136.2E,23.0,20.1,14.8,-8.7,10.4,51.8e10,1.3 +2003-11-01 14:09:30,51.4S,151.7E,7.3e10,0.23,,,,, +2003-10-16 00:47:28,28.5e10,0.77,,,,,,, +2003-10-13 14:06:59,3.0e10,0.1,,,,,,, +2003-10-07 00:23:56,3.7e10,0.13,,,,,,, +2003-09-27 12:59:02,21.0N,86.6E,26.0,18.2,-1.0,-5.4,-17.3,215.0e10,4.6 +2003-09-22 03:45:43,3.3e10,0.11,,,,,,, +2003-09-21 07:40:00,2.0e10,0.073,,,,,,, +2003-09-20 19:04:01,3.0e10,0.1,,,,,,, +2003-09-02 20:00:46,51.3N,161.0W,38.5e10,1,,,,, +2003-08-26 22:08:45,7.2e10,0.23,,,,,,, +2003-08-26 08:44:07,24.9e10,0.68,,,,,,, +2003-08-17 13:16:07,39.0S,34.0E,64.7e10,1.6,,,,, +2003-08-01 04:09:32,2.1e10,0.076,,,,,,, +2003-07-21 05:11:28,5.8e10,0.19,,,,,,, +2003-06-22 22:53:28,2.1e10,0.076,,,,,,, +2003-06-21 14:49:57,3.8e10,0.13,,,,,,, +2003-06-16 17:17:19,6.5e10,0.21,,,,,,, +2003-06-10 14:11:07,41.8S,122.9E,3.2e10,0.11,,,,, +2003-05-27 23:32:32,5.2N,166.2E,6.8e10,0.22,,,,, +2003-05-19 03:38:12,52.1e10,1.3,,,,,,, +2003-05-18 07:51:40,2.1e10,0.076,,,,,,, +2003-05-15 06:28:32,54.0N,80.4W,4.3e10,0.14,,,,, +2003-04-28 13:06:46,2.3e10,0.082,,,,,,, +2003-04-13 17:58:41,14.8N,64.5E,17.0,17.5e10,0.5,,,, +2003-04-07 09:25:28,18.4S,162.6E,2.2e10,0.079,,,,, +2003-04-01 04:40:55,3.1e10,0.11,,,,,,, +2003-03-27 05:50:26,41.4N,87.7W,45.0,14.2e10,0.41,,,, +2003-02-25 23:13:28,40.0N,116.0E,3.3e10,0.11,,,,, +2003-02-12 23:45:57,7.9e10,0.25,,,,,,, +2003-02-12 02:37:54,31.5S,107.5E,12.0e10,0.36,,,,, +2003-02-06 17:00:19,62.9S,113.9W,19.7e10,0.55,,,,, +2003-02-05 06:16:27,10.3e10,0.31,,,,,,, +2003-02-04 14:07:08,59.9S,41.0E,13.5e10,0.4,,,,, +2003-01-30 06:02:59,10.7e10,0.32,,,,,,, +2002-11-28 15:41:53,4.6e10,0.15,,,,,,, +2002-11-21 00:11:17,1.4S,154.0W,24.0e10,0.66,,,,, +2002-11-12 21:49:56,21.1S,6.8W,4.3e10,0.14,,,,, +2002-11-10 22:13:54,16.0N,166.0W,46.0e10,1.2,,,,, +2002-10-09 12:00:35,4.3S,175.9W,4.9e10,0.16,,,,, +2002-10-04 10:08:01,11.7e10,0.35,,,,,,, +2002-09-24 16:48:57,57.9N,112.9E,86.0e10,2,,,,, +2002-08-14 07:48:32,6.9S,126.2W,9.0e10,0.28,,,,, +2002-08-11 20:42:53,18.2S,159.4E,151.0e10,3.3,,,,, +2002-08-10 18:01:51,2.5e10,0.089,,,,,,, +2002-07-25 15:57:32,28.7S,47.0E,23.0e10,0.63,,,,, +2002-07-22 11:16:02,34.0N,106.1E,5.3e10,0.17,,,,, +2002-06-29 16:31:55,15.9e10,0.46,,,,,,, +2002-06-15 11:51:18,2.9e10,0.1,,,,,,, +2002-06-13 15:29:38,24.9S,111.4E,19.1e10,0.54,,,,, +2002-06-02 04:28:20,34.0N,21.0E,450.0e10,8.8,,,,, +2002-04-03 19:10:21,5.3S,27.1E,18.2e10,0.51,,,,, +2002-04-02 02:36:28,3.2e10,0.11,,,,,,, +2002-03-28 21:29:56,2.7e10,0.095,,,,,,, +2002-03-19 05:56:10,8.3e10,0.26,,,,,,, +2002-03-19 02:56:52,5.3e10,0.17,,,,,,, +2002-03-18 14:44:57,60.4S,120.5W,2.0e10,0.073,,,,, +2002-03-09 01:20:24,6.9N,147.3W,24.9e10,0.68,,,,, +2002-03-03 21:10:55,37.5N,154.0E,8.2e10,0.25,,,,, +2002-03-01 03:53:59,29.2N,66.8W,3.8e10,0.13,,,,, +2002-02-09 19:50:26,17.7S,138.7E,7.0e10,0.22,,,,, +2002-02-01 19:07:54,60.7N,116.6E,7.0e10,0.22,,,,, +2002-01-20 16:42:04,48.4N,165.0W,10.4e10,0.31,,,,, +2002-01-03 12:19:37,12.3e10,0.36,,,,,,, +2001-12-14 17:58:04,15.1e10,0.44,,,,,,, +2001-12-12 16:56:13,9.8e10,0.3,,,,,,, +2001-11-26 06:51:52,19.2e10,0.54,,,,,,, +2001-11-13 10:58:48,31.2e10,0.83,,,,,,, +2001-11-11 12:14:02,13.0e10,0.38,,,,,,, +2001-10-27 19:20:12,52.7N,3.8E,3.6e10,0.12,,,,, +2001-10-14 12:03:11,8.9e10,0.27,,,,,,, +2001-10-12 03:11:53,6.2e10,0.2,,,,,,, +2001-10-06 06:29:38,15.8e10,0.45,,,,,,, +2001-09-25 11:54:06,4.2e10,0.14,,,,,,, +2001-08-26 16:08:52,3.8e10,0.13,,,,,,, +2001-08-18 13:57:43,4.0e10,0.13,,,,,,, +2001-07-26 21:20:19,0.4N,84.8E,32.6e10,0.86,,,,, +2001-07-23 22:19:11,41.0N,77.0W,124.0e10,2.8,,,,, +2001-05-06 04:30:29,5.0e10,0.16,,,,,,, +2001-04-27 09:46:18,13.0e10,0.38,,,,,,, +2001-04-23 06:12:35,28.0N,133.6W,29,460.0e10,9,,,, +2001-04-14 06:40:36,2.4e10,0.086,,,,,,, +2001-04-13 00:29:57,15.3S,162.4E,25.1e10,0.68,,,,, +2001-02-09 21:27:55,10.8e10,0.32,,,,,,, +2001-02-04 05:53:38,64.0S,97.3E,15.1e10,0.44,,,,, +2001-01-28 16:19:18,66.0N,31.3E,10.8e10,0.32,,,,, +2000-12-15 13:22:59,41.3N,95.2E,26.2e10,0.71,,,,, +2000-12-15 03:46:27,50.4N,58.9E,2.7e10,0.095,,,,, +2000-11-28 12:20:13,11.9e10,0.35,,,,,,, +2000-11-13 00:28:01,13.6S,5.8W,6.6e10,0.21,,,,, +2000-11-06 07:18:57,52.0S,22.2W,6.9e10,0.22,,,,, +2000-10-11 23:29:55,31.7S,5.5W,8.1e10,0.25,,,,, +2000-09-24 06:57:19,2.7e10,0.095,,,,,,, +2000-09-23 04:00:45,58.5S,142.6E,2.2e10,0.079,,,,, +2000-09-19 22:12:38,3.2S,133.8W,8.9e10,0.27,,,,, +2000-08-25 01:12:25,14.5N,106.1W,138.5e10,3.1,,,,, +2000-08-13 03:00:32,36.7N,127.8W,6.5e10,0.21,,,,, +2000-08-01 16:48:27,50.2S,101.9W,18.2e10,0.51,,,,, +2000-07-31 07:06:34,15.7N,138.5W,3.8e10,0.13,,,,, +2000-07-19 17:40:25,17.7S,94.1E,10.7e10,0.32,,,,, +2000-07-15 16:13:29,46.6S,163.3E,2.1e10,0.076,,,,, +2000-07-09 01:08:45,12.1e10,0.36,,,,,,, +2000-07-07 01:34:20,15.0N,140.7E,6.5e10,0.21,,,,, +2000-06-27 10:06:51,34.9N,36.8E,2.7e10,0.095,,,,, +2000-06-23 09:03:42,69.2N,44.0W,2.0e10,0.073,,,,, +2000-06-22 20:02:11,32.9N,159.0E,3.0e10,0.1,,,,, +2000-06-18 13:40:02,13.3e10,0.39,,,,,,, +2000-06-14 16:39:18,28.1N,107.3E,48,14.5e10,0.42,,,, +2000-06-04 03:17:39,19.0e10,0.53,,,,,,, +2000-06-03 03:24:49,36.8N,74.8W,3.0e10,0.1,,,,, +2000-06-02 18:44:16,27.5S,18.9W,3.0e10,0.1,,,,, +2000-05-29 16:46:28,6.0e10,0.19,,,,,,, +2000-05-06 11:51:52,49.9N,18.4E,2.8e10,0.098,,,,, +2000-05-03 10:40:09,5.0S,73.0E,5.9e10,0.19,,,,, +2000-04-21 13:42:20,8.6e10,0.27,,,,,,, +2000-04-04 13:38:15,2.3e10,0.082,,,,,,, +2000-03-28 15:27:17,1.0N,98.3E,6.3e10,0.2,,,,, +2000-03-19 05:11:50,4.9e10,0.16,,,,,,, +2000-03-06 08:29:18,58.0N,175.0E,96.0e10,2.2,,,,, +2000-02-18 09:25:59,0.9S,109.2E,362.0e10,7.3,,,,, +2000-02-17 14:22:07,14.2N,115.9E,2.2e10,0.079,,,,, +2000-01-18 16:43:42,60.3N,134.6W,105.0e10,2.4,,,,, +2000-01-18 08:33:58,24.3N,94.9W,3.5e10,0.12,,,,, +1999-12-16 00:07:22,26.5S,11.3W,6.7e10,0.21,,,,, +1999-12-11 17:31:52,27.3e10,0.74,,,,,,, +1999-12-10 18:56:50,2.8e10,0.098,,,,,,, +1999-12-03 17:24:45,4.2e10,0.14,,,,,,, +1999-12-01 19:38:15,2.3e10,0.082,,,,,,, +1999-11-30 02:18:53,4.5e10,0.15,,,,,,, +1999-11-15 20:01:28,8.1S,75.4E,7.4e10,0.23,,,,, +1999-11-07 17:53:06,2.3S,77.4W,8.9e10,0.27,,,,, +1999-10-26 17:19:42,13.7N,70.8W,8.6e10,0.27,,,,, +1999-09-08 23:55:35,22.4N,0.2E,2.8e10,0.098,,,,, +1999-09-08 14:41:53,32.5N,104.6E,32,9.0e10,0.28,,,, +1999-08-16 05:18:20,35.0N,107.2W,3.6e10,0.12,,,,, +1999-08-06 03:22:37,6.8e10,0.22,,,,,,, +1999-08-03 18:25:49,64.7S,18.8W,35.6e10,0.93,,,,, +1999-07-10 08:11:42,37.8S,39.6E,52,32.6e10,0.86,,,, +1999-07-07 04:14:41,39.5S,174.4E,14.0e10,0.41,,,,, +1999-06-25 06:27:41,50.0N,121.0E,69.0,12.4e10,0.37,,,, +1999-05-23 07:02:10,16.4S,116.3W,2.6e10,0.092,,,,, +1999-04-26 11:33:06,22.5S,6.5E,9.2e10,0.28,,,,, +1999-04-26 09:49:26,32.8S,159.1E,3.3e10,0.11,,,,, +1999-03-31 23:54:35,17.9S,22.6E,23.4e10,0.64,,,,, +1999-03-28 15:37:01,0.8N,97.6E,30.4e10,0.81,,,,, +1999-03-02 22:23:25,18.9N,50.5E,5.9e10,0.19,,,,, +1999-02-18 23:15:25,54.9S,64.6W,15.4e10,0.44,,,,, +1999-02-01 14:24:09,80.0N,154.2E,2.8e10,0.098,,,,, +1999-01-19 02:32:21,7.9N,85.8E,2.4e10,0.086,,,,, +1999-01-14 08:06:05,44.0S,129.7W,32.0,506.0e10,9.8,,,, +1999-01-12 19:24:52,4.3e10,0.14,,,,,,, +1999-01-11 05:18:17,2.4e10,0.086,,,,,,, +1999-01-02 18:25:51,47.0N,103.0E,65.0,3.5e10,0.12,,,, +1998-12-22 09:24:00,2.7e10,0.095,,,,,,, +1998-11-23 20:20:14,82.3N,160.1E,2.5e10,0.089,,,,, +1998-11-11 16:46:18,6.5N,156.4E,65.6e10,1.6,,,,, +1998-10-03 12:58:50,3.2e10,0.11,,,,,,, +1998-09-04 09:16:11,12.8e10,0.38,,,,,,, +1998-09-01 11:15:04,34.6N,23.6E,2.4e10,0.086,,,,, +1998-08-30 00:20:12,4.1e10,0.14,,,,,,, +1998-08-08 12:55:22,2.3e10,0.082,,,,,,, +1998-07-28 14:16:53,6.3e10,0.2,,,,,,, +1998-03-24 09:08:14,2.7e10,0.095,,,,,,, +1998-03-22 22:25:37,1.4N,26.6E,14.0e10,0.41,,,,, +1998-01-08 16:10:21,6.2e10,0.2,,,,,,, +1998-01-04 23:00:27,35.1S,33.4E,30.0,17.1,6.0,-10.6,12.0,7.4e10,0.23 +1997-12-28 03:58:18,23.1S,152.4E,3.1e10,0.11,,,,, +1997-12-09 08:15:55,62.7N,49.9W,27.0e10,0.73,,,,, +1997-11-07 07:46:55,57.3S,167.2E,80.0e10,1.9,,,,, +1997-10-09 18:47:15,31.8N,106.0W,37.0,19.0e10,0.53,,,, +1997-10-01 14:26:43,46.7N,108.9E,6.2e10,0.2,,,,, +1997-09-30 12:31:18,38.1S,63.9E,2.3e10,0.082,,,,, +1997-09-05 11:41:54,31.1S,56.4E,19.0e10,0.53,,,,, +1997-08-20 17:16:43,2.6e10,0.092,,,,,,, +1997-08-15 01:05:22,2.2e10,0.079,,,,,,, +1997-07-30 03:01:51,5.0e10,0.16,,,,,,, +1997-07-04 12:22:33,15.8S,175.8W,2.7e10,0.095,,,,, +1997-05-22 08:30:15,4.5e10,0.15,,,,,,, +1997-04-27 22:34:21,16.7N,87.5E,32.5e10,0.86,,,,, +1997-02-19 04:31:35,16.3S,87.7W,14.0e10,0.41,,,,, +1997-02-15 15:23:35,35.5N,115.6E,15.0e10,0.43,,,,, +1997-02-06 18:28:34,2.6e10,0.092,,,,,,, +1997-01-28 17:49:49,2.4e10,0.086,,,,,,, +1997-01-23 10:03:27,15.0S,94.2E,27.0e10,0.73,,,,, +1997-01-22 21:13:16,32.2N,29.0E,48.0e10,1.2,,,,, +1997-01-04 06:46:39,25.7N,5.3W,4.3e10,0.14,,,,, +1997-01-03 15:08:07,35.0e10,0.92,,,,,,, +1996-12-17 04:16:18,34.1N,37.2W,4.1e10,0.14,,,,, +1996-12-10 06:09:32,25.0e10,0.68,,,,,,, +1996-12-04 17:00:34,4.9e10,0.16,,,,,,, +1996-12-01 13:19:35,6.2e10,0.2,,,,,,, +1996-11-22 10:06:17,6.8e10,0.22,,,,,,, +1996-11-08 16:02:13,6.1e10,0.2,,,,,,, +1996-10-30 12:48:19,2.1S,123.1W,2.1e10,0.076,,,,, +1996-10-28 04:46:21,27.4N,79.4W,4.3e10,0.14,,,,, +1996-10-23 08:28:06,47.3S,20.6E,4.4e10,0.15,,,,, +1996-10-19 19:01:08,29.7N,34.7W,13.0e10,0.38,,,,, +1996-10-07 17:43:44,4.5e10,0.15,,,,,,, +1996-10-05 19:21:02,49.6S,145.9E,25.0e10,0.68,,,,, +1996-08-17 15:46:08,3.4e10,0.12,,,,,,, +1996-08-15 16:07:51,8.4e10,0.26,,,,,,, +1996-08-09 18:14:56,3.0e10,0.1,,,,,,, +1996-08-07 03:16:03,15.0e10,0.43,,,,,,, +1996-08-06 04:50:32,13.0e10,0.38,,,,,,, +1996-08-05 19:27:52,22.0e10,0.61,,,,,,, +1996-08-05 15:19:30,8.0e10,0.25,,,,,,, +1996-07-17 03:16:07,31.8N,111.4E,5.0e10,0.16,,,,, +1996-07-12 14:04:45,20.7N,93.6W,3.2e10,0.11,,,,, +1996-06-25 11:22:40,2.1e10,0.076,,,,,,, +1996-05-08 01:02:05,2.8e10,0.098,,,,,,, +1996-05-01 13:19:25,3.5e10,0.12,,,,,,, +1996-03-31 00:53:57,2.7e10,0.095,,,,,,, +1996-03-30 04:03:32,31.1S,84.3W,12.0e10,0.36,,,,, +1996-03-29 20:30:54,21.5N,158.1W,12.8e10,0.38,,,,, +1996-03-25 17:00:41,4.4e10,0.15,,,,,,, +1996-03-13 08:31:01,23.0e10,0.63,,,,,,, +1996-02-16 07:03:14,5.5e10,0.18,,,,,,, +1996-02-15 02:38:05,76.0N,127.0W,5.0e10,0.16,,,,, +1996-01-18 17:10:49,12.0e10,0.36,,,,,,, +1996-01-15 13:44:23,59.8S,175.8E,26.0e10,0.71,,,,, +1995-12-27 12:55:01,2.2e10,0.079,,,,,,, +1995-12-22 13:26:29,70.2S,73.3W,45.0e10,1.1,,,,, +1995-12-09 19:54:26,2.9S,79.0W,12.0e10,0.36,,,,, +1995-11-25 05:29:31,2.9e10,0.1,,,,,,, +1995-11-13 03:10:47,2.1e10,0.076,,,,,,, +1995-10-01 02:42:01,3.5e10,0.12,,,,,,, +1995-09-09 07:38:38,50.0e10,1.3,,,,,,, +1995-08-24 21:54:35,12.0e10,0.36,,,,,,, +1995-08-17 16:39:02,16.0e10,0.46,,,,,,, +1995-08-06 04:38:09,5.5e10,0.18,,,,,,, +1995-08-05 17:14:10,11.6N,104.3W,20.0e10,0.56,,,,, +1995-07-11 18:38:41,28.5S,93.3E,13.0e10,0.38,,,,, +1995-07-09 18:20:09,0.9S,66.3E,2.5e10,0.089,,,,, +1995-07-07 17:33:37,40.2N,76.1W,14.0e10,0.41,,,,, +1995-06-09 09:28:38,2.5e10,0.089,,,,,,, +1995-04-02 12:32:38,2.5e10,0.089,,,,,,, +1995-02-16 13:05:47,16.7N,141.7W,6.0e10,0.19,,,,, +1995-01-18 10:17:26,51.5N,115.4E,7.0e10,0.22,,,,, +1995-01-10 21:08:41,2.5e10,0.089,,,,,,, +1995-01-04 04:16:17,46.4N,12.1E,4.1e10,0.14,,,,, +1995-01-02 20:41:38,3.0e10,0.1,,,,,,, +1994-12-18 12:45:40,5.0e10,0.16,,,,,,, +1994-12-16 09:41:03,42.2S,27.6E,5.0e10,0.16,,,,, +1994-11-03 20:01:36,6.5N,89.0E,235.0e10,5,,,,, +1994-11-01 06:50:46,1.5S,84.5W,100.0e10,2.3,,,,, +1994-10-27 04:21:29,32.0e10,0.85,,,,,,, +1994-10-20 00:11:21,45.2S,1.9W,8.7e10,0.27,,,,, +1994-10-08 03:24:22,6.6e10,0.21,,,,,,, +1994-09-22 04:22:17,6.7e10,0.21,,,,,,, +1994-08-15 23:16:48,16.4e10,0.47,,,,,,, +1994-06-15 00:02:26,45.0N,73.5W,4.1e10,0.14,,,,, +1994-06-03 20:48:42,50.9e10,1.3,,,,,,, +1994-05-29 09:30:58,52.8N,2.3E,38.4e10,1,,,,, +1994-02-01 22:38:09,2.7N,164.1E,1.82e13,30,,,,, +1993-11-29 17:48:41,26.5N,78.3E,2.6e10,0.092,,,,, +1993-10-31 03:39:27,51.3N,100.9W,4.0e10,0.13,,,,, +1991-10-04 09:22:47,78.7N,6.3E,55.0e10,1.4,,,,, +1990-10-01 03:51:47,7.5N,142.8E,250.0e10,5.2,,,,, +1988-04-15 03:03:10,4.1S,124.3E,758e10,14,,,,, \ No newline at end of file diff --git a/0-coursework/simple_text.txt b/0-coursework/simple_text.txt new file mode 100644 index 0000000..5be377b --- /dev/null +++ b/0-coursework/simple_text.txt @@ -0,0 +1 @@ +The quick brown fox jumps over the lazy dog! diff --git a/0-coursework/stundent_grades.json b/0-coursework/stundent_grades.json new file mode 100644 index 0000000..1cc1413 --- /dev/null +++ b/0-coursework/stundent_grades.json @@ -0,0 +1 @@ +[{"name": "Stanley", "math": "85", "science": "90", "history": "92"}, {"name": "Casey", "math": "75", "science": "80", "history": "85"}, {"name": "Taylor", "math": "95", "science": "100", "history": "100"}] \ No newline at end of file diff --git a/EXAMPLES/.hangman.py.swp b/EXAMPLES/.hangman.py.swp deleted file mode 100644 index 6c3c56ebfa7ecb906382b7fde028049415634bf4..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 12288 zcmeI2L2DC16vro?TNMSbeO(XTrI>A1RDuyif>bONV@0SXY<8!~*v-tcGcg22Px>A7 z=EZ~FJc>uZgbLpE><93_n@yVbQ1DoM13z}B^X9!bzuimdcGn(lY|{1mRe^C<2p7I@ z@6;~TK4n5Axi)#OY_W9QNTNjAeP^)c*zsbTFzhK8W@Fbkx)Z07wPEY=?ai(Gt#;Ut zbZ-#pdNw{b6)&;@Ht;V7hHmfDjYVk_?V`6#=g)2bO9qZ*18jf|umLu}2G{@_ zU;}L6gd1>KO}xYzPF3evs;;#o*J{caHoykh02^QfY=8~00XDz}*Z><~18m>~8i*1h zJ}(IIU=hvZ|Nqn9|G&=&@eBL_-@!NV1-u1sz!2O68=whR!2a zy`i+WGctKX%_a@T*2#Qa&KshPDdI-C(Y;O?DlM%xX}w&Msg;dcP?jt0$h(7Yvt{g- zz1ad1l;fb(PP|Kpi{US#3M((@Y`&MthFsdr==qv^Ca0K`rX1gAOFxy`$F}JSf?(1e zl1;Z3vGa-N4jCKmlpe}iAJu`jQW;rEMyF$v8hUUmDU}Yl)hSV+C_OC_&@Eagw5E-l zRjw-=rCC4ntEQ&G5TSH7biUUrlSh+BQWTJRgSv%M?HgAG<#i41laGIDwJ?\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
date/time for peak brightnesslatitudelongitudealtitude(km)velocity(km/s)velocity in x directionvelocity in y directionvelocity in z directionradiated energytotal impact energy
02022-04-21 22:15:2855.5S68.9W28.41.270000e+01-4.20011.63.23.900000e+100.130
12022-04-12 21:59:128.2S57.8E23.82.060000e+01-19.300-6.33.65.200000e+100.170
22022-04-04 00:30:393.2S64.3W31.51.970000e+01-17.6005.3-7.22.700000e+100.095
32022-03-30 18:19:1845.9S171.4W74.02.000000e+100.073NaNNaNNaNNaN
42022-03-28 10:20:247.7S74.3E29.01.960000e+01-16.600-10.40.13.780000e+110.980
\n", + "" + ], + "text/plain": [ + " date/time for peak brightness latitude longitude altitude(km) \\\n", + "0 2022-04-21 22:15:28 55.5S 68.9W 28.4 \n", + "1 2022-04-12 21:59:12 8.2S 57.8E 23.8 \n", + "2 2022-04-04 00:30:39 3.2S 64.3W 31.5 \n", + "3 2022-03-30 18:19:18 45.9S 171.4W 74.0 \n", + "4 2022-03-28 10:20:24 7.7S 74.3E 29.0 \n", + "\n", + " velocity(km/s) velocity in x direction velocity in y direction \\\n", + "0 1.270000e+01 -4.200 11.6 \n", + "1 2.060000e+01 -19.300 -6.3 \n", + "2 1.970000e+01 -17.600 5.3 \n", + "3 2.000000e+10 0.073 NaN \n", + "4 1.960000e+01 -16.600 -10.4 \n", + "\n", + " velocity in z direction radiated energy total impact energy \n", + "0 3.2 3.900000e+10 0.130 \n", + "1 3.6 5.200000e+10 0.170 \n", + "2 -7.2 2.700000e+10 0.095 \n", + "3 NaN NaN NaN \n", + "4 0.1 3.780000e+11 0.980 " + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "csv_file_name = 'nasas fireballs.csv'\n", + "nfb = pd.read_csv(csv_file_name)\n", + "nfb.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latitudelongitude
055.5S68.9W
18.2S57.8E
23.2S64.3W
345.9S171.4W
47.7S74.3E
\n", + "
" + ], + "text/plain": [ + " latitude longitude\n", + "0 55.5S 68.9W\n", + "1 8.2S 57.8E\n", + "2 3.2S 64.3W\n", + "3 45.9S 171.4W\n", + "4 7.7S 74.3E" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "nfb['date'] = pd.to_datetime(nfb['date/time for peak brightness'])\n", + "nfb[['latitude', 'longitude']].head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "'''ArithmeticErrorlatitude\tlongitude\n", + "0\t55.5S\t68.9W\n", + "1\t8.2S\t57.8E\n", + "2\t3.2S\t64.3W\n", + "3\t45.9S\t171.4W'''\n", + "def convert_latlon(s):\n", + " direction = s[-1]\n", + " num = float(s[:-1])\n", + " if direction in ['S', 'W']:\n", + " num *= -1\n", + " return num\n", + "nfb['lat_deg'] = nfb['latitude'].apply(lambda s: convert_latlon(s))\n", + "nfb['lon_deg'] = nfb['longitude'].apply(lambda s: convert_latlon(s))" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi0AAAGrCAYAAAAM6KcqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABkC0lEQVR4nO3deVxU5f4H8M8AsiooIqsg5o4pKgi5S2KkqYlmpF1FK7LNStLCe39p3iz0akY3KVMzyrRLrplbKkXmUirmVmkuoKiAoDjIIts8vz9sJgZmhWFmDn7erxcvnTNnznnOc7bvebYjE0IIEBEREVk5G0sngIiIiMgQDFqIiIhIEhi0EBERkSQwaCEiIiJJYNBCREREksCghYiIiCSBQQsRERFJAoMWIiIikgQGLURERCQJDFqILCwrKwsymQwpKSmqaW+99RZkMpnlEqWBpnSSdUhPT4dMJkN6erqlk0LUqBi0EGmQkpICmUym+rOzs4Ofnx+mTp2Kq1evWjp5On300UcMLMhgO3bswFtvvWXpZBAZhEELkQ7//ve/sWbNGixfvhwjRozAl19+iSFDhuDOnTuNut7/+7//Q1lZWb1+y6CFjLFjxw7Mnz/f0skgMoidpRNAZM1GjBiB0NBQAMAzzzwDDw8PLFq0CFu3bsXjjz/eaOu1s7ODnR1PT1MoKSmBi4uLpZNBRCbAkhYiIwwaNAgAcOHCBdW0iooKzJ07FyEhIXBzc4OLiwsGDRqEH374oc7vb926halTp8LNzQ0tW7ZEbGwsbt26VWc+TW1aPvvsMzz44IPw9PSEg4MDgoKC8PHHH6vNExgYiN9++w0//vijqmpr6NChaut/9dVX4e/vDwcHB3Ts2BGLFi2CQqGoVzq1MWQ9yjYyS5YswYoVK9ChQwc4ODigb9++OHLkSJ1lnjlzBo899hjc3d3h6OiI0NBQbN26VW0eZbXejz/+iBdeeAGenp5o27at6vvk5GTcd999cHJyQlhYGH766ScMHTpUlUfFxcVwcXHBK6+8Umf9V65cga2tLRITEzVuc2VlJdzd3TFt2rQ63xUVFcHR0RGzZs1STfvwww/RvXt3ODs7o1WrVggNDcW6det0Z+xf6Rg7dixcXFzg6emJmTNnory8vM58P/30EyZMmICAgAA4ODjA398fM2fOVCvBmzp1KpKTkwFArTpUSaFQICkpCd27d4ejoyO8vLwwffp0FBYW6k0nUWPgoxyREbKysgAArVq1Uk0rKirCqlWrMHHiRMTFxeH27dv49NNPERUVhcOHD6NXr14AACEEHn30Uezfvx/PPfccunXrhs2bNyM2NtagdX/88cfo3r07xowZAzs7O3z77bd44YUXoFAo8OKLLwIAkpKSMGPGDDRv3hz/+te/AABeXl4AgNLSUgwZMgRXr17F9OnTERAQgIMHD2LOnDnIyclBUlKSSdJp6HqU1q1bh9u3b2P69OmQyWT4z3/+g3HjxuHixYto1qwZAOC3337DgAED4Ofnh4SEBLi4uODrr7/G2LFjsXHjRkRHR6st84UXXkCbNm0wd+5clJSUqPLvpZdewqBBgzBz5kxkZWVh7NixaNWqlSqwad68OaKjo5GamoqlS5fC1tZWtcyvvvoKQgg8+eSTGre7WbNmiI6OxqZNm/DJJ5/A3t5e9d2WLVtQXl6OJ554AgCwcuVKvPzyy3jsscfwyiuv4M6dOzh58iR++eUXTJo0SWvelpWVYdiwYbh8+TJefvll+Pr6Ys2aNfj+++/rzLt+/XqUlpbi+eefR+vWrXH48GF8+OGHuHLlCtavXw8AmD59Oq5du4Y9e/ZgzZo1dZYxffp0pKSkYNq0aXj55ZeRmZmJZcuW4ddff8WBAwdU+4fIbAQR1fHZZ58JAGLv3r0iPz9fZGdniw0bNog2bdoIBwcHkZ2drZq3qqpKlJeXq/2+sLBQeHl5iaeeeko1bcuWLQKA+M9//qP220GDBgkA4rPPPlNNnzdvnqh9epaWltZJZ1RUlLjvvvvUpnXv3l0MGTKkzrxvv/22cHFxEX/++afa9ISEBGFraysuX75sdDo1MXQ9mZmZAoBo3bq1uHnzpmq+b775RgAQ3377rWrasGHDRI8ePcSdO3dU0xQKhejfv7/o1KmTappyvw0cOFBUVVWpppeXl4vWrVuLvn37isrKStX0lJQUAUAtv7777jsBQOzcuVMt/T179tSYrzUpf1sz7UIIMXLkSLX99Oijj4ru3bvrXJYmSUlJAoD4+uuvVdNKSkpEx44dBQDxww8/qKZrOl4SExOFTCYTly5dUk178cUX6xxrQgjx008/CQBi7dq1atN37dqlcTqRObB6iEiHyMhItGnTBv7+/njsscfg4uKCrVu3qlU52Nraqp6qFQoFbt68iaqqKoSGhuLYsWOq+Xbs2AE7Ozs8//zzar+dMWOGQWlxcnJS/V8ul6OgoABDhgzBxYsXIZfL9f5+/fr1GDRoEFq1aoWCggLVX2RkJKqrq7Fv3z6TpNPQ9SjFxMSolVwpq+AuXrwIALh58ya+//57PP7447h9+7ZqeTdu3EBUVBTOnTtXp0dXXFycWinJ0aNHcePGDcTFxam1FXryySfV1g3c3ee+vr5Yu3atatrp06dx8uRJ/OMf/9C57Q8++CA8PDyQmpqqmlZYWIg9e/YgJiZGNa1ly5a4cuWKxmowXXbs2AEfHx889thjqmnOzs549tln68xb83gpKSlBQUEB+vfvDyEEfv31V73rWr9+Pdzc3DB8+HC1/RgSEoLmzZtrrP4kamysHiLSITk5GZ07d4ZcLsfq1auxb98+ODg41Jnv888/x3vvvYczZ86gsrJSNb19+/aq/1+6dAk+Pj5o3ry52m+7dOliUFoOHDiAefPm4dChQygtLVX7Ti6Xw83NTefvz507h5MnT6JNmzYav79+/bpJ0mnoepQCAgLUPiuDCGW7ifPnz0MIgTfffBNvvvmm1mX6+fmpPtfMd+DuNgFAx44d1abb2dkhMDBQbZqNjQ2efPJJfPzxxygtLYWzszPWrl0LR0dHTJgwQeP6ay5v/PjxWLduHcrLy+Hg4IBNmzahsrJSLWh54403sHfvXoSFhaFjx4546KGHMGnSJAwYMEDn8i9duoSOHTvWae+kad9cvnwZc+fOxdatW+u0QTEkyD137hzkcjk8PT01fl97PxKZA4MWIh3CwsJUvYfGjh2LgQMHYtKkSTh79qzqpv7ll19i6tSpGDt2LGbPng1PT09Vg82aDXYb4sKFCxg2bBi6du2KpUuXwt/fH/b29tixYwfef//9Og1pNVEoFBg+fDhef/11jd937tzZJGk1dj01S0RqEkKolgcAs2bNQlRUlMZ5awcjNUsZ6mPKlClYvHgxtmzZgokTJ2LdunUYNWqU3sAQAJ544gl88skn2LlzJ8aOHYuvv/4aXbt2RXBwsGqebt264ezZs9i2bRt27dqFjRs34qOPPsLcuXNN0v24uroaw4cPx82bN/HGG2+ga9eucHFxwdWrVzF16lSDjxdPT0+1EqeatAWlRI2JQQuRgZSBSEREBJYtW4aEhAQAwIYNG3Dfffdh06ZNak/A8+bNU/t9u3btkJaWhuLiYrVSjLNnz+pd97fffovy8nJs3bpVrWRCUxG9tpF0O3TogOLiYkRGRupcV0PSacx6DHXfffcBuNvQtb7LbNeuHYC7pTYRERGq6VVVVcjKykLPnj3V5r///vvRu3dvrF27Fm3btsXly5fx4YcfGrSuwYMHw8fHB6mpqRg4cCC+//57VaPomlxcXBATE4OYmBhUVFRg3LhxeOeddzBnzhw4Ojpq3Y7Tp09DCKG2n2vvm1OnTuHPP//E559/jilTpqim79mzp84ydR0ve/fuxYABAxocBBKZCtu0EBlh6NChCAsLQ1JSkmqAOWVJgbJkAAB++eUXHDp0SO23I0eORFVVlVo35erqaoNuhprWIZfL8dlnn9WZ18XFRWP35McffxyHDh3Cd999V+e7W7duoaqqqsHpNGY9hvL09MTQoUPxySefICcnp873+fn5epcRGhqK1q1bY+XKlWrrX7t2rdbuu5MnT8bu3buRlJSE1q1bY8SIEQal18bGBo899hi+/fZbrFmzBlVVVWpVQwBw48YNtc/29vYICgqCEEKterG2kSNH4tq1a9iwYYNqWmlpKVasWKE2n6bjRQiBDz74oM4ylWPY1D5mHn/8cVRXV+Ptt9+u85uqqiqjusATmQpLWoiMNHv2bEyYMAEpKSl47rnnMGrUKGzatAnR0dF45JFHkJmZieXLlyMoKAjFxcWq340ePRoDBgxAQkICsrKyEBQUhE2bNhnUvuChhx6Cvb09Ro8ejenTp6O4uBgrV66Ep6dnnRt5SEgIPv74YyxYsAAdO3aEp6cnHnzwQcyePRtbt27FqFGjMHXqVISEhKCkpASnTp3Chg0bkJWVBQ8PjwalU5k/hqzHGMnJyRg4cCB69OiBuLg43HfffcjLy8OhQ4dw5coVnDhxQufv7e3t8dZbb2HGjBl48MEH8fjjjyMrKwspKSno0KGDxtKGSZMm4fXXX8fmzZvx/PPPG9W9NyYmBh9++CHmzZuHHj16oFu3bmrfP/TQQ/D29saAAQPg5eWFP/74A8uWLcMjjzyCFi1aaF1uXFwcli1bhilTpiAjIwM+Pj5Ys2YNnJ2d1ebr2rUrOnTogFmzZuHq1atwdXXFxo0bNQZoISEhAICXX34ZUVFRsLW1xRNPPIEhQ4Zg+vTpSExMxPHjx/HQQw+hWbNmOHfuHNavX48PPvhArUEwkVlYrN8SkRVTdp09cuRIne+qq6tFhw4dRIcOHURVVZVQKBTi3XffFe3atRMODg6id+/eYtu2bSI2Nla0a9dO7bc3btwQkydPFq6ursLNzU1MnjxZ/PrrrwZ1ed66davo2bOncHR0FIGBgWLRokVi9erVAoDIzMxUzZebmyseeeQR0aJFizrdeW/fvi3mzJkjOnbsKOzt7YWHh4fo37+/WLJkiaioqDA6ndoYsh5ll+fFixfX+T0AMW/ePLVpFy5cEFOmTBHe3t6iWbNmws/PT4waNUps2LBBNY+u/SaEEP/9739V+yksLEwcOHBAhISEiIcffljj/CNHjhQAxMGDB/Vuc00KhUL4+/sLAGLBggV1vv/kk0/E4MGDRevWrYWDg4Po0KGDmD17tpDL5XqXfenSJTFmzBjh7OwsPDw8xCuvvKLqhlyzy/Pvv/8uIiMjRfPmzYWHh4eIi4sTJ06cqLMPq6qqxIwZM0SbNm2ETCarc9ytWLFChISECCcnJ9GiRQvRo0cP8frrr4tr164ZlSdEpiATokb5IRHRPUShUKBNmzYYN24cVq5cWef76OhonDp1CufPn7dA6oioNrZpIaJ7wp07d1D7Ge2LL77AzZs31V51oJSTk4Pt27dj8uTJZkohEenDkhYiuiekp6dj5syZmDBhAlq3bo1jx47h008/Rbdu3ZCRkaEaIDAzMxMHDhzAqlWrcOTIEVy4cAHe3t4WTj0RAWyIS0T3iMDAQPj7++O///0vbt68CXd3d0yZMgULFy5Ue0/Qjz/+iGnTpiEgIACff/45AxYiK8KSFiIiIpIEtmkhIiIiSWDQQkRERJLQZNq0KBQKXLt2DS1atNA6LDURERFZFyEEbt++DV9fX9jY6C5LaTJBy7Vr1+Dv72/pZBAREVE9ZGdno23btjrnaTJBi3Lo6+zsbLi6ulo4NURERGSIoqIi+Pv763yFhVKTCVqUVUKurq4MWoiIiCTGkKYdbIhLREREksCghYiIiCSBQQsRERFJQpNp00JERLoJIVBVVYXq6mpLJ4XuMc2aNYOtrW2Dl8OghYjoHlBRUYGcnByUlpZaOil0D5LJZGjbti2aN2/eoOUwaCEiauIUCgUyMzNha2sLX19f2NvbcxBOMhshBPLz83HlyhV06tSpQSUuDFqIiJq4iooKKBQK+Pv7w9nZ2dLJoXtQmzZtkJWVhcrKygYFLWyIS0R0j9A3RDpRYzFVyR6PYCIiC8qRl+HghQLkyMssnRQiq8fqISIiC0k9chlzNp2CQgA2MiBxXA/E9A2wdLKIrBZLWoiILCBHXqYKWABAIYB/bjrNEpdGkpKSgpYtW6o+v/XWW+jVq5fF0iOTybBlyxaLrV+qGLQQEVlAZkGJKmBRqhYCWQXskmwOs2bNQlpamlG/YaBheQxaiIgsoL2HC2xqtU20lckQ6GHdvXss2QanoqLCZMtq3rw5WrdubbLlNRWVlZWWToJODFqIiCzAx80JieN6wPavXhW2MhneHXc/fNycLJwy7VKPXMaAhd9j0spfMGDh90g9crlR1zd06FC89NJLePXVV+Hh4YGoqCgAwNKlS9GjRw+4uLjA398fL7zwAoqLi9V+m5KSgoCAADg7OyM6Oho3btxQ+7529dCRI0cwfPhweHh4wM3NDUOGDMGxY8dU3wcGBgIAoqOjIZPJVJ8B4JtvvkGfPn3g6OiI++67D/Pnz0dVVZXq+3PnzmHw4MFwdHREUFAQ9uzZo3fbFQoFEhMT0b59ezg5OSE4OBgbNmxQfZ+eng6ZTIa0tDSEhobC2dkZ/fv3x9mzZ9WWoy9tMpkMH3/8McaMGQMXFxe88847AIAFCxbA09MTLVq0wDPPPIOEhARVfu3btw/NmjVDbm6u2rpeffVVDBo0SO+2NYhoIuRyuQAg5HK5pZNCRGSwa7dKxcHzBeLardJGW0dZWZn4/fffRVlZWb2Xce1WqWifsE20e+Pvv/sStjdquocMGSKaN28uZs+eLc6cOSPOnDkjhBDi/fffF99//73IzMwUaWlpokuXLuL5559X/e7nn38WNjY2YtGiReLs2bPigw8+EC1bthRubm6qeebNmyeCg4NVn9PS0sSaNWvEH3/8IX7//Xfx9NNPCy8vL1FUVCSEEOL69esCgPjss89ETk6OuH79uhBCiH379glXV1eRkpIiLly4IHbv3i0CAwPFW2+9JYQQorq6Wtx///1i2LBh4vjx4+LHH38UvXv3FgDE5s2btW77ggULRNeuXcWuXbvEhQsXxGeffSYcHBxEenq6EEKIH374QQAQ4eHhIj09Xfz2229i0KBBon///qpl6EubEEIAEJ6enmL16tXiwoUL4tKlS+LLL78Ujo6OYvXq1eLs2bNi/vz5wtXVVS2/OnfuLP7zn/+oPldUVAgPDw+xevVqjduj6xg05v7NoIWIqIkzRdBy4Hy+WsCi/Dt4vsCEKVU3ZMgQ0bt3b73zrV+/XrRu3Vr1eeLEiWLkyJFq88TExOgMWmqrrq4WLVq0EN9++61qmqZAY9iwYeLdd99Vm7ZmzRrh4+MjhBDiu+++E3Z2duLq1auq73fu3KkzaLlz545wdnYWBw8eVJv+9NNPi4kTJwoh/g5a9u7dq/p++/btAoBqP+tLm3KbXn31VbV5wsPDxYsvvqg2bcCAAWr5tWjRItGtWzfV540bN4rmzZuL4uJijdtkqqCF1UNERKSXpdrghISE1Jm2d+9eDBs2DH5+fmjRogUmT56MGzduqN6r9McffyA8PFztN/369dO5nry8PMTFxaFTp05wc3ODq6sriouLcfmy7iqwEydO4N///jeaN2+u+ouLi1O95+mPP/6Av78/fH19DU7L+fPnUVpaiuHDh6st94svvsCFCxfU5u3Zs6fq/z4+PgCA69evG5Q2pdDQULVlnj17FmFhYWrTan+eOnUqzp8/j59//hnA3eq4xx9/HC4uLjq3raEsMk5LdHQ00tPTMWzYMLU6OgAoLS1Ft27dMGHCBCxZssQSySMiolqUbXD+uek0qoUwWxuc2jfBrKwsjBo1Cs8//zzeeecduLu7Y//+/Xj66adRUVFR79cUxMbG4saNG/jggw/Qrl07ODg4oF+/fnob/xYXF2P+/PkYN25cne8cHR3rlRZl+5zt27fDz89P7TsHBwe1z82aNVP9XznqrEKhMCpt9Qk0PD09MXr0aHz22Wdo3749du7cifT0dKOXYyyLBC2vvPIKnnrqKXz++ed1vnvnnXfwwAMPWCBVRESkS0zfAAzu3AZZBaUI9HC2SKPhjIwMKBQKvPfee6rXEnz99ddq83Tr1g2//PKL2jRliYA2Bw4cwEcffYSRI0cCALKzs1FQUKA2T7NmzVBdXa02rU+fPjh79iw6duyocbndunVDdnY2cnJyVCUh+tISFBQEBwcHXL58GUOGDNE5ry760qZNly5dcOTIEUyZMkU17ciRI3Xme+aZZzBx4kS0bdsWHTp0wIABA+qdVkNZJGgZOnSoxojs3LlzOHPmDEaPHo3Tp0+bP2FERKSTj5uTRXs4dezYEZWVlfjwww8xevRoHDhwAMuXL1eb5+WXX8aAAQOwZMkSPProo/juu++wa9cuncvt1KkT1qxZg9DQUBQVFWH27NlwclLfzsDAQKSlpWHAgAFwcHBAq1atMHfuXIwaNQoBAQF47LHHYGNjgxMnTuD06dNYsGABIiMj0blzZ8TGxmLx4sUoKirCv/71L51padGiBWbNmoWZM2dCoVBg4MCBkMvlOHDgAFxdXREbG2tQXulLmzYzZsxAXFwcQkND0b9/f6SmpuLkyZO477771OaLioqCq6srFixYgH//+98GpamhjG7Tsm/fPowePRq+vr5aB9pJTk5GYGAgHB0dER4ejsOHDxu07FmzZiExMdHYJBER0T0iODgYS5cuxaJFi3D//fdj7dq1de4bDzzwAFauXIkPPvgAwcHB2L17N/7v//5P53I//fRTFBYWok+fPpg8eTJefvlleHp6qs3z3nvvYc+ePfD390fv3r0B3L1xb9u2Dbt370bfvn3xwAMP4P3330e7du0A3H1J5ebNm1FWVoawsDA888wzqm7Furz99tt48803kZiYiG7duuHhhx/G9u3b0b59e4PzSl/atHnyyScxZ84czJo1C3369EFmZiamTp1ap7rLxsYGU6dORXV1tVqpTGOS/dV62GA7d+7EgQMHEBISgnHjxmHz5s0YO3as6vvU1FRMmTIFy5cvR3h4OJKSkrB+/XqcPXtW7QBIT0/HsmXLVG1avvnmG+zfvx+LFy9GSkoKTp8+rbNNS3l5OcrLy1Wfi4qK4O/vD7lcDldXV2M2iYioSbtz5w4yMzPRvn37erezoHvb8OHD4e3tjTVr1qhNf/rpp5Gfn4+tW7fq/L2uY7CoqAhubm4G3b+Nrh4aMWIERowYofX7pUuXIi4uDtOmTQMALF++HNu3b8fq1auRkJCg9Xc///wz/ve//2H9+vUoLi5GZWUlXF1dMXfuXI3zJyYmYv78+cYmn4iIiHQoLS3F8uXLERUVBVtbW3z11VfYu3ev2qB4crkcp06dwrp16/QGLKZk0i7PFRUVyMjIQGRk5N8rsLFBZGQkDh06pPO3iYmJyM7ORlZWFpYsWYK4uDitAQsAzJkzB3K5XPWXnZ1tsu0gIiK6V8lkMuzYsQODBw9GSEgIvv32W2zcuFHt3v7oo4/ioYcewnPPPYfhw4ebLW0mbYhbUFCA6upqeHl5qU338vLCmTNnVJ8jIyNx4sQJlJSUoG3btli/fr3efuu1OTg41On6RURERA3j5OSEvXv36pzHHN2bNbFI7yF9mTF16lTzJISIiIgkw6TVQx4eHrC1tUVeXp7a9Ly8PHh7e5tyVUREZCQj+10QmYypjj2TBi329vYICQlBWlqaappCoUBaWprR1T9ERGQaylFTaw7dTmROypGFbW1tG7Qco6uHiouLcf78edXnzMxMHD9+HO7u7ggICEB8fDxiY2MRGhqKsLAwJCUloaSkRNWbiIiIzMvW1hYtW7ZUvZPG2dlZNeQ7UWNTKBTIz8+Hs7Mz7Owa1irF6F8fPXoUERERqs/x8fEA7r63ISUlBTExMcjPz8fcuXORm5uLXr16YdeuXXUa5xIRkfkoq+iVgQvVX7VCoKpaATtbG9jWfoskaWRjY4OAgIAGB8tGDy5nrYwZnIaI6F5VXV2NyspKSydDsnacuoale/6EEIBMBsQP74yRPXz1//AeZ29vr3pXVG2NOrgcERFJl62tbYPbFdyrcuRlmLXpDyhqPOrP3nQG/Tr7WPR9TPcSkzbEJSIiaqoyC0rUAhYAqBYCWQVs4GwuDFqIyCrkyMtw8EIBcuRlklo23Tvae7igdhMWW5kMgR7OlknQPYjVQ0RkcalHLmPOplNQCMBGBiSO64GYvgFWv2y6t/i4OSFxXA/8c9NpVAsBW5kM7467n1VDZsSGuERkUTnyMgxY+L1asbutTIb9CRENvhk05rLp3pUjL0NWQSkCPZx5HJkAG+ISkWToaifQ0BtCYy6b7l0+bk48fiyEbVqIyKIas50A2yAQNS0MWog0YMNN81G2E7D9a9ApGxnw1MDARlk22yAQSRvbtBDVwoablpEjL8NnBzKxcl8mBEyb92yDQGS9jLl/s6SFqIYceZkqYAEAhQD+uek0S1zMZNVPdwMWwLR57+PmhH4dWjNgIZI4Bi1ENUhl8KimWH1V37xvinlBRJqx9xBRDcqGm7W7yFpTw82mWn1Vn7xvqnnRlOTIy5BZUIL2Hi4s6aIGY0kLUQ3W3nCzKVdfGZv3TTkvmorUI5cxYOH3mLTyFwxY+D1Sj1y2dJJI4ljSQlRLTN8ADO7cxiobbjb1cUeMyfummhdNpWRCW1A5uHMbSW+XtWoqx40+DFqINLDWwaOkUH3VUIbmfVPMi6ZU3dVUg0pr1JSOG31YPUQkIdZefWVOTS0vzFXdZa6GyxzYzzzutWpSlrQQSYw1V1+ZW1PKC3OUTJjziZwvFzSPxjxurLHKiUELkQRZa/WVJTSVvGjs6i5LtDGxpqDSGm/AptBYx421VjmxeoiIyAo0dnWXpcYgsoaB/SzRi8lc1XCNcdxYc5UTS1qIiKxEY5ZMNMWGy4awRAmTuUspTH3cWHMjapa0UJPBkVGpPqztuGmskomm1nDZUOYuYbJUKYUpjxtrbkTNkhZqEqy1/pWs27123FhTGxNzMUdboZptZay5lMJQtRtRm/LN6w3FkhaSvIY82VjbUzY1jDH705rr7RuTqUtyrP0caswSJk1tZay5lMIYMX0DsD8hAs8Obg8hgJU/ZVrFqMYsaSHJq++Tzb32lG1u5u6tYez+lPITsbX0hJHKOdQYJUzagt79CRFNqqu3pjevW3JUY4sELdHR0UhPT8ewYcOwYcMGAEB2djYmT56M69evw87ODm+++SYmTJhgieSRxNSn+JdDjDcuc9/M6rM/pdow1VoCBamdQ6buGq8r6G0q1XDWGNhbpHrolVdewRdffKE2zc7ODklJSfj999+xe/duvPrqqygpKbFE8khi6lP8a6nun/Vl7UXwNVmi2qU++1OKDVOtqUpLaueQoQw91/RVA1lDV++GyJGX4WZJBWptosUDe4uUtAwdOhTp6elq03x8fODj4wMA8Pb2hoeHB27evAkXFxcLpJCkxtgnGyk9ZVvLk7WhLPF0Vt/9aY1PxLqqfozN28asRpLSOWQoY861pjzib818kOHun4B1BPZGl7Ts27cPo0ePhq+vL2QyGbZs2VJnnuTkZAQGBsLR0RHh4eE4fPiwUevIyMhAdXU1/P39jU0e3cOMebKRylO2NT1ZG8rYhoimKEVqyP60pidifYOgGZO3jT2gmlTOIUPV51xTNlb9Ku4B7E+IsOqHCUPVzgcBQCYDlk3sbRXbaHRJS0lJCYKDg/HUU09h3Lhxdb5PTU1FfHw8li9fjvDwcCQlJSEqKgpnz56Fp6en3uXfvHkTU6ZMwcqVK3XOV15ejvLyctXnoqIiYzeF7nHW+JRdmzXWKetjzBNofUqRtJUeSGF/6mJIGxFD89Zc7U2knuc1aTvXjl0qRCsX7aVVTeU1Ekqa8kEhgNbNHaxiO40OWkaMGIERI0Zo/X7p0qWIi4vDtGnTAADLly/H9u3bsXr1aiQkJOhcdnl5OcaOHYuEhAT0799f57yJiYmYP3++scknUmOpC46hxfZSLYI35GZWnxurviBHyjcQQwNUQ/LWnNVIUs7zmjSdawDw4rpfAUijatYQ+va1tV9zTNoQt6KiAhkZGYiMjPx7BTY2iIyMxKFDh3T+VgiBqVOn4sEHH8TkyZP1rmvOnDmQy+Wqv+zs7Aann+4dlmzYakyxvZSL4PVVuxjbkFOKVWXGMKbqR1/eWlM1Uk2Ndd6ZqorxjRFdtX7fFMZ/MmRfW/s1x6QNcQsKClBdXQ0vLy+16V5eXjhz5ozqc2RkJE6cOIGSkhK0bdsW69evR3V1NVJTU9GzZ09VO5k1a9agR48eGtfl4OAABwcHUyaf7hGWbNhan9KFplQEX5OxT3RSrCozhikbdlpbNRLQeOedKZfbw89N5/e1jzdNpRbW2nDemH1tzdcci/Qe2rt3r8bpCoXCzCmhpkhX8aelx5ao7423qRTB12TIjbXmvrT2YmtTMOXNojGqkepL03k3Z9MpdPVugWD/ViZdrrHns75jrKaax5um4GRw5zZWO3aNsfvaWq85Jg1aPDw8YGtri7y8PLXpeXl58Pb2NuWqiDTS95Rj6af1e+HGawxdN1ZN+1KqXUyNaTNiypuFvmWZ63jU1rhzbPJBPDOoPZ4a2L5e29zQ81nfMSb7q69v7e6+2oKlpCeCrbY0sKlce0watNjb2yMkJARpaWkYO3YsgLulJ2lpaXjppZdMuSqiOgx56jp1VV7nd+Y8cZva2A6mGAdE041V1xDp+xMirLLYWhtTVBc01ngr5joetZVgCNx9p82qnzKxcLxh+WKq0jdDjzEAav8/eKEAN4rLNQYnNjJZgwKDxhxXp6lce4wOWoqLi3H+/HnV58zMTBw/fhzu7u4ICAhAfHw8YmNjERoairCwMCQlJaGkpETVm4ioseh76sqRl2HRzjN1fvf6w13MeuJac32xMRqz7l7XvrSWMVUMYYrqi8ZuI2GO41F5w6yZFzUJGJYvpix903aMbT+Zg0d6+qBfh9Zq6a+9buWAa0q2Mhn6tGtV7/SYoy1Mffe1tbzrCqhH0HL06FFERESoPsfHxwMAYmNjkZKSgpiYGOTn52Pu3LnIzc1Fr169sGvXrjqNc4lMTd9Tl6aLFAD0bNvSPAmswVrriw3V2G2DNO1LGxlQUHwHOfIyyeRdQ6svGprPht5szHE8xvQNQFfvFhibfBAaTkO9+WLq0jdtpT8Ltv+Bd3f8oRY0aFq3TAbYCEAB9aqj+gQG5mxrZ+y+traGxUZ3eR46dCiEEHX+UlJSVPO89NJLuHTpEsrLy/HLL78gPDzclGkm0khfV72m8sp4a1Cf7srauoBq+q72vpTJACGAGV8db/RuuabU0GOuIe/3MWdXZkMF+7fCwvE96rzPBtCfL/oCQGNL4GofYzXV7t6sad1CAB9O6q1xNFxj02Ot73GyxmEGLNJ7iKix6HrKaQp1uqYopjXFMoxpS6DrSU3Xd8p9eexSIV5a96vq6dyaemTo4+PmhDce7oqFO89A4O5TojHHXH3bbGjrreNsb4vQQHeL5tvgzm00TtdXTdsY7dGUx9j2kzlYsP0Pte9qBkTa9kOfdq305qUh55u1NpK1dMcFTSzylmeixqTrKcfU7wox5yBSpnhyNtXTt6EDUOl6UjPkKc7HzQmtXOzrVCdYw1OoIVKPXFYFLMDdqoRbZZUG/76+A31p661j6ZKqHHkZtp28prF6SFc1bWO2R/Nxc8IjPX30vrE5cVwP1Q3T0ODT0PPNWgd0s8bSaZa00D3HVPX39a3rrU9Jh6nGozBlvXlDxwEREAY9xVnrU6g+yvyufYNO3HEGEMD0IR0MWk592kjoGm/E0P1uqsaXyuWcuiLHol1nNKZJX3slfe3RNKVVW/pPZBficNZNhAW6q8aIMbgUVtn6VlP9lobt1nS+dfVugZKKakm8O8saS6cZtBDVQ30DAGMCnZoXXVMU05qiUWjtm0BDxwExJBixxgunIbTdaAFg0c4zGNPL1+BtMDbQrp1ntenb77WP06cH1m8slZrL0aZmeyVt54Su40jTOQVA43n22tfHsfHYVdUyxvfxw3uP9wKgO2ioz/mu7Xx7NPkgAOm8O8vagilWDxHVQ30azhnTqK12sfKpq/IGF9M2pKj3kx8voH+i7mJuQxrU1gw4jCkSH9y5DT6Y2AvLJvY2SbWetvSa8rea8ltJAZisektbWpRVocmTetcpGKi532v/XtNxuvKnTPRPNK5aqfZyNHlqQCCEQJ32SrW3RdOx8vqILsi4VIiEjXXb7tSe9s9Np5H2R65awAIAG49dxYnsQrX1aKpars/5rmv/69pWa6I8NgBYzVADLGkhqof6VFkYWtKh6abxn51n8cbDXfGfXWfrXdpQ3xKLT/ZdQGKN9gSanjJTj1xGwsZTqpLzmgOF6XpSM+QprjG6XDZkmdp+q6kk6pmB7bHip8w6yzBV9ZYh29HKxR4JIzQfO7V//8aIrii+U6l1LBVjht7XVdIE3C1hWX0gq870msFAzfyseaycvHILi3ZqrmrSNK1aCPxw9rrGdBzNKtS7PfU53/WNTaNMl6VHy9VWjWZtXZ2VGLQQGaj2yW1sAGDohU9bcNOzbcsGjwZrbFFvjrwMCzU0gKwWAscuFeKRnncH7VMGLMDdm1vCxlNqQY2uYm9d3zXG+BUNWaa2394qrVS117CRAdG9/bD516uqz30DW+FwZmGd4eCNSbOmNhu6tkNTQNLTr6Vqv2v6feKOuvu6JoW4O/S+IaPX6mpXY/NXlZAmtjIZTl65hSdX/VznhqncduV3miiXLWotM6KLJ778ObvO/KGB+gMwQ8/32vsppm8AnO1tMeOr41q3teb5nyMvQ8alQgghDOrl1dB2R7oCcGt9hxKDFiIDaDu5jQkADL3w6QpuDKnz1nch07eM2m1ptN1cXlr3K4rLq+Bsb1unsakAkJFViFHBDbvANUaXy4YsU9tv1XoICahVQygEcDTrFra82B+lFQqjA05tx56+KgtNpXX7EyJU69ZXEqKNgGE3ME3H++sjuqCnX0sUFN/ReCO3AfD6iC5qpSi1b5i60q08p/BXGmueZ8O6eWN8H786bVoMfWGjvvNd234KDXTXGLzJ/tpWTaWVyu91BYc11yeTAQkjumL6YMMadwO6g15r7OqsxKCFSA99Tx3GnMQ1L3zO9jYoqaiu02OiIQ1PG1qkq+npXNvTsvLm9dajQRqXpWHMLqM1Rs+hhixT029lOkoNlKqFQGmFQm1oeEPoOvZ0bYchNx19bzTWtz2G3MC03ehz5GUaRzze/EJ/lFRU60y7tn0wtV8gxvb2VQUhmtb73uO9MKVfOxzNKkRoYCuj3zCtPN+VbT2UDwb6rhHRvf3qtKcRuNsgu6VTM3T1bqEWsCi/n1OrxFKp9vqEML5Xmq5jxJp77LEhLpEehjTCM7RRp7IU4+SVW4j+6KDWhq0xfQOw6YV++L9HumHTC/0M7krdkNErdbWl0TRqKHA3H9yd7es09JTJgD7tjLshaNIY41c0ZJm1fwvoD1iU66jPBV9f8KFtOwxpdO3j5oQn+vrrXL+2uNMG0Lk9Nc8HTY1bNaU9cVwPBPu30pt2bfvgs4NZGJt8UHUuaWtUG+zfCk8Pus/ogEVJ09gruvZTjrwMm3+9qnFZCgEkbDqFR7W82kBbg21tpU2Ldp4x+HzXlc+Ncd6ZCktaDGBNL4si89P31GFI6UaOvAyf7c/Eyp8y61yctDVsNbZrtLY3zxpapKuvLU3tkWmV+dCn3d2h2Wun11TnSmN0uWzIMvW9Q8dWJsPY3r7Y8uu1BnfR1nfsKXtV3SqtgJtTM4QGugMwvLSuf0cPrDtct50HcDdgmRjmr/H7J8L9De4ure3Y1bQPlGOoPD+kA5b/eFFr2rXtA03tqTSpeU0HYPD1XduDwaYX+ml8gaK2Uq+adAW9NYPDmu1dAtydNZbwKYMcYwJwbceIIaXClsCgRQ9rbUFN5qPr5DakwZohY1XUfhu1oY3gDHnzrKFP+Pra0jzS0wlXCu+OTGqKl8QZozHGrzCmbU/t+UoqqjUGLG8+0g0je/rAx80Js6K6NPiCX7sHio0MGnv+KNW8RhmyT0LatapzzMgA/PvR7iitqMbCXZob5q77JRvBbVtqDM6NacBZcx/UHkNlZA9vTH4gsE61knKfaNsHAsBnBzLxz5Gaqy3V2oLU+I0h13etb4Y+laM2TQb1EXPrUw0nA5A4vodqX9euPoro0gY/nM1X+42xJXqGHCM/nMlTPWxZwz2QQYsO1tyCmsxL28mtr/jekLEqAPWLzdGsm/XuGq3tzbOG0PfklXrk8t0eMri7ntdHdLH6gbHqS9/DirYATxmwAHfzY9+f+SZ56FE+USv/rd1jS0lTeytNN/yaadRUSja4cxv0T/xeY1CgNGdT3RINbefDsUuFaOWivTTjRHZhnTYfO07lYvrg+7SWPupqb7VqXyamDag7GF6dtiA68k4TbW8fX7lPvQRVJvv7HUuqwHPjKSiU39dad002MmD+mO6IDPICAGw7eU3jvv7hbD4iurTBj2fz63W+K2k7bzUFxdZwD2TQooM1t6Am89N0cusrvjekh4amcTM0zWNI12ghgGWTesPdxUE1f80Gg/rUfEmh4q9ul4Dmhn//2XkWY4INH9VVKgx5WDGk+sWUr15Q7uaajZ+1HVaarlGGvJiyZkD+zvbfdQYsyu2pXaKhsZEsgBfX/QpAe+B2OOumxnUox1DR1d6qZs8tVdqguZpE3/mo7eFA11AHTw0MxMpaY/EoBLD9ZA4eqRHEKiMVGxnwwtAOSP7hgsY8ju7th8n9Ag0qof3xbD4217NXmi66HrYsfQ9k0KKDNbegJuug7+alrYeGDYA3RuoeN6PmvMZ0jVa+eba+VZuaSgf83Z11NkZuSm2+DH1Y0Ve03pivXsgvuqP1N5rG/jAkCFOu73rRHXy6P7POcjWpXaJR+3wADCvNCPsrOK5NOYaKrvZWW17srxoaX1seKOnrMVX7d4YMdQAAqzS0VVuw/Q+8u+MPvDGia50u3B+law5YAGDLr9cwpV87g0poFQCOZBWqB0cmoC+4O3nlltE94UyFvYd0sOYW1GQ9dL05uvYxZCMDnh10Hw7MeRDTB3dQ692g7ULx4aTeGoMNTct+amAggPr1JFK+gVfTEOgu9rZ1ehrYyO5evEzx1mhzqe/w+9pugtp6qBi7HGPTMqybl8aePcoAF4BqOw3p/VazR8zYjw4a3P5CU+8WZc83bTQNfx/s3wrj+/ipTas5hoquvAz2b4VF4w27Ttc+Z2Syv9u11P6drnOo5n7f92d+nfWo8kdA48i9NdvTaMqfI1mFBu+DBdv/MNm5pzw/yiqqdM63aJfhvZRMjSUteljby6LIOulqz2HoMaSr5EQb5bI/O5CJlfvu9k76dH8mnh7Y3qinfF1F0coxRt54uKvacP5CoM6ganM2nYKzva1Bo3mam6GDcRna80YfUyxH2zKC/f/qsfVXOwkZgLhB92HawEDs+zMfAxZ+r7PtR+13D9Wu+jOUrUwGZ3sbbDt5TW0U18s3tb+TR1vgpm0MFWXgpes1FrWrNQPcnbVWi9Y+H68X3UHamevwaG6vaocCGNZeTfnuI11ZpumcksmAh7t7Y+fpXI2/ydaRf9rWYUzVY+0qr9q9G/WNsaSpatBcZEIYc4har6KiIri5uUEul8PV1dXSySGql9Qjl+vcoPRV6eTIy1Q3KSVtQ5krR0St3eWz9u9R63evP9xFNUy9IYx5g7U5ghtNeQQAc0Z01ToYV468zCQPK6ZYjrZlKKcreyi52NsiulZJiXL/1b7hK/fNwQsFmLTylzrrVDYW1dZo1AZAdB8/bDp2tc4ori4Odnjpr3Ystc0ZqXvk1prHRu2qytqvIqhJW28qXW+o1tQrZ9H4v4ey13bMtHRuZlD1jS66GuPq+k6Xr+Ie0FttU7vKa2BHD/x0rsDo9dkAODDnQZOcv8bcv1nSQmQB2m7a9SnZ0/REqBDAs4Pb49OfsvS+JE9TqYyScuh1bS+n08aYbtrm6EKpazCuMb00NyY2VW8oUyxH2zJq91DSNHaHrvdW5cjLcLOkQue6ZTJgXG8/1bgzNjLgmYH34ZGe3oj+qO44KXM2nsLmF/trvfEu3HF3FFhN+7z2sVH7DdC1X0WgpK09mELcfUP1qp8y8cyg9hjV0wclFdWqYL1mI2elNzb+XVr4xoiudd7HtGjXmToPBPWhNWDRMsKyDaDqfaSNs73uFh+aqrz2nSvQl1SN+9KYMWFMiUELUQNpe5mdtpIEfTdtY29y2qqVpg1oj2kD2qvdqDRdtD7dn1nnomQjA/77RG+EBLbS2ShPJgNkQvPF1NBu2uboQtnew6XBg3GZiilLmQyp2tH23ip9vVNqBgtbfr2GTS/0U+ulcvBCgcbfKgCUVijwzKD2dXrVKJeraZ9rOjZq01bFqXcAN9wNXpTp0Resz/jqOGxk0DhicENKVwwhhObxlja90A9XCsvqDPBY05XCMp0j/dbnfVM2MmDyA+3w+aFLatMt1SmFQQtRA2gKQABoDUoa46atr+2EvnE0tJXKjAr2Vc2jrQeUckyPD78/h3W/qI+caswbrBs7cPBxc0KChqfm+lx4jQ06lPO72Nti+8kckw7Upe0mpHwq1/U2YmOqN2q/O0lZQqPpCVyGu6O4PjWwvcZeNcrl1d7nhg4PUJ9eQbUpg3V982gaDVhT1Wt93+GkjUDdfRjsf7edT3F5ldZ9p3yJac1jqvZIusamVSGAL2oFLADw+sNdzF7KAjBoIao3TQHInE2n6hRp63tDrSlu2g1t7KupVEapdlCkrB6YNjBQVXrzPw0Xd00XNUsOIzB9cAdAQOOIvoYytmpLV2mGKQJWbflZu1SkNmOfuLW9tkJbe819f+Yjpm+A2sB1NdnIgILiO2qjBGt7EaKyJM+QXkE1u1rroxDApHD/OsG2LspAHVB/i3RM37ZaX4dQXx/WGG9JUxWysvF97eq5mseUpjdHj+vjh82/XjWqfZqmeXu2bVm/DWsgBi1E9aSt1KI2fW+oNdVN25BqJWNKZWrSFRRpuwFquqiZqmdOfU0f0gFjevnWq2GssaVkhpRmNDRg1dW7SBdDSiaUpSi6Xluh6ec1b5w1b7Cr9mWqRlMW4u8qGGXgp21bDG3jVfMYPXe9CHO/+V1nHtjKZJjxYCe0c3fROECdJh9O6o1Het4tgVSu6+SVW1ik5XUH9SUDVOMtaeLj5oR/jgxCDz83zPjquNp3NbuU126zIwBsPnYVm1/sj+2nclT7RJeH7/fGrtO5FnnQ0IRBC1E9aRvSW1OvndpvqLXUTRuofzd+bUGRsYGYpYcRqG/DWGNLyRpS3WGM+uSnptKz2mmVyYAP/2rXpG8sodpq5ovyBjttQPs6L92sHfhp2xZjj9FAD2e8tfV3nQ3MleddzUD25JVbql5Wmn5Tc/gBZZqeXPVz3bwDkDCyKx5o7671xZq6JIzoatA2hwa6az33tO0rZZujf44MwiM9fPSm77vTeTq7m5ubRYKW6OhopKenY9iwYdiwYYNq+rZt2/Daa69BoVDgjTfewDPPPGOJ5BEZRFsAAkBnUGLpm7Yy7aZab30CMVOu31yMDc70lWZoG+m4PuqTnzWPw4LiO3We2BUCaN3cQW25hrYd0ZQvPm5OaOVSUucGWTvwM1VvK01Vmo/09NZYbaZcZ78OrTUGMNqOaW2BwbIaJTLaqsiUlFVsAn8HO7q6hOvaztrp1NYWTblvtL10siZdvc8swSLjtKSnp+P27dv4/PPPVUFLVVUVgoKC8MMPP8DNzQ0hISE4ePAgWrc2bKhgjtNClqJpDA1TjfEhJffCNhs7jk7N+ZVqtwmyBprGJKk5rk9NmrapJhvcfTuxpnwxZj2m0NBjUt/vDd2eHHmZWhWZcigB5ZgzABolnalHLiPhr3Z2wN/j6NTsGKBrjCZt22Nqxty/LTa4XHp6OpYtW6YKWg4ePIjFixdj8+bNAIBXX30V4eHhmDhxokHLY9BCROZg7I2w5gBwpn6xnSkZE5Apt6lmaYShwVh9BlC0ZvXJN3MeAznyMhy7VAghoFbVp1Q7/WN7+6rG5DHX/mnUweX27duHxYsXIyMjAzk5Odi8eTPGjh2rNk9ycjIWL16M3NxcBAcH48MPP0RYWJjO5V67dg1+fn+/e8LPzw9Xr17V8QsiIvMztvpCKlVhxlRbaqpOMfRGbA3Vo6ZUn3wzJx83JzzS07AGzMr0z4rqYrX7x+igpaSkBMHBwXjqqacwbty4Ot+npqYiPj4ey5cvR3h4OJKSkhAVFYWzZ8/C09PTJIkmIiLTq89N1Vy/sWZS357a6bfm7TH6Lc8jRozAggULEB0drfH7pUuXIi4uDtOmTUNQUBCWL18OZ2dnrF69WudyfX191UpWrl69Cl9fX63zl5eXo6ioSO2PiIiImi6jgxZdKioqkJGRgcjIyL9XYGODyMhIHDp0SOdvw8LCcPr0aVy9ehXFxcXYuXMnoqKitM6fmJgINzc31Z+/f93hlomIiKjpMGnQUlBQgOrqanh5ealN9/LyQm7u36/gjoyMxIQJE7Bjxw60bdsWhw4dgp2dHd577z1ERESgV69eeO2113T2HJozZw7kcrnqLzvbtKMREhERkXWxyDgte/fu1Th9zJgxGDNmjEHLcHBwgIODgymTRURERFbMpCUtHh4esLW1RV5entr0vLw8eHt7m3JVREREdI8xadBib2+PkJAQpKWlqaYpFAqkpaWhX79+plwVERER3WOMrh4qLi7G+fPnVZ8zMzNx/PhxuLu7IyAgAPHx8YiNjUVoaCjCwsKQlJSEkpISTJs2zaQJJyIionuL0UHL0aNHERERofocHx8PAIiNjUVKSgpiYmKQn5+PuXPnIjc3F7169cKuXbvqNM4lIiIiMobFhvE3NQ7jT0REJD3G3L9N2qaFiIiIqLEwaCEiIiJJYNBCREREksCghYiIiCSBQQsRERFJAoMWIiIikgQGLURERCQJDFqIiIhIEhi0EBERkSQwaCEiIiJJYNBCREREksCghYiIiCSBQQsRERFJAoMWIiIikgQGLURERCQJDFqIiIhIEhi0EBERkSQwaCEiIiJJYNBCREREksCghYiIiCSBQQsRERFJAoMWIiIikgQGLURERCQJDFqIiIhIEqwqaHn//ffRvXt3BAUF4eWXX4YQwtJJIiIiIithNUFLfn4+li1bhoyMDJw6dQoZGRn4+eefLZ0sIiIishJ2lk5ATVVVVbhz5w4AoLKyEp6enhZOEREREVkLk5W07Nu3D6NHj4avry9kMhm2bNlSZ57k5GQEBgbC0dER4eHhOHz4sOq7Nm3aYNasWQgICICvry8iIyPRoUMHUyWPiIiIJM5kQUtJSQmCg4ORnJys8fvU1FTEx8dj3rx5OHbsGIKDgxEVFYXr168DAAoLC7Ft2zZkZWXh6tWrOHjwIPbt22eq5BEREZHEmSxoGTFiBBYsWIDo6GiN3y9duhRxcXGYNm0agoKCsHz5cjg7O2P16tUAgL1796Jjx45wd3eHk5MTHnnkEZ1tWsrLy1FUVKT2R0RERE2XWRriVlRUICMjA5GRkX+v2MYGkZGROHToEADA398fBw8exJ07d1BdXY309HR06dJF6zITExPh5uam+vP392/07SAiIiLLMUvQUlBQgOrqanh5ealN9/LyQm5uLgDggQcewMiRI9G7d2/07NkTHTp0wJgxY7Quc86cOZDL5aq/7OzsRt0GIiIisiyr6j30zjvv4J133jFoXgcHBzg4ODRyioiIiMhamKWkxcPDA7a2tsjLy1ObnpeXB29vb3MkgYiIiCTOLEGLvb09QkJCkJaWppqmUCiQlpaGfv36mSMJREREJHEmqx4qLi7G+fPnVZ8zMzNx/PhxuLu7IyAgAPHx8YiNjUVoaCjCwsKQlJSEkpISTJs2zVRJICIioibMZEHL0aNHERERofocHx8PAIiNjUVKSgpiYmKQn5+PuXPnIjc3F7169cKuXbvqNM4lIiIi0kQmmshbCYuKiuDm5ga5XA5XV1dLJ4eIiIgMYMz922pemEhERESkC4MWIiIikgQGLURERCQJDFqIiIhIEhi0EBERkSQwaCEiIiJJYNBCREREksCghYiIiCSBQQsRERFJAoMWIiIikgQGLURERCQJDFqIiIhIEhi0EBERkSQwaCEiIiJJYNBCREREksCghYiIiCSBQQsRERFJAoMWIiIikgQGLURERCQJDFqIiIhIEhi0EBERkSQwaCEiIiJJYNBCREREksCghYiIiCTBqoKWzMxMREREICgoCD169EBJSYmlk0RERERWws7SCahp6tSpWLBgAQYNGoSbN2/CwcHB0kkiIiIiK2E1Qctvv/2GZs2aYdCgQQAAd3d3C6eIiIiIrInJqof27duH0aNHw9fXFzKZDFu2bKkzT3JyMgIDA+Ho6Ijw8HAcPnxY9d25c+fQvHlzjB49Gn369MG7775rqqQRERFRE2CyoKWkpATBwcFITk7W+H1qairi4+Mxb948HDt2DMHBwYiKisL169cBAFVVVfjpp5/w0Ucf4dChQ9izZw/27NljquQRERGRxJksaBkxYgQWLFiA6Ohojd8vXboUcXFxmDZtGoKCgrB8+XI4Oztj9erVAAA/Pz+EhobC398fDg4OGDlyJI4fP651feXl5SgqKlL7IyIioqbLLL2HKioqkJGRgcjIyL9XbGODyMhIHDp0CADQt29fXL9+HYWFhVAoFNi3bx+6deumdZmJiYlwc3NT/fn7+zf6dhAREZHlmCVoKSgoQHV1Nby8vNSme3l5ITc3FwBgZ2eHd999F4MHD0bPnj3RqVMnjBo1Susy58yZA7lcrvrLzs5u1G0gIiIiy7Ka3kPA3SqmESNGGDSvg4MDu0QTERHdQ8xS0uLh4QFbW1vk5eWpTc/Ly4O3t7c5kkBEREQSZ5agxd7eHiEhIUhLS1NNUygUSEtLQ79+/cyRBCIiIpI4k1UPFRcX4/z586rPmZmZOH78ONzd3REQEID4+HjExsYiNDQUYWFhSEpKQklJCaZNm2aqJBAREVETZrKg5ejRo4iIiFB9jo+PBwDExsYiJSUFMTExyM/Px9y5c5Gbm4tevXph165ddRrnEhEREWkiE0IISyfCFIqKiuDm5ga5XA5XV1dLJ4eIiIgMYMz926re8kxERESkDYMWIiIikgQGLURERCQJDFqIiIhIEhi0EBERkSQwaCEiIiJJYNBCREREksCghYiIiCSBQQsRERFJAoMWIiIikgQGLURERCQJDFqIiIhIEhi0EBERkSQwaCEiIiJJYNBCREREksCghYiIiCSBQQsRERFJAoMWIiIikgQGLURERCQJDFqIiIhIEhi0EBERkSQwaCEiIiJJYNBCREREksCghYiIiCTB6oKW0tJStGvXDrNmzbJ0UoiIiMiKWF3Q8s477+CBBx6wdDKIiIjIylhV0HLu3DmcOXMGI0aMsHRSiIiIyMqYLGjZt28fRo8eDV9fX8hkMmzZsqXOPMnJyQgMDISjoyPCw8Nx+PBhte9nzZqFxMREUyWJiIiImhCTBS0lJSUIDg5GcnKyxu9TU1MRHx+PefPm4dixYwgODkZUVBSuX78OAPjmm2/QuXNndO7c2VRJIiIioiZEJoQQJl+oTIbNmzdj7Nixqmnh4eHo27cvli1bBgBQKBTw9/fHjBkzkJCQgDlz5uDLL7+Era0tiouLUVlZiddeew1z587VuI7y8nKUl5erPhcVFcHf3x9yuRyurq6m3iQiIiJqBEVFRXBzczPo/m2WNi0VFRXIyMhAZGTk3yu2sUFkZCQOHToEAEhMTER2djaysrKwZMkSxMXFaQ1YlPO7ubmp/vz9/Rt9O4iIiMhyzBK0FBQUoLq6Gl5eXmrTvby8kJubW69lzpkzB3K5XPWXnZ1tiqQSERGRlbKzdAI0mTp1qt55HBwc4ODg0PiJISIiIqtglpIWDw8P2NraIi8vT216Xl4evL29zZEEIiIikjizBC329vYICQlBWlqaappCoUBaWhr69etnjiQQERGRxJmseqi4uBjnz59Xfc7MzMTx48fh7u6OgIAAxMfHIzY2FqGhoQgLC0NSUhJKSkowbdo0UyWBiIiImjCTBS1Hjx5FRESE6nN8fDwAIDY2FikpKYiJiUF+fj7mzp2L3Nxc9OrVC7t27arTOJeIiIhIk0YZp8USjOnnTURERNbB6sZpISIiImooBi1EREQkCQxaiIiISBIYtBAREZEkMGghIiIiSWDQQkRERJLAoIWIiIgkgUELERERSQKDFiIiIpIEBi1EREQkCQxaiIiISBIYtBAREZEkMGghIiIiSWDQQkRERJLAoIWIiIgkgUELERERSQKDFiIiIpIEBi1EREQkCQxaiIiISBIYtBAREZEkMGghIiIiSWDQQkRERJLAoIWIiIgkgUELERERSQKDFiIiIpIEqwpasrOzMXToUAQFBaFnz55Yv369pZNEREREVsLO0gmoyc7ODklJSejVqxdyc3MREhKCkSNHwsXFxdJJIyIiIguzqqDFx8cHPj4+AABvb294eHjg5s2bDFqIiIjItNVD+/btw+jRo+Hr6wuZTIYtW7bUmSc5ORmBgYFwdHREeHg4Dh8+rHFZGRkZqK6uhr+/vymTSERERBJl0qClpKQEwcHBSE5O1vh9amoq4uPjMW/ePBw7dgzBwcGIiorC9evX1ea7efMmpkyZghUrVmhdV3l5OYqKitT+iIiIqOmSCSFEoyxYJsPmzZsxduxY1bTw8HD07dsXy5YtAwAoFAr4+/tjxowZSEhIAHA3GBk+fDji4uIwefJkrct/6623MH/+/DrT5XI5XF1dTbsxRERE1CiKiorg5uZm0P3bbL2HKioqkJGRgcjIyL9XbmODyMhIHDp0CAAghMDUqVPx4IMP6gxYAGDOnDmQy+Wqv+zs7EZNPxEREVmW2YKWgoICVFdXw8vLS226l5cXcnNzAQAHDhxAamoqtmzZgl69eqFXr144deqUxuU5ODjA1dVV7Y+IiIiaLqvqPTRw4EAoFApLJ4OIiIiskNlKWjw8PGBra4u8vDy16Xl5efD29jZXMoiIiEiizBa02NvbIyQkBGlpaappCoUCaWlp6Nevn7mSQURERBJl0uqh4uJinD9/XvU5MzMTx48fh7u7OwICAhAfH4/Y2FiEhoYiLCwMSUlJKCkpwbRp00yZDCIiImqCTBq0HD16FBEREarP8fHxAIDY2FikpKQgJiYG+fn5mDt3LnJzc9GrVy/s2rWrTuNcIiIiotoabZwWczOmnzcRERFZB6scp4WIiIioIRi0EBERkSQwaCEiIiJJYNBCREREksCghYiIiCSBQQsRERFJAoMWIiIikgQGLURERCQJDFqIiIhIEhi0EBERkSQwaCEiIiJJYNBCREREksCghYiIiCSBQQsRERFJAoMWIiIikgQGLURERCQJDFqIiIhIEhi0EBERkSQwaCEiIiJJYNBCREREksCghYiIiCSBQQsRERFJAoMWIiIikgQGLURERCQJVhW0bNu2DV26dEGnTp2watUqSyeHiIiIrIidpROgVFVVhfj4ePzwww9wc3NDSEgIoqOj0bp1a0snjYiIiKyA1ZS0HD58GN27d4efnx+aN2+OESNGYPfu3ZZOFhEREVkJkwUt+/btw+jRo+Hr6wuZTIYtW7bUmSc5ORmBgYFwdHREeHg4Dh8+rPru2rVr8PPzU3328/PD1atXTZU8IiIikjiTBS0lJSUIDg5GcnKyxu9TU1MRHx+PefPm4dixYwgODkZUVBSuX79er/WVl5ejqKhI7Y+IyFrlyMtw8EIBcuRllk4KkWSZLGgZMWIEFixYgOjoaI3fL126FHFxcZg2bRqCgoKwfPlyODs7Y/Xq1QAAX19ftZKVq1evwtfXV+v6EhMT4ebmpvrz9/c31aYQEZlU6pHLGLDwe0xa+QsGLPweqUcuWzpJ1EQ19eDYLG1aKioqkJGRgcjIyL9XbGODyMhIHDp0CAAQFhaG06dP4+rVqyguLsbOnTsRFRWldZlz5syBXC5X/WVnZzf6dhARGStHXoY5m05BIe5+Vgjgn5tON9mbClnOvRAcm6X3UEFBAaqrq+Hl5aU23cvLC2fOnLmbEDs7vPfee4iIiIBCocDrr7+us+eQg4MDHBwcGjXdREQNlVlQogpYlKqFQFZBKXzcnCyTKGpytAXHgzu3aVLHmdV0eQaAMWPGYMyYMZZOBhGRybT3cIGNDGqBi61MhkAPZ8slipqceyU4Nkv1kIeHB2xtbZGXl6c2PS8vD97e3uZIAhGRRfi4OSFxXA/YymQA7gYs7467v0ndSMjylMFxTTYywNneakY2MQmzbI29vT1CQkKQlpammqZQKJCWloZ+/fqZIwlERBYT0zcA+xMi8FXcA9ifEIGYvgGWThI1MbWDY+Bu6d7Yjw7ik30XLJgy0zJZ9VBxcTHOnz+v+pyZmYnjx4/D3d0dAQEBiI+PR2xsLEJDQxEWFoakpCSUlJRg2rRppkoCEZHV8nFzYukKNaqYvgHo6t0CY5MPQllTJASQuOMMIIDpQzpYNH2mYLKg5ejRo4iIiFB9jo+PBwDExsYiJSUFMTExyM/Px9y5c5Gbm4tevXph165ddRrnEhERUf2UVFRDaJi+aOcZjOnlK/nAWSaE0LR9klNUVAQ3NzfI5XK4urpaOjlERNQE5MjLkFlQgvYeLpK44efIy9B/4ffQdGf/Ku4B9Otgfe/zM+b+bVW9h4iIiKxF6pHLqm7ENjIgcVwPSbRHmhjmj3W/qI9d1lR6rDFoISIiqkWK456kHrmMhI2nVNVDMgACTavHGoMWIiKiWqQ27smJ7EK8sfFUnenLJvZGSGArq0xzfTStDtxEREQmoGncE2utYkk9chljkw/Wma6MuZpKwAIwaCEiIqpDKoMC5sjL1KqEapPJtHwhUaweIiIi0iCmbwAGd26DrIJSBHo4W13AAgAZlwq1BywA2rayvjQ3BEtaiIiItPBxc0K/Dq2tMmABAF2jlggA0R8dbFJve2bQQkRkYTnyMhy8UIAceZmlk0ISExroDl01QMpeT03l2GLQQkRkQalHLmPAwu8xaeUvGLDw+yb1VEyNz8fNCQvH99AZuCh7PTUFDFqIiCxE21ggTeWpmMwjpm8A/juxl9bvbQCr7PVUHwxaiIgsRNdYIETGCA1019pT6JnB7a22TY6xGLQQEVmIlMYCIevm4+aEhBFd60y3kQHTBrS3QIoaB4MWIiILkcpYICQN0wd3wJwRXVU3dluZDInjejSp44lveSYisrAceZlVjwVC0iK144lveSYikhAfNydJ3FxIGpry8cTqISIiIpIEBi1EREQkCQxaiIiISBIYtBAREZEkMGghIiIiSWDQQkRERJLAoIWIiIgkgUELERERSQKDFiIiIpKEJjMirvJtBEVFRRZOCRERERlKed825K1CTSZouX37NgDA39/fwikhIiIiY92+fRtubm4652kyL0xUKBS4du0aWrRoAZlMpv8HEldUVAR/f39kZ2fzBZE6MJ8Mw3wyDPPJcMwrwzCf7paw3L59G76+vrCx0d1qpcmUtNjY2KBt27aWTobZubq63rMHujGYT4ZhPhmG+WQ45pVh7vV80lfCosSGuERERCQJDFqIiIhIEhi0SJSDgwPmzZsHBwcHSyfFqjGfDMN8MgzzyXDMK8Mwn4zTZBriEhERUdPGkhYiIiKSBAYtREREJAkMWoiIiEgSGLQQERGRJDBoISIiIklg0GKFysrKLJ0ESbh06RKuXLkCAKiurrZwaoiI1PFabnoMWqxIZWUlnn/+eYwbNw5TpkzBzz//bNBbL+9F33zzDdq3b4+XXnoJAGBra2vhFFmv/Px83Lp1CwqFAgBU/1Jdd+7csXQSJOHcuXNYsmQJzp49a+mkWCVeyxsPgxYrkZubi/DwcJw8eRKjR4/GyZMn8dxzz2Hx4sUAeKOp7fDhwwgPD0d2djY2btwIgKUttVVWVuK5557D4MGDMXLkSDz11FOorq7W+0Kye1FFRQVmzpyJJ598ElOmTMFPP/1k6SRZperqarz44ovo0aMH/vjjD+Tn51s6SVaH1/LGxauXlThw4AAqKirw9ddf44UXXsCPP/6I6OhozJs3D7/99htsbGwYqePvE14ul6Nv377o3bs3PvjgA1RWVsLW1pZ59Jfz58+jb9++OHv2LD766COMHDkShw4dUl046W9btmxBx44dcfz4cQwdOhTHjx/HnDlzVMEw/W3p0qU4ceIEfvzxR3z66acYOHAgAPC8q4HX8sbFoMXClDfh/Px8FBYWws/PD8DdN15Onz4dAwcOxPTp0wEAMpnMYum0FsoT/vz58/jHP/6B6Oho3LhxAx9//DGAu6ULBOzcuRPNmzfHt99+i4iICLz++uto166dwW9SvVdcuHABX375JZ566in88MMPmDFjBtLS0mBvb49z585ZOnlWQwiBkpISbN68GVOnTkV4eDgOHTqEFStWYP/+/SgpKbF0Ei2O13LzYNBiAStWrMC6detw/vx5VVG9ra0tvL291Yqlvb29kZCQgCNHjmDPnj0A7q0nmpr5pFRdXQ2ZTAZbW1uUl5fjgQceQHR0ND799FP84x//wNKlS1FeXm7BVFuW8sJZUFCA3NxcNG/eHACQl5eHwsJCuLi44MyZM5ZMolVQnkcVFRXo2bMnYmNjAdw9vtq0aQNbW1tcuHDBkkm0KjKZDNeuXcPFixfx8MMP47XXXsP48ePx+eefY/z48YiOjkZRUZGlk2l2GzZswN69e5GTk8NrubkIMptdu3aJNm3aiF69eol27dqJTp06iffee08IIcTJkydFt27dxMKFC0V5ebnqN7m5uWLMmDFi8uTJlkq22WnKp/fff1/1/Y0bN4S3t7cqn2bOnCkcHR2Fk5OTOHr0qIVSbTmffPKJWLt2rfjzzz9V0zZt2iR8fX1FVFSUePLJJ0WzZs3EgAEDRO/evYWPj4/49NNPhRBCKBQKSyXbIn755RchhBBVVVVa5ykvLxf9+/dX5dG9SJlP1dXVqmmlpaUiKChIxMbGivHjx4vff/9dFBQUiFOnTolWrVqJ2bNn3zPH0xdffCE8PT1FWFiYaNOmjRgwYIDYuHGjEEKIY8eOiaCgIF7LGwmDFjN67LHHxLPPPiuEEOLPP/8US5YsETKZTGzdulUIIcTzzz8v+vbtK3744Qe1340fP17ExsaaObWWoy2ftm3bJqqqqkReXp6YMGGC+Oqrr0SPHj2Eh4eHGDVqlOjatas4fPiwEEL3Tamp0BUEV1dXi4yMDPHFF1+ITp06iQ0bNgghhCgsLBTvvPOOaN26taisrLRk8s1q8+bNwtfXV7Ru3VpkZmYKIdSPkZo329u3b4tOnTqJn3/+2dzJtDhd+XTz5k3x9NNPixYtWohx48aJ6upqVVCzatUq4ebmJkpLSy2VdLOorKwUSUlJolu3bmLVqlWivLxcHDhwQEyZMkWMGDFCtf3PPvusCAsLu+ev5Y2B1UONTPxVBJiZmYm9e/di3LhxAIBOnTrhtddew8SJE/Haa6+hoKAAb731FqqqqrBixQpcvXpVtYyysjK4u7tbJP3mYkg+zZo1C3l5eaisrMSGDRswZcoUDB48GOfOncOiRYsQGBiI+Ph4APdGF+hVq1YhOjoav/76K/bs2YPp06dj1qxZ2LZtGwCgT58+KCwsRKtWrTB+/HgIIdCyZUsMGjQId+7cweHDhy28Beaxdu1avPvuuxg8eDC6deuGhQsXAlA/Rmq2MThw4ACKi4vRuXNn1bS8vDzzJdhC9OVTq1atMGzYMNjb26t6oSnP2/vvvx/29vb4448/LJZ+cygpKUF+fj5iY2Mxbdo02Nvbo3///ggKCkJRUREqKioAAPPnz0dlZeU9eS1vbAxaGsm5c+cghFBdDH18fGBvb4/Lly8DgOrg/uijj3D16lWsWrUKnp6eSEhIwJUrVzBgwAAsXboUU6ZMwdGjR1U38abGmHy6dOkSvvjiC/j5+WHt2rXYv38/li1bhpYtWyIoKAhjx47Fo48+CnG3BNFi29SYDAnuXn/9dWRmZgK4O+6Ip6cnioqKVHm8f/9+hISEoFevXhbZBnNRdoHv2LEjhg0bhkWLFmHMmDFIT09Henq62jw1bd68GUOHDkWrVq3w66+/IiIiAs8//3yT7apqSD4pz8MxY8Zg8uTJ2Lp1K/bu3asKaPbv349evXo1yWNKeY0C7jaqfeyxxzBr1izY2Niojgl/f3+UlJTAyckJwN02LP/85z/vqWu52ViqiKepSk1NFYGBgaJLly4iLCxMVS9eXFwspkyZIqKiolT1nBUVFUIIIebMmSMCAgJUy7hy5Yp49tlnxdixY8XIkSPFmTNnzL8hjcwU+aSkLNpvylVCf/75p1oVRllZmfD09BQrVqwQQghVXt26dUs4OzuLRYsWCSGE+Pzzz0Xfvn3F8OHDxYYNG8RTTz0l2rRpI5YvX27+jTCT2nklhFBVhZ0+fVqMGTNGjBw5UvVdzXmrq6vFo48+KhYvXixeeuklYWNjI6ZMmaI6BpsSY/NJeX5dvHhRTJkyRbi4uIhx48aJiRMnCnd3d/HJJ58IIZpOO6na16hVq1apfV+zvc+kSZPE1KlThRBCrR3LvXAtNzcGLSa0e/duERgYKJKTk8WuXbtEfHy8sLOzU91YUlJSRO/evVUnt/ICceTIEdGmTRtx5MgRteWVlZWZdwPMpKH5dC81tjVFcPfll1+KwYMHi4EDBzbpC6e2vBJC/Ua6evVqERQUJFavXi2EUL/5XL58WchkMiGTyUT//v3F77//br4NMJP65lPtNlDLly8Xs2fPFtOmTWtyx5Sma1SzZs3EihUrVNdlhUIhFAqFKCsrEz179hRr1qzRurymei23BAYtJqA80efPny9CQkLUnspeeOEF0bt3b/Hdd9+JoqIi8eSTT4r+/furGrkJcfci4uvrKy5evGjupJsV88k4DQ3ulD1AlN/l5uaafyPMRNdNRtk4Upk/V65cEU8//bTo27evuH37thDi76fj06dPi5iYGLFnzx7LbEgja2g+NcUSp5r0XaNCQ0PFpk2b1H5z9epVERgYqOq99+eff4qZM2eaL9H3GLZpMQFlW4Hff/8dHTp0QLNmzVSDnC1YsAAuLi748ssvYWtrixdffBE2NjZ44okncPDgQVy+fBk7duxASEgIvL29LbkZjY75ZBjxV/35oUOH0Lp1a8TFxSEqKgrvvfcenn32WXz88cfYvXs3xo0bh6CgIHz++efIysqCnZ0dAODixYto1qwZ2rRpo1qmnZ0dvLy8LLI9jUlXXsXFxWHFihXYtWsXAKjyx8/PD9HR0RBCYMmSJTh58iTGjRuH7OxsdO/eHf/73/8QGRlpsW1qDKbOp6ZK3zXK0dER33zzDXJzc1W/2bt3L/z9/eHj44NXXnkFQUFBuHTpEiorK5ts2zqLsmTEJFW7d+8WM2bMEO+//77a0+yKFStEixYtVHW/yih9xYoVomPHjmL//v1CCCHOnDkjQkJCRJcuXYSXl5fo3bt3kyteFYL51FAxMTHi8ccfF0L8nUc3b94UAwcOFJMnTxYlJSXi4MGDYuDAgSI8PFwcOHBAXLp0ScTGxorRo0c3+e6nNenKq9jYWJGTkyOE+LtdRklJiXjhhReETCYTdnZ2IioqSty5c8cyiTcj5pO6+lyjOnfurOrKrFAoxIQJE0SrVq1E69atRffu3etU85NpMWgxwrVr18SoUaOEp6enePLJJ0WPHj2Em5ub6mA/e/as8PPzE2+++aYQQr1Blre3t1i6dKnq8+3bt0VmZmaTHAuC+WQcBneGq+9NJj09XTVvcXGxeP/994Wtra0YOnSoOHnypHk3wgyYT7o19BqlHOyypKREjBo1SrRt21b873//M/t23IsYtBiopKRExMbGipiYGLU2FWFhYapW40VFRWLBggXCyclJXL58WQjxdx3pkCFDxDPPPKP6XVNpYV8b88lwDO4MZ6qbjBBC/PbbbyI8PFx88cUXZt0Gc2A+6Wfqa9S91DHAGjBoMcKzzz4rdu7cKYT4u7HaW2+9JcLDw1UH9MWLF8WAAQPEAw88ILKysoQQQly6dEl069ZNbNu2zTIJNzPmk34M7gxn6rxqqphPhuM1SrrYENcIy5Ytw8MPPwwAqpdj/fnnn+jZs6eqAVf79u2RmpqKgoICDB06FBMmTEC/fv3g4+OD0NBQi6XdnJhP+jk7O8PBwQFTp05F+/btUVVVBQAYOXIk/vjjDwgh0KJFC0yaNAl9+vTB448/jkuXLkEmk+Hy5cu4fv06xo4dq1peU35rrKnzqqliPhmO1yjpkgnB5s0NMXDgQMTFxSE2NlY1OqKNjQ3Onz+PjIwM/PLLLwgODla9RfZexXyqq7KyEs2aNQNw9+3MNjY2ePLJJ+Hi4oIVK1ao5rt69SqGDh2KqqoqhIaG4uDBg+jatSvWrVvXJHsEacK8Mgzzqf54jZIGBi0NcPHiRfTv3x/bt29HSEgIgLvDXdvb21s4ZdaF+WQ4XjgNx7wyDPNJP16jpMPO0gmQIvHXu3L279+P5s2bqw7y+fPnIzc3F/Pnz4enp6eFU2l5zCfjXLx4EefPn8f9998P4O6NRXnh7NixIzp27IiYmBgLp9I6MK8Mw3zSjdco6WGblnpQ1nkePnwY48ePx549e9C+fXt89NFHiI6O5kH+F+aTYZSFnZounK+88gquX79uyeRZFeaVYZhPhuE1SnpYPVRPd+7cQY8ePXDhwgXY29tj/vz5eOONNyydLKvDfDLcSy+9BBcXF0RGRuLZZ59FaWkp1qxZg4ceesjSSbM6zCvDMJ/04zVKWhi0NMDw4cPRqVMnLF26FI6OjpZOjtViPunHC6fhmFeGYT4Zjtco6WDQ0gDV1dWwtbW1dDKsHvPJMLxwGo55ZRjmk2F4jZIOBi1EVoIXTsMxrwzDfKKmhkELERERSQJ7DxEREZEkMGghIiIiSWDQQkRERJLAoIWIiIgkgUELERERSQKDFiIiIpIEBi1EZHFDhw7Fq6++aulkEJGVY9BCRJKSnp4OmUyGW7duWTopRGRmDFqIiIhIEhi0EJFZlZSUYMqUKWjevDl8fHzw3nvvqX2/Zs0ahIaGokWLFvD29sakSZNw/fp1AEBWVhYiIiIAAK1atYJMJsPUqVMBAAqFAomJiWjfvj2cnJwQHByMDRs2mHXbiKhxMWghIrOaPXs2fvzxR3zzzTfYvXs30tPTcezYMdX3lZWVePvtt3HixAls2bIFWVlZqsDE398fGzduBACcPXsWOTk5+OCDDwAAiYmJ+OKLL7B8+XL89ttvmDlzJv7xj3/gxx9/NPs2ElHj4LuHiMhsiouL0bp1a3z55ZeYMGECAODmzZto27Ytnn32WSQlJdX5zdGjR9G3b1/cvn0bzZs3R3p6OiIiIlBYWIiWLVsCAMrLy+Hu7o69e/eiX79+qt8+88wzKC0txbp168yxeUTUyOwsnQAiundcuHABFRUVCA8PV01zd3dHly5dVJ8zMjLw1ltv4cSJEygsLIRCoQAAXL58GUFBQRqXe/78eZSWlmL48OFq0ysqKtC7d+9G2BIisgQGLURkNUpKShAVFYWoqCisXbsWbdq0weXLlxEVFYWKigqtvysuLgYAbN++HX5+fmrfOTg4NGqaich8GLQQkdl06NABzZo1wy+//IKAgAAAQGFhIf78808MGTIEZ86cwY0bN7Bw4UL4+/sDuFs9VJO9vT0AoLq6WjUtKCgIDg4OuHz5MoYMGWKmrSEic2PQQkRm07x5czz99NOYPXs2WrduDU9PT/zrX/+Cjc3dPgEBAQGwt7fHhx9+iOeeew6nT5/G22+/rbaMdu3aQSaTYdu2bRg5ciScnJzQokULzJo1CzNnzoRCocDAgQMhl8tx4MABuLq6IjY21hKbS0Qmxt5DRGRWixcvxqBBgzB69GhERkZi4MCBCAkJAQC0adMGKSkpWL9+PYKCgrBw4UIsWbJE7fd+fn6YP38+EhIS4OXlhZdeegkA8Pbbb+PNN99EYmIiunXrhocffhjbt29H+/btzb6NRNQ42HuIiIiIJIElLURERCQJDFqIiIhIEhi0EBERkSQwaCEiIiJJYNBCREREksCghYiIiCSBQQsRERFJAoMWIiIikgQGLURERCQJDFqIiIhIEhi0EBERkST8P0qQV/yGykuXAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nfb.plot(x='date', y='radiated energy', style='.', logy=True, title='Radiated energy vs date')" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi0AAAHHCAYAAABz3mgLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABftklEQVR4nO3deVxU5f4H8M8AMizKCCKrbGouuICCELmiFGlaYgtZKVrxuy1WSlZwu6mViVZ6rSQty7CuFbdcSk0rcSGXXDBzK68aJCmgKA6yCMqc3x82xxlmYQZmmDnweb9evGrOnDnnOWeOc77neb7P88gEQRBAREREZOccbF0AIiIiIlMwaCEiIiJJYNBCREREksCghYiIiCSBQQsRERFJAoMWIiIikgQGLURERCQJDFqIiIhIEhi0EBERkSQwaCGyoMLCQshkMmRnZ4vL5syZA5lMZrtC6aGvnGS/ZDIZ5syZY9K6oaGhmDJlilXLo5adnQ2ZTIbCwsIW2R8RgxZq9dQ/rOo/JycnBAYGYsqUKTh79qyti2fU+++/z8CCdOzevRtz5szB5cuXG133+PHjmDNnDgMLahUYtFCb8dprr+Gzzz7DsmXLMHr0aPznP//B8OHDcfXqVavu91//+hdqamqa9FkGLaTP7t278eqrr+oNWk6cOIHly5eLr48fP45XX32VQQu1Ck62LgBRSxk9ejSio6MBAI8//ji8vb2xYMECfPvtt3jggQestl8nJyc4OfGfmiVUVVXB3d3d1sWwa3K53NZFILIa1rRQmzV06FAAwOnTp8VldXV1mDVrFqKioqBQKODu7o6hQ4di27ZtOp+/fPkypkyZAoVCgY4dOyIlJUXvk6++nJZPPvkEI0eOhI+PD+RyOcLDw7F06VKtdUJDQ3Hs2DHs2LFDbNoaMWKE1v6nT5+OoKAgyOVydO/eHQsWLIBKpWpSOQ0xZT/qHJm3334bH374Ibp16wa5XI5BgwZh//79Otv8/fffcd9998HLywsuLi6Ijo7Gt99+q7WOullvx44deOqpp+Dj44MuXbqI72dlZaFr165wdXVFTEwMfvrpJ4wYMUI8R5WVlXB3d8dzzz2ns/+//voLjo6OyMzM1HvM165dg5eXF6ZOnarzXkVFBVxcXDBz5kxx2XvvvYc+ffrAzc0Nnp6eiI6Oxueff270vJpzrWmaM2cOXnjhBQBAWFiYeG2oa1I0c1qys7Nx//33AwDi4+PFdbdv3w7AcK6MvryYY8eOYeTIkXB1dUWXLl0wd+5cnWtNbdOmTRg6dCjc3d3RoUMH3HXXXTh27JjR4yIyBR//qM1S/8h7enqKyyoqKvDRRx9h4sSJSE1NxZUrV/Dxxx8jMTER+/btQ2RkJABAEATcc8892LlzJ5544gn07t0ba9euRUpKikn7Xrp0Kfr06YO7774bTk5OWL9+PZ566imoVCo8/fTTAIDFixfjmWeeQfv27fHyyy8DAHx9fQEA1dXVGD58OM6ePYt//OMfCA4Oxu7du5GRkYHi4mIsXrzYIuU0dT9qn3/+Oa5cuYJ//OMfkMlkePPNNzFhwgT88ccfaNeuHYAbN7/BgwcjMDAQ6enpcHd3x3//+1+MHz8eq1evRlJSktY2n3rqKXTu3BmzZs1CVVWVeP6mTZuGoUOHYsaMGSgsLMT48ePh6ekpBjbt27dHUlIScnJysGjRIjg6Oorb/OKLLyAIAh5++GG9x92uXTskJSVhzZo1+OCDD+Ds7Cy+t27dOtTW1uLBBx8EACxfvhzPPvss7rvvPjz33HO4evUqDh8+jL179+Khhx4yeG5NvdYamjBhAv73v//hiy++wL///W94e3sDADp37qyz7rBhw/Dss8/i3XffxT//+U/07t0bAMT/mqqkpATx8fG4fv26+J19+OGHcHV11Vn3s88+Q0pKChITE7FgwQJUV1dj6dKlGDJkCH755ReEhoaatW8iLQJRK/fJJ58IAIQtW7YIFy5cEIqKioSvv/5a6Ny5syCXy4WioiJx3evXrwu1tbVany8vLxd8fX2FRx99VFy2bt06AYDw5ptvan126NChAgDhk08+EZfPnj1baPhPrbq6WqeciYmJQteuXbWW9enTRxg+fLjOuq+//rrg7u4u/O9//9Nanp6eLjg6Ogpnzpwxu5z6mLqfgoICAYDQqVMn4dKlS+J633zzjQBAWL9+vbhs1KhRQr9+/YSrV6+Ky1QqlXDbbbcJt9xyi7hM/b0NGTJEuH79uri8trZW6NSpkzBo0CDh2rVr4vLs7GwBgNb5+v777wUAwqZNm7TK379/f73nVZP6s5plFwRBGDNmjNb3dM899wh9+vQxui19TL3WBEEQAAizZ88WX7/11lsCAKGgoEBnuyEhIUJKSor4+quvvhIACNu2bdNZt+F2DW1j+vTpAgBh79694rLz588LCoVCqxxXrlwROnbsKKSmpmptr6SkRFAoFDrLiczF5iFqMxISEtC5c2cEBQXhvvvug7u7O7799lutJgdHR0fxqVqlUuHSpUu4fv06oqOjcfDgQXG97777Dk5OTnjyySe1PvvMM8+YVBbNJ1SlUomysjIMHz4cf/zxB5RKZaOf/+qrrzB06FB4enqirKxM/EtISEB9fT3y8vIsUk5T96OWnJysVXOlboL7448/AACXLl3C1q1b8cADD+DKlSvi9i5evIjExEScPHlSp0dXamqqVi3JgQMHcPHiRaSmpmrlCj388MNa+wZufOcBAQFYtWqVuOzo0aM4fPgwHnnkEaPHPnLkSHh7eyMnJ0dcVl5ejh9//BHJycniso4dO+Kvv/7S2wxmjKnXmj347rvvcOuttyImJkZc1rlzZ52aqh9//BGXL1/GxIkTta4XR0dHxMbGNtr0RdQYNg9Rm5GVlYUePXpAqVRixYoVyMvL05u0uHLlSixcuBC///47rl27Ji4PCwsT///PP/+Ev78/2rdvr/XZnj17mlSWXbt2Yfbs2dizZw+qq6u13lMqlVAoFEY/f/LkSRw+fFhvkwAAnD9/3iLlNHU/asHBwVqv1UFEeXk5AODUqVMQBAGvvPIKXnnlFYPbDAwMFF9rnnfgxjEBQPfu3bWWOzk56TQ9ODg44OGHH8bSpUtRXV0NNzc3rFq1Ci4uLmKuhyFOTk6499578fnnn6O2thZyuRxr1qzBtWvXtIKWl156CVu2bEFMTAy6d++OO+64Aw899BAGDx5sdPuAadeaPfjzzz8RGxurs7zhdXTy5EkANwI+fTw8PCxfOGpTGLRQmxETEyP2Hho/fjyGDBmChx56CCdOnBBv6v/5z38wZcoUjB8/Hi+88AJ8fHzEhE3NhN3mOH36NEaNGoVevXph0aJFCAoKgrOzM7777jv8+9//NpjcqEmlUuH222/Hiy++qPf9Hj16WKSs5u5Hs0ZEkyAI4vYAYObMmUhMTNS7bsNgRF/ehDkmT56Mt956C+vWrcPEiRPx+eefY+zYsY0GhgDw4IMP4oMPPsCmTZswfvx4/Pe//0WvXr0QEREhrtO7d2+cOHECGzZswObNm7F69Wq8//77mDVrFl599VWD226Ja62p6uvrm/Q59ff72Wefwc/PT+d99qKj5uIVRG2S+uYQHx+PJUuWID09HQDw9ddfo2vXrlizZo1Wj5/Zs2drfT4kJAS5ubmorKzUqsU4ceJEo/tev349amtr8e2332rVTOirOjc0km63bt1QWVmJhIQEo/tqTjnN2Y+punbtCuBGomtTtxkSEgLgRq1NfHy8uPz69esoLCxE//79tdbv27cvBgwYgFWrVqFLly44c+YM3nvvPZP2NWzYMPj7+yMnJwdDhgzB1q1bxaRoTe7u7khOTkZycjLq6uowYcIEvPHGG8jIyICLi4vebZt6reljzgjLxtb19PTU6UlWV1eH4uJirWUhISFiLYqmhtdRt27dAAA+Pj4Wu2aINDGnhdqsESNGICYmBosXLxYHmFPXFKhrBgBg79692LNnj9Znx4wZg+vXr2t1U66vrzfpZqhvH0qlEp988onOuu7u7nq7Jz/wwAPYs2cPvv/+e533Ll++jOvXrze7nObsx1Q+Pj4YMWIEPvjgA50bIwBcuHCh0W1ER0ejU6dOWL58udb+V61aJTZDNTRp0iT88MMPWLx4MTp16oTRo0ebVF4HBwfcd999WL9+PT777DNcv35dq2kIAC5evKj12tnZGeHh4RAEQavJpyFTrzV91GPVmNJ13di63bp108lL+vDDD3VqWsaMGYOff/4Z+/btE5dduHBBK1cIABITE+Hh4YF58+bpPXZTvl8iY1jTQm3aCy+8gPvvvx/Z2dl44oknMHbsWKxZswZJSUm46667UFBQgGXLliE8PByVlZXi58aNG4fBgwcjPT0dhYWFCA8Px5o1a0xKor3jjjvg7OyMcePG4R//+AcqKyuxfPly+Pj46NzIo6KisHTpUsydOxfdu3eHj48PRo4ciRdeeAHffvstxo4diylTpiAqKgpVVVU4cuQIvv76axQWFsLb27tZ5VSfH1P2Y46srCwMGTIE/fr1Q2pqKrp27YrS0lLs2bMHf/31F3799Vejn3d2dsacOXPwzDPPYOTIkXjggQdQWFiI7OxsdOvWTW/NwkMPPYQXX3wRa9euxZNPPil2vzZFcnIy3nvvPcyePRv9+vXT6S58xx13wM/PD4MHD4avry9+++03LFmyBHfddRc6dOhgcLumXmv6REVFAQBefvllPPjgg2jXrh3GjRund+C9yMhIODo6YsGCBVAqlZDL5eIYQY8//jieeOIJ3Hvvvbj99tvx66+/4vvvv9f5Tl988UV89tlnuPPOO/Hcc8+JXZ5DQkJw+PBhcT0PDw8sXboUkyZNwsCBA/Hggw+ic+fOOHPmDDZu3IjBgwdjyZIljZ5zIoNs2XWJqCWou87u379f5736+nqhW7duQrdu3YTr168LKpVKmDdvnhASEiLI5XJhwIABwoYNG4SUlBQhJCRE67MXL14UJk2aJHh4eAgKhUKYNGmS8Msvv5jU5fnbb78V+vfvL7i4uAihoaHCggULhBUrVuh0Yy0pKRHuuusuoUOHDjrdea9cuSJkZGQI3bt3F5ydnQVvb2/htttuE95++22hrq7O7HIaYsp+1F2e33rrLZ3PQ0+32tOnTwuTJ08W/Pz8hHbt2gmBgYHC2LFjha+//lpcx9j3JgiC8O6774rfU0xMjLBr1y4hKipKuPPOO/WuP2bMGAGAsHv37kaPWZNKpRKCgoIEAMLcuXN13v/ggw+EYcOGCZ06dRLkcrnQrVs34YUXXhCUSmWj2zX1WtN3Dl9//XUhMDBQcHBw0LpuGnZXFgRBWL58udC1a1fB0dFRq/tzfX298NJLLwne3t6Cm5ubkJiYKJw6dUrvNg4fPiwMHz5ccHFxEQIDA4XXX39d+Pjjj/V2vd62bZuQmJgoKBQKwcXFRejWrZswZcoU4cCBA0bPCVFjZIKgUTdJRCRRKpUKnTt3xoQJE7Tm3lFLSkrCkSNHcOrUKRuUjogsgTktRCQ5V69eRcPnrU8//RSXLl3SmupArbi4GBs3bsSkSZNaqIREZA2saSEiydm+fTtmzJiB+++/H506dcLBgwfx8ccfo3fv3sjPzxcHbSsoKMCuXbvw0UcfYf/+/Th9+rTerrhEJA1MxCUiyQkNDUVQUBDeffddXLp0CV5eXpg8eTLmz5+vNU/Qjh07MHXqVAQHB2PlypUMWIgkjjUtREREJAnMaSEiIiJJYNBCREREktBqclpUKhXOnTuHDh06mDXENREREdmOIAi4cuUKAgIC4OBgvC6l1QQt586dQ1BQkK2LQURERE1QVFSELl26GF2n1QQt6uGyi4qKOP05ERGRRFRUVCAoKMjotBdqrSZoUTcJeXh4MGghIiKSGFNSO5iIS0RERJLAoIWIiIgkgUELERERSUKryWkhIqLG1dfX49q1a7YuBrUxzs7OjXZnNgWDFiKiNkAQBJSUlODy5cu2Lgq1QQ4ODggLC9OaG6wpGLQQEbUB6oDFx8cHbm5uHISTWox68Nfi4mIEBwc369pj0EJE1MrV19eLAUunTp1sXRxqgzp37oxz587h+vXraNeuXZO3w0RcIqJWTp3D4ubmZuOSUFulbhaqr69v1nYYtBARtRFsEiJbsdS1x6CFiIiIJIFBCxERtXrZ2dno2LGj+HrOnDmIjIy0WXlkMhnWrVtns/1LFYMWajWKlTXYfboMxcoaWxeFiOzczJkzkZuba9ZnGGjYHnsPUauQs/8MMtYcgUoAHGRA5oR+SB4UbOtiEZEF1dXVNXucD7X27dujffv2FtlWa3Lt2rVm9e6xNta0kOQVK2vEgAUAVALwzzVHWeNCZAUtWaM5YsQITJs2DdOnT4e3tzcSExMBAIsWLUK/fv3g7u6OoKAgPPXUU6isrNT6bHZ2NoKDg+Hm5oakpCRcvHhR6/2GzUP79+/H7bffDm9vbygUCgwfPhwHDx4U3w8NDQUAJCUlQSaTia8B4JtvvsHAgQPh4uKCrl274tVXX8X169fF90+ePIlhw4bBxcUF4eHh+PHHHxs9dpVKhczMTISFhcHV1RURERH4+uuvxfe3b98OmUyG3NxcREdHw83NDbfddhtOnDihtZ3GyiaTybB06VLcfffdcHd3xxtvvAEAmDt3Lnx8fNChQwc8/vjjSE9PF89XXl4e2rVrh5KSEq19TZ8+HUOHDm302JqDQQtJXkFZlRiwqNULAgrLqm1TIKJWKmf/GQyevxUPLd+LwfO3Imf/Gavvc+XKlXB2dsauXbuwbNkyADdGV3333Xdx7NgxrFy5Elu3bsWLL74ofmbv3r147LHHMG3aNBw6dAjx8fGYO3eu0f1cuXIFKSkp2LlzJ37++WfccsstGDNmDK5cuQLgRlADAJ988gmKi4vF1z/99BMmT56M5557DsePH8cHH3yA7Oxs8eavUqkwYcIEODs7Y+/evVi2bBleeumlRo87MzMTn376KZYtW4Zjx45hxowZeOSRR7Bjxw6t9V5++WUsXLgQBw4cgJOTEx599FHxvcbKpjZnzhwkJSXhyJEjePTRR7Fq1Sq88cYbWLBgAfLz8xEcHIylS5eK6w8bNgxdu3bFZ599Ji67du0aVq1apbV/qxBaCaVSKQAQlEqlrYtCLezc5WohLH2DEPLSzb+u6RuFc5erbV00IrtQU1MjHD9+XKipqWnyNmzx72z48OHCgAEDGl3vq6++Ejp16iS+njhxojBmzBitdZKTkwWFQiG+nj17thAREWFwm/X19UKHDh2E9evXi8sACGvXrtVab9SoUcK8efO0ln322WeCv7+/IAiC8P333wtOTk7C2bNnxfc3bdqkd1tqV69eFdzc3ITdu3drLX/ssceEiRMnCoIgCNu2bRMACFu2bBHf37hxowBA/J4bK5v6mKZPn661TmxsrPD0009rLRs8eLDW+VqwYIHQu3dv8fXq1auF9u3bC5WVlXqPydg1aM79mzUtJHn+CldkTugHx7/HAXCUyTBvQl/4K1xtXDKi1sNWNZpRUVE6y7Zs2YJRo0YhMDAQHTp0wKRJk3Dx4kVUV98oy2+//YbY2Fitz8TFxRndT2lpKVJTU3HLLbdAoVDAw8MDlZWVOHPGeG3Sr7/+itdee03MkWnfvj1SU1NRXFyM6upq/PbbbwgKCkJAQIDJZTl16hSqq6tx++23a233008/xenTp7XW7d+/v/j//v7+AIDz58+bVDa16OhorW2eOHECMTExWssavp4yZQpOnTqFn3/+GcCN5rgHHngA7u7uRo+tuZiIS61C8qBgDOvRGYVl1Qj1dmPAQmRhYd7ucJBBK3BxlMkQ6m3dUXYb3gQLCwsxduxYPPnkk3jjjTfg5eWFnTt34rHHHkNdXV2TR/1NSUnBxYsX8c477yAkJARyuRxxcXGoq6sz+rnKykq8+uqrmDBhgs57Li4uTSqLOj9n48aNCAwM1HpPLpdrvdZMmlUP4KZSqcwqW1MCDR8fH4wbNw6ffPIJwsLCsGnTJmzfvt3s7ZiLQQu1Gv4KVwYrRFairtH855qjqBcEm9Vo5ufnQ6VSYeHChXBwuNFY8N///ldrnd69e2Pv3r1ay9Q1Aobs2rUL77//PsaMGQMAKCoqQllZmdY67dq10xmGfuDAgThx4gS6d++ud7u9e/dGUVERiouLxZqQxsoSHh4OuVyOM2fOYPjw4UbXNaaxshnSs2dP7N+/H5MnTxaXqXN4ND3++OOYOHEiunTpgm7dumHw4MFNLqupGLQQEZFJ7KFGs3v37rh27Rree+89jBs3TitBV+3ZZ5/F4MGD8fbbb+Oee+7B999/j82bNxvd7i233ILPPvsM0dHRqKiowAsvvABXV+3jCw0NRW5uLgYPHgy5XA5PT0/MmjULY8eORXBwMO677z44ODjg119/xdGjRzF37lwkJCSgR48eSElJwVtvvYWKigq8/PLLRsvSoUMHzJw5EzNmzIBKpcKQIUOgVCqxa9cueHh4ICUlxaRz1VjZDHnmmWeQmpqK6Oho3HbbbcjJycHhw4fRtWtXrfUSExPh4eGBuXPn4rXXXjOpTM1lk5yWpKQkeHp64r777tN5r7q6GiEhIZg5c6YNSkZERMb4K1wR162TzWo1IyIisGjRIixYsAB9+/bFqlWrkJmZqbXOrbfeiuXLl+Odd95BREQEfvjhB/zrX/8yut2PP/4Y5eXlGDhwICZNmoRnn30WPj4+WussXLgQP/74I4KCgjBgwAAAN27cGzZswA8//IBBgwbh1ltvxb///W+EhIQAuNHTae3ataipqUFMTAwef/xxnd47+rz++ut45ZVXkJmZid69e+POO+/Exo0bERYWZvK5aqxshjz88MPIyMjAzJkzMXDgQBQUFGDKlCk6zV0ODg6YMmUK6uvrtWplrEn2d/Zwi9q+fTuuXLmClStXavU7B2503zp16hSCgoLw9ttvm7zNiooKKBQKKJVKeHh4WLrIRESSdfXqVRQUFCAsLKzJeRbUtt1+++3w8/PT6uYMAI899hguXLiAb7/91ujnjV2D5ty/bdI8NGLECL0JOydPnsTvv/+OcePG4ejRoy1fMCIiojauuroay5YtQ2JiIhwdHfHFF19gy5YtWoPiKZVKHDlyBJ9//nmjAYslmd08lJeXh3HjxiEgIMDgPAxZWVkIDQ2Fi4sLYmNjsW/fPpO2PXPmTJ1qPiIiImo5MpkM3333HYYNG4aoqCisX78eq1evRkJCgrjOPffcgzvuuANPPPEEbr/99hYrm9k1LVVVVYiIiMCjjz6qtxtVTk4O0tLSsGzZMsTGxmLx4sVITEzEiRMndNoHNX3zzTfo0aMHevTogd27d5tbLCIiIrIAV1dXbNmyxeg6LdG9WR+zg5bRo0dj9OjRBt9ftGgRUlNTMXXqVADAsmXLsHHjRqxYsQLp6ekGP/fzzz/jyy+/xFdffYXKykpcu3YNHh4emDVrlt71a2trUVtbK76uqKgw91CIiIhIQizae6iurg75+flaVUgODg5ISEjAnj17jH42MzMTRUVFKCwsxNtvv43U1FSDAYt6fYVCIf4FBQVZ7DiIiFojG/S7IAJguWvPokFLWVkZ6uvr4evrq7Xc19dXazbIhIQE3H///fjuu+/QpUuXRgMafTIyMqBUKsW/oqKiZpefiKg1Uo+aqjl0O1FLUo8s7Ojo2Kzt2KT3UGNtZVOmTGl0G3K5XGc4YyIi0uXo6IiOHTuKc9K4ubmJQ74TWZtKpcKFCxfg5uYGJ6fmhR0WDVq8vb3h6OiI0tJSreWlpaXw8/Oz5K6IiMgM6t9gdeBC1JIcHBwQHBzc7GDZokGLs7MzoqKikJubi/HjxwO4EWHl5uZi2rRpltwVERGZQSaTwd/fHz4+Prh27Zqti0NtjLOzszhXVHOYHbRUVlbi1KlT4uuCggIcOnQIXl5eCA4ORlpaGlJSUhAdHY2YmBgsXrwYVVVVYm8iIiKyHUdHx2bnFRDZitlBy4EDBxAfHy++TktLA3BjWu/s7GwkJyfjwoULmDVrFkpKShAZGYnNmzfrJOcSERERmcMmcw9ZA+ceIiIikh5z7t82meWZSGqKlTXYfboMxcoaWxeFiKjNskmXZyIpydl/BhlrjkAlAA4yIHNCPyQPCrZ1sYiI2hzWtBAZUaysEQMWAFAJwD/XHGWNCxGRDTBoITKioKxKDFjU6gUBhWUcWZSIqKUxaKEmaSs5HmHe7nBoMBaSo0yGUG832xSIiKgNY04Lma0t5Xj4K1yRNCAQqw+eFZeNHxAAf4WrDUtFRNQ2saaFzNLWcjyKlTVY+8tZrWXrfjnXao+XiMieMWghs7S1HI+2drxERPaMQQuZpa3leLS14yUismcMWsgs/gpXZE7oB8e/Z+p0lMkwb0LfVpvj0daOl4jInnEYf2qSYmUNCsuqEert1iZu4G3teImIWoo592/2HqIm8Ve4tqmbd1s7XkspVtagoKwKYd7uVj9/LbkvIrINBi1EZBUt2TW+LXXDJ2rLmNNCRBbXkl3j21o3fKK2jEELkQn0jQBsz6MC27psLdlVnN3SidoONg8RNUJf0wMAu22OsIemEnVXcc1gwlpdxVtyX0RkW6xpITJCX9NDxuojdtscYS9NJS3ZVZzd0onaDta0kM3Zc68PfU0PKgAw0Bxh6/Ibaypp6bIlDwrGsB6dW6SreEvui4hsh0EL2ZQ9NGUYo6/pwQEA7LQ5wt6aSvR1FbdWkMpu6UStH5uHyGbspSnDGH1ND5n39rPb5gh7byrJ2X8Gg+dvxUPL92Lw/K3I2X/G1kUiIglhTQvZjKlNGbZuPjLU9GCvzRH22lRiKEgd1qOz3ZSRiOwbgxayGVOaMuyl+chQ04PQMLnFTthjU4k95dsQkTSxeYiswpRxQhprymjpAcrMGdeEzRzm44zZRNRcrGkhizOndsRYU0ZLPZmbW5vDZo6mUQep/1xzFPWCYHf5NkRk/xi0kEU15YZuqCmjJXrCNKW8bOZoOnvNtyEiaWDzEFmUJYdUb4meMKaWV7P5iM0czeOvcEVct04MWIhMYOspOewNa1rIoixdO2LtJ/OmJgOzmYOIrM1eOiLYE5kgCPbZ/cFMFRUVUCgUUCqV8PDwsHVx2rSc/Wd0buj2/A/NWHmLlTW4LXOrVh8hmQzYnT4SAKzazGHrrt6afi0qx77CS4gJ9UJEkKdNy9Ia2NN3S/apWFmDwfO36jxQ7UyPb3XXjDn3b9a0kMVZunbE2j/wxsqb/2e5TqdmQQAO/lmOu/oHWO3Hw56esJ7/7yGsPnhWfH3vwEAsfCDSJmWxtpYIJuzpuyX7xdw5/WyS05KUlARPT0/cd9994rKioiKMGDEC4eHh6N+/P7766itbFI0sxFJ5Cy3VtdhQeQ1VRFqzftKeRgr+tahcK2ABgNUHz+LXovIWL4u1tcS1Zk/fLdk35s7pZ5Og5bnnnsOnn36qtczJyQmLFy/G8ePH8cMPP2D69OmoqqqyRfHITtjDD3x0qBca/G5ABiAq1HpNJJZMZm6ufYWX9C4/UNi6ghZTrjVLJETa03dL9s3ep+SwFZs0D40YMQLbt2/XWubv7w9/f38AgJ+fH7y9vXHp0iW4u7vboIRkD+yhetRf4Yr59/ZDxuojUOFGlJ95bz+j+29uE4M9TXoYE+qld3m0FYM2W2jsWrNUk4653y1zX9o2DhGgy+yalry8PIwbNw4BAQGQyWRYt26dzjpZWVkIDQ2Fi4sLYmNjsW/fPrP2kZ+fj/r6egQFBZlbPGpF7KV6NHlQMHZljMQXqbdiV8ZIozcrSzQx2NMTVkSQJ+4dGKi17N6BgU1OxrXX7pvGrrViZQ3SV1umxs+c75ajLhPAIQIaMrumpaqqChEREXj00UcxYcIEnfdzcnKQlpaGZcuWITY2FosXL0ZiYiJOnDgBHx+fRrd/6dIlTJ48GcuXLze3aNTK2NMIqqbM5WPOQHWNPUHb0xPWwgciMTkuBAcKyxEd6tnkgMWeE1CNXWtvbDyuk4zdnBo/U75bjrpMpJ/ZQcvo0aMxevRog+8vWrQIqampmDp1KgBg2bJl2LhxI1asWIH09HSj266trcX48eORnp6O2267rdF1a2trxdcVFRVmHAVJRfKgYPTy64D9heUY1IwbZkswtTnL1Ju3rSc91AysIoKad+6lcBPWF0wUK2vw8c4CnXUdgGbV+Gl+t/oCWHtoGiWyRxbNaamrq0N+fj4yMjLEZQ4ODkhISMCePXuMflYQBEyZMgUjR47EpEmTGt1XZmYmXn311WaXmeybPT+dN2RKvoIUbt6A5c97c2/CLZXb0TBQ1FduAHh8WJhFymHoPNtTXhORPbFo76GysjLU19fD19dXa7mvry9KSkrE1wkJCbj//vvx3XffoUuXLtizZw927dqFnJwcrFu3DpGRkYiMjMSRI0cM7isjIwNKpVL8KyoqsuShkB2wh95DDctjLB/DlHwFW/UeMSeXxBrn3d3ZEbIm5ifZMrdDX66LgwyYOjis2dvWlyuTvuYIipU1dpXXRGRPbNJ7aMuWLXqXq1Qqk7chl8shl8stVSSyQ/ZURW5qzUNj+QpNfYJuTk2DubUmhs77xsPFuKu/f5P3LzQ4ZlNuwraumbJmXpXxgQtd7SqvicheWDRo8fb2hqOjI0pLS7WWl5aWws/Pz5K7ojagOVXklmxOMPfGaSwXpSk3weY01TTlpq/vvAPA3I2/Yd53vzVr/8CN6t01T8WZlCNjD4GrtYIHUwYutHVeE5G9sWjzkLOzM6KiopCbmysuU6lUyM3NRVxcnCV3RW2AKVXk+po9mtKcYKz5xNJNOsmDgrEzPR5fpN6KnenxRgOA5jbVNKXsDc+7JkvsXwWgus60WlV76fZuSrdTc7tz22LgQiKpM7umpbKyEqdOnRJfFxQU4NChQ/Dy8kJwcDDS0tKQkpKC6OhoxMTEYPHixaiqqhJ7ExGZw9hTrr4aiGE9Optds9BYTYY1kiJNfYJubk1DmLc7ZID2hI9ovOeL+rxvPFyMuRt/a/L+a+qu6ywz59zZU7d3Y5pSG9aUgQuJ2jqzg5YDBw4gPj5efJ2WlgYASElJQXZ2NpKTk3HhwgXMmjULJSUliIyMxObNm3WSc4lMpe8Gb6gGYvGDEUZrFho2GRlrPtFc39wbp6Wap6zSi0S3AkUvf4Ur7urvjzc2/mZ20APoTrQINC2h1BLNM9bsfdScvBvmrRCZx+ygZcSIEQbbYtWmTZuGadOmNblQRI0xVAPhIJPpvckf/usyHv7oZ50nYUPb+WRXAT76qUBr/Z3p8SbdXJry1K2+qbo7O6Kqrl68uTa3pqGgrEpvsmezckJMCHr0TbQIAB9OHohRvc3Pb2tOboe1u803tzaMeStEprNJ7yGi5nJ3dtS7vIun7k3+xdE9sWDT73qfhPXVZDjIgOV5BeLNXr3+zvR4xHXrZLRcTXnqztl/Bumrj2gFF5o31+Y8jTe3pqapQY+hiRZbemLAluh9ZK0xVTjvkC6eE7LJLM9EzVVVV693eXWdSifRtV+gwuiTcMNk38eGhBkctr0x5ia+qsfqaLi/hgmvTZ1/pLnjfTSWCGso+dQWEy3qK0tLjItjjTFVOO+QLp4TAljTQhLV2NNtwyp3Y+s2rMkAgI93FjTpydncp+4DhZd0AhY1S40Ya+pcN/o+b6x5ylizi3qiRc0mIkMTLVri6dnWI8taMjdFX+1QxuojcJc7ISrEs03WMNh6vB6yHwxaSJLMyfUwZd2GQY6x9Y3dZE3Zl+bnZXq6Fas1dnNVb+fIX0os2Px7ozkbgoHwqLGcD0Nz8jR2EzFlokVL5JsYKksvvw6oqqvHS3f2wpubT1i995GlclMMdROf9vkvdj+VhbXYw3g9ZB8YtJBkmfN0a+6TsKH1TbnJGrrJF5RV4chZpZhf4yADXhrdS6dLMnCj3dbYzVWzHJr0BQ/Gyqz3qX7NEZ0nWFPm5NF3EzE20aKlnp4NlWX8+7shaJzn/oEdtb5Le82PMDS4H2DdGgZ7PR+A9fKGSHqY00KSZk6uh7l5IQ3XN2egN83ParbFZ36nnRD85qYTSB/dS8wbcZAB/ze0K3ZljDT4NK1vlFlNmjkbjZVZ71O9AHyyq8DgeSlW1uBiZa3eOXncnHV/UgzlvZiTb/JrUTmW/3QavxaV67ynL+8GuDmyrPo8Nww+rZ0fYe5gc+r1ARgc3A+wzlxV9p4vwrmYSI01LUQmakoVtSkBRv8uHbErfaTJtUCGZh5W03wCbazMhp7qP8orwNTBujMZN+zpJJNpBwdJ7+/WqskxVstjqOdWWeVVcdJAQHe8l3sHBmLhA5Hi64ZNcg640ZzS8JjVcycBsGp+RLGyBit2Foh5UaY06eg7TzvT45FfWI5nv/zFqjUMUskX4Zg2BLCmhSTA2FN2S2rKkPKmBhjm1AIZqllQb0/zCbSxMvsrXPHYEN0Zi1XQ7Z6sr6dTwyGbNGtyfi0q15nFuGGPqMwJ/cTyyf7e3jNfHBKf9vWN97L64Fmda0HdY2zJxAF4dXwfvedn7sbfMHj+VqxokGQNWK72Imf/GdyWuRXLfyowqUYOMBw0AMDYiACr1zDYaubxpmhqLzpqPVjTQnatsafslmQoyRYAdp8u05sLYCw/obG8FU0N8w0aluPJEV3R0c0ZYd5ucHV2EmsqTEkM9u6gO1t6w2CsWFmDz/f+abCnk6Z6QcAnOwuxfOcfBruOa+5ffW4011XfuJ+K76p3HwcKy3VyZfL+d0G8+cugXQukud2Pdxbo5BFZalyVjDW63dcB4zVyjdWGmVPD0JS8FOaLkJQwaCG7Zegpe3JciNW6zjZG8wZSXXcNaw6eRfqaI2LCZ8NmgIZBgyZTAgDAcBOLuhyH/7os9h5Sazg4XS+/DthfWI5BDXrxFCtrsGDT7zr7fPHOnnoTeU21fOcfOgEDcCNQ0xzjJX31EYPbqBcEXKvXP7Gih6v2T1fD2goBgIMAPDOqO97NPaW1rkoA/m9YGD7+qdCiPYqM1aoZCwJMCRpM6ZnU1J5YUpnfiQhg0EJ2zNCoqvqesq09VLsmf4Ur3v7+hE5AZSgXQB003JO1W2t9ATdyK9ycHREd6mVw/JTG8g3U0xMYKotmDUTDc2PoRtu/S0dx//oGv2uMoZk+BNyoEUkeFGx0jBrgxo3b2Un/yMcVNdoTMRrqJtzDp4PegGDq4DBMHRzWpLFrDDFUq+YgM16jZomgobl5KcwXIalg0GKn7Ln7YUsxNKrqpao6rdeWSCQ053wbmlcHMNwMYGgEX9XfORyGAq3Gmg6MPd3XCwLyC8uNnpvGnvLz/yw3GFg4/N38Yk5AI+Dm/hsbo2behL7o5ddBp6YE0B1Zd16DmajV24gK9UTmBO2ZlDUDAlO6lJsza3PDhODHh4XpTWhuqLlBgyXGMbHUODNE1sSgxQ61ZK2BtVgi6IoI8sSYfn747kiJ1vJlO/7AI3Eh4nab+4Nt7vk2VAMEGG4GCPN21zsei5qhQKuxoMJYzoyjTAboea9hT5rHh4TdmBwSuomehiZHfXZkd0yMDUbe/y6IzWOmUn83USGeOudEBuC9iQMQFXpz5NeBwR1x8MxlcZ1+gR6oqqsX83ZyfyvB0XMVOvuZdGvwzXOp3pEJkz3aatbm5gQNhq4TN2cHg/lWRFLE3kN2xpyxQOyVJcd8eOTWEJ1lDXs2NKVXj1pTzrehGiAAeHF0T703B3+FK+bf28/oPVNfjw3107v6czLo1hToG9NDHXxEhXga7ElzW+ZW3Ja5FR/+VAD8PT7MzvR4rYAtOtRLp8wyABNjg8Uk0d3pI/HsyG56j+m5kd0Nfjfqc6I5Rs38e/thbESA1tg4h4oua33+yNkKrWtr6+/n9e67XhCa9P02tzeNuocLALPGaWkOfeOYjB8QgKT3d9vt2CtETcGaFjsj9eGqLT3mg6lJik3NCWjK+Y4I8sSwW7yRd7JM573+gR0N7kv9FJ5fWI7LNXV4Zd2xRnuwFCtrsOFwsbieAGDzsRJUXL2GmFAvRAR5am23vLoOnm7OWjUVmRP66U2kbdhb56Odf+Cu/n46I+HOv1e7eSXz3n4660yMDcGSbad1vqeRvX1Qfa1ea8wSze+msZoJY81f6mtr/r19sWpvkc77I3p2Nvv71Rw4z9TeNPpqFW1RW6p5Lt2cHZD0/m67H3vFVqzZ/C7VbUsFgxY7I/Xuh00dgK05c/kAuj/Yms0Hxpg6wFlDC+7rj9syt5rcbVbzGMdGBAAA2jk66D0uzTmFMvX07Nn2+wVs+/0CgJtdwI0l2wKGE2M1qQRgfNZuzL9Xe5j/IC83rH36NlTXqQw2eej7ntRP+prnVhCAyzXXtJosjDWLuDvrT8RVqxcEdPF0R7CXK85culmjEezlilG9/VCsrDH535NmoKHZZdpYEKwvOBnWo7PNBmtTn8vdp8sk/fDTmObcvK0ZUEp121LCoMXOSL37oblBV1Pn8tHHX+Ha6M1b32c0z7f6RmUsOVb9ufn3mvY9aY4iKwPEoEBfV2RzuxevPngWY/r5GbxJAjA4dog+AoD0v+ce0ncu1c0e+hh70tfcfuZ3NwIxU74fQwnMauq8jb/KtZtgzpbfCDrz/ndBK2CTGejJY6jL9JKHBmBgyI2k34a5IYZqFd+ZGGnzgEFvMA7gYlWtScG8PWvOzduao/9KddtSw6DFDkm5+6E5QZc5/xBNSVI0NPlfL78OBiftA26e74N/lmPa57+IN/jGfhhM+Z4adhkWAKSv1h8UvHRnL53xVkyx/Kc/DN4kBQhmb08QgNzfSjHrm2Nm/0gae9JvyNg21U/S7s6ORhON503oi6q6er3Hr+45pZXoK0AM5jQdKLykt8u0l7vcYCBsqFYRf69ny9pSnWAcN649qc8U3dybtzWb36W6balh0GKnpNz90NSgy9L/EA1N/tewyUMff4UrPN2rTBrBtSHBSD2GvrFIBABbjpdi9rfaQcGCTb/rzJljip//KNdZ5iC7OYiboZu+Mecrapv13Rjr1dTYNhs+SUcGafceGtPXD5PiQrVm0NYXJOjrOaWenkDf/hpS1+JoBp0q4WZNlKFaRXU3a83A/cXRPVFQVgXAcDdrS9PMddKcv0jKT+nN/c2wZvO7VLctNew9RFah7kFh7IekOb1+TN0ecHNskGJljdGZd80tj7FeUur9XK65pvezZZW6QYEKN5ovzDH0Fm+9yx8fcmP4+4KyKtzZ18+sbcoAjOrt06zvxlCvpob0TRfQ8ElaM2ABgE3HSrSCYX09Zwz1nGpsf2rqXlpF5TW6QacAHPyz3OB+1b2qdqbH44vUW/HinT2xYNPvVu/FY+jaLq6oaVZvKHvS3N8MY99Zc0l121LDmhayGUvn76i3p+8mpJ4P56OdfxhsCzenPL8WlWuNT6L59NqwOaEhmQwY2csH7209pfPk9OSIrliy7bTR45QBSBoQgLv6+yM8QIHB87fqHO9f5dV6lzfkAOCl0b20En4FAL+XXGn2d6PO2Rn//m69icD65m5qbIJJ4GbQcFd/7VGHNWv3gBsB20uje+HNTSduDPYmAx4dEqq1LUP7E5vzDGQwqxfrq1XUTBIN9XbTGrG4qbUcjSWe6svzAGAwP0qqT+mW+M2wZvO7VLctJTLB0L9KiamoqIBCoYBSqYSHh4eti0MmKlbWIP/PckCAVjfd5vi1qBzjs3brDFoG6E6StzM9Xm8+hbEfhg92nNbbqwcAsh4agGe++EXrRiH7O6FAwM3clYuVtTfGR9FYZ/6EfgjycsNDy/eadJzqm9OOExfw3dGSxj9g4PPDenTW6QklA7A7YyQAaPXIMre3xu7TZXqP55W7emNMf3+dSQ6fiu+GpdtPNxq4LJk4QOyFpabZ60qdGySe76pafJhXIB6burmwWFmDuMytevfhKJNhzVNxeq+l3RkjTQoeHh8SpvU9q32ReqvRpGat4zmrvNF0aCDYLlbW6ASoxkYrVt/opZTT0jBoa+zfKEmLOfdv1rSQySw9RoC1uvBFBHlq9ezRF7AAhtvC9eUTFStrcKDwEnJ/O491h87p3a+jTAaVoJv4KgjA3PF9cPWaCuXVdXqTbTUTRE3NQVEJQEYT5gVSW/vUbYgI8sT6X8/qzbvJLyzH2IgAoz2yGrsmDLXFj/l7NN6GScpZ205jTF8/fH+sVCuBtKEgL+19Gep1pc4V0lysmQx9vuKqwfNTLwiorlM1Ok6Nmr6mrY9+0p1RWqaRb2SIseNpWFNjKJdLH3WwKKUbvaHfCVsfQ0uNmcKxWbQxaCGTWDrAsHYXPkNJiJpMrSLP2X8GLxmZjRi4OWiaegTZhk/mmj1x9FEniMZ166R3vJN1v5zTmSVa/bmmeCg2SOxRZWgOIJnM+Pdkavfyx4aEiYPLaVbnbzh8Tm9AsvlYCdY+dWNcmFMXruCVdcd01im6VCOW31Beipq+c6QOyoorDI9Wq74+4rp1MqlaPv/Pcr15Snp3rkFfLYKx42kYbBsaa6hhTYs6WJTSjc9eu/q21Jgp9jY2iz0EUAxaJMYWF401fjia2gvAnOP3V7jCq73+nIWGE+cZ219jAYsMN2stGiZZqsOBxmpONAMofW3XMxN76nTJVh+HAP21EQ4wHNQkRweJeSRnL+veuGUyoIvnjcDCWHdiY9dEw9qCsf38kDQwEK7OTihW1hjMF1EJQHWdCnHdOuFiVa3edTTjrMbyYAzV1shkhqdk0DddgrFrxZTAVk3AzR5M+m5KQV5uRo/H1BGhAUh2vCc1e+zq21KBlL0FbPYSQDFokRBbXTTW+OEwtQufZpBi7sBxxcoaXKqq07lpOchuBhmNOWBkckS19NG9EBHkKf7INGwKMCUZtuENRbPqX/36rv6uqKy9rt2V9s6emK8nvyZjTC/cHRGAg3+W4+nPf9F5Xz3wm6G+PXf28dM7OJxaeU2d0Wui4fg0ALDhSAk2/D35pYPsRgKw3vOh0XwSFaL/OxqosbyxSSPV56jh9zIw5EYO1b0DA7Vm7R52izcW3Nff5Gtb/b0b0vD6U1/nhm5Ka56Ka3RsmoZlM5SkKfXETUO1SG7Otuv42lKBlD0FbPYUQDFokQhbXjTWGCPAlF4ADYM0zeruxo5fZ0h23Pisej+mBCyA4aYTtYwxvfCPYTcmCzSUW2DoSR9/l2vt07fBx8NFa8RVQwFqw5tTQZnu2DIA0KWj69/lMVybASPl2ny0xGiujAzGB1DL/7Pc6OfVuSb6vDS6l9Z3qi8nRJPYa0wj7+SlMb3QP7AjQr3dkPe/Czplnz/hZl7KwgciMTkuBAcKyxH998jE5jBW06MOmt7cfELnOjc01H51nUqrF5yDDJh0awjqBRXie/pgVG/9Xdj11QZJebwnQPd3Arhx7SS9v9tmT/otNWaKPY3NYk8BFIMWibDlRWPprslqxrrw6QvSGjJ0/HqHZJcB7z04wOweSlEhngaDDgcZ0NG1nfja0I+M5k2rIQHAxsMlWl2xG46M2zBAa3gj0lc+dTOSmcO+iMfVWO2Qp5uz0WvClE6JhvahOemkvqBMEHQHiANw80T8/b3Edeukv/YLuqPiRgSZH6yoGarpUec5JQ8Kxt2RATrXubGb0plLVVrd6Vfu+RMA8J+fi8T5ptoKseu8Ri8uWz7pW+v30Fb7MYU9BVAMWiTC1heNtcYIMPQkaMp4HYaO31CNR6f2crPL7a/4e5ZjE3pyGPqRUd+0DOWkqAMW9Tb1jYxrboAqNPivJn2JwupmLPXoreoutvpoNq0Yuib0JSQ3ZChZVPM7NeW6N1YLqfdagIGgp4kafu8OAB4fFoapg8OM5sQYy0UxNl/U6oNnMTkupMlBlhRV1dU3abRqa2mpMVPsZWwWewqgGLRIhD1cNC1Z1azvZiWT3egarILxESEtHeCpfzg2Hi7G3I2/ab3X8IfT0I+MoZyUx4aE6ozjoR4ZVzCh/Iaah4xJHdoVH+8s0LqOGpa5o2s7vV3G1U1VjSWoisHe3002DZmaLGrKdW+sFrKlgv2m3lz0fc6UeZsOFJa3qaDF1g9t+rTU76G9NPHZSwBlk8HlkpKSsH37dowaNQpff/21uHzDhg14/vnnoVKp8NJLL+Hxxx83eZttZXC5tjSoUs7+Mzo3K1P/0ej7bHPbv/UN4mVogLrGtqM5cqu+bb44uqc4kqux8usrkzHq8gJo9Dw2LGdTrjv1NtycHVBdpxL/q7kdU65pY+s09r1Y41qwJlO+02+eNi2RvDWR2vdIpjPn/m2ToGX79u24cuUKVq5cKQYt169fR3h4OLZt2waFQoGoqCjs3r0bnToZHzVSra0ELW1Nc4I0awR41vjhNLRNU8vf8POa47pojsbbmn/oG/tepBbsax5PQ20tp0WT1L5HMo3dBy3AjcBlyZIlYtCye/duvPXWW1i7di0AYPr06YiNjcXEiRNN2h6DFmop1vjhbO42G37eErUkUtPabmiax3O+4mqTezcR2Ttz7t9md3bPy8vDuHHjEBAQAJlMhnXr1umsk5WVhdDQULi4uCA2Nhb79u1rdLvnzp1DYGCg+DowMBBnz5418gki2/BXND6DdUtvs+HnNV9bo7z2qLUdp+bxRAR54rGhXRmwUJtndtBSVVWFiIgIZGVl6X0/JycHaWlpmD17Ng4ePIiIiAgkJibi/PnzzS4sERERtV1mBy2jR4/G3LlzkZSUpPf9RYsWITU1FVOnTkV4eDiWLVsGNzc3rFixwuh2AwICtGpWzp49i4CAAIPr19bWoqKiQuuPiIiIWi+LjoVcV1eH/Px8JCQk3NyBgwMSEhKwZ88eo5+NiYnB0aNHcfbsWVRWVmLTpk1ITEw0uH5mZiYUCoX4FxQUZLHjICIiIvtj0aClrKwM9fX18PX11Vru6+uLkpIS8XVCQgLuv/9+fPfdd+jSpQv27NkDJycnLFy4EPHx8YiMjMTzzz9vtOdQRkYGlEql+FdUVGTJQyEiIiI7Y5PB5bZs2aJ3+d133427777bpG3I5XLI5XJLFouIiIjsmEVrWry9veHo6IjS0lKt5aWlpfDz0z/JFxEREZEpLBq0ODs7IyoqCrm5ueIylUqF3NxcxMXFWXJXRERE1MaY3TxUWVmJU6dOia8LCgpw6NAheHl5ITg4GGlpaUhJSUF0dDRiYmKwePFiVFVVYerUqRYtOBEREbUtZgctBw4cQHx8vPg6LS0NAJCSkoLs7GwkJyfjwoULmDVrFkpKShAZGYnNmzfrJOcSERERmcNmw/hbGofxJyIikh6rDuNPREREZAsMWoiIiEgSGLQQERGRJDBoISIiIklg0EJERESSwKCFiIiIJIFBCxEREUkCgxYiIiKSBAYtREREJAkMWoiIiEgSGLQQERGRJDBoISIiIklg0EJERESSwKCFiIiIJIFBCxEREUkCgxYiIiKSBAYtREREJAkMWoiIiEgSGLQQERGRJDBoISIiIklg0EJERESSwKCFiIiIJIFBCxEREUkCgxYiIiKSBAYtREREJAkMWoiIiEgSGLQQERGRJDBoISIiIklg0EJERESSYFdBy7///W/06dMH4eHhePbZZyEIgq2LRERERHbCboKWCxcuYMmSJcjPz8eRI0eQn5+Pn3/+2dbFIiIiIjvhZOsCaLp+/TquXr0KALh27Rp8fHxsXCIiIiKyFxaracnLy8O4ceMQEBAAmUyGdevW6ayTlZWF0NBQuLi4IDY2Fvv27RPf69y5M2bOnIng4GAEBAQgISEB3bp1s1TxiIiISOIsFrRUVVUhIiICWVlZet/PyclBWloaZs+ejYMHDyIiIgKJiYk4f/48AKC8vBwbNmxAYWEhzp49i927dyMvL89SxSMiIiKJs1jQMnr0aMydOxdJSUl631+0aBFSU1MxdepUhIeHY9myZXBzc8OKFSsAAFu2bEH37t3h5eUFV1dX3HXXXUZzWmpra1FRUaH1R0RERK1XiyTi1tXVIT8/HwkJCTd37OCAhIQE7NmzBwAQFBSE3bt34+rVq6ivr8f27dvRs2dPg9vMzMyEQqEQ/4KCgqx+HERERGQ7LRK0lJWVob6+Hr6+vlrLfX19UVJSAgC49dZbMWbMGAwYMAD9+/dHt27dcPfddxvcZkZGBpRKpfhXVFRk1WMgIiIi27Kr3kNvvPEG3njjDZPWlcvlkMvlVi4RERER2YsWqWnx9vaGo6MjSktLtZaXlpbCz8+vJYpAREREEtciQYuzszOioqKQm5srLlOpVMjNzUVcXFxLFIGIiIgkzmLNQ5WVlTh16pT4uqCgAIcOHYKXlxeCg4ORlpaGlJQUREdHIyYmBosXL0ZVVRWmTp1qqSIQERFRK2axoOXAgQOIj48XX6elpQEAUlJSkJ2djeTkZFy4cAGzZs1CSUkJIiMjsXnzZp3kXCIiIiJ9ZEIrmZWwoqICCoUCSqUSHh4eti4OERERmcCc+7fdTJhIREREZAyDFiIiIpIEBi1EREQkCQxaiIiISBIYtBAREZEkMGghIiIiSWDQQkRERJLAoIWIiIgkgUELERERSQKDFiIiIpIEBi1EREQkCQxaiIiISBIYtBAREZEkMGghIiIiSWDQQkRERJLAoIWIiIgkgUELERERSQKDFiIiIpIEBi1EREQkCQxaiIiISBIYtBAREZEkMGghIiIiSWDQQkRERJLAoIWIiIgkgUELERERSQKDFiIiIpIEBi1EREQkCQxaiIiISBIYtBAREZEk2FXQUlBQgPj4eISHh6Nfv36oqqqydZGIiIjITjjZugCapkyZgrlz52Lo0KG4dOkS5HK5rYtEREREdsJugpZjx46hXbt2GDp0KADAy8vLxiUiIiIie2Kx5qG8vDyMGzcOAQEBkMlkWLdunc46WVlZCA0NhYuLC2JjY7Fv3z7xvZMnT6J9+/YYN24cBg4ciHnz5lmqaERERNQKWCxoqaqqQkREBLKysvS+n5OTg7S0NMyePRsHDx5EREQEEhMTcf78eQDA9evX8dNPP+H999/Hnj178OOPP+LHH3+0VPGIiIhI4iwWtIwePRpz585FUlKS3vcXLVqE1NRUTJ06FeHh4Vi2bBnc3NywYsUKAEBgYCCio6MRFBQEuVyOMWPG4NChQwb3V1tbi4qKCq0/IiIiar1apPdQXV0d8vPzkZCQcHPHDg5ISEjAnj17AACDBg3C+fPnUV5eDpVKhby8PPTu3dvgNjMzM6FQKMS/oKAgqx8HERER2U6LBC1lZWWor6+Hr6+v1nJfX1+UlJQAAJycnDBv3jwMGzYM/fv3xy233IKxY8ca3GZGRgaUSqX4V1RUZNVjICIiItuym95DwI0mptGjR5u0rlwuZ5doIiKiNqRFalq8vb3h6OiI0tJSreWlpaXw8/NriSIQERGRxLVI0OLs7IyoqCjk5uaKy1QqFXJzcxEXF9cSRSAiIiKJs1jzUGVlJU6dOiW+LigowKFDh+Dl5YXg4GCkpaUhJSUF0dHRiImJweLFi1FVVYWpU6daqghERETUilksaDlw4ADi4+PF12lpaQCAlJQUZGdnIzk5GRcuXMCsWbNQUlKCyMhIbN68WSc5l4iIiEgfmSAIgq0LYQkVFRVQKBRQKpXw8PCwdXGIiIjIBObcv+1qlmciIiIiQxi0EBERkSQwaCEiIiJJYNBCREREksCghYiIiCSBQQsRERFJAoMWIiIikgQGLURERCQJDFqIiIhIEhi0EBERkSQwaCEiIiJJYNBCREREksCghYiIiCSBQQsRERFJAoMWIiIikgQGLURERCQJDFqIiIhIEhi0EBERkSQwaCEiIiJJYNBCREREksCghYiIiCSBQQsRERFJAoMWIiIikgQGLURERCQJDFqIiIhIEhi0EBERkSQwaCEiIiJJYNBCREREksCghYiIiCTB7oKW6upqhISEYObMmbYuChEREdkRuwta3njjDdx66622LgYRERHZGbsKWk6ePInff/8do0ePtnVRiIiIyM5YLGjJy8vDuHHjEBAQAJlMhnXr1umsk5WVhdDQULi4uCA2Nhb79u3Ten/mzJnIzMy0VJGIiIioFbFY0FJVVYWIiAhkZWXpfT8nJwdpaWmYPXs2Dh48iIiICCQmJuL8+fMAgG+++QY9evRAjx49LFUkIiIiakVkgiAIFt+oTIa1a9di/Pjx4rLY2FgMGjQIS5YsAQCoVCoEBQXhmWeeQXp6OjIyMvCf//wHjo6OqKysxLVr1/D8889j1qxZevdRW1uL2tpa8XVFRQWCgoKgVCrh4eFh6UMiIiIiK6ioqIBCoTDp/t0iOS11dXXIz89HQkLCzR07OCAhIQF79uwBAGRmZqKoqAiFhYV4++23kZqaajBgUa+vUCjEv6CgIKsfBxEREdlOiwQtZWVlqK+vh6+vr9ZyX19flJSUNGmbGRkZUCqV4l9RUZElikpERER2ysnWBdBnypQpja4jl8shl8utXxgiIiKyCy1S0+Lt7Q1HR0eUlpZqLS8tLYWfn19LFIGIiIgkrkWCFmdnZ0RFRSE3N1dcplKpkJubi7i4uJYoAhEREUmcxZqHKisrcerUKfF1QUEBDh06BC8vLwQHByMtLQ0pKSmIjo5GTEwMFi9ejKqqKkydOtVSRSAiIqJWzGJBy4EDBxAfHy++TktLAwCkpKQgOzsbycnJuHDhAmbNmoWSkhJERkZi8+bNOsm5RERERPpYZZwWWzCnnzcRERHZB7sbp4WIiIiouRi0EBERkSQwaCEiIiJJYNBCREREksCghYiIiCSBQQsRERFJAoMWIiIikgQGLURERCQJDFqIiIhIEhi0EBERkSQwaCEiIiJJYNBCREREksCghYiIiCSBQQsRERFJAoMWIiIikgQGLURERCQJDFqIiIhIEhi0EBERkSQwaCEiIiJJYNBCREREksCghYiIiCSBQQsRERFJAoMWIiIikgQGLURERCQJDFqIiIhIEhi0EBERkSQwaCEiIiJJYNBCREREksCghYiIiCTBroKWoqIijBgxAuHh4ejfvz+++uorWxeJiIiI7ISTrQugycnJCYsXL0ZkZCRKSkoQFRWFMWPGwN3d3dZFIyIiIhuzq6DF398f/v7+AAA/Pz94e3vj0qVLDFqIiIjIss1DeXl5GDduHAICAiCTybBu3TqddbKyshAaGgoXFxfExsZi3759ereVn5+P+vp6BAUFWbKIREREJFEWDVqqqqoQERGBrKwsve/n5OQgLS0Ns2fPxsGDBxEREYHExEScP39ea71Lly5h8uTJ+PDDDy1ZPCIiIpIwmSAIglU2LJNh7dq1GD9+vLgsNjYWgwYNwpIlSwAAKpUKQUFBeOaZZ5Ceng4AqK2txe23347U1FRMmjTJ4PZra2tRW1srvq6oqEBQUBCUSiU8PDyscUhERERkYRUVFVAoFCbdv1us91BdXR3y8/ORkJBwc+cODkhISMCePXsAAIIgYMqUKRg5cqTRgAUAMjMzoVAoxD82IxEREbVuLRa0lJWVob6+Hr6+vlrLfX19UVJSAgDYtWsXcnJysG7dOkRGRiIyMhJHjhzRu72MjAwolUrxr6ioyOrHQERERLZjV72HhgwZApVKZdK6crkccrncyiUiIiIie9FiNS3e3t5wdHREaWmp1vLS0lL4+fm1VDGIiIhIolosaHF2dkZUVBRyc3PFZSqVCrm5uYiLi2upYhAREZFEWbR5qLKyEqdOnRJfFxQU4NChQ/Dy8kJwcDDS0tKQkpKC6OhoxMTEYPHixaiqqsLUqVMtWQwiIiJqhSwatBw4cADx8fHi67S0NABASkoKsrOzkZycjAsXLmDWrFkoKSlBZGQkNm/erJOcS0RERNSQ1cZpaWnm9PMmIiIi+2CX47QQERERNQeDFiIiIpIEBi1EREQkCQxaiIiISBIYtBAREZEkMGghIiIiSWDQQkRERJLAoIWIiIgkgUELERERSQKDFiIiIpIEBi1EREQkCQxaiIiISBIYtBAREZEkMGghIiIiSWDQQkRERJLAoIWIiIgkgUELERERSQKDFiIiIpIEBi1EREQkCQxaiIiISBIYtBAREZEkMGghIiIiSWDQQkRERJLAoIWIiIgkgUELERERSQKDFiIiIpIEBi1EREQkCQxaiIiISBIYtBAREZEk2FXQsmHDBvTs2RO33HILPvroI1sXh4iIiOyIk60LoHb9+nWkpaVh27ZtUCgUiIqKQlJSEjp16mTrohEREZEdsJualn379qFPnz4IDAxE+/btMXr0aPzwww+2LhYRERHZCYsFLXl5eRg3bhwCAgIgk8mwbt06nXWysrIQGhoKFxcXxMbGYt++feJ7586dQ2BgoPg6MDAQZ8+etVTxiIiISOIsFrRUVVUhIiICWVlZet/PyclBWloaZs+ejYMHDyIiIgKJiYk4f/68pYpARERErZjFgpbRo0dj7ty5SEpK0vv+okWLkJqaiqlTpyI8PBzLli2Dm5sbVqxYAQAICAjQqlk5e/YsAgICDO6vtrYWFRUVWn9ERETUerVITktdXR3y8/ORkJBwc8cODkhISMCePXsAADExMTh69CjOnj2LyspKbNq0CYmJiQa3mZmZCYVCIf4FBQVZ/Thag2JlDXafLkOxssbWRSGyKf5bIJKeFuk9VFZWhvr6evj6+mot9/X1xe+//36jIE5OWLhwIeLj46FSqfDiiy8a7TmUkZGBtLQ08XVFRQUDl0bk7D+DjDVHoBIABxmQOaEfkgcF27pYRC2O/xaIpMluujwDwN133427777bpHXlcjnkcrmVS9R6FCtrxB9pAFAJwD/XHMWwHp3hr3C1beGIWhD/LRBJV4s0D3l7e8PR0RGlpaVay0tLS+Hn59cSRWjzCsqqxB9ptXpBQGFZtW0KRGQj/LdAJF0tErQ4OzsjKioKubm54jKVSoXc3FzExcW1RBHavDBvdzjItJc5ymQI9XazTYGIbIT/Foiky2JBS2VlJQ4dOoRDhw4BAAoKCnDo0CGcOXMGAJCWlobly5dj5cqV+O233/Dkk0+iqqoKU6dOtVQRyAh/hSsyJ/SDo+zGr7WjTIZ5E/qyOpzaHP5bIJIumSAIQuOrNW779u2Ij4/XWZ6SkoLs7GwAwJIlS/DWW2+hpKQEkZGRePfddxEbG2uJ3aOiogIKhQJKpRIeHh4W2WZrVKysQWFZNUK93fgj3coVK2tQUFaFMG93ftd66Pu3wHNG1PLMuX9bLGixNQYtRDexd4z5eM6IbMOc+7fdzD1ERJZhqHcMxyMxjOeMSBoYtBC1MuwdYz6eMyJpYNBiAo6cSVLC3jHm4zkjkgYGLY3I2X8Gg+dvxUPL92Lw/K3I2X/G1kWiNq6xIJq9Y8zHc0YkDUzENaJYWYPB87dqVRs7ymTYmR7PHzOyCXOSRVtzTzFr9fJpzeeMyF6Zc/+2q2H87Y2xdm7+oFFzNOWma+7w8/4K11Z5nVqzl09rPWdErQWDFiPU7dwNa1rYzk3N0dSbLoNozhtE1NYxp8UItnOTpTWna21LJ4vaYwI6e/kQtW2saWlE8qBgDOvRme3cZBHNqS1RB9H/XHMU9YJg8SBas8kq738X7HKgNdZ+ErVtDFpMwHZuspTm3nStFURrNlmpK3PURbSnJhhrB25EZN8YtJBVcA4X/Sxx07V0EN2wyUpfd0J7yp1h7SdR28WgxYZa642dc7gY1xI3XXOuLX1NVg3ZWxMMaz+J2iYGLTbSWm/s7N1hGmvedM29tvQ1WckAyP5exiYYIrIXDFpsoDXf2Nkt17aacm0ZarJiEwwR2RsGLTbQmm/s7N1hW029tgw1WUn9eiSi1oXjtNhAa56cjWPb2FZzri1/hSviunXid0VEdos1LTbQ2rttsneH7bT2a4uI2jZOmGhDnJyNrIXXFhFJBSdMlAh22yRr4bVFRK0Rc1qIiIhIEhi0EBERkSQwaCEiIiJJYNBCREREksCghYiIiCSBQQsRERFJAoMWIiIikgQGLURERCQJDFqIiIhIEhi0EBERkSQwaCEiIiJJaDVzD6nnfayoqLBxSYiIiMhU6vu2KfM3t5qg5cqVKwCAoKAgG5eEiIiIzHXlyhUoFAqj68gEU0IbCVCpVDh37hw6dOgAmUxm0mcqKioQFBSEoqKiRqfDJvPw3FoPz6318NxaD8+t9Uj93AqCgCtXriAgIAAODsazVlpNTYuDgwO6dOnSpM96eHhI8ouWAp5b6+G5tR6eW+vhubUeKZ/bxmpY1JiIS0RERJLAoIWIiIgkoU0HLXK5HLNnz4ZcLrd1UVodnlvr4bm1Hp5b6+G5tZ62dG5bTSIuERERtW5tuqaFiIiIpINBCxEREUkCgxYiIiKSBAYtREREJAltImjJy8vDuHHjEBAQAJlMhnXr1mm9LwgCZs2aBX9/f7i6uiIhIQEnT560TWElJDMzE4MGDUKHDh3g4+OD8ePH48SJE1rrXL16FU8//TQ6deqE9u3b495770VpaamNSiwdS5cuRf/+/cXBouLi4rBp0ybxfZ5Xy5k/fz5kMhmmT58uLuP5bZo5c+ZAJpNp/fXq1Ut8n+e1ec6ePYtHHnkEnTp1gqurK/r164cDBw6I77eFe1mbCFqqqqoQERGBrKwsve+/+eabePfdd7Fs2TLs3bsX7u7uSExMxNWrV1u4pNKyY8cOPP300/j555/x448/4tq1a7jjjjtQVVUlrjNjxgysX78eX331FXbs2IFz585hwoQJNiy1NHTp0gXz589Hfn4+Dhw4gJEjR+Kee+7BsWPHAPC8Wsr+/fvxwQcfoH///lrLeX6brk+fPiguLhb/du7cKb7H89p05eXlGDx4MNq1a4dNmzbh+PHjWLhwITw9PcV12sS9TGhjAAhr164VX6tUKsHPz0946623xGWXL18W5HK58MUXX9ighNJ1/vx5AYCwY8cOQRBunMd27doJX331lbjOb7/9JgAQ9uzZY6tiSpanp6fw0Ucf8bxayJUrV4RbbrlF+PHHH4Xhw4cLzz33nCAIvG6bY/bs2UJERITe93hem+ell14ShgwZYvD9tnIvaxM1LcYUFBSgpKQECQkJ4jKFQoHY2Fjs2bPHhiWTHqVSCQDw8vICAOTn5+PatWta57ZXr14IDg7muTVDfX09vvzyS1RVVSEuLo7n1UKefvpp3HXXXVrnEeB121wnT55EQEAAunbtiocffhhnzpwBwPPaXN9++y2io6Nx//33w8fHBwMGDMDy5cvF99vKvazNBy0lJSUAAF9fX63lvr6+4nvUOJVKhenTp2Pw4MHo27cvgBvn1tnZGR07dtRal+fWNEeOHEH79u0hl8vxxBNPYO3atQgPD+d5tYAvv/wSBw8eRGZmps57PL9NFxsbi+zsbGzevBlLly5FQUEBhg4diitXrvC8NtMff/yBpUuX4pZbbsH333+PJ598Es8++yxWrlwJoO3cy1rNLM9kW08//TSOHj2q1X5NzdOzZ08cOnQISqUSX3/9NVJSUrBjxw5bF0vyioqK8Nxzz+HHH3+Ei4uLrYvTqowePVr8//79+yM2NhYhISH473//C1dXVxuWTPpUKhWio6Mxb948AMCAAQNw9OhRLFu2DCkpKTYuXctp8zUtfn5+AKCTwV5aWiq+R8ZNmzYNGzZswLZt29ClSxdxuZ+fH+rq6nD58mWt9XluTePs7Izu3bsjKioKmZmZiIiIwDvvvMPz2kz5+fk4f/48Bg4cCCcnJzg5OWHHjh1499134eTkBF9fX55fC+nYsSN69OiBU6dO8bptJn9/f4SHh2st6927t9j81lbuZW0+aAkLC4Ofnx9yc3PFZRUVFdi7dy/i4uJsWDL7JwgCpk2bhrVr12Lr1q0ICwvTej8qKgrt2rXTOrcnTpzAmTNneG6bQKVSoba2lue1mUaNGoUjR47g0KFD4l90dDQefvhh8f95fi2jsrISp0+fhr+/P6/bZho8eLDOkBL/+9//EBISAqAN3ctsnQncEq5cuSL88ssvwi+//CIAEBYtWiT88ssvwp9//ikIgiDMnz9f6Nixo/DNN98Ihw8fFu655x4hLCxMqKmpsXHJ7duTTz4pKBQKYfv27UJxcbH4V11dLa7zxBNPCMHBwcLWrVuFAwcOCHFxcUJcXJwNSy0N6enpwo4dO4SCggLh8OHDQnp6uiCTyYQffvhBEASeV0vT7D0kCDy/TfX8888L27dvFwoKCoRdu3YJCQkJgre3t3D+/HlBEHhem2Pfvn2Ck5OT8MYbbwgnT54UVq1aJbi5uQn/+c9/xHXawr2sTQQt27ZtEwDo/KWkpAiCcKOr2CuvvCL4+voKcrlcGDVqlHDixAnbFloC9J1TAMInn3wirlNTUyM89dRTgqenp+Dm5iYkJSUJxcXFtiu0RDz66KNCSEiI4OzsLHTu3FkYNWqUGLAIAs+rpTUMWnh+myY5OVnw9/cXnJ2dhcDAQCE5OVk4deqU+D7Pa/OsX79e6Nu3ryCXy4VevXoJH374odb7beFeJhMEQbBNHQ8RERGR6dp8TgsRERFJA4MWIiIikgQGLURERCQJDFqIiIhIEhi0EBERkSQwaCEiIiJJYNBCREREksCghYiIiCSBQQsRGVVYWAiZTIZDhw4ZXW/EiBGYPn26VcowZcoUjB8/3uzPvfLKK/i///s/8bU1ylhWVgYfHx/89ddfFt0uEeli0EJEZtm+fTtkMpnObL1r1qzB66+/Lr4ODQ3F4sWLW7ZwGkpKSvDOO+/g5Zdftup+vL29MXnyZMyePduq+yEiBi1EZCFeXl7o0KGDrYsh+uijj3DbbbeJs+Ba09SpU7Fq1SpcunTJ6vsiassYtBARNm/ejCFDhqBjx47o1KkTxo4di9OnT+usV1hYiPj4eACAp6cnZDIZpkyZAkC76WXEiBH4888/MWPGDMhkMshkMgDAnDlzEBkZqbXNxYsXIzQ0VHxdX1+PtLQ0sSwvvvgiGk6RplKpkJmZibCwMLi6uiIiIgJff/211jpffvklxo0bZ/S4N27cCIVCgVWrVgG42Qw1b948+Pr6omPHjnjttddw/fp1vPDCC/Dy8kKXLl3wySefaG2nT58+CAgIwNq1a43uj4iah0ELEaGqqgppaWk4cOAAcnNz4eDggKSkJKhUKq31goKCsHr1agDAiRMnUFxcjHfeeUdne2vWrEGXLl3w2muvobi4GMXFxSaXZeHChcjOzsaKFSuwc+dOXLp0SScYyMzMxKeffoply5bh2LFjmDFjBh555BHs2LEDAHDp0iUcP34c0dHRBvfz+eefY+LEiVi1ahUefvhhcfnWrVtx7tw55OXlYdGiRZg9ezbGjh0LT09P7N27F0888QT+8Y9/6OSwxMTE4KeffjL5OInIfE62LgAR2d69996r9XrFihXo3Lkzjh8/jvbt24vLHR0d4eXlBQDw8fFBx44d9W7Py8sLjo6O6NChA/z8/Mwqy+LFi5GRkYEJEyYAAJYtW4bvv/9efL+2thbz5s3Dli1bEBcXBwDo2rUrdu7ciQ8++ADDhw/HmTNnIAgCAgIC9O4jKysLL7/8MtavX4/hw4frlP3dd9+Fg4MDevbsiTfffBPV1dX45z//CQDIyMjA/PnzsXPnTjz44IPi5wICAvDLL7+YdaxEZB4GLUSEkydPYtasWdi7dy/KysrEGpYzZ84gPDy8xcqhVCpRXFyM2NhYcZmTkxOio6PFJqJTp06huroat99+u9Zn6+rqMGDAAABATU0NAMDFxUVnH19//TXOnz+PXbt2YdCgQTrv9+nTBw4ONyuhfX190bdvX/G1o6MjOnXqhPPnz2t9ztXVFdXV1eYeMhGZgUELEWHcuHEICQnB8uXLERAQAJVKhb59+6Kurs6i+3FwcNDJT7l27ZpZ26isrARwIx8lMDBQ6z25XA7gRo8eACgvL0fnzp211hkwYAAOHjyIFStWIDo6Wsy3UWvXrp3Wa5lMpndZw6azS5cu6eyLiCyLOS1EbdzFixdx4sQJ/Otf/8KoUaPQu3dvlJeXG1zf2dkZwI2EWWOcnZ111uncuTNKSkq0AhfN8V8UCgX8/f2xd+9ecdn169eRn58vvg4PD4dcLseZM2fQvXt3rb+goCAAQLdu3eDh4YHjx4/rlKtbt27Ytm0bvvnmGzzzzDNGj8EcR48eFWt6iMg6GLQQtXGenp7o1KkTPvzwQ5w6dQpbt25FWlqawfVDQkIgk8mwYcMGXLhwQaz5aCg0NBR5eXk4e/YsysrKANzoVXThwgW8+eabOH36NLKysrBp0yatzz333HOYP38+1q1bh99//x1PPfWU1pgwHTp0wMyZMzFjxgysXLkSp0+fxsGDB/Hee+9h5cqVAG7U6CQkJGDnzp16y9ajRw9s27YNq1evtshgc9XV1cjPz8cdd9zR7G0RkWEMWojaOAcHB3z55ZfIz89H3759MWPGDLz11lsG1w8MDMSrr76K9PR0+Pr6Ytq0aXrXe+2111BYWIhu3bqJzSa9e/fG+++/j6ysLERERGDfvn2YOXOm1ueef/55TJo0CSkpKYiLi0OHDh2QlJSktc7rr7+OV155BZmZmejduzfuvPNObNy4EWFhYeI6jz/+OL788kudZhy1nj17YuvWrfjiiy/w/PPPm3SuDPnmm28QHByMoUOHNms7RGScTGjYwExE1AoIgoDY2FjMmDEDEydOtOq+br31Vjz77LN46KGHrLoforaONS1E1CrJZDJ8+OGHuH79ulX3U1ZWhgkTJlg9MCIi1rQQERGRRLCmhYiIiCSBQQsRERFJAoMWIiIikgQGLURERCQJDFqIiIhIEhi0EBERkSQwaCEiIiJJYNBCREREksCghYiIiCTh/wF6epNBVpco2QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nfb.plot(x='altitude(km)', y='radiated energy', style='.', logy=True, title='Radiated energy vs altitude')" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi0AAAHLCAYAAAAEHKhwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABZmklEQVR4nO3deVxU5eIG8GcAWZURRFkUxCXXFBTE3EUpLiYmWlmaIpbXW2kLPyu5t6vV1cgW45qUZiktWuRuuVRShmsqpKmlqWGSsroMsgjCvL8/uHNimIUZGJg58Hw/Hz45Z3nPOwNxHt7tKIQQAkREREQ2zs7aFSAiIiIyBUMLERERyQJDCxEREckCQwsRERHJAkMLERERyQJDCxEREckCQwsRERHJAkMLERERyQJDCxEREckCQwuRBV28eBEKhQIpKSnStpdeegkKhcJ6ldJDXz1J/hQKBV566aVGKZs/M2QLGFqo2UtJSYFCoZC+HBwc0LFjR8ycOROXL1+2dvWMevfdd3mTIJu1c+fORgtJRPowtFCL8corr+CTTz7BypUrERUVhU8//RSjRo3CrVu3GvW6L774IsrKyup1LkML2YrOnTujrKwM06dPl7bt3LkTL7/8shVrRS2Ng7UrQNRUoqKiEBoaCgB47LHH4OXlhaVLl2L79u148MEHG+26Dg4OcHDg/2qWUFJSAjc3N2tXo0VSKBRwdna2djWohWNLC7VYI0aMAABcuHBB2lZRUYGFCxciJCQESqUSbm5uGDFiBL7//nud82/cuIGZM2dCqVSibdu2iI2NxY0bN3SO0zemZe3atRgzZgw6dOgAJycn9OnTB++9957WMYGBgTh9+jR++OEHqWtr9OjRWtd/5pln4O/vDycnJ3Tv3h1Lly6FWq2uVz0NMeU6mvEOb775Jt5//31069YNTk5OGDRoEI4ePapT5pkzZ3D//ffD09MTzs7OCA0Nxfbt27WO0XTr/fDDD3jiiSfQoUMHdOrUSdqfnJyMrl27wsXFBWFhYdi3bx9Gjx4tfUbFxcVwc3PD008/rXP9P//8E/b29khMTNT7nm/fvg1PT0/ExcXp7CsqKoKzszPmz58vbXvnnXfQt29fuLq6wsPDA6GhoVi/fr3BzzQvLw8ODg56WynOnj0LhUKBFStWSNtM/V7r89NPPyEqKgru7u5o3bo1xo4di8OHD+scd+PGDTz77LMIDAyEk5MTOnXqhBkzZqCwsBCA7piWmTNnIjk5GQC0ul+FEAgMDMR9992nc41bt25BqVRizpw5ddabSB/++Uct1sWLFwEAHh4e0raioiJ88MEHePjhhzF79mzcvHkTH374ISIjI3HkyBEEBwcDAIQQuO+++7B//3784x//QO/evbFlyxbExsaadO333nsPffv2xYQJE+Dg4IAvv/wSTzzxBNRqNZ588kkAQFJSEubNm4fWrVvjX//6FwDA29sbAFBaWopRo0bh8uXLmDNnDgICAnDw4EEkJCQgJycHSUlJFqmnqdfRWL9+PW7evIk5c+ZAoVDg9ddfx6RJk/D777+jVatWAIDTp09j2LBh6NixIxYsWAA3Nzd88cUXmDhxIjZt2oSYmBitMp944gm0b98eCxcuRElJifT5zZ07FyNGjMCzzz6LixcvYuLEifDw8JCCTevWrRETE4PU1FQsW7YM9vb2UpmfffYZhBCYNm2a3vfdqlUrxMTEYPPmzVi1ahUcHR2lfVu3bkV5eTkeeughAMDq1avx1FNP4f7778fTTz+NW7du4eeff8aPP/6IqVOn6i3f29sbo0aNwhdffIFFixZp7UtNTYW9vT0eeOCBen0Pajp9+jRGjBgBd3d3PP/882jVqhVWrVqF0aNH44cffsDgwYMBVAe8ESNG4Ndff8WsWbMwcOBAFBYWYvv27fjzzz/h5eWlU/acOXNw5coVfPvtt/jkk0+k7QqFAo888ghef/11XLt2DZ6entK+L7/8EkVFRXjkkUcM1pnIKEHUzK1du1YAEHv27BEFBQUiOztbbNy4UbRv3144OTmJ7Oxs6djKykpRXl6udf7169eFt7e3mDVrlrRt69atAoB4/fXXtc4dMWKEACDWrl0rbV+0aJGo/b9aaWmpTj0jIyNF165dtbb17dtXjBo1SufY//znP8LNzU389ttvWtsXLFgg7O3txaVLl8yupz6mXicrK0sAEO3atRPXrl2Tjtu2bZsAIL788ktp29ixY0W/fv3ErVu3pG1qtVoMHTpU3HHHHdI2zfdt+PDhorKyUtpeXl4u2rVrJwYNGiRu374tbU9JSREAtD6vr7/+WgAQu3bt0qp///799X6uNWnOrVl3IYQYN26c1vfpvvvuE3379jValj6rVq0SAMTJkye1tvfp00eMGTNGem3q90AIIQCIRYsWSa8nTpwoHB0dxYULF6RtV65cEW3atBEjR46Uti1cuFAAEJs3b9app1qtFkL89T2u+TPz5JNP6vxsCyHE2bNnBQDx3nvvaW2fMGGCCAwMlMokMhe7h6jFiIiIQPv27eHv74/7778fbm5u2L59u1aXg729vfRXtVqtxrVr11BZWYnQ0FBkZmZKx+3cuRMODg54/PHHtc6dN2+eSXVxcXGR/q1SqVBYWIhRo0bh999/h0qlqvP8DRs2YMSIEfDw8EBhYaH0FRERgaqqKqSnp1uknqZeR2PKlClaLVeaLrjff/8dAHDt2jV89913ePDBB3Hz5k2pvKtXryIyMhLnzp3TmdE1e/ZsrVaSY8eO4erVq5g9e7bWWKFp06ZpXRuo/p77+flh3bp10rZTp07h559/rvOv/TFjxsDLywupqanStuvXr+Pbb7/FlClTpG1t27bFn3/+qbcbzJhJkybBwcFBq/xTp07hl19+0Srf3O+BRlVVFb755htMnDgRXbt2lbb7+vpi6tSp2L9/P4qKigAAmzZtQlBQkE4rF4B6Tdfv0aMHBg8erPW5X7t2Dbt27cK0adNsbgkAkg92D1GLkZycjB49ekClUmHNmjVIT0+Hk5OTznEfffQR3nrrLZw5cwa3b9+Wtnfp0kX69x9//AFfX1+0bt1a69yePXuaVJcDBw5g0aJFOHToEEpLS7X2qVQqKJVKo+efO3cOP//8M9q3b693f35+vkXqaep1NAICArRea0LE9evXAQDnz5+HEAL//ve/8e9//9tgmR07dpRe1/zcger3BADdu3fX2u7g4IDAwECtbXZ2dpg2bRree+89lJaWwtXVFevWrYOzs7PU/WKIg4MDJk+ejPXr16O8vBxOTk7YvHkzbt++rRUqXnjhBezZswdhYWHo3r077rnnHkydOhXDhg0zWr6XlxfGjh2LL774Av/5z38AVHcNOTg4YNKkSdJx5n4PNAoKClBaWqr3e927d2+o1WpkZ2ejb9++uHDhAiZPnmy0vuaaMWMG5s6diz/++AOdO3fGhg0bcPv2ba3ZR0TmYmihFiMsLEyaPTRx4kQMHz4cU6dOxdmzZ6Wb+qeffoqZM2di4sSJeO6559ChQwdpwGbNAbsNceHCBYwdOxa9evXCsmXL4O/vD0dHR+zcuRNvv/22SYMr1Wo17r77bjz//PN69/fo0cMidTX3OjVbRGoSQkjlAcD8+fMRGRmp99jaYaRmq1R9zJgxA2+88Qa2bt2Khx9+GOvXr8f48ePrDIYA8NBDD2HVqlXYtWsXJk6ciC+++AK9evVCUFCQdEzv3r1x9uxZfPXVV9i9ezc2bdqEd999FwsXLqxzOvBDDz2EuLg4HD9+HMHBwfjiiy8wduxYrTEkTfW9trSHHnoIzz77LNatW4d//vOf+PTTTxEaGmpyYCbSh6GFWiRNEAkPD8eKFSuwYMECAMDGjRvRtWtXbN68WasJu/Zgyc6dOyMtLQ3FxcVarRhnz56t89pffvklysvLsX37dq2WCX0zlAw1o3fr1g3FxcWIiIgweq2G1NOc65hK003RqlWrepfZuXNnANWtNuHh4dL2yspKXLx4Ef3799c6/s4778SAAQOwbt06dOrUCZcuXcI777xj0rVGjhwJX19fpKamYvjw4fjuu++kQdE1ubm5YcqUKZgyZQoqKiowadIkLFmyBAkJCUanCU+cOBFz5syRuoh+++03JCQkaB1T3+9B+/bt4erqqvd7febMGdjZ2cHf31+6xqlTp8wqHzDedeTp6Yl7770X69atw7Rp03DgwAGjg4aJTMExLdRijR49GmFhYUhKSpIWmNO0FGhaBgDgxx9/xKFDh7TOHTduHCorK7WmKVdVVZl0M9R3DZVKhbVr1+oc6+bmpnd68oMPPohDhw7h66+/1tl348YNVFZWNrie5lzHVB06dMDo0aOxatUq5OTk6OwvKCios4zQ0FC0a9cOq1ev1rr+unXrpG6o2qZPn45vvvkGSUlJaNeuHaKiokyqr52dHe6//358+eWX+OSTT1BZWanVNQQAV69e1Xrt6OiIPn36QAih1b2oT9u2bREZGYkvvvgCn3/+ORwdHTFx4kStY+r7PbC3t8c999yDbdu2STPlgOrp1uvXr8fw4cPh7u4OAJg8eTJOnDiBLVu26JRT8+e0Ns2aOYam0E+fPh2//PILnnvuOdjb20szrojqiy0t1KI999xzeOCBB5CSkoJ//OMfGD9+PDZv3oyYmBjce++9yMrKwsqVK9GnTx8UFxdL50VHR2PYsGFYsGABLl68iD59+mDz5s0mDaK955574OjoiOjoaMyZMwfFxcVYvXo1OnTooHMjDwkJwXvvvYfFixeje/fu6NChA8aMGYPnnnsO27dvx/jx4zFz5kyEhISgpKQEJ0+exMaNG3Hx4kV4eXk1qJ6az8eU65gjOTkZw4cPR79+/TB79mx07doVeXl5OHToEP7880+cOHHC6PmOjo546aWXMG/ePIwZMwYPPvggLl68iJSUFHTr1k3vX/9Tp07F888/jy1btuDxxx+Xpl+bYsqUKXjnnXewaNEi9OvXD71799baf88998DHxwfDhg2Dt7c3fv31V6xYsQL33nsv2rRpY1L5jzzyCN59911ERkaibdu2Wvsb8j1YvHgxvv32WwwfPhxPPPEEHBwcsGrVKpSXl+P111/XusbGjRvxwAMPYNasWQgJCcG1a9ewfft2rFy5Uqs7rKaQkBAAwFNPPYXIyEidYHLvvfeiXbt22LBhA6KiotChQ4c6Pw8io6w5dYmoKWimzh49elRnX1VVlejWrZvo1q2bqKysFGq1Wrz66quic+fOwsnJSQwYMEB89dVXIjY2VnTu3Fnr3KtXr4rp06cLd3d3oVQqxfTp08VPP/1k0pTn7du3i/79+wtnZ2cRGBgoli5dKtasWSMAiKysLOm43Nxcce+994o2bdroTOe9efOmSEhIEN27dxeOjo7Cy8tLDB06VLz55puioqLC7HoaYsp1NNNh33jjDZ3zUWsarhBCXLhwQcyYMUP4+PiIVq1aiY4dO4rx48eLjRs3SscY+74JIcTy5cul71NYWJg4cOCACAkJEX/729/0Hj9u3DgBQBw8eLDO91yTWq0W/v7+AoBYvHixzv5Vq1aJkSNHinbt2gknJyfRrVs38dxzzwmVSmVS+UVFRcLFxUUAEJ9++qneY0z9Xuv7rDMzM0VkZKRo3bq1cHV1FeHh4Xo/g6tXr4q5c+eKjh07CkdHR9GpUycRGxsrCgsLhRD6pzxXVlaKefPmifbt2wuFQqF3+vMTTzwhAIj169eb9HkQGaMQwkjbHxGRTKjVarRv3x6TJk3C6tWrdfbHxMTg5MmTOH/+vBVq13I9++yz+PDDD5GbmwtXV1drV4dkjmNaiEh2bt26pTPW4uOPP8a1a9e0HnWgkZOTgx07dnC6bRO7desWPv30U0yePJmBhSyCY1qISHYOHz6MZ599Fg888ADatWuHzMxMfPjhh7jzzju11l/JysrCgQMH8MEHH6BVq1Z85k0Tyc/Px549e7Bx40ZcvXpV7/OfiOqDoYWIZCcwMBD+/v5Yvny59HybGTNm4LXXXtN6TtAPP/yAuLg4BAQE4KOPPoKPj48Va91y/PLLL5g2bRo6dOiA5cuXS8/sImoojmkhIiIiWeCYFiIiIpIFhhYiIiKShWYzpkWtVuPKlSto06YNnyBKREQkE0II3Lx5E35+frCzM96W0mxCy5UrV6TnaBAREZG8ZGdno1OnTkaPaTahRbNcdnZ2tvQ8DSIiIrJtRUVF8Pf3N+mxF80mtGi6hNzd3RlaiIiIZMaUoR0ciEtERESywNBCREREssDQQkRERLLA0EJERESywNBCREREssDQQkRERLLA0EJERESywNBCREREssDQQkRERLLA0EJERESywNBCRERmyVGV4eCFQuSoyqxdFWphms2zh4iIqPGlHr2EhM0noRaAnQJInNQPUwYFWLta1EKwpYWIiEySoyqTAgsAqAXwz82n2OJCTYahhYiITJJVWCIFFo0qIXCxsNQ6FaIWh6GFiIhM0sXLDXYK7W32CgUCvVytUyFqcRhaiIjIJL5KFyRO6gd7RXVysVco8OqkO+GrdLFyzail4EBcIiIy2ZRBARjZoz0uFpYi0MuVgYWaFEMLERGZxVfpwrBCVsHuISIiIpIFhhYiIiKSBauElpiYGHh4eOD+++/X2VdaWorOnTtj/vz5VqgZERER2SqrhJann34aH3/8sd59S5YswV133dXENSIiIiJbZ5XQMnr0aLRp00Zn+7lz53DmzBlERUVZoVZERERky8wOLenp6YiOjoafnx8UCgW2bt2qc0xycjICAwPh7OyMwYMH48iRIyaVPX/+fCQmJppbJSIiImoBzA4tJSUlCAoKQnJyst79qampiI+Px6JFi5CZmYmgoCBERkYiPz/faLnbtm1Djx490KNHD3OrRERERC2A2eu0REVFGe2+WbZsGWbPno24uDgAwMqVK7Fjxw6sWbMGCxYsMHje4cOH8fnnn2PDhg0oLi7G7du34e7ujoULF+o9vry8HOXl5dLroqIic98KERERyYhFx7RUVFQgIyMDERERf13Azg4RERE4dOiQ0XMTExORnZ2Nixcv4s0338Ts2bMNBhbN8UqlUvry9/e32PsgIiIi22PR0FJYWIiqqip4e3trbff29kZubq70OiIiAg888AB27tyJTp061Rlo9ElISIBKpZK+srOzG1x/IiIisl1WWcZ/z549RvfPnDmzzjKcnJzg5ORkoRoRERGRrbNoS4uXlxfs7e2Rl5entT0vLw8+Pj6WvBQRERG1MBYNLY6OjggJCUFaWpq0Ta1WIy0tDUOGDLHkpYiIiKiFMbt7qLi4GOfPn5deZ2Vl4fjx4/D09ERAQADi4+MRGxuL0NBQhIWFISkpCSUlJdJsIiIiIqL6MDu0HDt2DOHh4dLr+Ph4AEBsbCxSUlIwZcoUFBQUYOHChcjNzUVwcDB2796tMziXiIiIyBwKIYSwdiUsoaioCEqlEiqVCu7u7tauDhEREZnAnPu3VZ49REREhuWoynDwQiFyVGXWrgqRTbHKlGciItIv9eglJGw+CbUA7BRA4qR+mDIowNrVIrIJbGkhIrIROaoyKbAAgFoA/9x8ii0uRP/D0EJEZCOyCkukwKJRJQQuFpZap0JENoahhYjIRnTxcoOdQnubvUKBQC9X61SohrrG2XAcDjUFjmkhIrIRvkoXJE7qh39uPoUqIWCvUODVSXfCV+li1XrVNc6G43CoqXDKMxGRjclRleFiYSkCvVytHlhyVGUY9tp3Wt1W9goF9i8Ih6/Spc79RHUx5/7NlhYiIhvjq3SxmRu+sXE2vkqXOvcTWRLHtBARkUF1jbOx5XE41PwwtBARkUGacTb2iupkUnucTV37iSyJY1qIiKhOdY2zOZF9HUcvXsegQA8E+XtYoYa2IUdVhqzCEnTxcmNwMxHHtBARkUUZG2fD2UPV+Dk0PnYPERFRvXEV32r8HJoGQwsRUTOWoyrDlycu46ufrzTKDZSr+Fbj59A02D1ERNRMrUq/gMSdZ6TXCgCvTbZsl4Vm9lDtdVpa2uwhfg5Ngy0tRETN0KoftAMLAAgACZtPWrTFhbOHqvFzaBpsaSEiamZyVGV4bdcZvfvUAhZf+G3KoACM7NHeZlbxtRZ+Do2PoYWIqBE0ZOprQ6fNZhWWwNBaFnYKNEqXhS2t4mtN/BwaF0MLEZGFNWTqqyWmzeobXwFUj2lJnNSPN1WSLY5pISKyoIZMfbXUtNna4ysUAKaG+eNgwhiM7NEeBy8UciouyRJbWoiILMjcBwjW7Aqy5MMH9Y2v4OJnJHcMLUREFmTO1NfaIeKFv/Wy6LTZmuMrDLXijOzRnt1FDcSl+5sOu4eIiCzI1Kmv+kLE67vP4oWoXmZPm81RldXZ5cPFzxpH6tFLGPbad5i6+kcMe+07pB69ZO0qNWtsaSEisjBTpr4aChH9O7bF/gXhJk+bNbXLh4ufWR5br5oeW1qIiBrAUCuHr9IFQ7q1M3jz0oSImjQhoq5za17b1IG7XPzM8th61fTY0kJEVE8NGdiqCRH/3HwKVULUK0SYO3C3oYufceyGNrZeNT2GFiKierBE10BDQ0R9bprGFj8zFkpMDWh1BZscVRmOXbwGhUKBkM4esg4/lgieZB6GFiKiejC1lUPfTbz2tvre5AzdNAHg4IVCs1pEjIUSUwNaXcEm9eglLNh0UlqttzEe4NjUuHR/02JoISKqB1NaOfTdxAFYdK2U2jfN9N8KMOy178wqv65QYkpAq6uMHFWZVmAB/nqAo9wHrnLp/qZjlYG4MTEx8PDwwP333y9ty87OxujRo9GnTx/0798fGzZssEbViIhMUtfAVn038YTNJ7FgU8NXvNVXlyHd2gFAvVbUrWtAqbFBw6aWYeh5SJoHOBKZwiotLU8//TRmzZqFjz766K+KODggKSkJwcHByM3NRUhICMaNGwc3NzdrVJGIqE7Gugb03cRrvwbMW/E2R1WGjD+uQwiB0EBPnXPqu6JuXa1GpozdqKuMLl5uUAA6waWuBzhy8C/VZJXQMnr0aOzdu1drm6+vL3x9fQEAPj4+8PLywrVr1xhaiMimGeoa0HcTt1MAQmjfuE2dbWJsPIjmxu7maF+v2SymhBJDAa1mqDBWhq/SBa9N7qf9HhTGH+DIxw5QbWaHlvT0dLzxxhvIyMhATk4OtmzZgokTJ2odk5ycjDfeeAO5ubkICgrCO++8g7CwMJOvkZGRgaqqKvj7+5tbPSIim2BskKy5s000XU0640E2ncSNsttYuuuMdGOPGdARW3+6YvZsFlMGlNYOaPpChbGF8TTXyLh4HQoFMNDI7CFTxsiwBablMTu0lJSUICgoCLNmzcKkSZN09qempiI+Ph4rV67E4MGDkZSUhMjISJw9exYdOnSos/xr165hxowZWL16tblVIyKyKYaCgLmzTfR1+wCAGsBru85A1Lixb/3pCjY/MQSlFWqzZ7OYM6C09sBaTajYvyBcGl9j6Brjg+r3njVdXem/FWg/symqF/p1VDLAtABmh5aoqChERUUZ3L9s2TLMnj0bcXFxAICVK1dix44dWLNmDRYsWGC07PLyckycOBELFizA0KFD6zy2vLxcel1UVGTGuyAiahr6goC5s030dTUB1V1EQs+NvbRCbTQ4AA0fK7Jmf5bO+JT6PpFaH0NjZFwd7XRaYBJ3ngHALqSWwKKzhyoqKpCRkYGIiIi/LmBnh4iICBw6dMjouUIIzJw5E2PGjMH06dPrvFZiYiKUSqX0xa4kIpI7Y48ESJzUD4oaM3gUABZE9apzVo++Mhv6kL8cVRk+2Jels90OxgfVmsPQ7KySiiq9rU6A5WZjke2y6EDcwsJCVFVVwdvbW2u7t7c3zpw5I72OiIjAiRMnUFJSgk6dOmHDhg2oqqpCamoq+vfvj61btwIAPvnkE/Tr10/vtRISEhAfHy+9LioqYnAhoiZlyXEVtceHPDq8C2YN7yKVq+lqyvzjOoQAQgKrx4O0dW0ljZGxUwDPR/WUztE35qSXTxu93TrmrJWir5UFAB4b2cWi3TP6utdyVGV6W500LNnaQ7bHKrOH9uzZo3e7Wq02uQwnJyc4OTlZqkpERGax5MwWfYNOV+/Lwgf7srRWjPVVuuDe/rqDW2+U3sZr/xuMu3TXGbR1aYWRPdrrlLlg00kAutOOzZ12/eF+3VYWBYC4YV3Met+mqN2VVnuAc2189k/zZtHuIS8vL9jb2yMvL09re15eHnx8fCx5KSKiJqGve8XUpysb6u6pzdBAW4G6uztyVGVYuvuMTsvJsYvXdMoU0A0sgHk3ekN1na2nlcXU92+uKYMCsH9BOD6bfRcSonrxydUtiEVbWhwdHRESEoK0tDRpGrRarUZaWhrmzp1ryUsRETU6Q60ppiziZk5LjKGBtppyMy5eh2dr/d1QhupyPr9Y72JutSkAs270htafqd3K0thrrGhaYIZ0a4cJwX6N8uwfTqu2PWa3tBQXF+P48eM4fvw4ACArKwvHjx/HpUvVA7ni4+OxevVqfPTRR/j111/x+OOPo6SkRJpNREQkB8ZaU+pa1t7UlhgNTZdH7TKB6lDx1Oc/GRw0q68uAPDftPPS+TX/W9sr9/XVCRPGWkj0DZCtvUCcue+/oTThxZItPQ0drNwQjdVC1RyY3dJy7NgxhIeHS681g2FjY2ORkpKCKVOmoKCgAAsXLkRubi6Cg4Oxe/duncG5RES2zFhrypBu7Yyu/lqf5fRH9miP5Q8PwMELhfj8x2yoUf1XpQB0bv41B80aG+MhUN3K8c5DA+Dv6YKJyQe1Wl4UACL6eGu1KNReA0VfC0nNQcHq/z1SQCNHVYavfr5Sr8cJWFJDWnpMfap1Y+AqwMaZHVpGjx4NoWfwU01z585ldxARyVpdz9IxtoKsKU+Arqn2jeqFcb3Qv2NbXC0px9z1P2kdWyUEMv+4Dg+3v7otNHXZ8XMOFu/4Vet4tQDatXZCkL8HXpvcDwmbTkqBKHFyP52QUvMxA8Zu1vrCDaD9wMaaGnOAbO1unIaGjvo+w6mhrBmW5MIqs4eIiGydKc/jMbRInCnnaui7Ub2+6yz2LwhHoJerTvhRKIC563+SWlE0f4lXzyzyxas7fzUpaLk62iH7ehnm/a8szbVr03ezNvQE69rPVaqp5lRsS8lRlWHN/ix8uD9LKzz5e7o2KHSYGzotxVphSU4YWoiIDDDleTzGzu3l0wZHL17HoEAPBPl76D3OnG6oulpCTA1aNVtJ6qLvZm3qE6xr6t+xbd0XM0PtB0hq6vDPzaew+YkhDQod5oROS7JWWJIThhYiIiPMXXJfw9BicQC0ujLM6YYqLL6FeZ8d17pO7b/EjQWtHFUZjl28ZjSwKBSAQlQ/16j2zdrY06SNsfSNt/Zzj2rSPMagoaGjIYG1vqwVluSEoYWIyMIMLRa3el+WNA25ZtdO7daUWcMDtcrTBCd9q8HqCwT6glbNEGXMiO5e+L97eug8cLF2CIsZ0BFbMi+jriVBG+PGa2hFXs31Ar1cMaRbuwaHjvoG1oawRliSE4Woa1StTBQVFUGpVEKlUsHd3d3a1SGiFuzghUJMXf1jncfZKxTYvyBcCiRrD2RhdXqWTqgB/mrlOHlZhdd3nZUCzgtRvTBnZDedsmsOTgWAYa99Z3LLiALQWok3R1Wmc769QoGXJvTBv7ed1jn/3/f2Rmigh07wscS6JzmqMgx97TudB0UCnG0jV+bcv9nSQkRkYcYWi6updtfOB/uy9I5XqT1TJ7KvD3afypWW7YcA+nVSSmFAX9eUqYEF+GslXs1YGUPjbmo+wLGmUD1jeHRmSEX1Qr+OSpMCTM2ws3Z/lt7AMrZ3eyye2I8tE80cQwsRkYVpxibU1R1Ts2vHUDDI/OO6TlfTrlO50jFqASTuqn4grQLAE6O74b0fLmgdr+9ZQXWpGagMrYJr6K3t+DlXK7To6y5L3HlGKsdY60jtsGPo8/zu1wKk9ynAyB7tG3UVW66Sa10MLUREjWDKoAB4tXbE6vTfcTjrOgBoLauvAPBojbErhgbkqoUwuZVEAEjee0Fnu1rApCX9a1IAOJ9/U+reqb2AnVoAC7fqdg0BwAf7f0fc8ECji+3VrFvC5pPo5dNGp3VGX9gxRKD6gZCK/32GjdFVxIXfrM+iD0wkImop6lpq/f++OI5HP8qQAsvIO7ywYFwvacl9AeD9fVnSEvH6lsd/ddKdCA301LtMv7lMeQZR7eP/ve00hiZ+h1U/XIC/pyvenzFQ6zhDZaoFcLGwVHpt6FEDNY+fmHxQZ6n8tf9bf8VU+lYPttRS+I39aAIu3W8atrQQEZmprr+4T2Rfx6bMy1rnpJ8rxL7zhTrjMWqOXTE0c+SFv/WSuoBMJc1SAvTO8NFsVwB4eLA/Onu64bXdZ3TqJ1Cj+8lAl1DtVpzaM5p8lS6IGdBR5zOpfZ1/bj6FXj5tUFJRBTdHe6zeZ363Vk2WXJitMRd+YwuO6RhaiIjMYMpS60cuXtN7rqG5mjVvfrWn2eaoymBnpE082F+J49kqne3/mdgX3dq3gaujHWLePajT7fSPUV3x7t4LEAA++zG7un6GL2O0/k+Ed8PKvb9rrS2SX3QLX/18BWGBnujg7owtPxkOLBpVQmDiuwchhOGAZK6fL9/AkG7tDO43dYxKYy38xqX7zcPQQkRkBmN/cWv2d/3fNOPaFAr9N36FAnpvfqasrfLzn7qBRQGgX0clSiqqcDjrmtY1FYrqJfWX7jojhYKGhoPh3dvjkbs6Sy1Eb359Fi9sOintH3GHl+njcoT2f2tSANKYFVO9vussJgT56Q0A5rRwNNbCb1y63zwMLUREZjD0F/fPl29g2geHpRtgv47uOHm5SDpmxB1eGN7dC0t3n9G96eq5Cdf+C9wQtQD+PrIL3k//qytFADpPdNZQCMBP6WzWjd8YTWuDpoVIX9fYvnOF9S5f042lCQkA/lqID/q7vmqqHSgb8lDFxlj4jUv3m4ehhYjIRJquhBeiekkLvNkrFHj+b9UtFzVvgDUDiwLVN+4D5wvx0CB/rD+SrVWuAHRurBl/XDf52UD39vOVFqWrWaY+agBbf7pi6luuU+0HIRrqGhvf3we7TuZJn1lYFw8c+l3/sRr2CgU2PzFEZ5G6mg99rN31pa+M2oGyIQ9VtPQquVy63zwMLUREJtBZHO1vvdC/U1sEerkandILaD/g8LMj2ToDV+0UwIHzBZj2wQWj05M1Aen13We1bnAlFVVmdfGknck3+VgFgIfD/PHtL3koKK7Q2V/7QYhhgZ56y5k9oiv+dW8fXCwsRWnFbTz2cYbOMT29W+NcfrH0Gb866U69D5qsGRxq3/AnDvDD1p+uGA2UpjxUsT7rsdR3DRcu3W86hhYiojro60pYuusMDiSMkW4wpj5AUACYGuaPz49ma5W34vsLWsfo8/zfemLOqG6YEOyndYPT90wiSxGATsuQhgK6Y3E6uDvjjg7V4UNjYEBbKXyk/1Zg8GGHZ/P+OkffmBZ9oUDfDX9+ZE/ptaExI8Yeqlif2TwNnQFkjeccyRFDCxFRHfTd+NQA1u6/iH/e2xsAMKy7l+ljN+oZMPp3agtA/w3u0eFd8OH/1jVR/K+pRuCv1hl7OwUW7/jV/IsaMbiLp1Y9DA0cPp59Q1p/JGGz/sBSm2YKtGaMibFQUPvzqP3aUIuKvocq1mesS0uZAWQLqwEztBAR1aGLl5veLpsP9v+O4vLbBlsiDFn/o3nHa5zLL9LpPqh5M1egelBu3LAuACCN+9Cse2Lp1pjZI7tI/zY2cFgtgLUHstC/U1uzrl9zEG19Q0FdY0ZqB5z6zOZpCTOAbGUtGYYWIqI6+CpdMHtEF7xfa7EztTDcddIQhsa0LNz2CxZt+wWzR3RB3PDqwFDzZi4AfLjvIuKGdYGv0kXnQYsxAzpK4z0a6k4/d4zt7SO9rmtcT83ZTabStIg0NBSYM2akPrN5mvsMIFtqSeIy/kREJogb3sWs5fQVCvN+wSoAPBneDU+N7Y74e+4w+ARlgerl/4ckfocFG08YvJnru9Fs/ekK3p8xEC/e2xtzw7tJjwwwV1/fNvjqqRFa2+paql8fY4fXbBHRV7a5ocBX6YIh3dqZ3DJT+3EKAAwus2/onObSylLX2kRNiS0tRNRiNKRP3lfpYvJy+goAC/7WCxOC/ZD5x3XMXf9TneM4Hg7zx7vfXzBrFtAP567qbKurdeKxjzOkFWefGN0NHq6OZo91+TXnJnJUZTrjSBIn9TM4yFafV+7ri0XbT+s8PXr5QwMQEuih1YWjr4un5qq7+mYZ1Vftlpn03wow7LXvjHaNNOcZQLbUksTQQkQtgiX65Pt1Upp0nADw2q4zgAKYM7IbissrjS4UZ6ewXDdT1J3eyC+6pfdGA2ivOJv8/QU8Obqb2WNd1AAyLl7H+CDtG/PIHu1NDiz2CgU83Bx1BzgLoF1rJ52bfu1QUHvV3ckDO+KtB4NNfxMmEBDIL7plcteILc4AMhbUTQ3xtrSWDEMLETV7luqTNxQE9BEAEneeAQQwZ1Q3uDraY95nx3WOs1MAff20V89tiK9O5uKrk7mYPLAjXojqVV0HI97bewGTQzpiQ0bdzwaqad5nP6GkolIr+GUVlug9VrOujWZ9GTsAjw4PhL+Hi1l/wRtbdXdT5mXMGNLZ7BYXfTdurcHNeh69IJdBtsaCurkh3lZakjimhYiaPUv1yWv+4jRn6MbSXWeQoypDaKCn3jEftVfPtZRNmZdRUVlV53FqwOzAAlSHsoTNJ7XGeGhmWdX2QlQvzBnVDfsXhOPvI7oCiupxORPfPYi/3elj1vgRwPCquxsy/jR4jj6pRy9h2GvfYerqHzHste+QevSSTsDVN2ZZX7DKUZUZrXNTMxTUc1RlRvcZY+q4oMbElhYiavYs2Sc/skd7s45Xo3rq8ZBu7bSa2JvCL1csH4ZqUgtotTik/1ag0z0UdacPJgT54eCFQrg52uOD/b9rBYKdJ3Px5OhuGH5He4PjR0b2aK/VGmJo1d1PD1/C+h8vmdT1Z+jG/d+Hg/W2pNV+BpKhaefWnA5ck7GgLiBkO0WboYWImj1L9slnFZaYNVjWDsDVknLkqMqkJvZ30s5j/ZFLJp1vaPqzKfp2VGLXqbx6nZswrhcOnCtEupEF8+xqPJ1aEwJq230qF1+fzjX6eIL39l7AI0M6V1+3VpBYsPmktFBezUAweWBHnS4izTnGuv403UHXSir03rgh9C9Gp+8ZSDXfty1MB66prqBuKwNrzcXuISJqEaYMCsD+BeH4bPZd2L8gvN5/CeubfmunALY9ORSHEsZgaliA1EWiuUnPXf+T1P0AAJ8dNS2w2CsUWBDVy+D+SQP9DO6bPLAjJg/sZFZXlsY/RnbBhCA/7D9vOLAo/hcgNDdmQ+u0CPx1czQUvjStUfoeEvm/HFF9XI1ujLceDMa2J4fikbt0v4+Guv5qdgfNW/+Tzmdjr1AgJNBD7/TlIH8PvV0jtjQduCZj07DlPEWbLS1E1GJYYnaHoVYbzQDQVyf1w7yx3ZFx8Tqe+vwnnb/Akx4K0jtOoqbkqQPg6eYk/eWrb5q1nQKIHRKIrT9d0bppKgB8EBsiLfz22mTzpiEDwJ0d2xpdLG7qYH/MG3OH1mdpziDl2uwVCvz8543qGVd1qNmNEeTvgQ7uzlj/46U6Ww10xqroKXviAD/4Kl0afTG6pmLsfdjKwFpzsaWFiMhMdbXa+Cpd4NladzpvlRCwUyiMLsJmr1BgYOe//qo3NCPnseFdEeSv2yrw2uR+WivVThkUgA9iQ0x+bwoAIYEeRheLSz3yp842aZByrXPqaumxA/B8VE8s3X1GJ0jYKXTPrx0ITG01qGvFXqB68T3NYNSGLkZnKyHA2PuwhYG15mJLCxFRPdTVamPoL/CBnT20Wmo0N2UB/Tc8feXYAYgbHgjAtL+YXRxN+1VvByBx8l9dPomT+iFh00moax1naNCmpi6Zf1yHENXhJ/23AqODj9+ZOkDvei1A9SJzJRWVdY5FMuUzMKUlqL6DUeXaaiFHVgktMTEx2Lt3L8aOHYuNGzdK27/66iv83//9H9RqNV544QU89thj1qgeEVGDGRv8W/smB8DgDc+UQcT1CVBAdSvGiqkD0MnDRe8g0ymDAtDLpw0mvntQq0urrrVU7u2v2w1Ru7tMU87AztXdavoCnmZVXFMCQV2fQe3P0U6hPV6mrvdVF1tcWK45UgjRRHPvati7dy9u3ryJjz76SAotlZWV6NOnD77//nsolUqEhITg4MGDaNeunUllFhUVQalUQqVSwd3dvTGrT0RkshxVmUX+Am9oOalHL2HB5pNS+FCgeryLKQOSU49e0glN9RnIbKwcS12jLjU/x5qtQI15TTLOnPu3VUILUB1cVqxYIYWWgwcP4o033sCWLVsAAM888wwGDx6Mhx9+2KTyGFqIiIzLUZVpdd2YE36aInxZ6hqWqg81DXPu32YPxE1PT0d0dDT8/PygUCiwdetWnWOSk5MRGBgIZ2dnDB48GEeOHKmz3CtXrqBjx47S644dO+LyZfNXaSQiIv2qu278MD7Ir14PjLTEoE1bGxgqx8GoLZnZoaWkpARBQUFITk7Wuz81NRXx8fFYtGgRMjMzERQUhMjISOTn5ze4sjWVl5ejqKhI64uIiIiaL7NDS1RUFBYvXoyYmBi9+5ctW4bZs2cjLi4Offr0wcqVK+Hq6oo1a9YYLdfPz0+rZeXy5cvw8zO8cFJiYiKUSqX05e/vb+5bISIiIhmx6DotFRUVyMjIQERExF8XsLNDREQEDh06ZPTcsLAwnDp1CpcvX0ZxcTF27dqFyMhIg8cnJCRApVJJX9nZlnmsOxEREdkmi055LiwsRFVVFby9vbW2e3t748yZv1Y6jIiIwIkTJ1BSUoJOnTphw4YNGDJkCN566y2Eh4dDrVbj+eefNzpzyMnJCU5OTpasPhEREdkwq6zTsmfPHr3bJ0yYgAkTJjRxbYiIiEgOLNo95OXlBXt7e+TlaT9VNC8vDz4+PgbOIiIiIqqbRUOLo6MjQkJCkJaWJm1Tq9VIS0vDkCFDLHkpIiIiamHM7h4qLi7G+fPnpddZWVk4fvw4PD09ERAQgPj4eMTGxiI0NBRhYWFISkpCSUkJ4uLiLFpxIiIialnMDi3Hjh1DeHi49Do+Ph4AEBsbi5SUFEyZMgUFBQVYuHAhcnNzERwcjN27d+sMziUiIiIyh9WW8bc0LuNPREQkP426jD8RERGRNTC0EBERkSwwtBAREZEsMLQQERGRLDC0EBERkSwwtBAREZEsMLQQERGRLDC0EBERkSwwtBAREZEsMLQQERGRLDC0EBERkSwwtBAREZEsMLQQERGRLDC0EBERkSwwtBAREZEsMLQQERGRLDC0EBERkSwwtBAREZEsMLQQERGRLDC0EBERkSwwtBAREZEsMLQQERGRLDC0EBERkSwwtBAREZEsMLQQERGRLDC0EBERkSwwtBAREZEsMLQQERGRLDC0EBERkSzYVGh5++230bdvX/Tp0wdPPfUUhBDWrhIRERHZCJsJLQUFBVixYgUyMjJw8uRJZGRk4PDhw9auFhEREdkIB2tXoKbKykrcunULAHD79m106NDByjUiIiIiW2Gxlpb09HRER0fDz88PCoUCW7du1TkmOTkZgYGBcHZ2xuDBg3HkyBFpX/v27TF//nwEBATAz88PERER6Natm6WqR0RERDJnsdBSUlKCoKAgJCcn692fmpqK+Ph4LFq0CJmZmQgKCkJkZCTy8/MBANevX8dXX32Fixcv4vLlyzh48CDS09MNXq+8vBxFRUVaX0RERNR8WSy0REVFYfHixYiJidG7f9myZZg9ezbi4uLQp08frFy5Eq6urlizZg0AYM+ePejevTs8PT3h4uKCe++91+iYlsTERCiVSunL39/fUm+FiIiIbFCTDMStqKhARkYGIiIi/rqwnR0iIiJw6NAhAIC/vz8OHjyIW7duoaqqCnv37kXPnj0NlpmQkACVSiV9ZWdnN/r7ICIiIutpkoG4hYWFqKqqgre3t9Z2b29vnDlzBgBw1113Ydy4cRgwYADs7OwwduxYTJgwwWCZTk5OcHJyatR6ExERke2wqdlDS5YswZIlS6xdDSIiIrJBTdI95OXlBXt7e+Tl5Wltz8vLg4+PT1NUgYiIiGSuSUKLo6MjQkJCkJaWJm1Tq9VIS0vDkCFDmqIKREREJHMW6x4qLi7G+fPnpddZWVk4fvw4PD09ERAQgPj4eMTGxiI0NBRhYWFISkpCSUkJ4uLiLFUFIiIiasYsFlqOHTuG8PBw6XV8fDwAIDY2FikpKZgyZQoKCgqwcOFC5ObmIjg4GLt379YZnEtERESkj0I0k6cSFhUVQalUQqVSwd3d3drVISIiIhOYc/+2mQcmEhERERnD0EJERESywNBCREREssDQQkRERLLA0EJERESywNBCREREssDQQkRERLLA0EJERESywNBCREREssDQQkRERLLA0EJERESywNBCREREssDQQkRERLLA0EJERESywNBCREREssDQQkRERLLA0EJERESywNBCREREssDQQkRERLLA0EJERESywNBCREREssDQQkRERLLA0EJERESywNBCREREssDQQkRERLLA0EJERESywNBCREREssDQQkRERLLA0EJERESyYFOhJSsrC+Hh4ejTpw/69euHkpISa1eJiIiIbISDtStQ08yZM7F48WKMGDEC165dg5OTk7WrRERERDbCZkLL6dOn0apVK4wYMQIA4OnpaeUaERERkS2xWPdQeno6oqOj4efnB4VCga1bt+ock5ycjMDAQDg7O2Pw4ME4cuSItO/cuXNo3bo1oqOjMXDgQLz66quWqhoRERE1AxYLLSUlJQgKCkJycrLe/ampqYiPj8eiRYuQmZmJoKAgREZGIj8/HwBQWVmJffv24d1338WhQ4fw7bff4ttvvzV4vfLychQVFWl9ERERUfNlsdASFRWFxYsXIyYmRu/+ZcuWYfbs2YiLi0OfPn2wcuVKuLq6Ys2aNQCAjh07IjQ0FP7+/nBycsK4ceNw/Phxg9dLTEyEUqmUvvz9/S31VoiIiMgGNcnsoYqKCmRkZCAiIuKvC9vZISIiAocOHQIADBo0CPn5+bh+/TrUajXS09PRu3dvg2UmJCRApVJJX9nZ2Y3+PoiIiMh6mmQgbmFhIaqqquDt7a213dvbG2fOnKmuiIMDXn31VYwcORJCCNxzzz0YP368wTKdnJw4u4iIiKgFsZnZQ0B1F1NUVJS1q0FEREQ2qEm6h7y8vGBvb4+8vDyt7Xl5efDx8WmKKhAREZHMNUlocXR0REhICNLS0qRtarUaaWlpGDJkSFNUgYiIiGTOYt1DxcXFOH/+vPQ6KysLx48fh6enJwICAhAfH4/Y2FiEhoYiLCwMSUlJKCkpQVxcnKWqQERERM2YxULLsWPHEB4eLr2Oj48HAMTGxiIlJQVTpkxBQUEBFi5ciNzcXAQHB2P37t06g3OJiIiI9FEIIYS1K2EJRUVFUCqVUKlUcHd3t3Z1iIiIyATm3L9t6inPRERERIYwtBAREZEsMLQQERGRLDC0EBERkSwwtBAREZEsMLQQERGRLDC0EBERkSwwtBAREZEsMLQQERGRLDC0EBERkSwwtBAREZEsMLQQERGRLDC0EBERkSwwtBAREZEsMLQQERGRLDC0EBERkSwwtBAREZEsMLQQERGRLDC0EBERkSwwtBAREZEsMLQQERGRLDC0EBERkSwwtBAREZEsMLQQERGRLDC0EBERkSwwtBAREZEsMLQQERGRLDC0EBERkSwwtBAREZEs2FxoKS0tRefOnTF//nxrV4WIiIhsiM2FliVLluCuu+6ydjWIiIjIxthUaDl37hzOnDmDqKgoa1eFiIiIbIzFQkt6ejqio6Ph5+cHhUKBrVu36hyTnJyMwMBAODs7Y/DgwThy5IjW/vnz5yMxMdFSVSIiIqJmxGKhpaSkBEFBQUhOTta7PzU1FfHx8Vi0aBEyMzMRFBSEyMhI5OfnAwC2bduGHj16oEePHiZdr7y8HEVFRVpfRERE1HwphBDC4oUqFNiyZQsmTpwobRs8eDAGDRqEFStWAADUajX8/f0xb948LFiwAAkJCfj0009hb2+P4uJi3L59G//3f/+HhQsX6r3GSy+9hJdffllnu0qlgru7u6XfEhERETWCoqIiKJVKk+7fTRJaKioq4Orqio0bN2oFmdjYWNy4cQPbtm3TOj8lJQWnTp3Cm2++afAa5eXlKC8vl14XFRXB39+foYWIiEhGzAktDk1RocLCQlRVVcHb21tru7e3N86cOVOvMp2cnODk5GSJ6hEREZEMNEloMdfMmTOtXQUiIiKyMU0y5dnLywv29vbIy8vT2p6XlwcfH5+mqAIRERHJXJOEFkdHR4SEhCAtLU3aplarkZaWhiFDhjRFFYiIiEjmLNY9VFxcjPPnz0uvs7KycPz4cXh6eiIgIADx8fGIjY1FaGgowsLCkJSUhJKSEsTFxVmqCkRERNSMWSy0HDt2DOHh4dLr+Ph4ANUzhFJSUjBlyhQUFBRg4cKFyM3NRXBwMHbv3q0zOJeIiIhIn0aZ8mwN5kyZIiIiIttgzv3bpp49RERERGQIQwsRERHJAkMLERERyQJDCxEREckCQwsRERHJAkMLERERyQJDCxEREckCQwsRERHJAkMLERERyQJDCxEREckCQwsRERHJAkMLERERyQJDCxEREckCQwsRERHJAkMLERERyQJDCxEREckCQwsRERHJAkMLERERyQJDCxEREckCQwsRERHJAkMLERERyQJDCxEREckCQwsRERHJAkMLERERyQJDCxEREckCQwsRERHJAkMLERERyQJDCxEREckCQwsRERHJgk2FluzsbIwePRp9+vRB//79sWHDBmtXiYiIiGyEg7UrUJODgwOSkpIQHByM3NxchISEYNy4cXBzc7N21YiIiMjKbCq0+Pr6wtfXFwDg4+MDLy8vXLt2jaGFiIiILNs9lJ6ejujoaPj5+UGhUGDr1q06xyQnJyMwMBDOzs4YPHgwjhw5oresjIwMVFVVwd/f35JVJCIiIpmyaGgpKSlBUFAQkpOT9e5PTU1FfHw8Fi1ahMzMTAQFBSEyMhL5+flax127dg0zZszA+++/b8nqERERkYwphBCiUQpWKLBlyxZMnDhR2jZ48GAMGjQIK1asAACo1Wr4+/tj3rx5WLBgAQCgvLwcd999N2bPno3p06cbLL+8vBzl5eXS66KiIvj7+0OlUsHd3b0x3hIRERFZWFFREZRKpUn37yabPVRRUYGMjAxERET8dXE7O0RERODQoUMAACEEZs6ciTFjxhgNLACQmJgIpVIpfbEbiYiIqHlrstBSWFiIqqoqeHt7a2339vZGbm4uAODAgQNITU3F1q1bERwcjODgYJw8eVJveQkJCVCpVNJXdnZ2o78HIiIish6bmj00fPhwqNVqk451cnKCk5NTI9eIiIiIbEWTtbR4eXnB3t4eeXl5Wtvz8vLg4+PTVNUgIiIimWqy0OLo6IiQkBCkpaVJ29RqNdLS0jBkyJCmqgYRERHJlEW7h4qLi3H+/HnpdVZWFo4fPw5PT08EBAQgPj4esbGxCA0NRVhYGJKSklBSUoK4uDhLVoOIiIiaIYuGlmPHjiE8PFx6HR8fDwCIjY1FSkoKpkyZgoKCAixcuBC5ubkIDg7G7t27dQbnEhEREdXWaOu0NDVz5nkTERGRbbDJdVqIiIiIGoKhhYiIiGSBoYWIiIhkgaGFiIiIZIGhhYiIiGSBoYWIiIhkgaGFiIiIZIGhhYiIiGSBoYWIiIhkgaGFiIiIZIGhhYiIiGSBoYWIiIhkgaGFiIiIZIGhhYiIiGSBoYWIiIhkgaGFiIiIZIGhhYiIiGSBoYWIiIhkgaGFiIiIZIGhhYiIiGSBoYWIiIhkgaGFiIiIZIGhhYiIiGSBoYWIiIhkgaGFiIiIZIGhhYiIiGSBoYWIiIhkgaGFiIiIZIGhhYiIiGTBpkLLV199hZ49e+KOO+7ABx98YO3qEBERkQ1xsHYFNCorKxEfH4/vv/8eSqUSISEhiImJQbt27axdNSIiIrIBNtPScuTIEfTt2xcdO3ZE69atERUVhW+++cba1SIiIiIbYbHQkp6ejujoaPj5+UGhUGDr1q06xyQnJyMwMBDOzs4YPHgwjhw5Iu27cuUKOnbsKL3u2LEjLl++bKnqERERkcxZLLSUlJQgKCgIycnJevenpqYiPj4eixYtQmZmJoKCghAZGYn8/HxLVYGIiIiaMYuFlqioKCxevBgxMTF69y9btgyzZ89GXFwc+vTpg5UrV8LV1RVr1qwBAPj5+Wm1rFy+fBl+fn4Gr1deXo6ioiKtLyIiImq+mmRMS0VFBTIyMhAREfHXhe3sEBERgUOHDgEAwsLCcOrUKVy+fBnFxcXYtWsXIiMjDZaZmJgIpVIpffn7+zf6+yAisoYcVRkOXihEjqrM2lUhsqommT1UWFiIqqoqeHt7a2339vbGmTNnqivi4IC33noL4eHhUKvVeP75543OHEpISEB8fLz0uqioiMGFiJqd1KOXkLD5JNQCsFMAiZP6YcqgAGtXi8gqbGbKMwBMmDABEyZMMOlYJycnODk5NXKNiIisJ0dVJgUWAFAL4J+bT2Fkj/bwVbpYt3JEVtAk3UNeXl6wt7dHXl6e1va8vDz4+Pg0RRWIiGQnq7BECiwaVULgYmGpdSpEZGVNElocHR0REhKCtLQ0aZtarUZaWhqGDBnSFFUgIpKdLl5usFNob7NXKBDo5WqdChFZmcW6h4qLi3H+/HnpdVZWFo4fPw5PT08EBAQgPj4esbGxCA0NRVhYGJKSklBSUoK4uDhLVYGIyOblqMqQVViCLl5udXbx+CpdkDipH/65+RSqhIC9QoFXJ93ZoK6hqqoq3L59u97nE9WHo6Mj7Owa3k6iEEKIug+r2969exEeHq6zPTY2FikpKQCAFStW4I033kBubi6Cg4OxfPlyDB482BKXR1FREZRKJVQqFdzd3S1SJhGRJdV3UG2OqgwXC0sR6OVa78AihEBubi5u3LhRr/OJGsLOzg5dunSBo6Ojzj5z7t8WCy3WxtBCRLYsR1WGYa99pzVGxV6hwP4F4U0yqDYnJwc3btxAhw4d4OrqCoVCUfdJRBagVqtx5coVtGrVCgEBATo/e+bcv21q9hARUXNlbFBtY4eWqqoqKbDwIbRkDe3bt8eVK1dQWVmJVq1a1bscm3lgIhFRc2bNQbWaMSyurhzAS9ah6RaqqqpqUDkMLURETUAzqNb+f03jlhhUay52CZG1WOpnj91DRERNZMqgAIzs0b7Bg2qJWiq2tBARNSFfpQuGdGunE1j4fKHGlZKSgrZt20qvX3rpJQQHB1utPgqFAlu3brXa9eWKocUE/GVCRI0p9eglDHvtO0xd/SOGvfYdUo9esnaVmr358+drLXhqCgYN62P3UB34sDIiakx8vpDpKioq9K7zUR+tW7dG69atLVJWc3L79u0Gze5pbGxpMcLQLxO2uBCRpcjt+UJN2fI8evRozJ07F8888wy8vLwQGRkJAFi2bBn69esHNzc3+Pv744knnkBxcbHWuSkpKQgICICrqytiYmJw9epVrf21u4eOHj2Ku+++G15eXlAqlRg1ahQyMzOl/YGBgQCAmJgYKBQK6TUAbNu2DQMHDoSzszO6du2Kl19+GZWVldL+c+fOYeTIkXB2dkafPn3w7bff1vne1Wo1EhMT0aVLF7i4uCAoKAgbN26U9u/duxcKhQJpaWkIDQ2Fq6srhg4dirNnz2qVU1fdFAoF3nvvPUyYMAFubm5YsmQJAGDx4sXo0KED2rRpg8ceewwLFiyQPq/09HS0atUKubm5Wtd65plnMGLEiDrfW0MwtBght18mRGQ6W+n2ldPzhazRjfXRRx/B0dERBw4cwMqVKwFUr666fPlynD59Gh999BG+++47PP/889I5P/74Ix599FHMnTsXx48fR3h4OBYvXmz0Ojdv3kRsbCz279+Pw4cP44477sC4ceNw8+ZNANWhBgDWrl2LnJwc6fW+ffswY8YMPP300/jll1+watUqpKSkSDd/tVqNSZMmwdHRET/++CNWrlyJF154oc73nZiYiI8//hgrV67E6dOn8eyzz+KRRx7BDz/8oHXcv/71L7z11ls4duwYHBwcMGvWLGlfXXXTeOmllxATE4OTJ09i1qxZWLduHZYsWYKlS5ciIyMDAQEBeO+996TjR44cia5du+KTTz6Rtt2+fRvr1q3Tun6jEM2ESqUSAIRKpbJYmVdulIouC74SnV/466vrgh3iyo1Si12DbNuVG6XiwPkCfs+bmc+P/CH9v91lwVfi8yN/WL0+XRfskH7HWLo+ZWVl4pdffhFlZWX1LsMavw9HjRolBgwYUOdxGzZsEO3atZNeP/zww2LcuHFax0yZMkUolUrp9aJFi0RQUJDBMquqqkSbNm3El19+KW0DILZs2aJ13NixY8Wrr76qte2TTz4Rvr6+Qgghvv76a+Hg4CAuX74s7d+1a5fesjRu3bolXF1dxcGDB7W2P/roo+Lhhx8WQgjx/fffCwBiz5490v4dO3YIANL3ua66ad7TM888o3XM4MGDxZNPPqm1bdiwYVqf19KlS0Xv3r2l15s2bRKtW7cWxcXFet+TsZ9Bc+7fHNNiRGM8rIzkg+OZmidbHEMih6nQ1lrRNyQkRGfbnj17kJiYiDNnzqCoqAiVlZW4desWSktL4erqil9//RUxMTFa5wwZMgS7d+82eJ28vDy8+OKL2Lt3L/Lz81FVVYXS0lJcumS8NenEiRM4cOCAVutFVVWVVJ9ff/0V/v7+8PPz06qLMefPn0dpaSnuvvture0VFRUYMGCA1rb+/ftL//b19QUA5OfnIyAgoM66aRYbDA0N1Srz7NmzeOKJJ7S2hYWF4bvvvpNez5w5Ey+++CIOHz6Mu+66CykpKXjwwQfh5uZm9L01FENLHeTwy4QszxZvbGQZ1lxO3xhfpYtN/2xpurFqPzupsbuxat8EL168iPHjx+Pxxx/HkiVL4Onpif379+PRRx9FRUVFvVf9jY2NxdWrV/Hf//4XnTt3hpOTE4YMGYKKigqj5xUXF+Pll1/GpEmTdPY5OzvXqy6a8Tk7duxAx44dtfY5OTlpva45aFazgJtarTarbvUJGh06dEB0dDTWrl2LLl26YNeuXdi7d6/Z5ZiLocUEtv7LhCzPVm9s1HDWuvnKna20PGdkZECtVuOtt96CnV31sMwvvvhC65jevXvjxx9/1Np2+PBho+UeOHAA7777LsaNGwcAyM7ORmFhodYxrVq10lmGfuDAgTh79iy6d++ut9zevXsjOzsbOTk5UktIXXXp06cPnJyccOnSJYwaNcroscbUVTdDevbsiaNHj2LGjBnSNs0Ynpoee+wxPPzww+jUqRO6deuGYcOG1buupmJoIdKDN7bmy1ZuvnJkCy3P3bt3x+3bt/HOO+8gOjpaa4CuxlNPPYVhw4bhzTffxH333Yevv/7aaNcQANxxxx345JNPEBoaiqKiIjz33HNwcdF+f4GBgUhLS8OwYcPg5OQEDw8PLFy4EOPHj0dAQADuv/9+2NnZ4cSJEzh16hQWL16MiIgI9OjRA7GxsXjjjTdQVFSEf/3rX0br0qZNG8yfPx/PPvss1Go1hg8fDpVKhQMHDsDd3R2xsbEmfVZ11c2QefPmYfbs2QgNDcXQoUORmpqKn3/+GV27dtU6LjIyEu7u7li8eDFeeeUVk+rUYHWOepGJxhiISy1bYw+OJOu6cqNUHDxf2CIGWVtiIK41jBo1Sjz99NM625ctWyZ8fX2Fi4uLiIyMFB9//LEAIK5fvy4d8+GHH4pOnToJFxcXER0dLd58802jA3EzMzNFaGiocHZ2FnfccYfYsGGD6Ny5s3j77belY7Zv3y66d+8uHBwcROfOnaXtu3fvFkOHDhUuLi7C3d1dhIWFiffff1/af/bsWTF8+HDh6OgoevToIXbv3m10IK4QQqjVapGUlCR69uwpWrVqJdq3by8iIyPFDz/8IIT4ayBuzff8008/CQAiKyvL5LoZqscrr7wivLy8ROvWrcWsWbPEU089Je666y6d4/79738Le3t7ceXKFYPvRQjLDcRV/K/SsldUVASlUgmVSgV3d3drV4eaiRxVGcczkezdunULWVlZ6NKlS73HWVDLdvfdd8PHx0drmjMAPProoygoKMD27duNnm/sZ9Cc+ze7h4iM4HgmImppSktLsXLlSkRGRsLe3h6fffYZ9uzZo7UonkqlwsmTJ7F+/fo6A4slMbQQERGRRKFQYOfOnViyZAlu3bqFnj17YtOmTYiIiJCOue+++3DkyBH84x//0Jma3ZgYWoiIiEji4uKCPXv2GD2mKaY368Nl/ImIiEgWGFqIiFqIZjLvgmTIUj97DC1ERM2cZtXU0lI+7JWsQ7OysL29fYPK4ZgWIqJmzt7eHm3btkV+fj4AwNXVVVrynaixqdVqFBQUwNXVFQ4ODYsdDC1ERC2Aj48PAEjBhagp2dnZISAgoMFhmaGFiKgFUCgU8PX1RYcOHXD79m1rV4daGEdHR+lZUQ3B0EJE1ILY29s3eFwBkbVwIC4RERHJAkMLERERyQJDCxEREclCsxnTolm4pqioyMo1ISIiIlNp7tumLEDXbELLzZs3AQD+/v5WrgkRERGZ6+bNm1AqlUaPUYhmsq6zWq3GlStX0KZNmxazaNKgQYNw9OhRa1fDYmz1/VijXo15TUuXbYnyGlqGuecXFRXB398f2dnZcHd3r/d1qW62+v91fdni+5H77yghBG7evAk/P786p0U3m5YWOzs7dOrUydrVaFL29vbN6heurb4fa9SrMa9p6bItUV5Dy6jv+e7u7jb5M9ec2Or/1/Vli++nOfyOqquFRYMDcWXsySeftHYVLMpW34816tWY17R02ZYor6Fl2OrPDjW/740tvp/m9jvKmGbTPUREZKqioiIolUqoVCqb+6uZiAxjSwsRtThOTk5YtGgRnJycrF0VIjIDW1qIiIhIFtjSQkRERLLA0EJERESywNBCREREssDQQkRERLLA0EJERESywNBCRFRLTEwMPDw8cP/991u7KkRUA0MLEVEtTz/9ND7++GNrV4OIamFoISKqZfTo0WjTpo21q0FEtTC0EFGzkp6ejujoaPj5+UGhUGDr1q06xyQnJyMwMBDOzs4YPHgwjhw50vQVJSKzMbQQUbNSUlKCoKAgJCcn692fmpqK+Ph4LFq0CJmZmQgKCkJkZCTy8/ObuKZEZC6GFiJqVqKiorB48WLExMTo3b9s2TLMnj0bcXFx6NOnD1auXAlXV1esWbOmiWtKROZiaCGiFqOiogIZGRmIiIiQttnZ2SEiIgKHDh2yYs2IyBQMLUTUYhQWFqKqqgre3t5a2729vZGbmyu9joiIwAMPPICdO3eiU6dODDRENsLB2hUgIrI1e/bssXYViEgPtrQQUYvh5eUFe3t75OXlaW3Py8uDj4+PlWpFRKZiaCGiFsPR0REhISFIS0uTtqnVaqSlpWHIkCFWrBkRmYLdQ0TUrBQXF+P8+fPS66ysLBw/fhyenp4ICAhAfHw8YmNjERoairCwMCQlJaGkpARxcXFWrDURmUIhhBDWrgQRkaXs3bsX4eHhOttjY2ORkpICAFixYgXeeOMN5ObmIjg4GMuXL8fgwYObuKZEZC6GFiIiIpIFjmkhIiIiWWBoISIiIllgaCEiIiJZYGghIiIiWWBoISIiIllgaCEiIiJZYGghIiIiWWBoISIiIllgaCEiIiJZYGghIpMoFAps3brVJsubPn06Xn31Vel1YGAgkpKSLFJ2fa1cuRLR0dFWrQNRc8PQQkRWkZOTg6ioKADAxYsXoVAocPz4cbPLOXHiBHbu3ImnnnrKwjXU748//oCLiwuKi4uNHjdr1ixkZmZi3759TVIvopaAoYWIrMLHxwdOTk4NLuedd97BAw88gNatW1ugVnXbtm0bwsPD67yeo6Mjpk6diuXLlzdJvYhaAoYWohbg/fffh5+fH9Rqtdb2++67D7NmzQJQfTMeOHAgnJ2d0bVrV7z88suorKw0WObJkycxZswYuLi4oF27dvj73/+u0/qwZs0a9O3bF05OTvD19cXcuXOlfTW7h7p06QIAGDBgABQKBUaPHo309HS0atUKubm5WmU+88wzGDFiBACgqqoKGzdurLMb5oMPPkDbtm2RlpYGABg9ejTmzZuHZ555Bh4eHvD29sbq1atRUlKCuLg4tGnTBt27d8euXbt0ytq2bRsmTJgAoPqJ0mFhYXBzc0Pbtm0xbNgw/PHHH9Kx0dHR2L59O8rKyozWj4hMJIio2bt27ZpwdHQUe/bskbZdvXpV2paeni7c3d1FSkqKuHDhgvjmm29EYGCgeOmll6TjAYgtW7YIIYQoLi4Wvr6+YtKkSeLkyZMiLS1NdOnSRcTGxkrHv/vuu8LZ2VkkJSWJs2fPiiNHjoi3335bb3lHjhwRAMSePXtETk6OuHr1qhBCiB49eojXX39dOqeiokJ4eXmJNWvWCCGEyMzMFABEbm6u1vvt3LmzdK2lS5eKdu3aiR9//FHaP2rUKNGmTRvxn//8R/z222/iP//5j7C3txdRUVHi/fffF7/99pt4/PHHRbt27URJSYl03vXr14Wjo6O4fPmyuH37tlAqlWL+/Pni/Pnz4pdffhEpKSnijz/+kI4vKSkRdnZ24vvvvzf9m0VEBjG0ELUQ9913n5g1a5b0etWqVcLPz09UVVWJsWPHildffVXr+E8++UT4+vpKr2uGjPfff194eHiI4uJiaf+OHTuEnZ2dFCD8/PzEv/71L4P1qVleVlaWACB++uknrWOWLl0qevfuLb3etGmTaN26tXTdLVu2CHt7e6FWq7XO04SW559/Xvj6+opTp05p7R81apQYPny49LqyslK4ubmJ6dOnS9tycnIEAHHo0CFp27p160RoaKgQojr0ARB79+41+B6FEMLDw0OkpKQYPYaITMPuIaIWYtq0adi0aRPKy8sBAOvWrcNDDz0EOzs7nDhxAq+88gpat24tfc2ePRs5OTkoLS3VKevXX39FUFAQ3NzcpG3Dhg2DWq3G2bNnkZ+fjytXrmDs2LENqvPMmTNx/vx5HD58GACQkpKCBx98ULpuWVkZnJycoFAodM596623sHr1auzfvx99+/bV2d+/f3/p3/b29mjXrh369esnbfP29gYA5OfnS9tqdg15enpi5syZiIyMRHR0NP773/8iJydH5zouLi56P0MiMh9DC1ELER0dDSEEduzYgezsbOzbtw/Tpk0DABQXF+Pll1/G8ePHpa+TJ0/i3LlzcHZ2NvtaLi4uFqlzhw4dEB0djbVr1yIvLw+7du2SxuAAgJeXF0pLS1FRUaFz7ogRI1BVVYUvvvhCb9mtWrXSeq1QKLS2aYKQZhxQRUUFdu/eLYUWAFi7di0OHTqEoUOHIjU1FT169JAClsa1a9fQvn17M985EenjYO0KEFHTcHZ2xqRJk7Bu3TqcP38ePXv2xMCBAwEAAwcOxNmzZ9G9e3eTyurduzdSUlJQUlIitXocOHAAdnZ26NmzJ9q0aYPAwECkpaUhPDy8zvIcHR0BVA+sre2xxx7Dww8/jE6dOqFbt24YNmyYtC84OBgA8Msvv0j/1ggLC8PcuXPxt7/9DQ4ODpg/f75J782QvXv3wsPDA0FBQVrbBwwYgAEDBiAhIQFDhgzB+vXrcddddwEALly4gFu3bmHAgAENujYRVWNLC1ELMm3aNOzYsQNr1qyRWlkAYOHChfj444/x8ssv4/Tp0/j111/x+eef48UXXzRYjrOzM2JjY3Hq1Cl8//33mDdvHqZPny51q7z00kt46623sHz5cpw7dw6ZmZl455139JbXoUMHuLi4YPfu3cjLy4NKpZL2RUZGwt3dHYsXL0ZcXJzWee3bt8fAgQOxf/9+veUOHToUO3fuxMsvv9zgxea2b9+u1cqSlZWFhIQEHDp0CH/88Qe++eYbnDt3Dr1795aO2bdvH7p27Ypu3bo16NpEVI2hhagFGTNmDDw9PXH27FlMnTpV2h4ZGYmvvvoK33zzDQYNGoS77roLb7/9Njp37qy3HFdXV3z99de4du0aBg0ahPvvvx9jx47FihUrpGNiY2ORlJSEd999F3379sX48eNx7tw5veU5ODhg+fLlWLVqFfz8/HDfffdJ++zs7DBz5kxUVVVhxowZOuc+9thjWLduncH3PHz4cOzYsQMvvviiwdBkitqhxdXVFWfOnMHkyZPRo0cP/P3vf8eTTz6JOXPmSMd89tlnmD17dr2vSUTaFEIIYe1KEBEZ8+ijj6KgoADbt2/X2VdWVoaePXsiNTUVQ4YMaZTrZ2ZmYsyYMSgoKNAZC2PI6dOnMWbMGPz2229QKpWNUi+iloZjWojIZqlUKpw8eRLr16/XG1iA6kG/H3/8MQoLCxutHpWVlXjnnXdMDixA9WMKPv74YwYWIgtiSwsR2azRo0fjyJEjmDNnDt5++21rV4eIrIyhhYiIiGSBA3GJiIhIFhhaiIiISBYYWoiIiEgWGFqIiIhIFhhaiIiISBYYWoiIiEgWGFqIiIhIFhhaiIiISBb+H5yU+DrsW/EiAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nfb.plot(x='velocity(km/s)', y='radiated energy', style='.', logy=True, logx=True, title='Radiated energy vs velocity')" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "ename": "ValueError", + "evalue": "could not convert string to float: '2022-04-21 22:15:28'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[9], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mnfb\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcorr\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/venv/lib/python3.12/site-packages/pandas/core/frame.py:11049\u001b[0m, in \u001b[0;36mDataFrame.corr\u001b[0;34m(self, method, min_periods, numeric_only)\u001b[0m\n\u001b[1;32m 11047\u001b[0m cols \u001b[38;5;241m=\u001b[39m data\u001b[38;5;241m.\u001b[39mcolumns\n\u001b[1;32m 11048\u001b[0m idx \u001b[38;5;241m=\u001b[39m cols\u001b[38;5;241m.\u001b[39mcopy()\n\u001b[0;32m> 11049\u001b[0m mat \u001b[38;5;241m=\u001b[39m \u001b[43mdata\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mto_numpy\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdtype\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mfloat\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mna_value\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnp\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mnan\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcopy\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m)\u001b[49m\n\u001b[1;32m 11051\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m method \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mpearson\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[1;32m 11052\u001b[0m correl \u001b[38;5;241m=\u001b[39m libalgos\u001b[38;5;241m.\u001b[39mnancorr(mat, minp\u001b[38;5;241m=\u001b[39mmin_periods)\n", + "File \u001b[0;32m~/venv/lib/python3.12/site-packages/pandas/core/frame.py:1993\u001b[0m, in \u001b[0;36mDataFrame.to_numpy\u001b[0;34m(self, dtype, copy, na_value)\u001b[0m\n\u001b[1;32m 1991\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m dtype \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 1992\u001b[0m dtype \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mdtype(dtype)\n\u001b[0;32m-> 1993\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_mgr\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mas_array\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdtype\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdtype\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcopy\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcopy\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mna_value\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mna_value\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1994\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m result\u001b[38;5;241m.\u001b[39mdtype \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m dtype:\n\u001b[1;32m 1995\u001b[0m result \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39masarray(result, dtype\u001b[38;5;241m=\u001b[39mdtype)\n", + "File \u001b[0;32m~/venv/lib/python3.12/site-packages/pandas/core/internals/managers.py:1694\u001b[0m, in \u001b[0;36mBlockManager.as_array\u001b[0;34m(self, dtype, copy, na_value)\u001b[0m\n\u001b[1;32m 1692\u001b[0m arr\u001b[38;5;241m.\u001b[39mflags\u001b[38;5;241m.\u001b[39mwriteable \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mFalse\u001b[39;00m\n\u001b[1;32m 1693\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m-> 1694\u001b[0m arr \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_interleave\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdtype\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdtype\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mna_value\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mna_value\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1695\u001b[0m \u001b[38;5;66;03m# The underlying data was copied within _interleave, so no need\u001b[39;00m\n\u001b[1;32m 1696\u001b[0m \u001b[38;5;66;03m# to further copy if copy=True or setting na_value\u001b[39;00m\n\u001b[1;32m 1698\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m na_value \u001b[38;5;129;01mis\u001b[39;00m lib\u001b[38;5;241m.\u001b[39mno_default:\n", + "File \u001b[0;32m~/venv/lib/python3.12/site-packages/pandas/core/internals/managers.py:1753\u001b[0m, in \u001b[0;36mBlockManager._interleave\u001b[0;34m(self, dtype, na_value)\u001b[0m\n\u001b[1;32m 1751\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 1752\u001b[0m arr \u001b[38;5;241m=\u001b[39m blk\u001b[38;5;241m.\u001b[39mget_values(dtype)\n\u001b[0;32m-> 1753\u001b[0m \u001b[43mresult\u001b[49m\u001b[43m[\u001b[49m\u001b[43mrl\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mindexer\u001b[49m\u001b[43m]\u001b[49m \u001b[38;5;241m=\u001b[39m arr\n\u001b[1;32m 1754\u001b[0m itemmask[rl\u001b[38;5;241m.\u001b[39mindexer] \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m1\u001b[39m\n\u001b[1;32m 1756\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m itemmask\u001b[38;5;241m.\u001b[39mall():\n", + "\u001b[0;31mValueError\u001b[0m: could not convert string to float: '2022-04-21 22:15:28'" + ] + } + ], + "source": [ + "nfb.corr(numeric_only=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.3" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/1-git_and_github/.ignore/git-model.png b/legacy/1-git_and_github/.ignore/git-model.png similarity index 100% rename from 1-git_and_github/.ignore/git-model.png rename to legacy/1-git_and_github/.ignore/git-model.png diff --git a/1-git_and_github/.ignore/graph_reference.png b/legacy/1-git_and_github/.ignore/graph_reference.png similarity index 100% rename from 1-git_and_github/.ignore/graph_reference.png rename to legacy/1-git_and_github/.ignore/graph_reference.png diff --git a/1-git_and_github/README.md b/legacy/1-git_and_github/README.md similarity index 100% rename from 1-git_and_github/README.md rename to legacy/1-git_and_github/README.md diff --git a/2-python_basics/README.md b/legacy/2-python_basics/README.md similarity index 100% rename from 2-python_basics/README.md rename to legacy/2-python_basics/README.md diff --git a/2-python_basics/problems.py b/legacy/2-python_basics/problems.py similarity index 100% rename from 2-python_basics/problems.py rename to legacy/2-python_basics/problems.py diff --git a/3-files_and_paths/README.md b/legacy/3-files_and_paths/README.md similarity index 100% rename from 3-files_and_paths/README.md rename to legacy/3-files_and_paths/README.md diff --git a/3-files_and_paths/problems.py b/legacy/3-files_and_paths/problems.py similarity index 100% rename from 3-files_and_paths/problems.py rename to legacy/3-files_and_paths/problems.py diff --git a/4-system_and_env/README.md b/legacy/4-system_and_env/README.md similarity index 100% rename from 4-system_and_env/README.md rename to legacy/4-system_and_env/README.md diff --git a/4-system_and_env/problems.py b/legacy/4-system_and_env/problems.py similarity index 100% rename from 4-system_and_env/problems.py rename to legacy/4-system_and_env/problems.py diff --git a/5-data_manipulation/README.md b/legacy/5-data_manipulation/README.md similarity index 100% rename from 5-data_manipulation/README.md rename to legacy/5-data_manipulation/README.md diff --git a/5-data_manipulation/problems.py b/legacy/5-data_manipulation/problems.py similarity index 100% rename from 5-data_manipulation/problems.py rename to legacy/5-data_manipulation/problems.py diff --git a/6-exception_handling/README.md b/legacy/6-exception_handling/README.md similarity index 100% rename from 6-exception_handling/README.md rename to legacy/6-exception_handling/README.md diff --git a/7-unit_testing/README.md b/legacy/7-unit_testing/README.md similarity index 100% rename from 7-unit_testing/README.md rename to legacy/7-unit_testing/README.md diff --git a/8-pandas/README.md b/legacy/8-pandas/README.md similarity index 100% rename from 8-pandas/README.md rename to legacy/8-pandas/README.md diff --git a/EXAMPLES/args.py b/legacy/EXAMPLES/args.py similarity index 100% rename from EXAMPLES/args.py rename to legacy/EXAMPLES/args.py diff --git a/EXAMPLES/hangman.py b/legacy/EXAMPLES/hangman.py similarity index 100% rename from EXAMPLES/hangman.py rename to legacy/EXAMPLES/hangman.py diff --git a/EXAMPLES/loop_else.py b/legacy/EXAMPLES/loop_else.py similarity index 100% rename from EXAMPLES/loop_else.py rename to legacy/EXAMPLES/loop_else.py diff --git a/EXAMPLES/readfiles.py b/legacy/EXAMPLES/readfiles.py similarity index 100% rename from EXAMPLES/readfiles.py rename to legacy/EXAMPLES/readfiles.py diff --git a/EXAMPLES/universal_nogui_widget.py b/legacy/EXAMPLES/universal_nogui_widget.py similarity index 100% rename from EXAMPLES/universal_nogui_widget.py rename to legacy/EXAMPLES/universal_nogui_widget.py diff --git a/EXAMPLES/variable_scope.py b/legacy/EXAMPLES/variable_scope.py similarity index 100% rename from EXAMPLES/variable_scope.py rename to legacy/EXAMPLES/variable_scope.py diff --git a/EXAMPLES/wordlist b/legacy/EXAMPLES/wordlist similarity index 100% rename from EXAMPLES/wordlist rename to legacy/EXAMPLES/wordlist diff --git a/EXAMPLES/writefile.py b/legacy/EXAMPLES/writefile.py similarity index 100% rename from EXAMPLES/writefile.py rename to legacy/EXAMPLES/writefile.py diff --git a/0-coursework/week_1.ipynb b/week_1.ipynb similarity index 100% rename from 0-coursework/week_1.ipynb rename to week_1.ipynb diff --git a/0-coursework/week_2.ipynb b/week_2.ipynb similarity index 100% rename from 0-coursework/week_2.ipynb rename to week_2.ipynb diff --git a/0-coursework/week_3.ipynb b/week_3.ipynb similarity index 100% rename from 0-coursework/week_3.ipynb rename to week_3.ipynb diff --git a/0-coursework/week_4.ipynb b/week_4.ipynb similarity index 100% rename from 0-coursework/week_4.ipynb rename to week_4.ipynb diff --git a/week_5.ipynb b/week_5.ipynb new file mode 100644 index 0000000..c66585e --- /dev/null +++ b/week_5.ipynb @@ -0,0 +1,38 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Week 5\n", + "\n", + "**Topics** - Python Editors, Writing and runnig scripts, argparse library\n", + "\n", + "## Python Editors (IDEs)\n", + "A good editor has a few features that really help with writing code:\n", + "* Syntax highlighting\n", + "* Linting - A Linter is a tool that looks at your code for issues like missing variables, misspelled stuff, and any time you diverge from standards and conventions that the rest of the world thinks are a good idea. \n", + "* You make like for your ide to be able to run your code from the editor and give you the output. Or you may prefer to run it from a terminal window separately. \n", + "* Debugging - If you run your code from the editor, you should be able to set breakpoints to pause your script and see what variables are set, etc. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "plaintext" + } + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From 09e3ca020b25c128cc155c578ef3b7a2798cd8f2 Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Thu, 22 Aug 2024 17:18:12 -0700 Subject: [PATCH 02/94] rename week 1 --- .../fireballs.ipynb | 36 +++++++++++-------- week_1.ipynb => A - Getting Started.ipynb | 3 +- 2 files changed, 22 insertions(+), 17 deletions(-) rename fireballs.ipynb => 0-coursework/fireballs.ipynb (66%) rename week_1.ipynb => A - Getting Started.ipynb (99%) diff --git a/fireballs.ipynb b/0-coursework/fireballs.ipynb similarity index 66% rename from fireballs.ipynb rename to 0-coursework/fireballs.ipynb index 175308b..fc74538 100644 --- a/fireballs.ipynb +++ b/0-coursework/fireballs.ipynb @@ -335,27 +335,33 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 12, "metadata": {}, "outputs": [ { - "ename": "ValueError", - "evalue": "could not convert string to float: '2022-04-21 22:15:28'", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[9], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mnfb\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcorr\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/venv/lib/python3.12/site-packages/pandas/core/frame.py:11049\u001b[0m, in \u001b[0;36mDataFrame.corr\u001b[0;34m(self, method, min_periods, numeric_only)\u001b[0m\n\u001b[1;32m 11047\u001b[0m cols \u001b[38;5;241m=\u001b[39m data\u001b[38;5;241m.\u001b[39mcolumns\n\u001b[1;32m 11048\u001b[0m idx \u001b[38;5;241m=\u001b[39m cols\u001b[38;5;241m.\u001b[39mcopy()\n\u001b[0;32m> 11049\u001b[0m mat \u001b[38;5;241m=\u001b[39m \u001b[43mdata\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mto_numpy\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdtype\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mfloat\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mna_value\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnp\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mnan\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcopy\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m)\u001b[49m\n\u001b[1;32m 11051\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m method \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mpearson\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[1;32m 11052\u001b[0m correl \u001b[38;5;241m=\u001b[39m libalgos\u001b[38;5;241m.\u001b[39mnancorr(mat, minp\u001b[38;5;241m=\u001b[39mmin_periods)\n", - "File \u001b[0;32m~/venv/lib/python3.12/site-packages/pandas/core/frame.py:1993\u001b[0m, in \u001b[0;36mDataFrame.to_numpy\u001b[0;34m(self, dtype, copy, na_value)\u001b[0m\n\u001b[1;32m 1991\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m dtype \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 1992\u001b[0m dtype \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mdtype(dtype)\n\u001b[0;32m-> 1993\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_mgr\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mas_array\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdtype\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdtype\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcopy\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcopy\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mna_value\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mna_value\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1994\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m result\u001b[38;5;241m.\u001b[39mdtype \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m dtype:\n\u001b[1;32m 1995\u001b[0m result \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39masarray(result, dtype\u001b[38;5;241m=\u001b[39mdtype)\n", - "File \u001b[0;32m~/venv/lib/python3.12/site-packages/pandas/core/internals/managers.py:1694\u001b[0m, in \u001b[0;36mBlockManager.as_array\u001b[0;34m(self, dtype, copy, na_value)\u001b[0m\n\u001b[1;32m 1692\u001b[0m arr\u001b[38;5;241m.\u001b[39mflags\u001b[38;5;241m.\u001b[39mwriteable \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mFalse\u001b[39;00m\n\u001b[1;32m 1693\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m-> 1694\u001b[0m arr \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_interleave\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdtype\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdtype\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mna_value\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mna_value\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1695\u001b[0m \u001b[38;5;66;03m# The underlying data was copied within _interleave, so no need\u001b[39;00m\n\u001b[1;32m 1696\u001b[0m \u001b[38;5;66;03m# to further copy if copy=True or setting na_value\u001b[39;00m\n\u001b[1;32m 1698\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m na_value \u001b[38;5;129;01mis\u001b[39;00m lib\u001b[38;5;241m.\u001b[39mno_default:\n", - "File \u001b[0;32m~/venv/lib/python3.12/site-packages/pandas/core/internals/managers.py:1753\u001b[0m, in \u001b[0;36mBlockManager._interleave\u001b[0;34m(self, dtype, na_value)\u001b[0m\n\u001b[1;32m 1751\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 1752\u001b[0m arr \u001b[38;5;241m=\u001b[39m blk\u001b[38;5;241m.\u001b[39mget_values(dtype)\n\u001b[0;32m-> 1753\u001b[0m \u001b[43mresult\u001b[49m\u001b[43m[\u001b[49m\u001b[43mrl\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mindexer\u001b[49m\u001b[43m]\u001b[49m \u001b[38;5;241m=\u001b[39m arr\n\u001b[1;32m 1754\u001b[0m itemmask[rl\u001b[38;5;241m.\u001b[39mindexer] \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m1\u001b[39m\n\u001b[1;32m 1756\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m itemmask\u001b[38;5;241m.\u001b[39mall():\n", - "\u001b[0;31mValueError\u001b[0m: could not convert string to float: '2022-04-21 22:15:28'" - ] + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAI7CAYAAAAkk3vJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACdEUlEQVR4nOzdeVyN6f8/8NcJbdpVVJYWSraSNY09ky1h7H0oKuM79uwztmwNI7KvozDC2PcsEck6yJrI2JV1lKRS3b8//DrjOOdEptPd0ev5eJzHw7nu677v97mU83bd1yIRBEEAERERkZrQEDsAIiIiooJg8kJERERqhckLERERqRUmL0RERKRWmLwQERGRWmHyQkRERGqFyQsRERGpFSYvREREpFaYvBAREZFaYfJCRMVaeHg4JBIJ7t27V2jXvHfvHiQSCcLDwwvtmkRUdJi8EJVQd+7cwY8//ghbW1toa2vDwMAAbm5uWLBgAd69eyd2eIUiIiICoaGhYodBRIWstNgBEFHR27dvH7p37w4tLS3069cPtWrVQlZWFk6ePIkxY8bg+vXrWLlypdhh/mcRERG4du0aRowYIVNepUoVvHv3DmXKlBEnMCL6T5i8EJUwd+/eRa9evVClShUcPXoUFhYW0mODBw9GYmIi9u3b95/uIQgCMjIyoKOjI3csIyMDmpqa0NAQr+NXIpFAW1tbtPsT0X/Dx0ZEJcycOXOQlpaG33//XSZxyVO1alUMHz4cAJCdnY3p06fDzs4OWlpasLa2xs8//4zMzEyZc6ytrdGxY0ccPHgQ9evXh46ODlasWIHo6GhIJBJs2rQJEydOhJWVFXR1dZGamgoAOHv2LNq2bQtDQ0Po6uqiefPmiI2N/exn2LVrFzp06ABLS0toaWnBzs4O06dPR05OjrROixYtsG/fPty/fx8SiQQSiQTW1tYAlI95OXr0KJo2bYqyZcvCyMgIXl5eiI+Pl6kzdepUSCQSJCYmwtfXF0ZGRjA0NET//v2Rnp4uU/fw4cP47rvvYGRkBD09PTg4OODnn3/+7Ocjovyx54WohNmzZw9sbW3RpEmTz9b19/fH2rVr0a1bN4waNQpnz55FcHAw4uPjsWPHDpm6CQkJ6N27N3788UcEBATAwcFBemz69OnQ1NTE6NGjkZmZCU1NTRw9ehTt2rVDvXr1MGXKFGhoaCAsLAytWrVCTEwMGjZsqDSu8PBw6OnpITAwEHp6ejh69CgmT56M1NRU/PbbbwCAX375BSkpKXj06BHmz58PANDT01N6zSNHjqBdu3awtbXF1KlT8e7dOyxatAhubm64ePGiNPHJ06NHD9jY2CA4OBgXL17E6tWrYW5ujtmzZwMArl+/jo4dO6JOnTqYNm0atLS0kJiY+EXJGRF9hkBEJUZKSooAQPDy8vps3bi4OAGA4O/vL1M+evRoAYBw9OhRaVmVKlUEAEJkZKRM3WPHjgkABFtbWyE9PV1anpubK1SrVk3w8PAQcnNzpeXp6emCjY2N0KZNG2lZWFiYAEC4e/euTL1P/fjjj4Kurq6QkZEhLevQoYNQpUoVubp3794VAAhhYWHSMmdnZ8Hc3Fx4+fKltOzy5cuChoaG0K9fP2nZlClTBADCgAEDZK7ZpUsXoVy5ctL38+fPFwAIz58/l7s/Ef03fGxEVILkPa7R19f/bN39+/cDAAIDA2XKR40aBQBy42JsbGzg4eGh8Fo+Pj4y41/i4uJw+/Zt9OnTBy9fvsSLFy/w4sULvH37Fq1bt8aJEyeQm5urNLaPr/XmzRu8ePECTZs2RXp6Om7evPnZz/appKQkxMXFwdfXFyYmJtLyOnXqoE2bNtK2+NigQYNk3jdt2hQvX76UtrGRkRGAD4+48vssRFRwTF6IShADAwMAH77wP+f+/fvQ0NBA1apVZcorVKgAIyMj3L9/X6bcxsZG6bU+PXb79m0AH5IaMzMzmdfq1auRmZmJlJQUpde7fv06unTpAkNDQxgYGMDMzAz/+9//ACDf85TJ+ywfP+rK4+joKE2sPla5cmWZ98bGxgCAf/75BwDQs2dPuLm5wd/fH+XLl0evXr3w559/MpEhKgQc80JUghgYGMDS0hLXrl374nMkEskX1VM0s0jZsbwv8N9++w3Ozs4Kz1E2PuX169do3rw5DAwMMG3aNNjZ2UFbWxsXL17EuHHjiiw5KFWqlMJyQRAAfPjMJ06cwLFjx7Bv3z5ERkZi8+bNaNWqFQ4dOqT0fCL6PCYvRCVMx44dsXLlSpw+fRqurq5K61WpUgW5ubm4ffs2HB0dpeVPnz7F69evUaVKla+Owc7ODsCHZMrd3b1A50ZHR+Ply5fYvn07mjVrJi2/e/euXN0vTbzyPktCQoLcsZs3b8LU1BRly5YtUJwAoKGhgdatW6N169aYN28eZs2ahV9++QXHjh0r8Ocmon/xsRFRCTN27FiULVsW/v7+ePr0qdzxO3fuYMGCBWjfvj0AyK1QO2/ePABAhw4dvjqGevXqwc7ODnPnzkVaWprc8efPnys9N6/HIq+HAwCysrKwdOlSubply5b9osdIFhYWcHZ2xtq1a/H69Wtp+bVr13Do0CFpWxTEq1ev5Mryepk+nWpORAXDnheiEsbOzg4RERHo2bMnHB0dZVbYPXXqFLZs2QJfX18MHz4cPj4+WLlypfRRzblz57B27Vp07twZLVu2/OoYNDQ0sHr1arRr1w41a9ZE//79YWVlhcePH+PYsWMwMDDAnj17FJ7bpEkTGBsbw8fHB8OGDYNEIsH69etlkpk89erVw+bNmxEYGIgGDRpAT08Pnp6eCq/722+/oV27dnB1dYWfn590qrShoSGmTp1a4M84bdo0nDhxAh06dECVKlXw7NkzLF26FBUrVsR3331X4OsR0UdEnu1ERCK5deuWEBAQIFhbWwuampqCvr6+4ObmJixatEg63fj9+/dCUFCQYGNjI5QpU0aoVKmSMGHCBJnpyILwYap0hw4d5O6RN1V6y5YtCmO4dOmS0LVrV6FcuXKClpaWUKVKFaFHjx5CVFSUtI6iqdKxsbFC48aNBR0dHcHS0lIYO3ascPDgQQGAcOzYMWm9tLQ0oU+fPoKRkZEAQDptWtFUaUEQhCNHjghubm6Cjo6OYGBgIHh6ego3btyQqZM3VfrTKdCfxhkVFSV4eXkJlpaWgqampmBpaSn07t1buHXrlsK2IKIvJxEEBf9dISIiIiqmOOaFiIiI1AqTFyIiIlIrTF6IiIhIrTB5ISIiIrXC5IWIiIjUCpMXIiIiUivf3CJ1ubm5ePLkCfT19b94aXAiIiISlyAIePPmDSwtLaGhkX/fyjeXvDx58gSVKlUSOwwiIiL6Cg8fPkTFihXzrfPNJS/6+voAPnx4AwMDkaMhIiKiL5GamopKlSpJv8fz880lL3mPigwMDJi8EBERqZkvGfLBAbtERESkVpi8EBERkVph8kJERERq5Zsb8/KlcnJy8P79e7HDICoWypQpg1KlSokdBhHRFylxyYsgCEhOTsbr16/FDoWoWDEyMkKFChW4PhIRFXslLnnJS1zMzc2hq6vLf6ipxBMEAenp6Xj27BkAwMLCQuSIiIjyV6KSl5ycHGniUq5cObHDISo2dHR0AADPnj2Dubk5HyERUbFWogbs5o1x0dXVFTkSouIn7/eCY8GIqLgrUclLHj4qIpLH3wsiUhclMnkhIiIi9aXS5OXEiRPw9PSEpaUlJBIJdu7c+dlzoqOj4eLiAi0tLVStWhXh4eGqDPGbcO/ePUgkEsTFxeVbr0WLFhgxYoRKYvD19UXnzp0LfN6kSZMwcOBA6XtVxPjixQuYm5vj0aNHhXpdIiISh0oH7L59+xZOTk4YMGAAunbt+tn6d+/eRYcOHTBo0CBs2LABUVFR8Pf3h4WFBTw8PFQZKqzH71Pp9T9179cOKrt2dHQ0WrZsiX/++QdGRkbS8u3bt6NMmTLS99bW1hgxYoTKEprPSU5OxoIFC3D16lWV3sfU1BT9+vXDlClT8Pvvv6v0XkREpHoqTV7atWuHdu3afXH95cuXw8bGBiEhIQAAR0dHnDx5EvPnz1d58lISmJiYiB2CjNWrV6NJkyaoUqWKyu/Vv39/1KtXD7/99luxawciIiqYYjXm5fTp03B3d5cp8/DwwOnTp5Wek5mZidTUVJnXtygyMhLfffcdjIyMUK5cOXTs2BF37tyRq3fv3j20bNkSAGBsbAyJRAJfX18Aso9kWrRogfv372PkyJGQSCTSwZpTp06Fs7OzzDVDQ0NhbW0tfZ+Tk4PAwEBpLGPHjoUgCDLn5ObmIjg4GDY2NtDR0YGTkxO2bt0qU2fTpk3w9PTM93Pv27cPhoaG2LBhA4B/H0/NmjUL5cuXh5GREaZNm4bs7GyMGTMGJiYmqFixIsLCwmSuU7NmTVhaWmLHjh353o+IiIq/YrXOS3JyMsqXLy9TVr58eaSmpuLdu3fStSg+FhwcjKCgoKIKUTRv375FYGAg6tSpg7S0NEyePBldunSRG+dSqVIlbNu2DT/88AMSEhJgYGCgsN22b98OJycnDBw4EAEBAQWKJSQkBOHh4VizZg0cHR0REhKCHTt2oFWTesCTSwCA4AWr8cf2/Vi+fDmqVauGEydO4H//+x/MzMzQvHlzvHr1Cjdu3ED9+vWV3iciIgKDBg1CREQEOnbsKC0/evQoKlasiBMnTiA2NhZ+fn44deoUmjVrhrNnz2Lz5s348ccf0aZNG1SsWFF6XsOGDRETEwM/P78CfV5Vuf7iulxZTdOaIkSiHuKrO8qVOd6MFyES9bBk0FG5ssHLW4kQiXoI6dlRrmzU5r0iRFL8PRofo7C84q9NiyyGYpW8fI0JEyYgMDBQ+j41NRWVKlUSMSLV+OGHH2Ter1mzBmZmZrhx4wb09PSk5aVKlZI+FjE3N5cZ8/IxExMTlCpVCvr6+qhQoUKBYgkNDcWECROk45iWL1+OgwcPSo9nZmZh1qI1OLJpGVz//+M+W1tbnDx5EitWrEDz5s3x4MEDCIIAS0tLhfdYsmQJfvnlF+zZswfNmzeXi33hwoXQ0NCAg4MD5syZg/T0dPz8888APvxM/Prrrzh58iR69eolPc/S0hKXLl0q0GclIqLip1glLxUqVMDTp09lyp4+faq09wAAtLS0oKWlVRThier27duYPHkyzp49ixcvXiA3NxcA8ODBA9SoUaPI4khJSUFSUhIaNWokLStdujTq168P4d1rAEDivYdIf5eBNr1/AiRDpPWysrJQt25dAMC7d+8AANra2nL32Lp1K549e4bY2Fg0aNBA7njNmjWhofHvE8/y5cujVq1a0velSpVCuXLlpMvd59HR0UF6evpXfGoiKokU9TAUZe9CcaCoR6qnzTgRIpFVrJIXV1dX7N+/X6bs8OHDcHV1FSmi4sPT0xNVqlTBqlWrYGlpidzcXNSqVQtZWVmFeh8NDQ258SsFXXE17e2HBGHfuoWwcmohcywv0TQ1NQUA/PPPPzAzM5OpU7duXVy8eBFr1qxB/fr15RZP+3jGFPBhcTVFZXkJXp5Xr17J3YuIiNSPSgfspqWlIS4uTjou4+7du4iLi8ODBw8AfOje79evn7T+oEGD8Pfff2Ps2LG4efMmli5dij///BMjR45UZZjF3suXL5GQkICJEyeidevWcHR0xD///KO0vqamJoAPA2vzo6mpKVfHzMwMycnJMgnMx+NqDA0NYWFhgbNnz0rLsrOzceHCBen7Gva20NLSxIPHSahatarMK++Rnp2dHQwMDHDjxg25uOzs7HDs2DHs2rULQ4cOzfczFMS1a9ekPT9ERKS+VJq8/PXXX6hbt670CyMwMBB169bF5MmTAQBJSUnSRAYAbGxssG/fPhw+fBhOTk4ICQnB6tWrS/w0aWNjY5QrVw4rV65EYmIijh49KjPO51NVqlSBRCLB3r178fz5c6SlpSmsZ21tjRMnTuDx48d48eIFgA+zkJ4/f445c+bgzp07WLJkCQ4cOCBz3vDhw/Hrr79i586duHnzJn766Se8fv1aelxfryxG/9gXI6fOw9q1a3Hnzh1cvHgRixYtwtq1awF86OFxd3fHyZMnFcZmb2+PY8eOYdu2bYWyDk16ejouXLiA77///j9fi4iIxKXS5KVFixYQBEHulbdqbnh4OKKjo+XOuXTpEjIzM3Hnzh3pNN+STENDA5s2bcKFCxdQq1YtjBw5Er/99pvS+lZWVggKCsL48eNRvnx5DBkyRGG9adOm4d69e7Czs5M+TnF0dMTSpUuxZMkSODk54dy5cxg9erTMeaNGjULfvn3h4+MDV1dX6Ovro0uXLjJ1po/9CZNG+CM4OBiOjo5o27Yt9u3bBxsbG2kdf39/bNq0Se7xTh4HBwccPXoUGzduxKhRo76orZTZtWsXKleujKZNS9bzaiKib5FE+HSAg5pLTU2FoaEhUlJSYGBgIHMsIyMDd+/ehY2NjcKBop+68ui1XFmdikaFFOk36ImCmTyWyh/TCIKARo0aYeTIkejdu7cKAwMaN26MYcOGoU+fPiq9T0EUt6nSBf39KGqcKl0wnCpdMF86MJUDdpUP2P2vbZPf9/enitUidVSySCQSrFy5EtnZ2Sq9z4sXL9C1a1eVJ0hERFQ0itVsIyp5nJ2d5Vb0LWympqYYO3asSu9BRERFhz0vREREpFaYvBAREZFaYfJCREREaoXJCxEREakVJi9ERESkVpi8EBERkVph8kJERERqhclLCSGRSLBz585ieb2+ffti1qxZ0vfW1tYIDQ0tlGt/reXLl8PT01PUGIiISDEuUpdnqqFcUR2V3i9FlVdXuaSkJBgbGwMA7t27BxsbG1w6uBHOtRwKdJ3Lly9j//79WLZsmSrClHP//n1Ur14dz58/h56entJ6AwYMwPTp0xETE8P9kIiIihn2vNBXqVChArS0tP7zdRYtWoTu3bvnm0gUpl27dqFly5afvZ+mpib69OmDhQsXFklcRET05Zi8qIGVK1fC0tJSbvdlLy8vDBgwAMCHL2UXFxdoa2vD1tYWQUFB+e4ZdPXqVbRq1Qo6OjooV64cBg4ciLS0NJk6a9asQc2aNaGlpQULCwuZ3ak/fmyUt1N0XY/ekFi5oEW3AJw4cwFlqjREcnKyzDVHjBgh7cnIycnB1q1bP/t4ZvXq1TAyMkJUVBSADzuPDx06FCNGjICxsTHKly+PVatW4e3bt+jfvz/09fVRtWpVHDhwQO5au3btQqdOnQAA0dHRaNiwIcqWLQsjIyO4ubnh/v370rqenp7YvXs33r17l298RERUtJi8qIHu3bvj5cuXOHbsmLTs1atXiIyMhLe3N2JiYtCvXz8MHz4cN27cwIoVKxAeHo6ZM2cqvN7bt2/h4eEBY2NjnD9/Hlu2bMGRI0dkkpNly5Zh8ODBGDhwIK5evYrdu3ejatWqCq937tw5AMCRTcuQdOkQtq+ai2aN68G2shXWr18vrff+/Xts2LBBmnBduXIFKSkpqF+/vtLPPmfOHIwfPx6HDh1C69atpeVr166Fqakpzp07h6FDh+L//u//0L17dzRp0gQXL17E999/j759+yI9PV16zuvXr3Hy5El06tQJ2dnZ6Ny5M5o3b44rV67g9OnTGDhwICQSibR+/fr1kZ2djbNnzyqNj4iIih6TFzVgbGyMdu3aISIiQlq2detWmJqaomXLlggKCsL48ePh4+MDW1tbtGnTBtOnT8eKFSsUXi8iIgIZGRlYt24datWqhVatWmHx4sVYv349nj59CgCYMWMGRo0aheHDh8Pe3h4NGjTAiBEjFF7PzMwMAFDO2AgVzE1hYvxh/JBfby+EhYVJ6+3ZswcZGRno0aMHgA/jT0qVKgVzc3OF1x03bhxCQ0Nx/PhxNGzYUOaYk5MTJk6ciGrVqmHChAnQ1taGqakpAgICUK1aNUyePBkvX77ElStXpOfs378fderUgaWlJVJTU5GSkoKOHTvCzs4Ojo6O8PHxQeXKlaX1dXV1YWhoKNMbQ0RE4mPyoia8vb2xbds2ZGZmAgA2bNiAXr16QUNDA5cvX8a0adOgp6cnfQUEBCApKUmm5yFPfHw8nJycULZsWWmZm5sbcnNzkZCQgGfPnuHJkycyPR1fw7dHJyQmJuLMmTMAgPDwcPTo0UN633fv3kFLS0umtyNPSEgIVq1ahZMnT6JmzZpyx+vU+Xc4dalSpVCuXDnUrl1bWla+fHkAwLNnz6RlHz8yMjExga+vLzw8PODp6YkFCxYgKSlJ7j46OjoK25CIiMTD5EVNeHp6QhAE7Nu3Dw8fPkRMTAy8vb0BAGlpaQgKCkJcXJz0dfXqVdy+fRva2toFvpeOjk6hxGxuagJPT0+EhYXh6dOnOHDggPSREQCYmpoiPT0dWVlZcuc2bdoUOTk5+PPPPxVeu0yZMjLvJRKJTFleQpQ3TigrKwuRkZHS5AUAwsLCcPr0aTRp0gSbN2+Gvb29NNHK8+rVK2nPEhERFQ+cKq0mtLW10bVrV2zYsAGJiYlwcHCAi4sLAMDFxQUJCQlKx6R8ytHREeHh4Xj79q20FyQ2NhYaGhpwcHCAvr4+rK2tERUVhZYtW372epqamgCAnNwcuWP+/v7o3bs3KlasCDs7O7i5uUmPOTs7AwBu3Lgh/XOehg0bYsiQIWjbti1Kly6N0aNHf9FnUyY6OhrGxsZwcnKSKa9bty7q1q2LCRMmwNXVFREREWjcuDEA4M6dO8jIyEDdunX/072JiKhwsedFjXh7e2Pfvn1Ys2aNtNcFACZPnox169YhKCgI169fR3x8PDZt2oSJEycqvY62tjZ8fHxw7do1HDt2DEOHDkXfvn2lj1umTp2KkJAQLFy4ELdv38bFixexaNEihdczNzeHjo4OIo+dwtPnL5GS+kZ6zMPDAwYGBpgxYwb69+8vc56ZmRlcXFxw8uRJhddt0qQJ9u/fj6CgoP+8aN3u3btlel3u3r2LCRMm4PTp07h//z4OHTqE27dvw9HRUVonJiYGtra2sLOz+0/3JiKiwsXkRY20atUKJiYmSEhIQJ8+faTlHh4e2Lt3Lw4dOoQGDRqgcePGmD9/PqpUqaLwOrq6ujh48CBevXqFBg0aoFu3bmjdujUWL14srePj44PQ0FAsXboUNWvWRMeOHXH79m2F1ytdujQWLlyIFX9sh6WLB7wGBEqPaWhowNfXFzk5OejXr5/cuf7+/tiwYYPSz/zdd99h3759mDhxotLk6Ut8mrzo6uri5s2b+OGHH2Bvb4+BAwdi8ODB+PHHH6V1Nm7ciICAgK++JxERqQYfG+VRsOLtlUev5crqVDRSfSxKaGho4MmTJwqPeXh4wMPDQ+m5giDIvK9duzaOHj2a7/1+/PFHmS/z/K7n7+8P//b1FNZ9/Pgx2rdvDwsLC7ljvr6+CA4OxunTp+Hq6grgw4q9H2vWrJnMGjTR0dFy1/n0nI9jvHjxIlJTU9G8eXPpsfLly2PHjh0K4wWA69evIy4uTumYGyIiEg+TF1KZlNQ3uPr3SURERGD37t0K6+jo6GDdunV48eKFyuLIzs7GokWL5Ab55icpKQnr1q2DoaH8thFERCQuJi+kMl4DAnEu7gYGDRqENm3aKK3XokULlcbRsGFDuXViPsfd3V1F0RAR0X/F5IVUJnrrKsCSM3WIiKhwccAuERERqRUmL0RERKRWmLwQERGRWmHyQkRERGqFyQsRERGpFSYvREREpFaYvJQgEokEO3fuLLbXU/V1Cyo8PBxGRkbS91OnTpXbQLKoiHlvIqLihuu8/H+119Yu0vtd9blapPdThaSkJBgbGwP4sDy/jY0LLh3cCOdaDoV23eJk9OjRGDp0qMrvI5FIsGPHDnTu3LnI701EpA6YvNBXq1Chglpd97/S09ODnp6e0uNZWVnQ1NQU5d5ERCUJHxupgZUrV8LS0hK5ubky5V5eXhgwYID0/a5du+Di4gJtbW3Y2toiKCgI2dnZSq979epVtGrVCjo6OihXrhwGDhwoswEiAKxZswY1a9aElpYWLCwsMGTIEOmxjx/v2NjYAADqevSGxMoFLboF4MSZCyhTpgySk5NlrjlixAg0bdpUaVwfX/fevXuQSCTYvn07WrZsCV1dXTg5OeH06dNKz4+OjoampiZiYmKkZXPmzIG5uTmePn2q9Lzw8HBUrlwZurq66NKlC16+fClz/NNHN76+vujcuTNmzpwJS0tLODh86HF6+PAhevToASMjI5iYmMDLy0tu48g1a9bA6zsv1LWqixY1W2DmuJkAAGtrawBAly5dIJFIpO8/vXdubi6mTZuGihUrQktLC87OzoiMjJQe/5p2IyJSF0xe1ED37t3x8uVLHDt2TFr26tUrREZGwtvbGwAQExODfv36Yfjw4bhx4wZWrFiB8PBwzJw5U+E13759Cw8PDxgbG+P8+fPYsmULjhw5IpOcLFu2DIMHD8bAgQNx9epV7N69G1WrVlV4vXPnzgEAjmxahqRLh7B91Vw0a1wPtra2WL9+vbTe+/fvsWHDBpmk60v88ssvGD16NOLi4mBvb4/evXsrTcxatGiBESNGoG/fvkhJScGlS5cwadIkrF69GuXLl1d4ztmzZ+Hn54chQ4YgLi4OLVu2xIwZMz4bV1RUFBISEnD48GHs3bsX79+/h4eHB/T19RETE4PY2Fjo6emhbdu2yMrKAvBvu3br2w07TuzAoj8WobJNZQDA+fPnAQBhYWFISkqSvv/UggULEBISgrlz5+LKlSvw8PBAp06dcPv27a9uNyIidcHHRmrA2NgY7dq1Q0REBFq3bg0A2Lp1K0xNTdGyZUsAQFBQEMaPHw8fHx8AgK2tLaZPn46xY8diypQpcteMiIhARkYG1q1bh7JlywIAFi9eDE9PT8yePRvly5fHjBkzMGrUKAwfPlx6XoMGDRTGaGZmBgAoZ2yECuam0nI/Pz+EhYVhzJgxAIA9e/YgIyMDPXr0KFAbjB49Gh06dJB+1po1ayIxMRHVq1dXWH/GjBk4fPgwBg4ciGvXrsHHxwedOnVSev0FCxagbdu2GDt2LADA3t4ep06dkunNUKRs2bJYvXq19HHRH3/8gdzcXKxevRoSiQTAh0TEyMgI0dHR+P7776Xt2vvH3tLr1K77YcxVXjsaGRnl+/hs7ty5GDduHHr16gUAmD17No4dO4bQ0FAsWbLkq9uNiEgdsOdFTXh7e2Pbtm3IzMwEAGzYsAG9evWChsaHv8LLly9j2rRp0rERenp6CAgIQFJSEtLT0+WuFx8fDycnJ2niAgBubm7Izc1FQkICnj17hidPnkiTpa/l6+uLxMREnDlzBsCHRzM9evSQue+XqFOnjvTPFhYWAIBnz54pra+pqYkNGzZg27ZtyMjIwPz58/O9fnx8PBo1aiRT5urq+tm4ateuLTPO5fLly0hMTIS+vr7078HExAQZGRm4c+dOobRramoqnjx5Ajc3N5lyNzc3xMfHy5QVtN2IiNSBypOXJUuWwNraGtra2mjUqJH08YIyoaGhcHBwgI6ODipVqoSRI0ciIyND1WEWe56enhAEAfv27cPDhw8RExMjfWQEAGlpaQgKCkJcXJz0dfXqVdy+fRva2toFvp+Ojk6hxG1ubg5PT0+EhYXh6dOnOHDgQIEfGQFAmTJlpH/O69H4dAzQp06dOgXgwyO2V69eFfieX+LTJCwtLQ316tWT+XuIi4vDrVu30KdPn0Jr1y/1Ne1GRFTcqTR52bx5MwIDAzFlyhRcvHgRTk5O8PDwUPo/v4iICIwfPx5TpkxBfHw8fv/9d2zevBk///yzKsNUC9ra2ujatSs2bNiAjRs3wsHBAS4uLtLjLi4uSEhIQNWqVeVeeb0zH3N0dMTly5fx9u1baVlsbCw0NDTg4OAAfX19WFtbIyoq6oviy+t9yMnNkTvm7++PzZs3Y+XKlbCzs5PrMVCFO3fuYOTIkVi1ahUaNWoEHx+ffL+0HR0dcfbsWZmyvN6ignBxccHt27dhbm4u9/dgaGj4Re1apkwZ5OTIt2MeAwMDWFpaIjY2VqY8NjYWNWrUKHDMRETqRqXJy7x58xAQEID+/fujRo0aWL58OXR1dbFmzRqF9U+dOgU3Nzf06dMH1tbW+P7779G7d+/P9taUFN7e3ti3bx/WrFkj0+sCAJMnT8a6desQFBSE69evIz4+Hps2bcLEiROVXktbWxs+Pj64du0ajh07hqFDh6Jv377SQa1Tp05FSEgIFi5ciNu3b+PixYtYtGiRwuuZm5tDR1sbkcdO4enzl0hJfSM95uHhAQMDA8yYMQP9+/cvpNZQLicnB//73//g4eGB/v37IywsDFeuXEFISIjSc4YNG4bIyEjMnTsXt2/fxuLFiz873kURb29vmJqawsvLCzExMbh79y6io6MxbNgwPHr0CMC/7frHyj9w/8593Lh8AxtWbZBeIy+5SU5Oxj///KPwPmPGjMHs2bOxefNmJCQkYPz48YiLi5MZn0RE9K1SWfKSlZWFCxcuwN3d/d+baWjA3d1d6XTNJk2a4MKFC9Jk5e+//8b+/fvRvn17pffJzMxEamqqzOtb1apVK5iYmCAhIQF9+vSROebh4YG9e/fi0KFDaNCgARo3boz58+ejSpUqCq+lq6uLgwcP4tWrV2jQoAG6deuG1q1bY/HixdI6Pj4+CA0NxdKlS1GzZk107NhRbjZLntKlS2Ph9DFY8cd2WLp4wGtAoPSYhoYGfH19kZOTg379+hVCS+Rv5syZuH//PlasWAHgw1iPlStXYuLEibh8+bLCcxo3boxVq1ZhwYIFcHJywqFDh5QmfvnR1dXFiRMnULlyZXTt2hWOjo7w8/NDRkYGDAwMAPzbrpvDNsOrqRcGew/G/b/vS68REhKCw4cPo1KlSqhbt67C+wwbNgyBgYEYNWoUateujcjISOzevRvVqlUrcMxEROpGIgiCoIoLP3nyBFZWVjh16pTMwMexY8fi+PHjcl30eRYuXIjRo0dDEARkZ2dj0KBBWLZsmdL7TJ06FUFBQXLlKSkp0i+LPBkZGbh79y5sbGy+aBzIlUev5crqVDT67Hkl1pNL8mWWH758/fz88Pz5c+zevbuIgyq+rr+4LldW07SmCJF8UNDfj6IWX91RrszxZryCmgQASwYdlSsbvLyVCJGoh5CeHeXKetqMkyur+KvyNaq+RV/aLsB/b5vU1FQYGhoq/P7+VLGabRQdHY1Zs2Zh6dKluHjxIrZv3459+/Zh+vTpSs+ZMGECUlJSpK+HDx8WYcT0OSkpKTh58iQiIiK4vD0RERUKla3zYmpqilKlSsmtaPr06VOl61dMmjQJffv2hb+/P4AP01Dfvn2LgQMH4pdfflE48FRLSwtaWlqF/wGoUHh5eeHcuXMYNGgQ2rRpI3Y4RET0DVBZz4umpibq1asnM6siNzcXUVFRStfPSE9Pl0tQSpUqBQBQ0dMtUrHo6Gikp6d/dp0VIiKiL6XSFXYDAwPh4+OD+vXro2HDhggNDcXbt2+lM0769esHKysrBAcHA/iwlsm8efNQt25dNGrUCImJiZg0aRI8PT2lSQwRERGVbCpNXnr27Innz59j8uTJSE5Olm4elzcV98GDBzI9LRMnToREIsHEiRPx+PFjmJmZwdPTU+n+PERERFTyqHxvoyFDhshs9vex6Oho2WBKl8aUKVMU7sVDREREBBSz2UZEREREn8PkhYiIiNQKkxciIiJSK0xeShCJRIKdO3cW2+up+roFFR4eDiMjI+n7qVOnwtnZWZRYxLw3EVFxo/IBu+pC0dLjZRTVK6T7fQvLmiclJcHY2BgAcO/ePdjYuODSwY1wruVQaNctTkaPHl0kqwRLJBLs2LEDnTt3LvJ7ExGpAyYv9NWUrZRcXK/7X+np6UFPT0/p8aysLGhqaopybyKikoSPjdTAypUrYWlpidzcXJlyLy8vDBgwQPp+165dcHFxgba2NmxtbREUFITs7Gyl17169SpatWoFHR0dlCtXDgMHDkRaWppMnTVr1qBmzZrQ0tKChYWFzLT3jx/v2NjYAADqevSGxMoFLboF4MSZCyhTpgySk5NlrjlixAg0bap8A6+Pr3vv3j1IJBJs374dLVu2hK6uLpycnJTuTA4AAwYMQMeOspuJvX//Hubm5vj999+VnhceHo7KlStDV1cXXbp0wcuXL2WOf/roxtfXF507d8bMmTNhaWkJB4cPPU4PHz5Ejx49YGRkBBMTE3h5eeHevXsy11qzZg28vvNCXau6aFGzBWaO+7CWkbW1NQCgS5cukEgk0vef3js3NxfTpk1DxYoVoaWlJV1DKc/XtBsRkbpg8qIGunfvjpcvX+LYsWPSslevXiEyMhLe3t4AgJiYGPTr1w/Dhw/HjRs3sGLFCoSHhytd4O/t27fw8PCAsbExzp8/jy1btuDIkSMyycmyZcswePBgDBw4EFevXsXu3btRtWpVhdc7d+4cAODIpmVIunQI21fNRbPG9WBra4v169dL671//x4bNmyQSbq+xC+//ILRo0cjLi4O9vb26N27t9LEzN/fH5GRkUhKSpKW7d27F+np6ejZs6fCc86ePQs/Pz8MGTIEcXFxaNmyJWbMmPHZuKKiopCQkIDDhw9j7969eP/+PTw8PKCvr4+YmBjExsZCT08Pbdu2RVZWFoB/27Vb327YcWIHFv2xCJVtKgMAzp8/DwAICwtDUlKS9P2nFixYgJCQEMydOxdXrlyBh4cHOnXqhNu3b391uxERqQsmL2rA2NgY7dq1Q0REhLRs69atMDU1RcuWLQEAQUFBGD9+PHx8fGBra4s2bdpg+vTpWLFihcJrRkREICMjA+vWrUOtWrXQqlUrLF68GOvXr5dupjljxgyMGjUKw4cPh729PRo0aIARI0YovJ6ZmRkAoJyxESqYm8LE2BAA4Ofnh7CwMGm9PXv2ICMjAz169ChQG4wePRodOnSAvb09goKCcP/+fSQmJiqs26RJEzg4OMgkTWFhYejevbvSRy8LFixA27ZtMXbsWNjb22PYsGHw8PD4bFxly5bF6tWrUbNmTdSsWRObN29Gbm4uVq9ejdq1a8PR0RFhYWF48OCBdFHGvHbt+2NfWNtZo3bd2ug7qC+Af9vRyMgIFSpUkL7/1Ny5czFu3Dj06tULDg4OmD17NpydnREaGvrV7UZEpC6YvKgJb29vbNu2DZmZmQCADRs2oFevXtLtFS5fvoxp06ZJx0bo6ekhICAASUlJSE9Pl7tefHw8nJycULZsWWmZm5sbcnNzkZCQgGfPnuHJkydo3br1f4rb19cXiYmJOHPmDIAPj2Z69Oghc98vUadOHemfLSwsAADPnj1TWt/f31+aND19+hQHDhzIt7cnPj4ejRo1kilTtoHox2rXri0zzuXy5ctITEyEvr6+9O/BxMQEGRkZuHPnTqG0a2pqKp48eQI3NzeZcjc3N8THyw4EL2i7ERGpAw7YVROenp4QBAH79u1DgwYNEBMTI7NTc1paGoKCgtC1a1e5c7W1tQt8Px0dnf8Ubx5zc3N4enoiLCwMNjY2OHDggNy2EF+iTJl/535JJBIAkBsD9LF+/fph/PjxOH36NE6dOgUbG5t8x9l8rU+TsLS0NNSrVw8bNmyQq2tmZia3a7qqFbTdiIjUAZMXNaGtrY2uXbtiw4YNSExMhIODA1xcXKTHXVxckJCQoHRMyqccHR0RHh6Ot2/fSr+AY2NjoaGhAQcHB+jr68Pa2hpRUVHSR1P5yet9yMnNkTvm7++P3r17o2LFirCzs5PrMVCFcuXKoXPnzggLC8Pp06elO5kr4+joiLNnz8qU5fUWFYSLiws2b94Mc3NzGBgYKKyT1669a/dWeLxMmTLIyZFvxzwGBgawtLREbGwsmjdvLi2PjY1Fw4YNCxwzEZG64WMjNeLt7Y19+/ZhzZo10oG6eSZPnox169YhKCgI169fR3x8PDZt2oSJEycqvZa2tjZ8fHxw7do1HDt2DEOHDkXfvn2lu35PnToVISEhWLhwIW7fvo2LFy9i0aJFCq9nbm4OHW1tRB47hafPXyIl9Y30mIeHBwwMDDBjxozPJhGFyd/fH2vXrkV8fDx8fHzyrTts2DBERkZi7ty5uH37NhYvXiwze+dLeXt7w9TUFF5eXoiJicHdu3cRHR2NYcOG4dGjRwD+bdc/Vv6B+3fu48blG9iw6t+emrzkJjk5Gf/884/C+4wZMwazZ8/G5s2bkZCQgPHjxyMuLg7Dhw8vcMxEROqGyYsaadWqFUxMTJCQkIA+ffrIHPPw8MDevXtx6NAhNGjQAI0bN8b8+fNRpUoVhdfS1dXFwYMH8erVKzRo0ADdunVD69atsXjxYmkdHx8fhIaGYunSpahZsyY6duwoN5slT+nSpbFw+his+GM7LF084DUgUHpMQ0MDvr6+yMnJQb9+/QqhJb6Mu7s7LCws4OHhAUtLy3zrNm7cGKtWrcKCBQvg5OSEQ4cOKU388qOrq4sTJ06gcuXK6Nq1KxwdHeHn54eMjAxpT0xeu24O2wyvpl4Y7D0Y9/++L71GSEgIDh8+jEqVKqFu3boK7zNs2DAEBgZi1KhRqF27NiIjI7F7925Uq1atwDETEakbiSAIgthBFKbU1FQYGhoiJSVFrts+IyMDd+/ehY2NzReNA7ny6LVcWZ2KRoUU6TfoySX5MssPX75+fn54/vw5du/eXWThpKWlwcrKCmFhYQrHAont+ovrcmU1TWuKEMkHBf39KGqKVsH+FlaqVpUlg47KlQ1e3kqESNRDSM+OcmU9bcbJlVX8tfDHzhVnX9ouwH9vm/y+vz/FMS+kUikpKbh69SoiIiKKLHHJzc3FixcvEBISAiMjI3Tq1KlI7ktEREWDyQuplJeXF86dO4dBgwahTZs2RXLPBw8ewMbGBhUrVkR4eDhKl+aPORHRt4T/qpNKfc206P/K2toa39jTUCIi+ggH7BIREZFaYfJCREREaoXJCxEREakVJi9ERESkVpi8EBERkVph8kJERERqhclLCSKRSLBz585iez1VX7cgoqOjIZFI8Pr1awBAeHg4jIyMRIlFzHsTERVHXOfl/1O0lLYiMYV0v29hme6kpCQYGxsDAO7duwcbGxdcOrgRzrUcCu26xUXPnj3Rvn17ld/H2toaI0aMwIgRI4r83kRE6oLJC321ChUqqNV1/wsdHR3o6OgoPZ6VlQVNTU1R7k1EVNLwsZEaWLlyJSwtLZGbmytT7uXlhQEDBkjf79q1Cy4uLtDW1oatrS2CgoKQnZ2t9LpXr15Fq1atoKOjg3LlymHgwIFIS0uTqbNmzRrUrFkTWlpasLCwwJAhQ6THPn68Y2NjAwCo69EbEisXtOgWgBNnLqBMmTJITk6WueaIESPQtKnyDbw+vu69e/cgkUiwfft2tGzZErq6unBycsLp06eVnh8eHg6JRCL3mjp1qtJz9u/fD3t7e+jo6KBly5a4d++e3DU/fnQzdepUODs7Y/Xq1TIbGb5+/Rr+/v4wMzODgYEBWrVqhcuXL8tca8+ePWjQoAFcKrrgO4fvMMxnGADA18sX9+/fx8iRI6UxK7o3ACxbtgx2dnbQ1NSEg4MD1q9fL9eGq1evRpcuXaCrq4tq1aoV6aaYRESqxORFDXTv3h0vX77EsWPHpGWvXr1CZGQkvL29AQAxMTHo168fhg8fjhs3bmDFihUIDw/HzJkzFV7z7du38PDwgLGxMc6fP48tW7bgyJEjMsnJsmXLMHjwYAwcOBBXr17F7t27UbVqVYXXO3fuHADgyKZlSLp0CNtXzUWzxvVga2sr88X6/v17bNiwQSbp+hK//PILRo8ejbi4ONjb26N3795KE7OePXsiKSlJ+tq4cSNKly4NNzc3hfUfPnyIrl27wtPTE3FxcfD398f48eM/G1NiYiK2bduG7du3Iy4uDsCHv6tnz57hwIEDuHDhAlxcXNC6dWu8evUKALBv3z506dIF7du3x5ajW7B622rUrlsbALAgfAEqVqyIadOmSWNXZMeOHRg+fDhGjRqFa9eu4ccff0T//v1lfj4AICgoCD169MCVK1fQvn17eHt7S+MgIlJnTF7UgLGxMdq1a4eIiAhp2datW2FqaoqWLVsC+PBFNX78ePj4+MDW1hZt2rTB9OnTsWLFCoXXjIiIQEZGBtatW4datWqhVatWWLx4MdavX4+nT58CAGbMmIFRo0Zh+PDhsLe3R4MGDWTGYnzMzMwMAFDO2AgVzE1hYmwIAPDz80NYWJi03p49e5CRkYEePXoUqA1Gjx6NDh06wN7eHkFBQbh//z4SExMV1tXR0UGFChVQoUIFvH37FoMHD8asWbOUbgyZ14sREhICBwcHeHt7w9fX97MxZWVlYd26dahbty7q1KmDkydP4ty5c9iyZQvq16+PatWqYe7cuTAyMsLWrVsBADNnzkSvXr0QFBQEO3s7VK9VHQEjAgAAhsaGKFWqFPT19aXxKzJ37lz4+vrip59+gr29PQIDA9G1a1fMnTtXpp6vry969+6NqlWrYtasWUhLS5MmmURE6ozJi5rw9vbGtm3bkJmZCQDYsGEDevXqBQ2ND3+Fly9fxrRp06Cnpyd9BQQEICkpCenp6XLXi4+Ph5OTE8qWLSstc3NzQ25uLhISEvDs2TM8efIErVu3/k9x+/r6IjExEWfOnAHw4RFIjx49ZO77JerUqSP9s4WFBQDg2bNn+Z6TkpKCjh07okOHDhgzZozSevHx8WjUqJFMmaur62djqlKlijRpAz78HaSlpaFcuXIyfw93797FnTt3AABxcXH/uU3j4+PlepHc3NwQHx8vU/Zxm5UtWxYGBgafbTMiInXAAbtqwtPTE4IgYN++fWjQoAFiYmIwf/586fG0tDQEBQWha9eucufmjccoiMIaIGpubg5PT0+EhYXBxsYGBw4c+KqdpsuUKSP9c95YkE/HAH0sJycHPXv2hIGBAVauXFng+32JTxOwtLQ0WFhYKPx8eWNWinLg7cdtBnxot/zajIhIXTB5URPa2tro2rUrNmzYgMTERDg4OMDFxUV63MXFBQkJCUrHpHzK0dER4eHhePv2rfRLODY2FhoaGnBwcIC+vj6sra0RFRUlfTSVn7yZNjm5OXLH/P390bt3b1SsWBF2dnZKx54UppEjR+Lq1av466+/Ppu8OTo6yg1mzespKggXFxckJyejdOnSsLa2VlinTp06iIqKQv/+/RUe19TURE6OfBt+Gm9sbCx8fHykZbGxsahRo0aBYyYiUkdMXtSIt7c3OnbsiOvXr+N///ufzLHJkyejY8eOqFy5Mrp16wYNDQ1cvnwZ165dw4wZMxRea8qUKfDx8cHUqVPx/PlzDB06FH379kX58uUBfJhRM2jQIJibm6Ndu3Z48+YNYmNjMXToULnrmZubQ0dbG5HHTqGiRXloa2nC0EAfAODh4QEDAwPMmDED06ZNU0HLyAoLC8PSpUuxY8cOSCQS6WynvMc4nxo0aBBCQkIwZswY+Pv748KFCwgPDy/wfd3d3eHq6orOnTtjzpw5sLe3x5MnT6SDdOvXr48pU6agdevWsLOzQz2PesjJzkHMkRj4DfMD8GGdlxMnTqBXr17Q0tKCqamp3H3GjBmDHj16oG7dunB3d8eePXuwfft2HDlypMAxExGpI455USOtWrWCiYkJEhIS0KdPH5ljHh4e2Lt3Lw4dOoQGDRqgcePGmD9/PqpUqaLwWrq6ujh48CBevXqFBg0aoFu3bmjdujUWL14srePj44PQ0FAsXboUNWvWRMeOHXH79m2F1ytdujQWTh+DFX9sh6WLB7wGBEqPaWhowNfXFzk5OejXr18htET+jh8/jpycHHTq1AkWFhbS16cDWvNUrlwZ27Ztw86dO+Hk5ITly5dj1qxZBb6vRCLB/v370axZM/Tv3x/29vbo1asX7t+/L00IW7RogS1btmD37t3o1rIb/Lr64erFq9JrTJs2Dffu3YOdnZ3MeJqPde7cGQsWLMDcuXNRs2ZNrFixAmFhYWjRokWBYyYiUkcSQRAEsYMoTKmpqTA0NERKSgoMDAxkjmVkZODu3bsy63Lk58qj13JldSoaFVKk36Anl+TLLOsC+DDr6Pnz51xr5CPXX1yXK6tpWlOESD4o6O9HUYuv7ihX5ngzXkFNAhSvGv4trOytKiE9O8qV9bQZJ1dW8Vfla1R9i760XYD/3jb5fX9/io+NSKVSUlJw9epVREREMHEhIqJCweSFVMrLywvnzp3DoEGDlK6zQkREVBAqH/OyZMkSWFtbQ1tbG40aNfrsIlmvX7/G4MGDYWFhAS0tLdjb22P//v2qDpNUJDo6Gunp6TLTuomIiP4Llfa8bN68GYGBgVi+fDkaNWqE0NBQeHh4ICEhAebm5nL1s7Ky0KZNG5ibm2Pr1q2wsrLC/fv35fZ1ISIiopJLpcnLvHnzEBAQIF3TYvny5di3bx/WrFmjcO+YNWvW4NWrVzh16pR0gS1l62UQERFRyaSyx0ZZWVm4cOEC3N3d/72Zhgbc3d2V7gi8e/duuLq6YvDgwShfvjxq1aqFWbNmfXbRLiIiIio5VNbz8uLFC+Tk5EjXt8hTvnx53Lx5U+E5f//9N44ePQpvb2/s378fiYmJ+Omnn/D+/XtMmTJF4TmZmZnS/X6AD1OtiIiI6NtVrBapy83Nhbm5OVauXIl69eqhZ8+e+OWXX7B8+XKl5wQHB8PQ0FD6qlSpUhFGTEREREVNZcmLqakpSpUqhadPn8qUP336FBUqVFB4joWFBezt7VGqVClpmaOjI5KTk5GVlaXwnAkTJiAlJUX6evjwYeF9CCIiIip2VJa8aGpqol69eoiKipKW5ebmIioqCq6urgrPcXNzQ2JioszOt7du3YKFhYV0479PaWlpwcDAQOZF+QsPD5eZwTV16lQ4OzuLFo9EIsHOnTtFuz8REakXlc42CgwMhI+PD+rXr4+GDRsiNDQUb9++lc4+6tevH6ysrBAcHAwA+L//+z8sXrwYw4cPx9ChQ3H79m3MmjULw4YNU2WYABQvgazI4UK636jNewvpSv/d6NGjFW62mB+JRIIdO3agc+fOqgmKiIhICZUmLz179sTz588xefJkJCcnw9nZGZGRkdJBvA8ePICGxr+dP5UqVcLBgwcxcuRI1KlTB1ZWVhg+fDjGjVO8j0JJlpWVpbQ3qqCU7bZc0r1//146ZZ+IiIoPlQ/YHTJkCO7fv4/MzEycPXsWjRo1kh6Ljo5GeHi4TH1XV1ecOXMGGRkZuHPnDn7++WeZMTAlVYsWLTBkyBCMGDECpqam8PDwAPBhLZ3atWujbNmyqFSpEn766SekpaXJnBseHo7KlStDV1cXXbp0wcuXL2WOf/rY6Pz582jTpg1MTU1haGiI5s2b4+LFi9LjeWvvdOnSBRKJRGYtnl0Ho+Hi0Qfato1h6+qJoKAgZGdnS4/fvn0bzZo1g7a2NmrUqIHDhz/fl5Wbm4vg4GDY2NhAR0cHTk5O2Lp1q/R4dHQ0JBIJoqKiUL9+fejq6qJJkyZISEiQuc6uXbvg4uICbW1t2NraysUmkUiwbNkydOrUCWXLlsXMmTMBADNmzIC5uTn09fXh7++P8ePHS9vrxIkTKFOmDJKTk2XuNWLECDRtWrI2cCMiKirFarYR5W/t2rXQ1NREbGysdAaWhoYGFi5ciOvXr2Pt2rU4evQoxo4dKz3n7Nmz8PPzw5AhQxAXF4eWLVtixowZ+d7nzZs38PHxwcmTJ3HmzBlUq1YN7du3x5s3bwB8SG4AICwsDElJSdL3MWcvot/wyRju1xs3jm3Fitm/IDw8XJoE5ObmomvXrtDU1MTZs2exfPnyL+pVCw4Oxrp167B8+XJcv34dI0eOxP/+9z8cP35cpt4vv/yCkJAQ/PXXXyhdujQGDBggPRYTE4N+/fph+PDhuHHjBlasWCETW56pU6eiS5cuuHr1KgYMGIANGzZg5syZmD17Ni5cuIDKlStj2bJl0vrNmjWDra0t1q9fLy17//49NmzYIHN/IiIqPNyYUY1Uq1YNc+bMkSkbMWKE9M/W1taYMWMGBg0ahKVLlwIAFixYgLZt20oTGnt7e5w6dQqRkZFK79OqVSuZ9ytXroSRkRGOHz+Ojh07wszMDABgZGQkM3MsaN5KjB/sC58engAA2yoVMX36dIwdOxZTpkzBkSNHcPPmTRw8eBCWlpYAgFmzZqFdu3ZKY8nMzMSsWbNw5MgR6UBvW1tbnDx5EitWrEDz5s2ldWfOnCl9P378eHTo0AEZGRnQ1tZGUFAQxo8fDx8fH+k1Po4tT58+faRjsgBg0aJF8PPzk5ZNnjwZhw4dkund8vPzQ1hYGMaMGQMA2LNnDzIyMtCjRw+ln4uIiL4ee17USL169eTKjhw5gtatW8PKygr6+vro27cvXr58ifT0dABAfHy8zKM6AEpne+V5+vQpAgICUK1aNRgaGsLAwABpaWl48OBBvuddvnEL00JXQa+am/QVEBCApKQkpKenIz4+HpUqVZImLl8SS2JiItLT09GmTRvp2Bw9PT2sW7cOd+7ckalbp04d6Z8tLCwAAM+ePfsQ2+XLmDZtmsw1Po4tT/369WWumZCQgIYNG8qUffre19cXiYmJOHPmDIAPj+l69OiBsmXL5vvZiIjo67DnRY18+mV47949dOzYEf/3f/+HmTNnwsTEBCdPnoSfnx+ysrKgq6v7Vffx8fHBy5cvsWDBAlSpUgVaWlpwdXVVutZOnrT0dwga9SO6tvuo56Z8TQCAtrb2V8WS18Oxb98+WFlZyRzT0tKSef/x4FqJRAIA0mn3aWlpCAoKQteuXeXu8XFsX5NwmJubw9PTE2FhYbCxscGBAwcQHR1d4OsQEdGXYfKixi5cuIDc3FyEhIRIZ239+eefMnUcHR1x9uxZmbK8HgJlYmNjsXTpUrRv3x4A8PDhQ7x48UKmTpkyZeT2nHKpVR0Jd+6jqk3lfwstq8rE8vDhQyQlJUl7Rj4XS40aNaClpYUHDx7IPCIqKBcXFyQkJKBq1aqfr/wRBwcHnD9/Hv369ZOW5Y3x+Zi/vz969+6NihUrws7ODm5ubl8dKxER5Y/JixqrWrUq3r9/j0WLFsHT01NmIG+eYcOGwc3NDXPnzoWXlxcOHjyY73gX4MPYmvXr16N+/fpITU3FmDFjoKOjI1PH2toaUVFRcHNzg5aWFoyNjTF5ZAA6+oxAZasK6NbBHRoaElw+kYBr165hxowZcHd3h729PXx8fPDbb78hNTUVv/zyS76x6OvrY/To0Rg5ciRyc3Px3XffISUlBbGxsTAwMJCOYfmcyZMno2PHjqhcuTK6desGDQ0NXL58WRqbMkOHDkVAQADq16+PJk2aYPPmzbhy5QpsbW1l6nl4eMDAwAAzZszAtGnTvigmIiL6OhzzosacnJwwb948zJ49G7Vq1cKGDRukC/7lady4MVatWoUFCxbAyckJhw4dwsSJE/O97u+//45//vkHLi4u6Nu3L4YNGwZzc3OZOiEhITh8+DAqVaqEunXrAgA8WjTB3rWhOHT8DBq074vGnr6YP38+qlSpAuDDzKgdO3bg3bt3aNiwIfz9/eVm+ygyffp0TJo0CcHBwXB0dETbtm2xb98+2NjYfHFbeXh4YO/evTh06BAaNGiAxo0by8SmjLe3NyZMmIDRo0fDxcUFd+/eha+vr9xjMA0NDfj6+iInJ0eml4aIiAqfRBAEQewgClNqaioMDQ2RkpIit1VARkYG7t69Cxsbmy8ag3Hl0Wu5sjoVjQop0m/Qk0vyZZZ1iz4OFWvTpg0qVKggMz0a+DDr6Pnz59i9e/cXXef6i+tyZTVNaxZKjF+joL8fRS2+uqNcmePNeBEiUQ9LBh2VKxu8vJWCmgQoXmW9p438Ug4Vfy1Z6zd9absA/71t8vv+/hQfGxHlIz09HcuXL4eHhwdKlSqFjRs34siRIzKL66WkpODq1auIiIj44sSFiIi+HpMXonxIJBLs378fM2fOREZGBhwcHLBt2za4u7tL63h5eeHcuXMYNGgQ2rRpI2K0REQlA5MXonzo6OjgyJEj+dbhtGgioqLFAbtERESkVpi8EBERkVph8kJERERqhckLERERqRUmL0RERKRWmLyQQr6+vujcubPS4+Hh4TAyMiqyeIiIiPIweVETLVq0wIgRI4rsvM/p2bMnbt26VejXVQVra2uEhoaKHQYRERUSrvPy/z0aHyNXZqKoXiHdT92XmNbR0ZHbrJEKThAE5OTkoHRp/ioSEX0p9ryoAV9fXxw/fhwLFiyARCKBRCLBvXv3AADHjx9Hw4YNoaWlBQsLC4wfPx7Z2dn5npeTkwM/Pz/Y2NhAR0cHDg4OWLBgQYFi+vSx0dSpU+HcphfWbNqJyg3aQ6+aG36aEIycnBzMmTMHFSpUgLm5udxGjBKJBMuWLUO7du2go6MDW1tbbN26VabOuHHjYG9vD11dXdja2mLSpEl4//69TJ09e/agQYMG0NbWhqmpKbp06QLgQ8/T/fv3MXLkSGkbKPP69Wv4+/vDzMwMBgYGaNWqFS5fviz7GZ2dsX79elhbW8PQ0BC9evXCmzdvpHVyc3MRHBwsbVsnJyeZzxMdHQ2JRIIDBw6gR+seqGtVFxfPXsTbtLcYN2gcypYtCwsLC8yfP1+m12zatGmoVauWXMzOzs6YNGmS0s9ERPQtYvKiBhYsWABXV1cEBAQgKSkJSUlJqFSpEh4/foz27dujQYMGuHz5MpYtW4bff/8dM2bMyPe83NxcVKxYEVu2bMGNGzcwefJk/Pzzz/jzzz//U5x37j/CgaOnELlhMTYumYXfN+1Ehw4d8OjRIxw/fhyzZ8/GxIkTcfbsWZnzJk2ahB9++AGXL1+Gt7c3evXqhfj4fzfc09fXR3h4OG7cuIEFCxZg1apVmD9/vvT4vn370KVLF7Rv3x6XLl1CVFQUGjZsCADYvn07KlasiGnTpknbQJnu3bvj2bNnOHDgAC5cuAAXFxe0bt0ar169+vcz3rmDnTt3Yu/evdi7dy+OHz+OX3/9VXo8ODgY69atw/Lly3H9+nWMHDkS//vf/3D8+HGZe40fPx4jJo3A7tjdcKjhgDmT5uDSuUvYvXs3Dh8+jJiYGFy8eFFaf8CAAYiPj8f58+elZZcuXcKVK1fQv3//L/0rIiL6JrCvWg0YGhpCU1MTurq6qFChgrR86dKlqFSpEhYvXgyJRILq1avjyZMnGDduHCZPnqz0vFKlSiEoKEj63sbGBqdPn8aff/6JHj16fHWcubm5WDNvCvT1yqKGvS1aNqmPhIQE7N+/HxoaGnBwcMDs2bNx7NgxNGrUSHpe9+7d4e/vDwCYPn06Dh8+jEWLFmHp0qUAgIkTJ0rrWltbY/To0di0aRPGjh0LAJg5cyZ69eol85mcnJwAACYmJihVqhT09fVl2uBTJ0+exLlz5/Ds2TNoaWkBAObOnYudO3di69atGDhwoPQzhoeHQ19fHwDQt29fREVFYebMmcjMzMSsWbNw5MgRuLq6AgBsbW1x8uRJrFixAs2bN5feb9q0aajqVhUA8DbtLXZt3oU5y+egdevWAICwsDBYWlpK61esWBEeHh4ICwtDgwYNpHWaN28OW1vbL/wbIiL6NjB5UWPx8fFwdXWVeRTi5uaGtLQ0PHr0CJUrV1Z67pIlS7BmzRo8ePAA7969Q1ZWFpydnf9TPNaVLKGvV1b6vrxpOZTSNYaGxr8dfOXLl8ezZ89kzsv7ov/4fVxcnPT95s2bsXDhQty5cwdpaWnIzs6W2S49Li4OAQEB/yn2y5cvIy0tDeXKlZMpf/fuHe7cufPvZ7S2liYuAGBhYSH9PImJiUhPT5fbnDErKwt169aVKatfvz5e4zUA4OG9h8h+n43aLrWlxw0NDeHg4CBzTkBAAAYMGIB58+ZBQ0MDERERMj1QREQlBZOXEmjTpk0YPXo0QkJC4OrqCn19ffz2229yj3MKqswng04lEgnKlCkjV5abm/vF1zx9+jS8vb0RFBQEDw8PGBoaYtOmTQgJCZHWKYyBw2lpabCwsFC4yeLHY3vy+zxpaWkAPjzGsrKykqmX15uTp2zZsnid/bpAMXp6ekJLSws7duyApqYm3r9/j27duhXoGkRE3wImL2pCU1MTOTk5MmWOjo7Ytm0bBEGQ9r7ExsZCX18fFStWVHpebGwsmjRpgp9++kla9nHvQlE7c+YM+vXrJ/M+r6fi1KlTqFKlCn755Rfp8fv378ucX6dOHURFRSkd+6GoDT7l4uKC5ORklC5dGtbW1l/1OWrUqAEtLS08ePBA5hHR51SyroTSZUrj2qVrcHd2BwCkpKTg1q1baNasmbRe6dKl4ePjg7CwMGhqaqJXr16c8UVEJRKTFzVhbW2Ns2fP4t69e9DT04OJiQl++uknhIaGYujQoRgyZAgSEhIwZcoUBAYGSh/VKDqvWrVqWLduHQ4ePAgbGxusX78e58+fh42NjSifbcuWLahfvz6+++47bNiwAefOncPvv/8OAKhWrRoePHiATZs2oUGDBti3bx927Nghc/6UKVPQunVr2NnZoVevXsjOzsb+/fsxbtw4AB/a4MSJE+jVqxe0tLRgamoqF4O7uztcXV3RuXNnzJkzB/b29njy5Il0MHD9+vU/+zn09fUxevRojBw5Erm5ufjuu++QkpKC2NhYGBgYwMfHR+F5ZfXKwqunF0KCQuBk7QRzc3NMmTIFGhoacrOj/P394ejoCOBDEkpEVBJxtpGaGD16NEqVKoUaNWrAzMwMDx48gJWVFfbv349z587ByckJgwYNgp+fn8wAV0Xn/fjjj+jatSt69uyJRo0a4eXLlzK9MEUtKCgImzZtQp06dbBu3Tps3LgRNWrUAAB06tQJI0eOxJAhQ+Ds7IxTp07JTQ1u0aIFtmzZgt27d8PZ2RmtWrXCuXPnpMenTZuGe/fuwc7ODmZmZgpjkEgk2L9/P5o1a4b+/fvD3t4evXr1wv3791G+fPkv/izTp0/HpEmTEBwcDEdHR7Rt2xb79u37bGI4dvpYONV3QseOHeHu7g43Nzc4OjpCW1tbpl61atXQpEkTVK9eXWbQMxFRSSIRBEEQO4jClJqaCkNDQ6SkpMgM6gSAjIwM3L17FzY2NnJfCopcefRarqxORaNCivQb9OSSfJllXfmyj0gkEuzYsSPfrQi+VddfXJcrq2laEwDw9u1bWFlZISQkBH5+ftLjgiCgWrVq+OmnnxAYGFio8RT096OoxVd3lCtzvBmvoCYBwJJBR+XKBi9vJUIk6iGkZ0e5sp424+TK1H2B0YL60nYB/nvb5Pf9/Sk+NiIqBuKvxONu4l1ot9ZGSkoKpk2bBgDw8vKS1nn+/Dk2bdqE5ORkru1CRCUakxeiYiJ8STiCAoOgqamJevXqISYmRmZ8jrm5OUxNTbFy5UoYGxuLGCkRkbiYvJCovrGnll/NsY4j/oz6U/rYSBG2FRHRBxywS0RERGqFyQsRERGplRKZvLD7nUgefy+ISF2UqOQlb2n39PR0kSMhKn7yfi8+3QKBiKi4KVEDdkuVKgUjIyPpRnq6urpyK5h+TMjOkivLyMhQWXxqL1vB/9zZXkrlvpff40mMny9BEJCeno5nz57ByMgIpUqVKvIYiIgKokQlLwBQoUIFAJDb2ViRZ/+8kyvTfMe9ZJR6/Vy+7O3doo9DTTxLk/8ZLP1avF9JIyMj6e8HEVFxVuKSF4lEAgsLC5ibm+P9+/f51vXfHi1XFjWqhWoC+xYs7i5fNuSvoo9DTQzfMVyubHeX3SJE8uFREXtciEhdFEnysmTJEvz2229ITk6Gk5MTFi1ahIYNG372vE2bNqF3797w8vLCzp07CzWmUqVKffYf68dv5HciLo7LphcbaQ/ly9heSiVlJcmV8eeLiOjzVD5gd/PmzQgMDMSUKVNw8eJFODk5wcPD47OPbe7du4fRo0ejadOStY8EERER5U/lycu8efMQEBCA/v37o0aNGli+fDl0dXWxZs0apefk5OTA29sbQUFBsLW1VXWIREREpEZUmrxkZWXhwoULcHd3//eGGhpwd3fH6dOnlZ43bdo0mJuby+ymS0RERASoeMzLixcvkJOTg/Lly8uUly9fHjdv3lR4zsmTJ/H7778jLi7ui+6RmZmJzMxM6fvU1NSvjpeIiIiKv2K1SN2bN2/Qt29frFq1SmY33fwEBwfD0NBQ+qpUqZKKoyQiIiIxqbTnxdTUFKVKlcLTp09lyp8+fapwPYk7d+7g3r178PT0lJbl5n5YyKt06dJISEiAnZ2dzDkTJkxAYGCg9H1qaioTGCIiom+YSpMXTU1N1KtXD1FRUejcuTOAD8lIVFQUhgwZIle/evXquHr1qkzZxIkT8ebNGyxYsEBhUqKlpQUtLS2VxE9ERETFj8rXeQkMDISPjw/q16+Phg0bIjQ0FG/fvkX//v0BAP369YOVlRWCg4Ohra2NWrVqyZxvZGQEAHLlREREVDKpPHnp2bMnnj9/jsmTJyM5ORnOzs6IjIyUDuJ98OABNDSK1dAbIiIiKsaKZIXdIUOGKHxMBADR0dH5nhseHl74AREREZHaYpcHERERqRUmL0RERKRWmLwQERGRWmHyQkRERGqFyQsRERGpFSYvREREpFaYvBAREZFaYfJCREREaoXJCxEREakVJi9ERESkVpi8EBERkVph8kJERERqhckLERERqRUmL0RERKRWmLwQERGRWmHyQkRERGqFyQsRERGpFSYvREREpFaYvBAREZFaYfJCREREaoXJCxEREakVJi9ERESkVpi8EBERkVph8kJERERqhckLERERqRUmL0RERKRWmLwQERGRWmHyQkRERGqFyQsRERGpFSYvREREpFaYvBAREZFaYfJCREREaoXJCxEREakVJi9ERESkVpi8EBERkVph8kJERERqhckLERERqRUmL0RERKRWmLwQERGRWimS5GXJkiWwtraGtrY2GjVqhHPnzimtu2rVKjRt2hTGxsYwNjaGu7t7vvWJiIioZFF58rJ582YEBgZiypQpuHjxIpycnODh4YFnz54prB8dHY3evXvj2LFjOH36NCpVqoTvv/8ejx8/VnWoREREpAZUnrzMmzcPAQEB6N+/P2rUqIHly5dDV1cXa9asUVh/w4YN+Omnn+Ds7Izq1atj9erVyM3NRVRUlKpDJSIiIjWg0uQlKysLFy5cgLu7+7831NCAu7s7Tp8+/UXXSE9Px/v372FiYqLweGZmJlJTU2VeRERE9O1SafLy4sUL5OTkoHz58jLl5cuXR3Jy8hddY9y4cbC0tJRJgD4WHBwMQ0ND6atSpUr/OW4iIiIqvor1bKNff/0VmzZtwo4dO6Ctra2wzoQJE5CSkiJ9PXz4sIijJCIioqJUWpUXNzU1RalSpfD06VOZ8qdPn6JChQr5njt37lz8+uuvOHLkCOrUqaO0npaWFrS0tAolXiIiIir+VNrzoqmpiXr16skMts0bfOvq6qr0vDlz5mD69OmIjIxE/fr1VRkiERERqRmV9rwAQGBgIHx8fFC/fn00bNgQoaGhePv2Lfr37w8A6NevH6ysrBAcHAwAmD17NiZPnoyIiAhYW1tLx8bo6elBT09P1eESERFRMafy5KVnz554/vw5Jk+ejOTkZDg7OyMyMlI6iPfBgwfQ0Pi3A2jZsmXIyspCt27dZK4zZcoUTJ06VdXhEhERUTGn8uQFAIYMGYIhQ4YoPBYdHS3z/t69e6oPiIiIiNRWsZ5tRERERPQpJi9ERESkVpi8EBERkVph8kJERERqhckLERERqRUmL0RERKRWmLwQERGRWmHyQkRERGqFyQsRERGpFSYvREREpFaYvBAREZFaYfJCREREaoXJCxEREamVItlVmkqu2mtry5Vd9bkqQiQim2ooX2ZTuejjICL6BrDnhYiIiNQKkxciIiJSK0xeiIiISK0weSEiIiK1wgG7RKS2lgw6Klc2eHkrESIRV3x1R/nCFkuKPhCiIsKeFyIiIlIr7Hkh+kY8Gh8jV1bx16YiREJExcm3uGQFkxciNRTSs6NcWU+bcSJEQlQ8fItf0KQcHxsRERGRWmHyQkRERGqFyQsRERGpFSYvREREpFY4YJeIqATjLDXKo2jdpOKKPS9ERESkVpi8EBERkVph8kJERERqhckLERERqRUmL0RERKRWmLwQERGRWmHyQkRERGqFyQsRERGpFSYvREREpFaYvBAREZFaYfJCREREaqVIkpclS5bA2toa2traaNSoEc6dO5dv/S1btqB69erQ1tZG7dq1sX///qIIk4iIiNSAyjdm3Lx5MwIDA7F8+XI0atQIoaGh8PDwQEJCAszNzeXqnzp1Cr1790ZwcDA6duyIiIgIdO7cGRcvXkStWrVUHW6hia/uKFfmeDNehEjUV0jPjnJlozbvFSESKizW4/fJld37tYMIkZBam2ooX2ZTuejjINGovOdl3rx5CAgIQP/+/VGjRg0sX74curq6WLNmjcL6CxYsQNu2bTFmzBg4Ojpi+vTpcHFxweLFi1UdKhEREakBlSYvWVlZuHDhAtzd3f+9oYYG3N3dcfr0aYXnnD59WqY+AHh4eCitT0RERCWLSh8bvXjxAjk5OShfvrxMefny5XHz5k2F5yQnJyusn5ycrLB+ZmYmMjMzpe9TU1P/Y9RERERUnKl8zIuqBQcHIygoSCXXVvgsXsGz1toKnrVeVTC+Zcmgo3JlGf/MkyvraTNOrqzir02VhSkKxWMXUuTKrio4V9F4oKMtlsiVKRrf8mh8jFzZt942isZKqevYn8L+nZJvLcVjpYr775TCnxntPvIVp8r/HAGKf0a+tG2K+89SUfxbAxT/dlDkS39urir4uVHUNoMVjsts9VWxqZpKHxuZmpqiVKlSePr0qUz506dPUaFCBYXnVKhQoUD1J0yYgJSUFOnr4cOHhRM8ERERFUsqTV40NTVRr149REVFSctyc3MRFRUFV1dXhee4urrK1AeAw4cPK62vpaUFAwMDmRcRERF9u1T+2CgwMBA+Pj6oX78+GjZsiNDQULx9+xb9+/cHAPTr1w9WVlYIDg4GAAwfPhzNmzdHSEgIOnTogE2bNuGvv/7CypUrVR0qEdE3TR0fjRS2wcuL52MQKhiVJy89e/bE8+fPMXnyZCQnJ8PZ2RmRkZHSQbkPHjyAhsa/HUBNmjRBREQEJk6ciJ9//hnVqlXDzp071WqNFyIiIlKdIhmwO2TIEAwZMkThsejoaLmy7t27o3v37iqO6ispGPikaKDYt44LiynHtiEiUi3ubURERERqRe2nSlPJUpymtxIRFTtKptN/a9jzQkRERGqFyQsRERGpFSYvREREpFaYvBAREZFaYfJCREREaoWzjYjom8dZakSyFG3mqU7Y80JERERqhT0vRPRN4f49lEfdexdIOfa8EBERkVph8kJERERqhckLERERqRWOeSEqRviM/oOrPiVxr3Yi+lLseSEiIiK1wuSFiIiI1AofG4lM0bTOR+NjRIiEiKj4ufdrB7FDoGKIyUsRGry8ldghFAuKxnUcHXRUhEioWJiaInYEolP4BT21yMMgUht8bERERERqhckLERERqRU+NiqGuIkcERF9TkkeD8SeFyIiIlIrTF6IiIhIrTB5ISIiIrXC5IWIiIjUCpMXIiIiUitMXoiIiEitMHkhIiIitcLkhYiIiNQKkxciIiJSK0xeiIiISK0weSEiIiK1wuSFiIiI1AqTFyIiIlIrTF6IiIhIrTB5ISIiIrXC5IWIiIjUCpMXIiIiUisqS15evXoFb29vGBgYwMjICH5+fkhLS8u3/tChQ+Hg4AAdHR1UrlwZw4YNQ0pKiqpCJCIiIjWksuTF29sb169fx+HDh7F3716cOHECAwcOVFr/yZMnePLkCebOnYtr164hPDwckZGR8PPzU1WIREREpIZKq+Ki8fHxiIyMxPnz51G/fn0AwKJFi9C+fXvMnTsXlpaWcufUqlUL27Ztk763s7PDzJkz8b///Q/Z2dkoXVoloRIREZGaUUnPy+nTp2FkZCRNXADA3d0dGhoaOHv27BdfJyUlBQYGBkxciIiISEolWUFycjLMzc1lb1S6NExMTJCcnPxF13jx4gWmT5+e76MmAMjMzERmZqb0fWpqasEDJiIiIrVRoJ6X8ePHQyKR5Pu6efPmfw4qNTUVHTp0QI0aNTB16tR86wYHB8PQ0FD6qlSp0n++PxERERVfBep5GTVqFHx9ffOtY2triwoVKuDZs2cy5dnZ2Xj16hUqVKiQ7/lv3rxB27Ztoa+vjx07dqBMmTL51p8wYQICAwOl71NTU5nAEBERfcMKlLyYmZnBzMzss/VcXV3x+vVrXLhwAfXq1QMAHD16FLm5uWjUqJHS81JTU+Hh4QEtLS3s3r0b2tran72XlpYWtLS0vvxDEBERkVpTyYBdR0dHtG3bFgEBATh37hxiY2MxZMgQ9OrVSzrT6PHjx6hevTrOnTsH4EPi8v333+Pt27f4/fffkZqaiuTkZCQnJyMnJ0cVYRIREZEaUtk0ng0bNmDIkCFo3bo1NDQ08MMPP2DhwoXS4+/fv0dCQgLS09MBABcvXpTORKpatarMte7evQtra2tVhUpERERqRGXJi4mJCSIiIpQet7a2hiAI0vctWrSQeU9ERESkCPc2IiIiIrXC5IWIiIjUCpMXIiIiUitMXoiIiEitMHkhIiIitcLkhYiIiNQKkxciIiJSK0xeiIiISK0weSEiIiK1wuSFiIiI1AqTFyIiIlIrTF6IiIhIrTB5ISIiIrXC5IWIiIjUCpMXIiIiUitMXoiIiEitMHkhIiIitcLkhYiIiNQKkxciIiJSK0xeiIiISK0weSEiIiK1wuSFiIiI1AqTFyIiIlIrTF6IiIhIrTB5ISIiIrXC5IWIiIjUCpMXIiIiUitMXoiIiEitMHkhIiIitcLkhYiIiNQKkxciIiJSK0xeiIiISK0weSEiIiK1wuSFiIiI1IpEEARB7CAKU2pqKgwNDZGSkgIDAwOxwyEiIqIvUJDvb/a8EBERkVph8kJERERqhckLERERqRUmL0RERKRWVJa8vHr1Ct7e3jAwMICRkRH8/PyQlpb2RecKgoB27dpBIpFg586dqgqRiIiI1JDKkhdvb29cv34dhw8fxt69e3HixAkMHDjwi84NDQ2FRCJRVWhERESkxkqr4qLx8fGIjIzE+fPnUb9+fQDAokWL0L59e8ydOxeWlpZKz42Li0NISAj++usvWFhYqCI8IiIiUmMq6Xk5ffo0jIyMpIkLALi7u0NDQwNnz55Vel56ejr69OmDJUuWoEKFCl90r8zMTKSmpsq8iIiI6NulkuQlOTkZ5ubmMmWlS5eGiYkJkpOTlZ43cuRINGnSBF5eXl98r+DgYBgaGkpflSpV+uq4iYiIqPgrUPIyfvx4SCSSfF83b978qkB2796No0ePIjQ0tEDnTZgwASkpKdLXw4cPv+r+REREpB4KNOZl1KhR8PX1zbeOra0tKlSogGfPnsmUZ2dn49WrV0ofBx09ehR37tyBkZGRTPkPP/yApk2bIjo6WuF5Wlpa0NLS+tKPQERERGquQMmLmZkZzMzMPlvP1dUVr1+/xoULF1CvXj0AH5KT3NxcNGrUSOE548ePh7+/v0xZ7dq1MX/+fHh6ehYkTCIiIvqGqWS2kaOjI9q2bYuAgAAsX74c79+/x5AhQ9CrVy/pTKPHjx+jdevWWLduHRo2bIgKFSoo7JWpXLkybGxsVBEmERERqSGVrfOyYcMGVK9eHa1bt0b79u3x3XffYeXKldLj79+/R0JCAtLT01UVAhEREX2DJIIgCGIHUZgKsqU2ERERFQ8F+f5WyWMjMeXlYlzvhYiISH3kfW9/SZ/KN5e8vHnzBgC43gsREZEaevPmDQwNDfOt8809NsrNzcWTJ0+gr69fLPZHSk1NRaVKlfDw4UM+xvoE20YxtotybBvl2DbKsW2UK05tIwgC3rx5A0tLS2ho5D8k95vredHQ0EDFihXFDkOOgYGB6D8YxRXbRjG2i3JsG+XYNsqxbZQrLm3zuR6XPCqbbURERESkCkxeiIiISK0weVExLS0tTJkyhVsYKMC2UYztohzbRjm2jXJsG+XUtW2+uQG7RERE9G1jzwsRERGpFSYvREREpFaYvBAREZFaYfJCREREauWbW6SOSB3l5uYiMTERz549Q25ursyxZs2aiRRV8cC2Ue7169c4d+6cwrbp16+fSFGJr3nz5vDz80P37t2ho6MjdjjFypQpUzBgwABUqVJF7FD+E842oiKTmZmJs2fP4v79+0hPT4eZmRnq1q0LGxsbsUMT1ZkzZ9CnTx/cv39fbkMyiUSCnJwckSITH9tGuT179sDb2xtpaWkwMDCQ2Q5FIpHg1atXIkYnrhEjRiAiIgKZmZno0aMH/Pz80LhxY7HDKhacnZ1x7do1aYL3ww8/qN00aYDJS6F7/fo1duzYgZiYGLkvaQ8PDzRp0kTsEItcbGwsFixYgD179uD9+/cwNDSEjo4OXr16hczMTNja2mLgwIEYNGgQ9PX1xQ63yDk7O8Pe3h5BQUGwsLCQ25PrS5fL/haxbZSzt7dH+/btMWvWLOjq6oodTrGTnZ2N3bt3Y+3atThw4ACqVq2KAQMGoG/fvihfvrzY4Ynq0qVLCAsLw8aNG5GdnY1evXphwIABaNCggdihfTEmL4XkyZMnmDx5MjZs2ABLS0s0bNgQlpaW0i/pa9eu4cKFC6hSpQqmTJmCnj17ih1ykejUqRMuXryIPn36wNPTE/Xr15fpxv37778RExODjRs34vLly1i3bh3atGkjYsRFr2zZsrh8+TKqVq0qdijFDttGubJly+Lq1auwtbUVO5Ri79mzZ1i5ciVmzpyJnJwctG/fHsOGDUOrVq3EDk1U79+/x549exAWFoaDBw+ievXq8PPzg6+vb7H/jwHHvBSSunXrwsfHBxcuXECNGjUU1nn37h127tyJ0NBQPHz4EKNHjy7iKItehw4dsG3bNpQpU0bhcVtbW9ja2sLHxwc3btxAUlJSEUcovkaNGiExMZFf0AqwbZTz8PDAX3/9xeTlM86dO4ewsDBs2rQJ5ubm8PX1xePHj9GxY0f89NNPmDt3rtghikYQBLx//x5ZWVkQBAHGxsZYvHgxJk2ahFWrVhXr/2Sz56WQvHz5EuXKlVNZffp27dixAxMnTsSYMWNQu3ZtuUSvTp06IkUmPraNcr///jumTZuG/v37K2ybTp06iRSZ+J49e4b169cjLCwMt2/fhqenJ/z9/eHh4SF99Hjy5Em0bdsWaWlpIkdb9C5cuCB9bKSlpYV+/frB399f+p+ERYsWYcaMGXj69KnIkSrH5IWKzMOHDyGRSFCxYkUAH/5HFBERgRo1amDgwIEiRyceDQ35FQskEgkEQSjxg1LZNsopaps8Jb1tNDU1YWdnhwEDBsDX1xdmZmZydVJTU+Hl5YVjx46JEKF4ateujZs3b+L7779HQEAAPD09UapUKZk6L168gLm5udwMtuKEyYuKPHnyBCdPnlQ4hXHYsGEiRSWupk2bYuDAgejbty+Sk5Ph4OCAmjVr4vbt2xg6dCgmT54sdoiiuH//fr7H1X1K43/BtqGvERMTg6ZNm4odRrE0ffp0DBgwAFZWVmKH8p8weVGB8PBw/Pjjj9DU1ES5cuXkpjD+/fffIkYnHmNjY5w5cwYODg5YuHAhNm/ejNjYWBw6dAiDBg0qse1CREQFwwG7KjBp0iRMnjwZEyZMyLdrt6R5//69dD2BI0eOSJ/JV69evUQO1P3YnTt3EBoaivj4eABAjRo1MHz4cNjZ2YkcmfjYNsodP34cc+fOlWmbMWPGlPheh7p168pNqwc+/OdRW1sbVatWha+vL1q2bClCdOIKDAxUWP5x23h5ecHExKSIIysYfrOqQHp6Onr16sXE5RM1a9bE8uXLERMTg8OHD6Nt27YAPjxiK8mDlw8ePIgaNWrg3LlzqFOnDurUqYOzZ8+iZs2aOHz4sNjhiYpto9wff/wBd3d36OrqYtiwYRg2bBh0dHTQunVrREREiB2eqNq2bYu///4bZcuWRcuWLdGyZUvo6enhzp07aNCgAZKSkuDu7o5du3aJHWqRu3TpEn7//XesXLkSx48fx/Hjx7Fq1Sr8/vvviIqKQmBgIKpWrYobN26IHWr+BCp0Y8aMEYKDg8UOo9g5duyYYGRkJGhoaAj9+/eXlk+YMEHo0qWLiJGJy9nZWRg3bpxc+bhx44S6deuKEFHxwbZRrnr16sK8efPkykNCQoTq1auLEFHx4e/vL0ybNk2ufPr06YK/v78gCIIwefJkoV69ekUdmujmz58vdO3aVUhJSZGWvX79WujWrZsQGhoqvH37VvDy8hK+//57EaP8PI55UYGcnBx07NgR7969UziFcd68eSJFJo709HTpCqA5OTlITU2FsbGx9Pi9e/egq6sLc3NzsUIUlba2Nq5evYpq1arJlN+6dQt16tRBRkaGSJGJj22jnJaWFq5fvy63Bk5iYiJq1apVotvG0NAQFy5cUNg29erVQ0pKCm7evIkGDRrgzZs3IkUpDisrKxw+fFhuPbLr16/j+++/x+PHj3Hx4kV8//33ePHihUhRfh7HvKhAcHAwDh48CAcHBwCQG7Bb0piamqJVq1bo1KkTvLy85Jbmtra2FiewYsLMzAxxcXFyX9BxcXElNqHLw7ZRrlKlSoiKipL7gj5y5AgqVaokUlTFg7a2Nk6dOiXXNqdOnYK2tjaADxt+5v25JElJScGzZ8/kkpfnz58jNTUVAGBkZISsrCwxwvtiTF5UICQkBGvWrIGvr6/YoRQLN2/exK5du/Dnn39i2LBhcHJyQqdOndCpUyfUrl1b7PBEFxAQgIEDB+Lvv/+W7n0VGxuL2bNnKx1cV1KwbZQbNWoUhg0bhri4OJm2CQ8Px4IFC0SOTlxDhw7FoEGDcOHCBel+PefPn8fq1avx888/A/gwnsrZ2VnEKMXh5eWFAQMGICQkRKZtRo8ejc6dOwP4sAaXvb29iFF+AbGfW32LypcvL9y6dUvsMIql169fCxEREULPnj0FQ0NDwcbGRhg+fLgQFRUlZGdnix2eKHJzc4V58+YJVlZWgkQiESQSiWBlZSWEhoYKubm5YocnKrZN/rZv3y64ubkJJiYmgomJieDm5ibs3LlT7LCKhT/++ENo3LixYGxsLBgbGwuNGzcWNmzYID2enp4uvHv3TsQIxfHmzRvB399f0NTUFDQ0NAQNDQ1BU1NTCAgIENLS0gRBEIRLly4Jly5dEjfQz+CYFxUIDg5GUlISFi5cKHYoxdr79+9x7Ngx7NmzB7t378abN2+waNEieHt7ix2aaPKev5fE3bU/h21DXyI7OxuzZs3CgAEDpKt50wc5OTmIjY2VjsXMW1vL1tYWenp6IkdXMExeVKBLly44evQoypUrh5o1a8oN2N2+fbtIkRVvly5dQnZ2tlpty05ExY+enh6uXbtW4sfTKaKtrY34+HjY2NiIHcp/wjEvKmBkZISuXbuKHUaxlJGRgStXrshtmyCRSODp6SliZEXLxcUFUVFRMDY2VrqgVp6LFy8WYWTiY9soZ2Jiglu3bsHU1BTGxsb5ts2rV6+KMLLipXXr1jh+/DiTFwVq1aqFv//+m8kLyQsLCxM7hGIpMjIS/fr1Uzj9rqRtJOfl5SVdbdjLy6tEzkJThm2j3Pz586WPzebPn8+2UaJdu3YYP348rl69inr16qFs2bIyx0vyjtszZszA6NGjMX36dIVtY2BgIFJkBcPHRiqwceNG9O7dW+GxMWPG4LfffiviiIqHatWq4fvvv8fkyZPlpksTERUW7rit3Mdt83HyK6jZTu1MXlTAyMgIGzduRLt27WTKR44ciU2bNpXYfXwMDAxw6dIl7knzCVtbW5w/f15ui4TXr1/DxcWlRG9YybZRrlSpUkhKSpJb7+bly5cwNzdXmy8hKlrHjx/P93jz5s2LKJL/ho+NVGDDhg3o3bs39u7di++++w7Ah3UHtm/fjmPHjokcnXi6deuG6OhoJi+fuHfvnsIvmszMTDx69EiEiIoPto1yyv7fmZmZCU1NzSKOpvjKyMgokYvRKaMuycnnMHlRgQ4dOmDp0qXo1KkTDh8+jN9//x27du3CsWPHiv/CPyq0ePFidO/eHTExMQq3TRg2bJhIkYlj9+7d0j8fPHgQhoaG0vc5OTmIiopS+0F1X4tto1zeEgwSiQSrV6+WmeKak5ODEydOoHr16mKFVyzk5ORg1qxZWL58OZ4+fYpbt27B1tYWkyZNgrW1Nfz8/MQOUVQxMTFYsWIF/v77b2zZsgVWVlZYv349bGxspP/hLvbEWmCmJFiyZImgpaUlVKxYUbh9+7bY4Yhu9erVQunSpQU9PT2hSpUqgrW1tfRlY2MjdnhFLm/RNQ0NDemf816ampqCvb29sGfPHrHDFAXbRrm83xmJRCJUqlRJ5vfI3t5e+P7774UzZ86IHaaogoKCBFtbW+GPP/4QdHR0hDt37giCIAibNm0SGjduLHJ04tq6daugo6Mj+Pv7C1paWtK2WbRokdCuXTuRo/tyHPNSSJQtVb5lyxa4uLjIPCopaRsz5qlQoQKGDRuG8ePH5zugrqSxsbHB+fPnYWpqKnYoxQ7bRrmWLVti+/btMpuc0gdVq1bFihUr0Lp1a+jr6+Py5cuwtbXFzZs34erqin/++UfsEEVTt25djBw5Ev369ZNpm0uXLqFdu3ZITk4WO8QvwsdGheTSpUsKy6tWrYrU1FTp8ZI8tTErKws9e/Zk4vKJu3fvih1CscW2Ua4kj5/7nMePH8ttygh82Izx/fv3IkRUfCQkJKBZs2Zy5YaGhnj9+nXRB/SVmLwUEv5D8nk+Pj7YvHmzdGM0+mDYsGGoWrWq3JifxYsXIzExEaGhoeIEVgywbZT74Ycf0LBhQ4wbN06mfM6cOTh//jy2bNkiUmTiq1GjBmJiYlClShWZ8q1bt6Ju3boiRVU8VKhQAYmJiXIL+J08eRK2trbiBPUVmLxQkcnJycGcOXNw8OBB1KlTR27Abkl9nLZt2zaZAap5mjRpgl9//bVEf0GzbZQ7ceIEpk6dKlferl07hISEFH1AxcjkyZPh4+ODx48fIzc3F9u3b0dCQgLWrVuHvXv3ih2eqAICAjB8+HCsWbMGEokET548wenTpzF69GhMmjRJ7PC+GJOXQjJo0CBMnDjxizYC27x5M7Kzs0vcBoRXr16V/q/n2rVrIkdTfLx8+VJmNk0eAwMDhasRlyRsG+XS0tIUTokuU6YMUlNTRYio+PDy8sKePXswbdo0lC1bFpMnT4aLiwv27NmDNm3aiB2eqMaPH4/c3Fy0bt0a6enpaNasGbS0tDB69GgMHTpU7PC+GJOXQmJmZoaaNWvCzc0Nnp6eqF+/PiwtLaGtrY1//vkHN27cwMmTJ7Fp0yZYWlpi5cqVYodc5PhoTbGqVasiMjISQ4YMkSk/cOCAWnXjqgLbRrnatWtj8+bNmDx5skz5pk2bUKNGDZGiKj6aNm2Kw4cPix1GsSORSPDLL79gzJgxSExMRFpaGmrUqKF2u0ozeSkk06dPx5AhQ7B69WosXboUN27ckDmur68Pd3d3rFy5Em3bthUpSnEdO3YMLVu2VHhsyZIlGDx4cBFHVDwEBgZiyJAheP78OVq1agUAiIqKQkhISIl+LAKwbfIzadIkdO3aFXfu3JFpm40bN5bo8S4fy8rKktsEFgAqV64sUkTFh6ampnonuWLP1f5WvXr1SoiLixNOnz4t3L59W8jNzRU7JNEZGRkJf/31l1x5aGiooK+vL0JExcfSpUsFKysr6VomNjY2wtq1a8UOq1hg2yi3d+9eoUmTJoKurq5Qrlw5oWXLlkJ0dLTYYYnu1q1bwnfffSdoaGjIvPLWDirJ0tLShIkTJwqurq6CnZ2dYGNjI/NSF1znhYrM6tWr8fPPP8usABoSEoJp06Zh7969aNq0qcgRiu/58+fQ0dFRuy7cosC2oS/l5uaG0qVLY/z48bCwsJBbosLJyUmkyMTXu3dvHD9+HH379lXYNsOHDxcpsoJh8qIi38TyyyowZ84cLFy4ECdPnsTmzZsxa9Ys7N+/H25ubmKHJqrs7GxER0fjzp076NOnD/T19fHkyRMYGBiU+C9rto1yr1+/xtatW/H3339j9OjRMDExwcWLF1G+fHlYWVmJHZ5oypYtiwsXLpT4bRIUMTIywr59+9T+31yOeVGBbdu2oW/fvvD29sbFixeRmZkJAEhJSZF+WZdUY8eOxcuXL1G/fn3k5OTg4MGDaNy4sdhhier+/fto27YtHjx4gMzMTLRp0wb6+vqYPXs2MjMzsXz5crFDFA3bRrkrV67A3d0dhoaGuHfvHvz9/WFiYoLt27fjwYMHWLdundghiqZGjRolfjaaMsbGxjAxMRE7jP+MS52qwIwZM7B8+XKsWrVKZi0TNzc3XLx4UcTIit7ChQvlXlZWVtDV1UWHDh1w7tw5aXlJNXz4cNSvXx///PMPdHR0pOVdunRBVFSUiJGJj22jXGBgIHx9fXH79m2ZXZPbt2+PEydOiBiZ+GbPno2xY8ciOjoaL1++RGpqqsyrJJs+fTomT56M9PR0sUP5T/jYSAV0dXVx48YNWFtby+wd8ffff6NGjRrIyMgQO8Qi86U7/0okEvz9998qjqZ4KleuHE6dOgUHBweZn5d79+6hRo0aav+PzH/BtlHO0NAQFy9ehJ2dnUzb3L9/Hw4ODiXq35lP5W1B8ul4DkEQIJFIkJOTI0ZYxULdunVx584dCIIAa2trucVC1eU/2HxspALfyvLLhYF703xebm6uwn9MHz16BH19fREiKj7YNsppaWkp7EW4desWzMzMRIio+OCaUsp17txZ7BAKBXteVCA4OBh//PEH1qxZgzZt2mD//v24f/8+Ro4ciUmTJqnVKoakej179oShoSFWrlwJfX19XLlyBWZmZvDy8kLlypURFhYmdoiiYdso5+/vj5cvX+LPP/+EiYkJrly5glKlSqFz585o1qxZiV8Hh75xYs3R/pbl5uYKM2bMEMqWLStdm0JbW1uYOHGi2KEVueDgYOHt27dfVPfMmTPC3r17VRxR8fPgwQOhRo0agqOjo1C6dGmhcePGQrly5QQHBwfh6dOnYocnKraNcq9fvxbc3d0FIyMjoVSpUkKlSpWEMmXKCM2aNRPS0tLEDk90J06cELy9vQVXV1fh0aNHgiAIwrp164SYmBiRIxPfP//8I6xatUoYP3688PLlS0EQBOHChQvSdlIH7HlRoaysLLVefrkw9OvXDwcOHED37t2l2ybkdWlnZ2dLt034448/8OTJE6xbt07hdu3fuuzsbGzevBmXL19GWloaXFxc4O3tLTNItaRi2+QvNjZWpm3c3d3FDkl0H8/4XL9+PW7cuAFbW1ssXrwY+/fvL9EzPj+dpZaQkABbW1tMnDhRvWapiZ090bcvLi5O8Pf3F4yMjAQNDQ2hTJkygp6ennTVy3r16gnLli0T3r17J3aoRS4rK0uwtbUVbty4IXYoxQ7bRrmsrCyhVKlSwtWrV8UOpVhydnaWrsKsp6cn3LlzRxAEQbh48aJQvnx5MUMTXevWrYUxY8YIgiDbNrGxsUKVKlVEjKxgOGC3kHTt2vWL627fvl2FkRQ/Tk5OWLVqFVasWIHLly/jwYMHePfuHUxNTeHs7AxTU1OxQxRNmTJlSvSskPywbZQrU6YMKleuXKJnzeQnISFBYQ+uoaEhXr9+XfQBFSPnz5/HihUr5MqtrKyQnJwsQkRfh+u8FBJDQ0Ppy8DAAFFRUfjrr7+kxy9cuICoqCgYGhqKGKW4NDQ0ULduXXh5eaFXr15wd3cv0YlLnsGDB2P27NnIzs4WO5Rih22j3C+//IKff/4Zr169EjuUYidvxuenSuKMz099K7PU2PNSSD6e9TBu3Dj06NEDy5cvR6lSpQAAOTk5+Omnn2BgYCBWiKJr3rw5/Pz80L17d45X+Mj58+cRFRWFQ4cOoXbt2ihbtqzM8ZLWU/cxto1yixcvRmJiIiwtLVGlShW5tlGX9TpUISAgAMOHD8eaNWsgkUjw5MkTnD59GqNHj8akSZPEDk9UnTp1wrRp0/Dnn38C+LAWzoMHDzBu3Dj88MMPIkf35ThgVwXMzMxw8uRJODg4yJQnJCSgSZMmePnypUiRiWvEiBGIiIhAZmYmevToAT8/vxK/NQAA9O/fP9/jJXk6MNtGuaCgoHyPT5kypYgiKX4EQcCsWbMQHBwsXchQS0sLo0ePxvTp00WOTlwpKSno1q0b/vrrL7x58waWlpZITk6Gq6sr9u/fL5cEF1dMXlTA2NgY4eHh8PLykinftWsXfH198c8//4gUmfiys7Oxe/durF27FgcOHEDVqlUxYMAA9O3bF+XLlxc7PCL6hnDGp3LqPkuNyYsKBAYGYt26dfj555/RsGFDAMDZs2fx66+/om/fvpg3b57IERYPz549w8qVKzFz5kzk5OSgffv2GDZsGFq1aiV2aEREVIwxeVGB3NxczJ07FwsWLEBSUhIAwMLCAsOHD8eoUaOk42BKsnPnziEsLAybNm2CgYEBfH198fjxY0REROCnn37C3LlzxQ5RpVxcXBAVFQVjY2PUrVtXbg+Wj5W0sQtsG+VMTExw69YtmJqawtjYON+24UBe+pZxwK4KaGhoYOzYsRg7dqx0VHdJHqib59mzZ1i/fj3CwsJw+/ZteHp6YuPGjfDw8JD+I+zr64u2bdt+88mLl5cXtLS0AHw7e40UFraNcvPnz5fu6cTl/6kkY88LFRlNTU3Y2dlhwIAB8PX1VTgtLzU1FV5eXtxYjYiIlGLyogI2Njb5duf+/fffRRhN8RETE4OmTZuKHQaR2lK0Pocy7O2lbxkfG6nAiBEjZN6/f/8ely5dQmRkJMaMGSNOUMXAlClTsH37dhgZGcmUp6amonPnzjh69Kg4gYngc+MVPlbSxi6wbZQzMjL64rYpaavv7t69+4vrdurUSYWRFG+lSpVCUlISzM3NZcpfvnwJc3Nztfm5YfKiAsOHD1dYvmTJEplVd0ua48ePIysrS648IyMDMTExIkQkno/HK7x8+RIzZsyAh4cHXF1dAQCnT5/GwYMHS+SCWmwb5T5+nHrv3j2MHz8evr6+Mm2zdu1aBAcHixWiaD4dHyWRSPDxg4WPkz51+YJWBWUPWzIzM6GpqVnE0Xw9PjYqQn///TecnZ0L1PX7Lbhy5QoAwNnZGUePHoWJiYn0WE5ODiIjI7FixQrcu3dPpAjF9cMPP6Bly5YYMmSITPnixYtx5MgR7Ny5U5zAigG2jXKtW7eGv78/evfuLVMeERGBlStXIjo6WpzAioEjR45g3LhxmDVrlkxiN3HiRMyaNQtt2rQROcKit3DhQgDAyJEjMX36dJk1b3JycnDixAncu3cPly5dEivEAmHyUoTmzJmDpUuXlrgvaQ0NDen/ehT9uOno6GDRokUYMGBAUYdWLOjp6SEuLg5Vq1aVKU9MTISzszPS0tJEikx8bBvldHV1cfnyZVSrVk2m/NatW3B2dpauLFsS1apVC8uXL8d3330nUx4TE4OBAwciPj5epMjEY2NjAwC4f/8+KlasKLNkh6amJqytrTFt2jQ0atRIrBALhI+NVODTtSkEQUBycjKeP3+OpUuXihiZOO7evQtBEGBra4tz587JzDLS1NSEubl5iV77ply5cti1axdGjRolU75r1y6UK1dOpKiKB7aNcpUqVcKqVaswZ84cmfLVq1ejUqVKIkVVPNy5c0dubB3wYQPdkvafxzx3794FALRs2RLbt2+HsbGxyBH9N+x5UYGpU6fKJC8aGhowMzNDixYtUL16dREjo+IoPDwc/v7+aNeunfR/PWfPnkVkZCRWrVoFX19fcQMUEdtGuf379+OHH35A1apVpW1z7tw53L59G9u2bUP79u1FjlA8zZo1g7a2NtavXy/dduTp06fo168fMjIycPz4cZEjpP+KyQup1O7du9GuXTuUKVPms7MBSvIMgLNnz2LhwoXS7mxHR0cMGzZMbbpwVYlto9yjR4+wbNkymbYZNGhQie95SUxMRJcuXXDr1i1pWzx8+BDVqlXDzp075R5DliQ//PADGjZsiHHjxsmUz5kzB+fPn8eWLVtEiqxgmLyowLcyFa0waGhoIDk5Gebm5tDQ0FBaTyKRlKh2ISLVEgQBhw8fxs2bNwF8SOzc3d2/eKr5t8rMzAxHjx5F7dq1ZcqvXr0Kd3d3PH36VKTICoZjXlTgW5mKVhhyc3MV/pmISJUkEgm+//57NGvWDFpaWiU+acmTlpam8HuoTJkyajUTlslLIcqbiiaRSLB69WqFU9E45oWISLVyc3Mxc+ZMLF++HE+fPsWtW7dga2uLSZMmwdraGn5+fmKHKJratWtj8+bNmDx5skz5pk2bUKNGDZGiKjgmL4Vo/vz5AD70vCxfvlzhVLTly5eLFZ7ohg0bhqpVq2LYsGEy5YsXL0ZiYiI3miOiQjFjxgysXbsWc+bMQUBAgLS8Vq1aCA0NLdHJy6RJk9C1a1fcuXMHrVq1AgBERUVh48aNajPeBeCYF5X4VqaiFTYrKyvs3r0b9erVkym/ePEiOnXqhEePHokUGRF9S6pWrYoVK1agdevW0NfXx+XLl2Fra4ubN2/C1dUV//zzj9ghimrfvn2YNWsW4uLioKOjgzp16mDKlClo3ry52KF9MeUjKOmrHTt2jImLAi9fvoShoaFcuYGBAV68eCFCRMXD8+fPlR67evVqEUZS/ISFhZXoxdbyM23aNIX7gb19+xbTpk0TIaLi4/HjxwpnFOXm5uL9+/ciRFS8dOjQAbGxsXj79i1evHiBo0ePqlXiAjB5KTSBgYF4+/at9M/5vUqqqlWrIjIyUq78wIEDsLW1FSGi4qF27drYt2+fXPncuXPRsGFDESIqPsaPH48KFSrAz88Pp06dEjucYmXq1Klo164d5s2bJ1OelpaGoKAgkaIqHmrUqKFwv7StW7eibt26IkREhY1jXgrJpUuXpBn9xYsXObJdgcDAQAwZMgTPnz+XedYaEhJSose7BAYG4ocffkD//v0xb948vHr1Cv369cPVq1cREREhdniievz4Mfbs2YPw8HC0aNECtra26N+/P3x8fFChQgWxwxPdunXrMHjwYFy9ehUrVqwocbMZlZk8eTJ8fHzw+PFj5ObmYvv27UhISMC6deuwd+9escMTVU5ODubPn48///wTDx48kNssV212aheIitDSpUsFKysrQSKRCBKJRLCxsRHWrl0rdliiu3jxolCzZk2hatWqgomJidCuXTshKSlJ7LCKleTkZGHu3LlC7dq1hTJlygienp7Czp07hZycHLFDE4VEIhGePn0qJCYmCo6OjoKrq6vw9OlTITk5WdDQ0BA7PNGdOHFCcHd3F8zMzAQdHR3Bzc1NOHjwoNhhiW7SpEmChYWFMHfuXEFbW1uYPn264OfnJ5QrV05YsGCB2OF9MSYvKtC/f38hNTVVrjwtLU3o37+/CBEVP8+ePRPevHkjdhjFRmpqqtCzZ0+hdOnSQunSpYXw8HCxQyqWzpw5IwwcOFDQ0tISrK2tBUNDQ8Ha2lo4duyY2KEVOQ0NDeHp06eCIAhCSkqK4OHhIVSsWFHYu3cvkxdSytbWVti7d68gCIKgp6cnJCYmCoIgCAsWLBB69+4tZmgFwjEvKrB27Vq8e/dOrvzdu3dYt26dCBEVL8+fP0dCQgLi4uJK9EDdPLGxsahTpw5u376NK1euYNmyZRg6dCh69uxZ4mdFAB/2pJk7dy5q1qyJFi1aIDU1FXv37sXdu3fx+PFj9OjRAz4+PmKHWeSEjyaKGhgYYP/+/ejSpQs6d+4sXlDFhK2tLV6+fClX/vr16xI9vg4AkpOTpavr6unpISUlBQDQsWNHhWPviismL4UoNTUVKSkpEAQBb968QWpqqvT1zz//YP/+/XJbBpQkb9++xYABA2BhYYFmzZqhWbNmsLCwgJ+fX4meUdKqVSv07NkTZ86cgaOjI/z9/XHp0iU8ePBAbgnvksbT0xOVKlVCeHg4AgIC8PjxY2zcuBHu7u4AgLJly2LUqFF4+PChyJEWvbCwMJnZexoaGli4cCFWrlyJfv36iRiZ+O7du6dwu5HMzEw8fvxYhIiKj4oVKyIpKQkAYGdnh0OHDgEAzp8/Dy0tLTFDKxAO2C1ERkZGkEgkkEgksLe3lzsukUhK9CyAwMBAHD9+HHv27IGbmxsA4OTJkxg2bBhGjRqFZcuWiRyhOA4dOiQ3TdHOzg6xsbGYOXOmSFEVD+bm5jh+/DhcXV2V1jEzM8Pdu3eLMKriQVlvU//+/dG/f/8ijqZ4+Hjz14MHD8okdzk5OYiKioK1tbUIkRUfXbp0QVRUFBo1aoShQ4fif//7H37//Xc8ePAAI0eOFDu8L8ZF6grR8ePHIQgCWrVqhW3btsHExER6TFNTE1WqVIGlpaWIEYrL1NQUW7duRYsWLWTKjx07hh49euS73gkR0efkbf4qkUjk9pgrU6YMrK3/X3t3HxPVmbYB/BoMFFBAHTqspcqHUEGN4MdK7a4uSlT8wlRjawVlBOlaV2jVattkUcHFbIjtWqyr4qoVW7SKTfGjShRGOmYRqcWhthWxVqxYBUHZCpWlzHn/IMzrCMfCysxzxrl+SZN6Zv64csd433PO8zzHF++++y6mT58uIp4iFRUVoaioCIGBgZgxY4boOJ3G4cUCKisrMWDAAG6XfoirqyvOnTuH4OBgs+vffPMNRo8ebTonh4jocfj5+aGkpASenp6io5CFcHjpJmVlZZ3+7rBhwyyYRLkiIiKgVquRlZUFZ2dnAK2LmGNjY1FXV4eTJ08KTkhE9OQrLy/Hpk2b8N133wEAgoODkZiYiEGDBglO1nkcXrqJg4NDh7cqH6ZSqTpcSGYPLly4gMmTJ6OpqQkhISEAAIPBAGdnZ+Tl5WHIkCGCExLRk6KhoQGFhYUdHsT28Mth7cnBgwcxd+5cjBo1yrSW7MyZMygpKcG+ffswe/ZswQk7h8NLN6msrOz0d318fCyYRNkaGxvx8ccf4+LFiwBaJ/7o6Gi4uLgITkZke4xGIy5fvozq6moYjUazz8aNGycolXilpaWYOnUqGhsb0dDQgL59++L27dtwdXWFRqPBlStXREcUZuDAgYiOjm73/qs1a9bgo48+wvfffy8oWddweLGgb7/9tt3Ur1KpbGpRFFkHm5A81qZjZ86cwbx581BZWdnujq893+EFgPDwcDz33HPYunUrPDw8YDAY4OjoiJiYGLz++uuYNWuW6IjCuLq6oqysrN2LKysqKhASEmIzx1Zwq7QFXLlyBS+++CK+/vprs0dJbQt47ekflQe3Lv6WqKgoCyZRLjYheayNvMWLF2PUqFE4evQo+vXrxw0CDzh//jy2bdsGBwcH9OjRA01NTfD390d6ejpiY2PtengJDw+HXq9vN7ycPn0aY8eOFZSq6zi8WMDrr78OPz8/5Ofnw8/PD8XFxairq8OKFSuwYcMG0fGsqrOnfdpzI2ITksfayKuoqEBOTk67JkSt26Lbtk1rNBpcu3YNwcHB8PDwsMsDDR8UFRWFt956C+fOncPzzz8PoPVHwoEDB5CSkmL2g1PJPyj52MgCPD09UVBQgGHDhsHDwwNnz57FoEGDUFBQgBUrVqC0tFR0RFKQnj17wmAwsAl1gLWRN2HCBKxatQqRkZGioyjOpEmToNVqMW/ePCQkJKCsrAxJSUnYs2cP7ty5g+LiYtERhWkb6n6L0n9Q8s6LBbS0tMDNzQ1A6yBz48YNDBo0CD4+PigvLxecThnu379v2i5t78LCwnD58mU26A6wNvISExOxYsUK07tqHB0dzT631yMZAGD9+vX4+eefAQBpaWlYsGABXnvtNQQGBmLnzp2C04n18LoxW8XhxQKGDh0Kg8EAPz8/hIWFIT09HU5OTsjMzLTrl4K1tLRg/fr12Lp1K27duoVLly7B398fycnJ8PX1RXx8vOiIQrAJyWNt5LVtaY2LizNda1tjp/RfzZY2atQo0/9rNBocP35cYBqyBD42soC8vDw0NDRg1qxZuHz5MqZPn45Lly5BrVbjk08+wYQJE0RHFCI1NRW7d+9GamoqEhIScOHCBfj7++OTTz7Bxo0bUVRUJDqiEB3dxmUTasXayPut4xns+UgGerSSkhLodLoOd/C99957glJ1DYcXK6mrq0OfPn3sesFhQEAAtm3bhoiICLi5ucFgMMDf3x8XL17EmDFjcOfOHdERhWATksfaUGeNGDEC+fn56NOnD4YPH/7If2u/+uorKyZTlvXr1+Ovf/0rBg0aBC8vL7M6qVQqFBQUCEzXeXxsZCUPvqTRXlVVVXW4dsFoNKK5uVlAImVgA5bH2pg7dOgQpkyZAkdHx988hkDJO0UsYebMmXjqqacAdH6Xoz16//33sXPnTmi1WtFRHgvvvJDVjBw5EsuWLUNMTIzZnZfU1FScOHECer1edESrYROSx9rIc3BwwM2bN6HRaB65a8TeH6mRvH79+uGLL75AYGCg6CiPhcMLWU1ubi5iY2PxzjvvIDU1FSkpKSgvL0dWVhaOHDmCiRMnio5oNWxC8lgbIstJT0/HjRs3sHHjRtFRHguHF7IqvV6P1NRUGAwG3Lt3DyNGjMDq1asxadIk0dGIyIZ1ZU1hXV2dhdMol9FoxLRp03Dp0iUMHjy43Q6+Tz/9VFCyruGaF7KaRYsWISYmBidOnBAdhYieMA/eSaitrcXf/vY3TJ482fTm5KKiIuTl5SE5OVlQQmVISkqCTqfD+PHjoVarbXYTCe+8kNXMnDkTeXl5ePrpp/HKK68gOjoaISEhomMR0RNm9uzZGD9+PJYuXWp2/YMPPsDJkyfx2WefiQmmAG5ubti3bx+mTZsmOspj4fBCVnXnzh0cOHAA2dnZ0Ov1CAoKQnR0NObNmwdfX1/R8YjoCdCrVy+cP3++3e7Gy5cvIzQ0FPfu3ROUTDwfHx/k5eUhKChIdJTH0rmXHBB1kz59+uDVV1/FqVOnUFlZCa1Wiz179vD4dyLqNmq1Grm5ue2u5+bmQq1WC0ikHGvXrsWaNWvQ2NgoOspj4ZoXEqK5uRlffvkliouLcfXqVXh5eYmORGRT/vSnPyE+Ph5z5syBi4uL6DiKkpKSgkWLFuHUqVMICwsDABQXF+P48ePYvn274HRiZWRk4Pvvv4eXlxd8fX3bLdi1lQP8OLyQVel0OmRnZ+PgwYMwGo2YNWsWjhw5YrevTADYhB6FtZE3fPhwvPnmm0hMTMRLL72E+Ph4PP/886JjKYJWq0VwcDAyMjJMu2eCg4Nx+vRp0zBjr56UA/y45oWsxtvbG3V1dYiMjER0dDRmzJhhOhHTnr3xxhvIzs5GU1MTm9BDWJtH+/XXX3Ho0CHs3r0bx44dQ0BAAOLi4jB//nzezaQnGocXsprt27djzpw56N27t+goisMmJI+16Zzq6mpkZmYiLS0NLS0tmDp1KpKSkuz6riYA3L9/H//973/Nrrm7uwtKQ92FwwuRwrAJyWNtOnb27Fns2rUL+/btg7u7O7RaLaqqqpCdnY0lS5Zgw4YNoiNaVWNjI1atWoX9+/ejtra23ef2djJz3759cenSJXh6ev7mYX62coAf17wQKciDTUij0Zia0PTp0+2yCT2ItTFXXV2NPXv2YNeuXaioqMCMGTOwd+9eTJ482dSctFotIiMj7a42K1euhE6nw5YtWzB//nxs3rwZVVVV2LZtG/7+97+Ljmd1//jHP+Dm5gYANv9aABOJiIS6deuWtGHDBmnIkCGSk5OTNHv2bOnYsWOS0Wg0fUev10s9e/YUmFIM1kaeo6OjFBQUJKWnp0vV1dUdfqe+vl4KDw+3cjLx+vfvL+l0OkmSJMnNzU2qqKiQJEmSsrKypClTpghMRt2Fd16IBHv22WcxcOBAxMXFQavV4umnn273nWHDhuH3v/+9gHRisTby8vPzMXbs2Ed+x93dHTqdzkqJlKOurg7+/v4AWmvQ9ijkj3/8I1577TWR0aib8JA6IsHy8/Px3XffYeXKlR02Z8B+mxBrI2/NmjW4e/duu+v/+c9/7H4NkL+/P3744QcAQFBQEPbv3w8AOHz4MDcMPCE4vBAJxiYkj7WRV1hY2G4XDdC6u0av1wtIpBwLFy6EwWAAALz99tvYvHkznJ2dsWzZMqxcuVJwOuoO3G1EJFiPHj3w008/QaPRmF2vrq6Gt7c3mpubBSUTj7Vpr6ysDAAQGhqKgoIC9O3b1/RZS0sLjh8/jm3btuHq1auCEipPZWUlzp07h4CAAAwbNkx0HOoGXPNCJEhbE5IkCd9++y1u3rxp+qytCXl7e4uKJxRrIy80NBQqlQoqlarDu08uLi7YtGmTgGTK0NzcjMjISGzduhWBgYEAWl9G6OPjIzgZdScOL0SCsAnJY23k/fDDD5AkCf7+/jh79qzZWiAnJydoNBr06NFDYEKxHB0dTcMvtZo1a1anv9v2OgWl4/BCJAibkDzWRl7bHQSj0Sg4iXLFxMRgx44ddnmmS0c8PDxER+h2XPNCRGQjDh06hClTpsDR0RGHDh165HejoqKslEp5EhMTkZWVhcDAQIwcORI9e/Y0+/y9994TlIy6C4cXIgHYhOSxNvIcHBxw8+ZNaDQaODjIbxZVqVR2dwT+g8aPHy/7mUqlQkFBgRXTkCVweCESgE1IHmtDZFk5OTnYv38/rl271m67/VdffSUoVdfwnBciAYxGo2n7r9FolP3PHpsza0NkORkZGVi4cCG8vLxQWlqK0aNHQ61W48qVK5gyZYroeJ3G4YWIyAYlJSUhIyOj3fUPPvgAb7zxhvUDkU345z//iczMTGzatAlOTk5YtWoVTpw4gaSkJNTX14uO12kcXogEYxOSx9rIO3jwIP7whz+0u/7CCy8gJydHQCKyBdeuXcMLL7wAoPXIgZ9//hkAMH/+fOzdu1dktC7h8EIkGJuQPNZGXm1tbYdbYN3d3XH79m0BicgW/O53vzO9qHLAgAE4c+YMgP8/nsBWcHghEoxNSB5rIy8gIADHjx9vd/3YsWOmNyoTPWzChAmmXXwLFy7EsmXLMHHiRLz88st48cUXBafrPB5SRyRYWxNaunSp2XU2IdbmUZYvX46lS5eipqbGdApxfn4+3n33XWzcuFFsOFKszMxM0wGHf/nLX6BWq/Hvf/8bUVFR+POf/yw4XedxeCESjE1IHmsjLy4uDk1NTUhLS8O6desAAL6+vtiyZQsWLFggOB0p1fXr19G/f3/Tn+fOnYu5c+dCkiT8+OOPGDBggMB0ncdzXogUYMuWLUhLS8ONGzcAtDahtWvXsgmBtemMmpoauLi4oFevXqKjkMLJvam9trYWGo3GZo4g4PBCpCBsQvJYm47V1NSgvLwcABAUFARPT0/BiUjJHBwccOvWLbP3hQFAZWUlBg8ejIaGBkHJuoaPjYgUgk1IHmvTXkNDg+kdPm1rGHr06IEFCxZg06ZNcHV1FZyQlGT58uUAWk+mTk5ONvv70dLSguLiYoSGhgpK13XcbUQkWENDA+Li4tCvXz+MGzcO48aNQ79+/RAfH4/GxkbR8YRibeQtX74chYWFOHz4MO7evYu7d+8iNzcXhYWFWLFiheh4pDClpaUoLS2FJEn4+uuvTX8uLS3FxYsXERISgg8//FB0zM6TiEioV199VfL395c+//xzqb6+Xqqvr5eOHj0qDRw4UFq8eLHoeEKxNvLUarWk0+naXS8oKJA8PT2tH4hsglarlerr60XHeGxc80IkmKenJ3JychAeHm52XafT4aWXXkJNTY2YYArA2shzdXXFuXPnEBwcbHb9m2++wejRo21m7QKJc/36dQDAs88+KzhJ1/GxEZFgjY2N8PLyanddo9HY/aMR1kbemDFjsGbNGty/f9907ZdffkFKSgrGjBkjMBkpmdFoRGpqKjw8PODj4wMfHx/07t0b69atM62dsgW880IkWEREBNRqNbKysuDs7AygtQnFxsairq4OJ0+eFJxQHNZG3oULFzB58mQ0NTUhJCQEAGAwGODs7Iy8vDwMGTJEcEJSonfeeQc7duxASkqK6dUbp0+fxtq1a5GQkIC0tDTBCTuHwwuRYGxC8libR2tsbMTHH3+MixcvAgCCg4MRHR0NFxcXwclIqZ555hls3boVUVFRZtdzc3OxZMkSVFVVCUrWNRxeiBSATUgea0PUfZydnVFWVobnnnvO7Hp5eTlCQ0Pxyy+/CErWNRxeiIhsRNsL9Trj4V/WRAAQFhaGsLAwZGRkmF1PTExESUmJ6S3TSsfhhUgANiF5rI08B4fO7bFQqVQ2c8w7WVdhYSGmTZuGAQMGmBZ2FxUV4ccff8Tnn3+OsWPHCk7YORxeiARgE5LH2hBZ1o0bN7B582azR7FLlizBM888IzhZ53F4ISKycffv3zftxiJ6lGvXrqF///5QqVQdfmYrb5XmOS9ECvLgmR1kjrUx19LSgnXr1sHb2xu9evXClStXAADJycnYsWOH4HSkVH5+fh0e7lhbWws/Pz8Bif43HF6IBGMTksfayEtLS8OHH36I9PR0ODk5ma4PHToU//rXvwQmIyWTJKnDuy737t2zqbt3fKs0kWBpaWnYvXs30tPTkZCQYLo+dOhQbNy4EfHx8QLTicXayMvKykJmZiYiIiKwePFi0/WQkBDTWgaiNk/aW6U5vBAJxiYkj7WRV1VVhYCAgHbXjUYjmpubBSQiJSstLQUA01ulH7xb5+TkhJCQELz55pui4nUZhxciwdiE5LE28gYPHgy9Xg8fHx+z6zk5ORg+fLigVKRUOp0OALBw4UK8//77cHd3F5zo8XB4IRKMTUgeayNv9erViI2NRVVVFYxGIz799FOUl5cjKysLR44cER2PFGrXrl2iI3QLDi9EgrEJyWNt5M2cOROHDx9GamoqevbsidWrV2PEiBE4fPgwJk6cKDoekUXxnBciBdDr9UhNTYXBYMC9e/cwYsQIrF69GpMmTRIdTTjWhogexuGFiMgGLVq0CDExMQgPDxcdhcjqeM4LkWCLFi3CqVOnRMdQJNZGXk1NDSIjI9G/f3+sXLkS58+fFx2JyGo4vBAJxiYkj7WRl5ubi59++gnJyckoKSnByJEjMWTIEKxfvx5Xr14VHY/IovjYiEgB7ty5gwMHDiA7Oxt6vR5BQUGIjo7GvHnz4OvrKzqeUKxN51y/fh179+7Fzp07UVFRgV9//VV0JCKL4fBCpDBsQvJYm441Nzfj6NGj+Oijj3D06FH07dsXVVVVomMRWQwfGxEpSHNzM7788ksUFxfj6tWr8PLyEh1JMVib9nQ6HRISEuDl5QWtVgt3d3ccOXIE169fFx2NyKI4vBApAJuQPNamY97e3pg6dSpu376NzMxM3Lp1Czt37kRERESHL94jepLwsRGRYN7e3qirq0NkZCSio6MxY8YMPPXUU6JjKQJrI2/79u2YM2cOevfuLToKkdVxeCESjE1IHmtDRB3h8EJEREQ2hWteiIiIyKZweCEiIiKbwuGFiIiIbAqHFyIiIrIpHF6IiIjIpnB4ISIiIpvC4YWIiIhsCocXIiIisin/B7B3DgqVw+LvAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" } ], "source": [ - "nfb.corr(numeric_only=True)" + "correlations = nfb.corr(numeric_only=True)\n", + "correlations.plot(kind='bar', title='Correlations')" ] }, { diff --git a/week_1.ipynb b/A - Getting Started.ipynb similarity index 99% rename from week_1.ipynb rename to A - Getting Started.ipynb index 592d587..ba6c58f 100644 --- a/week_1.ipynb +++ b/A - Getting Started.ipynb @@ -4,10 +4,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Week 1 - Start here!\n", + "# Section A - Start here!\n", "\n", "**Topics**: Intro, Data types incl numeric, strings, lists, tuples, sets, if else. \n", - " \n", "\n", "The first program most folks make in any language is a hello world. \n", "\n", From 5baa1e59950cdc5109f64e3118fdca841f4e563e Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Thu, 22 Aug 2024 17:19:39 -0700 Subject: [PATCH 03/94] cleaning up for workshop mode --- README.md | 23 ++++++++++++----------- 1 file changed, 12 insertions(+), 11 deletions(-) diff --git a/README.md b/README.md index 1fad4ff..65b9949 100644 --- a/README.md +++ b/README.md @@ -1,17 +1,17 @@ -# python class +# Python Workshop -Welcome to the Library Pythong Intrductory course. Over four weeks, we'll learn the basics of the Python programming language and get to the point where we can open a spreadsheet with pandas and do some basic data analysis. +Welcome to the Library Python Workshop! -We'll use google colab to open and work from python notebooks for this course. https://colab.research.google.com/ This is so anyone attending can work from the library's loaner notebooks if needed, and continue work on a machine at home. You're welcome to install python locally on your own laptop if you prefer. I'd recommend installing the anaconda python distribution as it has everything configured automatically for working with notebooks. +We meet once a week to learn how to program in the Python progamming language. This is intended to be a work at your own pace environment, just bring any questions and stuff you'd like to look at each week and we all benefit as a group looking at it. + +We have coursework ready to learn a few things: +* Basics +* Data analysis with "Pandas" +* ... Will add more to this list... + +## Getting Started +You need a place to run python code and open "ipython notebooks". -## Background Info and To-Do -This guide was originally assembled with scripting and system-automation in mind, but the whole Jupyter Notebook mode of work, I think, makes python more approachable for data manipulation, automating office tasks, etc. And working with python might feel a little more consistent cross-platform when you're working in notebooks, so it's a good format for learning. My to-do list includes: -* Incorporating Python 3.x changes (print, f-strings, encoding, etc.) in the examples -* Adding notebooks for each of four weeks with problems to work on. -* Prioritizing Notebook Use and adding a variety of data science examples. -* Adding modules for micropython, pygame or pygamezero, ... - -## Student Pre-Work: Our recommended mode of work will be in notebooks on google Colab: https://colab.research.google.com/ * Sign up for a google account if you don't have one. * Log in to https://colab.research.google.com and skim over the readme info @@ -26,6 +26,7 @@ If you're working from your own laptop and want to open notebooks locally rather * You can use any python distribution, but Anaconda is highly recommended becuase its package manager works so well and it has support for so many libraries out-of-the-box. ## Curriculum +These notebooks will be renamed to remove the week # convention. * Week 1: Introduction to Python and Google Colab. Covering variables and data types (numeric, strings, boolean), truthiness, and basic control flow (if-else statements). * Week 2: Exploring more complex data types (lists, tuples, dictionaries) and advanced control flow (loops: for and while). * Week 3: Introducing functions and modules in Python. Basic introduction to pandas for data analysis, focusing on importing data and initial data exploration. From 20760c6f657f5edccf2ebc295a703f8a24f57c59 Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Thu, 22 Aug 2024 17:25:53 -0700 Subject: [PATCH 04/94] renaming notebooks --- A - Getting Started.ipynb => A-Getting_Started.ipynb | 0 week_2.ipynb => B-Dictionaries_and_Loops.ipynb | 0 week_3.ipynb => C-Functions.ipynb | 0 week_4.ipynb => D-Pandas.ipynb | 0 week_5.ipynb => E-Writing_Scripts.ypynb | 0 5 files changed, 0 insertions(+), 0 deletions(-) rename A - Getting Started.ipynb => A-Getting_Started.ipynb (100%) rename week_2.ipynb => B-Dictionaries_and_Loops.ipynb (100%) rename week_3.ipynb => C-Functions.ipynb (100%) rename week_4.ipynb => D-Pandas.ipynb (100%) rename week_5.ipynb => E-Writing_Scripts.ypynb (100%) diff --git a/A - Getting Started.ipynb b/A-Getting_Started.ipynb similarity index 100% rename from A - Getting Started.ipynb rename to A-Getting_Started.ipynb diff --git a/week_2.ipynb b/B-Dictionaries_and_Loops.ipynb similarity index 100% rename from week_2.ipynb rename to B-Dictionaries_and_Loops.ipynb diff --git a/week_3.ipynb b/C-Functions.ipynb similarity index 100% rename from week_3.ipynb rename to C-Functions.ipynb diff --git a/week_4.ipynb b/D-Pandas.ipynb similarity index 100% rename from week_4.ipynb rename to D-Pandas.ipynb diff --git a/week_5.ipynb b/E-Writing_Scripts.ypynb similarity index 100% rename from week_5.ipynb rename to E-Writing_Scripts.ypynb From 740b98d14fbc1be7e68ffa191fd973af07ad0b2f Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Thu, 22 Aug 2024 17:26:35 -0700 Subject: [PATCH 05/94] cleanup --- {0-coursework => legacy/0-coursework}/README.md | 0 {0-coursework => legacy/0-coursework}/fireballs.ipynb | 0 {0-coursework => legacy/0-coursework}/grades.csv | 0 {0-coursework => legacy/0-coursework}/nasas fireballs.csv | 0 {0-coursework => legacy/0-coursework}/simple_text.txt | 0 {0-coursework => legacy/0-coursework}/stundent_grades.json | 0 6 files changed, 0 insertions(+), 0 deletions(-) rename {0-coursework => legacy/0-coursework}/README.md (100%) rename {0-coursework => legacy/0-coursework}/fireballs.ipynb (100%) rename {0-coursework => legacy/0-coursework}/grades.csv (100%) rename {0-coursework => legacy/0-coursework}/nasas fireballs.csv (100%) rename {0-coursework => legacy/0-coursework}/simple_text.txt (100%) rename {0-coursework => legacy/0-coursework}/stundent_grades.json (100%) diff --git a/0-coursework/README.md b/legacy/0-coursework/README.md similarity index 100% rename from 0-coursework/README.md rename to legacy/0-coursework/README.md diff --git a/0-coursework/fireballs.ipynb b/legacy/0-coursework/fireballs.ipynb similarity index 100% rename from 0-coursework/fireballs.ipynb rename to legacy/0-coursework/fireballs.ipynb diff --git a/0-coursework/grades.csv b/legacy/0-coursework/grades.csv similarity index 100% rename from 0-coursework/grades.csv rename to legacy/0-coursework/grades.csv diff --git a/0-coursework/nasas fireballs.csv b/legacy/0-coursework/nasas fireballs.csv similarity index 100% rename from 0-coursework/nasas fireballs.csv rename to legacy/0-coursework/nasas fireballs.csv diff --git a/0-coursework/simple_text.txt b/legacy/0-coursework/simple_text.txt similarity index 100% rename from 0-coursework/simple_text.txt rename to legacy/0-coursework/simple_text.txt diff --git a/0-coursework/stundent_grades.json b/legacy/0-coursework/stundent_grades.json similarity index 100% rename from 0-coursework/stundent_grades.json rename to legacy/0-coursework/stundent_grades.json From 6af075717f4ed44bfb5f47e13efc45ff4f92d8e9 Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Thu, 22 Aug 2024 18:03:37 -0700 Subject: [PATCH 06/94] cleanup --- E-Writing_Scripts.ypynb => E-Writing_Scripts.ipynb | 0 F-Microcontrollers.ipynb | 0 README.md | 9 +++++++-- 3 files changed, 7 insertions(+), 2 deletions(-) rename E-Writing_Scripts.ypynb => E-Writing_Scripts.ipynb (100%) create mode 100644 F-Microcontrollers.ipynb diff --git a/E-Writing_Scripts.ypynb b/E-Writing_Scripts.ipynb similarity index 100% rename from E-Writing_Scripts.ypynb rename to E-Writing_Scripts.ipynb diff --git a/F-Microcontrollers.ipynb b/F-Microcontrollers.ipynb new file mode 100644 index 0000000..e69de29 diff --git a/README.md b/README.md index 65b9949..5d0b7f5 100644 --- a/README.md +++ b/README.md @@ -10,7 +10,7 @@ We have coursework ready to learn a few things: * ... Will add more to this list... ## Getting Started -You need a place to run python code and open "ipython notebooks". +You need a place to run python code and open "ipython notebooks". Let us know if you need a laptop to use during class. Our recommended mode of work will be in notebooks on google Colab: https://colab.research.google.com/ * Sign up for a google account if you don't have one. @@ -18,13 +18,18 @@ Our recommended mode of work will be in notebooks on google Colab: https://colab * Open the week one notebook that we'll be working from: * Go to File -> Open Notebook -> Github, and paste in "a8ksh4/Python_Class". * Open the Library Week 1 notebook file -* There's a nice intro video for collabe here: https://www.youtube.com/watch?v=inN8seMm7UI +* There's a nice intro video for colab here: https://www.youtube.com/watch?v=inN8seMm7UI If you're working from your own laptop and want to open notebooks locally rather than in colab, I'd recommend insalling the the Anaconda Python distribution from here: https://www.anaconda.com/products/distribution * In windows, I'd recommend NOT running the installer as administrator - Install for only a single user when prompted. It's easier to install packages if it is installed in your home directory rather than a shared area for all users. * Anaconda is available for Windows, Mac, and Linux! * You can use any python distribution, but Anaconda is highly recommended becuase its package manager works so well and it has support for so many libraries out-of-the-box. +It's also nice editing notebooks and code in VS Code. I think that works well with a plain python instal on your computer, so you'd want to use these: +* Python: +* VS Code: + * Install extensions + ## Curriculum These notebooks will be renamed to remove the week # convention. * Week 1: Introduction to Python and Google Colab. Covering variables and data types (numeric, strings, boolean), truthiness, and basic control flow (if-else statements). From 108cb9df407111bcf7a603d433ab11355e9bae18 Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Thu, 22 Aug 2024 18:13:08 -0700 Subject: [PATCH 07/94] cleanup --- A-Getting_Started.ipynb | 9 +++++++++ B-Dictionaries_and_Loops.ipynb | 2 +- C-Functions.ipynb | 2 +- D-Pandas.ipynb | 2 +- E-Writing_Scripts.ipynb | 2 +- 5 files changed, 13 insertions(+), 4 deletions(-) diff --git a/A-Getting_Started.ipynb b/A-Getting_Started.ipynb index ba6c58f..354c913 100644 --- a/A-Getting_Started.ipynb +++ b/A-Getting_Started.ipynb @@ -23,6 +23,15 @@ "outputs": [], "source": [] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "BTW, you're looking at a Python Notebook, aka ipython notebook or jupyter notebook. There are \"markdown\" text cells and code cells. You can press shift + enter to render a text cell or to run a code cell. And you can insert a new cell anywhere you want.\n", + "\n", + "You can learn more about markdown at https://www.markdownguide.org/basic-syntax/ - it's a way to make nice looking documents from plain text. You can even use LaTeX in markdown!" + ] + }, { "cell_type": "markdown", "metadata": {}, diff --git a/B-Dictionaries_and_Loops.ipynb b/B-Dictionaries_and_Loops.ipynb index b6254ab..23c3c5a 100644 --- a/B-Dictionaries_and_Loops.ipynb +++ b/B-Dictionaries_and_Loops.ipynb @@ -4,7 +4,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Week 2\n", + "# Section B\n", "\n", "**Topics**: Dictionaries and advanced control flow - for and while loops - and list comprehinsions.\n", "\n", diff --git a/C-Functions.ipynb b/C-Functions.ipynb index 9e64a37..2f07483 100644 --- a/C-Functions.ipynb +++ b/C-Functions.ipynb @@ -4,7 +4,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Week 3\n", + "# Section C\n", "\n", "**Topics**: Introducing functions and modules in Python. Basic introduction to pandas for data analysis, focusing on importing data and initial data exploration.\n", "\n", diff --git a/D-Pandas.ipynb b/D-Pandas.ipynb index 40899df..8dbbcf2 100644 --- a/D-Pandas.ipynb +++ b/D-Pandas.ipynb @@ -4,7 +4,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Week 4\n", + "# Section D\n", "\n", "**Pandas week!**\n", "\n", diff --git a/E-Writing_Scripts.ipynb b/E-Writing_Scripts.ipynb index c66585e..5c626f3 100644 --- a/E-Writing_Scripts.ipynb +++ b/E-Writing_Scripts.ipynb @@ -4,7 +4,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Week 5\n", + "# Section E\n", "\n", "**Topics** - Python Editors, Writing and runnig scripts, argparse library\n", "\n", From 64ff1cf98595c0bc59bee464526673339056ee55 Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Sat, 24 Aug 2024 11:07:53 -0700 Subject: [PATCH 08/94] content --- ...pynb => C-Functions_and_Pandas_Intro.ipynb | 0 README.md | 156 +++++++----------- 2 files changed, 57 insertions(+), 99 deletions(-) rename C-Functions.ipynb => C-Functions_and_Pandas_Intro.ipynb (100%) diff --git a/C-Functions.ipynb b/C-Functions_and_Pandas_Intro.ipynb similarity index 100% rename from C-Functions.ipynb rename to C-Functions_and_Pandas_Intro.ipynb diff --git a/README.md b/README.md index 5d0b7f5..e5077dc 100644 --- a/README.md +++ b/README.md @@ -1,13 +1,26 @@ -# Python Workshop +# Python Programming Workshop -Welcome to the Library Python Workshop! +Welcome to the Library Python Programming Workshop! -We meet once a week to learn how to program in the Python progamming language. This is intended to be a work at your own pace environment, just bring any questions and stuff you'd like to look at each week and we all benefit as a group looking at it. +We meet once a week to learn how to program in the Python progamming language. This is a work at your own pace and collaborate with others environment; Just bring any questions and stuff you'd like to look at each week and we all benefit as a group looking at it. -We have coursework ready to learn a few things: -* Basics +We have a bunch of coureswork ready to use, including: +* Python Basics * Data analysis with "Pandas" -* ... Will add more to this list... + +See the Notebooks list below for a more detailed list. + +## Current Schedule: +* Monday Aug 26th 4-5PM +* Thursday Aug 29th 4:30-6:30PM +* Wednesday Sep 4th 4-5PM +* TBD (probably not) Sep 11th and 18th +* Wednesday Sep 25th 4-5PM +* Wednesday Oct 2nd 4-5PM +* Each wednesday from 4-5PM ongoing. + +Please check the library calendar here to confirm dates/times: **https://engagedpatrons.org/EventsCalendar.cfm?SiteID=7839** +* Set "limit by location" to "Cameron Park Library". ## Getting Started You need a place to run python code and open "ipython notebooks". Let us know if you need a laptop to use during class. @@ -30,109 +43,54 @@ It's also nice editing notebooks and code in VS Code. I think that works well w * VS Code: * Install extensions -## Curriculum -These notebooks will be renamed to remove the week # convention. -* Week 1: Introduction to Python and Google Colab. Covering variables and data types (numeric, strings, boolean), truthiness, and basic control flow (if-else statements). -* Week 2: Exploring more complex data types (lists, tuples, dictionaries) and advanced control flow (loops: for and while). -* Week 3: Introducing functions and modules in Python. Basic introduction to pandas for data analysis, focusing on importing data and initial data exploration. -* Week 4: Building on pandas skills with more advanced data manipulation and introduction to data visualization using pandas and matplotlib for generating graphs. +## Notebooks Summary +We have a series of python notebooks ready to work through to learn from. They include all of the information you need to learn, links to additional resources, and programming problems to work through for each topic. + +* A-Getting_Started.ipynb - Introduction to Python and Google Colab. Covering variables and data types (numeric, strings, boolean), truthiness, and basic control flow (if-else statements). +* B-Dictionaries_and_Loops.ipynb - Exploring more complex data types (lists, tuples, dictionaries) and advanced control flow (loops: for and while). Opening files and intro to json. +* C-Functions_and_Pandas_Intro.ipynb - Introducing functions and modules in Python. Basic introduction to pandas for data analysis, focusing on importing data and initial data exploration +* D-Pandas.ipynb - Building on pandas skills with more advanced data manipulation and introduction to data visualization using pandas and matplotlib for generating graphs. -### Next Steps -* Online Courses -* Weekend projects -* Automate something at work +**In Development:** +* E-Writing_Scripts.ipynb - Installing python locally, environment, structure of a script, and argparse +* F-Microcontrollers_Intro.ipynb - Circuitpython and Micropython on common microcontroller boards. +* G-Exception_Handling.ipynb - Try/Except blocks and Error Handing. +* H-Unit_Tests.ipynb - Writing test cases to verify your code works as designed. ## Resources -* https://docs.python.org/3/ -* https://www.w3schools.com/python/default.asp -* https://google.github.io/styleguide/pyguide.html -* https://github.com/jsantarc/cognitiveclass.ai-Python-for-Data-Science +**Documentation** +* https://docs.python.org/3/ - Python Documentation +* https://www.w3schools.com/python/default.asp - Great documentation and Examples +* https://peps.python.org/pep-0008/ - "Pep 8" style guide +* https://google.github.io/styleguide/pyguide.html - Google style guide +* https://github.com/jsantarc/cognitiveclass.ai-Python-for-Data-Science - Data science notebooks + +**Online Programming Tools** * https://replit.com/ ### Notes on AI like ChatGPT -These tools are very helpful for learning. For this course, use them to explain how things work, but don't ask them to write code for you. If you don't experiment and learn for yourself, you won't retain much. +These tools are **very** helpful for learning. For this course, use them to explain how things work, but don't ask them to write code for you. If you don't experiment and learn for yourself, you won't retain as much. Keep all of your code and use your past code as the start for each more complicated problem. You'll build a toolkit of libraries and code bits that you understand and make all kinds of things from. +* https://chat.openai.com/chat +* Example questions: + * How do I use for loops in python? + * How do I configure VS Code to use my Anaconda python interpreter? + * etc! -### Optional Pre-Work -* Create a ChatGPT account and try asking it a few questions - it can be very helpful for figuring out how to do things, why things work the way they do, etc: - * https://chat.openai.com/chat - * Example questions: - * How do I use for loops in python? - * How do I configure VS Code to use my Anaconda python interpreter? - * etc! +## Github +This content is hosted here in a Git repository. You can check out a copy to your computer and "pull" updates with a git client: * Make a github.com account and install git. * Linux: sudo apt-get install git * Windows: https://git-scm.com/download/win * Check out this repository in your project area: git clone https://github.com/a8ksh4/python_class.git` - * Feel free to open "bug reports" in this repo for content you'd like to see added, changes needed, or corrections. - -* Install a text editor with code highlighting or an IDE for writing code in: - * Notepad ++: http://notepad-plus-plus.org/ - * VS Code: https://code.visualstudio.com/ - -* Print out this python cheat sheet: tbd - -## Quick Links: -0. [Coursework](./0-coursework/README.md) -1. [Git and Github](./1-git_and_github/README.md) -2. [Python Basics](./2-python_basics/README.md) -3. [Files and Paths](./3-files_and_paths/README.md) -4. [System and Environment](./4-system_and_env/README.md) -5. [Data Manipulation](./5-data_manipulation/README.md) -6. [Exception Handling](./6-exception_handling/README.md) -7. [Unit Testing](./7-unit_testing/README.md) - -## Topics Overview: -### 0 - Coursework -There are four notebooks here, one for each week of the class. - -### 1 - Git and Github - -### 2 - Python Basics -* python installations -* data types -* prompts & getpass -* recursion & iteration -* functions -* scope -* file handling -* sorting -* regex - -### 3 - Files and Paths -* create, rm, copy, move, chmod, chown -* tar, gzip -* logging - -### 4 - System and Environment -* argparse -* os & os.environ -* sys & sys.args -* setuid, setgid -* nis & nodes -* platform -* subprocess - -### 5 - Data Manipulation -* csv, json, yaml, pickle, xlsx -* regex -* sql & sqlite - -### 6 - Exception Handling -* methodology -* Examles - -### 7 - QA and Unit Testing -* examples - -### 8 - Debugging -* http://docs.python-guide.org/en/latest/writing/tests/ - -### 9 - Data Science with pandas -* Importing a Spreadsheet -* Basic column manipulation -* ... -* ... - -### Windows Examples + +Feel free to open "bug reports" in this repo for content you'd like to see added, changes needed, or corrections. Or make an improvement and submit a pull request and I'll merge your changes into the repo. + +## Code Editors +Install a text editor with code highlighting or an IDE for writing code in: +* Notepad ++: http://notepad-plus-plus.org/ +* VS Code: https://code.visualstudio.com/ + +If you're programming circuitpython or micropython on a microcontroller, Thonny is the best editor to start with. It has a built in serial console for seeing output from your code, and helps handle updating the code files on the board for you. An IDE like VS Code or IntelliJ with a Micropython or Circuitpython extension would be more powerful, but more complicated to set up. +* https://thonny.org/ From fec321e7a997a93c56804995fd96897c3adc6057 Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Sat, 24 Aug 2024 11:18:17 -0700 Subject: [PATCH 09/94] update repo path in docs --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index e5077dc..4e627d1 100644 --- a/README.md +++ b/README.md @@ -29,7 +29,7 @@ Our recommended mode of work will be in notebooks on google Colab: https://colab * Sign up for a google account if you don't have one. * Log in to https://colab.research.google.com and skim over the readme info * Open the week one notebook that we'll be working from: - * Go to File -> Open Notebook -> Github, and paste in "a8ksh4/Python_Class". + * Go to File -> Open Notebook -> Github, and paste in "a8ksh4/python_workshop". * Open the Library Week 1 notebook file * There's a nice intro video for colab here: https://www.youtube.com/watch?v=inN8seMm7UI From 6e7cc7c0588013eb06bd92ebd86892e8623151be Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Sun, 25 Aug 2024 11:42:04 -0700 Subject: [PATCH 10/94] content --- B-Dictionaries_and_Loops.ipynb | 6 +- ...nb => C-Functions_and_Module_Imports.ipynb | 168 +--------------- D-Pandas.ipynb | 10 +- D1-Pandas_Example.ipynb | 190 ++++++++++++++++++ D2-Advanced_Pandas.ipynb | 34 ++++ F-Microcontrollers.ipynb | 27 +++ G-Web_Scraping.ipynb | 25 +++ 7 files changed, 287 insertions(+), 173 deletions(-) rename C-Functions_and_Pandas_Intro.ipynb => C-Functions_and_Module_Imports.ipynb (67%) create mode 100644 D1-Pandas_Example.ipynb create mode 100644 D2-Advanced_Pandas.ipynb create mode 100644 G-Web_Scraping.ipynb diff --git a/B-Dictionaries_and_Loops.ipynb b/B-Dictionaries_and_Loops.ipynb index 23c3c5a..4b27012 100644 --- a/B-Dictionaries_and_Loops.ipynb +++ b/B-Dictionaries_and_Loops.ipynb @@ -4,7 +4,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Section B\n", + "# Section B - Dictionaries and Loops\n", "\n", "**Topics**: Dictionaries and advanced control flow - for and while loops - and list comprehinsions.\n", "\n", @@ -935,7 +935,9 @@ "metadata": {}, "source": [ "# Week 2 Turtle Challenge\n", - "This week, we can use the power of loops to make shapes of arbitrary numbers of sides with only a few lines of code!\n", + "Note - you can find example code for running \"turtle\" in the A-Getting_Started notebook. \n", + "\n", + "This time, let's use the power of loops to make shapes of arbitrary numbers of sides with only a few lines of code!\n", "\n", "#### *Exercise*:\n", "**Level 1**\n", diff --git a/C-Functions_and_Pandas_Intro.ipynb b/C-Functions_and_Module_Imports.ipynb similarity index 67% rename from C-Functions_and_Pandas_Intro.ipynb rename to C-Functions_and_Module_Imports.ipynb index 2f07483..187da2b 100644 --- a/C-Functions_and_Pandas_Intro.ipynb +++ b/C-Functions_and_Module_Imports.ipynb @@ -4,7 +4,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Section C\n", + "# Section C - Functions and Module Imports\n", "\n", "**Topics**: Introducing functions and modules in Python. Basic introduction to pandas for data analysis, focusing on importing data and initial data exploration.\n", "\n", @@ -340,173 +340,13 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# First Pandas Experiment\n", - "Nasa has this list of meteorites that we can use. Let's see what we can learn about this data. We'll import it and generate some plots to better understand it.\n", + "# Turtle Challenge with Functions\n", + "Note - you can find example code for running \"turtle\" in the A-Getting_Started notebook. \n", "\n", - "First thing is importing. We use requests to query the url, get the json data, and convert it to a dataframe. A few useful funtions for viewing data in a dataframe are .head(), .tail(), and .info(). " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import requests\n", - "import pandas as pd\n", - "meteorites = requests.get('https://data.nasa.gov/resource/y77d-th95.json').json()\n", - "mets = pd.DataFrame(meteorites)\n", - "mets.head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Great, so we have geolocation, mass, and datetime info for each meteor. Let's try graphing mass per date to see if there's any obvious trend. \n", - "\n", - "We need each column to be the correct datatype before we can generate a plot.\n", - "* To simplify the datetime 'year' column, I use a string operation to split it on the 'T' ang take just the year, month and day. Then we can use pd.to_datetime do convert it to a datetime object by passing in the format to use to convert it. \n", - "* We need the mass to be a numeric value so we overwrite the column with itself converted using pd.to_numeric. Similarly, there ar pd.to_int, pd.to_float, pd.to_string operatoins that we might want to use in other cases. \n", - "\n", - "Finally, pandas has a built in plot function that can generate a bunch of different graph types. Setting 'logy' says to graph the y axis in log scale. Try setting it and see what happens to the data points and y axis scale. \n", - "\n", - "https://www.w3schools.com/python/gloss_python_date_format_codes.asp" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Graph the meteorites by date and mass\n", - "mets['ymd'] = mets['year'].str.split('T').str[0]\n", - "mets['ymd'] = pd.to_datetime(mets['ymd'], format='%Y-%m-%d', errors='coerce')\n", - "mets['mass'] = pd.to_numeric(mets['mass'])\n", - "mets.plot.scatter(x='ymd', y='mass', logy=True, title='Meteorite Mass by Date')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "That's neat, but doesn't show much of a trend except that we probably have better records of meteorites found since the late 1800s. Maybe it would be interesting to see where on earth we are finding the meteorites. \n", - "\n", - "Let's plot them on a map of the earth. First thing for that is to get a map of the earth. We can use some geopandas stuff for that. Below, \"world\" is a dataframe with rows for each landmass on a map. Try printing world.head() to see some of the actual data. \n", - "\n", - "https://geopandas.org/en/stable/docs/user_guide.html" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import geopandas\n", - "from geodatasets import get_path\n", - "\n", - "path = get_path(\"naturalearth.land\")\n", - "world = geopandas.read_file(path)\n", - "world.plot()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "And now lets put it together! Plotting can get complicated fast... I think that's a weakness of this stuff in python with the pandas, matplotlib libraries, but it's very powerful at least. \n", - "\n", - "To combine plots, we initialize an axis that we pass to the .plot function when we call it for the world and our meteorite dataframes so that the can draw themselves on the same graph. 'ax=ax' looks a littele weird. We'r passing a variable named ax to an argument with the same name. It's just sort of convention to do it this way. Maybe it would be better to use axis for the variable name and pass that to the plot function. \n", - "\n", - "We need to convert our reclong and reclat (longitude and latitude) to numeric values to plot them, so use call .astype(float) to do a type conversion from string.\n", - "\n", - "You can change the colormap - if you put in a bad value, it'll print a bunch you can try in the error message. And the norm= is to convert the mass to log scale here so that we get nice colors for all of the meteorite masses. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import matplotlib\n", - "import matplotlib.pyplot as plt\n", - "\n", - "fig, ax = plt.subplots(figsize=(12,6)) # create a figure and axis\n", - "\n", - "world.plot(ax=ax) # plot the world on the axis\n", - "\n", - "mets['reclong'] = mets['reclong'].astype(float) # convert reclong column from string to float\n", - "mets['reclat'] = mets['reclat'].astype(float) # convert reclat column from string to float\n", - "\n", - "# plot the meteorites on the same axis\n", - "mets.plot(x=\"reclong\", y=\"reclat\", kind=\"scatter\", \n", - " c=\"mass\", colormap=\"Accent_r\", \n", - " title=f\"Meteors around the world!\", \n", - " ax=ax, norm=matplotlib.colors.LogNorm())\n", - "\n", - "ax.grid(True) # turn on the grid\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Well that's neat. I extected to see more concentration around the equator. We might need to normalize for population density (people who could see and find an asteroid to report on) to get an idea of were most asteroids actually fall. There is a larger version of this dataset at: \n", - "\n", - "We'll look at more actual numerical analysis stuff in Week 4.\n", - "\n", - "#### *Exercise*\n", - "Open a new notebook and download the dataset for observed meteors from here: https://www.kaggle.com/datasets/ramjasmaurya/fireballsbolides-1988-april-2022. Save it in the same directory as your notebook. If you're working in Google Colab, you should be able to go to File -> Locate notebook in Drive, and then upload the dataset csv file to the same directory in Google drive. \n", - "\n", - "Copy over the following code to get started, and use the above example for the meteorites to make a couple of graphs for this new dataset.\n", - "* radiated energy vs time\n", - "* altitude vs radiated energy\n", - "* try using .corr(numeric_only=True) on the dataframe to see which numeric columns have the strongest correlation. What can we say about these boloids when they enter our atmosphere?" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "csv_file_name = 'nasas fireballs.csv'\n", - "nfb = pd.read_csv(csv_file_name)\n", - "# nfb.head() # Uncomment to see the first few rows of the data\n", - "# nfb.info() # Uncomment to see the column names and data types of each column\n", - "\n", - "# the date/time ... column is a string that we want to convert to a datetime object\n", - "# we're creating a 'date' column for this. We could also overwrite the existing column\n", - "# nfb['date'] = pd.to_datetime(nfb['date/time for peak brightness'])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "#### *Exercise*\n", - "Go through some of these datasets and find something that looks interesting to you that we can work on next week.\n", - "\n", - "* https://github.com/jdorfman/awesome-json-datasets - we can direcly query these using requests and the url as we did for the meteorite data. \n", - "* https://catalog.data.gov/dataset/\n", - "* https://data.fivethirtyeight.com/ - they have zip files with csv data\n", - "* https://www.kaggle.com/datasets - click all data sets and you'll see loads of stuff. looks like they have large csv files to download." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Week 3 Turtle Challenge\n", "This week, we can use functions to isolate complex operations into little chunks that are used by other code to perform complex behavior with simple, readable, code.\n", " \n", "#### *Exercise*:\n", - "Streamline your turtle code from last week by moving the functionality to draw arbitrary shapes into a function. The function should take arguments for numbers of sides and size and will be called from the ret of your code from last time." + "Streamline your turtle code from the Dictionaries and Loops notebook by moving the functionality to draw arbitrary shapes into a function. The function should take arguments for numbers of sides and size and will be called from the ret of your code from last time." ] }, { diff --git a/D-Pandas.ipynb b/D-Pandas.ipynb index 8dbbcf2..2087974 100644 --- a/D-Pandas.ipynb +++ b/D-Pandas.ipynb @@ -4,17 +4,13 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Section D\n", + "# Section D - Pandas\n", "\n", - "**Pandas week!**\n", + "**Topics:** Pandas basics, includeng row and column selections, index, column names, data types and type-casting, and a bit more. \n", "\n", "The name \"Pandas\" comes from \"Panel Data\" and \"Python Data Analysis\". \"Panel Data\" refers to a particular type of data that is multidimensional, involving measurements over time. The term \"Pandas\" is a blend of these concepts, reflecting the library's purpose of providing data structures and data analysis tools in Python.\n", "\n", - "**Pandas** are playfun and memorable, just like **Pandas**!\n", - "\n", - "**Fun detours**\n", - "* Use openai chatgpt to do some text AI\n", - "* Web page hosted in python\n", + "**Pandas** are playfull and memorable, just like **Pandas**!\n", "\n", "# How to approach learning pandas\n", "Start with simple problems. Import a clean excel file. \n", diff --git a/D1-Pandas_Example.ipynb b/D1-Pandas_Example.ipynb new file mode 100644 index 0000000..db2efe4 --- /dev/null +++ b/D1-Pandas_Example.ipynb @@ -0,0 +1,190 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Section D1 - Pandas Example\n", + "\n", + "Let's do some simple data analysis and presentatin with some plots. Nasa has this list of meteorites that we can use. It doesn't require much cleaning/prep to use, so shouldn't take too many steps to make some nice plots and make some observtions.\n", + "\n", + "First thing is importing. We use requests to query the url, get the json data, and convert it to a dataframe. A few useful funtions for viewing data in a dataframe are .head(), .tail(), and .info(). \n", + "\n", + "There's more info on this dataset here: https://data.nasa.gov/Space-Science/Meteorite-Landings/gh4g-9sfh/about_data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import requests\n", + "import pandas as pd\n", + "meteorites = requests.get('https://data.nasa.gov/resource/y77d-th95.json').json()\n", + "mets = pd.DataFrame(meteorites)\n", + "mets.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Great, so we have geolocation, mass, and datetime info for each meteor. Let's try graphing mass per date to see if there's any obvious trend. \n", + "\n", + "We need each column to be the correct datatype before we can generate a plot.\n", + "* To simplify the datetime 'year' column, I use a string operation to split it on the 'T' ang take just the year, month and day. Then we can use pd.to_datetime do convert it to a datetime object by passing in the format to use to convert it. \n", + "* We need the mass to be a numeric value so we overwrite the column with itself converted using pd.to_numeric. Similarly, there ar pd.to_int, pd.to_float, pd.to_string operatoins that we might want to use in other cases. \n", + "\n", + "Finally, pandas has a built in plot function that can generate a bunch of different graph types. Setting 'logy' says to graph the y axis in log scale. Try setting it and see what happens to the data points and y axis scale. \n", + "\n", + "https://www.w3schools.com/python/gloss_python_date_format_codes.asp" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Graph the meteorites by date and mass\n", + "mets['ymd'] = mets['year'].str.split('T').str[0]\n", + "mets['ymd'] = pd.to_datetime(mets['ymd'], format='%Y-%m-%d', errors='coerce')\n", + "mets['mass'] = pd.to_numeric(mets['mass'])\n", + "mets.plot.scatter(x='ymd', y='mass', logy=True, title='Meteorite Mass by Date')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "That's neat, but doesn't show much of a trend except that we probably have better records of meteorites found since the late 1800s. Maybe it would be interesting to see where on earth we are finding the meteorites. \n", + "\n", + "Let's plot them on a map of the earth. First thing for that is to get a map of the earth. We can use some geopandas stuff for that. Below, \"world\" is a dataframe with rows for each landmass on a map. Try printing world.head() to see some of the actual data. \n", + "\n", + "https://geopandas.org/en/stable/docs/user_guide.html" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import geopandas\n", + "from geodatasets import get_path\n", + "\n", + "path = get_path(\"naturalearth.land\")\n", + "world = geopandas.read_file(path)\n", + "world.plot()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "And now lets put it together! Plotting can get complicated fast... I think that's a weakness of this stuff in python with the pandas, matplotlib libraries, but it's very powerful at least. \n", + "\n", + "To combine plots, we initialize an axis that we pass to the .plot function when we call it for the world and our meteorite dataframes so that the can draw themselves on the same graph. 'ax=ax' looks a littele weird. We'r passing a variable named ax to an argument with the same name. It's just sort of convention to do it this way. Maybe it would be better to use axis for the variable name and pass that to the plot function. \n", + "\n", + "We need to convert our reclong and reclat (longitude and latitude) to numeric values to plot them, so use call .astype(float) to do a type conversion from string.\n", + "\n", + "You can change the colormap - if you put in a bad value, it'll print a bunch you can try in the error message. And the norm= is to convert the mass to log scale here so that we get nice colors for all of the meteorite masses. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib\n", + "import matplotlib.pyplot as plt\n", + "\n", + "fig, ax = plt.subplots(figsize=(12,6)) # create a figure and axis\n", + "\n", + "world.plot(ax=ax) # plot the world on the axis\n", + "\n", + "mets['reclong'] = mets['reclong'].astype(float) # convert reclong column from string to float\n", + "mets['reclat'] = mets['reclat'].astype(float) # convert reclat column from string to float\n", + "\n", + "# plot the meteorites on the same axis\n", + "mets.plot(x=\"reclong\", y=\"reclat\", kind=\"scatter\", \n", + " c=\"mass\", colormap=\"Accent_r\", \n", + " title=f\"Meteors around the world!\", \n", + " ax=ax, norm=matplotlib.colors.LogNorm())\n", + "\n", + "ax.grid(True) # turn on the grid\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Well that's neat. I extected to see more concentration around the equator. We might need to normalize for population density (people who could see and find an asteroid to report on) to get an idea of were most asteroids actually fall. There is a larger version of this dataset at: \n", + "\n", + "We'll look at more actual numerical analysis stuff in Week 4.\n", + "\n", + "#### *Exercise*\n", + "Open a new notebook and download the dataset for observed meteors from here: https://www.kaggle.com/datasets/ramjasmaurya/fireballsbolides-1988-april-2022. Save it in the same directory as your notebook. If you're working in Google Colab, you should be able to go to File -> Locate notebook in Drive, and then upload the dataset csv file to the same directory in Google drive. \n", + "\n", + "Copy over the following code to get started, and use the above example for the meteorites to make a couple of graphs for this new dataset.\n", + "* radiated energy vs time\n", + "* altitude vs radiated energy\n", + "* try using .corr(numeric_only=True) on the dataframe to see which numeric columns have the strongest correlation. What can we say about these boloids when they enter our atmosphere?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "csv_file_name = 'nasas fireballs.csv'\n", + "nfb = pd.read_csv(csv_file_name)\n", + "# nfb.head() # Uncomment to see the first few rows of the data\n", + "# nfb.info() # Uncomment to see the column names and data types of each column\n", + "\n", + "# the date/time ... column is a string that we want to convert to a datetime object\n", + "# we're creating a 'date' column for this. We could also overwrite the existing column\n", + "# nfb['date'] = pd.to_datetime(nfb['date/time for peak brightness'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "#### *Exercise*\n", + "Go through some of these datasets and find something that looks interesting to you that we can work on next week.\n", + "\n", + "* https://github.com/jdorfman/awesome-json-datasets - we can direcly query these using requests and the url as we did for the meteorite data. \n", + "* https://catalog.data.gov/dataset/\n", + "* https://data.fivethirtyeight.com/ - they have zip files with csv data\n", + "* https://www.kaggle.com/datasets - click all data sets and you'll see loads of stuff. looks like they have large csv files to download." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.3" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/D2-Advanced_Pandas.ipynb b/D2-Advanced_Pandas.ipynb new file mode 100644 index 0000000..55ca851 --- /dev/null +++ b/D2-Advanced_Pandas.ipynb @@ -0,0 +1,34 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# D2 - Advanced Pandas\n", + "\n", + "**Topics**: loc and iloc, groupby, stack, unstack, pivot, ...\n", + "\n", + "## Wide Format vs Long Format\n", + "\n", + "## .loc and .iloc\n", + "\n", + "## stack, unstack, and pivot\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/F-Microcontrollers.ipynb b/F-Microcontrollers.ipynb index e69de29..9a5b641 100644 --- a/F-Microcontrollers.ipynb +++ b/F-Microcontrollers.ipynb @@ -0,0 +1,27 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Section F - Microcontrollers\n", + "\n", + "**Topics:** Programming microcontrollers with CircuitPython" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/G-Web_Scraping.ipynb b/G-Web_Scraping.ipynb new file mode 100644 index 0000000..852d29f --- /dev/null +++ b/G-Web_Scraping.ipynb @@ -0,0 +1,25 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Section G - Web Scraping" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From a4ab8ac2f6caece7f71a3c862c10c73c4f62ed78 Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Sun, 25 Aug 2024 12:57:03 -0700 Subject: [PATCH 11/94] content --- D-Pandas.ipynb | 288 ++++++++++++++++++++++++++++++++++++++++++++++--- 1 file changed, 272 insertions(+), 16 deletions(-) diff --git a/D-Pandas.ipynb b/D-Pandas.ipynb index 2087974..ec8aaae 100644 --- a/D-Pandas.ipynb +++ b/D-Pandas.ipynb @@ -11,6 +11,277 @@ "The name \"Pandas\" comes from \"Panel Data\" and \"Python Data Analysis\". \"Panel Data\" refers to a particular type of data that is multidimensional, involving measurements over time. The term \"Pandas\" is a blend of these concepts, reflecting the library's purpose of providing data structures and data analysis tools in Python.\n", "\n", "**Pandas** are playfull and memorable, just like **Pandas**!\n", + "\n", + "Pandas has two types of objects, DataFrames and Series. A dataframe has rows and columns, like a spreadsheet - two dimensional. A single row or column from a dataframe is a Series. If we select a single column from a DataFrame, we get a series, a single dimensional object, and a series can be inserted into a df column. \n", + "\n", + "By convention, we'll import pandas as \"pd\" to save us some typing.\n", + "\n", + " import pandas as pd\n", + "\n", + " It's also common to call a single dataframe we're working on \"df\", but it's a good idea to use a longer more descriptive name for complex tasks.\n", + "\n", + "There is functionality built into pd, as well as the dataframe and series objects that we create that we will use to manipulate the dataframe and series. For example, we use these DataFrame functions a lot to view our data:\n", + "\n", + " df.info() # show a summary of columns and data types in the dataframe. \n", + " df.head() # show the top few rows of the dataframe.\n", + " df.tail() # few bottom rows\n", + " ...and more\n", + "\n", + "And there are functions we call from pd to manipulate the dataframes:\n", + "\n", + " new_df = pd.concat(a_list_of_dataframes) # concatenate dataframes together\n", + " ...and more\n", + "\n", + "## Creating a new Dataframe\n", + "We can create an empty dataframe:\n", + "\n", + " df = pd.DataFrame()\n", + "\n", + "But generally (or always) we'll want to load some data to make a dataframe. Common ways to do this follow. Reference the documentation to see optional arguments to use, like \"skip_rows\" to skip padding rows at the top of an excel or csv file, or use_cols to only import specific columns. \n", + "\n", + "**Excel Files** - https://pandas.pydata.org/docs/reference/api/pandas.read_excel.html\n", + "\n", + " df = pd.read_excel(file_name, ... engine ...)\n", + "\n", + "**CSV Files or dat Files** - https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html\n", + "You may need to set the delimeter for some csv files. \n", + "\n", + " df = pd.read_csv(file_name, ...)\n", + " df = pd.read_table(file_name, ...)\n", + "\n", + "**json Data** - https://pandas.pydata.org/docs/reference/api/pandas.read_json.html\n", + "Useful for data loaded from the web. This is what we use in the D1-Pandas_Example notebook.\n", + "\n", + " df = pd.read_json(json_data, ...)\n", + "\n", + "**Dictionary of Lists to DataFrame**" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Name Age City\n", + "0 Alice 25 New York\n", + "1 Bob 30 Los Angeles\n", + "2 Charlie 35 Chicago\n" + ] + } + ], + "source": [ + "import pandas as pd\n", + "\n", + "data = {\n", + " 'Name': ['Alice', 'Bob', 'Charlie'],\n", + " 'Age': [25, 30, 35],\n", + " 'City': ['New York', 'Los Angeles', 'Chicago']\n", + "}\n", + "\n", + "df = pd.DataFrame(data)\n", + "print(df)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**list of dictionaries to DataFrame**\n", + "Same idea as above, but slightly different format." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Name Age City\n", + "0 Alice 25 New York\n", + "1 Bob 30 Los Angeles\n", + "2 Charlie 35 Chicago\n" + ] + } + ], + "source": [ + "data = [\n", + " {'Name': 'Alice', 'Age': 25, 'City': 'New York'},\n", + " {'Name': 'Bob', 'Age': 30, 'City': 'Los Angeles'},\n", + " {'Name': 'Charlie', 'Age': 35, 'City': 'Chicago'}\n", + "]\n", + "df = pd.DataFrame(data)\n", + "print(df)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### *Exercise*\n", + "\n", + "In the following code cell, use .info(), .describe(), and .head() to see what kind of data has been loaded into the dataframe. \n", + "\n", + "*We'll use this \"df\" for a few exercises below, so make sure to run this cell before continuing.*" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "https://api.worldbank.org/v2/countries/USA/indicators/SP.POP.TOTL?per_page=5000&format=json\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
indicatorcountrycountryiso3codedatevalueunitobs_statusdecimal
0{'id': 'SP.POP.TOTL', 'value': 'Population, to...{'id': 'US', 'value': 'United States'}USA20233349148950
1{'id': 'SP.POP.TOTL', 'value': 'Population, to...{'id': 'US', 'value': 'United States'}USA20223332714110
2{'id': 'SP.POP.TOTL', 'value': 'Population, to...{'id': 'US', 'value': 'United States'}USA20213320489770
3{'id': 'SP.POP.TOTL', 'value': 'Population, to...{'id': 'US', 'value': 'United States'}USA20203315269330
4{'id': 'SP.POP.TOTL', 'value': 'Population, to...{'id': 'US', 'value': 'United States'}USA20193283299530
\n", + "
" + ], + "text/plain": [ + " indicator \\\n", + "0 {'id': 'SP.POP.TOTL', 'value': 'Population, to... \n", + "1 {'id': 'SP.POP.TOTL', 'value': 'Population, to... \n", + "2 {'id': 'SP.POP.TOTL', 'value': 'Population, to... \n", + "3 {'id': 'SP.POP.TOTL', 'value': 'Population, to... \n", + "4 {'id': 'SP.POP.TOTL', 'value': 'Population, to... \n", + "\n", + " country countryiso3code date value \\\n", + "0 {'id': 'US', 'value': 'United States'} USA 2023 334914895 \n", + "1 {'id': 'US', 'value': 'United States'} USA 2022 333271411 \n", + "2 {'id': 'US', 'value': 'United States'} USA 2021 332048977 \n", + "3 {'id': 'US', 'value': 'United States'} USA 2020 331526933 \n", + "4 {'id': 'US', 'value': 'United States'} USA 2019 328329953 \n", + "\n", + " unit obs_status decimal \n", + "0 0 \n", + "1 0 \n", + "2 0 \n", + "3 0 \n", + "4 0 " + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import requests\n", + "import pandas as pd\n", + "import json\n", + "\n", + "data_url = 'https://api.worldbank.org/v2/countries/USA/indicators/SP.POP.TOTL?per_page=5000&format=json'\n", + "population = requests.get(data_url)\n", + "population = json.loads(population.content)\n", + "population = population[1]\n", + "print(data_url)\n", + "# df = pd.read_json(population.json()[1])\n", + "df = pd.DataFrame(population)\n", + "\n", + "df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ "\n", "# How to approach learning pandas\n", "Start with simple problems. Import a clean excel file. \n", @@ -63,21 +334,6 @@ "### Other" ] }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "bar\n" - ] - } - ], - "source": [] - }, { "cell_type": "code", "execution_count": null, @@ -161,7 +417,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.6" + "version": "3.12.3" } }, "nbformat": 4, From 42125d039bcd4c4c6670c66b50882d8764cad789 Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Wed, 28 Aug 2024 17:19:48 -0700 Subject: [PATCH 12/94] content --- B-Dictionaries_and_Loops.ipynb | 2 +- D-Pandas.ipynb | 2 +- E-Writing_Scripts.ipynb | 134 ++++++++++++++++++++++++++++++--- 3 files changed, 127 insertions(+), 11 deletions(-) diff --git a/B-Dictionaries_and_Loops.ipynb b/B-Dictionaries_and_Loops.ipynb index 4b27012..62228f2 100644 --- a/B-Dictionaries_and_Loops.ipynb +++ b/B-Dictionaries_and_Loops.ipynb @@ -41,7 +41,7 @@ "* numbers\n", "* tuples\n", "\n", - "You **cannot use lists** as dictionary keys.\n", + "You **cannot use lists** as dictionary keys, and you cannot use dictionaries as dictionary keys.\n", "\n", "## Using/Accessing dictionary data\n", "We have a few ways to use dictionaries:\n", diff --git a/D-Pandas.ipynb b/D-Pandas.ipynb index ec8aaae..9afaf80 100644 --- a/D-Pandas.ipynb +++ b/D-Pandas.ipynb @@ -32,7 +32,7 @@ " new_df = pd.concat(a_list_of_dataframes) # concatenate dataframes together\n", " ...and more\n", "\n", - "## Creating a new Dataframe\n", + "## Creating a Dataframe\n", "We can create an empty dataframe:\n", "\n", " df = pd.DataFrame()\n", diff --git a/E-Writing_Scripts.ipynb b/E-Writing_Scripts.ipynb index 5c626f3..655cc4e 100644 --- a/E-Writing_Scripts.ipynb +++ b/E-Writing_Scripts.ipynb @@ -4,28 +4,144 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Section E\n", + "# Section E - Writing Scripts / Programs\n", "\n", "**Topics** - Python Editors, Writing and runnig scripts, argparse library\n", "\n", + "## What is a script?\n", + "It's a text file with code that is executed by an interpreter. Your script might be a program... Calling something a program might imply that it's compiled or that it's more complicated than a script. Python is great for short utility scripts just as well as gigantic compilcated programs. In computationaly intensive programs, you might write moudles in C or or another compiled language, and call those parts from python, keeping all of the complex logic in python so that it's more human friendly to work on. \n", + "\n", "## Python Editors (IDEs)\n", - "A good editor has a few features that really help with writing code:\n", + "It's important to use a good editor for writing scripts. Some features of a good editor include:\n", "* Syntax highlighting\n", "* Linting - A Linter is a tool that looks at your code for issues like missing variables, misspelled stuff, and any time you diverge from standards and conventions that the rest of the world thinks are a good idea. \n", "* You make like for your ide to be able to run your code from the editor and give you the output. Or you may prefer to run it from a terminal window separately. \n", - "* Debugging - If you run your code from the editor, you should be able to set breakpoints to pause your script and see what variables are set, etc. " + "* Debugging - If you run your code from the editor, you should be able to set breakpoints to pause your script and see what variables are set, etc. \n", + "\n", + "A few good ones are:\n", + "* VS Code\n", + "* PyCharm\n", + "* Atom\n", + "* ...\n", + "* VIM or Emacs ()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Template for a script\n", + "\n", + "**The #! shebang line**\n", + "\n", + "Shebang is short for hash bang. This line says which interpreter to use to run the script. A couple of common entries are:\n", + "* In linux for python3:\n", + " * #!/usr/bin/env python3\n", + "* In windows, this would be common:\n", + " * #! python3\n", + "\n", + "In both cases the system PATH variable will be checked to find the given interpreter. \n", + "\n", + "**module description**\n", + "\n", + "You can add a short documentation abou the purpose of the script/module below the shebang line. \n", + "\n", + "**import statements**\n", + "\n", + "They go at the top.\n", + "\n", + "**global variables**\n", + "\n", + "Things like paths to tools that are called by the script, directories. Global variables should be in ALL_CAPS with underscores between the words if they are multi-word. It's common to have a VERBOSE or DEBUG boolean global that's referenced elsewhere do decide whether or not to print debug messages for troubleshooting issues. \n", + "\n", + "**function definitions**\n", + "\n", + "This is the main body of the script. It's not uncommon to have a \"main\" function that is the first thing called when the script starts. You don't have to define any functions if you don't want to. \n", + "\n", + "**the if __name__ ... condition**\n", + "\n", + "This is something that is important if your script might be used as a module that could be imported by another script or module in order to access your scripts functions and global variables. If your script is imported, then it's __name__ will not be \"__main__\", but if it is called as a script, it's name will be \"__main__\", so the code below here gets executed. \n", + "\n", + "You can also skip this section and just start writing code that will run. " ] }, { "cell_type": "code", "execution_count": null, - "metadata": { - "vscode": { - "languageId": "plaintext" - } - }, + "metadata": {}, "outputs": [], - "source": [] + "source": [ + "#!/usr/bin/env python\n", + "'''Short note about the script/module'''\n", + "\n", + "import stuff\n", + "\n", + "GLOBAL_VAR = 'foo'\n", + "\n", + "def funcDefinition(some, args):\n", + " '''foo'''\n", + " return 'bar'\n", + "\n", + "def main(some, args):\n", + " print('Hello, world!')\n", + "\n", + "if __name__ == '__main__':\n", + " main()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Helpful Libraries for Scripts\n", + "\n", + "### sys\n", + "The sys module provides access to some variables and functions that interact with the Python interpreter.\n", + "* sys.argv - A list of command-line arguments passed to the script. sys.argv[0] is the script name, and if len(sys.argv) > 1, then it was passed some arguments when it was run. \n", + "* sys.exit() - Exits the program with an optional exit code. Exit code zero says that everything worked as expected, and non-zero (positive) says there was an error. You might return different numbers for different errors so if another tool calls your script, it can do something different depending on the exit codes. \n", + "* sys.path - A list of strings that specifies the search path for modules. This is initialized from the PYTHONPATH environment variable or from the PATH environment variable. \n", + "* sys.stdin, sys.stdout, sys.stderr - File objects corresponding to the interpreter’s standard input, output, and error streams.\n", + "* sys.version - A string containing the Python version number.\n", + "\n", + "### os\n", + "The os module provides a way of interacting with the operating system. It allows you to perform actions like reading or writing to the file system, managing directories, and interacting with environment variables.\n", + "\n", + "* os.getenv() - Retrieves the value of an environment variable.\n", + "* os.environ - A dictionary representing the environment variables.\n", + "* os.chdir() - Changes the current working directory.\n", + "* os.getcwd() - Returns the current working directory.\n", + "* os.listdir() - Lists the contents of a directory.\n", + "* os.mkdir() and os.makedirs() - Create directories.\n", + "* os.remove() and os.rmdir() - Remove files and directories.\n", + "* os.path - A submodule for working with file and directory paths, providing functions like:\n", + " * os.path.join()\n", + " * os.path.exists()\n", + " * os.path.isfile()\n", + " * os.path.isdir().\n", + "\n", + "These modules are essential for performing system-level tasks and interacting with the environment in which your Python code is running." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Script Arguments and sys.argv" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Argparse\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Logging" + ] } ], "metadata": { From c8ca1941256476d2faf839bc1d9659a507be0fbc Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Wed, 28 Aug 2024 17:55:05 -0700 Subject: [PATCH 13/94] add sample data --- SAMPLE_DATA/iris.csv | 151 +++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 151 insertions(+) create mode 100644 SAMPLE_DATA/iris.csv diff --git a/SAMPLE_DATA/iris.csv b/SAMPLE_DATA/iris.csv new file mode 100644 index 0000000..21ae196 --- /dev/null +++ b/SAMPLE_DATA/iris.csv @@ -0,0 +1,151 @@ +sepal_length,sepal_width,petal_length,petal_width,species +5.1,3.5,1.4,0.2,Iris-setosa +4.9,3,1.4,0.2,Iris-setosa +4.7,3.2,1.3,0.2,Iris-setosa +4.6,3.1,1.5,0.2,Iris-setosa +5,3.6,1.4,0.2,Iris-setosa +5.4,3.9,1.7,0.4,Iris-setosa +4.6,3.4,1.4,0.3,Iris-setosa +5,3.4,1.5,0.2,Iris-setosa +4.4,2.9,1.4,0.2,Iris-setosa +4.9,3.1,1.5,0.1,Iris-setosa +5.4,3.7,1.5,0.2,Iris-setosa +4.8,3.4,1.6,0.2,Iris-setosa +4.8,3,1.4,0.1,Iris-setosa +4.3,3,1.1,0.1,Iris-setosa +5.8,4,1.2,0.2,Iris-setosa +5.7,4.4,1.5,0.4,Iris-setosa +5.4,3.9,1.3,0.4,Iris-setosa +5.1,3.5,1.4,0.3,Iris-setosa +5.7,3.8,1.7,0.3,Iris-setosa +5.1,3.8,1.5,0.3,Iris-setosa +5.4,3.4,1.7,0.2,Iris-setosa +5.1,3.7,1.5,0.4,Iris-setosa +4.6,3.6,1,0.2,Iris-setosa +5.1,3.3,1.7,0.5,Iris-setosa +4.8,3.4,1.9,0.2,Iris-setosa +5,3,1.6,0.2,Iris-setosa +5,3.4,1.6,0.4,Iris-setosa +5.2,3.5,1.5,0.2,Iris-setosa +5.2,3.4,1.4,0.2,Iris-setosa +4.7,3.2,1.6,0.2,Iris-setosa +4.8,3.1,1.6,0.2,Iris-setosa +5.4,3.4,1.5,0.4,Iris-setosa +5.2,4.1,1.5,0.1,Iris-setosa +5.5,4.2,1.4,0.2,Iris-setosa +4.9,3.1,1.5,0.1,Iris-setosa +5,3.2,1.2,0.2,Iris-setosa +5.5,3.5,1.3,0.2,Iris-setosa +4.9,3.1,1.5,0.1,Iris-setosa +4.4,3,1.3,0.2,Iris-setosa +5.1,3.4,1.5,0.2,Iris-setosa +5,3.5,1.3,0.3,Iris-setosa +4.5,2.3,1.3,0.3,Iris-setosa +4.4,3.2,1.3,0.2,Iris-setosa +5,3.5,1.6,0.6,Iris-setosa +5.1,3.8,1.9,0.4,Iris-setosa +4.8,3,1.4,0.3,Iris-setosa +5.1,3.8,1.6,0.2,Iris-setosa +4.6,3.2,1.4,0.2,Iris-setosa +5.3,3.7,1.5,0.2,Iris-setosa +5,3.3,1.4,0.2,Iris-setosa +7,3.2,4.7,1.4,Iris-versicolor +6.4,3.2,4.5,1.5,Iris-versicolor +6.9,3.1,4.9,1.5,Iris-versicolor +5.5,2.3,4,1.3,Iris-versicolor +6.5,2.8,4.6,1.5,Iris-versicolor +5.7,2.8,4.5,1.3,Iris-versicolor +6.3,3.3,4.7,1.6,Iris-versicolor +4.9,2.4,3.3,1,Iris-versicolor +6.6,2.9,4.6,1.3,Iris-versicolor +5.2,2.7,3.9,1.4,Iris-versicolor +5,2,3.5,1,Iris-versicolor +5.9,3,4.2,1.5,Iris-versicolor +6,2.2,4,1,Iris-versicolor +6.1,2.9,4.7,1.4,Iris-versicolor +5.6,2.9,3.6,1.3,Iris-versicolor +6.7,3.1,4.4,1.4,Iris-versicolor +5.6,3,4.5,1.5,Iris-versicolor +5.8,2.7,4.1,1,Iris-versicolor +6.2,2.2,4.5,1.5,Iris-versicolor +5.6,2.5,3.9,1.1,Iris-versicolor +5.9,3.2,4.8,1.8,Iris-versicolor +6.1,2.8,4,1.3,Iris-versicolor +6.3,2.5,4.9,1.5,Iris-versicolor +6.1,2.8,4.7,1.2,Iris-versicolor +6.4,2.9,4.3,1.3,Iris-versicolor +6.6,3,4.4,1.4,Iris-versicolor +6.8,2.8,4.8,1.4,Iris-versicolor +6.7,3,5,1.7,Iris-versicolor +6,2.9,4.5,1.5,Iris-versicolor +5.7,2.6,3.5,1,Iris-versicolor +5.5,2.4,3.8,1.1,Iris-versicolor +5.5,2.4,3.7,1,Iris-versicolor +5.8,2.7,3.9,1.2,Iris-versicolor +6,2.7,5.1,1.6,Iris-versicolor +5.4,3,4.5,1.5,Iris-versicolor +6,3.4,4.5,1.6,Iris-versicolor +6.7,3.1,4.7,1.5,Iris-versicolor +6.3,2.3,4.4,1.3,Iris-versicolor +5.6,3,4.1,1.3,Iris-versicolor +5.5,2.5,4,1.3,Iris-versicolor +5.5,2.6,4.4,1.2,Iris-versicolor +6.1,3,4.6,1.4,Iris-versicolor +5.8,2.6,4,1.2,Iris-versicolor +5,2.3,3.3,1,Iris-versicolor +5.6,2.7,4.2,1.3,Iris-versicolor +5.7,3,4.2,1.2,Iris-versicolor +5.7,2.9,4.2,1.3,Iris-versicolor +6.2,2.9,4.3,1.3,Iris-versicolor +5.1,2.5,3,1.1,Iris-versicolor +5.7,2.8,4.1,1.3,Iris-versicolor +6.3,3.3,6,2.5,Iris-virginica +5.8,2.7,5.1,1.9,Iris-virginica +7.1,3,5.9,2.1,Iris-virginica +6.3,2.9,5.6,1.8,Iris-virginica +6.5,3,5.8,2.2,Iris-virginica +7.6,3,6.6,2.1,Iris-virginica +4.9,2.5,4.5,1.7,Iris-virginica +7.3,2.9,6.3,1.8,Iris-virginica +6.7,2.5,5.8,1.8,Iris-virginica +7.2,3.6,6.1,2.5,Iris-virginica +6.5,3.2,5.1,2,Iris-virginica +6.4,2.7,5.3,1.9,Iris-virginica +6.8,3,5.5,2.1,Iris-virginica +5.7,2.5,5,2,Iris-virginica +5.8,2.8,5.1,2.4,Iris-virginica +6.4,3.2,5.3,2.3,Iris-virginica +6.5,3,5.5,1.8,Iris-virginica +7.7,3.8,6.7,2.2,Iris-virginica +7.7,2.6,6.9,2.3,Iris-virginica +6,2.2,5,1.5,Iris-virginica +6.9,3.2,5.7,2.3,Iris-virginica +5.6,2.8,4.9,2,Iris-virginica +7.7,2.8,6.7,2,Iris-virginica +6.3,2.7,4.9,1.8,Iris-virginica +6.7,3.3,5.7,2.1,Iris-virginica +7.2,3.2,6,1.8,Iris-virginica +6.2,2.8,4.8,1.8,Iris-virginica +6.1,3,4.9,1.8,Iris-virginica +6.4,2.8,5.6,2.1,Iris-virginica +7.2,3,5.8,1.6,Iris-virginica +7.4,2.8,6.1,1.9,Iris-virginica +7.9,3.8,6.4,2,Iris-virginica +6.4,2.8,5.6,2.2,Iris-virginica +6.3,2.8,5.1,1.5,Iris-virginica +6.1,2.6,5.6,1.4,Iris-virginica +7.7,3,6.1,2.3,Iris-virginica +6.3,3.4,5.6,2.4,Iris-virginica +6.4,3.1,5.5,1.8,Iris-virginica +6,3,4.8,1.8,Iris-virginica +6.9,3.1,5.4,2.1,Iris-virginica +6.7,3.1,5.6,2.4,Iris-virginica +6.9,3.1,5.1,2.3,Iris-virginica +5.8,2.7,5.1,1.9,Iris-virginica +6.8,3.2,5.9,2.3,Iris-virginica +6.7,3.3,5.7,2.5,Iris-virginica +6.7,3,5.2,2.3,Iris-virginica +6.3,2.5,5,1.9,Iris-virginica +6.5,3,5.2,2,Iris-virginica +6.2,3.4,5.4,2.3,Iris-virginica +5.9,3,5.1,1.8,Iris-virginica From 8e9427cba96946cddc9e33478fde9c18df36379e Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Wed, 28 Aug 2024 18:20:45 -0700 Subject: [PATCH 14/94] content --- D-Pandas.ipynb | 208 +++++++++++++++++++++++++------------------------ 1 file changed, 105 insertions(+), 103 deletions(-) diff --git a/D-Pandas.ipynb b/D-Pandas.ipynb index 9afaf80..51c7233 100644 --- a/D-Pandas.ipynb +++ b/D-Pandas.ipynb @@ -133,16 +133,9 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 25, "metadata": {}, "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "https://api.worldbank.org/v2/countries/USA/indicators/SP.POP.TOTL?per_page=5000&format=json\n" - ] - }, { "data": { "text/html": [ @@ -164,147 +157,156 @@ " \n", " \n", " \n", - " indicator\n", - " country\n", - " countryiso3code\n", - " date\n", - " value\n", - " unit\n", - " obs_status\n", - " decimal\n", + " sepal_length\n", + " sepal_width\n", + " petal_length\n", + " petal_width\n", + " species\n", " \n", " \n", " \n", " \n", " 0\n", - " {'id': 'SP.POP.TOTL', 'value': 'Population, to...\n", - " {'id': 'US', 'value': 'United States'}\n", - " USA\n", - " 2023\n", - " 334914895\n", - " \n", - " \n", - " 0\n", + " 5.1\n", + " 3.5\n", + " 1.4\n", + " 0.2\n", + " Iris-setosa\n", " \n", " \n", " 1\n", - " {'id': 'SP.POP.TOTL', 'value': 'Population, to...\n", - " {'id': 'US', 'value': 'United States'}\n", - " USA\n", - " 2022\n", - " 333271411\n", - " \n", - " \n", - " 0\n", + " 4.9\n", + " 3.0\n", + " 1.4\n", + " 0.2\n", + " Iris-setosa\n", " \n", " \n", " 2\n", - " {'id': 'SP.POP.TOTL', 'value': 'Population, to...\n", - " {'id': 'US', 'value': 'United States'}\n", - " USA\n", - " 2021\n", - " 332048977\n", - " \n", - " \n", - " 0\n", + " 4.7\n", + " 3.2\n", + " 1.3\n", + " 0.2\n", + " Iris-setosa\n", " \n", " \n", " 3\n", - " {'id': 'SP.POP.TOTL', 'value': 'Population, to...\n", - " {'id': 'US', 'value': 'United States'}\n", - " USA\n", - " 2020\n", - " 331526933\n", - " \n", - " \n", - " 0\n", + " 4.6\n", + " 3.1\n", + " 1.5\n", + " 0.2\n", + " Iris-setosa\n", " \n", " \n", " 4\n", - " {'id': 'SP.POP.TOTL', 'value': 'Population, to...\n", - " {'id': 'US', 'value': 'United States'}\n", - " USA\n", - " 2019\n", - " 328329953\n", - " \n", - " \n", - " 0\n", + " 5.0\n", + " 3.6\n", + " 1.4\n", + " 0.2\n", + " Iris-setosa\n", " \n", " \n", "\n", "" ], "text/plain": [ - " indicator \\\n", - "0 {'id': 'SP.POP.TOTL', 'value': 'Population, to... \n", - "1 {'id': 'SP.POP.TOTL', 'value': 'Population, to... \n", - "2 {'id': 'SP.POP.TOTL', 'value': 'Population, to... \n", - "3 {'id': 'SP.POP.TOTL', 'value': 'Population, to... \n", - "4 {'id': 'SP.POP.TOTL', 'value': 'Population, to... \n", - "\n", - " country countryiso3code date value \\\n", - "0 {'id': 'US', 'value': 'United States'} USA 2023 334914895 \n", - "1 {'id': 'US', 'value': 'United States'} USA 2022 333271411 \n", - "2 {'id': 'US', 'value': 'United States'} USA 2021 332048977 \n", - "3 {'id': 'US', 'value': 'United States'} USA 2020 331526933 \n", - "4 {'id': 'US', 'value': 'United States'} USA 2019 328329953 \n", - "\n", - " unit obs_status decimal \n", - "0 0 \n", - "1 0 \n", - "2 0 \n", - "3 0 \n", - "4 0 " + " sepal_length sepal_width petal_length petal_width species\n", + "0 5.1 3.5 1.4 0.2 Iris-setosa\n", + "1 4.9 3.0 1.4 0.2 Iris-setosa\n", + "2 4.7 3.2 1.3 0.2 Iris-setosa\n", + "3 4.6 3.1 1.5 0.2 Iris-setosa\n", + "4 5.0 3.6 1.4 0.2 Iris-setosa" ] }, - "execution_count": 15, + "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "import requests\n", - "import pandas as pd\n", - "import json\n", - "\n", - "data_url = 'https://api.worldbank.org/v2/countries/USA/indicators/SP.POP.TOTL?per_page=5000&format=json'\n", - "population = requests.get(data_url)\n", - "population = json.loads(population.content)\n", - "population = population[1]\n", - "print(data_url)\n", - "# df = pd.read_json(population.json()[1])\n", - "df = pd.DataFrame(population)\n", - "\n", + "df = pd.read_csv(\"https://raw.githubusercontent.com/a8ksh4/python_workshop/main/SAMPLE_DATA/iris.csv\")\n", "df.head()" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Selecting Columns:\n", + "We can both asign or select single column from a datafram with df['column_name']. For example:" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "the sepal lenghts are:\n", + " 0 5.1\n", + "1 4.9\n", + "2 4.7\n", + "3 4.6\n", + "4 5.0\n", + " ... \n", + "145 6.7\n", + "146 6.3\n", + "147 6.5\n", + "148 6.2\n", + "149 5.9\n", + "Name: sepal_length, Length: 150, dtype: float64\n", + "and in inches:\n", + " 0 2.007875\n", + "1 1.929135\n", + "2 1.850395\n", + "3 1.811025\n", + "4 1.968505\n", + " ... \n", + "145 2.637797\n", + "146 2.480316\n", + "147 2.559057\n", + "148 2.440946\n", + "149 2.322836\n", + "Name: sepal_length_inches, Length: 150, dtype: float64\n" + ] + } + ], + "source": [ + "# a single column is a series, so sepal_lenghts is a series.\n", + "sepal_lenghths = df['sepal_length']\n", + "print('the sepal lenghts are:\\n', sepal_lenghths)\n", + "\n", + "# we're creating a new column in the dataframe here.\n", + "df['sepal_length_inches'] = df['sepal_length'] * 0.393701\n", + "print('and in inches:\\n', df['sepal_length_inches'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This is a good time to mention broadcasting - When you perform a mathematical operatino on a column, the operatoin is broadcast to every value in the column. " + ] + }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", - "# How to approach learning pandas\n", - "Start with simple problems. Import a clean excel file. \n", + "## Selecting Rows:\n", "\n", - "## Basics\n", - "We use pandas to make **DataFrame**s and **Series**. A single column of a dataframe is a series, and it has some different built in functinoality than a dataframe. \n", + "## Iterating Over rows\n", "\n", - "## Pandas Objects - DataFrames and Series\n", - "The DataFrame is the primary pandas opject we will work with. \n", + "## Type Conversions\n", "\n", "## Note Regading inplace=True\n", "changed_dataframe = df.some_modification()\n", "\n", "Pandas is phasing out inplace modification. It can still be done by passing the 'inplace=True'\n", "\n", - "## Selecting Columns\n", - "a_series = df['some_col'] \n", - "a_dataframe = df[['a_col', 'another_col']]\n", - "\n", - "## Selecting Rows\n", - "\n", - "## Iterating over rows\n", - "\n", "## Type Conversions\n", "Freqently string to numeric\n", "String to datetime\n", From 4e116268665e2d30c644c6d3525c40e6eca97358 Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Sun, 1 Sep 2024 22:17:18 -0700 Subject: [PATCH 15/94] content --- A-Getting_Started.ipynb | 41 +-- D-Pandas.ipynb | 314 +++++++++--------- E-Writing_Scripts.ipynb | 186 ++++++++--- ...F-Microcontrollers_and_Circuitpython.ipynb | 0 4 files changed, 336 insertions(+), 205 deletions(-) rename F-Microcontrollers.ipynb => F-Microcontrollers_and_Circuitpython.ipynb (100%) diff --git a/A-Getting_Started.ipynb b/A-Getting_Started.ipynb index 354c913..f89377f 100644 --- a/A-Getting_Started.ipynb +++ b/A-Getting_Started.ipynb @@ -66,7 +66,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Libraries\n", + "## Libraries\n", "You'll learn pretty quickly that learing python is as much about understanding how the language works as getting familiar with libraries to do the things you want to do. A few examples:\n", "* import math\n", " * it has functions for rounding, trig, and a lot more\n", @@ -85,10 +85,10 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Syntax\n", + "## Syntax\n", "Reference this page: https://en.wikipedia.org/wiki/Python_syntax_and_semantics\n", "\n", - "## Keywords\n", + "### Keywords\n", "Some words cannot be used as variables because they have special meaning in the python language: \n", "\n", " and as assert async await break case class continue \n", @@ -96,37 +96,40 @@ " if import in is lambda match None nonlocal not or pass \n", " raise return True try while with yield _.*\n", "\n", - "## Indentation\n", - "Python uses indentation to group code inside of functions, classes, and control blocks. Other languages often use { } for the same purpose. \n", + "### Indentation\n", + "Python uses indentation to group code inside of functions, classes, and control blocks. Other languages often use { } for the same purpose.\n", + "* Be consistent with your indentation. \n", + "* **Four spaces per indentation level** is recommended. It can be hard to see which code aligns with which above it when using only two spaces per indentation level.\n", + "* Many editors can be configured to intent four spaces each time you press the tab key. \n", + "* Technically you can use tab characters or any number of spaces per indentaton level. Above all, **be consistent**.\n", "\n", - "For example, this function called foo has an if else block inside of it, with indentation showing what code belongs to the function:\n", + "Here's an example function named \"foo\" that has an if else condition block inside of it. Everything indented after the def line is part of the function, and the lines after the if and else blocks each have additional indentation. When the indentation ends, the block ends. \n", "\n", " def foo(x):\n", - " if x == 0:\n", - " bar()\n", + " if x > 9000:\n", + " print(\"x is big!\")\n", " else:\n", - " baz(x)\n", - " foo(x - 1)\n", + " print(\"x is small!\")\n", + " print(\"This is in the function. We checked if x is big.\")\n", "\n", - "**What would happen if the last line, 'foo(x-1)' were un-indented to the same level as the if and else lines?**\n", - "\n", - "**What would happen if there were tab characters mixed with the spaces in the indention in the above foo function?**\n", + " print(\"This print statement is outside of the function.\")\n", "\n", "An equivelant function in c could be written like this:\n", "\n", " void foo(int x)\n", " {\n", - " if (x == 0) {\n", - " bar();\n", + " if (x > 9000) {\n", + " printf(\"x is big!\");\n", " } else {\n", - " baz(x);\n", - " foo(x - 1);\n", + " printf(\"x is small!\");\n", " }\n", + " printf(\"This is in the function. We checked if x is big.\");\n", " }\n", + " print(\"This print statement is outside of the function.\");\n", "\n", - "The indentation in c code is functionally unnecessary, but makes it readable.\n", + "The indentation in c code is functionally unnecessary, but makes it readable. The { and } group the code.\n", "\n", - "## Quoting\n", + "### Quoting\n", "Strings, non-numeric values, are quoted with ', \", ''', \"\"\". We'll look at this more in the strings section below. Just note this. Variable names are not quoted, but values when assigned or passed as arguments to a function are if they are to be treated as strings. \n", "\n", "Examples:\n", diff --git a/D-Pandas.ipynb b/D-Pandas.ipynb index 51c7233..961410a 100644 --- a/D-Pandas.ipynb +++ b/D-Pandas.ipynb @@ -8,28 +8,31 @@ "\n", "**Topics:** Pandas basics, includeng row and column selections, index, column names, data types and type-casting, and a bit more. \n", "\n", - "The name \"Pandas\" comes from \"Panel Data\" and \"Python Data Analysis\". \"Panel Data\" refers to a particular type of data that is multidimensional, involving measurements over time. The term \"Pandas\" is a blend of these concepts, reflecting the library's purpose of providing data structures and data analysis tools in Python.\n", + "The name \"Pandas\" comes from \"Panel Data\" and \"Python Data Analysis\". \"Panel Data\" refers to two dimensoinal data, often including measurements over time - time series - or collections of things/events. The term \"Pandas\" is a blend of these concepts, reflecting the library's purpose of providing data structures and data analysis tools in Python.\n", "\n", "**Pandas** are playfull and memorable, just like **Pandas**!\n", "\n", - "Pandas has two types of objects, DataFrames and Series. A dataframe has rows and columns, like a spreadsheet - two dimensional. A single row or column from a dataframe is a Series. If we select a single column from a DataFrame, we get a series, a single dimensional object, and a series can be inserted into a df column. \n", + "Pandas has two types of objects, **DataFrames** and **Series**. A dataframe has rows and columns, like a spreadsheet - two dimensional. A single row or column from a dataframe is a Series. If we select a single column from a DataFrame, we get a series, a single dimensional object, and a series can be inserted into a df column. \n", "\n", "By convention, we'll import pandas as \"pd\" to save us some typing.\n", "\n", " import pandas as pd\n", "\n", - " It's also common to call a single dataframe we're working on \"df\", but it's a good idea to use a longer more descriptive name for complex tasks.\n", + " It's also common to call a single dataframe that we're working on \"df\", but it's a good idea to use a longer more descriptive name for complex tasks.\n", + "\n", + " df = pd.read_csv('my_data.csv')\n", "\n", "There is functionality built into pd, as well as the dataframe and series objects that we create that we will use to manipulate the dataframe and series. For example, we use these DataFrame functions a lot to view our data:\n", "\n", " df.info() # show a summary of columns and data types in the dataframe. \n", " df.head() # show the top few rows of the dataframe.\n", " df.tail() # few bottom rows\n", + " df.describe()\n", " ...and more\n", "\n", "And there are functions we call from pd to manipulate the dataframes:\n", "\n", - " new_df = pd.concat(a_list_of_dataframes) # concatenate dataframes together\n", + " big_df = pd.concat(a_list_of_small_dataframes) # concatenate dataframes together\n", " ...and more\n", "\n", "## Creating a Dataframe\n", @@ -59,7 +62,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 3, "metadata": {}, "outputs": [ { @@ -126,194 +129,207 @@ "source": [ "#### *Exercise*\n", "\n", - "In the following code cell, use .info(), .describe(), and .head() to see what kind of data has been loaded into the dataframe. \n", + "In the following code cell, use these functions to look at information about the dataframe:\n", + "\n", + " .info(), .describe(), and .head() \n", + "\n", + "And print thef following properties of the dataframe, like: `df.shape`\n", + "\n", + " .columns, .size, .shape\n", "\n", - "*We'll use this \"df\" for a few exercises below, so make sure to run this cell before continuing.*" + "* What data type is each of the columns?\n", + "* How many rows and columns are there?\n", + "* What's the relationship between shape and size?\n", + "* Use a list comprehension to overwrite df.columns and make the comlumn names upper case. `df.columns = [... ... df.comumns]`\n", + "\n", + "Scroll through the DataFrame documentation to get an idea of what methods are built into it: https://pandas.pydata.org/pandas-docs/stable/reference/frame.html" ] }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 4, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
sepal_lengthsepal_widthpetal_lengthpetal_widthspecies
05.13.51.40.2Iris-setosa
14.93.01.40.2Iris-setosa
24.73.21.30.2Iris-setosa
34.63.11.50.2Iris-setosa
45.03.61.40.2Iris-setosa
\n", - "
" - ], - "text/plain": [ - " sepal_length sepal_width petal_length petal_width species\n", - "0 5.1 3.5 1.4 0.2 Iris-setosa\n", - "1 4.9 3.0 1.4 0.2 Iris-setosa\n", - "2 4.7 3.2 1.3 0.2 Iris-setosa\n", - "3 4.6 3.1 1.5 0.2 Iris-setosa\n", - "4 5.0 3.6 1.4 0.2 Iris-setosa" - ] - }, - "execution_count": 25, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ - "df = pd.read_csv(\"https://raw.githubusercontent.com/a8ksh4/python_workshop/main/SAMPLE_DATA/iris.csv\")\n", - "df.head()" + "# *We'll use this \"df\" for a few exercises below, so make sure to run this cell before continuing.*\n", + "df = pd.read_csv(\"https://raw.githubusercontent.com/a8ksh4/python_workshop/main/SAMPLE_DATA/iris.csv\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Your code here. You can re-run the above cell if you mess up your dataframe.\n", + "# print(df....)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## Selecting Columns:\n", - "We can both asign or select single column from a datafram with df['column_name']. For example:" + "## Selecting Columns by name:\n", + "We can select a single column by passing it's name in brackets, like: `df['column_name']`\n", + "\n", + "And we can select multiple columns by passing a list of column names in nested brackets: `df[['column1', 'column2', ...]]`\n", + "\n", + "This is a bit like string or list slicing, but using names or lists of names to take a selection of the available columns.\n", + "\n", + "We can use this to both get values from columns or to assign values directly into one or more columns, or to create new columns of some name." ] }, { "cell_type": "code", - "execution_count": 29, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "the sepal lenghts are:\n", - " 0 5.1\n", - "1 4.9\n", - "2 4.7\n", - "3 4.6\n", - "4 5.0\n", - " ... \n", - "145 6.7\n", - "146 6.3\n", - "147 6.5\n", - "148 6.2\n", - "149 5.9\n", - "Name: sepal_length, Length: 150, dtype: float64\n", - "and in inches:\n", - " 0 2.007875\n", - "1 1.929135\n", - "2 1.850395\n", - "3 1.811025\n", - "4 1.968505\n", - " ... \n", - "145 2.637797\n", - "146 2.480316\n", - "147 2.559057\n", - "148 2.440946\n", - "149 2.322836\n", - "Name: sepal_length_inches, Length: 150, dtype: float64\n" - ] - } - ], + "outputs": [], "source": [ - "# a single column is a series, so sepal_lenghts is a series.\n", - "sepal_lenghths = df['sepal_length']\n", - "print('the sepal lenghts are:\\n', sepal_lenghths)\n", + "# a single column is a series object, so sepal_lenghts is a series.\n", + "sls = df['sepal_length']\n", + "print('some of the sepal lenghths are:\\n', str(sls))\n", + "print('all the sepal lenghts are:\\n', list(sls))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### *Exercise*\n", + "Just like we did for the dataframe above, let's explore this \"sls\" series object.\n", "\n", - "# we're creating a new column in the dataframe here.\n", - "df['sepal_length_inches'] = df['sepal_length'] * 0.393701\n", - "print('and in inches:\\n', df['sepal_length_inches'])" + "* Use the `.info(), .shape, .size` properties to learn about the object. \n", + "* And Let's try some more interesting functions built into series objects: `.sum(), .value_counts(), .mean()`\n", + "* Check if the series is greater than 3. What is returned? This list of True/False values is important for a future concept, \"masks\", for selecting rows.\n", + "* Scroll through some of the methods listed in the series documentation here: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html" ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "markdown", "metadata": {}, "source": [ - "This is a good time to mention broadcasting - When you perform a mathematical operatino on a column, the operatoin is broadcast to every value in the column. " + "### Creating and manipulating columns of data:\n", + "We can perform mathematical operations on columns of data and put the result into a new or existing column. For example, if we want to add a column with units inches instead of cm:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df['sepal_length_inches'] = df['sepal_length'] * 0.393701\n", + "length_columns = sorted([c for c in df.columns if 'length' in c])\n", + "print('length comparison:\\n', df[length_columns])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ + "When you perform operations on a column, like multiplying the 'sepal_length' column by 0.393, that operation is broadcast across all rows in the column. \n", "\n", - "## Selecting Rows:\n", + "We can also select multiple columns py passing the columns in [], like: `df[['petal_length', 'petal_width']]`" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df['width_difference'] = (df['sepal_width'] - df['petal_width']).abs()\n", "\n", - "## Iterating Over rows\n", + "\n", + "print('Widths:')\n", + "print(df[['sepal_width', 'petal_width', 'width_difference']])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Selecting Rows with loc and iloc\n", + "**.loc** vs **.iloc**\n", + "* .loc selects rows with particular labels in the series or dataframe index\n", + "* .iloc selects rows at integer locations within the series or dataframe. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Iterating Over rows" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "for row in df.iterrows():\n", + " print(row)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ "\n", "## Type Conversions\n", + "**String to Numeric**\n", + "**String to Datetime**\n", + "**Datetime to Numeric**" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## String Operations" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Using .apply for arbitrary operations" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "\n", "## Note Regading inplace=True\n", "changed_dataframe = df.some_modification()\n", "\n", "Pandas is phasing out inplace modification. It can still be done by passing the 'inplace=True'\n", "\n", - "## Type Conversions\n", - "Freqently string to numeric\n", - "String to datetime\n", "\n", - "### Datetime Conversions\n", "\n", - "## String Operations\n", "\n", "\n", "## Concatenation\n", diff --git a/E-Writing_Scripts.ipynb b/E-Writing_Scripts.ipynb index 655cc4e..161abcb 100644 --- a/E-Writing_Scripts.ipynb +++ b/E-Writing_Scripts.ipynb @@ -8,9 +8,25 @@ "\n", "**Topics** - Python Editors, Writing and runnig scripts, argparse library\n", "\n", - "## What is a script?\n", - "It's a text file with code that is executed by an interpreter. Your script might be a program... Calling something a program might imply that it's compiled or that it's more complicated than a script. Python is great for short utility scripts just as well as gigantic compilcated programs. In computationaly intensive programs, you might write moudles in C or or another compiled language, and call those parts from python, keeping all of the complex logic in python so that it's more human friendly to work on. \n", + "So far, we've been working in python notebooks - these are great for workflows or data centered presentations where you want to mix text, code, and graphs/plots and a human will be interacting with it. \n", "\n", + "But some times we want to make a tool that we can run, maybe part of an automated process, and don't want to see the code to do it. We can write a script - a text file that the python interpreter runs for us. \n", + "\n", + "**Script** vs **Program** - call it what you want. Calling something a program implies that it's compiled, or at least that its more complicated than a script. Python works just as well for short utility scripts as for gigantic programs, but it's not really\n", + "\\* compiled. In computationaly intensive programs, you might write moudles in C or or another compiled language to handle the cpu-heavy tasks, and call those modules from python, keeping all of the complex program logic in python so that it's more human friendly to work on. \n", + "\n", + "\\* *When you run a python .py script, it is converted to a .pyc bytecode file which is executed by the interpreted. The bytecode is obfuscated, but is trivial to convert back to python code, unlike a truely compiled language. sometimes you'll see people/companies distribute .pyc files to obfuscate their tools somewhat.*\n", + "\n", + "## Installing Python\n", + "You need to have a python interpreter installed on your computer in order to run a python script. You should **select the option during install to add the interpreter to the system PATH** so that when you open up a cmd or powershell window, you can directly run a .py file with \"python3\" in the shebang line and it just runs, or you can say \"pyhon my_script.py\" and python is in your path so it just works. \n", + "\n", + "https://www.python.org/downloads/" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ "## Python Editors (IDEs)\n", "It's important to use a good editor for writing scripts. Some features of a good editor include:\n", "* Syntax highlighting\n", @@ -20,49 +36,44 @@ "\n", "A few good ones are:\n", "* VS Code\n", - "* PyCharm\n", + "* IntelliJ or PyCharm\n", "* Atom\n", - "* ...\n", - "* VIM or Emacs ()" + "* Sublime\n", + "* VIM, NeoVIM, or Emacs (there are more of a Linux thing)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## Template for a script\n", + "#### *Exercise*\n", + "Open a cmd (windows) or xterm (linux) an try running `python --version` or `python3 --version`. if you don't have python installed, you'll get an error. Windows might pop up a windows store page to instal python. That'll probably work. Install python if you need to and get this working. \n", "\n", - "**The #! shebang line**\n", + "Install an IDE - I recommend VS Code, but use what you want. The instructions here will all be for VS Code. once installed, go into the extensions menu and search for \"python microsoft\". Install the \"python\", \"Pylance\", \"Pylint\", \"autopep8\" extensions specifically from microsoft. You may also like the \"Jupyter\" extension for notebooks. \"Copilot\" is great too, but requires signing up for it at github.com. \n", "\n", - "Shebang is short for hash bang. This line says which interpreter to use to run the script. A couple of common entries are:\n", - "* In linux for python3:\n", - " * #!/usr/bin/env python3\n", - "* In windows, this would be common:\n", - " * #! python3\n", + "Make a folder in your home directory for python scripts and open that folder with Code. Use the exploror winodw pane on the left to create a new file caled hello.py. Add the following to the file and save it (ctrl+s is a shortcut to save):\n", "\n", - "In both cases the system PATH variable will be checked to find the given interpreter. \n", + " #! pyhon3\n", "\n", - "**module description**\n", + " print(\"Hello World!\")\n", "\n", - "You can add a short documentation abou the purpose of the script/module below the shebang line. \n", + "Pretty Simple! Now cd to that directory in your command window and run the script by typing it's name and hitting enter! You should see the hello world in the cmd window. \n", "\n", - "**import statements**\n", + "We can run it from the IDE too. Use the little triangle in the top right corner of the window to run it and you should see a console pop up on the bottom showing the hello world message. \n", "\n", - "They go at the top.\n", + "Finally, if you have any hilighted lines in the script indicating issues, try to resolve them. For example, I see, \"Missing module docstring\" and \"Final newline missing\". A module docstring is a tripple quoted string at the top of the file, just below the shebang line, that says what the file/module does. For example:\n", "\n", - "**global variables**\n", + " #! python3\n", + " '''Simple hello world test script'''\n", "\n", - "Things like paths to tools that are called by the script, directories. Global variables should be in ALL_CAPS with underscores between the words if they are multi-word. It's common to have a VERBOSE or DEBUG boolean global that's referenced elsewhere do decide whether or not to print debug messages for troubleshooting issues. \n", - "\n", - "**function definitions**\n", - "\n", - "This is the main body of the script. It's not uncommon to have a \"main\" function that is the first thing called when the script starts. You don't have to define any functions if you don't want to. \n", - "\n", - "**the if __name__ ... condition**\n", - "\n", - "This is something that is important if your script might be used as a module that could be imported by another script or module in order to access your scripts functions and global variables. If your script is imported, then it's __name__ will not be \"__main__\", but if it is called as a script, it's name will be \"__main__\", so the code below here gets executed. \n", - "\n", - "You can also skip this section and just start writing code that will run. " + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Template for a script" ] }, { @@ -89,6 +100,46 @@ " main()" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**The #! shebang line**\n", + "\n", + "Shebang is short for hash bang. This line says which interpreter to use to run the script. A couple of common entries are:\n", + "* In linux for python3:\n", + " * `#!/usr/bin/env python3`\n", + "* In windows, this would be common:\n", + " * `#! python3`\n", + "\n", + "In both cases the system PATH variable will be checked to find the given interpreter. \n", + "\n", + "You can also specify the complete path to the interpreter you want to use. I might do this to make sure it uses a virtual env that I've configured:\n", + "* `#!/home/my_user/venv/bin/python3`\n", + "\n", + "**module description**\n", + "\n", + "You can add a short documentation abou the purpose of the script/module below the shebang line. \n", + "\n", + "**import statements**\n", + "\n", + "They go at the top.\n", + "\n", + "**global variables**\n", + "\n", + "Things like paths to tools that are called by the script, directories. Global variables should be in ALL_CAPS with underscores between the words if they are multi-word. It's common to have a VERBOSE or DEBUG boolean global that's referenced elsewhere do decide whether or not to print debug messages for troubleshooting issues. \n", + "\n", + "**function definitions**\n", + "\n", + "This is the main body of the script. It's not uncommon to have a \"main\" function that is the first thing called when the script starts. You don't have to define any functions if you don't want to. \n", + "\n", + "**the if __name__ ... condition**\n", + "\n", + "This is something that is important if your script might be used as a module that could be imported by another script or module in order to access your scripts functions and global variables. If your script is imported, then it's __name__ will not be \"__main__\", but if it is called as a script, it's name will be \"__main__\", so the code below here gets executed. \n", + "\n", + "You can also skip this section and just start writing code that will run. " + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -97,14 +148,12 @@ "\n", "### sys\n", "The sys module provides access to some variables and functions that interact with the Python interpreter.\n", - "* sys.argv - A list of command-line arguments passed to the script. sys.argv[0] is the script name, and if len(sys.argv) > 1, then it was passed some arguments when it was run. \n", - "* sys.exit() - Exits the program with an optional exit code. Exit code zero says that everything worked as expected, and non-zero (positive) says there was an error. You might return different numbers for different errors so if another tool calls your script, it can do something different depending on the exit codes. \n", - "* sys.path - A list of strings that specifies the search path for modules. This is initialized from the PYTHONPATH environment variable or from the PATH environment variable. \n", + "* **sys.argv** - A list of command-line arguments passed to the script. sys.argv[0] is the script name, and if len(sys.argv) > 1, then it was passed some arguments when it was run. \n", + "* **sys.exit()** - Exits the program with an optional exit code. Exit code zero says that everything worked as expected, and non-zero (positive) says there was an error. You might return different numbers for different errors so if another tool calls your script, it can do something different depending on the exit codes. \n", "* sys.stdin, sys.stdout, sys.stderr - File objects corresponding to the interpreter’s standard input, output, and error streams.\n", - "* sys.version - A string containing the Python version number.\n", "\n", "### os\n", - "The os module provides a way of interacting with the operating system. It allows you to perform actions like reading or writing to the file system, managing directories, and interacting with environment variables.\n", + "The os module provides a way of interacting with the operating system. These are a few essential functions to view current working dir and change directories; list or remove files and directories; create directories. \n", "\n", "* os.getenv() - Retrieves the value of an environment variable.\n", "* os.environ - A dictionary representing the environment variables.\n", @@ -126,14 +175,63 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Script Arguments and sys.argv" + "#### *Exercise*\n", + "Create a whats_here.py script that does the following:\n", + "* Prints the current working directory. This is the directory that the process that called your script has as its CWD. \n", + "* Gets the current user and saves it to a variable\n", + "* Make a directory called \"foo\" if it does not exist. \n", + "* Checks if a file called f\"foo/{current_user}_was_here.txt\" exists and creates it if not. You should see this in the file explorer and in your command window (run dir foo or ls foo for windows/linux) after it's created. \n", + "* Change directory to f\"C:/Users/{current_user}/Desktop\" and list out the files here. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Script Arguments and sys.argv\n", + "Some times we need scripts to take some parameters to change their behavior. Any arguments you pass to your script when running it get stored in sys.argv so you can check them from the script. This is just like passing arguments to a function. \n", + "\n", + "#### *Exercise*\n", + "Put the following code into a script called \"show_args.py\" and run it with different combinations of arguments passed to it:\n", + "\n", + " #! python3\n", + " '''A simple tool to see what arguments are set when running.'''\n", + " import sys\n", + "\n", + " VERBOSE = False\n", + "\n", + " if '-v' in sys.argv or '--verbose' in sys.argv:\n", + " print('Verbose is set, so I will give detailed messages about what is happening.)\n", + " VERBOSE = True\n", + "\n", + " for n, arg in enumerate(sys.argv):\n", + " if n == 0:\n", + " print(f\"The name of the script is: {arg}\")\n", + " else:\n", + " print(f'arg {n} is: {arg})\n", + " if VERBOSE:\n", + " print(f\"This arg was {len(arg)} characters long!\")\n", + " \n", + " if VERBOSE:\n", + " print(\"Number of args received:\", len(sys.argv) - 1)\n", + "\n", + "For example, you could run: `show_args.py foo bar omg-wow`\n", + "\n", + "For 10 points extra credit, you can make the following modification to the args script: Check if each arg has an '=' character in it. If an = is present, split the arg on the = to keg a key=value pair and assign it to an args_kv dictionary. Then print all of the key value pair given in addition to the other non-kv arguments. \n", + "\n", + "And for an additional 5 points extra credit, handle all of the argument checkin in a function called checkArguments() which returns a tuple with args and args_kv. The function should not print anything. The script should call the function, save the return values, and then print a summary. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## Argparse\n" + "## Argparse\n", + "The previous exercise hopefully proved that we can simply pass data into a script and check for it, but a really high quality script is able to also provide documentaion about what it does, what arguments are allowed, verify that correct arguments are given and that the values set with them are valid, and return them all in a simple data structure that can be used by the script. It would require a lot of code to do this ourselves, so thankfully we have the \"argparse\" library. \n", + "\n", + "Argparse lets you define what arguments the script accepts, say which of them are required, if any, set default values, set required data types, etc etc. You can find documentation for it here: https://docs.python.org/3/library/argparse.html\n", + "\n", + "Here's an example script utilizing argparse:" ] }, { @@ -145,8 +243,22 @@ } ], "metadata": { + "kernelspec": { + "display_name": "venv", + "language": "python", + "name": "python3" + }, "language_info": { - "name": "python" + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.3" } }, "nbformat": 4, diff --git a/F-Microcontrollers.ipynb b/F-Microcontrollers_and_Circuitpython.ipynb similarity index 100% rename from F-Microcontrollers.ipynb rename to F-Microcontrollers_and_Circuitpython.ipynb From a2d462b222ecee2aacf8b1b91b0a1c1265204bfa Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Mon, 2 Sep 2024 11:20:06 -0700 Subject: [PATCH 16/94] content --- D-Pandas.ipynb | 20 +- SAMPLE_DATA/titaninc.csv | 892 +++++++++++++++++++++++++++++++++++++++ 2 files changed, 907 insertions(+), 5 deletions(-) create mode 100644 SAMPLE_DATA/titaninc.csv diff --git a/D-Pandas.ipynb b/D-Pandas.ipynb index 961410a..726db32 100644 --- a/D-Pandas.ipynb +++ b/D-Pandas.ipynb @@ -152,7 +152,8 @@ "outputs": [], "source": [ "# *We'll use this \"df\" for a few exercises below, so make sure to run this cell before continuing.*\n", - "df = pd.read_csv(\"https://raw.githubusercontent.com/a8ksh4/python_workshop/main/SAMPLE_DATA/iris.csv\")" + "df = pd.read_csv(\"https://raw.githubusercontent.com/a8ksh4/python_workshop/main/SAMPLE_DATA/iris.csv\")\n", + "# You can also try saving iris.csv in the directory with your notebook and opening it from a local path." ] }, { @@ -187,8 +188,8 @@ "source": [ "# a single column is a series object, so sepal_lenghts is a series.\n", "sls = df['sepal_length']\n", - "print('some of the sepal lenghths are:\\n', str(sls))\n", - "print('all the sepal lenghts are:\\n', list(sls))" + "print('Some of the sepal lenghths are:\\n', sls)\n", + "print('All the lenghts are:\\n', list(sls))" ] }, { @@ -216,7 +217,7 @@ "metadata": {}, "source": [ "### Creating and manipulating columns of data:\n", - "We can perform mathematical operations on columns of data and put the result into a new or existing column. For example, if we want to add a column with units inches instead of cm:" + "We can perform mathematical operations on columns of data and put the result into a new or overwrite an existing column. For example, if we want to add a column with units inches instead of cm:" ] }, { @@ -226,6 +227,7 @@ "outputs": [], "source": [ "df['sepal_length_inches'] = df['sepal_length'] * 0.393701\n", + "\n", "length_columns = sorted([c for c in df.columns if 'length' in c])\n", "print('length comparison:\\n', df[length_columns])" ] @@ -236,6 +238,8 @@ "source": [ "When you perform operations on a column, like multiplying the 'sepal_length' column by 0.393, that operation is broadcast across all rows in the column. \n", "\n", + "And when we perform operation aginst two columns, each row in the columns is matched with the same index row in the other column for the operation, as with the width_differenc calculation below.\n", + "\n", "We can also select multiple columns py passing the columns in [], like: `df[['petal_length', 'petal_width']]`" ] }, @@ -247,9 +251,15 @@ "source": [ "df['width_difference'] = (df['sepal_width'] - df['petal_width']).abs()\n", "\n", + "# Alternate ways of doing things are commented out below:\n", + "\n", + "# width_columns = df.columns[df.columns.str.contains('width')]\n", + "# width_columns = ['sepal_width', 'petal_width', 'width_difference']\n", + "width_columns = sorted([c for c in df.columns if 'width' in c])\n", "\n", "print('Widths:')\n", - "print(df[['sepal_width', 'petal_width', 'width_difference']])" + "# print(df[['sepal_width', 'petal_width', 'width_difference']])\n", + "print(df[width_columns])" ] }, { diff --git a/SAMPLE_DATA/titaninc.csv b/SAMPLE_DATA/titaninc.csv new file mode 100644 index 0000000..63b68ab --- /dev/null +++ b/SAMPLE_DATA/titaninc.csv @@ -0,0 +1,892 @@ +PassengerId,Survived,Pclass,Name,Sex,Age,SibSp,Parch,Ticket,Fare,Cabin,Embarked +1,0,3,"Braund, Mr. Owen Harris",male,22,1,0,A/5 21171,7.25,,S +2,1,1,"Cumings, Mrs. John Bradley (Florence Briggs Thayer)",female,38,1,0,PC 17599,71.2833,C85,C +3,1,3,"Heikkinen, Miss. Laina",female,26,0,0,STON/O2. 3101282,7.925,,S +4,1,1,"Futrelle, Mrs. Jacques Heath (Lily May Peel)",female,35,1,0,113803,53.1,C123,S +5,0,3,"Allen, Mr. William Henry",male,35,0,0,373450,8.05,,S +6,0,3,"Moran, Mr. James",male,,0,0,330877,8.4583,,Q +7,0,1,"McCarthy, Mr. Timothy J",male,54,0,0,17463,51.8625,E46,S +8,0,3,"Palsson, Master. Gosta Leonard",male,2,3,1,349909,21.075,,S +9,1,3,"Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)",female,27,0,2,347742,11.1333,,S +10,1,2,"Nasser, Mrs. Nicholas (Adele Achem)",female,14,1,0,237736,30.0708,,C +11,1,3,"Sandstrom, Miss. Marguerite Rut",female,4,1,1,PP 9549,16.7,G6,S +12,1,1,"Bonnell, Miss. Elizabeth",female,58,0,0,113783,26.55,C103,S +13,0,3,"Saundercock, Mr. William Henry",male,20,0,0,A/5. 2151,8.05,,S +14,0,3,"Andersson, Mr. Anders Johan",male,39,1,5,347082,31.275,,S +15,0,3,"Vestrom, Miss. Hulda Amanda Adolfina",female,14,0,0,350406,7.8542,,S +16,1,2,"Hewlett, Mrs. (Mary D Kingcome) ",female,55,0,0,248706,16,,S +17,0,3,"Rice, Master. Eugene",male,2,4,1,382652,29.125,,Q +18,1,2,"Williams, Mr. Charles Eugene",male,,0,0,244373,13,,S +19,0,3,"Vander Planke, Mrs. Julius (Emelia Maria Vandemoortele)",female,31,1,0,345763,18,,S +20,1,3,"Masselmani, Mrs. Fatima",female,,0,0,2649,7.225,,C +21,0,2,"Fynney, Mr. Joseph J",male,35,0,0,239865,26,,S +22,1,2,"Beesley, Mr. Lawrence",male,34,0,0,248698,13,D56,S +23,1,3,"McGowan, Miss. Anna ""Annie""",female,15,0,0,330923,8.0292,,Q +24,1,1,"Sloper, Mr. William Thompson",male,28,0,0,113788,35.5,A6,S +25,0,3,"Palsson, Miss. Torborg Danira",female,8,3,1,349909,21.075,,S +26,1,3,"Asplund, Mrs. Carl Oscar (Selma Augusta Emilia Johansson)",female,38,1,5,347077,31.3875,,S +27,0,3,"Emir, Mr. Farred Chehab",male,,0,0,2631,7.225,,C +28,0,1,"Fortune, Mr. Charles Alexander",male,19,3,2,19950,263,C23 C25 C27,S +29,1,3,"O'Dwyer, Miss. Ellen ""Nellie""",female,,0,0,330959,7.8792,,Q +30,0,3,"Todoroff, Mr. Lalio",male,,0,0,349216,7.8958,,S +31,0,1,"Uruchurtu, Don. Manuel E",male,40,0,0,PC 17601,27.7208,,C +32,1,1,"Spencer, Mrs. William Augustus (Marie Eugenie)",female,,1,0,PC 17569,146.5208,B78,C +33,1,3,"Glynn, Miss. Mary Agatha",female,,0,0,335677,7.75,,Q +34,0,2,"Wheadon, Mr. Edward H",male,66,0,0,C.A. 24579,10.5,,S +35,0,1,"Meyer, Mr. Edgar Joseph",male,28,1,0,PC 17604,82.1708,,C +36,0,1,"Holverson, Mr. Alexander Oskar",male,42,1,0,113789,52,,S +37,1,3,"Mamee, Mr. Hanna",male,,0,0,2677,7.2292,,C +38,0,3,"Cann, Mr. Ernest Charles",male,21,0,0,A./5. 2152,8.05,,S +39,0,3,"Vander Planke, Miss. Augusta Maria",female,18,2,0,345764,18,,S +40,1,3,"Nicola-Yarred, Miss. Jamila",female,14,1,0,2651,11.2417,,C +41,0,3,"Ahlin, Mrs. Johan (Johanna Persdotter Larsson)",female,40,1,0,7546,9.475,,S +42,0,2,"Turpin, Mrs. William John Robert (Dorothy Ann Wonnacott)",female,27,1,0,11668,21,,S +43,0,3,"Kraeff, Mr. Theodor",male,,0,0,349253,7.8958,,C +44,1,2,"Laroche, Miss. Simonne Marie Anne Andree",female,3,1,2,SC/Paris 2123,41.5792,,C +45,1,3,"Devaney, Miss. Margaret Delia",female,19,0,0,330958,7.8792,,Q +46,0,3,"Rogers, Mr. William John",male,,0,0,S.C./A.4. 23567,8.05,,S +47,0,3,"Lennon, Mr. Denis",male,,1,0,370371,15.5,,Q +48,1,3,"O'Driscoll, Miss. Bridget",female,,0,0,14311,7.75,,Q +49,0,3,"Samaan, Mr. Youssef",male,,2,0,2662,21.6792,,C +50,0,3,"Arnold-Franchi, Mrs. Josef (Josefine Franchi)",female,18,1,0,349237,17.8,,S +51,0,3,"Panula, Master. Juha Niilo",male,7,4,1,3101295,39.6875,,S +52,0,3,"Nosworthy, Mr. Richard Cater",male,21,0,0,A/4. 39886,7.8,,S +53,1,1,"Harper, Mrs. Henry Sleeper (Myna Haxtun)",female,49,1,0,PC 17572,76.7292,D33,C +54,1,2,"Faunthorpe, Mrs. Lizzie (Elizabeth Anne Wilkinson)",female,29,1,0,2926,26,,S +55,0,1,"Ostby, Mr. Engelhart Cornelius",male,65,0,1,113509,61.9792,B30,C +56,1,1,"Woolner, Mr. Hugh",male,,0,0,19947,35.5,C52,S +57,1,2,"Rugg, Miss. Emily",female,21,0,0,C.A. 31026,10.5,,S +58,0,3,"Novel, Mr. Mansouer",male,28.5,0,0,2697,7.2292,,C +59,1,2,"West, Miss. Constance Mirium",female,5,1,2,C.A. 34651,27.75,,S +60,0,3,"Goodwin, Master. William Frederick",male,11,5,2,CA 2144,46.9,,S +61,0,3,"Sirayanian, Mr. Orsen",male,22,0,0,2669,7.2292,,C +62,1,1,"Icard, Miss. Amelie",female,38,0,0,113572,80,B28, +63,0,1,"Harris, Mr. Henry Birkhardt",male,45,1,0,36973,83.475,C83,S +64,0,3,"Skoog, Master. Harald",male,4,3,2,347088,27.9,,S +65,0,1,"Stewart, Mr. Albert A",male,,0,0,PC 17605,27.7208,,C +66,1,3,"Moubarek, Master. Gerios",male,,1,1,2661,15.2458,,C +67,1,2,"Nye, Mrs. (Elizabeth Ramell)",female,29,0,0,C.A. 29395,10.5,F33,S +68,0,3,"Crease, Mr. Ernest James",male,19,0,0,S.P. 3464,8.1583,,S +69,1,3,"Andersson, Miss. Erna Alexandra",female,17,4,2,3101281,7.925,,S +70,0,3,"Kink, Mr. Vincenz",male,26,2,0,315151,8.6625,,S +71,0,2,"Jenkin, Mr. Stephen Curnow",male,32,0,0,C.A. 33111,10.5,,S +72,0,3,"Goodwin, Miss. Lillian Amy",female,16,5,2,CA 2144,46.9,,S +73,0,2,"Hood, Mr. Ambrose Jr",male,21,0,0,S.O.C. 14879,73.5,,S +74,0,3,"Chronopoulos, Mr. Apostolos",male,26,1,0,2680,14.4542,,C +75,1,3,"Bing, Mr. Lee",male,32,0,0,1601,56.4958,,S +76,0,3,"Moen, Mr. Sigurd Hansen",male,25,0,0,348123,7.65,F G73,S +77,0,3,"Staneff, Mr. Ivan",male,,0,0,349208,7.8958,,S +78,0,3,"Moutal, Mr. Rahamin Haim",male,,0,0,374746,8.05,,S +79,1,2,"Caldwell, Master. Alden Gates",male,0.83,0,2,248738,29,,S +80,1,3,"Dowdell, Miss. Elizabeth",female,30,0,0,364516,12.475,,S +81,0,3,"Waelens, Mr. Achille",male,22,0,0,345767,9,,S +82,1,3,"Sheerlinck, Mr. Jan Baptist",male,29,0,0,345779,9.5,,S +83,1,3,"McDermott, Miss. Brigdet Delia",female,,0,0,330932,7.7875,,Q +84,0,1,"Carrau, Mr. Francisco M",male,28,0,0,113059,47.1,,S +85,1,2,"Ilett, Miss. Bertha",female,17,0,0,SO/C 14885,10.5,,S +86,1,3,"Backstrom, Mrs. Karl Alfred (Maria Mathilda Gustafsson)",female,33,3,0,3101278,15.85,,S +87,0,3,"Ford, Mr. William Neal",male,16,1,3,W./C. 6608,34.375,,S +88,0,3,"Slocovski, Mr. Selman Francis",male,,0,0,SOTON/OQ 392086,8.05,,S +89,1,1,"Fortune, Miss. Mabel Helen",female,23,3,2,19950,263,C23 C25 C27,S +90,0,3,"Celotti, Mr. Francesco",male,24,0,0,343275,8.05,,S +91,0,3,"Christmann, Mr. Emil",male,29,0,0,343276,8.05,,S +92,0,3,"Andreasson, Mr. Paul Edvin",male,20,0,0,347466,7.8542,,S +93,0,1,"Chaffee, Mr. Herbert Fuller",male,46,1,0,W.E.P. 5734,61.175,E31,S +94,0,3,"Dean, Mr. Bertram Frank",male,26,1,2,C.A. 2315,20.575,,S +95,0,3,"Coxon, Mr. Daniel",male,59,0,0,364500,7.25,,S +96,0,3,"Shorney, Mr. Charles Joseph",male,,0,0,374910,8.05,,S +97,0,1,"Goldschmidt, Mr. George B",male,71,0,0,PC 17754,34.6542,A5,C +98,1,1,"Greenfield, Mr. William Bertram",male,23,0,1,PC 17759,63.3583,D10 D12,C +99,1,2,"Doling, Mrs. John T (Ada Julia Bone)",female,34,0,1,231919,23,,S +100,0,2,"Kantor, Mr. Sinai",male,34,1,0,244367,26,,S +101,0,3,"Petranec, Miss. Matilda",female,28,0,0,349245,7.8958,,S +102,0,3,"Petroff, Mr. Pastcho (""Pentcho"")",male,,0,0,349215,7.8958,,S +103,0,1,"White, Mr. Richard Frasar",male,21,0,1,35281,77.2875,D26,S +104,0,3,"Johansson, Mr. Gustaf Joel",male,33,0,0,7540,8.6542,,S +105,0,3,"Gustafsson, Mr. Anders Vilhelm",male,37,2,0,3101276,7.925,,S +106,0,3,"Mionoff, Mr. Stoytcho",male,28,0,0,349207,7.8958,,S +107,1,3,"Salkjelsvik, Miss. Anna Kristine",female,21,0,0,343120,7.65,,S +108,1,3,"Moss, Mr. Albert Johan",male,,0,0,312991,7.775,,S +109,0,3,"Rekic, Mr. Tido",male,38,0,0,349249,7.8958,,S +110,1,3,"Moran, Miss. Bertha",female,,1,0,371110,24.15,,Q +111,0,1,"Porter, Mr. Walter Chamberlain",male,47,0,0,110465,52,C110,S +112,0,3,"Zabour, Miss. Hileni",female,14.5,1,0,2665,14.4542,,C +113,0,3,"Barton, Mr. David John",male,22,0,0,324669,8.05,,S +114,0,3,"Jussila, Miss. Katriina",female,20,1,0,4136,9.825,,S +115,0,3,"Attalah, Miss. Malake",female,17,0,0,2627,14.4583,,C +116,0,3,"Pekoniemi, Mr. Edvard",male,21,0,0,STON/O 2. 3101294,7.925,,S +117,0,3,"Connors, Mr. Patrick",male,70.5,0,0,370369,7.75,,Q +118,0,2,"Turpin, Mr. William John Robert",male,29,1,0,11668,21,,S +119,0,1,"Baxter, Mr. Quigg Edmond",male,24,0,1,PC 17558,247.5208,B58 B60,C +120,0,3,"Andersson, Miss. Ellis Anna Maria",female,2,4,2,347082,31.275,,S +121,0,2,"Hickman, Mr. Stanley George",male,21,2,0,S.O.C. 14879,73.5,,S +122,0,3,"Moore, Mr. Leonard Charles",male,,0,0,A4. 54510,8.05,,S +123,0,2,"Nasser, Mr. Nicholas",male,32.5,1,0,237736,30.0708,,C +124,1,2,"Webber, Miss. Susan",female,32.5,0,0,27267,13,E101,S +125,0,1,"White, Mr. Percival Wayland",male,54,0,1,35281,77.2875,D26,S +126,1,3,"Nicola-Yarred, Master. Elias",male,12,1,0,2651,11.2417,,C +127,0,3,"McMahon, Mr. Martin",male,,0,0,370372,7.75,,Q +128,1,3,"Madsen, Mr. Fridtjof Arne",male,24,0,0,C 17369,7.1417,,S +129,1,3,"Peter, Miss. Anna",female,,1,1,2668,22.3583,F E69,C +130,0,3,"Ekstrom, Mr. Johan",male,45,0,0,347061,6.975,,S +131,0,3,"Drazenoic, Mr. Jozef",male,33,0,0,349241,7.8958,,C +132,0,3,"Coelho, Mr. Domingos Fernandeo",male,20,0,0,SOTON/O.Q. 3101307,7.05,,S +133,0,3,"Robins, Mrs. Alexander A (Grace Charity Laury)",female,47,1,0,A/5. 3337,14.5,,S +134,1,2,"Weisz, Mrs. Leopold (Mathilde Francoise Pede)",female,29,1,0,228414,26,,S +135,0,2,"Sobey, Mr. Samuel James Hayden",male,25,0,0,C.A. 29178,13,,S +136,0,2,"Richard, Mr. Emile",male,23,0,0,SC/PARIS 2133,15.0458,,C +137,1,1,"Newsom, Miss. Helen Monypeny",female,19,0,2,11752,26.2833,D47,S +138,0,1,"Futrelle, Mr. Jacques Heath",male,37,1,0,113803,53.1,C123,S +139,0,3,"Osen, Mr. Olaf Elon",male,16,0,0,7534,9.2167,,S +140,0,1,"Giglio, Mr. Victor",male,24,0,0,PC 17593,79.2,B86,C +141,0,3,"Boulos, Mrs. Joseph (Sultana)",female,,0,2,2678,15.2458,,C +142,1,3,"Nysten, Miss. Anna Sofia",female,22,0,0,347081,7.75,,S +143,1,3,"Hakkarainen, Mrs. Pekka Pietari (Elin Matilda Dolck)",female,24,1,0,STON/O2. 3101279,15.85,,S +144,0,3,"Burke, Mr. Jeremiah",male,19,0,0,365222,6.75,,Q +145,0,2,"Andrew, Mr. Edgardo Samuel",male,18,0,0,231945,11.5,,S +146,0,2,"Nicholls, Mr. Joseph Charles",male,19,1,1,C.A. 33112,36.75,,S +147,1,3,"Andersson, Mr. August Edvard (""Wennerstrom"")",male,27,0,0,350043,7.7958,,S +148,0,3,"Ford, Miss. Robina Maggie ""Ruby""",female,9,2,2,W./C. 6608,34.375,,S +149,0,2,"Navratil, Mr. Michel (""Louis M Hoffman"")",male,36.5,0,2,230080,26,F2,S +150,0,2,"Byles, Rev. Thomas Roussel Davids",male,42,0,0,244310,13,,S +151,0,2,"Bateman, Rev. Robert James",male,51,0,0,S.O.P. 1166,12.525,,S +152,1,1,"Pears, Mrs. Thomas (Edith Wearne)",female,22,1,0,113776,66.6,C2,S +153,0,3,"Meo, Mr. Alfonzo",male,55.5,0,0,A.5. 11206,8.05,,S +154,0,3,"van Billiard, Mr. Austin Blyler",male,40.5,0,2,A/5. 851,14.5,,S +155,0,3,"Olsen, Mr. Ole Martin",male,,0,0,Fa 265302,7.3125,,S +156,0,1,"Williams, Mr. Charles Duane",male,51,0,1,PC 17597,61.3792,,C +157,1,3,"Gilnagh, Miss. Katherine ""Katie""",female,16,0,0,35851,7.7333,,Q +158,0,3,"Corn, Mr. Harry",male,30,0,0,SOTON/OQ 392090,8.05,,S +159,0,3,"Smiljanic, Mr. Mile",male,,0,0,315037,8.6625,,S +160,0,3,"Sage, Master. Thomas Henry",male,,8,2,CA. 2343,69.55,,S +161,0,3,"Cribb, Mr. John Hatfield",male,44,0,1,371362,16.1,,S +162,1,2,"Watt, Mrs. James (Elizabeth ""Bessie"" Inglis Milne)",female,40,0,0,C.A. 33595,15.75,,S +163,0,3,"Bengtsson, Mr. John Viktor",male,26,0,0,347068,7.775,,S +164,0,3,"Calic, Mr. Jovo",male,17,0,0,315093,8.6625,,S +165,0,3,"Panula, Master. Eino Viljami",male,1,4,1,3101295,39.6875,,S +166,1,3,"Goldsmith, Master. Frank John William ""Frankie""",male,9,0,2,363291,20.525,,S +167,1,1,"Chibnall, Mrs. (Edith Martha Bowerman)",female,,0,1,113505,55,E33,S +168,0,3,"Skoog, Mrs. William (Anna Bernhardina Karlsson)",female,45,1,4,347088,27.9,,S +169,0,1,"Baumann, Mr. John D",male,,0,0,PC 17318,25.925,,S +170,0,3,"Ling, Mr. Lee",male,28,0,0,1601,56.4958,,S +171,0,1,"Van der hoef, Mr. Wyckoff",male,61,0,0,111240,33.5,B19,S +172,0,3,"Rice, Master. Arthur",male,4,4,1,382652,29.125,,Q +173,1,3,"Johnson, Miss. Eleanor Ileen",female,1,1,1,347742,11.1333,,S +174,0,3,"Sivola, Mr. Antti Wilhelm",male,21,0,0,STON/O 2. 3101280,7.925,,S +175,0,1,"Smith, Mr. James Clinch",male,56,0,0,17764,30.6958,A7,C +176,0,3,"Klasen, Mr. Klas Albin",male,18,1,1,350404,7.8542,,S +177,0,3,"Lefebre, Master. Henry Forbes",male,,3,1,4133,25.4667,,S +178,0,1,"Isham, Miss. Ann Elizabeth",female,50,0,0,PC 17595,28.7125,C49,C +179,0,2,"Hale, Mr. Reginald",male,30,0,0,250653,13,,S +180,0,3,"Leonard, Mr. Lionel",male,36,0,0,LINE,0,,S +181,0,3,"Sage, Miss. Constance Gladys",female,,8,2,CA. 2343,69.55,,S +182,0,2,"Pernot, Mr. Rene",male,,0,0,SC/PARIS 2131,15.05,,C +183,0,3,"Asplund, Master. Clarence Gustaf Hugo",male,9,4,2,347077,31.3875,,S +184,1,2,"Becker, Master. Richard F",male,1,2,1,230136,39,F4,S +185,1,3,"Kink-Heilmann, Miss. Luise Gretchen",female,4,0,2,315153,22.025,,S +186,0,1,"Rood, Mr. Hugh Roscoe",male,,0,0,113767,50,A32,S +187,1,3,"O'Brien, Mrs. Thomas (Johanna ""Hannah"" Godfrey)",female,,1,0,370365,15.5,,Q +188,1,1,"Romaine, Mr. Charles Hallace (""Mr C Rolmane"")",male,45,0,0,111428,26.55,,S +189,0,3,"Bourke, Mr. John",male,40,1,1,364849,15.5,,Q +190,0,3,"Turcin, Mr. Stjepan",male,36,0,0,349247,7.8958,,S +191,1,2,"Pinsky, Mrs. (Rosa)",female,32,0,0,234604,13,,S +192,0,2,"Carbines, Mr. William",male,19,0,0,28424,13,,S +193,1,3,"Andersen-Jensen, Miss. Carla Christine Nielsine",female,19,1,0,350046,7.8542,,S +194,1,2,"Navratil, Master. Michel M",male,3,1,1,230080,26,F2,S +195,1,1,"Brown, Mrs. James Joseph (Margaret Tobin)",female,44,0,0,PC 17610,27.7208,B4,C +196,1,1,"Lurette, Miss. Elise",female,58,0,0,PC 17569,146.5208,B80,C +197,0,3,"Mernagh, Mr. Robert",male,,0,0,368703,7.75,,Q +198,0,3,"Olsen, Mr. Karl Siegwart Andreas",male,42,0,1,4579,8.4042,,S +199,1,3,"Madigan, Miss. Margaret ""Maggie""",female,,0,0,370370,7.75,,Q +200,0,2,"Yrois, Miss. Henriette (""Mrs Harbeck"")",female,24,0,0,248747,13,,S +201,0,3,"Vande Walle, Mr. Nestor Cyriel",male,28,0,0,345770,9.5,,S +202,0,3,"Sage, Mr. Frederick",male,,8,2,CA. 2343,69.55,,S +203,0,3,"Johanson, Mr. Jakob Alfred",male,34,0,0,3101264,6.4958,,S +204,0,3,"Youseff, Mr. Gerious",male,45.5,0,0,2628,7.225,,C +205,1,3,"Cohen, Mr. Gurshon ""Gus""",male,18,0,0,A/5 3540,8.05,,S +206,0,3,"Strom, Miss. Telma Matilda",female,2,0,1,347054,10.4625,G6,S +207,0,3,"Backstrom, Mr. Karl Alfred",male,32,1,0,3101278,15.85,,S +208,1,3,"Albimona, Mr. Nassef Cassem",male,26,0,0,2699,18.7875,,C +209,1,3,"Carr, Miss. Helen ""Ellen""",female,16,0,0,367231,7.75,,Q +210,1,1,"Blank, Mr. Henry",male,40,0,0,112277,31,A31,C +211,0,3,"Ali, Mr. Ahmed",male,24,0,0,SOTON/O.Q. 3101311,7.05,,S +212,1,2,"Cameron, Miss. Clear Annie",female,35,0,0,F.C.C. 13528,21,,S +213,0,3,"Perkin, Mr. John Henry",male,22,0,0,A/5 21174,7.25,,S +214,0,2,"Givard, Mr. Hans Kristensen",male,30,0,0,250646,13,,S +215,0,3,"Kiernan, Mr. Philip",male,,1,0,367229,7.75,,Q +216,1,1,"Newell, Miss. Madeleine",female,31,1,0,35273,113.275,D36,C +217,1,3,"Honkanen, Miss. Eliina",female,27,0,0,STON/O2. 3101283,7.925,,S +218,0,2,"Jacobsohn, Mr. Sidney Samuel",male,42,1,0,243847,27,,S +219,1,1,"Bazzani, Miss. Albina",female,32,0,0,11813,76.2917,D15,C +220,0,2,"Harris, Mr. Walter",male,30,0,0,W/C 14208,10.5,,S +221,1,3,"Sunderland, Mr. Victor Francis",male,16,0,0,SOTON/OQ 392089,8.05,,S +222,0,2,"Bracken, Mr. James H",male,27,0,0,220367,13,,S +223,0,3,"Green, Mr. George Henry",male,51,0,0,21440,8.05,,S +224,0,3,"Nenkoff, Mr. Christo",male,,0,0,349234,7.8958,,S +225,1,1,"Hoyt, Mr. Frederick Maxfield",male,38,1,0,19943,90,C93,S +226,0,3,"Berglund, Mr. Karl Ivar Sven",male,22,0,0,PP 4348,9.35,,S +227,1,2,"Mellors, Mr. William John",male,19,0,0,SW/PP 751,10.5,,S +228,0,3,"Lovell, Mr. John Hall (""Henry"")",male,20.5,0,0,A/5 21173,7.25,,S +229,0,2,"Fahlstrom, Mr. Arne Jonas",male,18,0,0,236171,13,,S +230,0,3,"Lefebre, Miss. Mathilde",female,,3,1,4133,25.4667,,S +231,1,1,"Harris, Mrs. Henry Birkhardt (Irene Wallach)",female,35,1,0,36973,83.475,C83,S +232,0,3,"Larsson, Mr. Bengt Edvin",male,29,0,0,347067,7.775,,S +233,0,2,"Sjostedt, Mr. Ernst Adolf",male,59,0,0,237442,13.5,,S +234,1,3,"Asplund, Miss. Lillian Gertrud",female,5,4,2,347077,31.3875,,S +235,0,2,"Leyson, Mr. Robert William Norman",male,24,0,0,C.A. 29566,10.5,,S +236,0,3,"Harknett, Miss. Alice Phoebe",female,,0,0,W./C. 6609,7.55,,S +237,0,2,"Hold, Mr. Stephen",male,44,1,0,26707,26,,S +238,1,2,"Collyer, Miss. Marjorie ""Lottie""",female,8,0,2,C.A. 31921,26.25,,S +239,0,2,"Pengelly, Mr. Frederick William",male,19,0,0,28665,10.5,,S +240,0,2,"Hunt, Mr. George Henry",male,33,0,0,SCO/W 1585,12.275,,S +241,0,3,"Zabour, Miss. Thamine",female,,1,0,2665,14.4542,,C +242,1,3,"Murphy, Miss. Katherine ""Kate""",female,,1,0,367230,15.5,,Q +243,0,2,"Coleridge, Mr. Reginald Charles",male,29,0,0,W./C. 14263,10.5,,S +244,0,3,"Maenpaa, Mr. Matti Alexanteri",male,22,0,0,STON/O 2. 3101275,7.125,,S +245,0,3,"Attalah, Mr. Sleiman",male,30,0,0,2694,7.225,,C +246,0,1,"Minahan, Dr. William Edward",male,44,2,0,19928,90,C78,Q +247,0,3,"Lindahl, Miss. Agda Thorilda Viktoria",female,25,0,0,347071,7.775,,S +248,1,2,"Hamalainen, Mrs. William (Anna)",female,24,0,2,250649,14.5,,S +249,1,1,"Beckwith, Mr. Richard Leonard",male,37,1,1,11751,52.5542,D35,S +250,0,2,"Carter, Rev. Ernest Courtenay",male,54,1,0,244252,26,,S +251,0,3,"Reed, Mr. James George",male,,0,0,362316,7.25,,S +252,0,3,"Strom, Mrs. Wilhelm (Elna Matilda Persson)",female,29,1,1,347054,10.4625,G6,S +253,0,1,"Stead, Mr. William Thomas",male,62,0,0,113514,26.55,C87,S +254,0,3,"Lobb, Mr. William Arthur",male,30,1,0,A/5. 3336,16.1,,S +255,0,3,"Rosblom, Mrs. Viktor (Helena Wilhelmina)",female,41,0,2,370129,20.2125,,S +256,1,3,"Touma, Mrs. Darwis (Hanne Youssef Razi)",female,29,0,2,2650,15.2458,,C +257,1,1,"Thorne, Mrs. Gertrude Maybelle",female,,0,0,PC 17585,79.2,,C +258,1,1,"Cherry, Miss. Gladys",female,30,0,0,110152,86.5,B77,S +259,1,1,"Ward, Miss. Anna",female,35,0,0,PC 17755,512.3292,,C +260,1,2,"Parrish, Mrs. (Lutie Davis)",female,50,0,1,230433,26,,S +261,0,3,"Smith, Mr. Thomas",male,,0,0,384461,7.75,,Q +262,1,3,"Asplund, Master. Edvin Rojj Felix",male,3,4,2,347077,31.3875,,S +263,0,1,"Taussig, Mr. Emil",male,52,1,1,110413,79.65,E67,S +264,0,1,"Harrison, Mr. William",male,40,0,0,112059,0,B94,S +265,0,3,"Henry, Miss. Delia",female,,0,0,382649,7.75,,Q +266,0,2,"Reeves, Mr. David",male,36,0,0,C.A. 17248,10.5,,S +267,0,3,"Panula, Mr. Ernesti Arvid",male,16,4,1,3101295,39.6875,,S +268,1,3,"Persson, Mr. Ernst Ulrik",male,25,1,0,347083,7.775,,S +269,1,1,"Graham, Mrs. William Thompson (Edith Junkins)",female,58,0,1,PC 17582,153.4625,C125,S +270,1,1,"Bissette, Miss. Amelia",female,35,0,0,PC 17760,135.6333,C99,S +271,0,1,"Cairns, Mr. Alexander",male,,0,0,113798,31,,S +272,1,3,"Tornquist, Mr. William Henry",male,25,0,0,LINE,0,,S +273,1,2,"Mellinger, Mrs. (Elizabeth Anne Maidment)",female,41,0,1,250644,19.5,,S +274,0,1,"Natsch, Mr. Charles H",male,37,0,1,PC 17596,29.7,C118,C +275,1,3,"Healy, Miss. Hanora ""Nora""",female,,0,0,370375,7.75,,Q +276,1,1,"Andrews, Miss. Kornelia Theodosia",female,63,1,0,13502,77.9583,D7,S +277,0,3,"Lindblom, Miss. Augusta Charlotta",female,45,0,0,347073,7.75,,S +278,0,2,"Parkes, Mr. Francis ""Frank""",male,,0,0,239853,0,,S +279,0,3,"Rice, Master. Eric",male,7,4,1,382652,29.125,,Q +280,1,3,"Abbott, Mrs. Stanton (Rosa Hunt)",female,35,1,1,C.A. 2673,20.25,,S +281,0,3,"Duane, Mr. Frank",male,65,0,0,336439,7.75,,Q +282,0,3,"Olsson, Mr. Nils Johan Goransson",male,28,0,0,347464,7.8542,,S +283,0,3,"de Pelsmaeker, Mr. Alfons",male,16,0,0,345778,9.5,,S +284,1,3,"Dorking, Mr. Edward Arthur",male,19,0,0,A/5. 10482,8.05,,S +285,0,1,"Smith, Mr. Richard William",male,,0,0,113056,26,A19,S +286,0,3,"Stankovic, Mr. Ivan",male,33,0,0,349239,8.6625,,C +287,1,3,"de Mulder, Mr. Theodore",male,30,0,0,345774,9.5,,S +288,0,3,"Naidenoff, Mr. Penko",male,22,0,0,349206,7.8958,,S +289,1,2,"Hosono, Mr. Masabumi",male,42,0,0,237798,13,,S +290,1,3,"Connolly, Miss. Kate",female,22,0,0,370373,7.75,,Q +291,1,1,"Barber, Miss. Ellen ""Nellie""",female,26,0,0,19877,78.85,,S +292,1,1,"Bishop, Mrs. Dickinson H (Helen Walton)",female,19,1,0,11967,91.0792,B49,C +293,0,2,"Levy, Mr. Rene Jacques",male,36,0,0,SC/Paris 2163,12.875,D,C +294,0,3,"Haas, Miss. Aloisia",female,24,0,0,349236,8.85,,S +295,0,3,"Mineff, Mr. Ivan",male,24,0,0,349233,7.8958,,S +296,0,1,"Lewy, Mr. Ervin G",male,,0,0,PC 17612,27.7208,,C +297,0,3,"Hanna, Mr. Mansour",male,23.5,0,0,2693,7.2292,,C +298,0,1,"Allison, Miss. Helen Loraine",female,2,1,2,113781,151.55,C22 C26,S +299,1,1,"Saalfeld, Mr. Adolphe",male,,0,0,19988,30.5,C106,S +300,1,1,"Baxter, Mrs. James (Helene DeLaudeniere Chaput)",female,50,0,1,PC 17558,247.5208,B58 B60,C +301,1,3,"Kelly, Miss. Anna Katherine ""Annie Kate""",female,,0,0,9234,7.75,,Q +302,1,3,"McCoy, Mr. Bernard",male,,2,0,367226,23.25,,Q +303,0,3,"Johnson, Mr. William Cahoone Jr",male,19,0,0,LINE,0,,S +304,1,2,"Keane, Miss. Nora A",female,,0,0,226593,12.35,E101,Q +305,0,3,"Williams, Mr. Howard Hugh ""Harry""",male,,0,0,A/5 2466,8.05,,S +306,1,1,"Allison, Master. Hudson Trevor",male,0.92,1,2,113781,151.55,C22 C26,S +307,1,1,"Fleming, Miss. Margaret",female,,0,0,17421,110.8833,,C +308,1,1,"Penasco y Castellana, Mrs. Victor de Satode (Maria Josefa Perez de Soto y Vallejo)",female,17,1,0,PC 17758,108.9,C65,C +309,0,2,"Abelson, Mr. Samuel",male,30,1,0,P/PP 3381,24,,C +310,1,1,"Francatelli, Miss. Laura Mabel",female,30,0,0,PC 17485,56.9292,E36,C +311,1,1,"Hays, Miss. Margaret Bechstein",female,24,0,0,11767,83.1583,C54,C +312,1,1,"Ryerson, Miss. Emily Borie",female,18,2,2,PC 17608,262.375,B57 B59 B63 B66,C +313,0,2,"Lahtinen, Mrs. William (Anna Sylfven)",female,26,1,1,250651,26,,S +314,0,3,"Hendekovic, Mr. Ignjac",male,28,0,0,349243,7.8958,,S +315,0,2,"Hart, Mr. Benjamin",male,43,1,1,F.C.C. 13529,26.25,,S +316,1,3,"Nilsson, Miss. Helmina Josefina",female,26,0,0,347470,7.8542,,S +317,1,2,"Kantor, Mrs. Sinai (Miriam Sternin)",female,24,1,0,244367,26,,S +318,0,2,"Moraweck, Dr. Ernest",male,54,0,0,29011,14,,S +319,1,1,"Wick, Miss. Mary Natalie",female,31,0,2,36928,164.8667,C7,S +320,1,1,"Spedden, Mrs. Frederic Oakley (Margaretta Corning Stone)",female,40,1,1,16966,134.5,E34,C +321,0,3,"Dennis, Mr. Samuel",male,22,0,0,A/5 21172,7.25,,S +322,0,3,"Danoff, Mr. Yoto",male,27,0,0,349219,7.8958,,S +323,1,2,"Slayter, Miss. Hilda Mary",female,30,0,0,234818,12.35,,Q +324,1,2,"Caldwell, Mrs. Albert Francis (Sylvia Mae Harbaugh)",female,22,1,1,248738,29,,S +325,0,3,"Sage, Mr. George John Jr",male,,8,2,CA. 2343,69.55,,S +326,1,1,"Young, Miss. Marie Grice",female,36,0,0,PC 17760,135.6333,C32,C +327,0,3,"Nysveen, Mr. Johan Hansen",male,61,0,0,345364,6.2375,,S +328,1,2,"Ball, Mrs. (Ada E Hall)",female,36,0,0,28551,13,D,S +329,1,3,"Goldsmith, Mrs. Frank John (Emily Alice Brown)",female,31,1,1,363291,20.525,,S +330,1,1,"Hippach, Miss. Jean Gertrude",female,16,0,1,111361,57.9792,B18,C +331,1,3,"McCoy, Miss. Agnes",female,,2,0,367226,23.25,,Q +332,0,1,"Partner, Mr. Austen",male,45.5,0,0,113043,28.5,C124,S +333,0,1,"Graham, Mr. George Edward",male,38,0,1,PC 17582,153.4625,C91,S +334,0,3,"Vander Planke, Mr. Leo Edmondus",male,16,2,0,345764,18,,S +335,1,1,"Frauenthal, Mrs. Henry William (Clara Heinsheimer)",female,,1,0,PC 17611,133.65,,S +336,0,3,"Denkoff, Mr. Mitto",male,,0,0,349225,7.8958,,S +337,0,1,"Pears, Mr. Thomas Clinton",male,29,1,0,113776,66.6,C2,S +338,1,1,"Burns, Miss. Elizabeth Margaret",female,41,0,0,16966,134.5,E40,C +339,1,3,"Dahl, Mr. Karl Edwart",male,45,0,0,7598,8.05,,S +340,0,1,"Blackwell, Mr. Stephen Weart",male,45,0,0,113784,35.5,T,S +341,1,2,"Navratil, Master. Edmond Roger",male,2,1,1,230080,26,F2,S +342,1,1,"Fortune, Miss. Alice Elizabeth",female,24,3,2,19950,263,C23 C25 C27,S +343,0,2,"Collander, Mr. Erik Gustaf",male,28,0,0,248740,13,,S +344,0,2,"Sedgwick, Mr. Charles Frederick Waddington",male,25,0,0,244361,13,,S +345,0,2,"Fox, Mr. Stanley Hubert",male,36,0,0,229236,13,,S +346,1,2,"Brown, Miss. Amelia ""Mildred""",female,24,0,0,248733,13,F33,S +347,1,2,"Smith, Miss. Marion Elsie",female,40,0,0,31418,13,,S +348,1,3,"Davison, Mrs. Thomas Henry (Mary E Finck)",female,,1,0,386525,16.1,,S +349,1,3,"Coutts, Master. William Loch ""William""",male,3,1,1,C.A. 37671,15.9,,S +350,0,3,"Dimic, Mr. Jovan",male,42,0,0,315088,8.6625,,S +351,0,3,"Odahl, Mr. Nils Martin",male,23,0,0,7267,9.225,,S +352,0,1,"Williams-Lambert, Mr. Fletcher Fellows",male,,0,0,113510,35,C128,S +353,0,3,"Elias, Mr. Tannous",male,15,1,1,2695,7.2292,,C +354,0,3,"Arnold-Franchi, Mr. Josef",male,25,1,0,349237,17.8,,S +355,0,3,"Yousif, Mr. Wazli",male,,0,0,2647,7.225,,C +356,0,3,"Vanden Steen, Mr. Leo Peter",male,28,0,0,345783,9.5,,S +357,1,1,"Bowerman, Miss. Elsie Edith",female,22,0,1,113505,55,E33,S +358,0,2,"Funk, Miss. Annie Clemmer",female,38,0,0,237671,13,,S +359,1,3,"McGovern, Miss. Mary",female,,0,0,330931,7.8792,,Q +360,1,3,"Mockler, Miss. Helen Mary ""Ellie""",female,,0,0,330980,7.8792,,Q +361,0,3,"Skoog, Mr. Wilhelm",male,40,1,4,347088,27.9,,S +362,0,2,"del Carlo, Mr. Sebastiano",male,29,1,0,SC/PARIS 2167,27.7208,,C +363,0,3,"Barbara, Mrs. (Catherine David)",female,45,0,1,2691,14.4542,,C +364,0,3,"Asim, Mr. Adola",male,35,0,0,SOTON/O.Q. 3101310,7.05,,S +365,0,3,"O'Brien, Mr. Thomas",male,,1,0,370365,15.5,,Q +366,0,3,"Adahl, Mr. Mauritz Nils Martin",male,30,0,0,C 7076,7.25,,S +367,1,1,"Warren, Mrs. Frank Manley (Anna Sophia Atkinson)",female,60,1,0,110813,75.25,D37,C +368,1,3,"Moussa, Mrs. (Mantoura Boulos)",female,,0,0,2626,7.2292,,C +369,1,3,"Jermyn, Miss. Annie",female,,0,0,14313,7.75,,Q +370,1,1,"Aubart, Mme. Leontine Pauline",female,24,0,0,PC 17477,69.3,B35,C +371,1,1,"Harder, Mr. George Achilles",male,25,1,0,11765,55.4417,E50,C +372,0,3,"Wiklund, Mr. Jakob Alfred",male,18,1,0,3101267,6.4958,,S +373,0,3,"Beavan, Mr. William Thomas",male,19,0,0,323951,8.05,,S +374,0,1,"Ringhini, Mr. Sante",male,22,0,0,PC 17760,135.6333,,C +375,0,3,"Palsson, Miss. Stina Viola",female,3,3,1,349909,21.075,,S +376,1,1,"Meyer, Mrs. Edgar Joseph (Leila Saks)",female,,1,0,PC 17604,82.1708,,C +377,1,3,"Landergren, Miss. Aurora Adelia",female,22,0,0,C 7077,7.25,,S +378,0,1,"Widener, Mr. Harry Elkins",male,27,0,2,113503,211.5,C82,C +379,0,3,"Betros, Mr. Tannous",male,20,0,0,2648,4.0125,,C +380,0,3,"Gustafsson, Mr. Karl Gideon",male,19,0,0,347069,7.775,,S +381,1,1,"Bidois, Miss. Rosalie",female,42,0,0,PC 17757,227.525,,C +382,1,3,"Nakid, Miss. Maria (""Mary"")",female,1,0,2,2653,15.7417,,C +383,0,3,"Tikkanen, Mr. Juho",male,32,0,0,STON/O 2. 3101293,7.925,,S +384,1,1,"Holverson, Mrs. Alexander Oskar (Mary Aline Towner)",female,35,1,0,113789,52,,S +385,0,3,"Plotcharsky, Mr. Vasil",male,,0,0,349227,7.8958,,S +386,0,2,"Davies, Mr. Charles Henry",male,18,0,0,S.O.C. 14879,73.5,,S +387,0,3,"Goodwin, Master. Sidney Leonard",male,1,5,2,CA 2144,46.9,,S +388,1,2,"Buss, Miss. Kate",female,36,0,0,27849,13,,S +389,0,3,"Sadlier, Mr. Matthew",male,,0,0,367655,7.7292,,Q +390,1,2,"Lehmann, Miss. Bertha",female,17,0,0,SC 1748,12,,C +391,1,1,"Carter, Mr. William Ernest",male,36,1,2,113760,120,B96 B98,S +392,1,3,"Jansson, Mr. Carl Olof",male,21,0,0,350034,7.7958,,S +393,0,3,"Gustafsson, Mr. Johan Birger",male,28,2,0,3101277,7.925,,S +394,1,1,"Newell, Miss. Marjorie",female,23,1,0,35273,113.275,D36,C +395,1,3,"Sandstrom, Mrs. Hjalmar (Agnes Charlotta Bengtsson)",female,24,0,2,PP 9549,16.7,G6,S +396,0,3,"Johansson, Mr. Erik",male,22,0,0,350052,7.7958,,S +397,0,3,"Olsson, Miss. Elina",female,31,0,0,350407,7.8542,,S +398,0,2,"McKane, Mr. Peter David",male,46,0,0,28403,26,,S +399,0,2,"Pain, Dr. Alfred",male,23,0,0,244278,10.5,,S +400,1,2,"Trout, Mrs. William H (Jessie L)",female,28,0,0,240929,12.65,,S +401,1,3,"Niskanen, Mr. Juha",male,39,0,0,STON/O 2. 3101289,7.925,,S +402,0,3,"Adams, Mr. John",male,26,0,0,341826,8.05,,S +403,0,3,"Jussila, Miss. Mari Aina",female,21,1,0,4137,9.825,,S +404,0,3,"Hakkarainen, Mr. Pekka Pietari",male,28,1,0,STON/O2. 3101279,15.85,,S +405,0,3,"Oreskovic, Miss. Marija",female,20,0,0,315096,8.6625,,S +406,0,2,"Gale, Mr. Shadrach",male,34,1,0,28664,21,,S +407,0,3,"Widegren, Mr. Carl/Charles Peter",male,51,0,0,347064,7.75,,S +408,1,2,"Richards, Master. William Rowe",male,3,1,1,29106,18.75,,S +409,0,3,"Birkeland, Mr. Hans Martin Monsen",male,21,0,0,312992,7.775,,S +410,0,3,"Lefebre, Miss. Ida",female,,3,1,4133,25.4667,,S +411,0,3,"Sdycoff, Mr. Todor",male,,0,0,349222,7.8958,,S +412,0,3,"Hart, Mr. Henry",male,,0,0,394140,6.8583,,Q +413,1,1,"Minahan, Miss. Daisy E",female,33,1,0,19928,90,C78,Q +414,0,2,"Cunningham, Mr. Alfred Fleming",male,,0,0,239853,0,,S +415,1,3,"Sundman, Mr. Johan Julian",male,44,0,0,STON/O 2. 3101269,7.925,,S +416,0,3,"Meek, Mrs. Thomas (Annie Louise Rowley)",female,,0,0,343095,8.05,,S +417,1,2,"Drew, Mrs. James Vivian (Lulu Thorne Christian)",female,34,1,1,28220,32.5,,S +418,1,2,"Silven, Miss. Lyyli Karoliina",female,18,0,2,250652,13,,S +419,0,2,"Matthews, Mr. William John",male,30,0,0,28228,13,,S +420,0,3,"Van Impe, Miss. Catharina",female,10,0,2,345773,24.15,,S +421,0,3,"Gheorgheff, Mr. Stanio",male,,0,0,349254,7.8958,,C +422,0,3,"Charters, Mr. David",male,21,0,0,A/5. 13032,7.7333,,Q +423,0,3,"Zimmerman, Mr. Leo",male,29,0,0,315082,7.875,,S +424,0,3,"Danbom, Mrs. Ernst Gilbert (Anna Sigrid Maria Brogren)",female,28,1,1,347080,14.4,,S +425,0,3,"Rosblom, Mr. Viktor Richard",male,18,1,1,370129,20.2125,,S +426,0,3,"Wiseman, Mr. Phillippe",male,,0,0,A/4. 34244,7.25,,S +427,1,2,"Clarke, Mrs. Charles V (Ada Maria Winfield)",female,28,1,0,2003,26,,S +428,1,2,"Phillips, Miss. Kate Florence (""Mrs Kate Louise Phillips Marshall"")",female,19,0,0,250655,26,,S +429,0,3,"Flynn, Mr. James",male,,0,0,364851,7.75,,Q +430,1,3,"Pickard, Mr. Berk (Berk Trembisky)",male,32,0,0,SOTON/O.Q. 392078,8.05,E10,S +431,1,1,"Bjornstrom-Steffansson, Mr. Mauritz Hakan",male,28,0,0,110564,26.55,C52,S +432,1,3,"Thorneycroft, Mrs. Percival (Florence Kate White)",female,,1,0,376564,16.1,,S +433,1,2,"Louch, Mrs. Charles Alexander (Alice Adelaide Slow)",female,42,1,0,SC/AH 3085,26,,S +434,0,3,"Kallio, Mr. Nikolai Erland",male,17,0,0,STON/O 2. 3101274,7.125,,S +435,0,1,"Silvey, Mr. William Baird",male,50,1,0,13507,55.9,E44,S +436,1,1,"Carter, Miss. Lucile Polk",female,14,1,2,113760,120,B96 B98,S +437,0,3,"Ford, Miss. Doolina Margaret ""Daisy""",female,21,2,2,W./C. 6608,34.375,,S +438,1,2,"Richards, Mrs. Sidney (Emily Hocking)",female,24,2,3,29106,18.75,,S +439,0,1,"Fortune, Mr. Mark",male,64,1,4,19950,263,C23 C25 C27,S +440,0,2,"Kvillner, Mr. Johan Henrik Johannesson",male,31,0,0,C.A. 18723,10.5,,S +441,1,2,"Hart, Mrs. Benjamin (Esther Ada Bloomfield)",female,45,1,1,F.C.C. 13529,26.25,,S +442,0,3,"Hampe, Mr. Leon",male,20,0,0,345769,9.5,,S +443,0,3,"Petterson, Mr. Johan Emil",male,25,1,0,347076,7.775,,S +444,1,2,"Reynaldo, Ms. Encarnacion",female,28,0,0,230434,13,,S +445,1,3,"Johannesen-Bratthammer, Mr. Bernt",male,,0,0,65306,8.1125,,S +446,1,1,"Dodge, Master. Washington",male,4,0,2,33638,81.8583,A34,S +447,1,2,"Mellinger, Miss. Madeleine Violet",female,13,0,1,250644,19.5,,S +448,1,1,"Seward, Mr. Frederic Kimber",male,34,0,0,113794,26.55,,S +449,1,3,"Baclini, Miss. Marie Catherine",female,5,2,1,2666,19.2583,,C +450,1,1,"Peuchen, Major. Arthur Godfrey",male,52,0,0,113786,30.5,C104,S +451,0,2,"West, Mr. Edwy Arthur",male,36,1,2,C.A. 34651,27.75,,S +452,0,3,"Hagland, Mr. Ingvald Olai Olsen",male,,1,0,65303,19.9667,,S +453,0,1,"Foreman, Mr. Benjamin Laventall",male,30,0,0,113051,27.75,C111,C +454,1,1,"Goldenberg, Mr. Samuel L",male,49,1,0,17453,89.1042,C92,C +455,0,3,"Peduzzi, Mr. Joseph",male,,0,0,A/5 2817,8.05,,S +456,1,3,"Jalsevac, Mr. Ivan",male,29,0,0,349240,7.8958,,C +457,0,1,"Millet, Mr. Francis Davis",male,65,0,0,13509,26.55,E38,S +458,1,1,"Kenyon, Mrs. Frederick R (Marion)",female,,1,0,17464,51.8625,D21,S +459,1,2,"Toomey, Miss. Ellen",female,50,0,0,F.C.C. 13531,10.5,,S +460,0,3,"O'Connor, Mr. Maurice",male,,0,0,371060,7.75,,Q +461,1,1,"Anderson, Mr. Harry",male,48,0,0,19952,26.55,E12,S +462,0,3,"Morley, Mr. William",male,34,0,0,364506,8.05,,S +463,0,1,"Gee, Mr. Arthur H",male,47,0,0,111320,38.5,E63,S +464,0,2,"Milling, Mr. Jacob Christian",male,48,0,0,234360,13,,S +465,0,3,"Maisner, Mr. Simon",male,,0,0,A/S 2816,8.05,,S +466,0,3,"Goncalves, Mr. Manuel Estanslas",male,38,0,0,SOTON/O.Q. 3101306,7.05,,S +467,0,2,"Campbell, Mr. William",male,,0,0,239853,0,,S +468,0,1,"Smart, Mr. John Montgomery",male,56,0,0,113792,26.55,,S +469,0,3,"Scanlan, Mr. James",male,,0,0,36209,7.725,,Q +470,1,3,"Baclini, Miss. Helene Barbara",female,0.75,2,1,2666,19.2583,,C +471,0,3,"Keefe, Mr. Arthur",male,,0,0,323592,7.25,,S +472,0,3,"Cacic, Mr. Luka",male,38,0,0,315089,8.6625,,S +473,1,2,"West, Mrs. Edwy Arthur (Ada Mary Worth)",female,33,1,2,C.A. 34651,27.75,,S +474,1,2,"Jerwan, Mrs. Amin S (Marie Marthe Thuillard)",female,23,0,0,SC/AH Basle 541,13.7917,D,C +475,0,3,"Strandberg, Miss. Ida Sofia",female,22,0,0,7553,9.8375,,S +476,0,1,"Clifford, Mr. George Quincy",male,,0,0,110465,52,A14,S +477,0,2,"Renouf, Mr. Peter Henry",male,34,1,0,31027,21,,S +478,0,3,"Braund, Mr. Lewis Richard",male,29,1,0,3460,7.0458,,S +479,0,3,"Karlsson, Mr. Nils August",male,22,0,0,350060,7.5208,,S +480,1,3,"Hirvonen, Miss. Hildur E",female,2,0,1,3101298,12.2875,,S +481,0,3,"Goodwin, Master. Harold Victor",male,9,5,2,CA 2144,46.9,,S +482,0,2,"Frost, Mr. Anthony Wood ""Archie""",male,,0,0,239854,0,,S +483,0,3,"Rouse, Mr. Richard Henry",male,50,0,0,A/5 3594,8.05,,S +484,1,3,"Turkula, Mrs. (Hedwig)",female,63,0,0,4134,9.5875,,S +485,1,1,"Bishop, Mr. Dickinson H",male,25,1,0,11967,91.0792,B49,C +486,0,3,"Lefebre, Miss. Jeannie",female,,3,1,4133,25.4667,,S +487,1,1,"Hoyt, Mrs. Frederick Maxfield (Jane Anne Forby)",female,35,1,0,19943,90,C93,S +488,0,1,"Kent, Mr. Edward Austin",male,58,0,0,11771,29.7,B37,C +489,0,3,"Somerton, Mr. Francis William",male,30,0,0,A.5. 18509,8.05,,S +490,1,3,"Coutts, Master. Eden Leslie ""Neville""",male,9,1,1,C.A. 37671,15.9,,S +491,0,3,"Hagland, Mr. Konrad Mathias Reiersen",male,,1,0,65304,19.9667,,S +492,0,3,"Windelov, Mr. Einar",male,21,0,0,SOTON/OQ 3101317,7.25,,S +493,0,1,"Molson, Mr. Harry Markland",male,55,0,0,113787,30.5,C30,S +494,0,1,"Artagaveytia, Mr. Ramon",male,71,0,0,PC 17609,49.5042,,C +495,0,3,"Stanley, Mr. Edward Roland",male,21,0,0,A/4 45380,8.05,,S +496,0,3,"Yousseff, Mr. Gerious",male,,0,0,2627,14.4583,,C +497,1,1,"Eustis, Miss. Elizabeth Mussey",female,54,1,0,36947,78.2667,D20,C +498,0,3,"Shellard, Mr. Frederick William",male,,0,0,C.A. 6212,15.1,,S +499,0,1,"Allison, Mrs. Hudson J C (Bessie Waldo Daniels)",female,25,1,2,113781,151.55,C22 C26,S +500,0,3,"Svensson, Mr. Olof",male,24,0,0,350035,7.7958,,S +501,0,3,"Calic, Mr. Petar",male,17,0,0,315086,8.6625,,S +502,0,3,"Canavan, Miss. Mary",female,21,0,0,364846,7.75,,Q +503,0,3,"O'Sullivan, Miss. Bridget Mary",female,,0,0,330909,7.6292,,Q +504,0,3,"Laitinen, Miss. Kristina Sofia",female,37,0,0,4135,9.5875,,S +505,1,1,"Maioni, Miss. Roberta",female,16,0,0,110152,86.5,B79,S +506,0,1,"Penasco y Castellana, Mr. Victor de Satode",male,18,1,0,PC 17758,108.9,C65,C +507,1,2,"Quick, Mrs. Frederick Charles (Jane Richards)",female,33,0,2,26360,26,,S +508,1,1,"Bradley, Mr. George (""George Arthur Brayton"")",male,,0,0,111427,26.55,,S +509,0,3,"Olsen, Mr. Henry Margido",male,28,0,0,C 4001,22.525,,S +510,1,3,"Lang, Mr. Fang",male,26,0,0,1601,56.4958,,S +511,1,3,"Daly, Mr. Eugene Patrick",male,29,0,0,382651,7.75,,Q +512,0,3,"Webber, Mr. James",male,,0,0,SOTON/OQ 3101316,8.05,,S +513,1,1,"McGough, Mr. James Robert",male,36,0,0,PC 17473,26.2875,E25,S +514,1,1,"Rothschild, Mrs. Martin (Elizabeth L. Barrett)",female,54,1,0,PC 17603,59.4,,C +515,0,3,"Coleff, Mr. Satio",male,24,0,0,349209,7.4958,,S +516,0,1,"Walker, Mr. William Anderson",male,47,0,0,36967,34.0208,D46,S +517,1,2,"Lemore, Mrs. (Amelia Milley)",female,34,0,0,C.A. 34260,10.5,F33,S +518,0,3,"Ryan, Mr. Patrick",male,,0,0,371110,24.15,,Q +519,1,2,"Angle, Mrs. William A (Florence ""Mary"" Agnes Hughes)",female,36,1,0,226875,26,,S +520,0,3,"Pavlovic, Mr. Stefo",male,32,0,0,349242,7.8958,,S +521,1,1,"Perreault, Miss. Anne",female,30,0,0,12749,93.5,B73,S +522,0,3,"Vovk, Mr. Janko",male,22,0,0,349252,7.8958,,S +523,0,3,"Lahoud, Mr. Sarkis",male,,0,0,2624,7.225,,C +524,1,1,"Hippach, Mrs. Louis Albert (Ida Sophia Fischer)",female,44,0,1,111361,57.9792,B18,C +525,0,3,"Kassem, Mr. Fared",male,,0,0,2700,7.2292,,C +526,0,3,"Farrell, Mr. James",male,40.5,0,0,367232,7.75,,Q +527,1,2,"Ridsdale, Miss. Lucy",female,50,0,0,W./C. 14258,10.5,,S +528,0,1,"Farthing, Mr. John",male,,0,0,PC 17483,221.7792,C95,S +529,0,3,"Salonen, Mr. Johan Werner",male,39,0,0,3101296,7.925,,S +530,0,2,"Hocking, Mr. Richard George",male,23,2,1,29104,11.5,,S +531,1,2,"Quick, Miss. Phyllis May",female,2,1,1,26360,26,,S +532,0,3,"Toufik, Mr. Nakli",male,,0,0,2641,7.2292,,C +533,0,3,"Elias, Mr. Joseph Jr",male,17,1,1,2690,7.2292,,C +534,1,3,"Peter, Mrs. Catherine (Catherine Rizk)",female,,0,2,2668,22.3583,,C +535,0,3,"Cacic, Miss. Marija",female,30,0,0,315084,8.6625,,S +536,1,2,"Hart, Miss. Eva Miriam",female,7,0,2,F.C.C. 13529,26.25,,S +537,0,1,"Butt, Major. Archibald Willingham",male,45,0,0,113050,26.55,B38,S +538,1,1,"LeRoy, Miss. Bertha",female,30,0,0,PC 17761,106.425,,C +539,0,3,"Risien, Mr. Samuel Beard",male,,0,0,364498,14.5,,S +540,1,1,"Frolicher, Miss. Hedwig Margaritha",female,22,0,2,13568,49.5,B39,C +541,1,1,"Crosby, Miss. Harriet R",female,36,0,2,WE/P 5735,71,B22,S +542,0,3,"Andersson, Miss. Ingeborg Constanzia",female,9,4,2,347082,31.275,,S +543,0,3,"Andersson, Miss. Sigrid Elisabeth",female,11,4,2,347082,31.275,,S +544,1,2,"Beane, Mr. Edward",male,32,1,0,2908,26,,S +545,0,1,"Douglas, Mr. Walter Donald",male,50,1,0,PC 17761,106.425,C86,C +546,0,1,"Nicholson, Mr. Arthur Ernest",male,64,0,0,693,26,,S +547,1,2,"Beane, Mrs. Edward (Ethel Clarke)",female,19,1,0,2908,26,,S +548,1,2,"Padro y Manent, Mr. Julian",male,,0,0,SC/PARIS 2146,13.8625,,C +549,0,3,"Goldsmith, Mr. Frank John",male,33,1,1,363291,20.525,,S +550,1,2,"Davies, Master. John Morgan Jr",male,8,1,1,C.A. 33112,36.75,,S +551,1,1,"Thayer, Mr. John Borland Jr",male,17,0,2,17421,110.8833,C70,C +552,0,2,"Sharp, Mr. Percival James R",male,27,0,0,244358,26,,S +553,0,3,"O'Brien, Mr. Timothy",male,,0,0,330979,7.8292,,Q +554,1,3,"Leeni, Mr. Fahim (""Philip Zenni"")",male,22,0,0,2620,7.225,,C +555,1,3,"Ohman, Miss. Velin",female,22,0,0,347085,7.775,,S +556,0,1,"Wright, Mr. George",male,62,0,0,113807,26.55,,S +557,1,1,"Duff Gordon, Lady. (Lucille Christiana Sutherland) (""Mrs Morgan"")",female,48,1,0,11755,39.6,A16,C +558,0,1,"Robbins, Mr. Victor",male,,0,0,PC 17757,227.525,,C +559,1,1,"Taussig, Mrs. Emil (Tillie Mandelbaum)",female,39,1,1,110413,79.65,E67,S +560,1,3,"de Messemaeker, Mrs. Guillaume Joseph (Emma)",female,36,1,0,345572,17.4,,S +561,0,3,"Morrow, Mr. Thomas Rowan",male,,0,0,372622,7.75,,Q +562,0,3,"Sivic, Mr. Husein",male,40,0,0,349251,7.8958,,S +563,0,2,"Norman, Mr. Robert Douglas",male,28,0,0,218629,13.5,,S +564,0,3,"Simmons, Mr. John",male,,0,0,SOTON/OQ 392082,8.05,,S +565,0,3,"Meanwell, Miss. (Marion Ogden)",female,,0,0,SOTON/O.Q. 392087,8.05,,S +566,0,3,"Davies, Mr. Alfred J",male,24,2,0,A/4 48871,24.15,,S +567,0,3,"Stoytcheff, Mr. Ilia",male,19,0,0,349205,7.8958,,S +568,0,3,"Palsson, Mrs. Nils (Alma Cornelia Berglund)",female,29,0,4,349909,21.075,,S +569,0,3,"Doharr, Mr. Tannous",male,,0,0,2686,7.2292,,C +570,1,3,"Jonsson, Mr. Carl",male,32,0,0,350417,7.8542,,S +571,1,2,"Harris, Mr. George",male,62,0,0,S.W./PP 752,10.5,,S +572,1,1,"Appleton, Mrs. Edward Dale (Charlotte Lamson)",female,53,2,0,11769,51.4792,C101,S +573,1,1,"Flynn, Mr. John Irwin (""Irving"")",male,36,0,0,PC 17474,26.3875,E25,S +574,1,3,"Kelly, Miss. Mary",female,,0,0,14312,7.75,,Q +575,0,3,"Rush, Mr. Alfred George John",male,16,0,0,A/4. 20589,8.05,,S +576,0,3,"Patchett, Mr. George",male,19,0,0,358585,14.5,,S +577,1,2,"Garside, Miss. Ethel",female,34,0,0,243880,13,,S +578,1,1,"Silvey, Mrs. William Baird (Alice Munger)",female,39,1,0,13507,55.9,E44,S +579,0,3,"Caram, Mrs. Joseph (Maria Elias)",female,,1,0,2689,14.4583,,C +580,1,3,"Jussila, Mr. Eiriik",male,32,0,0,STON/O 2. 3101286,7.925,,S +581,1,2,"Christy, Miss. Julie Rachel",female,25,1,1,237789,30,,S +582,1,1,"Thayer, Mrs. John Borland (Marian Longstreth Morris)",female,39,1,1,17421,110.8833,C68,C +583,0,2,"Downton, Mr. William James",male,54,0,0,28403,26,,S +584,0,1,"Ross, Mr. John Hugo",male,36,0,0,13049,40.125,A10,C +585,0,3,"Paulner, Mr. Uscher",male,,0,0,3411,8.7125,,C +586,1,1,"Taussig, Miss. Ruth",female,18,0,2,110413,79.65,E68,S +587,0,2,"Jarvis, Mr. John Denzil",male,47,0,0,237565,15,,S +588,1,1,"Frolicher-Stehli, Mr. Maxmillian",male,60,1,1,13567,79.2,B41,C +589,0,3,"Gilinski, Mr. Eliezer",male,22,0,0,14973,8.05,,S +590,0,3,"Murdlin, Mr. Joseph",male,,0,0,A./5. 3235,8.05,,S +591,0,3,"Rintamaki, Mr. Matti",male,35,0,0,STON/O 2. 3101273,7.125,,S +592,1,1,"Stephenson, Mrs. Walter Bertram (Martha Eustis)",female,52,1,0,36947,78.2667,D20,C +593,0,3,"Elsbury, Mr. William James",male,47,0,0,A/5 3902,7.25,,S +594,0,3,"Bourke, Miss. Mary",female,,0,2,364848,7.75,,Q +595,0,2,"Chapman, Mr. John Henry",male,37,1,0,SC/AH 29037,26,,S +596,0,3,"Van Impe, Mr. Jean Baptiste",male,36,1,1,345773,24.15,,S +597,1,2,"Leitch, Miss. Jessie Wills",female,,0,0,248727,33,,S +598,0,3,"Johnson, Mr. Alfred",male,49,0,0,LINE,0,,S +599,0,3,"Boulos, Mr. Hanna",male,,0,0,2664,7.225,,C +600,1,1,"Duff Gordon, Sir. Cosmo Edmund (""Mr Morgan"")",male,49,1,0,PC 17485,56.9292,A20,C +601,1,2,"Jacobsohn, Mrs. Sidney Samuel (Amy Frances Christy)",female,24,2,1,243847,27,,S +602,0,3,"Slabenoff, Mr. Petco",male,,0,0,349214,7.8958,,S +603,0,1,"Harrington, Mr. Charles H",male,,0,0,113796,42.4,,S +604,0,3,"Torber, Mr. Ernst William",male,44,0,0,364511,8.05,,S +605,1,1,"Homer, Mr. Harry (""Mr E Haven"")",male,35,0,0,111426,26.55,,C +606,0,3,"Lindell, Mr. Edvard Bengtsson",male,36,1,0,349910,15.55,,S +607,0,3,"Karaic, Mr. Milan",male,30,0,0,349246,7.8958,,S +608,1,1,"Daniel, Mr. Robert Williams",male,27,0,0,113804,30.5,,S +609,1,2,"Laroche, Mrs. Joseph (Juliette Marie Louise Lafargue)",female,22,1,2,SC/Paris 2123,41.5792,,C +610,1,1,"Shutes, Miss. Elizabeth W",female,40,0,0,PC 17582,153.4625,C125,S +611,0,3,"Andersson, Mrs. Anders Johan (Alfrida Konstantia Brogren)",female,39,1,5,347082,31.275,,S +612,0,3,"Jardin, Mr. Jose Neto",male,,0,0,SOTON/O.Q. 3101305,7.05,,S +613,1,3,"Murphy, Miss. Margaret Jane",female,,1,0,367230,15.5,,Q +614,0,3,"Horgan, Mr. John",male,,0,0,370377,7.75,,Q +615,0,3,"Brocklebank, Mr. William Alfred",male,35,0,0,364512,8.05,,S +616,1,2,"Herman, Miss. Alice",female,24,1,2,220845,65,,S +617,0,3,"Danbom, Mr. Ernst Gilbert",male,34,1,1,347080,14.4,,S +618,0,3,"Lobb, Mrs. William Arthur (Cordelia K Stanlick)",female,26,1,0,A/5. 3336,16.1,,S +619,1,2,"Becker, Miss. Marion Louise",female,4,2,1,230136,39,F4,S +620,0,2,"Gavey, Mr. Lawrence",male,26,0,0,31028,10.5,,S +621,0,3,"Yasbeck, Mr. Antoni",male,27,1,0,2659,14.4542,,C +622,1,1,"Kimball, Mr. Edwin Nelson Jr",male,42,1,0,11753,52.5542,D19,S +623,1,3,"Nakid, Mr. Sahid",male,20,1,1,2653,15.7417,,C +624,0,3,"Hansen, Mr. Henry Damsgaard",male,21,0,0,350029,7.8542,,S +625,0,3,"Bowen, Mr. David John ""Dai""",male,21,0,0,54636,16.1,,S +626,0,1,"Sutton, Mr. Frederick",male,61,0,0,36963,32.3208,D50,S +627,0,2,"Kirkland, Rev. Charles Leonard",male,57,0,0,219533,12.35,,Q +628,1,1,"Longley, Miss. Gretchen Fiske",female,21,0,0,13502,77.9583,D9,S +629,0,3,"Bostandyeff, Mr. Guentcho",male,26,0,0,349224,7.8958,,S +630,0,3,"O'Connell, Mr. Patrick D",male,,0,0,334912,7.7333,,Q +631,1,1,"Barkworth, Mr. Algernon Henry Wilson",male,80,0,0,27042,30,A23,S +632,0,3,"Lundahl, Mr. Johan Svensson",male,51,0,0,347743,7.0542,,S +633,1,1,"Stahelin-Maeglin, Dr. Max",male,32,0,0,13214,30.5,B50,C +634,0,1,"Parr, Mr. William Henry Marsh",male,,0,0,112052,0,,S +635,0,3,"Skoog, Miss. Mabel",female,9,3,2,347088,27.9,,S +636,1,2,"Davis, Miss. Mary",female,28,0,0,237668,13,,S +637,0,3,"Leinonen, Mr. Antti Gustaf",male,32,0,0,STON/O 2. 3101292,7.925,,S +638,0,2,"Collyer, Mr. Harvey",male,31,1,1,C.A. 31921,26.25,,S +639,0,3,"Panula, Mrs. Juha (Maria Emilia Ojala)",female,41,0,5,3101295,39.6875,,S +640,0,3,"Thorneycroft, Mr. Percival",male,,1,0,376564,16.1,,S +641,0,3,"Jensen, Mr. Hans Peder",male,20,0,0,350050,7.8542,,S +642,1,1,"Sagesser, Mlle. Emma",female,24,0,0,PC 17477,69.3,B35,C +643,0,3,"Skoog, Miss. Margit Elizabeth",female,2,3,2,347088,27.9,,S +644,1,3,"Foo, Mr. Choong",male,,0,0,1601,56.4958,,S +645,1,3,"Baclini, Miss. Eugenie",female,0.75,2,1,2666,19.2583,,C +646,1,1,"Harper, Mr. Henry Sleeper",male,48,1,0,PC 17572,76.7292,D33,C +647,0,3,"Cor, Mr. Liudevit",male,19,0,0,349231,7.8958,,S +648,1,1,"Simonius-Blumer, Col. Oberst Alfons",male,56,0,0,13213,35.5,A26,C +649,0,3,"Willey, Mr. Edward",male,,0,0,S.O./P.P. 751,7.55,,S +650,1,3,"Stanley, Miss. Amy Zillah Elsie",female,23,0,0,CA. 2314,7.55,,S +651,0,3,"Mitkoff, Mr. Mito",male,,0,0,349221,7.8958,,S +652,1,2,"Doling, Miss. Elsie",female,18,0,1,231919,23,,S +653,0,3,"Kalvik, Mr. Johannes Halvorsen",male,21,0,0,8475,8.4333,,S +654,1,3,"O'Leary, Miss. Hanora ""Norah""",female,,0,0,330919,7.8292,,Q +655,0,3,"Hegarty, Miss. Hanora ""Nora""",female,18,0,0,365226,6.75,,Q +656,0,2,"Hickman, Mr. Leonard Mark",male,24,2,0,S.O.C. 14879,73.5,,S +657,0,3,"Radeff, Mr. Alexander",male,,0,0,349223,7.8958,,S +658,0,3,"Bourke, Mrs. John (Catherine)",female,32,1,1,364849,15.5,,Q +659,0,2,"Eitemiller, Mr. George Floyd",male,23,0,0,29751,13,,S +660,0,1,"Newell, Mr. Arthur Webster",male,58,0,2,35273,113.275,D48,C +661,1,1,"Frauenthal, Dr. Henry William",male,50,2,0,PC 17611,133.65,,S +662,0,3,"Badt, Mr. Mohamed",male,40,0,0,2623,7.225,,C +663,0,1,"Colley, Mr. Edward Pomeroy",male,47,0,0,5727,25.5875,E58,S +664,0,3,"Coleff, Mr. Peju",male,36,0,0,349210,7.4958,,S +665,1,3,"Lindqvist, Mr. Eino William",male,20,1,0,STON/O 2. 3101285,7.925,,S +666,0,2,"Hickman, Mr. Lewis",male,32,2,0,S.O.C. 14879,73.5,,S +667,0,2,"Butler, Mr. Reginald Fenton",male,25,0,0,234686,13,,S +668,0,3,"Rommetvedt, Mr. Knud Paust",male,,0,0,312993,7.775,,S +669,0,3,"Cook, Mr. Jacob",male,43,0,0,A/5 3536,8.05,,S +670,1,1,"Taylor, Mrs. Elmer Zebley (Juliet Cummins Wright)",female,,1,0,19996,52,C126,S +671,1,2,"Brown, Mrs. Thomas William Solomon (Elizabeth Catherine Ford)",female,40,1,1,29750,39,,S +672,0,1,"Davidson, Mr. Thornton",male,31,1,0,F.C. 12750,52,B71,S +673,0,2,"Mitchell, Mr. Henry Michael",male,70,0,0,C.A. 24580,10.5,,S +674,1,2,"Wilhelms, Mr. Charles",male,31,0,0,244270,13,,S +675,0,2,"Watson, Mr. Ennis Hastings",male,,0,0,239856,0,,S +676,0,3,"Edvardsson, Mr. Gustaf Hjalmar",male,18,0,0,349912,7.775,,S +677,0,3,"Sawyer, Mr. Frederick Charles",male,24.5,0,0,342826,8.05,,S +678,1,3,"Turja, Miss. Anna Sofia",female,18,0,0,4138,9.8417,,S +679,0,3,"Goodwin, Mrs. Frederick (Augusta Tyler)",female,43,1,6,CA 2144,46.9,,S +680,1,1,"Cardeza, Mr. Thomas Drake Martinez",male,36,0,1,PC 17755,512.3292,B51 B53 B55,C +681,0,3,"Peters, Miss. Katie",female,,0,0,330935,8.1375,,Q +682,1,1,"Hassab, Mr. Hammad",male,27,0,0,PC 17572,76.7292,D49,C +683,0,3,"Olsvigen, Mr. Thor Anderson",male,20,0,0,6563,9.225,,S +684,0,3,"Goodwin, Mr. Charles Edward",male,14,5,2,CA 2144,46.9,,S +685,0,2,"Brown, Mr. Thomas William Solomon",male,60,1,1,29750,39,,S +686,0,2,"Laroche, Mr. Joseph Philippe Lemercier",male,25,1,2,SC/Paris 2123,41.5792,,C +687,0,3,"Panula, Mr. Jaako Arnold",male,14,4,1,3101295,39.6875,,S +688,0,3,"Dakic, Mr. Branko",male,19,0,0,349228,10.1708,,S +689,0,3,"Fischer, Mr. Eberhard Thelander",male,18,0,0,350036,7.7958,,S +690,1,1,"Madill, Miss. Georgette Alexandra",female,15,0,1,24160,211.3375,B5,S +691,1,1,"Dick, Mr. Albert Adrian",male,31,1,0,17474,57,B20,S +692,1,3,"Karun, Miss. Manca",female,4,0,1,349256,13.4167,,C +693,1,3,"Lam, Mr. Ali",male,,0,0,1601,56.4958,,S +694,0,3,"Saad, Mr. Khalil",male,25,0,0,2672,7.225,,C +695,0,1,"Weir, Col. John",male,60,0,0,113800,26.55,,S +696,0,2,"Chapman, Mr. Charles Henry",male,52,0,0,248731,13.5,,S +697,0,3,"Kelly, Mr. James",male,44,0,0,363592,8.05,,S +698,1,3,"Mullens, Miss. Katherine ""Katie""",female,,0,0,35852,7.7333,,Q +699,0,1,"Thayer, Mr. John Borland",male,49,1,1,17421,110.8833,C68,C +700,0,3,"Humblen, Mr. Adolf Mathias Nicolai Olsen",male,42,0,0,348121,7.65,F G63,S +701,1,1,"Astor, Mrs. John Jacob (Madeleine Talmadge Force)",female,18,1,0,PC 17757,227.525,C62 C64,C +702,1,1,"Silverthorne, Mr. Spencer Victor",male,35,0,0,PC 17475,26.2875,E24,S +703,0,3,"Barbara, Miss. Saiide",female,18,0,1,2691,14.4542,,C +704,0,3,"Gallagher, Mr. Martin",male,25,0,0,36864,7.7417,,Q +705,0,3,"Hansen, Mr. Henrik Juul",male,26,1,0,350025,7.8542,,S +706,0,2,"Morley, Mr. Henry Samuel (""Mr Henry Marshall"")",male,39,0,0,250655,26,,S +707,1,2,"Kelly, Mrs. Florence ""Fannie""",female,45,0,0,223596,13.5,,S +708,1,1,"Calderhead, Mr. Edward Pennington",male,42,0,0,PC 17476,26.2875,E24,S +709,1,1,"Cleaver, Miss. Alice",female,22,0,0,113781,151.55,,S +710,1,3,"Moubarek, Master. Halim Gonios (""William George"")",male,,1,1,2661,15.2458,,C +711,1,1,"Mayne, Mlle. Berthe Antonine (""Mrs de Villiers"")",female,24,0,0,PC 17482,49.5042,C90,C +712,0,1,"Klaber, Mr. Herman",male,,0,0,113028,26.55,C124,S +713,1,1,"Taylor, Mr. Elmer Zebley",male,48,1,0,19996,52,C126,S +714,0,3,"Larsson, Mr. August Viktor",male,29,0,0,7545,9.4833,,S +715,0,2,"Greenberg, Mr. Samuel",male,52,0,0,250647,13,,S +716,0,3,"Soholt, Mr. Peter Andreas Lauritz Andersen",male,19,0,0,348124,7.65,F G73,S +717,1,1,"Endres, Miss. Caroline Louise",female,38,0,0,PC 17757,227.525,C45,C +718,1,2,"Troutt, Miss. Edwina Celia ""Winnie""",female,27,0,0,34218,10.5,E101,S +719,0,3,"McEvoy, Mr. Michael",male,,0,0,36568,15.5,,Q +720,0,3,"Johnson, Mr. Malkolm Joackim",male,33,0,0,347062,7.775,,S +721,1,2,"Harper, Miss. Annie Jessie ""Nina""",female,6,0,1,248727,33,,S +722,0,3,"Jensen, Mr. Svend Lauritz",male,17,1,0,350048,7.0542,,S +723,0,2,"Gillespie, Mr. William Henry",male,34,0,0,12233,13,,S +724,0,2,"Hodges, Mr. Henry Price",male,50,0,0,250643,13,,S +725,1,1,"Chambers, Mr. Norman Campbell",male,27,1,0,113806,53.1,E8,S +726,0,3,"Oreskovic, Mr. Luka",male,20,0,0,315094,8.6625,,S +727,1,2,"Renouf, Mrs. Peter Henry (Lillian Jefferys)",female,30,3,0,31027,21,,S +728,1,3,"Mannion, Miss. Margareth",female,,0,0,36866,7.7375,,Q +729,0,2,"Bryhl, Mr. Kurt Arnold Gottfrid",male,25,1,0,236853,26,,S +730,0,3,"Ilmakangas, Miss. Pieta Sofia",female,25,1,0,STON/O2. 3101271,7.925,,S +731,1,1,"Allen, Miss. Elisabeth Walton",female,29,0,0,24160,211.3375,B5,S +732,0,3,"Hassan, Mr. Houssein G N",male,11,0,0,2699,18.7875,,C +733,0,2,"Knight, Mr. Robert J",male,,0,0,239855,0,,S +734,0,2,"Berriman, Mr. William John",male,23,0,0,28425,13,,S +735,0,2,"Troupiansky, Mr. Moses Aaron",male,23,0,0,233639,13,,S +736,0,3,"Williams, Mr. Leslie",male,28.5,0,0,54636,16.1,,S +737,0,3,"Ford, Mrs. Edward (Margaret Ann Watson)",female,48,1,3,W./C. 6608,34.375,,S +738,1,1,"Lesurer, Mr. Gustave J",male,35,0,0,PC 17755,512.3292,B101,C +739,0,3,"Ivanoff, Mr. Kanio",male,,0,0,349201,7.8958,,S +740,0,3,"Nankoff, Mr. Minko",male,,0,0,349218,7.8958,,S +741,1,1,"Hawksford, Mr. Walter James",male,,0,0,16988,30,D45,S +742,0,1,"Cavendish, Mr. Tyrell William",male,36,1,0,19877,78.85,C46,S +743,1,1,"Ryerson, Miss. Susan Parker ""Suzette""",female,21,2,2,PC 17608,262.375,B57 B59 B63 B66,C +744,0,3,"McNamee, Mr. Neal",male,24,1,0,376566,16.1,,S +745,1,3,"Stranden, Mr. Juho",male,31,0,0,STON/O 2. 3101288,7.925,,S +746,0,1,"Crosby, Capt. Edward Gifford",male,70,1,1,WE/P 5735,71,B22,S +747,0,3,"Abbott, Mr. Rossmore Edward",male,16,1,1,C.A. 2673,20.25,,S +748,1,2,"Sinkkonen, Miss. Anna",female,30,0,0,250648,13,,S +749,0,1,"Marvin, Mr. Daniel Warner",male,19,1,0,113773,53.1,D30,S +750,0,3,"Connaghton, Mr. Michael",male,31,0,0,335097,7.75,,Q +751,1,2,"Wells, Miss. Joan",female,4,1,1,29103,23,,S +752,1,3,"Moor, Master. Meier",male,6,0,1,392096,12.475,E121,S +753,0,3,"Vande Velde, Mr. Johannes Joseph",male,33,0,0,345780,9.5,,S +754,0,3,"Jonkoff, Mr. Lalio",male,23,0,0,349204,7.8958,,S +755,1,2,"Herman, Mrs. Samuel (Jane Laver)",female,48,1,2,220845,65,,S +756,1,2,"Hamalainen, Master. Viljo",male,0.67,1,1,250649,14.5,,S +757,0,3,"Carlsson, Mr. August Sigfrid",male,28,0,0,350042,7.7958,,S +758,0,2,"Bailey, Mr. Percy Andrew",male,18,0,0,29108,11.5,,S +759,0,3,"Theobald, Mr. Thomas Leonard",male,34,0,0,363294,8.05,,S +760,1,1,"Rothes, the Countess. of (Lucy Noel Martha Dyer-Edwards)",female,33,0,0,110152,86.5,B77,S +761,0,3,"Garfirth, Mr. John",male,,0,0,358585,14.5,,S +762,0,3,"Nirva, Mr. Iisakki Antino Aijo",male,41,0,0,SOTON/O2 3101272,7.125,,S +763,1,3,"Barah, Mr. Hanna Assi",male,20,0,0,2663,7.2292,,C +764,1,1,"Carter, Mrs. William Ernest (Lucile Polk)",female,36,1,2,113760,120,B96 B98,S +765,0,3,"Eklund, Mr. Hans Linus",male,16,0,0,347074,7.775,,S +766,1,1,"Hogeboom, Mrs. John C (Anna Andrews)",female,51,1,0,13502,77.9583,D11,S +767,0,1,"Brewe, Dr. Arthur Jackson",male,,0,0,112379,39.6,,C +768,0,3,"Mangan, Miss. Mary",female,30.5,0,0,364850,7.75,,Q +769,0,3,"Moran, Mr. Daniel J",male,,1,0,371110,24.15,,Q +770,0,3,"Gronnestad, Mr. Daniel Danielsen",male,32,0,0,8471,8.3625,,S +771,0,3,"Lievens, Mr. Rene Aime",male,24,0,0,345781,9.5,,S +772,0,3,"Jensen, Mr. Niels Peder",male,48,0,0,350047,7.8542,,S +773,0,2,"Mack, Mrs. (Mary)",female,57,0,0,S.O./P.P. 3,10.5,E77,S +774,0,3,"Elias, Mr. Dibo",male,,0,0,2674,7.225,,C +775,1,2,"Hocking, Mrs. Elizabeth (Eliza Needs)",female,54,1,3,29105,23,,S +776,0,3,"Myhrman, Mr. Pehr Fabian Oliver Malkolm",male,18,0,0,347078,7.75,,S +777,0,3,"Tobin, Mr. Roger",male,,0,0,383121,7.75,F38,Q +778,1,3,"Emanuel, Miss. Virginia Ethel",female,5,0,0,364516,12.475,,S +779,0,3,"Kilgannon, Mr. Thomas J",male,,0,0,36865,7.7375,,Q +780,1,1,"Robert, Mrs. Edward Scott (Elisabeth Walton McMillan)",female,43,0,1,24160,211.3375,B3,S +781,1,3,"Ayoub, Miss. Banoura",female,13,0,0,2687,7.2292,,C +782,1,1,"Dick, Mrs. Albert Adrian (Vera Gillespie)",female,17,1,0,17474,57,B20,S +783,0,1,"Long, Mr. Milton Clyde",male,29,0,0,113501,30,D6,S +784,0,3,"Johnston, Mr. Andrew G",male,,1,2,W./C. 6607,23.45,,S +785,0,3,"Ali, Mr. William",male,25,0,0,SOTON/O.Q. 3101312,7.05,,S +786,0,3,"Harmer, Mr. Abraham (David Lishin)",male,25,0,0,374887,7.25,,S +787,1,3,"Sjoblom, Miss. Anna Sofia",female,18,0,0,3101265,7.4958,,S +788,0,3,"Rice, Master. George Hugh",male,8,4,1,382652,29.125,,Q +789,1,3,"Dean, Master. Bertram Vere",male,1,1,2,C.A. 2315,20.575,,S +790,0,1,"Guggenheim, Mr. Benjamin",male,46,0,0,PC 17593,79.2,B82 B84,C +791,0,3,"Keane, Mr. Andrew ""Andy""",male,,0,0,12460,7.75,,Q +792,0,2,"Gaskell, Mr. Alfred",male,16,0,0,239865,26,,S +793,0,3,"Sage, Miss. Stella Anna",female,,8,2,CA. 2343,69.55,,S +794,0,1,"Hoyt, Mr. William Fisher",male,,0,0,PC 17600,30.6958,,C +795,0,3,"Dantcheff, Mr. Ristiu",male,25,0,0,349203,7.8958,,S +796,0,2,"Otter, Mr. Richard",male,39,0,0,28213,13,,S +797,1,1,"Leader, Dr. Alice (Farnham)",female,49,0,0,17465,25.9292,D17,S +798,1,3,"Osman, Mrs. Mara",female,31,0,0,349244,8.6833,,S +799,0,3,"Ibrahim Shawah, Mr. Yousseff",male,30,0,0,2685,7.2292,,C +800,0,3,"Van Impe, Mrs. Jean Baptiste (Rosalie Paula Govaert)",female,30,1,1,345773,24.15,,S +801,0,2,"Ponesell, Mr. Martin",male,34,0,0,250647,13,,S +802,1,2,"Collyer, Mrs. Harvey (Charlotte Annie Tate)",female,31,1,1,C.A. 31921,26.25,,S +803,1,1,"Carter, Master. William Thornton II",male,11,1,2,113760,120,B96 B98,S +804,1,3,"Thomas, Master. Assad Alexander",male,0.42,0,1,2625,8.5167,,C +805,1,3,"Hedman, Mr. Oskar Arvid",male,27,0,0,347089,6.975,,S +806,0,3,"Johansson, Mr. Karl Johan",male,31,0,0,347063,7.775,,S +807,0,1,"Andrews, Mr. Thomas Jr",male,39,0,0,112050,0,A36,S +808,0,3,"Pettersson, Miss. Ellen Natalia",female,18,0,0,347087,7.775,,S +809,0,2,"Meyer, Mr. August",male,39,0,0,248723,13,,S +810,1,1,"Chambers, Mrs. Norman Campbell (Bertha Griggs)",female,33,1,0,113806,53.1,E8,S +811,0,3,"Alexander, Mr. William",male,26,0,0,3474,7.8875,,S +812,0,3,"Lester, Mr. James",male,39,0,0,A/4 48871,24.15,,S +813,0,2,"Slemen, Mr. Richard James",male,35,0,0,28206,10.5,,S +814,0,3,"Andersson, Miss. Ebba Iris Alfrida",female,6,4,2,347082,31.275,,S +815,0,3,"Tomlin, Mr. Ernest Portage",male,30.5,0,0,364499,8.05,,S +816,0,1,"Fry, Mr. Richard",male,,0,0,112058,0,B102,S +817,0,3,"Heininen, Miss. Wendla Maria",female,23,0,0,STON/O2. 3101290,7.925,,S +818,0,2,"Mallet, Mr. Albert",male,31,1,1,S.C./PARIS 2079,37.0042,,C +819,0,3,"Holm, Mr. John Fredrik Alexander",male,43,0,0,C 7075,6.45,,S +820,0,3,"Skoog, Master. Karl Thorsten",male,10,3,2,347088,27.9,,S +821,1,1,"Hays, Mrs. Charles Melville (Clara Jennings Gregg)",female,52,1,1,12749,93.5,B69,S +822,1,3,"Lulic, Mr. Nikola",male,27,0,0,315098,8.6625,,S +823,0,1,"Reuchlin, Jonkheer. John George",male,38,0,0,19972,0,,S +824,1,3,"Moor, Mrs. (Beila)",female,27,0,1,392096,12.475,E121,S +825,0,3,"Panula, Master. Urho Abraham",male,2,4,1,3101295,39.6875,,S +826,0,3,"Flynn, Mr. John",male,,0,0,368323,6.95,,Q +827,0,3,"Lam, Mr. Len",male,,0,0,1601,56.4958,,S +828,1,2,"Mallet, Master. Andre",male,1,0,2,S.C./PARIS 2079,37.0042,,C +829,1,3,"McCormack, Mr. Thomas Joseph",male,,0,0,367228,7.75,,Q +830,1,1,"Stone, Mrs. George Nelson (Martha Evelyn)",female,62,0,0,113572,80,B28, +831,1,3,"Yasbeck, Mrs. Antoni (Selini Alexander)",female,15,1,0,2659,14.4542,,C +832,1,2,"Richards, Master. George Sibley",male,0.83,1,1,29106,18.75,,S +833,0,3,"Saad, Mr. Amin",male,,0,0,2671,7.2292,,C +834,0,3,"Augustsson, Mr. Albert",male,23,0,0,347468,7.8542,,S +835,0,3,"Allum, Mr. Owen George",male,18,0,0,2223,8.3,,S +836,1,1,"Compton, Miss. Sara Rebecca",female,39,1,1,PC 17756,83.1583,E49,C +837,0,3,"Pasic, Mr. Jakob",male,21,0,0,315097,8.6625,,S +838,0,3,"Sirota, Mr. Maurice",male,,0,0,392092,8.05,,S +839,1,3,"Chip, Mr. Chang",male,32,0,0,1601,56.4958,,S +840,1,1,"Marechal, Mr. Pierre",male,,0,0,11774,29.7,C47,C +841,0,3,"Alhomaki, Mr. Ilmari Rudolf",male,20,0,0,SOTON/O2 3101287,7.925,,S +842,0,2,"Mudd, Mr. Thomas Charles",male,16,0,0,S.O./P.P. 3,10.5,,S +843,1,1,"Serepeca, Miss. Augusta",female,30,0,0,113798,31,,C +844,0,3,"Lemberopolous, Mr. Peter L",male,34.5,0,0,2683,6.4375,,C +845,0,3,"Culumovic, Mr. Jeso",male,17,0,0,315090,8.6625,,S +846,0,3,"Abbing, Mr. Anthony",male,42,0,0,C.A. 5547,7.55,,S +847,0,3,"Sage, Mr. Douglas Bullen",male,,8,2,CA. 2343,69.55,,S +848,0,3,"Markoff, Mr. Marin",male,35,0,0,349213,7.8958,,C +849,0,2,"Harper, Rev. John",male,28,0,1,248727,33,,S +850,1,1,"Goldenberg, Mrs. Samuel L (Edwiga Grabowska)",female,,1,0,17453,89.1042,C92,C +851,0,3,"Andersson, Master. Sigvard Harald Elias",male,4,4,2,347082,31.275,,S +852,0,3,"Svensson, Mr. Johan",male,74,0,0,347060,7.775,,S +853,0,3,"Boulos, Miss. Nourelain",female,9,1,1,2678,15.2458,,C +854,1,1,"Lines, Miss. Mary Conover",female,16,0,1,PC 17592,39.4,D28,S +855,0,2,"Carter, Mrs. Ernest Courtenay (Lilian Hughes)",female,44,1,0,244252,26,,S +856,1,3,"Aks, Mrs. Sam (Leah Rosen)",female,18,0,1,392091,9.35,,S +857,1,1,"Wick, Mrs. George Dennick (Mary Hitchcock)",female,45,1,1,36928,164.8667,,S +858,1,1,"Daly, Mr. Peter Denis ",male,51,0,0,113055,26.55,E17,S +859,1,3,"Baclini, Mrs. Solomon (Latifa Qurban)",female,24,0,3,2666,19.2583,,C +860,0,3,"Razi, Mr. Raihed",male,,0,0,2629,7.2292,,C +861,0,3,"Hansen, Mr. Claus Peter",male,41,2,0,350026,14.1083,,S +862,0,2,"Giles, Mr. Frederick Edward",male,21,1,0,28134,11.5,,S +863,1,1,"Swift, Mrs. Frederick Joel (Margaret Welles Barron)",female,48,0,0,17466,25.9292,D17,S +864,0,3,"Sage, Miss. Dorothy Edith ""Dolly""",female,,8,2,CA. 2343,69.55,,S +865,0,2,"Gill, Mr. John William",male,24,0,0,233866,13,,S +866,1,2,"Bystrom, Mrs. (Karolina)",female,42,0,0,236852,13,,S +867,1,2,"Duran y More, Miss. Asuncion",female,27,1,0,SC/PARIS 2149,13.8583,,C +868,0,1,"Roebling, Mr. Washington Augustus II",male,31,0,0,PC 17590,50.4958,A24,S +869,0,3,"van Melkebeke, Mr. Philemon",male,,0,0,345777,9.5,,S +870,1,3,"Johnson, Master. Harold Theodor",male,4,1,1,347742,11.1333,,S +871,0,3,"Balkic, Mr. Cerin",male,26,0,0,349248,7.8958,,S +872,1,1,"Beckwith, Mrs. Richard Leonard (Sallie Monypeny)",female,47,1,1,11751,52.5542,D35,S +873,0,1,"Carlsson, Mr. Frans Olof",male,33,0,0,695,5,B51 B53 B55,S +874,0,3,"Vander Cruyssen, Mr. Victor",male,47,0,0,345765,9,,S +875,1,2,"Abelson, Mrs. Samuel (Hannah Wizosky)",female,28,1,0,P/PP 3381,24,,C +876,1,3,"Najib, Miss. Adele Kiamie ""Jane""",female,15,0,0,2667,7.225,,C +877,0,3,"Gustafsson, Mr. Alfred Ossian",male,20,0,0,7534,9.8458,,S +878,0,3,"Petroff, Mr. Nedelio",male,19,0,0,349212,7.8958,,S +879,0,3,"Laleff, Mr. Kristo",male,,0,0,349217,7.8958,,S +880,1,1,"Potter, Mrs. Thomas Jr (Lily Alexenia Wilson)",female,56,0,1,11767,83.1583,C50,C +881,1,2,"Shelley, Mrs. William (Imanita Parrish Hall)",female,25,0,1,230433,26,,S +882,0,3,"Markun, Mr. Johann",male,33,0,0,349257,7.8958,,S +883,0,3,"Dahlberg, Miss. Gerda Ulrika",female,22,0,0,7552,10.5167,,S +884,0,2,"Banfield, Mr. Frederick James",male,28,0,0,C.A./SOTON 34068,10.5,,S +885,0,3,"Sutehall, Mr. Henry Jr",male,25,0,0,SOTON/OQ 392076,7.05,,S +886,0,3,"Rice, Mrs. William (Margaret Norton)",female,39,0,5,382652,29.125,,Q +887,0,2,"Montvila, Rev. Juozas",male,27,0,0,211536,13,,S +888,1,1,"Graham, Miss. Margaret Edith",female,19,0,0,112053,30,B42,S +889,0,3,"Johnston, Miss. Catherine Helen ""Carrie""",female,,1,2,W./C. 6607,23.45,,S +890,1,1,"Behr, Mr. Karl Howell",male,26,0,0,111369,30,C148,C +891,0,3,"Dooley, Mr. Patrick",male,32,0,0,370376,7.75,,Q From 5436838ea434a25e9a759a3b8f26415dc1ff0d06 Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Mon, 2 Sep 2024 20:36:24 -0700 Subject: [PATCH 17/94] content --- D-Pandas.ipynb | 412 ++++++++++++++++++++++++++++++++++++++++++++++++- 1 file changed, 407 insertions(+), 5 deletions(-) diff --git a/D-Pandas.ipynb b/D-Pandas.ipynb index 726db32..65f53ff 100644 --- a/D-Pandas.ipynb +++ b/D-Pandas.ipynb @@ -158,12 +158,113 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 22, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
sepal_lengthsepal_widthpetal_lengthpetal_widthspeciessepal_length_inches
05.13.51.40.2Iris-setosa2.007875
14.93.01.40.2Iris-setosa1.929135
24.73.21.30.2Iris-setosa1.850395
34.63.11.50.2Iris-setosa1.811025
45.03.61.40.2Iris-setosa1.968505
\n", + "
" + ], + "text/plain": [ + " sepal_length sepal_width petal_length petal_width species \\\n", + "0 5.1 3.5 1.4 0.2 Iris-setosa \n", + "1 4.9 3.0 1.4 0.2 Iris-setosa \n", + "2 4.7 3.2 1.3 0.2 Iris-setosa \n", + "3 4.6 3.1 1.5 0.2 Iris-setosa \n", + "4 5.0 3.6 1.4 0.2 Iris-setosa \n", + "\n", + " sepal_length_inches \n", + "0 2.007875 \n", + "1 1.929135 \n", + "2 1.850395 \n", + "3 1.811025 \n", + "4 1.968505 " + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# Your code here. You can re-run the above cell if you mess up your dataframe.\n", - "# print(df....)" + "# print(df....)\n", + "df.head()" ] }, { @@ -251,7 +352,7 @@ "source": [ "df['width_difference'] = (df['sepal_width'] - df['petal_width']).abs()\n", "\n", - "# Alternate ways of doing things are commented out below:\n", + "# Alternate ways of selecting and printing columns are commented out below:\n", "\n", "# width_columns = df.columns[df.columns.str.contains('width')]\n", "# width_columns = ['sepal_width', 'petal_width', 'width_difference']\n", @@ -269,9 +370,310 @@ "## Selecting Rows with loc and iloc\n", "**.loc** vs **.iloc**\n", "* .loc selects rows with particular labels in the series or dataframe index\n", - "* .iloc selects rows at integer locations within the series or dataframe. " + " * https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.iloc.html\n", + "* .iloc selects rows at integer locations within the series or dataframe.\n", + " * https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.loc.html" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Name Age SSN City\n", + "0 Alice 25 123-45-6789 New York\n", + "1 Bob 30 234-56-7890 Los Angeles\n", + "2 Charlie 35 345-67-8901 Chicago\n", + "3 David 40 456-78-9012 Houston\n", + "4 Eve 45 567-89-0123 Phoenix\n", + "5 Frank 50 678-90-1234 Philadelphia\n", + "6 Grace 55 789-01-2345 San Antonio\n", + "7 Hannah 60 890-12-3456 San Diego\n", + "8 Isaac 65 901-23-4567 Dallas\n", + "9 Jack 70 123-45-5789 San Jose\n" + ] + } + ], + "source": [ + "# generate dataframe with ten people wih random ages, social security numbers, ages, cities, and sex:\n", + "df = pd.DataFrame({\n", + " 'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eve', 'Frank', \n", + " 'Grace', 'Hannah', 'Isaac', 'Jack'],\n", + " 'Age': [25, 30, 35, 40, 45, 50, 55, 60, 65, 70],\n", + " 'SSN': ['123-45-6789', '234-56-7890', '345-67-8901', '456-78-9012', \n", + " '567-89-0123', '678-90-1234', '789-01-2345', '890-12-3456', \n", + " '901-23-4567', '123-45-5789'],\n", + " 'City': ['New York', 'Los Angeles', 'Chicago', 'Houston', 'Phoenix', \n", + " 'Philadelphia', 'San Antonio', 'San Diego', 'Dallas', 'San Jose'],\n", + "})\n", + "print(df)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df = pd.read_csv(\"https://raw.githubusercontent.com/a8ksh4/python_workshop/main/SAMPLE_DATA/titaninc.csv\")\n", + "# Note that by default, an arbitrary numerical index is assigned to the rows.\n", + "# That default index would match exactly with the numeric address of each row, \n", + "# so it is not useful for this example. \n", + "# We instead set the passenger ID as the index - loc refers to this, and iloc \n", + "# refers to the literal numerical address of each row. \n", + "df = df.set_index('PassengerId')" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
SurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarkedPassId
PassengerId
103Braund, Mr. Owen Harrismale22.010A/5 211717.2500NaNS1
211Cumings, Mrs. John Bradley (Florence Briggs Th...female38.010PC 1759971.2833C85C2
313Heikkinen, Miss. Lainafemale26.000STON/O2. 31012827.9250NaNS3
411Futrelle, Mrs. Jacques Heath (Lily May Peel)female35.01011380353.1000C123S4
\n", + "
" + ], + "text/plain": [ + " Survived Pclass \\\n", + "PassengerId \n", + "1 0 3 \n", + "2 1 1 \n", + "3 1 3 \n", + "4 1 1 \n", + "\n", + " Name Sex Age \\\n", + "PassengerId \n", + "1 Braund, Mr. Owen Harris male 22.0 \n", + "2 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 \n", + "3 Heikkinen, Miss. Laina female 26.0 \n", + "4 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 \n", + "\n", + " SibSp Parch Ticket Fare Cabin Embarked PassId \n", + "PassengerId \n", + "1 1 0 A/5 21171 7.2500 NaN S 1 \n", + "2 1 0 PC 17599 71.2833 C85 C 2 \n", + "3 0 0 STON/O2. 3101282 7.9250 NaN S 3 \n", + "4 1 0 113803 53.1000 C123 S 4 " + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.head(4)" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "So lets print row number 2 using iloc, and the passenger with PassengerId 2 using loc:" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "loc:\n", + " Cumings, Mrs. John Bradley (Florence Briggs Thayer)\n", + "iloc:\n", + " Heikkinen, Miss. Laina\n" + ] + } + ], + "source": [ + "print('loc:\\n', df.loc[2]['Name'])\n", + "print('iloc:\\n', df.iloc[2]['Name'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### loc selectoin of rows and columns\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### iloc selection of rows and columns\n", + "iloc can multiple rows and columns by their address and slices of rows and columns:\n", + "\n", + "* **Multiple rows**: `df.iloc[[2,3,4]]\n", + "* **Multiple rows and cols**: `df.iloc[[2,3], [0,1,2]]\n", + "* **Slice of rows**:\n", + " * `df.iloc[2:5]`\n", + " * `df.iloc[:5]`\n", + "* **slice of rows and cols**: `df.iloc[1:3, 1:4]`\n", + "\n", + "A simple example of use of this might be if I wanted to split my data into a training set and a testing set for some machine learning prediction algorithm. I would randomize order of the data, then select 70% of the rows for training and 30% for testing:" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [], + "source": [ + "# Ramdomize order of the rows\n", + "df_randomized = df.sample(frac=1)\n", + "\n", + "# figure ou thow many rows we need:\n", + "training_size = int(len(df_randomized) * 0.7)\n", + "testing_size = len(df_randomized) - training_size\n", + "\n", + "# split the data\n", + "df_trianing = df_randomized.iloc[:training_size]\n", + "df_testing = df_randomized.iloc[training_size:]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### *Exercise*\n", + "Use iloc to show these views of the titanic passengers:\n", + "* The 4th through 6th passengers\n", + "* Even numbered passenger rows (not even PassengerId) and columns 1:4." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "code", "execution_count": null, From 6080143aebad1526a29b1929a6c6e65287f7e99a Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Tue, 3 Sep 2024 21:30:13 -0700 Subject: [PATCH 18/94] content --- D-Pandas.ipynb | 467 ++++++++++++++++++++++++------------------------- 1 file changed, 226 insertions(+), 241 deletions(-) diff --git a/D-Pandas.ipynb b/D-Pandas.ipynb index 65f53ff..35a2f2b 100644 --- a/D-Pandas.ipynb +++ b/D-Pandas.ipynb @@ -377,29 +377,24 @@ }, { "cell_type": "code", - "execution_count": 51, + "execution_count": 63, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - " Name Age SSN City\n", - "0 Alice 25 123-45-6789 New York\n", - "1 Bob 30 234-56-7890 Los Angeles\n", - "2 Charlie 35 345-67-8901 Chicago\n", - "3 David 40 456-78-9012 Houston\n", - "4 Eve 45 567-89-0123 Phoenix\n", - "5 Frank 50 678-90-1234 Philadelphia\n", - "6 Grace 55 789-01-2345 San Antonio\n", - "7 Hannah 60 890-12-3456 San Diego\n", - "8 Isaac 65 901-23-4567 Dallas\n", - "9 Jack 70 123-45-5789 San Jose\n" + " Name Age City\n", + "SSN \n", + "123-45-6789 Alice 25 New York\n", + "234-56-7890 Bob 30 Los Angeles\n", + "345-67-8901 Charlie 35 Chicago\n", + "456-78-9012 David 40 Houston\n", + "567-89-0123 Eve 45 Phoenix\n" ] } ], "source": [ - "# generate dataframe with ten people wih random ages, social security numbers, ages, cities, and sex:\n", "df = pd.DataFrame({\n", " 'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eve', 'Frank', \n", " 'Grace', 'Hannah', 'Isaac', 'Jack'],\n", @@ -410,7 +405,59 @@ " 'City': ['New York', 'Los Angeles', 'Chicago', 'Houston', 'Phoenix', \n", " 'Philadelphia', 'San Antonio', 'San Diego', 'Dallas', 'San Jose'],\n", "})\n", - "print(df)" + "df = df.set_index('SSN')\n", + "print(df.head())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Since we set the index of our dataframe to the 'SSN' column, we can use loc to print rows with a specific SSN, or lists of SSNs:" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "A single row:\n", + " Name Charlie\n", + "Age 35\n", + "City Saskatoon\n", + "Name: 345-67-8901, dtype: object\n", + "A list of rows by SSN:\n", + " Age City\n", + "SSN \n", + "345-67-8901 35 Saskatoon\n", + "456-78-9012 40 Houston\n", + "A range of rows by SSN:\n", + " SSN\n", + "345-67-8901 Saskatoon\n", + "456-78-9012 Houston\n", + "567-89-0123 Phoenix\n", + "Name: City, dtype: object\n" + ] + } + ], + "source": [ + "print('A single row:\\n', \n", + " df.loc['345-67-8901'])\n", + "print('A list of rows by SSN and a slice of columns from Age to City:\\n', \n", + " df.loc[['345-67-8901','456-78-9012'], 'Age':'City'])\n", + "print('A range of rows by SSN:\\n',\n", + " df.loc['345-67-8901':'567-89-0123', 'City'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "And we can include a column name to print specific values or to set them:" ] }, { @@ -419,200 +466,184 @@ "metadata": {}, "outputs": [], "source": [ - "df = pd.read_csv(\"https://raw.githubusercontent.com/a8ksh4/python_workshop/main/SAMPLE_DATA/titaninc.csv\")\n", - "# Note that by default, an arbitrary numerical index is assigned to the rows.\n", - "# That default index would match exactly with the numeric address of each row, \n", - "# so it is not useful for this example. \n", - "# We instead set the passenger ID as the index - loc refers to this, and iloc \n", - "# refers to the literal numerical address of each row. \n", - "df = df.set_index('PassengerId')" + "some_ssn = '345-67-8901'\n", + "print(f'{some_ssn} lives in:', df.loc[some_ssn, 'City'])\n", + "df.loc[some_ssn, 'City'] = 'Saskatoon'\n", + "print('Or was it:', df.loc[some_ssn, 'City'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### *Exercise*:\n", + "A few people have moved, please update their addresses:\n", + "* People with SSNs '678-90-1234' and '789-01-2345' didn't pay their taxes and are singing the blues in Folsom. \n", + "* People with SSNs '890-12-3456', '901-23-4567', and '123-45-5789' are retiring and moved to Palm Beach." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### loc selection of rows and columns\n", + "Rather than selecting by index value with loc, we can use iloc to select by row address, like 0, 1 or 2, a list of addresses, [1, 2, 3], or a range of addresses, [2:6]. And same for the columns returned. A few examples:" ] }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 72, "metadata": {}, "outputs": [ { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
SurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarkedPassId
PassengerId
103Braund, Mr. Owen Harrismale22.010A/5 211717.2500NaNS1
211Cumings, Mrs. John Bradley (Florence Briggs Th...female38.010PC 1759971.2833C85C2
313Heikkinen, Miss. Lainafemale26.000STON/O2. 31012827.9250NaNS3
411Futrelle, Mrs. Jacques Heath (Lily May Peel)female35.01011380353.1000C123S4
\n", - "
" - ], - "text/plain": [ - " Survived Pclass \\\n", - "PassengerId \n", - "1 0 3 \n", - "2 1 1 \n", - "3 1 3 \n", - "4 1 1 \n", - "\n", - " Name Sex Age \\\n", - "PassengerId \n", - "1 Braund, Mr. Owen Harris male 22.0 \n", - "2 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 \n", - "3 Heikkinen, Miss. Laina female 26.0 \n", - "4 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 \n", - "\n", - " SibSp Parch Ticket Fare Cabin Embarked PassId \n", - "PassengerId \n", - "1 1 0 A/5 21171 7.2500 NaN S 1 \n", - "2 1 0 PC 17599 71.2833 C85 C 2 \n", - "3 0 0 STON/O2. 3101282 7.9250 NaN S 3 \n", - "4 1 0 113803 53.1000 C123 S 4 " - ] - }, - "execution_count": 40, - "metadata": {}, - "output_type": "execute_result" + "name": "stdout", + "output_type": "stream", + "text": [ + "Row 0:\n", + " Name Alice\n", + "Age 25\n", + "City New York\n", + "Name: 123-45-6789, dtype: object\n", + "\n", + "Rows 2 and 5 and Age column:\n", + " SSN\n", + "345-67-8901 35\n", + "678-90-1234 50\n", + "Name: Age, dtype: int64\n", + "\n", + "Rows 2:6 and columns 0 and 1 using slices:\n", + " Name Age\n", + "SSN \n", + "345-67-8901 Charlie 35\n", + "456-78-9012 David 40\n", + "567-89-0123 Eve 45\n", + "678-90-1234 Frank 50\n", + "789-01-2345 Grace 55\n" + ] } ], "source": [ - "df.head(4)" + "print('Row 0:\\n', \n", + " df.iloc[0])\n", + "print('\\nRows 2 and 5 and Age column:\\n', \n", + " df.iloc[[2,5], 1])\n", + "print('\\nRows 2:6 and columns 0 and 1 using slices:\\n', \n", + " df.iloc[2:7, :2])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "So lets print row number 2 using iloc, and the passenger with PassengerId 2 using loc:" + "\n", + "Just like with loc, we can assign values to rows and columns selected using .loc, and we can capture those selections in new dataframes as needed. \n", + "\n", + "Also notice that the SSN index is shown... if you do a .reset_index, you'd instead see a new numerical index instead of the SSNs. \n", + "We'll look more at the index below.\n", + "\n", + "#### *Exercise*\n", + "Studies have shown that older people tend to be more fun than younger people. \n", + "* Use iloc to creat two new dataframes called 'top_five' and 'bottom_five' from the top and bottom five rows from 'df'. \n", + "* Calculate the average age of each group and determine which group is likely to be the most fun! You can compute the average of a column using .mean()... something like foo['col_name'].mean(). \n", + "\n", + "Do the cities that each group of people live in corroborate the results of the study, or is this silly?" ] }, { "cell_type": "code", - "execution_count": 44, + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Using .iterrows() to iterate over rows\n", + ".iterrows() returns an iterator that we can pair with a for loop to look at each row one at a time. This isn't in the spirit of pandas, which would prefer that we do something to all of the rows at the same time, but it can be very useful. " + ] + }, + { + "cell_type": "code", + "execution_count": 94, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "loc:\n", - " Cumings, Mrs. John Bradley (Florence Briggs Thayer)\n", - "iloc:\n", - " Heikkinen, Miss. Laina\n" + "Row_index: 0\n", + "Alice lives in New York and is 25 years old.\n", + "We can use loc to get the name from the same row: Alice was here\n", + "\n", + "Row_index: 1\n", + "Bob lives in Los Angeles and is 30 years old.\n", + "We can use loc to get the name from the same row: Bob\n", + "\n", + "Row_index: 2\n", + "Charlie lives in Saskatoon and is 35 years old.\n", + "We can use loc to get the name from the same row: Charlie\n", + "\n", + "Row_index: 3\n", + "David lives in Houston and is 40 years old.\n", + "We can use loc to get the name from the same row: David\n", + "\n", + "Row_index: 4\n", + "Eve lives in Phoenix and is 45 years old.\n", + "We can use loc to get the name from the same row: Eve\n", + "\n", + "Row_index: 5\n", + "Frank lives in Philadelphia and is 50 years old.\n", + "We can use loc to get the name from the same row: Frank\n", + "\n", + "Row_index: 6\n", + "Grace lives in San Antonio and is 55 years old.\n", + "We can use loc to get the name from the same row: Grace\n", + "\n", + "Row_index: 7\n", + "Hannah lives in San Diego and is 60 years old.\n", + "We can use loc to get the name from the same row: Hannah\n", + "\n", + "Row_index: 8\n", + "Isaac lives in Dallas and is 65 years old.\n", + "We can use loc to get the name from the same row: Isaac\n", + "\n", + "Row_index: 9\n", + "Jack lives in San Jose and is 70 years old.\n", + "We can use loc to get the name from the same row: Jack\n", + "\n" ] } ], "source": [ - "print('loc:\\n', df.loc[2]['Name'])\n", - "print('iloc:\\n', df.iloc[2]['Name'])" + "for row_index, row_vals in df.iterrows():\n", + " # print out the name, city, and age of the person in this row:\n", + " # print(row[1]['Name'], 'lives in', row[1]['City'], 'and is', row[1]['Age'], 'years old.')\n", + " # the [1] is \n", + " print('Row_index:', row_index)\n", + " print(row_vals['Name'], 'lives in', row_vals['City'], 'and is', row_vals['Age'], 'years old.')\n", + " \n", + " if row_vals['Name'].startswith('A'):\n", + " df.loc[row_index, 'Name'] = df.loc[row_index, 'Name'] + ' was here'\n", + " \n", + " print('We can use loc to get the name from the same row:', df.loc[row_index, 'Name'])\n", + " print()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### loc selectoin of rows and columns\n" + "#### *Exercise*\n", + "Use .reset_index() on the df and then iterrows again to see what is changed. " ] }, { @@ -626,37 +657,38 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### iloc selection of rows and columns\n", - "iloc can multiple rows and columns by their address and slices of rows and columns:\n", - "\n", - "* **Multiple rows**: `df.iloc[[2,3,4]]\n", - "* **Multiple rows and cols**: `df.iloc[[2,3], [0,1,2]]\n", - "* **Slice of rows**:\n", - " * `df.iloc[2:5]`\n", - " * `df.iloc[:5]`\n", - "* **slice of rows and cols**: `df.iloc[1:3, 1:4]`\n", - "\n", - "A simple example of use of this might be if I wanted to split my data into a training set and a testing set for some machine learning prediction algorithm. I would randomize order of the data, then select 70% of the rows for training and 30% for testing:" + "## The Dataframe Index and why it's important" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#" ] }, { "cell_type": "code", - "execution_count": 45, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ - "# Ramdomize order of the rows\n", - "df_randomized = df.sample(frac=1)\n", - "\n", - "# figure ou thow many rows we need:\n", - "training_size = int(len(df_randomized) * 0.7)\n", - "testing_size = len(df_randomized) - training_size\n", - "\n", - "# split the data\n", - "df_trianing = df_randomized.iloc[:training_size]\n", - "df_testing = df_randomized.iloc[training_size:]" + "df = pd.read_csv(\"https://raw.githubusercontent.com/a8ksh4/python_workshop/main/SAMPLE_DATA/titaninc.csv\")\n", + "# Note that by default, an arbitrary numerical index is assigned to the rows.\n", + "# That default index would match exactly with the numeric address of each row, \n", + "# so it is not useful for this example. \n", + "# We instead set the passenger ID as the index - loc refers to this, and iloc \n", + "# refers to the literal numerical address of each row. \n", + "df = df.set_index('PassengerId')" ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "markdown", "metadata": {}, @@ -778,53 +810,6 @@ "outputs": [], "source": [] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Creating a Dataframe\n", - "Just skim over this for the general idea on how it works, and come back to each method for importing data as you need it. \n", - "\n", - "## Empty Dataframe\n", - "Why would we want an empty dataframe? I think it's generally not needed... but maybe there's a good case for starting with an empty df... \n", - "\n", - " df = pd.DataFrame()\n", - "\n", - "## From a CSV file\n", - "\n", - " df = pd.read_csv('data.csv')\n", - "\n", - "## From an Excel file\n", - "The sheet name is only needed if we have multiple sheets in the .xlsx.\n", - "\n", - " df = pd.read_excel('data.xlsx', sheet_name='Sheet1')\n", - "\n", - "## From a list of lists or tuples\n", - "We need to specify the column names in this case:\n", - "\n", - " data = [[1, 2], [3, 4], [5, 6]]\n", - " df = pd.DataFrame(data, columns=['A', 'B'])\n", - "\n", - "## From a dictionary \n", - "The dictionary keys are the **column** names, and the each list is a column of data. \n", - "\n", - " data = {'A': [1, 2, 3], 'B': [4, 5, 6]}\n", - " df = pd.DataFrame(data)\n", - "\n", - "## From a database\n", - "Note that a database connection, called \"conn\" here, is a pretty standard thing. You can create a connection to many database types and pass the connectin and query to pd.read_sql_query and it will just work. Sqlite3 is a file based database that doesn't require a server to host it. \n", - "\n", - " import sqlite3\n", - "\n", - " conn = sqlite3.connect('database.db')\n", - " df = pd.read_sql_query('SELECT * FROM table_name', conn)\n", - "\n", - "## From an html table\n", - "Note that you can also generate html tables from dataframes... \n", - "\n", - "\n" - ] - }, { "cell_type": "markdown", "metadata": {}, From 1b352f532c7277ab65d89d3f2065d4ad434e322b Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Wed, 4 Sep 2024 15:58:08 -0700 Subject: [PATCH 19/94] update dates --- README.md | 4 +--- 1 file changed, 1 insertion(+), 3 deletions(-) diff --git a/README.md b/README.md index 4e627d1..f45d097 100644 --- a/README.md +++ b/README.md @@ -11,10 +11,8 @@ We have a bunch of coureswork ready to use, including: See the Notebooks list below for a more detailed list. ## Current Schedule: -* Monday Aug 26th 4-5PM -* Thursday Aug 29th 4:30-6:30PM * Wednesday Sep 4th 4-5PM -* TBD (probably not) Sep 11th and 18th +* NO WORKSHOP on Sep 11th and 18th * Wednesday Sep 25th 4-5PM * Wednesday Oct 2nd 4-5PM * Each wednesday from 4-5PM ongoing. From cb3073a7f8327c8a1cf9df0d10f2a4514b9d7ae8 Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Sun, 15 Sep 2024 16:31:55 -0700 Subject: [PATCH 20/94] pandas work --- D1-Pandas_Example.ipynb => D0-Pandas_Example.ipynb | 0 D-Pandas.ipynb => D1-Data_Importing_and_Selection.ipynb | 0 D2-Data_Cleaning.ipynb | 0 D3-Pandas_Graphing.ipynb | 0 D2-Advanced_Pandas.ipynb => D4-Advanced_Pandas.ipynb | 6 ++++-- E-Writing_Scripts.ipynb | 2 +- 6 files changed, 5 insertions(+), 3 deletions(-) rename D1-Pandas_Example.ipynb => D0-Pandas_Example.ipynb (100%) rename D-Pandas.ipynb => D1-Data_Importing_and_Selection.ipynb (100%) create mode 100644 D2-Data_Cleaning.ipynb create mode 100644 D3-Pandas_Graphing.ipynb rename D2-Advanced_Pandas.ipynb => D4-Advanced_Pandas.ipynb (90%) diff --git a/D1-Pandas_Example.ipynb b/D0-Pandas_Example.ipynb similarity index 100% rename from D1-Pandas_Example.ipynb rename to D0-Pandas_Example.ipynb diff --git a/D-Pandas.ipynb b/D1-Data_Importing_and_Selection.ipynb similarity index 100% rename from D-Pandas.ipynb rename to D1-Data_Importing_and_Selection.ipynb diff --git a/D2-Data_Cleaning.ipynb b/D2-Data_Cleaning.ipynb new file mode 100644 index 0000000..e69de29 diff --git a/D3-Pandas_Graphing.ipynb b/D3-Pandas_Graphing.ipynb new file mode 100644 index 0000000..e69de29 diff --git a/D2-Advanced_Pandas.ipynb b/D4-Advanced_Pandas.ipynb similarity index 90% rename from D2-Advanced_Pandas.ipynb rename to D4-Advanced_Pandas.ipynb index 55ca851..f98ad4f 100644 --- a/D2-Advanced_Pandas.ipynb +++ b/D4-Advanced_Pandas.ipynb @@ -10,9 +10,11 @@ "\n", "## Wide Format vs Long Format\n", "\n", - "## .loc and .iloc\n", - "\n", "## stack, unstack, and pivot\n", + "\n", + "## where\n", + "\n", + "## interpolation\n", "\n" ] }, diff --git a/E-Writing_Scripts.ipynb b/E-Writing_Scripts.ipynb index 161abcb..29e31b7 100644 --- a/E-Writing_Scripts.ipynb +++ b/E-Writing_Scripts.ipynb @@ -258,7 +258,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.3" + "version": "3.11.6" } }, "nbformat": 4, From 5a85ef747047510a86bfdf7be2607664535392ec Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Tue, 17 Sep 2024 11:01:02 -0700 Subject: [PATCH 21/94] add calories data --- SAMPLE_DATA/README.md | 22 +++ SAMPLE_DATA/pulse_calories_modified.csv | 170 ++++++++++++++++++++++++ 2 files changed, 192 insertions(+) create mode 100644 SAMPLE_DATA/README.md create mode 100644 SAMPLE_DATA/pulse_calories_modified.csv diff --git a/SAMPLE_DATA/README.md b/SAMPLE_DATA/README.md new file mode 100644 index 0000000..dca9195 --- /dev/null +++ b/SAMPLE_DATA/README.md @@ -0,0 +1,22 @@ + +Sources for data in this directory: +* titanic.csv: https://www.kaggle.com/c/titanic/ +* iris.csv: +* pulse_calories_modified.csv: modified from https://www.kaggle.com/datasets/vivekbaaganps/maxpulse-calories +* AAPL, GME, GOOG, NVDA Historycal data - yahoo finance. + +Notes on where USGS stores data: +Aquarious TS - time series +* moored data +* fixed stations on interval over time +* nwis.gov sacramento river nwis, grizzley bay nwis +* requires a station number + +Aquarious Samples / AQS +* Launched in March +* water data for the nation, wdfn +* discrete data + +ScienceBase +* Mapping data +* Stuff that doesn't fit in the above two. diff --git a/SAMPLE_DATA/pulse_calories_modified.csv b/SAMPLE_DATA/pulse_calories_modified.csv new file mode 100644 index 0000000..bfead9b --- /dev/null +++ b/SAMPLE_DATA/pulse_calories_modified.csv @@ -0,0 +1,170 @@ +Duration,Pulse,Maxpulse,Calories +60,110,130,409.1 +60,117,145,479.0 +60,103,135,340.0 +45,109,275,282.4 +45,117,148,406.0 +60,102,127,300.0 +60,110,136,374.0 +45,104,134,253.3 +,109,133,195.1 +60,98,124,269.0 +60,103,147,329.3 +60,100,120,250.7 +60,106,128,345.3 +60,104,132,379.3 +6000,98,123,275.0 +60,98,120,215.2 +60,100,120,300.0 +45,90,112, +60,103,123,323.0 +45,97,125,243.0 +60,108,131,364.2 +45,100,119,282.0 +60,130,101,300.0 +45,105,132,246.0 +60,102,126,334.5 +60,100,320,250.0 +60,92,118,241.0 +60,103,132, +60,100,132,280.0 +60,102,129,380.3 +60,92,115,243.0 +45,90,112,180.1 +60,101,124,299.0 +60,93,113,223.0 +60,107,136,361.0 +60,114,140,415.0 +60,102,127,300.0 +60,100,120,300.0 +60,100,120,300.0 +45,104,129,266.0 +45,90,112,180.1 +60,98,126,286.0 +60,100,122,329.4 +60,111,138,400.0 +60,111,131,397.0 +60,99,119,273.0 +60,109,153,387.6 +45,111,136,300.0 +45,108,129,298.0 +60,111,139,397.6 +60,107,136,380.2 +80,123,146,643.1 +60,106,130,263.0 +60,118,151,486.0 +30,136,175,238.0 +60,121,146,450.7 +60,118,121,413.0 +45,115,144,305.0 +20,153,172,226.4 +45,123,152,321.0 +210,108,160,1376.0 +160,110,137,1034.4 +160,109,135,853.0 +45,118,141,341.0 +20,110,130,131.4 +180,90,130,800.4 +150,105,135,873.4 +150,107,130,816.0 +20,106,136,110.4 +300,108,143,1500.2 +150,97,129,1115.0 +60,109,153,387.6 +90,100,127,700.0 +150,97,127,953.2 +45,114,146,304.0 +90,98,125,563.2 +45,105,134,251.0 +45,110,141,300.0 +120,100,130,500.4 +270,100,131,1729.0 +30,159,182,319.2 +45,149,169,344.0 +30,103,139,151.1 +120,100,130,500.0 +45,100,120,225.3 +30,151,170,300.0 +45,102,136,234.0 +120,100,157,1000.1 +45,129,103,242.0 +20,83,107,50.3 +180,101,127,600.1 +45,107,137, +30,90,107,105.3 +15,80,100,50.5 +20,150,171,127.4 +20,151,168,229.4 +30,95,128,128.2 +25,152,168,244.2 +30,109,131,188.2 +90,93,124,604.1 +20,95,112,77.7 +90,90,110,500.0 +90,90,100,500.0 +90,90,100,500.4 +30,92,408,92.7 +30,93,128,124.0 +180,90,120,800.3 +30,90,120,86.2 +90,90,120,500.3 +210,137,184,1860.4 +60,102,124,325.2 +45,107,124,275.0 +15,124,139,124.2 +45,100,120,225.3 +60,108,131,367.6 +60,108,151,351.7 +60,116,141,443.0 +60,97,122,277.4 +60,105,125, +60,103,124,332.7 +30,112,137,193.9 +45,100,120,100.7 +60,119,169,336.7 +60,107,127,344.9 +60,111,151,368.5 +60,98,122,271.0 +60,97,124,275.3 +60,109,127,382.0 +90,99,125,466.4 +60,114,151,384.0 +60,104,134,342.5 +60,107,138,357.5 +60,103,133,335.0 +60,106,132,327.5 +60,103,136,339.0 +20,,156,189.0 +45,117,143,317.7 +45,115,137,318.0 +45,113,138,308.0 +20,141,162,222.4 +60,108,135,390.0 +60,97,127, +45,100,120,250.4 +45,122,149,335.4 +60,136,170,470.2 +45,106,126,270.8 +60,107,,400.0 +60,112,146,361.9 +30,103,127,185.0 +60,110,150,409.4 +60,185,134,343.0 +60,109,129,353.2 +60,109,138,374.0 +30,150,167,275.8 +60,105,128,328.0 +60,111,151,368.5 +60,97,131,270.4 +60,100,120,270.4 +60,114,150,382.8 +30,180,120,240.9 +30,85,120,250.4 +45,90,130,260.4 +45,95,130,270.0 +45,100,140,280.9 +60,105,140,290.8 +60,110,145,300.0 +60,-115,145,310.2 +75,120,150,320.4 +75,125,150,330.4 From 0593a56e5faa83a80991fa8796f8c458481c30bf Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Wed, 18 Sep 2024 16:30:14 -0700 Subject: [PATCH 22/94] content --- D0-Pandas_Example.ipynb | 59 +++++-- ...> D1-Pandas_Intro_and_Data_Selection.ipynb | 161 +++++++++++++----- D2-Data_Cleaning.ipynb | 154 +++++++++++++++++ D4-Advanced_Pandas.ipynb | 2 + 4 files changed, 320 insertions(+), 56 deletions(-) rename D1-Data_Importing_and_Selection.ipynb => D1-Pandas_Intro_and_Data_Selection.ipynb (86%) diff --git a/D0-Pandas_Example.ipynb b/D0-Pandas_Example.ipynb index db2efe4..c6be62d 100644 --- a/D0-Pandas_Example.ipynb +++ b/D0-Pandas_Example.ipynb @@ -4,13 +4,25 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Section D1 - Pandas Example\n", + "# Section D0 - Pandas Example\n", "\n", - "Let's do some simple data analysis and presentatin with some plots. Nasa has this list of meteorites that we can use. It doesn't require much cleaning/prep to use, so shouldn't take too many steps to make some nice plots and make some observtions.\n", + "The name \"Pandas\" comes from \"Panel Data\" and \"Python Data Analysis\". \"Panel Data\" refers to two dimensoinal data, often including measurements over time - time series - or collections of things/events. The term \"Pandas\" is a blend of these concepts, reflecting the library's purpose of providing data structures and data analysis tools in Python.\n", "\n", - "First thing is importing. We use requests to query the url, get the json data, and convert it to a dataframe. A few useful funtions for viewing data in a dataframe are .head(), .tail(), and .info(). \n", + "**Pandas** are playfull and memorable, just like **Pandas**!\n", "\n", - "There's more info on this dataset here: https://data.nasa.gov/Space-Science/Meteorite-Landings/gh4g-9sfh/about_data" + "Pandas has two types of objects, **DataFrames** and **Series**. A dataframe has rows and columns, like a spreadsheet - two dimensional. A single row or column from a dataframe is a Series. If we select a single column from a DataFrame, we get a series, a single dimensional object, and a series can be inserted into a df column. \n", + "\n", + "By convention, we'll import pandas as \"pd\" to save us some typing.\n", + "\n", + " import pandas as pd\n", + "\n", + "**This notebook has an example workflow of importing some data into a pandas dataframe and then graphing it** to get a feel for how things work with pandas. Don't worry if not everything here makes sense. **The D1 and following notebooks will go through everything in detail.**\n", + "\n", + "So let's see what we dan do with a list of metiorites from Nasa. The data is is pretty clean (no missing values, bad data, etc), so it doesn't require much cleaning/prep to use. It shouldn't take too many steps to make some nice plots and make some observtions.\n", + "\n", + "First thing is importing. We use requests to query the url, get the json data, and convert it to a **dataframe**. A few useful funtions for viewing data in a dataframe are .head(), .tail(), and .info(). \n", + "\n", + "*There's more info on this meteorite dataset here: https://data.nasa.gov/Space-Science/Meteorite-Landings/gh4g-9sfh/about_data*" ] }, { @@ -33,12 +45,10 @@ "Great, so we have geolocation, mass, and datetime info for each meteor. Let's try graphing mass per date to see if there's any obvious trend. \n", "\n", "We need each column to be the correct datatype before we can generate a plot.\n", - "* To simplify the datetime 'year' column, I use a string operation to split it on the 'T' ang take just the year, month and day. Then we can use pd.to_datetime do convert it to a datetime object by passing in the format to use to convert it. \n", + "* To simplify the datetime 'year' column, we use a string operation to split it on the 'T' ang take just the year, month and day. Then we can use pd.to_datetime do convert it to a datetime object by passing in the format to use to convert it. Info on datetime conversion: https://www.w3schools.com/python/gloss_python_date_format_codes.asp\n", "* We need the mass to be a numeric value so we overwrite the column with itself converted using pd.to_numeric. Similarly, there ar pd.to_int, pd.to_float, pd.to_string operatoins that we might want to use in other cases. \n", "\n", - "Finally, pandas has a built in plot function that can generate a bunch of different graph types. Setting 'logy' says to graph the y axis in log scale. Try setting it and see what happens to the data points and y axis scale. \n", - "\n", - "https://www.w3schools.com/python/gloss_python_date_format_codes.asp" + "Finally, pandas has a built in plot function that can generate a bunch of different graph types. Setting 'logy' says to graph the y axis in log scale. **Try changing logy between True/False and see what happens to the data points and y axis scale.**" ] }, { @@ -60,16 +70,37 @@ "source": [ "That's neat, but doesn't show much of a trend except that we probably have better records of meteorites found since the late 1800s. Maybe it would be interesting to see where on earth we are finding the meteorites. \n", "\n", - "Let's plot them on a map of the earth. First thing for that is to get a map of the earth. We can use some geopandas stuff for that. Below, \"world\" is a dataframe with rows for each landmass on a map. Try printing world.head() to see some of the actual data. \n", + "Let's plot them on a map of the earth. First thing for that is to get a map of the earth. We can use some geopandas stuff for that. Below, \"world\" is a dataframe with rows for each landmass on a map. **Try printing world.head() to see some of the actual data.** The geometry column has a polygon with a list of points making the shape of each continent.\n", "\n", "https://geopandas.org/en/stable/docs/user_guide.html" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAEbCAYAAAD0/q8mAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACXRUlEQVR4nOzdZXRbV9aA4feKLTMzc+IwMzZpk0LKzMzTlGc6X9tpZ8qddsrMzAxhZiYnMTODbNni+/1wosS1nZgt2+dZK6u1dHV1ZJD2PWefvSVZlmUEQRAEQRBckKKvByAIgiAIgtAWEagIgiAIguCyRKAiCIIgCILLEoGKIAiCIAguSwQqgiAIgiC4LBGoCIIgCILgskSgIgiCIAiCyxKBiiAIgiAILkvV1wPoKofDQVFREZ6enkiS1NfDEQRBEAShHWRZpq6ujrCwMBSKtudN+n2gUlRURGRkZF8PQxAEQRCETsjPzyciIqLN+/t9oOLp6Qk0vVAvL68+Ho0gCIIgCO1hMBiIjIx0fo63pd8HKkeXe7y8vESgIgiCIAj9zMnSNkQyrSAIgiAILksEKoIgCIIguCwRqAiCIAiC4LJEoCIIgiAIgssSgYogCIIgCC5LBCqCIAiCILgsEagIgiAIguCy+n0dFUEQWlfbaGVrThV1JhsWmwOz3YHF5gBApZBQKqRj/1VKqBSKZl/7uWuJ8HXD310j2lMIgtBnRKAiDCqyLFNQ3UiDxU6gpxZfvZpf9hSzNaeakloTBpOVerMNq13G7nBgc8joVEq83FTUmWzUmWwYzTYUCgmNUoFWpUCjavqvVqVEq1agUSrQqZV46lR46lQEeeqIDXBnTLQvvu6abnkd6SUGdubVkF5SR3qJgaxyIw4ZlApQKRQoFFBUY8LukLv8XG5qJRG+bkT4uhHppycp2JN5Q4MJ8tR1wysRBEE4MRGoCAPSxqxK0osNVDVYMVvtVBktVBktHCg2UFRrch4X5q1r9nV3cNcoCfDU4u+uIcRbh4dWTW2jlb2FtRhMNsrqTNSbbNRbmoIek9WBLINMU1AR6atnWLg3h8rq2J1fy96iWjx1auID3YkL9MDfXcMve4rJq2ygusGC+cgsSWelhHjiplFid8jY7DIOWcbLTU2Un55IXz2hPjpqG6xkVRjx0Ws4b0wEOrXS+XhZljE02qhqsFBlNGO1y3jp1Hjr1Xi7qfHQircZQRA6T7yDCP2eze5gW241h0rrsNhl4gPdCfXSYbY5+Hl3EVnlxjYf291ByuR4fy4eH8XEOH8UEuwprCW7wsjKQ+X8tKuoC2du5ECxodvGebz0krpWb9+cXdXitklx/jzZaCWn0khRTSNVRivVDZZWZ24i/dxICfHi7wtSiQ1w7/ZxD3SyLA/IJTe7QyajrJ6i2kbKDCa83TRMivPHW6/u66EJLkqSZbnrc8N9yGAw4O3tTW1trej1M8g0WGw89+chPtmUi8nafFYhwteNoWFehPm4oVUpMNsc+LlryK4wOpdp3LVKlJLE+sxKtudV05lVEk+diismRTMjKYgoPzeWHihj7eEK9hTWUljT2E2v1HV5aFX4uqvxd9cS4KFhelIgaeHeJAV7uvRMSoPFxtIDZZQZTJTXm6k32Yj216PXqNiaU4VOrSTIU0uQl46EIA9SQ7x67IO0zmSl1GDik015rDxYTnKwJ0khntSbbAyL8GL+0BD0Gtf9XrbX/iIDH23M4efdxdSZbM3ukyQYFenDpROiWTg8tNmMnTBwtffzWwQqQr9lszt4f30O3+8spLjGhCRBRb2lzeOnJPgzLNybnfk1bM2pxtaOyEQhgbtGhVatRKdWEOylY0SED/4eGoI8tcxPC8FL1/QBJssy5fVmcisb+GNvCW+vze621+rK5g0J5tGzhhLq7dbXQwGafg5vr8lmb1Et+VUNaFVKZqUEYrXLfLElnzqTlQAPLaMiffDz0BDspWPt4YqmHCSzjXqzFbWiKc9Ir1ES6uPGmSPCmJ0ShFLRczMcsixT02DF202Nogefpy9Z7Q7+8d0evtle2Gb+lJ+7hs+un0hyiCcWmwOVQhqw34/BTgQqgstxOGS251VzqLSeSD83xkb74aZpfuVUWNPIqysyWJ9ZifeRPIlofz0pIV6clhaCQiGxPL2U/KpG/D00TIj1J9BTC8B9X+/iy60FrT53WrgXUxMCUCkU1JttfLopD4u9fbkdo6N8eOfKcc5EWFmWqW20kl/VSEF1A/nVDeRXNZJX1fT/BdWNzt01A919pyZz84x4l1ui2JVfw9+/28O+ohMvl2mUChKDPZidEsR5YyKI9hdLVL3BaLaxK7+GnMoGSg0mSg1NiezuGhWeOjUXjI3g/37cx+bsKjRKBUPCvBgd5cuslECmJQb29fCFbuISgUpMTAy5ubktbr/lllt45ZVXmDlzJqtWrWp234033sjrr7/e7ucQgUr/YLLa+XVPMfuKDDRYbET5uXP1lJhWp3iLaxupNlqxORwUVjeyp7CWgupGhkd4c+3UWPYVGXhh6WHqTFZCvHXcMjMeD52aUC8tmeVGSg1mDCYrVrsDN7WScF83rHaZP/aVoFEqWHmwjF0FtScd84RYP0ZG+jA2xo8ZSYFoVE1lhx7/eT/L08vIrjTSv8P8rvv59qmkhXv39TBaJcsyW3Kq+XJrPrsLajhcVt/s5+WuUfLmFWOZkhCALMs8+Vs6Sw+UolUpuXJyNNMSAwnzcY1ZosGkoLqBV1ZkIkng49aUkO1zJDE7KdiTuECPvh6i0E1cIlApLy/Hbrc7v967dy+nnHIKK1asYObMmcycOZOkpCT+9a9/OY/R6/UdCjhEoNL3KuvNLD1QyrIDZRhMVmQZKo0Wnr9gBMMjfICm2ZSsinoOltQT4q0jPtAdH33XtupmVxjZmFVJo9WOh1bFrORAAv+yZdZktVNQ3cAvu0v479JDQFNeiclqx2pv/Vf/vDERjI325ayR4S1mfI5XXNvImsMVHCg2kF5cR4nBREW9ucX6+0ClkGBWchAPnT7E5ZNlVxws4+nfDzoTkhcOD+V/F41yLuXYHTKF1U2zYiql1KM5KX1NlmVkGZdfTqk32/h+RyHb86o5WFJHXmUDkxP8uXJSDInBns6ZVKH/au/nd49maAUGNp+ie/LJJ4mPj2fGjBnO2/R6PSEhIT05DKEHHL1afWdtFkv2l+KQIcRLx5gYX2L93UkNbVpf/mhDDkFeOsJ9mupwJAz3BOBQaR3XfrAVjVLB8xeOaDO/4XBpHeX1ZjLL6tlVUItDllErFNw6K4HKejPZFUZKDSbqTDa+3lZATUNTjkpcgAf/vXAkuVVGPjuyzHPGiDCqjGbsDhkPrRoPrRI3jQpDo5USg4mSWhN+7ho8tCrcNEqsDgdutB2oBHpoCfbSsTGzkoOldVQZj+XHaJQKVMqm4mkSYLE7WiT89lcqhcQ5o8O5cUY88f3k6nZWchCzkoMoM5gwmGyEeuua5ZsoFRJR/nqi/PV9OMqus9od5FY2UNNgacq3MdmoabRyoNjArvwaimtNWG0Ozh4dzqNnDu3zJTub3dH0NyJJFFQ3sC23GoPJhkKCt9dkk13RfMfeH/tK+WNfKQoJLpsYzcGSuqZZMqkpcA7zdmNklA+jo3wZGubVZ6/P4WgqNqCQ6PPv8UDQazkqFouFsLAwFi9ezN///ncAZs6cyb59+5BlmZCQEM444wz++c9/ote3/WZhNpsxm83Orw0GA5GRkWJGpZfJskyl0UJ2hRE3tZIgLy2BHlokSaK2wcrfv9vDL3uKWzxuSKgXC4eHMizcm7UZFbyzNpsQLx3+HhrqTTYePnMoM5KOBbifb85jQ1YlGWX1zfINnjlvOOePjaSwppG9hbX4u2sYFenDM38e4vVVmQAkBnkwLtaP8TF+6NQK9BoV7lolZQYz+dUNGBptNFrt2B0yOrWSaH89pw4N6VRRNodDpt5iQ6dSolZKrb45ybJMicHEzrwadubX8NveEvKqGjr8XK5k1b0zRV5HH3E4ZA6X1bMtt5q9RbXsK6zlQEkdFpsDtVIi2t/dWXsnNsCdGH93Yvz1BHpqe+3Ds7bRyubsKvKqGjCam+oGbcmp4mBJHWZbU0HFSD837Ha520sFXDEpmn+dldat5zyZ/UUGbvt0O3lVDc5kfZVCwkevIS7AvennEODOvKHBxAW4k15Sh5ebGn93zaDc6eQSSz/H+/LLL7nkkkvIy8sjLCwMgDfffJPo6GjCwsLYvXs3999/P+PHj+fbb79t8zyPPPIIjz76aIvbRaDiOirqzRwsqaO6wYJa2VS5dUduNRuzqzhQZECplEgO9iQu0B0vnRq9RoVeo8TPXcNZI8NQKVu2oNpXVMvKg+XYHTLebmoumRBFtdHCP3/YS0ZZPUaznafOG86ICG/++cM+CqobKKxupKzO3MoIj9GoFM7EV393DZdMiOLueck98n35qz0FtXy6OY/vdhT0y9mWSyZE8c+FQ064PCb0jE1Zldz48TZqGqzO2xKCPDhlSDBzU4MZHuGNupW/o55msTn4YH0OS/aXYjBZOVRa16lt/53h765hZKQPIyJ9GBvty5gYX7Sq3v3dLDWY+HVPMb/tKcFosRET0PQed3S5zSHL+OjV3D0vGZVCYumBUnbm15JRVo9SAcnBnlw2KXrQVH12uUBl/vz5aDQafvrppzaPWb58OXPmzCEjI4P4+PhWjxEzKn0rr7KBx3/ZT351I42WpqqqId46wn2b6pVolArcNEomxvkzIynQeZVQajDRYGnKJQnw6HjvGLtDpqbBgr9H07q0ze5wBjRbc6rYmFWJzSGjUkh4uamJ8HVjVKQvHjoVNQ1WahutSFLTVahaqcDPQ4O7RoVSIdFgtmGXZTy0Kix2Bxqlolena3fm13Dt+1uoNLa9tdrVTEnw5/wxkUyI83OZbckDncMhsz6zkm+3F/Db3hIarU35f6cPD2XxKUm9mmRqszsorTNjttpRKxUoFRIWm4PsCiMPfb+312sInTIkmFOGBJMY5IGvXoNdlp3LklZ70xbnk/1N91SBvdoGKzWNFkK93ZwJ+UITl8hROSo3N5elS5eecKYEYMKECQAnDFS0Wi1arUii6itWh4OcSiOHSuudt5UYTOzMr3F+7e2mprjGxK78GvzcNaSFezMxzh+HQ0Y6bs326BvDxqxKyuvMHCqt45c9xZw3JoJbZiY4z2cwWbny3c3syKvBR6/GZpeZFO/PSxeP4o99Jdz5+c5mY/R2U7P4lCSmJwZS22jlvXXZrDxYTlmdieQQT969ahzfbS9k9eFyDpfWk1fVwIXjIpmaGMCD3+yhptGKXqMkMciDU9NCuHBsVI8mVo6M9OHbWyZz9XtbyKpou4puXwv3ceP0EaF46dSE+7hxxoiwHq0rIhwjyzI78ptywlYcLAeacsIePWso84d2LsdPlmXK6sx46dQdmhVbn1nBZW9v6rWZkvZYsr+UJftLnV97u6kZEurF/mIDtY1WZz0kd62K1FBPbpudgE6tPPZPpeCKdzdTamjKUzsaUAwL92bBsFCmJgR0KohZc7icJftLqTPZ0KkVnDE8jMkJAd32ugeLXplReeSRR3jjjTfIz89HpWo7Nlq3bh1Tp05l165dDB8+vF3nFrt+ek9meT0XvL6h1St/jUrB5ROjCfDQ8PveEvYVGZxrtPGB7igkibyqBkK9dSwcHsqOvBoOldZz36nJ1JlsPPbzfgDSwrz45LoJeB/ZEbQxq5KPNuSSXWFk/3El5L10KhYOD+PmGfEs+N8a6s02zh0dwR1zEojw1aNUSJhtdi54fUOzrchKhcTkeH/WHK5o8RpGRfnwzhXjWJdZQV6VkQ2ZVcQHujMxzp+piQF46np2F0hJrYn5L6ymttF68oN7kUKCc0ZHHEl8VPDcBSP6ekiDiizLvLM2m8d/OeC87bwxETxy5tBOV/+1O2Que3sTG7IqgaadcCkhnnx54yQkSeKt1VkEeWk5a2Q4tY1WCqobnLvk/PQaFr26rlny+ED32fUTmRTv36HHfLElj4825lJvsuGj1+CjV+Or1+Dt1vRfH736yD8Nvno1Pm4awnx0rS59D1QuM6PicDh47733uPLKK5sFKZmZmXz66acsWLAAf39/du/ezV133cX06dPbHaT0tEOldZQZzCQEeRDs1TsJaA6H7LLbBg+V1DE1MYCtOdXNpna1KgVLF88gt7KBxV/ubJEXknlcr52cyqYaCUc9+O0eFgwLdX69t8jAf5ce5pEzhwIwMc6fiXH+ZJTV88vuYt5dl01toxVPnZpADw0qpcSclCAsdgcjIr3x99A6r/KVkkROZfNkVbtDbjVIAdhdUMvox5c0u21tRgUfbMhFo1Iwf2gI/z47jcLqRtRKiYQgz458+07I4ZD575JDBHlq8dGrya10jSRbSQKHDF9vKyDIU8vVU2IxWe2DMvGvr7y0PIOXV2Q0uy3IU4t7J3OD0ksMPPvHIWeQAtBgsXPZxGjyqhr4YH0uP+ws5KHTU7n8nU2szahoVn/GQ6siwtdt0AQqbmol5fVm5wywLMu8sTqLUG8do6N8KaszkVvZQKCnloQgD6qNVnIrjVQZrewtPHJx1c6/5+ER3jx4WipjY3z7JMeoNWabHYvN0eMXaifS4zMqf/75J/Pnz+fgwYMkJSU5b8/Pz+eyyy5j7969GI1GIiMjOfvss3nooYdcpo7KV1vz2VNYS5SfnjNHhBHk1b0JTg6HzKGyOnbk1QCwM6+G3/YWo1A0JZtePimaijozWrWSU4YEE+DhOkteP+wsxGS1MzTMm8RgD2fSWnFtI4//fID9xQbyqhpQKyXUSkWHaovo1AoeODWF2SnBLbaLyrJMg8WO+5EryUlPLKP4uN0CwV5a3rpirLN+S86RNfO1Ga0HJ50lSXDBmEgmJ/iTGNSUGNwdH965lUa25FSTUVbP1pwqdhfUtruCbk/QKBW8ecUYvtleyM+7i9CqFDxxzjDOHhXRZ2PqDZX1Zt5Zm011gxWNUqLOZKOothG1UsHYaD/GxfgyMsqn13rw2B0yh8vqePznAzRYbDRaHUT4unHd1FgmxLX/Sv/tNVnNZmaOd/aocP59dhrP/3mIt9dm46lVoVBILjfD11eGhXszPSmAKqOVzzbn9ehzeepUTE8KZHyMH3aHTIPFhtFip+FIt3VvfdNOoZnJQSSHdN8F01+V15l57s+DXDYxukcKO7pcMm1P6W9LP3UmK++uzWHJgRJyKxqoM7f/A9zbTY1KIdFotRPlpycu0J0gTx16jRJfvYYgLy3FtSbc1ErSwr1JCPToUG5FbaOVLdlVZJbXo9eqGBfjy4Pf7iHKT89dc5OI9tezNqOC8bF+aJQKCmsacdeoWmzndThkfthVSHZFA+V1JqBpGWZrTnWHt+PGBbgzOcGfG6bFO4OW5emlNFocTE0I4M4vdrD6UHmz9fKRkT58fsNEZ+BQ02Ahs7yeMoOZwppGMsrqya4w0mCx02CxYTDZMBx5M/bVaxga5oUMbM+rbrar4kTUSonzxkTwf6cP7dIumJs+2sbv+0qcX3vqVDRa7O3qS9QTZiYHEuHrhkqhwFOn4vwxkf2+1sjxzDY7ewtr2VNQy4HiOuyyjAT8treE+hP8bYb7uPHcBSMYFu7tbHjpCupMTb+vHlpVqzPAORVGZj+3stX8Eje1kv3/ms+bq7N44rf0nh6q0A3c1Er2PTq/Q7PwDofMN9sL0KgUBHho8ffQ4KVryv0z2+z4uWucmxZ6mghUukF3ZoHLsuws/b70QOnJH9BNPHUqIn31xAa4My0xgFkpQQR5atmUXcX3OwrZmV+DTq1EkpqWPtpqFKZSSCQEeZBeUsf8ocGU1ZmdM0Ex/nqmJASQEupFfKA78YEeGBqtvLwiA41SQVaFkT0nmBnQKBXEBbrj76HBbHWQVWF0TitPiPXj3vnJpIR6oVcreXddNi+vyECrUlBltHD9tDguHh/FYz/v588jyXR+7k1rvbfPTmRUpA8V9RaGhB373fhzXwk3fLTN+bpiA9w5a2QYN86IbzHduj6zghs/2tbuGaHrp8Xyj4VD2nVsaw6X1rHkQCmy3BRwRfvrmfrUik6fr6tCvHTMSgnitLQQJsX7u8x0dFfVNlj5eFMu76/PofwkW9jb4ueuwWi2YXfIzEwOYmqCPwGeWvzdtYR464jx1/d6sa/XVmby36WHUCkkgr10R3a/+TApPoBxMb4YTDZ+3FnIp5vzmiXEA6SGevHbndO48t3NbM+t7tBFlNB34gPdSQr2pKimqRyDzSGjlCSCvLQEeWqx2mXqTFaGhHlx26xEvN3U3P7ZjhN+Dvm5a0gM8iA11IuZyYFMjg/okR1LIlDpBo/8uI+imkbmDQ1hbmpQh0u+y7LMoz/t55ttBVgdrlOZVKWQevwKXatS4KNXI8tNFSSnJwawNqMCd21T0zFPnQovnRoJma+3FWAw2aioNxPpp+eaKbHEBrpTeaQT8l/Ls2/LrWbN4XIifNxIC/cmJdSLl5Yd5rklh5odNy7Gl/1FBowWO0+fO5wLxkUiyzL3f7O7RfPC0VE+fHLdxBazIfUmG2szyqkyWtiZX8PSA2Wtrs1rlAoumRDFWSPDGB7h0+XdMHsKavl9XzG/7ilpUZ2zpwR5agnzcSPcx40hYV7MSg4iNdRzQFXWzK9q4L11OXy+JY8Gi/3kD+iCcB83ZqcEMSc1iIlx/i2WBvcW1rK7oJYwH92RGdKW24tNVjs78mrYlF3JlpwqTk0L5ayRYSw/UIbZZsdkdbA9r5r04jqunBxDSW0jb6zOwtxKU0xfvZq5qcHMGxrC6CgfLnhjQ7P8MYAFw0L430WjuPurXfyws6h7vyFCn9OoFAwN82JvYW2bLURa8/YVY5k7JLjbxyMClW7wwDe7+XxLPtA0tT8nJZjzx0YwIymwQ5nZZQYTn23O543VmT3+5uhqfPRqTh8eSqSvHocMjRYbDRY7xUfK1V82MZpn/khn6YGyZo8L93HDbLMzPMKHCbF+SBKUGczYZZmd+TXO2ZyLxkWy6lA5FfXmE/7hXTs1lrvnJfH07wd5f31Oi/unJPjz4TUTWgQY13+4lSX7SzllSDBvXTEWm93Bv37ez4cbWjbbPMpTpyI+0IOUEE/unJvY4TojuwtquOCNDT0e2M5ICuS22QkMC/dGpZAG9G6D2kYrj/64jx92FbU5a9iT9BolZwwP4+8LUp3LsUU1jcx+biV2h8y8ISHcf2oKUf56VhwsY1NWFdtyq9iV33ImsjsuNCSJVhtq3jknkb/NTeT5JYd4aXlGywOEQUkEKl3UW4HK8RYOD2V0lC/5VQ3OAmaLRoWfcMalqSmfkR92FvLt9sJeL4gkNH1YtBYopoV7ce7oCK6eEtvivj0FtdSZrIyO9kWnVlJnsvLAN623B2iNh1bFlZOjCfDQMm9oCOHt6Ma7PL2Uaz/Y2mOdmbUqBX+bm8SN0+NcdodZd8ooq+OGD7f1aI0aX72aKD89WRXGNpcJlQqJj64Z76yjUdto5dZPtrM1t4r/XjCSQE8t6SV1PPT93h4bZ1v83DU8c95wRkT68NbqLN5YndXrYxBclwhUuqgnA5Wnfk/nUEkdy9KbX+1LUlNi6/GJlu4aJbfNTuSmGXFIUlOVxq05VazLrGBHXg278mvwdddw/bQ4qhssvLEqy1lZUug9njoVn10/kfI6MwqFRIy/vt29aoxmG2e9so6MsvpW75+aEMB102KprLfw1O/pzbZpp4V78cUNk5y7lU4kvcTAGS+t7dDU7Il4alXEB3kQ7a9n3pAQZiYHtmscxyurM/HvXw5QWN1IiLeOq6fEEuih5fudhRjNNhKDPdmcXcny9DIsNgc3zojn1lkJJz9xD1uyv5S7vth5wsTYvwr20hIX4MGh0rp2VwvWKBUsGhXGrbMS0KqUHCyt41BJHYdK61ApFSQEeTA+xo/1mRV8ta1p2XFGUiA/7Cyior5zOTLdaXyMH+G+bny3o7CvhyK4oL4OVHpnb10/Femr5845ify0qwidWkm92cZrKzPJq2pwBilxge7cOScRH72G8TF+zvX8rIp6PtqYy297j+3gMFoaefjHfX3yWgQI9NTy4TXjueWT7cxNDWJ0lC8h3q1vObc7ZD7fkke9qam8vtFso7qhqT5CWw6X1VFRb+GMEaGcMjSY99bm8MueIs4aGc4N0+PanYiaEuLFz7dP4+aPOz8LMD0pkKunxJAQ6EGEr1uX80ysdpkFw0LZU1DLqysz+Hn3iWeU3lqTRWyAe7MaOb3JZnfw7HENKtsjKdiD/108ipQQL+c5Hvt5Px+cYJnvKIvdwZdbCwj20nH3vGSCvbRE+em5ekoMKqWCsjoT8/67utnFTVsBb1/YnFMFOX09CkFonZhR6aDaRis782v4fW8J6zIqmJUcyKMn6NC57EAp2/OqKa8z46vXUGowEeWnJybAncd/OTBoiib1tRER3vz77GHYHTJnvbLOebuHVsW0xAAuHBfJzOQg5+3bcqu5+8udTcfoVHhoVYyO8mXFwXIOHFchtzWeOhVnjQzjoYVDulRb5fk/D/K/TuQJ+Ltr2PKPud26rONwyOwurGVTViXvrsum1ND2LECgp5ZFI8O4fU4iXn1QJCqrvJ4Hvt3D5uyqDj3u7wtSuGF6PA6HzLL0Ml5dmeHMhWqv2SlBPL4oDUmC817bgKHRyoQ4PxKDPflxZ5FY8hX6jbHRvkxJCGBinD/jY/16pF2GWPrpRTkVRnYV1KBSKJgc79+irshf5Vc1UGey8dD3e9jewTdCof0uHh/JtVNj8dKpCfDQYrLZeX99Dp9tzqOgupGpCQHcMjOB3/YWk1VuRK9R8uhZQ0+a/JpZXs/zSw7xy3GzCgoJYvzdm82AdHWrcpXRwnmvre/wrMptsxK4Z37PdIDOr2pgQ2YlRbWNFNeYKKptpLbRSkqIJ2Nj/Bgf40d0H2zLBSiobuClZRl8vb2gQwmzk+L8uXNuIhPj/FmXUcGjP+1rsXW3o+IC3DGYrFTUiwsRof+679TkZn3XupsIVHqRwyFjc8hkVxjZnF3JrJQgInybF8X6fHMen27Ow1evYW1GRZ/sPBgshoR6MS7Gl1tnJ7TaLj2nwohapSDUS8cve4oprzNz5siwDlX+rTNZ+X5nEX/sLWFzThWWI0W/rp4cg5ebmk3ZlcQGuHPv/JQuvRaj2cYjP+5z5jWcyOR4f+6el8yYaN8uPWd/klNh5Pd9Jfy+t6RZY8z2WDg8lJtnxDsrbn68MbdPElkFwVUpFRL/OTuNC8dF9cj5RY5KL1IoJDQKieQQz1bLGT/1ezqvrWz/WrnQOZIE95+awvXT4k44TRlzpC5LcW0j2RVG5qYea0/w6soMkoM9mZMazFkvr6WsrqnX09HAM7O8noXDQjl/bASXT4zm8onRNFrsbMut5nBZHdkVRhQKiVcvHdMtr8ldq+KZ80cQ6afn+b/UifmrYRHegypIee7Pg7y8IqNTu6NSQjx56aJRzZbHahrE7IfQv3nqVHx+w0RWH6rgqd87Vl1Yo1IwPsaPqYkBTE0IwM9dQ3FtI95ufV91WQQqPazOZGVbbnW3nCvES4dGpehwGfrB4qlzmoq6tVeotxt3zElsdtvlE6OdfYs8dCp2FdQ26yUEsDm7iv8uPcS/Fw0jMdgDX72m6Y87sefat98yM568qga+PsHMSkoP9vxwRSsOlnV6C/cZI8Ja5PCMjBw8QZ7QPyUHe3LttFhi/N2J8tOzv7iWa97fikap4IwRYVw/PRYfNw1vrG7fhbG7RsnF46O4aHwUMf76FrWUwtpRTqE3iKWfHlRU00hhTSMqhcRdX+xs0cm3I/6+IIUl+0vZmlvtfHO+a24S89OCWZdRyZL9TVPfrlL9trddODaSp87r3q7bJ2rgdryFw0N55ZLRLW5vtNjRqBTdmoRWUmui0WrHIcv8vreEV1dkYLTYSQnx5Nc7pg2KuihH3frJ9nbXs/krjVLB/50xhIvHRzl/PodL6/jf8gx+2nWsIqunTkVamDcBnlr0aiW7C2tPmkwtCN1NqZC4eUY8t89JcF5IHfXTriImxvlT29hU9uKHnUUtigRKEoyO8iU+0J2fdhXjo1dz3bQ4zhsTgbdb33VFFks/LsBic7Azr4aZyYEsu3smv+wpRpZlzFYHD3y7u9XGYH81PtaPu+YmYXM4+M+v6YR66zg1LYQhoV5MSQggzMeNlBAvrp0ai9XuIKOsHrVSwu6AfUVNJbp35DfVcRnIemKPf2po+wLfglZmuEoNJi5+ayPTEwN5+Iwh3ZZcevx26ltnJXDphChqG634umsGVZACTaUBWqNUSCfNAbPYHTzzx8EjTReblvUSgz156eJRnDs6HEmS8NI1vT2arA4i/ZquLJfuL+XpPw4OugrTQs/Tqpo2YzRY7KSX1DXrWv30ucM5d0zrHctnJAfywpLDfLAhB7tDZnpSIJPi/FFITbvQdhfUMiM50Lm8/cBpqTRa7e0qPukqxIxKH6hpsLDwf2uZnRJEXlUD23Kr8XVXE+ihZUd+TbPp7AdOS+GmGfFNOwjqzMT4u3fqA2lbbjUvLD3EmsMV3fhKXMcVk6KZFOfPjORA9Jqux9/7imo597X17ZqhkiT411lpzE0NItTbjbI6E9e8v4W9hU1X3rfMjOfe+ckDqmdOd7PYHKiVEmabA61K0a7v1fa8as55dX2z204fHsrfF6TywfqcNqurKhUSs5IDuW5aHBPj/Fs95sI3NrCpg9ubBaEtc1ODODUtlAAPDQEeWgI9taiVCoxmGwaTlXqTjZQQL2d7hVdWZLCvqPZIg1U3EgI9OGVIcIu/izWHy7nnq13OcgFDw7x496pxBHu1Xh/K1YhdP/2ELMvUm2146tT8d8khXlx2GGgq9372qHCunBSDQgEJQd2Tf5BRVs/m7CqqGyzY7DIGk5UP1uf0eJPC3vLgaSncOCO+y+eRZZlf9hRz/9e7Mbbz6tnPXcPoKB9WHCxvcUV/44w4Hjg1RQQrrSipNXH+G+sprG7k5pnx3DOvfUHd0Y7kP+0uwkOjYnKCP2Oi/YCmwGfO8yvJr2pZt2RMtC/f3Dz5hOfOLK/nwU7UYhGE40X6ufHIGUOZk9p9M77ldWYyy+v5fW9Js75l4T5uLF08o0VjVVcmln76CUmS8NCq+HVPMZ9vycNdo+S5C0YwLTGQ//thH6e+uJpT00J46tzheHZD8ayEIA8Sgpp3aVUpJd5YNTB6e7y6MpNxsX5U1Jnx0KoYGeXTqRkWSZI4fXgYALd9uqNdj6kyWlo0VzzqjVVZ+LhpuHlm14OogebFZYfJr2pEo1Sw7EAZ320v5KVLRp90B5MkSaSFezu3F5fVmVhzuJz31uXwv4tH8Y8Fqdz08fYWjxsd5dPq+fYXGfi/H/YyMtKHxfOSRDFGodM0SgU3zYznlpnxXSr6+FcV9WYWvbKu1cKBhTWNjP/PUr66aZKzuvJAIQKVPvbrnmLeWJVJWZ2Zm2fEc9qwUOe03d3zkrh7XlKPZ14/cGoKw8N9eODb3W02VOsvahutzZYDlAqJ0VE+XDw+ikUjwzu8bDYy0qfbxrYttwoQgcpfaZRNPxOL3UF6SR1zU4MZEeHdoXM4HDILXlxDRb2FMG8dBdUNnJoWykXjIps1FtWoFFw2MbrVc/zn1wNsza1ma241b6/N7vwLEga1qQkBPLYojdiA9vUQay+LzcEZL61tsQvxeHUmG+7dsPTtagbeK3Jxsiyz8lA532wrQH2kB8jISB+unBxDXGDzmY7e2homSRILh4eyM7+at9YMrDdou0NmS041W3KqeWdtNlMTApiTGsy4GN+TLi8UVDdw+2ftm01pj6UHyrj4zY3cdUoS42P9uu28/d0F4yI5VFrPhqxKAMw2O0sPlHFqWki7zyFJUH2kj879p6VQbbRw5bubnTVzUkI8+faWydgccptl/bWq9vViEoTWBHpq+efpQzhjeGiPLPGuzSg/YZAyMzmQ/108Cs8ONhztDwbeK3JRpQYTn27KY2d+DUPDvLh9dmKrxeH60t8XpHJqWgh/+2Jnq2v7/d2+IgP7igy8sTqLAA8NHloVek1Tr58HF6QCTYHN6sPlrEgv46utBd3e4XpDViUb3tjA5Hh/kkM8mRIfwJzUoEGXu3KotI6Xl2egViq4Y04CN82Mp7i2kfzqRtYcrmBbbjUJQVNbLFO2RZIkLp8Yzfvrc4jxdycp2JPxsX5MTwzkoYWpzRpC2h0yewprsdkdDIvwprzOzGeb88god50mgUL/Mj0pkP+cnUa4T9cbgLblZLPdQ0K9+qS3Vm8QybS9JK+yAW83tTOr25U4HDLf7yzEV69hVkoQ324v4KHv9w6aLZgLhoU4K8nKssw7a7PbVT+lu7x39ThmHdcQcSCrM1l5fskhPtyQ60w4fnxRmnM5Zmd+DRe9uQGT1YFSIXHv/GRuamdy9K97irnlk+24a5ScPzaScB83VhwsY2y0L5dOjGZjViVLD5Sx+lC5c+tnXIA7RovthE0WBaG9bp+dwA3T4/htTwlZFUYWDgtlWIQ3sizz296SLnUTLzWYmPCfZS1un5YYwPMXjCTQs/0tQFyF2PUjtJssy9zx+U68dCr+ffYwoCmwmv7Mij4eWe/w0avZ+OAcZ9KbxeZg7ONLMPRSvo5GqWBCnB8fXD1+wNdCMZisTH96BTUNx2pE/HTbVIaEefHIj/tw0yh5Z222M4hx1yhZfs/MFtstjWYbSw+UsiGzkuJaE+klBqx2WSTACi5Fo1Tw8JlDUEoSLy3PYMni6V0qnzD72ZXNmpRG+DbtKuqJOlK9ob2f3z26KPvII48gSVKzfykpx5q0mUwmbr31Vvz9/fHw8ODcc8+ltLS0J4cktEKSJP530UhiA9zJP1K8LMpfz2NnDWVo2MAP/moarLyw9LDza41Kwehe7JljsTtYc7iCOnP/TmRuD4UkNauEecqQYIaEeWG1O9ieV82bq7Oabe02WuzMf2E1N320rdl5/u+Hfdz5+U4+35LPqkPllBrMIkgRXI7F7uC/Sw7x3Y5CCmsa2ZFX06XzTU8KdP7/e1ePY+39s/ttkNIRPZ6jMnToUJYuXXrsCVXHnvKuu+7il19+4auvvsLb25vbbruNc845h3Xr1vX0sIS/kCSJ66bFYTuu9PLlk2LQqpXc9/XuPhxZ73hjdSYWm4O75yVRYjCxthcL40X56bloXCQNZluflrPuDXsLa5kc78+pQ0NYMCyU4RHeSJLEN9uLMJptaFQKLLbmRfZqGqyMOG731epD5Xyz/eTdpAXBFVw6IZrDZXUAmLqY8zZvSDDvr89hwbAQJse3XqxwIOrxQEWlUhES0jJ7v7a2lnfeeYdPP/2U2bNnA/Dee++RmprKxo0bmThxYk8PTWjFX5tSjY32ZWKcH9tyq7Ha+/Uq4QnJMry7LpsfdxVR22jp8QJ4UX56bpudwOhIH95fn8OPu4q4fFLr22YHkolx/q1Wg50Y689Pu4oorGlErZRwyE3fI0+dCg+titRQTx75cR9bcqrYVyR67Qj9g6dOxZ1zEjlcVs+ve0r4aVdRl4q/TYr359PrJjA5oecaoLqiHg9UDh8+TFhYGDqdjkmTJvHEE08QFRXFtm3bsFqtzJ0713lsSkoKUVFRbNiwoc1AxWw2YzYfS3wzGMSbVk+RZZn/Lj1MqcHM5PgAYgPc2ZhVSXpJXV8PrcdU1Hc9qfK0tBAmxvmjVSmorLeABJX1FqobLHi7qYn003Px+Ej0GhUfbczly20F3DU36aT9aQaqinozr63K4IzhYVwxKYaJcX5oVApn87Uqo4UXljYl4ApCfxLgoUWhkPA5sonix11F3DIrgaTgzu34lCRp0AUp0MOByoQJE3j//fdJTk6muLiYRx99lGnTprF3715KSkrQaDT4+Pg0e0xwcDAlJSVtnvOJJ57g0Ucf7clhC0dIksRLF49y7tT4dFMeF42L5MJxkXy0MZescuPJTzKIjIn25YKxEUxNDKTUYMJTq8Ihw1db81GrJO6am0SUv955fEF1A0/+egCLzcFTv6dTajChkCSGR3izaFR4H76S3hXgoeWJc5p3vv5hZyEHiuvYV1TL+szKQRvECf3b2CO5bkfrn4yP9eOVFRm8cOHIQVeSoCt6NFA57bTTnP8/fPhwJkyYQHR0NF9++SVubp0rZvbggw+yePFi59cGg4HIyMguj1Vom6dOzcNnDOXc0RH8sKOQ9ZkV/H7nNM56Zb1oeX/EPxakEuCp4bNN+dz/zR4AfPVqvrtlCg+dPqTF8ZX1Zs5/fUOzPkJH+3YMj/AmzMdt0BWF+78f9rIlpxofNzVuGiXL01tvRyAI/cUpRxJdD5fWMSTUi8+uFykNndGrBd98fHxISkoiIyODU045BYvFQk1NTbNZldLS0lZzWo7SarVotf1vv/hAkBbuTZCnllnPruSGj7ZxypDgQR+oaFQK7pufzM+7i9mZX9PsvsXzkp2VUf9qb5GBEG+dc2oYYH9RLZG+enIrG3h5RQYfxo7v6eG7lHExflQ3WFl+oLTdjSAFwVU9cFoK84Y2fZb56jWMjPIRsyid1KuBSn19PZmZmVx++eWMGTMGtVrNsmXLOPfccwE4ePAgeXl5TJo0qTeHJXRAkJeO2anB/LSriEMDOFelPRQSnDMqnLfWZLVaMGzVwXISgzyYEOvnfIOqqG9qljgjKZAZx201NFntfLk1n3NHR3Dmy2uJ8uud9gmu5IwRYZwxIoyC6gau+2Brv8iF0qoUmP+yS0khgbebmtkpwXjqVGSW17OmE7vItCoFp6WFoFYqyKtqILO8nop6sQW7P7hnXlKzQoXVDRa+2prPqEgfzh8rVgA6qkcLvt1zzz2cccYZREdHU1RUxMMPP8zOnTvZv38/gYGB3Hzzzfz666+8//77eHl5cfvttwOwfv36k5z5GFHwrfe9viqTJ39L7+thuDyFBLfOSkCtVOCmVrBoVDjXfrCVi8dHcfH4qDYfJ8vyoL/yqqw3c85r68mtbOjrobTK203Nz7dPpdFq5+ddRWzLq2ZdRiUjI31464qxziqhj/60j/fW5XTo3BqlgpcuGcX0xEDcNMc67z72837eEc0SXd6YaF8+vX6CMxkcYFd+DW4aJYZGK2NjBteS7om09/O7R2dUCgoKuPjii6msrCQwMJCpU6eyceNGAgObriT/+9//olAoOPfcczGbzcyfP59XX321J4ckdAM/d01fD8FlaVQKhoR64atXY7TYeWl5Bjp105bvl5ZnMHdI8EnrHwz2IAXA30NLlJ++y4HKZROjuGhcFDd8uJU6s61buoOrFBKfXj+BSL+mxOizR0ewJqNpxiS/qoEP1ucwPSmQHXnVfNSBnUpKhcQT5wxj3pBgfPTH/sZ+31tCWZ2J3QU1XR670LPOGBHGM+cNbxakABgtNqL89J3e7TPY9Wig8vnnn5/wfp1OxyuvvMIrr7zSk8MQullxTdsdPAezAA8N102L44ZpcTzx2wE+2ZRHsJeWC8dGMjs1mGHh3igHeIn87lRe17Gt4u4aJVaH3Kxg3OT4ANLCvfntzunsyK/mqve2dGlMIV46Prl+AvHHdTqPDXDnsbPSePbPg1w0LooZSU0zIUpFUzLl8vSyFstDrblyUgwXHLcsUGey8v2OQp76/SD1g6BqcX93++wE7pqb1GobjJeXZ1BiMPHihaMYFuGNyWp3tuwQTk50TxY6LKtCdJk9SqtScNnEaGanBDEh1g+VUoEsy6zLqOTqKTHcPjtRvCG1Ymd+DRV1ZsJ83FAompZSQrx02BwyCkkiq7yenMr2bX/XqRWcOzqC++an4DjSVPLlFRlA03KJLMPC4aFMTwzk+mmxvLWm88sns1ODmgUpR6WFe/P+1c2Tn8dE+zEm2o/8qgbu/2Y36zMrT3jujzfmctqwEMYdWRrw1Knx0WtEkOLiFBI8cc4wLhzX+nKu3SGzK78Go8XOGS+vZUioF9UNFlbeO7PFzIvQOtGUUOiQRoudsY8vEbsyjnjhwpGDquZJd2gr10KpkE5aLyUlxJMHF6QyJNSLKqOF3EojqaFeRPrpsTtk9hcZiAnQM/OZlVQe1/vn65smOXMDimsbeXtNNp9sysVkPflMx1Fp4V58f8uUFtWb28PhkPlmewHvr885YWXdhxamct20OOfXsizz5uosvttR2C+SiweDCbF+XDIhik825REX4M41U2PbXNK57+td/LGv1NmtG+CaKbGMifZlTmrQoL+IcYkcFWHg0aoU+HtoMVa5ZpJjbwvw0FLbYMVbP7B79HSnUG9dq7e3p6jbsHBv526pQE8tySHHPiB+2VPMJxtz+eLGSXx/6xRu+3Q7uwpqAbji3c08fMYQJsUFEOWv55+nD+HOuYm8tjKT11dl0p7LNXeNqtUgRZZlsiuMVNRbsDtkhoZ74aVr/vugUEicPzaSU4YEM+bxpW2+1mf+OMjwCB9nDR1JkrhxRjzR/nqe+v0g1Q2WZp2nhd4T7KXlb3OTuGhcJJIkcdbIE1+gyLLMDzuL8NSpWX3vLL7eXoCvXs3VU2J7acQDhwhUhA5RKCTiAt3JG8SBSkKQB6HeOkZF+VJU08iwcO++HlK/Eu7T8a3X3m5qxsf6sXheUpvHTE0IQKdqCiQi/fR8ffNk3luXzS97StiVX8P93+xBq1Lw/AUjmTc0GC+dmvtPTWFFelm7Zis2ZVfxyI/7uHJyDHaHjJebij/3lfLKigxn5VEAN7WSs0aGceaIMMbE+KJWKGiw2nHIMp9tzj9hQGa2Objm/S18ct2EZo0YI/30/HjbFNYeruDOz3disbd/JkjoHo+dleasi9IekiTx77PTKDGYCfd1Y/Epbf/uCicmAhWhw3IqBmfpfIUEN0yPJy7QnbHRvsS1kqsgnFxIGzMqbTlvTATPnDf8pLuh/u+HvWzLrWZyQgAeWhVqpYIbpsdzw/R4Vh8q56nf09lXZOBvX+xgbLQfF42P5KyR4ZT9JWnXV69GrWwKaHz0ar7Ykk92hZHzx0bg567hojc3tFo356hGq53Pt+Tz+ZZ8tEcCp/Yk0x5Vb7ZxyyfbeWzRUGanNFU2TQ725I7Pd+Cr16BTK0Sg0g1CvHTcOjuBynozLyw9fMJjzxwRxpgj5fA74u012aSX1DWbCRQ6TgQqQoddND5qUNZR8XZT87e5Ijm2q37f13Yvr79KCfHkqXNPHqQAaFVKimtNtHbk9KRARkb5cMdnO3DI8NYVY9ieWwPAK5eM5op3Nzm7g986K4EgLx1Dwrzwc9cQ4q3jlk+2c+fnO9s97qM6EqA0fy0KJscfaz5nc8h4aFV8simvU+cTmjtzRBj/OWcYGqWCU19cTYiXjpnJgYR46/h1TzGHSps2DIyM9OHfZ6cxJNSrU2UDjj5mRXqZCFS6QAQqQoedPjyU5/88NGiu6kK8dIyO9uHG6fEiSOmiRoudN1Zltfv4AA9tu7d0z00NYkZyIO7a1t/WvHRqHjgthSve2cyhknomHalnMynen1tmJvDisqar6vfX57Dq3lnO53VTK7ul/kpHXDstttnvmk6t5JIJ0WzKrnLZInj9wY3T45iWGMjEuKYdeuV1Zq6ZEss5o8PRa5p+b0ZF+XLlu5sBkAEfvaZTQYrBZKWophFo6t8ldF7H09eFQS/CV8+LF41E04ndD/2NVqVg4fBQNEpFs5wBoXN0akWH1uovGNf+cuOnDQvlzBFhzW7LLK9n9aFyVh0q54steaw9XMGrl45m2F8+OP42N5EpCU2BS2FNI9d/uNV5nyRBSW1ju8fRHY6fTTlqZKQPPm4iabsrTFY7ScEezqToAA8Nl02MdgYpAB+uz3EGqbvya7jg9Q3UdjCB2WZ38PTv6dQ2WrlqcgznjI7ovhcxCA38TxqhR5w2LJRrpw387HWzzUGkrxuPnpXW10MZECRJYv6RhMQTXaT6u2v4z9nDWDgs9ITnM9vsVBstOBwydofM+owK0ksMHK26UNNg4cMNOVz7/hYe+/kA10yJbbWEuSRJnHvkw2RUpA8Pn3Gs47Veo+KzGyaiVvZesb57vtrFxxtzsf5l1tJXVIXukg825HL2q+tZn1nBP77bw4xnVvKfXw9QVncsGfqFi0ay7aG5zlmQwppGHv1p30nP7XDIlNWZmvKZ3tjAxxubluniA1tvTCq0n6ijInRabYOV2c81r1cxEE1LDOCjayf09TAGjDqTleJaE8FeOnIqjJzz2nq83dRcPD4StVKBQpKYmxrMkLCmv+cqo4UV6WVkltdTYjBhaLRiNNvxc9ew6lA59WYbEb5uNFrsVBothPs07bA4d8yxq9hGi51l6aWcPjysrWFhsTl4bslBHA6Zfywc0uL+n3YVkVVu5OfdRRwuq+eWmfHUm218tjkPq10mwEPLzTPj2VdYy3c7C9u15flk4gLdGRLqhYe2qbnh7oLaTue9CC2dNTKM09JCmZLgj+dxW8qNZhsXvrmBvYVNNW9UComM/yw44bm+3JLPf347gNnqoNF6rM7U8rtniMT7Nog6KkKP89arefGiUVzz/pYBna+yM7+mr4cwoHjq1M4PhRGRPtwzL5lwX7dmyzY2u4Pf9hSzq6CWDzfk0HCSAoMF1ceWZgprGvHUNX9rc9MoTxikQFOfpgdPSwWgzGAi0FPbLDfhjCPju3VWU4BytB/PLTMTsDkcuKmV+LlrqDJa+HFXEbZuiFSyyo1klQ/OXXY9yc9dw11zE7l0QnSrJe/dtapmy0EOWW7RLLTOZCWnooGyOhOh3m489Xt6ixo3KoWEv4e2517IICECFaFLpiYG8NDpqfzfDyefGu2P1EqJW2cl9PUwBqySWhMvLz+M0WLn6d/TkSRIDfEiq8JIRlnnWzWU13esT1Brj191qJz9xQYWDgtttlykUiqaNQ3clF3JKysyeHBBKrOSg2iw2LG1o3id0Hf+7/QhJ60obTzSumBaYgCLRoY7gxSHQ+bJ39N5c/WJk8JHRvpw04w4vEVeUZeJQEXosgvGRhLkqWN9ZgW/7imhoosfEq5AqZC4anIMi09JanMXidA1jRY7D36729mO4eisSH5V1xJXpyUGcHEbfVfaa2iYN0PD2rdT4/ThYcwfGuLcpbPuSCdlwXXd+/UuGq12Lh7f9u/Jw2cMxc9dTULQserHuwtq+Of3e6mot3D5xGhsDpmJcX7847u9qJUSL1w0irHRvujUStGAtBuJHBWhWxXXNvLEr+n8uKuor4fSaUnBHnx2/UQxZdtDLDYHH27I4e012ZQYur8Tt0ohceaIMB5blNbrQabJamfSE8uoFmXuXV64jxvL75nRrsaADofMm2uyeGt1FvOGhnBaWgiLv9zJKUOCOS0tFJVCItJPT6SfvhdGPnCIHBWhT4R6u/HfC0eyIauS8rr+N7NyxaRo7p6XLKZre9AD3+7m2+2FPXZ+m0Pm2x2F/LynmHExvuhUSkZH+7JwWCgxAa3vwNiYVcmnm/LQqhRMSwpssc25vb7aViCClH6isKaR/y07zL3zU056rEIhYbY6MJis/LGvhMVzk3j7ynGMFCULeoWYURF6xEvLDvPckkNAUyO5g6V1WFx8t8KjZw7lyskxfT2MAa28zsykJ5b1WQ7HD7dOaVEP50CxgdNeXOP8WpIgJcSLkZHeXDguCj+9hkBPLW6aY1fedoeModGKt5u6WTLm+a+vZ0tOdY+/DqH7vHH5GOeW+RNxOGTG/XspZ48K56HTW+4KEzpOzKgIferqqbF8tDGXmgYrn98wEaPFxvz/rnbZq81wHzeumBTd18MY8FYcLOvTRNOr39/CpDh/ZiQFMjs1iAAPLYq/FHSR5abg5UCxgc825wOgUSqYEOfHnJQgAF5dmUlZnZlh4d6khnoyLNybzHKjCFL6GYVEh2Z+HzgthdNOUttH6H4iUBF6hIdWxb3zk7n3693sLaxlQpw/p6aF8tnm3u1VEu7jxvXTYpEk6ciWUjXfbS9ka241cYHuzq2fjVY7snziImRC18X3cT2JKqOFX/YU88ueYjTKpqrDm7OrTvo4i93BmsMVrDncPFF2T2Etewpr+XJrQbeNMcLXjZGRPhwuredg6cm7Ogud5+2mZtaR4PNkFAqJ88e2v1Ky0H1EoCL0mHNHR7C/2MC9X+/mw2vGc+/8ZP7cV9LtBeLcNUr+NjeJSfH+1DZaqTJa2JFXw1fb8okJ0HP5pJhmGfjnjYkgu8JISogXr6zI4Jk/DlJltLA2o4LponFYj7HYHLy5OrOvh+FksTv4bkfXc2WGhXuzp7AWaOpN1NVdb59dP5FIPz2NFjuznl3ZIwnHQpPqBiuP/riPN68Y29dDEU5AlNAXeoxCIfHwGUO5bVYCl7y1EbtD5t75yd12fklqakT3/a1TuH56HGnh3kxJCOCMEWH83xlD2PPIfD65bmKLbYJalZKUkKb10FtmxjMktOn/n/vzYLeNTWguo6ye019awx/7Svt6KN2uusFCUnDTTNG4GN8un2/FwTKgqUjdPxamdvl8womNj23ZUkFwLT0aqDzxxBOMGzcOT09PgoKCWLRoEQcPNv8wmDlzJpIkNft300039eSwhF5UZ7JyoMRAUa2JJ39L58Jxkbx71VgSgrq+BPDapaN5+8pxJAZ7nvzgNkiShOlIuetdBbUDogaMK1lzuJyL39zIolfWcai08wXcXFlBdSPjY/24Y04i102LJdCza9va31mb7WyCd8aIMO4+JYlwH7fuGKrwF48vSuNykZvm8no0UFm1ahW33norGzduZMmSJVitVubNm4fR2Lwk9PXXX09xcbHz39NPP92TwxJ6kadOTWqIF2HeOr7ZXsB763KYnRLMQwtT0ag6/+sX4qXj1LTuSWq7dOKxN6pvthVgd8jsKajlYIkBu6gw2mmlBhO3fLydDVmV1B+p8jlQ/biziOunxTIm2o8XLxzZpVyn3MoGzn5tHbmVTe+Tt89JZNndM7h8YjSqI7ODE+P8uGN2QpeDosFs3pBgLp0Q1a46KkLf6tFA5ffff+eqq65i6NChjBgxgvfff5+8vDy2bdvW7Di9Xk9ISIjzn9hmPLBcMC6SNffP5rFFaTz9Rzo782uYmRzElzdO6vQ5jWZbt213vnJSNKlHln+qGpryZ6obLHjo1Kw+VN4tzzHY7C8ycPGbG6kb4AHKUQaTjQ/W5wAwOSGAKyZ27So9q9zIYz8foM5kxWCyolMreWxRGjsfnsfSxTP45LqJzEgO4uJxIrmzM9w1Sh49a2iz3j2C6+rVHJXa2qaEMz+/5muCn3zyCQEBAaSlpfHggw/S0NDQ5jnMZjMGg6HZP8H1KRUSl0+MZnZKkDOhMi7QnXNGhXfq6lOhkLA5uidQUSkVfHDNOII8tYyN9kOpkJgU74+/u4aZySK5tjNeWn6YrIrB1UzvpeUZ5Fc1vXfde2oKyV1YkgRILzHw9O8H+WTjsZ1yHloV0f567vlqFxlldVw7LY73rx7X1LtmZBhDw7zQqRVoVQoifN2ID3QnOdiTSXH+LBoZho9eFDIEeOj0IYR6u2G22akzuWbJBOGYXtv143A4+Nvf/saUKVNIS0tz3n7JJZcQHR1NWFgYu3fv5v777+fgwYN8++23rZ7niSee4NFHH+2tYQvdbHJ8AP/6eT+HSutICvbk+QtHkhrqxb9/PdCh85yWFtKsu2lXBXnq2PT3Oc4rrD2Ftfyxr8TZTVdov7I6E5vaseV3oDHbHNz91S4+uW4CHloVZ40K4+nfO5+gXVDdyNfbCvjvhSOctzVa7Nzw0VbWHK7AaLZx4bgoZiYHMfO4HHWHQ0aSaHW2YH+RgTNfXjuomyZeNjGKi8ZFYrE5uO6DrUyM8xeNR11cr1Wmvfnmm/ntt99Yu3YtERERbR63fPly5syZQ0ZGBvHx8S3uN5vNmM3HEh4NBgORkZGiMm0/klFWx22f7uAfC1OZltg0Y/HL7mLu+mInFnv7Zkn+sSCV66fH9eQw+WlXEWd0spT6YFVRb+asl9dRWNO1xoL92fMXjOCc0RHY7A5+3l3MfV/vbvfvdWuCvbQEeeqw2h3Um23O5o0AZ44I49S0EKYkBLS77cP767KdBesGE1+9mn+dlcbpw0ORJIk3VmXyxG/pLL97BnF9XN9nsHKpyrS33XYbP//8M6tXrz5hkAIwYcIEgDYDFa1Wi1YrEsj6s4QgT964fAyfbMpzBioLh4ciI3PbpzvadQ4vt67/6lpsDlYdKmdvYS1Gsw29RsmYGD+mJQSgUEgiSOmEjzbkDuogBSDvyPKPSqlg0ahwdubX8P6R/JXOKDWYKTW0HlT8uKuIH3cVkRLiybe3TG7XLONVU2JZNCqce7/ezZL9vbNd3M9dQ73J1qWArbN0agWLRoZz/6kp+LprnLcfLK1jTLSvCFL6gR4NVGRZ5vbbb+e7775j5cqVxMbGnvQxO3fuBCA0dHCUKa5psGCxOQjy0vX1UHpVtL87f1/QfFnl9OFhrDpYzlfbTl7ls6vLPmV1Ju7/ejejo3y5dlosz/5xkC2Hq3llZSZjonzx1Km4ZVY8Y6JFjYX2qjfbWHpg4NVJ6agXlh6m1GDm34vSUCgk5g0N7lKg0h7pJXU8/MM+njl/xMkPBnz0Gm6ZGd/jgYqPXk2jxc6H14ynttHKpW9v6tHnOyraX8+1U2OZEOtPUrBHq8tg10yJpVQU0+sXejRQufXWW/n000/54Ycf8PT0pKSkBABvb2/c3NzIzMzk008/ZcGCBfj7+7N7927uuusupk+fzvDhw3tyaC7DR69BlmWyyutRKxX4umvw6OXW9K7kllkJ7QpUPtqQ264Zj9xKI5uyqqhusGC1O7huWhw6tRK9RsWrl45xNpr711lNeVN5lQ2sy6zgq635XPDGRu6am8jF46Pw9xCzeCfz8cZc9hWJ5HaAzzbncd6YCMZE+xLYC7873m7qDi+FpoR4MTM5kJUHm3a2hfu4dctsWKCnlrvmJhHh68aICB/0WiVqZdO+jQhft2ZLV10R46/njjmJ1JttvLcuB5VCYv7QEKYmBjA+xq9Zs8jWpIV7kxbu3S1jEXpWj34ivvbaa0BTUbfjvffee1x11VVoNBqWLl3KCy+8gNFoJDIyknPPPZeHHnqoJ4flciRJIi7QA4dDJrO8Ho1KQbR/6+3oB7qidr5Rbs6pIrvCSGxA29+nb7YVcPdXu5xfxwW6c920pjfztoLBKH89Uf5RTIrz57Mteby+Kotn/zzE9dNiOWNEGMMjfNr/YgaZaYkBvL5KTY2LNp7sbdYjyxyJwZ6cMzqcb7d3vVx/a4I8tTx57jCSOrjLyE2j5M3Lx/LLniLCffQMj/Bm6MN/dLl2UEqIJ5dMiGr1vssmRvPkb+ldOj/ApROi+OfpQ9Cpmy40Vh0s59wxESwQDQMHpB5f+jmRyMhIVq1a1ZND6FcUConEYE/eXpOF1S5z88yWOToDnVqpQCFBe94rr/1gC7/fOb3NwnG7C2qaff34ojTnG9vJxAS4c8WkGHQqJQpJwmSzk11hZGiYNx9vzMXXXUN5nZkoPz1TEvy7dQdSfzU0zJtTUoPbNSM2GFQd19PqmfNGMCTUi8d/6djutvb4+LoJHQ5SjtKoFJw96ljeoF6t7HTtG0+tissmRXPjCWZ2bpweR4PZxuurszpdB2nBsBAeOyvNOWOyIr0ML52Knfk1IlAZoMS7qwuK9NO3aD0/WIyP9eP1y8bwxG/pZJ+kDkdWuZG31mRx04z4Zv18rHYHy9PLWjSc89Vr/nqKEwr3ceOuU5Ja3J4W7s35r693BlMJQR7cPjuBM0eEDfoCUn7uHfseD2RrDlc4PziVConrpsWx+nBFtxYRTAv3wq2dwXd76DSdC1Si/PR8ddMkgk+SaydJEovnJbMhq5ItOdWdGuOikeHOIKXaaOHq97cA8JZoLDhgiUDFBc0fGtLXQ+hT846sMz/y4z6Wp5dRUd92t+Vn/jjIG6syuXFGPBX1Zg4UG9hdUEuDxd7suPPGRJAS0v6rzsp6Mw9+u4cwHzdumRlPkJeOvYW1fLejkMQgD+akBrMrv4YzR4QR6acnp6KB2kYrh8vqeXtNFmeOCGfh8MF3dRfhK3rSHPX9jkKGhXtz8fhIZwB784z4bgtU5qYG8dYVY7s1OB4V6cOfHUywjfbX8/G1E04apBzv6fNGMPu5lXSmOMazfx5kelIgOrUSD52Ke+YlEe7rxpyUoA6dp7bByh2f72BYuDd3zk105tEIrqfX6qj0lPbuwxb6r2UHSvm/H/Z1KdHvtUtHc1oHp4XL6kw0WuyEeru1uryUUVbfLc0VB5JXVmTwzB+iC/XxPr1+ApPjA5xff7Qhh3/+sK9L5/z59qkkBXt2qV9Wa15fldmhHJJTh4bwxDnDmm37ba95/13V6UaVV0yKdibAd9aPu4q447MdaJQKNjw4WyTM9wGXqqMiCF0xJzWY6UmB/LmvlGXppSzZX0qdqWPT0yHeHd/+HeR54seIIKUlsT25pTdWZTULVC4eH8X3O4vYltv+pY8ADw2nDAnh9OGhRPnpifTT98RQGdGBZPGpCQG8dtnoTs3o2B2yszaMj17NOaMieHdddrsf/+GGXNLCvblgbOd7HZUfKXhnsTuobrCKQMWFiUBF6BfUSgULh4eycHgoBpOV3/YUs2R/KXaHzMXjo/DQqvhsSz4/7Spq8dgJsX4U1ZjIqSxArVSQXlyH8shWxiFhYhauu1jtjnbv2hpM1mdWkFleT/yRwmIqpYIhoV4dClT+d/GoZsFOTxke4Y2fu6ZZIvBfzU0N5pIJkcxICur0slODxcZpaSE4ZJl756cQ4KHhlz1FbRa2a819X+9mf5GBR84c2qkxvLU6C4CHzxgiLjpcnAhUhH7HS6fmwnFRXDiu+RbIyQkBDA3zajF1vSm7qtXeM6+uzOD/Th/C5ZNienK4g4LdIfP8kkMd+qAZLKx2mXNeXc+/z07j9OFNtX8c7Vhxj/B1Y3ZKEOeMjmBkpE8Pj7KJu1bFI2cO5Y7P2q4Q/eCCFGfQ1VmeOjVPntu8VlZ8oEeHf3/eX5/DgmGhjI/teGFGP3cNJQbToMwl629E9pAwoNw0I55nzx+Bp+7kMbjVLpNb2XanbqH97A652wp5DUS1jVZu+3QHD32/B4dDbjNhXiGBp07F0+cOZ819s/jXWWm9FqQcdcbw0BMmnleeILm9K0ZH+XbqcWsPdy45+c0rxhDmrePVFZl8uCGHMlGl1mWJQEUYcM4bE8Gu/5vHxgfncOecRNLCvfDSqVpt2ja7gzsFhNZpVApunjH46v501Mcb8/jXz/uZHO/vvE2pkJgc78/5YyL47pYp7HlkPheMi+yzre6SJDE2pu2goaC6Z4L7M0aEoTmy82ZKgj+Bnu3LGdnagSW049kdMueNiWBWShCrD5Uz89mVNP5lt6DgGsTSjzAgKRQSId467jolyVkL5cFvd/PZ5vxuOb/dIWO1O9pdQG4w0GvE96I93l+fg6HRyjVTYjHZ7Jw+LJTJCT2ff9IRE2L9+XhjXqv3dSYxvT2SQzxJDPZgX5GBR88cyo87i1h1uIJd+TUnfJzyJKXy2xLq7cbOglrunJvEjKRAVh8qZ11GBSHeOlFa38WIGRVh0Pj3omGcMyq82W0jo3w6fJ5qo4U7PtvBv385QLXRwh/7SrpphP1btL+eeUOC+3oY/cLB0jrunZ/Mf84e1maQUlDdwKsrM3p5ZE0WDGt9+SfAQ8ukOP9WHtE99Bol3m5qIv30LJ6XzPe3TOb6aSduZuvfySKDGpWCd64cS3FtI7WNVqYlBjAhzo+bP9lGca1YxnQlIlARBg2FQuKZ80c4p9199ep2VwAuNZh4dWUGd3y2g7nPr2LVoXJmpQTyyE/7uOOzHZzx0lryTpLvYrbZqagfuMmmkiTx6qWjeeniUXi1I0doMDtUWsfy9DLn1za7g/QSA6+syOCiNzcw5cnlTH1qBb/t6ZsgWKmQ+PfZw1rcrlUpenRJKj7QgzNGhKJVNc3OSZLEzTMT2qx4PCcliIfP6Piun225Tcn1aqWCbbnVLHhxDZnl9aw8WMa4GD8MjZ1rIyD0DPFuIgwqSoVEUrAnm7KrqG6w8ubqLO6Yk3jSx93+6Q425xzbOeSrV7M+o5IfdjZth95TWMvl724i2EtHtdHCBWMjGRHpw1O/p5NVXs/ZoyII9mpac79xAOdyqJQKzhgRRm2jlYe+39vXw3FZVrvMPV/tYtmBUvYVGThcVtdqf6thEX23BDE6yoekYI9mRdnOHR1+gkd03cHSOv55+pBmt/m5a/jljqmsPFjOf345QJ3ZhpdOxYsXjWJWJ3LM9hbWcqC4jjHRTTuFxsX4cdcpSVz7wVY+v2EiDrlpGUpwHWJGRRh07js1mfevHse0xACeX3KI11dlOu/LrTTy/JJDLN1f6ux+m1FWx76i2mbniAv0aPEmmVvZwObsKg6X1fPvXw9wwRsb2JZbTXWDlXfXZfPO2mzCB0mJ+csmRvPEOS2vyIVjGq12vt1RyMHS1oMUoE+X0iRJYuGwMOfXScEe3HVKEs//eRCzrfuTTmVZprLe0upsXKi3GxePj2JEpA8BHlo+unZCp4KUA8UG9hbWctnEaOdtYT5ubMqq5MpJMYR6uzF/aAgfrM/pyksRupkooS8MWrIsM/WpFZQaTExNDEAhSezKr+GZ84fz9ppsJAlmpwTzzB/pmKwtO71qVQrMHewAGxfgztPnDWdMtO+gaGB40Zsb2JjVsoaNcHKBnlrW3T+728vkd0RRTSNnv7qOYC8db18xlgaLnZnPruTWWfHcOz+lW58rv6qBaU+vAJpaBLSW0PrV1nxmJAeetGp0a+pMVrbmVjMruWWAY7LaOFxaT5iPGzd/sp3N2VXsenheqzsFhe4jSugLwklIksQfd02nqt7CdzsKeWdtFi9dMpoZSYG4qVVc/NZG1mVUtvn4jgYpAFkVRs57fQPTEgN4+ZLRA/6NcG5qsAhUOunyidF9GqRA02zDFzdMwiHLBHnpWHEkr+adtdlcOzWuW7tle2hVvHDhSO77ejc/7SpqNVA5vwsl8z116laDFIPJyqVvbaK6wUKZwYzFOZNaz5joztV2EbqXWPoRBjUPrYoofz13zk3kg2vGExfgDsC4GF8WdrCJYUesOVzBE78ewNHWnP8Ace3UWO6Zl4SHVlwTdYSHVsWVk2P6ehgAxAS4E3ekEm2YT9PSpcnqILuicw0F2+LrrmHRqHDuOzWZH3YWkVnefed3OGRyK42t3renoJbbZifw653TGB3tg0JqquNSbxYJta5CBCqCcMSoKF9nszeVUsEDp3Xv1PZffb4ln5s+3obJ2rTe32ixD7jARZIkbpudyLK7Z5Ac3PkERQ+tisnx/pw9KpxzRod36Vz9wa2zElxyti0hyIMx0b7MTQ0iOaRnltqvnBxDlL+eOc+t4v6vd3dLEbaPN+VyyvOrWw1+piQEMH9oCF46NZG+eiRJYvEpyUyM63hZfqFniBwVQWhDZnk9c55b1ePPo1UpCPdxI6vCiK9ezZSEABaNDGfuAKtJYrLaee7Pg7y1pv1dcucPDeaCsZFMTwpErTx2XVVvtnHWy2vJLG/9Krk/i/HX88dd051bdAeylQeblpIifPXEB7o787b+/t0ePt3UVHBuRlIg7101DkUnCrvJssyHG3J59Kd9OOSmvJ/zxkRw55zEVos1yrLMmsMVjI/1E8Uce4HIURGELmpvCe+uMtscZFU0feBWN1j5eXcxP+8u5tIJUTy+KG3AJN3q1Er+sXAIIyN9ee7PgxTVNjJ/aAjnj4lkSJgXvno1GWX1ZFcYOVBcx9whQQwNa317rodWxd8XpHLtB1vRqRVE+Orx0KrYeZIqpq5Oo1Tw0sWjB0WQApBdYeTRn/YDsPiUJGepgNPSQpyByqpD5SxLL+OUDgbuDRYbt3yynZUHj/UCKq8z4+Ombhb0Hk+SJKYnBXbmpQg9SAQqgtAGu13GQ6vqs7XqTzblIQP/aaXwVn+2cHgoC4aF4JBblj9PDPYkMdiTeW007TvenNRg1t4/C0+dGm83NfVmG5e+tZFdBbUnfayrevzstD6tndLbrp4SS73JxnNLDvH8kkNIwG2zExgT7YuPXk1NgxVoCjo6wuGQuf+bPc2CFID/O30IV0+JGTDB/2DhEjkqr7zyCjExMeh0OiZMmMDmzZv7ekiCwIqDZX2eUPf55rwBWc1WkqRO92g5XoSv3pnL4aFV8dF1E9CpXeJtrcNum5XABV3Y1dJf3T4nkafPGw7Ac0sO8bcvdqJRKpoF6NXG9nVsbrDY2JBZyd+/28NPu4qa3eelU3Hx+CgRpPRDff4X/cUXX7B48WIefvhhtm/fzogRI5g/fz5lZWUnf7Ag9JAXlx7mgW/29PUwcMiwdH9pXw+j35BlWq1548oUEjy0MJW75yX19VD6zPljIrj8SBG2H3YW8c8f9pEU7MHdpyShUSp4ZWUmBpO1zccfTbW85v0tXPzWRj7f0rL5qMFk48Vlhzs0LrtDxtKJMgRC9+rzQOX555/n+uuv5+qrr2bIkCG8/vrr6PV63n333b4emjBIGc02vtiS56yn0Nee+C2dPf14OaM3rTlcfvKDXEhikAff3jKF66bFDeorfUmSeGxRGjcdaS/x2eY85j6/ml/2FPPmFWPwdlOz7nBFq49ddaicGc+s5Jr3t7Alp/qEz7PmcDlldSbn18a/zJiarHbWZxx7nq+25vPkb+n08z0n/V6f5qhYLBa2bdvGgw8+6LxNoVAwd+5cNmzY0OpjzGYzZvOxqXCDwdDj4xQGjw2Zldz95U6Kak0nP7iXuGuUzj5Bwol1x1bW3nLRuEgeOXOo2F1ynGumxPDG6kyOxgXpJXW8ujKTn2+f2ub36YcdheRVNZBXdeKmoNDUw2d/kYGgZB0vLz/Mi8sOMzbajwhfN6x2BwXVjTx7/gjn8UU1jby7Lpt/LExFOXjjyD7Xp4FKRUUFdrud4ODm2dzBwcGkp6e3+pgnnniCRx99tDeGJwxCn2zKdakgBSApxJMNWZUEeeqYdKTzs9C69ZltVxJ2JTfOiOOBU1MG9SxKa4K8dFw3NbbZFvbN2VXc+sl23rlqXKuP6Uj13v+cPQydWklupRE/dy37Hj0VjUqBLMsUVDcS6KltFhCNjvbl3avGtsincjjkTm2XFjqn3+36efDBB1m8eLHza4PBQGTk4EtAE7rfodI6ft1T3NfDaGHlwXJWHixHo1Tw8JlD2JZbzeyUIOamBour8ePUNlhd8uf3V6cPDxVBygn8fUEq5XVmvt95LBnWIcsU1zYS6t2yqefC4aGt5qT8VVyguzPg+Hl3MaUGE41WO19szafBbOOUIS3/nqYnBrKzoMb59bbcan7bU8xPu4vw1Kk5e1Q4t85K6OQrFdqrT3NUAgICUCqVlJY2TxYsLS0lJKT17YlarRYvL69m/wShO2zJqWqzi60rsNgd/OO7vXy7vZDbPt3BuMeX8sSvB8T6+RFebqpW+8O4kqRgD/6xMFUEKScgSRL3nZqC9riZkhUHy7nri52tHj8tMZB75yef8Jxh3jp+uX2as37KqkPlfLghl+lPr2Dt4XJOHxHmbBNwPIVCYnTUsX4/sQHuRPnrabTYySir5+XlGc2qSedUGPlyaz7b86rF32U36tNARaPRMGbMGJYtW+a8zeFwsGzZMiZNmtSHIxMGo1h/dxaNDDv5gS6izmzjjdVZfLO9kDdWZbIxq3JQ71CQJIknzxmGu8Y1Z5lOGRLML3dMa3VWQGguzMeN22c3n6nYmFXFQ9/vabUM/tzUExeDC/DU4nbk9yK/qoFdRwoDWu0OUkK8CPdp38/Ez13DFZNieO2yMZw1MgwfvZr86qbcmJeXH2bu86u47+vdnPPqeha9so7312Wzo4NBS3FtIyUutvzc1/p86Wfx4sVceeWVjB07lvHjx/PCCy9gNBq5+uqr+3powiAzKd6fP/vhVuB7vtrl/H+9RomPmxqHDBeMi+TG6XG4D6KGgInBnrx62Riu/3CrSwVtGqWCx85Ka7MiqtDSzTMT2Fdk4Le9Jc7bPt6YR7XRyiuXjm52bFygO59dP5F6s40PN+QwKsqXVYfKSS82YLY5GBHh4zy2wWJHp1Zy3pgISg1m/rf8MJdPiibA41jCen5VA++szWbxvCSe+i2d/OpGvHQqZzsHlUJiyf5SGix2rnpvCwuGhfDKisxmY9pVUOssPpgQ5MFF4yI5NS2ECF/9CV93oIeWZellbMyys2hUeGe/fQOKS/T6efnll3nmmWcoKSlh5MiR/O9//2PChAnteqzo9SN0l4e+38PHG/P6ehjdKtzHjfeuHkfSAG/i91crD5ZxzftbXGYp77KJUTy+aGBVGO4NJqudc15dz/7iY7s7b5uVwD0nWeo5atmBUsw2B6OjfAnx1jlv/3JrPhuzKrlsYjSXvb2Jv81N5Ibp8c77ZVkmt7KBaH99s2W6inqzM6B5a3UWs1KCeOr3dJZ04AJnSKgXf1+QytTEgDaPKTOY2FlQQ7XRwoXjotp97v6mvZ/fLhGodIUIVITuYLLaGf7ony51Fd5dPHUq/nn6EGYkBeLnrhk0V/WvrMjgmT8O9vUwCPXW8cdd0/HSuV435P7AZLXzv2WHeW1V07blR88cypWTY7p0zg/W57A5u4pXLh3NRxtz+XpbAe9cObbZrEpHFNY0siOvmvfX5bA198S1XKCpyN//Lh7F6cObLzXXmax46tS8tjKTguoGrpkaS3ygByarfUAmzoumhILQATq1krmpQfy6p+TkB/czdSYb9329G4BZyYG8d/X4Ph5R77hmSiyvrczs8zYIZ48KF0FKF+jUSu47NYX4QA9eWZmBp05FldGCt5u6020Yov31+LprALhsQhRalaJTPyOHQ2ZNRgUzkgIJ93Hj9OFh/LmvhBs+2nbix8nw9O8HsdodzB8aQlGNiU835XGg2ICXmwq9RsU985OduTO/7ilmZKRPqwm/g8HguLQShHaYmhCI3kUTMbvLmsMVLapxDlRuGiUzXKATrtnmaLYzROicc8dEsOSuGXy+OZ/Rjy1h+tMreHdttjNRdW9hLYdL69qVuDozOYgzRzTNZkiSxAVjIztUj+WowppGCqqbF5qbNzSEsdG+bTzimLyqBu76YhdXvbeF2AB3rp8ey6JRYdw2K5H/XjiyWYLvKUOCefyXAxTVNAzIWd+TEUs/gnCcfUW1nP3Kepcpn98TPrxm/KBpZZ9f1cC0p1f09TD4+fapLr91uj+w2R0U1jRy/ze72ZZbjdUuo1RIuGuUmGwOLDYHwV5avr91Sq/srnI4ZCSJZnksdofMPV/t4rsdhe06x9LF00kIOnkOWb3Zhk6pYGl6KXNSgymuMRHlf+LEXFcnclQEoZP+9dN+3l2XffID+6lld88gfhBNIS/83xr2FfVdqw21UuLQ46eJ2indzGS1U1DdgEqhYGNWJUsPlHKguI7yejNapYIATy1jon25aUY8CUFNv++5lUZ89Bq83dQYTFaUkoReoyS3soGYAPdm52+w2NAoFag6mNP1/J8HeXVlJpPi/dmZV0PdcTOY42J8uW12IgEeGr7fUchba7Lx0at564qxjIvx69DzbM+rZntuNVdNjsHmkPtlDovIURGETrr/tGR+2VNEqcF88oP7mSBPLXF/eUMeyGRZ7nQeQ3exO2Qyy43OD0uhe+jUSudMREyAOxeNb747JqOsnp35NXi7NeWePP17OrmVDQwJ8+KWmfG8vDwDo9lGbIA7Q8K8iAlwp85k5dWVmaw6WM7cIcHcMD0Ojw4GKrfNTuTOuUkoFRIF1Q1c98FWsiqMWGwOLpkQ5VyOHBrmTV5VA3/sK+XuL3fx+Q0TCWtnPReA0VG+DA/3RgbeX5/jbOg4EIkZFUFoxdtrsnj8lwN9PYxupVJIvH3lWGYmB/X1UHqNLMuc9uIa0kvq+nQcF46N5KnzhvfpGIQmDofMa6sycThkbp2V4OzZk1FWz9mvruMfC1I5d0xEt+6Ok2WZ8nozQZ66Zrc3Wuzc8fkOluwvxUev5oULR3bo77OszsR/lxzmonER+HtoT1qjxdWIpR9B6AKj2ca0p1dQZbT09VC6hVop8fIlo5k/tPXWFAPZT7uKuP2zHX06BrVS4o3LxzA75cQVVIXe4XDIrD5czqR4f7SqpiWTXfk1WO0OxnZwCaa9bHZHq8tIDofMpuwqsiuMbM+rZnK8P+eMjujQuR0OmS+35nP26HDn6+kP2vv5LXb9CEIr3LWqAdVs7N9nDxuUQQo0NQFUK/t2+cdql9mac/L6GkLvUCgkZiYHNftQHxHp064gRZZlft5dxN7C2nY/X1FNI/d9s7vNsUyK9+eSCVE8e/6IDgcpR89x1shwlAM0D0oEKoLQhssmRrW7B4grGxXlw3mdePMbKIpqTVjtfT9xbO/AFuW8yoaTHyT0OrtDJqvCiFalZNEr67jnq128vSaL5emlvLj0MOV1ree1/bqnmKX7S6ms77m8NzeNssOJv/2FSKYVhDZoVUoeWzSUa97f2tdD6bRofz2vXDLauQ4/2Jisdv72ed8u+xxV1M5Gc7Isc8bLa/nulsmDtsCXK7I7ZK54dxPrMiqdt329rcD5/zq1grNGhhHo2bK67e6CWgwmGx9syGXxKUm9Mt6BZGCGX4LQTWanBDM0rP/mPr1+2ZgO7SQYaN5ek8UWF1lysdjsJz3GaLbx7J8HqW208u329tXhEHqGwWTFfNzPbMn+EtZnVrZ5/GuXjmmxxfmoo8tE+4vav1wkHCMCFUE4iWmJ/bc4WlArV3eDiSt92Je0Y7v7rvwaZxfew2V9u1NpsKptsPL4z/sZ/a8lnPbiGvIqG7A7ZB74dg9tbT0ZGelzwiKKRzuYb8yq4vk/D3KotPd+tgOhkq1Y+hGEk7hnXhIyMm+tznKZbrzt1Wg9+VX8QFVU00hWhbGvh+EU5q074f3f7yjk/uMSLjdnV2G1OwZNE0lXYDBZufK9zezMrwEgq9zIwv+tIdRHR6Ol7b8lhyxTYjC1mdN2tDx/vdnG/5Zn8NveEpYsntHt42/Nl1vzGRnp068rI4u/gBMYKFtTha5RKRU8eFoqP942lRGRPn09nA7Rawbvtcif+1ynwaRWpeDOuYktbi8zmPhuRwHXvr+Fu77cifm4q9/HFqWJIKUX1ZttvLkqyxmkHFVntnGotL7Zz+avdhfUMvvZlfzjuz0YTNZm91XWm9me13z5sbCmEWsvtek4b0xEsyWsjmq02KnowSTg9hB/BSfgru0/+9GFnpcW7s13N0/mlUtGk9gPqowGeWrxO9IhdjAqbmfyak8bFeXDB9eMJyWkZa7Tv37ez11f7GJZelmzZQWlQiIuwPV/xwaK99Zl892OQl5ekdHpc5htDj7ZlMeiV9bx/Y5CbEcCkd/2lrRYMmqw2Pl1T3FXhtxuOrWSEG+3TjXG3JVfw2srM3D0cbm1wXu51Q79qXCO0DsUComFw0M5NS2Ee7/e5VI5EH+VHHLyRmcDWZDXiZdaetqkOH8eXJDC8AifVu+vN9v4pY0Pq9RQT4b04yTu/kSWZZ78Lb3N/JOOyio38rcvdvLLnmKmJwXyahvBz2srMzlrZHj3POlJdLTMgtlm55Ef9zM0zIvF85J7aFTtJwIVQegEpULimfNGEO3nzn+XHurr4bTq8onRfT2EPjUrOZAXlqqoM9lOfnA3Oy0thBcuGnnCix29WolOpWw1j2hYP84n6G/+3F96wmWdzlqyv5Ql+0vbvL+mwYrDIbtk6QCNUsH4WF+X+T0USz+C0ElKhcTpI0L7ehhtGuxX5HGBHjy+KK3Xn/ehham8eunok87IKhQS84e2XlL/9OFhPTE04S9yK43c2Ud1dkoMJu7/Zjf5Va5X3E+SJM4eFeFs+tjXxIyKIHSBq1aunZUcSJi3a46tN52aFoK/u4bKXkqMv3d+MtdNi2v38Z46dYvbgjy1TIzz785hCccprGnkx51FZJbX88e+EkzWvtu++9W2An7cVcQ985K5Zmpst3X6Ti8xEBvgPmDSF0SgIghdoFUpUCqkDpVH72lBnlr+e+FIl5xS7m1alZLLJ0XzwtLDvfJ8J9rC+ldldSa+3Jrf4vbTh4d12weW0JSDsuJgGSvSyzlYWsfm7Kq+HlIzZpuDf/96gFAfXbfNpBnNdi54YyMvXDiS2DaK0PUnYulHELpAlsHVPlMmxfvjox+8u33+6obpcUT763vlud5ck0XdX7antuXOz3a2mhuxYNjgbB7Z3ax2B9kVRu7+chfXvL+VjzbmulyQcryHvt/bpW3ExxsT7csjZwzh5o+3nTBPpr/okUAlJyeHa6+9ltjYWNzc3IiPj+fhhx/GYrE0O0aSpBb/Nm7c2BNDEoQeUWJwjYZ3R81OCeKhhUP6ehguRa9R8eQ5w3vluSw2B6sPVbTr2P3Fhha3BXhoGR3l293DGpTeXJ3FRW9u4Nsdrrsz73g1DVZu+mgbm7LaLtPfEaOifPnm5skUVDf0++q0PbL0k56ejsPh4I033iAhIYG9e/dy/fXXYzQaefbZZ5sdu3TpUoYOHer82t9frM0K/UduH3e59dCqmJsaxPhYf4K9tAyL8G61KdpgF+Hbe/k6WlX7rv+mJPjz657mRemmJwWIJbtuklleT2k72ha4khUHy6kyWvjhtqndcj53rYqrp8R2y7n6Uo8EKqeeeiqnnnqq8+u4uDgOHjzIa6+91iJQ8ff3JyRETHUK/VN2H5VoTw314vThoZw7OoKQk5RmF5oCut6iUrYv0JieGNgiUJmb2vouIKFjTFY7f+x1ncrEHbGroJanf0/nnnnJImg9otf+emtra/Hz82tx+5lnnonJZCIpKYn77ruPM88884TnMZvNmM3HomSDoeX0qSD0lqzy+l5/znvmJXHTjHhUorx6u/m6a4jwdaOgurHHnmNmciBXT4llxgma0x1vdLQvGpXCOS0fH+jOnNSgHhvfYKJUSAR768gqd51eTx3x6spMSmpNPHv+CBGs0EuBSkZGBi+99FKz2RQPDw+ee+45pkyZgkKh4JtvvmHRokV8//33JwxWnnjiCR599NHeGLYgnFRvN71bfEoSt81u2TNGOLnxsX4UVHd/vkKErxvvXDmuw5WAk4I9WXf/bL7als+EWD9GR/kiSeJDqTsoJYlrp8byj+/29vVQOu3bHYWMifHl0gmDu3AjgCTL7S8c/MADD/DUU0+d8JgDBw6QkpLi/LqwsJAZM2Ywc+ZM3n777RM+9oorriA7O5s1a9a0eUxrMyqRkZHU1tbi5TW4C1wJve+0F9dwoJWkyJ6gUkjs/9epzk6sQsf8uqeYWz7Z3u3n9XfXsPHvc0QDQRfSaLFz/hvr2VvYv2fcFw4L5ZVLR/f1MHqMwWDA29v7pJ/fHZpRufvuu7nqqqtOeExc3LFiR0VFRcyaNYvJkyfz5ptvnvT8EyZMYMmSJSc8RqvVotWKZEHBNZTX9V6yns0h02CxoVGJrcedMT7WD41SgaWbu9YGeelEkOJi3DRKZiQF9vtARUywNelQoBIYGEhgYPvWXwsLC5k1axZjxozhvffeQ6E4+R/yzp07CQ113ZLkgnC87Apjr7Y/12uUrVYyFdonwEPL305J5OnfD3brecfFiO3ErujMEeG8siKzr4fRJcsOlFFZb8bfY3BfnPdIjkphYSEzZ84kOjqaZ599lvLycud9R3f4fPDBB2g0GkaNGgXAt99+y7vvvnvS5SFBcBXvrcvu1ee7dVaCqFjaRTfPiCenwsiXWwu65XyeOhXnjYnolnMJ3Ss5xJMrJ0XzwYbcvh5KpzVa7RhMNhGo9MRJlyxZQkZGBhkZGURENP8jPj4l5rHHHiM3NxeVSkVKSgpffPEF5513Xk8MSRC6XUMHyqV31S0z47l1VkKvPd9AJUkS985P4ZfdxRi7+PML89bxxY2TiPTrnaq3QsddMzW2XwcqIV46osXvV89Upr3qqquQZbnVf0ddeeWV7N+/H6PRSG1tLZs2bRJBitCvmKy9E6jE+Ou5Y47Y6dNdAj213bJz6slzh4sgxcUFemrR9OP8oamJogAgiF4/gtBpuwpqevw5PLUqnr9wJDr1wOiC6iqunRpLWnjndwneMSeR6e2slyL0Hb1GxQXj+u/SXJCoMg2I7smC0GlRfnryq3qugFhCkAcvXzKKlBCx7b67aVQKbpoRz22f7ujwYx84LYWbZsT3wKiEnnDRuCg+3pjXoceolRI6lZJATy0zk4OYkRxIaqgnnlo11Q0WPtiQw4HiOlYfKj/5ybpgwTCxuQREoCIIndb+CkQdp5Dg7SvGEjMAWrS7qsOlHasq7KVT8Z9zhnH68LAeGpHQE2yO9v+hRvvrWTgslCsnxxDs1XprCjeNGw+elgrA7oIazn51PfbjnqM7tsArFRJ/m5NIWrh3l84zUIhARRA6wWi2sTWnukfOLUnwr7PSRJDSw4aEtT5TJUngpVNT22jFTa0kLdyL+UNDOGd0BH7uooZNf2KxOfh8c9uzKVqVAvORFgY6tYK3rxhLYnD7KwwPj/DhnSvHcu0HW7E7ZGYmB5Ic4skbq7K6NO4LxkZwu8hLcxKBiiB0wu97S7p81TQxzo8wHzcOldY5C1OpFBJ3nZLEZRNF2eyeNiUhgIvHR/HV1nwSgjyYkxrE/KEhpIV5o1BI1DZa8dKpkGVEQmM/5ZDlpp+fBEcnPQI8tJw3JoIbp8fho1djaLSB1JQP1pmf88zkICbH+xMb4M7fF6Qy9/lVSFLnZ1x1agWLT0nu3IM7Iau8nrhAj157vs7oUAl9V9TeEryC0F1kWeaMl9d2S9XLOSlB/O/iUZTXmak32/B2U4udJL2spNZEgIdGNHkcwPYXGdicXQnAuWMiur1wotlmx2JzsLfQgN0h84/v95Bb2dCpc507OoLnLhjRreM7kZeWHabBaueGaXH49vKMYXs/v0WgIggdtCu/hrNeWddt51txz0xixTKPIAwIVruDHXk1vLk6i6UHSjv0WJVCYtPf5/RqgTe7Q+aOz3YwMtKH66fHnfwB3ai9n9/iEkIQOujLrfnder5Hf9rXrecTBKHvqJUKxsf68ez5wztcSXpUlE+vV6FVKiRevGgkqw6V89XW/F6rD9URIlARhA5Yc7icz06QnNdRaqXE4lOSuu18giC4Bh+9hoXt3F7splYS6q1jTmpwD4+qdSqlgkWjwrnvm918t6MQu0PmYEkdhTU9V36hI0QyrSB0gK9eQwd2O57Q+Fg/rp8Wx/AIn+45oSAILuW5C0ZwaloIG7Mq2Zlfw+6CWm6cEYdCknhzdRYSTXV5Lp0QjZumb4s6qhQSsgwPfruHR37ch80h88l1Ewj3cevTcYEIVAShQ1JDvdBrlB3u8+PtpubVS0djtTsI9tIR5u2Gt150QhaEgUytVLBgWKizcFttg9X5d3/B2EiMZptL1ErZmV/Df5cecn4d5uPG7JQgxsf49eGojhGBiiB0wG97izvVjNBdo2RyvD+SJLa5CsJgdfzFiSsl0McFunPD9Dge/XE/FruD88dGcMtM12mCKnJUBKED1h6uaPexMf56fI68MUWILceCIBzxw85CMsrqMVntbMqq5HBpXZ+MY3dBDX/sK0GtUHDu6AiCvbUkBHlw9eTYPhlPW8SMiiB0wIHi9tdO+dvcJE4bFoLZ5sCrm+s2CILQf608WM6dn+9ErZSw2uVer50CYDBZufer3ZTWmXA4ZL66cTLTEwO5flpcn+fL/JWYURGEdjLb7FQ3WDlnVHi7jn97bRbP/3mIqnpLD49MEIT+5O55TTv9rPamzPy22jn0FFmWefiHfRwsraOmwcrpI8JICvHg32cPc8nWHSJQEYR2Kqk1cWpaCKmh7XtTUUgSZ40Md8k/fEEQ+k64jxsLhoUAcP6YiHZvY+4OtY1W7vu6aRsywFkjw/jXmUNdOn9OVKYVhHYymm1oVApu+mgby9LLTnr8yntmiiBFEIRWmax2CmsaiQtw75UgoazOxA87inhjdSYV9RZ0agVnjQjngnGRjIn27fHnb017P79FjoogtNNXW/N5Ydnhk+76kSQI8tQS4dv39QcEQXBNOrWS+F5qBrj6UDl3fL6Dmgar87ZHzxzKheOieuX5u0oEKoLQTrsLapv9obdmYpwfL108mkDP3i2DLQiC0JqNWZVc9d7mZoUqYwPcOXtURN8NqoNEjoogtMNXW/P5fmfhSY87e1S4CFIEQXAZSoXETTPiSQ31QqmQOHVoCB9eMx6Nqv98/PfYSGNiYpAkqdm/J598stkxu3fvZtq0aeh0OiIjI3n66ad7ajiC0CWzU4K4durJawv8/bu9PP7zfvYW1vbCqARBEE5sXIwf952awm93TiPzPwt4/fIxRPazuk49uvTzr3/9i+uvv975taenp/P/DQYD8+bNY+7cubz++uvs2bOHa665Bh8fH2644YaeHJYgdNjajAreWpN90uPsDpm312YzOtrXJUpjC4Ig9Hc9Gqh4enoSEhLS6n2ffPIJFouFd999F41Gw9ChQ9m5cyfPP/+8CFQEl/Puupx2HZca6sVT5w4TjQYFl7dkfykT4vxEMULB5fXoItWTTz6Jv78/o0aN4plnnsFmsznv27BhA9OnT0ej0Thvmz9/PgcPHqS6urrNc5rNZgwGQ7N/guAqnjhHBCmC66s32/j7d3tY9PI6yupMfT0cQTihHptRueOOOxg9ejR+fn6sX7+eBx98kOLiYp5//nkASkpKiI1tvuYfHBzsvM/Xt/V93U888QSPPvpoTw1bEFoV6qVj1wnuHxHpw8NnDGFkpE9vDUkQOs1Dq2LLP+b29TAEoV06NKPywAMPtEiQ/eu/9PR0ABYvXszMmTMZPnw4N910E8899xwvvfQSZrO5SwN+8MEHqa2tdf7Lz8/v0vkEoT2unx53wvsvmxDF6Kj2FU0qqTVhstpZn1GB1e7ojuEJgiAMWB2aUbn77ru56qqrTnhMXFzrb+gTJkzAZrORk5NDcnIyISEhlJaWNjvm6Ndt5bUAaLVatFqx/VPoXY0nKfL2+ZZ8Fg4PRa858Z/U++uyWZZeRlFNI6HebtynU4mlIkEQhBPoUKASGBhIYGBgp55o586dKBQKgoKCAJg0aRL/+Mc/sFqtqNVNyVxLliwhOTm5zWUfQegrUxL8efniUby3PodtucdyqGYkBRIboMfmkKkz2U4aqFw2MZqrprhWC3VBEARX1iPJtBs2bOCFF15g165dZGVl8cknn3DXXXdx2WWXOYOQSy65BI1Gw7XXXsu+ffv44osvePHFF1m8eHFPDEkQukSSJKYlBZIU7MHZo8IZGuaFRqlgdJQP76/P5eONeTz1W/pJz6NS9p8iS4IgCK6gR5oSbt++nVtuuYX09HTMZjOxsbFcfvnlLF68uNmyze7du7n11lvZsmULAQEB3H777dx///0dei7RlFDoTXaHzGeb83htZSZ+7mr2Fhk4/i9oWmIA10yJZUyMr9j2KQiCcALt/fwW3ZMFoRMsNgc/7y5ibUYFO/JqyK4wAjAs3Jsofz2GRivPXzBSlNMXBEFog+ieLAg9SKNScM7oCM4ZHYEsy+RUNtBgsZEa4oVC0fMt2wVBEAYLEagIQhdJkkRsgHtfD0MQBGFAEpl9giAIgiC4LBGoCIIgCILgskSgIgiCIAiCyxKBiiAIgiAILksEKoIgCIIguCwRqAiCIAiC4LJEoCIIgiAIgssSgYog9BGLzUG10dLXwxAEQXBpouCbIPSi2gYr6SUGVh4q56ddRUyK8+ffZw9DoxLXDIIgCK0RgYog9CBZltmUXcXewlqCvXToNUqGR/gQ5KXjzjmJ6NTKvh6iIAiCSxOXcYLQQ6qNFq56bwsXvbkRs83BGSPCmJMaTKCnltgAdxGkCEI7ZFcYqaw39/Uw2uRwyPyws7CvhzGgiRkVQehmuZVGXlh6mJ93F2G1y0T4umFotCLLMpIkGhYK7ddgsbE8vYz1mZWkFxsorGnEbHPgq9cQ7a/ntlkJjI3x6+thtlDbaKXMYCIx2LPT5yisaeTVFRl8ujkPCZidEsTf5iaRFu7d+nM2WPlhVyGHS+spqmmk0mjhgrGRnD82ArXyxNfkdSYrDhm83dRAU/DhkGWUCsn5N2uy2imobqC20YZDlrHYHJTVmdhTYOC99dlE+ukZHeXb6dcrtE2SZVnu60F0RXvbRAtCb/jfssO8vDwDi93ByEgf/nn6EMZEizcvof0q6s1syKykwWLj8y357MirafPYAA8tF4+P5PwxkYT56FCd5AO5O1lsDnIqjbhrVTSYbRTVmqg32QD4YH0O6SUG7pybRGqoJ25qJRX1Ftw1SnQaJXUmG7IsMyzcG4fcFNiYrHZKDSb8PbT8vKuI99bnYHe0/HianhRIaognCoWE2eqgxNBIQXUjB4oNWO0tj/fVq9FrVCQEeTAtMYAhoV4EeGpxyDKHSuv5eEMum3OqgKZAxc9dQ3FtIyarA71GSYi3DommmZ1WhuOk1yiZPzQEf3cNRosdm92Byeag0WJDlsEuy0iAVqXEU6diQpw/542J6I4fRb/V3s9vEagIQjc67cU1HCg2MCbaly9vnIRSIWZQhLaZrHa25FSx6mA5xbUmbA4Hy9PLWv3APRmFBFMSAjhzRBhxge6UGcx8t6OQg6V1pIV5E+HrRrivG4EeWrRqBaMiffF113ToOWx2B/uLDfy0q4hPN+VhtNg7PE6hia9ezYOnpTIxzp9IP7dBOdsqAhVB6AVGsw29RokkSdSbbZz50lqyKowoFRK3z07gnFERRPnr+3qYQg/LrjDy1dZ80sK9WTAstNVjZFnmcFk9K9LLyCirJ6O8ngPFBkxWRy+PtsnEOD8+vnZCu2ZhLDYHT/x2gK+3FVB3ZNZE6D4BHlqGhXsR7e9OhK8bEb5uxAS44+OmobCmgcxyI6ekBnc4sHR1IlARhB4kyzJXvLuZNYcruGZKLP88PZUzX17HnsLaFsdOSwzgpYtH4aMfWG8yg53dIVNZb2ZDViUP/7iPmgYrAMnBnkT761ErFVw6MYqhYd78sbeE//x2wHmMK1ArJTb/fW6rH36yLGOyOigxmMipNPLRhlyWp5f1wSiFozQqBTOTAhkV5Yu/h4YgTy3DI3zw68fBiwhUBKEHORwycX//1fn1o2cO5eONuRwuq2/1+DNGhPHChSPFUlA3kmWZsjozW3Oq+WJrPrH+eupMNi6ZEMXYGD9kWearrQUsSy/FapcZG+NLg9nOttxqqowWzDY7CknCy01NoKeWAA8NN82IJ9rfnUaLHaPFdiSpEqz2psTJgupGssqNrDpUzv5iAxZb38yGdIWnTsXji9I4ZUgwek3z/RS5lUau+2Brm7/HgmsJ9NRyWloI0xMDmZ0ShKKfvb+IQEUQupksy+RUNlBqMJFX1cB9X+923qdRKvjwmnFc/9G2NqfGzx0dwXMXjOit4bocs81ObaMVbzc1WpWSKqOFjzfmkhTswalpTcslRxMqK40WNEoFySGeSEBWhZHMsnoKqhsprGnkYEkduwtqWs2RkCSYFOdPYU0juZUNHRqjQmqahi+rc93tsF2lkCA11IuXLxlNbIA70BR4f7O9gBeWHqawprGPRyh0hqdWRaSfHqVCQqmQcFMrccgyWrUSX72acB830sK9GRHpQ5i3ziVyYtr7+d0j25NXrlzJrFmzWr1v8+bNjBs3jpycHGJjY1vcv2HDBiZOnNgTwxL6IYPJyjtrsvFyUxPgocFDqyLIU4enToXZ5iA5pPPbHzuiwWJj0SvrOFTadKWp+suVi1alID7Ik4cWpnL/N3taPcfSA6XYHfKgnFVZnl7K3V/uorrBiq9ezSlDgsmuMLIlpxoAf3cNCoVERb2Z4y+dUkO9KK5t7NCSiSzD+szKTo3TITOggxRoeo3XT4tzBil1JiuP/Lifb7YX9PHIhK6oM9vYX2xo17Gh3jq+uGFSv8mf65EZFYvFQlVVVbPb/vnPf7Js2TIyMzORJMkZqCxdupShQ4c6j/P390etVrf7ucSMysAkyzIrDpbh7aahsLqBAyV1SECwlxa1UolSAZIkcWpaCF66tn9fygwmMsrqmZwQ0OUxFdU0UmW0EO7jxuGyevYV1RLqrSMhyINQbx1FNSb+8+sBVhwsb/Mcz5w3nPPHRnZ5LK7O4ZDJqjCyKbuSX3YXdzpwEHqOp06FTq2kfIAHZkJzCgmePGc454+N6PNZlT6dUdFoNISEhDi/tlqt/PDDD9x+++0tvjH+/v7NjhVcT0W9mV/3FOPtpmZCrD8h3joAluwvpaLeTLSfnmBvHY0WO0NCvVqsk8qyjCzTofVTSZJYfaiC99fntLgvJcST22YnEO3nTk6FkZJaE/nVjeRVGikxmHDXqEgM9qTRYuOb7YUU1jQS6edGpK8eo8VOjL+eeUNC0KkV+Og1hPu4EeylZWd+De+vz2FWchAyMgpJYnSUL5F+TVcdIV46jGYbv+0tIbfSSKnBxPJ0C+V1ZgprGtu1G+L7nYUDOlDZlV/Ds38eZGdeDXVmsTvEldWZbGIHzyDjo1fz2FlpnDEirK+H0iG9kqPyzTffcMEFF5Cbm0tERFOBm6MzKpGRkZhMJpKSkrjvvvs488wzO3RuMaPScQ6HTEF1I9mVRjy0Srx0aqqMFmyOpiqqbmolVodMeZ0Zo9mGt5saH70ad42S2kYbOrUCrUqJzeFga041FfVmFAoJP72GQ6X1FNY0EOSpI8BDQ05lA2sOl+OQ4aWLRzE0zItKo4UAD+1Jx2m22flqawEltSZ+3VNMVoWxx74nnlpVqx+skgSjIn0wWR3kVzd0+o3dU6tibIwv/zorzRn4DETpJQbu/2YPu/Jr+noogjDo6TVKJscHMCrKh8smROOtb/9qRW9wqWTaBQsWAPDrr8d2SVRUVPDhhx8yZcoUFAoF33zzDU8//TTff//9CYMVs9mM2XxsqtJgMBAZGTnoA5XaRis2uwN/Dy2yLFNUa2J/kQGT1Y7Z5qCmwUJ+VQPpJXXsLzL0ydWuQmrKUi81mIkLcCct3JtATy3DI7yJ9NPTaLFTVmeiqMaEJIGbWkmQp44Qbx3+7houf3cT+VX9K9FvQqwf/z47jYSg3sml6Qt2h0x6iYE/9pXy866iHg0oBUFon+lJgTy0MJWkLrQx6Gk9Eqg88MADPPXUUyc85sCBA6SkpDi/LigoIDo6mi+//JJzzz33hI+94ooryM7OZs2aNW0e88gjj/Doo4+2uH0wByofbsjh/37Yh0alIC7AnYLqRurFtHuv8nZTkxDkQVKwJ1F+emL89YyL9WvXzFF/YrLaya1s4FBpHfuKDOzKr2lz940gCL1Po1Tw3tXjmNINeXk9rUcClfLyciorT5wUFxcXh0ZzrADNY489xksvvURhYeFJk2RfeeUVHn/8cYqLi9s8ZqDOqHR0N0idycq6jAoOltSTW2nk2x2ie2dPGBnpg5ebGqUE7loVGpUCm13G7pBRKyWCvXRcNjGaCN/+XwJblmU2Z1exp7CWwppGygxmimsbqW20YrXL1DZaqW10nYJlgiC0dPrwUF6+ZHRfD6NdeiSZNjAwkMDAwHYfL8sy7733HldccUW7dvLs3LmT0NDWy08fpdVq0WoH1lUqwM+7i3hrTRZjonwxWuzUNFipMprx0Ws4e1Q4JqudSqOFjLJ69hUZOFhiOGGDLKF7VBkthHjpiPbXMz7WjxlJgb3a+K0nORwyxQYT23Kr2ZRVyfrMSrLFso0g9Gtbc6rZW1jbZpfp/qhHdv0ctXz5crKzs7nuuuta3PfBBx+g0WgYNWoUAN9++y3vvvsub7/9dk8OqU/JsszKQ+VYbU25JENCvXDTKAGYmRTEivQyvt5W0GIaXZSu7htp4V6MivTF201NvdnG9rxqEoI8iPZ37/WxyLLMDzuLWH24nILqRirqzYT7uDE0zJszR4QxJOzks4myLPPuuhy251aTUVZPbpWxz/rMCILQM0oMJq77YCs3zojD30NLQqBHu94fXFmPBirvvPMOkydPbpazcrzHHnuM3NxcVCoVKSkpfPHFF5x33nk9OaQ+ZbXLFFQ18NySQ9Q0WNGpFSwYFso/Fw7B113DCxeNwmZ3sCWnmk825VLbaKXOZMPQaKWqwYLRbOtUV1Whcx47K41RUb59PQzK6kz87fOdLWqRZJUbWXO4gjdWZ/L1TZMYE+13wvMYGm089vP+Fre7qZWolBIOhyxyTYT/b+/eg6Ks/z2Av1nYK7AssAsLyNUULwkIxQ5Ndk5BguNpLP015nFMm8pSy19pltZ4bUySGZ2p0azOJM00o+Wc0/WYpSh5zA2LIFKJHyqKxi7EZd3lsuyy+zl/8PP5uXLxwsI+C5/XDCPu891nP+/n2V0+++xzYX4qWRuMiGAZgiS9X0m3djggDZSg0WrH5JhQv/5qmk+h7wOOHjcqL1tgutoFjUqGqbHqW97p0u0mdDpdwinEf7tswcHfzXC4+JPxcMibHI3Nc6YiTqMc8ryICN9UmWC1OzEvcxwU0sABx3Z09+ByWyd+qPkLHxy/gJYOx6Dz/nvuBLz88MSb1nCppQNOlxtAANTKIGiUMsiCer/K+sNsxX9+WIbWmzwWY0xclj6QgrUFk0bttX6GdYsK658sSILs5ME//Q5EIglAiDwIWYnhGBeuhEYlRXl9m98dtusvjlQ34kh1I5IiVYgKVUCjkkIfpkCyNhgTo0ORNi4MoTecGdflJnxT1YAj1U240tbZex4apRQNV+04VdeKZG0w/pY1bsDHfOXAb/iy8s8+W8+CZYGIUiv+eRl4FcbrgjFeF4KpcWpEhSpuKU9iZDBcboL1nzvGmixWtHY60NbhgOmqHZkJ4ThS3Xj7C4ox5hP/kRaDVQ9P9Lsm5XbwFhWRsTtdqG1sx88XW3G89q9/HWlBQHq8BrpQOc41taPGbOOLh4lAQEDvJtdJ+lCM14VAo5JBrQhCmFKKaLUCMRoFtMFy4U3E7nTBTdTnqrU36u5xobPbBYfLjR43QaOUIlgeNOhZfokIZ01WVF25CkunE24iEBGs9h6YrtphvtqFBosdZqsdLt4Tm7FRIUUbjH9L1WH1zFSEyP1r24OoTvg2nEZbo3K95vZu/KPRho9PXsR3Z/hTrr+SBUqQogtGqj4Uk/RqTIoJxb1JEX3eVIgIpqt21JhtuNTSgSttXahv7cSF5g7Ut3R6fL0nD5IgVBGEUIUUUaFyxGmUaLjahZ8utN748IyxMSBcJcXfssbh31OjkJkQLhyoIWbcqIwSLe3deHyPkc/2OcqEKaX4e+4EJGlVOP6PZpw1WfGHyQorX3uFMTZEQZIATI5RIyNeg2lxYUjSBiMpUgVdqFxUO9VyozJMiMhjRVs6Hbja5YS1qwc2uxNRajnG60K89mSoqG/D/1aZ0NrpQHO7A2UXWtDdwzvOMsYYuz1TY9VY8eBd0KikCFfJoAuV+/Ts2dyoeMGpulas/Z8qKKWBmBgdiostHTjTYMU9ieGYEqPG/9U2o6bR1ud+2hAZMhPCkZGgQZxGCW1I75NBr1YM+aJQze3dONtgRVunA5ZOJ9o6HbA73XATwe0muAkwW7tw8HfzkB6HMcbY6JedFIEwlRR/2brR3N4Nu9ON+AglEiNUSIwMRpJWhQcm6BA5DA0NNypesPa/q7D/58tenadGJUViZDCiQ+UIVUihVvbuZ6BWBMHudKHJ1o2/bN1o63RAHhQIlSwQKlkQguW9/+rVciREqjAuXAW70wXTVTtMli6Yrd1ostrRZOtGXXMH72jLGGPMK/7ryXuQNyXa6/Plw5NFytLphKXT4usyGGOMMb8wOi5awhhjjLFRiRsVxhhjjIkWNyqMMcYYEy1uVBhjjDEmWrwz7SDmZY3D9ASNr8tgjDHGfGZyrG9PpsqNyiDuTYrAvUl3dvFAxhhjjA0df/XDGGOMMdHiRoUxxhhjosWNCmOMMcZEixsVxhhjjIkWNyqMMcYYEy1uVBhjjDEmWtyoMMYYY0y0uFFhjDHGmGj5/QnfiAgAYLVafVwJY4wxxm7Vtb/b1/6OD8TvGxWbzQYAiI+P93EljDHGGLtdNpsNYWFhA04PoJu1MiLndrvR0NCA0NBQBAQE+LqcYWe1WhEfH4/Lly9Drfbt9RdG2ljNPlZzA2M3+1jNDXD2sZSdiGCz2RAbGwuJZOA9Ufx+i4pEIsG4ceN8XcaIU6vVY+KJ3J+xmn2s5gbGbvaxmhvg7GMl+2BbUq7hnWkZY4wxJlrcqDDGGGNMtLhR8TNyuRwbN26EXC73dSkjbqxmH6u5gbGbfazmBjj7WM0+GL/fmZYxxhhjoxdvUWGMMcaYaHGjwhhjjDHR4kaFMcYYY6LFjQpjjDHGRIsbFZHaunUr7rvvPqhUKmg0mn7HBAQE9PnZv3+/x5jS0lJkZmZCLpfjrrvuQnFx8fAXP0S3kr2+vh6zZ8+GSqVCVFQU1qxZg56eHo8x/pj9RklJSX3WcWFhoceYqqoqzJgxAwqFAvHx8di+fbuPqvWuXbt2ISkpCQqFAgaDAadOnfJ1SV63adOmPut30qRJwnS73Y4VK1YgMjISISEhmDdvHhobG31Y8Z05fvw4HnnkEcTGxiIgIABffPGFx3QiwoYNGxATEwOlUom8vDzU1tZ6jGltbcXChQuhVquh0Wjw9NNPo729fQRT3JmbZV+yZEmf50BBQYHHGH/N7i3cqIiUw+HA448/jmXLlg06bu/evTCZTMLPo48+Kkyrq6vD7Nmz8eCDD6KyshIvvfQSnnnmGXz33XfDXP3Q3Cy7y+XC7Nmz4XA4cPLkSXz88ccoLi7Ghg0bhDH+mr0/W7Zs8VjHL774ojDNarVi5syZSExMRHl5OYqKirBp0yZ88MEHPqx46D799FOsWrUKGzduxK+//or09HTk5+ejqanJ16V53dSpUz3W74kTJ4RpL7/8Mr7++mscOHAAP/zwAxoaGjB37lwfVntnOjo6kJ6ejl27dvU7ffv27XjnnXewZ88elJWVITg4GPn5+bDb7cKYhQsX4syZMzh8+DC++eYbHD9+HEuXLh2pCHfsZtkBoKCgwOM5sG/fPo/p/prda4iJ2t69eyksLKzfaQDo888/H/C+r776Kk2dOtXjtvnz51N+fr4XKxw+A2U/ePAgSSQSMpvNwm3vvfceqdVq6u7uJiL/z35NYmIi7dy5c8Dpu3fvpvDwcCE3EdFrr71GqampI1Dd8MnOzqYVK1YI/3e5XBQbG0vbtm3zYVXet3HjRkpPT+93msViIalUSgcOHBBuq66uJgBkNBpHqELvu/F9y+12k16vp6KiIuE2i8VCcrmc9u3bR0REZ8+eJQD0888/C2O+/fZbCggIoD///HPEah+q/t6zFy9eTHPmzBnwPqMl+1DwFhU/t2LFCmi1WmRnZ+Ojjz7yuFy20WhEXl6ex/j8/HwYjcaRLtOrjEYjpk2bhujoaOG2/Px8WK1WnDlzRhgzWrIXFhYiMjIS06dPR1FRkcdXXEajEQ888ABkMplwW35+PmpqatDW1uaLcofM4XCgvLzcY/1JJBLk5eX55fq7mdraWsTGxiIlJQULFy5EfX09AKC8vBxOp9NjOUyaNAkJCQmjajnU1dXBbDZ75AwLC4PBYBByGo1GaDQa3HPPPcKYvLw8SCQSlJWVjXjN3lZaWoqoqCikpqZi2bJlaGlpEaaN9uy3wu8vSjiWbdmyBQ899BBUKhW+//57LF++HO3t7Vi5ciUAwGw2e/wxB4Do6GhYrVZ0dXVBqVT6ouwhGyjXtWmDjfG37CtXrkRmZiYiIiJw8uRJrFu3DiaTCTt27ADQmzM5OdnjPtcvi/Dw8BGveaiam5vhcrn6XX9//PGHj6oaHgaDAcXFxUhNTYXJZMLmzZsxY8YMnD59GmazGTKZrM9+WtHR0cLzfDS4lqW/9X396zkqKspjelBQECIiIvx+WRQUFGDu3LlITk7G+fPn8frrr2PWrFkwGo0IDAwc1dlvFTcqI2jt2rV4++23Bx1TXV3tsTPdYNavXy/8Pn36dHR0dKCoqEhoVMTE29n92e0si1WrVgm3paWlQSaT4bnnnsO2bdv4NNujwKxZs4Tf09LSYDAYkJiYiM8++8xvmmk2NE888YTw+7Rp05CWlobx48ejtLQUubm5PqxMPLhRGUGrV6/GkiVLBh2TkpJyx/M3GAx488030d3dDblcDr1e3+cIgcbGRqjV6hF/E/Rmdr1e3+cIkGs59Xq98K9Yst9oKMvCYDCgp6cHFy9eRGpq6oA5gX8tC3+j1WoRGBjYby5/zXSrNBoNJk6ciHPnzuHhhx+Gw+GAxWLx2Koy2pbDtSyNjY2IiYkRbm9sbERGRoYw5sYdqXt6etDa2jqqlgXQ+9rXarU4d+4ccnNzx1T2gXCjMoJ0Oh10Ot2wzb+yshLh4eHCJ+2cnBwcPHjQY8zhw4eRk5MzbDUMxJvZc3JysHXrVjQ1NQmbRA8fPgy1Wo0pU6YIY8SS/UZDWRaVlZWQSCRC7pycHLzxxhtwOp2QSqUAenOmpqb65dc+ACCTyZCVlYWSkhLhKDa3242SkhK88MILvi1umLW3t+P8+fNYtGgRsrKyIJVKUVJSgnnz5gEAampqUF9fL4rnsbckJydDr9ejpKREaEysVivKysqEI/9ycnJgsVhQXl6OrKwsAMDRo0fhdrthMBh8VfqwuHLlClpaWoSmbSxlH5Cv9+Zl/bt06RJVVFTQ5s2bKSQkhCoqKqiiooJsNhsREX311Vf04Ycf0u+//061tbW0e/duUqlUtGHDBmEeFy5cIJVKRWvWrKHq6mratWsXBQYG0qFDh3wV65bcLHtPTw/dfffdNHPmTKqsrKRDhw6RTqejdevWCfPw1+zXO3nyJO3cuZMqKyvp/Pnz9Mknn5BOp6Mnn3xSGGOxWCg6OpoWLVpEp0+fpv3795NKpaL333/fh5UP3f79+0kul1NxcTGdPXuWli5dShqNxuNIr9Fg9erVVFpaSnV1dfTjjz9SXl4eabVaampqIiKi559/nhISEujo0aP0yy+/UE5ODuXk5Pi46ttns9mE1zEA2rFjB1VUVNClS5eIiKiwsJA0Gg19+eWXVFVVRXPmzKHk5GTq6uoS5lFQUEDTp0+nsrIyOnHiBE2YMIEWLFjgq0i3bLDsNpuNXnnlFTIajVRXV0dHjhyhzMxMmjBhAtntdmEe/prdW7hREanFixcTgD4/x44dI6Lew9MyMjIoJCSEgoODKT09nfbs2UMul8tjPseOHaOMjAySyWSUkpJCe/fuHfkwt+lm2YmILl68SLNmzSKlUklarZZWr15NTqfTYz7+mP165eXlZDAYKCwsjBQKBU2ePJneeustjzcwIqLffvuN7r//fpLL5RQXF0eFhYU+qti73n33XUpISCCZTEbZ2dn0008/+bokr5s/fz7FxMSQTCajuLg4mj9/Pp07d06Y3tXVRcuXL6fw8HBSqVT02GOPkclk8mHFd+bYsWP9vqYXL15MRL2HKK9fv56io6NJLpdTbm4u1dTUeMyjpaWFFixYQCEhIaRWq+mpp54SPryI2WDZOzs7aebMmaTT6UgqlVJiYiI9++yzfRpyf83uLQFE1x3PyhhjjDEmInweFcYYY4yJFjcqjDHGGBMtblQYY4wxJlrcqDDGGGNMtLhRYYwxxphocaPCGGOMMdHiRoUxxhhjosWNCmOMMcZEixsVxhhjjIkWNyqMMcYYEy1uVBhjjDEmWtyoMMYYY0y0/h+KmnTi0EcwiAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "import geopandas\n", "from geodatasets import get_path\n", @@ -87,9 +118,9 @@ "\n", "To combine plots, we initialize an axis that we pass to the .plot function when we call it for the world and our meteorite dataframes so that the can draw themselves on the same graph. 'ax=ax' looks a littele weird. We'r passing a variable named ax to an argument with the same name. It's just sort of convention to do it this way. Maybe it would be better to use axis for the variable name and pass that to the plot function. \n", "\n", - "We need to convert our reclong and reclat (longitude and latitude) to numeric values to plot them, so use call .astype(float) to do a type conversion from string.\n", + "Often when we import data, numeric columns will be imported as string data, so we need to convert the reclong and reclat (longitude and latitude) to numeric values to plot them. **We use .astype(float) to do a type conversion from string to float.**\n", "\n", - "You can change the colormap - if you put in a bad value, it'll print a bunch you can try in the error message. And the norm= is to convert the mass to log scale here so that we get nice colors for all of the meteorite masses. " + "**Try changing the colormap** - if you put in a bad value, it'll print a bunch of valid color maps you can try in the error message. Also note that the norm=... is to convert the mass to log scale here so that we get nice colors for all of the meteorite masses. " ] }, { @@ -182,7 +213,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.3" + "version": "3.11.6" } }, "nbformat": 4, diff --git a/D1-Data_Importing_and_Selection.ipynb b/D1-Pandas_Intro_and_Data_Selection.ipynb similarity index 86% rename from D1-Data_Importing_and_Selection.ipynb rename to D1-Pandas_Intro_and_Data_Selection.ipynb index 35a2f2b..81b292d 100644 --- a/D1-Data_Importing_and_Selection.ipynb +++ b/D1-Pandas_Intro_and_Data_Selection.ipynb @@ -4,13 +4,14 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Section D - Pandas\n", - "\n", - "**Topics:** Pandas basics, includeng row and column selections, index, column names, data types and type-casting, and a bit more. \n", - "\n", - "The name \"Pandas\" comes from \"Panel Data\" and \"Python Data Analysis\". \"Panel Data\" refers to two dimensoinal data, often including measurements over time - time series - or collections of things/events. The term \"Pandas\" is a blend of these concepts, reflecting the library's purpose of providing data structures and data analysis tools in Python.\n", - "\n", - "**Pandas** are playfull and memorable, just like **Pandas**!\n", + "# Section D1 - Pandas Data Import and Selection\n", + "**Index**\n", + "* Creating a Dataframe\n", + "* Selecting Columns by Name\n", + "* Selecting Rows and Columns with loc and iloc\n", + "* Selecting Rows with a mask\n", + "* Selecting Rows with .where\n", + "* Using .iterrows\n", "\n", "Pandas has two types of objects, **DataFrames** and **Series**. A dataframe has rows and columns, like a spreadsheet - two dimensional. A single row or column from a dataframe is a Series. If we select a single column from a DataFrame, we get a series, a single dimensional object, and a series can be inserted into a df column. \n", "\n", @@ -377,7 +378,7 @@ }, { "cell_type": "code", - "execution_count": 63, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -479,7 +480,8 @@ "#### *Exercise*:\n", "A few people have moved, please update their addresses:\n", "* People with SSNs '678-90-1234' and '789-01-2345' didn't pay their taxes and are singing the blues in Folsom. \n", - "* People with SSNs '890-12-3456', '901-23-4567', and '123-45-5789' are retiring and moved to Palm Beach." + "* People with SSNs '890-12-3456', '901-23-4567', and '123-45-5789' are retiring and moved to Palm Beach.\n", + "How would you do each of these one at a time with a loop, or all at once in a single operation? " ] }, { @@ -657,14 +659,65 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## The Dataframe Index and why it's important" + "## Selecting rows with a mask\n", + "A mask is a way to say \"give me the rows where this condition is true.\" In pandas, you create the mask by writing a conditional statement resulting in a list of true/false values. Each true/false corresponds with a row in the dataframe. Applying the mask gives you only the rows with a corresponding true value.\n", + "\n", + "We'll look at conditional statements and then a mask example.\n", + "\n", + "### Conditional statements\n", + "Here are a few examples of conditional statements:\n", + "* Their age is greater than 30:\n", + " * `df['Age'] > 30`\n", + "* Their name contains the letter 'a' and they are older than 40:\n", + " * `df['Name'].str.lower().str.contains('a') & (df['Age'] > 40)`\n", + "* They are older than 50 or younger than 30:\n", + " * `(df['Age'] > 50) | (df['Age'] <= 30)`\n", + "\n", + "Note that rather than \"and\" and \"or\" in regular python code, we use \"&\" and \"|\" when comparing pandas series. These are python bitwise operators. \n", + "\n", + "* Bitwise And: `a & b`\n", + "* Bitwise Exclusive Or: `a ^ b`\n", + "* Bitwise Inversion (not): `~ a`\n", + "* Bitwise Or: `a | b`\n", + "\n", + "And when using & and |, we need to put parenthesees around the other expressions to make sure they are evaluated before the bitwise operators. \n", + "* This will error:\n", + " * `df['Age'] > 50 | df['Age'] <= 30`\n", + "* This is correct:\n", + " * `(df['Age'] > 50) | (df['Age'] <= 30)`\n", + "\n", + "https://introcs.cs.princeton.edu/python/appendix_precedence/#:~:text=Order%20of%20Evaluation,the%20and%20or%20or%20operators.\n", + "https://docs.python.org/3/library/operator.html#mapping-operators-to-functions\n", + "\n", + "### Example use of a mask to select some rows:\n", + "Let's select all people/rows from our dataframe where their age is > 45:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "mask_over_45 = df['Age'] > 45\n", + "# mask_under_eq_45 = ~mask_over_45 # example of inverting/negating a mask\n", + "# mask_under_eq_45 = df['Age'] <= 45 # this is equivelant to the line above\n", + "df_over_45 = df[mask_over_45]\n", + "# df_over_45 = df[df['Age'] > 45] # this is equivelant to above.\n", + "print(mask_over_45)\n", + "print(df_over_45)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "#" + "#### *Exercise*\n", + "Use conditional statements to make a mask and check .value_counts() on it to see how many people:\n", + "* Are older than 60\n", + "* Have social security numbers starting with '4'\n", + "* Live in Philatelphia or are named Hannah\n", + "* Do not live in Dallas" ] }, { @@ -672,31 +725,53 @@ "execution_count": null, "metadata": {}, "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, "source": [ - "df = pd.read_csv(\"https://raw.githubusercontent.com/a8ksh4/python_workshop/main/SAMPLE_DATA/titaninc.csv\")\n", - "# Note that by default, an arbitrary numerical index is assigned to the rows.\n", - "# That default index would match exactly with the numeric address of each row, \n", - "# so it is not useful for this example. \n", - "# We instead set the passenger ID as the index - loc refers to this, and iloc \n", - "# refers to the literal numerical address of each row. \n", - "df = df.set_index('PassengerId')" + "## Using .query to select rows\n", + ".query lets us use a sql like syntax to select rows. This is nice becaues it can be more readable than a conditional statement for a mask, it might be better to use a mask for cases like:\n", + "* Your column names have special characters\n", + "* You are generating your query/condition programatically\n", + "* You are using operations like .str.contains or other functions in your query.\n", + "\n", + "Documentation and a few good examples: https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.query.html" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 16, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Name Age City\n", + "SSN \n", + "345-67-8901 Charlie 35 Chicago\n" + ] + } + ], + "source": [ + "filtered_df = df.query('Age > 30 and City == \"Chicago\"')\n", + "print(filtered_df)" + ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "#### *Exercise*\n", - "Use iloc to show these views of the titanic passengers:\n", - "* The 4th through 6th passengers\n", - "* Even numbered passenger rows (not even PassengerId) and columns 1:4." + "## The Dataframe Index" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#" ] }, { @@ -704,7 +779,15 @@ "execution_count": null, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "df = pd.read_csv(\"https://raw.githubusercontent.com/a8ksh4/python_workshop/main/SAMPLE_DATA/titaninc.csv\")\n", + "# Note that by default, an arbitrary numerical index is assigned to the rows.\n", + "# That default index would match exactly with the numeric address of each row, \n", + "# so it is not useful for this example. \n", + "# We instead set the passenger ID as the index - loc refers to this, and iloc \n", + "# refers to the literal numerical address of each row. \n", + "df = df.set_index('PassengerId')" + ] }, { "cell_type": "code", @@ -717,7 +800,10 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Iterating Over rows" + "#### *Exercise*\n", + "Use iloc to show these views of the titanic passengers:\n", + "* The 4th through 6th passengers\n", + "* Even numbered passenger rows (not even PassengerId) and columns 1:4." ] }, { @@ -725,28 +811,19 @@ "execution_count": null, "metadata": {}, "outputs": [], - "source": [ - "for row in df.iterrows():\n", - " print(row)" - ] + "source": [] }, { "cell_type": "markdown", "metadata": {}, - "source": [ - "\n", - "## Type Conversions\n", - "**String to Numeric**\n", - "**String to Datetime**\n", - "**Datetime to Numeric**" - ] + "source": [] }, { - "cell_type": "markdown", + "cell_type": "code", + "execution_count": null, "metadata": {}, - "source": [ - "## String Operations" - ] + "outputs": [], + "source": [] }, { "cell_type": "markdown", diff --git a/D2-Data_Cleaning.ipynb b/D2-Data_Cleaning.ipynb index e69de29..40ae992 100644 --- a/D2-Data_Cleaning.ipynb +++ b/D2-Data_Cleaning.ipynb @@ -0,0 +1,154 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Section D2 - Data Cleaning with Pandas\n", + "\n", + "Sometimes you'll need to pre-process your data before you can analyze it or present it for analysis. A few scenarios:\n", + "* Excluding rows or columns with missing or invalid data:\n", + " * You have a dataset os several measurments made on many samples. Some of the samples don't have all measurements done, so you need to exclude them. You can use dropna to remove rows or columns that are missing the needed measurements. \n", + " * Some samples have negative values reported, but this is impossible and would have been the result of a transcription error. We can exclude these rows. \n", + "\n", + "* Interpolation:\n", + " * You have time series data collected at irregular intervals and need to interpolate it to a regular interval. \n", + " * You have spectoscopy data for many samples that are measured at regular but not precise wavelengths for each sample, and you need to interpolate each sample so the wavelengths all align.\n", + "* Filling Gaps in data\n", + " * You have time series data with small gaps - you dan forward fill, backward fill, \n", + "* Smoothing out noise in data\n", + " * It is common to use a rolling median to smooth out an analog signal - it might be noisy from second to second, but a rolling median over 20 seconds will smooth it. Often the noise is from the mesurement and not the sample, so the noise should be removed.\n", + " * If you have low frequency, e.g. tidal, data with regular high frequency noise in it, you can use a butterworth filter to exclude the high freqency signal (low pass filter) and preserve the signal you want to analyse. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Removing rows with missing data\n", + "We can use df.dropna() to drop rows or columns with NA values. NA is sort of like *None* in regular python. dropna takes an optional 'axix' argument. axis=0 is implied and means to drop rows with NA values. axis=1 will tell dropna to drop all columns with NA values." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
DurationPulseMaxpulseCalories
060.0110.0130.0409.1
160.0117.0145.0479.0
\n", + "
" + ], + "text/plain": [ + " Duration Pulse Maxpulse Calories\n", + "0 60.0 110.0 130.0 409.1\n", + "1 60.0 117.0 145.0 479.0" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "df = pd.read_csv('https://raw.githubusercontent.com/a8ksh4/python_workshop/main/SAMPLE_DATA/pulse_calories_modified.csv')\n", + "df.head(2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### *Exercise*:\n", + "Use df.dropna() to remove rows wit mising vlaues for pulse, calories, or duration. Use df.info() before and after to verify changes to the numbers of rows. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# drop columns with missing values\n", + "d" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.3" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/D4-Advanced_Pandas.ipynb b/D4-Advanced_Pandas.ipynb index f98ad4f..c480c63 100644 --- a/D4-Advanced_Pandas.ipynb +++ b/D4-Advanced_Pandas.ipynb @@ -15,6 +15,8 @@ "## where\n", "\n", "## interpolation\n", + "\n", + "## groupby\n", "\n" ] }, From 5e2e017c5f65aca56ce030a6ff3b6fad83b15d7d Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Wed, 18 Sep 2024 19:07:21 -0700 Subject: [PATCH 23/94] content --- D1-Pandas_Intro_and_Data_Selection.ipynb | 147 ++++++++++++++++++++--- 1 file changed, 127 insertions(+), 20 deletions(-) diff --git a/D1-Pandas_Intro_and_Data_Selection.ipynb b/D1-Pandas_Intro_and_Data_Selection.ipynb index 81b292d..01b6cd5 100644 --- a/D1-Pandas_Intro_and_Data_Selection.ipynb +++ b/D1-Pandas_Intro_and_Data_Selection.ipynb @@ -4,15 +4,17 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Section D1 - Pandas Data Import and Selection\n", + "# Section D1 - Pandas Intro and Data Selection\n", "**Index**\n", + "* General Info\n", "* Creating a Dataframe\n", "* Selecting Columns by Name\n", "* Selecting Rows and Columns with loc and iloc\n", - "* Selecting Rows with a mask\n", - "* Selecting Rows with .where\n", "* Using .iterrows\n", + "* Selecting Rows with a mask\n", + "* Selecting Rows with .query\n", "\n", + "## General Info\n", "Pandas has two types of objects, **DataFrames** and **Series**. A dataframe has rows and columns, like a spreadsheet - two dimensional. A single row or column from a dataframe is a Series. If we select a single column from a DataFrame, we get a series, a single dimensional object, and a series can be inserted into a df column. \n", "\n", "By convention, we'll import pandas as \"pd\" to save us some typing.\n", @@ -58,12 +60,14 @@ "\n", " df = pd.read_json(json_data, ...)\n", "\n", + "The json data would need to be structured as a dictionary of lists or a list of dictionaries, as described in the next two examples!\n", + "\n", "**Dictionary of Lists to DataFrame**" ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 2, "metadata": {}, "outputs": [ { @@ -100,20 +104,9 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " Name Age City\n", - "0 Alice 25 New York\n", - "1 Bob 30 Los Angeles\n", - "2 Charlie 35 Chicago\n" - ] - } - ], + "outputs": [], "source": [ "data = [\n", " {'Name': 'Alice', 'Age': 25, 'City': 'New York'},\n", @@ -268,6 +261,120 @@ "df.head()" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## DataFrame Index and Columns\n", + "df.index and df.columns are identifiers for rows and columns of a dataframe. They can both be numeric or descriptive. It's common to have descriptive column names, and the have the index might start out matching the row numbers, but we can re-assign it to a column, like a primary-key, before we join two dataframes or similar operations between dataframes that reference the index. As we'll look at below, we can also use .iloc to access and modify rows based on their index and columns, so we should know how to set them.\n", + "set to a column that has a sort of primary key for each row of the data. \n", + "Let's create a new dataframe for this example:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " fruit color weight kg\n", + "0 apple red 0.20\n", + "1 banana yellow 0.30\n", + "2 cherry red 0.05\n", + "3 date brown 0.10\n" + ] + } + ], + "source": [ + "fruits = pd.DataFrame({'fruit': ['apple', 'banana', 'cherry', 'date'],\n", + " 'color': ['red', 'yellow', 'red', 'brown'],\n", + " 'weight kg': [0.2, 0.3, 0.05, 0.1]})\n", + "print(fruits)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Right now, the index matches the row numbers. Let's do a few manipulations of the index to see how that works:\n", + "* Change the index to the fruit column\n", + "* Modify the index after changing it. \n", + "* Reset the index back to numeric" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " fruit color weight kg\n", + "fruit \n", + "apple apple red 0.20\n", + "banana banana yellow 0.30\n", + "cherry cherry red 0.05\n", + "date date brown 0.10\n", + " fruit color weight kg\n", + "fruit \n", + "Apple apple red 0.20\n", + "Banana banana yellow 0.30\n", + "Cherry cherry red 0.05\n", + "Date date brown 0.10\n", + " fruit color weight kg\n", + "0 apple red 0.20\n", + "1 banana yellow 0.30\n", + "2 cherry red 0.05\n", + "3 date brown 0.10\n" + ] + } + ], + "source": [ + "fruits.index = fruits['fruit']\n", + "print(fruits)\n", + "fruits.index = fruits.index.str.capitalize()\n", + "print(fruits)\n", + "fruits = fruits.reset_index(drop=True)\n", + "print(fruits)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "And let's do something similar with the columns:\n", + "* We'll capitalize the columns\n", + "* and replace any spaces in the column names with an underscore character" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Fruit Color Weight_kg\n", + "0 apple red 0.20\n", + "1 banana yellow 0.30\n", + "2 cherry red 0.05\n", + "3 date brown 0.10\n" + ] + } + ], + "source": [ + "fruits.columns = fruits.columns.str.capitalize()\n", + "fruits.columns = fruits.columns.str.replace(' ', '_')\n", + "print(fruits)" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -479,8 +586,8 @@ "source": [ "#### *Exercise*:\n", "A few people have moved, please update their addresses:\n", - "* People with SSNs '678-90-1234' and '789-01-2345' didn't pay their taxes and are singing the blues in Folsom. \n", - "* People with SSNs '890-12-3456', '901-23-4567', and '123-45-5789' are retiring and moved to Palm Beach.\n", + "* People with SSNs '678-90-1234' and '789-01-2345' didn't pay their taxes and are singing the blues in 'Folsom'. \n", + "* People with SSNs '890-12-3456', '901-23-4567', and '123-45-5789' are retiring and moved to 'Palm Beach'.\n", "How would you do each of these one at a time with a loop, or all at once in a single operation? " ] }, @@ -737,7 +844,7 @@ "* You are generating your query/condition programatically\n", "* You are using operations like .str.contains or other functions in your query.\n", "\n", - "Documentation and a few good examples: https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.query.html" + "Documentation and a few good examples: https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.query.html. This shows an example with quoting a column name with a space in it. " ] }, { From 7abb65e8c95f8875636d78ee5718028d237f9fc4 Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Sat, 21 Sep 2024 11:09:59 -0700 Subject: [PATCH 24/94] content --- D1-Pandas_Intro_and_Data_Selection.ipynb | 218 ++++++++--------------- D2-Data_Cleaning.ipynb | 135 ++++++++------ D4-Advanced_Pandas.ipynb | 4 + SAMPLE_DATA/pulse_calories_modified.csv | 2 + 4 files changed, 155 insertions(+), 204 deletions(-) diff --git a/D1-Pandas_Intro_and_Data_Selection.ipynb b/D1-Pandas_Intro_and_Data_Selection.ipynb index 01b6cd5..0d591f3 100644 --- a/D1-Pandas_Intro_and_Data_Selection.ipynb +++ b/D1-Pandas_Intro_and_Data_Selection.ipynb @@ -38,6 +38,12 @@ " big_df = pd.concat(a_list_of_small_dataframes) # concatenate dataframes together\n", " ...and more\n", "\n", + "**A note regarding inplace operations** - Many pandas functions take an argument \"inplace=True/False\". Setting it to true means that the change will be made on the existing dataframe that your variable points to and the function will return None. Setting it to false (or omiting the option) means that the function will return a modified copy of the dataframe that you need to assign to your variable to see the changes. These are roughly equivelant:\n", + " \n", + " df = df.foo() # inplace=False is default\n", + " df.foo(inplace=True)\n", + "\n", + "\n", "## Creating a Dataframe\n", "We can create an empty dataframe:\n", "\n", @@ -141,12 +147,12 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 18, "metadata": {}, "outputs": [], "source": [ "# *We'll use this \"df\" for a few exercises below, so make sure to run this cell before continuing.*\n", - "df = pd.read_csv(\"https://raw.githubusercontent.com/a8ksh4/python_workshop/main/SAMPLE_DATA/iris.csv\")\n", + "flowers = pd.read_csv(\"https://raw.githubusercontent.com/a8ksh4/python_workshop/main/SAMPLE_DATA/iris.csv\")\n", "# You can also try saving iris.csv in the directory with your notebook and opening it from a local path." ] }, @@ -257,8 +263,8 @@ ], "source": [ "# Your code here. You can re-run the above cell if you mess up your dataframe.\n", - "# print(df....)\n", - "df.head()" + "# print(flowers....)\n", + "flowers.head()" ] }, { @@ -266,7 +272,7 @@ "metadata": {}, "source": [ "## DataFrame Index and Columns\n", - "df.index and df.columns are identifiers for rows and columns of a dataframe. They can both be numeric or descriptive. It's common to have descriptive column names, and the have the index might start out matching the row numbers, but we can re-assign it to a column, like a primary-key, before we join two dataframes or similar operations between dataframes that reference the index. As we'll look at below, we can also use .iloc to access and modify rows based on their index and columns, so we should know how to set them.\n", + "**df.index** and **df.columns** are identifiers for rows and columns of a dataframe. They can both be numeric or descriptive. It's common to have descriptive column names and an index matching the row numbers, but we can re-assign the index to a column, like a primary-key, before we join two dataframes or perform similar operations between dataframes that reference the index. As we'll look at below, we can also use .iloc to access and modify rows based on their index and columns, so we should know how to set them.\n", "set to a column that has a sort of primary key for each row of the data. \n", "Let's create a new dataframe for this example:" ] @@ -302,44 +308,23 @@ "Right now, the index matches the row numbers. Let's do a few manipulations of the index to see how that works:\n", "* Change the index to the fruit column\n", "* Modify the index after changing it. \n", - "* Reset the index back to numeric" + "* Reset the index back to numeric\n", + "\n", + "https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.set_index.html#pandas.DataFrame.set_index\n", + "https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.reset_index.html#pandas.DataFrame.reset_index" ] }, { "cell_type": "code", - "execution_count": 14, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " fruit color weight kg\n", - "fruit \n", - "apple apple red 0.20\n", - "banana banana yellow 0.30\n", - "cherry cherry red 0.05\n", - "date date brown 0.10\n", - " fruit color weight kg\n", - "fruit \n", - "Apple apple red 0.20\n", - "Banana banana yellow 0.30\n", - "Cherry cherry red 0.05\n", - "Date date brown 0.10\n", - " fruit color weight kg\n", - "0 apple red 0.20\n", - "1 banana yellow 0.30\n", - "2 cherry red 0.05\n", - "3 date brown 0.10\n" - ] - } - ], + "outputs": [], "source": [ - "fruits.index = fruits['fruit']\n", + "fruits = fruits.set_index('fruit')\n", "print(fruits)\n", "fruits.index = fruits.index.str.capitalize()\n", "print(fruits)\n", - "fruits = fruits.reset_index(drop=True)\n", + "fruits = fruits.reset_index()\n", "print(fruits)" ] }, @@ -354,21 +339,9 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " Fruit Color Weight_kg\n", - "0 apple red 0.20\n", - "1 banana yellow 0.30\n", - "2 cherry red 0.05\n", - "3 date brown 0.10\n" - ] - } - ], + "outputs": [], "source": [ "fruits.columns = fruits.columns.str.capitalize()\n", "fruits.columns = fruits.columns.str.replace(' ', '_')\n", @@ -396,7 +369,7 @@ "outputs": [], "source": [ "# a single column is a series object, so sepal_lenghts is a series.\n", - "sls = df['sepal_length']\n", + "sls = flowers['sepal_length']\n", "print('Some of the sepal lenghths are:\\n', sls)\n", "print('All the lenghts are:\\n', list(sls))" ] @@ -435,10 +408,10 @@ "metadata": {}, "outputs": [], "source": [ - "df['sepal_length_inches'] = df['sepal_length'] * 0.393701\n", + "flowers['sepal_length_inches'] = flowers['sepal_length'] * 0.393701\n", "\n", - "length_columns = sorted([c for c in df.columns if 'length' in c])\n", - "print('length comparison:\\n', df[length_columns])" + "length_columns = sorted([c for c in flowers.columns if 'length' in c])\n", + "print('length comparison:\\n', flowers[length_columns])" ] }, { @@ -458,17 +431,17 @@ "metadata": {}, "outputs": [], "source": [ - "df['width_difference'] = (df['sepal_width'] - df['petal_width']).abs()\n", + "flowers['width_difference'] = (flowers['sepal_width'] - flowers['petal_width']).abs()\n", "\n", "# Alternate ways of selecting and printing columns are commented out below:\n", "\n", - "# width_columns = df.columns[df.columns.str.contains('width')]\n", + "# width_columns = flowers.columns[df.columns.str.contains('width')]\n", "# width_columns = ['sepal_width', 'petal_width', 'width_difference']\n", - "width_columns = sorted([c for c in df.columns if 'width' in c])\n", + "width_columns = sorted([c for c in flowers.columns if 'width' in c])\n", "\n", "print('Widths:')\n", - "# print(df[['sepal_width', 'petal_width', 'width_difference']])\n", - "print(df[width_columns])" + "# print(flowers[['sepal_width', 'petal_width', 'width_difference']])\n", + "print(flowers[width_columns])" ] }, { @@ -871,46 +844,40 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## The Dataframe Index" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#" + "## Exporting files\n", + "If we want to output our data to a file, there are some built in tools to do this. For excel files, we need to make sure the \"openpyxl\" package is installed - this is the default engine that pandas uses to generate the file. \n", + "\n", + "### Single Sheet Excel\n", + "This is pretty simple, just using the to_excel function and giveng it a filename to write to:" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 21, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Requirement already satisfied: openpyxl in /home/dan/venv/lib/python3.12/site-packages (3.1.5)\n", + "Requirement already satisfied: et-xmlfile in /home/dan/venv/lib/python3.12/site-packages (from openpyxl) (1.1.0)\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], "source": [ - "df = pd.read_csv(\"https://raw.githubusercontent.com/a8ksh4/python_workshop/main/SAMPLE_DATA/titaninc.csv\")\n", - "# Note that by default, an arbitrary numerical index is assigned to the rows.\n", - "# That default index would match exactly with the numeric address of each row, \n", - "# so it is not useful for this example. \n", - "# We instead set the passenger ID as the index - loc refers to this, and iloc \n", - "# refers to the literal numerical address of each row. \n", - "df = df.set_index('PassengerId')" + "%pip install openpyxl\n", + "out_file = 'flowers.xlsx'\n", + "flowers.to_excel(out_file)" ] }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, { "cell_type": "markdown", "metadata": {}, "source": [ - "#### *Exercise*\n", - "Use iloc to show these views of the titanic passengers:\n", - "* The 4th through 6th passengers\n", - "* Even numbered passenger rows (not even PassengerId) and columns 1:4." + "### Multiple Sheets Excel\n", + "For a multi-sheet excel, we need to open a writer and write in each sheet. We use a with statement so the writer is closed automtically after we add our sheets:" ] }, { @@ -918,82 +885,43 @@ "execution_count": null, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "out_file = 'all_data.xlsx'\n", + "sheets = {'flowers': flowers, 'fruits': fruits, 'df': df}\n", + "with pd.ExcelWriter(out_file) as writer:\n", + " for sheet_name, data in sheets.items():\n", + " data.to_excel(writer, sheet_name=sheet_name)" + ] }, { "cell_type": "markdown", "metadata": {}, - "source": [] + "source": [ + "### Other\n", + "There are many other built in options for generating output from a dataframe. A few examples:" + ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Using .apply for arbitrary operations" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, "source": [ + "# csv\n", + "flowers.to_csv('flowers.csv')\n", "\n", + "# json\n", + "flowers.to_json('flowers.json')\n", "\n", + "# html - this generates a table that can be viewed in a web browser\n", + "flowers.to_html('flowers.html')\n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "## Note Regading inplace=True\n", - "changed_dataframe = df.some_modification()\n", - "\n", - "Pandas is phasing out inplace modification. It can still be done by passing the 'inplace=True'\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "## Concatenation\n", - "When we read in multiple files, we can concatenate them into a single dataframe. \n", - "Example should show adding an identifier row and pulling date from file name.\n", - "\n", - "## Join Operations\n", - "\n", - "## Stack and Unstack (sort of like a povit table)\n", - "**Stack** - This function pivots the columns of a DataFrame into its index, effectively \"stacking\" the data vertically. It converts a DataFrame from a wide format to a long format.\n", - "**Unstack** - This is the reverse of stack. It pivots the index of a DataFrame back into columns, converting it from a long format to a wide format.\n", - "\n", - "What does this mean and why!!!???\n", - "\n", - "## Plotting\n", - "\n", - "## Exporting files\n", - "### Plain Excel\n", - "### Multiple Sheets Excel\n", - "### Other" + "# sql - note that you need to remove the .db file to re-run this cell\n", + "import sqlite3\n", + "conn = sqlite3.connect('flowers.db')\n", + "flowers.to_sql('flowers', conn)" ] }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, { "cell_type": "markdown", "metadata": {}, diff --git a/D2-Data_Cleaning.ipynb b/D2-Data_Cleaning.ipynb index 40ae992..370002a 100644 --- a/D2-Data_Cleaning.ipynb +++ b/D2-Data_Cleaning.ipynb @@ -26,75 +26,78 @@ "metadata": {}, "source": [ "## Removing rows with missing data\n", - "We can use df.dropna() to drop rows or columns with NA values. NA is sort of like *None* in regular python. dropna takes an optional 'axix' argument. axis=0 is implied and means to drop rows with NA values. axis=1 will tell dropna to drop all columns with NA values." + "nWe can check to see if any rows in our data have NaN values using the .isnull() check. NaN is sort of like *None* in regular python. And we can follow with We can use df.dropna() to drop rows or columns with NaN values. https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.dropna.html\n", + "\n", + "dropna takes an optional 'axis' argument. axis=0 is implied and means to drop rows with NaN values. axis=1 will tell dropna to drop all columns with NaN values.\n", + "\n", + "Let's import some data tracking workout length, average pulse, max pulse, and calories burned. This data was entered manually and might have some missing values:" ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 10, "metadata": {}, "outputs": [ { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
DurationPulseMaxpulseCalories
060.0110.0130.0409.1
160.0117.0145.0479.0
\n", - "
" - ], - "text/plain": [ - " Duration Pulse Maxpulse Calories\n", - "0 60.0 110.0 130.0 409.1\n", - "1 60.0 117.0 145.0 479.0" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" + "name": "stdout", + "output_type": "stream", + "text": [ + " Duration Pulse Maxpulse Calories\n", + "0 60.0 110.0 130.0 409.1\n", + "1 60.0 117.0 145.0 479.0\n", + "\n", + "RangeIndex: 169 entries, 0 to 168\n", + "Data columns (total 4 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 Duration 168 non-null float64\n", + " 1 Pulse 168 non-null float64\n", + " 2 Maxpulse 168 non-null float64\n", + " 3 Calories 164 non-null float64\n", + "dtypes: float64(4)\n", + "memory usage: 5.4 KB\n", + "None\n" + ] } ], "source": [ "import pandas as pd\n", "df = pd.read_csv('https://raw.githubusercontent.com/a8ksh4/python_workshop/main/SAMPLE_DATA/pulse_calories_modified.csv')\n", - "df.head(2)" + "print(df.head(2))\n", + "print(df.info())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can check for NaN values with df.isnull(). This function returns a dataframe of the same shape as df, but entirely boolean values with true/false indicating whether or not each cell was NaN. The \".any(axis=1)\" checks each row in the resulting dataframe and reports true if any cell in that row is true. So na_rows is a boolean series reporting any NaN values that we can use as a mask to view them in the original dataframe:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Duration Pulse Maxpulse Calories\n", + "8 NaN 109.0 133.0 195.1\n", + "17 45.0 90.0 112.0 NaN\n", + "27 60.0 103.0 132.0 NaN\n", + "91 45.0 107.0 137.0 NaN\n", + "118 60.0 105.0 125.0 NaN\n", + "135 20.0 NaN 156.0 189.0\n", + "141 60.0 97.0 127.0 NaN\n", + "146 60.0 107.0 NaN 400.0\n" + ] + } + ], + "source": [ + "na_rows = df.isnull().any(axis=1)\n", + "print(df[na_rows])" ] }, { @@ -102,7 +105,21 @@ "metadata": {}, "source": [ "#### *Exercise*:\n", - "Use df.dropna() to remove rows wit mising vlaues for pulse, calories, or duration. Use df.info() before and after to verify changes to the numbers of rows. " + "Use df.dropna() to remove rows wit mising vlaues for pulse, calories, or duration. Use df.info() before and after, and verify with the above na_rows code cell to verify changes to the numbers of rows." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Setting data type of columns" ] }, { @@ -116,7 +133,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "##" + "## Inerpolatoin of time series data" ] }, { diff --git a/D4-Advanced_Pandas.ipynb b/D4-Advanced_Pandas.ipynb index c480c63..49d20c3 100644 --- a/D4-Advanced_Pandas.ipynb +++ b/D4-Advanced_Pandas.ipynb @@ -8,9 +8,13 @@ "\n", "**Topics**: loc and iloc, groupby, stack, unstack, pivot, ...\n", "\n", + "## Join and Concatenate\n", + "\n", "## Wide Format vs Long Format\n", "\n", "## stack, unstack, and pivot\n", + "**Stack** - This function pivots the columns of a DataFrame into its index, effectively \"stacking\" the data vertically. It converts a DataFrame from a wide format to a long format.\n", + "**Unstack** - This is the reverse of stack. It pivots the index of a DataFrame back into columns, converting it from a long format to a wide format.\n", "\n", "## where\n", "\n", diff --git a/SAMPLE_DATA/pulse_calories_modified.csv b/SAMPLE_DATA/pulse_calories_modified.csv index bfead9b..2e18f27 100644 --- a/SAMPLE_DATA/pulse_calories_modified.csv +++ b/SAMPLE_DATA/pulse_calories_modified.csv @@ -152,6 +152,7 @@ Duration,Pulse,Maxpulse,Calories 60,185,134,343.0 60,109,129,353.2 60,109,138,374.0 +'foo','bar','bla','asd' 30,150,167,275.8 60,105,128,328.0 60,111,151,368.5 @@ -168,3 +169,4 @@ Duration,Pulse,Maxpulse,Calories 60,-115,145,310.2 75,120,150,320.4 75,125,150,330.4 +a,b,c,d \ No newline at end of file From 8d7b2872c9e913ee499dd297dd2f59faf7fad2ef Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Sat, 21 Sep 2024 12:22:59 -0700 Subject: [PATCH 25/94] content --- D1-Pandas_Intro_and_Data_Selection.ipynb | 33 +++- D2-Data_Cleaning.ipynb | 241 +++++++++++++++++++---- 2 files changed, 232 insertions(+), 42 deletions(-) diff --git a/D1-Pandas_Intro_and_Data_Selection.ipynb b/D1-Pandas_Intro_and_Data_Selection.ipynb index 0d591f3..b22c801 100644 --- a/D1-Pandas_Intro_and_Data_Selection.ipynb +++ b/D1-Pandas_Intro_and_Data_Selection.ipynb @@ -267,6 +267,34 @@ "flowers.head()" ] }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 150 entries, 0 to 149\n", + "Data columns (total 5 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 sepal_length 150 non-null float64\n", + " 1 sepal_width 150 non-null float64\n", + " 2 petal_length 150 non-null float64\n", + " 3 petal_width 150 non-null float64\n", + " 4 species 150 non-null object \n", + "dtypes: float64(4), object(1)\n", + "memory usage: 6.0+ KB\n" + ] + } + ], + "source": [ + "flowers.info()" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -925,7 +953,10 @@ { "cell_type": "markdown", "metadata": {}, - "source": [] + "source": [ + "#### *Exercise*:\n", + "To wrap up this notebook, let's " + ] } ], "metadata": { diff --git a/D2-Data_Cleaning.ipynb b/D2-Data_Cleaning.ipynb index 370002a..62d9da8 100644 --- a/D2-Data_Cleaning.ipynb +++ b/D2-Data_Cleaning.ipynb @@ -21,49 +21,42 @@ " * If you have low frequency, e.g. tidal, data with regular high frequency noise in it, you can use a butterworth filter to exclude the high freqency signal (low pass filter) and preserve the signal you want to analyse. " ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Removing rows with missing data\n", - "nWe can check to see if any rows in our data have NaN values using the .isnull() check. NaN is sort of like *None* in regular python. And we can follow with We can use df.dropna() to drop rows or columns with NaN values. https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.dropna.html\n", - "\n", - "dropna takes an optional 'axis' argument. axis=0 is implied and means to drop rows with NaN values. axis=1 will tell dropna to drop all columns with NaN values.\n", - "\n", - "Let's import some data tracking workout length, average pulse, max pulse, and calories burned. This data was entered manually and might have some missing values:" - ] - }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 38, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - " Duration Pulse Maxpulse Calories\n", - "0 60.0 110.0 130.0 409.1\n", - "1 60.0 117.0 145.0 479.0\n", + " Duration Pulse Maxpulse Calories\n", + "0 60 110 130 409.1\n", + "1 60 117 145 479.0\n", + " Duration Pulse Maxpulse Calories\n", + "169 75 125 150 330.4\n", + "170 a b c d\n", "\n", - "RangeIndex: 169 entries, 0 to 168\n", + "RangeIndex: 171 entries, 0 to 170\n", "Data columns (total 4 columns):\n", - " # Column Non-Null Count Dtype \n", - "--- ------ -------------- ----- \n", - " 0 Duration 168 non-null float64\n", - " 1 Pulse 168 non-null float64\n", - " 2 Maxpulse 168 non-null float64\n", - " 3 Calories 164 non-null float64\n", - "dtypes: float64(4)\n", - "memory usage: 5.4 KB\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 Duration 170 non-null object\n", + " 1 Pulse 170 non-null object\n", + " 2 Maxpulse 170 non-null object\n", + " 3 Calories 166 non-null object\n", + "dtypes: object(4)\n", + "memory usage: 5.5+ KB\n", "None\n" ] } ], "source": [ "import pandas as pd\n", - "df = pd.read_csv('https://raw.githubusercontent.com/a8ksh4/python_workshop/main/SAMPLE_DATA/pulse_calories_modified.csv')\n", + "# df = pd.read_csv('https://raw.githubusercontent.com/a8ksh4/python_workshop/main/SAMPLE_DATA/pulse_calories_modified.csv')\n", + "df = pd.read_csv('./SAMPLE_DATA/pulse_calories_modified.csv')\n", "print(df.head(2))\n", + "print(df.tail(2))\n", "print(df.info())" ] }, @@ -71,41 +64,207 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "We can check for NaN values with df.isnull(). This function returns a dataframe of the same shape as df, but entirely boolean values with true/false indicating whether or not each cell was NaN. The \".any(axis=1)\" checks each row in the resulting dataframe and reports true if any cell in that row is true. So na_rows is a boolean series reporting any NaN values that we can use as a mask to view them in the original dataframe:" + "## Setting correct data type for columns\n", + "Right now, df.info is reporting a data type of \"object\" for all columns. Also note the invalid string characters in df.tail output. We can use `.astype(...)` to convert the data to numeric. astype will raise an exception if any of the values in the column(s) cannot be converted to the given data type(s). When this happens, we can either identify and fix those values first or we can include `errors='ignore'` as an argument. \n", + "\n", + "https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.astype.html\n", + "\n", + "#### *Exercise*\n", + "Run the folowing cell to convert the columns to numerc data types and modify it as needed resolve the error from astype. Add a print statement for df_numeric.info to verify the new data types of each of the columns.\n", + "What happenend to the string values in the last row of the dataframe?\n", + "\n", + "Also take note of the different usage examples commented out. " + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
DurationPulseMaxpulseCalories
16660110145300.0
16760-115145310.2
16875120150320.4
16975125150330.4
170abcd
\n", + "
" + ], + "text/plain": [ + " Duration Pulse Maxpulse Calories\n", + "166 60 110 145 300.0\n", + "167 60 -115 145 310.2\n", + "168 75 120 150 320.4\n", + "169 75 125 150 330.4\n", + "170 a b c d" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Single column method:\n", + "# df['Duration'] = df['Duration'].astype('int')\n", + "\n", + "# Multiple columns method:\n", + "# df = df.astype('float')\n", + "\n", + "# Multiplue columns method:\n", + "df_numeric = df.astype({'Duration': 'int', \n", + " 'Pulse': 'int', \n", + " 'Maxpulse': 'int', \n", + " 'Calories': 'float'}, \n", + " errors='ignore')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Since the string values we want to drop are still inculded, we can try using to_numeric rather than astype. To_numeric accepts an option, errors='coerce', that will tell it to convert incompatible values to NaN rather than preserving the invalid value as astype does. \n", + "\n", + "But to_numeric works only on series data (a single column), so we need to do it once per column or use .apply to run it against all columns. \n", + "\n", + "https://pandas.pydata.org/docs/reference/api/pandas.to_numeric.html#pandas.to_numeric" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [], + "source": [ + "# If I didn't know about .apply, I would use this to convert each column:\n", + "# df_numeric = df.copy()\n", + "# for col in df_numeric.columns:\n", + "# df_numeric[col] = pd.to_numeric(df_numeric[col], errors='coerce')\n", + "\n", + "# But this is much more efficient, and in the spirit of how pandas is intended to be used:\n", + "df_numeric = df.apply(pd.to_numeric, errors='coerce')\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A helpful way to see what was changed is to make a mask indicating which rows in df_numeric have NaN values now, and use the mask to see the original rows still preserved in df. Below, .isnull() returns a boolean dataframe of the same shape as the df it's called against with true/false indicating if each cell is NaN. And .any looks along the given axis and reports true for any row that has a true in it, returning a series object that we use as a mask. axis=1 means check each row, and axis=0 would mean check each column." ] }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 42, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - " Duration Pulse Maxpulse Calories\n", - "8 NaN 109.0 133.0 195.1\n", - "17 45.0 90.0 112.0 NaN\n", - "27 60.0 103.0 132.0 NaN\n", - "91 45.0 107.0 137.0 NaN\n", - "118 60.0 105.0 125.0 NaN\n", - "135 20.0 NaN 156.0 189.0\n", - "141 60.0 97.0 127.0 NaN\n", - "146 60.0 107.0 NaN 400.0\n" + " Duration Pulse Maxpulse Calories\n", + "8 NaN 109 133 195.1\n", + "17 45 90 112 NaN\n", + "27 60 103 132 NaN\n", + "91 45 107 137 NaN\n", + "118 60 105 125 NaN\n", + "135 20 NaN 156 189.0\n", + "141 60 97 127 NaN\n", + "146 60 107 NaN 400.0\n", + "153 'foo' 'bar' 'bla' 'asd'\n", + "170 a b c d\n" ] } ], "source": [ - "na_rows = df.isnull().any(axis=1)\n", - "print(df[na_rows])" + "# print rows which will cause errors in astype conversoin to numeric types:\n", + "numeric_na_rows = df_numeric.isnull().any(axis=1)\n", + "print(df[numeric_na_rows])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "#### *Exercise*:\n", - "Use df.dropna() to remove rows wit mising vlaues for pulse, calories, or duration. Use df.info() before and after, and verify with the above na_rows code cell to verify changes to the numbers of rows." + "## Removing rows with NaN values\n", + "Now that we have only numeric values and NaN values, we can pretty simply call df.dropna() to drop rows (or cols if we specify the axis argument) that have a NaN in them. \n", + "\n", + "https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.dropna.html\n", + "\n", + "#### *Exescise*:\n", + "Run df_numeric.dropna() in the following cell and use .info() to see how many rows we are left with. How many were removed from the original df dataframe?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Identifying bad data analytically\n", + "We have a bunch of numeric data in our dataframe now, but we might " ] }, { From 5bf6a4023aef9c40a62f1ab9de93830ab17af54d Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Sat, 21 Sep 2024 15:35:41 -0700 Subject: [PATCH 26/94] content --- D0-Pandas_Example.ipynb | 36 +-- D1-Pandas_Intro_and_Data_Selection.ipynb | 355 +++-------------------- D2-Data_Cleaning.ipynb | 66 ++++- D3-Pandas_Graphing.ipynb | 47 +++ D4-Advanced_Pandas.ipynb | 7 +- README.md | 14 +- 6 files changed, 183 insertions(+), 342 deletions(-) diff --git a/D0-Pandas_Example.ipynb b/D0-Pandas_Example.ipynb index c6be62d..2e57710 100644 --- a/D0-Pandas_Example.ipynb +++ b/D0-Pandas_Example.ipynb @@ -77,30 +77,9 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAEbCAYAAAD0/q8mAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACXRUlEQVR4nOzdZXRbV9aA4feKLTMzc+IwMzZpk0LKzMzTlGc6X9tpZ8qddsrMzAxhZiYnMTODbNni+/1wosS1nZgt2+dZK6u1dHV1ZJD2PWefvSVZlmUEQRAEQRBckKKvByAIgiAIgtAWEagIgiAIguCyRKAiCIIgCILLEoGKIAiCIAguSwQqgiAIgiC4LBGoCIIgCILgskSgIgiCIAiCyxKBiiAIgiAILkvV1wPoKofDQVFREZ6enkiS1NfDEQRBEAShHWRZpq6ujrCwMBSKtudN+n2gUlRURGRkZF8PQxAEQRCETsjPzyciIqLN+/t9oOLp6Qk0vVAvL68+Ho0gCIIgCO1hMBiIjIx0fo63pd8HKkeXe7y8vESgIgiCIAj9zMnSNkQyrSAIgiAILksEKoIgCIIguCwRqAiCIAiC4LJEoCIIgiAIgssSgYogCIIgCC5LBCqCIAiCILgsEagIgiAIguCy+n0dFUEQWlfbaGVrThV1JhsWmwOz3YHF5gBApZBQKqRj/1VKqBSKZl/7uWuJ8HXD310j2lMIgtBnRKAiDCqyLFNQ3UiDxU6gpxZfvZpf9hSzNaeakloTBpOVerMNq13G7nBgc8joVEq83FTUmWzUmWwYzTYUCgmNUoFWpUCjavqvVqVEq1agUSrQqZV46lR46lQEeeqIDXBnTLQvvu6abnkd6SUGdubVkF5SR3qJgaxyIw4ZlApQKRQoFFBUY8LukLv8XG5qJRG+bkT4uhHppycp2JN5Q4MJ8tR1wysRBEE4MRGoCAPSxqxK0osNVDVYMVvtVBktVBktHCg2UFRrch4X5q1r9nV3cNcoCfDU4u+uIcRbh4dWTW2jlb2FtRhMNsrqTNSbbNRbmoIek9WBLINMU1AR6atnWLg3h8rq2J1fy96iWjx1auID3YkL9MDfXcMve4rJq2ygusGC+cgsSWelhHjiplFid8jY7DIOWcbLTU2Un55IXz2hPjpqG6xkVRjx0Ws4b0wEOrXS+XhZljE02qhqsFBlNGO1y3jp1Hjr1Xi7qfHQircZQRA6T7yDCP2eze5gW241h0rrsNhl4gPdCfXSYbY5+Hl3EVnlxjYf291ByuR4fy4eH8XEOH8UEuwprCW7wsjKQ+X8tKuoC2du5ECxodvGebz0krpWb9+cXdXitklx/jzZaCWn0khRTSNVRivVDZZWZ24i/dxICfHi7wtSiQ1w7/ZxD3SyLA/IJTe7QyajrJ6i2kbKDCa83TRMivPHW6/u66EJLkqSZbnrc8N9yGAw4O3tTW1trej1M8g0WGw89+chPtmUi8nafFYhwteNoWFehPm4oVUpMNsc+LlryK4wOpdp3LVKlJLE+sxKtudV05lVEk+diismRTMjKYgoPzeWHihj7eEK9hTWUljT2E2v1HV5aFX4uqvxd9cS4KFhelIgaeHeJAV7uvRMSoPFxtIDZZQZTJTXm6k32Yj216PXqNiaU4VOrSTIU0uQl46EIA9SQ7x67IO0zmSl1GDik015rDxYTnKwJ0khntSbbAyL8GL+0BD0Gtf9XrbX/iIDH23M4efdxdSZbM3ukyQYFenDpROiWTg8tNmMnTBwtffzWwQqQr9lszt4f30O3+8spLjGhCRBRb2lzeOnJPgzLNybnfk1bM2pxtaOyEQhgbtGhVatRKdWEOylY0SED/4eGoI8tcxPC8FL1/QBJssy5fVmcisb+GNvCW+vze621+rK5g0J5tGzhhLq7dbXQwGafg5vr8lmb1Et+VUNaFVKZqUEYrXLfLElnzqTlQAPLaMiffDz0BDspWPt4YqmHCSzjXqzFbWiKc9Ir1ES6uPGmSPCmJ0ShFLRczMcsixT02DF202Nogefpy9Z7Q7+8d0evtle2Gb+lJ+7hs+un0hyiCcWmwOVQhqw34/BTgQqgstxOGS251VzqLSeSD83xkb74aZpfuVUWNPIqysyWJ9ZifeRPIlofz0pIV6clhaCQiGxPL2U/KpG/D00TIj1J9BTC8B9X+/iy60FrT53WrgXUxMCUCkU1JttfLopD4u9fbkdo6N8eOfKcc5EWFmWqW20kl/VSEF1A/nVDeRXNZJX1fT/BdWNzt01A919pyZz84x4l1ui2JVfw9+/28O+ohMvl2mUChKDPZidEsR5YyKI9hdLVL3BaLaxK7+GnMoGSg0mSg1NiezuGhWeOjUXjI3g/37cx+bsKjRKBUPCvBgd5cuslECmJQb29fCFbuISgUpMTAy5ubktbr/lllt45ZVXmDlzJqtWrWp234033sjrr7/e7ucQgUr/YLLa+XVPMfuKDDRYbET5uXP1lJhWp3iLaxupNlqxORwUVjeyp7CWgupGhkd4c+3UWPYVGXhh6WHqTFZCvHXcMjMeD52aUC8tmeVGSg1mDCYrVrsDN7WScF83rHaZP/aVoFEqWHmwjF0FtScd84RYP0ZG+jA2xo8ZSYFoVE1lhx7/eT/L08vIrjTSv8P8rvv59qmkhXv39TBaJcsyW3Kq+XJrPrsLajhcVt/s5+WuUfLmFWOZkhCALMs8+Vs6Sw+UolUpuXJyNNMSAwnzcY1ZosGkoLqBV1ZkIkng49aUkO1zJDE7KdiTuECPvh6i0E1cIlApLy/Hbrc7v967dy+nnHIKK1asYObMmcycOZOkpCT+9a9/OY/R6/UdCjhEoNL3KuvNLD1QyrIDZRhMVmQZKo0Wnr9gBMMjfICm2ZSsinoOltQT4q0jPtAdH33XtupmVxjZmFVJo9WOh1bFrORAAv+yZdZktVNQ3cAvu0v479JDQFNeiclqx2pv/Vf/vDERjI325ayR4S1mfI5XXNvImsMVHCg2kF5cR4nBREW9ucX6+0ClkGBWchAPnT7E5ZNlVxws4+nfDzoTkhcOD+V/F41yLuXYHTKF1U2zYiql1KM5KX1NlmVkGZdfTqk32/h+RyHb86o5WFJHXmUDkxP8uXJSDInBns6ZVKH/au/nd49maAUGNp+ie/LJJ4mPj2fGjBnO2/R6PSEhIT05DKEHHL1afWdtFkv2l+KQIcRLx5gYX2L93UkNbVpf/mhDDkFeOsJ9mupwJAz3BOBQaR3XfrAVjVLB8xeOaDO/4XBpHeX1ZjLL6tlVUItDllErFNw6K4HKejPZFUZKDSbqTDa+3lZATUNTjkpcgAf/vXAkuVVGPjuyzHPGiDCqjGbsDhkPrRoPrRI3jQpDo5USg4mSWhN+7ho8tCrcNEqsDgdutB2oBHpoCfbSsTGzkoOldVQZj+XHaJQKVMqm4mkSYLE7WiT89lcqhcQ5o8O5cUY88f3k6nZWchCzkoMoM5gwmGyEeuua5ZsoFRJR/nqi/PV9OMqus9od5FY2UNNgacq3MdmoabRyoNjArvwaimtNWG0Ozh4dzqNnDu3zJTub3dH0NyJJFFQ3sC23GoPJhkKCt9dkk13RfMfeH/tK+WNfKQoJLpsYzcGSuqZZMqkpcA7zdmNklA+jo3wZGubVZ6/P4WgqNqCQ6PPv8UDQazkqFouFsLAwFi9ezN///ncAZs6cyb59+5BlmZCQEM444wz++c9/ote3/WZhNpsxm83Orw0GA5GRkWJGpZfJskyl0UJ2hRE3tZIgLy2BHlokSaK2wcrfv9vDL3uKWzxuSKgXC4eHMizcm7UZFbyzNpsQLx3+HhrqTTYePnMoM5KOBbifb85jQ1YlGWX1zfINnjlvOOePjaSwppG9hbX4u2sYFenDM38e4vVVmQAkBnkwLtaP8TF+6NQK9BoV7lolZQYz+dUNGBptNFrt2B0yOrWSaH89pw4N6VRRNodDpt5iQ6dSolZKrb45ybJMicHEzrwadubX8NveEvKqGjr8XK5k1b0zRV5HH3E4ZA6X1bMtt5q9RbXsK6zlQEkdFpsDtVIi2t/dWXsnNsCdGH93Yvz1BHpqe+3Ds7bRyubsKvKqGjCam+oGbcmp4mBJHWZbU0HFSD837Ha520sFXDEpmn+dldat5zyZ/UUGbvt0O3lVDc5kfZVCwkevIS7AvennEODOvKHBxAW4k15Sh5ebGn93zaDc6eQSSz/H+/LLL7nkkkvIy8sjLCwMgDfffJPo6GjCwsLYvXs3999/P+PHj+fbb79t8zyPPPIIjz76aIvbRaDiOirqzRwsqaO6wYJa2VS5dUduNRuzqzhQZECplEgO9iQu0B0vnRq9RoVeo8TPXcNZI8NQKVu2oNpXVMvKg+XYHTLebmoumRBFtdHCP3/YS0ZZPUaznafOG86ICG/++cM+CqobKKxupKzO3MoIj9GoFM7EV393DZdMiOLueck98n35qz0FtXy6OY/vdhT0y9mWSyZE8c+FQ064PCb0jE1Zldz48TZqGqzO2xKCPDhlSDBzU4MZHuGNupW/o55msTn4YH0OS/aXYjBZOVRa16lt/53h765hZKQPIyJ9GBvty5gYX7Sq3v3dLDWY+HVPMb/tKcFosRET0PQed3S5zSHL+OjV3D0vGZVCYumBUnbm15JRVo9SAcnBnlw2KXrQVH12uUBl/vz5aDQafvrppzaPWb58OXPmzCEjI4P4+PhWjxEzKn0rr7KBx3/ZT351I42WpqqqId46wn2b6pVolArcNEomxvkzIynQeZVQajDRYGnKJQnw6HjvGLtDpqbBgr9H07q0ze5wBjRbc6rYmFWJzSGjUkh4uamJ8HVjVKQvHjoVNQ1WahutSFLTVahaqcDPQ4O7RoVSIdFgtmGXZTy0Kix2Bxqlolena3fm13Dt+1uoNLa9tdrVTEnw5/wxkUyI83OZbckDncMhsz6zkm+3F/Db3hIarU35f6cPD2XxKUm9mmRqszsorTNjttpRKxUoFRIWm4PsCiMPfb+312sInTIkmFOGBJMY5IGvXoNdlp3LklZ70xbnk/1N91SBvdoGKzWNFkK93ZwJ+UITl8hROSo3N5elS5eecKYEYMKECQAnDFS0Wi1arUii6itWh4OcSiOHSuudt5UYTOzMr3F+7e2mprjGxK78GvzcNaSFezMxzh+HQ0Y6bs326BvDxqxKyuvMHCqt45c9xZw3JoJbZiY4z2cwWbny3c3syKvBR6/GZpeZFO/PSxeP4o99Jdz5+c5mY/R2U7P4lCSmJwZS22jlvXXZrDxYTlmdieQQT969ahzfbS9k9eFyDpfWk1fVwIXjIpmaGMCD3+yhptGKXqMkMciDU9NCuHBsVI8mVo6M9OHbWyZz9XtbyKpou4puXwv3ceP0EaF46dSE+7hxxoiwHq0rIhwjyzI78ptywlYcLAeacsIePWso84d2LsdPlmXK6sx46dQdmhVbn1nBZW9v6rWZkvZYsr+UJftLnV97u6kZEurF/mIDtY1WZz0kd62K1FBPbpudgE6tPPZPpeCKdzdTamjKUzsaUAwL92bBsFCmJgR0KohZc7icJftLqTPZ0KkVnDE8jMkJAd32ugeLXplReeSRR3jjjTfIz89HpWo7Nlq3bh1Tp05l165dDB8+vF3nFrt+ek9meT0XvL6h1St/jUrB5ROjCfDQ8PveEvYVGZxrtPGB7igkibyqBkK9dSwcHsqOvBoOldZz36nJ1JlsPPbzfgDSwrz45LoJeB/ZEbQxq5KPNuSSXWFk/3El5L10KhYOD+PmGfEs+N8a6s02zh0dwR1zEojw1aNUSJhtdi54fUOzrchKhcTkeH/WHK5o8RpGRfnwzhXjWJdZQV6VkQ2ZVcQHujMxzp+piQF46np2F0hJrYn5L6ymttF68oN7kUKCc0ZHHEl8VPDcBSP6ekiDiizLvLM2m8d/OeC87bwxETxy5tBOV/+1O2Que3sTG7IqgaadcCkhnnx54yQkSeKt1VkEeWk5a2Q4tY1WCqobnLvk/PQaFr26rlny+ED32fUTmRTv36HHfLElj4825lJvsuGj1+CjV+Or1+Dt1vRfH736yD8Nvno1Pm4awnx0rS59D1QuM6PicDh47733uPLKK5sFKZmZmXz66acsWLAAf39/du/ezV133cX06dPbHaT0tEOldZQZzCQEeRDs1TsJaA6H7LLbBg+V1DE1MYCtOdXNpna1KgVLF88gt7KBxV/ubJEXknlcr52cyqYaCUc9+O0eFgwLdX69t8jAf5ce5pEzhwIwMc6fiXH+ZJTV88vuYt5dl01toxVPnZpADw0qpcSclCAsdgcjIr3x99A6r/KVkkROZfNkVbtDbjVIAdhdUMvox5c0u21tRgUfbMhFo1Iwf2gI/z47jcLqRtRKiYQgz458+07I4ZD575JDBHlq8dGrya10jSRbSQKHDF9vKyDIU8vVU2IxWe2DMvGvr7y0PIOXV2Q0uy3IU4t7J3OD0ksMPPvHIWeQAtBgsXPZxGjyqhr4YH0uP+ws5KHTU7n8nU2szahoVn/GQ6siwtdt0AQqbmol5fVm5wywLMu8sTqLUG8do6N8KaszkVvZQKCnloQgD6qNVnIrjVQZrewtPHJx1c6/5+ER3jx4WipjY3z7JMeoNWabHYvN0eMXaifS4zMqf/75J/Pnz+fgwYMkJSU5b8/Pz+eyyy5j7969GI1GIiMjOfvss3nooYdcpo7KV1vz2VNYS5SfnjNHhBHk1b0JTg6HzKGyOnbk1QCwM6+G3/YWo1A0JZtePimaijozWrWSU4YEE+DhOkteP+wsxGS1MzTMm8RgD2fSWnFtI4//fID9xQbyqhpQKyXUSkWHaovo1AoeODWF2SnBLbaLyrJMg8WO+5EryUlPLKP4uN0CwV5a3rpirLN+S86RNfO1Ga0HJ50lSXDBmEgmJ/iTGNSUGNwdH965lUa25FSTUVbP1pwqdhfUtruCbk/QKBW8ecUYvtleyM+7i9CqFDxxzjDOHhXRZ2PqDZX1Zt5Zm011gxWNUqLOZKOothG1UsHYaD/GxfgyMsqn13rw2B0yh8vqePznAzRYbDRaHUT4unHd1FgmxLX/Sv/tNVnNZmaOd/aocP59dhrP/3mIt9dm46lVoVBILjfD11eGhXszPSmAKqOVzzbn9ehzeepUTE8KZHyMH3aHTIPFhtFip+FIt3VvfdNOoZnJQSSHdN8F01+V15l57s+DXDYxukcKO7pcMm1P6W9LP3UmK++uzWHJgRJyKxqoM7f/A9zbTY1KIdFotRPlpycu0J0gTx16jRJfvYYgLy3FtSbc1ErSwr1JCPToUG5FbaOVLdlVZJbXo9eqGBfjy4Pf7iHKT89dc5OI9tezNqOC8bF+aJQKCmsacdeoWmzndThkfthVSHZFA+V1JqBpGWZrTnWHt+PGBbgzOcGfG6bFO4OW5emlNFocTE0I4M4vdrD6UHmz9fKRkT58fsNEZ+BQ02Ahs7yeMoOZwppGMsrqya4w0mCx02CxYTDZMBx5M/bVaxga5oUMbM+rbrar4kTUSonzxkTwf6cP7dIumJs+2sbv+0qcX3vqVDRa7O3qS9QTZiYHEuHrhkqhwFOn4vwxkf2+1sjxzDY7ewtr2VNQy4HiOuyyjAT8treE+hP8bYb7uPHcBSMYFu7tbHjpCupMTb+vHlpVqzPAORVGZj+3stX8Eje1kv3/ms+bq7N44rf0nh6q0A3c1Er2PTq/Q7PwDofMN9sL0KgUBHho8ffQ4KVryv0z2+z4uWucmxZ6mghUukF3ZoHLsuws/b70QOnJH9BNPHUqIn31xAa4My0xgFkpQQR5atmUXcX3OwrZmV+DTq1EkpqWPtpqFKZSSCQEeZBeUsf8ocGU1ZmdM0Ex/nqmJASQEupFfKA78YEeGBqtvLwiA41SQVaFkT0nmBnQKBXEBbrj76HBbHWQVWF0TitPiPXj3vnJpIR6oVcreXddNi+vyECrUlBltHD9tDguHh/FYz/v588jyXR+7k1rvbfPTmRUpA8V9RaGhB373fhzXwk3fLTN+bpiA9w5a2QYN86IbzHduj6zghs/2tbuGaHrp8Xyj4VD2nVsaw6X1rHkQCmy3BRwRfvrmfrUik6fr6tCvHTMSgnitLQQJsX7u8x0dFfVNlj5eFMu76/PofwkW9jb4ueuwWi2YXfIzEwOYmqCPwGeWvzdtYR464jx1/d6sa/XVmby36WHUCkkgr10R3a/+TApPoBxMb4YTDZ+3FnIp5vzmiXEA6SGevHbndO48t3NbM+t7tBFlNB34gPdSQr2pKimqRyDzSGjlCSCvLQEeWqx2mXqTFaGhHlx26xEvN3U3P7ZjhN+Dvm5a0gM8iA11IuZyYFMjg/okR1LIlDpBo/8uI+imkbmDQ1hbmpQh0u+y7LMoz/t55ttBVgdrlOZVKWQevwKXatS4KNXI8tNFSSnJwawNqMCd21T0zFPnQovnRoJma+3FWAw2aioNxPpp+eaKbHEBrpTeaQT8l/Ls2/LrWbN4XIifNxIC/cmJdSLl5Yd5rklh5odNy7Gl/1FBowWO0+fO5wLxkUiyzL3f7O7RfPC0VE+fHLdxBazIfUmG2szyqkyWtiZX8PSA2Wtrs1rlAoumRDFWSPDGB7h0+XdMHsKavl9XzG/7ilpUZ2zpwR5agnzcSPcx40hYV7MSg4iNdRzQFXWzK9q4L11OXy+JY8Gi/3kD+iCcB83ZqcEMSc1iIlx/i2WBvcW1rK7oJYwH92RGdKW24tNVjs78mrYlF3JlpwqTk0L5ayRYSw/UIbZZsdkdbA9r5r04jqunBxDSW0jb6zOwtxKU0xfvZq5qcHMGxrC6CgfLnhjQ7P8MYAFw0L430WjuPurXfyws6h7vyFCn9OoFAwN82JvYW2bLURa8/YVY5k7JLjbxyMClW7wwDe7+XxLPtA0tT8nJZjzx0YwIymwQ5nZZQYTn23O543VmT3+5uhqfPRqTh8eSqSvHocMjRYbDRY7xUfK1V82MZpn/khn6YGyZo8L93HDbLMzPMKHCbF+SBKUGczYZZmd+TXO2ZyLxkWy6lA5FfXmE/7hXTs1lrvnJfH07wd5f31Oi/unJPjz4TUTWgQY13+4lSX7SzllSDBvXTEWm93Bv37ez4cbWjbbPMpTpyI+0IOUEE/unJvY4TojuwtquOCNDT0e2M5ICuS22QkMC/dGpZAG9G6D2kYrj/64jx92FbU5a9iT9BolZwwP4+8LUp3LsUU1jcx+biV2h8y8ISHcf2oKUf56VhwsY1NWFdtyq9iV33ImsjsuNCSJVhtq3jknkb/NTeT5JYd4aXlGywOEQUkEKl3UW4HK8RYOD2V0lC/5VQ3OAmaLRoWfcMalqSmfkR92FvLt9sJeL4gkNH1YtBYopoV7ce7oCK6eEtvivj0FtdSZrIyO9kWnVlJnsvLAN623B2iNh1bFlZOjCfDQMm9oCOHt6Ma7PL2Uaz/Y2mOdmbUqBX+bm8SN0+NcdodZd8ooq+OGD7f1aI0aX72aKD89WRXGNpcJlQqJj64Z76yjUdto5dZPtrM1t4r/XjCSQE8t6SV1PPT93h4bZ1v83DU8c95wRkT68NbqLN5YndXrYxBclwhUuqgnA5Wnfk/nUEkdy9KbX+1LUlNi6/GJlu4aJbfNTuSmGXFIUlOVxq05VazLrGBHXg278mvwdddw/bQ4qhssvLEqy1lZUug9njoVn10/kfI6MwqFRIy/vt29aoxmG2e9so6MsvpW75+aEMB102KprLfw1O/pzbZpp4V78cUNk5y7lU4kvcTAGS+t7dDU7Il4alXEB3kQ7a9n3pAQZiYHtmscxyurM/HvXw5QWN1IiLeOq6fEEuih5fudhRjNNhKDPdmcXcny9DIsNgc3zojn1lkJJz9xD1uyv5S7vth5wsTYvwr20hIX4MGh0rp2VwvWKBUsGhXGrbMS0KqUHCyt41BJHYdK61ApFSQEeTA+xo/1mRV8ta1p2XFGUiA/7Cyior5zOTLdaXyMH+G+bny3o7CvhyK4oL4OVHpnb10/Femr5845ify0qwidWkm92cZrKzPJq2pwBilxge7cOScRH72G8TF+zvX8rIp6PtqYy297j+3gMFoaefjHfX3yWgQI9NTy4TXjueWT7cxNDWJ0lC8h3q1vObc7ZD7fkke9qam8vtFso7qhqT5CWw6X1VFRb+GMEaGcMjSY99bm8MueIs4aGc4N0+PanYiaEuLFz7dP4+aPOz8LMD0pkKunxJAQ6EGEr1uX80ysdpkFw0LZU1DLqysz+Hn3iWeU3lqTRWyAe7MaOb3JZnfw7HENKtsjKdiD/108ipQQL+c5Hvt5Px+cYJnvKIvdwZdbCwj20nH3vGSCvbRE+em5ekoMKqWCsjoT8/67utnFTVsBb1/YnFMFOX09CkFonZhR6aDaRis782v4fW8J6zIqmJUcyKMn6NC57EAp2/OqKa8z46vXUGowEeWnJybAncd/OTBoiib1tRER3vz77GHYHTJnvbLOebuHVsW0xAAuHBfJzOQg5+3bcqu5+8udTcfoVHhoVYyO8mXFwXIOHFchtzWeOhVnjQzjoYVDulRb5fk/D/K/TuQJ+Ltr2PKPud26rONwyOwurGVTViXvrsum1ND2LECgp5ZFI8O4fU4iXn1QJCqrvJ4Hvt3D5uyqDj3u7wtSuGF6PA6HzLL0Ml5dmeHMhWqv2SlBPL4oDUmC817bgKHRyoQ4PxKDPflxZ5FY8hX6jbHRvkxJCGBinD/jY/16pF2GWPrpRTkVRnYV1KBSKJgc79+irshf5Vc1UGey8dD3e9jewTdCof0uHh/JtVNj8dKpCfDQYrLZeX99Dp9tzqOgupGpCQHcMjOB3/YWk1VuRK9R8uhZQ0+a/JpZXs/zSw7xy3GzCgoJYvzdm82AdHWrcpXRwnmvre/wrMptsxK4Z37PdIDOr2pgQ2YlRbWNFNeYKKptpLbRSkqIJ2Nj/Bgf40d0H2zLBSiobuClZRl8vb2gQwmzk+L8uXNuIhPj/FmXUcGjP+1rsXW3o+IC3DGYrFTUiwsRof+679TkZn3XupsIVHqRwyFjc8hkVxjZnF3JrJQgInybF8X6fHMen27Ow1evYW1GRZ/sPBgshoR6MS7Gl1tnJ7TaLj2nwohapSDUS8cve4oprzNz5siwDlX+rTNZ+X5nEX/sLWFzThWWI0W/rp4cg5ebmk3ZlcQGuHPv/JQuvRaj2cYjP+5z5jWcyOR4f+6el8yYaN8uPWd/klNh5Pd9Jfy+t6RZY8z2WDg8lJtnxDsrbn68MbdPElkFwVUpFRL/OTuNC8dF9cj5RY5KL1IoJDQKieQQz1bLGT/1ezqvrWz/WrnQOZIE95+awvXT4k44TRlzpC5LcW0j2RVG5qYea0/w6soMkoM9mZMazFkvr6WsrqnX09HAM7O8noXDQjl/bASXT4zm8onRNFrsbMut5nBZHdkVRhQKiVcvHdMtr8ldq+KZ80cQ6afn+b/UifmrYRHegypIee7Pg7y8IqNTu6NSQjx56aJRzZbHahrE7IfQv3nqVHx+w0RWH6rgqd87Vl1Yo1IwPsaPqYkBTE0IwM9dQ3FtI95ufV91WQQqPazOZGVbbnW3nCvES4dGpehwGfrB4qlzmoq6tVeotxt3zElsdtvlE6OdfYs8dCp2FdQ26yUEsDm7iv8uPcS/Fw0jMdgDX72m6Y87sefat98yM568qga+PsHMSkoP9vxwRSsOlnV6C/cZI8Ja5PCMjBw8QZ7QPyUHe3LttFhi/N2J8tOzv7iWa97fikap4IwRYVw/PRYfNw1vrG7fhbG7RsnF46O4aHwUMf76FrWUwtpRTqE3iKWfHlRU00hhTSMqhcRdX+xs0cm3I/6+IIUl+0vZmlvtfHO+a24S89OCWZdRyZL9TVPfrlL9trddODaSp87r3q7bJ2rgdryFw0N55ZLRLW5vtNjRqBTdmoRWUmui0WrHIcv8vreEV1dkYLTYSQnx5Nc7pg2KuihH3frJ9nbXs/krjVLB/50xhIvHRzl/PodL6/jf8gx+2nWsIqunTkVamDcBnlr0aiW7C2tPmkwtCN1NqZC4eUY8t89JcF5IHfXTriImxvlT29hU9uKHnUUtigRKEoyO8iU+0J2fdhXjo1dz3bQ4zhsTgbdb33VFFks/LsBic7Azr4aZyYEsu3smv+wpRpZlzFYHD3y7u9XGYH81PtaPu+YmYXM4+M+v6YR66zg1LYQhoV5MSQggzMeNlBAvrp0ai9XuIKOsHrVSwu6AfUVNJbp35DfVcRnIemKPf2po+wLfglZmuEoNJi5+ayPTEwN5+Iwh3ZZcevx26ltnJXDphChqG634umsGVZACTaUBWqNUSCfNAbPYHTzzx8EjTReblvUSgz156eJRnDs6HEmS8NI1vT2arA4i/ZquLJfuL+XpPw4OugrTQs/Tqpo2YzRY7KSX1DXrWv30ucM5d0zrHctnJAfywpLDfLAhB7tDZnpSIJPi/FFITbvQdhfUMiM50Lm8/cBpqTRa7e0qPukqxIxKH6hpsLDwf2uZnRJEXlUD23Kr8XVXE+ihZUd+TbPp7AdOS+GmGfFNOwjqzMT4u3fqA2lbbjUvLD3EmsMV3fhKXMcVk6KZFOfPjORA9Jqux9/7imo597X17ZqhkiT411lpzE0NItTbjbI6E9e8v4W9hU1X3rfMjOfe+ckDqmdOd7PYHKiVEmabA61K0a7v1fa8as55dX2z204fHsrfF6TywfqcNqurKhUSs5IDuW5aHBPj/Fs95sI3NrCpg9ubBaEtc1ODODUtlAAPDQEeWgI9taiVCoxmGwaTlXqTjZQQL2d7hVdWZLCvqPZIg1U3EgI9OGVIcIu/izWHy7nnq13OcgFDw7x496pxBHu1Xh/K1YhdP/2ELMvUm2146tT8d8khXlx2GGgq9372qHCunBSDQgEJQd2Tf5BRVs/m7CqqGyzY7DIGk5UP1uf0eJPC3vLgaSncOCO+y+eRZZlf9hRz/9e7Mbbz6tnPXcPoKB9WHCxvcUV/44w4Hjg1RQQrrSipNXH+G+sprG7k5pnx3DOvfUHd0Y7kP+0uwkOjYnKCP2Oi/YCmwGfO8yvJr2pZt2RMtC/f3Dz5hOfOLK/nwU7UYhGE40X6ufHIGUOZk9p9M77ldWYyy+v5fW9Js75l4T5uLF08o0VjVVcmln76CUmS8NCq+HVPMZ9vycNdo+S5C0YwLTGQ//thH6e+uJpT00J46tzheHZD8ayEIA8Sgpp3aVUpJd5YNTB6e7y6MpNxsX5U1Jnx0KoYGeXTqRkWSZI4fXgYALd9uqNdj6kyWlo0VzzqjVVZ+LhpuHlm14OogebFZYfJr2pEo1Sw7EAZ320v5KVLRp90B5MkSaSFezu3F5fVmVhzuJz31uXwv4tH8Y8Fqdz08fYWjxsd5dPq+fYXGfi/H/YyMtKHxfOSRDFGodM0SgU3zYznlpnxXSr6+FcV9WYWvbKu1cKBhTWNjP/PUr66aZKzuvJAIQKVPvbrnmLeWJVJWZ2Zm2fEc9qwUOe03d3zkrh7XlKPZ14/cGoKw8N9eODb3W02VOsvahutzZYDlAqJ0VE+XDw+ikUjwzu8bDYy0qfbxrYttwoQgcpfaZRNPxOL3UF6SR1zU4MZEeHdoXM4HDILXlxDRb2FMG8dBdUNnJoWykXjIps1FtWoFFw2MbrVc/zn1wNsza1ma241b6/N7vwLEga1qQkBPLYojdiA9vUQay+LzcEZL61tsQvxeHUmG+7dsPTtagbeK3Jxsiyz8lA532wrQH2kB8jISB+unBxDXGDzmY7e2homSRILh4eyM7+at9YMrDdou0NmS041W3KqeWdtNlMTApiTGsy4GN+TLi8UVDdw+2ftm01pj6UHyrj4zY3cdUoS42P9uu28/d0F4yI5VFrPhqxKAMw2O0sPlHFqWki7zyFJUH2kj879p6VQbbRw5bubnTVzUkI8+faWydgccptl/bWq9vViEoTWBHpq+efpQzhjeGiPLPGuzSg/YZAyMzmQ/108Cs8ONhztDwbeK3JRpQYTn27KY2d+DUPDvLh9dmKrxeH60t8XpHJqWgh/+2Jnq2v7/d2+IgP7igy8sTqLAA8NHloVek1Tr58HF6QCTYHN6sPlrEgv46utBd3e4XpDViUb3tjA5Hh/kkM8mRIfwJzUoEGXu3KotI6Xl2egViq4Y04CN82Mp7i2kfzqRtYcrmBbbjUJQVNbLFO2RZIkLp8Yzfvrc4jxdycp2JPxsX5MTwzkoYWpzRpC2h0yewprsdkdDIvwprzOzGeb88god50mgUL/Mj0pkP+cnUa4T9cbgLblZLPdQ0K9+qS3Vm8QybS9JK+yAW83tTOr25U4HDLf7yzEV69hVkoQ324v4KHv9w6aLZgLhoU4K8nKssw7a7PbVT+lu7x39ThmHdcQcSCrM1l5fskhPtyQ60w4fnxRmnM5Zmd+DRe9uQGT1YFSIXHv/GRuamdy9K97irnlk+24a5ScPzaScB83VhwsY2y0L5dOjGZjViVLD5Sx+lC5c+tnXIA7RovthE0WBaG9bp+dwA3T4/htTwlZFUYWDgtlWIQ3sizz296SLnUTLzWYmPCfZS1un5YYwPMXjCTQs/0tQFyF2PUjtJssy9zx+U68dCr+ffYwoCmwmv7Mij4eWe/w0avZ+OAcZ9KbxeZg7ONLMPRSvo5GqWBCnB8fXD1+wNdCMZisTH96BTUNx2pE/HTbVIaEefHIj/tw0yh5Z222M4hx1yhZfs/MFtstjWYbSw+UsiGzkuJaE+klBqx2WSTACi5Fo1Tw8JlDUEoSLy3PYMni6V0qnzD72ZXNmpRG+DbtKuqJOlK9ob2f3z26KPvII48gSVKzfykpx5q0mUwmbr31Vvz9/fHw8ODcc8+ltLS0J4cktEKSJP530UhiA9zJP1K8LMpfz2NnDWVo2MAP/moarLyw9LDza41Kwehe7JljsTtYc7iCOnP/TmRuD4UkNauEecqQYIaEeWG1O9ieV82bq7Oabe02WuzMf2E1N320rdl5/u+Hfdz5+U4+35LPqkPllBrMIkgRXI7F7uC/Sw7x3Y5CCmsa2ZFX06XzTU8KdP7/e1ePY+39s/ttkNIRPZ6jMnToUJYuXXrsCVXHnvKuu+7il19+4auvvsLb25vbbruNc845h3Xr1vX0sIS/kCSJ66bFYTuu9PLlk2LQqpXc9/XuPhxZ73hjdSYWm4O75yVRYjCxthcL40X56bloXCQNZluflrPuDXsLa5kc78+pQ0NYMCyU4RHeSJLEN9uLMJptaFQKLLbmRfZqGqyMOG731epD5Xyz/eTdpAXBFVw6IZrDZXUAmLqY8zZvSDDvr89hwbAQJse3XqxwIOrxQEWlUhES0jJ7v7a2lnfeeYdPP/2U2bNnA/Dee++RmprKxo0bmThxYk8PTWjFX5tSjY32ZWKcH9tyq7Ha+/Uq4QnJMry7LpsfdxVR22jp8QJ4UX56bpudwOhIH95fn8OPu4q4fFLr22YHkolx/q1Wg50Y689Pu4oorGlErZRwyE3fI0+dCg+titRQTx75cR9bcqrYVyR67Qj9g6dOxZ1zEjlcVs+ve0r4aVdRl4q/TYr359PrJjA5oecaoLqiHg9UDh8+TFhYGDqdjkmTJvHEE08QFRXFtm3bsFqtzJ0713lsSkoKUVFRbNiwoc1AxWw2YzYfS3wzGMSbVk+RZZn/Lj1MqcHM5PgAYgPc2ZhVSXpJXV8PrcdU1Hc9qfK0tBAmxvmjVSmorLeABJX1FqobLHi7qYn003Px+Ej0GhUfbczly20F3DU36aT9aQaqinozr63K4IzhYVwxKYaJcX5oVApn87Uqo4UXljYl4ApCfxLgoUWhkPA5sonix11F3DIrgaTgzu34lCRp0AUp0MOByoQJE3j//fdJTk6muLiYRx99lGnTprF3715KSkrQaDT4+Pg0e0xwcDAlJSVtnvOJJ57g0Ucf7clhC0dIksRLF49y7tT4dFMeF42L5MJxkXy0MZescuPJTzKIjIn25YKxEUxNDKTUYMJTq8Ihw1db81GrJO6am0SUv955fEF1A0/+egCLzcFTv6dTajChkCSGR3izaFR4H76S3hXgoeWJc5p3vv5hZyEHiuvYV1TL+szKQRvECf3b2CO5bkfrn4yP9eOVFRm8cOHIQVeSoCt6NFA57bTTnP8/fPhwJkyYQHR0NF9++SVubp0rZvbggw+yePFi59cGg4HIyMguj1Vom6dOzcNnDOXc0RH8sKOQ9ZkV/H7nNM56Zb1oeX/EPxakEuCp4bNN+dz/zR4AfPVqvrtlCg+dPqTF8ZX1Zs5/fUOzPkJH+3YMj/AmzMdt0BWF+78f9rIlpxofNzVuGiXL01tvRyAI/cUpRxJdD5fWMSTUi8+uFykNndGrBd98fHxISkoiIyODU045BYvFQk1NTbNZldLS0lZzWo7SarVotf1vv/hAkBbuTZCnllnPruSGj7ZxypDgQR+oaFQK7pufzM+7i9mZX9PsvsXzkp2VUf9qb5GBEG+dc2oYYH9RLZG+enIrG3h5RQYfxo7v6eG7lHExflQ3WFl+oLTdjSAFwVU9cFoK84Y2fZb56jWMjPIRsyid1KuBSn19PZmZmVx++eWMGTMGtVrNsmXLOPfccwE4ePAgeXl5TJo0qTeHJXRAkJeO2anB/LSriEMDOFelPRQSnDMqnLfWZLVaMGzVwXISgzyYEOvnfIOqqG9qljgjKZAZx201NFntfLk1n3NHR3Dmy2uJ8uud9gmu5IwRYZwxIoyC6gau+2Brv8iF0qoUmP+yS0khgbebmtkpwXjqVGSW17OmE7vItCoFp6WFoFYqyKtqILO8nop6sQW7P7hnXlKzQoXVDRa+2prPqEgfzh8rVgA6qkcLvt1zzz2cccYZREdHU1RUxMMPP8zOnTvZv38/gYGB3Hzzzfz666+8//77eHl5cfvttwOwfv36k5z5GFHwrfe9viqTJ39L7+thuDyFBLfOSkCtVOCmVrBoVDjXfrCVi8dHcfH4qDYfJ8vyoL/yqqw3c85r68mtbOjrobTK203Nz7dPpdFq5+ddRWzLq2ZdRiUjI31464qxziqhj/60j/fW5XTo3BqlgpcuGcX0xEDcNMc67z72837eEc0SXd6YaF8+vX6CMxkcYFd+DW4aJYZGK2NjBteS7om09/O7R2dUCgoKuPjii6msrCQwMJCpU6eyceNGAgObriT/+9//olAoOPfcczGbzcyfP59XX321J4ckdAM/d01fD8FlaVQKhoR64atXY7TYeWl5Bjp105bvl5ZnMHdI8EnrHwz2IAXA30NLlJ++y4HKZROjuGhcFDd8uJU6s61buoOrFBKfXj+BSL+mxOizR0ewJqNpxiS/qoEP1ucwPSmQHXnVfNSBnUpKhcQT5wxj3pBgfPTH/sZ+31tCWZ2J3QU1XR670LPOGBHGM+cNbxakABgtNqL89J3e7TPY9Wig8vnnn5/wfp1OxyuvvMIrr7zSk8MQullxTdsdPAezAA8N102L44ZpcTzx2wE+2ZRHsJeWC8dGMjs1mGHh3igHeIn87lRe17Gt4u4aJVaH3Kxg3OT4ANLCvfntzunsyK/mqve2dGlMIV46Prl+AvHHdTqPDXDnsbPSePbPg1w0LooZSU0zIUpFUzLl8vSyFstDrblyUgwXHLcsUGey8v2OQp76/SD1g6BqcX93++wE7pqb1GobjJeXZ1BiMPHihaMYFuGNyWp3tuwQTk50TxY6LKtCdJk9SqtScNnEaGanBDEh1g+VUoEsy6zLqOTqKTHcPjtRvCG1Ymd+DRV1ZsJ83FAompZSQrx02BwyCkkiq7yenMr2bX/XqRWcOzqC++an4DjSVPLlFRlA03KJLMPC4aFMTwzk+mmxvLWm88sns1ODmgUpR6WFe/P+1c2Tn8dE+zEm2o/8qgbu/2Y36zMrT3jujzfmctqwEMYdWRrw1Knx0WtEkOLiFBI8cc4wLhzX+nKu3SGzK78Go8XOGS+vZUioF9UNFlbeO7PFzIvQOtGUUOiQRoudsY8vEbsyjnjhwpGDquZJd2gr10KpkE5aLyUlxJMHF6QyJNSLKqOF3EojqaFeRPrpsTtk9hcZiAnQM/OZlVQe1/vn65smOXMDimsbeXtNNp9sysVkPflMx1Fp4V58f8uUFtWb28PhkPlmewHvr885YWXdhxamct20OOfXsizz5uosvttR2C+SiweDCbF+XDIhik825REX4M41U2PbXNK57+td/LGv1NmtG+CaKbGMifZlTmrQoL+IcYkcFWHg0aoU+HtoMVa5ZpJjbwvw0FLbYMVbP7B79HSnUG9dq7e3p6jbsHBv526pQE8tySHHPiB+2VPMJxtz+eLGSXx/6xRu+3Q7uwpqAbji3c08fMYQJsUFEOWv55+nD+HOuYm8tjKT11dl0p7LNXeNqtUgRZZlsiuMVNRbsDtkhoZ74aVr/vugUEicPzaSU4YEM+bxpW2+1mf+OMjwCB9nDR1JkrhxRjzR/nqe+v0g1Q2WZp2nhd4T7KXlb3OTuGhcJJIkcdbIE1+gyLLMDzuL8NSpWX3vLL7eXoCvXs3VU2J7acQDhwhUhA5RKCTiAt3JG8SBSkKQB6HeOkZF+VJU08iwcO++HlK/Eu7T8a3X3m5qxsf6sXheUpvHTE0IQKdqCiQi/fR8ffNk3luXzS97StiVX8P93+xBq1Lw/AUjmTc0GC+dmvtPTWFFelm7Zis2ZVfxyI/7uHJyDHaHjJebij/3lfLKigxn5VEAN7WSs0aGceaIMMbE+KJWKGiw2nHIMp9tzj9hQGa2Objm/S18ct2EZo0YI/30/HjbFNYeruDOz3disbd/JkjoHo+dleasi9IekiTx77PTKDGYCfd1Y/Epbf/uCicmAhWhw3IqBmfpfIUEN0yPJy7QnbHRvsS1kqsgnFxIGzMqbTlvTATPnDf8pLuh/u+HvWzLrWZyQgAeWhVqpYIbpsdzw/R4Vh8q56nf09lXZOBvX+xgbLQfF42P5KyR4ZT9JWnXV69GrWwKaHz0ar7Ykk92hZHzx0bg567hojc3tFo356hGq53Pt+Tz+ZZ8tEcCp/Yk0x5Vb7ZxyyfbeWzRUGanNFU2TQ725I7Pd+Cr16BTK0Sg0g1CvHTcOjuBynozLyw9fMJjzxwRxpgj5fA74u012aSX1DWbCRQ6TgQqQoddND5qUNZR8XZT87e5Ijm2q37f13Yvr79KCfHkqXNPHqQAaFVKimtNtHbk9KRARkb5cMdnO3DI8NYVY9ieWwPAK5eM5op3Nzm7g986K4EgLx1Dwrzwc9cQ4q3jlk+2c+fnO9s97qM6EqA0fy0KJscfaz5nc8h4aFV8simvU+cTmjtzRBj/OWcYGqWCU19cTYiXjpnJgYR46/h1TzGHSps2DIyM9OHfZ6cxJNSrU2UDjj5mRXqZCFS6QAQqQoedPjyU5/88NGiu6kK8dIyO9uHG6fEiSOmiRoudN1Zltfv4AA9tu7d0z00NYkZyIO7a1t/WvHRqHjgthSve2cyhknomHalnMynen1tmJvDisqar6vfX57Dq3lnO53VTK7ul/kpHXDstttnvmk6t5JIJ0WzKrnLZInj9wY3T45iWGMjEuKYdeuV1Zq6ZEss5o8PRa5p+b0ZF+XLlu5sBkAEfvaZTQYrBZKWophFo6t8ldF7H09eFQS/CV8+LF41E04ndD/2NVqVg4fBQNEpFs5wBoXN0akWH1uovGNf+cuOnDQvlzBFhzW7LLK9n9aFyVh0q54steaw9XMGrl45m2F8+OP42N5EpCU2BS2FNI9d/uNV5nyRBSW1ju8fRHY6fTTlqZKQPPm4iabsrTFY7ScEezqToAA8Nl02MdgYpAB+uz3EGqbvya7jg9Q3UdjCB2WZ38PTv6dQ2WrlqcgznjI7ovhcxCA38TxqhR5w2LJRrpw387HWzzUGkrxuPnpXW10MZECRJYv6RhMQTXaT6u2v4z9nDWDgs9ITnM9vsVBstOBwydofM+owK0ksMHK26UNNg4cMNOVz7/hYe+/kA10yJbbWEuSRJnHvkw2RUpA8Pn3Gs47Veo+KzGyaiVvZesb57vtrFxxtzsf5l1tJXVIXukg825HL2q+tZn1nBP77bw4xnVvKfXw9QVncsGfqFi0ay7aG5zlmQwppGHv1p30nP7XDIlNWZmvKZ3tjAxxubluniA1tvTCq0n6ijInRabYOV2c81r1cxEE1LDOCjayf09TAGjDqTleJaE8FeOnIqjJzz2nq83dRcPD4StVKBQpKYmxrMkLCmv+cqo4UV6WVkltdTYjBhaLRiNNvxc9ew6lA59WYbEb5uNFrsVBothPs07bA4d8yxq9hGi51l6aWcPjysrWFhsTl4bslBHA6Zfywc0uL+n3YVkVVu5OfdRRwuq+eWmfHUm218tjkPq10mwEPLzTPj2VdYy3c7C9u15flk4gLdGRLqhYe2qbnh7oLaTue9CC2dNTKM09JCmZLgj+dxW8qNZhsXvrmBvYVNNW9UComM/yw44bm+3JLPf347gNnqoNF6rM7U8rtniMT7Nog6KkKP89arefGiUVzz/pYBna+yM7+mr4cwoHjq1M4PhRGRPtwzL5lwX7dmyzY2u4Pf9hSzq6CWDzfk0HCSAoMF1ceWZgprGvHUNX9rc9MoTxikQFOfpgdPSwWgzGAi0FPbLDfhjCPju3VWU4BytB/PLTMTsDkcuKmV+LlrqDJa+HFXEbZuiFSyyo1klQ/OXXY9yc9dw11zE7l0QnSrJe/dtapmy0EOWW7RLLTOZCWnooGyOhOh3m489Xt6ixo3KoWEv4e2517IICECFaFLpiYG8NDpqfzfDyefGu2P1EqJW2cl9PUwBqySWhMvLz+M0WLn6d/TkSRIDfEiq8JIRlnnWzWU13esT1Brj191qJz9xQYWDgtttlykUiqaNQ3clF3JKysyeHBBKrOSg2iw2LG1o3id0Hf+7/QhJ60obTzSumBaYgCLRoY7gxSHQ+bJ39N5c/WJk8JHRvpw04w4vEVeUZeJQEXosgvGRhLkqWN9ZgW/7imhoosfEq5AqZC4anIMi09JanMXidA1jRY7D36729mO4eisSH5V1xJXpyUGcHEbfVfaa2iYN0PD2rdT4/ThYcwfGuLcpbPuSCdlwXXd+/UuGq12Lh7f9u/Jw2cMxc9dTULQserHuwtq+Of3e6mot3D5xGhsDpmJcX7847u9qJUSL1w0irHRvujUStGAtBuJHBWhWxXXNvLEr+n8uKuor4fSaUnBHnx2/UQxZdtDLDYHH27I4e012ZQYur8Tt0ohceaIMB5blNbrQabJamfSE8uoFmXuXV64jxvL75nRrsaADofMm2uyeGt1FvOGhnBaWgiLv9zJKUOCOS0tFJVCItJPT6SfvhdGPnCIHBWhT4R6u/HfC0eyIauS8rr+N7NyxaRo7p6XLKZre9AD3+7m2+2FPXZ+m0Pm2x2F/LynmHExvuhUSkZH+7JwWCgxAa3vwNiYVcmnm/LQqhRMSwpssc25vb7aViCClH6isKaR/y07zL3zU056rEIhYbY6MJis/LGvhMVzk3j7ynGMFCULeoWYURF6xEvLDvPckkNAUyO5g6V1WFx8t8KjZw7lyskxfT2MAa28zsykJ5b1WQ7HD7dOaVEP50CxgdNeXOP8WpIgJcSLkZHeXDguCj+9hkBPLW6aY1fedoeModGKt5u6WTLm+a+vZ0tOdY+/DqH7vHH5GOeW+RNxOGTG/XspZ48K56HTW+4KEzpOzKgIferqqbF8tDGXmgYrn98wEaPFxvz/rnbZq81wHzeumBTd18MY8FYcLOvTRNOr39/CpDh/ZiQFMjs1iAAPLYq/FHSR5abg5UCxgc825wOgUSqYEOfHnJQgAF5dmUlZnZlh4d6khnoyLNybzHKjCFL6GYVEh2Z+HzgthdNOUttH6H4iUBF6hIdWxb3zk7n3693sLaxlQpw/p6aF8tnm3u1VEu7jxvXTYpEk6ciWUjXfbS9ka241cYHuzq2fjVY7snziImRC18X3cT2JKqOFX/YU88ueYjTKpqrDm7OrTvo4i93BmsMVrDncPFF2T2Etewpr+XJrQbeNMcLXjZGRPhwuredg6cm7Ogud5+2mZtaR4PNkFAqJ88e2v1Ky0H1EoCL0mHNHR7C/2MC9X+/mw2vGc+/8ZP7cV9LtBeLcNUr+NjeJSfH+1DZaqTJa2JFXw1fb8okJ0HP5pJhmGfjnjYkgu8JISogXr6zI4Jk/DlJltLA2o4LponFYj7HYHLy5OrOvh+FksTv4bkfXc2WGhXuzp7AWaOpN1NVdb59dP5FIPz2NFjuznl3ZIwnHQpPqBiuP/riPN68Y29dDEU5AlNAXeoxCIfHwGUO5bVYCl7y1EbtD5t75yd12fklqakT3/a1TuH56HGnh3kxJCOCMEWH83xlD2PPIfD65bmKLbYJalZKUkKb10FtmxjMktOn/n/vzYLeNTWguo6ye019awx/7Svt6KN2uusFCUnDTTNG4GN8un2/FwTKgqUjdPxamdvl8womNj23ZUkFwLT0aqDzxxBOMGzcOT09PgoKCWLRoEQcPNv8wmDlzJpIkNft300039eSwhF5UZ7JyoMRAUa2JJ39L58Jxkbx71VgSgrq+BPDapaN5+8pxJAZ7nvzgNkiShOlIuetdBbUDogaMK1lzuJyL39zIolfWcai08wXcXFlBdSPjY/24Y04i102LJdCza9va31mb7WyCd8aIMO4+JYlwH7fuGKrwF48vSuNykZvm8no0UFm1ahW33norGzduZMmSJVitVubNm4fR2Lwk9PXXX09xcbHz39NPP92TwxJ6kadOTWqIF2HeOr7ZXsB763KYnRLMQwtT0ag6/+sX4qXj1LTuSWq7dOKxN6pvthVgd8jsKajlYIkBu6gw2mmlBhO3fLydDVmV1B+p8jlQ/biziOunxTIm2o8XLxzZpVyn3MoGzn5tHbmVTe+Tt89JZNndM7h8YjSqI7ODE+P8uGN2QpeDosFs3pBgLp0Q1a46KkLf6tFA5ffff+eqq65i6NChjBgxgvfff5+8vDy2bdvW7Di9Xk9ISIjzn9hmPLBcMC6SNffP5rFFaTz9Rzo782uYmRzElzdO6vQ5jWZbt213vnJSNKlHln+qGpryZ6obLHjo1Kw+VN4tzzHY7C8ycPGbG6kb4AHKUQaTjQ/W5wAwOSGAKyZ27So9q9zIYz8foM5kxWCyolMreWxRGjsfnsfSxTP45LqJzEgO4uJxIrmzM9w1Sh49a2iz3j2C6+rVHJXa2qaEMz+/5muCn3zyCQEBAaSlpfHggw/S0NDQ5jnMZjMGg6HZP8H1KRUSl0+MZnZKkDOhMi7QnXNGhXfq6lOhkLA5uidQUSkVfHDNOII8tYyN9kOpkJgU74+/u4aZySK5tjNeWn6YrIrB1UzvpeUZ5Fc1vXfde2oKyV1YkgRILzHw9O8H+WTjsZ1yHloV0f567vlqFxlldVw7LY73rx7X1LtmZBhDw7zQqRVoVQoifN2ID3QnOdiTSXH+LBoZho9eFDIEeOj0IYR6u2G22akzuWbJBOGYXtv143A4+Nvf/saUKVNIS0tz3n7JJZcQHR1NWFgYu3fv5v777+fgwYN8++23rZ7niSee4NFHH+2tYQvdbHJ8AP/6eT+HSutICvbk+QtHkhrqxb9/PdCh85yWFtKsu2lXBXnq2PT3Oc4rrD2Ftfyxr8TZTVdov7I6E5vaseV3oDHbHNz91S4+uW4CHloVZ40K4+nfO5+gXVDdyNfbCvjvhSOctzVa7Nzw0VbWHK7AaLZx4bgoZiYHMfO4HHWHQ0aSaHW2YH+RgTNfXjuomyZeNjGKi8ZFYrE5uO6DrUyM8xeNR11cr1Wmvfnmm/ntt99Yu3YtERERbR63fPly5syZQ0ZGBvHx8S3uN5vNmM3HEh4NBgORkZGiMm0/klFWx22f7uAfC1OZltg0Y/HL7mLu+mInFnv7Zkn+sSCV66fH9eQw+WlXEWd0spT6YFVRb+asl9dRWNO1xoL92fMXjOCc0RHY7A5+3l3MfV/vbvfvdWuCvbQEeeqw2h3Um23O5o0AZ44I49S0EKYkBLS77cP767KdBesGE1+9mn+dlcbpw0ORJIk3VmXyxG/pLL97BnF9XN9nsHKpyrS33XYbP//8M6tXrz5hkAIwYcIEgDYDFa1Wi1YrEsj6s4QgT964fAyfbMpzBioLh4ciI3PbpzvadQ4vt67/6lpsDlYdKmdvYS1Gsw29RsmYGD+mJQSgUEgiSOmEjzbkDuogBSDvyPKPSqlg0ahwdubX8P6R/JXOKDWYKTW0HlT8uKuIH3cVkRLiybe3TG7XLONVU2JZNCqce7/ezZL9vbNd3M9dQ73J1qWArbN0agWLRoZz/6kp+LprnLcfLK1jTLSvCFL6gR4NVGRZ5vbbb+e7775j5cqVxMbGnvQxO3fuBCA0dHCUKa5psGCxOQjy0vX1UHpVtL87f1/QfFnl9OFhrDpYzlfbTl7ls6vLPmV1Ju7/ejejo3y5dlosz/5xkC2Hq3llZSZjonzx1Km4ZVY8Y6JFjYX2qjfbWHpg4NVJ6agXlh6m1GDm34vSUCgk5g0N7lKg0h7pJXU8/MM+njl/xMkPBnz0Gm6ZGd/jgYqPXk2jxc6H14ynttHKpW9v6tHnOyraX8+1U2OZEOtPUrBHq8tg10yJpVQU0+sXejRQufXWW/n000/54Ycf8PT0pKSkBABvb2/c3NzIzMzk008/ZcGCBfj7+7N7927uuusupk+fzvDhw3tyaC7DR69BlmWyyutRKxX4umvw6OXW9K7kllkJ7QpUPtqQ264Zj9xKI5uyqqhusGC1O7huWhw6tRK9RsWrl45xNpr711lNeVN5lQ2sy6zgq635XPDGRu6am8jF46Pw9xCzeCfz8cZc9hWJ5HaAzzbncd6YCMZE+xLYC7873m7qDi+FpoR4MTM5kJUHm3a2hfu4dctsWKCnlrvmJhHh68aICB/0WiVqZdO+jQhft2ZLV10R46/njjmJ1JttvLcuB5VCYv7QEKYmBjA+xq9Zs8jWpIV7kxbu3S1jEXpWj34ivvbaa0BTUbfjvffee1x11VVoNBqWLl3KCy+8gNFoJDIyknPPPZeHHnqoJ4flciRJIi7QA4dDJrO8Ho1KQbR/6+3oB7qidr5Rbs6pIrvCSGxA29+nb7YVcPdXu5xfxwW6c920pjfztoLBKH89Uf5RTIrz57Mteby+Kotn/zzE9dNiOWNEGMMjfNr/YgaZaYkBvL5KTY2LNp7sbdYjyxyJwZ6cMzqcb7d3vVx/a4I8tTx57jCSOrjLyE2j5M3Lx/LLniLCffQMj/Bm6MN/dLl2UEqIJ5dMiGr1vssmRvPkb+ldOj/ApROi+OfpQ9Cpmy40Vh0s59wxESwQDQMHpB5f+jmRyMhIVq1a1ZND6FcUConEYE/eXpOF1S5z88yWOToDnVqpQCFBe94rr/1gC7/fOb3NwnG7C2qaff34ojTnG9vJxAS4c8WkGHQqJQpJwmSzk11hZGiYNx9vzMXXXUN5nZkoPz1TEvy7dQdSfzU0zJtTUoPbNSM2GFQd19PqmfNGMCTUi8d/6djutvb4+LoJHQ5SjtKoFJw96ljeoF6t7HTtG0+tissmRXPjCWZ2bpweR4PZxuurszpdB2nBsBAeOyvNOWOyIr0ML52Knfk1IlAZoMS7qwuK9NO3aD0/WIyP9eP1y8bwxG/pZJ+kDkdWuZG31mRx04z4Zv18rHYHy9PLWjSc89Vr/nqKEwr3ceOuU5Ja3J4W7s35r693BlMJQR7cPjuBM0eEDfoCUn7uHfseD2RrDlc4PziVConrpsWx+nBFtxYRTAv3wq2dwXd76DSdC1Si/PR8ddMkgk+SaydJEovnJbMhq5ItOdWdGuOikeHOIKXaaOHq97cA8JZoLDhgiUDFBc0fGtLXQ+hT846sMz/y4z6Wp5dRUd92t+Vn/jjIG6syuXFGPBX1Zg4UG9hdUEuDxd7suPPGRJAS0v6rzsp6Mw9+u4cwHzdumRlPkJeOvYW1fLejkMQgD+akBrMrv4YzR4QR6acnp6KB2kYrh8vqeXtNFmeOCGfh8MF3dRfhK3rSHPX9jkKGhXtz8fhIZwB784z4bgtU5qYG8dYVY7s1OB4V6cOfHUywjfbX8/G1E04apBzv6fNGMPu5lXSmOMazfx5kelIgOrUSD52Ke+YlEe7rxpyUoA6dp7bByh2f72BYuDd3zk105tEIrqfX6qj0lPbuwxb6r2UHSvm/H/Z1KdHvtUtHc1oHp4XL6kw0WuyEeru1uryUUVbfLc0VB5JXVmTwzB+iC/XxPr1+ApPjA5xff7Qhh3/+sK9L5/z59qkkBXt2qV9Wa15fldmhHJJTh4bwxDnDmm37ba95/13V6UaVV0yKdibAd9aPu4q447MdaJQKNjw4WyTM9wGXqqMiCF0xJzWY6UmB/LmvlGXppSzZX0qdqWPT0yHeHd/+HeR54seIIKUlsT25pTdWZTULVC4eH8X3O4vYltv+pY8ADw2nDAnh9OGhRPnpifTT98RQGdGBZPGpCQG8dtnoTs3o2B2yszaMj17NOaMieHdddrsf/+GGXNLCvblgbOd7HZUfKXhnsTuobrCKQMWFiUBF6BfUSgULh4eycHgoBpOV3/YUs2R/KXaHzMXjo/DQqvhsSz4/7Spq8dgJsX4U1ZjIqSxArVSQXlyH8shWxiFhYhauu1jtjnbv2hpM1mdWkFleT/yRwmIqpYIhoV4dClT+d/GoZsFOTxke4Y2fu6ZZIvBfzU0N5pIJkcxICur0slODxcZpaSE4ZJl756cQ4KHhlz1FbRa2a819X+9mf5GBR84c2qkxvLU6C4CHzxgiLjpcnAhUhH7HS6fmwnFRXDiu+RbIyQkBDA3zajF1vSm7qtXeM6+uzOD/Th/C5ZNienK4g4LdIfP8kkMd+qAZLKx2mXNeXc+/z07j9OFNtX8c7Vhxj/B1Y3ZKEOeMjmBkpE8Pj7KJu1bFI2cO5Y7P2q4Q/eCCFGfQ1VmeOjVPntu8VlZ8oEeHf3/eX5/DgmGhjI/teGFGP3cNJQbToMwl629E9pAwoNw0I55nzx+Bp+7kMbjVLpNb2XanbqH97A652wp5DUS1jVZu+3QHD32/B4dDbjNhXiGBp07F0+cOZ819s/jXWWm9FqQcdcbw0BMmnleeILm9K0ZH+XbqcWsPdy45+c0rxhDmrePVFZl8uCGHMlGl1mWJQEUYcM4bE8Gu/5vHxgfncOecRNLCvfDSqVpt2ja7gzsFhNZpVApunjH46v501Mcb8/jXz/uZHO/vvE2pkJgc78/5YyL47pYp7HlkPheMi+yzre6SJDE2pu2goaC6Z4L7M0aEoTmy82ZKgj+Bnu3LGdnagSW049kdMueNiWBWShCrD5Uz89mVNP5lt6DgGsTSjzAgKRQSId467jolyVkL5cFvd/PZ5vxuOb/dIWO1O9pdQG4w0GvE96I93l+fg6HRyjVTYjHZ7Jw+LJTJCT2ff9IRE2L9+XhjXqv3dSYxvT2SQzxJDPZgX5GBR88cyo87i1h1uIJd+TUnfJzyJKXy2xLq7cbOglrunJvEjKRAVh8qZ11GBSHeOlFa38WIGRVh0Pj3omGcMyq82W0jo3w6fJ5qo4U7PtvBv385QLXRwh/7SrpphP1btL+eeUOC+3oY/cLB0jrunZ/Mf84e1maQUlDdwKsrM3p5ZE0WDGt9+SfAQ8ukOP9WHtE99Bol3m5qIv30LJ6XzPe3TOb6aSduZuvfySKDGpWCd64cS3FtI7WNVqYlBjAhzo+bP9lGca1YxnQlIlARBg2FQuKZ80c4p9199ep2VwAuNZh4dWUGd3y2g7nPr2LVoXJmpQTyyE/7uOOzHZzx0lryTpLvYrbZqagfuMmmkiTx6qWjeeniUXi1I0doMDtUWsfy9DLn1za7g/QSA6+syOCiNzcw5cnlTH1qBb/t6ZsgWKmQ+PfZw1rcrlUpenRJKj7QgzNGhKJVNc3OSZLEzTMT2qx4PCcliIfP6Piun225Tcn1aqWCbbnVLHhxDZnl9aw8WMa4GD8MjZ1rIyD0DPFuIgwqSoVEUrAnm7KrqG6w8ubqLO6Yk3jSx93+6Q425xzbOeSrV7M+o5IfdjZth95TWMvl724i2EtHtdHCBWMjGRHpw1O/p5NVXs/ZoyII9mpac79xAOdyqJQKzhgRRm2jlYe+39vXw3FZVrvMPV/tYtmBUvYVGThcVtdqf6thEX23BDE6yoekYI9mRdnOHR1+gkd03cHSOv55+pBmt/m5a/jljqmsPFjOf345QJ3ZhpdOxYsXjWJWJ3LM9hbWcqC4jjHRTTuFxsX4cdcpSVz7wVY+v2EiDrlpGUpwHWJGRRh07js1mfevHse0xACeX3KI11dlOu/LrTTy/JJDLN1f6ux+m1FWx76i2mbniAv0aPEmmVvZwObsKg6X1fPvXw9wwRsb2JZbTXWDlXfXZfPO2mzCB0mJ+csmRvPEOS2vyIVjGq12vt1RyMHS1oMUoE+X0iRJYuGwMOfXScEe3HVKEs//eRCzrfuTTmVZprLe0upsXKi3GxePj2JEpA8BHlo+unZCp4KUA8UG9hbWctnEaOdtYT5ubMqq5MpJMYR6uzF/aAgfrM/pyksRupkooS8MWrIsM/WpFZQaTExNDEAhSezKr+GZ84fz9ppsJAlmpwTzzB/pmKwtO71qVQrMHewAGxfgztPnDWdMtO+gaGB40Zsb2JjVsoaNcHKBnlrW3T+728vkd0RRTSNnv7qOYC8db18xlgaLnZnPruTWWfHcOz+lW58rv6qBaU+vAJpaBLSW0PrV1nxmJAeetGp0a+pMVrbmVjMruWWAY7LaOFxaT5iPGzd/sp3N2VXsenheqzsFhe4jSugLwklIksQfd02nqt7CdzsKeWdtFi9dMpoZSYG4qVVc/NZG1mVUtvn4jgYpAFkVRs57fQPTEgN4+ZLRA/6NcG5qsAhUOunyidF9GqRA02zDFzdMwiHLBHnpWHEkr+adtdlcOzWuW7tle2hVvHDhSO77ejc/7SpqNVA5vwsl8z116laDFIPJyqVvbaK6wUKZwYzFOZNaz5joztV2EbqXWPoRBjUPrYoofz13zk3kg2vGExfgDsC4GF8WdrCJYUesOVzBE78ewNHWnP8Ace3UWO6Zl4SHVlwTdYSHVsWVk2P6ehgAxAS4E3ekEm2YT9PSpcnqILuicw0F2+LrrmHRqHDuOzWZH3YWkVnefed3OGRyK42t3renoJbbZifw653TGB3tg0JqquNSbxYJta5CBCqCcMSoKF9nszeVUsEDp3Xv1PZffb4ln5s+3obJ2rTe32ixD7jARZIkbpudyLK7Z5Ac3PkERQ+tisnx/pw9KpxzRod36Vz9wa2zElxyti0hyIMx0b7MTQ0iOaRnltqvnBxDlL+eOc+t4v6vd3dLEbaPN+VyyvOrWw1+piQEMH9oCF46NZG+eiRJYvEpyUyM63hZfqFniBwVQWhDZnk9c55b1ePPo1UpCPdxI6vCiK9ezZSEABaNDGfuAKtJYrLaee7Pg7y1pv1dcucPDeaCsZFMTwpErTx2XVVvtnHWy2vJLG/9Krk/i/HX88dd051bdAeylQeblpIifPXEB7o787b+/t0ePt3UVHBuRlIg7101DkUnCrvJssyHG3J59Kd9OOSmvJ/zxkRw55zEVos1yrLMmsMVjI/1E8Uce4HIURGELmpvCe+uMtscZFU0feBWN1j5eXcxP+8u5tIJUTy+KG3AJN3q1Er+sXAIIyN9ee7PgxTVNjJ/aAjnj4lkSJgXvno1GWX1ZFcYOVBcx9whQQwNa317rodWxd8XpHLtB1vRqRVE+Orx0KrYeZIqpq5Oo1Tw0sWjB0WQApBdYeTRn/YDsPiUJGepgNPSQpyByqpD5SxLL+OUDgbuDRYbt3yynZUHj/UCKq8z4+Ombhb0Hk+SJKYnBXbmpQg9SAQqgtAGu13GQ6vqs7XqTzblIQP/aaXwVn+2cHgoC4aF4JBblj9PDPYkMdiTeW007TvenNRg1t4/C0+dGm83NfVmG5e+tZFdBbUnfayrevzstD6tndLbrp4SS73JxnNLDvH8kkNIwG2zExgT7YuPXk1NgxVoCjo6wuGQuf+bPc2CFID/O30IV0+JGTDB/2DhEjkqr7zyCjExMeh0OiZMmMDmzZv7ekiCwIqDZX2eUPf55rwBWc1WkqRO92g5XoSv3pnL4aFV8dF1E9CpXeJtrcNum5XABV3Y1dJf3T4nkafPGw7Ac0sO8bcvdqJRKpoF6NXG9nVsbrDY2JBZyd+/28NPu4qa3eelU3Hx+CgRpPRDff4X/cUXX7B48WIefvhhtm/fzogRI5g/fz5lZWUnf7Ag9JAXlx7mgW/29PUwcMiwdH9pXw+j35BlWq1548oUEjy0MJW75yX19VD6zPljIrj8SBG2H3YW8c8f9pEU7MHdpyShUSp4ZWUmBpO1zccfTbW85v0tXPzWRj7f0rL5qMFk48Vlhzs0LrtDxtKJMgRC9+rzQOX555/n+uuv5+qrr2bIkCG8/vrr6PV63n333b4emjBIGc02vtiS56yn0Nee+C2dPf14OaM3rTlcfvKDXEhikAff3jKF66bFDeorfUmSeGxRGjcdaS/x2eY85j6/ml/2FPPmFWPwdlOz7nBFq49ddaicGc+s5Jr3t7Alp/qEz7PmcDlldSbn18a/zJiarHbWZxx7nq+25vPkb+n08z0n/V6f5qhYLBa2bdvGgw8+6LxNoVAwd+5cNmzY0OpjzGYzZvOxqXCDwdDj4xQGjw2Zldz95U6Kak0nP7iXuGuUzj5Bwol1x1bW3nLRuEgeOXOo2F1ynGumxPDG6kyOxgXpJXW8ujKTn2+f2ub36YcdheRVNZBXdeKmoNDUw2d/kYGgZB0vLz/Mi8sOMzbajwhfN6x2BwXVjTx7/gjn8UU1jby7Lpt/LExFOXjjyD7Xp4FKRUUFdrud4ODm2dzBwcGkp6e3+pgnnniCRx99tDeGJwxCn2zKdakgBSApxJMNWZUEeeqYdKTzs9C69ZltVxJ2JTfOiOOBU1MG9SxKa4K8dFw3NbbZFvbN2VXc+sl23rlqXKuP6Uj13v+cPQydWklupRE/dy37Hj0VjUqBLMsUVDcS6KltFhCNjvbl3avGtsincjjkTm2XFjqn3+36efDBB1m8eLHza4PBQGTk4EtAE7rfodI6ft1T3NfDaGHlwXJWHixHo1Tw8JlD2JZbzeyUIOamBour8ePUNlhd8uf3V6cPDxVBygn8fUEq5XVmvt95LBnWIcsU1zYS6t2yqefC4aGt5qT8VVyguzPg+Hl3MaUGE41WO19szafBbOOUIS3/nqYnBrKzoMb59bbcan7bU8xPu4vw1Kk5e1Q4t85K6OQrFdqrT3NUAgICUCqVlJY2TxYsLS0lJKT17YlarRYvL69m/wShO2zJqWqzi60rsNgd/OO7vXy7vZDbPt3BuMeX8sSvB8T6+RFebqpW+8O4kqRgD/6xMFUEKScgSRL3nZqC9riZkhUHy7nri52tHj8tMZB75yef8Jxh3jp+uX2as37KqkPlfLghl+lPr2Dt4XJOHxHmbBNwPIVCYnTUsX4/sQHuRPnrabTYySir5+XlGc2qSedUGPlyaz7b86rF32U36tNARaPRMGbMGJYtW+a8zeFwsGzZMiZNmtSHIxMGo1h/dxaNDDv5gS6izmzjjdVZfLO9kDdWZbIxq3JQ71CQJIknzxmGu8Y1Z5lOGRLML3dMa3VWQGguzMeN22c3n6nYmFXFQ9/vabUM/tzUExeDC/DU4nbk9yK/qoFdRwoDWu0OUkK8CPdp38/Ez13DFZNieO2yMZw1MgwfvZr86qbcmJeXH2bu86u47+vdnPPqeha9so7312Wzo4NBS3FtIyUutvzc1/p86Wfx4sVceeWVjB07lvHjx/PCCy9gNBq5+uqr+3powiAzKd6fP/vhVuB7vtrl/H+9RomPmxqHDBeMi+TG6XG4D6KGgInBnrx62Riu/3CrSwVtGqWCx85Ka7MiqtDSzTMT2Fdk4Le9Jc7bPt6YR7XRyiuXjm52bFygO59dP5F6s40PN+QwKsqXVYfKSS82YLY5GBHh4zy2wWJHp1Zy3pgISg1m/rf8MJdPiibA41jCen5VA++szWbxvCSe+i2d/OpGvHQqZzsHlUJiyf5SGix2rnpvCwuGhfDKisxmY9pVUOssPpgQ5MFF4yI5NS2ECF/9CV93oIeWZellbMyys2hUeGe/fQOKS/T6efnll3nmmWcoKSlh5MiR/O9//2PChAnteqzo9SN0l4e+38PHG/P6ehjdKtzHjfeuHkfSAG/i91crD5ZxzftbXGYp77KJUTy+aGBVGO4NJqudc15dz/7iY7s7b5uVwD0nWeo5atmBUsw2B6OjfAnx1jlv/3JrPhuzKrlsYjSXvb2Jv81N5Ibp8c77ZVkmt7KBaH99s2W6inqzM6B5a3UWs1KCeOr3dJZ04AJnSKgXf1+QytTEgDaPKTOY2FlQQ7XRwoXjotp97v6mvZ/fLhGodIUIVITuYLLaGf7ony51Fd5dPHUq/nn6EGYkBeLnrhk0V/WvrMjgmT8O9vUwCPXW8cdd0/HSuV435P7AZLXzv2WHeW1V07blR88cypWTY7p0zg/W57A5u4pXLh3NRxtz+XpbAe9cObbZrEpHFNY0siOvmvfX5bA198S1XKCpyN//Lh7F6cObLzXXmax46tS8tjKTguoGrpkaS3ygByarfUAmzoumhILQATq1krmpQfy6p+TkB/czdSYb9329G4BZyYG8d/X4Ph5R77hmSiyvrczs8zYIZ48KF0FKF+jUSu47NYX4QA9eWZmBp05FldGCt5u6020Yov31+LprALhsQhRalaJTPyOHQ2ZNRgUzkgIJ93Hj9OFh/LmvhBs+2nbix8nw9O8HsdodzB8aQlGNiU835XGg2ICXmwq9RsU985OduTO/7ilmZKRPqwm/g8HguLQShHaYmhCI3kUTMbvLmsMVLapxDlRuGiUzXKATrtnmaLYzROicc8dEsOSuGXy+OZ/Rjy1h+tMreHdttjNRdW9hLYdL69qVuDozOYgzRzTNZkiSxAVjIztUj+WowppGCqqbF5qbNzSEsdG+bTzimLyqBu76YhdXvbeF2AB3rp8ey6JRYdw2K5H/XjiyWYLvKUOCefyXAxTVNAzIWd+TEUs/gnCcfUW1nP3Kepcpn98TPrxm/KBpZZ9f1cC0p1f09TD4+fapLr91uj+w2R0U1jRy/ze72ZZbjdUuo1RIuGuUmGwOLDYHwV5avr91Sq/srnI4ZCSJZnksdofMPV/t4rsdhe06x9LF00kIOnkOWb3Zhk6pYGl6KXNSgymuMRHlf+LEXFcnclQEoZP+9dN+3l2XffID+6lld88gfhBNIS/83xr2FfVdqw21UuLQ46eJ2indzGS1U1DdgEqhYGNWJUsPlHKguI7yejNapYIATy1jon25aUY8CUFNv++5lUZ89Bq83dQYTFaUkoReoyS3soGYAPdm52+w2NAoFag6mNP1/J8HeXVlJpPi/dmZV0PdcTOY42J8uW12IgEeGr7fUchba7Lx0at564qxjIvx69DzbM+rZntuNVdNjsHmkPtlDovIURGETrr/tGR+2VNEqcF88oP7mSBPLXF/eUMeyGRZ7nQeQ3exO2Qyy43OD0uhe+jUSudMREyAOxeNb747JqOsnp35NXi7NeWePP17OrmVDQwJ8+KWmfG8vDwDo9lGbIA7Q8K8iAlwp85k5dWVmaw6WM7cIcHcMD0Ojw4GKrfNTuTOuUkoFRIF1Q1c98FWsiqMWGwOLpkQ5VyOHBrmTV5VA3/sK+XuL3fx+Q0TCWtnPReA0VG+DA/3RgbeX5/jbOg4EIkZFUFoxdtrsnj8lwN9PYxupVJIvH3lWGYmB/X1UHqNLMuc9uIa0kvq+nQcF46N5KnzhvfpGIQmDofMa6sycThkbp2V4OzZk1FWz9mvruMfC1I5d0xEt+6Ok2WZ8nozQZ66Zrc3Wuzc8fkOluwvxUev5oULR3bo77OszsR/lxzmonER+HtoT1qjxdWIpR9B6AKj2ca0p1dQZbT09VC6hVop8fIlo5k/tPXWFAPZT7uKuP2zHX06BrVS4o3LxzA75cQVVIXe4XDIrD5czqR4f7SqpiWTXfk1WO0OxnZwCaa9bHZHq8tIDofMpuwqsiuMbM+rZnK8P+eMjujQuR0OmS+35nP26HDn6+kP2vv5LXb9CEIr3LWqAdVs7N9nDxuUQQo0NQFUK/t2+cdql9mac/L6GkLvUCgkZiYHNftQHxHp064gRZZlft5dxN7C2nY/X1FNI/d9s7vNsUyK9+eSCVE8e/6IDgcpR89x1shwlAM0D0oEKoLQhssmRrW7B4grGxXlw3mdePMbKIpqTVjtfT9xbO/AFuW8yoaTHyT0OrtDJqvCiFalZNEr67jnq128vSaL5emlvLj0MOV1ree1/bqnmKX7S6ms77m8NzeNssOJv/2FSKYVhDZoVUoeWzSUa97f2tdD6bRofz2vXDLauQ4/2Jisdv72ed8u+xxV1M5Gc7Isc8bLa/nulsmDtsCXK7I7ZK54dxPrMiqdt329rcD5/zq1grNGhhHo2bK67e6CWgwmGx9syGXxKUm9Mt6BZGCGX4LQTWanBDM0rP/mPr1+2ZgO7SQYaN5ek8UWF1lysdjsJz3GaLbx7J8HqW208u329tXhEHqGwWTFfNzPbMn+EtZnVrZ5/GuXjmmxxfmoo8tE+4vav1wkHCMCFUE4iWmJ/bc4WlArV3eDiSt92Je0Y7v7rvwaZxfew2V9u1NpsKptsPL4z/sZ/a8lnPbiGvIqG7A7ZB74dg9tbT0ZGelzwiKKRzuYb8yq4vk/D3KotPd+tgOhkq1Y+hGEk7hnXhIyMm+tznKZbrzt1Wg9+VX8QFVU00hWhbGvh+EU5q074f3f7yjk/uMSLjdnV2G1OwZNE0lXYDBZufK9zezMrwEgq9zIwv+tIdRHR6Ol7b8lhyxTYjC1mdN2tDx/vdnG/5Zn8NveEpYsntHt42/Nl1vzGRnp068rI4u/gBMYKFtTha5RKRU8eFoqP942lRGRPn09nA7Rawbvtcif+1ynwaRWpeDOuYktbi8zmPhuRwHXvr+Fu77cifm4q9/HFqWJIKUX1ZttvLkqyxmkHFVntnGotL7Zz+avdhfUMvvZlfzjuz0YTNZm91XWm9me13z5sbCmEWsvtek4b0xEsyWsjmq02KnowSTg9hB/BSfgru0/+9GFnpcW7s13N0/mlUtGk9gPqowGeWrxO9IhdjAqbmfyak8bFeXDB9eMJyWkZa7Tv37ez11f7GJZelmzZQWlQiIuwPV/xwaK99Zl892OQl5ekdHpc5htDj7ZlMeiV9bx/Y5CbEcCkd/2lrRYMmqw2Pl1T3FXhtxuOrWSEG+3TjXG3JVfw2srM3D0cbm1wXu51Q79qXCO0DsUComFw0M5NS2Ee7/e5VI5EH+VHHLyRmcDWZDXiZdaetqkOH8eXJDC8AifVu+vN9v4pY0Pq9RQT4b04yTu/kSWZZ78Lb3N/JOOyio38rcvdvLLnmKmJwXyahvBz2srMzlrZHj3POlJdLTMgtlm55Ef9zM0zIvF85J7aFTtJwIVQegEpULimfNGEO3nzn+XHurr4bTq8onRfT2EPjUrOZAXlqqoM9lOfnA3Oy0thBcuGnnCix29WolOpWw1j2hYP84n6G/+3F96wmWdzlqyv5Ql+0vbvL+mwYrDIbtk6QCNUsH4WF+X+T0USz+C0ElKhcTpI0L7ehhtGuxX5HGBHjy+KK3Xn/ehham8eunok87IKhQS84e2XlL/9OFhPTE04S9yK43c2Ud1dkoMJu7/Zjf5Va5X3E+SJM4eFeFs+tjXxIyKIHSBq1aunZUcSJi3a46tN52aFoK/u4bKXkqMv3d+MtdNi2v38Z46dYvbgjy1TIzz785hCccprGnkx51FZJbX88e+EkzWvtu++9W2An7cVcQ985K5Zmpst3X6Ti8xEBvgPmDSF0SgIghdoFUpUCqkDpVH72lBnlr+e+FIl5xS7m1alZLLJ0XzwtLDvfJ8J9rC+ldldSa+3Jrf4vbTh4d12weW0JSDsuJgGSvSyzlYWsfm7Kq+HlIzZpuDf/96gFAfXbfNpBnNdi54YyMvXDiS2DaK0PUnYulHELpAlsHVPlMmxfvjox+8u33+6obpcUT763vlud5ck0XdX7antuXOz3a2mhuxYNjgbB7Z3ax2B9kVRu7+chfXvL+VjzbmulyQcryHvt/bpW3ExxsT7csjZwzh5o+3nTBPpr/okUAlJyeHa6+9ltjYWNzc3IiPj+fhhx/GYrE0O0aSpBb/Nm7c2BNDEoQeUWJwjYZ3R81OCeKhhUP6ehguRa9R8eQ5w3vluSw2B6sPVbTr2P3Fhha3BXhoGR3l293DGpTeXJ3FRW9u4Nsdrrsz73g1DVZu+mgbm7LaLtPfEaOifPnm5skUVDf0++q0PbL0k56ejsPh4I033iAhIYG9e/dy/fXXYzQaefbZZ5sdu3TpUoYOHer82t9frM0K/UduH3e59dCqmJsaxPhYf4K9tAyL8G61KdpgF+Hbe/k6WlX7rv+mJPjz657mRemmJwWIJbtuklleT2k72ha4khUHy6kyWvjhtqndcj53rYqrp8R2y7n6Uo8EKqeeeiqnnnqq8+u4uDgOHjzIa6+91iJQ8ff3JyRETHUK/VN2H5VoTw314vThoZw7OoKQk5RmF5oCut6iUrYv0JieGNgiUJmb2vouIKFjTFY7f+x1ncrEHbGroJanf0/nnnnJImg9otf+emtra/Hz82tx+5lnnonJZCIpKYn77ruPM88884TnMZvNmM3HomSDoeX0qSD0lqzy+l5/znvmJXHTjHhUorx6u/m6a4jwdaOgurHHnmNmciBXT4llxgma0x1vdLQvGpXCOS0fH+jOnNSgHhvfYKJUSAR768gqd51eTx3x6spMSmpNPHv+CBGs0EuBSkZGBi+99FKz2RQPDw+ee+45pkyZgkKh4JtvvmHRokV8//33JwxWnnjiCR599NHeGLYgnFRvN71bfEoSt81u2TNGOLnxsX4UVHd/vkKErxvvXDmuw5WAk4I9WXf/bL7als+EWD9GR/kiSeJDqTsoJYlrp8byj+/29vVQOu3bHYWMifHl0gmDu3AjgCTL7S8c/MADD/DUU0+d8JgDBw6QkpLi/LqwsJAZM2Ywc+ZM3n777RM+9oorriA7O5s1a9a0eUxrMyqRkZHU1tbi5TW4C1wJve+0F9dwoJWkyJ6gUkjs/9epzk6sQsf8uqeYWz7Z3u3n9XfXsPHvc0QDQRfSaLFz/hvr2VvYv2fcFw4L5ZVLR/f1MHqMwWDA29v7pJ/fHZpRufvuu7nqqqtOeExc3LFiR0VFRcyaNYvJkyfz5ptvnvT8EyZMYMmSJSc8RqvVotWKZEHBNZTX9V6yns0h02CxoVGJrcedMT7WD41SgaWbu9YGeelEkOJi3DRKZiQF9vtARUywNelQoBIYGEhgYPvWXwsLC5k1axZjxozhvffeQ6E4+R/yzp07CQ113ZLkgnC87Apjr7Y/12uUrVYyFdonwEPL305J5OnfD3brecfFiO3ErujMEeG8siKzr4fRJcsOlFFZb8bfY3BfnPdIjkphYSEzZ84kOjqaZ599lvLycud9R3f4fPDBB2g0GkaNGgXAt99+y7vvvnvS5SFBcBXvrcvu1ee7dVaCqFjaRTfPiCenwsiXWwu65XyeOhXnjYnolnMJ3Ss5xJMrJ0XzwYbcvh5KpzVa7RhMNhGo9MRJlyxZQkZGBhkZGURENP8jPj4l5rHHHiM3NxeVSkVKSgpffPEF5513Xk8MSRC6XUMHyqV31S0z47l1VkKvPd9AJUkS985P4ZfdxRi7+PML89bxxY2TiPTrnaq3QsddMzW2XwcqIV46osXvV89Upr3qqquQZbnVf0ddeeWV7N+/H6PRSG1tLZs2bRJBitCvmKy9E6jE+Ou5Y47Y6dNdAj213bJz6slzh4sgxcUFemrR9OP8oamJogAgiF4/gtBpuwpqevw5PLUqnr9wJDr1wOiC6iqunRpLWnjndwneMSeR6e2slyL0Hb1GxQXj+u/SXJCoMg2I7smC0GlRfnryq3qugFhCkAcvXzKKlBCx7b67aVQKbpoRz22f7ujwYx84LYWbZsT3wKiEnnDRuCg+3pjXoceolRI6lZJATy0zk4OYkRxIaqgnnlo11Q0WPtiQw4HiOlYfKj/5ybpgwTCxuQREoCIIndb+CkQdp5Dg7SvGEjMAWrS7qsOlHasq7KVT8Z9zhnH68LAeGpHQE2yO9v+hRvvrWTgslCsnxxDs1XprCjeNGw+elgrA7oIazn51PfbjnqM7tsArFRJ/m5NIWrh3l84zUIhARRA6wWi2sTWnukfOLUnwr7PSRJDSw4aEtT5TJUngpVNT22jFTa0kLdyL+UNDOGd0BH7uooZNf2KxOfh8c9uzKVqVAvORFgY6tYK3rxhLYnD7KwwPj/DhnSvHcu0HW7E7ZGYmB5Ic4skbq7K6NO4LxkZwu8hLcxKBiiB0wu97S7p81TQxzo8wHzcOldY5C1OpFBJ3nZLEZRNF2eyeNiUhgIvHR/HV1nwSgjyYkxrE/KEhpIV5o1BI1DZa8dKpkGVEQmM/5ZDlpp+fBEcnPQI8tJw3JoIbp8fho1djaLSB1JQP1pmf88zkICbH+xMb4M7fF6Qy9/lVSFLnZ1x1agWLT0nu3IM7Iau8nrhAj157vs7oUAl9V9TeEryC0F1kWeaMl9d2S9XLOSlB/O/iUZTXmak32/B2U4udJL2spNZEgIdGNHkcwPYXGdicXQnAuWMiur1wotlmx2JzsLfQgN0h84/v95Bb2dCpc507OoLnLhjRreM7kZeWHabBaueGaXH49vKMYXs/v0WgIggdtCu/hrNeWddt51txz0xixTKPIAwIVruDHXk1vLk6i6UHSjv0WJVCYtPf5/RqgTe7Q+aOz3YwMtKH66fHnfwB3ai9n9/iEkIQOujLrfnder5Hf9rXrecTBKHvqJUKxsf68ez5wztcSXpUlE+vV6FVKiRevGgkqw6V89XW/F6rD9URIlARhA5Yc7icz06QnNdRaqXE4lOSuu18giC4Bh+9hoXt3F7splYS6q1jTmpwD4+qdSqlgkWjwrnvm918t6MQu0PmYEkdhTU9V36hI0QyrSB0gK9eQwd2O57Q+Fg/rp8Wx/AIn+45oSAILuW5C0ZwaloIG7Mq2Zlfw+6CWm6cEYdCknhzdRYSTXV5Lp0QjZumb4s6qhQSsgwPfruHR37ch80h88l1Ewj3cevTcYEIVAShQ1JDvdBrlB3u8+PtpubVS0djtTsI9tIR5u2Gt150QhaEgUytVLBgWKizcFttg9X5d3/B2EiMZptL1ErZmV/Df5cecn4d5uPG7JQgxsf49eGojhGBiiB0wG97izvVjNBdo2RyvD+SJLa5CsJgdfzFiSsl0McFunPD9Dge/XE/FruD88dGcMtM12mCKnJUBKED1h6uaPexMf56fI68MUWILceCIBzxw85CMsrqMVntbMqq5HBpXZ+MY3dBDX/sK0GtUHDu6AiCvbUkBHlw9eTYPhlPW8SMiiB0wIHi9tdO+dvcJE4bFoLZ5sCrm+s2CILQf608WM6dn+9ErZSw2uVer50CYDBZufer3ZTWmXA4ZL66cTLTEwO5flpcn+fL/JWYURGEdjLb7FQ3WDlnVHi7jn97bRbP/3mIqnpLD49MEIT+5O55TTv9rPamzPy22jn0FFmWefiHfRwsraOmwcrpI8JICvHg32cPc8nWHSJQEYR2Kqk1cWpaCKmh7XtTUUgSZ40Md8k/fEEQ+k64jxsLhoUAcP6YiHZvY+4OtY1W7vu6aRsywFkjw/jXmUNdOn9OVKYVhHYymm1oVApu+mgby9LLTnr8yntmiiBFEIRWmax2CmsaiQtw75UgoazOxA87inhjdSYV9RZ0agVnjQjngnGRjIn27fHnb017P79FjoogtNNXW/N5Ydnhk+76kSQI8tQS4dv39QcEQXBNOrWS+F5qBrj6UDl3fL6Dmgar87ZHzxzKheOieuX5u0oEKoLQTrsLapv9obdmYpwfL108mkDP3i2DLQiC0JqNWZVc9d7mZoUqYwPcOXtURN8NqoNEjoogtMNXW/P5fmfhSY87e1S4CFIEQXAZSoXETTPiSQ31QqmQOHVoCB9eMx6Nqv98/PfYSGNiYpAkqdm/J598stkxu3fvZtq0aeh0OiIjI3n66ad7ajiC0CWzU4K4durJawv8/bu9PP7zfvYW1vbCqARBEE5sXIwf952awm93TiPzPwt4/fIxRPazuk49uvTzr3/9i+uvv975taenp/P/DQYD8+bNY+7cubz++uvs2bOHa665Bh8fH2644YaeHJYgdNjajAreWpN90uPsDpm312YzOtrXJUpjC4Ig9Hc9Gqh4enoSEhLS6n2ffPIJFouFd999F41Gw9ChQ9m5cyfPP/+8CFQEl/Puupx2HZca6sVT5w4TjQYFl7dkfykT4vxEMULB5fXoItWTTz6Jv78/o0aN4plnnsFmsznv27BhA9OnT0ej0Thvmz9/PgcPHqS6urrNc5rNZgwGQ7N/guAqnjhHBCmC66s32/j7d3tY9PI6yupMfT0cQTihHptRueOOOxg9ejR+fn6sX7+eBx98kOLiYp5//nkASkpKiI1tvuYfHBzsvM/Xt/V93U888QSPPvpoTw1bEFoV6qVj1wnuHxHpw8NnDGFkpE9vDUkQOs1Dq2LLP+b29TAEoV06NKPywAMPtEiQ/eu/9PR0ABYvXszMmTMZPnw4N910E8899xwvvfQSZrO5SwN+8MEHqa2tdf7Lz8/v0vkEoT2unx53wvsvmxDF6Kj2FU0qqTVhstpZn1GB1e7ojuEJgiAMWB2aUbn77ru56qqrTnhMXFzrb+gTJkzAZrORk5NDcnIyISEhlJaWNjvm6Ndt5bUAaLVatFqx/VPoXY0nKfL2+ZZ8Fg4PRa858Z/U++uyWZZeRlFNI6HebtynU4mlIkEQhBPoUKASGBhIYGBgp55o586dKBQKgoKCAJg0aRL/+Mc/sFqtqNVNyVxLliwhOTm5zWUfQegrUxL8efniUby3PodtucdyqGYkBRIboMfmkKkz2U4aqFw2MZqrprhWC3VBEARX1iPJtBs2bOCFF15g165dZGVl8cknn3DXXXdx2WWXOYOQSy65BI1Gw7XXXsu+ffv44osvePHFF1m8eHFPDEkQukSSJKYlBZIU7MHZo8IZGuaFRqlgdJQP76/P5eONeTz1W/pJz6NS9p8iS4IgCK6gR5oSbt++nVtuuYX09HTMZjOxsbFcfvnlLF68uNmyze7du7n11lvZsmULAQEB3H777dx///0dei7RlFDoTXaHzGeb83htZSZ+7mr2Fhk4/i9oWmIA10yJZUyMr9j2KQiCcALt/fwW3ZMFoRMsNgc/7y5ibUYFO/JqyK4wAjAs3Jsofz2GRivPXzBSlNMXBEFog+ieLAg9SKNScM7oCM4ZHYEsy+RUNtBgsZEa4oVC0fMt2wVBEAYLEagIQhdJkkRsgHtfD0MQBGFAEpl9giAIgiC4LBGoCIIgCILgskSgIgiCIAiCyxKBiiAIgiAILksEKoIgCIIguCwRqAiCIAiC4LJEoCIIgiAIgssSgYog9BGLzUG10dLXwxAEQXBpouCbIPSi2gYr6SUGVh4q56ddRUyK8+ffZw9DoxLXDIIgCK0RgYog9CBZltmUXcXewlqCvXToNUqGR/gQ5KXjzjmJ6NTKvh6iIAiCSxOXcYLQQ6qNFq56bwsXvbkRs83BGSPCmJMaTKCnltgAdxGkCEI7ZFcYqaw39/Uw2uRwyPyws7CvhzGgiRkVQehmuZVGXlh6mJ93F2G1y0T4umFotCLLMpIkGhYK7ddgsbE8vYz1mZWkFxsorGnEbHPgq9cQ7a/ntlkJjI3x6+thtlDbaKXMYCIx2LPT5yisaeTVFRl8ujkPCZidEsTf5iaRFu7d+nM2WPlhVyGHS+spqmmk0mjhgrGRnD82ArXyxNfkdSYrDhm83dRAU/DhkGWUCsn5N2uy2imobqC20YZDlrHYHJTVmdhTYOC99dlE+ukZHeXb6dcrtE2SZVnu60F0RXvbRAtCb/jfssO8vDwDi93ByEgf/nn6EMZEizcvof0q6s1syKykwWLj8y357MirafPYAA8tF4+P5PwxkYT56FCd5AO5O1lsDnIqjbhrVTSYbRTVmqg32QD4YH0O6SUG7pybRGqoJ25qJRX1Ftw1SnQaJXUmG7IsMyzcG4fcFNiYrHZKDSb8PbT8vKuI99bnYHe0/HianhRIaognCoWE2eqgxNBIQXUjB4oNWO0tj/fVq9FrVCQEeTAtMYAhoV4EeGpxyDKHSuv5eEMum3OqgKZAxc9dQ3FtIyarA71GSYi3DommmZ1WhuOk1yiZPzQEf3cNRosdm92Byeag0WJDlsEuy0iAVqXEU6diQpw/542J6I4fRb/V3s9vEagIQjc67cU1HCg2MCbaly9vnIRSIWZQhLaZrHa25FSx6mA5xbUmbA4Hy9PLWv3APRmFBFMSAjhzRBhxge6UGcx8t6OQg6V1pIV5E+HrRrivG4EeWrRqBaMiffF113ToOWx2B/uLDfy0q4hPN+VhtNg7PE6hia9ezYOnpTIxzp9IP7dBOdsqAhVB6AVGsw29RokkSdSbbZz50lqyKowoFRK3z07gnFERRPnr+3qYQg/LrjDy1dZ80sK9WTAstNVjZFnmcFk9K9LLyCirJ6O8ngPFBkxWRy+PtsnEOD8+vnZCu2ZhLDYHT/x2gK+3FVB3ZNZE6D4BHlqGhXsR7e9OhK8bEb5uxAS44+OmobCmgcxyI6ekBnc4sHR1IlARhB4kyzJXvLuZNYcruGZKLP88PZUzX17HnsLaFsdOSwzgpYtH4aMfWG8yg53dIVNZb2ZDViUP/7iPmgYrAMnBnkT761ErFVw6MYqhYd78sbeE//x2wHmMK1ArJTb/fW6rH36yLGOyOigxmMipNPLRhlyWp5f1wSiFozQqBTOTAhkV5Yu/h4YgTy3DI3zw68fBiwhUBKEHORwycX//1fn1o2cO5eONuRwuq2/1+DNGhPHChSPFUlA3kmWZsjozW3Oq+WJrPrH+eupMNi6ZEMXYGD9kWearrQUsSy/FapcZG+NLg9nOttxqqowWzDY7CknCy01NoKeWAA8NN82IJ9rfnUaLHaPFdiSpEqz2psTJgupGssqNrDpUzv5iAxZb38yGdIWnTsXji9I4ZUgwek3z/RS5lUau+2Brm7/HgmsJ9NRyWloI0xMDmZ0ShKKfvb+IQEUQupksy+RUNlBqMJFX1cB9X+923qdRKvjwmnFc/9G2NqfGzx0dwXMXjOit4bocs81ObaMVbzc1WpWSKqOFjzfmkhTswalpTcslRxMqK40WNEoFySGeSEBWhZHMsnoKqhsprGnkYEkduwtqWs2RkCSYFOdPYU0juZUNHRqjQmqahi+rc93tsF2lkCA11IuXLxlNbIA70BR4f7O9gBeWHqawprGPRyh0hqdWRaSfHqVCQqmQcFMrccgyWrUSX72acB830sK9GRHpQ5i3ziVyYtr7+d0j25NXrlzJrFmzWr1v8+bNjBs3jpycHGJjY1vcv2HDBiZOnNgTwxL6IYPJyjtrsvFyUxPgocFDqyLIU4enToXZ5iA5pPPbHzuiwWJj0SvrOFTadKWp+suVi1alID7Ik4cWpnL/N3taPcfSA6XYHfKgnFVZnl7K3V/uorrBiq9ezSlDgsmuMLIlpxoAf3cNCoVERb2Z4y+dUkO9KK5t7NCSiSzD+szKTo3TITOggxRoeo3XT4tzBil1JiuP/Lifb7YX9PHIhK6oM9vYX2xo17Gh3jq+uGFSv8mf65EZFYvFQlVVVbPb/vnPf7Js2TIyMzORJMkZqCxdupShQ4c6j/P390etVrf7ucSMysAkyzIrDpbh7aahsLqBAyV1SECwlxa1UolSAZIkcWpaCF66tn9fygwmMsrqmZwQ0OUxFdU0UmW0EO7jxuGyevYV1RLqrSMhyINQbx1FNSb+8+sBVhwsb/Mcz5w3nPPHRnZ5LK7O4ZDJqjCyKbuSX3YXdzpwEHqOp06FTq2kfIAHZkJzCgmePGc454+N6PNZlT6dUdFoNISEhDi/tlqt/PDDD9x+++0tvjH+/v7NjhVcT0W9mV/3FOPtpmZCrD8h3joAluwvpaLeTLSfnmBvHY0WO0NCvVqsk8qyjCzTofVTSZJYfaiC99fntLgvJcST22YnEO3nTk6FkZJaE/nVjeRVGikxmHDXqEgM9qTRYuOb7YUU1jQS6edGpK8eo8VOjL+eeUNC0KkV+Og1hPu4EeylZWd+De+vz2FWchAyMgpJYnSUL5F+TVcdIV46jGYbv+0tIbfSSKnBxPJ0C+V1ZgprGtu1G+L7nYUDOlDZlV/Ds38eZGdeDXVmsTvEldWZbGIHzyDjo1fz2FlpnDEirK+H0iG9kqPyzTffcMEFF5Cbm0tERFOBm6MzKpGRkZhMJpKSkrjvvvs488wzO3RuMaPScQ6HTEF1I9mVRjy0Srx0aqqMFmyOpiqqbmolVodMeZ0Zo9mGt5saH70ad42S2kYbOrUCrUqJzeFga041FfVmFAoJP72GQ6X1FNY0EOSpI8BDQ05lA2sOl+OQ4aWLRzE0zItKo4UAD+1Jx2m22flqawEltSZ+3VNMVoWxx74nnlpVqx+skgSjIn0wWR3kVzd0+o3dU6tibIwv/zorzRn4DETpJQbu/2YPu/Jr+noogjDo6TVKJscHMCrKh8smROOtb/9qRW9wqWTaBQsWAPDrr8d2SVRUVPDhhx8yZcoUFAoF33zzDU8//TTff//9CYMVs9mM2XxsqtJgMBAZGTnoA5XaRis2uwN/Dy2yLFNUa2J/kQGT1Y7Z5qCmwUJ+VQPpJXXsLzL0ydWuQmrKUi81mIkLcCct3JtATy3DI7yJ9NPTaLFTVmeiqMaEJIGbWkmQp44Qbx3+7houf3cT+VX9K9FvQqwf/z47jYSg3sml6Qt2h0x6iYE/9pXy866iHg0oBUFon+lJgTy0MJWkLrQx6Gk9Eqg88MADPPXUUyc85sCBA6SkpDi/LigoIDo6mi+//JJzzz33hI+94ooryM7OZs2aNW0e88gjj/Doo4+2uH0wByofbsjh/37Yh0alIC7AnYLqRurFtHuv8nZTkxDkQVKwJ1F+emL89YyL9WvXzFF/YrLaya1s4FBpHfuKDOzKr2lz940gCL1Po1Tw3tXjmNINeXk9rUcClfLyciorT5wUFxcXh0ZzrADNY489xksvvURhYeFJk2RfeeUVHn/8cYqLi9s8ZqDOqHR0N0idycq6jAoOltSTW2nk2x2ie2dPGBnpg5ebGqUE7loVGpUCm13G7pBRKyWCvXRcNjGaCN/+XwJblmU2Z1exp7CWwppGygxmimsbqW20YrXL1DZaqW10nYJlgiC0dPrwUF6+ZHRfD6NdeiSZNjAwkMDAwHYfL8sy7733HldccUW7dvLs3LmT0NDWy08fpdVq0WoH1lUqwM+7i3hrTRZjonwxWuzUNFipMprx0Ws4e1Q4JqudSqOFjLJ69hUZOFhiOGGDLKF7VBkthHjpiPbXMz7WjxlJgb3a+K0nORwyxQYT23Kr2ZRVyfrMSrLFso0g9Gtbc6rZW1jbZpfp/qhHdv0ctXz5crKzs7nuuuta3PfBBx+g0WgYNWoUAN9++y3vvvsub7/9dk8OqU/JsszKQ+VYbU25JENCvXDTKAGYmRTEivQyvt5W0GIaXZSu7htp4V6MivTF201NvdnG9rxqEoI8iPZ37/WxyLLMDzuLWH24nILqRirqzYT7uDE0zJszR4QxJOzks4myLPPuuhy251aTUVZPbpWxz/rMCILQM0oMJq77YCs3zojD30NLQqBHu94fXFmPBirvvPMOkydPbpazcrzHHnuM3NxcVCoVKSkpfPHFF5x33nk9OaQ+ZbXLFFQ18NySQ9Q0WNGpFSwYFso/Fw7B113DCxeNwmZ3sCWnmk825VLbaKXOZMPQaKWqwYLRbOtUV1Whcx47K41RUb59PQzK6kz87fOdLWqRZJUbWXO4gjdWZ/L1TZMYE+13wvMYGm089vP+Fre7qZWolBIOhyxyTYT/b+/eg6Ks/z2Av1nYK7AssAsLyNUULwkIxQ5Ndk5BguNpLP015nFMm8pSy19pltZ4bUySGZ2p0azOJM00o+Wc0/WYpSh5zA2LIFKJHyqKxi7EZd3lsuyy+zl/8PP5uXLxwsI+C5/XDCPu891nP+/n2V0+++xzYX4qWRuMiGAZgiS9X0m3djggDZSg0WrH5JhQv/5qmk+h7wOOHjcqL1tgutoFjUqGqbHqW97p0u0mdDpdwinEf7tswcHfzXC4+JPxcMibHI3Nc6YiTqMc8ryICN9UmWC1OzEvcxwU0sABx3Z09+ByWyd+qPkLHxy/gJYOx6Dz/nvuBLz88MSb1nCppQNOlxtAANTKIGiUMsiCer/K+sNsxX9+WIbWmzwWY0xclj6QgrUFk0bttX6GdYsK658sSILs5ME//Q5EIglAiDwIWYnhGBeuhEYlRXl9m98dtusvjlQ34kh1I5IiVYgKVUCjkkIfpkCyNhgTo0ORNi4MoTecGdflJnxT1YAj1U240tbZex4apRQNV+04VdeKZG0w/pY1bsDHfOXAb/iy8s8+W8+CZYGIUiv+eRl4FcbrgjFeF4KpcWpEhSpuKU9iZDBcboL1nzvGmixWtHY60NbhgOmqHZkJ4ThS3Xj7C4ox5hP/kRaDVQ9P9Lsm5XbwFhWRsTtdqG1sx88XW3G89q9/HWlBQHq8BrpQOc41taPGbOOLh4lAQEDvJtdJ+lCM14VAo5JBrQhCmFKKaLUCMRoFtMFy4U3E7nTBTdTnqrU36u5xobPbBYfLjR43QaOUIlgeNOhZfokIZ01WVF25CkunE24iEBGs9h6YrtphvtqFBosdZqsdLt4Tm7FRIUUbjH9L1WH1zFSEyP1r24OoTvg2nEZbo3K95vZu/KPRho9PXsR3Z/hTrr+SBUqQogtGqj4Uk/RqTIoJxb1JEX3eVIgIpqt21JhtuNTSgSttXahv7cSF5g7Ut3R6fL0nD5IgVBGEUIUUUaFyxGmUaLjahZ8utN748IyxMSBcJcXfssbh31OjkJkQLhyoIWbcqIwSLe3deHyPkc/2OcqEKaX4e+4EJGlVOP6PZpw1WfGHyQorX3uFMTZEQZIATI5RIyNeg2lxYUjSBiMpUgVdqFxUO9VyozJMiMhjRVs6Hbja5YS1qwc2uxNRajnG60K89mSoqG/D/1aZ0NrpQHO7A2UXWtDdwzvOMsYYuz1TY9VY8eBd0KikCFfJoAuV+/Ts2dyoeMGpulas/Z8qKKWBmBgdiostHTjTYMU9ieGYEqPG/9U2o6bR1ud+2hAZMhPCkZGgQZxGCW1I75NBr1YM+aJQze3dONtgRVunA5ZOJ9o6HbA73XATwe0muAkwW7tw8HfzkB6HMcbY6JedFIEwlRR/2brR3N4Nu9ON+AglEiNUSIwMRpJWhQcm6BA5DA0NNypesPa/q7D/58tenadGJUViZDCiQ+UIVUihVvbuZ6BWBMHudKHJ1o2/bN1o63RAHhQIlSwQKlkQguW9/+rVciREqjAuXAW70wXTVTtMli6Yrd1ostrRZOtGXXMH72jLGGPMK/7ryXuQNyXa6/Plw5NFytLphKXT4usyGGOMMb8wOi5awhhjjLFRiRsVxhhjjIkWNyqMMcYYEy1uVBhjjDEmWrwz7SDmZY3D9ASNr8tgjDHGfGZyrG9PpsqNyiDuTYrAvUl3dvFAxhhjjA0df/XDGGOMMdHiRoUxxhhjosWNCmOMMcZEixsVxhhjjIkWNyqMMcYYEy1uVBhjjDEmWtyoMMYYY0y0uFFhjDHGmGj5/QnfiAgAYLVafVwJY4wxxm7Vtb/b1/6OD8TvGxWbzQYAiI+P93EljDHGGLtdNpsNYWFhA04PoJu1MiLndrvR0NCA0NBQBAQE+LqcYWe1WhEfH4/Lly9Drfbt9RdG2ljNPlZzA2M3+1jNDXD2sZSdiGCz2RAbGwuJZOA9Ufx+i4pEIsG4ceN8XcaIU6vVY+KJ3J+xmn2s5gbGbvaxmhvg7GMl+2BbUq7hnWkZY4wxJlrcqDDGGGNMtLhR8TNyuRwbN26EXC73dSkjbqxmH6u5gbGbfazmBjj7WM0+GL/fmZYxxhhjoxdvUWGMMcaYaHGjwhhjjDHR4kaFMcYYY6LFjQpjjDHGRIsbFZHaunUr7rvvPqhUKmg0mn7HBAQE9PnZv3+/x5jS0lJkZmZCLpfjrrvuQnFx8fAXP0S3kr2+vh6zZ8+GSqVCVFQU1qxZg56eHo8x/pj9RklJSX3WcWFhoceYqqoqzJgxAwqFAvHx8di+fbuPqvWuXbt2ISkpCQqFAgaDAadOnfJ1SV63adOmPut30qRJwnS73Y4VK1YgMjISISEhmDdvHhobG31Y8Z05fvw4HnnkEcTGxiIgIABffPGFx3QiwoYNGxATEwOlUom8vDzU1tZ6jGltbcXChQuhVquh0Wjw9NNPo729fQRT3JmbZV+yZEmf50BBQYHHGH/N7i3cqIiUw+HA448/jmXLlg06bu/evTCZTMLPo48+Kkyrq6vD7Nmz8eCDD6KyshIvvfQSnnnmGXz33XfDXP3Q3Cy7y+XC7Nmz4XA4cPLkSXz88ccoLi7Ghg0bhDH+mr0/W7Zs8VjHL774ojDNarVi5syZSExMRHl5OYqKirBp0yZ88MEHPqx46D799FOsWrUKGzduxK+//or09HTk5+ejqanJ16V53dSpUz3W74kTJ4RpL7/8Mr7++mscOHAAP/zwAxoaGjB37lwfVntnOjo6kJ6ejl27dvU7ffv27XjnnXewZ88elJWVITg4GPn5+bDb7cKYhQsX4syZMzh8+DC++eYbHD9+HEuXLh2pCHfsZtkBoKCgwOM5sG/fPo/p/prda4iJ2t69eyksLKzfaQDo888/H/C+r776Kk2dOtXjtvnz51N+fr4XKxw+A2U/ePAgSSQSMpvNwm3vvfceqdVq6u7uJiL/z35NYmIi7dy5c8Dpu3fvpvDwcCE3EdFrr71GqampI1Dd8MnOzqYVK1YI/3e5XBQbG0vbtm3zYVXet3HjRkpPT+93msViIalUSgcOHBBuq66uJgBkNBpHqELvu/F9y+12k16vp6KiIuE2i8VCcrmc9u3bR0REZ8+eJQD0888/C2O+/fZbCggIoD///HPEah+q/t6zFy9eTHPmzBnwPqMl+1DwFhU/t2LFCmi1WmRnZ+Ojjz7yuFy20WhEXl6ex/j8/HwYjcaRLtOrjEYjpk2bhujoaOG2/Px8WK1WnDlzRhgzWrIXFhYiMjIS06dPR1FRkcdXXEajEQ888ABkMplwW35+PmpqatDW1uaLcofM4XCgvLzcY/1JJBLk5eX55fq7mdraWsTGxiIlJQULFy5EfX09AKC8vBxOp9NjOUyaNAkJCQmjajnU1dXBbDZ75AwLC4PBYBByGo1GaDQa3HPPPcKYvLw8SCQSlJWVjXjN3lZaWoqoqCikpqZi2bJlaGlpEaaN9uy3wu8vSjiWbdmyBQ899BBUKhW+//57LF++HO3t7Vi5ciUAwGw2e/wxB4Do6GhYrVZ0dXVBqVT6ouwhGyjXtWmDjfG37CtXrkRmZiYiIiJw8uRJrFu3DiaTCTt27ADQmzM5OdnjPtcvi/Dw8BGveaiam5vhcrn6XX9//PGHj6oaHgaDAcXFxUhNTYXJZMLmzZsxY8YMnD59GmazGTKZrM9+WtHR0cLzfDS4lqW/9X396zkqKspjelBQECIiIvx+WRQUFGDu3LlITk7G+fPn8frrr2PWrFkwGo0IDAwc1dlvFTcqI2jt2rV4++23Bx1TXV3tsTPdYNavXy/8Pn36dHR0dKCoqEhoVMTE29n92e0si1WrVgm3paWlQSaT4bnnnsO2bdv4NNujwKxZs4Tf09LSYDAYkJiYiM8++8xvmmk2NE888YTw+7Rp05CWlobx48ejtLQUubm5PqxMPLhRGUGrV6/GkiVLBh2TkpJyx/M3GAx488030d3dDblcDr1e3+cIgcbGRqjV6hF/E/Rmdr1e3+cIkGs59Xq98K9Yst9oKMvCYDCgp6cHFy9eRGpq6oA5gX8tC3+j1WoRGBjYby5/zXSrNBoNJk6ciHPnzuHhhx+Gw+GAxWLx2Koy2pbDtSyNjY2IiYkRbm9sbERGRoYw5sYdqXt6etDa2jqqlgXQ+9rXarU4d+4ccnNzx1T2gXCjMoJ0Oh10Ot2wzb+yshLh4eHCJ+2cnBwcPHjQY8zhw4eRk5MzbDUMxJvZc3JysHXrVjQ1NQmbRA8fPgy1Wo0pU6YIY8SS/UZDWRaVlZWQSCRC7pycHLzxxhtwOp2QSqUAenOmpqb65dc+ACCTyZCVlYWSkhLhKDa3242SkhK88MILvi1umLW3t+P8+fNYtGgRsrKyIJVKUVJSgnnz5gEAampqUF9fL4rnsbckJydDr9ejpKREaEysVivKysqEI/9ycnJgsVhQXl6OrKwsAMDRo0fhdrthMBh8VfqwuHLlClpaWoSmbSxlH5Cv9+Zl/bt06RJVVFTQ5s2bKSQkhCoqKqiiooJsNhsREX311Vf04Ycf0u+//061tbW0e/duUqlUtGHDBmEeFy5cIJVKRWvWrKHq6mratWsXBQYG0qFDh3wV65bcLHtPTw/dfffdNHPmTKqsrKRDhw6RTqejdevWCfPw1+zXO3nyJO3cuZMqKyvp/Pnz9Mknn5BOp6Mnn3xSGGOxWCg6OpoWLVpEp0+fpv3795NKpaL333/fh5UP3f79+0kul1NxcTGdPXuWli5dShqNxuNIr9Fg9erVVFpaSnV1dfTjjz9SXl4eabVaampqIiKi559/nhISEujo0aP0yy+/UE5ODuXk5Pi46ttns9mE1zEA2rFjB1VUVNClS5eIiKiwsJA0Gg19+eWXVFVVRXPmzKHk5GTq6uoS5lFQUEDTp0+nsrIyOnHiBE2YMIEWLFjgq0i3bLDsNpuNXnnlFTIajVRXV0dHjhyhzMxMmjBhAtntdmEe/prdW7hREanFixcTgD4/x44dI6Lew9MyMjIoJCSEgoODKT09nfbs2UMul8tjPseOHaOMjAySyWSUkpJCe/fuHfkwt+lm2YmILl68SLNmzSKlUklarZZWr15NTqfTYz7+mP165eXlZDAYKCwsjBQKBU2ePJneeustjzcwIqLffvuN7r//fpLL5RQXF0eFhYU+qti73n33XUpISCCZTEbZ2dn0008/+bokr5s/fz7FxMSQTCajuLg4mj9/Pp07d06Y3tXVRcuXL6fw8HBSqVT02GOPkclk8mHFd+bYsWP9vqYXL15MRL2HKK9fv56io6NJLpdTbm4u1dTUeMyjpaWFFixYQCEhIaRWq+mpp54SPryI2WDZOzs7aebMmaTT6UgqlVJiYiI9++yzfRpyf83uLQFE1x3PyhhjjDEmInweFcYYY4yJFjcqjDHGGBMtblQYY4wxJlrcqDDGGGNMtLhRYYwxxphocaPCGGOMMdHiRoUxxhhjosWNCmOMMcZEixsVxhhjjIkWNyqMMcYYEy1uVBhjjDEmWtyoMMYYY0y0/h+KmnTi0EcwiAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "import geopandas\n", "from geodatasets import get_path\n", @@ -188,13 +167,20 @@ "source": [ "\n", "#### *Exercise*\n", - "Go through some of these datasets and find something that looks interesting to you that we can work on next week.\n", + "Go through some of these datasets and find something that looks interesting to you that we can work on in the following notebooks. \n", "\n", "* https://github.com/jdorfman/awesome-json-datasets - we can direcly query these using requests and the url as we did for the meteorite data. \n", "* https://catalog.data.gov/dataset/\n", "* https://data.fivethirtyeight.com/ - they have zip files with csv data\n", - "* https://www.kaggle.com/datasets - click all data sets and you'll see loads of stuff. looks like they have large csv files to download." + "* https://www.kaggle.com/datasets - click all data sets and you'll see loads of stuff. looks like they have large csv files to download.\n", + "\n", + "At the end of the Pandas series of notebooks, you should be able to prepare and analyze some data that you find interesting. So spend some time finding data that's interesting to you. " ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] } ], "metadata": { diff --git a/D1-Pandas_Intro_and_Data_Selection.ipynb b/D1-Pandas_Intro_and_Data_Selection.ipynb index b22c801..bfccdf3 100644 --- a/D1-Pandas_Intro_and_Data_Selection.ipynb +++ b/D1-Pandas_Intro_and_Data_Selection.ipynb @@ -73,20 +73,9 @@ }, { "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " Name Age City\n", - "0 Alice 25 New York\n", - "1 Bob 30 Los Angeles\n", - "2 Charlie 35 Chicago\n" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "import pandas as pd\n", "\n", @@ -151,116 +140,16 @@ "metadata": {}, "outputs": [], "source": [ - "# *We'll use this \"df\" for a few exercises below, so make sure to run this cell before continuing.*\n", + "# *We'll use this flowers dataframe for a few exercises below, so make sure to run this cell before continuing.*\n", "flowers = pd.read_csv(\"https://raw.githubusercontent.com/a8ksh4/python_workshop/main/SAMPLE_DATA/iris.csv\")\n", "# You can also try saving iris.csv in the directory with your notebook and opening it from a local path." ] }, { "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
sepal_lengthsepal_widthpetal_lengthpetal_widthspeciessepal_length_inches
05.13.51.40.2Iris-setosa2.007875
14.93.01.40.2Iris-setosa1.929135
24.73.21.30.2Iris-setosa1.850395
34.63.11.50.2Iris-setosa1.811025
45.03.61.40.2Iris-setosa1.968505
\n", - "
" - ], - "text/plain": [ - " sepal_length sepal_width petal_length petal_width species \\\n", - "0 5.1 3.5 1.4 0.2 Iris-setosa \n", - "1 4.9 3.0 1.4 0.2 Iris-setosa \n", - "2 4.7 3.2 1.3 0.2 Iris-setosa \n", - "3 4.6 3.1 1.5 0.2 Iris-setosa \n", - "4 5.0 3.6 1.4 0.2 Iris-setosa \n", - "\n", - " sepal_length_inches \n", - "0 2.007875 \n", - "1 1.929135 \n", - "2 1.850395 \n", - "3 1.811025 \n", - "4 1.968505 " - ] - }, - "execution_count": 22, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "# Your code here. You can re-run the above cell if you mess up your dataframe.\n", "# print(flowers....)\n", @@ -269,28 +158,9 @@ }, { "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "RangeIndex: 150 entries, 0 to 149\n", - "Data columns (total 5 columns):\n", - " # Column Non-Null Count Dtype \n", - "--- ------ -------------- ----- \n", - " 0 sepal_length 150 non-null float64\n", - " 1 sepal_width 150 non-null float64\n", - " 2 petal_length 150 non-null float64\n", - " 3 petal_width 150 non-null float64\n", - " 4 species 150 non-null object \n", - "dtypes: float64(4), object(1)\n", - "memory usage: 6.0+ KB\n" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "flowers.info()" ] @@ -307,21 +177,9 @@ }, { "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " fruit color weight kg\n", - "0 apple red 0.20\n", - "1 banana yellow 0.30\n", - "2 cherry red 0.05\n", - "3 date brown 0.10\n" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "fruits = pd.DataFrame({'fruit': ['apple', 'banana', 'cherry', 'date'],\n", " 'color': ['red', 'yellow', 'red', 'brown'],\n", @@ -486,23 +344,9 @@ }, { "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " Name Age City\n", - "SSN \n", - "123-45-6789 Alice 25 New York\n", - "234-56-7890 Bob 30 Los Angeles\n", - "345-67-8901 Charlie 35 Chicago\n", - "456-78-9012 David 40 Houston\n", - "567-89-0123 Eve 45 Phoenix\n" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "df = pd.DataFrame({\n", " 'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eve', 'Frank', \n", @@ -527,32 +371,9 @@ }, { "cell_type": "code", - "execution_count": 78, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "A single row:\n", - " Name Charlie\n", - "Age 35\n", - "City Saskatoon\n", - "Name: 345-67-8901, dtype: object\n", - "A list of rows by SSN:\n", - " Age City\n", - "SSN \n", - "345-67-8901 35 Saskatoon\n", - "456-78-9012 40 Houston\n", - "A range of rows by SSN:\n", - " SSN\n", - "345-67-8901 Saskatoon\n", - "456-78-9012 Houston\n", - "567-89-0123 Phoenix\n", - "Name: City, dtype: object\n" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "print('A single row:\\n', \n", " df.loc['345-67-8901'])\n", @@ -597,7 +418,9 @@ "execution_count": null, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "# Your code here..." + ] }, { "cell_type": "markdown", @@ -609,36 +432,9 @@ }, { "cell_type": "code", - "execution_count": 72, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Row 0:\n", - " Name Alice\n", - "Age 25\n", - "City New York\n", - "Name: 123-45-6789, dtype: object\n", - "\n", - "Rows 2 and 5 and Age column:\n", - " SSN\n", - "345-67-8901 35\n", - "678-90-1234 50\n", - "Name: Age, dtype: int64\n", - "\n", - "Rows 2:6 and columns 0 and 1 using slices:\n", - " Name Age\n", - "SSN \n", - "345-67-8901 Charlie 35\n", - "456-78-9012 David 40\n", - "567-89-0123 Eve 45\n", - "678-90-1234 Frank 50\n", - "789-01-2345 Grace 55\n" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "print('Row 0:\\n', \n", " df.iloc[0])\n", @@ -671,7 +467,9 @@ "execution_count": null, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "# Your code here..." + ] }, { "cell_type": "markdown", @@ -683,56 +481,9 @@ }, { "cell_type": "code", - "execution_count": 94, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Row_index: 0\n", - "Alice lives in New York and is 25 years old.\n", - "We can use loc to get the name from the same row: Alice was here\n", - "\n", - "Row_index: 1\n", - "Bob lives in Los Angeles and is 30 years old.\n", - "We can use loc to get the name from the same row: Bob\n", - "\n", - "Row_index: 2\n", - "Charlie lives in Saskatoon and is 35 years old.\n", - "We can use loc to get the name from the same row: Charlie\n", - "\n", - "Row_index: 3\n", - "David lives in Houston and is 40 years old.\n", - "We can use loc to get the name from the same row: David\n", - "\n", - "Row_index: 4\n", - "Eve lives in Phoenix and is 45 years old.\n", - "We can use loc to get the name from the same row: Eve\n", - "\n", - "Row_index: 5\n", - "Frank lives in Philadelphia and is 50 years old.\n", - "We can use loc to get the name from the same row: Frank\n", - "\n", - "Row_index: 6\n", - "Grace lives in San Antonio and is 55 years old.\n", - "We can use loc to get the name from the same row: Grace\n", - "\n", - "Row_index: 7\n", - "Hannah lives in San Diego and is 60 years old.\n", - "We can use loc to get the name from the same row: Hannah\n", - "\n", - "Row_index: 8\n", - "Isaac lives in Dallas and is 65 years old.\n", - "We can use loc to get the name from the same row: Isaac\n", - "\n", - "Row_index: 9\n", - "Jack lives in San Jose and is 70 years old.\n", - "We can use loc to get the name from the same row: Jack\n", - "\n" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "for row_index, row_vals in df.iterrows():\n", " # print out the name, city, and age of the person in this row:\n", @@ -833,7 +584,9 @@ "execution_count": null, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "# Your code here..." + ] }, { "cell_type": "markdown", @@ -850,19 +603,9 @@ }, { "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " Name Age City\n", - "SSN \n", - "345-67-8901 Charlie 35 Chicago\n" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "filtered_df = df.query('Age > 30 and City == \"Chicago\"')\n", "print(filtered_df)" @@ -881,20 +624,11 @@ }, { "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Requirement already satisfied: openpyxl in /home/dan/venv/lib/python3.12/site-packages (3.1.5)\n", - "Requirement already satisfied: et-xmlfile in /home/dan/venv/lib/python3.12/site-packages (from openpyxl) (1.1.0)\n", - "Note: you may need to restart the kernel to use updated packages.\n" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ + "# you can comment out the pip line after running it once\n", "%pip install openpyxl\n", "out_file = 'flowers.xlsx'\n", "flowers.to_excel(out_file)" @@ -955,8 +689,13 @@ "metadata": {}, "source": [ "#### *Exercise*:\n", - "To wrap up this notebook, let's " + "Hopefully you've found some data that you find interesting and you would like to anaylze, make graphs for, and build a note book to present. Start a new notebook for this and import your data. You may want to clean up column names and/or make a selection of the data to look at. " ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] } ], "metadata": { diff --git a/D2-Data_Cleaning.ipynb b/D2-Data_Cleaning.ipynb index 62d9da8..ab7a60f 100644 --- a/D2-Data_Cleaning.ipynb +++ b/D2-Data_Cleaning.ipynb @@ -6,6 +6,11 @@ "source": [ "# Section D2 - Data Cleaning with Pandas\n", "\n", + "Topics:\n", + "* Setting column data types\n", + "* Dropping rows with NaN values\n", + "* Removoing rows with invalid values. \n", + "\n", "Sometimes you'll need to pre-process your data before you can analyze it or present it for analysis. A few scenarios:\n", "* Excluding rows or columns with missing or invalid data:\n", " * You have a dataset os several measurments made on many samples. Some of the samples don't have all measurements done, so you need to exclude them. You can use dropna to remove rows or columns that are missing the needed measurements. \n", @@ -264,7 +269,17 @@ "metadata": {}, "source": [ "## Identifying bad data analytically\n", - "We have a bunch of numeric data in our dataframe now, but we might " + "We have a bunch of numeric data in our dataframe now, but we might want to sanity check that it looks correct. After all, our interns who transcribed this data are overworked, underpaid, and distracted, so there could be mistakes. \n", + "\n", + "#### *Exercise*:\n", + "Use masks to identify data meeting each of the following conditions. Print and remove the identified rows from our dataset:\n", + "* Rows with Pulse or Maxpulse <30 or >220, as these would be impossible for normal humans\n", + "* Rows with Pulse greater than Maxpulse, as the average can't possibly be greater than the max observed\n", + "* Duration or Calories < 0 as this is not possible\n", + "\n", + "Remember that `~mask` is the inverse of mask, so if your mask matches the condition you want to remove, then you want to set your dataframe to `df[~mask]` to remove the rows that met the criteria.\n", + "\n", + "You can check each condition on by one, or you could check them in a loop and in each iteration of the loop, \"or\" the previous mask and new mask together with \"|\" (the pipe symbol). Then after the loop, your mask will include all of the conditions and you can remove all matching rows at once from df. " ] }, { @@ -272,7 +287,42 @@ "execution_count": null, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "# Your code here\n", + "foo = ...\n", + "df_numeric = df_numeric[foo]\n", + "..." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Ahother thing we can do is check that the calories burned per unit time are reasonable. We'll do this by calculating normalized calories per duration and identifying outliers which are more than two standard deviations from the average:\n", + "\n", + "#### *Exercise*\n", + "* Create a \"NormalizedCalories\" column equal to Calories divided by Duration\n", + "* Calculate the average and standard deviation of this new column. \n", + "* Create a mask for abs(NormalizedCalories - Average) > (2 * Stdev)\n", + "* Print the rows identified and remove them from the dataset. Does this seem like a reasonable filter for outliers?\n", + "\n", + "A couple helpful functions you can use for this are:\n", + "* np.abs(...) to calculate the absolute value\n", + "* df['col_name'].describe() will return a **dictionary** of statistics describing the column. You can use 'std' and 'mean' from this dictionary for the standard deviation and the average. Try printing it to see what all is included. \n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "# your code here:\n", + "df['NormalizedCalories'] = ...\n", + "stats = df['NormalizedCalories'].describe()\n", + "..." + ] }, { "cell_type": "markdown", @@ -304,6 +354,18 @@ "# drop columns with missing values\n", "d" ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### *Exercise*:" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] } ], "metadata": { diff --git a/D3-Pandas_Graphing.ipynb b/D3-Pandas_Graphing.ipynb index e69de29..4a82c21 100644 --- a/D3-Pandas_Graphing.ipynb +++ b/D3-Pandas_Graphing.ipynb @@ -0,0 +1,47 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Section D3 - Graphing with Pandas (and Matplotlib)\n", + "We'll go through a few types of graphs here!\n", + "\n", + "## Time series\n", + "\n", + "## Multi Axis\n", + "\n", + "## Scatter Plot\n", + "\n", + "## Box and Whisker Plot\n", + "\n", + "## Histogram\n", + "\n", + "## Heatmap\n", + "\n", + "## Multiple Plots" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/D4-Advanced_Pandas.ipynb b/D4-Advanced_Pandas.ipynb index 49d20c3..5f6a96c 100644 --- a/D4-Advanced_Pandas.ipynb +++ b/D4-Advanced_Pandas.ipynb @@ -4,9 +4,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# D2 - Advanced Pandas\n", + "# Section D4 - Advanced Pandas\n", "\n", - "**Topics**: loc and iloc, groupby, stack, unstack, pivot, ...\n", + "Topics:\n", + "* Join and Concatenate\n", + "* groupby\n", + "* stack, unstack, pivot, ...\n", "\n", "## Join and Concatenate\n", "\n", diff --git a/README.md b/README.md index f45d097..f2d4a4e 100644 --- a/README.md +++ b/README.md @@ -11,7 +11,6 @@ We have a bunch of coureswork ready to use, including: See the Notebooks list below for a more detailed list. ## Current Schedule: -* Wednesday Sep 4th 4-5PM * NO WORKSHOP on Sep 11th and 18th * Wednesday Sep 25th 4-5PM * Wednesday Oct 2nd 4-5PM @@ -46,10 +45,15 @@ We have a series of python notebooks ready to work through to learn from. They * A-Getting_Started.ipynb - Introduction to Python and Google Colab. Covering variables and data types (numeric, strings, boolean), truthiness, and basic control flow (if-else statements). * B-Dictionaries_and_Loops.ipynb - Exploring more complex data types (lists, tuples, dictionaries) and advanced control flow (loops: for and while). Opening files and intro to json. -* C-Functions_and_Pandas_Intro.ipynb - Introducing functions and modules in Python. Basic introduction to pandas for data analysis, focusing on importing data and initial data exploration -* D-Pandas.ipynb - Building on pandas skills with more advanced data manipulation and introduction to data visualization using pandas and matplotlib for generating graphs. - -**In Development:** +* C-Functions_and_Module_Imports.ipynb - Introducing functions and modules in Python. +* D0-Pandas_Example.ipynb - An example of importing data and doing some anaylsis and graphing to get a feel for how pandas works. +* D1-Pandas_Intro_and_Data_selection.ipynb - Some pandas basics including imoprting data, manipulating columns of data, learning ways to select rows and columns of data, and exporting data to file. + +**In Development** +* D2-Data_Cleaning.ipynb - Setting column data types, removing missing or invalid data, interpolation, etc tools for preparing data for analysis. +* D3-Pandas_Graphing.ipynb - Goes over a bunch of plot types multi-axis plots, and graphs with multiple plots. +* D4-Advanced_Pandas.ipynb - Pivot, stack, unstack, join, concatenate, etc. +* D5-Machine_Learning.ipynb - Methods to use machine learning to model data using pandas and common ML libraries. Building on pandas skills with more advanced data manipulation and introduction to data visualization using pandas and matplotlib for generating graphs. * E-Writing_Scripts.ipynb - Installing python locally, environment, structure of a script, and argparse * F-Microcontrollers_Intro.ipynb - Circuitpython and Micropython on common microcontroller boards. * G-Exception_Handling.ipynb - Try/Except blocks and Error Handing. From 3b520c862ccef27d688c146c78087039f66f7ad4 Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Thu, 26 Sep 2024 19:24:20 -0700 Subject: [PATCH 27/94] new content --- D5-Exmaple_Data_Sources.ipynb | 317 ++++++++++++++++++++++++++++++++++ 1 file changed, 317 insertions(+) create mode 100644 D5-Exmaple_Data_Sources.ipynb diff --git a/D5-Exmaple_Data_Sources.ipynb b/D5-Exmaple_Data_Sources.ipynb new file mode 100644 index 0000000..940efe2 --- /dev/null +++ b/D5-Exmaple_Data_Sources.ipynb @@ -0,0 +1,317 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# D5 - Example Data Sources\n", + "\n", + "**Index**:\n", + "* API Keys\n", + "* Water Data\n", + " * CIMIS\n", + " * \n", + " * NWIS\n", + "\n", + "\n", + "## API Keys\n", + "When you get an API key for a website, it's associated with your account and not something you want to share. So, it's **not** a good idea to keep API keys in your scripts if you're going to share them, post them on github, etc. \n", + "\n", + "A good strategy is to put them in an environment variable so that you can get the key from the env variable inside your script. In the examples below you'll see checks for os.environ - this is looking for an environment variable with your key.\n", + "\n", + "In linux, you can set an environment variable by adding a line to your ~/.bashrc file like follows, and the log back into your computer:\n", + "\n", + " export CIMIS_API_KEY=\"your key here\"\n", + "\n", + "And in windows, you can run the following in a cmd window:\n", + "\n", + " setx OPENAI_API_KEY “”\n", + "\n", + "Theres more info on this stuff here: https://help.openai.com/en/articles/5112595-best-practices-for-api-key-safety" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Cimis Data\n", + "Create an account at https://cimis.water.ca.gov. Once you log, click the \"Account\" button in the top right corner. Scroll down and you'll see an API key that you'll need for queries.\n", + "\n", + "We can query the Cimis data from: https://et.water.ca.gov... \n", + "* There are example queries at: https://et.water.ca.gov/Rest/Index\n", + "\n", + "Here's some example code for querying it:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Request url is: https://et.water.ca.gov/api/data?appKey=46f5b53b-3adc-4a4d-a660-474c010a26f4&startDate=2010-01-01&endDate=2010-01-05&targets=2,8,127\n" + ] + } + ], + "source": [ + "import json\n", + "import os\n", + "import requests\n", + "import pandas as pd\n", + "\n", + "if 'CIMIS_API_KEY' in os.environ:\n", + " api_key = os.environ['CIMIS_API_KEY']\n", + "else:\n", + " api_key = 'your_api_key_here'\n", + "url_base = 'https://et.water.ca.gov/api'\n", + "options = [f'appKey={api_key}', 'startDate=2010-01-01', 'endDate=2010-01-05', 'targets=2,8,127']\n", + "options = '&'.join(options)\n", + "url = f'{url_base}/data?{options}'\n", + "\n", + "print(\"Request url is: \", url)\n", + "response = requests.get(url)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "response_data = json.loads(response.text)\n", + "# for record in response['Data']['Providers'][0]['Records']:\n", + "# print(record)\n", + "df = pd.DataFrame(response_data['Data']['Providers'][0]['Records'])\n", + "# print(df.info())\n", + "# print(df.head())\n", + "\n", + "# The values all have this dictionary format:\n", + "# DayAirTmpAvg: {'Value': '39', 'Qc': ' ', 'Unit': '(F)'}\n", + "\n", + "# So we need to break them out into separate columns:\n", + "value_cols = [c for c in df.columns if c.startswith('Day')]\n", + "for c in value_cols:\n", + " df[f'{c}_Units'] = df[c].apply(lambda x: x['Unit'])\n", + " # You may also want to preserve the Qc value\n", + " df[c] = df[c].apply(lambda x: x['Value'])\n", + "\n", + "print(df.head())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## USGS NWIS Waterdata\n", + "https://waterdata.usgs.gov/\n", + "\n", + "Example site data: https://waterdata.usgs.gov/nwis/uv?site_no=05056241&legacy=1\n", + "There's a new version page at: https://waterdata.usgs.gov/monitoring-location/05056241/\n", + "This one has download data button -> select primary time series -> retreive, and this opens another page with this url:\n", + "https://waterservices.usgs.gov/nwis/iv/?sites=05056241&startDT=2024-09-19T20:57:15.477-05:00&endDT=2024-09-26T20:57:15.477-05:00¶meterCd=00065&format=rdb\n", + "\n", + "Change `format=rdb` to `format=json` and we get some easy to work with data. View it in the browser... usually there's a pretty print check box at the top of the browser for json data like this that will make it easier to read. \n", + "\n", + "The data returned has a lot of meta-data and the time series data we're interested in: \n", + "\n", + " data['value']['timeSeries'][0]['values'][0]['value']\n", + "\n", + "Look through the meta data as some of it is useful... time zone, query info, and meaning of the pcodes in the output data:\n", + "\n", + " \"variable\": {\n", + " \"variableCode\": [\n", + " {\n", + " \"value\": \"00065\",\n", + " \"network\": \"NWIS\",\n", + " \"vocabulary\": \"NWIS:UnitValues\",\n", + " \"variableID\": 45807202,\n", + " \"default\": true\n", + " }\n", + " ],\n", + " \"variableName\": \"Gage height, ft\",\n", + " \"variableDescription\": \"Gage height, feet\",\n", + " \"valueType\": \"Derived Value\",\n", + " \"unit\": {\n", + " \"unitCode\": \"ft\"\n", + " },\n", + " \"options\": {\n", + " \"option\": [\n", + " {\n", + " \"name\": \"Statistic\",\n", + " \"optionCode\": \"00000\"\n", + " }\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#https://waterservices.usgs.gov/nwis/iv/?sites=05056241&startDT=2024-09-19T20:57:15.477-05:00&endDT=2024-09-26T20:57:15.477-05:00¶meterCd=00065&format=rdb\n", + "# midnight to midnight\n", + "startDT = '2024-09-19T00:00:00-05:00'\n", + "endDt = '2024-09-26T00:00:00-05:00'\n", + "# I suspect the 05:00 is the time zone offset\n", + "sites = '05056241' # presumably this could be a comma separated list\n", + "parameterCd = '00065' # discharge in cubic feet per second\n", + "format = 'json'\n", + "base_url = 'https://waterservices.usgs.gov/nwis/iv'\n", + "params = [f'sites={sites}', f'startDT={startDT}', f'endDT={endDt}', f'parameterCd={parameterCd}', f'format={format}']\n", + "params = '&'.join(params)\n", + "url = f'{base_url}/?{params}'\n", + "print(url)\n", + "response = requests.get(url)\n", + "data = json.loads(response.text)\n", + "# print(response.text)\n", + "df = pd.DataFrame(data['value']['timeSeries'][0]['values'][0]['value'])\n", + "print(df.head())\n", + "print(df.info())\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Often, you'll be limited in the date range, number of sites, or number of parameters you can query at once, so you can play around and see what works and what gives an error. The json output should have an error code or explanation. Once you know the limits, use a loop to increment the dates and collect all of the data needed:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "chunk_size_days = 7\n", + "from datetime import datetime, timedelta\n", + "start_date = datetime(2024, 1, 1)\n", + "end_date = datetime(2024, 3, 31)\n", + "delta = timedelta(days=chunk_size_days)\n", + "working_date = start_date\n", + "dataframes = []\n", + "while working_date <= end_date:\n", + " end_working_date = working_date + delta\n", + " if end_working_date > end_date:\n", + " end_working_date = end_date\n", + " startDT = working_date.strftime('%Y-%m-%dT00:00:00-05:00')\n", + " endDT = end_working_date.strftime('%Y-%m-%dT00:00:00-05:00')\n", + " params = [f'sites={sites}', f'startDT={startDT}', f'endDT={endDT}', f'parameterCd={parameterCd}', f'format={format}']\n", + " params = '&'.join(params)\n", + " url = f'{base_url}/?{params}'\n", + " print(url)\n", + " response = requests.get(url)\n", + " data = json.loads(response.text)\n", + " df = pd.DataFrame(data['value']['timeSeries'][0]['values'][0]['value'])\n", + " dataframes.append(df)\n", + " working_date = end_working_date + timedelta(days=1)\n", + "df = pd.concat(dataframes)\n", + "\n", + "df.to_csv(f'site_{sites}.csv', index=False)\n", + "print(df.info())\n", + "print(df.head())\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## NWIS Data\n", + "This data uses PCodes. You'll need to look up " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd \n", + "%pip install hydrofunctions\n", + "import hydrofunctions as hf\n", + "\n", + "#Example Sites:\n", + "# 'CCH':'11455350',\n", + "# 'CCH41':'11455385',\n", + "# 'CFL':'11455508',\n", + "# 'DEC':'11455478',\n", + "\n", + "startDT = '2022-01-01'\n", + "endDT = '2024-02-02'\n", + "site_name = 'CCH41'\n", + "site_code = '11455385'\n", + "\n", + "NWIS_request = hf.NWIS(site_code,'iv',startDT,endDT)\n", + " \n", + "df = NWIS_request.df()\n", + "\n", + "headers = {}\n", + "lines = str(NWIS_request).split('\\n') #treates NWIS_request as a string - this gives us one long string of original col names\n", + "for line in lines[1:-2]: #ignore the first line (which is the site name) and the last two lines (are the strt and end dates)\n", + " line = line.strip() #remove white space\n", + " identifier = line.split(':')[0].strip() \n", + " headers[identifier] = line #put this into the dictionary as the identifier\n", + "\n", + "cols = list(df.columns) #creates a list of original column names\n", + "new_cols = []\n", + "\n", + "for column in cols:\n", + " qual = 'qualifier' in column #creates a bool based on whether the column is a qualifer column, as opposed to a data column\n", + " scol = column.split(':')\n", + "\n", + "df['site_code'] = site_code\n", + "df['site_name'] = site_name\n", + "\n", + "df = df.reset_index()\n", + "\n", + "df['datetimeUTC'] = pd.to_datetime(df['datetimeUTC'], format='%Y-%m-%d %H:%M:%S')\n", + "df['TS Timestamp (PST)'] = df['datetimeUTC'].dt.strftime('%Y-%m-%d %H:%M:%S')\n", + "df['TS Timestamp (PST)'] = pd.to_datetime(df['TS Timestamp (PST)'], format='%Y-%m-%d %H:%M:%S') - pd.Timedelta(hours = 8)\n", + "\n", + "df = df.set_index('TS Timestamp (PST)')\n", + "\n", + "df.columns = [col.split(':')[2] if ':' in col else col for col in df.columns]\n", + "df.columns = [col.split('-')[0] if '-' in col else col for col in df.columns]\n", + "\n", + "print(df.columns)\n", + "print(df.head())\n", + "\n", + "#fname = f'TS_{field_id}_{site}.csv' \n", + "fname = f'TS_{site_code}_{site_name}.csv'\n", + "print('saving to', fname)\n", + "df.to_csv(fname)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.3" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From 21267284d29811c854480baea29bdcbdbef8b67c Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Thu, 26 Sep 2024 19:26:45 -0700 Subject: [PATCH 28/94] cleanup --- D5-Exmaple_Data_Sources.ipynb | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/D5-Exmaple_Data_Sources.ipynb b/D5-Exmaple_Data_Sources.ipynb index 940efe2..7b9cada 100644 --- a/D5-Exmaple_Data_Sources.ipynb +++ b/D5-Exmaple_Data_Sources.ipynb @@ -10,8 +10,8 @@ "* API Keys\n", "* Water Data\n", " * CIMIS\n", - " * \n", - " * NWIS\n", + " * NWIS Waterdata via web\n", + " * NWIS data via module\n", "\n", "\n", "## API Keys\n", @@ -105,7 +105,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## USGS NWIS Waterdata\n", + "## USGS NWIS Waterdata via Web\n", "https://waterdata.usgs.gov/\n", "\n", "Example site data: https://waterdata.usgs.gov/nwis/uv?site_no=05056241&legacy=1\n", From 6158cba1d4c3b00cfd59ecc6d1713a0c79034e07 Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Thu, 26 Sep 2024 21:49:04 -0700 Subject: [PATCH 29/94] Updated list of notebooks --- README.md | 3 +++ 1 file changed, 3 insertions(+) diff --git a/README.md b/README.md index f2d4a4e..b6c23c9 100644 --- a/README.md +++ b/README.md @@ -58,6 +58,9 @@ We have a series of python notebooks ready to work through to learn from. They * F-Microcontrollers_Intro.ipynb - Circuitpython and Micropython on common microcontroller boards. * G-Exception_Handling.ipynb - Try/Except blocks and Error Handing. * H-Unit_Tests.ipynb - Writing test cases to verify your code works as designed. +* S-Subprocess_and_System_Calls.ipynb - Usage of the subprocess module for running commands outside of python +* T-Datetime.ipynb - Python Datetime Objects +* V-Virtual_Environments.ipynb - ## Resources **Documentation** From 6f89ec372c7c04799be52e5cfa92acd1643d683c Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Mon, 14 Oct 2024 13:29:31 -0700 Subject: [PATCH 30/94] updates --- D1-Pandas_Intro_and_Data_Selection.ipynb | 2 +- D2-Data_Cleaning.ipynb | 2 +- D3-Pandas_Graphing.ipynb | 5 + N-Numpy.ipynb | 0 T-Datetime.ipynb | 113 +++++++++++++++++++++++ V-Virtual_Environments.ipynb | 27 ++++++ 6 files changed, 147 insertions(+), 2 deletions(-) create mode 100644 N-Numpy.ipynb create mode 100644 T-Datetime.ipynb create mode 100644 V-Virtual_Environments.ipynb diff --git a/D1-Pandas_Intro_and_Data_Selection.ipynb b/D1-Pandas_Intro_and_Data_Selection.ipynb index bfccdf3..cd7ad03 100644 --- a/D1-Pandas_Intro_and_Data_Selection.ipynb +++ b/D1-Pandas_Intro_and_Data_Selection.ipynb @@ -714,7 +714,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.3" + "version": "3.11.6" } }, "nbformat": 4, diff --git a/D2-Data_Cleaning.ipynb b/D2-Data_Cleaning.ipynb index ab7a60f..24f6b1a 100644 --- a/D2-Data_Cleaning.ipynb +++ b/D2-Data_Cleaning.ipynb @@ -384,7 +384,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.3" + "version": "3.11.6" } }, "nbformat": 4, diff --git a/D3-Pandas_Graphing.ipynb b/D3-Pandas_Graphing.ipynb index 4a82c21..6981cac 100644 --- a/D3-Pandas_Graphing.ipynb +++ b/D3-Pandas_Graphing.ipynb @@ -22,6 +22,11 @@ "## Multiple Plots" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, { "cell_type": "code", "execution_count": null, diff --git a/N-Numpy.ipynb b/N-Numpy.ipynb new file mode 100644 index 0000000..e69de29 diff --git a/T-Datetime.ipynb b/T-Datetime.ipynb new file mode 100644 index 0000000..60c61b0 --- /dev/null +++ b/T-Datetime.ipynb @@ -0,0 +1,113 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Section T - Datetime Module\n", + "\n", + "**Topics**:\n", + "* The Datetime Module\n", + "* Conversion To String\n", + "* Conversion From String\n", + "* Time Deltas\n", + "* Timezone Conversions\n", + "* Pandas Stuff\n", + "* Epoch Time\n", + "* Whate else?\n", + "\n", + "## The Datetime Module (Package?)\n", + "There are a few useful objects bundled within the datetime module:\n", + "\n", + " >>> import datetime as dtm\n", + " >>> dtm.\n", + " dtm.MAXYEAR dtm.date( dtm.time( dtm.tzinfo(\n", + " dtm.MINYEAR dtm.datetime( dtm.timedelta( \n", + " dtm.UTC dtm.datetime_CAPI dtm.timezone( \n", + "\n", + "**datetime.datetime** is used to create datetime objects. These objects encapsulate date and time to the microsecond?\n", + "**datetime.timedelta** is an object used ti describe an increment of time." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "UTC+08:00\n" + ] + } + ], + "source": [ + "from datetime import datetime, timedelta, timezone\n", + "\n", + "# Today's date:\n", + "now = datetime.now()\n", + "\n", + "# 24 hours from now:\n", + "print(now + timedelta(hours=24))\n", + "\n", + "# 1 month time delta:\n", + "\n", + "# Demo of timezone:\n", + "# Create a timezone for UTC+8:00\n", + "tz_utc8 = timezone(timedelta(hours=8))\n", + "print(tz_utc8)\n", + "#\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Time Deltas\n", + "A time delta is a difference in time by some intervale. We can create a timedelta object using datetime.timedelta, and add or subtract it from a datetime object. This is particularly useful for incrementing dates or timestamps.\n", + "\n", + " from datetime import timedelta\n", + " one_hour = timedelta(hours=1)\n", + "\n", + "These are the increments allowed for a time delta:\n", + "\n", + " timedelta(days=0, seconds=0, microseconds=0, milliseconds=0, minutes=0, hours=0, weeks=0)\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "one_year = timedelta(days=365)\n", + "one_hour = timedelta(hours=1)\n", + "one_week = timedelta(weeks=1)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.3" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/V-Virtual_Environments.ipynb b/V-Virtual_Environments.ipynb new file mode 100644 index 0000000..6765d61 --- /dev/null +++ b/V-Virtual_Environments.ipynb @@ -0,0 +1,27 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Section V - Virtual Environments\n", + "\n", + "What, how,and why!" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From 6cd4d0b2066d9b566a65416a09c67df356a9afdb Mon Sep 17 00:00:00 2001 From: Dan Norris Date: Mon, 14 Oct 2024 16:18:34 -0700 Subject: [PATCH 31/94] add feedback link --- A-Getting_Started.ipynb | 2 + B-Dictionaries_and_Loops.ipynb | 2 + C-Functions_and_Module_Imports.ipynb | 2 + D0-Pandas_Example.ipynb | 2 + D1-Pandas_Intro_and_Data_Selection.ipynb | 3 + D2-Data_Cleaning.ipynb | 2 + D3-Pandas_Graphing.ipynb | 3 + D4-Advanced_Pandas.ipynb | 2 + D5-Exmaple_Data_Sources.ipynb | 2 + E-Writing_Scripts.ipynb | 2 + F-Microcontrollers_and_Circuitpython.ipynb | 2 + G-Web_Scraping.ipynb | 4 +- N-Numpy.ipynb | 439 +++++++++++++++++++++ T-Datetime.ipynb | 2 + V-Virtual_Environments.ipynb | 2 + 15 files changed, 470 insertions(+), 1 deletion(-) diff --git a/A-Getting_Started.ipynb b/A-Getting_Started.ipynb index f89377f..c48022d 100644 --- a/A-Getting_Started.ipynb +++ b/A-Getting_Started.ipynb @@ -6,6 +6,8 @@ "source": [ "# Section A - Start here!\n", "\n", + "Feedback: https://forms.gle/Le3RAsMEcYqEyswEA\n", + "\n", "**Topics**: Intro, Data types incl numeric, strings, lists, tuples, sets, if else. \n", "\n", "The first program most folks make in any language is a hello world. \n", diff --git a/B-Dictionaries_and_Loops.ipynb b/B-Dictionaries_and_Loops.ipynb index 62228f2..fee1141 100644 --- a/B-Dictionaries_and_Loops.ipynb +++ b/B-Dictionaries_and_Loops.ipynb @@ -6,6 +6,8 @@ "source": [ "# Section B - Dictionaries and Loops\n", "\n", + "Feedback: https://forms.gle/Le3RAsMEcYqEyswEA\n", + "\n", "**Topics**: Dictionaries and advanced control flow - for and while loops - and list comprehinsions.\n", "\n", "This is a very exciting week. Dictionaries are so useful for organizing things, and with the introductin of loops, we become real programmers who can perform large tasks with concise bits of code. The Exercises below for the loops are hopefully kind of challenging requring you to use conditoinals, variables, lists, and if else branching!\n", diff --git a/C-Functions_and_Module_Imports.ipynb b/C-Functions_and_Module_Imports.ipynb index 187da2b..1917ba5 100644 --- a/C-Functions_and_Module_Imports.ipynb +++ b/C-Functions_and_Module_Imports.ipynb @@ -6,6 +6,8 @@ "source": [ "# Section C - Functions and Module Imports\n", "\n", + "Feedback: https://forms.gle/Le3RAsMEcYqEyswEA\n", + "\n", "**Topics**: Introducing functions and modules in Python. Basic introduction to pandas for data analysis, focusing on importing data and initial data exploration.\n", "\n", "## Functions\n", diff --git a/D0-Pandas_Example.ipynb b/D0-Pandas_Example.ipynb index 2e57710..d24e187 100644 --- a/D0-Pandas_Example.ipynb +++ b/D0-Pandas_Example.ipynb @@ -6,6 +6,8 @@ "source": [ "# Section D0 - Pandas Example\n", "\n", + "Feedback: https://forms.gle/Le3RAsMEcYqEyswEA\n", + "\n", "The name \"Pandas\" comes from \"Panel Data\" and \"Python Data Analysis\". \"Panel Data\" refers to two dimensoinal data, often including measurements over time - time series - or collections of things/events. The term \"Pandas\" is a blend of these concepts, reflecting the library's purpose of providing data structures and data analysis tools in Python.\n", "\n", "**Pandas** are playfull and memorable, just like **Pandas**!\n", diff --git a/D1-Pandas_Intro_and_Data_Selection.ipynb b/D1-Pandas_Intro_and_Data_Selection.ipynb index cd7ad03..e0f13f4 100644 --- a/D1-Pandas_Intro_and_Data_Selection.ipynb +++ b/D1-Pandas_Intro_and_Data_Selection.ipynb @@ -5,6 +5,9 @@ "metadata": {}, "source": [ "# Section D1 - Pandas Intro and Data Selection\n", + "\n", + "Feedback: https://forms.gle/Le3RAsMEcYqEyswEA\n", + "\n", "**Index**\n", "* General Info\n", "* Creating a Dataframe\n", diff --git a/D2-Data_Cleaning.ipynb b/D2-Data_Cleaning.ipynb index 24f6b1a..63807ce 100644 --- a/D2-Data_Cleaning.ipynb +++ b/D2-Data_Cleaning.ipynb @@ -6,6 +6,8 @@ "source": [ "# Section D2 - Data Cleaning with Pandas\n", "\n", + "Feedback: https://forms.gle/Le3RAsMEcYqEyswEA\n", + "\n", "Topics:\n", "* Setting column data types\n", "* Dropping rows with NaN values\n", diff --git a/D3-Pandas_Graphing.ipynb b/D3-Pandas_Graphing.ipynb index 6981cac..f54bb3c 100644 --- a/D3-Pandas_Graphing.ipynb +++ b/D3-Pandas_Graphing.ipynb @@ -5,6 +5,9 @@ "metadata": {}, "source": [ "# Section D3 - Graphing with Pandas (and Matplotlib)\n", + "\n", + "Feedback: https://forms.gle/Le3RAsMEcYqEyswEA\n", + "\n", "We'll go through a few types of graphs here!\n", "\n", "## Time series\n", diff --git a/D4-Advanced_Pandas.ipynb b/D4-Advanced_Pandas.ipynb index 5f6a96c..d1ac246 100644 --- a/D4-Advanced_Pandas.ipynb +++ b/D4-Advanced_Pandas.ipynb @@ -6,6 +6,8 @@ "source": [ "# Section D4 - Advanced Pandas\n", "\n", + "Feedback: https://forms.gle/Le3RAsMEcYqEyswEA\n", + "\n", "Topics:\n", "* Join and Concatenate\n", "* groupby\n", diff --git a/D5-Exmaple_Data_Sources.ipynb b/D5-Exmaple_Data_Sources.ipynb index 7b9cada..0fbbf23 100644 --- a/D5-Exmaple_Data_Sources.ipynb +++ b/D5-Exmaple_Data_Sources.ipynb @@ -6,6 +6,8 @@ "source": [ "# D5 - Example Data Sources\n", "\n", + "Feedback: https://forms.gle/Le3RAsMEcYqEyswEA\n", + "\n", "**Index**:\n", "* API Keys\n", "* Water Data\n", diff --git a/E-Writing_Scripts.ipynb b/E-Writing_Scripts.ipynb index 29e31b7..13f2d2c 100644 --- a/E-Writing_Scripts.ipynb +++ b/E-Writing_Scripts.ipynb @@ -6,6 +6,8 @@ "source": [ "# Section E - Writing Scripts / Programs\n", "\n", + "Feedback: https://forms.gle/Le3RAsMEcYqEyswEA\n", + "\n", "**Topics** - Python Editors, Writing and runnig scripts, argparse library\n", "\n", "So far, we've been working in python notebooks - these are great for workflows or data centered presentations where you want to mix text, code, and graphs/plots and a human will be interacting with it. \n", diff --git a/F-Microcontrollers_and_Circuitpython.ipynb b/F-Microcontrollers_and_Circuitpython.ipynb index 9a5b641..54e99cb 100644 --- a/F-Microcontrollers_and_Circuitpython.ipynb +++ b/F-Microcontrollers_and_Circuitpython.ipynb @@ -6,6 +6,8 @@ "source": [ "# Section F - Microcontrollers\n", "\n", + "Feedback: https://forms.gle/Le3RAsMEcYqEyswEA\n", + "\n", "**Topics:** Programming microcontrollers with CircuitPython" ] }, diff --git a/G-Web_Scraping.ipynb b/G-Web_Scraping.ipynb index 852d29f..7b94c67 100644 --- a/G-Web_Scraping.ipynb +++ b/G-Web_Scraping.ipynb @@ -4,7 +4,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Section G - Web Scraping" + "# Section G - Web Scraping\n", + "\n", + "Feedback: https://forms.gle/Le3RAsMEcYqEyswEA" ] }, { diff --git a/N-Numpy.ipynb b/N-Numpy.ipynb index e69de29..a5b6142 100644 --- a/N-Numpy.ipynb +++ b/N-Numpy.ipynb @@ -0,0 +1,439 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Section N - Numpy\n", + "\n", + "Feedback: https://forms.gle/Le3RAsMEcYqEyswEA\n", + "\n", + "Numpy is the library that pandas and many other scientific and big-data python libraries are built on. It provides support for arrays (especially multi-dimensional arrays or \"ndarrays\") and a large collection of mathematical functions to operate on these arrays efficiently. Key features of NumPy include:\n", + "\n", + "* **N-dimensional Arrays (ndarray):** NumPy offers a data structure for working with large multi-dimensional arrays and matrices, which are more efficient than Python's built-in lists for numerical operations.\n", + "* **Mathematical Functions:** It provides a wide range of mathematical functions (like trigonometric, statistical, and algebraic functions) that operate on entire arrays at once, making code more concise and faster.\n", + "* **Vectorization / Broadcasting:** NumPy allows vectorized operations, meaning that operations on arrays are applied element-wise without the need for explicit loops, avoiding unnecessary copies, leading to more readable, memory efficient, and faster code.\n", + "* **Integration with Other Libraries:** Many scientific libraries, such as SciPy, pandas, and matplotlib, rely on NumPy for array operations.\n", + "* **Efficiency:** NumPy is implemented in C, which makes it highly efficient for performing large-scale computations compared to Python's native lists.\n", + "\n", + "Overall, NumPy is a cornerstone of scientific computing in Python, making it essential for tasks involving data analysis, machine learning, simulations, and other numerical applications.\n", + "\n", + "Let's do a simple example comparing addition of numbers in two lists/arrays in native Python vs Numpy:" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "listc: [5, 7, 9, 11, 13]\n", + "listc: [ 5 7 9 11 13]\n" + ] + } + ], + "source": [ + "# Regular python\n", + "lista = range(5)\n", + "listb = range(5, 10)\n", + "listc = [a + b for a, b in zip(lista, listb)]\n", + "print('listc:', listc)\n", + "\n", + "# Using numpy\n", + "import numpy as np\n", + "lista = np.arange(5)\n", + "listb = np.arange(5, 10)\n", + "listc = lista + listb\n", + "print('listc:', listc)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Numpy Basics\n", + "It is typical to import numpy as \"np\". Numpy has a few functions for creating numpy arrays of one or more dimmensions:\n", + "\n", + " np.array([1, 2, 3, 4]) # convert python list to np array \n", + " np.zeros((3, 5)) # 3x5 matrix of zeros\n", + " np.ones((2, 4)) # 2x4 matrix of ones\n", + " np.arange(0, 10, 2) # Numbers from 0 to 10 with a step of 2\n", + " np.linspace(0, 1, 5) # 5 numbers evenly spaced between 0 and 1\n", + "\n", + "So we can convert lists to np array, we can make arrays of ones or zeros, or generate ranges of numbers.\n", + "\n", + "#### *Exercise*:\n", + "Let's create and print a few arrays to see what they look like:\n", + "* Use np.zeros to make arrays of one, two, and three dimmensions:\n", + " * (3)\n", + " * (3, 4)\n", + " * (3, 4, 5)\n", + "* An array with the numbers 0 through 9, stepping by 1 - ten total numbers.\n", + "* An array with the numbers 10 through 100, stepping by 10 - ten total numbers.\n", + "* An array of 20 numbers spaced equally from 10 to 15. \n", + "* A 5x5 array with the following values of col_number * pow(5, row_num) in each row:\n", + " * 0, 1, 2, ...\n", + " * 0, 5, 10, ...\n", + " * 0, 25, 125, ...\n", + " * ...\n", + " * ..." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Array indexing and Slicing\n", + "We can print or set elements of arrays, or ranges of elements of arrays:\n", + "* First element: `arr[0]`\n", + "* Last element: `arr[-1]`\n", + "* Elements 1 through 3: `arr[1:4]`\n", + "\n", + "Multi-dimmensional arrays have each dimmensino separated by a comma, and can use the same method of referring to a single element or a slice with a colon:\n", + "* First element of first element in a 2d array: `arr[0, 0]`\n", + "* First four elements of the second element of an array: `arr[:4, 1]`\n", + "\n", + "Let's look at a 1, 2, and 3 dimmensional array:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "arr_1d = np.array([1, 2, 3])\n", + "arr_2d = np.array([[1, 2, 3], [4, 5, 6]])\n", + "arr_3d = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### *Exercise*:\n", + "* What shape is each of these arrays?\n", + "* Print the firstt element of each of the arrays. Notice anything interesting? \n", + "* Print just 3 in each of the arrays.\n", + "* Set the 3 in each of the arrays to 99\n", + "* Print the first to values of the first item in the second item ni the 3d array. \n", + "* Create a 1D array of numbers from 10 to 20 and extrace a slice containing the numbers [12, 13, 14]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Array Operations\n", + "\n", + "**Basic Arithmetic Operations:**\n", + "\n", + " arr = np.array([1, 2, 3, 4])\n", + " print(arr + 2) # Add 2 to every element\n", + " print(arr * 3) # Multiply every element by 3\n", + "\n", + "**Element-wise Operations:**\n", + "\n", + " arr1 = np.array([1, 2, 3])\n", + " arr2 = np.array([4, 5, 6])\n", + " print(arr1 + arr2) # Add corresponding elements\n", + "\n", + "#### *Exescise*:\n", + "Create two arrays of the same size, one with even numbers and one with odd numbers. Perform addition and multiplication on these arrays." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Mathematical Functions and Axis\n", + "\n", + "Numpy has some useful functions built in:\n", + "\n", + " np.sum(), np.mean(), np.max(), np.min(), np.std()\n", + "\n", + "These each will apply to an entire array if called without any arguments, but can also be given an axis to work against if, for example, you wanted to see the sum of each row or column in a 2d array.\n", + "\n", + "https://numpy.org/doc/stable/reference/generated/numpy.sum.html" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "arr = np.array([[0, 1], [2, 3]])\n", + "sum_all = arr.sum()\n", + "sum_rows = arr.sum(axis=1)\n", + "sum_cols = arr.sum(axis=0)\n", + "# sum_coles = np.sum(arr, axis=0) # this is equivalent to the previous line\n", + "\n", + "print('arr:', arr)\n", + "print('sum_all:', sum_all)\n", + "print('sum_rows:', sum_rows)\n", + "print('sum_cols:', sum_cols)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Notice that sum_rows and sum_cols are each 1 dimensinoal arrays. Check the values in sum_rows and sum_cols to verify which numbers in the original array they came from.\n", + "\n", + "The idea of rows and columns sort of breaks down when we have 3 or more dimmensions/axis in our array. Numpy really contrasts with pandas in this regard. Pandas has very clear rows and columns and is limited to two dimmensinal data, but numpy is more abstract and it's better to pay attention to which axis number is which in an array rather than thinking in rows/cols. \n", + "\n", + "#### *Exercise*:\n", + "Create a 3d array similar to the above 2d array that contains the values 4 through 7 \n", + "* What shape is this array?\n", + "* Sum values on eac of the three axis. You shuold see some values correspond with the sums in the above example, and have some new values on axis 0 and 1. Axis 2 is all new. Think about which axix is which, counting outward from the sets of [ ] that contain the numbers in the array. \n", + "* Sum the values on multiple axis. E.g. array.sum(axis=(1,2)). What's happening when you do this? What combination of axis will include the value \"6\" that we saw in \"sum_all\" from the above 2d array example?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Reshaping and Transposing Arrays\n", + "\n", + "A numpy array is just a block of memory of a size large enough to hold all of the values of our chosen data type in the quantity of the cells per the size of the array in all dimmensions. So a 2 x 3 x 4 array of four-byte float values would be 24 x 4 bytes. The values are consecutive, so there is really no difference between:\n", + "\n", + "* A 24 cell, single dimmensional, array\n", + "* A 6 x 4 array (24 cells)\n", + "* A 2 x 2 x 2 x 3 array (24 cells)\n", + "\n", + "Aside from the metadata describing the shape of the array. Thes means that we can do stuff like generate a sequence and then **reshape** it into a multi-dimmensional array like we were doing manually above." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "arr: [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23]\n", + "arr: [[ 0 1 2 3]\n", + " [ 4 5 6 7]\n", + " [ 8 9 10 11]\n", + " [12 13 14 15]\n", + " [16 17 18 19]\n", + " [20 21 22 23]]\n" + ] + } + ], + "source": [ + "arr = np.arange(24)\n", + "print('arr:', arr)\n", + "arr = arr.reshape(6, 4)\n", + "print('arr:', arr)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can transpose data with the .T operator. This flips the data so rows become columns and columns become rows. Here's an example using the above 6x4 array:" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "arr: [[ 0 4 8 12 16 20]\n", + " [ 1 5 9 13 17 21]\n", + " [ 2 6 10 14 18 22]\n", + " [ 3 7 11 15 19 23]]\n", + "arr: [ 0 4 8 12 16 20 1 5 9 13 17 21 2 6 10 14 18 22 3 7 11 15 19 23]\n" + ] + } + ], + "source": [ + "arr = arr.T\n", + "print('arr:', arr)\n", + "arr = arr.reshape(24)\n", + "print('arr:', arr)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "So arr changes from 6 x 4 to 4 x 6, and when we reshape it back to a 1d array, we can see how the values have been shuffuled from the transpose operation. \n", + "\n", + "#### *Exercise*\n", + "* Create a 3 x 3 array with values 0 through 8. \n", + "* Check the mean on axis 0.\n", + "* Transpose the array and verify that the mean on axis 1 matches what we had originally on axis 0. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Broadcasting" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Accelerating Numpy\n", + "If you have an Nvidia GPU, you can install Cuda and the python \"cupy\" library. It is almost a drop in replacement for numpy and can greatly accelerate large data operations. It's a little different from regular numpy in that you need to be aware of whether the array you're working on is stored in the GPU (cupy array) or on the system/CPU memory (numpy arrray) and copy the array between CPU and GPU depending on needs of the other libraries that need to use it. \n", + "\n", + "Here's a simple bit of code to compare numpy and cupy performance on your system:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import gc\n", + "import time\n", + "import cupy as cp\n", + "import numpy as np\n", + "\n", + "start_time = time.time()\n", + "# Create a sample array\n", + "gpu_array = cp.random.uniform(0, 1, (500000000,))\n", + "cp.cuda.Stream.null.synchronize() # Synchronize to ensure the transfer completes\n", + "gpu_time = time.time()\n", + "\n", + "# Transfer to CPU and back to GPU\n", + "cpu_array = cp.asnumpy(gpu_array)\n", + "# cpu_array = np.array(gpu_array.get())\n", + "cp.cuda.Stream.null.synchronize()\n", + "cpu_time = time.time()\n", + "\n", + "gpu_array_back = cp.array(cpu_array)\n", + "cp.cuda.Stream.null.synchronize()\n", + "gpu_back_time = time.time()\n", + "\n", + "# Compare values on GPU\n", + "gpu_consistent = cp.allclose(gpu_array, gpu_array_back)\n", + "cp.cuda.Stream.null.synchronize()\n", + "gpu_consistent_time = time.time()\n", + "\n", + "# Compare values on CPU\n", + "cpu_consistent = np.allclose(gpu_array.get(), gpu_array_back.get())\n", + "cp.cuda.Stream.null.synchronize()\n", + "cpu_consistent_time = time.time()\n", + "\n", + "print(f\"Time to init in GUP: {gpu_time - start_time:.6f} seconds\")\n", + "print(f\"Time to transfer from GPU to CPU: {cpu_time - gpu_time:.6f} seconds\")\n", + "print(f\"Time to transfer from CPU to GPU: {gpu_back_time - cpu_time:.6f} seconds\")\n", + "print(f\"Time to check consistency on GPU: {gpu_consistent_time - gpu_back_time:.6f} seconds\")\n", + "print(f\"Time to check consistency on CPU: {cpu_consistent_time - gpu_consistent_time:.6f} seconds\")\n", + "\n", + "print(f\"Via GPU - transfer consistency: {gpu_consistent}\") # Should print True\n", + "print(f\"Via CPU - transfer consistency: {cpu_consistent}\") # Should print True" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Practice Problems:\n", + "\n", + "**Advanced Slicing:**\n", + "\n", + "Given a 4x4 matrix, extract:\n", + "* The main diagonal.\n", + "* The lower-left 2x2 block.\n", + "\n", + "**Array Manipulation Challenge:**\n", + "\n", + "Create an array of size 20 with random integers between 1 and 100. Reshape the array into a 5x4 matrix and sort each row.\n", + "\n", + "**Data Analysis:**\n", + "\n", + "Given two 1D arrays representing time (in hours) and distance (in km) from a running event, calculate the average speed at each time point using NumPy.\n", + "\n", + "**Game of life:**\n", + "\n", + "This is a very involved project... implement Conway's Game of Life (https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life) in numpy. Create a board of 20x20 cells with a randomized values of 0 or 1. \"1\" is alive, and \"0\" is dead.\n", + "\n", + "Iteratively apply the rules of GoL to increment the state of the board:\n", + "* Any live cell with fewer than two live neighbours dies, as if by underpopulation.\n", + "* Any live cell with two or three live neighbours lives on to the next generation.\n", + "* Any live cell with more than three live neighbours dies, as if by overpopulation.\n", + "* Any dead cell with exactly three live neighbours becomes a live cell, as if by reproduction.\n", + "\n", + "You can print the board at each step to see its progression, or you can plot it as a heatmap, or some other method to visualize it." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": ".venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.12" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/T-Datetime.ipynb b/T-Datetime.ipynb index 60c61b0..d9edcb7 100644 --- a/T-Datetime.ipynb +++ b/T-Datetime.ipynb @@ -6,6 +6,8 @@ "source": [ "# Section T - Datetime Module\n", "\n", + "Feedback: https://forms.gle/Le3RAsMEcYqEyswEA\n", + "\n", "**Topics**:\n", "* The Datetime Module\n", "* Conversion To String\n", diff --git a/V-Virtual_Environments.ipynb b/V-Virtual_Environments.ipynb index 6765d61..a8bd1ff 100644 --- a/V-Virtual_Environments.ipynb +++ b/V-Virtual_Environments.ipynb @@ -6,6 +6,8 @@ "source": [ "# Section V - Virtual Environments\n", "\n", + "Feedback: https://forms.gle/Le3RAsMEcYqEyswEA\n", + "\n", "What, how,and why!" ] }, From 3fca7cc4ce2b4a074c7df411acfbcf9c5a7bc408 Mon Sep 17 00:00:00 2001 From: Dan Norris Date: Mon, 14 Oct 2024 17:00:39 -0700 Subject: [PATCH 32/94] numpy notebook rdy to go --- N-Numpy.ipynb | 106 +++++++++++++++++++++++++++++++++++--------------- 1 file changed, 75 insertions(+), 31 deletions(-) diff --git a/N-Numpy.ipynb b/N-Numpy.ipynb index a5b6142..c3138df 100644 --- a/N-Numpy.ipynb +++ b/N-Numpy.ipynb @@ -238,23 +238,9 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "arr: [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23]\n", - "arr: [[ 0 1 2 3]\n", - " [ 4 5 6 7]\n", - " [ 8 9 10 11]\n", - " [12 13 14 15]\n", - " [16 17 18 19]\n", - " [20 21 22 23]]\n" - ] - } - ], + "outputs": [], "source": [ "arr = np.arange(24)\n", "print('arr:', arr)\n", @@ -271,21 +257,9 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "arr: [[ 0 4 8 12 16 20]\n", - " [ 1 5 9 13 17 21]\n", - " [ 2 6 10 14 18 22]\n", - " [ 3 7 11 15 19 23]]\n", - "arr: [ 0 4 8 12 16 20 1 5 9 13 17 21 2 6 10 14 18 22 3 7 11 15 19 23]\n" - ] - } - ], + "outputs": [], "source": [ "arr = arr.T\n", "print('arr:', arr)\n", @@ -316,9 +290,79 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Broadcasting" + "## Broadcasting\n", + "\n", + "This term, \"broadcasting\" describes how numpy handles numerical operations between arrays of different shapes. We use it to avoid looping on on operations in python and instead do it in C via numpy's functionality. Any time we add, multiply, etc an array, we're using this functionality. We'll cover the basict, but there are loads of examples in the official documentation:\n", + "\n", + "https://numpy.org/devdocs/user/basics.broadcasting.html\n", + "\n", + "When looking at the shape of two arrays to be broadcast, we have the following conditions on the right-most dimmension(s) of the arrays:\n", + "\n", + "* they must be equal\n", + "* one of them must be 1\n", + "\n", + "Let's look at an example where we multiply a (3x3) array with a sequence of 0-8 in it, and we multiply it by 4. We print four instances of this which have an equivelant result:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "arr = np.arange(9).reshape(3, 3)\n", + "print('arr - shape (3x3):\\n', \n", + " arr)\n", + "print('arr * 3 - shapes (3x3) and (1):\\n', \n", + " arr * 4)\n", + "print('arr * [3] - shapes (3x3) and (1):\\n', \n", + " arr * np.array([4]))\n", + "print('arr * [3, 3, 3] - shapes (3x3) and (3):\\n', \n", + " arr * np.array([4, 4, 4]))\n", + "print('arr * [[3, 3,3], [3...], []] - shapes (3x3) and (3x3):\\n', \n", + " arr * np.array([[4, 4, 4], [4, 4, 4], [4, 4, 4]]))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's try a slight modification of this and broadcast a (3x3) array of ones into a (3) 1d array of [0, 1, 2]. The 1d array is broadcast across the 3x3. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "arr = np.ones((3, 3))\n", + "print('arr:\\n', arr)\n", + "arr = arr * np.arange(3)\n", + "print('arr * [0, 1, 2]:\\n', arr)\n", + "arr = arr.T * np.arange(3)\n", + "print('arr.T * [0, 1, 2]:\\n', arr)\n" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### *Exercise*:\n", + "Try to add a (3x3) array to each of the following shape arrays: \n", + "* (1), (2), (3)\n", + "* (1x3), (3x1), (2x3), (3x2)?, (3x3), (3x3x3)?\n", + "\n", + "I'd suggest using np.ones and np.arange with .shape to make arrays of each shape. What're the differences between (3), (1x3), and (3x1) arrays?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "markdown", "metadata": {}, From 8cad669a3038471ea1615f899cf209df43d461f2 Mon Sep 17 00:00:00 2001 From: Dan Norris Date: Mon, 14 Oct 2024 17:03:37 -0700 Subject: [PATCH 33/94] notebooks update --- README.md | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/README.md b/README.md index b6c23c9..f27c3b6 100644 --- a/README.md +++ b/README.md @@ -48,6 +48,7 @@ We have a series of python notebooks ready to work through to learn from. They * C-Functions_and_Module_Imports.ipynb - Introducing functions and modules in Python. * D0-Pandas_Example.ipynb - An example of importing data and doing some anaylsis and graphing to get a feel for how pandas works. * D1-Pandas_Intro_and_Data_selection.ipynb - Some pandas basics including imoprting data, manipulating columns of data, learning ways to select rows and columns of data, and exporting data to file. +* N-Numpy - Basics using numpy. Need to add some vectorization problems where we convert python code to numpy code... **In Development** * D2-Data_Cleaning.ipynb - Setting column data types, removing missing or invalid data, interpolation, etc tools for preparing data for analysis. @@ -87,7 +88,7 @@ This content is hosted here in a Git repository. You can check out a copy to you * Make a github.com account and install git. * Linux: sudo apt-get install git * Windows: https://git-scm.com/download/win - * Check out this repository in your project area: git clone https://github.com/a8ksh4/python_class.git` + * Check out this repository in your project area: git clone https://github.com/a8ksh4/python_workshop.git` Feel free to open "bug reports" in this repo for content you'd like to see added, changes needed, or corrections. Or make an improvement and submit a pull request and I'll merge your changes into the repo. From e38e52f18f5bf7a784399492a4d4f80d81092394 Mon Sep 17 00:00:00 2001 From: Dan Norris Date: Tue, 15 Oct 2024 09:41:44 -0700 Subject: [PATCH 34/94] added practice problems --- N-Numpy.ipynb | 73 +++++++++++++++++++++++++++++++++++++++++++++++++-- 1 file changed, 71 insertions(+), 2 deletions(-) diff --git a/N-Numpy.ipynb b/N-Numpy.ipynb index c3138df..5f8df4d 100644 --- a/N-Numpy.ipynb +++ b/N-Numpy.ipynb @@ -424,7 +424,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Practice Problems:\n", + "## Practice Problems\n", "\n", "**Advanced Slicing:**\n", "\n", @@ -438,8 +438,70 @@ "\n", "**Data Analysis:**\n", "\n", - "Given two 1D arrays representing time (in hours) and distance (in km) from a running event, calculate the average speed at each time point using NumPy.\n", + "Given two 1D arrays representing time (in hours) and distance (in km) from a running event, calculate the average speed at each time point using NumPy." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Vectorization Problem\n", + "\n", + "The following python code uses loops to compute euclidean distances between two sets of points using the pythagorean theorem. Rewrite this using numpy wituhout using any loops. \n", + "\n", + "Remember that ** is exponent (not ^), and you can use np.sqrt rather than math.sqrt in your vectorized code." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import math\n", + "# Two sets of 2D points (x, y)\n", + "points_a = [[1, 2], [3, 4], [5, 6]]\n", + "points_b = [[7, 8], [9, 10], [11, 12]]\n", + "\n", + "# List to store the results\n", + "distances = []\n", + "\n", + "# Calculate Euclidean distance between corresponding points\n", + "for a, b in zip(points_a, points_b):\n", + " distance = math.sqrt((a[0] - b[0])**2 + (a[1] - b[1])**2)\n", + " distances.append(distance)\n", "\n", + "print(\"Distances (with loops):\", distances)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Your vectorized solution here\n", + "import numpy as np\n", + "\n", + "points_a = np.array(points_a)\n", + "...\n", + "\n", + "\n", + "print(\"Distances (vectorized):\", distances)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Challenge Problem\n", "**Game of life:**\n", "\n", "This is a very involved project... implement Conway's Game of Life (https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life) in numpy. Create a board of 20x20 cells with a randomized values of 0 or 1. \"1\" is alive, and \"0\" is dead.\n", @@ -453,6 +515,13 @@ "You can print the board at each step to see its progression, or you can plot it as a heatmap, or some other method to visualize it." ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "markdown", "metadata": {}, From bd103185c763efdbb3c05e6314b4408f8d9ce932 Mon Sep 17 00:00:00 2001 From: Dan Norris Date: Tue, 15 Oct 2024 15:41:44 -0700 Subject: [PATCH 35/94] calendar update --- README.md | 5 +---- 1 file changed, 1 insertion(+), 4 deletions(-) diff --git a/README.md b/README.md index f27c3b6..496c188 100644 --- a/README.md +++ b/README.md @@ -11,10 +11,7 @@ We have a bunch of coureswork ready to use, including: See the Notebooks list below for a more detailed list. ## Current Schedule: -* NO WORKSHOP on Sep 11th and 18th -* Wednesday Sep 25th 4-5PM -* Wednesday Oct 2nd 4-5PM -* Each wednesday from 4-5PM ongoing. +As of October, we're continuing to meet each wednesday from 4-5PM. Please check the library calendar here to confirm dates/times: **https://engagedpatrons.org/EventsCalendar.cfm?SiteID=7839** * Set "limit by location" to "Cameron Park Library". From a6697840c63f79273d001467517ae39fff54bf1e Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Tue, 15 Oct 2024 20:48:28 -0700 Subject: [PATCH 36/94] add package install info --- C-Functions_and_Module_Imports.ipynb | 36 ++++++++++++++++++++++++++++ 1 file changed, 36 insertions(+) diff --git a/C-Functions_and_Module_Imports.ipynb b/C-Functions_and_Module_Imports.ipynb index 1917ba5..c53c13c 100644 --- a/C-Functions_and_Module_Imports.ipynb +++ b/C-Functions_and_Module_Imports.ipynb @@ -338,6 +338,42 @@ "df = pd.DataFrame() # An empty dataframe" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Installing Modules\n", + "Many python modules are available to be installed from the Python Package Index - PyPI: https://pypi.org/. And anyone can contribute a module for other people to use. \n", + "\n", + "Official documentation on installing packages, incuding instructions on how to install pip, if needed: https://packaging.python.org/en/latest/tutorials/installing-packages/ \n", + "Official pip documintation: https://pip.pypa.io/en/stable/\n", + "\n", + "We use **pip** to install packages in most cases. A couple of exceptions:\n", + "* If you're using anaconda python, you should generally try to `conda install numpy` before using pip. \n", + "* If you're on linux, many packages will be available via your distro's package manager. For example in debian flavored distros, you can:\n", + " * `sudo apt install python3-numpy`\n", + " * `apt search python3 | grep some_package_i_need`\n", + "* If you're on mac using brew, you may want to `brew install python3-numpy`. I'm less familiar with mac, so test this. \n", + "\n", + "Also note that in some cases, you must create a virtual environment (venv) to install packages. See the V-Virtual_Environments notebook for more info about this. \n", + "\n", + "**Basic pip install command**:\n", + "\n", + " pip install numpy\n", + "\n", + "**When pip is not in your path, but it is installed:**\n", + "\n", + " python3 -m pip install numpy\n", + "\n", + "**Pip install from inside a notebook** !!!\n", + "\n", + " %pip install numpy\n", + "\n", + "Pip may prompt you to update pip. This is normal and you should do it. When you run pip (or conda), it checks the dependencies of all installed modules, each of which may have dependencies on specific versions of other modules, and tries to find a combination of all of your installed modules that work well together. You'll sometimes be prompted about changes to installed package versions when you add a new package, as well as being prompted to install dependencies of your requested packaegs. For example, if you install pandas, pip will also install numpy. \n", + "\n", + "A final thing to keep in mind is that because PyPI is a public resource with contributions from many thousands of people, there can be malicious code included with packages. Just be cautious. Most packages include source code and if it's something simple without too many other users, you might want to read through te source to see how it works. If you use python at work, it's a very good idea for you to ensure your organization has a strategy for code scanning and approving modules for use. Bark up the chain a bit and advocate for stuff like this if it isn't already in place. " + ] + }, { "cell_type": "markdown", "metadata": {}, From 4ae9f984abd77ee1f82e202c5047b73d30f8c102 Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Tue, 15 Oct 2024 20:48:44 -0700 Subject: [PATCH 37/94] Add sets info --- A-Getting_Started.ipynb | 37 ++++++++++++++++++++++++++++++++----- 1 file changed, 32 insertions(+), 5 deletions(-) diff --git a/A-Getting_Started.ipynb b/A-Getting_Started.ipynb index c48022d..d71377e 100644 --- a/A-Getting_Started.ipynb +++ b/A-Getting_Started.ipynb @@ -132,7 +132,7 @@ "The indentation in c code is functionally unnecessary, but makes it readable. The { and } group the code.\n", "\n", "### Quoting\n", - "Strings, non-numeric values, are quoted with ', \", ''', \"\"\". We'll look at this more in the strings section below. Just note this. Variable names are not quoted, but values when assigned or passed as arguments to a function are if they are to be treated as strings. \n", + "Strings, non-numeric values, are quoted with ', \", ''', \"\"\". We'll look at this more in the strings section below. Just note this. Variable names are not quoted, but values are treated as strings if they are quoted when assigned to variables or passed as arguments to a function.\n", "\n", "Examples:\n", "* x = \"Hasn't seen it\"\n", @@ -654,7 +654,7 @@ "metadata": {}, "source": [ "# Lists\n", - "List can contain any type of object, not just strings. Even lists of lists! Like strings, list objects have built in functions to work with them:\n", + "List are a type of collection that may contain any type of object - numbers, strings, even lists of lists! The order of things in a list is preserved. Like strings, list objects have built in functions to work with them:\n", "\n", " >>> my_list = ['some', 'words', 'and', 'numbers', 4, 5, 6, 'and a list', ['foo', 'too']]\n", " >>> my_list.\n", @@ -710,7 +710,7 @@ "metadata": {}, "source": [ "# Tuples\n", - "Tuples are like lists, but cannot be changed once defined. When you see a tuple, it implies finality. Tuple objects only have a couple of built in functions:\n", + "Tuples are another type of collection, like lists, but cannot be changed once defined - they are immutable. When you see a tuple, it implies finality. Tuple objects only have a couple of built in functions:\n", "\n", " >>> all_colors = ('red', 'orange', 'yellow', 'green', 'blue', 'indigo', 'violet')\n", " >>> all_colors.\n", @@ -749,11 +749,38 @@ "source": [ "# Sets\n", "\n", - "Sets are like lists, but are a collection of things without duplicates. The set operators are a little different. Instead of .append, we use .add. And sets have functions for finding intersectinos between sets, which don't exist for lists. \n", + "Sets are another type of collection where only unique items are saved. Order is not preserved, and you can put anything into a set, but if the same thing is added twice, only one exists in the set. Sets have functions to comapare sets for uniqueness and intersection.\n", + "\n", + " >>> berries = {'blueberry', 'strawberry'}\n", + " >>> fruits = set()\n", + " >>> fruits.add('apple')\n", + " >>> fruits.add('strawberry')\n", + " >>> fruits.intersection(berries)\n", + " {'strawberry'} \n", + " >>> fruits.difference(berries)\n", + " {'apple'}\n", + " >>> fruits.\n", + " fruits.add( fruits.issubset(\n", + " fruits.clear( fruits.issuperset(\n", + " fruits.copy( fruits.pop(\n", + " fruits.difference( fruits.remove(\n", + " fruits.difference_update( fruits.symmetric_difference(\n", + " fruits.discard( fruits.symmetric_difference_update(\n", + " fruits.intersection( fruits.union(\n", + " fruits.intersection_update( fruits.update(\n", + " fruits.isdisjoint(\n", "\n", - "## TODO add more here." + "#### *Exercise*:\n", + "TODO" ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "markdown", "metadata": {}, From 046ee0849e49231193341abf1054fd27d8b23ed5 Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Tue, 15 Oct 2024 20:48:55 -0700 Subject: [PATCH 38/94] reorganize --- G-Web_Scraping.ipynb => W-Web_Scraping.ipynb | 0 1 file changed, 0 insertions(+), 0 deletions(-) rename G-Web_Scraping.ipynb => W-Web_Scraping.ipynb (100%) diff --git a/G-Web_Scraping.ipynb b/W-Web_Scraping.ipynb similarity index 100% rename from G-Web_Scraping.ipynb rename to W-Web_Scraping.ipynb From d18c8d300bbc8d64e952694bfb16652fd92e3627 Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Tue, 15 Oct 2024 21:13:20 -0700 Subject: [PATCH 39/94] finding data to use --- D3-Pandas_Graphing.ipynb | 32 +++++++++++++++++++++++++++++++- 1 file changed, 31 insertions(+), 1 deletion(-) diff --git a/D3-Pandas_Graphing.ipynb b/D3-Pandas_Graphing.ipynb index f54bb3c..696278b 100644 --- a/D3-Pandas_Graphing.ipynb +++ b/D3-Pandas_Graphing.ipynb @@ -30,6 +30,22 @@ "metadata": {}, "source": [] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "data_url = 'https://waterservices.usgs.gov/nwis/iv/?sites=11455485&startDT=2024-03-15T20:55:29.967-07:00&endDT=2024-10-15T20:55:29.967-07:00&format=rdb'\n", + "tol = pd.read_csv(data_url, sep='\\t', comment='#', header=0)\n", + "tol.drop(tol.index[0], inplace=True)\n", + "print(tol)\n", + "# regression/scatter of specific conductivity and salinity\n", + "# time series with nitrate and chlorophyll; ph,do and chlorophyll...\n", + "# Boxplot of daily temperature" + ] + }, { "cell_type": "code", "execution_count": null, @@ -46,8 +62,22 @@ } ], "metadata": { + "kernelspec": { + "display_name": "venv", + "language": "python", + "name": "python3" + }, "language_info": { - "name": "python" + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.3" } }, "nbformat": 4, From e1b9a5e2f4673064948770c12b9ec31456817121 Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Tue, 15 Oct 2024 21:13:56 -0700 Subject: [PATCH 40/94] small change --- D5-Exmaple_Data_Sources.ipynb | 11 ++++++----- 1 file changed, 6 insertions(+), 5 deletions(-) diff --git a/D5-Exmaple_Data_Sources.ipynb b/D5-Exmaple_Data_Sources.ipynb index 0fbbf23..709db76 100644 --- a/D5-Exmaple_Data_Sources.ipynb +++ b/D5-Exmaple_Data_Sources.ipynb @@ -236,10 +236,11 @@ "import hydrofunctions as hf\n", "\n", "#Example Sites:\n", - "# 'CCH':'11455350',\n", - "# 'CCH41':'11455385',\n", - "# 'CFL':'11455508',\n", - "# 'DEC':'11455478',\n", + "# 'CCH':'11455350', # old CCH41\n", + "# 'CCH41':'11455385', # now called RYF\n", + "# 'CFL':'11455508', # now called CONFL\n", + "# 'DEC':'11455478', # old TOL\n", + "# 'TOL': '11455485',\n", "\n", "startDT = '2022-01-01'\n", "endDT = '2024-02-02'\n", @@ -311,7 +312,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.3" + "version": "3.11.6" } }, "nbformat": 4, From efb2448063ce5d9435e6fe6f723617d8cb34abdb Mon Sep 17 00:00:00 2001 From: Dan Norris Date: Thu, 17 Oct 2024 15:23:31 -0700 Subject: [PATCH 41/94] lots of plotting content! --- D3-Pandas_Graphing.ipynb | 267 ++++++++++++++++++++++++++++++++++++--- 1 file changed, 246 insertions(+), 21 deletions(-) diff --git a/D3-Pandas_Graphing.ipynb b/D3-Pandas_Graphing.ipynb index 696278b..38c1414 100644 --- a/D3-Pandas_Graphing.ipynb +++ b/D3-Pandas_Graphing.ipynb @@ -8,39 +8,40 @@ "\n", "Feedback: https://forms.gle/Le3RAsMEcYqEyswEA\n", "\n", - "We'll go through a few types of graphs here!\n", + "## DataFrame.plot\n", + "The plot function built into the Pandas DataFrame object works with matplotlib to generate plots for you using a few standard arguments:\n", "\n", - "## Time series\n", - "\n", - "## Multi Axis\n", - "\n", - "## Scatter Plot\n", - "\n", - "## Box and Whisker Plot\n", + "* **data** is the dataframe object to work on. If you call df.plot, this is implied, and if you call pd.DataFrame.plot(data=df, ...) it must be given as an argument. \n", + "* **x** is a label or position, defaulting to None.\n", + "* **y** is a label, position, or list of balel, positions, defaulting to None.\n", + "* **kind** is the type of plot to make: line, bar, hist, scatter, etc... \n", "\n", - "## Histogram\n", - "\n", - "## Heatmap\n", - "\n", - "## Multiple Plots" + "As well as a bunch of more detailed options for the plot axis, subplots, style options etc. Read over the documintation for a few min to see what options are available: https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.plot.html" ] }, { "cell_type": "markdown", "metadata": {}, - "source": [] + "source": [ + "Let's make a few typesc of charts! We'll start by pulling some data that we can work with. This is from the USGS gauging station at Toland Landing in Rio Vista, CA. This data clearly shows the tide, includes a lot of parameters to play with.\n", + "\n", + "Note that we're importing numpy and pyplot here, as these are needed in a couple examples below." + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", - "data_url = 'https://waterservices.usgs.gov/nwis/iv/?sites=11455485&startDT=2024-03-15T20:55:29.967-07:00&endDT=2024-10-15T20:55:29.967-07:00&format=rdb'\n", - "tol = pd.read_csv(data_url, sep='\\t', comment='#', header=0)\n", - "tol.drop(tol.index[0], inplace=True)\n", - "print(tol)\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "\n", + "data_url = 'https://waterservices.usgs.gov/nwis/iv/?sites=11455485&startDT=2024-09-15T20:55:29.967-07:00&endDT=2024-10-15T20:55:29.967-07:00&format=rdb'\n", + "tol_all= pd.read_csv(data_url, sep='\\t', comment='#', header=0)\n", + "tol_all = tol_all.drop(tol_all.index[0])\n", + "\n", "# regression/scatter of specific conductivity and salinity\n", "# time series with nitrate and chlorophyll; ph,do and chlorophyll...\n", "# Boxplot of daily temperature" @@ -51,6 +52,230 @@ "execution_count": null, "metadata": {}, "outputs": [], + "source": [ + "cols = {'datetime': 'datetime',\n", + " '288768_00065': 'gage height ft',\n", + " '288432_00010': 'temperature C',\n", + " '288434_00095': 'specific conductance uS/cm',\n", + " '291459_00300': 'dissolved oxygen mg/L',\n", + " '291463_00400': 'pH',\n", + " '304254_32295': 'dom ug/L',\n", + " '305297_90860': 'salinity ppt',} \n", + "tol = tol_all[cols.keys()].rename(columns=cols)\n", + "tol['datetime'] = pd.to_datetime(tol['datetime'])\n", + "tol = tol.set_index('datetime')\n", + "tol = tol.apply(pd.to_numeric, errors='coerce')\n", + "print(tol.head())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Time series\n", + "Since the datetime values in our df are set as the index, plot will automatically use them for the x axis. We specify which column we want to use for the y axis, and the plot type, and we get a decent looking graph:" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGrCAYAAADqwWxuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZxlVXUvvs65Q1X1yCBIA80gCoKIAUUfOCcOwSF5xPgSQxKn+ExiYkxifoYkDokijmjEiDxjkPjERI0a4/iCERDQMKo4ME/N2NI03dXdVbfucH5/nLvPXmvttfc5e+/qulXde30+/emqunffs8+5e1j7u77ru7KiKApIlixZsmTJkiVbRpZPugPJkiVLlixZsmTckoOSLFmyZMmSJVt2lhyUZMmSJUuWLNmys+SgJEuWLFmyZMmWnSUHJVmyZMmSJUu27Cw5KMmSJUuWLFmyZWfJQUmWLFmyZMmSLTtrT7oDITYajeC+++6DtWvXQpZlk+5OsmTJkiVLlqyBFUUBs7OzcPDBB0OeuzGSFemg3HfffbBx48ZJdyNZsmTJkiVLFmCbNm2CQw891PmeFemgrF27FgDKG1y3bt2Ee5MsWbJkyZIla2Lbt2+HjRs3Vvu4y1akg6LCOuvWrUsOSrJkyZIlS7bCrAk9I5FkkyVLlixZsmTLzpKDkixZsmTJkiVbdpYclGTJkiVLlizZsrMVyUFJlixZsmS7x4bDIfT7/Ul3I9kKtU6nA61Wa1E+KzkoyZIlS5YMiqKABx54AB555JFJdyXZCrd99tkHDjrooGidsuSgJEuWLFmyyjk58MADYdWqVUkEM5m3FUUBu3btgs2bNwMAwIYNG6I+LzkoyZIlS7aX23A4rJyT/ffff9LdSbaCbWZmBgAANm/eDAceeGBUuCeRZJMlS5ZsLzfFOVm1atWEe5JsTzA1jmK5TMlBSZYsWbJkANBMPCtZsjpbrHGUHJRkyZIlS5Ys2bKziTgow+EQ3vrWt8KRRx4JMzMzcNRRR8E73/lOKIpiEt1JlixZsmTJFt3e8Y53wC/8wi9EfcYll1wCWZZ5ZVctxnWV7dq1C172spfBunXrvPsRaxNxUN773vfCeeedBx/96EfhZz/7Gbz3ve+F973vfXDuuedOojvJktXawmAELzvvSvjTf/3BpLuSLFmyvchOPfVUuP/++2H9+vWL+rnPec5z4E1velPt+y688EL47ne/C1deeSXcf//9sHXrVsiyDH7wgx8san8km4iDcuWVV8Kv/uqvwotf/GI44ogj4Nd//dfhBS94AVx11VWT6E6yZLX2s/u3w7V3bYUvXX8vPLxzYdLdSZYs2V5i3W53UTRFQu22226DY489Fo4//vgl78dEHJRTTz0Vvv3tb8PNN98MAAA//OEP4fLLL4fTTjtNfH+v14Pt27eTf8mSLaVtm9Ns9Id29CbYk2TJkmGbnZ2FM844A1avXg0bNmyAD33oQwY68OlPfxqe8pSnwNq1a+Gggw6C3/qt36q0OpR95Stfgcc97nEwPT0Nz33uc+HCCy80QhqXX345PPOZz4SZmRnYuHEjvPGNb4SdO3fW9vHTn/40HHHEEbB+/Xr4zd/8TZidna1eG41GcPbZZ1eUhyc96UnwhS98oXpdCvF84hOfgI0bN8KqVavg9NNPh3POOQf22Wefxtd91ateBZdeein8/d//PWRZBlmWwZ133mm0f85zngMf/OAH4bLLLoMsy+A5z3kOHHnkkQAAcOKJJ1Z/221WTMCGw2Hxlre8pciyrGi320WWZcW73/1u6/vf/va3FwBg/Nu2bdsS9jrZ3mz/du2m4vC3fLU4/C1fLb5320OT7k6yZItqc3NzxU9/+tNibm6u+ttoNCp29vpL/m80Gnn1/fd+7/eKww8/vLj44ouLG264oTj99NOLtWvXFn/yJ39SveeTn/xk8fWvf7247bbbiu9973vFKaecUpx22mnV67fffnvR6XSKN7/5zcWNN95YfPazny0OOeSQAgCKrVu3FkVRFLfeemuxevXq4kMf+lBx8803F1dccUVx4oknFq961ausfXv7299erFmzpvi1X/u14oYbbiguu+yy4qCDDir+6q/+qnrPu971ruLxj3988c1vfrO47bbbigsuuKCYmpoqLrnkkqIoiuI73/kO6cfll19e5HlevP/97y9uuumm4h/+4R+K/fbbr1i/fn3j6z7yyCPFKaecUrzuda8r7r///uL+++8vBoOB0f8tW7YUr3vd64pTTjmluP/++4stW7YUV111VQEAxcUXX1z9jZs0npRt27at8f49EaG2z33uc/CZz3wGLrroInjCE54AP/jBD+BNb3oTHHzwwfDKV77SeP+ZZ54Jf/Znf1b9vn37dti4ceNSdjnZXm44rPPIrhTiSbbn21x/CMe97VtLft2f/t0LYVW32dY0OzsLF154IVx00UXwS7/0SwAAcMEFF8DBBx9M3vea17ym+vkxj3kMfOQjH4GTTz4ZduzYAWvWrIHzzz8fjjnmGHj/+98PAADHHHMM/PjHP4azzjqranf22WfDGWecUSEzj3vc4+AjH/kIPPvZz4bzzjsPpqenxT6ORiP41Kc+BWvXrgUAgN/5nd+Bb3/723DWWWdBr9eDd7/73XDxxRfDKaecUvXv8ssvh/PPPx+e/exnG5937rnnwmmnnQZvfvObAQDg6KOPhiuvvBK++tWvNr7u+vXrodvtwqpVq+Cggw6yPt/99tsPVq1aVYWZAKCKYOy///7OtothE3FQ/uIv/gL+8i//En7zN38TAACe+MQnwl133QVnn3226KBMTU3B1NTUUnczWbLKdvQG1c8P70yF1JIlWw52++23Q7/fh6c+9anV39avXw/HHHMMed+1114L73jHO+CHP/whbN26FUajEQAA3H333XDcccfBTTfdBCeffDJpgz8ToKQi/OhHP4LPfOYz1d+KooDRaAR33HEHHHvssWIfjzjiiMpJACjl31V46dZbb4Vdu3bB85//fNJmYWEBTjzxRPHzbrrpJjj99NONvnIHxXXdlWITcVB27doFeU7pL61Wqxo0yZItN5tbGOqf+0PHO5Ml2zNsptOCn/7dCydy3cW0nTt3wgtf+EJ44QtfCJ/5zGfggAMOgLvvvhte+MIXwsJCczR0x44d8PrXvx7e+MY3Gq8ddthh1nadTof8nmVZtdft2LEDAAC+9rWvwSGHHELeF3sod113pdhEHJSXvvSlcNZZZ8Fhhx0GT3jCE+D666+Hc845h8Bwk7bNs/Pwmk9dDc8++gD4ixc+ftLd2WPsk5ffAZ+/ZhP8wxknwVEHrPFuf8uDs3DQ+mlYO92pf/Mi2s4FjaAsDPwn+ebZeXjdhdfAy5+yEX77fxy+mF1Llmy3WJZljUMtk7LHPOYx0Ol04Oqrr66chG3btsHNN98Mz3rWswAA4MYbb4QtW7bAe97znooacM0115DPOeaYY+DrX/86+dvVV19Nfj/ppJPgpz/9KTz2sY9dtP4fd9xxMDU1BXfffbcYzpHsmGOOMfrGf29i3W4XhkP/w1a32wUACGrraxPJ4jn33HPh13/91+EP//AP4dhjj4U3v/nN8PrXvx7e+c53TqI7ov3rVZvgx/duh3/4zm2T7soeZe/86k/hxgdm4R+/e7t32xvu2QbP/9Bl8OoL/CdjrO1CCEpv4D8x//7iW+CH92yDv/nyjxezW8mS7dW2du1aeOUrXwl/8Rd/Ad/5znfgJz/5Cbz2ta+FPM+rdNjDDjsMut0unHvuuXD77bfDV77yFWOvef3rXw833ngjvOUtb4Gbb74ZPve5z8GnPvUpANCy7W95y1vgyiuvhD/6oz+CH/zgB3DLLbfAv//7v8Mf/dEfRfX/zW9+M/zpn/4pXHjhhXDbbbfBddddB+eeey5ceOGFYps//uM/hq9//etwzjnnwC233ALnn38+fOMb3/BO/z3iiCPgv//7v+HOO++Ehx56qDG6cuCBB8LMzAx885vfhAcffBC2bdvmdV0fm4iDsnbtWvjwhz8Md911F8zNzcFtt90G73rXuyrPbDnYg7Pz1c/DUVK4XWzbGsDj+Ndr7gYAgGvu2rrY3ak1HOIJQVBu/3l9KmKyZMn87ZxzzoFTTjkFXvKSl8Dznvc8ePrTnw7HHntsRVo94IAD4FOf+hR8/vOfh+OOOw7e8573wAc+8AHyGUceeSR84QtfgC9+8YtwwgknwHnnnQd//dd/DQA61HLCCSfApZdeCjfffDM885nPhBNPPBHe9ra3GYRcX3vnO98Jb33rW+Hss8+GY489Fn75l38Zvva1r1XpvNye/vSnw8c//nE455xz4ElPehJ885vfhD/90z+1knRt9uY3vxlarRYcd9xxVdiribXbbfjIRz4C559/Phx88MHwq7/6q17X9bGsKFaevvz27dth/fr1sG3bNli3bt1uucaZX/wRfPaqTQAA8IO3PR/2WbV8nKeVar3BEI75m28CAMBLn3QwnPsKmQRmsz//3A/h3667BwAAbjnrNOi0ls6//t1/ugouu/nnAADw2mccCW99yXFe7U//2BVw/d2PAADAne958WJ3L1myKJufn4c77rgDjjzySO+NbrnZzp074ZBDDoEPfvCD8NrXvjb4c8466yz4+Mc/Dps2bVrE3u0ee93rXgc33ngjfPe73510VwDAPZ589u/lHWCcoG2f15yDXsCJOZlpOFW30/JXI8Shldn5Aey32s9pHI4KmO8PYfWU/7Cfi+Sg4LsdjQrI81Q1NlmyxbDrr78ebrzxRnjqU58K27Ztg7/7u78DAPA+2X/sYx+Dk08+Gfbff3+44oor4P3vf39U+GZ32gc+8AF4/vOfD6tXr4ZvfOMbcOGFF8LHPvaxSXdr0S05KBbbijbTXj85KIthO3uYx+H/THGYZT4gk+bML/4I/uOH98N//PEz4LEH+hF0F4YaaAzhoOD4cG8wgpnu4mYqJEu2N9sHPvABuOmmm6Db7cKTn/xk+O53vwuPetSjvD7jlltugXe9613w8MMPw2GHHQZ//ud/DmeeeeZu6nGcXXXVVfC+970PZmdnK12X3/u935t0txbdkoNiMXzaD9mQkpmGnYr5Bf9nOhuJan3umjI89NH/ugU+/Jt+4aU+ul4sgjLXHyYHJVmyRbITTzwRrr322ujP+dCHPgQf+tCHFqFHu98+97nPTboLS2ITIcmuBKMOSkJQlA2GI3jrl38MF1xxh3db7KCEaInM9sLDLPjaU21/56A/RA7K0H884DYh6E+yZMmS7W2WEBSLbZ/XWSbJQdF2+a0Pwae/fxcAALziqYfBtIeo0jwKlQ2G/tzsWfKd+G3yP5/VBf5CinFiByUk5IfbJKG3ZMvVVmDORLJlaIs1jhKCIlhRFGQzTSEebRhZwhV+mxjemPsBioY7IhCUWKG1PnKoQhCUeTSG5gLCW8mS7U5TqqO7du2acE+S7QmmxhFXs/W1hKAIxhGThKBoe2SXdkp8QxX4/b4ISlEUURyUWIIudkr6IQ5KP47gmyzZ7rRWqwX77LNPVatl1apV3sJfTWxhMII8A2gvoURAsqWzoihg165dsHnzZthnn32g1Yrj2iUHRTAO4acsHm3YSZj3fC54Y/bd5Of7IyKY54uCzEUqweL+hoSnsFPk+9ySJVsKU5Vpd1dBueGogAe2zUOeARy0fnq3OEDJlofts88+i1LpODkogs2zDSyFeLTtQqESXy4FQVA81XlnezSc5Pud4BBPCIKCs3j6AcrCsQThZMl2t2VZBhs2bIADDzwQ+v3Fr9h97Z1b4e3f+SEAAJz320+Gox+9tqZFspVonU4nGjlRlhwUwTgEn0I82vBG7x/iwSiE3zM1UC3P7wQ7ViGIGOag+Padc5qSg5JsOVur1Vq0DQbbw70C7p0tx/7OQb7iFWuT7X5LgUDBOASfavFow1wOXweFkGQ9wySxvCDKQfHrd1EUhNTrG+LhpNoQDZhkyVa6bd2lCfY7EeE9WTKbJQdFML7x+oYj9mTDC0sMB2XgmcXDnQpfDsquiBDPcFQAzprzzUDizykkCyhZspVuuEDojuSgJGtgyUERjDsow7ShVLYrgmw6F5HFw52KkWeefUwWD0d7fBG1HhtPIVlAyZKtdNvRSw5KMj9LDopgfAMLQVCKooBHEKS5p9hicVD8s3gYquXp4FAOil+/OeIR61wlByXZ3mj4cJMclGRNLDkoghkISoCD8uGLb4Ff+Lv/hM9edfdidWtZGHUywpEEX6ePb/K+3wlFfnwRlDgHg48n3+eWLNlysYd29OAfvnMr3LVlp3dbnOqfOCjJmlhyUASbXwQE5e+/fQsAAFx45Z2L0aVlYzis4+skRIV4+nHfCdExiWgb0t7goKywrLCiKOBl510Jb/jMdTBKfKy92j7wrZvg/d+6Cf7qSzd4t8XzP2QOzPeH8F83PkjKkCTbsy05KIItBoKi7MHt87HdWXTb9PAueONnr4dbHpz1bosdBf+NOlzqnvNdfDkoeEH0/T77A/p+XwSF992XIDxpu+yWh+Dau7bC1264H+59ZG7S3Uk2QfvidfcCAMAVt27xbhuDYgKUqPRrPnUNnPXVn3m3TbYyLTkognGOQkwWT74M1RJ/4/zvwVd+eB/88Wev926LFxZfPRB8gioKP0fB4AV5IjBEx8TTQYjloHAEZaWFeO5DTskDy9DhTrZ0FrOcxao5f/zS2wAA4F+v2RTeiWQrypKDIpiZteG3oWEYPM+Xn4Ny37Zyk7nxgQAEZRDOIzE36ubP1eSghDsZ3giKEeKJ46CstBDPdlQUctuuBK/vzRZTpBYfUFL5kGRNLDkogvENyHcj3oEyRtrL0EGJsV5EqCRGXyYW1cJOQX9YeJUDV4hJp5UFXXulZ/FgQqNvBetke5b5hlaxxWgRJds7LTkogvENyBfSxyfOmAm9u2264/f1F0VBNvoYDgoAwNDjucZm8XCnwKe5Ql9mOqX8t294ysziWVmLMzn5po1lrzY86n2cfACKoPqGeFIF8L3TkoMiGN84vbNVFsIzXZbSVnf9SjGZPJA4RdWhxwIXi6DEhGlU25luy/hbE+PFJ1caB4U6KGmj2JsNH7ii6mF5tuW6Kct5XU22eJYcFMF4tVp/zkG4VsjuNryxtjzDT7EoRkw2S+y1Oe/Dp716ZquQQ+fjIPFrrzSp+7kF3d+Vxp9JtnhWFLTkw5xnTSmSxePJQdkxTx2U5CjvHZYcFME4AdObaxGhFbK7DUOlvox808HwuzceKovJ4vF2UIbc6fR3UFSIB8APPeL37Ys8TdrweE4Oyt5rfA7u8gi7FEVB2vs6GBxB8a0DlmxlWnJQBIvloMQUxdvdFjOx+anHmwcS4fip56hQn+gQj8d3ujDWQcGcHR9kTCEmyiGcxCb/ycvvgCe+/Vtw4wPbvdvi6ssrDf1Jtni2iyEmPggKny+xIZ6EoOwdlhwUwRQHRW2G/tkqWCtk+SIo3lL1hsKu3yITg6Co90638/HvnmnGEX1Xzk23nVdZWSHtV40RmJAhccM92+BX/+EKuPK2h/wbA8A7v/pTmO0N4MP/eYt321gF0GR7hnF5ep85YGgJea6p/NopTXnvsOSgCKYmz9R4M4zJVhmM/FJaAUo49H3fvBH+7dp7vNo1MXzy8C2aZ4R4PHbaoiiM5+jHAxl/J+NNPhZBCeGgdFo5tFWqsce9c5Ktr3MFAPC6f74GfrjpEfitT/y3d1tsIWnC8ymLZ4+y0agghNWmxhEUrrDssn4kwX4nuzYnnjex6+7eCu/86k+9uTPJJmd+aRx7iamTwXSnBbsWhlE1ZwDKlNaWB9/jp/dvh49dUqomvviEDTCNuA+xhtEdX7g+psozfm+elc/EK8Qz7qtGUJYuxKPe223l0M5zABh5clhUiKjlfW1lMQquWDgwBBqfI+mhyUFZ6fbKC66Cq+54GP7jj58BRz96beN2HD3zKVfB15qYQqPl7/7j8Nc+dmXZdjCEd/3PJ3q3T7b0lhAUwYYGguK5kUfqXmDG+t0P7/JqW2c8xONT/C2Gg4I35am2CnX4OzihCEqMc7UgIigei/OAkmxDiNMxen+zaDy1W/5Tfj6FePYY29EbwHdveQh6gxFcetPPvdoaTobHWIjJogMw52+MLsrP7vdX0E42GUsOimDKu+8GntYNvQ/P9tvRhvLQjp5X2zrjffM5Ecdk8eDTliKbhqAYymn0EXkDkEI8/hySTlshKH4nQB7iCantpMZiiG3dtaB/CeC/zCWS7B5jOMQ361kVOKaqt8lBiUNvY5C8PU3de0+25KAIxhGUpZR0B6CLyGKTwcy+LU09HAlB8VHZ5bwgH/QFwHQoQtKMO60Myd37OzjTbeWg+H+nMYLEO4lAlv/Jk6YZp/j9SjZMNuWckjrjDoqPs8rb+hP0GQfFE0HB119eaQvJXJYcFMH0Zhh24uUELl9CGHZQFlvimfNjYrRIfBaZAUq17bT9U4XVpj4VECYZjorq/QqJ8CO5ag5KSJpzxUHphnNQsIPiG2aZj+SQENL3MstKS+ZnONzHiad1FpeqHxniiawIjtdU36SFZJOz5KAIppABtZn51tPBypvl54VPphC2ussWtWCfzwlqfJ1OrsMkQWnGARwUvLCG8EDU4tpuZdBp+Ts4upZPGCIHQBEj7mTWWS9SaA1vBiHhqWTLxzCCMueZybPAsnZ8uHUYhfRtCyAc+jxRSBra8s9gSjYZSw6KYH3Od4hEULh0fp1tJwiKPBG/fsP98InLbvcv2BVxkjFCPB6XVs5Mu5UF6cuoBW0qQAcFQ9Gruv5hFpxm3ArRQRlQqXzf8VQUBWnj62T0IhAUjD6p333t1s074L3fvBHue2TOu+1ytru27IT3f+tGuGerP5F921wfPvj/boIfbHpk8TvmsB2LGOLxcTJ6jCjuTXLvh6M3ALsXlU62+yw5KIJxDoovZYCz230Jndvn3ZNpvj+EP/zMdXDW138G1939iNdnxxTdMyoCB4Q52nkGrczfQTEQFJ8QzcBEUEJ0TMo0Y/++DyLQHwAz1u9LVI3RMYkpsqjsXV/7KZx3yW3wtn//iXfb5Wx/+W83wD985zZ411d/5t32H797O5z7X7fCGz5zXdC1f3LfNrjt5zu82+EMwXgHxX/+Yyfd53AVKxK5rcGhr842b5+Hr/3o/uTgLKElB0WwAecreE6G2EUdT0ZpMt2zVZ9EN3vqY/DJ5eM8DZCTARAmVY9RiCChtgBUS23o7VyHaEKuHS3UFphmzBdnbw5KBMk1RlxP2SXjdNaLf/agd9vlbN+7fQsAAHzzJw94t/3v2x8GAIB7A1Cl+x6Zgxd/5HL4pQ9e6o2gUgTFL9QRU1NqoUIRUT0rL/Q2riL49kUIm7/houvgDRddB/969aag9jG2a2EAv3fhNXDO/7tpya89SUsOimBq4nXbYdLkZjVkz4wT4qCYk2nbnE4bfcRTGZQ7PF6hCiRgBxCmgxIa4qlIsgHqvkrxstsOJbkiHZTc//qVDko3VFcnHFoHiCPJGgqgiYNiWDdAWyZE0VfZT+/T9ZQe3rngeKdp2EGZ80QSTLE1/zDpqilccDMCQYlAEUMRkKvv3AoAAN++cXNQ+xi78tYtcPHPHoSP/Net8Mguv+98JVtyUATjKa0+oQwASdY5HNKXvH2sk+I72QwEJcDJCEn17VcoRhiCoq/tn6IsCq0F6aBkuhZPwOIcjqDQ78w/i4eGeHxO3TEFHvcWmwrQqJkjgol+3yd2MnwVhnHKue8mHxPiqRCUjhYv91GiNTgoEdpU832/OQBA94BJZAHhg+iD2xdXG2s5W3JQBIvVQTGqIUcUtpPqXWC40jejw2TD+6cKhzwXdZ0OQlBCpPJDRN7U8yQk18A0Y+3gBKQZL5IKri8KwlGzEO6AMm9nG/W141PvYZkb3rB8NXkA6NzxncNYeG/zrN9mhTf62HpWPo5VlcmGQjw+4WXlpIdWM+cHM985NIucQt+szsUwjJrEoG8rzZKDIhjnoMTWffFtjxd1KVsFp8nNexLdYlRu+yO60YZk4bSRk+Az0bXTGH7tbiuDTkCK84IY4glAUFSxwIhNXvq96fWV+fSdn7JjUuZDQiHL1bBTEbJhEZ6Z5xzeisI6vm0xOuvPrQsPXVdihZ0cxhz5IARldaUlFOek+wpg4kPhzt7Sk2RxKG9HLzkoe7VppMC/ZgyAkO3i2Z4uImZb4qAIm9WO3gA+/f27YJNQx+eNv/g4+Pzvn1ItEiEISojjNhCyeEIXuLKtv4PQDhVaQwhMCEl2gYV4YhEU3ywevpjHZG75bmo4HOGbbr8U9rZ//zE89ayL4YFtfqESnAGjnFYfw3okvlklRGna01nFzm0MGib93qRtp5VXhwQ/Dkr5vNdMlSEiX5IsR459USv8zCdRDXl3qosvZ0sOimBcddSXg2Ky3WMQFLPtHIkjm69/9L9uhbd++cfwln/7kfHaYfuvgpOP2A8O22/V+PN9NvoxitEJkao3N3mfa/M045DwUruVoWuHoD+IgxLkXAVyUHjxSd9NKWI88o0ghj+z4Ml/WQr75+/dBZtne/B/Lrvdqx3epHw5JMNRQTZI381yjnCKPBEUHD6OrGcVckjotsOcfOWIrZoK0xLiIR5f7h52tCdRj4pwaAKykG58YDv88ocvg09/785F7NXut+SgCBZd94WnZvoiKPiUI0zEefK6OVm+cO09AABw5W1brNcI4WJUTkJIJo2YxdO4uZFm7If8jPkviKDrl4GgOShhCEz5Xo2ghKedAywGguK/sei2cafumCJvi20YxfAtxojJpjEkV4AQByU8K2uhZu1w2WKQZLuBYofqPlcrBMWz7zHZiwA0JTu0ovfnr9kEZ37xhqAsIuyUhCAof3/xLXDjA7Pw1hWmRdSuf8veZ5wM6ouA8BOur7ZVrwZBmScZAObrTU6pMVomIcgScRIyfwRF1+Lxv7ZazDACEsxBUToqAVk80xXyVPY/b1hVNVYHJUbLJBZBkQrMqecwaXsQZcD4Ijs4xDMqyufSavp9sg3KN2RAsrIiUoW91zX2fj+SrCLJ57pcRECZjbVjB8W377E6Kvj7Dim4WRQF/MUXSkT7KYfvCy978qFe7XuRadI3PjDr3WY5WEJQBDPSjD0XL+6de2fx1HBQ8KIkbfJNNr5WgJ6HRjH8uTkD5CSEIChDdu0QBAVzUEJSpDuBIR4pgyFOpCp8PAGEicxVbWMzkJZR/BxvOr6qqnyTCJF9D2nLrx0X4okbR14OikJQ2lqNOeSZrZ4KI8nGSuVTB8V/DGNpiK0BOiaxBT8xWig540VRwLV3PQz3b1te5SiSgyJYTMYIgOmde5Nka7J4MNwnTTTsn9j6HoSgcKJqAJeBOAkBInEhTqPqdyfPggoVVuhPO0yoTbWfQciBVw2kSA2IGJKs6rsaUzEZaQCTid/bLOZUHOM08mfg+0znIjbLuvCxyxQyvDqgKjcWOwxRc1ZO2eqxVH5smrFviGgX2uBDHASM1sVWFA+R6sfrpYQeXXf3VnjZed+DXz/ve96fvTstOSiC8TRjXwcjpiw5QD3THg/Wuom60yJnHcSlYI5bqJMQItTGncaQfmP0JrYWT4xQG4AfqmYgINGk7fC++55cDQ5KADx92c0/h4t/uvgy+XP9xdnoAcJ0eZTFVPb17XcPXcu3Ho4adzNjJ8HH2cQIiuaB+ZNkVweGeAz9J18EBY2VELL3Qzu0Xk00ByUgxITXWolkq9SJ731kjqAtk7aJOChHHHEEZFlm/HvDG94wie4YZnBQAjcEhTTEpBnLHBQ30Q2/bsv4aAegGNVz6QSEhyQnoWH7oihQBlEIAqJPbyHOkaxEK7ffPDsPz3n/d+DXz7sS+sMRjEYFWthDERRePykyxLOEGUh8E/LdULft6sPv/tNV8Hv/fI23rHud4Ww439BTTJiGOyhRCIrnZmc6RyGhypB6VsrJz1AWT7NnNhiOqjG7aCRZzznEeUK+SOCuXhyHhCvh+hp2yOquHxKC2l02EQfl6quvhvvvv7/695//+Z8AAPDyl798Et0xbLGE2vSi3rwtL28vaUe4SLJFUVDtCcsCFKTmqhwvhaAEOAntACcBvy1GxbaF0ZtYDorluV78081w55ZdcM1dW+GOh3aShVQ5V7hPTWyxERTbs+sNhkbxyaYquEVRkFOisoVhHH/muru3Vj/fLej6xFhMiCcmdBX7fcZsVrxYpFdGl6opFaDngxGUjmeYFD+vNVNhjrIZ4vFrz8XZfInqGMkOcTDw+PRNMy6KgiBAkjOOlXJ5ltkkbSIOygEHHAAHHXRQ9e+rX/0qHHXUUfDsZz97Et0xjIcTvGvxKAelbU8r7Q9HcN4lt8Gtm2fFtrovZltXls98f0QdHMvC6dIiuOqOh+ED37rJGKhViEehGF4hnjGPI0eZNA3b43sI4QVpkbg8iHuj0oRxFo8LQVH20I4ecRBxiCgmk8bbQWFjyDYmfvsf/xuedva34cf3bjPeW4cG/t//vhue8q6L4d/GKe7KjFCIZ9/xaW7H/OIunDHER5MwGh7iidlsvdO+I/qtFZHHWiQB6AtGMZs6q3hDXdUNDPH0eYjHE0Hp07HnO14wAhOLoHgrUQ/pniBdH4t/LvY8i7GJc1AWFhbg//7f/wuvec1rIMvk7JNerwfbt28n/3anqcHfDdRBGbCNXFrUP3n5HfDeb94IzzvnMvJ3s2pnHYJC3z87T2WQ+YL0uas3wae/f1c1IKXF8fcuvBo++p1b4TPfv4v1hTpePhNFp/oiBKVhe9zHMARFIyAxHJROAw4KliHf1RuSEFsnUEelKQJiMy7UJrUvigKuvnMrFAXA/0N8Dy7Tb+v3W7/8YwAA+PPP/5BeO3Iz3okWdl+9kDrjRRR9zOSghId4fJ0M/Bx8QrTitQP0gGYCQrwEQWn5lbpQ3007z6o1NbSidzuA/wJgZnn5Iii4vaT+XWcxTukuhv5ICA52SpaTVtHEHZQvf/nL8Mgjj8CrXvUq63vOPvtsWL9+ffVv48aNu7VPA5YxEhziadvZ7t+xlOxusqDjAcQ/my/ifCK/55s3wlu//GPYsqPcSLnztbM3qFLibnqQojsDzgMJQVBa/mEWfI8h147NIFrAIZ4aDsrWXVSGXDlmeVaGmNqezlnZ/zjSNd+EpMUZp0GCwPhXY7ko/BDFGBVbAJo9sdgOyqRCPOYhpHnboijiEJQI52ihQtMUiulPtqYISlMHZVhd1zc8xD9jzbTKAgp3MABC0pTROA6Qyq+TlnAZT5SQQkT4YOvr/O1Om7iD8slPfhJOO+00OPjgg63vOfPMM2Hbtm3Vv02bNu22/oxGRcV5COGgYEKnCxbfYclLbxKfnicnKPq6QYIb8A2CEl15+/se0XnwOUO0eKpvkFw8EWprGOJBE1IVnPPZKKUMohCiaLm4uu8dhyR6gyFxjgAgSEWTEwJ9F9cmCAzmj2DnT12rqYbLFFNkXVQExZKR9vlrNsFF/3231+cCMAfFm8sRTzZV5usk4LfHpn37KSpHcFBQ4kHbM81Ynfin2mEIJP4MXcsnjhQd4+D4OsPDUVGrjdX02gAWDsp8PW9xEjZRJdm77roLLr74YvjiF7/ofN/U1BRMTU0tSZ/w4qw1N0onwhaCIu1xOMJBklUnaYBy8KtTSZMFnYR42ESpk0XXInQylwNvCLyst85OCqkorDbqDDLwc1DU+1pIxwSg/K5yqP9OSC2eAJIsDvm1axyMRxCCMt8fVSEe5Vj5Ls74+tXvkbwDqe+kQi5awNR4nHZouODT4drpDr023xCFa9/28x3wG+d/D/73sx4D//tZR9HP7rlPnjt7g0qh8wVPeDQ8ak3zdYJoS/giKIsgWqbMK6MsMjwUo8HCHZRgHpenk6E29ClSx8fXwYgrNmhk0kWE5Xw5KNyh8XbyGZdQWvswSdb32e5OmyiCcsEFF8CBBx4IL37xiyfZDWI0nKAX5aZjAg98FxSKJyd2KposQK4Qj6kaKn+eTeMFbwi72Ik1pkaRegbtPIPxHt0cQRmiti3tkHi3xwhIwwUKpwk3qWb8yBxFUDD/BSA0eyoOhTCUjYW+27geqp/TDg0XHL/utBjqxvtuKW750I4FePfXb3T2a5ewsG/aqjN7MPqn7Ns/exBeeu7lcOVtDxmvYYcntrLvUjkZMXwkjO6GtFdOxnSAUJvSXyG1eJqSZAcK9W1pmXzPGmLqvtdOh5FsY8jF5fvRGh851mKyvgDk/YjUGkoOCsBoNIILLrgAXvnKV0K7vXxKAuHFFy+2TSE9klbqCIVgJ4NXfMUmDaa+A+7juidGBgjTeOF92+EoA6/b+vMRVJfzPKsNk5httYPQyvwdFCmDqOkk77PxUNf+kZ2Ug7IwoCGeoCwe/h17LiBNEJg5kgaJELoqtRQhV44xU8fNkK69xaFvghfOeQFB2fSwdkqk7IOzvvYzuOHebfBXX7zBeC0GNudIpRcvxxANiwn3eTg36L0hekBq3K0KKHqpxlGnHYCgoBBPRXL1uDYezwpB8S4/EhmqxKF2X4SiaS2tn9y3Df7y334Et/18B2tff0DBYZ/lFOKZmINy8cUXw9133w2vec1rJtUF0fB3OdVqiX93GUFgKqTBfN+cJf7NdSP44OSnID7YXdAz5tfYHBRXrFSfpmmYpYkppKaVaQSlsZMw1CEeXJCtaXsd4smrOkXN0Rf9vhKetpP0+sMRgUp7/RFRoVX34NN3AP0dhzg3AM1CPDstQlJcPbhsz8KCPTxm2HhsQvp2wN/4syWSLOb8SPV0bn9oJwAA3LnF1FCpE0R0mclJWBoOiomgNN/scNuQiuS8plSI2GG35c9BkUI8ITL5AEjozbvYYH2o0mUxY61piPetX/4x/MvVm+BvvvRjZ3uRNkDKpywfBGVi0MULXvACb7ngpTC8eOMS7E03Yvzld6uJKGwIFkitLs2YD07+u+sEi99rc1BcgkJ9hqCo9k2K02IeSeZJktUICnVQfEmy7RANFpYm7IqBc86OFOIJkcrHtXxme4NgobaZTgvm+kPxuePwCXaeeYr1YFQY7Wd7mHfDCHkNyIX483p9Wu0YIyjSfeP4uq2sg81oSQn5+7h18w7otnI4bP9V1rYAfuHOmNO4WbbAB4nT153utGDngjwW6q5dJ9onXls5KG1/FBOHeNQBwcfBUGm93VZeremxJRtiDgm+CGgTbSwAgOvufgQAAL53+xZneznxIrx/u9MmnsWz3EwtNCottPp7wwE5Qu31ad18H85N7wmkRNt1zcHqdlD6Fs/dVpF4Z0+G+gHMNGOA5loG+rmGC7W18owUQvRHUDJvDRZ1bZ0mbD95YoIsgBziCUFQqgyIwHo4hpaJcO9zFsdUlwmwZ0BhlGMwKkj/mqRIzztUMnfW8ERwWMc3fdMVKgUA+PlsD57/oUvhtL+/rFbq3C/EE46g8JN7qHMTUsYjjiSrnIRWAAcljiSr1rGpjr+KrbLY+kn4oOMvtBjulAKYzlwdiplCPMvY8Ek/xEGhGSey5sbCYEQWOPLzQG8IAKYDUDfY+MJJq5cK/JihfbPhn63aTzvgfpuNhOfa1EmoHIw8hyzT7Zs6RzjF2ff0hhUwy8+wL5Db510IimofnsUzHSCQBYAFtuzcAVsoRbXF2Rf8e9vRs4sDNjl52sJLvL103zsWMKnbnu2As+aU1TkoNz0wC0VROklYIbjslzsU67JewxOxZDEZXQPkbHcCpAJ4iCfEye60M+9QpU4zRiTZgBDPdKdVOTi+DsZCtYaEhVnJWIvUMYpVkhYRFDTPEoKyjA07GHhN83VQ8iyzIij8NIa9V1MMKQ5BwYOxieCZC1LnBfsA5JPjrZtnSXlx3M+QejhVBhDLhPEmyWIEpSnpWaUYV2nCdgeHkzgxB6UK8dQIvYn9V1okgQX7KsfS4eBgp2RBWKyoCi59djt65n1Ln2W7NtZgsIUVAWSnECMoPOsMv5ZLDgoiLkrPFNf+4eE7fl9+dakiwjQxacKIixVDkg0ZhwsozFJXLoJbDyEgITpCakxNd/KgLCDch1UBGUwA9GDpS9CNLXXB2/OxOhoV4pxfDpYcFGbVRjqusOx7Wq/IoA6+A4+VS/HJVRYimrFAsc92Qc9qYGeZPsnzwYo3G8NzZ4RPqX/3PTIHzzvnMnjO+y8hHCMc4vEWaqtq6YwdlECht3bLX+ip2qDbNEQjXZuTOHGIhyMwNgfpkps2w5lfvIHxQMYISMDJFUDDyxV3QFhc8ebeF8Zju5VZNxaePUPS5hugBTscHJY6lGNnz46gYG7MYDgyOG+cuMhf//msFq/jDkrMpmEikz7OajyCQrPZmm9GvHCkl/YL4zIBeCAoavy2kZKsT4qzQlDaraAsIADd/9VVFpBniCiGJGuE9cy+43Wc++J1CIxZmTuFeJat4ZM+gHszvGvLTviny+8gAwA7OHkmb0bGRiacOKtTCls06xjZTgSFaJHIzpMTQUFcDjUJ+PV/dM8jAFDe44Pb9QKvLtPK/REQ9T7lVPkucAPk4LQ9HU4DAXEskPz079RBsSwCr7rgavjsVXfD+76lNUF4aM2bgzLiIR7BQelhhwg7KBpByi1zgSu84uwvvolJpzlanZc5KDUhHhe5D782KqSF2L1w47lgICj8IOClCeSewy4zNXH8HYy247u02RCRo0OyeCr0te1fLFCHaHIUovEI8QxwiMffwRmNdOakRlDCeGDlz3EIiNT3WaJFRLd1LlPAxwzP1lxOCMryESBZJsYdlDwHgKE8GZ/7gUtKlVkAeO0zjiTtc+wEsO+bSw1LQm22EE+dEqQBPWPZ8mqjtiMJO4miIJ8YFO4fDQvDwcFOyb2PzMFB66dJP/Ms83ZQ8CkeQMP1TU8xREfF8wSGORi4D9LJU8pgwSESADcHBZ/gr7trq9GH6YCNAUB/b3pjMfu+S0Bsyp8RgmL53lwbf5WB0c6hNxjVjmdeSA2LWkmbAnWGeL9MYivOEJLCJTgjDSOd2+cGxnux+Wx4A7TGDEeFF4oRhaCgA4pvqBE/K1+pe+zcBCEofb0mdhzzr769LlToVdwRvbeqphzFQfFzAJoINWL+22CMBqpsSa6NxfvuCqtO2hKCwmyIQjQAdgSlP9Q1MRRqwNtbSbIOrRKu1spDMN4cFBL71EhCFboyHBSZJIs1VHB7vjDTuL3WqMDPxTeOXCEoLEziTZJ1bLJ1bbucJCsSzXjV0CGR+AZwZ/Hggn0KSgbQC1SIdsUQfW8amnf3XQo5dhy8BZcmSF01ZO6s+4Z4eo7YuVmXyv26KzupTlxN4lMNRwVsQTWO9N/pmPJybmr4BE3altls8vpiM8lB8Z1DAGOhNk8OCkZQfJWgAWixwSpN2eO54TFWISi+PJKBuQ43tSaIG61wzbSyajK/zDmXQjzL1tQkrhwUSygEC0Stn9H1R5qQZF2ZDernrmUzqgvx8EUab+KYbKohXto3KnMubw5tpOjKnQRMjsWwOM7iaVuei804ByW3OEc2q6Tq89wbfakUMFktHTlVt3x2agFfQNWMOUlWWmQeQWNKyl5xcUis/UcP2dW+ZwmVSATjuhg2cYoV+tOW0RuOcrjQGBlBMftq7ZcxV9hcMjLa7PLfVckIh+jYx75zKzz5XRcblcurQ0hAVtZiKMmGZLPREh5+WiL4e+gGICiVgxHIIcFZQCFpynguulL1XVbnaDvbNkDNuJMx70AW6+avT7hyd1tyUJhhxVMAsCINWPMCn7TUvGnl9pO+y0Gpq5VTl+5mpjDi06xyEnJr34jybKHvm5cAsCmy4lAB/ll23DwRFIZq+SIo2Dlq2hanR+I+SCcoNdGVw9ob6GKBTXRQZudlwifnJYWGBGYsmVsADDURSK4Ymq8bzwNhPNs2Y7448jFRt7CT7AMhnd/2WQD1CrvSd1C9F3Eqyn6bffvgf94MAAB/8Jlryd/VnAqpCo4dRv+22lkODbO28sy7yjtBUNC1m3NQcIjHH3XCCIwO8TRvX6ngtt1K0k0+A0AmZLusSYjHLEtiHhJs7blz4xtC3p2WHBRmVXy4prgbrv6KsxCGyMFRKAVf+Fxy9hWCYjmZGRWFPTYLvNHnlo3WRhzE/SBia6x/O5jUuzI5uwkameojR7UaC7URaNtvgdLoTYMQz3iiKwdlYTAyTtquLJ7tCHEi0tMVglK/Mdy9ZRdBrrCz4SpeaeNy6GeXW5ErV4FKHZ6ST55GOQX0ulnWQUB+iER3c2QHoJ4kS9WeWdvxM5xqEO7IWMVtAxELcDKq5+mDvqDvspX5zSGsz+Q7/3CKcZbpbLDmHBSTJDvw2OSxgxMU4lFpzgGVmJU1UXO1t6UObRP+G35PnVgib5sQlGVsVShiPIFtbHcc4pF4Gy6SrKsgoBo8GkGh5Ek12PBmhV936TNgLkbLEuKxedv49l1aJqS428B8Lq3MX4vEyKzyzeJBYmnRHBTHyVWFeNbNlPyRheHIQLzcHBTkoBAFVb3Aln2S+37jA9vhOR/4DvzKRy+vxgRGFbqO2P8CQ01U+4rc6ECfXKJlqr1Nd8fNX+HQdE2IxxNBqSMPNlF4tqEgeE6qsABv6yqFYbOqNlKAFolEkm167SpMWlOPSuyzkQnnt8lrJVgd4gHwd3Cm2hpB4d+9y7SSc5iSLUCzTBybaR0j+3duU/0GMJFFM8xaj9BMypKDwmzANkPbooydElwgbiSQQXl4yLUoq8GD693g5tVksb3eEEFRmWi8bwaBd9wfmmdvh4htEv5qvlDHrdlE4CEefyejHjmyt+UhHkea8YAiKL3+SJNk2/VZPDhThCo7MtTMct+X3vRzGBUAd23ZBQ+PEb7K4W3lFSooEQxtY1I9pzzHiGBzpKJCGiyk7yYEW+m1qj1xItzoDN8k6jgoLkVcXvbBSL1GGwY/6fOwlw8pccAOKCE1nSjhuVlb7KhjJ70JilEhKFxLqOF9EwQEpdA2dnCkNGMPp5CIzAUI3AFIzrD/9+bKnuLZb64Qj5nFw0M8jbu22y05KMxGzEGxcS0wOoDJdBJSwAeEDwel/JuJsOBT2dCxqJM0Y7XR43RbSwip+uzx7/jkm2f27CYc4sHPSD9Xt7bMwzsX4Lf/8b/hP354n3F/dd+JzWIQFA1tcw6JBLOWf1unQjzDUfU+Xs1Y2pQIgiKQleuE2vA4VAifmMEkcVAsaIPqJj51G06tY/HVXI1mWTxDIYOIfxa5NuGouE+G+PWiKGo5KBRVkrOLbDWtuHgdNs1BCUBBGjqrksnZbM12IzwPfFEMW7mIpkTXuUpojV67KYelJyjJ+jiF2MFqB7QHMLmBNgTloR09uHXzLPmbgZqLGkz2EE8dh4U7Nz6I3u625KAw0wiKWznUJhClFp88z6xkTle5dZ7FU36mfi8frLxvPKQgSd0TBMVBksXtcRHELGtGkiUICnquLgTlvEtuhctvfQj++LPX67Ys9TtYqK3lL7OPoW38v5jFM14k1k0rBGVofB+NOSj9YXU61Zkw7lPzVkTcVt9Dn3zndvTGyJ4ZoxGqnzQ9vMZBEVLbbaEQg4MijOWqT1IWT9/OQTGdrkL82RZyIARchs7UhXhwyrjtBBtSW6k/ovM/JIun49BBsl4XIYm4RlmT9hxBCeegaJIsQPMwSdW+HaajorV8Wt6OHYDiUtWjgaNRAS/5yOXw/A9dBjc9MGu818VZ6hkOCkYxPREUP99rt1pyUJjpzRDG/9scFEQqRAsZJslGIShYTl7goOAQz1DgoKjTNpW61ycoG7fGdqpU81G1s4W+8IaDf5aei7RA3fvIXPUz50FUCEoW5mSU6ZW+Qm0yAuJaJNYjBIWHeJrqoIwKvYlqp1Q+rSvDvCjloFQITttN8DM283E7nHavka86pAI7xe74uSsk2agKq0MHxaWQKel6uLJ8bM6SzUEhZHHLCVbroPjD/dMB6AvOxPHP4tGOuppDTdsb9aw8nSP1HU93WkHVzEmxwDwWQfEnyZahMPo3yUHasTCAB7bPQ1EAfO+2h/R7Kw6Mi4Nid+bV/tRUx8hHW2d3W3JQmA2rBXm8oVg2Q+KgCAiIi4Pigq45qRD/rWxb/qwWVdxnAD3YJDGlAbo3G9xvK2RW1dJxaJFgSWgAlsWDQzyOBQq3V4gARl8AwJ/gF5FeyatLu6oZ8xBPf1hUoQGuoyLBtNuZnLoKkfETlK3vOHtHkZWVg4TVg2UOilxFWBrPdaRvST9nyqLr4yLo1ZFYB8MRdYY8kB3ioFTOPHk7DfFY+mLbNGZRuG5hQOsAYadRausy7qz6ZLNowUONpvk66hh9UdevMxsHpaljhrN4sizzRkGwkmwIybWHHZSAWkCSMyS134YQUBq6ZAhqgywe6dBra98kjXlSlhwUZvqkX/6unQz6PuKgEO0QaUGvQ1DMOPqUpSCfGOIRs3xMOFBDvJl1s7Ip1fLsJslxM2XLTQSlTFG2L8w4dq9E3zSvB6rPKP9uNBetP6z/TuramlL30imGIigAmkzdYSGeuiwe/Hn8O7ctjjuEwnl9hJrZHEPuWALo56O+N1oeQUYaJDSBk0nrSLI2lMN1Xdv7jc8mqZe6H5Wj4EjZt4VlrQgK46D0iSMP47Zjx8hHE4OFh8r2DdsSFERGQG2G9YB8OShmuQe/OYgRkLK9n5Og1qEpIpVvb/u927bAH3/2erj95zsAQDvvmCTrg6DgseMKzeEDBi3aSg8oo8KcR1zFWipXYTvgGL+nNOPla+qLV5PApmVCOCg4xKNCIT4xewGB6VgcFFwPZ9w1cUOY6ZiLH9YTyQUEpSgK85SqQjyIg6I+A4A6bnxDkBGUDBRCLC1QNH17QN7XyvkC1xBBQSTZJhyU79++Bb50/T0AgGPvNAtHWmDmBAdFOQ1NqiHzarz9YUG0QOpSS3EGVRXiQfC6NU0YLaBqTFUkWQkRtGzkSgZcktm2kmQH9pOfqa/inkfcyXJzYyRUTb+fk2jNz3KH3WYNB8U8hNjUol3G4X78eXVWOauOtcnaFpFk8zyrxkkTJKLHEBR/qfvxsx6PIV0wsNl99yQdFIdz8wefuRb+44f3wUe+fQsA6O9+qqMz4XwQGFnN2WyPEVTs4HLeEYCE6NtREe7gmHpAbodlkpaKBTJTk0ZtolXmAhsQcwRBMR2MFsp0MXgaDkitCsOMF87hqCDt8Ym+lWUwKAqQ4Dxp8cPOT9U3S8y/286J0BjWdwGQs1mcjhcKEVUIiuAkYAdFLWyauAykD03XCEySHY7M0BS2WzfPwm/+n+8DAMBJh+2LoO2s+ozy2rQgF4A+6a2ZakOWlRWclZPFSbJN5Kr7rLhenTgXFhabW6DoiwtBwY7l6m4bdvQG1XUHAvpkE1tb1W3D1l19hghSpMGYC3xhFeaCMrMYoBuqdsvmS6iafq+rWjGuS9WEgwJQzo3VU0DeGxbiGW82mIPWsL2EoIQiiZ08H2ep+SAo/iT3oihQmnAgAlNJ5TcL8SiV8Kvv3AoASEm2lUOngQbMjQ9sh/1WdeHAdWWhVHz/HYdzhhEUqWgrLnQ5HNHClu4QD3Vw+HNTz0Kt+cvJQUkICrMRgrQB7OEEykHRMeaQEI9Vq0QgslItExMN4NkFkgNiy8gQK5YO1X1B1Rb/jxduV6Vl9VJJkjVfV4ZLCKhnzFO/XXLzklWbdE0GEQDApTdrctrDOxesKZLSZ1RkwHZeEQJ3jh2FKv7u4M/MGZs13QC05oZ83xiBmWPhIVx/xVYPJ8tMMTg83uqqGa+eMtuq4TFlyUBwqdCa4UYW4qkTWnM4KFqALhfHU5PMJAC7g8LvS+IUBEndC6dp30ycNipVEUsW9wnxdMdOlY/UfSkaWP6sxpBvqq8old+g3+rsgTk0dYVOf3zvNvjlD3+3OuQAACkY2nY8dxriwQ4KRZCk/hskWYJEMgSFr1s1h4hJWnJQmKmBw5ECV5pxUaCYvUIaHNkqTbJ4bOm4WEhO4pG4ERQT4iUhIPQ53NvWIR7+XOz3hSfxiPRbXpiHo4JsKuoZc/E8W6jBZho5qoe2+SJhCK05hKIqKLidV89fnYS4g9MIQRkWstNoQ1CERa06+bYdUvVIiIrXeJGqUNu4GjPjUvQV+oK+f2t1boeTscA2xTrBKdNhrHcyWpaMNvccxffVLDsJ/x6DoEinad+imS5n1WYLFhTEiyQbgKDgdVatSR3PA0qPZPG4nSM8B5WDgtOM62ogfeHaMjR8+0M7q0MrqWelwlOSzADioGE0VKsH4xRr2p5zUMRyE5YQcRU2DBiPu9uSg8JMkwIZGbQmdt6vkIbmCIpUW0FESCQnA8vVCxWLu8KGoIXa5M/GpzxOHMSOFwCIKafOKs3IwWn6TCsEhRVwrHhBTU9/1X3XL8w4Djw7PyD8FQCKoBgnEbQQqY1LxZK11L19ETAdlBFzGs3U8aovwxFx7tSpqeIsNUBAptAJUS2gchaPfN+rWLou7rutjgjXaJAy1mzEwrrsA+N1gY9FZd/taKCtsrdNSdaVsqxRzpBUYerc+LQXs9mapuqzEI8LCTT7HM5BUc5FluFyE74ICpa6dxNsaQX28n+KoLivjdewnSzM2kEhIuk72ykQY8uf6X4htXfpoAyMeSQfCmw8sUlaclCYGRuxZSLPcUKjx4Kufpc8WkJkVSRYgYPSyjNxkXCldWqhNhmdIXLWbCJpx6t8r8QDcUHuI+G51MGU6lRgI8k2RVDwJl0HTeNTzOx8Hz0TevrDn6sML2RTDEGpFmfHyXNOQlDG322WuUmVu4xaHGMEhTilMvcHbyBqAdccFD0eJecK8zG40i1xUKqxTvvNNzgJ8dPQtDukU/e6nHIvO8xOBEV0vNghxDI28GfFhHhctZFshtcO32wUkyzevL1ygEOyeDBBVvG9/DkoehzpLDzZsdo2R+c/AD1Q1iEo2HHZsqM3/pteQ1zhLXxAIdXFkXNY7Qns+nztkMpNSNITuC+2TLtJWnJQmOnNEMb/m2RSACGti+lG5KiasaE1wp0IgWRLwjAj6fVcLPin4WMzu4AgKMKijEu5843cJtRG4vZDO1ELC+BZn2mfIyjc6Rv3wYMkizfQtuB4ccP1cGbnB1V9Fy51D2DflDotXZJ+x8JAbC9pkSinFwuHVd9J7iY24gwe1RaAZl/Y2kuOK8/iKTlRYLTHUDUPC5JQiKUwnqm7MzJew7yYwhKSdN2X9DqZRxKa2EB8Ls/091on/08clPE9uIo32gxXJM49nQxCklfzIFawsEF7LtTmKvfAjRNkAcBby0StKzMNsnh4iLcoCp1m3DbnBzeMwCodJ+zc2WQrcD/552uBTXsWoiu8rh0QGSExEL3EQVm+hhcuAHvdFy59LYV4rBvCiHqsdo6JeeIVOSiCkyHF/PFpWEozrmTZW7nhwAwtHBR8enMVjZO4OXWSy+p3G4LSCF5G72m3NOpkW9QxgrJrYYiIheW1M9x/dH84LRUjKOrx1GXxjEaaf7Nmul19PiE2omJ9XJwLx6wB9HiUUqxtXA5ysmYCfTYEhaIJ9IRGPledPNljx1L8/LlwR964tieiIqXc28KdLgE5zOWwjWWXtHldoUGXDdB4qBCUpigI4aCZ/XKZyUFp7lxVYodt//nLNVDwtXl4ULKiKHQtn65GQGzODRZLGxXlOMAISp1MP6lFNr4uPuQ0qeUFIGecYQTY4JE5Mt7q1If7jj1j0pYcFGbVRlpxUOjflXGSkz5xlr+7SLJ8wIhZPC20iJCNHi8yEomW81vMhbWT29KMzc3MDPFQHogrxMNDAaq9bWHlIR4VV7WnGZsTqSgK+PG92yolVfzsbJlR2PAJaK4/NFQw1eeU/aKwvdr/uq2cvB9Akrpn94qe3bqxg9IfjsgGjsNLvPscQVEbCq3FYxuPevPhfIyh8L3Z1Fs5V0Rv5LLWCP5dDndSBAVAdtYrPaCatGSpwqst5Oiql0VqO1mkBGy1e/DP3ZrN7o6HdpINE/cDz+GmTobut0ZQGoeHGJLoo+bM0RcfDgrOwFFW52Rg6w10FhCuZmxDUHh6eK8/ImRtTbKV2+8UHBS8rrpQUCJdMTDHOUaAzfGm9wUAeV23OcQGSTYhKMvXMKQNACKKASB5sCPyvlZu30hdLH4sRy8tfiLRVUwzFmrxYI2VltlWi3pJIR6FgJTvlU5Btnou+DpOBIXLrRuoVH38+8Ir74SXnHs5vPZT15B7KtvVC7Vhga05hKAoDgq5PvpsTjCe4g5KTd/x4rRmWknl62rInZYWiSrbcwfHHXJ0nd5w2EBD4CPST4K6CagcAEZQRuQ1l3PUr5wQKdxJF04ACo1ztLAuq2ckzJNOLi/6TbJ4XIJnLhVcnmknjcWf3LcNnvuBS+D0864gaBnRtanhQ3AjjmgoByUgxIORRdy2GQdFE1yVNRGZ6w2GJSqJDj0znVaVAWSrpMy5HL3BkAjN2RxtZbPEQSnfg7OYXPduDfGg702tv7bxJgkHVo6+hQRbIZUWIbdJWnJQmJmhjPHfLV5n1Y5t5K4QD887l2Pj8oaAwx3SZGmSZtxBSIK0ybYFBIUjSyJJlsHAtN9QPRebk2CUDOebJMsgkk5/X7r+XgAA+N7tWwCALkR4YS4KGcrEIZ55VI2YICjCCRCfeDoSgjJ+Ji1LLR61MGLnpj8syGmdIChsfbRxJnCBOF1/ibbFYw5/dyOECrUtHBgxPFRdG53YLciVPr2ZRFgpY4Vu9Hb0Bd+75MD0Ub+l9GszDGbOMTxPDAl/R4aRGreuNOPr734EAABu//lOuG/bvNEv1zO1WUWYrqnLJLa1pBk3uba9npW97aU3/xxuemBWDvHUZOLc+MB2OPHv/hNO/9gVVeizHNs6RIOlIbBxNef5/og4KHVS+RhBUYcGiqA4svgspRX6aH6q/vPxxtFGV0jRVhsu6aCsADMRFAuEawnbNCHJ6pOhVC9HbyiiVgmGzSWSLFvUiQqt4NxQHRS9kPBTiupiizPppUrKgifeJP3apipalR9o0e9EWiTwX3YiRdRWnpX8EYJCsBP2qCAQLw7x4NID0uLcQwThdp6RatQAOsTTsfQdE/lwMTQp7KZew8Y3xArRaxBmker19EcF+W5tVaj7GCVp0c1avrY8bySVS57twl83M9bk8SMfBEwuB8mW46GooeWebYeQBiRbV5rxlh1aUfnerbrCN87i8UEi8HXbAQgKFyxs+XBQKhSSCrXZMmm+fsP98Mp/ugpe+OHLNH8EkWTrigVedvPPYdfCEH54zza4c8vOcfsWaQsgE13nGJdrfjBEHJQW1BVZxBL1FQcFPTulUC7qIC24EZR2Kyc8NGxai0gdgExnZ9pCguVIpA8nandbclCYGUiBRXPDiqBgkixbsHVbuxMhLeoE9hZj5+bpzpUh1LGIUxEZfebAcKG2CkHBE6GqyUIFu/DPnJuD4WtTW4YiKAZBV5hIOP37we3zZDMB0A4W7x9ACc/iuTu3MDTEwgDkWiD4tJ9lWbX5KFMhHpuTMI8QlA6Kk1ecg5oy90Z4jZUJKDcleXHFWTw6zZhKXrdaMvIlyadz9MZGRMXvVc+LkvvoRs7b1xVRcwlUYQ6KNBeGbNEWeWIeIZ6hMA9dG8KDsxo1IaJdhEfi66Do+V8XquAWU/CvyiRrZ+QzbG3/e4x+ApTKrAAySdbmJGze3qt+vuXBHaQ9Pmg0SfWfZzw0l0jcaFRU2idlW8oDw9WQZQRFLp+CvzcrKs+cENEhtnFQ2IF5GfknyUHhhhEK/D9HUGwQcHVizzKrt+s62ZEsHQGBkYiHeK4Yi58QvyZZFcJpGNfqUdczycNmuEBt5qu65iQZCfcFQCeDWfCKISgM1ZIWmId26MVpZ29oCkw5UAhMkAUoIVeu/1D2w/zesBorAAgk2fF4skDEtKif5oFgBwt13XqCUmYW+7NvaBLxGjtH/LXarDMDQbFzf9R3oDRUxGwZFHuXUBCCsAhzRVqYKQfF/E442Vxy5HGYxVWA0fxsekCRNjt8EsciXGKRw6ZEV/H7aNS0CmFyHokNQfnqj+6Db//sQQAwFYHr2t7+0M7q55/evx0AqMx7XamLR9A8vvnBWQDQyIJLxwjADPH0BiMxzVjqO8+kk0iyIRwU8XuzOCjiPKqSMmwOCp0nTRV6l8KSg8KM132xphmjUAx+HRfFqz01Cic7aVEnxEAhBCQpZEopY4TfIjg/OM7M0R8u1CazxemJFp/OKvKwEWbR7zGUVBXZkjtHFgRlOCoq7QGA8jSE00lxv8v2pLlRgXZ+YVgtzFMCgiJpDagF3CDJMmjcdoopNVQUcjYim2FmCbMASHVnivHnmg6tLc0QoyzDES1CSRC7oTneJOKllMprKwAoqVxigq9UYJKPN35vGro25xnmoPDQlPTZ0onUVYCRZ/GQYoOMgyLtB7uEkzjuV9vCQXOZFOLxR1Ay8r+0yd+1ZSf80UXXw2svvAYe2bVgKsnWcFDufnhX9fM94/CWpINiy6R5BBUcrRAUVgcIwIKgGByUIRNqsyMgPANIIyjq/u0ICAAvQCuFeOxOKS8iKYUrbdXQTWkKo2sTs+SgMBswB0VCMQD0l6y80j477bcyu9JjJUcvDHaSNdEQQVGfh0XJJJKsTO7T/SIiUAxBsYV4XFCiBIvnud1JMEmy1OlTfo1tU5DgWbyg47ZlexZmYSGmOUSSxQiKtNlyIqCBoNRk8SitBJxJszAsCC/Ide92BMXt0JafpU94evNgIR7LeBbVicd/k1KcTSSSQdOE64HRGSHcydBC/lz6HAURSkLgVGFpvErhISnEYwi1NUFQWvYT61zf5DIAWDarhhsK1W9xh0n+5aq74aP/dUsVglUOnZHFI2y0t27eUf18z9Y5A12sU3N9eKd2MB4YE4RlkqwFQUGHlJs3KwSlbJ9lptYPNnMNGRGiPEYYue3kFayHSgcFc1Dsz01yRHE/myAo0wpBEeaRcvIMPmUDTtSkLDkozLjeh8R2L4pCQAvGm+l4jOW5I8TjEGqqFj8BxcD9aBG4cPwaGng6nmg6ELYMIyp1T6+N9V0A5EwaI53NQpLNM9lJMITeVNgM3TO+dl35gfn+EE3uso0LheAOko0kK5Vc59k+3EHhBF8bgoJrwxAEhYccDQeFVk3m9XCwjoqNg4JDf4NRUfUpy/h4NpEjiXhJUpxrwp0SUlGn+cNTKwHoPOUcFQldwc9F1I4QwjAS5M43WzNNWR8itC6H2jDAEN6bIwgKDvGoZ4odK3OjfmDbPHzqijsIr0tGUMzNqD8cwV9+8Qb4wP+7Ga69a2v5N0Ou3o4k3PfIHPnZlLq3t+0PRwTJVG0pB8UdItqKEBTlrFAHx/7czBAPQlBQsT8JeeII7IA56kQHRQjLYZIsRjAlErudg0LXpqLQn1ObZpx0UJa/4cUa/y9pjQCYdUKwDoqVJOsYELQWjxQbR6c3VrAP90siyeLFTfpsDONyT18jKOV7JQ2GJhkZ+CRePhvzuej+cATF7jQCCA7KYEQmtzLbZskdJBtJVjo98gWck2RVZpNtccUwuLoW1kFp15xcVT/XTCmRt4K8z0WqxCdr7MTwjDa9qZltaXydQttNCOOSs45DT655iL8bKUTk5nrJp1ruOEncF8wD4fuVdp7oPMTXUFkt/PMBWIgHjUspxCMBEX900XXwjv/4Kbztyz8x7kma39ge3K4JuooDYpW6lxwUlBZ9/7Z5vcF36ttuRegJNpEka3FQtjEumbW9hKDUpBm72u60iiUKHBQB/TEqErN1HTulfG1Vv3IOCkZipAKy5b3Q7ycpyS5j45VzJQgXTwy+sOIQjw1B0QunsPgJsLi0ONJ0XbNfUoYQEYETIHcq2EU3BM7NkWFxetpRE6wo9ATC3Bz8HgB96lSLulQPBveBe/q7+iaHBJ/ildnTnMsFQim5liEiHT9WJtUC4Y4MR1DUwmFN9cUnehRjxwx+/Ax4e5WirQjK0rOzE3QRjwRpvODMKwDMxxIQlNyOoLjSI7mWCY69iyRbEsLR360aUhLC4nJQCIIioYFCuFIMPVmUpXlGG75G1xKaAqChhroQj4QEXDNGPv71mk1Gn7AjKmle3I8cDIVA6FCnexwCANyPEJT7t80bcwNrEfE5+PAum4OCSep29KcoChLiUbZKRFDM9rsEoitOM/ZpqxEUNL8szhlGS832NfMAzZmqIGBhH282/kqqZrwCDCMYAOBEGgA0bMZP+3gjNhEUGg6oy+Kx6qCwBUpS9ZTi6h0koy85P0QkTm10tlo8woahBX8oLwagdGyyTK7UXGV0MB0VI4PIskCZCMqQbKDKbAucOintu7pbfh5OMWy5IWYXSTbP9O+1qb4tnGY8IpsKvvd6BGU8JrBDm8mbCh5zmPxoQ1CkMUUdZr6wavKtKRLFx4xlLgjhKRqysHOu5IPA+Lm0bEJtNC6Phf1EsTS2phuaQKqtgHLy+wbgIR79fdG0c7uTIZmUZiwhAThEo9AIq5KssJlhB2dHr2+Ui8BoJneuHm6CoAhp/vp6A7FPqr4VgDsLaG78rPddVao58zRjzNHiZgtRYwfDlnQxPzA/rxozNen6ZD8yKAf6fRXB15KBOp0QlOVv6rt2hXjwpOaQmkSS9RHGwafGXHQi0OLIFigRQREGMk4JlbJ8CEdl/HKFgPAwiwC589opuP8uJ0NNZHXqVP1V92cgKHUOCuagYATFcgpSJ9V9ZsrFiXBQMILiSDPWIR59vdXddlUqvi6G3EUOSskD0RsSbm+UWhhwB4WhGBZEDn8WhqD76Np8LkjlE3CFXCOLJ8+sAlUcTbRly0ibcd298TCLRDbv5HJGCw9X2u6rZeEkqDINHGHFm4MTQbFwUEjauWUscD5L1RatLS4UAuuIaAeFjkNJpkAZdjJ29ahUvLq+Mt6e8ziUTaNn5eq7hJ4A6HmBry+HeMrrq0MKLhZIQjzCtbmDoojvdaKAACb/rewfD/HYEBT98zQ/3DVAUDhpO3FQlrENGYIiEujQYsSZ+HiTt8V5m+qgSBuhnMUD5H2lAzL+m21B9+S3GCEex4bAlT/xptKkvVF0bjzZDA0W9lwlmWqcBlv1wdJeLTD7rCoXp6IwJy+AfIJTG5IU4lFOLG5rc1DaLY1i9IcjI4vHRjBUfV/NEZSKYCyPJwAgVW71exCC4jg1SyRZfnpzSXzz71wKpeK0eCnUQkKSgsNdISgCH4vow0gaKoJInCw3T25Ln0rbHEFBawepMcQcFGvKKX6mMoKyk80D5bA0DQ/hdFkTQaHjUMpmwRyQnQsDEiIBoJl0vL0Kk+w3dhCUqUNL2X/7tZs4KC70R60h+47XgF5fO1hlNWN7Wy40aSIoSCvIcsDoCuHKSmbBUscMHzw7LXndVp9dvkb7rXlgKYtn2RtHUKSaM0TZj1d/xSEeoWIwfq+c/ogWZWHRxZk43IkQU5Txgo3CNLnDgckdzg9X2JU2BIygYC4DAOL2iEq2NG5fnSA4gmLZ5HmK4BxJM0YOimVxrhCUMbyLTUozFhGU8fvwM1iFHBSNUMhhlnZOhdoWGAJkW1x7DEFR/dFIQW5FjqR6P5gkq75rF1ejI8THKVejfL/t9CZn8WgnQnLshgKSQREYhmL4OOuMOFi+TsNmNvQFX5s7XqoPWUbH5ICNJek+8LXbFqI7ABV5A9Bjo0m6KgDlUijxQo4Qujgo2EHZtUB1RHBb6fqKaLph/TT5+1ohRCNdW2XwrEZzDoCGePgmjk2tISrEg6UG6kI8NqFJTHSvI8l30EFCIV4SUigVtpTE+6QQjy3VP9XiWQFmkGSFuD2e6HzA4RCPbTMZoAGP25TvxQ5I+TfrwsqdCCHmjweo+hGjM7YTq6GxwrJ45DRl6nipPuH+K8dIzoQpf57pMF4P2yhtCEjTEI9GxcjbEdG0bdTSwb9XIRiiNUCJgOtntJNDTn/quQ3lBarbzrSGDdZB4YgeVy6tygxQsilF5CwhHuwcCSRZ1U4KKRAEhTkRtLaTfHJ0Z9roe3dB27a0WUMHRdj0cWVviU8licCRg0BNyI47XviZ4pR3fG0+jrEzi/kMNjRudp6iCOrzJOE8Cc7HCIxSR23KQZlHiANA6aD0WAp8mbIOpE/6/eX1Dt5nhvx97bSeTy6hNqUie/j+q8nfVwsIitR+jiEoGE2qD/HIWTwVkugIsxI0sEXXCIKMO7MvTSQRf78SuR/AHOuJJLuMzRZ3l5T52mjh5TE/nq0iOQIuIiteRKS2lJRIT3YtFPPHE6EQEBR8bR3GMTVWuOMmV1pWp069qPdHI9L/qtigUJVTPdeZSiqfTvC6LB5JZEkM8Vh0EFSa31Q7Jyfnsr2JoPBTL4DO9qEOiomg2FKqsdO7MNQnaaNQIoeIhzTEozfE+hO3WEQOXdsIdwoOs5TRQqBpi3aNSySKOBGC5oeU5YPHjNYbkWT0kfPjyEijKczK8RpvOJbQEn6vdo5YyI2NZXxtsyYVfiZ6PEsoJkBZUwrbrr5yUIqqrYuHsQu1V4iGlYPC2m9nztHO3sBAUADsoUp1vQPXTpH1EyMoNjVmAK0iu3G/GdJ+HUFQ5HvHyJXioGyfQw5KqybE06f3qb6rPh7HlrVLKmHAlbRt6fo4DM0PEeoyNOmC9psjKEVh5zEttSUHhZmda6Hfg2PrHC6sQkQZdVDk+HZNFo8wmF2plxKZStpMskw7Cvie9bXNdFgsQKfuz7gvIUtgyEM8LEQkcQpsWTwu/gqAxEEZojBD/eKoFpjpTqvqg7oe/i6laqr8hIkdFMxBsUllD/ApCC2gGqGgJ1fjBMYQlApexiJsNQ4zT0XGzjKA/J25NmtSwbomvCRp50iIHlE+FrkzaizrN9bpoEhOhm0sk36hDCA8D4g4lgVBcYU6DRVa9HtFdHU4R5xoqhyOpiEegqD0KIJSp4Myv8ARkaEhYkjaWzgoa6ba8Kg1moeCHRRXwT517+tnOhUKAgCwDs1HW4gXH3BUWxyummqYxbOGHRI0Cmr/zhR63GmZcvoku1KYgzj8ZuOB5Zl97eBJG9J7JmXJQWHG04zFdFrEpOcTVTs4lAwmkveY9DBWmbSVtxdTLwXoWVr4yIYhOE+i88Py6asQj3CCkhb9waggcXeVzSJvCixMIRCPbW0BTPXOhcGomtwddL8aXmaLK0JQsFPBwz2STDgvR48dFJwVYUdQ9AmqS0iyBem/bXHt1zw7zNPg18dhMImDolEvexgFEwD5Zpwj58iWci9m8TgQEgBACsPCXBAyG6Q5iFFQOXxkFogTFZmFeSBde1jUj2VbvSJ8bVe4gHNQlOPuCsfR9+v2CwwF0DooNrI2PSTs6A2qtoRobpkHyjla1W3Dofuuqv6O51Pl7DpCNDOdFuyPiLa4fduCoKi27TyrOCsqXNZltbBGhTmW1b2vtvDAnDWphPCbWfBT5jzRquGUb4XD43b0Zvz9OLLKJmXJQWFmkGQ9T40SSRa/jk9XfFHG12jnuZOIimuIjAwHQ46Nqx9zju4IiyeHvXkJALlOECZ66YVbzSX8PFxZPMo56A/ofZnEZXmTV6fx3mBIeArK6hCUqU5OEBQcHgKQT3BDdOIGADhg7ZRxr+W1bX3X/cRZCnrh4uREvsDRE7sSwZKcRt6ekD5JijN31u1cDtfpLbSyt5ieKTgw0skUbwBart52yDCfyZCgM9QJEYnBFhkCnpGm56/mY9j6xn/HmkJEGZhtOJyD0uOEaYdwHgBVRJUq8gK4OCi077hw35SgZcKJqgrtWT3VqtL9AWhWj1Rqgvd3utuCfVfr9sRBsfRdOWYzCEFVCIrWcLFv4nYEBR0SBAcDv6eT59X6Yswjsq6jtsrBEEi40qHUDEfSQwJuN2lLDgoza5qxRY6enxolkiyAXkTwoOYkWTxw8lzexKVqxhKCIi3o6joY7sPvIXwCFus0iKo5/UwAGk7AJ17stCkTuT2VDopcPoBnk9gclDVT5WLUG+g0XaKDYmk/j9IhCYLCZOulxZnzNTqtHN75P4+HddNt+NgZJxltbZsQhngxgmJwUAyYljp3VXshtl22N4mXFPkaGY6hi6AnnQ7x4mgNL1UhHqHicE1IQpwL4zZECkDITqBkcwFBcaA3AwG5kVAlAJNbwzko0vpiFhocGZ/rqsvC04z7FQoiOF01CEpvMBrXHqMhHhvhUqEIKiSDP56Wi5CdDIygvOzJhwIAwItP2FAhr2Vbu3OlwjQznRZJLZYdFDMcBVDOIeVYbh+jUU0ykNQBR6Ev6tngLB4rioHnESMBy+v6CLUVHBgeHs9kzhKtK7f8Qjzt+rfsXaYOPy4yqJQ9wFNijTAKGzAA5skOL1Kk1gZeWAVvXDsRZqwSTwRckRgX7KucJzTQ1au6b1C1Ld9jLjDkRItO4h0WKlDX4M+jQlAsWTycC8EnuVZTbcFDOyjpDYd4rFokSJAJIyhdhqBI4S0cHlP2O//jcPid/3E4aYtF2LDh0y3muAz4xmBRZFXf3QxL8SZOo4DolT8LJNlRYTooQpiGpkfzk1/5npKUnZE2Xeaoueo32YTYXDwRCovbx2pJCDefiUskTk4zNvsFgCp7CxsGgC0zijvehfGeDqpIXBvqZJo4NsEvZRhBKYoxkscQFBsKoVCE/VZ3DS5Mh6CYcqhDOUerui140RM3wHf/v+fCQSzluGNxjgC0gzLdaRHEBod7bPNfoS+ruq1Kv2a7gaDoe+iPRjAD+hrKOatS/ZmD4XIMcYiYjxUtVCkr0UohIL6n4DArQDmH8zxj+xFCUMxHOxFLCAozvFgDgJjqi+E4zurGSAMaD1V7fHI2EBR0DUxktZ3UOYFXqhGCBxp2MlpssJJ7z03OgFmLR3guYt/MjQ7/TOXFx5ss10Fh6E2d2JmKAfcGqBpwTRYObt9tZTTEwysTM50Cfu8uw8+lIOiRfvYVgjIotA5KjdR9lQGFM6gGI3GT5+2pro/OQMBtbdeWwopqA9cICj15SjoqOtw5Ml6zEcZJ+IoRlyWemFQVXIrb48/GCIt5opVDJbgKtBbHMg8w6vPxc8R957/juVKGeMFoC2A6KP0qxGNyUFwohLJ5FCpVzoHNOVKb/PqZDln/uu28EQoyj4jqAAAb91tFMujK/jtSfft6Hrzq1CPgUWum4P/75WPItW0ic9i54eRmUQWXtediiQPBMbSp/xLxP3borbLhctkxlNLHddi/fA9GV3B7CdEHMA9/k7KEoDAzQxnmabkvnDilzAVFqsKbtOSxqsFQoHWlZVlY8UmbxzNdJFfctzynaEblXLHFU3qtei5CmrCtnLtuq+/PBW3PdKgDwDdKW3ql4qxgsTKuxAqAMyfYQo6e37STJGu2x86dyzpogRuMCqIaW/ZTIxH90Yg8U3pteYGb6uSQZeOT72hENlM8HiXNDxLiGZpS967N1KUky9FE9bmEj1URxsu/Z1nGxpPEf8HhK5bFI6AFJKwlOON1xOFqjlf3JSNa+ADD56FxABLmaZ85GFLYyhaaAgBYGHJF04JA+bZQgbIec1B2orTjDgt12BCU6XYLVnXblY7IFHPybWJpUkoyN76BY8MhnpOP2A+u+ZvnGe+x3Tu+9jSTGVBrAJ7eTTkopKq3bf5aeGA4caKd5wbvEH8WT07ArxmHUkHIDa9zyyXEMzEE5d5774Xf/u3fhv333x9mZmbgiU98IlxzzTWT6k5l5qlROF0Rb9eeuQBgphHiQd1hpxg86DAsTlVszbg757e0chpvVCd1EuLJM1A+CueZtJBuxchoC+S+6rIu+sORgb6oPpjty3szlGQ5elODgGiIdUScDmUcearaIzVYEuKxLK5U4dO8R8lIoTQBPeq0smoTwE5Cp+W+d/zsKxLh0BRbk1EQvdHLQm32FGfZEXAvjtJcmJYk5dH1xYJ+DmhbPFWi71skHgohO1f4KM9lPSFJmdfGQZGcXc5B4QiKFnkzrw0gICjDEeGCdCzIj+36OCuoY4wF+l6FoEx1cqL/wx0OCUHFfedzDhtfN7GpTByuY4TNJvSGr40F+vDnZRmWk6ft1b2vmWqRzxuQsWTuJwA6HIQPKJi/ByDzDvHPLoHNFjuUSnPQRaSdlE0EQdm6dSs8/elPh+c+97nwjW98Aw444AC45ZZbYN99951Ed4gZDoZIBsXeLl+8yve0MAIzNBc3rN0ghXjyDEStEQLZZ3xDMBdlgPJU2sr0Ao0VWQdFYXJQhE3U1IexPxcbgoL7JAkOKQREoRejonzdBotzHgYXK+sNhsBJz/janCSHTzHYQcEqlOVnmRAzdwRsZoth41BUp4KgzWrGttMfefatDBaG1MFR123nGSwAXYAkkThMkuXqvxIhVBrPJINAWhwFrkZ57QLaLeqMV/dtPSjIBwEbH0vkBQght1ZuhkOq8Zihe5aEHBHKYeOgSM4y3zj5SVyjLzIfSUq3x2EjjEjxtqNRYVwfC791WnQO2lCEqXYL1ky3YfNsmWLPN3ybIqukmcJNSvNXpqQCZtj1pGu7eCAcQcH8jFaeQX9YGOuHUaqDCa1JyuPK+PxV94f7aEPVJaRSGm/kkCAgKKo9XrMnbRNxUN773vfCxo0b4YILLqj+duSRR1rf3+v1oNfTWhLbt2/fbX2zhhOkxU3IWccea/k/XTj7AgLCERSlFyKdUqS4vFEGPjdPrK08IwiK+gx8UsY1b9Ttah2U8nftuJknAYnvgD8fE3NFoTaBRyGRNW2nvwpBmcYhHn16UWaHxvUpBp/+eF0PiaSHQykuIyEeQoxEIR5JB6UhgmILEWnukBTOQE6GsDgaCEqNkyDyscaInUp/Lt+nn9+0kOKIUQwprCc5GWZqp7wpVM+FFPwzP1uqMYSddReC4pIhML8PFH5C39lwpAmq5vdhXhtAQmAK8p5Oy16XCbdd1W3BroVhhaBkGTokWAQHqzTfTk6yaFZ36VZj48Dgonk242m42OZQJo7NpGKf5e/l53XbOXFIACQV3JHhIGkOHRdLVGNNRuvweymCQr83SXcL/yyRcG3K5lLSBj4Uc8d1UjaREM9XvvIVeMpTngIvf/nL4cADD4QTTzwRPvGJT1jff/bZZ8P69eurfxs3btxtfeMpsSKsPdKbiS1nXS2oakxwjxVD4gBUpM3gvwjQNE1/LKyvAQhhGovzJEHy5muqLe0PAEMB0AJW6aBgFEM6jQ8lB8VMd63QF0M2vfwdc1BEkmymPtt+iiHF/gwExVwkMOnSZaQOCXFwdJhFpxnrU1qlg1JDEMYkW9HJEGL/2OGWFkczHGFu9K7CmXwzboKg4P+lEA5+ZhK0LaU/S6dOm+CZ/Ewo0TVHCEpR6M8XU685suPgFFUncaaobHKCTPQGAEgtHPV5eKy5sklwW5UqrHgknVZuCC3yTZogKGjerJriCIqMBPYahHiqQ6HEn1EcGAeCYgtjYEVWI8QjqeBa5qBav4zsKQeCsoDnEUKXmiEo+NBLD47EmUZLkynOmbFD8V7soNx+++1w3nnnweMe9zj41re+BX/wB38Ab3zjG+HCCy8U33/mmWfCtm3bqn+bNm3abX2rwhyGkyBsxBjCFWBtAPOkQRAQluprOgF0Iy4KumkYCIrts6u+wfjzLRuGgIAY5N/K8TKfixVBYcgNgJy+zU8gAOWz5rB4haAY6ZjjEE9XZ/HgsI0yG4KCtR5wH9aw059Uy6MpBwVAj4m+OKby6vRYhnj0M3X1nZzAMAJjbGqm00sJoZSgh9u6NnIREbS1VxltKNsFZ2pUgmhYB0UICVbjjaT707EscWNs/ZYcL7LoGweBekVmw2lDmjOq7/zaVeHHKVr4cVTQsWBDEiUOCg7b8O8KZ5PhtsrBUAgK1TExkR8AKna42oGg2DkotLCgZLZyEQBUSdba3hJewvPfFeKxcVDU77xUhyvLRhnWa8IidsRBySwICtmPaF/w2pmhzFK9Z5TX1VXqx+335hDPaDSCpzzlKfDud78bAABOPPFE+PGPfwwf//jH4ZWvfKXx/qmpKZiamjL+vlv6xhYBFzGwrvIkgLmRk8GETtvDUWGEYHhbPB+IE8EXxpaGnvHrWqht/Plssmjp8LyqMsUdFNVGiuNKmRFDAQFR78F9A7AgKEMBQbGcHNXiikM8EoJiZdKj984QBKVeqK1pFo96zwJQBAVL3Ss5cSy0phZsW2opXgSx0JudJGuiNzTE43JuzLkgK8mW77FlxOGTJX5sItHVJRInaIJIoVQp04aiHCPjdQ6542sYsPmogE6L9jtnIRzNX4Hx/3anr+Qy9AySrIsHhu9d2QIT7MsyeoAZFbo/uPKwQhE0guJGQAE0B2S63YK1GEHpenJQHCEeHVYXHBQUYrIZDmOSazcgyeLrmxy28vOmmdAkJslaOSgI0Wuj+8Mp61idXAqtt9A80GKJ5Xvwuo2LkKpbcO13k7SJICgbNmyA4447jvzt2GOPhbvvvnsS3SE2QIsPAIrJCUqyHQHC5SEeg8WP4TiGcvAQj60tAJAKrxwBydkCNKwGqxrIwD5//D6EknCEw9xsgLyOf+aqohxVwj/TmhLl+7ptvWENRwIHxRJ711k8WsNALTo49NKynIAwzEpIsjx+LvTdC0FxnII6LY2g9AajijiseQe2059+HxaDw5sl/hw7l0O/zp0uvtkCcEIofd3Kx2LOb4vBy1oQDffLgaDk5sIvo3mSU5ajzwbh9cxwrLC2BHZItXNk9stEX+yZUdxRtxfNtGzyjMfRHxQEjQIA43DE20618yqsoQTX6ip6AzgQlCk/Doorzdgmkw+AURAXSVZ2MPD85yH4JpWYeWiuPyzRqQFCzaR1T723vDfqbBsOhCAS6eKgmFXogbzepJzFJG0iDsrTn/50uOmmm8jfbr75Zjj88MMn0R1iI/RlA9hqZejJzgc734xtXI5StEdfl5JJgVxbitljBIaT92zQs7qFLOP3xkl4bn2Xso+mJ0+JiXijo/eFP0ciinZRqKE/Kgh5V30+vl9lPIsHQCtTYnKqnUmvv5t9kfIkrgOC2+MQDUcqXCaFiDBJVqElC4MR0dzBn2+iPziGrREYviHWpsW6wkPVeAOhbW4s3Dw05+KJ4Nc50VUKH5Xt0aLekucKreyt+42/Lz4P8HU4L6f8HOTIC3pCLsXWJrwetUmvViEei8ibdEgAwPNAh4gwRwn/b1x7iB0UhaD0q/tRZuNCKQ2WbiuvkEwAk7QqJgCgdGhXiKedm/NHWTWP2vZ5aBN64ynO06gPPIunvJa8fuB7JYeEPBPXPdJvjNgh5MsIy0sISsuOqqth6qrfVt4b/cxJ20QclD/90z+F73//+/Dud78bbr31Vrjooovg//yf/wNveMMbJtEdYhxBkU5uUjqtDUGpPNZKSVYvMliboywERq/NByNNQxbSjKssIDneyPumGdv03ktCFb02Dw9JacK2OkGSDkr1XCWF3jYNNQzZd2LLXuBCbQC6tgdBb2xCbWiROGidltfmUttKpM5WybnOpCwCvFmrk++ClMVjgacrvZcWKjMwpOJcAJbQHAqVkPRwvpkKz82JJhphQergYJ4IeZ0hBm3LydOFoMhEVRnx0uFG9DyRs22iifq+8EZfkWQdiq2NhNqqja5Nfucp83VS98pRJ44quy5/Lhh9UWENFeLpEqKo7CSo37ttnsUjk2TxJo8ziJwOigV9wWJ0XH1WujYXeuNy/jjMQxAUi3OmnuM0CVEXIIULbRyUDhsz3IEQw6zCwdRKVK97XYgYTNIm4qCcfPLJ8KUvfQk++9nPwvHHHw/vfOc74cMf/jCcccYZk+gOMRuCYpXBZpuVmm8GX0KAnvFhe1gUJomVxZjrlGbrIHVFhlPX5a9jR8KWkVGhO2K6KpqISGtEJMmy9kVRVAsU3ihxVoE+ibsh1plOqzox7BLi53qSgti+3cqIU/LodawWiLDh+SAortownVZWLc5FodM2G+ug5FpICmdAuWLMhGyKMojMkIKwOGIi6/h1ldGCC2cCmCEifqrn41Emsup7lpwQ9VxImjBzxEm/ceqnRRnYlsXTymgBTCnF2STYAnkWTbJ4yvBvQUJL5fXNtQkAcbGwYCHjYhHJdgG96YohHn2vtlRfHCYhWTwGSdacw5ig6+Kg2BwMnkptbW9xcCoEt206KF0S4jHnf9l+7FiidgsIvcKEa+PayBnHhG+OuMm1eKSD4RjRr5nDnNdkqxQ/KZuY1P1LXvISeMlLXjKpy1sN8zgA8KlRv0cvjEJ562pAwPhz6OdiTgCXwucOBB8sXGnWyJpgDk75f4Ha09fNRV0PdPVeHj5qktHBOSgiSZYhMPhzuihNuYfKtyv0QCIWAlCRp24rh95gVCEobRGelheYbiuHA9ZOwatOPQJ+vqMHTzp0PXmfKyukLs0YQNZRwSmOeDHcVfXffuIu0bfxveUyyc5JdBUWx+GoII44uXbN6U39nSNfnOthd57KN1TzIbeEBLADwxxeObtICOHkeeXM2kJXnBvD50I7L/WENGwuOTfma+Vn2MN9mJyNia4thmLW14TR40A5FtiPxuMYpwnrEI+dg8JTfTHyRDkoFi0hwUHJMzpfudkIthiR7DjmoQ394dwdTIzF92LPpFMISk7+psP6ZpZN1fdKxdqUui+v2QxBsaGQxpovZJzh15cLgpJq8TCrsngMnQLztNwRFj+TJCsjKGqQt7IMhmMnoq6QGHVQzMHEwzA2OM+ms4I3jFHhdn7k07S5MA9HMkmWIygY6sXQuMoqUM+KXNvQQdGb/FS7dFAUBwUjGzaCHyeUvuNXngCSSRwSSbHWZhil0NfWCwU+PVYcmpYeL7zvpEYLcu5c0L6YDUPgZTN7qrYtuvdRYY5nzvUwT/VsM0dcD+namM/FN+uBiK4AaoschYz+DQDEels8hTnH94UcOlztvI6DImWzKUcbZ75Ijn5dVW/Vvi8gKLa6TBKCotKMZSffttHmFVkdAGCfGcrj0sRj/cybaKDga9tCvABuBKVjmf8L6IACALBuulO9htEgmwaM+jxF8h8V5d9w+NUaGkOIH+Wg0P1CRFAkEi7TvjLGzIiP5fKzqvVF4PdMwiYS4lnOVg2IJjoordzIiTcGBJsMOM24fB2q9mp9zDJ5AcLzSRLVwUq0Ut/xibT8fCCv44WXh5cM58apsEu1Jzisje+/ynwY4dOPJlySEA/bKM30Sr1AdMenP1U6npz+BASmafwaX19KS8XQuc0kiJjGoHUWk+q/k8WPfsZCb0Tq3lFDZSgsjlKIR0rvlpCG8t7MEA+Pv9cVQpS4HjY5ehvBlqe8835L6AuAfr4lMkRPzDwMzHlqWMjRml3UkjcMAL3RznRkB6WOMC2FePizVvfO7xs7CQYHhbS1bbSj6r3rZvQG/2jG45KI6k1SjElbIZ2av0eyloBgAiAUc+wgPWqNdqoogmI74Oj1Q81BUrAUjUVTZFLmLUVzUFRY0JIZqmU12PqwTBCU5KAws50a8VikpzM6Uc3MhfHn8tRJIe3TKMhnGUzV6xadFLPv7HWO7jAEBi/KttCV5CQQqBGJKUkhnroMJRFByekzNU9QFEEB0JVY29LiKvQdgGb8SCYVC5Tu0WaSDgN3jqoFjhH3XCnK5esaTVgYjFAlVIaCCNfGxO3hyFShlTKAJKIqQLnBq0sQpAFdG58aAYTxjOaSs6BfLmQQVQcFk+SKr403BKnCsySVb0MiDQQlN7kxJsIqHYA0l0r3Z2SsLTa+QCX0hki2PFxnuzZ2ElSIR0oztjpHaBw/ao3WrtrAiebCHNTojT1FuLy2HOLRzpFWvJWsw8aKMk6Sxf3HCIpUiRlX5i55YHr+4nXZ6twQIq26PxPFlFAz/B7rWFWHUsu6ax7+YFlYCvEw4zE/Vw0QfOI0wijVF85DPDQGXaEYBQqFsIWPS9XbeCBGiIfxZzTCYkF30L1n7JpGhhFryyconij8vvD9c26OEiSqSLKYg5LJz1QZJugpB2WuTxEIAJP/AsDi144URXx9kYPSxEER2vOU2+44RFX1SYV4HAJ55fu0kzGPnTt26rbp+rhVaDV5dzQqIM8zslnzzBDtYKj7ZosjPwzwjBc03iXHDDtWfDzqRVveTHGotWCHBwCKaPEUZjt5eMzlElAlfoBx8XowWRNz1ExES3YS1H1UacaDERqfJo+EICioGnEV4nFwUAyiaKU7lMORj1oNTz58X8gA4MhHrSbvk9RYm2iglJ8tb/IKeXLxT3Df+3z9YCGmA9bKDooc6kSHBISsK5K7+rv0fZft0RxEn28LCdrWnmp9UNpX1gO3PB5tYcNJWXJQmDXRKXClMBoDIqOfy9M+8eerS2SZfG3b65onohyQ8n3W9MgKoQHSZ7wAZoqDwsSp+KmRy+wDAMnowEqyGJgwHTc6USqS7IA6LgAyDwOA6qjwOHbdwowXmLoQjxR/r55dIEmWp9xOtXOYFa7pQlBaeUbKwSvZb9xO5HJYtEyMtFYs/lcUkENGnGZO+q47/WEnoOwjD6WU18rRwjsiJ0dzUTfLzMvVjAkakdGxjJ+P5BwZ5Syqa9N+SZA75xS4xqIKEQ1HBeET8fCxbbObQRwU/qzx50hiiZ1W7iTJ2pwjPQdLFOHf/uBUkExC8jgHzGZ1IR4Xwba8D/O+ed8BAI46YE31GtZ0kXRYBuyQoJ4VnoM4Fd94bsiBxFICNodWrMXTMkOhVpKsGqsWNHCvLha4nM2++BTmezIHpGb5wk3WtBDiYYQlEyEB+tmWEA5vr9ZnvuFIJ0OeD29Dd6Sy3VwfRlaSBfrcLI7hvICAVCdatuGoLpQcFOagoEXPBavza0mmeRp4YafImLv9mMSKr4/CUwBmHL7DNjQJ/ani1OO28xh9YiiIhMDg0Jp0epPUR21jcjAqDDSRn3w5cbNCE7kjIGj+ADAeieEk6HmoEbOqKXHmXeJ1VGxNDtOY6dOyw4f/t/FXyvZ6LEh8IhfBFvcdF63D/DBl3LHC99BpZRUHRfW5i5BFm9iZGtO1Tr6AwPC6U9a2LeWs2p+by9Say4XWcBYgAMCJh+0DeVaiJ487cA1qX4OgIDXnuT4NUVtRL6xiK4lcVuuiG73lqHhd9WyuyyMJk07SEoLCjC8C0ukLn+ywKBZ+zZb5wDkoOO3M0I1gg1l1wYh9q2vbsnR4mMaCwGDnaQi0v7YQT0VyHdLNEEONfEFX18Cfy+PrbYag4LYSyZWmGOYGTIwXLUmyHQuiueLX0r2T/jdxUAQEpc9CfzYHS1ocOfqishTw4qgWPc4DwT/zTJyqTADbEPH9SmJsCyCPZ17K3dysZR5JnsthOXzfHEGRnG0cChMRFuH7FJVk2Rzn6dM4pdcUaqPPS1aq1mRNnFVlEBot6fbq+qsIgiIdElxOQk6UVAFkBMUQDEQhHpdJGy0/vNnb6nsYjArosr506xAYSwbSAjskHL7/avj3NzwDVk21CElWQmDIAS2XUcxOnovPHIA6V1UIaijpGJXvl0o+tATKQWE5WFZj1RBylJ/NpCw5KMhGI10Px/xC0YBAG73BQeGLMkM5OAeFkmSh+lz8GWoNsGXSGGnGjMjK+8azfHjtE7wAmCq09Pnw8JNqX6EMAtSP70HivwDoTVZEUNB9FUUBWZYRBj/XEuHtpZMjVlOts45wemy6uJL2AuFTLZ78FGhmbpiLo7rFToWglM8Oh8ekBQzzE/DGwp1DSda92qwFp9fkY/HvXM7iGYy/V+yQy44ZzuKh3wmeh6ptUUA1XvCYlA4hfeGzqxRmJj9uT5/GKcoj0j8DQRGyk7qIT9RHiqS2Q4J+LmMEhZBkzRCPS1W408phqsO1S9xhUtre7SRIHBR+eKtry9svIMfOZRICin/H6OUTmQYSgOWQMFRjovx+OIKi/m7noKh7p5mhtlo5dg4KXRur0LzlwG0g45k5HidpKcSDDC9QNgQEgCq2co+Ys6Y5qbFK5a0WN31tW5owV4rlcDp3EozwUkERGBsBGG90Nn5LHUFXfS6GxUWSLDsRVxlEKlulyuIZT3zBQcH33CeE0swIkeCNtyWcgJourPj6Nun0pu37gpOhXuMOFg/xyONxvOmxDCjRuZNCczlFUHoOBMUck6YDZaBijHeET+u4byPk1Kr2rqq/OBNHQnYk1VSM6lXPBBFZ1VwpT730eqZaNHP0JZJsdV264UiI1kJ1qtWb1WBo1qSyIXmq7zMdCUFxOxk41OBCISVHGX9WXaqwxEFpWhEcz7G+MIebhogMBKWxgyOFSfn6RTkoXOvHhnphomt/aIbHKwQFh7dJFh513oZs7eUilUbEACH6y8GSg4KMLIpsEcAbMM6WMfLK2RfOSbIjtrjhhdfGuFaDt7CcSHnMXp94wfl65SRUDoy+vumAAGlru7a6LobFuRePP4cjKOrvmiRr32Tx9XH8Ossyc4MXOCg2YmKdKWdBREAaOCg8TRkrwarxwPuvfndnpNBnpzgo+HmZ2VPIQWEhHoXAKIdOknXnBGi86ZmaQLQtJ25K6Iu6roQG6hRq0xEgKfMts994HnIuB3Y82wjF4HO8ynxgmy0O8XTYZmhDULgysHqtyqrCZHOnRpPuuwrxLAxGpE/K5Pba6Zti6b5UB8WcQ+paAGEcFCkMJRmWAcBp5005KPbwlJ9zRYQWh/T5qmfFswhtUvcYQcUhJDMN2Fx7cHgYz9FhYe4p+lBqXhe/LyEoy9BEB0XioCCkgquCco/VQEEci4wVARmZ1yVtDY4JvQd+qqyyfDI6UZ2hK8P5YSdx9NlZlhFBMf5MAMyN1sZW7wmbrOSgcDIYX1yl8JIN2q6zunBDnWnYnqJu+DW+SCoHxRW75yhGdXoTTs1DFnIAoPFvABNBwT/bnF58MuZ8C847spI+RyNCaJUcZtOJ4OMJqmuL3BmE7hjEQrYO2FAnI2xm3BflEwDY0z7FkF2eEWeYOzeSg4G/T5XFIxGe7e11qJMjKJRgK6MQPF3eZhLJVkqFlizPs2oNkxCUWiVawTkCMEmy9r6b3xknfPMQj+GQ2hwUNN5weLz6zh18KRFBGdE13xb2r5Rq2Z4waUsOCjIpxCNBXrhwnm2jNVCOGj0RXM3YriQrOyAGSdbwlmlM35aJgx0gWzVjtUbxzAj+2SSLR1gcbSnQerMaowADsxoxmYRq02AnDRNBEQh+goMSWkuHn0RcZoQj8IbYkvvvWuDMEA99di71UHwPrTH6pDVoVPwcPXtE2iyvTT8XOyGcn8KRBpvq8nBET3BU6n5EPkM9EyOUgjOAJOQHE3AtY1Hdu80p40UQDWebZWTg6/MDkMxnolW9q3nElXfRs8Lfpyo2WKqZlu+pSxXGZHFciwZArujrSvV3GQ+r4c9q4uRLKGZTFNTWd3/0x3TsqpR5RpJVn2nLksFObRWCQoc726EUt8XzQP3dFpo3DgncgUkIyvIzPFl43BxPYhxqsUHLNql87QSo/3V7XjHY5u1WOihGKjD9zGojRM4Jfp1nVWApfL6JGidlI12NTyT93LjTBmAPNegwhdokR+R6+BoAgKpI0+fuIsmqCtRSRkjdwor7aCOq1VmHoSCcB8L70W3nhriedGrmz04jKPZTc39oXrtCr0QEhW4MrswwjWrRz7dpNOCTLQ3x4M2U3rO6pqGDgp4J0W9hY52jMwVyrPjrXGwtZ866EfZCSGKfvVY9ayE7iSKZedVebyZ25wZ/n0QHRXCgpXGMlYuNEI9Q0dfgUjR1EoRr85RXl7nCW3U8MknHxKc9J03jz+JhVjUHDb6SA0Gh4XH6vUnfWXU4Q2nt6u+cB8bHDEdQbP2blCUHBZkTQcGkpBFeQOjCaBRIY6ergi3o1IngKAJ1QGwICHeOKgcHOSBkwbd44/i+jFMhc37yqm/lPXENF1yQS584qy6YoS9GADTSjOsQFHa6bELwIwv7wAdBMZ1WXLCrzrBaK+9HLjhY3ZpTL0eoKg6KkKJtcxIUekLaVxwUO7FyyMYc7h93QGxIgxnuoAXsiNQ9c0DU60bJCTTP8jyr+scdakzABSjHM1kHXHOcOeOm4KGeByaCkpPPkBCUVp4RtI5zXyTnBp/k1RjCQm0SEinVKGoLqfrYYeFOnbKmRFOOiJFrN3Dy+RzCP4fwXwCwk9CsfZ88d9q2y0I8Wglaf9/4uWEHB/ePk5slB4LooKBHNyzsmXS2VP/lpiSbHBRkeLHlKIVKUQSgSIXpJIxfs0DyRkxQDYihUCzQAolzhMXIqDAg84JA5rY0ZHxfdeRfktFRCCRaFKeVEBQz1EDfU4UZBJIsJWuaGw6AXUdEum8AquRYZ/xEje+jGUmWbaYSgoIdlLbkIAgZQMzp7fWFQomWlFmycbEMKryBVxumTTkZPZs60cMCjTf8PuzcqNe1YzW+Z3aYsI/X8T0hRK90qMu/Y76UeO3ckcKs7rlyfug8xOEljc7wfpkbDnbWMcdtwOaRS7wOi4UtIKl7TDAVNXEQmZaHeCiCkqM2aB4xsqjNXKn6jZx8aQ5XUvd1IR4ZQeGHS5tJvCFDFZmjmEwmAIBKMxAeScucB2qMSSEinP3Ei8jWaWvxgx3fUyZtyUFBJnnQEiFTIx3CZsPj0xYnQOKB2IoB8hCOIYVvCfFgQpUU4jH7pq9vOi+y8wNQLmo8Lk9gSgdJ1lYTQjsoJoKC712tEdwJmuJpxvg7FU+tzdOMOQ8DX78ZSVadwKhzlWW6/xg1kTKQRE6UQlByRtBzZDBxVA6/Z15ob/Keyr+7nAxb1hmPrxP0xZrFQx2jipRtQ3aq8QpVv/HaK4WAbGnbNp4ZT5/Gr2NiKSWr2jkJ2FnHDqmBMgqbCeZSqTG0gNOMhbFANVjG1xBCPBhRkVSFy2dX/q1pRXCShePh5PPkhLJ90xCN+cxxX+rmsHbS5edWvkcmyUqHK/xz6Wxr5AsXvcSfIyIoUjac7cBscFBo//izmZQlBwUZjy0D0MHKFz/urUqfwQeELWaPSbJ6sNB+GVL4bJJzuD1H1+YnUnwd6URrvS/mPJV91/en2eLacRNJsjwWaiF6Kg4KX7Q4ksAdHFNkCi3MEjTOEByXaSKo/gysY1BnuNYG7jt+pvUICjpxMzKqur8qRCMgV7bvFd/ffIXAZMZrBtmUXZtUYrXwsXAohN+bVZGZOUamvoN8UJCqNKvXySFEOiiwZ26eSoG+jq6Nx4NUW8VJes5wiKcweA5cIA73AcvkE6E2B4pZXseugyJxUHB7WnDTP8yiMsua1LOSEZRmIR6J5F72pZmDJHJQuBK04aBQBwNAz1t8H5iDMhyZmVuSCraNR0IyKMePhIdZjbChkCU0SUsOCrI6BEWqeYMnGo+L4/ZqMBfMycAbNT+NVosqy6SxcUg4v4VorAghHlv4iRAHmWPF74vfuwTnSzoo3EngAlYVSXZgZpKIfWf3zsmu0iaNJzk/nbrMYMqj784vA0FxUMwwCz69Ev6MoMBp1ryhBL2OMJ7NbBbz+WgdFen6VJtHOxLaEagT9zM5V8iJsCByFeJmJefWhJ6EuUAcFKE0g22s8X5zNBAjIKpvRhaPQMLHhxzsEPI5op9J1ZSIlSmHYjgqqgwV8l2KSrLawTE5KBZkeWg6KHXzSEJAdBiqgYOC9GF43xuLxHEEpWGIR8ziYeRg1b9dLMTDx4P+WV8bP5sh4w5p7Sow2hpORmGGeHBpFX5d/P9y0UFJUvfItFiY/hvJGBGQjBZaJHhmAW6vSYnl61nGB1wBWaFeU5/Brzv+e22GkPnZeEAbIR7mhGQZ/Wwcs+dwPUB5EuDXxhuGFOLhJwGzJoQ6xcvkVRukr/7eJM0YL8xcKM5lGFEYjEaQZXJs3mZ6cVWOJ+0XgBbZAqALrqThwnkNukyAnRjJyyPg91Sl4gfKwTHbGxktGXt9ZG70Jim7bCNlKPGyDRxx46/XOawSeVf1CY/LAdJgkZwb3G8DyRiar+NxRzgB1Wfr1/D7yj7n5LRvEPAlBAURTfE4nRPQMImDgkNE0x17iIciKKNxW/05jVEMBxLgMsm5WhjKa4V5bZP/Qq/vbi8dcLhMAc/iqUiywn4CgJEMWk+Hqxa7EZTxmML8P354MZxpukbodd/5CJbMEoKCrDpFC1kLAFgwTS9++L24HoyNJGvTUMDwr+HcsLYGwdayKGPVQC5Fj9vrNGP9upHZwDcbPNEKSZTL3GzkDAJ1DXZiZghKizkOPJPGCPE40oz5ZofbN0FAOIJCNjyfLCBe2wV97gx2UARyorShqWdUkSOFtEkeKpGcR/Wegi2O+Po2rgdF7Wh723jlKAlBX2whHONkyPvFrk0WfToXcJYPznwwDwJK+4U707Kj38poVgUOtRgICs4SRLC8K81Y8xH0NTQfISdOwq4Fu56Q5Kh3BKE2jOpJ4W2cKVTP4xjf18C8diMOyvg9IVk8eg7otkVhrr/2vpvPja8/qg+7FgakjUQZwD9jkmxZLJCGjpzfOXvPQJhHLmcav2+5ICjJQUFW8RDwYs1OVwB0s8aTaQHVg7FXJKYnTnyqtGU12Oqe8JOd9bMRwY68Xk00qPqgPr/FUAJcf0jdl3o0+HV+barvYp7ebDUhOEmWLxottkDxjZIjKGRhdiwwPiEagNLJwAuN1+Jq4c8AUASlrkibGeKRnxW+Bq/6i50jvsC7rs9JtpSgR8dMiz13MzxktuVl5g1n3HYQsIyn4aiAgumc4P9d5F4TNZIPEngsZ1lGNjT+XfMMIP75LqE2uSq3SZIFMGvCkHsmJFndHtcSArDPKYUESg6xzfgcKPtO789l3DnC7WvRG0GNGYMpTTkoVG5eIyBlH8rP4AgKduykisTtFnX8jMwtAb2xoSAS/089WluoVELVJmnJQUEm8RDwRsyzZfhJQZ321Wv4s3jbzDgFmcUCeXio1oFhXA+CoFTXNVOo+ckwz6ljVoZw7M4bfl068fIQBL5vfhKv0vGYDgp3HLi+BL8+XkynkNBZ+VkOFKKBg8GltonAXxMHhWV+8cwOAIDVXR19nUFQu+Rc8TizWQkZhYhqHAzpHqTwj9oIbSRZkl7OxptJNqd9GBGiKh+rsgNiQ4Z42jsXgZPCpXXp0Xys8LFs6xsWTNNwfE7a4M/HqcKS1H2bHTBwHzp5TmT+qxCP4KyKacrj62IUZZqlHWMyZnl/+tp1Jlf0bk40l9o3lbrXYwEjGCb6bTP5uckhnp0Ox1BCUPIsIyEog8SaC985Si0HoPPIqGZc48hXIceEoCw/44uHMtvpLM/AiqAYPA/LwkmUZPnCZ1Fz1RwV6sCYxEGo/i46GAS9kcvbl30b6YFuac8dL3zKkE7pnIzFNzPNozChaQBzkeHfHYajbeEeKXOiyeJY9k87OaQuTKPFlZ6CJAQFh3jwz+IJyoImSH2q22wB6GJa/m5+bzxjxdTWMUMh3KE2QikoY8UVoimvC6Stjw4K/t7l0JSe3+Vn0DCMEV4yCN/0++gI17Y5N7Q9RRqM67IDBoCdC6FCDS3huxwKYRJV7G6fmU712uopSlnkY7EKsdQ4CLhfOETDxc5cJm3yFQelZg5WIpLo2jhkUo+g2B07dV+cg0IKLQo8MrwG4OdqI7FKtZs4B0UK8dRmlbKw/6QtOSjI8MKAjZ/O8JeKF3YS4uELnzEgyvdhIquBkPCYvXWwWj4b6TPwgYqvMxyBoZNikGCFjUwvcPaFV8rIwO/jKEKbTTIbgmJIrrPrd8nJTy4caDvBNDHcf3zvWYP2+kRtdxJwiIcgKMzhJe0bICi2UAnuNs+iwBsGR3+4QB8OIdlIsgZ6Y4wZs62Ng8I1gSqnzzgIQHVt7jjxvhnX5k4dd8o4MmRzvLCTIThGynD/8PPmJFJXmEPrcZTvaZLRBWCGKh69frp6DaN60nNpKhVf9k/NAXOjDa2H5ctBGRWmTABA/RqAqw1X12boj3rPgtAnEYFBYZqOcLizrfn4Zz2PTIfY0CIydIxg/LrJiZqkJQcF2ZBNTmWcmIhl30lxNYKgqLbUI+WLMibJcgfD5K8AacMHq/HZ6HUc4qnuS2B7A4Ah/21FYJDzxfkvUvq1xIXgCIp6j5qkUnok/3zcXhI644qY0iQfeSyO+H1UfKtZWzPN2Gw/Y3FQJIKvTVis6qsDQXE5nlUbUeiNOgISj8QWKuHfuVQc0+A8sfvmr3MHxuQ0CYs2mQvImbdl8VicYT7HbegNHitth5OBHU6SxcM+V3RQmN5Jd4wkSiRZ2cGhCMz+q6eq19ZOcwSFcjmaFusr32M/JDSZR6JzNSbc1lcj1q/zcCNAGAeFIyhc5I4cElwk2xYVHXQd/Kq2hTwuBqTYIIz/z0gbXFcOf0ZCUJahSQsXAN6MbNoP1EHJM0Guni1e/OQ3KkwyqY4lQvUe3D/8Omaha46Jvi+uoYJ/5tVjs9wkwfKBDkAnGncQ8AYukmQtfATbJsv9hjoEBjslfLGQF3Y/BEWn246QY+vv3OB+4PaEg9I1OSj4+7KlaPO+4vcYzx3dt0GSFU7dJmpndwS4iqYhUFdt5IJzY0MxeLiDbZYuHRSOkOCfpfFap4PC57itvUhadIzFVk6LBVoRFEJypY62Ci3sWpBE98z2fKPFTgkP8fBslqYIBn5PHx3qBg1DNLj9QEAx6osFosOX4KDUOUiu7KeWsP7wPtW1bwtOKRdqw9+ZNUxTSDoozJnmvEfB8ZukJQcFmeYhyAiKjdynBs+CEI7gaVuuisUabpMXL42C0Nd1e+YtowVIhrX1ffMQD74va4gnc/Udw5RgtDWF2uiz5zwIgyTL0oz5htaI3OeASeusJZyKm7Zts/i7xNFZZeGgSPAw/267bdoPgoBYFFfxtV0ZUJicSHlL9L0S94gjKAX7ziqHV2jL54JRBM0SDpXIu9JckHRSTOdmRO7ZKiLncI7snAL0faL3BCMoKsQz/i41l0sI9wly8eqeVk/J2WT8vgCwkmv9PMCOl+5783nE9XgAmiM4eD7wTDp8uLRZFaJ1IE/TvBK0oGWERQXVmMI6KHi88IMfHS/0c0VnXBiL5eewtkLIcZKWHBRkfDAo45NBfXd8kVHxRhIGYbLmNp7JYITCJJYFyJbKq9uzfgkOBJ57kuon/nw8kSoHBF1TKkYoaloICw9HUPiz5zwIvmjZkAD17Nag054NQQmtpQOAY+Ba4bM5wVbeTG0k2VUdTJI1NxW+yNgcbPwevTiOPxcNDO7QiToqI0o2lSDoap4YhHAaHuJZZVJ4yOSvuF+3thdK0OPXh8K1peJt+HVbUc8qXClkNplZGej7RCdizdUw6/hIbSsERTmrFUm2vi5T2Z4SXQ/eZwZshlFEAL1he4V4BA5Kk/YcMQPAFcnd7blMAIB+5j5Ci6RYoOr7uD1HUKTnzp1tAIqaSaUR6jhLvH9GCLaGE4kR/eVgSUkWGU/pUsYJXTxcoiaEC0ExBgRboEYC9MwhXBs8rD6Xh3gwSiHB2nhDwAMeIyg9KDcxqT0+OdoyjGh4CLdlCIhl4a76aiAodIHjCMzaaZ19wL9P16bABeFshu9vMFJ9bubvc5lvSeqe9L+GYMdj0M04KOXvfDwC2EnFADQDCR+yTLKqK34O5H+Jo2I6XXThHDLHqk7ITXKcpKwyLA+uF20TLcPteajENo+pk8Gfl0wW1ejtCG2idLMZFaXDlmWZQJIdZ5MISrIyB4VutL97yhFw3V2PwEuftAG42REUnyyeMARFLthHM5BspsLXRaERFB4mdRkn6ONrq3HIMwc7Dg4Kd3rFasbMKcXfuXXtHdaHeDiKKSlVT9KSg4KsDkGxx93L/xeE8vS2mB/3WHGqrk0ASqMg5iYuhngEEqsY4kGLNrk+WjxdWUB1ZC5JB4UvjnxxMuFkN7zMoUyMoPB4qhgmQZtCE8NaBQN2aq0zzmmSQg5rUf/Xzeif60ICuG/8erQ9J7nq988YhRbNsAAmdePPlU5vpgaDjculnynng2mUgjqk5qKs7ou2o/PMfN5S1pnEQSH3bMxThkqx7wPPBa76iXWxsHOF0Vt12uey5apNu5WhEM/42ka4riaLh3FY1ky14R9f+RSQjB8yYrN4fDgo/PsG8ERw8hwWUNjMB0F1OnYWkizN4qHPjQs94tTyARoLvH/qO3eFaazzoDqglP8bulzLBEFJIR5kG9ZPw8uffCj80uMPJH/nJ17OI9FZPOPCdsLJzBrzQ4PdpgQLQFOFq9czOlg5pC7zW/R9YY5KgQYkvy8inGVxMmwZRjaSrC18xU/E1fvZusFJchoBKV/HPAp+GpCE2nxJsh20wPqGh3jIUDq95XkGx25YB+08gxccdxDqu/3EzTdU3QYtjuzkKZGnbSEx0nemTmyGcczTm02cTzsZ4/sZCmEWdHIs/7c7xPi+XDookrJxeeqk9900rGUjyWoEZVR9by6nDSM8pHAcQ1DwXOSZNOo752iCJNRGCNcNiab4vtS1pZRam0n1cPwQFHMO+yA4LTYHmxYKBADkQKBrszCviaDgg135fzVemNCj+s6LwkRmeFi/fJ+MytFigfS+DXFOfihdJkqyCUFBdvwh6+H9L3+S8Xe++BVoAQHQkJ0Y4mGLgF2OHjsB8mC0Sd0b7QUEhod/8H2NLAsvXZiBfCZpX0iESHNDkJ6LWhi4zLXBo7AR9IyMEHNx4tVNRaE2drKtsw4K6021/dCXiiBohKdo+y/8/ikw3x/C/mt0qqcL4rUhKBTWpwu7tFl3XCRby2bNCeMEiWCcKqtQG9JgsJd14KRGc1GWXscLLyeb4n6L2XQEDdRtuEotJ3xrVMme2WSG3PTn4zRjzF/RDp++gVE1j3iasZ3wzOcQ/jmEi9FUah6/R6FKeZ6h0FZzB6MvhFmaXL/dygD6prPcCEGROChcgdeBQpoICtLPymRtLWnNtyVeEBVvtjbwLCB+cOXzaNKWEJQGxkt721IrRZIsWwQMJ4Q4EUDa88HIUYosQ0XORnYeCIG1LSEavDDyEJI00PE9SBou2LlxCmNVDgYNj7lOIAAC0UzYdPZZVfI4nnX0o0hbCdq2hfdshmPowQRbS3hL2eqpNnFOAKgTY+Nb2LIt8HtsZFIAU6q8LSEwQ7pZ8zBNf2hmu/DnzkndTTJpOLFQt81rXhfGsm0uWK5tyOSzOWxLG69O3BIHhYWHyGbVyshpnbeVEJQq3b4ljwW5qrddidZlHAkMCfEAIB6IxyFBFEsLqAVUaRF5cFA6AgeFf+dODopl7cqzcv3B/VeovMTNs6GgLhVvI8TDX1e8JoY6T8oSgtLAqsWvpsS8RlB0W55mrD1WuxNQbfIshMMHm+rbwrgUu+2zcRobnn/YgeHIDr6+hM7we3PV4qkj2Ko+4D65Nll13wAaZpU22i/8/qnwXzc+CK9++pHiZ0kk2aYISrdyUDRs35Rga6ixesDLfIFqt8DgevDNRVoc9WkfjL67OCw45V4K8UjcAr7RW4XaHE4t/85qs3iY0yaFaQiaKBHKmYOByeIAQiiUbziSc1RtZJT0qPtdfXzJQanGysjgSREERTkoFpJs9ZnSAQOHKiqiaQMUwspBacYBUTYYFjDVDuOBYARlwQPBqZ4rWz98+C9D4blVacYuHRSLqCAfEwCmkjatkWbZU8ZvkZxxW4jHTG5IDsqKMa6eyU9+6v+egyTLY+MSpMYXXXxCorC3/nueA8CQMbYFb5mndOLXMUmWnLZFJwOM9hiBkeLukg6KLc24So806uewhbbSzOAnIP2+xx64Bh574Brgxnk/WZYZBMQ6U/3rD0cGZ6HO2ujZ2Ppub2tya+qKBcocEo7ooWs4soDwAofRBL7AkbpU3IngcX9ho7cR/0aF/LpqW6jXudOG+i2igQRNpP3CCApuaxVjtDjruLaKet6GHhBDaHA6e8VfqUK41VvRPGIhHqezaa5Nah57hVkqB6W5g4A3bDUPqk2+wTzizhEACm81cq7oWPThoHEeF/6cJiTZOpFK7Lwp/RoXB8V05nWotBZBUes+G6uJJLuCDGsRAAikxBZ1UFwkWVtsHYd4NKOanpB4iAdARjGqzQLBx7X1RyQHBiMowulGZQhgESnVZVwgTYLUjYWZQay2kE51beumALWGP0tNUN8046rWxkBOo3a3pac3GwdFMmmB4hVLDXjZ4nQCyOiNydkxwwI8rJcx50gtrABo8WMIih0FGRkOMXHMCtNhxkXwJIKuxKeSHLfhWIyt/Gw6D4c4zOJCA9lckCB39ZnGZsUJkwgpVI6wul6G+ArqfvsMQXE5+pyP1EfwTaMQDwuz+CAo+Nm7alJZr105R2aIhwsVuvpuFOz0IgfjDCJGkjV0UKTQmjz/sYp3j3FQeFgfwERBCE+MOSAc0edjXUKmJmnJQWlghmaH8aVqwmT5u+kEhIR4+AlJQlAkrodRSbkmhDNCC7r02TQLCDkoCAkwngmWuhdCU2ZtFSDvMRZWS9qxTejNZXSTdxNVbYazKyTnzd1WbfI0A6mJg8OJ0bi9ekTcQWlJDgYPR5AQj905xNA4V7AE0GNiXiicaTs5NuE8YQdEep1zc5pwUOSxbjp8ZI4x5wO/z0SGMvJMiINT9av8IBFByajsOc8Awteo5oFRzZh9lw4EBXMqOA9JMo6I+XBAMkQAHjAOik+Ihqjg+oR4LOrgTQ4o1eFLIhdbEBRSzZg/d2HtUtfo9U1UydSQKv/O197h0KyDZiD6zLnpCMjUJC05KA3MEGpjsHgTHRTTuQHyXhVuwH/D3jKGX61hGp4eWX02WnQxMZA4MObrBN0phEmEN+kmpEQha8L2XPgmayAoFrEjXxTCIKo1dTJwqCOwrS285TLqtFLhQDxu8PMjOiiMlCnygwgczb9zPRekMdGWEBQ1JozvjL7ucratfCyBUF4iMPyzsWPlQhNHhoNRfdcWFVp7ijPtWx8VzuSpwnyjLF/LSGkBaYyr9nyzUxtNk7pK2rnR1/YhyaprL1SbdLN5oOvxhCMoOMyyUIWIQkI85uHSZhJPg6dnm+uXQDR3HI40bcCUruDfueHMI6fVHuJxH5gxh2ySlhyUBmYiKOXf+QK2MBR0UDI+IOiAwSdSF09kiNIfqQOk441mJk35P9ZQwQcEKSXU+tnSwow2K+UcSadhaRO0OW42HoWhi8Imkg+K4YrjhiAonEvRtG114h7fQ8vz5Mk3JYyUEAdFWPiahng4ctWRkCMBfcGVvW0qldwhb5LFA0DHOkciVHtbxWHibEuOfmG2lUKhNIzLTuPsPTil1oqgsPAQ73dfkC3H7TlRtSoW2CDNWDsYKMTTyEngKERzBwFfIySLh2/yAH4hHh6m8eGRSfVweBaQEWZFv/N5IDlHnDbgQlCGbG2XU+bl+3alKC8HSw5KA+PCPByaVl+qhKDkfEMweCbKkx+JYRQMo/JaPeXrUL0+Yg4OOTU6OCgY5cAOTPXZ+ESLro0zWWyER/JcHIsjf6Zm7DwTfzdg0iYkN0f2gz+C4h/i6UQszPg6ZhaQfg+WqyfxbwuKYdNBMZErRA4WQiWcg5JlmKjqXlhdIR4SwhEQO4osCVomony4PM+MLJyW+7vmoQpe3wjH9U3HS/cZPxPNxdLOrCjoN/6R6wmpdpxPJNdVoinOnVZGDkk2MyXby7/7aglpwcLmKAZHQPDPIUJxIQgKUcFlyFWWZWQNwyGeOg4K/pln8QDo73wwogU7Jb6VSaCXDwl8ji6XLJ7koDQwzhmwsaYlkqwtlGGkZVpCIYRsyjbx8vP1CYwTokjmghTiEcJL0smw3BDM9pg8bCNbAeiTmQiLM24OX5j1teTf+2yT9g+T0I2hMYIinGybkmSxUqSNROwyNSZc1ZAxSU8SajMzAFD/hDAA/6z+UC4gqb63nqqeS5xtINe2oSS4AjbnU6n2/PUsy5xOo6sQYXnP5qlTyuKRxokW3rOgIIhMOhjREzEv/mio75LnLfSbKapysmaTjC71LH1E2nB7jqA0dtRb8jhuJhJnbqQ+SrY2J7+RBotDiRrf+zRBMe3k5Kpty/xeq3kkfOdlYoTul1G5e2gifi02Vq2VkFOIZ+WYLcZcwWLjHyQdFMzzADCV+zDZS5Idb6HTmeQk4Bg2R1hwOhxHV8p+6kWZh63Kn9Vnm3A9AF1gOLEQT8gFwXHDyFIhwOrNERT7Jm0zvJlxJVpfJ2MonIrr2+r3lToqYe35CYxUJEYkPSnc4wrx4AXeIPu18XduPjPVt/m+5KzTTaU6+bHNFHM1bE6Ei9SNERR1Ky00XiTUCLfl2UX6EICQNuGebaRnLNTGHXHuqJshHv3MpAwivtHW6aDIgmEszbdhrJJvZlJ2lMs4t4+LzDnbsmsXReHVfy705iPUhhMAlEnjFavJdoQ5aGbxme+RQjwV2ZzVw+IK4i4EhdcBy9nrKcSzgsw8rZd/b1Is0JSylhcv7IBICIk1iwdn4jAnREoJlQr2WcWrKoVccxIAaPjYpSRb91zKZ2LC/TZ5+ur3lm2S+y2u/PTWeHGtEBT5RO4yIlI10kXgmm8MMnpEF0fZybBl0pDvFYV4TMGp8ZgYyPetvrd5poCJ788s+McWz6GbJ0IdEGGuoXCIOc/cmj5DhM5UoVLUBwly58rAJoeFIqz4Na6hYnBU0DOTClqaoU5K1nRxUPgc8smiwdeORVBC5rC0yau9uonIHA674Wv7hJfwJi6imOjZu6pIS86RIV0hrJ1YWqK8tvk6nycmcjRuy9btlGa8gox72zblzkrqHodJWNaEK2fdle0yEKTDy/fihZe+rmHQkZilgzcEqwgc6CJc+G/8vl2cATGOSiB7s1oyX2RatjRjjoA0XBy7EYsjAIXtpRN5k7YAME4f9UNvbBlMtoJ/UkaPgb4ISAcA5bKU15Y4KObCOi+EeHiBNzNbxs1vqRZ2Ml6luWCOR516aeNj6b4ZNYLQ98Vro/B+l9enn18Rh6XMJrWZWBAtjL5IZGhehoNvdma6PpqDnKzpgSLgfvDv07vg5oByYJqhGIy/gpyFJiJz1rHY5NoC2iYlGVAHRUKu2HcujCl9T/KaL9aGQodaG7Jt0+WSijBO0pKD0sC4V8mzD/gJyUmS5egLdhKkEI9warSlGdt4IHUISX84MuB2/Dpm90uhANx3rK6pLuXi5qhnw+89zzPyng5bODpoMwKQFwiX2U7z3qnCITooxDnTG6Y3+sOcXhL/xghKp35xpAgKdlBkkiUN8eB7UyRZMzOJo1YFc8hJSFJ4plXfhZBg2R45GWw8SQcBKngIVVtbBhDuu4igcB4JO7ViBEUSaisKs9+4arec4kw3FL7ZzXAHk4QRLHykpnPIQDHo3+vbq5AedZCacFC4UCNxUDycjBAEla9dAPg71+/Dzr1cA0lGzaR7sGVAknIT7MCMuYVmiId+55yojgXwJmnJQWlgRvYBW5h5vNBFkrXFtzHpEDsRHQzxiqfKcd8KEwWREBIcRZA4KpJOCmarUwQG8REEdKciTA4kwiRzUJTjJjhA/P0AOqbLIdqQNGGA8DRjKWOkzrAC6MByMnYZz36QFleKoKCMHjYeJfQHb2rThuAUGq8C50CFh6TvnC+OZohH3ZesLUN5JPbXJSIsQUhE50dwbpiDASBnpPGN1hBqq+aB6egboU620Uk1raSNzIbecAdTchhtVZjrjCvJqv+bF9ykhwQfLhbPQMKiaT4p0iZ61Jygi/ssrQF1qf5Gerbw3fD+4tcw2gegnQzMUdFjmV27SvigbRIHZQUaz9fnm6n60p1pxgVflMvX8YCQTjAUThx/piUzgvdLn5Bkgq20IeA9lnNrzPb6uUikRbWZ9SrCpH7NEN4SnK+uBSLFfXNlsriMIzC+YRZM0uObik/7fkB7Y3EWnAyCoLTNxY2T5PC1V08hB8US4lmwhFk4giKSZCvF1XGf2EZeasvQ18r2ei64Xpc2czmUaptH1JnH19AVy/UzsaNx6rPHTpsQ4uEKuZwwiTOERAelxll1Iyh0o/Qma0ciKLYsniZKtDwUQYj8HigIdyp9+C/4+iJJ1hJm5eRkKbTmrEiOxnmBgA6ppITNWR7waABz5HH69iQtOSgNrC2EMgBMr3NhIKSEVaeU8nebTD4mW+I5IoVRqA5KPv58M0wikWQlshVxbrBzlalN1IQR8XPpI8KkpDoqpRnjz5EyJ/C9878D0GwSgAB4miEo1cbQkKgqkZebLuwAlCCoNxVPcqJDB8WGoBghHmFhnenqGqJGiEc9d1yDCL3F5kgCYMRO6YXITkRfkOjmfa/N4hnxeaY3BTmLx46g5LlWdJYQFL7o8/GgnOEecfTH17U56rn6bO38SA4EP/Hya093qYNCNsqatnXGU6R9SbK8xpmPDoorRNNEw8XqVDZoS9YuVt7Aluq/akrPKT0WgVxbQlmk36Uq87jvhItlCTfyA4rJidyLQzzveMc7IMsy8u/xj3/8JLrSyIi+AhkQ5f8VgiKQZHWMWYbUMExa5aSLcKBFyG38o5TlQ+qmCJsJPtFKDgJHKfBnA7D4uOAAuU4BOMyBNwW8uODFlJP9OszBqE4hTR2MiAWKtpeVcn2u7xueMgh+wvUx8iFxUFzQ9Oqu6dDoa+sxwePb+HVlErrCN3KNJrrDZnhhFmX2kROi5oq5MFv4K2SO2/uuHRTzmfZHbLM0OGo6s4krLgMAKYLIie59NEekjBAblwKH6Lrt3FnHR+IUucxAUITn5jK8fuDrN+KgWNWUmx4waPuQDCLa9/J3PBcweoXnFJdIcDmeymxcLCnEI6omK2fZyDgr25j70fJAUNr1b9k99oQnPAEuvvhi3ZH2xLpSa1QsSf+dh1JUKAOPLe4tG8RAAeUgYRZM/HNkLki1evCJVVx00etSiIcvflnG+DHodSnDiDsoPPzSzjMYjgryXHF77JQY0tEcHvZEUDoIAQHwWxxV31V739g9vk6ZneEXuzc2JcG53G91p/p5mnBQyusWBUXdKIKi38/XKaIeLCARTmEwpnthhGEEAi5Ji28aDhVq5uBsGdc8cn72UKdPEzFF5KwWhRBqZSmj0mYDAKKmThWKHI4gE9rYxnFFku3KYQb8TIYM0Wo6B8xQo5+OCq/Fo8ItTQ4ZPNU+loM29Li2Olzhg5Uc4tHPEX8PPLVc5kQ1cFBGlJeIExQAFOo+bsMy5Qzkx8ik28sdlHa7DQcddFCj9/Z6Pej1etXv27dv313dEg2fWF2Q2oIAUeJ4oPoMAKxVglGOso0UV6dqrbpvEqxtxN0tGUIdBLGK6Iy6L4FbA6Dh/oWBScYCEDQYWPtuK4feYMT6hz6/hSc750LQzS60orC5WTZqzpAtP+cIgAomSaevJm1di+O+q7rVz9NdOVSGT2CSvg0AwKaHd5FrkxpELBRSvm46oVW/a7JGsK4Oz0grPwvNQxEFEZx5Tg4k80T3k5xKbffVt2n64PUBfSZzjuYWzBAwCfEI2UlaNRQJqUlpxhYuFiE8Mz4KR9MGwn27zIZC+PK4OPLUCMVg4cJg/gwn6Dbsu3JQXEgk3uLdRPV69FkK/wxHJgLCP5/vCdyp5HuKpPEySZsYB+WWW26Bgw8+GB7zmMfAGWecAXfffbf1vWeffTasX7+++rdx48Yl7Ck+sbK0LrYASRoJOZsI3BGQs3TkwVanBmsONinEYy6sAwtcb2QnsclLRebsDhDva9VekPHG/es2CfEMAiFeTi701nDAHBIw+l5/fTSmAp2j/sh+7/h5YWeFE/wk9U88vg7dd4ZcG/OK5BCPHTXDYTEAsCJ+kjIxgB7XtmfuCuNI88hauVv4PioBur5ZEFRCfvB7qvpEAkcN81ukUCl2+NRHS9ke1Wan3iM6KGzTs8yBxuOQfZ8xtXhwirWXUBvjv/jqGHFxveYp0vWHBNtawvVjXHXSpM/CmTjSuimFgIy09QZzcDnYRByUpz3tafCpT30KvvnNb8J5550Hd9xxBzzzmc+E2dlZ8f1nnnkmbNu2rfq3adOmJe0vhkLxAlTF/CqSrADhZsqBKH/nToTk/NAQD3YCYNwWD0bz9GZqrOC25mf3SXjIfF2nT9PngomqMkLDNivu4NRkbVDJdYuD4tACcRkOTwH4k2SlRcIHQZFP+74LO0OP0PWfc/SBMN3J4SmH72slG9vUiQEAPnbGSfCUw/eFj/7WSeTvXXRtrv6L+6bv03R47SRZk4MiIRUjy+vEybBoFWHnRXRuhnKIxwjTCOMUP0/8mQppVAgK3wRxvw2RNyHcQlApI4uHhgunLYrCZVt2ePJEEXhNmtA0Y+7YNarFw9A431R9nOGI28eHWfV7fveUw6GdZ/D6Zz+GXZs5Rw60sPpdUA+2qSKT5AcrgiI7Rzz9etI2kRDPaaedVv18wgknwNOe9jQ4/PDD4XOf+xy89rWvNd4/NTUFU1NTS9lFYlTWXP/dSM1yLXyWFGUaPqJtyGfb5OrxqdKIJ5oDVXIgbPwWl45J+fnawZD67uIjANBUX6lSMw41uATD1D3w/rtMOzhh8DQOs/imOANQiDlaIEtwcA7bfxVc8zfPN9JMOedB2qwBAF70xA3woiduMK6NycnSd+4SmMLhCuJk5Oqz9XslZz8Xx7N5b5gTpXli2HkZv19AC0e2EE+DgqB8o9Whq/L/SrwuN+eFCpnxk7zkMItEdgtZE2fx8OFpC/E0z+Lh45Beu87wAQULrTXhgXAypxZ585u/oQhME6L6iYftCz96xwuMOVgn3in1Q8waG8ncP6WyS4oFZqotc0rZwRV/p0VRNMqI2p02sRAPtn322QeOPvpouPXWWyfdFdHa6NQopRkbg0kksZa/29IfcUoYcRJqXsdpxnyTJynKdeGjEW2L29tCPOQEJJymDbl6Nto6NYXnKEnWIrk+oAuEN8QbUEkVQD93qk/RqOn4+tpBkr7XJtc2tC9Y+zVTbTOshn7HlZgbn5oV78iCmjWp/aKubdSOQg9QOcV14U7JUSDKx8Y8k/krONtO2jA6lZNhl/Af8I2WHUJ6Qn0i/FmSsyuNZ6JKauEjSSEeBO7QfjvCFC4zyyb4kmT1HPRVgrXpIDV3rji5WP09zDmzPbtV3baxyZv6MQIKwsPjUnKDreQDys7i44n3m3O98CFhOaAoy8JB2bFjB9x2222wYYN5YlsO1jTNWJmYvlhwOK98Had9ueqPYBIt5aCA8bokdS+GeHK8IUjkv/GCL5waAfRmZIPFO236fhuHpW+ZaNjBqc3i8UQxbGqsDf2TWoG9pu0HSIXXFxrn9Z2aLK68krPvpiRK3TsQFCnjRF97/B5hcdQZL+ZnSSEc/DoRFmRIxNCSEi/NcenUWmXqCY4XPkTg96i2EkkW/04IvOO+4e+Lv7/st3aUVR/wfWNnZsg8FGOT9+RhmVk8gSjmcESUYJuMRUMJ1jNEy5EEbw0XhoL4PDuceQlgiqXhz+dt8Gu0/InZN1z12xBqY86Ras9DwJO2iTgob37zm+HSSy+FO++8E6688ko4/fTTodVqwSte8YpJdKfWKFdCf6G8CqsyiSQ7HCMcFfQspH3JYmcSCqKvhUmyfIEgmSLSoowh9SqVGL9OERTzNC6cpn1CPESEznwP5aBYsniqWjzj9qEZBIUvguLeqBtfHzsJDZtj3hKAv3PWFpCvppuKchqLAtWlQU07DgSFL35mSq1uK5FR61AQzgXDr2OOiSuF2aZro+aCRHQlaq/CAaZyUPqyg4LngZQy7kLBOBIohd2UKedKui6APw/LEAz0JMniEgFYGMwniyekGjG/NoCcqu8yg4PigcDYERT8nTuQSCm5wTZP2HjAjhVJiWcODO7fJG0iHJR77rkHXvGKV8CWLVvggAMOgGc84xnw/e9/Hw444IBJdKfW8GlZjPkZgwn9jN43KiQlWeREiAqXerBx5wZfW3Jg8Guily7E/PH84gq5fO7RDCSzb00dlD5xoOT3TxkcFB7iCdNgMCXCGzUXSa5eJFkUR/Ym+LL4N0ciatvnOczDiGTD+F4bQG/WNCTJvnNLVpeUtaYyWkaFjOhRZxyqNvp1iqrh9hj2lpwbqu9ijgVdkVhSktU/q2vn6ACj6hOpOcI34I54bTqP8CGBFvyUNzvp+5xDUvsAFPnBbb1DjRWKEUaSHbD7bqQEW220iuQamMXD0oyDs3g85nCL9b1aOy1jivcLO2fSniGihZWDQh0QW4FZACCo1qRsIg7Kv/zLv0zissEmnpYbEpow4WsgbMQ81Q6/BsAzccyTsvr4kYjO6AVIVxvWn90hIR77ybCqq2JwUEweBu4756DYmOn9gZymjDeaxiGexgQ9fgLybF8hMP5hEgBK0uPaOM2vbc8gcLbHY8o7xIPGjFBvx5VajgWurOrGrRwWBqOqbo0N2pZL1I8darSw6kw7vZm6Qjx9y2fzVGEJXcHPRJpH0jMp2+uxKG10ziJyNkcb9W/jfjOw6eE5OPWo/WlbhPzgNF/fcJ8txbm+vUmSbc5/sR0wmk0CgyQ79EUh5VCJT4jHzOIx3yP93hEON6J6+dAM8bTJIcGcg5yjNmlbvvKty8hkPRH9Oh9MEmEJoDzp8uwCEn92LJy2lDJXlVYKHZt9wyfW/sAM8XSqyrRyiAc7CXItHfskA6DCXRLh8sB1OnOLb968zk8oxBusJItPKQE6KPi074ugcD2R0JMvD1k2MfydVmGYhgsrQDmeh6OCogWMFL4AbtVVrqDJX5dCPFLKPXUCNGzu4tZoBwSM1wBkQnnjUOeoqL5TW8qpgb6gQwiAPA8ueNVT4d9/cC/8wXOOIm25Jo4vl8rkoPghKNgx883C4ciRPwIih3gWUwelrq163i6HWJmYuWU5GJKMNLZf4c/pC4RwSSV3kpYclAZG03XLvzVGUPAiUJhhGBkexu1xCMe8NiXJ0s2mLmYPoE+sUpVW5UAsCKfGsq1eYPRG13xhlkoI4Pe84bmPhVs373Cmu9qquNaZSZIzHU+XSdwhL5IsWuBsWTi11w6AlwHiCL5ZlkGnVabFzgtOBH5d6lM7z6BXXbv8G0Fg2jnAwhCVjZAcFJl3w0nduH0Hf1+CQ4dP1NVYFMayhDQSVEl4vcvI4jZOCXZWqdaJa62hJFmJS/HYA9fAn7/gGOBGTtOjABSDbdL+isg4+ylUaG08fy3jzX5tef77OmchpTbMLLzy75IAp/Q7Ln8iUw7U4c18nZCmHdmd6hAxaUsOSgOTwiw07YvuahKHBEAeELjtgiCIhjM2ZKn78s0jgaNCnJ+RQkjovVUnVkd2gk2ojQpUjftDEJiGHBSLbPqG9TPwL//7FJCMVzP212DQpxAAQBuDH4IipfJ5Xd+yUbtMEz7DMpj0tf1DPADl99YfaidCCv31hzIhtBzvQ0IOltCCKpRCwpkmgiItzKS4ZU7ngo0YjE/UEuFbPTMp3FnyJkp01CXkpq8lPRMV7qP9xtfG79WfrZ9J+X/z75MTIn3HAueg+KqxShlh/P7s145DUEz+jF+IyCpX36C5ukWTv4I+34E+SxpKmbDu9hDnCJPF1VjF858jMOoQMWmbSBbPSjNJ0ExK61LWEhZVAMUFKX+WNFQWBHi3WnQJQiIjKPz0hPshyfDj9ywI6I2RxWMJs/QH8kA3OShye0qYhEbGRej80wSpg6MXKM/rD/21RABoSEFaoFxmxP49T38YTfCtQFte387HAKDfs007B/OxJCKt5DCTcKgLQZFqYiFCtlRagFSXbiJaaAlXyrycOkcdPZOR4OAIlZN5v42MLg+iKYA9tNWkvU719QzxkCweTwQEFb2Uwtu117ao6DbOYOIaMl4kWdmxa4rK48MND+EA6HW3J6Tb48/GKKaUvbkcCgYmB6WB4ZOZK61L+h3X2iACU5KD4ohfW5Vmx+8dFWaIpyOgM6aTQQezJBLX68sbkWq7YEmRdol2lfeOTq2BgmFle1Rwr+ECVWm48E2+MclOT2LfWjoAiDtgSWt1GV9Awjks4QgKABItY23x926gBWJavdk3Sb0YC4NJ33erCknaM9IGFrSOpryb32eHoYk2R6EuBCS2rdYXtNG2zPvG7+X3zMsHNEESCB8BOavNUQjqHI082xOhNk8OCk8+qEJEvjooDEHx1YAJOSSYHJTy75JycXU9YU+w1VDj85O/Ls5B4cCdEJQVYh1hYWzq7QLg05udJwIgq2e20EYmEwP1RmvL4gGQw0dl36gTIi2skrx3+To++dFr49f5vVSvt/VEkzx5l2F0JkRwzKpE6Rk/XwjVQcEp1r4OSq6fe/m/773r8RjS9y7brHlTrFljc95tfC7XmBPLPgjz0EVUxXwn6fWFmhCQDU10XdtUVJYd/T4S7ZM2FABzA+6wzcRnLCi+UNlORm9cZkv19RVL7A+1g+GLoABwbZumIRqKoIYWC1SHVp8wLV7TAUCUWOCyCnaS7Pi6giM/L4R4zL7b2y8HDkpyUBoYJqK5KgpXv3OkgcQMaRusFFkJX+VCW6vUPVSfrUzKaZeE2AD0RJVDPOzUaEFQ+gOMLJmvV321PJd+wEkefzZe4HxRCINk2/AEpoiPmNMQoiQ7xEQ2TwcjVKK8I4QzvPrepic0/szx4mp1avG1sVNsOAK6raT2ii+tvjupjk8HhUJcxQAHI1mLhC/6tkOIRlDQPbflOaf7hjkoQt8JIsXCpgxN8y08iU/TvtloRpjDkyRLBDDHn8HXDHtbjKDoEFFoLZ7QYoE826UZSZY6lRIKwp18KQRjSzMWQzwWJFJMa19GBQOTg9LAiJ5Ig42YD3I8EcV4I1tYqfNjElGl13G8UJLJtod4FIIiOEfsvvjcw8iQK25f/l16Luam0fQgr8heAGMlWwUvN4V4GQoRiqBg/o1PmARzi3zVXI06Qt7t9ZiRiNd1xlEOft+4/ouNEGorb+ByBLD+i+hEcEffAouLIR6xKKew6AscE3xtiTjso4MinYinkYNiCw8ZXApPJMCmLeMyvtF6oyDIKQzNIAKgIaIQFBEAywz4zX/M/QPwQ1BUO0kHCes+cQQOo2YS908M8RBn23QMiaOPxsSkLTkoDYx4nMICUougoIkox/x47Fw42VmIpGrs4gJpWY5fz8jrfP5wIqxP6Aqz8CXYHE8sKTuGZC94nvzK65sTLZTHIZHNXKaziMKIpliuWtIycLelC4hUJqBZ+7DwlK5LIyMo0x1cQVfeUCm8jF43+C258ZrNiajGulRxGI8VB4JSonlm36tDhOD8ANAQEW9bF+KRdJbw3JtyOnx0LPhyKQg52BNF5FL3oarE/UHh7SAovY7yuhp58uWwGGnGAQgK1jNr0t6YvwKCih0UI1RODnbl36TQOvYv6H6DERSzPT8ATdKSg9LA2kKIx72Ry+2xxkImLX5CgTQ8mKVQAHdueN+qhVNAZ/DnSzH/OnIfqcviICaWnwuGYXlxaVOos65wKg4Jc+AU7aZpxnhDilKStcCsLmuiHupurzcW3/RsAM1BmbegCW4EhY51AB7ioYurRFSlTp05D2VNH42+yOFI/X24OChSn/F9iVL4NToo4n1ZNiuOEBKnDYcaPMcSUXMNRFAk58p5bfSd6PB283GIUcjQLKAQ7g4AXZcxguIX4hmjXiIHRc8hnmzQQYcbaT+SkG9pv8FzwVY4c9KWHJQGRkiyTZRkHRCuC0FRp3mJ34JPjfh1NXhxvFE6GTbOPnAOdHlxJO0bxs7Lv+mJElMRmOgoeC+O/gtMeW3z3oNIspYSBs62bAHxRX/IiT0ii0ePGfo6QVAsaAFG/FxOsT3lXnqdOuMS4bsoABYG5jwihwghi4dvEjZkSEpxbqqDQiXf9etTJMQjfxZO2wbwGMc4fO27SXP0Zig7rNZrE+6N3/wFoNw+7/nPiKC+h4SWcG2AZnOQk2Ql3R2Muhnjpy7NmGdPWniH9iweGv6apCUHpYGJacYCaal6vwX+tVZhNU5+5uKGyVgSSoHjjRkZbHQiGiEeTkoksDg7+bG2GCHpCQgNnljSxJcg+6abLG6/MAjhcZjoC4AHSRbd27ygelpnNM0YvNobi2sMSTYixGOr0TSNSLLdFp8LJoJiq7ANIG/0w5HsRLjmUZuMVYHfUivkJjv2vG89Qf6ftzWIw4KTgB16TJjs8H5U87sIGsdS6Cs0m6xCvXx5XEPNQWkq1IbfSx27pggoc64COSh4LAL4IShqzZNCjphobjooeu1ypRkrs/GlBiM5exKX8Zi0JQelgRFCVEiaMXISXDG/qr10aqxJj8QOigRN24Ta+IbhlSZMig2aDg7loJgTt0s2SrPvdSZXoPXdpP1Z+Lg9gK4S66OD0q5xWp1tWQzbNxNH0p/x8E+0UqUFOcIhHgxV42urtrzfzWqQyE4E56DYUAwpK61uLLnUosvXy997gnOUZRmZCwbpscZJwJuVLUU5JJsE95ugEA2dm6oOWJUJ4ymWKCCgPkgeVpPWWUB+c0CHSf36jjVgCHLViIOi5z4AiKm+Lg6KdLiRHIyqT2wsSKi8LY150pYclAYmpZRRfYYaB0VACvCYMWFt/Jq+tpRxIYZ4hL5JxEEAE0GRoD5lPMST55qoVpEabVk8DgRlwTJR6ixmgcOhBt8FRr1P3aot3bauPQBNt23a3Fbo0Ffq3la6oc4MDgprOtNF8XMLPI0RFAnxUyYpG5N6ORISWVOwr/q+BAfEtmhz5MLGM5M4KOX169EYOo7169MIQTE5KKbTVt4bNLK2tLZ5IygqVAHjvnseEkb+acIA1Kn0zuJhKKT/+qFREFwpvomOE+fuyLwjzEFhTj4+3Dgyzvj1lEnoj7TuJw7KCjGMFEihEmPRsCxOg5EsjMMHlCRORU+75sJLc97Na9uzeNSiboe9q74Ik0/dq7TouxZl/PkhUvf4M6maa8PFsa03pOHQ30HBp2KbNobz+hJJNjDNmJdUr7+2udGHhXjk+8YclCkWD+ekbN6+CYJi1QTiY53xxNRbZWd8PJYswnlGXSlbur4FqcQIDP8siYtBNiuEoBg6KMhJwOO4cU0pQbSvKRJoFOzzJMniVH01lkPm0MJAi8yFpAkDxBUL9EUwDQ6KRJIlacau/UQK+9sPvACcE6neY677SahthRjeqMVUYON0JS8iJMURL8oOlj8uBuZK5e0RDop5MnQVdgOQs3jqPHH8HnWaJlVYHfoNAIiNHnB6w30nOgoB5EBy8vRwkPi9e6E/SMnSP8TDFlffLKCazbjOXOURAKiDwgl7PK0dgKNuLgRFL+wSsbhW86cBibYkyYLxeh2PhIeubKfWsh/ygQZ/HyTNuEnpAEb2bjoUpXpY/mqsJbrrX8tHO0chCArOpPPloGAEEyA8i8eGqjdpq6XuzbVr2sFBIeElIcTTyjPy/Vu1c0Yyos8RnklaclAaGP6CRQKexSGpfq8J8RgIishBkYmkdaJZLn0G3FeJ6Mnj7tIexrOAbA6OtPBgdEdCluqMnDzVJA8hB6LFqanUPoDAxQjIQArRgDERFPBsL4UzmvUbwERQ+H3POBAUiSRLQjwOp1h2aPF7tdMHIJBRGaFcdH4sacZ1qshG5W/2VeBTML9H8fsgfATM6ZFDZriuUp41LxkRk2aM5zfOygqpxeNbzRiAaRF58mc6zMmPKRboq6DLhdCk+dttIWK0kQWmxos9ROtKUMBOrbTu4nV10pYclAYmFt0TeB7KTIY/huTKvxEUxFFUD8cD5RAPX3R538cLp2UzqTgsDuVO232Wn89i7wEclBAdk7K9hiJ9wxyitLmHgwGAn30AgoLQH18NGFsVWV+Cr01Hoc6UzL/NKSZZPCx+3kLcn/K6PPNLdqAB6PddaQIJSKYNQdFZXwKCkrvnOJ/TpvNDP9t4nZAeZadtgJAAmw7KFOcjkMrUBflbE5PCZr4hHgA9B3jfXdYRnKMQBKU/CFCiRQcEgACBO4ygBCKYhkyALYvH4uRjBIR/5dh5tBG6bfOfO1CTtOSgNDA87qRKqa7USACTiFq2xw4KW8SFRRd76mRBZ3VR+MnJhOPpvVVhCgEFqDs14vfMSzVIajgoGEWQkKU6w6cgvbB7tmUIio+pe58LIMkS7oC3c0WhdYkw6jKsJxKSPVVXAsGJoDAnwkT07HwsrFyqicXmwio5GGW/mWNVk4bsiuuboRb7Z/P2phOmQx2SVD3erAxOD3K01Wbrk6pfx39xGXlmlsq5Tdr3hyMYBnBQ1NqFC3Z666CwUhdNnTvMI/FVgs6rtg6htjZ2MHjfTcTN5oTgvlavCSGeXFi3U5rxCjFc9VMKZdgcEmUSrE1THPnpTP/cErxdAv/yEE8deY/1FcOkAG7HS4KNcRG2sj12vOwnv7ItWpgjsnjwc21MDoxMcQTQC2QM+hOiASPpGPhcX9YTCXdQ+JjDWTy2kIQtRdn12RhWd9XiUam+dmddOfPydWVVZfchxNBBcaBKVuGtgaxLg7N4bCGzELI1vg9M9mwcokEDFiMovuMwNIungwp2hlZDLgrKI/FP9R95r12ag1L+Ls1BvF4iatG47/ratgNGx4mgYAfHfI9GOROCsmJMDR6xlHudDLaAoOB6Oa4QD5ZklmqXdFiasRnicfMkXFkT5mtgmKs9XkxnOqaDUiEBA1Tl2QeFEDRgvMMcARCtMvN7a96WkGQDFzi8UQN4nFzRphQS4qkTgiIpkha+Rc+SomyQZFFzvClI2Qs5ui8A8/twytETNEBAWDiyU8NB4d+FK1W4KzleFrif68q0BCTQLyNLnZb9iepEZgDr2gQ4ylqB14ODgsJqoQgKQKBMQY2z7LIWG6dqCmOHGju0eH0j13bIM7g5KOpgJ2tnrRqPsbmFQaP72Z2WHJSG1mGxcyKmVpNmLJ30ncXERJLsSIS1O+wUb3BMUDigfJ3elyHh7XFqLO/N3t5F7gPgJwHz3upMtSehs8YoxOKFeKprh5BkQ/QnhAUKwOPeBXKxz61zxI8/t9VTdqG2KsRjKbrnSm2XSNFSCEjip5TXZmgjaouLz4llG2oy2gxBRPZd4MwmfqCRtExsp2lb2nbISR73ux+w0QKYHDgA/xBP2X5EPq/ZtfWarHVQGiKo6H0hh5Qq0yVg/eA6IzpNWb8Hr4M7maOgQ7Syow5A13WbLhcWYsNvWTPdBgCAHT3qGE3CkoPS0LiTQeBhjqBYZLCpg6Jfb+IkUJIsGK8r42uDQe6rQ1Acp0bJeTA2K0uIZ9qBoGAoMSRMghfHmBCPj4MB4E6Jrb2+WM3YDwEx1EMbw9sYifBrC1Af4tmwfqb6ed14sdN95Bu5vNHr98vOupQ5we/BSmStyWgTUdJakix1blzy/wYHReCB2JBIM8SD25Z/80Mhx2MhAMkD0GufcjCyzIMki5WoQ7SEVHg6EkEZDgt/oTeBx+FP0C85ZIXgbGN73IFrye9UBbv8mxnOxM633HeceYXbr55SDkq/0f3sTmvXvyUZgLCwZvICAmAn0C0MZUjNteDTNGOzrUvkTfpsPlhN/osDQREmoCst1CXXjP/WIzL9xtusJmlqNCbJVqcI/8WNf4aysAwkuUp1s7Zcw8UPgcHpmSHp1cp4vw/dVzsoRsYKywCylV5QJo1HQu5zONR16IzkrPcGI0tdKvdn8xCwS7yOfxZ2GLNx7NfuoPAQj+BoBzibg4BNGmA8FnpysdH6a+v3KqJ5mJIsJsn7ORgAdv0Zl7XQd+b73DscvbEcUD73+lPgS9ffC3/1osezvuv7bpRmbHHEbQdmNd6WQ5pxclAaGie64kmc5xl023n1mqGLwuLuAM3TjHEIpxBOOHWn2TqxNbNKq/45y+h9yWnG9kUfL8rSYBeRJa/TGz21AvhwUOJDPHUVbptcn6QpNkZQdPx7FIKgCPoTUQiKsBmf8bTD4O6Hd8GxG9aR1+rUd5sgerbsAwNBqeVb0ftqI7SSv14ndW/oERkISj0vpz8sIM+klFN7qDSWJBtbUdzQUfIYR/i9ejwEcFACavFkWQbtPCsJuhYBTZeJCEoAemMjqgIAPPXI/eCpR+5ntKfinTLB3slBYUgifw8+FE/akoPS0KoUxqEZ4gEAmMYOikUHhZSYR29xhXioLLGZistPs7VZER4bAkCZJWRLCa37fLwob921YLQVZc8DNvmQDAKi3hlIko1CUPD1PVOkpQJvAAEkWez0+uigNOAmnXX6E8W2psgb65vjmUr37VJ0NhdttwPjIsKaqJGMmvYs6f44xOPSSeoUmXEv084043CyJmkfTLJ1O5wuU9mR/WEBc3157XReu60PjSqLxyvM2iodlBiS7DCiGjnA2DH01p9BHDQL+oLHuo0kazsw6xBySjNeMcZP+y4It45AB8BOSA4nAYciJEEvF8EWAAwZfb5wupwjAF72u4mDYrwFADSES/tGF7eyvf/iinUrmoYqFgNBMUnEzduKacZN+26TN/dcXEMKFQLEOWbcqawL8UiihQNLWIxzv+rS/206KfK13d81P5Xy12dc8v8Ksh/ITsK+q7rVz+tnOqwtcto809VJ+1EB6sDsJ5amEBR/B6VsX3Z2bsE/xEPDtODfXlAmjsmkCwrxEA2okMNV+TcXWmgqF+tDrzLcnBeBnKQlB6WhuSqlAvCCXhYExRLKMNM2UVsh3ujkoLAxXoeQ1G02+PPFLB5j4ZaHVAaCc5PHOSiawxKi5KonYUjsHcAU2AslyXoLrWFYX6gbU39t7RwNA9o3EfCzma6+7Z/2jsW1pOwjVyVkAH+00cUTszlWTQ4wq7sUuO6g+5Lk5vdbrR2UQ/ddRdpiTY1qHAeSZIeeWiJl+/EcdoSBne1ZmNaLg9LGDopMunZeW0DkfDkow4DQWJ7rWjmlYwle7fHhxpbF06T2k+3A3EKHt0lbCvE0tIoEZ8kAwDoHZsxPTUKLmqujUqpCQHAaIW7PEZL6Rbf5tfnr/LPK67vbv+l5j4PzL70d3vuyE4y2/LlI7V2mNvmQxZFIm1tSXms/o0Gow2Z6s/VPM65IlQGVVMtr65OjxGuqvX7NRu+ybnXilr8zHsKQMmlsmh38swyEpMaBcZFoXTwxAD0WbXwC7KCs6rLU6xpdi04rh8+9/hR4cPs8HH/IetZn3S9bDSKXYbG0qMKRfX+SLG4fw0EJlcpv5bi9X4iI1G4KCI21x6FzHGb1lkhwXJsiKHycmxwUKcSzHBCU5KA0NKPWBhuLhKVvxKcpgc5WD0eZRILtW2LE9RwTtwPDERg+P6ccjheAsOizSfam5x0Nf/Tcx4pFwDDBz9Y/lxnwcsDJkbT3RVCidFD06U+ZrwZDeWqWdTfc19ZO72LooITA8pKaK4CZjk7Je+bJTgoBKatzQGw6KdJnTzvKUYif7XC8VBonb+viQkhkSQD67F1cMZsR0b4gNI3NwdAQj8riCdBB6Q0CU6SxhIMKETW8vlQDySfE28kzWIAwmQG8pvctB+Zu2z4vpDRjCYlMHJQVZBVJtkGBNJuTYNNfcOugmCd9FzGwLoTj4xzx16XJ24SPYKtQGsNlwP2xyfg3aYvbT4Ika0v1c7bFY8KSNeK+tuD0BjhXysJIlfXzCIBn8ZgbuQtBqQsfcafOdDLs/bLpoNiujeX/DQclhgtBxnGIoy5ttGFOgm/b8vrl+2M5KCFhWhwy9C24ibWIfAuVltd2h+6btAWwz38ngsI4kVlG+S9t4eA4KUsOSkPjMWYXhGsTYlqwnBpdMX1JghvPwSzLyEm+9rPzutcdDkoD5yNkktquXduecVhCCHK4vc9GC7A4ZNFeQIp1J9K5wrF3qbp2/fXDv3NOjHal4wIwPhYKR8g6KHYHo0m/DVVkS6ovgJ3oKrUFoGGd1UaIR38f/uE+fd0QRx1rsEj8lzrTacZxCEpImjLloPiHeCp+3yCAB4aJqhElBnA1c1+CLgCiHHBnO8/FnwH0/K8r2LkcOCjJQWloPM3YrD+CPVYZUrNtJjzubtM56VUer92JcJFcARqgNw4dFUml1SX0VmeGtkQgByRkk8ZEtV6AgwMg8H88+q9Jdv5pwvg+JVn2OpNk9mNIsiHiWmoz9AnxiGXiBQdGaiv100BBHBwWPkf5vKrL6Hr8QVoPxgzxIETLM5Mmz7PqGep50Khp+V6cTRYwFrrtcAcDwAwR+Y0lvdFq9Kf5zUscuKZK1CJvKIgkLyuEN7k2AD608nVdPuSW1+YOCu+bdp4mbYmD0tDqOCh4o+eF8cy2zZ2ItrAZ8WvjAVirzOmR1gngzk4q20ecpqNDPIygF9B+ASuHejpIRnp4YIjJt710avYLLwnwstemFO6U8rZGiMeilApAyXttIfOBi5jVZvF4kGSn2jlkma7zY1Ykdo+Fxx+0Fl77jCMhz6QQz/g0PhyFVZfOc1gYho1jKdXWK1TKERTPOaQc0tleWW+m5eFdSWrQXjwQxn8BaM7lIuGlIJKs/s6HniGe1tgpLQo7bcCdZjzejyxVv1tonk3akoPS0LjX6ZqIPF7tquMD4OaBqBAOWYCM+LdubyutbXvdQG9cCIow+2PCNOaG0Lhp2Z4jU56LY3fsoMTC08pCNgZsPlVk1QJlI167TEQiPG69qfZNk7aumjUA8vgbDAsYtkztiDq00IWQSH3j83CqnVdIgRnXp7/zRT/LMnjrS44DydT8H4z8JdtVXxaG2lEP3SjVWAjhgYSmGavDnFbh9r/2ApHpbz4YlXO0CxXja46gIAcjIDRGw5Xl33zJzf1hYT0wEwfFgiRqgq3cdrgMHJQU4mloVS0ei9eJjZ8CeSXkWvIeh9zGk8HGF3DJGptS9/Sza2v11HBQYkI8dQTdOuMpjr4cEg7xel/fIDf7X5u093ESGNEtJERDQjwxJNlFbMtDPCTNHcX9JaTBFSoFqOdLNZHwr/plhHgiuFgSghIQLgxx1LHTN/DkvwBIacJ+c8iGJjWxioMyCHOulHO0Y147KL4VwfuW1PDa9pGomVk924GgGPOAHpj5913xaxIHZeUYL2zHN/pVSHzJqNBaIyiGF+E8kypTNncijIHqqSRr8mNwkTNzAsWQZE3nyW848tObL4eEk2yXMotH0pQJQZ+CEBS8OCqnN4qD0vx7MzPW6OvcQZGg6qIonRQA6tTV8anq5pFLgwWAHjyMIoiLMBZiM2lsm5WzLeIbBG2UkWnGPBwekma8gMMsHvNAoXU7ev7V0CsuFVKx9dVBKdsXYgmT+vZuJ2PGWZySHW4Mkmz5e0ozXkFmkGTZl8qZ+dh4zM8Fx4laI3XQNeGguNt6K8nWICh1qZsu4xlIPqECAHNx9M/CiUNQjJo0AU6CMp7qV2d1ae/ua+v4uTKfhb0OlfNqWxPiwc8J36O0MJvONr12Ld/KUTiT941/VkzhSJ3WGVa8keta+AxjStAN53GEqDkDSN+Zj7Nrhll8HByVmbWzhxCUhs2rOkCYXOyDgEZ+51xPiLddPWXPKuWIGx+qWMhx0pYclIbG00L5Zvh7z3wMTLVzOP3EQ8y2bDMxERLsYDQIo7iyeDy1H+ri9q7spPLzufftN6Rcfa8zw8HwbG84ON7X58/W38Gofg+8dkgWT6yCb0z2Ut0z4+FRPFfwWJPSQuvGcl0tnikHQReASwkwrkyNc+QySZdmqZwErOcRpokznkMB4xC35/1p1lYjASGbvCK5Y/SneT0c7eSHoF4axSyCUv25U8qb4tCZNc3YkpFakWSXQYgnkWQbWl1q1sb9VsF1b32+IWMNgHVQ5LZULbNBGMXBI/EVkKoP8fihO95E1XYO0Bv3LTBEE1zsjyn8+oaI6soEuAyXewfwd46qU5CgjVNncm0on/bygudz7eq67L5dY0AKi5GMt1YOrTyznqbrHCsjC4jPBUfBvzhVYRMZ8kESNLrr72gTkmzEST4kTRggjoempe7DiKrtCOeKhnj857AkkBdWYkA+nGEHxXaItOugaKd10pYQlIZmeJ3CYFo91RY9cN7WqfonOgH0by6OireSbA1BFytgNqlm7Amg1BYjdFlMLRyAem5Q/fXDERR8/bKtV1ONyg3DQzy2YmG1147YjGOcunaeGSdFFyLIT44uKXuA+ow2nFZeh6CE8BEA0GYZsNGGISgazg9DAsr2c4uEQkprjLVtG3NQwsnicwv+BxTt2IWRZIlQW0B7H8qBVdncpoOC+jZpSw5KQ1MTMUh5ky2M3MHAE4NXyAXwczL4gl1bq6cmdo7JVtKpLtZJcInM1VkdZN+0fTg8bedLNGqP+u+LPLXYphTGeZBr2tSZyUEJb+tz25yzBOBGBG1VxXVb+vkukTj+O0dn6pwbl4lq0T6IFkMCQ66NkQCvjXaMStnSr+ssioOiEJSBrsodQrINcQoxQTdMP0aH9UYVAtO4uUCSpa/jpA2DJNum920kTjDEf5KWHJSG5hJx8m7rcCI43wRAIuDx9ugk7pm5UOdgYARFTDOOIAfy9qEckqp9IAITXCyQhQz4s6gziqCEOTdhSrJmP30efYxTGivO51N92yZQpaxOE8gVAuKOUgyCQoX3YjhFITooAv8l4PAVUo0YwHyOQWnGw1GVcRLinFWZmR7ODe53SD0s7BgGZdLVpBmvndYOCieeKyRQHbZt5SaU0zlJSw5KQ4sTp3I7N3ij4oiGdO0oHZS6EA93UNCpki/g4ud7Z8LEhHji+C9qcQ6X6Y5DUPCG6evYxWi4SP301d3Abw+pxaPM977rnAga4nEjKCYK4kZQVnUdJNmaUKnLcNkFtVkFiaVZ+AjOtooQGVxThnMhGjcFgLj1A5NkBxH8mbnoauhxmXRhHBY6/3nbddOd6mdD2bzmwKsc8bn+EIpisjyU5KA0NKOOh9eC7t5IcahCOt3W1RChOio8hONum2UZWbh53zCCwgc6v7bUvs5cfa+zuudSZ7FZQBT5yr3ShAGAKJv6OketCARFysbyaV+OmTDHss4h9m9PX6dZZ26Ei4cITal8+tnOg0DkPKhDd1zWMRCU5tfFGRsjy4naZQa/zlfLyPhO/O97ARF8fbIIYwoV0hppMeTkonICQgT2bAeU9TPaQalTTObrFg519iYc5kkOSkOLIURKmhfYMBz38M4Fo31diKfrOInXVVmta4+NL+Bi3yIge9/4dcziBoBPf/4QLwBTOfU9OrLr+ZMLx4tzBLyMzde5CkW+jPCQ74m7JuuDfif0vYbCM7s4fj3P/J5J7Dyok+F3tuUSCCHZJMGFI/l6E+dwSs5zXVtaD6f5tWMKFXZEBMXn2uq56zRlrzCrIslWPBL6Ot5TOJfEQPRZv/E86E04zJMclIZWR7Bzt3U7Cdhj3YFEg5q2pyc72rYJ9Iw3ej5Yt+7qVz/vWhgCt5gQDQA98Xpv0tEk2TgEBd+7FJqrM0KS9WzOxZaiNFgCvjeCunmjL+GOWR3nyZUWz0mwfDPEDrjUr6cf9SgAADj60WuM1xar8GVI+zgkQCEoYXoei80pCuGgjFDRvDAExZ+7o2QCAAJRzFwjKJKmT50Z89+Rrs/LCdSFSTutrPp8RaSdlCUHpaFF1drwINhKzGkzzZi93rZvFjzEI00C4mSwD/+VEw6ufj75iP3MvkWQXI1rey/qzZ+r3J4T/MJDPFJorv769tBa7bVr5KqbtA29NgC935jUUmlTeO4xBwAAwCmP2d94rc5BcWXxcATQeN1RMgIA4PSTDoFzX3EifOJ3n2K8xhd9fzRvERCUEC6F4kIEIigxjhXA4nBQAFB2pcc05By0UAR2PiiTboygkCwe/3vvW6QrAABe/uRD4Yj9V8FLn3Sw2FYZv26WZTDdpmvjpGziDsp73vMeyLIM3vSmN026K07jE9EH/uUbgr9ehntDwQOuro6PNAlcsfX1qzpwx9kvgjvOfpFxAgVwpzg3scVQklUWuikEFwtE1+cLbRPDpz3fEEtMDRRMyiyv7XVpAKBjJia1VOr2O37lCfC/n/UYePevPdFsW4MIOkM8HEExHBSUUm+ZJy990sFw+P6ra/sVWhfKdX2bddt0LPiRXBGCErBR8qzDWKG2EHIwbe8TIgqfQwBxQm+yDor/tRX6In1l73/5k+A7b34OrGEISl1xWoDlk8kzUSXZq6++Gs4//3w44YQTJtmNRmbUXQlIA1Tmi6jXaj84EJAmDkrdydG1eU7FIiiO8FKdRQulRRBNASiBOMQ5ww6OL4elrvRCnbVbeVAdH2VxjqUbNTt8/9XwVy86trat1N6FyHEOiiHU5qi1U2d5TpWBfbgUAPVkdmfbSs8jvJoxRm5DslGU+RPVYxAU870xKrih6E+QFpFQ3sDnkNJUA0r6zCZ7gnZQ9lIEZceOHXDGGWfAJz7xCdh3330n1Y3GZrLsfdrGhSJMUpPdCaktgCZ84y4l2jqLEVoDcCt/1llMJeWyffl+VVbct/8Hrp2ufn4EcXWaGtGY8d3QjAwkv2tjUqbveMTXB4jLxPEm57Lx7KrObZBgmQPC22IExVfTpu7adcZR1rA0Y38ERfV5HjsoEWnjsQiKT6hUEu4LCU/NB5QXAMCHhAAEpa2RK5seifva4XtKE+0qnGo8SZuYg/KGN7wBXvziF8Pznve82vf2ej3Yvn07+bfUFnNaN0I8vptJ3amxjRd82naqnZPrSZMgJtU3NN1UvHZs5kPkpuCt5oquHyIXgFMBfTkssac/qsHi1ZRcHyCOb+H7zOtqQ2ElZu7w4hCP5Azjzw4J2VFn3a99lNCbEapsfl3VFtdd8el6DLKMr199nqdjGFdskN6771ceE2ZVaw8uMRDlZESk+kuXVWjjXomg/Mu//Atcd911cPbZZzd6/9lnnw3r16+v/m3cuHE399C0GI+VIyjSqfHEw/YBAICnHG6iSXUEXRcCkmUZkT2WIT98GjZedlqMc8Pbe6MAi4SgVO1DduqxhbRcO40dlDAHI7QScyzyFSMyV8dBadpWdLYd3BjsoMhxd4SAhCAohDQdhySEyK6HcEimWiavzEvXZpERFF/HkH9PcSUbPJ3KqPRuhd5qDoqfYxh+6G2yl6m5sNdxUDZt2gR/8id/Av/5n/8J09PT9Q0A4Mwzz4Q/+7M/q37fvn37kjspMZthkzjrF37/VLj6zofhhEPXC+2502F/XQoVzHRbVfqyfOoM36xw22EAjBBViyf69Ba+uHGbFdLD68yVcVJnsQTfpto39vYIBYl47nHhIfN1zCPhKAkWGhwIlVpJiCcSQfENVy5WNguAZzZI23yv3yZPHZxY4T1fxzAuuzLOuTJRTP+2ZRZP+bfFDtPYrN0qUfWRI/NJhZ97E04zXnIH5dprr4XNmzfDSSedVP1tOBzCZZddBh/96Eeh1+tBiw36qakpmJqaWuquEqsTW/NpK82DVp7B/xDSKgH8QjySHP000Xdwf36MFshw6O+gTEVslLEORmyhw1ijJ27PhbmqgRJGkq0jRtdePyrEs/s4T5gI6yroJ5WSJ85NrIPiiaDwFOil0iKRHDG/DKLF5qDEOawhoTFloQhsiI5SpYOCsniWqio4QDlmXP1eLiGeJXdQfumXfgluuOEG8rdXv/rV8PjHPx7e8pa3GM7JcrEYKJG/11sSveaUgKFraYJPEYVM6fXwzQq3lU6ldRazqPPFMFZefMkdFEdKbJ2pk2+I9gW/dkj2VXuRUJC48JDZdg1S0HSVQqhDUEJGQlSIJwIJiMswpKdp3/Yx1YgBzPpHvshVHAoZe8BhYdYAgu5giDgoHrfOn5vvFO4iB0Xq916bZrx27Vo4/vjjyd9Wr14N+++/v/H35WQm0bX5iFDqmSpbxJ8ka19oASh0LZHMCPmvphih74aBnS3pVFpnMRwWVbROizR5LjCRDg42JS7mdX0SmgtcHANTpKmCr1fT8nqojffGgMIK/s6Nm0eyZkq/Lun2uAw/k5ASaVMxIZ4okmz42qTaq80qyzwl/o1N3uvS5JlJmVV1FqNKbBT79J6D5fuDijQiDkpIFk9dyYfa67dzgJ79ulMd6nxNyiZCkl2JFiN1D0AXrKiYvdDUVWWV/016PfY0rWww8ve2Y5RksywjjmNMNeGQ62MLSUuNUaLVSpJhKdIUufLvO0YgfB2Bbs14dratCfGsmUJVXLsRDkokn8pfvA5nGAVsNsh8v86Y+R+NoKDQVjzvJy7EG+rg6CKNPiGesm2o/kydXH2ddWsQUDWnJ51mPFGhNmWXXHLJpLtQa4YOSgihcyyVsdipvHghljZK3EZaOClp0atrxAIAFLIwh4UaMlAlgpaaZAsA8KyjD4DLbv45vObpR3q3jdLNiIyfT0VsiABaYrv8rHBioz+5F49l87qrEYKyuuu3vOHT+yjSQfF1OOs2DJfFhjqn2jnMBl47VuKfqPdGcqFiSfKxUvch4p24WnAMcuWNHuPyKE4Oyl4W4lmpVqfmWmdRE6kmDEJCPMLCiC8nvY7XYpz6uhQWne6KnS/vEE88gnLeGSfB/dvm4LEHrvVuGyVSF6ngGfvc91+jSevesHzMRo7bCv3GTgl2VnwtxNmejnD6aPZRHIoRo+bq72DEzaHYsNpiOij+zy3cMeTVyAHiuD/+tIEasnkK8awsiz1t44nvnymD2grXxTonEoKCnRppAcIVK9dNL63PGq1Ei9t7a4nEIyirp9pBzglA5Ik7FtaPFNjzRU1s1465b+n7Pmi9li44aF0zGQPJts/5KwOvQjVPYhCUWLJnlCZOdIgnvH2I2CEdx75IHu3rUjqGvMwGQBwHZbFDPOrQu9elGa9UixUFi9F+wKflOgRFWhhxG2kB6SEv2fc0HGsuYS3f9hwRqbNJZ/FQDsoSw/qdOAclZDNRtljZLtL3ffwh6+Hdpz8R9l3VCeLWKNu6a8G7zaqOPcW5zgjBNpCPpGxJdWkiQzz4/bFhtaXO4jE0XDy+c65jBOCbxbN4Tqn03JZLFk9CUBqa4W1HnNa9nZuajAtS00V4Q4HAU8kBefYxBwIAiCJxu9vwRJvxJFsCAExFbAqLmcUTYjHOWSw8HXNiBwgjkSrD8W//bJd6zsJvPe0wOO2JG4L69rxjHw0AEMQpovMwHBlaarJnDJoWG/qOPRB1atBld9vFQ39820sk2TihtsZNAaA+c3O5hHgSgtLQzGKBESGeCGKgHOLRC6O0b+zsuQfZbzxlI+wz04GTBJn93W34JO+bDQIQt9FOHEGJ0UGJJMnGhtaO3bAOvvyD+7zbATDkSFAydVls9tGpR+0PV962BZ525H7i6x/8X0+CK259CH7x8Qd6fzaeh6s8M4hixnFsqm9Mqj/XUQlBQZX5PjOAOA5KbIg3Bj2SSLJ+2jexqBneU8zXp6oQTyLJrgiLVR2NgVHrCU1uCe+FmkHWbefw0icd7NWnxTKMmgQ5KFHQeDwHJcaw4xmaZqzMn5wYftoHAHj104+EhcEInh2g/xITlovJfAIoHZDPX3MPvPrpR4ivr5/pwIsC0Re8v+BCkE0sRsU29vBEERSvpgBQjqW5wKKV2HznAMDicndiMuEAPEsMsBRlgLAq1CHXxtcHkL+zXzvxEDj9xEOCvpPFtOSgNLTYjA8a4vG7Nl6AJEgU90UiyfrqQfjaxv1mYNPDc0FtsVMSrT2xxBBvrC1m35c6i6fbzuGPf+lx3u34tWM4KCH93rB+Bt4Y2O8666NSD1EISmzKeYwmToCz2m3n2kGJCNn8fLYXdG1lsXWAfB1DA0Hx+N7UfNeFBr0uHU1OnqpBzWL4W4tpy6MXK8AMMSTvEE84jNqkPP3LTjoUnrRxH3jJCebp792nPxEO2WcGPvjyJ3ldt6md+4qT4JB9ZuCjv3Wid1uMoDz1SLkWkcuiQjycg7LkCIqb3OwyA56OIclFwPIhRtJaPe+bKI/GiPbsZvPlVsQItcXC/XST92pqtA+ZQ8cfsg4AAH7pWP+wWlxNqMz5e53FVENuVwhKWLFPjt5E1cNa4nXPxxKC0tBiNzMiyRyxANmu+8H/ZXc+jjt4HVzxl7/odU0f+4WN+wR//j6rNBQ+3Qk7vSlrxYZJlpoku0hIAkCcwNYks5d81UM7EUjD7rZD950JbhuDYvDD0+44ALksNhPvk688Gb5w7T3wmyf7V6iPKdPRbuXQzrMqLO773HmBRx8ngeug+PY9Vn8mpmDnUlpyUBpabDiASN1HpSh7NV32hmP1B+/jv8DXCXe5zEAhlnjDi+HPGATfiAUuJIsnxqYi0JvY0/rutN88+TC44Z5t8KyjA3g5Ec8kXgcF1TeK1MTxvTYAwKPXTcMbnvtY73YAlGTNHbUmNtXOYTCWoo4+JHhVM479zsLDSwBxnMiltOSgNLRWnhG2egwHJUgmX/VjGXu7IZZlGVz+lufCjt4AHoXUSZtazIYVU0F2MSxGsCw27X2SGz1WeI1Skl0mcXJl3XYO7w8Mo8Y4jCYHxe/a0QhKJIclxqbQzU4FjIepTgt2jh2UGO0aAL/vrdvm39nSOUfl9ROCsscZrvoZBan5pgFGwJgrwQ7dd1Vw26mITX6KZQ1NkiTrX4snboGKqbwba1j5OObUutTIz+60mE0+drOKDffFZlbFWEzKOkBcuQnOA/FBYM3563VpIcXZd8yEH5iX0pbXEWSZW1TOfYTU/UqB4yZhND1zaeO4sbb/6m71s++VzZCjX/s9AUFZbhyUGMOOtr8IZCRJNsLJB6DzKEQqIMZwWCekGvJi1kDy46AsHrE5pH3MgXkpbRl3bfkZIbouoZPRWSFw3CQMn8aXutBZrGGCsK+kdLx6aFw14xgj31lEFs9SIz+702IcxsXUaAoqNzFBB2UxnavYNGOf576YCChAAAdlhewpe84MXwJrR8DLUVL36FoJQaG2KkJenId4lprTgFNRD1znx7+JF2qbHIKyBhXV8y1vMEly7+40HC6IKTQIEMdHiBVLC8nEizGCoASRZPFzXzoOW2wF6t1dLHC5WOKgeFiMSBTJ4ok44cTUQNkTDYvQ+WbhxJDcFssueNXJ8P3bt8BLTvBT8l1MiHipQyXYqVw347cErUHVtvuCavJKtUkKDsakfQPQKs5Lj6Bk6OdIBMXXyedpxh7zKJagb4jMxQg1LmMEJTkoHtaOCvGEoyD4lBBS8XNPNlxB1le4izsoISewWHvu4w+E5wbUfeGLYRSLf4kds0OQXsgBnplbGHEZDCdbJ2QxLSrNeDEr2wY4q6uRwzndXloHBYcLgxCUiBIDMUJtZojW69KQZRl0WzksDEOTNhCiv4y5XMlB8bCYWO1UhMeKB9NwDzo1LobFLFCxaoyTtFj10ElyOabaLfjKHz0dts8NYH9PBwWHxbC0/Eq3KKG2SA7KVGSIB8/BpQ7xrEM6SiF9n45R8I1AYFt5Blmmi7uGhFm6be2gxOigJARlDzE8AH1PKdPdcDEkjAzEliff02wVygjxrX/SadFFYrnparhsMaXulxqWBwA44dB9oj+jvychKFjPw9PR7rZyMo59HfXYEA++Hud17W5bOx2HoODwlD9hO7xYYJZl0GnllZJsCIo51c5hx7h80VJXM18qWzkr8jKwmDgxhqZ9B9NyJjFN2lajBcbXQcmyLPr0OClbTJLs6t1cTHKx7fEHrQUAgP954mQqcO8Ow1wqX1zIHMdLG+LBG/OSIyjTcQgKCRFHPDeAALHESH2rGNmLlaKtlRAUD4shyRIHZeXsg8ve8AKFs0OaWreVVym+K0lXg/NtfPuOYfndXe16se2CV58MP71vO/xiAHdnuRp2EufGyqY+NtVuVePYFwWJTdXFXKAQBCbG1k2Hi/4B0LHvL9QWS07GiLxXU+N6vn0nyQXL+ACcHBQPw1C4L6oxExHiwZZIstSOOWgtPGpNFw5aPw0HrPWXyseTc0UhKEw107fvuAbSSrMN62dgw/rwwnzL0XDodkdv4N1+upPDtrnyZ9+xgNemkE3+0eumq5+XOgSNOSghSyMWDYwpFwEQmUkTsCfgNr5E15lOeFr7UlpyUDxsOkJ1cDoixIPt4Z0LwW33RFsz1YbL/r/nQp5lQYsjhjeXWqY7xvii4jsecThsTyKb7gmGBfya2nTEhhO7Wb3y1CPgji074WlH7ufdNtYwihHEQemGh4gXs6JwSJiFOCie7fF3PonsxaaWHBQPw6Qo3wGFB0RMzG9XAPy7pxteZHwtj4BJJ2ncIfHdWLAztyel665ke+tLjoNPf+9O+IsXHuPdFmej8EJ0dUYRlDCS7LtPf6J3u8UwPI6ftHEf7/Z4XfYNEcfKzcfyQIiDEoHoJwdlDzF8wvY9bc9EhIeIpcPuohr+KlYSglJmAWQV+hHDn/FN9U22e+y1zzgSXvuMI4PaYnQ3BkFZSTwsZRe97mlw95Zd8OyjD/Bui0M83g7KIgrkhYR42uRwFe6ghFSBXipLDoqHYW/d1+skHmvEIrCcCU0r0TA0utJSuDutHPrDcan4APTnY2ecBJfd/HP49ScfuthdS7bEFiOVj0MbvmKHy8FOPepRcOpRYW1nEPqKVYqbWJuld3vr1yCkK+TQilEX3/arOnHp2UtlyUHxMDwEfNnq04sU81tJYmIrwVaaU4Jtqp1XIb8Q9OdFT9wAL3rihsXuVrIJ2FQEgoLXppWW0RVreD0NyQJs5xrFjOOgeF8aYnzJ6W647s5S2vLt2TI0vJn5ivrEkpL+9leeAAAAH3nFid5tk9ltJSNS0wSaT1N5bzZ8YPI9PGEEZaVp4sQa1lFaHcBlwyhGTA2lkMSJ/iA83r/PTLf62bdQ6VJaQlA8LOawTUM8/ovAK089An7j5I0TUf1MtjyNOCgr2NFKFm8Y4ucp6HW2OgA52FPs6UftD6869Qg46sA1QWGWdp7BWMw1jiQbcO0YJeVuO4dzX3Ei3PHQTjjpsH2DP2d32947MgMshkS5GGldyTlZfFvJGSxTkQqgyfYco2Tv8BDP3obEtVs5vGOMTodYTCYN3gdCzhcLkWvXS5+0/JWY967RGGmPedSa4LY0zXgxepNsMWypa4csplEEJU3lvdliQg0AAC8+YQMcsHYKXnrC8t+0lpPFaJGQisJLjKCsFEsIiof9zimHw4Pb5+F5xz3auy0mJe1tp5TlbH/4nKPgL77wI/iVFXCa4BZTfyXZnmW4ynkI8fujrzgRhqMirU2ehh0L7yKwi1iLZ0+15KB42HSnBX/zkuOC2sZUK022++zXn3woPOHg9XDUgasn3RVv25uh+WTUYksXZFmWwoQBFkOyj6ntBgDwspMOhb//9i1w7IZ1wX1Y7pYclCWyLMvgecc+GjY9vGtZk5L2NsuyDI47eGVOcCLOleKGe7W98tQj4Js/eQB+7cRDJt2VvcoyCJ93sQjKG577WHjsgWvglKP2D+7DcrfkoCyhfeJ3nwwAK1t7I9nysW47ISjJSjv+kPXwg7e9YEWnza9EG0YUbyVCbQF7Qredrwiia4wlB2UJLTkmyRbTMCKf4PlkyTlZeitiHBQS4lmM3ux5lh5LsmQr1BAvElat4GykZMlWqo0iaqPRNOPkXEqWHJRkyVaojdDpLYV4kiVbeuv1w6vLxwq17Q2WVrVkyVaoDWOOb8mSJYu2nQvhDkqs1P3eYMlBSZZshZpi76/1rMKaLFmyxbHnjzWxnnbkft5tY4sF7g2WVrZkyVao/fbTDocsy+CUx+y5aYbJki1ne9f/PB6efPi+8IqTD/NuS5VkE1YgWXJQkiVboZbnGfzO/zh80t1IlmyvtUevm4bff/ZRQW0xSbbrWeBxb7HktiVLlixZsmRLbJgkuzfI1odYeirJkiVLlizZEttMNxX7rLP0VJIlS5YsWbIlNlxLq5NCPKIlByVZsmTJkiVbYptBDko3hXhES08lWbJkyZIlW2JblUI8tZaeSrJkyZIlS7bEhkM8U520FUs2kady3nnnwQknnADr1q2DdevWwSmnnALf+MY3JtGVZMmSJUuWbMkNIyhrppLih2QTcVAOPfRQeM973gPXXnstXHPNNfCLv/iL8Ku/+qvwk5/8ZBLdSZYsWbJkyZbUZpKDUmsTeSovfelLye9nnXUWnHfeefD9738fnvCEJ0yiS8mSJUuWLNmS2b6rutXP61d1JtiT5WsTd9uGwyF8/vOfh507d8Ipp5wivqfX60Gv16t+3759+1J1L1myZMmSJVt0m+604K0vOQ5u+/kOeOZjHzXp7ixLm5iDcsMNN8App5wC8/PzsGbNGvjSl74Exx13nPjes88+G/72b/92iXuYLFmyZMmS7T577TOOnHQXlrVlRVFMpGb7wsIC3H333bBt2zb4whe+AP/4j/8Il156qeikSAjKxo0bYdu2bbBu3bql7HayZMmSJUuWLNC2b98O69evb7R/T8xB4fa85z0PjjrqKDj//PNr3+tzg8mSJUuWLFmy5WE++/eySb4ejUYEJUmWLFmyZMmS7b02EQ7KmWeeCaeddhocdthhMDs7CxdddBFccskl8K1vfWsS3UmWLFmyZMmSLTObiIOyefNm+N3f/V24//77Yf369XDCCSfAt771LXj+858/ie4kS5YsWbJkyZaZTcRB+eQnPzmJyyZLlixZsmTJVogtGw5KsmTJkiVLliyZsuSgJEuWLFmyZMmWnSUHJVmyZMmSJUu27Cw5KMmSJUuWLFmyZWfJQUmWLFmyZMmSLTtLDkqyZMmSJUuWbNnZxKsZh5hS509VjZMlS5YsWbKVY2rfblJlZ0U6KLOzswAAsHHjxgn3JFmyZMmSJUvma7Ozs7B+/Xrne5ZNsUAfG41GcN9998HatWshy7JJd8cwVW1506ZNe0Uxw73tfgH2vnue1P2m57xnW7rfPduk+y2KAmZnZ+Hggw+GPHezTFYkgpLnORx66KGT7katrVu3bq8YhMr2tvsF2PvueVL3m57znm3pfvds4/dbh5woSyTZZMmSJUuWLNmys+SgJEuWLFmyZMmWnSUHZTfY1NQUvP3tb4epqalJd2VJbG+7X4C9754ndb/pOe/Zlu53z7bY+12RJNlkyZIlS5Ys2Z5tCUFJlixZsmTJki07Sw5KsmTJkiVLlmzZWXJQkiVLlixZsmTLzpKDkixZsmTJkiVbdpYclGTJkiVLlizZsrPkoATaD3/4w1SsMFmyZMmS7dW2O/fC5KB42r333gv/63/9LzjxxBPh05/+9KS7s9ttx44dsG3bNgBoVn1ypdt9990HT3va0+CDH/zgpLuyJLZ582a47LLL4Pbbb1/S66ZxtWfbpMbVpGzz5s1w0UUXwRVXXAFbt26ddHeWxJZiL0wOiof92Z/9GRx22GEwNzcH++67L6xdu3bSXdqt9o53vAOOP/54+NKXvgQAsCwLMy6mvelNb4IjjjgCHv3oR8MZZ5wx6e7sdvvrv/5reMxjHgNve9vb4IQTToB3vetdcNdddwFAWZBzd1kaV3u2TWpcTcr+8i//Eh772MfC+eefD7/8y78Mb3zjG+HOO++cdLd2qy3ZXlgkq7VvfOMbxbp164pf+IVfKC699NKiKIriBS94QfEbv/EbE+7Z7rEtW7YUr33ta4uTTjqpOPzww4uXv/zlxc0331wURVGMRqMJ927x7Wc/+1lx8MEHF8ccc0xx9dVXT7o7S2If/ehHi6c+9anFJZdcUszOzhYf//jHi1NOOaX4tV/7td12zTSu9nybxLialN1zzz3FC1/4wuKpT31qcemllxa9Xq/453/+5+L4448v/uM//mPS3dstttR7YUJQGtgDDzwA559/Plx//fXwrGc9CxYWFuCII46A2dnZPZKHMhgMYMOGDfB3f/d38E//9E9wxRVXwLe+9S3o9/t75Gl327ZtsG7dOjjttNPgKU95Clx33XXwt3/7t3DBBRfA9ddfP+nuLaoVRQGDwQC+9rWvwUknnQTPfvazYc2aNfD6178ejj76aPjSl74EF110EQAADIfDRbmesr1hXOH73RvGlbrfpR5Xy8H6/T686EUvgk9+8pPwrGc9C7rdLrzsZS+DLMvg6KOPnnT3dost+V64W9yeFW7qNLewsGC8NhgMiqIoire+9a3F4x73OPL+lWr9fp/cQ7/fLx588MHq91e96lXFqaeeWlx11VWT6N6iG7/f+fn54vzzzy9Wr15d/Mqv/Epx+OGHF8973vOKww8/vHjUox5VvO9975tgb+ON3++WLVuKE088sTjnnHPI+970pjcVRx55ZLFhw4ZqnMdYr9cr5ufnST/25HHF73dPH1f8fpdqXE3K1BxS99Dv94uHH364en3r1q3FS1/60uLoo48uXv3qVxdf/OIXV/zeMOm9MCEozM4991x4xzveAQAAnU7HeD3Py0f2i7/4i3D//ffD/9/euYdFcZ1x+BsUVwyImAgoBaFQRQggoqABiprLErViooZHEDUxQqpExCRPk1j6aKBKqxYvtTUUGoEaE+qVx7R9iFU0RIPGayMqCiJqQAhqgIXIZX/9g+zIChgus8vs7vf+tTs7s+e8Z87O+XbOmXMuX75s0P/+1q1bRy+99BJFRERQTk4OqVQq6t+/P9na2or9xUlJSXT79m3av38/3b9/n4gMd2Djo751dXWkUChoypQpFBoaStXV1bRnzx7au3cvlZaWUlRUFO3bt08cL2FoaHwjIyMpJyeHamtraejQoTR+/HhKT0+ntLQ0amhooISEBNq3bx+tXLmSLC0txX+7PWX16tUUFBREYWFhlJqaSnfv3jXqevWob3V1NSkUCpo8eTIplUqjq1eP+n733XdivUpLS9NZveor2rYL/fr1IyKi/v37k42NDRER3bx5k0aOHEn19fX0/vvvk0qlolWrVtF7773XV1nuNbJoCyUNdwyYc+fOQalUQhAEeHl54b///S8AoKWlpcP9Dx06BGdnZ3z++ef6zKZkFBQUYOzYsXj66aeRkpKCkJAQ+Pr6IiUlRWs/TZScmJgId3d3/Pvf/xY/M6R/B535bty4EUCrS35+Pk6dOgW1Wi1637x5E56enli/fn1fZr/bdOa7YcMGAEBDQwNefvlluLq6wsbGBq6urjh+/DgAwN3dHR999FGP0m1qakJUVBTc3NyQkZGBefPmwdPTE9OnT9faz1jqVWe+06ZNA/CwXp08edIo6lVnvi+++CIA3dWrvqIr7YKmvp49e1br2ISEBPj6+uL777/XW36lQE5tIQcoP7Jx40bMnDkTGRkZmDZtGqKiotDU1ASg4wtmQ0MDnnjiCXz88ccAOj95cqSqqgrR0dFYsmQJamtrxe3h4eGIjo7Wup2ncVer1fDx8cHixYtRUlKC/fv3Y+vWrXrPe0/4Kd8HDx4AgHi+NWjc7ezssGrVKv1luJf8lG99fT0AQKVSoaioCCdOnBD3efDgAZ566imkpaX1KO2SkhK4u7sjJydH3JabmwsLCwutW/+a34sh1yvg8b6a4PfRbg1DrVfA4301XVb19fW4cuWKpPWqr+huu9B2+7x58xASEoL6+nqDCrrl1BZygPIj5eXl4qjkTZs2ISAgADt27ADQ8Umpq6uDUqlETEyMXvMpBVVVVVi9ejVOnz4N4GH/4ttvvw1/f/92+2susNnZ2Rg2bBicnJzQv39/bNmyRX+Z7gXd9W3LgQMH4Ovri4sXL+o8n1LRG98dO3ZgwoQJqKqq6lHaV65cgSAIuHHjhtb2tWvXYsiQIVrbDb1eAd3zbYsh1ivg8b7W1tad+va2XvUV3W0XNJw+fRqTJ09Genq6XvIpJXJqCzlA6YCbN29i7ty5mD59OioqKgB0HBWOHTsWkZGRWgPFDIW2dws0lW7hwoWIj4/vcP/S0lK88cYbEAQBr776Kqqrq/WST6noju///vc/nDx5EitWrMCTTz6J9957r93dFbnTHd/KykocOnQIy5cvx+DBg5GYmIiWlpYe/esrLCzE2LFj2w0A/f777/Hzn/8cK1euBPAwODH0etVVX7VabRT1qqu+LS0tktYrOfBT7cLly5dx7NgxxMXFYfDgwYiJiRHvVhoqfd0WmkyA0tUfhabwP/74Y0yaNAm///3v2+2juah88sknuHDhgnSZlJDH+bbttmlLYGAgMjMzO/wsPj4e9vb2sn3iQkrf7du3Y8KECZg0aRK++uorHeS290jpe/XqVcTGxiIwMPAnfX/qd1RXV4fw8HDMnj0b169fB/DwN7V+/Xo4OTmhoaFB3N+Q6xXQNV9NI2Xo9Qro3vntTr3qK6RsF3bv3o2wsDBMmTIFBQUFkuZTSgypLTSJAOXu3buoqakR37eNAB/9B6N5X19fj5iYGISEhOD8+fMAIN4yl/ujct3x1bhcv34dVlZWWpWsvLxcfN12LIPckMr39u3bAICamhrxnMsRqXy//fZb8Ziu3HqvqqrCnTt3xO/sLN1du3bB29sbf/jDH7SOT01NxdNPP63VDSDneiWVr6Yhr6urk3W9kvr8qtVqWXfpdNW37fuO2gXNJHwqlQrFxcX6yHqPkcpZX22h0QcosbGxcHV1RUhICObPny9elNuiVqvFPjbg4Uk7fPgwnn32WYSHhyM0NBSCIHR4vJzoiS8A/OUvf8HYsWMBtM6Q+Morr2DChAlaz/nLEal95d7F0Fe+S5cuhb29PXx8fPDss8/i6tWr7fZpbm7GP/7xDwDAG2+8gYkTJ2rNqLl27VoEBQXJPsAH2Jd9u9cuaP7cyBmpnfXRFhptgFJbW4sZM2YgMDAQR48eRVpaGp555hn4+vrim2++Eff78MMPYWtri2nTpmlNIgUAd+7cgaenJwRBwEsvvYTS0lJ9a3SZnvhWVlaK2+Pj4xEXF4e1a9fCwsICU6dOxa1bt/pCpUuwr/5833rrLfj6+iIvLw+ZmZkICgqCl5cXjh071i7dF154AY2Njbh06RJee+019O/fH7/+9a8RGxsLa2tr8QkdOY9DYF/2NZZ2QYOhOhttgPLFF1/Aw8MD586dE7fdvn0b5ubmWLJkCe7cuYM9e/bAwcEB6enp7aL+EydOYOjQoXB3d0d+fr6+s99teuOrUqng7OwMQRAwatQo5Obm9oVCt2Bf3fuq1WqoVCpMmDABq1evFrfX19fD19cXkZGRuHHjBvbt24cRI0YgPT293W3iDRs2IDo6GkqlUpxPQa6wbyvs+9DX0NsFQ3c22gBl7969eOKJJ7S2nTt3DnZ2dnBxcUF2djaAzvvA6+rqkJWVpfN8SkVvfKurqxEVFYWdO3fqJa9SwL768b116xbs7e3FeS80c8ZkZ2fD09MT27dvB9D6e2mLnP9BPw72ZV+gva8GQ2sXAMN2NooAZe3atVixYgW2b98uFn5BQQFGjRqFhIQEcb+lS5ciPj4enp6eiIiIANDxD03uPz4pfeXuCrAvoB/fPXv2aM16qTl20qRJ4ve3/QcdFhaGmTNntrsdbCiwL/t2x9cQrh3G5mzQAcrly5fh4eEBLy8vhIeHw8bGBr/85S9x9uxZtLS0YPPmzRAEAc888wwGDx4MNzc31NTUICsrCzY2Nn2d/W7DvuyrC98jR45g9OjREAQBH374obhdc3FKT0+Hubk5ioqKAEB8jDQ3NxcDBw4Ux7L09cWsq7BvK+xrHL6A8TobdICyceNGTJo0SYwIy8vL4ePjg7lz56KkpAQAkJeXh23btuHgwYPicdu2bYOfnx++++67Psl3T2Ff9pXat7CwEOHh4Vi2bBmio6Ph5OTUbnR+SUkJgoKCMHXqVK3tRUVFsLa2lv3Yg7awL/saky9g3M4GG6A0NTXhtddeQ1hYmFbUl52djYCAALz77rsdHtfc3IyIiAi8+uqr+sqqJLBvK+yrTW99KyoqkJaWhsLCQtTU1MDBwQFvvfWW1j5qtRr/+te/oFAo8Mc//lF8Oig1iAT6fgAADYlJREFUNRXjx4/XmpNF7rAv+xqTL2DczgYboABAZGQkXnjhBTQ3N2uNPF62bBmmTp2KM2fOiNuKiopw7do1xMTEwMnJCYcPHwYgv1taj4N9W2FfaX3bTtb097//HQqFQutpIQ1/+9vfYGdnhzFjxmDOnDlQKBRISkqCWq02qHJmX/YFjMcXMF5ngwxQNBfvI0eOwMzMTFzmWnNrPC8vD25ubuKTDUDrRFWjRo1CQECAbKen7wz2PQuAfXXp2/biFBAQgJkzZ3a4TsyXX36JLVu2YMWKFR1eAA0F9mVfwHh8AeN0lm2AUlpaips3bwJoP52uptAbGhoQEhKC5557DoD2CXJ1dcUHH3wgvq+urhanJJYj7PsQ9pXOtyvpatCkd+zYMZiZmYmPJTY3N2tN+iZn2Pch7Gv4voBpOmuQZYCyf/9+CIKAWbNmaW1ve3Kam5tRUVGBvLw8mJub469//at4m+vu3bvw9vbGn//8Z73mu6ewbyvsK61vV9JtamoSVyltS2RkJPz8/HDo0CEolUr89re/RWNjY7fS1zfs2wr7GocvYJrObZFlgPL+++9j4sSJGDduHHbv3g1A+4Rs3rwZAwYMENcMSEpKgq2tLV5//XUcO3YM8fHxcHFxwaVLl/ok/92FfdlXF75dSVehUOCjjz5q1/98/PhxCIIAQRCgVCplvyYTwL4A+xqTL2Cazm2RVYCi+ce4bNkyvPnmm1i8eDGCg4PFqO/+/fuIjIzEiBEjkJGRoXVCtmzZguDgYHh5ecHHx0fWy11rYF/21YVvd9LNzMzUSre5uRkZGRkwNzdHQECA1sBcucK+7GtMvoBpOneErAIUoLUPTalU4quvvsLBgwfh4eGBzZs3A2g9KadOnep0qfmWlhZxvghDgX3ZVxe+3U1Xg0qlwqZNm7QmezIE2Jd9jckXME3nR+lPfcTu3btpyJAh5OnpScOHDyciopaWFurXrx/169ePGhsbaeLEifTyyy9Teno6FRQUkJeXF61cuZIGDBggfo+ZmZnWaxcXF727dAX2ZV9d+EqVroZBgwZRXFycFEWiE9iXfY3Jl8g0nbuMviOizMxM2Nrawt/fH8OGDUNgYCD27dsnfn737l3Y29uLa5DEx8dj4MCBsLCwwNdff63v7PYa9mVfXfhyObMv+xquL2Cazt1FbwFKU1MTNm3ahDFjxiAtLQ0PHjzAl19+iQULFuDFF1/EDz/8AKB1Cfnw8HDs2rULXl5eeOqppzBjxgy4u7uLj1U++qiVHGFf9gWk9+VyZl+AfQ3VFzBN556itwDl/v37WLVqFZKTk7X62ZOTkxEYGCguE19WVgZBEGBubo5ly5bh3r17uHjxIkJDQxEUFKSv7PYa9m2FfaX15XJuhX3Z1xB9AdN07ik6HYNy9epVcnNzI0EQyNramubMmUNeXl5kZmZGarWazMzMyNHRkVQqldiX5ujoSLt27SIXFxfy9/cnIqIhQ4bQrFmzqLa2lgAQEZEgCLrMeo9gX/bVhS+XM/uyr+H6EpmmsyToIur59NNP4ezsjNGjR8Pf3x9paWlan7eNGiMiIrBo0SIA6HASGc3jU3K+lcW+7KtBSl8uZ/bVwL7aGIIvYJrOUiJ5gJKbmwtnZ2ds27YN//nPf7By5UqYm5sjNTUVDQ0NACAuTNTQ0ABvb29kZWW1+x5DOQnsy7668OVyZl/2NVxfwDSdpUayAEUT3a1ZswZ+fn5aEeDSpUsxfvx47N27V+uY27dvw9nZGUVFRQBaV2iNj4+XKks6hX3ZVxe+XM7sy76G6wuYprOuMPvpTqCuoekHKywsJFdXVzI3N6empiYiIkpKSqKBAwfSgQMHqKKiQjzm0KFD5OjoSMOHD6e4uDjy8PCgGzduUFNTk9i/JlfYl3114cvlzL7sa7i+RKbprDN6Gtnk5ubizTffREpKitY03KmpqbCyshJvS2mix9TUVIwaNQpHjhwB0Bplzp07FzY2NnjyySfh6ekp69Vo2bcV9pXWl8u5FfZlX8DwfAHTdNYX3Q5Qvv32W8yYMQO2traIjIyEl5cXrK2txRNz5coVODg4ICEhAQDESWYAwN7eHikpKQBap+OdMWMGfvazn+GTTz6RQEU3sC/76sKXy5l92bcVQ/QFTNNZ33QrQFGpVFi4cCHCw8O11gjx9/cXRx/X1NQgKSkJFhYWKCsrA/CwTy4kJASvv/66eJzcZ8Nj31bYV1pfLudW2Jd9AcPzBUzTuS/o1hiUQYMGkUKhoEWLFpGLiws1NzcTEdG0adPo0qVLBICsrKwoIiKCxo0bR6+88grduHGDBEGgsrIyqqyspFmzZonf5+fnJ2l3ldSwL/vqwpfLmX3Z13B9iUzTuU/obkTTdkSy5hnuiIgILFmyRGu/W7duwc3NDc7OzpgzZw5GjBiBqVOnoqKiomehVB/BvuwLSO/L5cy+APsaqi9gms76RgB6P0Q4KCiIlixZQgsXLiS1Wk1ErSuxXrt2jU6fPk0FBQXk4+NDCxcu7HVAJQfYl3114cvlzL7sa9iYorNO6W2EU1xcDDs7O60+tLaDgYwN9mVfY0q3r2Bf9jU2TNFZ1/R4HhT8eOMlPz+fLC0txT60NWvWUFxcHFVWVkoTQckE9mVfY0q3r2Bf9jU2TNFZX/R4sUDNZDQnT56k2bNn0+eff07R0dFUX19PWVlZZGtrK1km5QD7sq8xpdtXsC/7Ghum6Kw3enP7paGhAW5ubhAEAQqFAsnJyb28oSNv2Jd9jSndvoJ92dfYMEVnfdDrQbLPP/88/eIXv6A//elPNHDgQKniJtnCvsZNX/lyORs37Gv8mKKzrul1gNLS0kL9+vWTKj+yh32Nm77y5XI2btjX+DFFZ10jyWPGDMMwDMMwUiLZasYMwzAMwzBSwQEKwzAMwzCygwMUhmEYhmFkBwcoDMMwDMPIDg5QGIZhGIaRHRygMAzDMAwjOzhAYRim20yePJlWrFhhcmkzDKM/OEBhGEan5OXlkSAIdP/+fUmO27t3LyUmJkqXQYZhZEmPFwtkGIbpC4YOHdrXWWAYRg/wHRSGYR6LSqWiBQsWkKWlJQ0fPpw2btyo9XlWVhaNHz+erKysyN7eniIiIsQl5ktLS2nKlClERGRjY0OCINCiRYuIiEitVtO6devIxcWFLCwsyMfHh3bv3v2Txz3axePs7ExJSUliHkeOHEk5OTlUVVVFYWFhZGlpSd7e3vT1119r5Ts/P5+Cg4PJwsKCHB0dafny5aRSqaQuPoZheggHKAzDPJZ33nmHjh49SgcOHKDc3FzKy8ujM2fOiJ83NTVRYmIinT9/nvbv30+lpaViMOHo6Eh79uwhIqIrV65QeXk5bd68mYiI1q1bR5mZmbR9+3a6ePEixcfH0/z58+no0aOPPa4jUlJSKDAwkM6ePUvTp0+nqKgoWrBgAc2fP5/OnDlDrq6utGDBAtKs7FFcXEyhoaE0e/ZsunDhAn366aeUn59PsbGxuihChmF6Qh+upMwwjMypra3FgAEDkJ2dLW6rrq6GhYUF4uLiOjzm1KlTICLU1tYCAI4cOQIiwr1798R9fvjhBwwaNAjHjx/XOnbx4sWYN29ep8cBQEhIiFbaI0eOxPz588X35eXlICIkJCSI206cOAEiQnl5uZhOdHS01vd+8cUXMDMzQ0NDw+MLhWEYvcBjUBiG6ZTi4mJqbGykgIAAcdvQoUNp9OjR4vvTp0/T6tWr6fz583Tv3j1Sq9VERFRWVkYeHh4dfu+1a9eovr6enn/+ea3tjY2N5Ovr2+18ent7i6/t7OyIiMjLy6vdtsrKSrK3t6fz58/ThQsXaOfOneI+AEitVtP169dpzJgx3c4DwzDSwgEKwzA9RqVSkVKpJKVSSTt37qRhw4ZRWVkZKZVKamxs7PS4uro6IiL67LPPyMHBQeszhULR7XyYm5uLrwVB6HSbJniqq6ujmJgYWr58ebvvcnJy6nb6DMNIDwcoDMN0iqurK5mbm1NBQYHYcN+7d4+KioooJCSELl++TNXV1ZScnEyOjo5ERO0Gow4YMICIiFpaWsRtHh4epFAoqKysjEJCQjpMu6PjpGLcuHFUWFhIbm5ukn83wzDSwINkGYbpFEtLS1q8eDG98847dPjwYfrmm29o0aJFZGbWeulwcnKiAQMG0NatW6mkpIRycnLazVEycuRIEgSBDh48SFVVVVRXV0dWVlb09ttvU3x8PGVkZFBxcTGdOXOGtm7dShkZGZ0eJxW/+c1v6Pjx4xQbG0vnzp2jq1ev0oEDB3iQLMPICA5QGIZ5LOvXr6fg4GD61a9+Rc899xwFBQWRn58fERENGzaMduzYQf/85z/Jw8ODkpOTacOGDVrHOzg40Jo1a+jdd98lOzs7MQhITEykhIQEWrduHY0ZM4ZCQ0Pps88+IxcXl8ceJwXe3t509OhRKioqouDgYPL19aXf/e53NGLECMnSYBimdwjAj8/dMQzDMAzDyAS+g8IwDMMwjOzgAIVhGIZhGNnBAQrDMAzDMLKDAxSGYRiGYWQHBygMwzAMw8gODlAYhmEYhpEdHKAwDMMwDCM7OEBhGIZhGEZ2cIDCMAzDMIzs4ACFYRiGYRjZwQEKwzAMwzCy4/+ZGLootWv1bAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "tol.plot(y='gage height ft', kind='line')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "What a nice view showing impact of the tides on the gage height... we can see the high-highs, low-highs, high-lows, and low-lows!\n", + "\n", + "#### *Exercise*:\n", + "Set a few plot parameters to inprove the plot:\n", + "* title, xlabel, ylabel\n", + "* use figsize to make the plot wider. Try (10,5) to start.\n", + "* change y='...' to a list y=['...', '...'] and add the specific conductance column\n", + "* sharing an axis between gauge height and specific conductance doesn't work very well, so set secondary_y='specific conductance uS/cm'. \n", + "What migh twe say aobut the tide cycle at this station, seen via gauge height, and the conductance? \n", + "\n", + "## Scatter\n", + "Scatter plots are useful for visualizing correlation, distribution, and clustering of data. Let's see if there's a relatinship between salinity and conductance in our data:" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 52, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAGwCAYAAABIC3rIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABiVklEQVR4nO3deVyU5f4//tewgzgDskqigiIuuRuKC65paqVHT6nfculo59TBLT+2PSpbrKxOWWaWp45LntLSjplHyyXcFXEDt6OkgoIp+w7Kev/+8MfEAHPPzD33zczNvJ6PB4/ivm4urptR5821vN8aQRAEEBERETkwJ1sPgIiIiMjWGBARERGRw2NARERERA6PARERERE5PAZERERE5PAYEBEREZHDY0BEREREDs/F1gNQg5qaGty6dQstW7aERqOx9XCIiIjIDIIgoLi4GCEhIXByEp8DYkBkhlu3biE0NNTWwyAiIiIJ0tPT0aZNG9F7GBCZoWXLlgDu/UC1Wq2NR0NERETmKCoqQmhoqP59XAwDIjPULpNptVoGRERERCpjznYXbqomIiIih8eAiIiIiBweAyIiIiJyeAyIiIiIyOExICIiIiKHx4CIiIiIHB4DIiIiInJ4DIiIiIjI4TEgIiIiIofHgIiIiIgcHkt3EBERNSMp2SW4kVeG9n4tEObfwtbDUQ0GRERERM1AQVkF5m9KwqEr2fprMREBWDmtN3RerjYcmTpwyYyIiKgZmL8pCUev5hhcO3o1B/M2JdpoROrCgIiIiEjlUrJLcOhKNqoFweB6tSDg0JVspOaU2mhk6sGAiIiISOVu5JWJtl/PZUBkCgMiIiIilWvXyku0vb0fN1ebwoCIiIhI5cIDvOFrZOO0r5crT5uZgQERERGRyqVklyC/rLLRtvyySu4hMgMDIiIiIpXjHiLrMSAiIiJSOe4hsh4DIiIiIpULD/BGTEQAnDUag+vOGg1iIgK4h8gMDIiIiIiagbcn3g+tp2EBCq2nC96ZeL+NRqQuDIiIiIiagVe3XUDRnSqDa0V3qvDKtgs2GpG6MCAiIiJSuabIVJ2SXYL9yVnN9sQai7sSERGpnDmnzKTuI2qKorEHk7OQdLMAfdr6YkhEgCx9WooBERERkcopecpMrGjshtlRkvsFgBu5pZi46qhBDiVfL1dsjx2MUD/xZ5Ibl8yIiIhUTqlTZkovxdUPhoB7iSQfXXXEqn6lYEBERETUDKyc1huDOvobXBvU0R8rp/WW3KeSCR8PJmeJZtc+XGeJrilwyYyIiKiJpWSX4EZeGdr7tZAtR5DOyxUbZkchNacU13NLZelbyaW4pJsFou1n0vKbdD8RAyIiIqIm0hQblMP85QuyTqbmibafup4n+Xv1auMj2t6nra+kfqXikhkREVETEdugbI/iU3NF249eyxFtFzM0MhC+RoJAXy/XJj9txoCIiIioCTRFriC5RYf5ibYP6uAv2m7K9tjBDYKi2lNmTY1LZkRERE1AyVxBSpkS1RavbLuAqhqhQZuLkwaP9Qu1qv9QPy8kLhmNw1eycSYt36Z5iDhDRERE1ATUWpF+e+wguDgZHud3cdJge+wg2b7HkIgALBjZyWbBEGBHAdF7770HjUaDhQsX6q/dvXsXsbGx8PPzg7e3NyZPnozMzEyDr0tLS8P48ePh5eWFwMBAPP/886iqMqzlcuDAAfTp0wfu7u7o2LEj1q9f3wRPRERE9Ae1VqTvep8OV98dh3/8uQcm9g7BP/7cA1ffHYeu9+lsPTRZ2UVAdPLkSfzzn/9Ejx49DK4/99xz+O9//4stW7bg4MGDuHXrFiZNmqRvr66uxvjx41FRUYFjx47h66+/xvr167FkyRL9PampqRg/fjyGDx+OpKQkLFy4EHPmzMHu3bub7PmIiIgAZXIF1XcwOQsr4n6TPY/PY/1C8cmU3lYvk9krjSAIDRcGm1BJSQn69OmDzz//HG+//TZ69eqFTz75BIWFhQgICMDGjRvx5z//GQBw+fJldOnSBfHx8RgwYAB++eUXPPzww7h16xaCgoIAAKtXr8aLL76I7OxsuLm54cUXX8TOnTtx4cIf1X6nTp2KgoIC7Nq1y6wxFhUVQafTobCwEFqtVv4fAhERORQ5cwXVsqcyGPbCkvdvm88QxcbGYvz48Rg1apTB9dOnT6OystLgeufOndG2bVvEx8cDAOLj49G9e3d9MAQAY8aMQVFRES5evKi/p37fY8aM0ffRmPLychQVFRl8EBERySXMvwWGRwbKukxmT2Uw1MimAdF3332HM2fOYNmyZQ3aMjIy4ObmBh8fH4PrQUFByMjI0N9TNxiqba9tE7unqKgId+7caXRcy5Ytg06n03+EhjbP6UEiImoe7K0MhhrZLCBKT0/HggUL8O2338LDw8NWw2jUyy+/jMLCQv1Henq6rYdERERklDllMEiczQKi06dPIysrC3369IGLiwtcXFxw8OBBfPrpp3BxcUFQUBAqKipQUFBg8HWZmZkIDg4GAAQHBzc4dVb7ual7tFotPD09Gx2bu7s7tFqtwQcREZG9srcyGGpks4Bo5MiROH/+PJKSkvQf/fr1wxNPPKH/f1dXV8TFxem/Jjk5GWlpaYiOjgYAREdH4/z588jKytLfs3fvXmi1WnTt2lV/T90+au+p7YOIiKippWSXYH9ylmzZqe2tDIYa2SxTdcuWLXH//fcbXGvRogX8/Pz012fPno1FixahVatW0Gq1mDdvHqKjozFgwAAAwOjRo9G1a1dMnz4dH3zwATIyMvDqq68iNjYW7u7uAIBnnnkGn332GV544QX85S9/wb59+7B582bs3LmzaR+YiIgcnpLFXb+ZHYUJq44ZZJV2cdLg29n9rerXUdj8lJmYjz/+GA8//DAmT56MmJgYBAcHY+vWrfp2Z2dn7NixA87OzoiOjsaTTz6JGTNm4K233tLfExYWhp07d2Lv3r3o2bMnPvroI/zrX//CmDFjbPFIRETkwJQs7vr+rt9QP5GOIADv7Uq2um9HYPM8RGrAPERERGStlOwSjPjooNH2/YuHST6Gr2TfaqaqPERERESOwJzirvbYt6NgtXsiIiIjDiZnIelmgSxV2JUs7qrWwrH2hAERERFRPWorg1FbOPbo1RxU19kJ46zRYFBHf4dcLrMUl8yIiIjqUaIMhtLLWk1ROLY54wwRERFRHeaUwZCyfKb0spbOyxUbZkcpUjjWEXCGiIiIqA6lymDULms5azQG1501GsREBMgWvChRONYRMCAiIiKqQ8kyGFzWsl9cMiMiIqqjtgxGY8tm1pbB4LKW/eIMERERUT3bYwc3qA1We8pMDlzWsj+cISIiIqon1M8LiUtG4/CVbJxJy5clDxHZNwZERERERgyJCGAg5CC4ZEZEREQOjwEREREROTwumRERETWxlOwS3Mgr4ykzO8KAiIiIqIkUlFVg/qYkHLqSrb8WExGAldN6Q1fvVBs1LS6ZERGRqqVkl2B/chZSc6yrBdYU/v7tGYNgCAAOXcnGs9+ettGIqBZniIiISJXUNtuSkl2CY9dyG207di0XqTmlXD6zIc4QERGRKs3flISjV3MMrh29moN5mxJtNCJxCamNB0P69hTxdlIWAyIiIlKdlOwSHLqSjWpBMLheLQg4dCXbTpfPNKKtgmgrKY0BERERqc6NvDLR9uu59hcQheg8RNvb+Ho20UioMQyIiIhIddq18hJtb+9nf3txaky0V9VwjsiWGBAREZHqhAd4IyYiAM4aw2UoZ40GMREBsm1OPpichRVxv+FwvZNhUqgxiHMkPGVGRESqtHJab8zblGhwymxQR3+snNbb6r5v5JZi4qqjyC+r1F+rrXYf6ice2BhTG8QdvZpjsPfJWaPBoI7+PGFmYxpBEDhHZ0JRURF0Oh0KCwuh1WptPRwiIqojNacU13NLZc363PPN3Si8U9Xgus7TBWdfHyO53ws3CzHx86MGy2MuThpsjx2ErvfpJPdLjbPk/ZtLZkREpGph/i0wPDJQ1mWyxoIhACi8U2XV8tn0tQkN9gpV1Qh4Yk2C5D5JHgyIiIiI6tifnCXaHncpU1K/B5OzDJbg6sovq5RlnxJJx4CIiIiojlYt3ETb/b3dJfWbdLNAtP1MWr6kfkkeDIiIiIjqeLhHiGj7eBPtxvRq4yPa3qetr6R+SR4MiIiISNXkLu4aHuCNqPatGm2Lat9K8l6loZGB8DVSY83XyxVDIgIk9Uvy4LF7IiJSJSWLu341o1+DI/21fVvjm9lRmLDqWINTZt/O7m9Vv2Q9zhAREZEqKVncVVCostj7u35D/WQ3ggC8tytZke9H5mNAREREqqN0cVclgi11FqR1HAyIiIhIdZQs7qpU4KLGgrSOhAERERGpjpJ1wZQKXFjLzL4xICIiItVRsrirUoFLUxWkJWkYEBERkSqtnNYbgzr6G1yTq7irUtQ4ZkfBY/dERKRKOi9XbJgdJXtx1x3nbom27zx3C3NHREjqW6kxk/UYEBERkaoJ9c+xWymvtEK0Paek3OrvEebPQMjeMCAiIqImkZJdght5ZbLNiiiVmLFLsFa0vVuITnLfZL8YEBERkaKUClzEcgVtmB0lud8aE0kZq2uUSdpItsVN1UREpCi1JTnMLhZfMsuWYcmM7A8DIiIiUowakxwGtHQTb/d2l9w32S8GREREpBilAhdTb14uThoTdxjXP8xPvD1cvJ3USdIeolu3buHIkSPIyspCTU2NQdv8+fNlGRgREamfUkkOa0y0V3GfD1nI4oBo/fr1+Nvf/gY3Nzf4+flBUyfjpkajYUBERER64QHeGNjBD8eu5TZoG9jBT/Jps4s3C0XbL90qwvDIQEl9mzOrxSPzzY/FAdFrr72GJUuW4OWXX4aTE1fciIhInLE0QdakD7qaUyLa/ltWseS+WXPMMVkc0ZSVlWHq1KkMhoiImqGU7BLsT86y6pRW/f7iUxrODgFAfEqu5O8TbWKfz6AO/qLtYlhzzDFZHNXMnj0bW7ZsUWIsRERkIwVlFZix5gRGfHQQT607ieEfHsCMNSdQWFZpVb9KbaqeEtXW6MZpFycNHusXKqnfWqw55ng0goU5z6urq/Hwww/jzp076N69O1xdDZNqLV++XNYB2oOioiLodDoUFhZCqxXPYEpEpEYz1pzA0as5BsfjnTUaDOrob1WSw5TsEoz46KDR9v2Lh0mecTl+NRdT/3W8wfXvnx6A/h3kOQnGmmPqZsn7t8V7iJYtW4bdu3cjMjISABpsqiYiInWpzRVUX91cQfYYDHx+8BqcNZoGQdyqA9dkC4hYc8xxWBwQffTRR1i7di1mzZqlwHCIiKipKXmqSqm+myqIO5ichaSbBejT1hdDIgKs7o/sl8UBkbu7OwYNGqTEWIiIyAaUPFWlVN9KH42/kVuKiauOIr/OHipfL1dsjx2MUD/xZyJ1snhT9YIFC7By5UolxkJERDag5KkqpfpW+mh8/WAIAPLLKvHoqiNW9Uv2y+IZohMnTmDfvn3YsWMHunXr1mBT9datW2UbHBERNY23J3bDhHpBgNbTBe9MvN/qvldO6415mxINlrjs+cTWweSsBsFQrfyyShy+ks3ls2bI4oDIx8cHkyZNUmIsRERkI69uu4iiO1UG14ruVOGVbResOmUGADovV2yYHSXria2E1DzR9uMpuZK/R9LNAtH2M2n5DIiaIYsDonXr1ikxDiIispGm2qAs54mt7OK7ou25JeWS++7Vxke0vU9bX8l9k/2yeA9Ramoqrly50uD6lStXcP36dTnGRERETUip5IlKCmjpIdru5+0uue+hkYHw9XJttM3Xy5WzQ82UxQHRrFmzcOzYsQbXExISeBSfiKgOuctgKKWpancdTM7CirjfcLiR2ShLhejEA6I2vp5W9b89dnCDoKj2lBk1TxYvmSUmJjZ67H7AgAGYO3euLIMiIlKzgrIKzN+UZLAMFRMRgJXTekNnZObBlmpPghnLVG3tMpcSR9hrTLRX1VhRORZAqJ8XEpeMxuEr2TiTls88RA7A4hkijUaD4uKGVYQLCwtRXV0ty6CIiNRs/qYkHL2aY3Dt6NUczNuUaKMRmaZk7a5HPzvS6BH2hz87LLlPU29exuqcWWpIRAAWjOzEYMgBWDxDFBMTg2XLlmHTpk1wdnYGcK++2bJlyzB4MKcSicixqbUMRu1JsEO/ZSMxXb4ZkYPJWSisd3qtVuGdKslH2G8V3hFt/z1fvJ2oPosDovfffx8xMTGIjIzEkCFDAACHDx9GUVER9u3bJ/sAiYjUROkMykpRaplvf3KWaHvcpUyJgZf4DJB1C2bkiCxeMuvatSvOnTuHxx9/HFlZWSguLsaMGTNw+fJl3H+/9Qm8iIiaktwbn5tqg7LclFrma9XCTbTdX+JpsP5hrUTbB4TLU9yVHIfZM0Rr167Fo48+Cn9/f4SEhODdd99VclxERIpSakZE6Q3KSlByma+niZw+PUPF240JD/BGdLgf4lNyG7RFh/vZ5c+Z7JvZM0TffPMN2rRpg4EDB+L999/H5cuXlRwXEZGilNz4rOQGZSUomYfoVqF4AsWbVuz1eX9yj0aPxn8wuYfkPslxmT1DtG/fPuTn52Pnzp3Yvn073nnnHQQFBeHRRx/FhAkTMHjwYDg5WbwCR0TNSEp2CW7klclSmkFJSm98VqJUhZKUPLGlZEbpV7ddUKzcCDkeizZV+/r64sknn8STTz6JiooK7Nu3D9u3b8cTTzyBO3fuYNy4cXj00UcxduxYtGhhv3/5iUheasu701Qbn+UsVVGX3IGnkie2AlqK7xGSuodIraf5yH5JntJxc3PDQw89hM8//xzp6enYtWsX2rdvj6VLl2L58uVyjpGI7Jza8u6odeNzQVkFZqw5gREfHcRT605i+IcHMGPNCRQaqcxuPuVObPUPE9/c3F/i5mc1lhsh+2b1GldVVRVKSkrQr18/vPXWWzh79ixeeuklOcZGRCpQ+5t63Q3EgOFv6vamduOzs8YwEHDWaBATEWC3MwtKBZ5KntgKD/AWbZf6s1ZrUEv2y+yA6L///S/Wr19vcO2dd96Bt7c3fHx8MHr0aOTn5wMAXF3tb4qciJSh1t/U1bbxWY2BJwB8fyJNtH3LqXRJ/ao1qCX7ZXZAtHz5cpSW/vEX7tixY1iyZAlee+01bN68Genp6Vi6dKlF3/yLL75Ajx49oNVqodVqER0djV9++UXffvfuXcTGxsLPzw/e3t6YPHkyMjMzDfpIS0vD+PHj4eXlhcDAQDz//POoqjLcZHfgwAH06dMH7u7u6NixY4PAjoikU+tv6rUbn/cvHoZ1Tz2A/YuHYcPsKLvc8wQoG3gq2ffeS5mi7XsuZkjuW21BLdk3szdVX7x40WBv0A8//IAHH3wQr7zyCgDAw8MDCxYssGj/UJs2bfDee+8hIiICgiDg66+/xoQJE5CYmIhu3brhueeew86dO7FlyxbodDrMnTsXkyZNwtGjRwHcKxkyfvx4BAcH49ixY7h9+zZmzJgBV1dXfZ6k1NRUjB8/Hs888wy+/fZbxMXFYc6cOWjdujXGjBlj9liJqHFqzLtTl1Ibn+WmZOCpZN9aD/EAU+spPQBV22k+sm9mzxAVFxfDz++PdeQjR45g5MiR+s+7deuGW7duWfTNH3nkEYwbNw4RERHo1KmTfgnu+PHjKCwsxJo1a7B8+XKMGDECffv2xbp163Ds2DEcP34cALBnzx7873//wzfffINevXph7NixWLp0KVatWoWKigoAwOrVqxEWFoaPPvoIXbp0wdy5c/HnP/8ZH3/8sUVjJSLj+Ju68sIDvDGwQ+N7eQZ2sC4RYXiANx5o79toW1R7X6v6fiCs8X717e3F9y+ZI8y/BYZHBjIYIquYHRDdd999uHTpEgCgpKQEZ8+excCBA/Xtubm58PIS/y1DTHV1Nb777juUlpYiOjoap0+fRmVlJUaNGqW/p3Pnzmjbti3i4+MBAPHx8ejevTuCgoL094wZMwZFRUW4ePGi/p66fdTeU9tHY8rLy1FUVGTwQUTGqW35Sa0EI8e9jF23xG+ZJY1eTzZy3VwhOk/R9vt8xduJmorZAdFjjz2GhQsX4t///jeefvppBAcHY8CAAfr2U6dOITIy0uIBnD9/Ht7e3nB3d8czzzyDH3/8EV27dkVGRgbc3Nzg4+NjcH9QUBAyMu6tOWdkZBgEQ7XttW1i9xQVFeHOncZzayxbtgw6nU7/ERoaavFzETki/qaunJTskkbLVABAfEquVZuq71Wkb/zofuGdShxuJN+PuWpMtFfVsAwr2QezA6IlS5bggQcewPz585GUlIRvvvkGzs7O+vZNmzbhkUcesXgAkZGRSEpKQkJCAp599lnMnDkT//vf/yzuR04vv/wyCgsL9R/p6dJOQRARyUXJjc9JNwtE28+k5Uvu+3CyeDB19EqOaDtRUzF7U7Wnpyc2bNhgtH3//v2SBuDm5oaOHTsCAPr27YuTJ09ixYoVmDJlCioqKlBQUGAwS5SZmYng4GAAQHBwME6cOGHQX+0ptLr31D+ZlpmZCa1WC0/Pxqdq3d3d4e4uLXsqESlDLWVB6pJzzEqW1+hlogBrn7bi+4DEXMoQ33Jw8Vah5L6J5GRR6Y6mUFNTg/LycvTt2xeurq6Ii4vD5MmTAQDJyclIS0tDdHQ0ACA6OhrvvPMOsrKyEBgYCADYu3cvtFotunbtqr/n559/Nvgee/fu1fdBRPZNbWVBAGXGrGSR1KGRgdB6uKDoblWDNq2HC4ZEBEjue1AHf8Sn5Bltt6ZvIjlZHBCFhYVBozH+m0hKSorZfb388ssYO3Ys2rZti+LiYmzcuBEHDhzA7t27odPpMHv2bCxatAitWrWCVqvFvHnzEB0drd+7NHr0aHTt2hXTp0/HBx98gIyMDLz66quIjY3Vz/A888wz+Oyzz/DCCy/gL3/5C/bt24fNmzdj586dlj46EdmAWHZmey3g+ew3Zxrs9zl0JRvPfHMam/46wMhXmSK+10b6/JCyxvVojQ/3/ma0fWz31k04GiLjLA6IFi5caPB5ZWUlEhMTsWvXLjz//PMW9ZWVlYUZM2bg9u3b0Ol06NGjB3bv3o0HH3wQAPDxxx/DyckJkydPRnl5OcaMGYPPP/9c//XOzs7YsWMHnn32WURHR6NFixaYOXMm3nrrLf09YWFh2LlzJ5577jmsWLECbdq0wb/+9S/mICJSATUW8DRn87OUMStVEwy4t6m6sdkhACi6W4XDV7Ilz+Q0VSFdImtZHBAtWLCg0eurVq3CqVOnLOprzZo1ou0eHh5YtWoVVq1aZfSedu3aNVgSq2/YsGFITLTPIpNEZJwa30wTUo0vDwHA8ZRcuxuzOZuqpQZEas1kTo7H6uKutcaOHYv//Oc/cnVHRKTKN9PsYvG9Prkl5ZL6VfKUWXBLD9F2U7mExLDmGKmFbAHRDz/8gFatrM84SkRUS41vpgEmggs/b2knWJUMDgN14mP2b2ndqVtmMic1sHjJrHfv3gabqgVBQEZGBrKzsw329xARyWHltN6YtynRYC+RPb+ZhpgILtpIzMysZM04pWfiWHOM1MDigGjixIkGnzs5OSEgIADDhg1D586d5RoXEREA9b2ZKpmZWW3BYX1qKaRLjsnigOj1119XYhxE1AwomTxRLW+mSiZQVCo4VOPmdSK52V1iRiJSHzUmT1RKU9Tukjs4VOPmdSK5ybapmogcl1jyREfTFMFFSnYJ9idnWVXQta7wAG/4Gglcfb1cOTtEDoEzRERkFTUmT6xL7mU+JTc/KzUTl5Jdgvyyxqvd55dV2v1rSCQHzhARkVWUzI+jpIKyCsxYcwIjPjqIp9adxPAPD2DGmhMoNBIYWEKpY+ZKzcSp9TUkkpPkGaKrV6/i2rVriImJgaenJwRBEK1xRkTNk1r3nyhZI6128/Oh37KRmJ6PPm19rS5iquRMnFpfQyI5WRwQ5ebmYsqUKdi3bx80Gg2uXLmC8PBwzJ49G76+vvjoo4+UGCcR2anwAG9Eh/s1Wr8rOtzPLpdalF7mU2JpS8mTYOkm+r6ZX2aXryORnCxeMnvuuefg4uKCtLQ0eHn98VvFlClTsGvXLlkHR0TqYGxy2F4njZVeInr2mzMNAq7aavdSKXmc35xaZkTNncUzRHv27MHu3bvRpk0bg+sRERG4ceOGbAMjInVIyS7BsWuNV3c/dk16dXclKblEpFS1eyWP8/dq4yPa3qetr+S+idTC4hmi0tJSg5mhWnl5eXB3t67eDRGpjxo35CpZI82cavdSXLxZKNp+6VaRpH4BINREgNjGV7ydqDmwOCAaMmQINmzYoP9co9GgpqYGH3zwAYYPHy7r4IjI/ql1Q65yBUfFZ2qkLmxdzSkRbf8tq1hiz0BCqniQliAxiCNSE4uXzD744AOMHDkSp06dQkVFBV544QVcvHgReXl5OHr0qBJjJCI7pmTeHSUpVQajf5ifeHu4eLsxHf29Rds7BbaU1C8AnEwV3yN08noepka1ldw/kRpYPEN0//3347fffsPgwYMxYcIElJaWYtKkSUhMTESHDh2UGCMR2TnlZluUF+bfAsMjA2UL3MIDvDGwQ+NBz8AO0k/ddWujE23vEqKV1C8AFN0Vz71UdMf63ExE9k5SHiKdTodXXnlF7rEQkUqprSK90r54om+DqvS1x+6lyiq8K9qeU1wuue8HuwTh10tZRttHdwuW3DeRWlgcEK1btw7e3t547LHHDK5v2bIFZWVlmDlzpmyDIyJ1UUtF+rrkLt0BKBMgXsoQ3yN08VYRHhO9w7gpUW3xyrYLjZ5Uc3HS4LF+oRJ7JlIPi5fMli1bBn9//wbXAwMD8e6778oyKCIipSlZuqNWWm4pzt0swM188ZN45tCY2KztbGXOp+2xgxrkMnJx0mB77CDrOiZSCYtniNLS0hAWFtbgert27ZCWlibLoIiIlKZk6Y4buaWYuOqoQcFUXy9XbI8djFA/aUfYOwWLb5qOCJK+qRoAut6nw9V3x2HLqXQcvZaDQR38OTNEDsXiGaLAwECcO3euwfWzZ8/Cz0/a6QkioqZUW7qj7qk4wLB0hzXqB0PAvarxj646IrlPJxMH9p2tyFRd12P9QvHJlN4MhsjhWBwQTZs2DfPnz8f+/ftRXV2N6upq7Nu3DwsWLMDUqVOVGCMRkayUTCZ5MDmrQTBUK7+sEocbqaFmjuMmcgXFG8kWTkTmsXjJbOnSpbh+/TpGjhwJF5d7X15TU4MZM2ZwDxGRSiixkVhNlEwmaU5dMCmV70vuVom2F5fzaDyRNSwOiNzc3PD9999j6dKlOHv2LDw9PdG9e3e0a9dOifERkYyUqMKuRkomk1SqLlj3NjrsFTka39PE9yUicRYvmdXq1KkTHnvsMTz88MMMhohUQmwjsaNRKpmkUnXBHu4RIto+3kQ7EYmzeIaouroa69evR1xcHLKyslBTY1iDed++fbINjojkU7uRuL66G4kdaflMqWSSO87dNtF+C/NGRFjcb3iAN6La++LE9YZlNqLa+zrUa0ekBIsDogULFmD9+vUYP3487r//fmg08pxsICJlmbOR2BHfVOVOJplXKp4xOq+kQnLfX814QPYM2ER0j8UB0XfffYfNmzdj3LhxSoyHiBSi1qr0tdSyEbxLsHhNsa5W1BxjiRQi5UjaVN2xY0clxkJEClJrVXq1bQTPLBavOZZZJN5uDjWWSCGydxZvqv6///s/rFixAoIgnkaeiOyPGqvSK70RPCW7BPuTs6xOxljLVD8p2SWyfB8ikpfFM0RHjhzB/v378csvv6Bbt25wdTX8DW3r1q2yDY6I5CWYqIdlb5TcCK7UzJOpfEGl5dWS+yYi5Vg8Q+Tj44M//elPGDp0KPz9/aHT6Qw+iMh+qe3YvZIZpZX6WZSUM4EikRpZPEO0bt06JcZBRApT47F7pTaCK/mz6BysRXxKntF2U5uuicg2JCdmJCJ1UXK2RSm1G8Gd66X3cNZoEBMRIDloUfJn0dlEVfrOrRkQEdkji2eIAOCHH37A5s2bkZaWhooKw5waZ86ckWVgRCQvtR67Xzmtd4PcO9ZuBDf1m6CLFZXjM0ycMrtVeEdy30SkHItniD799FM89dRTCAoKQmJiIqKiouDn54eUlBSMHTtWiTESkQyUmm1RWm3unf2Lh2HdUw9g/+Jh2DA7yqqNzzUm2qtqpG8+V6qWGREpy+KA6PPPP8eXX36JlStXws3NDS+88AL27t2L+fPno7CwUIkxEpFM1HjsvlaYfwsMjwyUJXBTcrZMqVpmRKQsi5fM0tLSMHDgQACAp6cniouLAQDTp0/HgAED8Nlnn8k7QiKSDTMd3xMe4A0XJ02jM0EuThqrfiYJqbni7Sm5DvkzJ7J3Fs8QBQcHIy/v3gmKtm3b4vjx4wCA1NRUJmskUgk5Z1uaipwJFA8mZxldFquqEXC4kRNo5hPff8R/JYnsk8UzRCNGjMD27dvRu3dvPPXUU3juuefwww8/4NSpU5g0aZISYyQiB6ZEAsX9yVmi7fsuZWFIRICkvvuHtRJtHxDuJ6lfIlKWxQHRl19+iZqae1sSY2Nj4efnh2PHjuHRRx/F3/72N9kHSESOTSyB4obZUZL6bNXCXbzd201Sv0SkXhYvmd28eRPOzs76z6dOnYpPP/0Uc+fORUZGhqyDIyLHVptAsbrecnzdBIpSPNyjtYn2EEn9AsCOc7dNtN+S3DcRKcfigCgsLAzZ2Q3X1/Py8hAWFibLoIiIAOUSKP5sImj55bx4u5jUHPHiranZ9pcAk4gkBESCIECjabhpsKSkBB4eHrIMioiUJXeFd6UolUBx65mbou0/nE6X1C8AhPl7i7cHqGcjO5EjMXsP0aJFiwAAGo0Gr732Gry8/silUV1djYSEBPTq1Uv2ARKRfJSq8K6UszcLxNvTCyRtfnZzFQ+13F2cRdvF9GwjXuS6V6iP5L6JSDlmB0SJifcqQAuCgPPnz8PN7Y9Nh25ubujZsycWL14s/wiJHFRKdglu5JXJmitIiQ3KSsorFa8Mn1NSIdpuzMBwf1zOML60VT95pSVMleb4PZ+lO4jskdkB0f79+wEATz31FFasWAGtlgUKiZSg1CxOU1S7lzuIGx4ZgPXHrhttH9klUFK/lzOKRNsv3ZaedT+7uFy0PadEvJ2IbMPiY/effPIJqqqqGlzPy8uDi4sLAyUiKyk1i2POBmWpQYxSQdzQyEBoPVxQdLfhvzlaDxfJuYIyCsULsN420U5EzY/Fm6qnTp2K7777rsH1zZs3Y+rUqbIMishRKXXMHFC2ftez35xpMPt06Eo2nvnmtOQ+a0UGtbToujl6mSiw2tuKAqwBLcUPl/h5i+dAIiLbsDggSkhIwPDhwxtcHzZsGBISEmQZFJGjUuqYOaBctfuU7BLEpzRevys+JdeqIC4luwQnb+Q32nbyRr7kvif0Es8zNLH3fZL6BZipmkitLA6IysvLG10yq6ysxJ073CxIZA0lZ3EAZardJ6TmibYfNxIsmUOpAPGAidIdBy6Lt4sJD/BGtJGgJzrcT1X144gcicUBUVRUFL788ssG11evXo2+ffvKMigiR6XULE6t2mr3G/7yAJ57MAL/nh2FDbOjrDxyL16uVFqmoHuUChAT0wtE28+kibebsvrJvoipt78pJiIAq5/kv5FE9sriTdVvv/02Ro0ahbNnz2LkyJEAgLi4OJw8eRJ79uyRfYBEjmbltN6YtynRYE+OtbM4tZTY/Nw/THwJqL8dLhH5m9jHE2BlLbPawDM1pxTXc0tlTZ1ARMqwOCAaNGgQ4uPj8Y9//AObN2+Gp6cnevTogTVr1iAiIkKJMRI5FCXfTJU4wRYe4I2BHfxw7FrDpbGBHaxbIkpIFV9uS0jJldT/g12C8Osl48tiD3YLtrjPxoT5MxAiUguLAyIA6NWrF7799lu5x0JEdcj9ZqpkHqIvnujbYFardubJGr9lFIu2X8kUbzcm00SuoIwiHrsncjQWB0RpaWmi7W3btpU8GCJSjpJ5iGpntQ79loXE9AL0aesrOUdQXekmsjqn50k7yMECrERUn8UBUfv27Rst7lqrurraqgERkTKUPMGmVGLGsvKGJ1rrKq0QbzfGx1N8j5CPHdZ1IyJlWRwQ1dY0q1VZWYnExEQsX74c77zzjmwDIyJ51Z5gO3o1xyDxo7NGg0Ed/a1anlMqu3aQTjzJYZBWvN2YTsHiFek7WZH0kYjUyeKAqGfPng2u9evXDyEhIfjHP/6BSZMmyTIwIpKfEifYlNybNCDMDz8m3jLaHt1B2gk2NZ6MIyJlSdpU3ZjIyEicPHlSru6ISAFKnGBTcm9SZrH45uZMbn4mIplYHBAVFRlWiRYEAbdv38Ybb7zBY/dEKiHnCTYl9yal5ogHWykSNz8rGcQRkTpZHBD5+Pg02FQtCAJCQ0MbLfpKRM1beIA3fL1ckV9W2aDN18vVqsCi5G7DPusqNbHp2hilS6QQkfpYHBDt37/f4HMnJycEBASgY8eOcHGRbQWOyOGlZJfgRl6Z3Wc5TskuaTQYAoD8skqr9hBlm8gXlGWi3RglN5gTkTpZHMEMHTpUiXEQ0f9PqSPsSlFy+SmgpXiJDf+W0ktsKFkihYjUx6yAaPv27WZ3+Oijj0oeDBEpd4RdKUouP4X6ivfdrpX0vgUTRWmJyLGYFRBNnDjR4HONRgOhzjRz3T1FTMxIJJ2SR9iVouTy07GUHNH2o1cb/qzMpbbAk4iU5WTOTTU1NfqPPXv2oFevXvjll19QUFCAgoIC/Pzzz+jTpw927dql9HiJmjVzlp/s0cppvTGoo7/BNTmWn0ruim+aLimX9gtYbeBZN4ADDANPInIsFu8hWrhwIVavXo3Bgwfrr40ZMwZeXl7461//ikuXLsk6QCJHotbTT0otP0WF+eFm4u9G2/uHtZLUL4/dE1F9Zs0Q1XXt2jX4+Pg0uK7T6XD9+nUZhkTkuGqXn5zrpbZw1mgQExFgt2/SYstP1pg7oqNoe+wIabnP1Bp4EpFyLA6IHnjgASxatAiZmZn6a5mZmXj++ecRFWXZuvuyZcvwwAMPoGXLlggMDMTEiRORnJxscM/du3cRGxsLPz8/eHt7Y/LkyQbfGwDS0tIwfvx4eHl5ITAwEM8//zyqqgyn2g8cOIA+ffrA3d0dHTt2xPr16y17cKImotTyk1LUuPyk1sCTiJRjcUC0du1a3L59G23btkXHjh3RsWNHtG3bFr///jvWrFljUV8HDx5EbGwsjh8/jr1796KyshKjR49Gaekf/4A+99xz+O9//4stW7bg4MGDuHXrlkG9tOrqaowfPx4VFRU4duwYvv76a6xfvx5LlizR35Oamorx48dj+PDhSEpKwsKFCzFnzhzs3r3b0scnUpzaTj8pue/ps31XTbRfkdy32gJPIlKWRhAEi//1FQQBe/fuxeXLlwEAXbp0wahRoxpksLZUdnY2AgMDcfDgQcTExKCwsBABAQHYuHEj/vznPwMALl++jC5duiA+Ph4DBgzAL7/8gocffhi3bt1CUFAQAGD16tV48cUXkZ2dDTc3N7z44ovYuXMnLly4oP9eU6dORUFBQaMbwcvLy1Fe/kfCt6KiIoSGhqKwsBBardaqZyQyZcaaE0ZPbNnj6aeDyVmYuc54HcN/z47CkIgASX1PXHUESemFRtt7h+rwY+xgo+3mkLOuGxHZl6KiIuh0OrPevy2eIQLuHbMfPXo05s+fj/nz5+PBBx+0OhgCgMLCe//wtWp1b6Pk6dOnUVlZiVGjRunv6dy5M9q2bYv4+HgAQHx8PLp3764PhoB7m7yLiopw8eJF/T11+6i9p7aP+pYtWwadTqf/CA0NtfrZiMzRVMtPB5OzsCLuNxxu5Ii/pW4VihdYvZl/R3LffUJ9Rdv7tpO2qbquMP8WGB4ZyGCIyMFJqrURFxeHuLg4ZGVloaamxqBt7dq1kgZSU1ODhQsXYtCgQbj//vsBABkZGXBzc2uwiTsoKAgZGRn6e+oGQ7XttW1i9xQVFeHOnTvw9PQ0aHv55ZexaNEi/ee1M0RESlP69NON3FJMXHXUoNSGr5crtscORqif+EZjY3Yk3RJt33nuFqZFtZXU95DIAKw9dt1o+6AIf6NtRESWsDggevPNN/HWW2+hX79+aN26tSwzQwAQGxuLCxcu4MiRI7L0Zw13d3e4u4uXDCBSgtKnn+oHQ8C9emOPrjqCxCWjJfV5I1981uqGFXuIskzMPuVIrGVGRFSfxQHR6tWrsX79ekyfPl22QcydOxc7duzAoUOH0KZNG/314OBgVFRUoKCgwGCWKDMzE8HBwfp7Tpw4YdBf7Sm0uvfUP5mWmZkJrVbbYHaIyJaUzPp8MDlLtAjr4SvZkvb6uDmJr7y7Oztb3GetSxlFou3/uyXeTkRkLov3EFVUVGDgwIGyfHNBEDB37lz8+OOP2LdvH8LCwgza+/btC1dXV8TFxemvJScnIy0tDdHR0QCA6OhonD9/HllZWfp79u7dC61Wi65du+rvqdtH7T21fRDZE6VOPyXdLBBtP5OWL6lfN1fxf0ZcXSRtVQQAtGohPlPbylt6cVcioros/pdqzpw52LhxoyzfPDY2Ft988w02btyIli1bIiMjAxkZGbhz594mTJ1Oh9mzZ2PRokXYv38/Tp8+jaeeegrR0dEYMGAAAGD06NHo2rUrpk+fjrNnz2L37t149dVXERsbq1/2euaZZ5CSkoIXXngBly9fxueff47Nmzfjueeek+U5iORUcKcC538vMLh2/vcCFN1pfHbHXL3a+Ii292krvoHZGFMFWENNLAOKebhHaxPtIZL7JiKqy+Ils7t37+LLL7/Er7/+ih49esDV1dWgffny5Wb39cUXXwAAhg0bZnB93bp1mDVrFgDg448/hpOTEyZPnozy8nKMGTMGn3/+uf5eZ2dn7NixA88++yyio6PRokULzJw5E2+99Zb+nrCwMOzcuRPPPfccVqxYgTZt2uBf//oXxowZY+HTEylPiX0+ADA0MhAuThpU1TTMtOHipJF8NH5El0DsvZRlvL1zoKR+gXtLiC3dnVHcSM2ylu7OPBlGRLKxOCA6d+4cevXqBQAGeX0AWLzB2pwUSB4eHli1ahVWrVpl9J527drh559/Fu1n2LBhSEy0rowAUWNSsktwI69Mljw2Su3zAe6Ns7FgCACqagSk5kg7wXYlo0S0/WqWeLuYlOySRoMhACgur5Y8ZiKi+iwOiPbv36/EOIhUp6CsAvM3JeFQnVw+MREBWDmtN3ReriJfaZw5+3ykBkRKHek/ky6+9+jUjTyL+6yVkJor3p6Sy4CIiGQhfbcjgJs3b+LmzZtyjYVIVZQoaKrUPh9AuSPsXq7ip8i83SSlO/v/ic86q6vICRHZM4sDopqaGrz11lvQ6XRo164d2rVrBx8fHyxdurRBkkYie5GSXYL9yVmyZXpWKqP00Ejx/TZSZ4cA4NdLmaLte/+XIanfIJ146opArYekfgGgf5h4JuoB4X6S+yYiqsviX91eeeUVrFmzBu+99x4GDRoEADhy5AjeeOMN3L17F++8847sgySSSollLUC55aeDycY3JwOwag9RSXmVVe1Gv+6u+Om3Uon9Avc2VUeH+yE+peHSWXS4H5fLiEg2Fs8Qff311/jXv/6FZ599Fj169ECPHj3w97//HV999RXWr1+vwBCJpFNiWQtQLqO0UrmCAGBir/tE2//Uu41ouzHZJpbasqzMJr36yb6IqRcExkQEYPWTfa3ql4ioLotniPLy8tC5c+cG1zt37oy8POmbJ4nkVrusVV/dZS2pMwzhAd4Y2MEPx641nLkY2EH6zIWSe4iCdeJLV6bajZGpeo9ROi9XbJgdxar0RKQoi2eIevbsic8++6zB9c8++ww9e/aUZVBEcjBnWcsaxrJGmJFNwihTSQzbmEiCKGabiSKsP575XVK/ft7i2aQDTLSbi1XpiUhJFs8QffDBBxg/fjx+/fVXfemL+Ph4pKenm8wFRNSUlCyUmpJd0ui+FgCIT8mVPPukZLX7syaW286mF0jqV+shvhdL62nNKTMioqZh8QzR0KFDkZycjD/96U8oKChAQUEBJk2ahOTkZAwZMkSJMRJJUlso1bnemo6zRoOYiACrZhqUmn1SMogrMrG5udDE5mhjTE2IGckFSURkVyT96nbffffxNBmpwsppvTFvU6LBXiI5CqUqFbgoearKv4UbckoqjLYHSlzaCvMX/1mEB3CJi4jsn8UB0bp16+Dt7Y3HHnvM4PqWLVtQVlaGmTNnyjY4ImsptSG3dvbp6NUcg1xEzhoNBnX0t+p7GNukbO3m5XE9QnB5729G28eaKKRqzMM9QrB87xWj7eNZgJWIVMDiJbNly5bB39+/wfXAwEC8++67sgyKSG7m1M2z1MppvTGoo+HfBWtnn1KySxo9uQYAx67lWpVY8oaJr03LFV8GNObnc7dF2385L95ORGQPLJ4hSktLQ1hYWIPr7dq1Q1pamiyDIsclZ6FUQLnEjIAys09Kbqq+eLtQtP387wWS+j16LUe0/fCVbPx9eEdJfRMRNRWLA6LAwECcO3cO7du3N7h+9uxZ+PkxjT5Jo1TgIpaYccPsKMn91hXmL19eHCU3Vbf19cJlkcr0Uvse1MEf8SnGc5BZU26EiKipWLxkNm3aNMyfPx/79+9HdXU1qqursW/fPixYsABTp05VYozkAJTIKK1UvTG1amHieLyXxCKs40zsPRrbXdreJCKipmRxQLR06VL0798fI0eOhKenJzw9PTF69GiMGDGCe4hIEqUCF6UTMypByTGbykN0TmIeIjX+nImI6rP4V0I3Nzd8//33ePvtt5GUlARPT090794d7dq1U2J85ACU2jej5PKTUpQcc3aJqZpjdyX1q8afMxFRfZJTyEZERCAiIkLOsZCD4hvqH8IDvKH1cEHR3YZJFLUeLlbtVXJ3cUJxebXRdjcXiyeMASibgoCIqKlI+xeQSEZKZZRW41JOSnZJo8EQABTdrbJq31NMJ/HNzcMiAyX3rUQKAiKipsQiQ2QXlMgorcaZpx3nxAuw7jx3C3NHSJuZ1UA8s6PGisyPrEhPRGrHgIjsAt9Q78krFa8nJlZ6w5TEdPFN1advGD86by45UxAQETUlLpmRXQnzb4HhkYGyvKmqccmsS3BL0fZuIVrJfQdrPUTbQ3SekvsmIlI7iwOidevWYcuWLQ2ub9myBV9//bUsgyKSgxqXzAJ14kGLf0tpBVgBoIW7+ISwqXYiouaMtcyo2QoP8MbADo1nTx/YwbrK8UpRMoi7liU+I3Yly3gWayKi5s7igIi1zEhNjNV0VaDWqyxOporv4zl1Xfo+H62n+AyQj6d1td2IiNTM4oCotpZZfaxlRvYmJbsE8SmNV46PT7GucrxS9l7KFG3ffTFDct/hAeKzS6baiYiaM9Yyo2ZLjZuqTR18r5+ryRKCid5r7HTWjIioKVi8i3Lp0qW4fv06Ro4cCReXe19eU1ODGTNmcA8R2RU1bqr2NlGA1ZqNzz4mlsx8vbhkRkSOS3Its6VLl+Ls2bOsZeaAUrJLcCOvzO5zBamxpERm4R3R9qwiafXGAOBmvnjfptqJiJozyb9udurUCZ06dZJzLGTnCsoqMH9TkkE26ZiIAKyc1hs6O51deHvi/Ziw6gjyy/5IeKj1dME7E++X7XvIGSCWVRqvNQYAJRWNl/Uwh6nirpkSi7sSETUHZgVEixYtwtKlS9GiRQssWrRI9N7ly5fLMjCyP/M3JeHo1RyDa0ev5mDepkRsmB0ly/eQe/bp1W0XUHTHMIgoulOFV7ZdsHrMSgSIFRXiAVFVVY2kfgFgVOcgJKUXGm0f3TVYct9ERGpnVkCUmJiIysp7v2GfOXPGaM0ja2ohkX1LyS4xeOOvVS0IOHQlG6k5pVYFMEoEF0qPWYkA8baJJbHfC6Qva80dGYEP9/5mtP3vwztK7puISO3MCohWrFgBrfZeyYADBw4oOR6yU+ac2LK34ELJMSsVbNWfzbK0XUxKtnjiRWsDRCIiNTPr2H3v3r2Rk3PvzSo8PBy5uY3ndqHmS8kTW7XBRXW9bIl1gwsplByzUkf6TZ18F6yYhFVjGgIioqZiVkDk4+OD1NRUAMD169dRUyN9HwOpU+2Jrfp5cJw1GsREBFg1s6DUG7WSY1Yq2Apo6SbaHmRFLTM1piEgImoqZgVEkydPxtChQxEWFgaNRoN+/fohPDy80Q9qvlZO641BHQ3r2A3q6I+V03pb1a+Sb9QvjOmE+lvbNBrgpYciJfcJ3Au2xEgNtp4YIJ6+wlS7GCUDRCIitTNrD9GXX36JSZMm4erVq5g/fz6efvpptGzZUumxkZ3Rebliw+wopOaU4npuqWwnwZTMFzR97QlU1UvBXFUj4Ik1CUhcMlpyv9+fEK/bt+VUOh7rF2pxv9dNLA+aajdl5bTemLcp0WD/kxxBLRGR2pmdh+ihhx4CAJw+fRoLFixgQOTAwvzlT8ioxBv1weQsg/xDdeWXVeLwlWwMiQiQ1LepmmN7LmZICohM7Ze6ZmJjtClKBbVERGpncWLGdevWKTEOcnBKvFEn3SwQbT+Tli85IAr1FV/mCzWxDGiMYGJXtVyJLZQIaomI1MysgGjSpElYv349tFotJk2aJHrv1q1bZRkYOSY536h7tfERbe/T1ldy39Oj22Hdsesi7e0l9RsW0AJJN40nT2zvL753iYiIpDErINLpdPqkizqdTtEBEcllaGQgfL1cG1028/VylTw7pKQb2eJLZmk8Gk9EpAizAqK6y2RcMiMli7vK3ff22MF4tF4tM18vV2yPHWxVv0olfUwxEfBctXIPERERNc7iPUSpqamoqqpCRESEwfUrV67A1dUV7du3l2tsZGeULO6qVN+hfl5IXDIah69k40xaPvq09ZVlZuiiyLIWAFy6VYThkYEW99ta54GCO8aDnvt8PC3uk4iITDMrD1Fds2bNwrFjxxpcT0hIwKxZs+QYE9kpsfIa9tw3AAyJCMCCkZ1kWya7miM+U/NbVrGkfmcMDBNtf1Li3iQiIhJncUCUmJiIQYMGNbg+YMAAJCUlyTEmskNKlddQum+lpJnY63MzV3xJzZgQnYdoextfzhARESnB4oBIo9GguLjhb7+FhYWorq6WZVBkf5Ssg6XGGltp+cqM+VaheLX7m/nSq90TEZFxFgdEMTExWLZsmUHwU11djWXLlmHwYOs2qpL9UrK8RlPU2DqYnIUVcb/hcCMV6qXQeojva/LxFK9JZpx4IiK58hAREZEhizdVv//++4iJiUFkZCSGDBkCADh8+DCKioqwb98+2QdI9kHJ8hrhAd7Qerig6G5Vgzath4t1hWNzSzFx1dFGT5mF+klLnggAvdr6IkVkWaxXWx9J/fYP8xNvDxdvJyIiaSyeIeratSvOnTuHxx9/HFlZWSguLsaMGTNw+fJl3H///UqMkeyEUsVdU7JLGg2GAKDobpVVe4jqB0PAvbIdj646IrlPAEg1cfw9ReLx+PAAb/h4Nj775OPpyuzSREQKsXiGCABCQkLw7rvvyj0WsnNK1cHace6WaPvOc7cwd0SE6D2NUbKWmamaYlezpAVEKdklKLjT+JgL7lQiNUdafiMiIhJn8QwRcG+J7Mknn8TAgQPx+++/AwD+/e9/48gR637rJnUI82+B4ZGBsr0xp+aIb1BOMXGiyxhzaplJdadK/ACBqXZj1LjBnIioObA4IPrPf/6DMWPGwNPTE2fOnEF5eTmAe6fMOGtEUoT5i+/lCQ+QFngFtxQ/wh6ik36E3dtNfHLVVLsxTbHBnIiIGrI4IHr77bexevVqfPXVV3B1/WOvw6BBg3DmzBlZB0eO4eEeIaLt4020GxNoIqePf0t3Sf0CQJfWWtH2biHSav7Vbl531hieJ3PWaBATEcDlMiIihVgcECUnJyMmJqbBdZ1Oh4KCAjnGRCQLc8prSJVfViHanlcq3i5Gqc3rRERknMXz+sHBwbh69WqDmmVHjhxBeHi4XOMiB6JUoVQl9xAVGzkVp28vb3xjtDmU2rxORETGWTxD9PTTT2PBggVISEiARqPBrVu38O2332Lx4sV49tlnlRgj2ZmU7BLsT86SraSGUvtmTCdPlF40tqtCS2Z1yb15nYiIjLN4huill15CTU0NRo4cibKyMsTExMDd3R2LFy/GvHnzlBgj2Qklq90rQzzrszW6tdFhz6Uso+1dQsQDJiIisi+Sapm98soryMvLw4ULF3D8+HFkZ2dj6dKlSoyP7IhSFemVOmqeYmIGy1QuITHOJopouDpJymhBREQ2IvlfbTc3N7Rs2RKtW7eGt7e3nGMiO6RkRXpTfwhdnKRV8NKYmCCypi7YtRxlEjMSEZFtWBwQVVVV4bXXXoNOp0P79u3Rvn176HQ6vPrqq6islL6RlOybkgkDa0y0V9VIW/oqNJLxuVbRHfGN0WJMbaouMdFORET2xeI9RPPmzcPWrVvxwQcfIDo6GgAQHx+PN954A7m5ufjiiy9kHyTZnpIJA5WaIcopKRdtzyq+K6lfAAj1Ff95hLaSnvSRiIiansUB0caNG/Hdd99h7Nix+ms9evRAaGgopk2bxoComVKy2r1SM0Sl5eLlM0y1W0O57dxERKQEi5fM3N3dG+QgAoCwsDC4ubnJMSayU0olDFRq9slUoGVN0FJwRzzxYoGRorJERGSfLJ4hmjt3LpYuXYp169bB3f1e6YPy8nK88847mDt3ruwDJPtRmzDw0G/ZSEzPR5+2vpKrxTcFN2dAbBLI1Vl63z6e4sG/j12mISAiImMsDogSExMRFxeHNm3aoGfPngCAs2fPoqKiAiNHjsSkSZP0927dulW+kZLNKZWHKCE1T7T9eEqupCU53xZuyCgyPpPj20L6jGanYPGTlZ2CWkrum4iImp7FAZGPjw8mT55scC00NFS2AZH9EstDtGF2lBU9iy9eST0eX2hi2cpUu5j+YX7i7eHi7UREZF8sDojWrVunxDjIztXmIaqvbh4iqRurnUyEPM4ST5ndrRIPtEy1iwkP8MbADn44di23QdvADn4st0FEpDIWb6q+c+cOysr+yElz48YNfPLJJ9izZ4+sAyP7omQeoksZxaLtFyVWpXc28afbVLspXzzRFzH19lDFRATgiyf6WtcxERE1OYtniCZMmIBJkybhmWeeQUFBAaKiouDm5oacnBwsX76cBV6bqaxC8Zw9OcXiOX/EFJk4sVVyV9rSll8LN2QWG+/b39tdUr+1WJWeiKj5sPh35DNnzmDIkCEAgB9++AHBwcG4ceMGNmzYgE8//dSivg4dOoRHHnkEISEh0Gg02LZtm0G7IAhYsmQJWrduDU9PT4waNQpXrlwxuCcvLw9PPPEEtFotfHx8MHv2bJSUGJZNOHfuHIYMGQIPDw+Ehobigw8+sPSxHV6GiSSGtwrvSO7b1MKVxDREKDKRqbqwTDwQMxer0hMRqZ/FAVFZWRlatrx3gmbPnj2YNGkSnJycMGDAANy4ccOivkpLS9GzZ0+sWrWq0fYPPvgAn376KVavXo2EhAS0aNECY8aMwd27f7w5P/HEE7h48SL27t2LHTt24NChQ/jrX/+qby8qKsLo0aPRrl07nD59Gv/4xz/wxhtv4Msvv7T00R1arzY+ou192vpK7lupI+zlJvYImWonIiLHYfGSWceOHbFt2zb86U9/wu7du/Hcc88BALKysqDVai3qa+zYsQYZr+sSBAGffPIJXn31VUyYMAEAsGHDBgQFBWHbtm2YOnUqLl26hF27duHkyZPo168fAGDlypUYN24cPvzwQ4SEhODbb79FRUUF1q5dCzc3N3Tr1g1JSUlYvny5QeBE4oZGBsLFCahqJNuhixOszEekzCkzT1cnlFYaT8/o6cqK9EREdI/F7whLlizB4sWL0b59e/Tv319fz2zPnj3o3du6jMV1paamIiMjA6NGjdJf0+l06N+/P+Lj4wHcq6Hm4+OjD4YAYNSoUXByckJCQoL+npiYGIMs2mPGjEFycjLy8/Mb/d7l5eUoKioy+HB0KdkljQZDwL0gyZpq98kmNlVfNtFuTCsTeYb8rNxDREREzYfFAdGf//xnpKWl4dSpU9i1a5f++siRI/Hxxx/LNrCMjAwAQFBQkMH1oKAgfVtGRgYCAwMN2l1cXNCqVSuDexrro+73qG/ZsmXQ6XT6D+ZZMi95olQpOSWi7deyxduNySgS3/d0u0j6viciImpeJK0ZBAcHo3fv3nBy+uPLo6Ki0LlzZ9kGZksvv/wyCgsL9R/p6em2HpLNZZvYVJ1rorK8mOI7VSbapZ0yqzZRzKxaudquRESkMna7iSI4OBgAkJmZaXA9MzNT3xYcHIysrCyD9qqqKuTl5Rnc01gfdb9Hfe7u7tBqtQYfapOSXYL9yVlWLWU1laoa8cjFVLsxHq7iu49MtRMRkeOw24AoLCwMwcHBiIuL018rKipCQkKCft9SdHQ0CgoKcPr0af09+/btQ01NDfr376+/59ChQ6is/GOWYe/evYiMjISvr/STUfaqoKwCM9acwIiPDuKpdScx/MMDmLHmhFVlKgAgoKWHaLs1+3EqTczUmGo3plOQeCDbOVgnrWMiImp2bBoQlZSUICkpCUlJSQDubaROSkpCWloaNBoNFi5ciLfffhvbt2/H+fPnMWPGDISEhGDixIkAgC5duuChhx7C008/jRMnTuDo0aOYO3cupk6dipCQEADA//t//w9ubm6YPXs2Ll68iO+//x4rVqzAokWLbPTUyhKrN2aNEJ14QNTG11Ny36bmaaTO44QHiBdgDQ9g3iAiIrrH4mP3cjp16hSGDx+u/7w2SJk5cybWr1+PF154AaWlpfjrX/+KgoICDB48GLt27YKHxx9vzt9++y3mzp2LkSNHwsnJCZMnTzZIEKnT6bBnzx7Exsaib9++8Pf3x5IlS5rlkXsl642ZSrz4e770DcpOTuL7fZwkhu1aT/H8Rd4e0vIbERFR82PTgGjYsGEQBOM5aDQaDd566y289dZbRu9p1aoVNm7cKPp9evTogcOHD0sep1qYU29MejZl8Xkaa1IcGjvOb267McMjA7D+2HWj7SO7BBptIyIix2K3e4jIcu1aeYm2t/eTvkSUa6JWWX6p9DIYpoIpqcHW0MhA6IzMEuk8Xa1MJklERM0JA6JmJDzAGzERAXDWGM7mOGs0iIkIsKrWVtLNAtH2xLTGk1za2o65g+Fbr/SHr5crdswdbKMRERGRPbLpkhnJb+W03pi3KdFgL9Ggjv5YOc26LOJaE/ttTO3XsZVQPy8kLhmNw1eycSYtH33a+nJmiIiIGmBA1MzovFyxYXYUUnNKcT23FO39WshShd3Y0lMtHzsNiGoNiQhgIEREREYxIGqmwvzlCYRqmVoSS0wrkNy3p4sT7ojsnPZ04couEREpiwFRM5WSXYIbeWWyzRClmKgndjVLWgFWAHBx0QAi1TtcGRAREZHCGBA1MwVlFZi/KclgD1FMRABWTusNnZf0Za0KE4W/TLWLqaoSP0dWKfXcPRERkZn4q3czo1Smah9P8dIcPl7WlO4QD3hMtRMREVmLAVEzUpupurpessu6maql8nJzFm33dpM+2ejmIp700VQ7ERGRtRgQNSPmZKqWKrPkrmh7RrH00h2tteJ10O7zEU84SUREZC0GRM2IkpmqKyrFl63KTbSLfq2JJbG7VdL3JxEREZmDAVEzomSmalPxjhXxECpruIeIiIhsiwFRM7NyWm8M6uhvcE2OTNVKus/EklkbLpkREZHCeOy+manNVH3ot2wkpqujVEXB3UrR9vwy8XYiIiJrMSBqZpTKQ6QkNxOJF92ZmJGIiBTGd5pmRqk8REp6amCYePtg8XYiIiJrMSBqRpTMQ6SkB8Jaibb3ay/eTkREZC0GRM2IknmIlKTWcRMRUfPBgKgZUTIPkZLUOm4iImo+GBCRzSmZP4mIiMgcDIiaETUvPakxfxIRETUfPHZvYynZJbiRV4b2fi2sngm5eLNQtP3SrSIMjwy06nsopTZ/UmpOKa7nlsry8yAiIjIXAyIbUSJf0NFruaLtR67k4O/DO0rqu6mE+TMQIiKipsclMxtRIl9QC3dn0XZvd8a/REREjWFAZANK5Qtq6yt+WqutH2uCERERNYYBkQ0otfl5z6UM0fbdF8XbiYiIHBUDIhtQKu9OXkm5aHtuyV1J/RIRETV3DIhsQKm8O5XVglXtREREjooBkY0okXenssa6diIiIkfFY0c2ora8O04AxOIpRtZERKRmDIhsTC15d3xbuCK3tNJou5+3WxOOhoiISF78xZ7M0imopVXtRERE9owzRDYmZ+kOJQXrPETbg7Ti7URERPaMAZGNKFG6Q0kTe92HHxNvGW3/U5/7mnA0RERE8uKSmY0oUbpDSUMjA6H1aDx+1nq4YEhEQBOPiIiISD4MiGxAqdIdSts5bwh8681e+Xq5Yue8ITYaERERkTy4ZGYD5pTusMf9RKF+XkhcMhqHr2TjTFo++rT15cwQERE1CwyIbECp0h1NZUhEAAMhIiJqVrhkRkRERA6PAZEN7Dhn/LQWAOw00U5ERETyYkBkA3mlFaLtOSaq1hMREZG8GBDZgBM0ou0uTnxZiIiImhLfeW3gTFq+aPvpG3lNNBIiIiICGBDZRHlVtXh7pVhdeSIiIpIbAyJbEEzfQkRERE2HAZENpOeLJ2ZMy7PPTNVERETNFQMiGyipEF8SM9VORERE8mJARERERA6PAVEzEu4nXhKkox3WRyMiIrIHDIiakaeHhou2z4kRbyciInJUDIiakf5hfuLt4eLtREREjooBUTMSHuCNgR0aD3oGdvBDGJfMiIiIGsWAqJn54om+iIkIMLgWExGAL57oa6MRERER2T8XWw+A5KXzcsWG2VFIzSnF9dxStPdrwZkhIiIiExgQNVNh/gyEiIiIzMUlMyIiInJ4DIiIiIjI4TEgIiIiIofHgIiIiIgcHgMiIiIicngMiIiIiMjhMSAiIiIih8eAiIiIiBweAyIiIiJyeAyIiIiIyOExILKB6++Nt6qdiIiI5MWAiIiIiBwei7vaSO0sUPuXdja4RkRERE2LAZGNMQgiIiKyPS6ZERERkcNzqIBo1apVaN++PTw8PNC/f3+cOHHC1kMiIiIiO+AwAdH333+PRYsW4fXXX8eZM2fQs2dPjBkzBllZWbYeGhEREdmYRhAEwdaDaAr9+/fHAw88gM8++wwAUFNTg9DQUMybNw8vvfSSwb3l5eUoLy/Xf15UVITQ0FAUFhZCq9U26biJiIhImqKiIuh0OrPevx1ihqiiogKnT5/GqFGj9NecnJwwatQoxMfHN7h/2bJl0Ol0+o/Q0NCmHC4RERE1MYcIiHJyclBdXY2goCCD60FBQcjIyGhw/8svv4zCwkL9R3p6elMNlYiIiGyAx+4b4e7uDnd3d1sPg4iIiJqIQ8wQ+fv7w9nZGZmZmQbXMzMzERwcbKNRERERkb1wiIDIzc0Nffv2RVxcnP5aTU0N4uLiEB0dbcORERERkT1wmCWzRYsWYebMmejXrx+ioqLwySefoLS0FE899ZSth0ZEREQ25jAB0ZQpU5CdnY0lS5YgIyMDvXr1wq5duxpstG5MbWaCoqIipYdJREREMql93zYnw5DD5CGyRkpKCjp06GDrYRAREZEE6enpaNOmjeg9DjNDZI1WrVoBANLS0qDT6Ww8GmXUJp9MT09vlskn+Xzq19yfsbk/H9D8n5HPZ38EQUBxcTFCQkJM3suAyAxOTvf2nut0OtX8IZBKq9U262fk86lfc3/G5v58QPN/Rj6ffTF3IsMhTpkRERERiWFARERERA6PAZEZ3N3d8frrrzfr7NXN/Rn5fOrX3J+xuT8f0Pyfkc+nbjxlRkRERA6PM0RERETk8BgQERERkcNjQEREREQOjwEREREROTyHDYhWrVqF9u3bw8PDA/3798eJEydE79+yZQs6d+4MDw8PdO/eHT///LNBuyAIWLJkCVq3bg1PT0+MGjUKV65cUfIRRFnyfF999RWGDBkCX19f+Pr6YtSoUQ3unzVrFjQajcHHQw89pPRjiLLkGdevX99g/B4eHgb3qPk1HDZsWIPn02g0GD9+vP4ee3oNDx06hEceeQQhISHQaDTYtm2bya85cOAA+vTpA3d3d3Ts2BHr169vcI+lf6+VYunzbd26FQ8++CACAgKg1WoRHR2N3bt3G9zzxhtvNHj9OnfurOBTiLP0GQ8cONDon9GMjAyD+9T6Gjb290uj0aBbt276e+zpNVy2bBkeeOABtGzZEoGBgZg4cSKSk5NNfp3a3gst4ZAB0ffff49Fixbh9ddfx5kzZ9CzZ0+MGTMGWVlZjd5/7NgxTJs2DbNnz0ZiYiImTpyIiRMn4sKFC/p7PvjgA3z66adYvXo1EhIS0KJFC4wZMwZ3795tqsfSs/T5Dhw4gGnTpmH//v2Ij49HaGgoRo8ejd9//93gvoceegi3b9/Wf2zatKkpHqdRlj4jcC+7at3x37hxw6Bdza/h1q1bDZ7twoULcHZ2xmOPPWZwn728hqWlpejZsydWrVpl1v2pqakYP348hg8fjqSkJCxcuBBz5swxCBqk/JlQiqXPd+jQITz44IP4+eefcfr0aQwfPhyPPPIIEhMTDe7r1q2bwet35MgRJYZvFkufsVZycrLBMwQGBurb1PwarlixwuC50tPT0apVqwZ/B+3lNTx48CBiY2Nx/Phx7N27F5WVlRg9ejRKS0uNfo3a3gstJjigqKgoITY2Vv95dXW1EBISIixbtqzR+x9//HFh/PjxBtf69+8v/O1vfxMEQRBqamqE4OBg4R//+Ie+vaCgQHB3dxc2bdqkwBOIs/T56quqqhJatmwpfP311/prM2fOFCZMmCD3UCWz9BnXrVsn6HQ6o/01t9fw448/Flq2bCmUlJTor9nba1gLgPDjjz+K3vPCCy8I3bp1M7g2ZcoUYcyYMfrPrf2ZKcWc52tM165dhTfffFP/+euvvy707NlTvoHJyJxn3L9/vwBAyM/PN3pPc3oNf/zxR0Gj0QjXr1/XX7Pn1zArK0sAIBw8eNDoPWp7L7SUw80QVVRU4PTp0xg1apT+mpOTE0aNGoX4+PhGvyY+Pt7gfgAYM2aM/v7U1FRkZGQY3KPT6dC/f3+jfSpFyvPVV1ZWhsrKSn1R21oHDhxAYGAgIiMj8eyzzyI3N1fWsZtL6jOWlJSgXbt2CA0NxYQJE3Dx4kV9W3N7DdesWYOpU6eiRYsWBtft5TW0lKm/g3L8zOxJTU0NiouLG/wdvHLlCkJCQhAeHo4nnngCaWlpNhqhdL169ULr1q3x4IMP4ujRo/rrze01XLNmDUaNGoV27doZXLfX17CwsBAAGvyZq0tN74VSOFxAlJOTg+rqagQFBRlcDwoKarCWXSsjI0P0/tr/WtKnUqQ8X30vvvgiQkJCDP5QP/TQQ9iwYQPi4uLw/vvv4+DBgxg7diyqq6tlHb85pDxjZGQk1q5di59++gnffPMNampqMHDgQNy8eRNA83oNT5w4gQsXLmDOnDkG1+3pNbSUsb+DRUVFuHPnjix/7u3Jhx9+iJKSEjz++OP6a/3798f69euxa9cufPHFF0hNTcWQIUNQXFxsw5Gar3Xr1li9ejX+85//4D//+Q9CQ0MxbNgwnDlzBoA8/3bZi1u3buGXX35p8HfQXl/DmpoaLFy4EIMGDcL9999v9D41vRdKwWr3ZOC9997Dd999hwMHDhhsOp46dar+/7t3744ePXqgQ4cOOHDgAEaOHGmLoVokOjoa0dHR+s8HDhyILl264J///CeWLl1qw5HJb82aNejevTuioqIMrqv9NXQUGzduxJtvvomffvrJYH/N2LFj9f/fo0cP9O/fH+3atcPmzZsxe/ZsWwzVIpGRkYiMjNR/PnDgQFy7dg0ff/wx/v3vf9twZPL7+uuv4ePjg4kTJxpct9fXMDY2FhcuXLDpnjR74HAzRP7+/nB2dkZmZqbB9czMTAQHBzf6NcHBwaL31/7Xkj6VIuX5an344Yd47733sGfPHvTo0UP03vDwcPj7++Pq1atWj9lS1jxjLVdXV/Tu3Vs//ubyGpaWluK7774z6x9XW76GljL2d1Cr1cLT01OWPxP24LvvvsOcOXOwefPmBksT9fn4+KBTp06qeP2MiYqK0o+/ubyGgiBg7dq1mD59Otzc3ETvtYfXcO7cudixYwf279+PNm3aiN6rpvdCKRwuIHJzc0Pfvn0RFxenv1ZTU4O4uDiDGYS6oqOjDe4HgL179+rvDwsLQ3BwsME9RUVFSEhIMNqnUqQ8H3DvZMDSpUuxa9cu9OvXz+T3uXnzJnJzc9G6dWtZxm0Jqc9YV3V1Nc6fP68ff3N4DYF7R2LLy8vx5JNPmvw+tnwNLWXq76AcfyZsbdOmTXjqqaewadMmg3QJxpSUlODatWuqeP2MSUpK0o+/ObyGwL3TW1evXjXrlxJbvoaCIGDu3Ln48ccfsW/fPoSFhZn8GjW9F0pi613dtvDdd98J7u7uwvr164X//e9/wl//+lfBx8dHyMjIEARBEKZPny689NJL+vuPHj0quLi4CB9++KFw6dIl4fXXXxdcXV2F8+fP6+957733BB8fH+Gnn34Szp07J0yYMEEICwsT7ty5Y/fP99577wlubm7CDz/8INy+fVv/UVxcLAiCIBQXFwuLFy8W4uPjhdTUVOHXX38V+vTpI0RERAh3795t8ueT8oxvvvmmsHv3buHatWvC6dOnhalTpwoeHh7CxYsX9feo+TWsNXjwYGHKlCkNrtvba1hcXCwkJiYKiYmJAgBh+fLlQmJionDjxg1BEAThpZdeEqZPn66/PyUlRfDy8hKef/554dKlS8KqVasEZ2dnYdeuXfp7TP3M7Pn5vv32W8HFxUVYtWqVwd/BgoIC/T3/93//Jxw4cEBITU0Vjh49KowaNUrw9/cXsrKymvz5BMHyZ/z444+Fbdu2CVeuXBHOnz8vLFiwQHBychJ+/fVX/T1qfg1rPfnkk0L//v0b7dOeXsNnn31W0Ol0woEDBwz+zJWVlenvUft7oaUcMiASBEFYuXKl0LZtW8HNzU2IiooSjh8/rm8bOnSoMHPmTIP7N2/eLHTq1Elwc3MTunXrJuzcudOgvaamRnjttdeEoKAgwd3dXRg5cqSQnJzcFI/SKEuer127dgKABh+vv/66IAiCUFZWJowePVoICAgQXF1dhXbt2glPP/20Tf6RqsuSZ1y4cKH+3qCgIGHcuHHCmTNnDPpT82soCIJw+fJlAYCwZ8+eBn3Z22tYewS7/kftM82cOVMYOnRog6/p1auX4ObmJoSHhwvr1q1r0K/Yz6wpWfp8Q4cOFb1fEO6lGWjdurXg5uYm3HfffcKUKVOEq1evNu2D1WHpM77//vtChw4dBA8PD6FVq1bCsGHDhH379jXoV62voSDcO2Lu6ekpfPnll432aU+vYWPPBsDg71VzeC+0hEYQBEGx6SciIiIiFXC4PURERERE9TEgIiIiIofHgIiIiIgcHgMiIiIicngMiIiIiMjhMSAiIiIih8eAiIiIiBweAyIiIiJyeAyIiEhVNBoNtm3bBgC4fv06NBoNkpKSzP76N954A7169VJkbESkXgyIiEi1QkNDcfv2bdx///1mf83ixYsNik/OmjULEydOVGB00gwbNgwLFy609TCIHI6LrQdARCSVs7MzgoODLfoab29veHt7KzQiIlIrzhARUZP64Ycf0L17d3h6esLPzw+jRo1CaWkpAODkyZN48MEH4e/vD51Oh6FDh+LMmTNG+6q/ZHbgwAFoNBrExcWhX79+8PLywsCBA5GcnKz/mrpLZm+88Qa+/vpr/PTTT9BoNNBoNDhw4ABGjBiBuXPnGnyv7OxsuLm5Gcwu1VXb7z//+U+EhobCy8sLjz/+OAoLC/X31M5GvfnmmwgICIBWq8UzzzyDiooKffvBgwexYsUK/XiuX79u6Y+YiCRgQERETeb27duYNm0a/vKXv+DSpUs4cOAAJk2ahNoa08XFxZg5cyaOHDmC48ePIyIiAuPGjUNxcbFF3+eVV17BRx99hFOnTsHFxQV/+ctfGr1v8eLFePzxx/HQQw/h9u3buH37NgYOHIg5c+Zg48aNKC8v19/7zTff4L777sOIESOMft+rV69i8+bN+O9//4tdu3YhMTERf//73w3uiYuL0z/7pk2bsHXrVrz55psAgBUrViA6OhpPP/20fjyhoaEWPTsRScMlMyJqMrdv30ZVVRUmTZqEdu3aAQC6d++ub68fbHz55Zfw8fHBwYMH8fDDD5v9fd555x0MHToUAPDSSy9h/PjxuHv3Ljw8PAzu8/b2hqenJ8rLyw2W3iZNmoS5c+fip59+wuOPPw4AWL9+PWbNmgWNRmP0+969excbNmzAfffdBwBYuXIlxo8fj48++kjfv5ubG9auXQsvLy9069YNb731Fp5//nksXboUOp0Obm5u8PLysngpkIiswxkiImoyPXv2xMiRI9G9e3c89thj+Oqrr5Cfn69vz8zMxNNPP42IiAjodDpotVqUlJQgLS3Nou/To0cP/f+3bt0aAJCVlWX213t4eGD69OlYu3YtAODMmTO4cOECZs2aJfp1bdu21QdDABAdHY2amhqDJbuePXvCy8vL4J6SkhKkp6ebPT4ikh8DIiJqMs7Ozti7dy9++eUXdO3aFStXrkRkZCRSU1MBADNnzkRSUhJWrFiBY8eOISkpCX5+fvo9NuZydXXV/3/tjE5NTY1FfcyZMwd79+7FzZs3sW7dOowYMUI/q0VEzQ8DIiJqUhqNBoMGDcKbb76JxMREuLm54ccffwQAHD16FPPnz8e4cePQrVs3uLu7IycnR9HxuLm5obq6usH17t27o1+/fvjqq6+wceNGo/uQ6kpLS8OtW7f0nx8/fhxOTk6IjIzUXzt79izu3LljcI+3t7d+r5Cx8RCRshgQEVGTSUhIwLvvvotTp04hLS0NW7duRXZ2Nrp06QIAiIiIwL///W9cunQJCQkJeOKJJ+Dp6anomNq3b49z584hOTkZOTk5qKys1LfNmTMH7733HgRBwJ/+9CeTfXl4eGDmzJk4e/YsDh8+jPnz5+Pxxx832A9UUVGB2bNn43//+x9+/vlnvP7665g7dy6cnJz040lISMD169eRk5Nj8cwWEUnDgIiImoxWq8WhQ4cwbtw4dOrUCa+++io++ugjjB07FgCwZs0a5Ofno0+fPpg+fTrmz5+PwMBARcf09NNPIzIyEv369UNAQACOHj2qb5s2bRpcXFwwbdq0BhuyG9OxY0dMmjQJ48aNw+jRo9GjRw98/vnnBveMHDkSERERiImJwZQpU/Doo4/ijTfe0LcvXrwYzs7O6Nq1KwICAizeP0VE0miE2vOuRERk4Pr16+jQoQNOnjyJPn36iN77xhtvYNu2baJlRGbNmoWCggJ96REish88dk9EVE9lZSVyc3Px6quvYsCAASaDISJSPy6ZERHVc/ToUbRu3RonT57E6tWrbT0cImoCXDIjIiIih8cZIiIiInJ4DIiIiIjI4TEgIiIiIofHgIiIiIgcHgMiIiIicngMiIiIiMjhMSAiIiIih8eAiIiIiBze/wfeebTfvUxkqgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "tol.plot(kind='scatter', y='specific conductance uS/cm', x='salinity ppt')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### *Exercise*:\n", + "Let's make a few cosmetic changes:\n", + "* Set the color to green with `c='green'`\n", + "* set the point size and transparency with `s=50, alpha=0.7`\n", + "* set the title and axis labels if you like.\n", + "\n", + "Let's see what happens if we use another column to set the color of our points.\n", + "* add `cmap='viridis'` to your plot command\n", + "* set `c=tol['temperature C']` in the plot commmand\n", + "* also try `c=tol['gage height ft']`\n", + "\n", + "What observations can we make about the relationships between temperature, gage height, and salinity?\n", + "\n", + "## Overlaying a Regression Line\n", + "When we run a cell and make a plot, matplotlib creates a figure that the plot is rendered on. We can follow with a second plot in the same cell and it will be drawn on the same figure. This can be useful to add a regression line over our scatter plot.\n", + "\n", + "There are some Nan values in the conductance and salinity columns in our dataframe, so we need to use dropna to clean those up before using np.polyfit. So we create a tol_cleaned dataframe.\n", + "\n", + "Then we generate our y values as `regression_line` using our x values with the slope and intercept... this is a y=mx+b equation, but since x is a series, the mutiplication and addition operations are broadcast through the series and we get a series result that we save as regression_line. " + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "slope: 2160.6322894868645 intercept: -19.685058556168173\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAGwCAYAAABIC3rIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABiVklEQVR4nO3deVyU5f4//tewgzgDskqigiIuuRuKC65paqVHT6nfculo59TBLT+2PSpbrKxOWWaWp45LntLSjplHyyXcFXEDt6OkgoIp+w7Kev/+8MfEAHPPzD33zczNvJ6PB4/ivm4urptR5821vN8aQRAEEBERETkwJ1sPgIiIiMjWGBARERGRw2NARERERA6PARERERE5PAZERERE5PAYEBEREZHDY0BEREREDs/F1gNQg5qaGty6dQstW7aERqOx9XCIiIjIDIIgoLi4GCEhIXByEp8DYkBkhlu3biE0NNTWwyAiIiIJ0tPT0aZNG9F7GBCZoWXLlgDu/UC1Wq2NR0NERETmKCoqQmhoqP59XAwDIjPULpNptVoGRERERCpjznYXbqomIiIih8eAiIiIiBweAyIiIiJyeAyIiIiIyOExICIiIiKHx4CIiIiIHB4DIiIiInJ4DIiIiIjI4TEgIiIiIofHgIiIiIgcHkt3EBERNSMp2SW4kVeG9n4tEObfwtbDUQ0GRERERM1AQVkF5m9KwqEr2fprMREBWDmtN3RerjYcmTpwyYyIiKgZmL8pCUev5hhcO3o1B/M2JdpoROrCgIiIiEjlUrJLcOhKNqoFweB6tSDg0JVspOaU2mhk6sGAiIiISOVu5JWJtl/PZUBkCgMiIiIilWvXyku0vb0fN1ebwoCIiIhI5cIDvOFrZOO0r5crT5uZgQERERGRyqVklyC/rLLRtvyySu4hMgMDIiIiIpXjHiLrMSAiIiJSOe4hsh4DIiIiIpULD/BGTEQAnDUag+vOGg1iIgK4h8gMDIiIiIiagbcn3g+tp2EBCq2nC96ZeL+NRqQuDIiIiIiagVe3XUDRnSqDa0V3qvDKtgs2GpG6MCAiIiJSuabIVJ2SXYL9yVnN9sQai7sSERGpnDmnzKTuI2qKorEHk7OQdLMAfdr6YkhEgCx9WooBERERkcopecpMrGjshtlRkvsFgBu5pZi46qhBDiVfL1dsjx2MUD/xZ5Ibl8yIiIhUTqlTZkovxdUPhoB7iSQfXXXEqn6lYEBERETUDKyc1huDOvobXBvU0R8rp/WW3KeSCR8PJmeJZtc+XGeJrilwyYyIiKiJpWSX4EZeGdr7tZAtR5DOyxUbZkchNacU13NLZelbyaW4pJsFou1n0vKbdD8RAyIiIqIm0hQblMP85QuyTqbmibafup4n+Xv1auMj2t6nra+kfqXikhkREVETEdugbI/iU3NF249eyxFtFzM0MhC+RoJAXy/XJj9txoCIiIioCTRFriC5RYf5ibYP6uAv2m7K9tjBDYKi2lNmTY1LZkRERE1AyVxBSpkS1RavbLuAqhqhQZuLkwaP9Qu1qv9QPy8kLhmNw1eycSYt36Z5iDhDRERE1ATUWpF+e+wguDgZHud3cdJge+wg2b7HkIgALBjZyWbBEGBHAdF7770HjUaDhQsX6q/dvXsXsbGx8PPzg7e3NyZPnozMzEyDr0tLS8P48ePh5eWFwMBAPP/886iqMqzlcuDAAfTp0wfu7u7o2LEj1q9f3wRPRERE9Ae1VqTvep8OV98dh3/8uQcm9g7BP/7cA1ffHYeu9+lsPTRZ2UVAdPLkSfzzn/9Ejx49DK4/99xz+O9//4stW7bg4MGDuHXrFiZNmqRvr66uxvjx41FRUYFjx47h66+/xvr167FkyRL9PampqRg/fjyGDx+OpKQkLFy4EHPmzMHu3bub7PmIiIgAZXIF1XcwOQsr4n6TPY/PY/1C8cmU3lYvk9krjSAIDRcGm1BJSQn69OmDzz//HG+//TZ69eqFTz75BIWFhQgICMDGjRvx5z//GQBw+fJldOnSBfHx8RgwYAB++eUXPPzww7h16xaCgoIAAKtXr8aLL76I7OxsuLm54cUXX8TOnTtx4cIf1X6nTp2KgoIC7Nq1y6wxFhUVQafTobCwEFqtVv4fAhERORQ5cwXVsqcyGPbCkvdvm88QxcbGYvz48Rg1apTB9dOnT6OystLgeufOndG2bVvEx8cDAOLj49G9e3d9MAQAY8aMQVFRES5evKi/p37fY8aM0ffRmPLychQVFRl8EBERySXMvwWGRwbKukxmT2Uw1MimAdF3332HM2fOYNmyZQ3aMjIy4ObmBh8fH4PrQUFByMjI0N9TNxiqba9tE7unqKgId+7caXRcy5Ytg06n03+EhjbP6UEiImoe7K0MhhrZLCBKT0/HggUL8O2338LDw8NWw2jUyy+/jMLCQv1Henq6rYdERERklDllMEiczQKi06dPIysrC3369IGLiwtcXFxw8OBBfPrpp3BxcUFQUBAqKipQUFBg8HWZmZkIDg4GAAQHBzc4dVb7ual7tFotPD09Gx2bu7s7tFqtwQcREZG9srcyGGpks4Bo5MiROH/+PJKSkvQf/fr1wxNPPKH/f1dXV8TFxem/Jjk5GWlpaYiOjgYAREdH4/z588jKytLfs3fvXmi1WnTt2lV/T90+au+p7YOIiKippWSXYH9ylmzZqe2tDIYa2SxTdcuWLXH//fcbXGvRogX8/Pz012fPno1FixahVatW0Gq1mDdvHqKjozFgwAAAwOjRo9G1a1dMnz4dH3zwATIyMvDqq68iNjYW7u7uAIBnnnkGn332GV544QX85S9/wb59+7B582bs3LmzaR+YiIgcnpLFXb+ZHYUJq44ZZJV2cdLg29n9rerXUdj8lJmYjz/+GA8//DAmT56MmJgYBAcHY+vWrfp2Z2dn7NixA87OzoiOjsaTTz6JGTNm4K233tLfExYWhp07d2Lv3r3o2bMnPvroI/zrX//CmDFjbPFIRETkwJQs7vr+rt9QP5GOIADv7Uq2um9HYPM8RGrAPERERGStlOwSjPjooNH2/YuHST6Gr2TfaqaqPERERESOwJzirvbYt6NgtXsiIiIjDiZnIelmgSxV2JUs7qrWwrH2hAERERFRPWorg1FbOPbo1RxU19kJ46zRYFBHf4dcLrMUl8yIiIjqUaIMhtLLWk1ROLY54wwRERFRHeaUwZCyfKb0spbOyxUbZkcpUjjWEXCGiIiIqA6lymDULms5azQG1501GsREBMgWvChRONYRMCAiIiKqQ8kyGFzWsl9cMiMiIqqjtgxGY8tm1pbB4LKW/eIMERERUT3bYwc3qA1We8pMDlzWsj+cISIiIqon1M8LiUtG4/CVbJxJy5clDxHZNwZERERERgyJCGAg5CC4ZEZEREQOjwEREREROTwumRERETWxlOwS3Mgr4ykzO8KAiIiIqIkUlFVg/qYkHLqSrb8WExGAldN6Q1fvVBs1LS6ZERGRqqVkl2B/chZSc6yrBdYU/v7tGYNgCAAOXcnGs9+ettGIqBZniIiISJXUNtuSkl2CY9dyG207di0XqTmlXD6zIc4QERGRKs3flISjV3MMrh29moN5mxJtNCJxCamNB0P69hTxdlIWAyIiIlKdlOwSHLqSjWpBMLheLQg4dCXbTpfPNKKtgmgrKY0BERERqc6NvDLR9uu59hcQheg8RNvb+Ho20UioMQyIiIhIddq18hJtb+9nf3txaky0V9VwjsiWGBAREZHqhAd4IyYiAM4aw2UoZ40GMREBsm1OPpichRVxv+FwvZNhUqgxiHMkPGVGRESqtHJab8zblGhwymxQR3+snNbb6r5v5JZi4qqjyC+r1F+rrXYf6ice2BhTG8QdvZpjsPfJWaPBoI7+PGFmYxpBEDhHZ0JRURF0Oh0KCwuh1WptPRwiIqojNacU13NLZc363PPN3Si8U9Xgus7TBWdfHyO53ws3CzHx86MGy2MuThpsjx2ErvfpJPdLjbPk/ZtLZkREpGph/i0wPDJQ1mWyxoIhACi8U2XV8tn0tQkN9gpV1Qh4Yk2C5D5JHgyIiIiI6tifnCXaHncpU1K/B5OzDJbg6sovq5RlnxJJx4CIiIiojlYt3ETb/b3dJfWbdLNAtP1MWr6kfkkeDIiIiIjqeLhHiGj7eBPtxvRq4yPa3qetr6R+SR4MiIiISNXkLu4aHuCNqPatGm2Lat9K8l6loZGB8DVSY83XyxVDIgIk9Uvy4LF7IiJSJSWLu341o1+DI/21fVvjm9lRmLDqWINTZt/O7m9Vv2Q9zhAREZEqKVncVVCostj7u35D/WQ3ggC8tytZke9H5mNAREREqqN0cVclgi11FqR1HAyIiIhIdZQs7qpU4KLGgrSOhAERERGpjpJ1wZQKXFjLzL4xICIiItVRsrirUoFLUxWkJWkYEBERkSqtnNYbgzr6G1yTq7irUtQ4ZkfBY/dERKRKOi9XbJgdJXtx1x3nbom27zx3C3NHREjqW6kxk/UYEBERkaoJ9c+xWymvtEK0Paek3OrvEebPQMjeMCAiIqImkZJdght5ZbLNiiiVmLFLsFa0vVuITnLfZL8YEBERkaKUClzEcgVtmB0lud8aE0kZq2uUSdpItsVN1UREpCi1JTnMLhZfMsuWYcmM7A8DIiIiUowakxwGtHQTb/d2l9w32S8GREREpBilAhdTb14uThoTdxjXP8xPvD1cvJ3USdIeolu3buHIkSPIyspCTU2NQdv8+fNlGRgREamfUkkOa0y0V3GfD1nI4oBo/fr1+Nvf/gY3Nzf4+flBUyfjpkajYUBERER64QHeGNjBD8eu5TZoG9jBT/Jps4s3C0XbL90qwvDIQEl9mzOrxSPzzY/FAdFrr72GJUuW4OWXX4aTE1fciIhInLE0QdakD7qaUyLa/ltWseS+WXPMMVkc0ZSVlWHq1KkMhoiImqGU7BLsT86y6pRW/f7iUxrODgFAfEqu5O8TbWKfz6AO/qLtYlhzzDFZHNXMnj0bW7ZsUWIsRERkIwVlFZix5gRGfHQQT607ieEfHsCMNSdQWFZpVb9KbaqeEtXW6MZpFycNHusXKqnfWqw55ng0goU5z6urq/Hwww/jzp076N69O1xdDZNqLV++XNYB2oOioiLodDoUFhZCqxXPYEpEpEYz1pzA0as5BsfjnTUaDOrob1WSw5TsEoz46KDR9v2Lh0mecTl+NRdT/3W8wfXvnx6A/h3kOQnGmmPqZsn7t8V7iJYtW4bdu3cjMjISABpsqiYiInWpzRVUX91cQfYYDHx+8BqcNZoGQdyqA9dkC4hYc8xxWBwQffTRR1i7di1mzZqlwHCIiKipKXmqSqm+myqIO5ichaSbBejT1hdDIgKs7o/sl8UBkbu7OwYNGqTEWIiIyAaUPFWlVN9KH42/kVuKiauOIr/OHipfL1dsjx2MUD/xZyJ1snhT9YIFC7By5UolxkJERDag5KkqpfpW+mh8/WAIAPLLKvHoqiNW9Uv2y+IZohMnTmDfvn3YsWMHunXr1mBT9datW2UbHBERNY23J3bDhHpBgNbTBe9MvN/qvldO6415mxINlrjs+cTWweSsBsFQrfyyShy+ks3ls2bI4oDIx8cHkyZNUmIsRERkI69uu4iiO1UG14ruVOGVbResOmUGADovV2yYHSXria2E1DzR9uMpuZK/R9LNAtH2M2n5DIiaIYsDonXr1ikxDiIispGm2qAs54mt7OK7ou25JeWS++7Vxke0vU9bX8l9k/2yeA9Ramoqrly50uD6lStXcP36dTnGRERETUip5IlKCmjpIdru5+0uue+hkYHw9XJttM3Xy5WzQ82UxQHRrFmzcOzYsQbXExISeBSfiKgOuctgKKWpancdTM7CirjfcLiR2ShLhejEA6I2vp5W9b89dnCDoKj2lBk1TxYvmSUmJjZ67H7AgAGYO3euLIMiIlKzgrIKzN+UZLAMFRMRgJXTekNnZObBlmpPghnLVG3tMpcSR9hrTLRX1VhRORZAqJ8XEpeMxuEr2TiTls88RA7A4hkijUaD4uKGVYQLCwtRXV0ty6CIiNRs/qYkHL2aY3Dt6NUczNuUaKMRmaZk7a5HPzvS6BH2hz87LLlPU29exuqcWWpIRAAWjOzEYMgBWDxDFBMTg2XLlmHTpk1wdnYGcK++2bJlyzB4MKcSicixqbUMRu1JsEO/ZSMxXb4ZkYPJWSisd3qtVuGdKslH2G8V3hFt/z1fvJ2oPosDovfffx8xMTGIjIzEkCFDAACHDx9GUVER9u3bJ/sAiYjUROkMykpRaplvf3KWaHvcpUyJgZf4DJB1C2bkiCxeMuvatSvOnTuHxx9/HFlZWSguLsaMGTNw+fJl3H+/9Qm8iIiaktwbn5tqg7LclFrma9XCTbTdX+JpsP5hrUTbB4TLU9yVHIfZM0Rr167Fo48+Cn9/f4SEhODdd99VclxERIpSakZE6Q3KSlByma+niZw+PUPF240JD/BGdLgf4lNyG7RFh/vZ5c+Z7JvZM0TffPMN2rRpg4EDB+L999/H5cuXlRwXEZGilNz4rOQGZSUomYfoVqF4AsWbVuz1eX9yj0aPxn8wuYfkPslxmT1DtG/fPuTn52Pnzp3Yvn073nnnHQQFBeHRRx/FhAkTMHjwYDg5WbwCR0TNSEp2CW7klclSmkFJSm98VqJUhZKUPLGlZEbpV7ddUKzcCDkeizZV+/r64sknn8STTz6JiooK7Nu3D9u3b8cTTzyBO3fuYNy4cXj00UcxduxYtGhhv3/5iUheasu701Qbn+UsVVGX3IGnkie2AlqK7xGSuodIraf5yH5JntJxc3PDQw89hM8//xzp6enYtWsX2rdvj6VLl2L58uVyjpGI7Jza8u6odeNzQVkFZqw5gREfHcRT605i+IcHMGPNCRQaqcxuPuVObPUPE9/c3F/i5mc1lhsh+2b1GldVVRVKSkrQr18/vPXWWzh79ixeeuklOcZGRCpQ+5t63Q3EgOFv6vamduOzs8YwEHDWaBATEWC3MwtKBZ5KntgKD/AWbZf6s1ZrUEv2y+yA6L///S/Wr19vcO2dd96Bt7c3fHx8MHr0aOTn5wMAXF3tb4qciJSh1t/U1bbxWY2BJwB8fyJNtH3LqXRJ/ao1qCX7ZXZAtHz5cpSW/vEX7tixY1iyZAlee+01bN68Genp6Vi6dKlF3/yLL75Ajx49oNVqodVqER0djV9++UXffvfuXcTGxsLPzw/e3t6YPHkyMjMzDfpIS0vD+PHj4eXlhcDAQDz//POoqjLcZHfgwAH06dMH7u7u6NixY4PAjoikU+tv6rUbn/cvHoZ1Tz2A/YuHYcPsKLvc8wQoG3gq2ffeS5mi7XsuZkjuW21BLdk3szdVX7x40WBv0A8//IAHH3wQr7zyCgDAw8MDCxYssGj/UJs2bfDee+8hIiICgiDg66+/xoQJE5CYmIhu3brhueeew86dO7FlyxbodDrMnTsXkyZNwtGjRwHcKxkyfvx4BAcH49ixY7h9+zZmzJgBV1dXfZ6k1NRUjB8/Hs888wy+/fZbxMXFYc6cOWjdujXGjBlj9liJqHFqzLtTl1Ibn+WmZOCpZN9aD/EAU+spPQBV22k+sm9mzxAVFxfDz++PdeQjR45g5MiR+s+7deuGW7duWfTNH3nkEYwbNw4RERHo1KmTfgnu+PHjKCwsxJo1a7B8+XKMGDECffv2xbp163Ds2DEcP34cALBnzx7873//wzfffINevXph7NixWLp0KVatWoWKigoAwOrVqxEWFoaPPvoIXbp0wdy5c/HnP/8ZH3/8sUVjJSLj+Ju68sIDvDGwQ+N7eQZ2sC4RYXiANx5o79toW1R7X6v6fiCs8X717e3F9y+ZI8y/BYZHBjIYIquYHRDdd999uHTpEgCgpKQEZ8+excCBA/Xtubm58PIS/y1DTHV1Nb777juUlpYiOjoap0+fRmVlJUaNGqW/p3Pnzmjbti3i4+MBAPHx8ejevTuCgoL094wZMwZFRUW4ePGi/p66fdTeU9tHY8rLy1FUVGTwQUTGqW35Sa0EI8e9jF23xG+ZJY1eTzZy3VwhOk/R9vt8xduJmorZAdFjjz2GhQsX4t///jeefvppBAcHY8CAAfr2U6dOITIy0uIBnD9/Ht7e3nB3d8czzzyDH3/8EV27dkVGRgbc3Nzg4+NjcH9QUBAyMu6tOWdkZBgEQ7XttW1i9xQVFeHOncZzayxbtgw6nU7/ERoaavFzETki/qaunJTskkbLVABAfEquVZuq71Wkb/zofuGdShxuJN+PuWpMtFfVsAwr2QezA6IlS5bggQcewPz585GUlIRvvvkGzs7O+vZNmzbhkUcesXgAkZGRSEpKQkJCAp599lnMnDkT//vf/yzuR04vv/wyCgsL9R/p6dJOQRARyUXJjc9JNwtE28+k5Uvu+3CyeDB19EqOaDtRUzF7U7Wnpyc2bNhgtH3//v2SBuDm5oaOHTsCAPr27YuTJ09ixYoVmDJlCioqKlBQUGAwS5SZmYng4GAAQHBwME6cOGHQX+0ptLr31D+ZlpmZCa1WC0/Pxqdq3d3d4e4uLXsqESlDLWVB6pJzzEqW1+hlogBrn7bi+4DEXMoQ33Jw8Vah5L6J5GRR6Y6mUFNTg/LycvTt2xeurq6Ii4vD5MmTAQDJyclIS0tDdHQ0ACA6OhrvvPMOsrKyEBgYCADYu3cvtFotunbtqr/n559/Nvgee/fu1fdBRPZNbWVBAGXGrGSR1KGRgdB6uKDoblWDNq2HC4ZEBEjue1AHf8Sn5Bltt6ZvIjlZHBCFhYVBozH+m0hKSorZfb388ssYO3Ys2rZti+LiYmzcuBEHDhzA7t27odPpMHv2bCxatAitWrWCVqvFvHnzEB0drd+7NHr0aHTt2hXTp0/HBx98gIyMDLz66quIjY3Vz/A888wz+Oyzz/DCCy/gL3/5C/bt24fNmzdj586dlj46EdmAWHZmey3g+ew3Zxrs9zl0JRvPfHMam/46wMhXmSK+10b6/JCyxvVojQ/3/ma0fWz31k04GiLjLA6IFi5caPB5ZWUlEhMTsWvXLjz//PMW9ZWVlYUZM2bg9u3b0Ol06NGjB3bv3o0HH3wQAPDxxx/DyckJkydPRnl5OcaMGYPPP/9c//XOzs7YsWMHnn32WURHR6NFixaYOXMm3nrrLf09YWFh2LlzJ5577jmsWLECbdq0wb/+9S/mICJSATUW8DRn87OUMStVEwy4t6m6sdkhACi6W4XDV7Ilz+Q0VSFdImtZHBAtWLCg0eurVq3CqVOnLOprzZo1ou0eHh5YtWoVVq1aZfSedu3aNVgSq2/YsGFITLTPIpNEZJwa30wTUo0vDwHA8ZRcuxuzOZuqpQZEas1kTo7H6uKutcaOHYv//Oc/cnVHRKTKN9PsYvG9Prkl5ZL6VfKUWXBLD9F2U7mExLDmGKmFbAHRDz/8gFatrM84SkRUS41vpgEmggs/b2knWJUMDgN14mP2b2ndqVtmMic1sHjJrHfv3gabqgVBQEZGBrKzsw329xARyWHltN6YtynRYC+RPb+ZhpgILtpIzMysZM04pWfiWHOM1MDigGjixIkGnzs5OSEgIADDhg1D586d5RoXEREA9b2ZKpmZWW3BYX1qKaRLjsnigOj1119XYhxE1AwomTxRLW+mSiZQVCo4VOPmdSK52V1iRiJSHzUmT1RKU9Tukjs4VOPmdSK5ybapmogcl1jyREfTFMFFSnYJ9idnWVXQta7wAG/4Gglcfb1cOTtEDoEzRERkFTUmT6xL7mU+JTc/KzUTl5Jdgvyyxqvd55dV2v1rSCQHzhARkVWUzI+jpIKyCsxYcwIjPjqIp9adxPAPD2DGmhMoNBIYWEKpY+ZKzcSp9TUkkpPkGaKrV6/i2rVriImJgaenJwRBEK1xRkTNk1r3nyhZI6128/Oh37KRmJ6PPm19rS5iquRMnFpfQyI5WRwQ5ebmYsqUKdi3bx80Gg2uXLmC8PBwzJ49G76+vvjoo4+UGCcR2anwAG9Eh/s1Wr8rOtzPLpdalF7mU2JpS8mTYOkm+r6ZX2aXryORnCxeMnvuuefg4uKCtLQ0eHn98VvFlClTsGvXLlkHR0TqYGxy2F4njZVeInr2mzMNAq7aavdSKXmc35xaZkTNncUzRHv27MHu3bvRpk0bg+sRERG4ceOGbAMjInVIyS7BsWuNV3c/dk16dXclKblEpFS1eyWP8/dq4yPa3qetr+S+idTC4hmi0tJSg5mhWnl5eXB3t67eDRGpjxo35CpZI82cavdSXLxZKNp+6VaRpH4BINREgNjGV7ydqDmwOCAaMmQINmzYoP9co9GgpqYGH3zwAYYPHy7r4IjI/ql1Q65yBUfFZ2qkLmxdzSkRbf8tq1hiz0BCqniQliAxiCNSE4uXzD744AOMHDkSp06dQkVFBV544QVcvHgReXl5OHr0qBJjJCI7pmTeHSUpVQajf5ifeHu4eLsxHf29Rds7BbaU1C8AnEwV3yN08noepka1ldw/kRpYPEN0//3347fffsPgwYMxYcIElJaWYtKkSUhMTESHDh2UGCMR2TnlZluUF+bfAsMjA2UL3MIDvDGwQ+NBz8AO0k/ddWujE23vEqKV1C8AFN0Vz71UdMf63ExE9k5SHiKdTodXXnlF7rEQkUqprSK90r54om+DqvS1x+6lyiq8K9qeU1wuue8HuwTh10tZRttHdwuW3DeRWlgcEK1btw7e3t547LHHDK5v2bIFZWVlmDlzpmyDIyJ1UUtF+rrkLt0BKBMgXsoQ3yN08VYRHhO9w7gpUW3xyrYLjZ5Uc3HS4LF+oRJ7JlIPi5fMli1bBn9//wbXAwMD8e6778oyKCIipSlZuqNWWm4pzt0swM188ZN45tCY2KztbGXOp+2xgxrkMnJx0mB77CDrOiZSCYtniNLS0hAWFtbgert27ZCWlibLoIiIlKZk6Y4buaWYuOqoQcFUXy9XbI8djFA/aUfYOwWLb5qOCJK+qRoAut6nw9V3x2HLqXQcvZaDQR38OTNEDsXiGaLAwECcO3euwfWzZ8/Cz0/a6QkioqZUW7qj7qk4wLB0hzXqB0PAvarxj646IrlPJxMH9p2tyFRd12P9QvHJlN4MhsjhWBwQTZs2DfPnz8f+/ftRXV2N6upq7Nu3DwsWLMDUqVOVGCMRkayUTCZ5MDmrQTBUK7+sEocbqaFmjuMmcgXFG8kWTkTmsXjJbOnSpbh+/TpGjhwJF5d7X15TU4MZM2ZwDxGRSiixkVhNlEwmaU5dMCmV70vuVom2F5fzaDyRNSwOiNzc3PD9999j6dKlOHv2LDw9PdG9e3e0a9dOifERkYyUqMKuRkomk1SqLlj3NjrsFTka39PE9yUicRYvmdXq1KkTHnvsMTz88MMMhohUQmwjsaNRKpmkUnXBHu4RIto+3kQ7EYmzeIaouroa69evR1xcHLKyslBTY1iDed++fbINjojkU7uRuL66G4kdaflMqWSSO87dNtF+C/NGRFjcb3iAN6La++LE9YZlNqLa+zrUa0ekBIsDogULFmD9+vUYP3487r//fmg08pxsICJlmbOR2BHfVOVOJplXKp4xOq+kQnLfX814QPYM2ER0j8UB0XfffYfNmzdj3LhxSoyHiBSi1qr0tdSyEbxLsHhNsa5W1BxjiRQi5UjaVN2xY0clxkJEClJrVXq1bQTPLBavOZZZJN5uDjWWSCGydxZvqv6///s/rFixAoIgnkaeiOyPGqvSK70RPCW7BPuTs6xOxljLVD8p2SWyfB8ikpfFM0RHjhzB/v378csvv6Bbt25wdTX8DW3r1q2yDY6I5CWYqIdlb5TcCK7UzJOpfEGl5dWS+yYi5Vg8Q+Tj44M//elPGDp0KPz9/aHT6Qw+iMh+qe3YvZIZpZX6WZSUM4EikRpZPEO0bt06JcZBRApT47F7pTaCK/mz6BysRXxKntF2U5uuicg2JCdmJCJ1UXK2RSm1G8Gd66X3cNZoEBMRIDloUfJn0dlEVfrOrRkQEdkji2eIAOCHH37A5s2bkZaWhooKw5waZ86ckWVgRCQvtR67Xzmtd4PcO9ZuBDf1m6CLFZXjM0ycMrtVeEdy30SkHItniD799FM89dRTCAoKQmJiIqKiouDn54eUlBSMHTtWiTESkQyUmm1RWm3unf2Lh2HdUw9g/+Jh2DA7yqqNzzUm2qtqpG8+V6qWGREpy+KA6PPPP8eXX36JlStXws3NDS+88AL27t2L+fPno7CwUIkxEpFM1HjsvlaYfwsMjwyUJXBTcrZMqVpmRKQsi5fM0tLSMHDgQACAp6cniouLAQDTp0/HgAED8Nlnn8k7QiKSDTMd3xMe4A0XJ02jM0EuThqrfiYJqbni7Sm5DvkzJ7J3Fs8QBQcHIy/v3gmKtm3b4vjx4wCA1NRUJmskUgk5Z1uaipwJFA8mZxldFquqEXC4kRNo5hPff8R/JYnsk8UzRCNGjMD27dvRu3dvPPXUU3juuefwww8/4NSpU5g0aZISYyQiB6ZEAsX9yVmi7fsuZWFIRICkvvuHtRJtHxDuJ6lfIlKWxQHRl19+iZqae1sSY2Nj4efnh2PHjuHRRx/F3/72N9kHSESOTSyB4obZUZL6bNXCXbzd201Sv0SkXhYvmd28eRPOzs76z6dOnYpPP/0Uc+fORUZGhqyDIyLHVptAsbrecnzdBIpSPNyjtYn2EEn9AsCOc7dNtN+S3DcRKcfigCgsLAzZ2Q3X1/Py8hAWFibLoIiIAOUSKP5sImj55bx4u5jUHPHiranZ9pcAk4gkBESCIECjabhpsKSkBB4eHrIMioiUJXeFd6UolUBx65mbou0/nE6X1C8AhPl7i7cHqGcjO5EjMXsP0aJFiwAAGo0Gr732Gry8/silUV1djYSEBPTq1Uv2ARKRfJSq8K6UszcLxNvTCyRtfnZzFQ+13F2cRdvF9GwjXuS6V6iP5L6JSDlmB0SJifcqQAuCgPPnz8PN7Y9Nh25ubujZsycWL14s/wiJHFRKdglu5JXJmitIiQ3KSsorFa8Mn1NSIdpuzMBwf1zOML60VT95pSVMleb4PZ+lO4jskdkB0f79+wEATz31FFasWAGtlgUKiZSg1CxOU1S7lzuIGx4ZgPXHrhttH9klUFK/lzOKRNsv3ZaedT+7uFy0PadEvJ2IbMPiY/effPIJqqqqGlzPy8uDi4sLAyUiKyk1i2POBmWpQYxSQdzQyEBoPVxQdLfhvzlaDxfJuYIyCsULsN420U5EzY/Fm6qnTp2K7777rsH1zZs3Y+rUqbIMishRKXXMHFC2ftez35xpMPt06Eo2nvnmtOQ+a0UGtbToujl6mSiw2tuKAqwBLcUPl/h5i+dAIiLbsDggSkhIwPDhwxtcHzZsGBISEmQZFJGjUuqYOaBctfuU7BLEpzRevys+JdeqIC4luwQnb+Q32nbyRr7kvif0Es8zNLH3fZL6BZipmkitLA6IysvLG10yq6ysxJ073CxIZA0lZ3EAZardJ6TmibYfNxIsmUOpAPGAidIdBy6Lt4sJD/BGtJGgJzrcT1X144gcicUBUVRUFL788ssG11evXo2+ffvKMigiR6XULE6t2mr3G/7yAJ57MAL/nh2FDbOjrDxyL16uVFqmoHuUChAT0wtE28+kibebsvrJvoipt78pJiIAq5/kv5FE9sriTdVvv/02Ro0ahbNnz2LkyJEAgLi4OJw8eRJ79uyRfYBEjmbltN6YtynRYE+OtbM4tZTY/Nw/THwJqL8dLhH5m9jHE2BlLbPawDM1pxTXc0tlTZ1ARMqwOCAaNGgQ4uPj8Y9//AObN2+Gp6cnevTogTVr1iAiIkKJMRI5FCXfTJU4wRYe4I2BHfxw7FrDpbGBHaxbIkpIFV9uS0jJldT/g12C8Osl48tiD3YLtrjPxoT5MxAiUguLAyIA6NWrF7799lu5x0JEdcj9ZqpkHqIvnujbYFardubJGr9lFIu2X8kUbzcm00SuoIwiHrsncjQWB0RpaWmi7W3btpU8GCJSjpJ5iGpntQ79loXE9AL0aesrOUdQXekmsjqn50k7yMECrERUn8UBUfv27Rst7lqrurraqgERkTKUPMGmVGLGsvKGJ1rrKq0QbzfGx1N8j5CPHdZ1IyJlWRwQ1dY0q1VZWYnExEQsX74c77zzjmwDIyJ51Z5gO3o1xyDxo7NGg0Ed/a1anlMqu3aQTjzJYZBWvN2YTsHiFek7WZH0kYjUyeKAqGfPng2u9evXDyEhIfjHP/6BSZMmyTIwIpKfEifYlNybNCDMDz8m3jLaHt1B2gk2NZ6MIyJlSdpU3ZjIyEicPHlSru6ISAFKnGBTcm9SZrH45uZMbn4mIplYHBAVFRlWiRYEAbdv38Ybb7zBY/dEKiHnCTYl9yal5ogHWykSNz8rGcQRkTpZHBD5+Pg02FQtCAJCQ0MbLfpKRM1beIA3fL1ckV9W2aDN18vVqsCi5G7DPusqNbHp2hilS6QQkfpYHBDt37/f4HMnJycEBASgY8eOcHGRbQWOyOGlZJfgRl6Z3Wc5TskuaTQYAoD8skqr9hBlm8gXlGWi3RglN5gTkTpZHMEMHTpUiXEQ0f9PqSPsSlFy+SmgpXiJDf+W0ktsKFkihYjUx6yAaPv27WZ3+Oijj0oeDBEpd4RdKUouP4X6ivfdrpX0vgUTRWmJyLGYFRBNnDjR4HONRgOhzjRz3T1FTMxIJJ2SR9iVouTy07GUHNH2o1cb/qzMpbbAk4iU5WTOTTU1NfqPPXv2oFevXvjll19QUFCAgoIC/Pzzz+jTpw927dql9HiJmjVzlp/s0cppvTGoo7/BNTmWn0ruim+aLimX9gtYbeBZN4ADDANPInIsFu8hWrhwIVavXo3Bgwfrr40ZMwZeXl7461//ikuXLsk6QCJHotbTT0otP0WF+eFm4u9G2/uHtZLUL4/dE1F9Zs0Q1XXt2jX4+Pg0uK7T6XD9+nUZhkTkuGqXn5zrpbZw1mgQExFgt2/SYstP1pg7oqNoe+wIabnP1Bp4EpFyLA6IHnjgASxatAiZmZn6a5mZmXj++ecRFWXZuvuyZcvwwAMPoGXLlggMDMTEiRORnJxscM/du3cRGxsLPz8/eHt7Y/LkyQbfGwDS0tIwfvx4eHl5ITAwEM8//zyqqgyn2g8cOIA+ffrA3d0dHTt2xPr16y17cKImotTyk1LUuPyk1sCTiJRjcUC0du1a3L59G23btkXHjh3RsWNHtG3bFr///jvWrFljUV8HDx5EbGwsjh8/jr1796KyshKjR49Gaekf/4A+99xz+O9//4stW7bg4MGDuHXrlkG9tOrqaowfPx4VFRU4duwYvv76a6xfvx5LlizR35Oamorx48dj+PDhSEpKwsKFCzFnzhzs3r3b0scnUpzaTj8pue/ps31XTbRfkdy32gJPIlKWRhAEi//1FQQBe/fuxeXLlwEAXbp0wahRoxpksLZUdnY2AgMDcfDgQcTExKCwsBABAQHYuHEj/vznPwMALl++jC5duiA+Ph4DBgzAL7/8gocffhi3bt1CUFAQAGD16tV48cUXkZ2dDTc3N7z44ovYuXMnLly4oP9eU6dORUFBQaMbwcvLy1Fe/kfCt6KiIoSGhqKwsBBardaqZyQyZcaaE0ZPbNnj6aeDyVmYuc54HcN/z47CkIgASX1PXHUESemFRtt7h+rwY+xgo+3mkLOuGxHZl6KiIuh0OrPevy2eIQLuHbMfPXo05s+fj/nz5+PBBx+0OhgCgMLCe//wtWp1b6Pk6dOnUVlZiVGjRunv6dy5M9q2bYv4+HgAQHx8PLp3764PhoB7m7yLiopw8eJF/T11+6i9p7aP+pYtWwadTqf/CA0NtfrZiMzRVMtPB5OzsCLuNxxu5Ii/pW4VihdYvZl/R3LffUJ9Rdv7tpO2qbquMP8WGB4ZyGCIyMFJqrURFxeHuLg4ZGVloaamxqBt7dq1kgZSU1ODhQsXYtCgQbj//vsBABkZGXBzc2uwiTsoKAgZGRn6e+oGQ7XttW1i9xQVFeHOnTvw9PQ0aHv55ZexaNEi/ee1M0RESlP69NON3FJMXHXUoNSGr5crtscORqif+EZjY3Yk3RJt33nuFqZFtZXU95DIAKw9dt1o+6AIf6NtRESWsDggevPNN/HWW2+hX79+aN26tSwzQwAQGxuLCxcu4MiRI7L0Zw13d3e4u4uXDCBSgtKnn+oHQ8C9emOPrjqCxCWjJfV5I1981uqGFXuIskzMPuVIrGVGRFSfxQHR6tWrsX79ekyfPl22QcydOxc7duzAoUOH0KZNG/314OBgVFRUoKCgwGCWKDMzE8HBwfp7Tpw4YdBf7Sm0uvfUP5mWmZkJrVbbYHaIyJaUzPp8MDlLtAjr4SvZkvb6uDmJr7y7Oztb3GetSxlFou3/uyXeTkRkLov3EFVUVGDgwIGyfHNBEDB37lz8+OOP2LdvH8LCwgza+/btC1dXV8TFxemvJScnIy0tDdHR0QCA6OhonD9/HllZWfp79u7dC61Wi65du+rvqdtH7T21fRDZE6VOPyXdLBBtP5OWL6lfN1fxf0ZcXSRtVQQAtGohPlPbylt6cVcioros/pdqzpw52LhxoyzfPDY2Ft988w02btyIli1bIiMjAxkZGbhz594mTJ1Oh9mzZ2PRokXYv38/Tp8+jaeeegrR0dEYMGAAAGD06NHo2rUrpk+fjrNnz2L37t149dVXERsbq1/2euaZZ5CSkoIXXngBly9fxueff47Nmzfjueeek+U5iORUcKcC538vMLh2/vcCFN1pfHbHXL3a+Ii292krvoHZGFMFWENNLAOKebhHaxPtIZL7JiKqy+Ils7t37+LLL7/Er7/+ih49esDV1dWgffny5Wb39cUXXwAAhg0bZnB93bp1mDVrFgDg448/hpOTEyZPnozy8nKMGTMGn3/+uf5eZ2dn7NixA88++yyio6PRokULzJw5E2+99Zb+nrCwMOzcuRPPPfccVqxYgTZt2uBf//oXxowZY+HTEylPiX0+ADA0MhAuThpU1TTMtOHipJF8NH5El0DsvZRlvL1zoKR+gXtLiC3dnVHcSM2ylu7OPBlGRLKxOCA6d+4cevXqBQAGeX0AWLzB2pwUSB4eHli1ahVWrVpl9J527drh559/Fu1n2LBhSEy0rowAUWNSsktwI69Mljw2Su3zAe6Ns7FgCACqagSk5kg7wXYlo0S0/WqWeLuYlOySRoMhACgur5Y8ZiKi+iwOiPbv36/EOIhUp6CsAvM3JeFQnVw+MREBWDmtN3ReriJfaZw5+3ykBkRKHek/ky6+9+jUjTyL+6yVkJor3p6Sy4CIiGQhfbcjgJs3b+LmzZtyjYVIVZQoaKrUPh9AuSPsXq7ip8i83SSlO/v/ic86q6vICRHZM4sDopqaGrz11lvQ6XRo164d2rVrBx8fHyxdurRBkkYie5GSXYL9yVmyZXpWKqP00Ejx/TZSZ4cA4NdLmaLte/+XIanfIJ146opArYekfgGgf5h4JuoB4X6S+yYiqsviX91eeeUVrFmzBu+99x4GDRoEADhy5AjeeOMN3L17F++8847sgySSSollLUC55aeDycY3JwOwag9RSXmVVe1Gv+6u+Om3Uon9Avc2VUeH+yE+peHSWXS4H5fLiEg2Fs8Qff311/jXv/6FZ599Fj169ECPHj3w97//HV999RXWr1+vwBCJpFNiWQtQLqO0UrmCAGBir/tE2//Uu41ouzHZJpbasqzMJr36yb6IqRcExkQEYPWTfa3ql4ioLotniPLy8tC5c+cG1zt37oy8POmbJ4nkVrusVV/dZS2pMwzhAd4Y2MEPx641nLkY2EH6zIWSe4iCdeJLV6bajZGpeo9ROi9XbJgdxar0RKQoi2eIevbsic8++6zB9c8++ww9e/aUZVBEcjBnWcsaxrJGmJFNwihTSQzbmEiCKGabiSKsP575XVK/ft7i2aQDTLSbi1XpiUhJFs8QffDBBxg/fjx+/fVXfemL+Ph4pKenm8wFRNSUlCyUmpJd0ui+FgCIT8mVPPukZLX7syaW286mF0jqV+shvhdL62nNKTMioqZh8QzR0KFDkZycjD/96U8oKChAQUEBJk2ahOTkZAwZMkSJMRJJUlso1bnemo6zRoOYiACrZhqUmn1SMogrMrG5udDE5mhjTE2IGckFSURkVyT96nbffffxNBmpwsppvTFvU6LBXiI5CqUqFbgoearKv4UbckoqjLYHSlzaCvMX/1mEB3CJi4jsn8UB0bp16+Dt7Y3HHnvM4PqWLVtQVlaGmTNnyjY4ImsptSG3dvbp6NUcg1xEzhoNBnX0t+p7GNukbO3m5XE9QnB5729G28eaKKRqzMM9QrB87xWj7eNZgJWIVMDiJbNly5bB39+/wfXAwEC8++67sgyKSG7m1M2z1MppvTGoo+HfBWtnn1KySxo9uQYAx67lWpVY8oaJr03LFV8GNObnc7dF2385L95ORGQPLJ4hSktLQ1hYWIPr7dq1Q1pamiyDIsclZ6FUQLnEjIAys09Kbqq+eLtQtP387wWS+j16LUe0/fCVbPx9eEdJfRMRNRWLA6LAwECcO3cO7du3N7h+9uxZ+PkxjT5Jo1TgIpaYccPsKMn91hXmL19eHCU3Vbf19cJlkcr0Uvse1MEf8SnGc5BZU26EiKipWLxkNm3aNMyfPx/79+9HdXU1qqursW/fPixYsABTp05VYozkAJTIKK1UvTG1amHieLyXxCKs40zsPRrbXdreJCKipmRxQLR06VL0798fI0eOhKenJzw9PTF69GiMGDGCe4hIEqUCF6UTMypByTGbykN0TmIeIjX+nImI6rP4V0I3Nzd8//33ePvtt5GUlARPT090794d7dq1U2J85ACU2jej5PKTUpQcc3aJqZpjdyX1q8afMxFRfZJTyEZERCAiIkLOsZCD4hvqH8IDvKH1cEHR3YZJFLUeLlbtVXJ3cUJxebXRdjcXiyeMASibgoCIqKlI+xeQSEZKZZRW41JOSnZJo8EQABTdrbJq31NMJ/HNzcMiAyX3rUQKAiKipsQiQ2QXlMgorcaZpx3nxAuw7jx3C3NHSJuZ1UA8s6PGisyPrEhPRGrHgIjsAt9Q78krFa8nJlZ6w5TEdPFN1advGD86by45UxAQETUlLpmRXQnzb4HhkYGyvKmqccmsS3BL0fZuIVrJfQdrPUTbQ3SekvsmIlI7iwOidevWYcuWLQ2ub9myBV9//bUsgyKSgxqXzAJ14kGLf0tpBVgBoIW7+ISwqXYiouaMtcyo2QoP8MbADo1nTx/YwbrK8UpRMoi7liU+I3Yly3gWayKi5s7igIi1zEhNjNV0VaDWqyxOporv4zl1Xfo+H62n+AyQj6d1td2IiNTM4oCotpZZfaxlRvYmJbsE8SmNV46PT7GucrxS9l7KFG3ffTFDct/hAeKzS6baiYiaM9Yyo2ZLjZuqTR18r5+ryRKCid5r7HTWjIioKVi8i3Lp0qW4fv06Ro4cCReXe19eU1ODGTNmcA8R2RU1bqr2NlGA1ZqNzz4mlsx8vbhkRkSOS3Its6VLl+Ls2bOsZeaAUrJLcCOvzO5zBamxpERm4R3R9qwiafXGAOBmvnjfptqJiJozyb9udurUCZ06dZJzLGTnCsoqMH9TkkE26ZiIAKyc1hs6O51deHvi/Ziw6gjyy/5IeKj1dME7E++X7XvIGSCWVRqvNQYAJRWNl/Uwh6nirpkSi7sSETUHZgVEixYtwtKlS9GiRQssWrRI9N7ly5fLMjCyP/M3JeHo1RyDa0ev5mDepkRsmB0ly/eQe/bp1W0XUHTHMIgoulOFV7ZdsHrMSgSIFRXiAVFVVY2kfgFgVOcgJKUXGm0f3TVYct9ERGpnVkCUmJiIysp7v2GfOXPGaM0ja2ohkX1LyS4xeOOvVS0IOHQlG6k5pVYFMEoEF0qPWYkA8baJJbHfC6Qva80dGYEP9/5mtP3vwztK7puISO3MCohWrFgBrfZeyYADBw4oOR6yU+ac2LK34ELJMSsVbNWfzbK0XUxKtnjiRWsDRCIiNTPr2H3v3r2Rk3PvzSo8PBy5uY3ndqHmS8kTW7XBRXW9bIl1gwsplByzUkf6TZ18F6yYhFVjGgIioqZiVkDk4+OD1NRUAMD169dRUyN9HwOpU+2Jrfp5cJw1GsREBFg1s6DUG7WSY1Yq2Apo6SbaHmRFLTM1piEgImoqZgVEkydPxtChQxEWFgaNRoN+/fohPDy80Q9qvlZO641BHQ3r2A3q6I+V03pb1a+Sb9QvjOmE+lvbNBrgpYciJfcJ3Au2xEgNtp4YIJ6+wlS7GCUDRCIitTNrD9GXX36JSZMm4erVq5g/fz6efvpptGzZUumxkZ3Rebliw+wopOaU4npuqWwnwZTMFzR97QlU1UvBXFUj4Ik1CUhcMlpyv9+fEK/bt+VUOh7rF2pxv9dNLA+aajdl5bTemLcp0WD/kxxBLRGR2pmdh+ihhx4CAJw+fRoLFixgQOTAwvzlT8ioxBv1weQsg/xDdeWXVeLwlWwMiQiQ1LepmmN7LmZICohM7Ze6ZmJjtClKBbVERGpncWLGdevWKTEOcnBKvFEn3SwQbT+Tli85IAr1FV/mCzWxDGiMYGJXtVyJLZQIaomI1MysgGjSpElYv349tFotJk2aJHrv1q1bZRkYOSY536h7tfERbe/T1ldy39Oj22Hdsesi7e0l9RsW0AJJN40nT2zvL753iYiIpDErINLpdPqkizqdTtEBEcllaGQgfL1cG1028/VylTw7pKQb2eJLZmk8Gk9EpAizAqK6y2RcMiMli7vK3ff22MF4tF4tM18vV2yPHWxVv0olfUwxEfBctXIPERERNc7iPUSpqamoqqpCRESEwfUrV67A1dUV7du3l2tsZGeULO6qVN+hfl5IXDIah69k40xaPvq09ZVlZuiiyLIWAFy6VYThkYEW99ta54GCO8aDnvt8PC3uk4iITDMrD1Fds2bNwrFjxxpcT0hIwKxZs+QYE9kpsfIa9tw3AAyJCMCCkZ1kWya7miM+U/NbVrGkfmcMDBNtf1Li3iQiIhJncUCUmJiIQYMGNbg+YMAAJCUlyTEmskNKlddQum+lpJnY63MzV3xJzZgQnYdoextfzhARESnB4oBIo9GguLjhb7+FhYWorq6WZVBkf5Ssg6XGGltp+cqM+VaheLX7m/nSq90TEZFxFgdEMTExWLZsmUHwU11djWXLlmHwYOs2qpL9UrK8RlPU2DqYnIUVcb/hcCMV6qXQeojva/LxFK9JZpx4IiK58hAREZEhizdVv//++4iJiUFkZCSGDBkCADh8+DCKioqwb98+2QdI9kHJ8hrhAd7Qerig6G5Vgzath4t1hWNzSzFx1dFGT5mF+klLnggAvdr6IkVkWaxXWx9J/fYP8xNvDxdvJyIiaSyeIeratSvOnTuHxx9/HFlZWSguLsaMGTNw+fJl3H///UqMkeyEUsVdU7JLGg2GAKDobpVVe4jqB0PAvbIdj646IrlPAEg1cfw9ReLx+PAAb/h4Nj775OPpyuzSREQKsXiGCABCQkLw7rvvyj0WsnNK1cHace6WaPvOc7cwd0SE6D2NUbKWmamaYlezpAVEKdklKLjT+JgL7lQiNUdafiMiIhJn8QwRcG+J7Mknn8TAgQPx+++/AwD+/e9/48gR637rJnUI82+B4ZGBsr0xp+aIb1BOMXGiyxhzaplJdadK/ACBqXZj1LjBnIioObA4IPrPf/6DMWPGwNPTE2fOnEF5eTmAe6fMOGtEUoT5i+/lCQ+QFngFtxQ/wh6ik36E3dtNfHLVVLsxTbHBnIiIGrI4IHr77bexevVqfPXVV3B1/WOvw6BBg3DmzBlZB0eO4eEeIaLt4020GxNoIqePf0t3Sf0CQJfWWtH2biHSav7Vbl531hieJ3PWaBATEcDlMiIihVgcECUnJyMmJqbBdZ1Oh4KCAjnGRCQLc8prSJVfViHanlcq3i5Gqc3rRERknMXz+sHBwbh69WqDmmVHjhxBeHi4XOMiB6JUoVQl9xAVGzkVp28vb3xjtDmU2rxORETGWTxD9PTTT2PBggVISEiARqPBrVu38O2332Lx4sV49tlnlRgj2ZmU7BLsT86SraSGUvtmTCdPlF40tqtCS2Z1yb15nYiIjLN4huill15CTU0NRo4cibKyMsTExMDd3R2LFy/GvHnzlBgj2Qklq90rQzzrszW6tdFhz6Uso+1dQsQDJiIisi+Sapm98soryMvLw4ULF3D8+HFkZ2dj6dKlSoyP7IhSFemVOmqeYmIGy1QuITHOJopouDpJymhBREQ2IvlfbTc3N7Rs2RKtW7eGt7e3nGMiO6RkRXpTfwhdnKRV8NKYmCCypi7YtRxlEjMSEZFtWBwQVVVV4bXXXoNOp0P79u3Rvn176HQ6vPrqq6islL6RlOybkgkDa0y0V9VIW/oqNJLxuVbRHfGN0WJMbaouMdFORET2xeI9RPPmzcPWrVvxwQcfIDo6GgAQHx+PN954A7m5ufjiiy9kHyTZnpIJA5WaIcopKRdtzyq+K6lfAAj1Ff95hLaSnvSRiIiansUB0caNG/Hdd99h7Nix+ms9evRAaGgopk2bxoComVKy2r1SM0Sl5eLlM0y1W0O57dxERKQEi5fM3N3dG+QgAoCwsDC4ubnJMSayU0olDFRq9slUoGVN0FJwRzzxYoGRorJERGSfLJ4hmjt3LpYuXYp169bB3f1e6YPy8nK88847mDt3ruwDJPtRmzDw0G/ZSEzPR5+2vpKrxTcFN2dAbBLI1Vl63z6e4sG/j12mISAiImMsDogSExMRFxeHNm3aoGfPngCAs2fPoqKiAiNHjsSkSZP0927dulW+kZLNKZWHKCE1T7T9eEqupCU53xZuyCgyPpPj20L6jGanYPGTlZ2CWkrum4iImp7FAZGPjw8mT55scC00NFS2AZH9EstDtGF2lBU9iy9eST0eX2hi2cpUu5j+YX7i7eHi7UREZF8sDojWrVunxDjIztXmIaqvbh4iqRurnUyEPM4ST5ndrRIPtEy1iwkP8MbADn44di23QdvADn4st0FEpDIWb6q+c+cOysr+yElz48YNfPLJJ9izZ4+sAyP7omQeoksZxaLtFyVWpXc28afbVLspXzzRFzH19lDFRATgiyf6WtcxERE1OYtniCZMmIBJkybhmWeeQUFBAaKiouDm5oacnBwsX76cBV6bqaxC8Zw9OcXiOX/EFJk4sVVyV9rSll8LN2QWG+/b39tdUr+1WJWeiKj5sPh35DNnzmDIkCEAgB9++AHBwcG4ceMGNmzYgE8//dSivg4dOoRHHnkEISEh0Gg02LZtm0G7IAhYsmQJWrduDU9PT4waNQpXrlwxuCcvLw9PPPEEtFotfHx8MHv2bJSUGJZNOHfuHIYMGQIPDw+Ehobigw8+sPSxHV6GiSSGtwrvSO7b1MKVxDREKDKRqbqwTDwQMxer0hMRqZ/FAVFZWRlatrx3gmbPnj2YNGkSnJycMGDAANy4ccOivkpLS9GzZ0+sWrWq0fYPPvgAn376KVavXo2EhAS0aNECY8aMwd27f7w5P/HEE7h48SL27t2LHTt24NChQ/jrX/+qby8qKsLo0aPRrl07nD59Gv/4xz/wxhtv4Msvv7T00R1arzY+ou192vpK7lupI+zlJvYImWonIiLHYfGSWceOHbFt2zb86U9/wu7du/Hcc88BALKysqDVai3qa+zYsQYZr+sSBAGffPIJXn31VUyYMAEAsGHDBgQFBWHbtm2YOnUqLl26hF27duHkyZPo168fAGDlypUYN24cPvzwQ4SEhODbb79FRUUF1q5dCzc3N3Tr1g1JSUlYvny5QeBE4oZGBsLFCahqJNuhixOszEekzCkzT1cnlFYaT8/o6cqK9EREdI/F7whLlizB4sWL0b59e/Tv319fz2zPnj3o3du6jMV1paamIiMjA6NGjdJf0+l06N+/P+Lj4wHcq6Hm4+OjD4YAYNSoUXByckJCQoL+npiYGIMs2mPGjEFycjLy8/Mb/d7l5eUoKioy+HB0KdkljQZDwL0gyZpq98kmNlVfNtFuTCsTeYb8rNxDREREzYfFAdGf//xnpKWl4dSpU9i1a5f++siRI/Hxxx/LNrCMjAwAQFBQkMH1oKAgfVtGRgYCAwMN2l1cXNCqVSuDexrro+73qG/ZsmXQ6XT6D+ZZMi95olQpOSWi7deyxduNySgS3/d0u0j6viciImpeJK0ZBAcHo3fv3nBy+uPLo6Ki0LlzZ9kGZksvv/wyCgsL9R/p6em2HpLNZZvYVJ1rorK8mOI7VSbapZ0yqzZRzKxaudquRESkMna7iSI4OBgAkJmZaXA9MzNT3xYcHIysrCyD9qqqKuTl5Rnc01gfdb9Hfe7u7tBqtQYfapOSXYL9yVlWLWU1laoa8cjFVLsxHq7iu49MtRMRkeOw24AoLCwMwcHBiIuL018rKipCQkKCft9SdHQ0CgoKcPr0af09+/btQ01NDfr376+/59ChQ6is/GOWYe/evYiMjISvr/STUfaqoKwCM9acwIiPDuKpdScx/MMDmLHmhFVlKgAgoKWHaLs1+3EqTczUmGo3plOQeCDbOVgnrWMiImp2bBoQlZSUICkpCUlJSQDubaROSkpCWloaNBoNFi5ciLfffhvbt2/H+fPnMWPGDISEhGDixIkAgC5duuChhx7C008/jRMnTuDo0aOYO3cupk6dipCQEADA//t//w9ubm6YPXs2Ll68iO+//x4rVqzAokWLbPTUyhKrN2aNEJ14QNTG11Ny36bmaaTO44QHiBdgDQ9g3iAiIrrH4mP3cjp16hSGDx+u/7w2SJk5cybWr1+PF154AaWlpfjrX/+KgoICDB48GLt27YKHxx9vzt9++y3mzp2LkSNHwsnJCZMnTzZIEKnT6bBnzx7Exsaib9++8Pf3x5IlS5rlkXsl642ZSrz4e770DcpOTuL7fZwkhu1aT/H8Rd4e0vIbERFR82PTgGjYsGEQBOM5aDQaDd566y289dZbRu9p1aoVNm7cKPp9evTogcOHD0sep1qYU29MejZl8Xkaa1IcGjvOb267McMjA7D+2HWj7SO7BBptIyIix2K3e4jIcu1aeYm2t/eTvkSUa6JWWX6p9DIYpoIpqcHW0MhA6IzMEuk8Xa1MJklERM0JA6JmJDzAGzERAXDWGM7mOGs0iIkIsKrWVtLNAtH2xLTGk1za2o65g+Fbr/SHr5crdswdbKMRERGRPbLpkhnJb+W03pi3KdFgL9Ggjv5YOc26LOJaE/ttTO3XsZVQPy8kLhmNw1eycSYtH33a+nJmiIiIGmBA1MzovFyxYXYUUnNKcT23FO39WshShd3Y0lMtHzsNiGoNiQhgIEREREYxIGqmwvzlCYRqmVoSS0wrkNy3p4sT7ojsnPZ04couEREpiwFRM5WSXYIbeWWyzRClmKgndjVLWgFWAHBx0QAi1TtcGRAREZHCGBA1MwVlFZi/KclgD1FMRABWTusNnZf0Za0KE4W/TLWLqaoSP0dWKfXcPRERkZn4q3czo1Smah9P8dIcPl7WlO4QD3hMtRMREVmLAVEzUpupurpessu6maql8nJzFm33dpM+2ejmIp700VQ7ERGRtRgQNSPmZKqWKrPkrmh7RrH00h2tteJ10O7zEU84SUREZC0GRM2IkpmqKyrFl63KTbSLfq2JJbG7VdL3JxEREZmDAVEzomSmalPxjhXxECpruIeIiIhsiwFRM7NyWm8M6uhvcE2OTNVKus/EklkbLpkREZHCeOy+manNVH3ot2wkpqujVEXB3UrR9vwy8XYiIiJrMSBqZpTKQ6QkNxOJF92ZmJGIiBTGd5pmRqk8REp6amCYePtg8XYiIiJrMSBqRpTMQ6SkB8Jaibb3ay/eTkREZC0GRM2IknmIlKTWcRMRUfPBgKgZUTIPkZLUOm4iImo+GBCRzSmZP4mIiMgcDIiaETUvPakxfxIRETUfPHZvYynZJbiRV4b2fi2sngm5eLNQtP3SrSIMjwy06nsopTZ/UmpOKa7nlsry8yAiIjIXAyIbUSJf0NFruaLtR67k4O/DO0rqu6mE+TMQIiKipsclMxtRIl9QC3dn0XZvd8a/REREjWFAZANK5Qtq6yt+WqutH2uCERERNYYBkQ0otfl5z6UM0fbdF8XbiYiIHBUDIhtQKu9OXkm5aHtuyV1J/RIRETV3DIhsQKm8O5XVglXtREREjooBkY0okXenssa6diIiIkfFY0c2ora8O04AxOIpRtZERKRmDIhsTC15d3xbuCK3tNJou5+3WxOOhoiISF78xZ7M0imopVXtRERE9owzRDYmZ+kOJQXrPETbg7Ti7URERPaMAZGNKFG6Q0kTe92HHxNvGW3/U5/7mnA0RERE8uKSmY0oUbpDSUMjA6H1aDx+1nq4YEhEQBOPiIiISD4MiGxAqdIdSts5bwh8681e+Xq5Yue8ITYaERERkTy4ZGYD5pTusMf9RKF+XkhcMhqHr2TjTFo++rT15cwQERE1CwyIbECp0h1NZUhEAAMhIiJqVrhkRkRERA6PAZEN7Dhn/LQWAOw00U5ERETyYkBkA3mlFaLtOSaq1hMREZG8GBDZgBM0ou0uTnxZiIiImhLfeW3gTFq+aPvpG3lNNBIiIiICGBDZRHlVtXh7pVhdeSIiIpIbAyJbEEzfQkRERE2HAZENpOeLJ2ZMy7PPTNVERETNFQMiGyipEF8SM9VORERE8mJARERERA6PAVEzEu4nXhKkox3WRyMiIrIHDIiakaeHhou2z4kRbyciInJUDIiakf5hfuLt4eLtREREjooBUTMSHuCNgR0aD3oGdvBDGJfMiIiIGsWAqJn54om+iIkIMLgWExGAL57oa6MRERER2T8XWw+A5KXzcsWG2VFIzSnF9dxStPdrwZkhIiIiExgQNVNh/gyEiIiIzMUlMyIiInJ4DIiIiIjI4TEgIiIiIofHgIiIiIgcHgMiIiIicngMiIiIiMjhMSAiIiIih8eAiIiIiBweAyIiIiJyeAyIiIiIyOExILKB6++Nt6qdiIiI5MWAiIiIiBwei7vaSO0sUPuXdja4RkRERE2LAZGNMQgiIiKyPS6ZERERkcNzqIBo1apVaN++PTw8PNC/f3+cOHHC1kMiIiIiO+AwAdH333+PRYsW4fXXX8eZM2fQs2dPjBkzBllZWbYeGhEREdmYRhAEwdaDaAr9+/fHAw88gM8++wwAUFNTg9DQUMybNw8vvfSSwb3l5eUoLy/Xf15UVITQ0FAUFhZCq9U26biJiIhImqKiIuh0OrPevx1ihqiiogKnT5/GqFGj9NecnJwwatQoxMfHN7h/2bJl0Ol0+o/Q0NCmHC4RERE1MYcIiHJyclBdXY2goCCD60FBQcjIyGhw/8svv4zCwkL9R3p6elMNlYiIiGyAx+4b4e7uDnd3d1sPg4iIiJqIQ8wQ+fv7w9nZGZmZmQbXMzMzERwcbKNRERERkb1wiIDIzc0Nffv2RVxcnP5aTU0N4uLiEB0dbcORERERkT1wmCWzRYsWYebMmejXrx+ioqLwySefoLS0FE899ZSth0ZEREQ25jAB0ZQpU5CdnY0lS5YgIyMDvXr1wq5duxpstG5MbWaCoqIipYdJREREMql93zYnw5DD5CGyRkpKCjp06GDrYRAREZEE6enpaNOmjeg9DjNDZI1WrVoBANLS0qDT6Ww8GmXUJp9MT09vlskn+Xzq19yfsbk/H9D8n5HPZ38EQUBxcTFCQkJM3suAyAxOTvf2nut0OtX8IZBKq9U262fk86lfc3/G5v58QPN/Rj6ffTF3IsMhTpkRERERiWFARERERA6PAZEZ3N3d8frrrzfr7NXN/Rn5fOrX3J+xuT8f0Pyfkc+nbjxlRkRERA6PM0RERETk8BgQERERkcNjQEREREQOjwEREREROTyHDYhWrVqF9u3bw8PDA/3798eJEydE79+yZQs6d+4MDw8PdO/eHT///LNBuyAIWLJkCVq3bg1PT0+MGjUKV65cUfIRRFnyfF999RWGDBkCX19f+Pr6YtSoUQ3unzVrFjQajcHHQw89pPRjiLLkGdevX99g/B4eHgb3qPk1HDZsWIPn02g0GD9+vP4ee3oNDx06hEceeQQhISHQaDTYtm2bya85cOAA+vTpA3d3d3Ts2BHr169vcI+lf6+VYunzbd26FQ8++CACAgKg1WoRHR2N3bt3G9zzxhtvNHj9OnfurOBTiLP0GQ8cONDon9GMjAyD+9T6Gjb290uj0aBbt276e+zpNVy2bBkeeOABtGzZEoGBgZg4cSKSk5NNfp3a3gst4ZAB0ffff49Fixbh9ddfx5kzZ9CzZ0+MGTMGWVlZjd5/7NgxTJs2DbNnz0ZiYiImTpyIiRMn4sKFC/p7PvjgA3z66adYvXo1EhIS0KJFC4wZMwZ3795tqsfSs/T5Dhw4gGnTpmH//v2Ij49HaGgoRo8ejd9//93gvoceegi3b9/Wf2zatKkpHqdRlj4jcC+7at3x37hxw6Bdza/h1q1bDZ7twoULcHZ2xmOPPWZwn728hqWlpejZsydWrVpl1v2pqakYP348hg8fjqSkJCxcuBBz5swxCBqk/JlQiqXPd+jQITz44IP4+eefcfr0aQwfPhyPPPIIEhMTDe7r1q2bwet35MgRJYZvFkufsVZycrLBMwQGBurb1PwarlixwuC50tPT0apVqwZ/B+3lNTx48CBiY2Nx/Phx7N27F5WVlRg9ejRKS0uNfo3a3gstJjigqKgoITY2Vv95dXW1EBISIixbtqzR+x9//HFh/PjxBtf69+8v/O1vfxMEQRBqamqE4OBg4R//+Ie+vaCgQHB3dxc2bdqkwBOIs/T56quqqhJatmwpfP311/prM2fOFCZMmCD3UCWz9BnXrVsn6HQ6o/01t9fw448/Flq2bCmUlJTor9nba1gLgPDjjz+K3vPCCy8I3bp1M7g2ZcoUYcyYMfrPrf2ZKcWc52tM165dhTfffFP/+euvvy707NlTvoHJyJxn3L9/vwBAyM/PN3pPc3oNf/zxR0Gj0QjXr1/XX7Pn1zArK0sAIBw8eNDoPWp7L7SUw80QVVRU4PTp0xg1apT+mpOTE0aNGoX4+PhGvyY+Pt7gfgAYM2aM/v7U1FRkZGQY3KPT6dC/f3+jfSpFyvPVV1ZWhsrKSn1R21oHDhxAYGAgIiMj8eyzzyI3N1fWsZtL6jOWlJSgXbt2CA0NxYQJE3Dx4kV9W3N7DdesWYOpU6eiRYsWBtft5TW0lKm/g3L8zOxJTU0NiouLG/wdvHLlCkJCQhAeHo4nnngCaWlpNhqhdL169ULr1q3x4IMP4ujRo/rrze01XLNmDUaNGoV27doZXLfX17CwsBAAGvyZq0tN74VSOFxAlJOTg+rqagQFBRlcDwoKarCWXSsjI0P0/tr/WtKnUqQ8X30vvvgiQkJCDP5QP/TQQ9iwYQPi4uLw/vvv4+DBgxg7diyqq6tlHb85pDxjZGQk1q5di59++gnffPMNampqMHDgQNy8eRNA83oNT5w4gQsXLmDOnDkG1+3pNbSUsb+DRUVFuHPnjix/7u3Jhx9+iJKSEjz++OP6a/3798f69euxa9cufPHFF0hNTcWQIUNQXFxsw5Gar3Xr1li9ejX+85//4D//+Q9CQ0MxbNgwnDlzBoA8/3bZi1u3buGXX35p8HfQXl/DmpoaLFy4EIMGDcL9999v9D41vRdKwWr3ZOC9997Dd999hwMHDhhsOp46dar+/7t3744ePXqgQ4cOOHDgAEaOHGmLoVokOjoa0dHR+s8HDhyILl264J///CeWLl1qw5HJb82aNejevTuioqIMrqv9NXQUGzduxJtvvomffvrJYH/N2LFj9f/fo0cP9O/fH+3atcPmzZsxe/ZsWwzVIpGRkYiMjNR/PnDgQFy7dg0ff/wx/v3vf9twZPL7+uuv4ePjg4kTJxpct9fXMDY2FhcuXLDpnjR74HAzRP7+/nB2dkZmZqbB9czMTAQHBzf6NcHBwaL31/7Xkj6VIuX5an344Yd47733sGfPHvTo0UP03vDwcPj7++Pq1atWj9lS1jxjLVdXV/Tu3Vs//ubyGpaWluK7774z6x9XW76GljL2d1Cr1cLT01OWPxP24LvvvsOcOXOwefPmBksT9fn4+KBTp06qeP2MiYqK0o+/ubyGgiBg7dq1mD59Otzc3ETvtYfXcO7cudixYwf279+PNm3aiN6rpvdCKRwuIHJzc0Pfvn0RFxenv1ZTU4O4uDiDGYS6oqOjDe4HgL179+rvDwsLQ3BwsME9RUVFSEhIMNqnUqQ8H3DvZMDSpUuxa9cu9OvXz+T3uXnzJnJzc9G6dWtZxm0Jqc9YV3V1Nc6fP68ff3N4DYF7R2LLy8vx5JNPmvw+tnwNLWXq76AcfyZsbdOmTXjqqaewadMmg3QJxpSUlODatWuqeP2MSUpK0o+/ObyGwL3TW1evXjXrlxJbvoaCIGDu3Ln48ccfsW/fPoSFhZn8GjW9F0pi613dtvDdd98J7u7uwvr164X//e9/wl//+lfBx8dHyMjIEARBEKZPny689NJL+vuPHj0quLi4CB9++KFw6dIl4fXXXxdcXV2F8+fP6+957733BB8fH+Gnn34Szp07J0yYMEEICwsT7ty5Y/fP99577wlubm7CDz/8INy+fVv/UVxcLAiCIBQXFwuLFy8W4uPjhdTUVOHXX38V+vTpI0RERAh3795t8ueT8oxvvvmmsHv3buHatWvC6dOnhalTpwoeHh7CxYsX9feo+TWsNXjwYGHKlCkNrtvba1hcXCwkJiYKiYmJAgBh+fLlQmJionDjxg1BEAThpZdeEqZPn66/PyUlRfDy8hKef/554dKlS8KqVasEZ2dnYdeuXfp7TP3M7Pn5vv32W8HFxUVYtWqVwd/BgoIC/T3/93//Jxw4cEBITU0Vjh49KowaNUrw9/cXsrKymvz5BMHyZ/z444+Fbdu2CVeuXBHOnz8vLFiwQHBychJ+/fVX/T1qfg1rPfnkk0L//v0b7dOeXsNnn31W0Ol0woEDBwz+zJWVlenvUft7oaUcMiASBEFYuXKl0LZtW8HNzU2IiooSjh8/rm8bOnSoMHPmTIP7N2/eLHTq1Elwc3MTunXrJuzcudOgvaamRnjttdeEoKAgwd3dXRg5cqSQnJzcFI/SKEuer127dgKABh+vv/66IAiCUFZWJowePVoICAgQXF1dhXbt2glPP/20Tf6RqsuSZ1y4cKH+3qCgIGHcuHHCmTNnDPpT82soCIJw+fJlAYCwZ8+eBn3Z22tYewS7/kftM82cOVMYOnRog6/p1auX4ObmJoSHhwvr1q1r0K/Yz6wpWfp8Q4cOFb1fEO6lGWjdurXg5uYm3HfffcKUKVOEq1evNu2D1WHpM77//vtChw4dBA8PD6FVq1bCsGHDhH379jXoV62voSDcO2Lu6ekpfPnll432aU+vYWPPBsDg71VzeC+0hEYQBEGx6SciIiIiFXC4PURERERE9TEgIiIiIofHgIiIiIgcHgMiIiIicngMiIiIiMjhMSAiIiIih8eAiIiIiBweAyIiIiJyeAyIiEhVNBoNtm3bBgC4fv06NBoNkpKSzP76N954A7169VJkbESkXgyIiEi1QkNDcfv2bdx///1mf83ixYsNik/OmjULEydOVGB00gwbNgwLFy609TCIHI6LrQdARCSVs7MzgoODLfoab29veHt7KzQiIlIrzhARUZP64Ycf0L17d3h6esLPzw+jRo1CaWkpAODkyZN48MEH4e/vD51Oh6FDh+LMmTNG+6q/ZHbgwAFoNBrExcWhX79+8PLywsCBA5GcnKz/mrpLZm+88Qa+/vpr/PTTT9BoNNBoNDhw4ABGjBiBuXPnGnyv7OxsuLm5Gcwu1VXb7z//+U+EhobCy8sLjz/+OAoLC/X31M5GvfnmmwgICIBWq8UzzzyDiooKffvBgwexYsUK/XiuX79u6Y+YiCRgQERETeb27duYNm0a/vKXv+DSpUs4cOAAJk2ahNoa08XFxZg5cyaOHDmC48ePIyIiAuPGjUNxcbFF3+eVV17BRx99hFOnTsHFxQV/+ctfGr1v8eLFePzxx/HQQw/h9u3buH37NgYOHIg5c+Zg48aNKC8v19/7zTff4L777sOIESOMft+rV69i8+bN+O9//4tdu3YhMTERf//73w3uiYuL0z/7pk2bsHXrVrz55psAgBUrViA6OhpPP/20fjyhoaEWPTsRScMlMyJqMrdv30ZVVRUmTZqEdu3aAQC6d++ub68fbHz55Zfw8fHBwYMH8fDDD5v9fd555x0MHToUAPDSSy9h/PjxuHv3Ljw8PAzu8/b2hqenJ8rLyw2W3iZNmoS5c+fip59+wuOPPw4AWL9+PWbNmgWNRmP0+969excbNmzAfffdBwBYuXIlxo8fj48++kjfv5ubG9auXQsvLy9069YNb731Fp5//nksXboUOp0Obm5u8PLysngpkIiswxkiImoyPXv2xMiRI9G9e3c89thj+Oqrr5Cfn69vz8zMxNNPP42IiAjodDpotVqUlJQgLS3Nou/To0cP/f+3bt0aAJCVlWX213t4eGD69OlYu3YtAODMmTO4cOECZs2aJfp1bdu21QdDABAdHY2amhqDJbuePXvCy8vL4J6SkhKkp6ebPT4ikh8DIiJqMs7Ozti7dy9++eUXdO3aFStXrkRkZCRSU1MBADNnzkRSUhJWrFiBY8eOISkpCX5+fvo9NuZydXXV/3/tjE5NTY1FfcyZMwd79+7FzZs3sW7dOowYMUI/q0VEzQ8DIiJqUhqNBoMGDcKbb76JxMREuLm54ccffwQAHD16FPPnz8e4cePQrVs3uLu7IycnR9HxuLm5obq6usH17t27o1+/fvjqq6+wceNGo/uQ6kpLS8OtW7f0nx8/fhxOTk6IjIzUXzt79izu3LljcI+3t7d+r5Cx8RCRshgQEVGTSUhIwLvvvotTp04hLS0NW7duRXZ2Nrp06QIAiIiIwL///W9cunQJCQkJeOKJJ+Dp6anomNq3b49z584hOTkZOTk5qKys1LfNmTMH7733HgRBwJ/+9CeTfXl4eGDmzJk4e/YsDh8+jPnz5+Pxxx832A9UUVGB2bNn43//+x9+/vlnvP7665g7dy6cnJz040lISMD169eRk5Nj8cwWEUnDgIiImoxWq8WhQ4cwbtw4dOrUCa+++io++ugjjB07FgCwZs0a5Ofno0+fPpg+fTrmz5+PwMBARcf09NNPIzIyEv369UNAQACOHj2qb5s2bRpcXFwwbdq0BhuyG9OxY0dMmjQJ48aNw+jRo9GjRw98/vnnBveMHDkSERERiImJwZQpU/Doo4/ijTfe0LcvXrwYzs7O6Nq1KwICAizeP0VE0miE2vOuRERk4Pr16+jQoQNOnjyJPn36iN77xhtvYNu2baJlRGbNmoWCggJ96REish88dk9EVE9lZSVyc3Px6quvYsCAASaDISJSPy6ZERHVc/ToUbRu3RonT57E6tWrbT0cImoCXDIjIiIih8cZIiIiInJ4DIiIiIjI4TEgIiIiIofHgIiIiIgcHgMiIiIicngMiIiIiMjhMSAiIiIih8eAiIiIiBze/wfeebTfvUxkqgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGdCAYAAAAMm0nCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA4fElEQVR4nO3deXxU1f3/8XdYEtYJaxIiiyAKsgsIxgVEAgFjC4oVVJAiYEWwIv2C8qtKsQu4Uq24tC5YNwQrWmQTgUCLATSAAgIVRUEgAZQsLNnP749rZrgMSyYkuXNnXs/HYx56P3Nm+BwuYd6cMzM3whhjBAAA4CJVnG4AAAAgUAQYAADgOgQYAADgOgQYAADgOgQYAADgOgQYAADgOgQYAADgOgQYAADgOtWcbqCiFBcXa//+/apbt64iIiKcbgcAAJSCMUY5OTmKj49XlSpnXmcJ2QCzf/9+NWvWzOk2AABAGezdu1dNmzY94/0hG2Dq1q0ryfoN8Hg8DncDAABKIzs7W82aNfO+jp9JyAaYkm0jj8dDgAEAwGXO9fYP3sQLAABchwADAABchwADAABchwADAABchwADAABchwADAABchwADAABchwADAABchwADAABchwADAABchwADAABchwADAABchwADAAAC88wzUosWUlaWYy2E7NWoAQBAOSsokOrWlfLyrOO//U166CFHWmEFBgAAnNuXX0qRkb7wIklTpjjWDgEGAACc3e9/L3Xu7Du+9lrJGCvQOIQtJAAAcHr5+VJUlL323nvSkCHO9HMSAgwAAPD3+efS5Zfba4cPSw0bOtPPKdhCAgAAdr/7nT28DBxobRkFSXiRWIEBAAAlcnOlmjXttYULpRtucKafsyDAAAAAad06KSHBXvvpJ6l+fWf6OQe2kAAACHf33GMPLzffbG0ZBWl4kViBAQAgfB0/LtWuba8tWyb17+9MPwEgwAAAEI7WrJF697bXsrIkj8eZfgLEFhIAAOFm1Ch7eBk+3Noyckl4kViBAQAgfBw9al3L6GQrV0p9+jjTz3lgBQYAgHDwySf+4eXoUVeGF4kAAwBA6Bs2TOrXz3c8dqy1ZXTqG3hdhC0kAABCVVaWVK+evfbf/0pXXeVIO+WJFRgAAELRkiX+4eX48ZAILxIBBgCA0DNokHT99b7j++6ztoxOvUyAi7GFBABAqPjpJ/8LLm7Y4H9V6RDACgwAAKHggw/8w0tubkiGF4kAAwCA+/XrJ914o+/4gQesLaOoKOd6qmBsIQEA4FaHDkkxMfbaxo3SZZc5008lYgUGAAA3mjfPHl6qVZPy88MivEgEGAAA3MUY66PQQ4f6atOmSQUFUvXqzvVVydhCAgDALQ4ckOLj7bUtW6QOHZzpx0GswAAA4AZvvGEPL3XrWqsuYRheJAIMAADBzRipa1fpjjt8tRkzpOxs630vYSp8Zw4AQLD74QepWTN7bccOqU0bZ/oJIqzAAAAQjF5+2R5e4uKkwkLCy88IMAAABBNjpLZtpbFjfbVZs6w38Fat6lxfQYYtJAAAgsV330ktW9pru3ZJF13kSDvBjBUYAACCwXPP2cNLq1ZSURHh5QxYgQEAwEnFxVKLFtYbdks8/7w0bpxzPbkAAQYAAKfs2iVdfLG99t13VqDBWbGFBACAE556yh5e2rf3rcbgnFiBAQCgMhUVSbGx0o8/+mqvvCLdeadzPbkQAQYAgMqyfbvUrp299sMP0gUXONOPi53XFtLMmTMVERGhiRMnemu5ubkaP368GjZsqDp16mjIkCHKyMiwPW7Pnj1KTk5WrVq1FBMTo8mTJ6uwsNA2JiUlRV27dlVUVJRat26tOXPmnE+rAAA4689/toeXHj2sLSPCS5mUOcB89tlneumll9SpUydb/f7779fChQs1f/58rV69Wvv379dNN93kvb+oqEjJycnKz8/Xp59+qtdff11z5szRI4884h2ze/duJScnq0+fPtq8ebMmTpyoMWPGaNmyZWVtFwAAZxQWSrVrSw895Ku9+aa0fr0UEeFcX25nyiAnJ8dcfPHFZvny5aZ3797mvvvuM8YYk5mZaapXr27mz5/vHbt9+3YjyaSmphpjjFm8eLGpUqWKSU9P94554YUXjMfjMXl5ecYYY6ZMmWLat29v+zWHDh1qkpKSSt1jVlaWkWSysrLKMkUAAM7fF18YY323ru920usf/JX29btMKzDjx49XcnKyEhMTbfW0tDQVFBTY6m3btlXz5s2VmpoqSUpNTVXHjh0VGxvrHZOUlKTs7Gxt27bNO+bU505KSvI+x+nk5eUpOzvbdgMAwDEPPyx17uw7vvZaK8Kc9PqHsgv4Tbxz587Vxo0b9dlnn/ndl56ersjISNWrV89Wj42NVXp6undM7Cknr+T4XGOys7N14sQJ1axZ0+/XnjFjhqZPnx7odAAAKF/5+VJUlL02f750883O9BOiAlqB2bt3r+677z699dZbqlGjRkX1VCZTp05VVlaW97Z3716nWwIAhJu0NP/wcugQ4aUCBBRg0tLSdPDgQXXt2lXVqlVTtWrVtHr1aj377LOqVq2aYmNjlZ+fr8zMTNvjMjIyFBcXJ0mKi4vz+1RSyfG5xng8ntOuvkhSVFSUPB6P7QYAQKWZPFnq3t13PGCAtWXUqJFzPYWwgAJM3759tWXLFm3evNl76969u26//Xbv/1evXl0rVqzwPmbnzp3as2ePEhISJEkJCQnasmWLDh486B2zfPlyeTwetfv542UJCQm25ygZU/IcAAAEjdxc69NETz7pq334obRkiXM9hYGA3gNTt25ddejQwVarXbu2GjZs6K2PHj1akyZNUoMGDeTxeHTvvfcqISFBV1xxhSSpf//+ateunUaMGKHHH39c6enpeuihhzR+/HhF/bzsdvfdd+u5557TlClTdOedd2rlypWaN2+eFi1aVB5zBgCgfKxbJ536j+uffpLq13emnzBS7tdCmjVrlm644QYNGTJEvXr1UlxcnN5//33v/VWrVtVHH32kqlWrKiEhQcOHD9cdd9yhRx991DumZcuWWrRokZYvX67OnTvrqaee0ssvv6ykpKTybhcAgLKZMMEeXm66ydoyIrxUighjjHG6iYqQnZ2t6OhoZWVl8X4YAED5OX7c+mK6ky1dKvGP7HJR2tdvroUEAEBp/ec/Uq9e9lpWlsQ/lCtduW8hAQAQkkaPtoeX4cOtLSPCiyNYgQEA4GyOHpXq1rXXVqyQrrvOmX4giRUYAADObOVK//CSk0N4CQIEGAAATue226S+fX3HY8ZYW0Z16jjXE7zYQgIA4GRZWdIp1/TTf/4jXX21I+3g9FiBAQCgxJIl/uHl+HHCSxAiwAAAIEmDB0vXX+87vvdea8voDNfgg7PYQgIAhLcjR6QGDey19eulHj2c6QelwgoMACB8ffihf3jJzSW8uAABBgAQnpKSrG2jElOmWFtGP19YGMGNLSQAQHg5dEiKibHXNm6ULrvMmX5QJqzAAADCx/z59vBSpYqUl0d4cSECDAAg9BljXcfollt8tYcfloqKpMhI5/pCmbGFBAAIbenpUpMm9tqWLVKHDs70g3LBCgwAIHS9+aY9vNSpIxUUEF5CAAEGABB6jJG6dZNGjPDV/vxn60KM1dh8CAWcRQBAaNm3T2ra1F7bvl1q29aZflAhWIEBAISOV16xh5eYGKmwkPASgggwAAD3M0a69FJpzBhf7amnpIwMqWpV5/pChWELCQDgbt9/L114ob22a5d00UWOtIPKwQoMAMC9nn/eHl4uvND6bhfCS8hjBQYA4D7FxVKrVtbqS4nZs6V77nGuJ1QqAgwAwF2++UZq3dpe++47qUULR9qBM9hCAgC4x9NP28NLu3bWagzhJeywAgMACH5FRVJcnHT4sK/28svS6NHO9QRHEWAAAMFtxw7rI9In27vX/8vqEFbYQgIABK+//MUeXrp3t7aMCC9hjxUYAEDwKSyUoqOl48d9tTfekIYPd64nBBUCDAAguGzZInXqZK8dOGC9Bwb4GVtIAIDgMW2aPbz06mVtGRFecApWYAAAzsvPl2rUsK5pVGLePOlXv3KuJwQ1AgwAwFmbNkldu9prhw5JjRo50w9cgS0kAIBzpkyxh5f+/a1VGMILzoEVGABA5cvLs7aMTvbBB9KgQY60A/chwAAAKtf69dIVV9hrP/4oNWjgTD9wJbaQAACV59577eFl8GBry4jwggCxAgMAqHjHj0u1a9trS5ZIAwY40w9cjwADAKhY//2vdM019lpmpvVNu0AZsYUEAKg4Y8faw8ttt1lbRoQXnCdWYAAA5e/oUaluXXvtk0+kvn2d6QchhwADAChfK1f6B5WcHKlOHWf6QUhiCwkAUH6GD7eHl9GjrS0jwgvKGSswAIDzl53t/76WNWv837wLlBNWYAAA52fpUv/wcuwY4QUVigADACi7m26SBg70HU+YYG0Z1arlXE8IC2whAQACd+SI/7fnrlsn9ezpTD8IO6zAAAAC8+9/+4eXEycIL6hUBBgAQOkNHGi/YvTkydaW0alXlgYqGFtIAIBzO3xYatzYXktLk7p2daYfhD1WYAAAZ/fee/7hJS+P8AJHEWAAAKdnjNS7t/SrX/lqDz1k1SMjnesLEFtIAIDTyciQ4uLstS+/lDp2dKYf4BSswAAA7N56yx5eatWSCgoILwgqBBgAgMUY6fLLresZlfjTn6xv1a3Ggj2CC38iAQDSvn1S06b22ldfSZde6kw/wDmwAgMA4e7VV+3hpXFjqbCQ8IKgRoABgHBljNS+vTR6tK/21FPSwYNS1arO9QWUAltIABCOvv9euvBCe+3rr6XWrR1pBwgUKzAAEG5eeMEeXpo3l4qKCC9wFQIMAISL4mKpZUvpnnt8teees1ZjqvByAHdhCwkAwsE33/ivsOze7b+NBLgEkRsAQt1f/2oPL23bWqsxhBe4GCswABCqioqk+HjrU0Ul/vEPacwY53oCygkBBgBC0c6d1krLyfbu9f+yOsCl2EICgFAzc6Y9vHTrZm0ZEV4QQgIKMC+88II6deokj8cjj8ejhIQELVmyxHt/bm6uxo8fr4YNG6pOnToaMmSIMjIybM+xZ88eJScnq1atWoqJidHkyZNVWFhoG5OSkqKuXbsqKipKrVu31pw5c8o+QwAIF4WFkscjTZ3qq73xhvT551JEhHN9ARUgoADTtGlTzZw5U2lpafr888913XXXadCgQdq2bZsk6f7779fChQs1f/58rV69Wvv379dNN93kfXxRUZGSk5OVn5+vTz/9VK+//rrmzJmjRx55xDtm9+7dSk5OVp8+fbR582ZNnDhRY8aM0bJly8ppygAQgrZulapXl3JyfLUDB+wXZgRCiTlP9evXNy+//LLJzMw01atXN/Pnz/fet337diPJpKamGmOMWbx4salSpYpJT0/3jnnhhReMx+MxeXl5xhhjpkyZYtq3b2/7NYYOHWqSkpIC6isrK8tIMllZWWWdGgC4w7RpxlgXBrBuV19tTHGx010BZVLa1+8yvwemqKhIc+fO1bFjx5SQkKC0tDQVFBQoMTHRO6Zt27Zq3ry5UlNTJUmpqanq2LGjYmNjvWOSkpKUnZ3tXcVJTU21PUfJmJLnOJO8vDxlZ2fbbgAQ0goKrGsWTZ/uq737rvSf/7BlhJAXcIDZsmWL6tSpo6ioKN19991asGCB2rVrp/T0dEVGRqpevXq28bGxsUpPT5ckpaen28JLyf0l951tTHZ2tk6cOHHGvmbMmKHo6GjvrVmzZoFODQDcY/NmKTLSenNuiYMHpVtucawloDIFHGDatGmjzZs3a/369Ro3bpxGjhypr776qiJ6C8jUqVOVlZXlve3du9fplgCgYjz4oHTZZb7jfv2szaPGjZ3rCahkAX8PTGRkpFr//I2O3bp102effaZnnnlGQ4cOVX5+vjIzM22rMBkZGYqLi5MkxcXFacOGDbbnK/mU0sljTv3kUkZGhjwej2rWrHnGvqKiohQVFRXodADAPfLypBo17LUFC6TBgx1pB3DSeX8PTHFxsfLy8tStWzdVr15dK1as8N63c+dO7dmzRwkJCZKkhIQEbdmyRQdP+lbI5cuXy+PxqF27dt4xJz9HyZiS5wCAsLRhg394+fFHwgvCVkABZurUqVqzZo2+++47bdmyRVOnTlVKSopuv/12RUdHa/To0Zo0aZJWrVqltLQ0jRo1SgkJCbriiiskSf3791e7du00YsQIffHFF1q2bJkeeughjR8/3rt6cvfdd+vbb7/VlClTtGPHDj3//POaN2+e7r///vKfPQC4wcSJUs+evuNBg6wtowYNHGsJcFpAW0gHDx7UHXfcoQMHDig6OlqdOnXSsmXL1K9fP0nSrFmzVKVKFQ0ZMkR5eXlKSkrS888/73181apV9dFHH2ncuHFKSEhQ7dq1NXLkSD366KPeMS1bttSiRYt0//3365lnnlHTpk318ssvKykpqZymDAAuceKEVKuWvbZ4sTRwoDP9AEEkwhhjnG6iImRnZys6OlpZWVnyeDxOtwMAgVm7Vrr6anstM1OKjnakHaCylPb1m2shAUCw+c1v7OFl2DBry4jwAnhxNWoACBbHjkl16thry5dLp3y5JwACDAAEh1WrpOuus9dycvwDDQBJbCEBgPNGjLCHl1GjrC0jwgtwRqzAAIBTsrP939eyerXUq5cz/QAuwgoMADhh2TL/8HLsGOEFKCUCDABUtptvlgYM8B3fc4+1ZXTqd74AOCO2kACgshw54v/tuevW2b9lF0CpsAIDAJVh4UL/8HLiBOEFKCMCDABUtORk6Ze/9B3/7nfWltGpF2cEUGpsIQFARTl8WGrc2F77/HOpWzdn+gFCCCswAFAR/vUv//CSl0d4AcoJAQYAylufPtYnjUr8/vfWllFkpHM9ASGGLSQAKC8ZGVJcnL32xRdSp07O9AOEMFZgAKA8vP22PbzUrCnl5xNegApCgAGA82GM9VHo22/31f74R+n4cal6def6AkIcW0gAUFb790sXXGCvffWVdOmlzvQDhBFWYACgLF57zR5eGjaUCgsJL0AlIcAAQCCMkTp2lO6801d74gnrO1+qVnWuLyDMsIUEAKW1Z4/UooW99r//SRdf7Ew/QBhjBQYASuOll+zhpXlzqaiI8AI4hAADAGdTXCxddJF0992+2t/+Jn3/vVSFv0IBp7CFBABn8u23Vng52e7d0oUXOtIOAB/++QAAp/PXv9rDS5s21moM4QUICqzAAMDJioqkpk2l9HRf7e9/l8aOda4nAH4IMABQ4n//s1ZaTrZnj9SsmTP9ADgjtpAAQJIee8weXi67zNoyIrwAQYkVGADhrbDQ+hbd7Gxf7Z//lEaMcK4nAOdEgAEQvrZtkzp0sNf275eaNHGmHwClxhYSgPD06KP28HLVVdaWEeEFcAVWYACEl4ICqVYta+uoxNy50tChzvUEIGAEGADhY/Nm6825Jzt4UGrc2JF2AJQdW0gAwsPUqfbw0revdWVpwgvgSqzAAAhteXlSjRr22oIF0uDBjrQDoHwQYACErs8+k3r0sNd+/FFq0MCZfgCUG7aQAISm+++3h5df/tLaMiK8ACGBFRgAoeXECetTRidbtEi6/npn+gFQIQgwAELHp59a3+dyssxMKTrakXYAVBy2kACEhrvvtoeXoUOtLSPCCxCSWIEB4G7Hjkl16thry5dLiYnO9AOgUhBgALhXSorUp4+9lp0t1a3rSDsAKg9bSADcaeRIe3gZOdLaMiK8AGGBFRgA7pKTI3k89trq1VKvXs70A8ARrMAAcI+PP/YPL8eOEV6AMESAAeAOt9wiJSX5ju+5x9oyOvU7XwCEBbaQAAS3zEypfn17LTVVuuIKR9oBEBxYgQEQvBYt8g8vJ04QXgAQYAAEqRtusG4lJk2ytoxOvbI0gLDEFhKA4PLjj1KjRvba559L3bo50w+AoMQKDIDg8f77/uElL4/wAsAPAQZAcOjbVxoyxHf8//6ftWUUGelcTwCCFltIAJx18KAUG2uvbd4sde7sSDsA3IEVGADOeecde3iJipLy8wkvAM6JAAOg8hkjJSRIt93mqz36qJSbK1Wv7lxfAFyDLSQAlWv/fumCC+y1bdukdu2c6QeAK7ECA6DyvP66Pbw0aCAVFhJeAASMAAOg4hljva/l17/21R5/3PrOl6pVHWsLgHuxhQSgYu3dKzVvbq/t3Cldcokz/QAICazAAKg4L71kDy9Nm0pFRYQXAOeNAAOg/BkjXXyxdPfdvtozz1irMVX4awfA+WMLCUD52r1batXKXvv2W6llS2f6ARCS+KcQgPLz7LP28HLxxdaWEeEFQDljBQbA+Ssulpo1s77jpcRLL0l33eVcTwBCGgEGwPn53/+kNm3stT17rEADABWELSQAZff44/bw0qWLbzUGACoQKzAAAldUJDVqJGVm+mpz5kgjRzrVEYAwQ4ABEJivvpLat7fX9u2T4uOd6QdAWApoC2nGjBm6/PLLVbduXcXExGjw4MHauXOnbUxubq7Gjx+vhg0bqk6dOhoyZIgyMjJsY/bs2aPk5GTVqlVLMTExmjx5sgoLC21jUlJS1LVrV0VFRal169aaM2dO2WYIoPw8+qg9vFx5pbVlRHgBUMkCCjCrV6/W+PHjtW7dOi1fvlwFBQXq37+/jh075h1z//33a+HChZo/f75Wr16t/fv366abbvLeX1RUpOTkZOXn5+vTTz/V66+/rjlz5uiRRx7xjtm9e7eSk5PVp08fbd68WRMnTtSYMWO0bNmycpgygIAVFEhRUdK0ab7aO+9Ia9dKERHO9QUgbEUYY0xZH3zo0CHFxMRo9erV6tWrl7KystS4cWO9/fbbuvnmmyVJO3bs0KWXXqrU1FRdccUVWrJkiW644Qbt379fsbGxkqQXX3xRDzzwgA4dOqTIyEg98MADWrRokbZu3er9tYYNG6bMzEwtXbq0VL1lZ2crOjpaWVlZ8ng8ZZ0igC++sN6ce7KMDCkmxpF2AIS20r5+n9enkLKysiRJDRo0kCSlpaWpoKBAiYmJ3jFt27ZV8+bNlZqaKklKTU1Vx44dveFFkpKSkpSdna1t27Z5x5z8HCVjSp7jdPLy8pSdnW27AThPv/+9Pbxcd511mQDCCwCHlflNvMXFxZo4caKuuuoqdejQQZKUnp6uyMhI1atXzzY2NjZW6enp3jEnh5eS+0vuO9uY7OxsnThxQjVr1vTrZ8aMGZo+fXpZpwPgZPn51pbRyd5/X7rxRmf6AYBTlHkFZvz48dq6davmzp1bnv2U2dSpU5WVleW97d271+mWAHf6/HP/8HL4MOEFQFApU4CZMGGCPvroI61atUpNmzb11uPi4pSfn6/Mk78bQlJGRobi4uK8Y079VFLJ8bnGeDye066+SFJUVJQ8Ho/tBiBAkyZJl1/uO77hBmvLqGFD53oCgNMIKMAYYzRhwgQtWLBAK1euVMtTLtDWrVs3Va9eXStWrPDWdu7cqT179ighIUGSlJCQoC1btujgwYPeMcuXL5fH41G7du28Y05+jpIxJc8BoJzl5lqfJpo1y1f76CNp4ULnegKAswjoU0j33HOP3n77bX344Ydqc9LXh0dHR3tXRsaNG6fFixdrzpw58ng8uvfeeyVJn376qSTrY9RdunRRfHy8Hn/8caWnp2vEiBEaM2aM/vKXv0iyPkbdoUMHjR8/XnfeeadWrlyp3/72t1q0aJGSkpJK1SufQgJKKTXV+j6Xkx05Ip3yXjYAqAylfv02AZB02ttrr73mHXPixAlzzz33mPr165tatWqZG2+80Rw4cMD2PN99950ZOHCgqVmzpmnUqJH53e9+ZwoKCmxjVq1aZbp06WIiIyNNq1atbL9GaWRlZRlJJisrK6DHAWFl3DhjrE0i63bLLU53BCDMlfb1+7y+ByaYsQIDnMXx41Lt2vbaxx9L/fo50w8A/Ky0r99cCwkIN6tXS9dea69lZ0t16zrSDgCUxXl9kR0Alxk1yh5eRo60No8ILwBchhUYIBzk5EinLsWmpEi9ezvSDgCcL1ZggFD3ySf+4eXoUcILAFcjwAChbNgw+xtzf/Mba8vo1DfwAoDLsIUEhKLMTKl+fXtt7Vr/73sBAJdiBQYINYsX+4eX48cJLwBCCgEGCCW//KWUnOw7vv9+a8voDNcQAwC3YgsJCAU//eR/wcXPPpO6d3emHwCoYKzAAG63YIF/eMnNJbwACGkEGMDN+vWTbrrJd/zgg9aWUVSUcz0BQCVgCwlwo4MHpdhYe23zZqlzZ0faAYDKxgoM4DbvvmsPL5GRUn4+4QVAWCHAAG5hjHTVVdaX05WYPl3Ky5OqV3euLwBwAFtIgBscOCDFx9trW7dK7ds70w8AOIwVGCDY/fOf9vBSr55UUEB4ARDWCDBAsDJG6tJFGjnSV3vsMenIEakai6cAwht/CwLBaO9eqXlze23nTumSS5zpBwCCDCswQLD5xz/s4SU+XioqIrwAwEkIMECwMEZq00a66y5f7a9/lfbtk6rwowoAJ2MLCQgGu3dLrVrZa998418DAEhiBQZw3nPP2YNK69bWlhHhBQDOiBUYwCnFxVKLFtIPP/hqL74o/eY3zvUEAC5BgAGcsGuXdPHF9tr33/t/8ggAcFpsIQGV7ckn7eGlUydrNYbwAgClxgoMUFmKiqTGja0voivx2mvSr3/tWEsA4FYEGKAyfPWV/1f/79vnf30jAECpsIUEVLQ//ckeXq64wtoyIrwAQJmxAgNUlIICyeORcnN9tbfflm691bmeACBEEGCAivDll1LnzvZaRoYUE+NMPwAQYthCAsrbQw/Zw0ufPtZlAggvAFBuWIEBykt+vhQVZa+99540ZIgz/QBACCPAAOUhLU3q3t1eO3xYatjQmX4AIMSxhQScr//7P3t4SU62towILwBQYViBAcoqN1eqWdNeW7hQuuEGZ/oBgDBCgAHKYt06KSHBXjtyRKpXz5F2ACDcsIUEBOqee+zh5eabrS0jwgsAVBpWYIDSOn5cql3bXlu2TOrf35l+ACCMEWCA0lizRurd217LyrK+aRcAUOnYQgLO5c477eFlxAhry4jwAgCOYQUGOJOjR6W6de21Vauka691pB0AgA8rMMDprFjhH16OHiW8AECQIMAAp7r1Vikx0Xd8113WltGpb+AFADiGLSSgRFaW/0eh//tf6aqrHGkHAHBmrMAAkrRkiX94OX6c8AIAQYoAAwwaJF1/ve/4vvusLaNTLxMAAAgabCEhfP30k/8FFzdskC6/3Jl+AAClxgoMwtMHH/iHl9xcwgsAuAQBBuGnXz/pxht9xw8+aG0ZRUU51xMAICBsISF8HDokxcTYa5s2SV26ONIOAKDsWIFBeJg3zx5eqlWT8vMJLwDgUgQYhDZjpKuvloYO9dX+8AepoECqXt2xtgAA54ctJISu9HSpSRN7betWqX17Z/oBAJQbVmAQmt54wx5eoqOtVRfCCwCEBAIMQosxUrdu0h13+GozZ0qZmdb7XgAAIYG/0RE6fvhBatbMXtuxQ2rTxpl+AAAVhhUYhIaXX7aHl7g4qbCQ8AIAIYoAA3czRmrbVho71lebNUs6cECqWtW5vgAAFYotJLjXd99JLVvaa998I7Vq5Ug7AIDKwwoM3Gn2bHt4adVKKioivABAmGAFBu5SXCxdeKG0d6+v9vzz0rhxjrUEAKh8BBi4x65d0sUX22vffy81b+5MPwAAx7CFBHd46il7eOnY0VqNIbwAQFhiBQbBrajI+kj04cO+2muvSb/+tWMtAQCcR4BB8Nq+XWrXzl7bt0+Kj3emHwBA0GALCcHpL3+xh5cePawtI8ILAECswCDYFBZaF148ftxXe+st6bbbnOsJABB0Al6BWbNmjX7xi18oPj5eERER+uCDD2z3G2P0yCOPqEmTJqpZs6YSExP19ddf28b89NNPuv322+XxeFSvXj2NHj1aR48etY358ssvdc0116hGjRpq1qyZHn/88cBnB3f58kupenV7eElPJ7wAAPwEHGCOHTumzp07a/bs2ae9//HHH9ezzz6rF198UevXr1ft2rWVlJSk3Nxc75jbb79d27Zt0/Lly/XRRx9pzZo1uuuuu7z3Z2dnq3///mrRooXS0tL0xBNP6A9/+IP+/ve/l2GKcIWHH5Y6d/YdX3utdZmA2FjHWgIABDFzHiSZBQsWeI+Li4tNXFyceeKJJ7y1zMxMExUVZd555x1jjDFfffWVkWQ+++wz75glS5aYiIgIs2/fPmOMMc8//7ypX7++ycvL84554IEHTJs2bUrdW1ZWlpFksrKyyjo9VIa8PGOsqOK7zZ/vdFcAAIeU9vW7XN/Eu3v3bqWnpysxMdFbi46OVs+ePZWamipJSk1NVb169dS9e3fvmMTERFWpUkXr16/3junVq5ciIyO9Y5KSkrRz504dOXLktL92Xl6esrOzbTcEuY0bpagoe+3QIenmm53pBwDgGuUaYNLT0yVJsacs+8fGxnrvS09PV0xMjO3+atWqqUGDBrYxp3uOk3+NU82YMUPR0dHeW7Nmzc5/Qqg4kydL3br5jgcOtNZfGjVyricAgGuEzMeop06dqqysLO9t78nXykHwyM2VIiKkJ5/01RYulBYvdq4nAIDrlOvHqOPi4iRJGRkZatKkibeekZGhLl26eMccPHjQ9rjCwkL99NNP3sfHxcUpIyPDNqbkuGTMqaKiohR16nYEgsv69dIVV9hrP/0k1a/vTD8AANcq1xWYli1bKi4uTitWrPDWsrOztX79eiUkJEiSEhISlJmZqbS0NO+YlStXqri4WD179vSOWbNmjQoKCrxjli9frjZt2qg+L3budO+99vAyZIi1ZcT5BACUQcAB5ujRo9q8ebM2b94syXrj7ubNm7Vnzx5FRERo4sSJ+tOf/qR///vf2rJli+644w7Fx8dr8ODBkqRLL71UAwYM0NixY7VhwwatXbtWEyZM0LBhwxT/87es3nbbbYqMjNTo0aO1bds2vfvuu3rmmWc0adKkcps4Ksnx49aW0XPP+WpLl0rvvedcTwAA9wv0402rVq0ykvxuI0eONMZYH6V++OGHTWxsrImKijJ9+/Y1O3futD3Hjz/+aG699VZTp04d4/F4zKhRo0xOTo5tzBdffGGuvvpqExUVZS644AIzc+bMgPrkY9RBYM0a/49Icz4AAGdR2tfvCGOMcTA/VZjs7GxFR0crKytLHo/H6XbCz+jR0quv+o6HD5feeMO5fgAArlDa12+uhYTydfSoVLeuvbZypdSnjzP9AABCUsh8jBpBYOVK//CSk0N4AQCUOwIMysdtt0l9+/qOx4613vVSp45zPQEAQhZbSDg/WVlSvXr22n/+I119tSPtAADCAyswKLulS/3Dy/HjhBcAQIUjwKBsbrzRun5Rid/+1toyqlnTuZ4AAGGDLSQE5sgRqUEDe239eqlHD2f6AQCEJVZgUHr//rd/eMnNJbwAACodAQalM2CANGiQ73jKFGvLiAtoAgAcwBYSzu7QISkmxl7buFG67DJn+gEAQKzA4Gzmz7eHl6pVpbw8wgsAwHEEGPgzRurVS7rlFl9t2jSpsFCKjHSuLwAAfsYWEuzS06UmTey1LVukDh2c6QcAgNNgBQY+b75pDy9160oFBYQXAEDQIcDA2jLq3l0aMcJXmzFDys6WqrFIBwAIPrw6hbt9+6SmTe21HTukNm2c6QcAgFJgBSacvfqqPbzExVlv1CW8AACCHAEmHBkjtWsnjR7tqz39tHTggPVRaQAAghxbSOHm+++lCy+013btki66yJF2AAAoC1Zgwsnzz9vDS8uWUlER4QUA4DqswISD4mKpVStr9aXE889L48Y51xMAAOeBABPqvvlGat3aXvvuO6lFC0faAQCgPLCFFMqeftoeXtq3t1ZjCC8AAJdjBSYUFRVJ8fHSwYO+2iuvSHfe6VxPAACUIwJMqNmxQ7r0Unvthx+kCy5wph8AACoAW0ihZMYMe3i5/HJry4jwAgAIMazAhILCQqlePenYMV/tzTel2293rCUAACoSAcbttm6VOna019LTpdhYZ/oBAKASsIXkZtOm2cNLr17WlhHhBQAQ4liBcaP8fKlGDeuaRiXmz5duvtm5ngAAqEQEGLfZtEnq2tVeO3RIatTImX4AAHAAW0huMmWKPbwMGGCtwhBeAABhhhUYN8jLs7aMTvbhh9Ivf+lMPwAAOIwAE+zWr5euuMJe++knqX59Z/oBACAIsIUUzH77W3t4ufFGa8uI8AIACHOswASjEyekWrXstSVLrPe8AAAAAkzQWbtWuvpqey0rS/J4nOkHAIAgxBZSMBk71h5ebrvN2jIivAAAYMMKTDA4dkyqU8deW7FCuu46Z/oBACDIsQLjtFWr/MNLTg7hBQCAsyDAOGn4cHtQGT3a2jI6NdAAAAAbtpCckJ0tRUfba2vWSNdc40w/AAC4DCswlW3pUv/wcvw44QUAgAAQYCrTkCHSwIG+4wkTrC2jmjWd6wkAABdiC6kyHDkiNWhgr61bJ/Xs6Uw/AAC4HCswFW3hQv/wkptLeAEA4DwQYCrSwIH2K0ZPnmxtGUVFOdcTAAAhgC2kinD4sNS4sb2WliZ17epMPwAAhBhWYMrbe+/Zw0tEhJSXR3gBAKAcEWDKizFS797Sr37lqz38sFRcLEVGOtcXAAAhiC2k8pCRIcXF2Wtffil17OhMPwAAhDhWYM7XW2/Zw0udOlJBAeEFAIAKRIApK2Okyy+3rmdU4s9/ti7EWI2FLQAAKhKvtGWxb5/UtKm9tn271LatM/0AABBmWIEJ1Guv2cNLTIxUWEh4AQCgEhFgAlFUJN15p+/4qaesN/BWrepcTwAAhCECTCCqVpXeeMP6/6+/liZNcrYfAADCFAEmUMOHW2/gbd3a6U4AAAhbBBgAAOA6BBgAAOA6BBgAAOA6BBgAAOA6BBgAAOA6BBgAAOA6BBgAAOA6BBgAAOA6BBgAAOA6QR1gZs+erQsvvFA1atRQz549tWHDBqdbAgAAQSBoA8y7776rSZMmadq0adq4caM6d+6spKQkHTx40OnWAACAw4I2wDz99NMaO3asRo0apXbt2unFF19UrVq19OqrrzrdGgAAcFhQBpj8/HylpaUpMTHRW6tSpYoSExOVmpp62sfk5eUpOzvbdgMAAKGpmtMNnM7hw4dVVFSk2NhYWz02NlY7duw47WNmzJih6dOn+9UJMgAAuEfJ67Yx5qzjgjLAlMXUqVM1adIk7/Hu3bvVpUsXNWvWzMGuAABAWeTk5Cg6OvqM9wdlgGnUqJGqVq2qjIwMWz0jI0NxcXGnfUxUVJSioqK8xy1atJAk7dmz56y/AW6VnZ2tZs2aae/evfJ4PE63UyFCfY7Mz/1CfY7Mz/3cOEdjjHJychQfH3/WcUEZYCIjI9WtWzetWLFCgwcPliQVFxdrxYoVmjBhQqmeo0oV6+090dHRrjlpZeHxeEJ6flLoz5H5uV+oz5H5uZ/b5liahYegDDCSNGnSJI0cOVLdu3dXjx499Ne//lXHjh3TqFGjnG4NAAA4LGgDzNChQ3Xo0CE98sgjSk9PV5cuXbR06VK/N/YCAIDwE7QBRpImTJhQ6i2jU0VFRWnatGm298WEklCfnxT6c2R+7hfqc2R+7hfKc4ww5/qcEgAAQJAJyi+yAwAAOBsCDAAAcB0CDAAAcB0CDAAAcB3XBJjZs2frwgsvVI0aNdSzZ09t2LDhrOPnz5+vtm3bqkaNGurYsaMWL15su98Yo0ceeURNmjRRzZo1lZiYqK+//roip3BOgczxH//4h6655hrVr19f9evXV2Jiot/4X//614qIiLDdBgwYUNHTOKNA5jdnzhy/3mvUqGEb4/ZzeO211/rNMSIiQsnJyd4xwXIO16xZo1/84heKj49XRESEPvjgg3M+JiUlRV27dlVUVJRat26tOXPm+I0J9Oe6IgU6x/fff1/9+vVT48aN5fF4lJCQoGXLltnG/OEPf/A7f23btq3AWZxZoPNLSUk57Z/P9PR02zg3n8PT/XxFRESoffv23jHBcg5nzJihyy+/XHXr1lVMTIwGDx6snTt3nvNxbnwtLC1XBJh3331XkyZN0rRp07Rx40Z17txZSUlJOnjw4GnHf/rpp7r11ls1evRobdq0SYMHD9bgwYO1detW75jHH39czz77rF588UWtX79etWvXVlJSknJzcytrWjaBzjElJUW33nqrVq1apdTUVDVr1kz9+/fXvn37bOMGDBigAwcOeG/vvPNOZUzHT6Dzk6xvjjy59++//952v9vP4fvvv2+b39atW1W1alX96le/so0LhnN47Ngxde7cWbNnzy7V+N27dys5OVl9+vTR5s2bNXHiRI0ZM8b2Al+WPxMVKdA5rlmzRv369dPixYuVlpamPn366Be/+IU2bdpkG9e+fXvb+fvvf/9bEe2fU6DzK7Fz505b/zExMd773H4On3nmGdvc9u7dqwYNGvj9DAbDOVy9erXGjx+vdevWafny5SooKFD//v117NixMz7Gja+FATEu0KNHDzN+/HjvcVFRkYmPjzczZsw47fhbbrnFJCcn22o9e/Y0v/nNb4wxxhQXF5u4uDjzxBNPeO/PzMw0UVFR5p133qmAGZxboHM8VWFhoalbt655/fXXvbWRI0eaQYMGlXerZRLo/F577TUTHR19xucLxXM4a9YsU7duXXP06FFvLZjOYQlJZsGCBWcdM2XKFNO+fXtbbejQoSYpKcl7fL6/XxWpNHM8nXbt2pnp06d7j6dNm2Y6d+5cfo2Vk9LMb9WqVUaSOXLkyBnHhNo5XLBggYmIiDDfffedtxas5/DgwYNGklm9evUZx7jxtTAQQb8Ck5+fr7S0NCUmJnprVapUUWJiolJTU0/7mNTUVNt4SUpKSvKO3717t9LT021joqOj1bNnzzM+Z0UqyxxPdfz4cRUUFKhBgwa2ekpKimJiYtSmTRuNGzdOP/74Y7n2Xhplnd/Ro0fVokULNWvWTIMGDdK2bdu894XiOXzllVc0bNgw1a5d21YPhnMYqHP9DJbH71ewKS4uVk5Ojt/P4Ndff634+Hi1atVKt99+u/bs2eNQh2XTpUsXNWnSRP369dPatWu99VA8h6+88ooSExO9FwMuEYznMCsrS5L8/rydzG2vhYEK+gBz+PBhFRUV+V1CIDY21m8vtkR6evpZx5f8N5DnrEhlmeOpHnjgAcXHx9v+IA4YMED//Oc/tWLFCj322GNavXq1Bg4cqKKionLt/1zKMr82bdro1Vdf1Ycffqg333xTxcXFuvLKK/XDDz9ICr1zuGHDBm3dulVjxoyx1YPlHAbqTD+D2dnZOnHiRLn8mQ82Tz75pI4ePapbbrnFW+vZs6fmzJmjpUuX6oUXXtDu3bt1zTXXKCcnx8FOS6dJkyZ68cUX9a9//Uv/+te/1KxZM1177bXauHGjpPL5eyuY7N+/X0uWLPH7GQzGc1hcXKyJEyfqqquuUocOHc44zm2vhYEK6ksJoHRmzpypuXPnKiUlxfZG12HDhnn/v2PHjurUqZMuuugipaSkqG/fvk60WmoJCQlKSEjwHl955ZW69NJL9dJLL+mPf/yjg51VjFdeeUUdO3ZUjx49bHU3n8Nw8vbbb2v69On68MMPbe8RGThwoPf/O3XqpJ49e6pFixaaN2+eRo8e7USrpdamTRu1adPGe3zllVfqm2++0axZs/TGG2842FnFeP3111WvXj0NHjzYVg/Gczh+/Hht3brVsfdTBYugX4Fp1KiRqlatqoyMDFs9IyNDcXFxp31MXFzcWceX/DeQ56xIZZljiSeffFIzZ87Uxx9/rE6dOp11bKtWrdSoUSPt2rXrvHsOxPnMr0T16tV12WWXeXsPpXN47NgxzZ07t1R/GTp1DgN1pp9Bj8ejmjVrlsufiWAxd+5cjRkzRvPmzfNbrj9VvXr1dMkllwT9+TuTHj16eHsPpXNojNGrr76qESNGKDIy8qxjnT6HEyZM0EcffaRVq1apadOmZx3rttfCQAV9gImMjFS3bt20YsUKb624uFgrVqyw/Qv9ZAkJCbbxkrR8+XLv+JYtWyouLs42Jjs7W+vXrz/jc1akssxRst49/sc//lFLly5V9+7dz/nr/PDDD/rxxx/VpEmTcum7tMo6v5MVFRVpy5Yt3t5D5RxK1scc8/LyNHz48HP+Ok6dw0Cd62ewPP5MBIN33nlHo0aN0jvvvGP7+PuZHD16VN98803Qn78z2bx5s7f3UDmHkvUJn127dpXqHxFOnUNjjCZMmKAFCxZo5cqVatmy5Tkf47bXwoA5/S7i0pg7d66Jiooyc+bMMV999ZW56667TL169Ux6eroxxpgRI0aYBx980Dt+7dq1plq1aubJJ58027dvN9OmTTPVq1c3W7Zs8Y6ZOXOmqVevnvnwww/Nl19+aQYNGmRatmxpTpw4UenzMybwOc6cOdNERkaa9957zxw4cMB7y8nJMcYYk5OTY/7v//7PpKammt27d5tPPvnEdO3a1Vx88cUmNzc36Oc3ffp0s2zZMvPNN9+YtLQ0M2zYMFOjRg2zbds27xi3n8MSV199tRk6dKhfPZjOYU5Ojtm0aZPZtGmTkWSefvpps2nTJvP9998bY4x58MEHzYgRI7zjv/32W1OrVi0zefJks337djN79mxTtWpVs3TpUu+Yc/1+VbZA5/jWW2+ZatWqmdmzZ9t+BjMzM71jfve735mUlBSze/dus3btWpOYmGgaNWpkDh48GPTzmzVrlvnggw/M119/bbZs2WLuu+8+U6VKFfPJJ594x7j9HJYYPny46dmz52mfM1jO4bhx40x0dLRJSUmx/Xk7fvy4d0wovBYGwhUBxhhj/va3v5nmzZubyMhI06NHD7Nu3Trvfb179zYjR460jZ83b5655JJLTGRkpGnfvr1ZtGiR7f7i4mLz8MMPm9jYWBMVFWX69u1rdu7cWRlTOaNA5tiiRQsjye82bdo0Y4wxx48fN/379zeNGzc21atXNy1atDBjx4517C8WYwKb38SJE71jY2NjzfXXX282btxoez63n0NjjNmxY4eRZD7++GO/5wqmc1jykdpTbyXzGTlypOndu7ffY7p06WIiIyNNq1atzGuvveb3vGf7/apsgc6xd+/eZx1vjPXR8SZNmpjIyEhzwQUXmKFDh5pdu3ZV7sR+Fuj8HnvsMXPRRReZGjVqmAYNGphrr73WrFy50u953XwOjbE+NlyzZk3z97///bTPGSzn8HTzkmT7uQqV18LSijDGmApb3gEAAKgAQf8eGAAAgFMRYAAAgOsQYAAAgOsQYAAAgOsQYAAAgOsQYAAAgOsQYAAAgOsQYAAAgOsQYAAAgOsQYAAAgOsQYAAAgOsQYAAAgOv8f64qcIZGhvpQAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Scatter plot\n", + "tol.plot(kind='scatter', y='specific conductance uS/cm', x='salinity ppt')\n", + "\n", + "# Fit a regression line\n", + "tol_cleaned = tol[['specific conductance uS/cm', 'salinity ppt']].dropna()\n", + "y = tol_cleaned['specific conductance uS/cm']\n", + "x = tol_cleaned['salinity ppt']\n", + "slope, intercept = np.polyfit(x, y, 1)\n", + "print('slope:', slope, 'intercept:', intercept)\n", + "\n", + "# Generate line points\n", + "regression_line = slope * x + intercept\n", + "plt.show()\n", + "# Add the regression line to the scatter plot\n", + "plt.plot(x, regression_line, color='red')\n", + "\n", + "# Show plot\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### *Exercise*\n", + "As mentioned above, both plots share the same figure. We can generate two separate plots by adding `plt.show()` before the second plt.plot command. Try this.\n", + "\n", + "## Box and Whiskers Plot" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "## Multi Axis\n", + "\n", + "## Scatter Plot\n", + "\n", + "## Box and Whisker Plot\n", + "\n", + "## Histogram\n", + "\n", + "## Heatmap\n", + "\n", + "## Multiple Plots" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, "source": [] }, { @@ -63,7 +288,7 @@ ], "metadata": { "kernelspec": { - "display_name": "venv", + "display_name": ".venv", "language": "python", "name": "python3" }, @@ -77,7 +302,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.3" + "version": "3.10.12" } }, "nbformat": 4, From dcb9e98b62788245f6d5d404b7b3e973af047092 Mon Sep 17 00:00:00 2001 From: Dan Norris Date: Thu, 17 Oct 2024 16:43:57 -0700 Subject: [PATCH 42/94] lots of plotting content! --- D3-Pandas_Graphing.ipynb | 16 +++------------- 1 file changed, 3 insertions(+), 13 deletions(-) diff --git a/D3-Pandas_Graphing.ipynb b/D3-Pandas_Graphing.ipynb index 38c1414..b2fb022 100644 --- a/D3-Pandas_Graphing.ipynb +++ b/D3-Pandas_Graphing.ipynb @@ -181,7 +181,7 @@ }, { "cell_type": "code", - "execution_count": 55, + "execution_count": 56, "metadata": {}, "outputs": [ { @@ -193,17 +193,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAGwCAYAAABIC3rIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABiVklEQVR4nO3deVyU5f4//tewgzgDskqigiIuuRuKC65paqVHT6nfculo59TBLT+2PSpbrKxOWWaWp45LntLSjplHyyXcFXEDt6OkgoIp+w7Kev/+8MfEAHPPzD33zczNvJ6PB4/ivm4urptR5821vN8aQRAEEBERETkwJ1sPgIiIiMjWGBARERGRw2NARERERA6PARERERE5PAZERERE5PAYEBEREZHDY0BEREREDs/F1gNQg5qaGty6dQstW7aERqOx9XCIiIjIDIIgoLi4GCEhIXByEp8DYkBkhlu3biE0NNTWwyAiIiIJ0tPT0aZNG9F7GBCZoWXLlgDu/UC1Wq2NR0NERETmKCoqQmhoqP59XAwDIjPULpNptVoGRERERCpjznYXbqomIiIih8eAiIiIiBweAyIiIiJyeAyIiIiIyOExICIiIiKHx4CIiIiIHB4DIiIiInJ4DIiIiIjI4TEgIiIiIofHgIiIiIgcHkt3EBERNSMp2SW4kVeG9n4tEObfwtbDUQ0GRERERM1AQVkF5m9KwqEr2fprMREBWDmtN3RerjYcmTpwyYyIiKgZmL8pCUev5hhcO3o1B/M2JdpoROrCgIiIiEjlUrJLcOhKNqoFweB6tSDg0JVspOaU2mhk6sGAiIiISOVu5JWJtl/PZUBkCgMiIiIilWvXyku0vb0fN1ebwoCIiIhI5cIDvOFrZOO0r5crT5uZgQERERGRyqVklyC/rLLRtvyySu4hMgMDIiIiIpXjHiLrMSAiIiJSOe4hsh4DIiIiIpULD/BGTEQAnDUag+vOGg1iIgK4h8gMDIiIiIiagbcn3g+tp2EBCq2nC96ZeL+NRqQuDIiIiIiagVe3XUDRnSqDa0V3qvDKtgs2GpG6MCAiIiJSuabIVJ2SXYL9yVnN9sQai7sSERGpnDmnzKTuI2qKorEHk7OQdLMAfdr6YkhEgCx9WooBERERkcopecpMrGjshtlRkvsFgBu5pZi46qhBDiVfL1dsjx2MUD/xZ5Ibl8yIiIhUTqlTZkovxdUPhoB7iSQfXXXEqn6lYEBERETUDKyc1huDOvobXBvU0R8rp/WW3KeSCR8PJmeJZtc+XGeJrilwyYyIiKiJpWSX4EZeGdr7tZAtR5DOyxUbZkchNacU13NLZelbyaW4pJsFou1n0vKbdD8RAyIiIqIm0hQblMP85QuyTqbmibafup4n+Xv1auMj2t6nra+kfqXikhkREVETEdugbI/iU3NF249eyxFtFzM0MhC+RoJAXy/XJj9txoCIiIioCTRFriC5RYf5ibYP6uAv2m7K9tjBDYKi2lNmTY1LZkRERE1AyVxBSpkS1RavbLuAqhqhQZuLkwaP9Qu1qv9QPy8kLhmNw1eycSYt36Z5iDhDRERE1ATUWpF+e+wguDgZHud3cdJge+wg2b7HkIgALBjZyWbBEGBHAdF7770HjUaDhQsX6q/dvXsXsbGx8PPzg7e3NyZPnozMzEyDr0tLS8P48ePh5eWFwMBAPP/886iqMqzlcuDAAfTp0wfu7u7o2LEj1q9f3wRPRERE9Ae1VqTvep8OV98dh3/8uQcm9g7BP/7cA1ffHYeu9+lsPTRZ2UVAdPLkSfzzn/9Ejx49DK4/99xz+O9//4stW7bg4MGDuHXrFiZNmqRvr66uxvjx41FRUYFjx47h66+/xvr167FkyRL9PampqRg/fjyGDx+OpKQkLFy4EHPmzMHu3bub7PmIiIgAZXIF1XcwOQsr4n6TPY/PY/1C8cmU3lYvk9krjSAIDRcGm1BJSQn69OmDzz//HG+//TZ69eqFTz75BIWFhQgICMDGjRvx5z//GQBw+fJldOnSBfHx8RgwYAB++eUXPPzww7h16xaCgoIAAKtXr8aLL76I7OxsuLm54cUXX8TOnTtx4cIf1X6nTp2KgoIC7Nq1y6wxFhUVQafTobCwEFqtVv4fAhERORQ5cwXVsqcyGPbCkvdvm88QxcbGYvz48Rg1apTB9dOnT6OystLgeufOndG2bVvEx8cDAOLj49G9e3d9MAQAY8aMQVFRES5evKi/p37fY8aM0ffRmPLychQVFRl8EBERySXMvwWGRwbKukxmT2Uw1MimAdF3332HM2fOYNmyZQ3aMjIy4ObmBh8fH4PrQUFByMjI0N9TNxiqba9tE7unqKgId+7caXRcy5Ytg06n03+EhjbP6UEiImoe7K0MhhrZLCBKT0/HggUL8O2338LDw8NWw2jUyy+/jMLCQv1Henq6rYdERERklDllMEiczQKi06dPIysrC3369IGLiwtcXFxw8OBBfPrpp3BxcUFQUBAqKipQUFBg8HWZmZkIDg4GAAQHBzc4dVb7ual7tFotPD09Gx2bu7s7tFqtwQcREZG9srcyGGpks4Bo5MiROH/+PJKSkvQf/fr1wxNPPKH/f1dXV8TFxem/Jjk5GWlpaYiOjgYAREdH4/z588jKytLfs3fvXmi1WnTt2lV/T90+au+p7YOIiKippWSXYH9ylmzZqe2tDIYa2SxTdcuWLXH//fcbXGvRogX8/Pz012fPno1FixahVatW0Gq1mDdvHqKjozFgwAAAwOjRo9G1a1dMnz4dH3zwATIyMvDqq68iNjYW7u7uAIBnnnkGn332GV544QX85S9/wb59+7B582bs3LmzaR+YiIgcnpLFXb+ZHYUJq44ZZJV2cdLg29n9rerXUdj8lJmYjz/+GA8//DAmT56MmJgYBAcHY+vWrfp2Z2dn7NixA87OzoiOjsaTTz6JGTNm4K233tLfExYWhp07d2Lv3r3o2bMnPvroI/zrX//CmDFjbPFIRETkwJQs7vr+rt9QP5GOIADv7Uq2um9HYPM8RGrAPERERGStlOwSjPjooNH2/YuHST6Gr2TfaqaqPERERESOwJzirvbYt6NgtXsiIiIjDiZnIelmgSxV2JUs7qrWwrH2hAERERFRPWorg1FbOPbo1RxU19kJ46zRYFBHf4dcLrMUl8yIiIjqUaIMhtLLWk1ROLY54wwRERFRHeaUwZCyfKb0spbOyxUbZkcpUjjWEXCGiIiIqA6lymDULms5azQG1501GsREBMgWvChRONYRMCAiIiKqQ8kyGFzWsl9cMiMiIqqjtgxGY8tm1pbB4LKW/eIMERERUT3bYwc3qA1We8pMDlzWsj+cISIiIqon1M8LiUtG4/CVbJxJy5clDxHZNwZERERERgyJCGAg5CC4ZEZEREQOjwEREREROTwumRERETWxlOwS3Mgr4ykzO8KAiIiIqIkUlFVg/qYkHLqSrb8WExGAldN6Q1fvVBs1LS6ZERGRqqVkl2B/chZSc6yrBdYU/v7tGYNgCAAOXcnGs9+ettGIqBZniIiISJXUNtuSkl2CY9dyG207di0XqTmlXD6zIc4QERGRKs3flISjV3MMrh29moN5mxJtNCJxCamNB0P69hTxdlIWAyIiIlKdlOwSHLqSjWpBMLheLQg4dCXbTpfPNKKtgmgrKY0BERERqc6NvDLR9uu59hcQheg8RNvb+Ho20UioMQyIiIhIddq18hJtb+9nf3txaky0V9VwjsiWGBAREZHqhAd4IyYiAM4aw2UoZ40GMREBsm1OPpichRVxv+FwvZNhUqgxiHMkPGVGRESqtHJab8zblGhwymxQR3+snNbb6r5v5JZi4qqjyC+r1F+rrXYf6ice2BhTG8QdvZpjsPfJWaPBoI7+PGFmYxpBEDhHZ0JRURF0Oh0KCwuh1WptPRwiIqojNacU13NLZc363PPN3Si8U9Xgus7TBWdfHyO53ws3CzHx86MGy2MuThpsjx2ErvfpJPdLjbPk/ZtLZkREpGph/i0wPDJQ1mWyxoIhACi8U2XV8tn0tQkN9gpV1Qh4Yk2C5D5JHgyIiIiI6tifnCXaHncpU1K/B5OzDJbg6sovq5RlnxJJx4CIiIiojlYt3ETb/b3dJfWbdLNAtP1MWr6kfkkeDIiIiIjqeLhHiGj7eBPtxvRq4yPa3qetr6R+SR4MiIiISNXkLu4aHuCNqPatGm2Lat9K8l6loZGB8DVSY83XyxVDIgIk9Uvy4LF7IiJSJSWLu341o1+DI/21fVvjm9lRmLDqWINTZt/O7m9Vv2Q9zhAREZEqKVncVVCostj7u35D/WQ3ggC8tytZke9H5mNAREREqqN0cVclgi11FqR1HAyIiIhIdZQs7qpU4KLGgrSOhAERERGpjpJ1wZQKXFjLzL4xICIiItVRsrirUoFLUxWkJWkYEBERkSqtnNYbgzr6G1yTq7irUtQ4ZkfBY/dERKRKOi9XbJgdJXtx1x3nbom27zx3C3NHREjqW6kxk/UYEBERkaoJ9c+xWymvtEK0Paek3OrvEebPQMjeMCAiIqImkZJdght5ZbLNiiiVmLFLsFa0vVuITnLfZL8YEBERkaKUClzEcgVtmB0lud8aE0kZq2uUSdpItsVN1UREpCi1JTnMLhZfMsuWYcmM7A8DIiIiUowakxwGtHQTb/d2l9w32S8GREREpBilAhdTb14uThoTdxjXP8xPvD1cvJ3USdIeolu3buHIkSPIyspCTU2NQdv8+fNlGRgREamfUkkOa0y0V3GfD1nI4oBo/fr1+Nvf/gY3Nzf4+flBUyfjpkajYUBERER64QHeGNjBD8eu5TZoG9jBT/Jps4s3C0XbL90qwvDIQEl9mzOrxSPzzY/FAdFrr72GJUuW4OWXX4aTE1fciIhInLE0QdakD7qaUyLa/ltWseS+WXPMMVkc0ZSVlWHq1KkMhoiImqGU7BLsT86y6pRW/f7iUxrODgFAfEqu5O8TbWKfz6AO/qLtYlhzzDFZHNXMnj0bW7ZsUWIsRERkIwVlFZix5gRGfHQQT607ieEfHsCMNSdQWFZpVb9KbaqeEtXW6MZpFycNHusXKqnfWqw55ng0goU5z6urq/Hwww/jzp076N69O1xdDZNqLV++XNYB2oOioiLodDoUFhZCqxXPYEpEpEYz1pzA0as5BsfjnTUaDOrob1WSw5TsEoz46KDR9v2Lh0mecTl+NRdT/3W8wfXvnx6A/h3kOQnGmmPqZsn7t8V7iJYtW4bdu3cjMjISABpsqiYiInWpzRVUX91cQfYYDHx+8BqcNZoGQdyqA9dkC4hYc8xxWBwQffTRR1i7di1mzZqlwHCIiKipKXmqSqm+myqIO5ichaSbBejT1hdDIgKs7o/sl8UBkbu7OwYNGqTEWIiIyAaUPFWlVN9KH42/kVuKiauOIr/OHipfL1dsjx2MUD/xZyJ1snhT9YIFC7By5UolxkJERDag5KkqpfpW+mh8/WAIAPLLKvHoqiNW9Uv2y+IZohMnTmDfvn3YsWMHunXr1mBT9datW2UbHBERNY23J3bDhHpBgNbTBe9MvN/qvldO6415mxINlrjs+cTWweSsBsFQrfyyShy+ks3ls2bI4oDIx8cHkyZNUmIsRERkI69uu4iiO1UG14ruVOGVbResOmUGADovV2yYHSXria2E1DzR9uMpuZK/R9LNAtH2M2n5DIiaIYsDonXr1ikxDiIispGm2qAs54mt7OK7ou25JeWS++7Vxke0vU9bX8l9k/2yeA9Ramoqrly50uD6lStXcP36dTnGRERETUip5IlKCmjpIdru5+0uue+hkYHw9XJttM3Xy5WzQ82UxQHRrFmzcOzYsQbXExISeBSfiKgOuctgKKWpancdTM7CirjfcLiR2ShLhejEA6I2vp5W9b89dnCDoKj2lBk1TxYvmSUmJjZ67H7AgAGYO3euLIMiIlKzgrIKzN+UZLAMFRMRgJXTekNnZObBlmpPghnLVG3tMpcSR9hrTLRX1VhRORZAqJ8XEpeMxuEr2TiTls88RA7A4hkijUaD4uKGVYQLCwtRXV0ty6CIiNRs/qYkHL2aY3Dt6NUczNuUaKMRmaZk7a5HPzvS6BH2hz87LLlPU29exuqcWWpIRAAWjOzEYMgBWDxDFBMTg2XLlmHTpk1wdnYGcK++2bJlyzB4MKcSicixqbUMRu1JsEO/ZSMxXb4ZkYPJWSisd3qtVuGdKslH2G8V3hFt/z1fvJ2oPosDovfffx8xMTGIjIzEkCFDAACHDx9GUVER9u3bJ/sAiYjUROkMykpRaplvf3KWaHvcpUyJgZf4DJB1C2bkiCxeMuvatSvOnTuHxx9/HFlZWSguLsaMGTNw+fJl3H+/9Qm8iIiaktwbn5tqg7LclFrma9XCTbTdX+JpsP5hrUTbB4TLU9yVHIfZM0Rr167Fo48+Cn9/f4SEhODdd99VclxERIpSakZE6Q3KSlByma+niZw+PUPF240JD/BGdLgf4lNyG7RFh/vZ5c+Z7JvZM0TffPMN2rRpg4EDB+L999/H5cuXlRwXEZGilNz4rOQGZSUomYfoVqF4AsWbVuz1eX9yj0aPxn8wuYfkPslxmT1DtG/fPuTn52Pnzp3Yvn073nnnHQQFBeHRRx/FhAkTMHjwYDg5WbwCR0TNSEp2CW7klclSmkFJSm98VqJUhZKUPLGlZEbpV7ddUKzcCDkeizZV+/r64sknn8STTz6JiooK7Nu3D9u3b8cTTzyBO3fuYNy4cXj00UcxduxYtGhhv3/5iUheasu701Qbn+UsVVGX3IGnkie2AlqK7xGSuodIraf5yH5JntJxc3PDQw89hM8//xzp6enYtWsX2rdvj6VLl2L58uVyjpGI7Jza8u6odeNzQVkFZqw5gREfHcRT605i+IcHMGPNCRQaqcxuPuVObPUPE9/c3F/i5mc1lhsh+2b1GldVVRVKSkrQr18/vPXWWzh79ixeeuklOcZGRCpQ+5t63Q3EgOFv6vamduOzs8YwEHDWaBATEWC3MwtKBZ5KntgKD/AWbZf6s1ZrUEv2y+yA6L///S/Wr19vcO2dd96Bt7c3fHx8MHr0aOTn5wMAXF3tb4qciJSh1t/U1bbxWY2BJwB8fyJNtH3LqXRJ/ao1qCX7ZXZAtHz5cpSW/vEX7tixY1iyZAlee+01bN68Genp6Vi6dKlF3/yLL75Ajx49oNVqodVqER0djV9++UXffvfuXcTGxsLPzw/e3t6YPHkyMjMzDfpIS0vD+PHj4eXlhcDAQDz//POoqjLcZHfgwAH06dMH7u7u6NixY4PAjoikU+tv6rUbn/cvHoZ1Tz2A/YuHYcPsKLvc8wQoG3gq2ffeS5mi7XsuZkjuW21BLdk3szdVX7x40WBv0A8//IAHH3wQr7zyCgDAw8MDCxYssGj/UJs2bfDee+8hIiICgiDg66+/xoQJE5CYmIhu3brhueeew86dO7FlyxbodDrMnTsXkyZNwtGjRwHcKxkyfvx4BAcH49ixY7h9+zZmzJgBV1dXfZ6k1NRUjB8/Hs888wy+/fZbxMXFYc6cOWjdujXGjBlj9liJqHFqzLtTl1Ibn+WmZOCpZN9aD/EAU+spPQBV22k+sm9mzxAVFxfDz++PdeQjR45g5MiR+s+7deuGW7duWfTNH3nkEYwbNw4RERHo1KmTfgnu+PHjKCwsxJo1a7B8+XKMGDECffv2xbp163Ds2DEcP34cALBnzx7873//wzfffINevXph7NixWLp0KVatWoWKigoAwOrVqxEWFoaPPvoIXbp0wdy5c/HnP/8ZH3/8sUVjJSLj+Ju68sIDvDGwQ+N7eQZ2sC4RYXiANx5o79toW1R7X6v6fiCs8X717e3F9y+ZI8y/BYZHBjIYIquYHRDdd999uHTpEgCgpKQEZ8+excCBA/Xtubm58PIS/y1DTHV1Nb777juUlpYiOjoap0+fRmVlJUaNGqW/p3Pnzmjbti3i4+MBAPHx8ejevTuCgoL094wZMwZFRUW4ePGi/p66fdTeU9tHY8rLy1FUVGTwQUTGqW35Sa0EI8e9jF23xG+ZJY1eTzZy3VwhOk/R9vt8xduJmorZAdFjjz2GhQsX4t///jeefvppBAcHY8CAAfr2U6dOITIy0uIBnD9/Ht7e3nB3d8czzzyDH3/8EV27dkVGRgbc3Nzg4+NjcH9QUBAyMu6tOWdkZBgEQ7XttW1i9xQVFeHOncZzayxbtgw6nU7/ERoaavFzETki/qaunJTskkbLVABAfEquVZuq71Wkb/zofuGdShxuJN+PuWpMtFfVsAwr2QezA6IlS5bggQcewPz585GUlIRvvvkGzs7O+vZNmzbhkUcesXgAkZGRSEpKQkJCAp599lnMnDkT//vf/yzuR04vv/wyCgsL9R/p6dJOQRARyUXJjc9JNwtE28+k5Uvu+3CyeDB19EqOaDtRUzF7U7Wnpyc2bNhgtH3//v2SBuDm5oaOHTsCAPr27YuTJ09ixYoVmDJlCioqKlBQUGAwS5SZmYng4GAAQHBwME6cOGHQX+0ptLr31D+ZlpmZCa1WC0/Pxqdq3d3d4e4uLXsqESlDLWVB6pJzzEqW1+hlogBrn7bi+4DEXMoQ33Jw8Vah5L6J5GRR6Y6mUFNTg/LycvTt2xeurq6Ii4vD5MmTAQDJyclIS0tDdHQ0ACA6OhrvvPMOsrKyEBgYCADYu3cvtFotunbtqr/n559/Nvgee/fu1fdBRPZNbWVBAGXGrGSR1KGRgdB6uKDoblWDNq2HC4ZEBEjue1AHf8Sn5Bltt6ZvIjlZHBCFhYVBozH+m0hKSorZfb388ssYO3Ys2rZti+LiYmzcuBEHDhzA7t27odPpMHv2bCxatAitWrWCVqvFvHnzEB0drd+7NHr0aHTt2hXTp0/HBx98gIyMDLz66quIjY3Vz/A888wz+Oyzz/DCCy/gL3/5C/bt24fNmzdj586dlj46EdmAWHZmey3g+ew3Zxrs9zl0JRvPfHMam/46wMhXmSK+10b6/JCyxvVojQ/3/ma0fWz31k04GiLjLA6IFi5caPB5ZWUlEhMTsWvXLjz//PMW9ZWVlYUZM2bg9u3b0Ol06NGjB3bv3o0HH3wQAPDxxx/DyckJkydPRnl5OcaMGYPPP/9c//XOzs7YsWMHnn32WURHR6NFixaYOXMm3nrrLf09YWFh2LlzJ5577jmsWLECbdq0wb/+9S/mICJSATUW8DRn87OUMStVEwy4t6m6sdkhACi6W4XDV7Ilz+Q0VSFdImtZHBAtWLCg0eurVq3CqVOnLOprzZo1ou0eHh5YtWoVVq1aZfSedu3aNVgSq2/YsGFITLTPIpNEZJwa30wTUo0vDwHA8ZRcuxuzOZuqpQZEas1kTo7H6uKutcaOHYv//Oc/cnVHRKTKN9PsYvG9Prkl5ZL6VfKUWXBLD9F2U7mExLDmGKmFbAHRDz/8gFatrM84SkRUS41vpgEmggs/b2knWJUMDgN14mP2b2ndqVtmMic1sHjJrHfv3gabqgVBQEZGBrKzsw329xARyWHltN6YtynRYC+RPb+ZhpgILtpIzMysZM04pWfiWHOM1MDigGjixIkGnzs5OSEgIADDhg1D586d5RoXEREA9b2ZKpmZWW3BYX1qKaRLjsnigOj1119XYhxE1AwomTxRLW+mSiZQVCo4VOPmdSK52V1iRiJSHzUmT1RKU9Tukjs4VOPmdSK5ybapmogcl1jyREfTFMFFSnYJ9idnWVXQta7wAG/4Gglcfb1cOTtEDoEzRERkFTUmT6xL7mU+JTc/KzUTl5Jdgvyyxqvd55dV2v1rSCQHzhARkVWUzI+jpIKyCsxYcwIjPjqIp9adxPAPD2DGmhMoNBIYWEKpY+ZKzcSp9TUkkpPkGaKrV6/i2rVriImJgaenJwRBEK1xRkTNk1r3nyhZI6128/Oh37KRmJ6PPm19rS5iquRMnFpfQyI5WRwQ5ebmYsqUKdi3bx80Gg2uXLmC8PBwzJ49G76+vvjoo4+UGCcR2anwAG9Eh/s1Wr8rOtzPLpdalF7mU2JpS8mTYOkm+r6ZX2aXryORnCxeMnvuuefg4uKCtLQ0eHn98VvFlClTsGvXLlkHR0TqYGxy2F4njZVeInr2mzMNAq7aavdSKXmc35xaZkTNncUzRHv27MHu3bvRpk0bg+sRERG4ceOGbAMjInVIyS7BsWuNV3c/dk16dXclKblEpFS1eyWP8/dq4yPa3qetr+S+idTC4hmi0tJSg5mhWnl5eXB3t67eDRGpjxo35CpZI82cavdSXLxZKNp+6VaRpH4BINREgNjGV7ydqDmwOCAaMmQINmzYoP9co9GgpqYGH3zwAYYPHy7r4IjI/ql1Q65yBUfFZ2qkLmxdzSkRbf8tq1hiz0BCqniQliAxiCNSE4uXzD744AOMHDkSp06dQkVFBV544QVcvHgReXl5OHr0qBJjJCI7pmTeHSUpVQajf5ifeHu4eLsxHf29Rds7BbaU1C8AnEwV3yN08noepka1ldw/kRpYPEN0//3347fffsPgwYMxYcIElJaWYtKkSUhMTESHDh2UGCMR2TnlZluUF+bfAsMjA2UL3MIDvDGwQ+NBz8AO0k/ddWujE23vEqKV1C8AFN0Vz71UdMf63ExE9k5SHiKdTodXXnlF7rEQkUqprSK90r54om+DqvS1x+6lyiq8K9qeU1wuue8HuwTh10tZRttHdwuW3DeRWlgcEK1btw7e3t547LHHDK5v2bIFZWVlmDlzpmyDIyJ1UUtF+rrkLt0BKBMgXsoQ3yN08VYRHhO9w7gpUW3xyrYLjZ5Uc3HS4LF+oRJ7JlIPi5fMli1bBn9//wbXAwMD8e6778oyKCIipSlZuqNWWm4pzt0swM188ZN45tCY2KztbGXOp+2xgxrkMnJx0mB77CDrOiZSCYtniNLS0hAWFtbgert27ZCWlibLoIiIlKZk6Y4buaWYuOqoQcFUXy9XbI8djFA/aUfYOwWLb5qOCJK+qRoAut6nw9V3x2HLqXQcvZaDQR38OTNEDsXiGaLAwECcO3euwfWzZ8/Cz0/a6QkioqZUW7qj7qk4wLB0hzXqB0PAvarxj646IrlPJxMH9p2tyFRd12P9QvHJlN4MhsjhWBwQTZs2DfPnz8f+/ftRXV2N6upq7Nu3DwsWLMDUqVOVGCMRkayUTCZ5MDmrQTBUK7+sEocbqaFmjuMmcgXFG8kWTkTmsXjJbOnSpbh+/TpGjhwJF5d7X15TU4MZM2ZwDxGRSiixkVhNlEwmaU5dMCmV70vuVom2F5fzaDyRNSwOiNzc3PD9999j6dKlOHv2LDw9PdG9e3e0a9dOifERkYyUqMKuRkomk1SqLlj3NjrsFTka39PE9yUicRYvmdXq1KkTHnvsMTz88MMMhohUQmwjsaNRKpmkUnXBHu4RIto+3kQ7EYmzeIaouroa69evR1xcHLKyslBTY1iDed++fbINjojkU7uRuL66G4kdaflMqWSSO87dNtF+C/NGRFjcb3iAN6La++LE9YZlNqLa+zrUa0ekBIsDogULFmD9+vUYP3487r//fmg08pxsICJlmbOR2BHfVOVOJplXKp4xOq+kQnLfX814QPYM2ER0j8UB0XfffYfNmzdj3LhxSoyHiBSi1qr0tdSyEbxLsHhNsa5W1BxjiRQi5UjaVN2xY0clxkJEClJrVXq1bQTPLBavOZZZJN5uDjWWSCGydxZvqv6///s/rFixAoIgnkaeiOyPGqvSK70RPCW7BPuTs6xOxljLVD8p2SWyfB8ikpfFM0RHjhzB/v378csvv6Bbt25wdTX8DW3r1q2yDY6I5CWYqIdlb5TcCK7UzJOpfEGl5dWS+yYi5Vg8Q+Tj44M//elPGDp0KPz9/aHT6Qw+iMh+qe3YvZIZpZX6WZSUM4EikRpZPEO0bt06JcZBRApT47F7pTaCK/mz6BysRXxKntF2U5uuicg2JCdmJCJ1UXK2RSm1G8Gd66X3cNZoEBMRIDloUfJn0dlEVfrOrRkQEdkji2eIAOCHH37A5s2bkZaWhooKw5waZ86ckWVgRCQvtR67Xzmtd4PcO9ZuBDf1m6CLFZXjM0ycMrtVeEdy30SkHItniD799FM89dRTCAoKQmJiIqKiouDn54eUlBSMHTtWiTESkQyUmm1RWm3unf2Lh2HdUw9g/+Jh2DA7yqqNzzUm2qtqpG8+V6qWGREpy+KA6PPPP8eXX36JlStXws3NDS+88AL27t2L+fPno7CwUIkxEpFM1HjsvlaYfwsMjwyUJXBTcrZMqVpmRKQsi5fM0tLSMHDgQACAp6cniouLAQDTp0/HgAED8Nlnn8k7QiKSDTMd3xMe4A0XJ02jM0EuThqrfiYJqbni7Sm5DvkzJ7J3Fs8QBQcHIy/v3gmKtm3b4vjx4wCA1NRUJmskUgk5Z1uaipwJFA8mZxldFquqEXC4kRNo5hPff8R/JYnsk8UzRCNGjMD27dvRu3dvPPXUU3juuefwww8/4NSpU5g0aZISYyQiB6ZEAsX9yVmi7fsuZWFIRICkvvuHtRJtHxDuJ6lfIlKWxQHRl19+iZqae1sSY2Nj4efnh2PHjuHRRx/F3/72N9kHSESOTSyB4obZUZL6bNXCXbzd201Sv0SkXhYvmd28eRPOzs76z6dOnYpPP/0Uc+fORUZGhqyDIyLHVptAsbrecnzdBIpSPNyjtYn2EEn9AsCOc7dNtN+S3DcRKcfigCgsLAzZ2Q3X1/Py8hAWFibLoIiIAOUSKP5sImj55bx4u5jUHPHiranZ9pcAk4gkBESCIECjabhpsKSkBB4eHrIMioiUJXeFd6UolUBx65mbou0/nE6X1C8AhPl7i7cHqGcjO5EjMXsP0aJFiwAAGo0Gr732Gry8/silUV1djYSEBPTq1Uv2ARKRfJSq8K6UszcLxNvTCyRtfnZzFQ+13F2cRdvF9GwjXuS6V6iP5L6JSDlmB0SJifcqQAuCgPPnz8PN7Y9Nh25ubujZsycWL14s/wiJHFRKdglu5JXJmitIiQ3KSsorFa8Mn1NSIdpuzMBwf1zOML60VT95pSVMleb4PZ+lO4jskdkB0f79+wEATz31FFasWAGtlgUKiZSg1CxOU1S7lzuIGx4ZgPXHrhttH9klUFK/lzOKRNsv3ZaedT+7uFy0PadEvJ2IbMPiY/effPIJqqqqGlzPy8uDi4sLAyUiKyk1i2POBmWpQYxSQdzQyEBoPVxQdLfhvzlaDxfJuYIyCsULsN420U5EzY/Fm6qnTp2K7777rsH1zZs3Y+rUqbIMishRKXXMHFC2ftez35xpMPt06Eo2nvnmtOQ+a0UGtbToujl6mSiw2tuKAqwBLcUPl/h5i+dAIiLbsDggSkhIwPDhwxtcHzZsGBISEmQZFJGjUuqYOaBctfuU7BLEpzRevys+JdeqIC4luwQnb+Q32nbyRr7kvif0Es8zNLH3fZL6BZipmkitLA6IysvLG10yq6ysxJ073CxIZA0lZ3EAZardJ6TmibYfNxIsmUOpAPGAidIdBy6Lt4sJD/BGtJGgJzrcT1X144gcicUBUVRUFL788ssG11evXo2+ffvKMigiR6XULE6t2mr3G/7yAJ57MAL/nh2FDbOjrDxyL16uVFqmoHuUChAT0wtE28+kibebsvrJvoipt78pJiIAq5/kv5FE9sriTdVvv/02Ro0ahbNnz2LkyJEAgLi4OJw8eRJ79uyRfYBEjmbltN6YtynRYE+OtbM4tZTY/Nw/THwJqL8dLhH5m9jHE2BlLbPawDM1pxTXc0tlTZ1ARMqwOCAaNGgQ4uPj8Y9//AObN2+Gp6cnevTogTVr1iAiIkKJMRI5FCXfTJU4wRYe4I2BHfxw7FrDpbGBHaxbIkpIFV9uS0jJldT/g12C8Osl48tiD3YLtrjPxoT5MxAiUguLAyIA6NWrF7799lu5x0JEdcj9ZqpkHqIvnujbYFardubJGr9lFIu2X8kUbzcm00SuoIwiHrsncjQWB0RpaWmi7W3btpU8GCJSjpJ5iGpntQ79loXE9AL0aesrOUdQXekmsjqn50k7yMECrERUn8UBUfv27Rst7lqrurraqgERkTKUPMGmVGLGsvKGJ1rrKq0QbzfGx1N8j5CPHdZ1IyJlWRwQ1dY0q1VZWYnExEQsX74c77zzjmwDIyJ51Z5gO3o1xyDxo7NGg0Ed/a1anlMqu3aQTjzJYZBWvN2YTsHiFek7WZH0kYjUyeKAqGfPng2u9evXDyEhIfjHP/6BSZMmyTIwIpKfEifYlNybNCDMDz8m3jLaHt1B2gk2NZ6MIyJlSdpU3ZjIyEicPHlSru6ISAFKnGBTcm9SZrH45uZMbn4mIplYHBAVFRlWiRYEAbdv38Ybb7zBY/dEKiHnCTYl9yal5ogHWykSNz8rGcQRkTpZHBD5+Pg02FQtCAJCQ0MbLfpKRM1beIA3fL1ckV9W2aDN18vVqsCi5G7DPusqNbHp2hilS6QQkfpYHBDt37/f4HMnJycEBASgY8eOcHGRbQWOyOGlZJfgRl6Z3Wc5TskuaTQYAoD8skqr9hBlm8gXlGWi3RglN5gTkTpZHMEMHTpUiXEQ0f9PqSPsSlFy+SmgpXiJDf+W0ktsKFkihYjUx6yAaPv27WZ3+Oijj0oeDBEpd4RdKUouP4X6ivfdrpX0vgUTRWmJyLGYFRBNnDjR4HONRgOhzjRz3T1FTMxIJJ2SR9iVouTy07GUHNH2o1cb/qzMpbbAk4iU5WTOTTU1NfqPPXv2oFevXvjll19QUFCAgoIC/Pzzz+jTpw927dql9HiJmjVzlp/s0cppvTGoo7/BNTmWn0ruim+aLimX9gtYbeBZN4ADDANPInIsFu8hWrhwIVavXo3Bgwfrr40ZMwZeXl7461//ikuXLsk6QCJHotbTT0otP0WF+eFm4u9G2/uHtZLUL4/dE1F9Zs0Q1XXt2jX4+Pg0uK7T6XD9+nUZhkTkuGqXn5zrpbZw1mgQExFgt2/SYstP1pg7oqNoe+wIabnP1Bp4EpFyLA6IHnjgASxatAiZmZn6a5mZmXj++ecRFWXZuvuyZcvwwAMPoGXLlggMDMTEiRORnJxscM/du3cRGxsLPz8/eHt7Y/LkyQbfGwDS0tIwfvx4eHl5ITAwEM8//zyqqgyn2g8cOIA+ffrA3d0dHTt2xPr16y17cKImotTyk1LUuPyk1sCTiJRjcUC0du1a3L59G23btkXHjh3RsWNHtG3bFr///jvWrFljUV8HDx5EbGwsjh8/jr1796KyshKjR49Gaekf/4A+99xz+O9//4stW7bg4MGDuHXrlkG9tOrqaowfPx4VFRU4duwYvv76a6xfvx5LlizR35Oamorx48dj+PDhSEpKwsKFCzFnzhzs3r3b0scnUpzaTj8pue/ps31XTbRfkdy32gJPIlKWRhAEi//1FQQBe/fuxeXLlwEAXbp0wahRoxpksLZUdnY2AgMDcfDgQcTExKCwsBABAQHYuHEj/vznPwMALl++jC5duiA+Ph4DBgzAL7/8gocffhi3bt1CUFAQAGD16tV48cUXkZ2dDTc3N7z44ovYuXMnLly4oP9eU6dORUFBQaMbwcvLy1Fe/kfCt6KiIoSGhqKwsBBardaqZyQyZcaaE0ZPbNnj6aeDyVmYuc54HcN/z47CkIgASX1PXHUESemFRtt7h+rwY+xgo+3mkLOuGxHZl6KiIuh0OrPevy2eIQLuHbMfPXo05s+fj/nz5+PBBx+0OhgCgMLCe//wtWp1b6Pk6dOnUVlZiVGjRunv6dy5M9q2bYv4+HgAQHx8PLp3764PhoB7m7yLiopw8eJF/T11+6i9p7aP+pYtWwadTqf/CA0NtfrZiMzRVMtPB5OzsCLuNxxu5Ii/pW4VihdYvZl/R3LffUJ9Rdv7tpO2qbquMP8WGB4ZyGCIyMFJqrURFxeHuLg4ZGVloaamxqBt7dq1kgZSU1ODhQsXYtCgQbj//vsBABkZGXBzc2uwiTsoKAgZGRn6e+oGQ7XttW1i9xQVFeHOnTvw9PQ0aHv55ZexaNEi/ee1M0RESlP69NON3FJMXHXUoNSGr5crtscORqif+EZjY3Yk3RJt33nuFqZFtZXU95DIAKw9dt1o+6AIf6NtRESWsDggevPNN/HWW2+hX79+aN26tSwzQwAQGxuLCxcu4MiRI7L0Zw13d3e4u4uXDCBSgtKnn+oHQ8C9emOPrjqCxCWjJfV5I1981uqGFXuIskzMPuVIrGVGRFSfxQHR6tWrsX79ekyfPl22QcydOxc7duzAoUOH0KZNG/314OBgVFRUoKCgwGCWKDMzE8HBwfp7Tpw4YdBf7Sm0uvfUP5mWmZkJrVbbYHaIyJaUzPp8MDlLtAjr4SvZkvb6uDmJr7y7Oztb3GetSxlFou3/uyXeTkRkLov3EFVUVGDgwIGyfHNBEDB37lz8+OOP2LdvH8LCwgza+/btC1dXV8TFxemvJScnIy0tDdHR0QCA6OhonD9/HllZWfp79u7dC61Wi65du+rvqdtH7T21fRDZE6VOPyXdLBBtP5OWL6lfN1fxf0ZcXSRtVQQAtGohPlPbylt6cVcioros/pdqzpw52LhxoyzfPDY2Ft988w02btyIli1bIiMjAxkZGbhz594mTJ1Oh9mzZ2PRokXYv38/Tp8+jaeeegrR0dEYMGAAAGD06NHo2rUrpk+fjrNnz2L37t149dVXERsbq1/2euaZZ5CSkoIXXngBly9fxueff47Nmzfjueeek+U5iORUcKcC538vMLh2/vcCFN1pfHbHXL3a+Ii292krvoHZGFMFWENNLAOKebhHaxPtIZL7JiKqy+Ils7t37+LLL7/Er7/+ih49esDV1dWgffny5Wb39cUXXwAAhg0bZnB93bp1mDVrFgDg448/hpOTEyZPnozy8nKMGTMGn3/+uf5eZ2dn7NixA88++yyio6PRokULzJw5E2+99Zb+nrCwMOzcuRPPPfccVqxYgTZt2uBf//oXxowZY+HTEylPiX0+ADA0MhAuThpU1TTMtOHipJF8NH5El0DsvZRlvL1zoKR+gXtLiC3dnVHcSM2ylu7OPBlGRLKxOCA6d+4cevXqBQAGeX0AWLzB2pwUSB4eHli1ahVWrVpl9J527drh559/Fu1n2LBhSEy0rowAUWNSsktwI69Mljw2Su3zAe6Ns7FgCACqagSk5kg7wXYlo0S0/WqWeLuYlOySRoMhACgur5Y8ZiKi+iwOiPbv36/EOIhUp6CsAvM3JeFQnVw+MREBWDmtN3ReriJfaZw5+3ykBkRKHek/ky6+9+jUjTyL+6yVkJor3p6Sy4CIiGQhfbcjgJs3b+LmzZtyjYVIVZQoaKrUPh9AuSPsXq7ip8i83SSlO/v/ic86q6vICRHZM4sDopqaGrz11lvQ6XRo164d2rVrBx8fHyxdurRBkkYie5GSXYL9yVmyZXpWKqP00Ejx/TZSZ4cA4NdLmaLte/+XIanfIJ146opArYekfgGgf5h4JuoB4X6S+yYiqsviX91eeeUVrFmzBu+99x4GDRoEADhy5AjeeOMN3L17F++8847sgySSSollLUC55aeDycY3JwOwag9RSXmVVe1Gv+6u+Om3Uon9Avc2VUeH+yE+peHSWXS4H5fLiEg2Fs8Qff311/jXv/6FZ599Fj169ECPHj3w97//HV999RXWr1+vwBCJpFNiWQtQLqO0UrmCAGBir/tE2//Uu41ouzHZJpbasqzMJr36yb6IqRcExkQEYPWTfa3ql4ioLotniPLy8tC5c+cG1zt37oy8POmbJ4nkVrusVV/dZS2pMwzhAd4Y2MEPx641nLkY2EH6zIWSe4iCdeJLV6bajZGpeo9ROi9XbJgdxar0RKQoi2eIevbsic8++6zB9c8++ww9e/aUZVBEcjBnWcsaxrJGmJFNwihTSQzbmEiCKGabiSKsP575XVK/ft7i2aQDTLSbi1XpiUhJFs8QffDBBxg/fjx+/fVXfemL+Ph4pKenm8wFRNSUlCyUmpJd0ui+FgCIT8mVPPukZLX7syaW286mF0jqV+shvhdL62nNKTMioqZh8QzR0KFDkZycjD/96U8oKChAQUEBJk2ahOTkZAwZMkSJMRJJUlso1bnemo6zRoOYiACrZhqUmn1SMogrMrG5udDE5mhjTE2IGckFSURkVyT96nbffffxNBmpwsppvTFvU6LBXiI5CqUqFbgoearKv4UbckoqjLYHSlzaCvMX/1mEB3CJi4jsn8UB0bp16+Dt7Y3HHnvM4PqWLVtQVlaGmTNnyjY4ImsptSG3dvbp6NUcg1xEzhoNBnX0t+p7GNukbO3m5XE9QnB5729G28eaKKRqzMM9QrB87xWj7eNZgJWIVMDiJbNly5bB39+/wfXAwEC8++67sgyKSG7m1M2z1MppvTGoo+HfBWtnn1KySxo9uQYAx67lWpVY8oaJr03LFV8GNObnc7dF2385L95ORGQPLJ4hSktLQ1hYWIPr7dq1Q1pamiyDIsclZ6FUQLnEjIAys09Kbqq+eLtQtP387wWS+j16LUe0/fCVbPx9eEdJfRMRNRWLA6LAwECcO3cO7du3N7h+9uxZ+PkxjT5Jo1TgIpaYccPsKMn91hXmL19eHCU3Vbf19cJlkcr0Uvse1MEf8SnGc5BZU26EiKipWLxkNm3aNMyfPx/79+9HdXU1qqursW/fPixYsABTp05VYozkAJTIKK1UvTG1amHieLyXxCKs40zsPRrbXdreJCKipmRxQLR06VL0798fI0eOhKenJzw9PTF69GiMGDGCe4hIEqUCF6UTMypByTGbykN0TmIeIjX+nImI6rP4V0I3Nzd8//33ePvtt5GUlARPT090794d7dq1U2J85ACU2jej5PKTUpQcc3aJqZpjdyX1q8afMxFRfZJTyEZERCAiIkLOsZCD4hvqH8IDvKH1cEHR3YZJFLUeLlbtVXJ3cUJxebXRdjcXiyeMASibgoCIqKlI+xeQSEZKZZRW41JOSnZJo8EQABTdrbJq31NMJ/HNzcMiAyX3rUQKAiKipsQiQ2QXlMgorcaZpx3nxAuw7jx3C3NHSJuZ1UA8s6PGisyPrEhPRGrHgIjsAt9Q78krFa8nJlZ6w5TEdPFN1advGD86by45UxAQETUlLpmRXQnzb4HhkYGyvKmqccmsS3BL0fZuIVrJfQdrPUTbQ3SekvsmIlI7iwOidevWYcuWLQ2ub9myBV9//bUsgyKSgxqXzAJ14kGLf0tpBVgBoIW7+ISwqXYiouaMtcyo2QoP8MbADo1nTx/YwbrK8UpRMoi7liU+I3Yly3gWayKi5s7igIi1zEhNjNV0VaDWqyxOporv4zl1Xfo+H62n+AyQj6d1td2IiNTM4oCotpZZfaxlRvYmJbsE8SmNV46PT7GucrxS9l7KFG3ffTFDct/hAeKzS6baiYiaM9Yyo2ZLjZuqTR18r5+ryRKCid5r7HTWjIioKVi8i3Lp0qW4fv06Ro4cCReXe19eU1ODGTNmcA8R2RU1bqr2NlGA1ZqNzz4mlsx8vbhkRkSOS3Its6VLl+Ls2bOsZeaAUrJLcCOvzO5zBamxpERm4R3R9qwiafXGAOBmvnjfptqJiJozyb9udurUCZ06dZJzLGTnCsoqMH9TkkE26ZiIAKyc1hs6O51deHvi/Ziw6gjyy/5IeKj1dME7E++X7XvIGSCWVRqvNQYAJRWNl/Uwh6nirpkSi7sSETUHZgVEixYtwtKlS9GiRQssWrRI9N7ly5fLMjCyP/M3JeHo1RyDa0ev5mDepkRsmB0ly/eQe/bp1W0XUHTHMIgoulOFV7ZdsHrMSgSIFRXiAVFVVY2kfgFgVOcgJKUXGm0f3TVYct9ERGpnVkCUmJiIysp7v2GfOXPGaM0ja2ohkX1LyS4xeOOvVS0IOHQlG6k5pVYFMEoEF0qPWYkA8baJJbHfC6Qva80dGYEP9/5mtP3vwztK7puISO3MCohWrFgBrfZeyYADBw4oOR6yU+ac2LK34ELJMSsVbNWfzbK0XUxKtnjiRWsDRCIiNTPr2H3v3r2Rk3PvzSo8PBy5uY3ndqHmS8kTW7XBRXW9bIl1gwsplByzUkf6TZ18F6yYhFVjGgIioqZiVkDk4+OD1NRUAMD169dRUyN9HwOpU+2Jrfp5cJw1GsREBFg1s6DUG7WSY1Yq2Apo6SbaHmRFLTM1piEgImoqZgVEkydPxtChQxEWFgaNRoN+/fohPDy80Q9qvlZO641BHQ3r2A3q6I+V03pb1a+Sb9QvjOmE+lvbNBrgpYciJfcJ3Au2xEgNtp4YIJ6+wlS7GCUDRCIitTNrD9GXX36JSZMm4erVq5g/fz6efvpptGzZUumxkZ3Rebliw+wopOaU4npuqWwnwZTMFzR97QlU1UvBXFUj4Ik1CUhcMlpyv9+fEK/bt+VUOh7rF2pxv9dNLA+aajdl5bTemLcp0WD/kxxBLRGR2pmdh+ihhx4CAJw+fRoLFixgQOTAwvzlT8ioxBv1weQsg/xDdeWXVeLwlWwMiQiQ1LepmmN7LmZICohM7Ze6ZmJjtClKBbVERGpncWLGdevWKTEOcnBKvFEn3SwQbT+Tli85IAr1FV/mCzWxDGiMYGJXtVyJLZQIaomI1MysgGjSpElYv349tFotJk2aJHrv1q1bZRkYOSY536h7tfERbe/T1ldy39Oj22Hdsesi7e0l9RsW0AJJN40nT2zvL753iYiIpDErINLpdPqkizqdTtEBEcllaGQgfL1cG1028/VylTw7pKQb2eJLZmk8Gk9EpAizAqK6y2RcMiMli7vK3ff22MF4tF4tM18vV2yPHWxVv0olfUwxEfBctXIPERERNc7iPUSpqamoqqpCRESEwfUrV67A1dUV7du3l2tsZGeULO6qVN+hfl5IXDIah69k40xaPvq09ZVlZuiiyLIWAFy6VYThkYEW99ta54GCO8aDnvt8PC3uk4iITDMrD1Fds2bNwrFjxxpcT0hIwKxZs+QYE9kpsfIa9tw3AAyJCMCCkZ1kWya7miM+U/NbVrGkfmcMDBNtf1Li3iQiIhJncUCUmJiIQYMGNbg+YMAAJCUlyTEmskNKlddQum+lpJnY63MzV3xJzZgQnYdoextfzhARESnB4oBIo9GguLjhb7+FhYWorq6WZVBkf5Ssg6XGGltp+cqM+VaheLX7m/nSq90TEZFxFgdEMTExWLZsmUHwU11djWXLlmHwYOs2qpL9UrK8RlPU2DqYnIUVcb/hcCMV6qXQeojva/LxFK9JZpx4IiK58hAREZEhizdVv//++4iJiUFkZCSGDBkCADh8+DCKioqwb98+2QdI9kHJ8hrhAd7Qerig6G5Vgzath4t1hWNzSzFx1dFGT5mF+klLnggAvdr6IkVkWaxXWx9J/fYP8xNvDxdvJyIiaSyeIeratSvOnTuHxx9/HFlZWSguLsaMGTNw+fJl3H///UqMkeyEUsVdU7JLGg2GAKDobpVVe4jqB0PAvbIdj646IrlPAEg1cfw9ReLx+PAAb/h4Nj775OPpyuzSREQKsXiGCABCQkLw7rvvyj0WsnNK1cHace6WaPvOc7cwd0SE6D2NUbKWmamaYlezpAVEKdklKLjT+JgL7lQiNUdafiMiIhJn8QwRcG+J7Mknn8TAgQPx+++/AwD+/e9/48gR637rJnUI82+B4ZGBsr0xp+aIb1BOMXGiyxhzaplJdadK/ACBqXZj1LjBnIioObA4IPrPf/6DMWPGwNPTE2fOnEF5eTmAe6fMOGtEUoT5i+/lCQ+QFngFtxQ/wh6ik36E3dtNfHLVVLsxTbHBnIiIGrI4IHr77bexevVqfPXVV3B1/WOvw6BBg3DmzBlZB0eO4eEeIaLt4020GxNoIqePf0t3Sf0CQJfWWtH2biHSav7Vbl531hieJ3PWaBATEcDlMiIihVgcECUnJyMmJqbBdZ1Oh4KCAjnGRCQLc8prSJVfViHanlcq3i5Gqc3rRERknMXz+sHBwbh69WqDmmVHjhxBeHi4XOMiB6JUoVQl9xAVGzkVp28vb3xjtDmU2rxORETGWTxD9PTTT2PBggVISEiARqPBrVu38O2332Lx4sV49tlnlRgj2ZmU7BLsT86SraSGUvtmTCdPlF40tqtCS2Z1yb15nYiIjLN4huill15CTU0NRo4cibKyMsTExMDd3R2LFy/GvHnzlBgj2Qklq90rQzzrszW6tdFhz6Uso+1dQsQDJiIisi+Sapm98soryMvLw4ULF3D8+HFkZ2dj6dKlSoyP7IhSFemVOmqeYmIGy1QuITHOJopouDpJymhBREQ2IvlfbTc3N7Rs2RKtW7eGt7e3nGMiO6RkRXpTfwhdnKRV8NKYmCCypi7YtRxlEjMSEZFtWBwQVVVV4bXXXoNOp0P79u3Rvn176HQ6vPrqq6islL6RlOybkgkDa0y0V9VIW/oqNJLxuVbRHfGN0WJMbaouMdFORET2xeI9RPPmzcPWrVvxwQcfIDo6GgAQHx+PN954A7m5ufjiiy9kHyTZnpIJA5WaIcopKRdtzyq+K6lfAAj1Ff95hLaSnvSRiIiansUB0caNG/Hdd99h7Nix+ms9evRAaGgopk2bxoComVKy2r1SM0Sl5eLlM0y1W0O57dxERKQEi5fM3N3dG+QgAoCwsDC4ubnJMSayU0olDFRq9slUoGVN0FJwRzzxYoGRorJERGSfLJ4hmjt3LpYuXYp169bB3f1e6YPy8nK88847mDt3ruwDJPtRmzDw0G/ZSEzPR5+2vpKrxTcFN2dAbBLI1Vl63z6e4sG/j12mISAiImMsDogSExMRFxeHNm3aoGfPngCAs2fPoqKiAiNHjsSkSZP0927dulW+kZLNKZWHKCE1T7T9eEqupCU53xZuyCgyPpPj20L6jGanYPGTlZ2CWkrum4iImp7FAZGPjw8mT55scC00NFS2AZH9EstDtGF2lBU9iy9eST0eX2hi2cpUu5j+YX7i7eHi7UREZF8sDojWrVunxDjIztXmIaqvbh4iqRurnUyEPM4ST5ndrRIPtEy1iwkP8MbADn44di23QdvADn4st0FEpDIWb6q+c+cOysr+yElz48YNfPLJJ9izZ4+sAyP7omQeoksZxaLtFyVWpXc28afbVLspXzzRFzH19lDFRATgiyf6WtcxERE1OYtniCZMmIBJkybhmWeeQUFBAaKiouDm5oacnBwsX76cBV6bqaxC8Zw9OcXiOX/EFJk4sVVyV9rSll8LN2QWG+/b39tdUr+1WJWeiKj5sPh35DNnzmDIkCEAgB9++AHBwcG4ceMGNmzYgE8//dSivg4dOoRHHnkEISEh0Gg02LZtm0G7IAhYsmQJWrduDU9PT4waNQpXrlwxuCcvLw9PPPEEtFotfHx8MHv2bJSUGJZNOHfuHIYMGQIPDw+Ehobigw8+sPSxHV6GiSSGtwrvSO7b1MKVxDREKDKRqbqwTDwQMxer0hMRqZ/FAVFZWRlatrx3gmbPnj2YNGkSnJycMGDAANy4ccOivkpLS9GzZ0+sWrWq0fYPPvgAn376KVavXo2EhAS0aNECY8aMwd27f7w5P/HEE7h48SL27t2LHTt24NChQ/jrX/+qby8qKsLo0aPRrl07nD59Gv/4xz/wxhtv4Msvv7T00R1arzY+ou192vpK7lupI+zlJvYImWonIiLHYfGSWceOHbFt2zb86U9/wu7du/Hcc88BALKysqDVai3qa+zYsQYZr+sSBAGffPIJXn31VUyYMAEAsGHDBgQFBWHbtm2YOnUqLl26hF27duHkyZPo168fAGDlypUYN24cPvzwQ4SEhODbb79FRUUF1q5dCzc3N3Tr1g1JSUlYvny5QeBE4oZGBsLFCahqJNuhixOszEekzCkzT1cnlFYaT8/o6cqK9EREdI/F7whLlizB4sWL0b59e/Tv319fz2zPnj3o3du6jMV1paamIiMjA6NGjdJf0+l06N+/P+Lj4wHcq6Hm4+OjD4YAYNSoUXByckJCQoL+npiYGIMs2mPGjEFycjLy8/Mb/d7l5eUoKioy+HB0KdkljQZDwL0gyZpq98kmNlVfNtFuTCsTeYb8rNxDREREzYfFAdGf//xnpKWl4dSpU9i1a5f++siRI/Hxxx/LNrCMjAwAQFBQkMH1oKAgfVtGRgYCAwMN2l1cXNCqVSuDexrro+73qG/ZsmXQ6XT6D+ZZMi95olQpOSWi7deyxduNySgS3/d0u0j6viciImpeJK0ZBAcHo3fv3nBy+uPLo6Ki0LlzZ9kGZksvv/wyCgsL9R/p6em2HpLNZZvYVJ1rorK8mOI7VSbapZ0yqzZRzKxaudquRESkMna7iSI4OBgAkJmZaXA9MzNT3xYcHIysrCyD9qqqKuTl5Rnc01gfdb9Hfe7u7tBqtQYfapOSXYL9yVlWLWU1laoa8cjFVLsxHq7iu49MtRMRkeOw24AoLCwMwcHBiIuL018rKipCQkKCft9SdHQ0CgoKcPr0af09+/btQ01NDfr376+/59ChQ6is/GOWYe/evYiMjISvr/STUfaqoKwCM9acwIiPDuKpdScx/MMDmLHmhFVlKgAgoKWHaLs1+3EqTczUmGo3plOQeCDbOVgnrWMiImp2bBoQlZSUICkpCUlJSQDubaROSkpCWloaNBoNFi5ciLfffhvbt2/H+fPnMWPGDISEhGDixIkAgC5duuChhx7C008/jRMnTuDo0aOYO3cupk6dipCQEADA//t//w9ubm6YPXs2Ll68iO+//x4rVqzAokWLbPTUyhKrN2aNEJ14QNTG11Ny36bmaaTO44QHiBdgDQ9g3iAiIrrH4mP3cjp16hSGDx+u/7w2SJk5cybWr1+PF154AaWlpfjrX/+KgoICDB48GLt27YKHxx9vzt9++y3mzp2LkSNHwsnJCZMnTzZIEKnT6bBnzx7Exsaib9++8Pf3x5IlS5rlkXsl642ZSrz4e770DcpOTuL7fZwkhu1aT/H8Rd4e0vIbERFR82PTgGjYsGEQBOM5aDQaDd566y289dZbRu9p1aoVNm7cKPp9evTogcOHD0sep1qYU29MejZl8Xkaa1IcGjvOb267McMjA7D+2HWj7SO7BBptIyIix2K3e4jIcu1aeYm2t/eTvkSUa6JWWX6p9DIYpoIpqcHW0MhA6IzMEuk8Xa1MJklERM0JA6JmJDzAGzERAXDWGM7mOGs0iIkIsKrWVtLNAtH2xLTGk1za2o65g+Fbr/SHr5crdswdbKMRERGRPbLpkhnJb+W03pi3KdFgL9Ggjv5YOc26LOJaE/ttTO3XsZVQPy8kLhmNw1eycSYtH33a+nJmiIiIGmBA1MzovFyxYXYUUnNKcT23FO39WshShd3Y0lMtHzsNiGoNiQhgIEREREYxIGqmwvzlCYRqmVoSS0wrkNy3p4sT7ojsnPZ04couEREpiwFRM5WSXYIbeWWyzRClmKgndjVLWgFWAHBx0QAi1TtcGRAREZHCGBA1MwVlFZi/KclgD1FMRABWTusNnZf0Za0KE4W/TLWLqaoSP0dWKfXcPRERkZn4q3czo1Smah9P8dIcPl7WlO4QD3hMtRMREVmLAVEzUpupurpessu6maql8nJzFm33dpM+2ejmIp700VQ7ERGRtRgQNSPmZKqWKrPkrmh7RrH00h2tteJ10O7zEU84SUREZC0GRM2IkpmqKyrFl63KTbSLfq2JJbG7VdL3JxEREZmDAVEzomSmalPxjhXxECpruIeIiIhsiwFRM7NyWm8M6uhvcE2OTNVKus/EklkbLpkREZHCeOy+manNVH3ot2wkpqujVEXB3UrR9vwy8XYiIiJrMSBqZpTKQ6QkNxOJF92ZmJGIiBTGd5pmRqk8REp6amCYePtg8XYiIiJrMSBqRpTMQ6SkB8Jaibb3ay/eTkREZC0GRM2IknmIlKTWcRMRUfPBgKgZUTIPkZLUOm4iImo+GBCRzSmZP4mIiMgcDIiaETUvPakxfxIRETUfPHZvYynZJbiRV4b2fi2sngm5eLNQtP3SrSIMjwy06nsopTZ/UmpOKa7nlsry8yAiIjIXAyIbUSJf0NFruaLtR67k4O/DO0rqu6mE+TMQIiKipsclMxtRIl9QC3dn0XZvd8a/REREjWFAZANK5Qtq6yt+WqutH2uCERERNYYBkQ0otfl5z6UM0fbdF8XbiYiIHBUDIhtQKu9OXkm5aHtuyV1J/RIRETV3DIhsQKm8O5XVglXtREREjooBkY0okXenssa6diIiIkfFY0c2ora8O04AxOIpRtZERKRmDIhsTC15d3xbuCK3tNJou5+3WxOOhoiISF78xZ7M0imopVXtRERE9owzRDYmZ+kOJQXrPETbg7Ti7URERPaMAZGNKFG6Q0kTe92HHxNvGW3/U5/7mnA0RERE8uKSmY0oUbpDSUMjA6H1aDx+1nq4YEhEQBOPiIiISD4MiGxAqdIdSts5bwh8681e+Xq5Yue8ITYaERERkTy4ZGYD5pTusMf9RKF+XkhcMhqHr2TjTFo++rT15cwQERE1CwyIbECp0h1NZUhEAAMhIiJqVrhkRkRERA6PAZEN7Dhn/LQWAOw00U5ERETyYkBkA3mlFaLtOSaq1hMREZG8GBDZgBM0ou0uTnxZiIiImhLfeW3gTFq+aPvpG3lNNBIiIiICGBDZRHlVtXh7pVhdeSIiIpIbAyJbEEzfQkRERE2HAZENpOeLJ2ZMy7PPTNVERETNFQMiGyipEF8SM9VORERE8mJARERERA6PAVEzEu4nXhKkox3WRyMiIrIHDIiakaeHhou2z4kRbyciInJUDIiakf5hfuLt4eLtREREjooBUTMSHuCNgR0aD3oGdvBDGJfMiIiIGsWAqJn54om+iIkIMLgWExGAL57oa6MRERER2T8XWw+A5KXzcsWG2VFIzSnF9dxStPdrwZkhIiIiExgQNVNh/gyEiIiIzMUlMyIiInJ4DIiIiIjI4TEgIiIiIofHgIiIiIgcHgMiIiIicngMiIiIiMjhMSAiIiIih8eAiIiIiBweAyIiIiJyeAyIiIiIyOExILKB6++Nt6qdiIiI5MWAiIiIiBwei7vaSO0sUPuXdja4RkRERE2LAZGNMQgiIiKyPS6ZERERkcNzqIBo1apVaN++PTw8PNC/f3+cOHHC1kMiIiIiO+AwAdH333+PRYsW4fXXX8eZM2fQs2dPjBkzBllZWbYeGhEREdmYRhAEwdaDaAr9+/fHAw88gM8++wwAUFNTg9DQUMybNw8vvfSSwb3l5eUoLy/Xf15UVITQ0FAUFhZCq9U26biJiIhImqKiIuh0OrPevx1ihqiiogKnT5/GqFGj9NecnJwwatQoxMfHN7h/2bJl0Ol0+o/Q0NCmHC4RERE1MYcIiHJyclBdXY2goCCD60FBQcjIyGhw/8svv4zCwkL9R3p6elMNlYiIiGyAx+4b4e7uDnd3d1sPg4iIiJqIQ8wQ+fv7w9nZGZmZmQbXMzMzERwcbKNRERERkb1wiIDIzc0Nffv2RVxcnP5aTU0N4uLiEB0dbcORERERkT1wmCWzRYsWYebMmejXrx+ioqLwySefoLS0FE899ZSth0ZEREQ25jAB0ZQpU5CdnY0lS5YgIyMDvXr1wq5duxpstG5MbWaCoqIipYdJREREMql93zYnw5DD5CGyRkpKCjp06GDrYRAREZEE6enpaNOmjeg9DjNDZI1WrVoBANLS0qDT6Ww8GmXUJp9MT09vlskn+Xzq19yfsbk/H9D8n5HPZ38EQUBxcTFCQkJM3suAyAxOTvf2nut0OtX8IZBKq9U262fk86lfc3/G5v58QPN/Rj6ffTF3IsMhTpkRERERiWFARERERA6PAZEZ3N3d8frrrzfr7NXN/Rn5fOrX3J+xuT8f0Pyfkc+nbjxlRkRERA6PM0RERETk8BgQERERkcNjQEREREQOjwEREREROTyHDYhWrVqF9u3bw8PDA/3798eJEydE79+yZQs6d+4MDw8PdO/eHT///LNBuyAIWLJkCVq3bg1PT0+MGjUKV65cUfIRRFnyfF999RWGDBkCX19f+Pr6YtSoUQ3unzVrFjQajcHHQw89pPRjiLLkGdevX99g/B4eHgb3qPk1HDZsWIPn02g0GD9+vP4ee3oNDx06hEceeQQhISHQaDTYtm2bya85cOAA+vTpA3d3d3Ts2BHr169vcI+lf6+VYunzbd26FQ8++CACAgKg1WoRHR2N3bt3G9zzxhtvNHj9OnfurOBTiLP0GQ8cONDon9GMjAyD+9T6Gjb290uj0aBbt276e+zpNVy2bBkeeOABtGzZEoGBgZg4cSKSk5NNfp3a3gst4ZAB0ffff49Fixbh9ddfx5kzZ9CzZ0+MGTMGWVlZjd5/7NgxTJs2DbNnz0ZiYiImTpyIiRMn4sKFC/p7PvjgA3z66adYvXo1EhIS0KJFC4wZMwZ3795tqsfSs/T5Dhw4gGnTpmH//v2Ij49HaGgoRo8ejd9//93gvoceegi3b9/Wf2zatKkpHqdRlj4jcC+7at3x37hxw6Bdza/h1q1bDZ7twoULcHZ2xmOPPWZwn728hqWlpejZsydWrVpl1v2pqakYP348hg8fjqSkJCxcuBBz5swxCBqk/JlQiqXPd+jQITz44IP4+eefcfr0aQwfPhyPPPIIEhMTDe7r1q2bwet35MgRJYZvFkufsVZycrLBMwQGBurb1PwarlixwuC50tPT0apVqwZ/B+3lNTx48CBiY2Nx/Phx7N27F5WVlRg9ejRKS0uNfo3a3gstJjigqKgoITY2Vv95dXW1EBISIixbtqzR+x9//HFh/PjxBtf69+8v/O1vfxMEQRBqamqE4OBg4R//+Ie+vaCgQHB3dxc2bdqkwBOIs/T56quqqhJatmwpfP311/prM2fOFCZMmCD3UCWz9BnXrVsn6HQ6o/01t9fw448/Flq2bCmUlJTor9nba1gLgPDjjz+K3vPCCy8I3bp1M7g2ZcoUYcyYMfrPrf2ZKcWc52tM165dhTfffFP/+euvvy707NlTvoHJyJxn3L9/vwBAyM/PN3pPc3oNf/zxR0Gj0QjXr1/XX7Pn1zArK0sAIBw8eNDoPWp7L7SUw80QVVRU4PTp0xg1apT+mpOTE0aNGoX4+PhGvyY+Pt7gfgAYM2aM/v7U1FRkZGQY3KPT6dC/f3+jfSpFyvPVV1ZWhsrKSn1R21oHDhxAYGAgIiMj8eyzzyI3N1fWsZtL6jOWlJSgXbt2CA0NxYQJE3Dx4kV9W3N7DdesWYOpU6eiRYsWBtft5TW0lKm/g3L8zOxJTU0NiouLG/wdvHLlCkJCQhAeHo4nnngCaWlpNhqhdL169ULr1q3x4IMP4ujRo/rrze01XLNmDUaNGoV27doZXLfX17CwsBAAGvyZq0tN74VSOFxAlJOTg+rqagQFBRlcDwoKarCWXSsjI0P0/tr/WtKnUqQ8X30vvvgiQkJCDP5QP/TQQ9iwYQPi4uLw/vvv4+DBgxg7diyqq6tlHb85pDxjZGQk1q5di59++gnffPMNampqMHDgQNy8eRNA83oNT5w4gQsXLmDOnDkG1+3pNbSUsb+DRUVFuHPnjix/7u3Jhx9+iJKSEjz++OP6a/3798f69euxa9cufPHFF0hNTcWQIUNQXFxsw5Gar3Xr1li9ejX+85//4D//+Q9CQ0MxbNgwnDlzBoA8/3bZi1u3buGXX35p8HfQXl/DmpoaLFy4EIMGDcL9999v9D41vRdKwWr3ZOC9997Dd999hwMHDhhsOp46dar+/7t3744ePXqgQ4cOOHDgAEaOHGmLoVokOjoa0dHR+s8HDhyILl264J///CeWLl1qw5HJb82aNejevTuioqIMrqv9NXQUGzduxJtvvomffvrJYH/N2LFj9f/fo0cP9O/fH+3atcPmzZsxe/ZsWwzVIpGRkYiMjNR/PnDgQFy7dg0ff/wx/v3vf9twZPL7+uuv4ePjg4kTJxpct9fXMDY2FhcuXLDpnjR74HAzRP7+/nB2dkZmZqbB9czMTAQHBzf6NcHBwaL31/7Xkj6VIuX5an344Yd47733sGfPHvTo0UP03vDwcPj7++Pq1atWj9lS1jxjLVdXV/Tu3Vs//ubyGpaWluK7774z6x9XW76GljL2d1Cr1cLT01OWPxP24LvvvsOcOXOwefPmBksT9fn4+KBTp06qeP2MiYqK0o+/ubyGgiBg7dq1mD59Otzc3ETvtYfXcO7cudixYwf279+PNm3aiN6rpvdCKRwuIHJzc0Pfvn0RFxenv1ZTU4O4uDiDGYS6oqOjDe4HgL179+rvDwsLQ3BwsME9RUVFSEhIMNqnUqQ8H3DvZMDSpUuxa9cu9OvXz+T3uXnzJnJzc9G6dWtZxm0Jqc9YV3V1Nc6fP68ff3N4DYF7R2LLy8vx5JNPmvw+tnwNLWXq76AcfyZsbdOmTXjqqaewadMmg3QJxpSUlODatWuqeP2MSUpK0o+/ObyGwL3TW1evXjXrlxJbvoaCIGDu3Ln48ccfsW/fPoSFhZn8GjW9F0pi613dtvDdd98J7u7uwvr164X//e9/wl//+lfBx8dHyMjIEARBEKZPny689NJL+vuPHj0quLi4CB9++KFw6dIl4fXXXxdcXV2F8+fP6+957733BB8fH+Gnn34Szp07J0yYMEEICwsT7ty5Y/fP99577wlubm7CDz/8INy+fVv/UVxcLAiCIBQXFwuLFy8W4uPjhdTUVOHXX38V+vTpI0RERAh3795t8ueT8oxvvvmmsHv3buHatWvC6dOnhalTpwoeHh7CxYsX9feo+TWsNXjwYGHKlCkNrtvba1hcXCwkJiYKiYmJAgBh+fLlQmJionDjxg1BEAThpZdeEqZPn66/PyUlRfDy8hKef/554dKlS8KqVasEZ2dnYdeuXfp7TP3M7Pn5vv32W8HFxUVYtWqVwd/BgoIC/T3/93//Jxw4cEBITU0Vjh49KowaNUrw9/cXsrKymvz5BMHyZ/z444+Fbdu2CVeuXBHOnz8vLFiwQHBychJ+/fVX/T1qfg1rPfnkk0L//v0b7dOeXsNnn31W0Ol0woEDBwz+zJWVlenvUft7oaUcMiASBEFYuXKl0LZtW8HNzU2IiooSjh8/rm8bOnSoMHPmTIP7N2/eLHTq1Elwc3MTunXrJuzcudOgvaamRnjttdeEoKAgwd3dXRg5cqSQnJzcFI/SKEuer127dgKABh+vv/66IAiCUFZWJowePVoICAgQXF1dhXbt2glPP/20Tf6RqsuSZ1y4cKH+3qCgIGHcuHHCmTNnDPpT82soCIJw+fJlAYCwZ8+eBn3Z22tYewS7/kftM82cOVMYOnRog6/p1auX4ObmJoSHhwvr1q1r0K/Yz6wpWfp8Q4cOFb1fEO6lGWjdurXg5uYm3HfffcKUKVOEq1evNu2D1WHpM77//vtChw4dBA8PD6FVq1bCsGHDhH379jXoV62voSDcO2Lu6ekpfPnll432aU+vYWPPBsDg71VzeC+0hEYQBEGx6SciIiIiFXC4PURERERE9TEgIiIiIofHgIiIiIgcHgMiIiIicngMiIiIiMjhMSAiIiIih8eAiIiIiBweAyIiIiJyeAyIiEhVNBoNtm3bBgC4fv06NBoNkpKSzP76N954A7169VJkbESkXgyIiEi1QkNDcfv2bdx///1mf83ixYsNik/OmjULEydOVGB00gwbNgwLFy609TCIHI6LrQdARCSVs7MzgoODLfoab29veHt7KzQiIlIrzhARUZP64Ycf0L17d3h6esLPzw+jRo1CaWkpAODkyZN48MEH4e/vD51Oh6FDh+LMmTNG+6q/ZHbgwAFoNBrExcWhX79+8PLywsCBA5GcnKz/mrpLZm+88Qa+/vpr/PTTT9BoNNBoNDhw4ABGjBiBuXPnGnyv7OxsuLm5Gcwu1VXb7z//+U+EhobCy8sLjz/+OAoLC/X31M5GvfnmmwgICIBWq8UzzzyDiooKffvBgwexYsUK/XiuX79u6Y+YiCRgQERETeb27duYNm0a/vKXv+DSpUs4cOAAJk2ahNoa08XFxZg5cyaOHDmC48ePIyIiAuPGjUNxcbFF3+eVV17BRx99hFOnTsHFxQV/+ctfGr1v8eLFePzxx/HQQw/h9u3buH37NgYOHIg5c+Zg48aNKC8v19/7zTff4L777sOIESOMft+rV69i8+bN+O9//4tdu3YhMTERf//73w3uiYuL0z/7pk2bsHXrVrz55psAgBUrViA6OhpPP/20fjyhoaEWPTsRScMlMyJqMrdv30ZVVRUmTZqEdu3aAQC6d++ub68fbHz55Zfw8fHBwYMH8fDDD5v9fd555x0MHToUAPDSSy9h/PjxuHv3Ljw8PAzu8/b2hqenJ8rLyw2W3iZNmoS5c+fip59+wuOPPw4AWL9+PWbNmgWNRmP0+969excbNmzAfffdBwBYuXIlxo8fj48++kjfv5ubG9auXQsvLy9069YNb731Fp5//nksXboUOp0Obm5u8PLysngpkIiswxkiImoyPXv2xMiRI9G9e3c89thj+Oqrr5Cfn69vz8zMxNNPP42IiAjodDpotVqUlJQgLS3Nou/To0cP/f+3bt0aAJCVlWX213t4eGD69OlYu3YtAODMmTO4cOECZs2aJfp1bdu21QdDABAdHY2amhqDJbuePXvCy8vL4J6SkhKkp6ebPT4ikh8DIiJqMs7Ozti7dy9++eUXdO3aFStXrkRkZCRSU1MBADNnzkRSUhJWrFiBY8eOISkpCX5+fvo9NuZydXXV/3/tjE5NTY1FfcyZMwd79+7FzZs3sW7dOowYMUI/q0VEzQ8DIiJqUhqNBoMGDcKbb76JxMREuLm54ccffwQAHD16FPPnz8e4cePQrVs3uLu7IycnR9HxuLm5obq6usH17t27o1+/fvjqq6+wceNGo/uQ6kpLS8OtW7f0nx8/fhxOTk6IjIzUXzt79izu3LljcI+3t7d+r5Cx8RCRshgQEVGTSUhIwLvvvotTp04hLS0NW7duRXZ2Nrp06QIAiIiIwL///W9cunQJCQkJeOKJJ+Dp6anomNq3b49z584hOTkZOTk5qKys1LfNmTMH7733HgRBwJ/+9CeTfXl4eGDmzJk4e/YsDh8+jPnz5+Pxxx832A9UUVGB2bNn43//+x9+/vlnvP7665g7dy6cnJz040lISMD169eRk5Nj8cwWEUnDgIiImoxWq8WhQ4cwbtw4dOrUCa+++io++ugjjB07FgCwZs0a5Ofno0+fPpg+fTrmz5+PwMBARcf09NNPIzIyEv369UNAQACOHj2qb5s2bRpcXFwwbdq0BhuyG9OxY0dMmjQJ48aNw+jRo9GjRw98/vnnBveMHDkSERERiImJwZQpU/Doo4/ijTfe0LcvXrwYzs7O6Nq1KwICAizeP0VE0miE2vOuRERk4Pr16+jQoQNOnjyJPn36iN77xhtvYNu2baJlRGbNmoWCggJ96REish88dk9EVE9lZSVyc3Px6quvYsCAASaDISJSPy6ZERHVc/ToUbRu3RonT57E6tWrbT0cImoCXDIjIiIih8cZIiIiInJ4DIiIiIjI4TEgIiIiIofHgIiIiIgcHgMiIiIicngMiIiIiMjhMSAiIiIih8eAiIiIiBze/wfeebTfvUxkqgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGdCAYAAAAMm0nCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA4fElEQVR4nO3deXxU1f3/8XdYEtYJaxIiiyAKsgsIxgVEAgFjC4oVVJAiYEWwIv2C8qtKsQu4Uq24tC5YNwQrWmQTgUCLATSAAgIVRUEgAZQsLNnP749rZrgMSyYkuXNnXs/HYx56P3Nm+BwuYd6cMzM3whhjBAAA4CJVnG4AAAAgUAQYAADgOgQYAADgOgQYAADgOgQYAADgOgQYAADgOgQYAADgOgQYAADgOtWcbqCiFBcXa//+/apbt64iIiKcbgcAAJSCMUY5OTmKj49XlSpnXmcJ2QCzf/9+NWvWzOk2AABAGezdu1dNmzY94/0hG2Dq1q0ryfoN8Hg8DncDAABKIzs7W82aNfO+jp9JyAaYkm0jj8dDgAEAwGXO9fYP3sQLAABchwADAABchwADAABchwADAABchwADAABchwADAABchwADAABchwADAABchwADAABchwADAABchwADAABchwADAABchwADAAAC88wzUosWUlaWYy2E7NWoAQBAOSsokOrWlfLyrOO//U166CFHWmEFBgAAnNuXX0qRkb7wIklTpjjWDgEGAACc3e9/L3Xu7Du+9lrJGCvQOIQtJAAAcHr5+VJUlL323nvSkCHO9HMSAgwAAPD3+efS5Zfba4cPSw0bOtPPKdhCAgAAdr/7nT28DBxobRkFSXiRWIEBAAAlcnOlmjXttYULpRtucKafsyDAAAAAad06KSHBXvvpJ6l+fWf6OQe2kAAACHf33GMPLzffbG0ZBWl4kViBAQAgfB0/LtWuba8tWyb17+9MPwEgwAAAEI7WrJF697bXsrIkj8eZfgLEFhIAAOFm1Ch7eBk+3Noyckl4kViBAQAgfBw9al3L6GQrV0p9+jjTz3lgBQYAgHDwySf+4eXoUVeGF4kAAwBA6Bs2TOrXz3c8dqy1ZXTqG3hdhC0kAABCVVaWVK+evfbf/0pXXeVIO+WJFRgAAELRkiX+4eX48ZAILxIBBgCA0DNokHT99b7j++6ztoxOvUyAi7GFBABAqPjpJ/8LLm7Y4H9V6RDACgwAAKHggw/8w0tubkiGF4kAAwCA+/XrJ914o+/4gQesLaOoKOd6qmBsIQEA4FaHDkkxMfbaxo3SZZc5008lYgUGAAA3mjfPHl6qVZPy88MivEgEGAAA3MUY66PQQ4f6atOmSQUFUvXqzvVVydhCAgDALQ4ckOLj7bUtW6QOHZzpx0GswAAA4AZvvGEPL3XrWqsuYRheJAIMAADBzRipa1fpjjt8tRkzpOxs630vYSp8Zw4AQLD74QepWTN7bccOqU0bZ/oJIqzAAAAQjF5+2R5e4uKkwkLCy88IMAAABBNjpLZtpbFjfbVZs6w38Fat6lxfQYYtJAAAgsV330ktW9pru3ZJF13kSDvBjBUYAACCwXPP2cNLq1ZSURHh5QxYgQEAwEnFxVKLFtYbdks8/7w0bpxzPbkAAQYAAKfs2iVdfLG99t13VqDBWbGFBACAE556yh5e2rf3rcbgnFiBAQCgMhUVSbGx0o8/+mqvvCLdeadzPbkQAQYAgMqyfbvUrp299sMP0gUXONOPi53XFtLMmTMVERGhiRMnemu5ubkaP368GjZsqDp16mjIkCHKyMiwPW7Pnj1KTk5WrVq1FBMTo8mTJ6uwsNA2JiUlRV27dlVUVJRat26tOXPmnE+rAAA4689/toeXHj2sLSPCS5mUOcB89tlneumll9SpUydb/f7779fChQs1f/58rV69Wvv379dNN93kvb+oqEjJycnKz8/Xp59+qtdff11z5szRI4884h2ze/duJScnq0+fPtq8ebMmTpyoMWPGaNmyZWVtFwAAZxQWSrVrSw895Ku9+aa0fr0UEeFcX25nyiAnJ8dcfPHFZvny5aZ3797mvvvuM8YYk5mZaapXr27mz5/vHbt9+3YjyaSmphpjjFm8eLGpUqWKSU9P94554YUXjMfjMXl5ecYYY6ZMmWLat29v+zWHDh1qkpKSSt1jVlaWkWSysrLKMkUAAM7fF18YY323ru920usf/JX29btMKzDjx49XcnKyEhMTbfW0tDQVFBTY6m3btlXz5s2VmpoqSUpNTVXHjh0VGxvrHZOUlKTs7Gxt27bNO+bU505KSvI+x+nk5eUpOzvbdgMAwDEPPyx17uw7vvZaK8Kc9PqHsgv4Tbxz587Vxo0b9dlnn/ndl56ersjISNWrV89Wj42NVXp6undM7Cknr+T4XGOys7N14sQJ1axZ0+/XnjFjhqZPnx7odAAAKF/5+VJUlL02f750883O9BOiAlqB2bt3r+677z699dZbqlGjRkX1VCZTp05VVlaW97Z3716nWwIAhJu0NP/wcugQ4aUCBBRg0tLSdPDgQXXt2lXVqlVTtWrVtHr1aj377LOqVq2aYmNjlZ+fr8zMTNvjMjIyFBcXJ0mKi4vz+1RSyfG5xng8ntOuvkhSVFSUPB6P7QYAQKWZPFnq3t13PGCAtWXUqJFzPYWwgAJM3759tWXLFm3evNl76969u26//Xbv/1evXl0rVqzwPmbnzp3as2ePEhISJEkJCQnasmWLDh486B2zfPlyeTwetfv542UJCQm25ygZU/IcAAAEjdxc69NETz7pq334obRkiXM9hYGA3gNTt25ddejQwVarXbu2GjZs6K2PHj1akyZNUoMGDeTxeHTvvfcqISFBV1xxhSSpf//+ateunUaMGKHHH39c6enpeuihhzR+/HhF/bzsdvfdd+u5557TlClTdOedd2rlypWaN2+eFi1aVB5zBgCgfKxbJ536j+uffpLq13emnzBS7tdCmjVrlm644QYNGTJEvXr1UlxcnN5//33v/VWrVtVHH32kqlWrKiEhQcOHD9cdd9yhRx991DumZcuWWrRokZYvX67OnTvrqaee0ssvv6ykpKTybhcAgLKZMMEeXm66ydoyIrxUighjjHG6iYqQnZ2t6OhoZWVl8X4YAED5OX7c+mK6ky1dKvGP7HJR2tdvroUEAEBp/ec/Uq9e9lpWlsQ/lCtduW8hAQAQkkaPtoeX4cOtLSPCiyNYgQEA4GyOHpXq1rXXVqyQrrvOmX4giRUYAADObOVK//CSk0N4CQIEGAAATue226S+fX3HY8ZYW0Z16jjXE7zYQgIA4GRZWdIp1/TTf/4jXX21I+3g9FiBAQCgxJIl/uHl+HHCSxAiwAAAIEmDB0vXX+87vvdea8voDNfgg7PYQgIAhLcjR6QGDey19eulHj2c6QelwgoMACB8ffihf3jJzSW8uAABBgAQnpKSrG2jElOmWFtGP19YGMGNLSQAQHg5dEiKibHXNm6ULrvMmX5QJqzAAADCx/z59vBSpYqUl0d4cSECDAAg9BljXcfollt8tYcfloqKpMhI5/pCmbGFBAAIbenpUpMm9tqWLVKHDs70g3LBCgwAIHS9+aY9vNSpIxUUEF5CAAEGABB6jJG6dZNGjPDV/vxn60KM1dh8CAWcRQBAaNm3T2ra1F7bvl1q29aZflAhWIEBAISOV16xh5eYGKmwkPASgggwAAD3M0a69FJpzBhf7amnpIwMqWpV5/pChWELCQDgbt9/L114ob22a5d00UWOtIPKwQoMAMC9nn/eHl4uvND6bhfCS8hjBQYA4D7FxVKrVtbqS4nZs6V77nGuJ1QqAgwAwF2++UZq3dpe++47qUULR9qBM9hCAgC4x9NP28NLu3bWagzhJeywAgMACH5FRVJcnHT4sK/28svS6NHO9QRHEWAAAMFtxw7rI9In27vX/8vqEFbYQgIABK+//MUeXrp3t7aMCC9hjxUYAEDwKSyUoqOl48d9tTfekIYPd64nBBUCDAAguGzZInXqZK8dOGC9Bwb4GVtIAIDgMW2aPbz06mVtGRFecApWYAAAzsvPl2rUsK5pVGLePOlXv3KuJwQ1AgwAwFmbNkldu9prhw5JjRo50w9cgS0kAIBzpkyxh5f+/a1VGMILzoEVGABA5cvLs7aMTvbBB9KgQY60A/chwAAAKtf69dIVV9hrP/4oNWjgTD9wJbaQAACV59577eFl8GBry4jwggCxAgMAqHjHj0u1a9trS5ZIAwY40w9cjwADAKhY//2vdM019lpmpvVNu0AZsYUEAKg4Y8faw8ttt1lbRoQXnCdWYAAA5e/oUaluXXvtk0+kvn2d6QchhwADAChfK1f6B5WcHKlOHWf6QUhiCwkAUH6GD7eHl9GjrS0jwgvKGSswAIDzl53t/76WNWv837wLlBNWYAAA52fpUv/wcuwY4QUVigADACi7m26SBg70HU+YYG0Z1arlXE8IC2whAQACd+SI/7fnrlsn9ezpTD8IO6zAAAAC8+9/+4eXEycIL6hUBBgAQOkNHGi/YvTkydaW0alXlgYqGFtIAIBzO3xYatzYXktLk7p2daYfhD1WYAAAZ/fee/7hJS+P8AJHEWAAAKdnjNS7t/SrX/lqDz1k1SMjnesLEFtIAIDTyciQ4uLstS+/lDp2dKYf4BSswAAA7N56yx5eatWSCgoILwgqBBgAgMUY6fLLresZlfjTn6xv1a3Ggj2CC38iAQDSvn1S06b22ldfSZde6kw/wDmwAgMA4e7VV+3hpXFjqbCQ8IKgRoABgHBljNS+vTR6tK/21FPSwYNS1arO9QWUAltIABCOvv9euvBCe+3rr6XWrR1pBwgUKzAAEG5eeMEeXpo3l4qKCC9wFQIMAISL4mKpZUvpnnt8teees1ZjqvByAHdhCwkAwsE33/ivsOze7b+NBLgEkRsAQt1f/2oPL23bWqsxhBe4GCswABCqioqk+HjrU0Ul/vEPacwY53oCygkBBgBC0c6d1krLyfbu9f+yOsCl2EICgFAzc6Y9vHTrZm0ZEV4QQgIKMC+88II6deokj8cjj8ejhIQELVmyxHt/bm6uxo8fr4YNG6pOnToaMmSIMjIybM+xZ88eJScnq1atWoqJidHkyZNVWFhoG5OSkqKuXbsqKipKrVu31pw5c8o+QwAIF4WFkscjTZ3qq73xhvT551JEhHN9ARUgoADTtGlTzZw5U2lpafr888913XXXadCgQdq2bZsk6f7779fChQs1f/58rV69Wvv379dNN93kfXxRUZGSk5OVn5+vTz/9VK+//rrmzJmjRx55xDtm9+7dSk5OVp8+fbR582ZNnDhRY8aM0bJly8ppygAQgrZulapXl3JyfLUDB+wXZgRCiTlP9evXNy+//LLJzMw01atXN/Pnz/fet337diPJpKamGmOMWbx4salSpYpJT0/3jnnhhReMx+MxeXl5xhhjpkyZYtq3b2/7NYYOHWqSkpIC6isrK8tIMllZWWWdGgC4w7RpxlgXBrBuV19tTHGx010BZVLa1+8yvwemqKhIc+fO1bFjx5SQkKC0tDQVFBQoMTHRO6Zt27Zq3ry5UlNTJUmpqanq2LGjYmNjvWOSkpKUnZ3tXcVJTU21PUfJmJLnOJO8vDxlZ2fbbgAQ0goKrGsWTZ/uq737rvSf/7BlhJAXcIDZsmWL6tSpo6ioKN19991asGCB2rVrp/T0dEVGRqpevXq28bGxsUpPT5ckpaen28JLyf0l951tTHZ2tk6cOHHGvmbMmKHo6GjvrVmzZoFODQDcY/NmKTLSenNuiYMHpVtucawloDIFHGDatGmjzZs3a/369Ro3bpxGjhypr776qiJ6C8jUqVOVlZXlve3du9fplgCgYjz4oHTZZb7jfv2szaPGjZ3rCahkAX8PTGRkpFr//I2O3bp102effaZnnnlGQ4cOVX5+vjIzM22rMBkZGYqLi5MkxcXFacOGDbbnK/mU0sljTv3kUkZGhjwej2rWrHnGvqKiohQVFRXodADAPfLypBo17LUFC6TBgx1pB3DSeX8PTHFxsfLy8tStWzdVr15dK1as8N63c+dO7dmzRwkJCZKkhIQEbdmyRQdP+lbI5cuXy+PxqF27dt4xJz9HyZiS5wCAsLRhg394+fFHwgvCVkABZurUqVqzZo2+++47bdmyRVOnTlVKSopuv/12RUdHa/To0Zo0aZJWrVqltLQ0jRo1SgkJCbriiiskSf3791e7du00YsQIffHFF1q2bJkeeughjR8/3rt6cvfdd+vbb7/VlClTtGPHDj3//POaN2+e7r///vKfPQC4wcSJUs+evuNBg6wtowYNHGsJcFpAW0gHDx7UHXfcoQMHDig6OlqdOnXSsmXL1K9fP0nSrFmzVKVKFQ0ZMkR5eXlKSkrS888/73181apV9dFHH2ncuHFKSEhQ7dq1NXLkSD366KPeMS1bttSiRYt0//3365lnnlHTpk318ssvKykpqZymDAAuceKEVKuWvbZ4sTRwoDP9AEEkwhhjnG6iImRnZys6OlpZWVnyeDxOtwMAgVm7Vrr6anstM1OKjnakHaCylPb1m2shAUCw+c1v7OFl2DBry4jwAnhxNWoACBbHjkl16thry5dLp3y5JwACDAAEh1WrpOuus9dycvwDDQBJbCEBgPNGjLCHl1GjrC0jwgtwRqzAAIBTsrP939eyerXUq5cz/QAuwgoMADhh2TL/8HLsGOEFKCUCDABUtptvlgYM8B3fc4+1ZXTqd74AOCO2kACgshw54v/tuevW2b9lF0CpsAIDAJVh4UL/8HLiBOEFKCMCDABUtORk6Ze/9B3/7nfWltGpF2cEUGpsIQFARTl8WGrc2F77/HOpWzdn+gFCCCswAFAR/vUv//CSl0d4AcoJAQYAylufPtYnjUr8/vfWllFkpHM9ASGGLSQAKC8ZGVJcnL32xRdSp07O9AOEMFZgAKA8vP22PbzUrCnl5xNegApCgAGA82GM9VHo22/31f74R+n4cal6def6AkIcW0gAUFb790sXXGCvffWVdOmlzvQDhBFWYACgLF57zR5eGjaUCgsJL0AlIcAAQCCMkTp2lO6801d74gnrO1+qVnWuLyDMsIUEAKW1Z4/UooW99r//SRdf7Ew/QBhjBQYASuOll+zhpXlzqaiI8AI4hAADAGdTXCxddJF0992+2t/+Jn3/vVSFv0IBp7CFBABn8u23Vng52e7d0oUXOtIOAB/++QAAp/PXv9rDS5s21moM4QUICqzAAMDJioqkpk2l9HRf7e9/l8aOda4nAH4IMABQ4n//s1ZaTrZnj9SsmTP9ADgjtpAAQJIee8weXi67zNoyIrwAQYkVGADhrbDQ+hbd7Gxf7Z//lEaMcK4nAOdEgAEQvrZtkzp0sNf275eaNHGmHwClxhYSgPD06KP28HLVVdaWEeEFcAVWYACEl4ICqVYta+uoxNy50tChzvUEIGAEGADhY/Nm6825Jzt4UGrc2JF2AJQdW0gAwsPUqfbw0revdWVpwgvgSqzAAAhteXlSjRr22oIF0uDBjrQDoHwQYACErs8+k3r0sNd+/FFq0MCZfgCUG7aQAISm+++3h5df/tLaMiK8ACGBFRgAoeXECetTRidbtEi6/npn+gFQIQgwAELHp59a3+dyssxMKTrakXYAVBy2kACEhrvvtoeXoUOtLSPCCxCSWIEB4G7Hjkl16thry5dLiYnO9AOgUhBgALhXSorUp4+9lp0t1a3rSDsAKg9bSADcaeRIe3gZOdLaMiK8AGGBFRgA7pKTI3k89trq1VKvXs70A8ARrMAAcI+PP/YPL8eOEV6AMESAAeAOt9wiJSX5ju+5x9oyOvU7XwCEBbaQAAS3zEypfn17LTVVuuIKR9oBEBxYgQEQvBYt8g8vJ04QXgAQYAAEqRtusG4lJk2ytoxOvbI0gLDEFhKA4PLjj1KjRvba559L3bo50w+AoMQKDIDg8f77/uElL4/wAsAPAQZAcOjbVxoyxHf8//6ftWUUGelcTwCCFltIAJx18KAUG2uvbd4sde7sSDsA3IEVGADOeecde3iJipLy8wkvAM6JAAOg8hkjJSRIt93mqz36qJSbK1Wv7lxfAFyDLSQAlWv/fumCC+y1bdukdu2c6QeAK7ECA6DyvP66Pbw0aCAVFhJeAASMAAOg4hljva/l17/21R5/3PrOl6pVHWsLgHuxhQSgYu3dKzVvbq/t3Cldcokz/QAICazAAKg4L71kDy9Nm0pFRYQXAOeNAAOg/BkjXXyxdPfdvtozz1irMVX4awfA+WMLCUD52r1batXKXvv2W6llS2f6ARCS+KcQgPLz7LP28HLxxdaWEeEFQDljBQbA+Ssulpo1s77jpcRLL0l33eVcTwBCGgEGwPn53/+kNm3stT17rEADABWELSQAZff44/bw0qWLbzUGACoQKzAAAldUJDVqJGVm+mpz5kgjRzrVEYAwQ4ABEJivvpLat7fX9u2T4uOd6QdAWApoC2nGjBm6/PLLVbduXcXExGjw4MHauXOnbUxubq7Gjx+vhg0bqk6dOhoyZIgyMjJsY/bs2aPk5GTVqlVLMTExmjx5sgoLC21jUlJS1LVrV0VFRal169aaM2dO2WYIoPw8+qg9vFx5pbVlRHgBUMkCCjCrV6/W+PHjtW7dOi1fvlwFBQXq37+/jh075h1z//33a+HChZo/f75Wr16t/fv366abbvLeX1RUpOTkZOXn5+vTTz/V66+/rjlz5uiRRx7xjtm9e7eSk5PVp08fbd68WRMnTtSYMWO0bNmycpgygIAVFEhRUdK0ab7aO+9Ia9dKERHO9QUgbEUYY0xZH3zo0CHFxMRo9erV6tWrl7KystS4cWO9/fbbuvnmmyVJO3bs0KWXXqrU1FRdccUVWrJkiW644Qbt379fsbGxkqQXX3xRDzzwgA4dOqTIyEg98MADWrRokbZu3er9tYYNG6bMzEwtXbq0VL1lZ2crOjpaWVlZ8ng8ZZ0igC++sN6ce7KMDCkmxpF2AIS20r5+n9enkLKysiRJDRo0kCSlpaWpoKBAiYmJ3jFt27ZV8+bNlZqaKklKTU1Vx44dveFFkpKSkpSdna1t27Z5x5z8HCVjSp7jdPLy8pSdnW27AThPv/+9Pbxcd511mQDCCwCHlflNvMXFxZo4caKuuuoqdejQQZKUnp6uyMhI1atXzzY2NjZW6enp3jEnh5eS+0vuO9uY7OxsnThxQjVr1vTrZ8aMGZo+fXpZpwPgZPn51pbRyd5/X7rxRmf6AYBTlHkFZvz48dq6davmzp1bnv2U2dSpU5WVleW97d271+mWAHf6/HP/8HL4MOEFQFApU4CZMGGCPvroI61atUpNmzb11uPi4pSfn6/Mk78bQlJGRobi4uK8Y079VFLJ8bnGeDye066+SFJUVJQ8Ho/tBiBAkyZJl1/uO77hBmvLqGFD53oCgNMIKMAYYzRhwgQtWLBAK1euVMtTLtDWrVs3Va9eXStWrPDWdu7cqT179ighIUGSlJCQoC1btujgwYPeMcuXL5fH41G7du28Y05+jpIxJc8BoJzl5lqfJpo1y1f76CNp4ULnegKAswjoU0j33HOP3n77bX344Ydqc9LXh0dHR3tXRsaNG6fFixdrzpw58ng8uvfeeyVJn376qSTrY9RdunRRfHy8Hn/8caWnp2vEiBEaM2aM/vKXv0iyPkbdoUMHjR8/XnfeeadWrlyp3/72t1q0aJGSkpJK1SufQgJKKTXV+j6Xkx05Ip3yXjYAqAylfv02AZB02ttrr73mHXPixAlzzz33mPr165tatWqZG2+80Rw4cMD2PN99950ZOHCgqVmzpmnUqJH53e9+ZwoKCmxjVq1aZbp06WIiIyNNq1atbL9GaWRlZRlJJisrK6DHAWFl3DhjrE0i63bLLU53BCDMlfb1+7y+ByaYsQIDnMXx41Lt2vbaxx9L/fo50w8A/Ky0r99cCwkIN6tXS9dea69lZ0t16zrSDgCUxXl9kR0Alxk1yh5eRo60No8ILwBchhUYIBzk5EinLsWmpEi9ezvSDgCcL1ZggFD3ySf+4eXoUcILAFcjwAChbNgw+xtzf/Mba8vo1DfwAoDLsIUEhKLMTKl+fXtt7Vr/73sBAJdiBQYINYsX+4eX48cJLwBCCgEGCCW//KWUnOw7vv9+a8voDNcQAwC3YgsJCAU//eR/wcXPPpO6d3emHwCoYKzAAG63YIF/eMnNJbwACGkEGMDN+vWTbrrJd/zgg9aWUVSUcz0BQCVgCwlwo4MHpdhYe23zZqlzZ0faAYDKxgoM4DbvvmsPL5GRUn4+4QVAWCHAAG5hjHTVVdaX05WYPl3Ky5OqV3euLwBwAFtIgBscOCDFx9trW7dK7ds70w8AOIwVGCDY/fOf9vBSr55UUEB4ARDWCDBAsDJG6tJFGjnSV3vsMenIEakai6cAwht/CwLBaO9eqXlze23nTumSS5zpBwCCDCswQLD5xz/s4SU+XioqIrwAwEkIMECwMEZq00a66y5f7a9/lfbtk6rwowoAJ2MLCQgGu3dLrVrZa998418DAEhiBQZw3nPP2YNK69bWlhHhBQDOiBUYwCnFxVKLFtIPP/hqL74o/eY3zvUEAC5BgAGcsGuXdPHF9tr33/t/8ggAcFpsIQGV7ckn7eGlUydrNYbwAgClxgoMUFmKiqTGja0voivx2mvSr3/tWEsA4FYEGKAyfPWV/1f/79vnf30jAECpsIUEVLQ//ckeXq64wtoyIrwAQJmxAgNUlIICyeORcnN9tbfflm691bmeACBEEGCAivDll1LnzvZaRoYUE+NMPwAQYthCAsrbQw/Zw0ufPtZlAggvAFBuWIEBykt+vhQVZa+99540ZIgz/QBACCPAAOUhLU3q3t1eO3xYatjQmX4AIMSxhQScr//7P3t4SU62towILwBQYViBAcoqN1eqWdNeW7hQuuEGZ/oBgDBCgAHKYt06KSHBXjtyRKpXz5F2ACDcsIUEBOqee+zh5eabrS0jwgsAVBpWYIDSOn5cql3bXlu2TOrf35l+ACCMEWCA0lizRurd217LyrK+aRcAUOnYQgLO5c477eFlxAhry4jwAgCOYQUGOJOjR6W6de21Vauka691pB0AgA8rMMDprFjhH16OHiW8AECQIMAAp7r1Vikx0Xd8113WltGpb+AFADiGLSSgRFaW/0eh//tf6aqrHGkHAHBmrMAAkrRkiX94OX6c8AIAQYoAAwwaJF1/ve/4vvusLaNTLxMAAAgabCEhfP30k/8FFzdskC6/3Jl+AAClxgoMwtMHH/iHl9xcwgsAuAQBBuGnXz/pxht9xw8+aG0ZRUU51xMAICBsISF8HDokxcTYa5s2SV26ONIOAKDsWIFBeJg3zx5eqlWT8vMJLwDgUgQYhDZjpKuvloYO9dX+8AepoECqXt2xtgAA54ctJISu9HSpSRN7betWqX17Z/oBAJQbVmAQmt54wx5eoqOtVRfCCwCEBAIMQosxUrdu0h13+GozZ0qZmdb7XgAAIYG/0RE6fvhBatbMXtuxQ2rTxpl+AAAVhhUYhIaXX7aHl7g4qbCQ8AIAIYoAA3czRmrbVho71lebNUs6cECqWtW5vgAAFYotJLjXd99JLVvaa998I7Vq5Ug7AIDKwwoM3Gn2bHt4adVKKioivABAmGAFBu5SXCxdeKG0d6+v9vzz0rhxjrUEAKh8BBi4x65d0sUX22vffy81b+5MPwAAx7CFBHd46il7eOnY0VqNIbwAQFhiBQbBrajI+kj04cO+2muvSb/+tWMtAQCcR4BB8Nq+XWrXzl7bt0+Kj3emHwBA0GALCcHpL3+xh5cePawtI8ILAECswCDYFBZaF148ftxXe+st6bbbnOsJABB0Al6BWbNmjX7xi18oPj5eERER+uCDD2z3G2P0yCOPqEmTJqpZs6YSExP19ddf28b89NNPuv322+XxeFSvXj2NHj1aR48etY358ssvdc0116hGjRpq1qyZHn/88cBnB3f58kupenV7eElPJ7wAAPwEHGCOHTumzp07a/bs2ae9//HHH9ezzz6rF198UevXr1ft2rWVlJSk3Nxc75jbb79d27Zt0/Lly/XRRx9pzZo1uuuuu7z3Z2dnq3///mrRooXS0tL0xBNP6A9/+IP+/ve/l2GKcIWHH5Y6d/YdX3utdZmA2FjHWgIABDFzHiSZBQsWeI+Li4tNXFyceeKJJ7y1zMxMExUVZd555x1jjDFfffWVkWQ+++wz75glS5aYiIgIs2/fPmOMMc8//7ypX7++ycvL84554IEHTJs2bUrdW1ZWlpFksrKyyjo9VIa8PGOsqOK7zZ/vdFcAAIeU9vW7XN/Eu3v3bqWnpysxMdFbi46OVs+ePZWamipJSk1NVb169dS9e3fvmMTERFWpUkXr16/3junVq5ciIyO9Y5KSkrRz504dOXLktL92Xl6esrOzbTcEuY0bpagoe+3QIenmm53pBwDgGuUaYNLT0yVJsacs+8fGxnrvS09PV0xMjO3+atWqqUGDBrYxp3uOk3+NU82YMUPR0dHeW7Nmzc5/Qqg4kydL3br5jgcOtNZfGjVyricAgGuEzMeop06dqqysLO9t78nXykHwyM2VIiKkJ5/01RYulBYvdq4nAIDrlOvHqOPi4iRJGRkZatKkibeekZGhLl26eMccPHjQ9rjCwkL99NNP3sfHxcUpIyPDNqbkuGTMqaKiohR16nYEgsv69dIVV9hrP/0k1a/vTD8AANcq1xWYli1bKi4uTitWrPDWsrOztX79eiUkJEiSEhISlJmZqbS0NO+YlStXqri4WD179vSOWbNmjQoKCrxjli9frjZt2qg+L3budO+99vAyZIi1ZcT5BACUQcAB5ujRo9q8ebM2b94syXrj7ubNm7Vnzx5FRERo4sSJ+tOf/qR///vf2rJli+644w7Fx8dr8ODBkqRLL71UAwYM0NixY7VhwwatXbtWEyZM0LBhwxT/87es3nbbbYqMjNTo0aO1bds2vfvuu3rmmWc0adKkcps4Ksnx49aW0XPP+WpLl0rvvedcTwAA9wv0402rVq0ykvxuI0eONMZYH6V++OGHTWxsrImKijJ9+/Y1O3futD3Hjz/+aG699VZTp04d4/F4zKhRo0xOTo5tzBdffGGuvvpqExUVZS644AIzc+bMgPrkY9RBYM0a/49Icz4AAGdR2tfvCGOMcTA/VZjs7GxFR0crKytLHo/H6XbCz+jR0quv+o6HD5feeMO5fgAArlDa12+uhYTydfSoVLeuvbZypdSnjzP9AABCUsh8jBpBYOVK//CSk0N4AQCUOwIMysdtt0l9+/qOx4613vVSp45zPQEAQhZbSDg/WVlSvXr22n/+I119tSPtAADCAyswKLulS/3Dy/HjhBcAQIUjwKBsbrzRun5Rid/+1toyqlnTuZ4AAGGDLSQE5sgRqUEDe239eqlHD2f6AQCEJVZgUHr//rd/eMnNJbwAACodAQalM2CANGiQ73jKFGvLiAtoAgAcwBYSzu7QISkmxl7buFG67DJn+gEAQKzA4Gzmz7eHl6pVpbw8wgsAwHEEGPgzRurVS7rlFl9t2jSpsFCKjHSuLwAAfsYWEuzS06UmTey1LVukDh2c6QcAgNNgBQY+b75pDy9160oFBYQXAEDQIcDA2jLq3l0aMcJXmzFDys6WqrFIBwAIPrw6hbt9+6SmTe21HTukNm2c6QcAgFJgBSacvfqqPbzExVlv1CW8AACCHAEmHBkjtWsnjR7tqz39tHTggPVRaQAAghxbSOHm+++lCy+013btki66yJF2AAAoC1Zgwsnzz9vDS8uWUlER4QUA4DqswISD4mKpVStr9aXE889L48Y51xMAAOeBABPqvvlGat3aXvvuO6lFC0faAQCgPLCFFMqeftoeXtq3t1ZjCC8AAJdjBSYUFRVJ8fHSwYO+2iuvSHfe6VxPAACUIwJMqNmxQ7r0Unvthx+kCy5wph8AACoAW0ihZMYMe3i5/HJry4jwAgAIMazAhILCQqlePenYMV/tzTel2293rCUAACoSAcbttm6VOna019LTpdhYZ/oBAKASsIXkZtOm2cNLr17WlhHhBQAQ4liBcaP8fKlGDeuaRiXmz5duvtm5ngAAqEQEGLfZtEnq2tVeO3RIatTImX4AAHAAW0huMmWKPbwMGGCtwhBeAABhhhUYN8jLs7aMTvbhh9Ivf+lMPwAAOIwAE+zWr5euuMJe++knqX59Z/oBACAIsIUUzH77W3t4ufFGa8uI8AIACHOswASjEyekWrXstSVLrPe8AAAAAkzQWbtWuvpqey0rS/J4nOkHAIAgxBZSMBk71h5ebrvN2jIivAAAYMMKTDA4dkyqU8deW7FCuu46Z/oBACDIsQLjtFWr/MNLTg7hBQCAsyDAOGn4cHtQGT3a2jI6NdAAAAAbtpCckJ0tRUfba2vWSNdc40w/AAC4DCswlW3pUv/wcvw44QUAgAAQYCrTkCHSwIG+4wkTrC2jmjWd6wkAABdiC6kyHDkiNWhgr61bJ/Xs6Uw/AAC4HCswFW3hQv/wkptLeAEA4DwQYCrSwIH2K0ZPnmxtGUVFOdcTAAAhgC2kinD4sNS4sb2WliZ17epMPwAAhBhWYMrbe+/Zw0tEhJSXR3gBAKAcEWDKizFS797Sr37lqz38sFRcLEVGOtcXAAAhiC2k8pCRIcXF2Wtffil17OhMPwAAhDhWYM7XW2/Zw0udOlJBAeEFAIAKRIApK2Okyy+3rmdU4s9/ti7EWI2FLQAAKhKvtGWxb5/UtKm9tn271LatM/0AABBmWIEJ1Guv2cNLTIxUWEh4AQCgEhFgAlFUJN15p+/4qaesN/BWrepcTwAAhCECTCCqVpXeeMP6/6+/liZNcrYfAADCFAEmUMOHW2/gbd3a6U4AAAhbBBgAAOA6BBgAAOA6BBgAAOA6BBgAAOA6BBgAAOA6BBgAAOA6BBgAAOA6BBgAAOA6BBgAAOA6QR1gZs+erQsvvFA1atRQz549tWHDBqdbAgAAQSBoA8y7776rSZMmadq0adq4caM6d+6spKQkHTx40OnWAACAw4I2wDz99NMaO3asRo0apXbt2unFF19UrVq19OqrrzrdGgAAcFhQBpj8/HylpaUpMTHRW6tSpYoSExOVmpp62sfk5eUpOzvbdgMAAKGpmtMNnM7hw4dVVFSk2NhYWz02NlY7duw47WNmzJih6dOn+9UJMgAAuEfJ67Yx5qzjgjLAlMXUqVM1adIk7/Hu3bvVpUsXNWvWzMGuAABAWeTk5Cg6OvqM9wdlgGnUqJGqVq2qjIwMWz0jI0NxcXGnfUxUVJSioqK8xy1atJAk7dmz56y/AW6VnZ2tZs2aae/evfJ4PE63UyFCfY7Mz/1CfY7Mz/3cOEdjjHJychQfH3/WcUEZYCIjI9WtWzetWLFCgwcPliQVFxdrxYoVmjBhQqmeo0oV6+090dHRrjlpZeHxeEJ6flLoz5H5uV+oz5H5uZ/b5liahYegDDCSNGnSJI0cOVLdu3dXjx499Ne//lXHjh3TqFGjnG4NAAA4LGgDzNChQ3Xo0CE98sgjSk9PV5cuXbR06VK/N/YCAIDwE7QBRpImTJhQ6i2jU0VFRWnatGm298WEklCfnxT6c2R+7hfqc2R+7hfKc4ww5/qcEgAAQJAJyi+yAwAAOBsCDAAAcB0CDAAAcB0CDAAAcB3XBJjZs2frwgsvVI0aNdSzZ09t2LDhrOPnz5+vtm3bqkaNGurYsaMWL15su98Yo0ceeURNmjRRzZo1lZiYqK+//roip3BOgczxH//4h6655hrVr19f9evXV2Jiot/4X//614qIiLDdBgwYUNHTOKNA5jdnzhy/3mvUqGEb4/ZzeO211/rNMSIiQsnJyd4xwXIO16xZo1/84heKj49XRESEPvjgg3M+JiUlRV27dlVUVJRat26tOXPm+I0J9Oe6IgU6x/fff1/9+vVT48aN5fF4lJCQoGXLltnG/OEPf/A7f23btq3AWZxZoPNLSUk57Z/P9PR02zg3n8PT/XxFRESoffv23jHBcg5nzJihyy+/XHXr1lVMTIwGDx6snTt3nvNxbnwtLC1XBJh3331XkyZN0rRp07Rx40Z17txZSUlJOnjw4GnHf/rpp7r11ls1evRobdq0SYMHD9bgwYO1detW75jHH39czz77rF588UWtX79etWvXVlJSknJzcytrWjaBzjElJUW33nqrVq1apdTUVDVr1kz9+/fXvn37bOMGDBigAwcOeG/vvPNOZUzHT6Dzk6xvjjy59++//952v9vP4fvvv2+b39atW1W1alX96le/so0LhnN47Ngxde7cWbNnzy7V+N27dys5OVl9+vTR5s2bNXHiRI0ZM8b2Al+WPxMVKdA5rlmzRv369dPixYuVlpamPn366Be/+IU2bdpkG9e+fXvb+fvvf/9bEe2fU6DzK7Fz505b/zExMd773H4On3nmGdvc9u7dqwYNGvj9DAbDOVy9erXGjx+vdevWafny5SooKFD//v117NixMz7Gja+FATEu0KNHDzN+/HjvcVFRkYmPjzczZsw47fhbbrnFJCcn22o9e/Y0v/nNb4wxxhQXF5u4uDjzxBNPeO/PzMw0UVFR5p133qmAGZxboHM8VWFhoalbt655/fXXvbWRI0eaQYMGlXerZRLo/F577TUTHR19xucLxXM4a9YsU7duXXP06FFvLZjOYQlJZsGCBWcdM2XKFNO+fXtbbejQoSYpKcl7fL6/XxWpNHM8nXbt2pnp06d7j6dNm2Y6d+5cfo2Vk9LMb9WqVUaSOXLkyBnHhNo5XLBggYmIiDDfffedtxas5/DgwYNGklm9evUZx7jxtTAQQb8Ck5+fr7S0NCUmJnprVapUUWJiolJTU0/7mNTUVNt4SUpKSvKO3717t9LT021joqOj1bNnzzM+Z0UqyxxPdfz4cRUUFKhBgwa2ekpKimJiYtSmTRuNGzdOP/74Y7n2Xhplnd/Ro0fVokULNWvWTIMGDdK2bdu894XiOXzllVc0bNgw1a5d21YPhnMYqHP9DJbH71ewKS4uVk5Ojt/P4Ndff634+Hi1atVKt99+u/bs2eNQh2XTpUsXNWnSRP369dPatWu99VA8h6+88ooSExO9FwMuEYznMCsrS5L8/rydzG2vhYEK+gBz+PBhFRUV+V1CIDY21m8vtkR6evpZx5f8N5DnrEhlmeOpHnjgAcXHx9v+IA4YMED//Oc/tWLFCj322GNavXq1Bg4cqKKionLt/1zKMr82bdro1Vdf1Ycffqg333xTxcXFuvLKK/XDDz9ICr1zuGHDBm3dulVjxoyx1YPlHAbqTD+D2dnZOnHiRLn8mQ82Tz75pI4ePapbbrnFW+vZs6fmzJmjpUuX6oUXXtDu3bt1zTXXKCcnx8FOS6dJkyZ68cUX9a9//Uv/+te/1KxZM1177bXauHGjpPL5eyuY7N+/X0uWLPH7GQzGc1hcXKyJEyfqqquuUocOHc44zm2vhYEK6ksJoHRmzpypuXPnKiUlxfZG12HDhnn/v2PHjurUqZMuuugipaSkqG/fvk60WmoJCQlKSEjwHl955ZW69NJL9dJLL+mPf/yjg51VjFdeeUUdO3ZUjx49bHU3n8Nw8vbbb2v69On68MMPbe8RGThwoPf/O3XqpJ49e6pFixaaN2+eRo8e7USrpdamTRu1adPGe3zllVfqm2++0axZs/TGG2842FnFeP3111WvXj0NHjzYVg/Gczh+/Hht3brVsfdTBYugX4Fp1KiRqlatqoyMDFs9IyNDcXFxp31MXFzcWceX/DeQ56xIZZljiSeffFIzZ87Uxx9/rE6dOp11bKtWrdSoUSPt2rXrvHsOxPnMr0T16tV12WWXeXsPpXN47NgxzZ07t1R/GTp1DgN1pp9Bj8ejmjVrlsufiWAxd+5cjRkzRvPmzfNbrj9VvXr1dMkllwT9+TuTHj16eHsPpXNojNGrr76qESNGKDIy8qxjnT6HEyZM0EcffaRVq1apadOmZx3rttfCQAV9gImMjFS3bt20YsUKb624uFgrVqyw/Qv9ZAkJCbbxkrR8+XLv+JYtWyouLs42Jjs7W+vXrz/jc1akssxRst49/sc//lFLly5V9+7dz/nr/PDDD/rxxx/VpEmTcum7tMo6v5MVFRVpy5Yt3t5D5RxK1scc8/LyNHz48HP+Ok6dw0Cd62ewPP5MBIN33nlHo0aN0jvvvGP7+PuZHD16VN98803Qn78z2bx5s7f3UDmHkvUJn127dpXqHxFOnUNjjCZMmKAFCxZo5cqVatmy5Tkf47bXwoA5/S7i0pg7d66Jiooyc+bMMV999ZW56667TL169Ux6eroxxpgRI0aYBx980Dt+7dq1plq1aubJJ58027dvN9OmTTPVq1c3W7Zs8Y6ZOXOmqVevnvnwww/Nl19+aQYNGmRatmxpTpw4UenzMybwOc6cOdNERkaa9957zxw4cMB7y8nJMcYYk5OTY/7v//7PpKammt27d5tPPvnEdO3a1Vx88cUmNzc36Oc3ffp0s2zZMvPNN9+YtLQ0M2zYMFOjRg2zbds27xi3n8MSV199tRk6dKhfPZjOYU5Ojtm0aZPZtGmTkWSefvpps2nTJvP9998bY4x58MEHzYgRI7zjv/32W1OrVi0zefJks337djN79mxTtWpVs3TpUu+Yc/1+VbZA5/jWW2+ZatWqmdmzZ9t+BjMzM71jfve735mUlBSze/dus3btWpOYmGgaNWpkDh48GPTzmzVrlvnggw/M119/bbZs2WLuu+8+U6VKFfPJJ594x7j9HJYYPny46dmz52mfM1jO4bhx40x0dLRJSUmx/Xk7fvy4d0wovBYGwhUBxhhj/va3v5nmzZubyMhI06NHD7Nu3Trvfb179zYjR460jZ83b5655JJLTGRkpGnfvr1ZtGiR7f7i4mLz8MMPm9jYWBMVFWX69u1rdu7cWRlTOaNA5tiiRQsjye82bdo0Y4wxx48fN/379zeNGzc21atXNy1atDBjx4517C8WYwKb38SJE71jY2NjzfXXX282btxoez63n0NjjNmxY4eRZD7++GO/5wqmc1jykdpTbyXzGTlypOndu7ffY7p06WIiIyNNq1atzGuvveb3vGf7/apsgc6xd+/eZx1vjPXR8SZNmpjIyEhzwQUXmKFDh5pdu3ZV7sR+Fuj8HnvsMXPRRReZGjVqmAYNGphrr73WrFy50u953XwOjbE+NlyzZk3z97///bTPGSzn8HTzkmT7uQqV18LSijDGmApb3gEAAKgAQf8eGAAAgFMRYAAAgOsQYAAAgOsQYAAAgOsQYAAAgOsQYAAAgOsQYAAAgOsQYAAAgOsQYAAAgOsQYAAAgOsQYAAAgOsQYAAAgOv8f64qcIZGhvpQAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAGwCAYAAABIC3rIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABz2klEQVR4nO3dd3xTVf8H8E+6W7qggzIKFChlyCggUJAlCAr4iKgID7IEfEAQEBH0JyJDBVRQZIoyRAQERFRQhkyBsssUKtCWFqF7Dzrv74/atLdtbnKT3CZpPu/Xqy/NOTcn5za0+fasr0oQBAFEREREVszG1B0gIiIiMjUGRERERGT1GBARERGR1WNARERERFaPARERERFZPQZEREREZPUYEBEREZHVszN1ByxBUVERHjx4ADc3N6hUKlN3h4iIiHQgCAIyMjJQt25d2NhIjwExINLBgwcP4O/vb+puEBERkR5iYmJQv359yWsYEOnAzc0NQPE31N3d3cS9ISIiIl2kp6fD399f/TkuhQGRDkqmydzd3RkQERERWRhdlrtwUTURERFZPQZEREREZPUYEBEREZHVY0BEREREVo8BEREREVk9BkRERERk9RgQERERkdVjQERERERWjwERERERWT0GRERERGT1GBARERGR1WNARERERFaPARERERGZVmYmkJdn0i4wICIiIiLTEASgZ0/AzQ1wdDRpV+xM+upERERknR48AOrVM3Uv1DhCRERERFVr3TpxMOTmBuTnm64/YEBEREREVaWoCGjQAPjf/0rLPv0USE8H7Ew7acUpMyIiIlLezZtAy5bisrt3gcaNTdOfcjhCRERERMqaN08cDLVpUzxaZCbBEMARIiIiIlJKbi7g5CQu27IFGDHCNP2RwICIiIiIjC80FOjaVVwWFwf4+pqmP1pwyoyIiIiMa/x4cTD07LPFZw6ZaTAEcISIiIiIjCU9HfDwEJcdOAD062ea/sjAESIiIiIy3N69FYOhjAyLCIYABkRERERkqL59i6fFSkyeXDxF5upquj7JxCkzIiIi0s/Dh0DduuKy8+eBjh1N0x8DcISIiIiI5NuwQRwMOTkVZ6y3wGAIYEBERERUrUQkZOJoeDwiE7OUeYGiIqBpU2DcuNKyRYuAnBzA3l6Z16wCnDIjIiKqBlKz8zB122WcuJ2gLusR6IMVw4Ph4WKkQOXvv4GgIHHZ7dvFAZKF4wgRERFRNTB122WcupMoKjt1JxFvbAszzgt89JE4GGrRonS0qBrgCBEREZGFi0jIFI0MlSgUBJy4nYDIxCwEeNfQr/G8PMDFBSgsLC3btAkYPVq/9swUR4iIiIgs3L3kbMn6qCQ91xOdOwc4OoqDodjYahcMAQyIiIiILF7DWi6S9Y289BgdmjQJ6Ny59PHTTxefLVS7tvy2LACnzIiIiKhURgbg7i4u27cPGDDANP2pIhwhIiIisnBGmzL7/feKwVB6erUPhgAGRERERBbPKFNmAwaIA5/XXiueInNzM7B3loFTZkRERBausY8regT64NSdRBQKgrrcVqVCt6be0jvM4uIAPz9x2Zkz4vVDVoAjRERERNXAiuHB6NbUW1TWrak3VgwP1vykb78VB0M2NkBurtUFQwADIiIiompBgKD9IvXFAtCyJTBmTGnZggXF2+sdHIzeN0vAgIiIiKga0Pmk6rt3i0eCbt4sLbt1C3j/fcn2Fc+RZmJcQ0RERGThdD6peskS4J13Si9o0qQ4P5mN5vGRqsiRdjw8Hpfvp6J9g5roHuhjlDblYkBERERk4bRtu78Xm4qA+l7F64NKfPONOGO9BlIjT5vHddKrv+p+JWVh8KpTSMnOV5fVdLHHL5OfgL+X9M45Y+OUGRERkYWT2nb/WOwd9GpdXxwMPXigUzBUMvJUducaIB55MkT5YAgAUrLz8Z9VJw1qVx8MiIiIiKqYsdfjlGy7t1WpROXz//gKe7+dXlrQp0/xguo6dXRqV7EcaSieJisfDJVIyc7Hn5VMASqJU2ZERERVRMn1OCuGB+ONbWE4cTsBLnk5+Ovzl8QX/PIL8OyzstpUJEfavy7fT5WsvxSdUqXriThCREREVEV03gmmBw8Xe2we1wlnOhRWDIZSU2UHQwBwPjJZsv5ClHS9lHb1PSXr2zeoqXfb+mBAREREVAWUXo8DABg8GH5Dnyt9PHZs8RSZh4dezYVGJknWn7qbKFkvpWeQL2pqGBWr6WJf5bvNGBARERFVASXX4yAhAVCpgJ9/Li07dQrYsEH/NgGEBHhJ1ndr4i1Zr80vk5+oEBSV7DKralxDREREVAUUW4+zdSswYoS47NEjwNFRv/bKeLlTA7y35zoKiiqegm1no8JLHf0Nat/fywVhc/vhz9sJuBSdYtJziDhCREREVAU07QSzVanQI9BHOgFrZQQBaNNGHAzNnVtcboRgqMQvk7vBzkbcZzsbFX6Z3M1or9E90AfT+jQzWTAEmFFAtHjxYqhUKkyfPl1d9ujRI0yePBleXl5wdXXFCy+8gLi4ONHzoqOjMXDgQLi4uMDX1xdvv/02CgoKRNccO3YM7du3h6OjI5o2bYpNmzZVwR0RERGJ6ZWAtTKRkcWnS1+7Vlr211/A/Pk4Hh6P5Yf/Ntq29Zb1PHDn4wH49MU2GBxcF5++2AZ3Ph6AlvX0W5dkrsxiyuz8+fP46quv0KZNG1H5m2++iX379mHnzp3w8PDAlClTMGTIEJw6dQoAUFhYiIEDB8LPzw+nT5/Gw4cPMWrUKNjb2+Pjjz8GAERGRmLgwIGYOHEivv/+exw+fBjjx49HnTp10L9//yq/VyIisl4lO8EiE7MQlZSFRl415I8MLVsGvPVW6WN/fyAyEvdSH2HwgoOKnfr8Ukd/g6fIzJlKEAQZ6XGNLzMzE+3bt8fq1avx4Ycfol27dvjiiy+QlpYGHx8fbN26FS+++CIA4NatW2jRogVCQ0PRpUsX/P777xg0aBAePHiA2rVrAwDWrl2L2bNnIyEhAQ4ODpg9ezb27duH69evq19z2LBhSE1Nxf79+3XqY3p6Ojw8PJCWlgZ3d3fjfxOIiIi0KSgAatUCMjJKy9asASZOBAAElwuGStR0sUfY3H5V1UuzIufz2+RTZpMnT8bAgQPRt29fUfnFixeRn58vKm/evDkaNGiA0NBQAEBoaChat26tDoYAoH///khPT8eNGzfU15Rvu3///uo2KpObm4v09HTRFxERkclcvgzY24uDofv31cGQuZ36bIlMGhBt374dly5dwqJFiyrUxcbGwsHBAZ6enqLy2rVrIzY2Vn1N2WCopL6kTuqa9PR05OTkVNqvRYsWwcPDQ/3l7199hwiJiMjMvfUWEFxmjVGPHkBREVCvnrpIl1OfSZrJAqKYmBhMmzYN33//PZycnEzVjUq9++67SEtLU3/FxMSYuktERGRtsrOLzxZatqy0bPdu4Pjx4vIyzO3UZ0tksoDo4sWLiI+PR/v27WFnZwc7OzscP34cX375Jezs7FC7dm3k5eUhNTVV9Ly4uDj4+fkBAPz8/CrsOit5rO0ad3d3ODs7V9o3R0dHuLu7i76IiIiMRWty1yNHgBrlFlsnJwPPP1/p5eZ26rMlMllA1KdPH1y7dg2XL19Wf3Xs2BEjRoxQ/7+9vT0OHz6sfk54eDiio6MREhICAAgJCcG1a9cQHx+vvubQoUNwd3dHy5Yt1deUbaPkmpI2iIiIqkpqdh5GrT+HJ5cex9iN59H7s2MYtf4c0squ/3nppeKs9CVGjiw+W6im9CjPlnGdKj0v6PtxnY15C9WWybbdu7m54bHHHhOV1ahRA15eXurycePGYcaMGahVqxbc3d3xxhtvICQkBF26dAEA9OvXDy1btsTIkSPxySefIDY2FnPmzMHkyZPh+O+hVBMnTsTKlSsxa9YsvPrqqzhy5Ah27NiBffv2Ve0NExGR1ZNK7rp5cBPAu1wqjBMngO7ddWp7yf6/UX7fuCAAi/eHY/O4ToZ02yqYfJeZlM8//xyDBg3CCy+8gB49esDPzw+7d+9W19va2mLv3r2wtbVFSEgIXnnlFYwaNQoLFixQXxMQEIB9+/bh0KFDaNu2LZYuXYpvvvmGZxAREVGVkkru6vbL7orBUE6OzsFQlSSOreZMfg6RJeA5REREZKij4fEYu/G8uFAQ8MvmN9Em9k5p2bvvAv8eLmxQ22VsHPs4egf5ymqzOpDz+W0WJ1UTERGZo+Ph8bh8P9UoSUfLJ3etlxaPU2tfFV907RpQbjmJPm2Xp3fiWCvCgIiIiKice0lZGLzqlGJpMMZc+AXzDq9TP06o4YnMu/cQUFu/WYiSxLGn7iSKps1sVSp0a+otPz2IFTLrNURERESmUD4YAopPfP7PqpN6t3kvORs2RYW49OV/RcHQ3L7/w+NTtiAq9ZHebQNGTBxrpThCREREVIYuaTD0mT5rGhuJiE+fE5V1nbQBD9yL1/YYOq1llMSxVowjRERERGUokgZj9mz49+qifnixbnM0mvUrHrj7wlalQo9AH6MFLwHeNdA7yJfBkEwcISIiIirDqGkwcnIAF/GaoxUTP8ZSjzbqx5zWMg8MiIiIiMooSYNR2bSZrDQYx48DvXqJy5KS8EatWhjEaS2zwykzIiKicn6Z/ESF3GAlu8x08t//ioOhl18uPja6Vi0AnNYyRxwhIiIiKsffywVhc/vhz9sJuBSdovs5RMnJgJeXuOzo0YojRWR2GBARERFp0D3QR/cpsh9/BF58UVyWnQ04Oxu/Y2R0nDIjIiIyhCAAXbuKg6GZM4vLGQxZDI4QERER6SsmBmjQQFx2+TLQtq1JukP64wgRERGRPlavFgdDXl5Afr5OwdDx8HgsP/w3/rydoGAHSQ6OEBERkUWLSMjEveTsqtvCXlgI+PsDDx+Wln3xBTBtmtanKp0jjfTHgIiIiCxSanYepm67jBNlRll6BPpgxfBgeJTbMm80N25UzEYfGQk0aqTT06VypIXN7WekTpI+OGVGREQWaeq2yzh1J1FUdupOIt7YFqbMC86ZIw6GOnQAiop0DoZ0yZFGpsOAiIiILE5EQiZO3E5AoSCIygsFASduJyAyMct4L/boEaBSAR99VFq2bRtw4UJxuY4UyZFGRsOAiIiILM695GzJ+qgkIwVEp05V3DqfkAAMGya7KT83J8n6uh7com9KDIiIiMjiNKwlvQC5kZcRFlePHg08USZVx5AhxWcLeXvr1Zyvh3RA5O3mqFe7ZBxcVE1ERBansY8regT64NSdRNG0ma1KhW5NvQ3bbZaaCtQUZ7T/78sfwu6pp7AiO1/vBdtVEsSR3jhCREREFmnF8GB0ayoerenW1Bsrhgfr3+jPP1cIhlq8uQunG7XDidsJmLjlot5NlwRxtuXWHdmqVOgR6MNErybGESIiIrJIHi722DyuEyITsxCVlGXYOUSCAPTuDRw/ri7a0OE/WND3NdFloRFJiEzM0vt1ZvUPwuC7iUCZteAqFfDO00F6tUfGw4CIiIgsWoC3gQcyPngA1KsnKho4+gvc8Gta6eVnIpL0fr2RG86ioEi8M66gSMCI9Wd5DpGJccqMiIis17p14mDIzQ0r91/XGAwBQFJmrl4vxXOIzBsDIiIisj4lByr+73+lZZ9+CqSnw6umq+RTvV312w3Gc4jMG6fMiIjIosnOZXbrFtCihbjs7l2gcWMAQOcAL8mnd24sXa9Ju/qekvXtG9SUrCdlMSAiIiKLpFcus3nzgPnzSx+3bg1cuSI6cbqxjyu6NvHC6btJFZ7etYmX3uuHegb5wtPZHqk5FafNPJ3t0T3QR692yTj0CogePHiAkydPIj4+HkVFRaK6qVOnGqVjREREUqRymW0e10l8cW4u4FTuYMTvvgNeeaXStteM6IA3toVVGmwZItDXFefvVZwaC/SVnqYj5ckOiDZt2oT//e9/cHBwgJeXF1RlomqVSsWAiIiIFFeSy6y8srnM1CM5Z84AISHiC+PiAF9fje0LEDTW6SsiIbPSYAgAzt9LMWg7PxlO9qLq999/H3PnzkVaWhqioqIQGRmp/oqIiFCij0RERCI65zKbMEEcDA0aVHzmkEQwBEiPPumryvKvkV5kjxBlZ2dj2LBhsLHhBjUiIjINbWkwAhwKK2ai378f6N9fa9uyRp9kYOoO8yY7qhk3bhx27typRF+IiIh0IpUGY2p2OBo1rit+QkaGTsEQoNxIDlN3mDfZI0SLFi3CoEGDsH//frRu3Rr29uKV/MuWLTNa54iIiDRZMTy4wsLnPb/MR+u/zpVeNHkysHKlrHa1jRTY2ai0XKFZZX02OP8aGYVeAdGBAwcQFFScd6X8omoiIqKqUDaX2YNbkejWvbX4gnPngMcfl93ug7Qcyfp/UqTrpRg1/xoZleyAaOnSpdiwYQPGjBmjQHeIiIjkcf3+W3SbPrm0wNGxeIrMXsNZRFokZORJ1+uZuqMsg/OvkdHJXkPk6OiIbt26KdEXIiKqxiISMnE0PB6RicbZTZWa+Qhxvv7wKRMM7RgyCWnJ+gdDxaS33HMupHqSPUI0bdo0rFixAl9++aUS/SEiompGrxOltfn7b3j+u3SjRM/X1uF+rXrYW9nBjERayA6Izp07hyNHjmDv3r1o1apVhUXVu3fvNlrniIjI8sk6UVoXH30EzJmjfni3Vn30Hb8agsoGMHBrfDHpMSDjH9lI5kB2QOTp6YkhQ4Yo0RciIqpmjHqmT14e4OICFBaqi2YOmI5drftWuDQqSf+AyMfNQbpez2z3ZN5kB0QbN25Uoh9ERFQN6XKmj06By7lzQOfOoqLHJ3+HBNfKM8QbsjVeqWz3ZN5kL6qOjIzE7du3K5Tfvn0bUVFRxugTERFVE0Y5nfn118XBUP/+OHorTmMwBAAFRZzYInlkB0RjxozB6dOnK5SfPXuWW/GJiEiksY8rujapfESlaxMv6dGhjIzi9Btr1pSW7d0L7N+PG/fTJF/35oN0fboLgDnHrJXsgCgsLKzSbfddunTB5cuXjdEnIiIyEWNvjQeKc6nKKQdQnHfM3V1clpYGDBwIALiTmCn5mn/HZ8jooRhzjlkn2QGRSqVCRkbFf2hpaWkoLLPQjYiILEdqdh5GrT+HJ5cex9iN59H7s2MYtf4c0rLzDWo3IiEToRFJldaFRiRVHngNGAA880zp49deK46eygRIIVrW+XRr4q1XfwHmHLNWsgOiHj16YNGiRaLgp7CwEIsWLcITTzxh1M4REVHVkNoabwhZ00/x8cVTZL//Xlp25gzw1VcVnvdypwYaF07b2ajwUkd/vfpbYsXwYHRrKg6qmHOsepO9y2zJkiXo0aMHgoKC0L17dwDAn3/+ifT0dBw5csToHSQiImUZdWt8OTonSt28GRg9urRCpQIePQIcNG+B3/JqZwz75kyF8u/Hda7kanmYc8z6yB4hatmyJa5evYqhQ4ciPj4eGRkZGDVqFG7duoXHHntMiT4SEZGClFxEXKSlvqCwCGjZUhwMLVgAFBVJBkMAsPr43UqntVYdu6tnbysSJBc6UXWi8wjRhg0b8J///Afe3t6oW7cuPv74YyX7RUREVUTJRcRSbTdIeYjeLfzEhbduAeVSclRGyVEtQKF0I2TWdB4h2rJlC+rXr4+uXbtiyZIluHXrlpL9IiKiKqLkImJNbU86+yNOrJtQ5sLGxSdQ6xAMAcpvjZ+05VKFgOvE7QRM3HLRoHbJfOkcEB05cgQPHz7E66+/josXL6JTp04IDAzEW2+9hRMnTqCoSNvAKBERmasPB7eCu7N40sDd2Q4fDTZ8KUTZBcp2hQW4ufQFzD5WJuvBunXA3buAje6rOHRem6QHvXbGkcWTtYaoZs2aeOWVV7Bjxw4kJiZixYoVyMnJwYgRI+Dr64tRo0Zh165dyMriPxYiIksyZ88NpOcUiMrScwrw3p7rBrddskD51FMeuPPZYDgX5JZWPngATJig+ckaaF2bZMBJ1WcjkyXrz2gIlsiyyV5UXcLBwQFPP/00Vq9ejZiYGOzfvx+NGjXCwoULsWzZMmP2kYiIFFSyHqew3ALisutxDDZ1Kur17V76uE+f4rOF6tTRq7n4tEeS9YkZuZL10qSDKf3Hnsicyd52X15BQQEePXqEjh07omPHjliwYAHy8w07yIuIiKqO0RKwViYrC3B1FZf98gvw7LP6tfev2AzpgOhBWo7ebTO5q3XSeYTo119/xaZNm0RlH330EVxdXeHp6Yl+/fohJSUFAGBvzxX4RERKpMFQgmK7zP74o0IwtGbPBfzZvIt+7ZXh5+YkWV/Xw1nvtg3Kv0YWS+eAaNmyZaK1QadPn8bcuXPx/vvvY8eOHYiJicHChQsV6SQRkSVRKg2GUhTZZTZ4MPDUU+qHe4L7odHsvVgSGouR688heMFBxCRJj0xJ8fWQDoi83Rz1bhsA1ozogB6BPqKyHoE+WDOig0HtkvlSCTqeOuXr64sDBw4gOLj42PIZM2bgr7/+wv79+wEAv/32G6ZNm4bbt28r11sTSU9Ph4eHB9LS0uBePtkgEVE5o9afw6k7iaI1ObYqFbo19cbmcZ1M2DPN0rLz8ca2MMPP3UlIAHx9RUWjXl2GEz7NKlzq4WyHKx/016u/x8PjMXrjeY31343rhO7lAhp98KRqyybn81vnNUQZGRnw8iodQjx58iReeukl9eNWrVrhwYMHenSXiKj6UPrAQKWU7AQ78XcCwmJS0L5BTfkBxdatwIgRoqITV6Nx4vurlV6ellOAP28n6BW4aFsj9E+K/muIygrwZiBkLXSeMqtXrx5u3rwJAMjMzMSVK1fQtWtXdX1SUhJcXKTnoYmIqjulDwxUSsk036gN5/D5odsYuf6c7tN8ggC0aycOht5/HxAEHIlMk3zq4ZtxevZYeq8XE26QXDoHRC+99BKmT5+O7777DhMmTICfnx+6dCldGHfhwgUE6XjCKBGRuTD2wmcl02AoSe9s95GRxQcqXrlSWnbjRnE+MgC1akjnI/N21W+tT+eAWpL1XbgTjGTSecps7ty5+OeffzB16lT4+flhy5YtsLW1Vddv27YNzxq4jZKIqKoolauqZIGypjVE5jj9ovc037JlwFtvlT729y8OkMp8NrSt7yn52m39pes1aezjipDGXpWeKB3SmDvBSD6dR4icnZ2xefNmpKSk4ObNm+jevbuo/ujRo5g9e7bRO0hEpAS9R0R0UDZVRYluTb2xYniwwW0rQfY0X0EB4OEhDobWrAGio0XBEAA80HKA4n0D1voseaENapYLXmu62OOTF9ro3SZZL4MPZiQiKhGRkIl7ydlmvyNH6YXPJQuULWWHkqy8YFeuFK8XKismBqhfv9LnJmg5QDEpU/8Tpefsua4x3Yi57uYj8yU7IAoICIBKpXkxW0REhEEdIiLLo9T0k1IUPZm5DKV2KBk78NR5x9ZbbxVPk5Xo3h04fhyQ+Ezw0XIekL5riCx1Nx+ZL9kB0fTp00WP8/PzERYWhv379+Ptt982Vr+IyIJITT+Z41/qlrrwWbnAU3rHls2jnIpBz+7dwPPPa21ZqTQYVRXUkvWQHRBNmzat0vJVq1bhwoULBneIiCyLJf6lbokLnwHlAs+6Eqc+h9y7gqE9B4kLk5OBmjX1fj1jsNSglsyX3tnuy3vmmWfw448/Gqs5IrIQlnrujqUtfFYyI32RhvKVexZj2/b3SgtGjCg+c0hGMLT3qvSBvfu01GuiSLoRsmpGC4h27dqFWrWkz4Uob82aNWjTpg3c3d3h7u6OkJAQ/P777+r6R48eYfLkyfDy8oKrqyteeOEFxMWJD/GKjo7GwIED4eLiAl9fX7z99tsoKBAvsjt27Bjat28PR0dHNG3atEKSWiLSn6X+pV6y8PnozF7YOPZxHJ3ZC5vHdTLLNU+AsoFn+ffQMycdUUsGYVD4ydLC48eBLVtkt60tUItI0L/flhbUknmTPWUWHBwsWlQtCAJiY2ORkJCA1atXy2qrfv36WLx4MQIDAyEIAr799ls899xzCAsLQ6tWrfDmm29i37592LlzJzw8PDBlyhQMGTIEp06dAgAUFhZi4MCB8PPzw+nTp/Hw4UOMGjUK9vb2+PjjjwEAkZGRGDhwICZOnIjvv/8ehw8fxvjx41GnTh30769fDh0iKmWp008lLCU1g5KBZ0l299N3kzDw5p9Y9csS8QU5OYCTdDJVTTydpQ9m9DQgALW03Xxk3nRO7lpi/vz5osc2Njbw8fFBr1690Lx5c4M7VKtWLXz66ad48cUX4ePjg61bt+LFF18EANy6dQstWrRAaGgounTpgt9//x2DBg3CgwcPULt2bQDA2rVrMXv2bCQkJMDBwQGzZ8/Gvn37cP36dfVrDBs2DKmpqerEtOXl5uYiN7d0K2h6ejr8/f2Z3JVIA6MlBiVJwQsOIqWSVBo1XewRNrefQW2/uPoU5nw4Fu0eliboXt3lRRwd9SZ2Tuoq8UxpXx7+G8sOaU76PbNfM0x5MlDv9omkKJLctcQHH3ygd8ekFBYWYufOncjKykJISAguXryI/Px89O3bV31N8+bN0aBBA3VAFBoaitatW6uDIQDo378/Jk2ahBs3biA4OBihoaGiNkquKb9brqxFixZVCPyISDP+pa68iITMSoMhAEjJzjdo8fq9sJvYNfkJUVm/V1fib59GwL0Ug9r2cZMeWfLSc9s9kbEZbQ2Rvq5duwZXV1c4Ojpi4sSJ+Omnn9CyZUvExsbCwcEBnp6eoutr166N2NhYAEBsbKwoGCqpL6mTuiY9PR05OZWfvfHuu+8iLS1N/RUTE2OMWyWq9gK8a6B3kC+DIQUotoboyy/RsH1L9cOEGp5o/PbPxcHQv85Ukh5DV7djMyTr78Zn6t02kTGZ/KTqoKAgXL58GWlpadi1axdGjx6N48ePm7RPjo6OcHTkXy1E5sRSTsEuy5h9lnWatC4KC4HatYGk0mBnbt//YXOHijkpZbYscjM2XbL+xoM0A1onMh6TB0QODg5o2rQpAKBDhw44f/48li9fjpdffhl5eXlITU0VjRLFxcXBz88PAODn54dz586J2ivZhVb2mvI70+Li4uDu7g5nZ2elbouIjMTSTsEGlOmzUXOCXbsGtBHn++o6aQMeuPtWerm+hycCQLcm3giNSNZY3z3QR++2iYzJ5FNm5RUVFSE3NxcdOnSAvb09Dh8+rK4LDw9HdHQ0QkJCAAAhISG4du0a4uPj1dccOnQI7u7uaNmypfqasm2UXFPSBhGZNyWTsCpl0pZLFQ6rPHE7ARO3XDSgVen9LzqP4rzzjjgY6twZKCpCvGftSi+3s1EZNLo1pY/0gunXezfVu20iY9I7ILpz5w4OHDigXocjc7MagOK1OidOnEBUVBSuXbuGd999F8eOHcOIESPg4eGBcePGYcaMGTh69CguXryIsWPHIiQkBF26dAEA9OvXDy1btsTIkSNx5coVHDhwAHPmzMHkyZPVU14TJ05EREQEZs2ahVu3bmH16tXYsWMH3nzzTX1vnYiqiJKHESolIiEToRrW3IRGJOndZ4NTYOT8m35jSZkt9Tt2AGfO4PjfCSgoqvx3eEGRgD8rOYlcVxEJ0muEzPE9JOskOyBKSkpC37590axZMwwYMAAPHz4EAIwbNw5vvfWWrLbi4+MxatQoBAUFoU+fPjh//jwOHDiAp556CgDw+eefY9CgQXjhhRfQo0cP+Pn5Yffu3ern29raYu/evbC1tUVISAheeeUVjBo1CgsWLFBfExAQgH379uHQoUNo27Ytli5dim+++YZnEBFZAEs8BftspObpIcCwBcp6O34ccCl3jlFSEvDSSwCAy/dTJZ9+KTpF75e2xPeQrJPsNURvvvkm7OzsEB0djRYtWqjLX375ZcyYMQNLly7Vua3169dL1js5OWHVqlVYtWqVxmsaNmyI3377TbKdXr16ISzMfIfXiahylngKdkKG9FqfpMxcyXpN9E5mOmIEsHVr6eOhQ4EffhBd4qdla3xdD/3XW1rie0jWSXZAdPDgQRw4cAD169cXlQcGBuLevXtG6xgRkSWegq3UuTuyA4uUFKB8OqUjR4DevSs811ciuSsAeLvpv+vWEt9Dsk6yp8yysrLgUn7oFUBycjK3qhOR0VlaviqpzPEAUL+mfqMtspKZ7t5dMRjKyqo0GAKUH8WxtPeQrJPsEaLu3btj8+bNWLhwIQBApVKhqKgIn3zyCXpr+GEjItKXpZ2CrSlzfAlNi5d1sWJ4cIUUKaLAQhCAbt2A0NDSJ82cCXz6qd6vaQyW9h6SdZIdEH3yySfo06cPLly4gLy8PMyaNQs3btxAcnKyOukqEVknJQ9PtJQkrEY/QLEMycDi/n3A31/8hMuXgbZttbar9/okmSzlPSTrJDsgeuyxx/D3339j5cqVcHNzQ2ZmJoYMGYLJkyejTp06SvSRiMycJR6eqBQlR4hKVDjmZPVqYPLk0sc1awLx8YCdbr/iufCZSM+Tqj08PPDee+8Zuy9EZKGkDk/cPK6TiXplGkoGF+UDT5uiQlxcNw4108p875ctA2Ses9bYxxU1XewrTR5b08WeozpkFWQvqt64cSN27txZoXznzp349ttvjdIpIrIclnh4YlkRCZk4Gh5vtH7KWvwsU9nAMzDhHiI+fU4cDEVGyg6GgOLvQWXBEACkZOeb/XtIZAyyA6JFixbB29u7Qrmvry8+/vhjo3SKiCyHpR68l5qdh1Hrz+HJpccxduN59P7sGEatP4c0DYGBHErsqiobeM448R0ObSidIrteuwki4zOARo30attS30MiY5IdEEVHRyMgIKBCecOGDREdHW2UThGR5bDU9SdK5kgTtOQd08e95Gw4FuQhaskgTA0tPVhx6rNvY9CY5YjSEtRIsdT3kMiYZAdEvr6+uHr1aoXyK1euwMtL/4zIRGSZStafVMZc158oPc2nRHLXZrevIHzpEFFZ8Bvf45eWPQEYFrTEaAmm7qfoH2wRWQrZAdHw4cMxdepUHD16FIWFhSgsLMSRI0cwbdo0DBs2TIk+EpEZs8T1J0pOESmS3HX0aNR7tp/64e/NuqLR7L1IcfHQt5siSuYyI7IUsneZLVy4EFFRUejTpw/s/t3SWVRUhFGjRnENEZEVqqozbIxJySkiXZK76vz9SEsDPD1FRSNe/hCnGrWrcOm+qw8w5clAHXsppmQuMyJLITsgcnBwwA8//ICFCxfiypUrcHZ2RuvWrdGwYUMl+kdEZs4S158om19Lev2Qzscy/vwzMHiwqKjFm7uQ41B58BKRoP+olpK5zIgshewpsxLNmjXDSy+9hEGDBjEYIrJiSm4zV5JS+bU6B0ivpezcWMtaS0EAevUSB0PTpmH+z9c0BkMANK7j0sWf4QmS9aduJ0rWE1UHskeICgsLsWnTJhw+fBjx8fEoKhKfy3rkyBGjdY6ILIPWHFtmSKn8Wo19XNG1iRdO3624jqhrEy/p13jwAKhXT1x28SLQvj2anZPexdu0tps+3QUA3IxNl6y/8SBN77aJLIXsgGjatGnYtGkTBg4ciMceewwqlf55eYioerDk5J1K5NdaM6JDhQCxJJWJRl9/Dbz2WunjGjWAlBTAvnjkp3NALQ1PLNZF28iThG5NvBEaoXntU/dAH73bJrIUsgOi7du3Y8eOHRgwYIAS/SEiC2aJyTuVSEgrK0AsKgIaNwbu3Sst++QT4O23RZed17JY+0JUst79n9InEJ8d+ltj/eu9m+rVLpEl0WtRddOm/OEgIstWFQlpo5OycPV+KuxsVJUHK7duAS1aiMvu3i0OkMo5dDNO8rUO3IjFSx39Ja+R8sOELnj56zOVlhNZA9kB0VtvvYXly5dj5cqVnC4jIoulZELae0lZGLzqlOh8ppou9vhl8hPw9/p3V968ecD8+aVPeuwx4OpVQMPvVf+a0rv5tO3206ZzEy9ELR6I1Ufv4M/bCege6MORIbIqsgOikydP4ujRo/j999/RqlUr2NuL/5LavXu30TpHRKSEkpOqyyt7UrUh02flgyGg+JDK/6w6ibDZPQGncrvFNm8GRo6UbLO5n/Si6eZ13PXqa3mv927KQIiskuyAyNPTE88//7wSfSEiqhJKHiZ5PDxe48ndjW5fA5z6iwvj4gBfX63tnoms/PTrEqF3kwyaMiOydrIDoo0bNyrRDyKqQkosJLYkSh4mqSkNxqLfv8TwqwdLCwYNAn79Ved2Mx8VSNZn5FYehBGRbmQHRERkuapiIbElUPKk6nb1PUWPXXOzcf2LoeKL9u8H+pcbKdKidX0PHLoZr7G+bbnXJSJ59DqpeteuXRg6dCi6dOmC9u3bi76IyHxJLSS2NkqdVB2b9kj9/73vnq8QDO0+flN2MAQAg9rUlawfqKWeiKTJDoi+/PJLjB07FrVr10ZYWBg6deoELy8vRERE4JlnnlGij0RkBCULicuOiADihcTWpOSsoKMze2Hj2MdxdGYvbB7XyeCRstB/1/ps/uF9bNxVuotsc/BANJq9Fyce5ujVbmMfV3RqVLPSuk6Nalrl1CeRMckOiFavXo1169ZhxYoVcHBwwKxZs3Do0CFMnToVaWk83p3IXOmykNgaBXjXQO8gX6MFFL3dCxG1ZBB6RJWOuv1n1DLM7TcJQPGp0Pr6etTj6FHu1OgegT74etTjerdJRMVkryGKjo5G165dAQDOzs7IyMgAAIwcORJdunTBypUrjdtDIjIKS8xKX5ZFLATfsAHPjRunfphra4dWb+5Cga1xlmtacooUInMn+6fUz88PycnJaNiwIRo0aIAzZ86gbdu2iIyMhFBuKJ6IzIeSC4mVpPRCcKMEWkVFQFAQcOeOuuiTHqOwOmRohUtP3U00eHu8JaZIITJ3sgOiJ598Er/88guCg4MxduxYvPnmm9i1axcuXLiAIUOGKNFHIjKSDwc/hudWnRSdk+PubIePBj9mwl5JU+pEaaMFWrdvA82aiYp6TfgKUbXqVXp5M1/9s9ITkXJkryFat24d3nvvPQDA5MmTsWHDBrRo0QILFizAmjVrjN5BIjKeOXuuIz1HfJ5Nek4B3ttz3UQ9kqbkQnCj7Lj76CNxMBQUhLe2XtQYDAHF90RE5kf2CNH9+/fh71863Dts2DAMGzYMgiAgJiYGDRo0MGoHicg4lE5XoQSlTpQ2+HuRlwe4uACFhaVlGzcCY8bg7qqTkq99hwERkVmSPUIUEBCAhISKv0iSk5MREBBglE4RkfFZ4i4zpRaCG/S9OH8ecHQUB0MPHwJjxgAA+javLdl2v5Z+unaTiKqQ7IBIEIRKs9xnZmbCqXzCQiIyG5a4y6xkIbhtud85tioVegT66D2ipff34vXXgU5l1i316wcIAuBXGuS0ru8h2ba2eiIyDZ2nzGbMmAEAUKlUeP/99+HiUvoLpbCwEGfPnkW7du2M3kEiMg5L3WW2Yngw3tgWJpriMsaJ0rJkZADu5bLJ790LDBxY4VJNucxKXIpOQfdyZwkRkenpHBCFhRUvNBQEAdeuXYODg4O6zsHBAW3btsXMmTON30MiMhqzCC5kUuLsHVlrk/bvB8qfwp+WVjFA+pefm/RIeV0PZ537SURVR+eA6OjRowCAsWPHYvny5XDX8MuAiMyXJR/sZ8yzd3SeMhs0CNi3r7Ri/Hjg668ln+vrIR0Qebs56tRHIqpasneZffHFFygoKKhQnpycDDs7OwZKRBbAEg/2M+ZJ1TFaRoji7txDgE8rceGZM0Dnzlrb1rYw086m4hpMIjI92Yuqhw0bhu3bt1co37FjB4YNG2aUThERlUjNzsOo9efw5NLjGLvxPHp/dgyj1p9DWpnDJeU6Gh6vsW7I9cPoElIuGMrN1SkYAoAiLfUFRTzRn8gcyQ6Izp49i969e1co79WrF86ePWuUThERlTDKAYrl1KpRybSVIODQN5OwbN/npWXz5hXvIiuzZlIbjhARWSbZAVFubm6lU2b5+fnIyckxSqeIiADlTqoe1KaO6HGDlIeI+uRZBCbFlBbeugV88IHstq/cT5OsvxyTKrtNIlKe7ICoU6dOWLduXYXytWvXokOHDkbpFBERoNxhkr9dfaj+//+d3YUT6yaoH0d71MbqP8KLk7XqITJR+iTqyATzOwCTiPRYVP3hhx+ib9++uHLlCvr06QMAOHz4MM6fP4+DBw8avYNEZHzGXKCsJKWmn3Zfug+7wgJc++JlOBfkqsvf6T8F29s9jcZh/+D1Ps0kWtAswNtVut7HfL/fRNZMdkDUrVs3hIaG4tNPP8WOHTvg7OyMNm3aYP369QgMDFSij0RkJEbL8F5Frmg55PBKTKpehxwGRN/CkZWvi8o6vf4t4t28AAD5hfovfK6tZVu9nztP9CcyR7IDIgBo164dvv/+e2P3hYjKUGIUR2qB8uZxnTQ8S3fG7nNylvROssTMPPmNTpuG9Su/VD883aAN/jvsI6BMepAGWs4pkhKb8Uiy/kEa11oSmSPZAVF0dLRkPbPdExlGqVEcJbPdK9Xn3kE+2HQ6SmN9nxa+ujeWlQW4iqezxg95H38EVtxO7+qo19+KAHhSNZGlkv1T36hRo0qTu5YoLJsBmohkU2oUR1a6CpkmbbmE0IgkUdmJ2wmYuOUitr3WRa82AaBnkC/sbICCSg73sbOB7tNlf/wBPPWUqKj19B+Q4Vj5/Wbk6n/GURGkp9sKeQ4RkVmSHRCV5DQrkZ+fj7CwMCxbtgwfffSR0TpGZI2UHMVRKtt9REJmhWCoRGhEkkF9jkjIrDQYAoqDJJ3aHjIE+Omn0sejR2PGM9OREfaPxqfUMWgUR3qhN8MhIvMkOyBq27ZthbKOHTuibt26+PTTTzFkyBCjdIzIGik5iqNUtvuzkcmS9WcikvRu26DvR2Ii4FNuBOnkSaBbN3j8ckOyXU9n/af5OgfUkqzv0thL77aJSDmyzyHSJCgoCOfPnzdWc0RWSalRnBIrhgejW1NvUZnh2e6lxzwMOZdZ7+/H1q0Vg6GcHKBbNwBAao70YuyUbD0Wa/+rsY8rQjQEPSGNvcz6mAMiayZ7hCg9PV30WBAEPHz4EPPmzeO2eyIDKTWKU6Ik2/2Jv+MRFpOK9g1q6rVtvazOAdIjHp2rckREEIDgYODKldKy998HFiwQXabSEqbZSKyT1MXaVzrgjW1hlS4yJyLzJDsg8vT0rLCoWhAE+Pv7V5r0lYjkWTE8uMKHqeGjOMWU2A3W2McVXZt44fTdiuuIujYxbETkbGTla5PU9WWn46KigIAA8QU3bgAtW1Z4nqBlVMvQdc8lgWdkYhaikrLM/gBMItIjIDp69KjosY2NDXx8fNC0aVPY2em/VZWIiin5YarUDrY1I5QaEdFxgfLnnwMzZpRW1KsH3LsH2NpqaFW6XQMHiNQCvBkIEVkK2RFMz549legHEZVj7A9TJXewKTEVBwC3YzMk6yMepgKebYC0MglVV68GJk2SfJ62ESKBW8GIrI5OAdEvv/yic4P/+c9/9O4MESlHyR1sSh3MeDoiUWNdi/gIvDd4kLgwJgaoX19ru57ODtL1ZpjGhIiUpVNANHjwYNFjlUoFocyfUGXXFPFgRiLzpOQONqWm4mq5VB64/N+R9XjtfJmzhbp1A/78U+e5rmZ+0glYm9V207mPRFQ96LTtvqioSP118OBBtGvXDr///jtSU1ORmpqK3377De3bt8f+/fuV7i8R6alkB5ttuaDBVqVCj0Afgw5PPHE7QbQrDhBPxenrfz2biB475T9C1JJB4mDoxx+LzxeSsfDHrHbGEZFZkH0O0fTp07F8+XL0798f7u7ucHd3R//+/bFs2TJMnTpViT4SkZEocQ6RLlNx+opNK02UGnLvCm4te1FUv+fw1eKTqImIDCR7UfXdu3fh6elZodzDwwNRUVFG6BIRKUWJHWxKTsUduhkHAFi5ZzEGhZ9Ul//UshfefHYm+sY8wmA92lVyPRURWSbZAdHjjz+OGTNm4LvvvkPt2rUBAHFxcXj77bfRqZP+awWIqOoYcwdbYx9X1HSxR0p2xYSoNV3sDXodm6QkRC0RL5we+t/FOOf/GADgUZ5+axaVPhGciCyP7CmzDRs24OHDh2jQoAGaNm2Kpk2bokGDBvjnn3+wfv16JfpIZJUiEjJxNDzeoDU4VSEiIbPSYAgAUrLz9e//jh1Y99YzoqKgGT+qgyEAyNIzIFJqPRURWS7ZI0RNmzbF1atXcejQIdy6dQsA0KJFC/Tt27fCCdZEJJ9SW9iVYvTpJ0EAOncGyuRGXN3lRXzSc0yFS73dpLfPS1HyRHAisjx6HS2tUqnQr18/9OvXz9j9IbJ6Sm1hV4pRp5+io4GGDUVF/V9diXCfRhpeW/+RHG2HMxKRddErIDp8+DAOHz6M+Ph4FBUVieo2bNhglI4RWSMlT5NWitES0q5YAZTdqerjgwHvbEd4fI7Gp5y6U/F7pStLCzyJSFmy1xDNnz8f/fr1w+HDh5GYmIiUlBTRFxHpT8kt7Er6cHAruDuL/75yd7bDR4Mf0/CMMgoLAV9fcTD05ZdAfDzS86RHcTJz9VtDpOTZSURkmWSPEK1duxabNm3CyJEjlegPkVWz1N1Pc/bcQHpOgagsPacA7+25Lj3acu0a0KaNuOzePaBBAwBApwAv3A/7R+PTOwfU0qu/3HZPROXJHiHKy8tD165djfLiixYtwuOPPw43Nzf4+vpi8ODBCA8PF13z6NEjTJ48GV5eXnB1dcULL7yAuLg40TXR0dEYOHAgXFxc4Ovri7fffhsFBeJfzseOHUP79u3h6OiIpk2bYtOmTUa5ByJjssTdT3qPtrzzjjgY6twZKCpSB0MA8Fy7upKv/VxwPb36bKmBJxEpR3ZANH78eGzdutUoL378+HFMnjwZZ86cwaFDh5Cfn49+/fohK6v0F+ibb76JX3/9FTt37sTx48fx4MEDDClzMm1hYSEGDhyIvLw8nD59Gt9++y02bdqEuXPnqq+JjIzEwIED0bt3b1y+fBnTp0/H+PHjceDAAaPcB5ExKXGatJJkT/Pl5BSn2ViypLTshx+AM2cqpN94UOak6srcT9G8vkiKJQaeRKQs2VNmjx49wrp16/DHH3+gTZs2sLcXbwNetmyZzm2Vz322adMm+Pr64uLFi+jRowfS0tKwfv16bN26FU8++SQAYOPGjWjRogXOnDmDLl264ODBg/jrr7/wxx9/oHbt2mjXrh0WLlyI2bNnY968eXBwcMDatWsREBCApUuXAig+JuDkyZP4/PPP0b9/f7nfAiJFWdruJ1mjLSdOAD17ii9ITAS8Ks8ddj4yWbLti1HJGN6pgeQ1mnDbPRGVJTsgunr1Ktq1awcAuH79uqjO0HOI0tLSAAC1ahWvC7h48SLy8/PRt29f9TXNmzdHgwYNEBoaii5duiA0NBStW7dWn5oNAP3798ekSZNw48YNBAcHIzQ0VNRGyTXTp0+vtB+5ubnIzc1VP05PTzfovojkqIrdTxEJmbiXnG2U1B06GzECKDu6PHRo8ciQhPRHlR/4WCI1R7peihJpTIjIcskOiI4ePapEP1BUVITp06ejW7dueOyx4p0psbGxcHBwqJA7rXbt2oiNjVVfUzYYKqkvqZO6Jj09HTk5OXB2dhbVLVq0CPPnzzfavRHpSult90oc+jjnp2uS9Yu2nMK6N8uNxB45AvTurbXtdvU98cfNeI317RvU1KmPUoyZxoSILJfsNURl3b9/H/fv3zdKRyZPnozr169j+/btRmnPEO+++y7S0tLUXzExMabuElkJpbfdT9pyqULAdeJ2AiZuuah3m+HxmRrr+oefrhgMZWXpFAwBQJGW+vILuYmI9CU7ICoqKsKCBQvg4eGBhg0bomHDhvD09MTChQsrHNKoqylTpmDv3r04evQo6tevry738/NDXl4eUlNTRdfHxcXBz89PfU35XWclj7Vd4+7uXmF0CAAcHR3h7u4u+iKqCkrufopIyERoRFKldaERSXqfvdPAs+LPEAQBO7fMwld7Pi4te+ut4rQcLtL3WFZkouZgCwAiE3heEBEZh+yA6L333sPKlSuxePFihIWFISwsDB9//DFWrFiB999/X1ZbgiBgypQp+Omnn3DkyBEEBASI6jt06AB7e3scPnxYXRYeHo7o6GiEhIQAAEJCQnDt2jXEx5cOqx86dAju7u5o2bKl+pqybZRcU9IGkblQcvfTWS0LlM9oCJa08XZzFD32S09E1CfP4vF//iotvHwZ+Owz2W0HeLtK1/twqouIjEN2QPTtt9/im2++waRJk9CmTRu0adMGr7/+Or7++mvZZ/tMnjwZW7ZswdatW+Hm5obY2FjExsYiJ6d4K62HhwfGjRuHGTNm4OjRo7h48SLGjh2LkJAQdOnSBQDQr18/tGzZEiNHjsSVK1dw4MABzJkzB5MnT4ajY/Ev6okTJyIiIgKzZs3CrVu3sHr1auzYsQNvvvmm3NsnUtys/kHld59DpQLeeTrIwJalp5f03RIRk1I6zffKpX04s2aM+nGaYw0M/OwPoG1bvdoe1KaOlnrpc4qIiHQlOyBKTk5G8+bNK5Q3b94cycnSf4GWt2bNGqSlpaFXr16oU6eO+uuHMjtPPv/8cwwaNAgvvPACevToAT8/P+zevVtdb2tri71798LW1hYhISF45ZVXMGrUKCxYsEB9TUBAAPbt24dDhw6hbdu2WLp0Kb755htuuSezNHLDWRQUiYOXgiIBI9afNajdzgGVb21X1zeWrtekZR0P2BQV4syqUfjw0Bp1+cInx6Pt9B/Qwl+/doHiETM3R9tK69wcbbkYmoiMRvYus7Zt22LlypX48ssvReUrV65EW5l/BQo6LIh0cnLCqlWrsGrVKo3XNGzYEL/99ptkO7169UJYWJis/hHpwphb2I+HxyMlu/Kt5CnZ+fjzdgK6B/oY9BrG1jQhGhGfPicqe2Lietz3KN7Z6enioHfbEQmZyNCQrywjt9Ask90SkWWSHRB98sknGDhwIP744w/1GpzQ0FDExMRoDUqIqhMltrBfvp8qWX8pOkXvgEiR/F3vv4/XP/xQ/fB67SYYNPoL0YnTF+7JGzku62yk9LqmsxFJDIiIyChkT5n17NkT4eHheP7555GamorU1FQMGTIE4eHh6N69uxJ9JDJLUgco6qtdfU/JekPO3YnXkgYjMSNXsl7k0aPioKdMMDT12bcxaMzyCuk3XB1k/91VhvTKJm66JyJj0es3Vb169fDRRx8Zuy9EijH2ycxKHaDYM8hXst6Q6bI/bsZJ1h/6KxYvdfTX3tCpU8ATT4iK2r/xPZJdPCq93MWAgEhbNvsueq57IiIqT/Zvqo0bN8LV1RUvvfSSqHznzp3Izs7G6NGjjdY5IkMpMa0FKDT9hOI1RFIMWUOUmVtgUD0AYOxYoOxu0sGDMfyZWUiO0DwtlpWnQ7saNPZxRUhjr0rPTwpp7MXpMiIyGtlTZosWLYK3t3eFcl9fX3z88ceVPIPIdJSY1gKUO0BRlzVE+hrcrp5k/fPB9TVXpqUVT4WVDYYOHQJ++kmH7fqGTWytfaUDepQLAnsE+mDtKx0MapeIqCzZI0TR0dEVDlAEind6RUdHG6VTRMagZF6wxj6u6NrEC6fvVhy56NpE/5ELJdcQ+Xk46Vf/88/A4MHissxMoEbJPWoLiQxL+swkrERUFWSPEPn6+uLq1asVyq9cuQIvL87nk/lQOi+YplMjDEmv5a9l5Kl+Td3TXpT31fG7kvVrj5WrF4TinGNlg6E33igur1EakAhVtLQ5wLsGegf5MhgiIkXIHiEaPnw4pk6dCjc3N/To0QMAcPz4cUybNg3Dhg0zegeJ9GXqvGD6fHArtTYJAO5qyQt2NyGj9MGDB0C9clNsFy8C7dtXeJ6ro/SvkRoaDlYkIjInskeIFi5ciM6dO6NPnz5wdnaGs7Mz+vXrhyeffJJriMisKJkXTKnRJyWDOAdb6R93e9t/A5evvxYHQy4uQF5epcEQoH3UypBRLSKiqiI7IHJwcMAPP/yA8PBwfP/999i9ezfu3r2LDRs2wMFB/xNpiZSwYngwujUVbwLo1tQbK4YHG9SuUoFLYx9X1NSw+62mi71BQZy2wKShpxPQqBHw2mulhUuWAFlZgL3mHXnN/KQTsDar7Sanm0REJqH3ASGBgYEIDAw0Zl+IjK5kQe6Jv+MRFpOK9g1qGiX1Rcno06k7iSgss2jIVqVCt6beegcuEQmZkqk7DFkILjW11TjpPrYsGSQuvHMHaNJEa7s2WhZN29oYtqiaiKgqyB4hIlJSREImjobHIzLRsAXPJVKz8zBq/TmM2nAenx+6jZHrz2HU+nNI0xB0yKHE6JOSC8ETNJxEPfXUNhz5ZmJpQatWQFGRTsEQAJzRkl4jtJKdeERE5saQM/WJjEapAxSlziHaPK6T3u0CymwHV3INUbmlVHAoyMffS58XF27eDIwcKbdlvftERGQuOEJEZkGJAxRLziEqLLcPvuw5RMZgKdvBnexLd3sF/3OrQjA06bN9egRDQBct6TVCmvA4DiIyfwyIyOSUClyUPodICUr2+VF+IQDg4/0r8NOWmeryI407otHsvYhzqjwXmTa+Wg589HZz1KtdIqKqxFxmZHJKnb2j5PSTUhSdMstIR1S5hdOjXpqPE42LU2Dk/BswyWWJ32ciovKYy4xMjh+opRr7uMLdqfK/U9yd7PSfltu3D7vfHSgqavnmTnUwBOiY3LUSSp73RERUVWQHRMxlRsam1AeqJU6ZRSRkIv1R5YFJ+qMC/aYP+/UDBpWODH0XPACNZu9FtoNzuQv1T8Gh1HlPRERVRfaUWUkus0aNGonKmcuMDLFieDDe2BYm2mVm6AeqJY487b36QLJ+39UHmPKkjud/xcYCdeqIiv4zahmu1mlW6eX9W9WptFwXTMBKRJaOuczILPADtVhylvT5SImZebo1tHEj8OqrpY/t7TFr4ylcvRav8SlpOYafzRTgbZ3vGxFZPtkB0cKFCxEVFYU+ffrAzq746UVFRRg1ahTXEJHBjPmBqmSiVKW08JNOc9Gqrrt0A0VFQPPmwO3bpWUffQT83//hxMd/SD71zzKjc0RE1kZ2QFSSy2zhwoW4cuUKnJ2d0bp1azRs2FCJ/hHpzRKnzAzawn77NtCs3HTY338D/6bYsbeVPkBRW/JXIqLqTO+Tqps1a4Zm5X/5EpmRxj6u6NrEC6crSR3RtYmX2Y0OAdp3Odhpygu2aBHwf/9X+jgwELh1C7DRPcgRDFhUTURk6XQKiGbMmIGFCxeiRo0amDFjhuS1y5YtM0rHiIxB0PAZr6nc1K7cT5Wuj0kVJ6fNywNcXYH8Mut/NmwAxo6t8NwaDtI/7lLJX4mIqjudfgOGhYUh/99fuJcuXYKqfFKkf2kqJzKFiIRMhEZUnlg0NCLJoMzxSolMlF73FJFQZtv9+fNAp3L52B4+BPz8Kn1u1ybeuBWXqbHtbk19NNYREVV3OgVEy5cvh7t78WLOY8eOKdkfIqOxxEXVmY+kd3pllRye+PrrwJo1pRV9+wKHDkk+N0XLLrLkLB13sBERVUM6LTAIDg5GYmJx4s3GjRsjKanyv7rJOkQkZOJoeLzRkqMqxRIXVcekSAdx8Q8Ti9PWlw2G9u7VGgwBQGSC5tEhAIgy8/eTiEhJOo0QeXp6IjIyEr6+voiKikJRUZHS/SIzlJqdh6nbLosOT+wR6IMVw4Ph4WJvwp5VrrGPK0Iae1U6bRbS2DwXVUtNOveMuIhvd34gLkxLA9y1bMUvaVvLjDYXVRORNdMpIHrhhRfQs2dP1KlTByqVCh07doStrW2l10ZERBi1g2Q+pm67jFN3EkVlp+4k4o1tYdg8rpOGZ5mWpiDAmMvdIhIycS852yiHSXZp7I2bsRVHctbvmo8+d8+XFowfD3z9tay22/l7IiwmTWN9+wY1ZbVHRFSd6BQQrVu3DkOGDMGdO3cwdepUTJgwAW5u0gfIUfUSkZApGhkqUSgIOHE7wWgLlI0ZXEQkZFa65R4ATt81fFG1EiNmZ++KA06vrFRcXPmK+KLQUKBLF9ltjwxphI2n72msfyWkkew2iYiqC5332T799NMAgIsXL2LatGkMiKyM0guUlQgulO6zEiNmZXeBPX/9CD7fJz7GovlbP+GWHsEQUDyF6OZoi4zcwgp1bo62ZjmFSERUVWQfTbtx40YGQ1ZI6QXKUsGFvpTsc8mIWWG5A43KjpjpQwAAQcCB9a+LgqHPu/0XjWbvRa6d/mu1IhIyKw2GACAjt9DsF8kTESlJpxGiIUOGYNOmTXB3d8eQIUMkr929e7dROkbmpbGPK3oE+uDUnURREGCrUqFbU2+DRheUmo5Tss9KjT61yIrDbyvHicr6jF+Du17+AIpHcvRliccQEBFVFZ1GiDw8PNSHLnp4eEh+UfW1YngwujX1FpV1a+qNFcODDWpXlw9qfc3q36zCAmqVCnjn6SC92wQUGn365BNRMHTf3RcBs35RB0MA0NTXVX67/7LEYwiIiKqKTiNEGzdurPT/ybp4uNhj87hOiEzMQlRSllEWPgPKflCP3HAOBUXiaa2CIgEj1p9F2Nx+erd7PjJZsv5CVLLu35v8fMDTE8guDQzf6T8F29s9XeHSAB/9AyIlR8yIiCyd7DVEkZGRuH37doXy27dvIyoqyhh9IjMX4F0DvYN8jfYBWvJBbVtuKMdWpUKPQB+9X+d4eDxSsis/nTklOx9/VjJNp6tDN+Mk6w/eiNWtoUuXAAcHUTDU6fVvKw2GACA27ZHOfayMUqN8RESWTnZANGbMGJw+fbpC+dmzZzFmzBhj9ImskBIf1Je1JEq9FJ2id9v+NaVHtfy1jHoBAKZNAzp0KH3cuzeeXnoU8W5eGp+SnJWraxcrVTLKd3RmL2wc+ziOzuyFzeM6meXBmkREVUl2euuwsDB069atQnmXLl0wZcoUo3SKrI8S03Ht6ntK1htyEOHIkIbYeDpKor6R5idnZRVnqC9rzx7guefg/+153IrXvGZKp0BLBwHexpnuJCKqLmQHRCqVChkZGRXK09LSUFhY+ZZeIl0Z84O6Z5AvarrYVzptVtPFHt0DTZDd/Y8/gKeeEpelpBSvIQKQlCE9ApScyQSsRERKkD1l1qNHDyxatEgU/BQWFmLRokV44oknjNo5Mk9KJnc1dtu/TH4CNctNB9V0sccvkw37t6rXzrghQ8TB0OjRgCCogyEAiNCyo+6OlgStRESkH9kjREuWLEGPHj0QFBSE7t27AwD+/PNPpKen48iRI0bvIJkPJZO7KtW2v5cLwub2w5+3E3ApOgXtG9Q0ysjQjfuac4IBwM0H6egd5Fv8IDER8Cn3midPApVMPdfxcEJqjuagp56ns+y+EhGRdrJHiFq2bImrV69i6NChiI+PR0ZGBkaNGoVbt27hscceU6KPZCaUOE26KtoGgO6BPpjWp5nRpsnuJEqP1Pwd/++08tatFYOhnJxKgyEAGNU1QLJd5hsjIlKG7BEiAKhbty4+/vhjY/eFzJiSyV2rKnGsMUUnSE9t3U/MAoKDgcuXSwvnzAEWLpR8Xl0PJ8n6+jU5QkREpATZI0RA8RTZK6+8gq5du+Kff/4BAHz33Xc4efKkUTtH5kPJ06SVbLuEsdcmRado7nP9tDjsmtJdHAzduKE1GAKAB1rOGbqfkqNrF4mISAbZAdGPP/6I/v37w9nZGZcuXUJubvGumLS0NI4aVWNKniatZNup2XkYtf4cnlx6HGM3nkfvz45h1PpzSNNwYKOu3J0qX9c07vwenFxbJhdZvXpAQQHQsqWOLQuStSrJWiIi0pfsgOjDDz/E2rVr8fXXX8PevvRDoVu3brh06ZJRO0fmQ6nTpJU2aculCtNxJ24nYOKWiwa162gv/tGxLSrE1S9exvtHviktXL0auH8fsNU9IWvnAM2HMgJA58bS9UREpB/ZAVF4eDh69OhRodzDwwOpqanG6BOZKaXSPuy9+kCyfp+Wek0iEjIRGpFUaV1oRJJB02f/lJm6ahEfgbufPgf33NL2npq+GZg0Se/2iYioasleVO3n54c7d+6gUaNGovKTJ0+icePGxuoXmSGlkrsmZ0lPXyXqeRjhWS0JWM9EJOndf1ub4pGy/zuyHq+d/0ldfr5eS7w0YkmFs490pct6KnMdjSMismSyA6IJEyZg2rRp2LBhA1QqFR48eIDQ0FDMnDkT77//vhJ9JDNj7LQPLfzcJOtb1XXXq92EDOkFykmZ+ucFcynIRdiS50Rl/xv8fzgQ1BVAacAkl5LrqYiISDPZAdE777yDoqIi9OnTB9nZ2ejRowccHR0xc+ZMvPHGG0r0kao5Xy1bzb3dHPVq18dNul0vV/3axZEjOPWhOBhqM2070p1K85MVFkkvjtakZK3WqTuJKBRK27BVqdCtqTdHh4iIFCJ7DZFKpcJ7772H5ORkXL9+HWfOnEFCQgIW6rClmKgySo2KaPvHbafPKM7QoUCfPuqHe1r2RKPZe0XBEAA42eu+kLo8pdZqERGRZnodzAgADg4OcHNzg5ubG1zLZ+4mMgM3Y9Ml6/96IF0vkpwMeIl3eA3972Kc86/8dHZnB/0DIqXWahERkWayR4gKCgrw/vvvw8PDA40aNUKjRo3g4eGBOXPmID/fsLNdyDIY+5BDpQ5mTM8pkK5/pOO/1x07KgRDo1cc1RgMAUBdD8NPlA7wroHeQb4MhoiIqoDsEaI33ngDu3fvxieffIKQkBAAQGhoKObNm4ekpCSsWbPG6J0k86BUAlZFprYAxGo59VlbPQQB6NwZOH++tGz2bGDxYgT8cgPH72sO1JrWll4oTkRE5kV2QLR161Zs374dzzzzjLqsTZs28Pf3x/DhwxkQVWNSCVg3j+ukd7tFWuoL9FygnJ0nPUIkWR8dDTRsKC67ehVo3RqAcjvjiIjINGRPmTk6OlY4gwgAAgIC4ODgYIw+kRkqScBaducTIE7Aqi+lRohctKzjqeGg4e+BFSvEwZCPT3H6jX+DIQC4pWV90q2HMtYnERGRyckOiKZMmYKFCxeqc5gBQG5uLj766CNMmTLFqJ0j86FkAlalRohikqUToVa4p8JCwNcXmDq1tGz5ciA+vkL6jVuxmZJt33yYIauvRERkWrKnzMLCwnD48GHUr18fbdu2BQBcuXIFeXl56NOnD4YMGaK+dvfu3cbrKZmUkgcGKjVClJwlffCiqP7aNaBNG/EFUVEVp83+VUfL2Ul1PaXriYjIvMgOiDw9PfHCCy+Iyvz9/Y3WITJPSh4YqNQI0aN86ZYf5f1b/+67wOLFpRWPPw6cPQuoNAdiHs7Si8jdtdQTEZF5kR0Qbdy4UYl+kAVYMTwYb2wLE+0yM8aBgUqNPmkLtBzycysGPT/8UHz4ohapOdL51VKzeQQFEZElkR0Q5eTkQBAEuLgUf4jdu3cPP/30E1q2bIl+/foZvYNkPkoODDzxdwLCYlLQvkFNdA/0MXW3NHKwBXILK6/rFHMdO7a+Iy5MTKxw3pAmns7SGwg8DTiGgIiIqp7sgOi5557DkCFDMHHiRKSmpqJTp05wcHBAYmIili1bhkmTJinRTzIDSp1DpFRWejsbW+QWVoyIvvj1Uwz+63hpwUsvFR++KEMzP+nT2ZvxHCIiIosie5fZpUuX0L17dwDArl274Ofnh3v37mHz5s348ssvjd5BMh9S5xAZRnqNkH5LqoFHBeJgyP1RJqKWDBIHQ0eOyA6GAKBzgPRIUufGuo00ERGReZAdEGVnZ8PNrfiv34MHD2LIkCGwsbFBly5dcO/ePaN3kMyDsucQSYc8tnruMiurf/hpXF0+TFT22Fu7gN699WqvsY8rujapPOjp2sSL6TaIiCyM7ICoadOm2LNnD2JiYnDgwAH1uqH4+Hi4u/N03upKyXOIbsZKn9lzQ04S1jKc7W0AQcDOLbPw1Z6P1eVfPz4YjWbvBVykF3Nrs2ZEB/Qot4aqR6AP1ozoYFC7RERU9WSvIZo7dy7++9//4s0330SfPn3U+cwOHjyI4GDDdhuR+YrXkvcrMUP6zB8p6Vp2bGXqmoS1nFop8bi+coyobMCYL/FX7cYAgPxCbfvQpDErPRFR9SF7hOjFF19EdHQ0Lly4gP3796vL+/Tpg88//1xWWydOnMCzzz6LunXrQqVSYc+ePaJ6QRAwd+5c1KlTB87Ozujbty9u374tuiY5ORkjRoyAu7s7PD09MW7cOGRmik8Rvnr1Krp37w4nJyf4+/vjk08+kXfThNgM6YDoQZr0qdBStJ0ypNcxRGvX4kSZYCjdsQaavP2zOhgCgHwNO9DkYlZ6IiLLJzsgAgA/Pz8EBwfDxqb06Z06dULz5s1ltZOVlYW2bdti1apVldZ/8skn+PLLL7F27VqcPXsWNWrUQP/+/fHoUemH84gRI3Djxg0cOnQIe/fuxYkTJ/Daa6+p69PT09GvXz80bNgQFy9exKeffop58+Zh3bp1Mu/aurWr7ylZ375BTb3bNuoW9sJCoH59oMxux4W9x6HN9B9QaCNOv+FoZ/jaJCIiqh5kT5kZ0zPPPINnnnmm0jpBEPDFF19gzpw5eO655wAAmzdvRu3atbFnzx4MGzYMN2/exP79+3H+/Hl07NgRALBixQoMGDAAn332GerWrYvvv/8eeXl52LBhAxwcHNCqVStcvnwZy5YtEwVOZeXm5opytaWnM1FnzyBf2KqAwkpGa2xVMOg8ovsp0uuT/knRcfTpr7+AVq1ERU/87xvc9/Sr9HJvN6bXICKiYnqNEFWFyMhIxMbGom/fvuoyDw8PdO7cGaGhoQCA0NBQeHp6qoMhAOjbty9sbGxw9uxZ9TU9evSAg0PpKET//v0RHh6OlJSUSl970aJF8PDwUH8xNUnxLrPKgiGgOEgyZJdZWEzl70OJi9HS9QCA998XB0Nt26LVnH0agyEASNGS64yIiKyH2QZEsbGxAIDatWuLymvXrq2ui42Nha+vr6jezs4OtWrVEl1TWRtlX6O8d999F2lpaeqvmJgYw2/Iwu29+lBL/QO9287KLdC//tGj4vQbH35YWvb998Dly8jOl158lJVn2KJqIiKqPkw6ZWauHB0d4ejoaOpuGCQiIRP3krONtvMpMjFTuj5B/xEiFwc75ORr3klWw8G28opTp4AnnhCXxccDPsXTdzYApNZNm+1fA0REVOXMNiDy8yue6oiLi0OdOnXU5XFxcWjXrp36mvj4eNHzCgoKkJycrH6+n58f4uLiRNeUPC65pjpRKr1GgLd0qooAH/2Drkd50tu9ciqrHzsW2LSp9PFzzwHldil6utojKVNzoFXTVXoxNxERWQ+z/SM5ICAAfn5+OHz4sLosPT0dZ8+eVZ99FBISgtTUVFy8eFF9zZEjR1BUVITOnTurrzlx4gTyy4xAHDp0CEFBQahZU/+dUeZKqfQabet7SNa38/fUu+2sfOmpK1F9WlrxFFnZYOjgwQrBEAD4e0ofvNigpmEHMxIRUfVh0oAoMzMTly9fxuXLlwEUL6S+fPkyoqOjoVKpMH36dHz44Yf45ZdfcO3aNYwaNQp169bF4MGDAQAtWrTA008/jQkTJuDcuXM4deoUpkyZgmHDhqFu3boAgP/+979wcHDAuHHjcOPGDfzwww9Yvnw5ZsyYYaK7Vo6S6TW0nTOk804wQ/zyC+DpKS7LzASeeqrSywN8pEe1GvHcICIi+pdJA6ILFy4gODhYfcL1jBkzEBwcjLlz5wIAZs2ahTfeeAOvvfYaHn/8cWRmZmL//v1wcirdLv3999+jefPm6NOnDwYMGIAnnnhCdMaQh4cHDh48iMjISHTo0AFvvfUW5s6dq3HLvSVTMr2GthSr+pydqDNBAJ58snharMQbbxSX19Ac1AxuV1ey2efb1zNWD4mIyMKZdA1Rr169IAiaP0pVKhUWLFiABQsWaLymVq1a2Lp1q+TrtGnTBn/++afe/bQUDWtJTwE18tJ/RCRJS2qOlCzp9Bv68s1IwrnVo8WFFy4AHbTnC+sZ5At3JzukP6q4S83dyc6gs5OIiKh6Mds1RCRfYx9X9Aj0ga1KPJpjq1KhR6CPQbvNLt9PlawP0+WsIJlevnJAHAw5OwN5eToFQyX2vdEdNcstJq/pYo99b3Q3VjeJiKgaMNtdZqSfFcOD8ca2MNEus25NvbFiuGGJd92dpHeouTvrv4OtPJVQhONfTUCDtDK7A5csAWbNkt2Wv5cLwub2w5+3E3ApOgXtG9TkyBAREVXAgKiaUSoDu4eWgMfTSAFR46T7OPLNRFFZj9e+xolZ4w1qt3ugDwMhIiLSiAFRNRXgbZxAqETo3UQt9Ul6t+1oq0JuoYCpp7Zhxsnv1eV/ezVAv3Gr4GjHmV0iIlIWA6JqytgnVd/Xsq0+WkuCVimOQj7ClwwWlc0Y+CZ2P9YHAGDLeIiIiBTGgKiaUeqk6oIi6dOkCwql6zU6exZXFw0WFXWYsgVJNTzVj/M1ZZUlIiIyEv7tXc0odVK1k7107OzsoEew9dprQJcu6odHGndEo9l7RcEQoPAZR0REROAIUbVSclJ1eWVPqtZ3+szN0Q6pOZqzzrs5yvinlJ4OeIhTgYx5cR6ONeloeNtERER64AhRNaLkSdXJWg5eTMqUPrhR7bffKgRDAxfu1RgMAYCXq6NubRMREemJAVE1ouRJ1bISsGry9NPAwIGljydNAgQBiSrprPOZuZoz1hMRERkD5yKqkZKTqk/dSRQleLVVqdCtqbdRt+HLEhsL1KkjLjt7FujUSccGpPOoERERGYojRNXMiuHB6NbUW1RmjJOq9bZxozgYsrUFcnNFwVANLWuEajgwbiciImXxk6aaKTmp+sTfCQiLMWGqiqIioEUL4O+/S8s+/BB4770Kl2o7BVtbPRERkaEYEFUzSp1DJMvt20CzZuKyv/8GAgMrvbyRdw2ExaRpbK6Rt/TaKCIiIkNxyqyaUeocIp0tWiQOhgIDgcJCjcEQAHQJ8JJsMqSJt2Q9ERGRoThCVI0oeQ6RNvaF+YCDA5BfZkfY+vXAq69qfa6vh5Nkvbcbt90TEZGyGBBVI7qcQ6REQNT64W38uvlNceGDBxV3lmmg5HEBREREuuCUWTWi7c20szH+9vUFB9eIg6G+fQFB0DkYAkqPC7BViftnq1KhR6CP6Y4LICIiq8GAqBrRdjRiQZHxsoK55OUgaskgjArbV1r466/AoUN6tWd2xwUQEZFV4ZSZiUUkZOJecjYaedUweCTkxn3NO7UA4OaDdPQO8jXoNQCgZ8RFfLvzA1HZY9N34PqgQXq3WXJcQGRiFqKSsozy/SAiItIVAyITUWJ7/Km7SZL1J28n4vXeTfVqu8Q3u+aj793z6sfb2vTDu89MNajNsgK8GQgREVHVY0BkIlLb4zeP0zWlhVgNR1vJelcDssZ7ZaXi4spXRGXPv/IZwuo117tNIiIic8GAyASU2h7v4aTlxGd9D2b87jtcXDlKVNTsrZ+QZ8cTpImIqHpgQGQCSm2PP/53vGT90Vtx8hoUBKB1a+DGDXXR593+i+VP/Fd234iIiMwZAyITUOrcnbTsfIPqRSIigCZNREV9xq/BXS9/fbpGRERk1rjt3gSUOnenUMuuem31ap9+Kg6GGjZEwKxfGAwREVG1xYDIRJQ4d0fbOUTa6pGfD7i6ArNmlZZ99RUQFQVBxX8qRERUfXHKzETM7tydS5eADh3EZffvA/XqAQDsbIACiYjKjvESERFZMH6MmViAdw30DvI1bTA0fbo4GOrVCygqUgdDAODnLp2Ata6HszJ9IyIiqgIcIbJmWVnFU2Rl/fQTMHhwhUv9a9XA/dRHGpuqX1N6oTgREZE54wiRiUUkZOJoeDwiE7Oq9oX/+KNiMJSSUmkwBADN/VwrLS/Roo6bkTpGRERU9ThCZCJKpO7Q2ZAhxSNBJUaNAr79VvIpI0MaYePpexrrXwlpZKTOERERVT2OEJmIVOoOpdTMTgNUKnEw9OefWoMhoPiogPb+HpXWtff3YP4xIiKyaAyITKAkdUehID4YqGzqDmP7z1/HEbZihLgwJwd44gmd29g4tjN6BPqIynoE+mDj2M7G6CIREZHJcMrMBJRK3VEpQcDeb6fjsbi7pWXvvQd8+KHspszuqAAiIiIjYUBkAtqG5exsVFqu0E39tDicXDtOXHj9OtCqlUHtBngzECIiouqFU2YmcOV+qnR9jHS9Ll49/7MoGIpzrYXGb/9scDBERERUHXGEyASSs/Ik6xMzc/Vu27aoEBdXjIDno0x12ZynJmFL+4F6t0lERFTdMSAyARtIT4nZ2eg3cNciPgK/b5wqKguZtBEP3X00PIOIiIgATpmZxKXoFMn6i/eS5Tc6c6YoGLpQrwUazfqVwRAREZEOOEJkArkFhdL1+Vrz0pfKzgZqiBc4Txz8LvYHddOna0RERFaJAZEpCNov0cnRo8CTT4qK2kzbjnQn6TQbREREJMaAyARuJ2RK1v8dn6G9kZdfBnbsKH08fDgaNRih+XoiIiLSiGuITKBAy4yYZH1ycnH6jbLB0LFjwNatxugaERGRVWJAZEl27gS8vMRl2dlAz56m6Q8REVE1wYDIEggC0KULMHRoadmsWcXlzs7qovqeTpLN+NeUriciIrJWDIjMXXQ0YGMDnD1bWnblCrBkSYVLP3q+tWRTHw9pY+zeERERVQsMiMzZihVAw4alj729gfx8oE3lgU3PIF8421belLMt0D2QZxIRERFVhgGRGbIpKgR8fYGpZU6dXr4cSEgA7KQ3Bh6c0Rs1XexFZTVd7HFwRm8lukpERFQtcNu9mWmWEIWDG6aIC6OixCNFEvy9XBA2tx/+vJ2AS9EpaN+gJkeGiIiItGBAZEZmHd+E18/sKi3o2BE4d654m71M3QN9GAgRERHpiAGRGXDMz0X4shfEhdu3Fx++SERERIrjGiITezzmeoVgqN3UrQyGiIiIqhADIhN69fzP2Ln1HfXjfUHd0Gj2XqQ6u5uwV0RERNaHAZEJ/VYmI/3wYR9h8uB3TdgbIiIi68U1RCYU6+6NYcM/xuU6zfDInqdIExERmQoDIhM704CnRxMREZkap8yIiIjI6jEgIiIiIqvHgIiIiIisHgMiIiIisnoMiEwgavFAg+qJiIjIuBgQERERkdXjtnsTKRkFavTOvgplREREVLUYEJkYgyAiIiLTs6ops1WrVqFRo0ZwcnJC586dce7cOVN3iYiIiMyA1QREP/zwA2bMmIEPPvgAly5dQtu2bdG/f3/Ex8ebumtERERkYlYTEC1btgwTJkzA2LFj0bJlS6xduxYuLi7YsGGDqbtGREREJmYVAVFeXh4uXryIvn37qstsbGzQt29fhIaGVrg+NzcX6enpoi8iIiKqvqwiIEpMTERhYSFq164tKq9duzZiY2MrXL9o0SJ4eHiov/z9/auqq0RERGQCVhEQyfXuu+8iLS1N/RUTE2PqLhEREZGCrGLbvbe3N2xtbREXFycqj4uLg5+fX4XrHR0d4ejoWFXdIyIiIhOzihEiBwcHdOjQAYcPH1aXFRUV4fDhwwgJCTFhz4iIiMgcWMUIEQDMmDEDo0ePRseOHdGpUyd88cUXyMrKwtixY03dNSIiIjIxqwmIXn75ZSQkJGDu3LmIjY1Fu3btsH///goLrYmIiMj6qARBEEzdCXOXlpYGT09PxMTEwN3d3dTdISIiIh2kp6fD398fqamp8PDwkLzWakaIDJGUlAQA3H5PRERkgTIyMhgQGUOtWrUAANHR0Vq/oZaqJIqurqNgvD/LV93vsbrfH1D975H3Z34EQUBGRgbq1q2r9VoGRDqwsSnejOfh4WEx/wj05e7uXq3vkfdn+ar7PVb3+wOq/z3y/syLrgMZVrHtnoiIiEgKAyIiIiKyegyIdODo6IgPPvigWp9eXd3vkfdn+ar7PVb3+wOq/z3y/iwbt90TERGR1eMIEREREVk9BkRERERk9RgQERERkdVjQERERERWz2oDolWrVqFRo0ZwcnJC586dce7cOcnrd+7ciebNm8PJyQmtW7fGb7/9JqoXBAFz585FnTp14OzsjL59++L27dtK3oIkOff39ddfo3v37qhZsyZq1qyJvn37Vrh+zJgxUKlUoq+nn35a6duQJOceN23aVKH/Tk5Oomss+T3s1atXhftTqVQYOHCg+hpzeg9PnDiBZ599FnXr1oVKpcKePXu0PufYsWNo3749HB0d0bRpU2zatKnCNXJ/rpUi9/52796Np556Cj4+PnB3d0dISAgOHDggumbevHkV3r/mzZsreBfS5N7jsWPHKv03GhsbK7rOUt/Dyn6+VCoVWrVqpb7GnN7DRYsW4fHHH4ebmxt8fX0xePBghIeHa32epX0WymGVAdEPP/yAGTNm4IMPPsClS5fQtm1b9O/fH/Hx8ZVef/r0aQwfPhzjxo1DWFgYBg8ejMGDB+P69evqaz755BN8+eWXWLt2Lc6ePYsaNWqgf//+ePToUVXdlprc+zt27BiGDx+Oo0ePIjQ0FP7+/ujXrx/++ecf0XVPP/00Hj58qP7atm1bVdxOpeTeI1B8umrZ/t+7d09Ub8nv4e7du0X3dv36ddja2uKll14SXWcu72FWVhbatm2LVatW6XR9ZGQkBg4ciN69e+Py5cuYPn06xo8fLwoa9Pk3oRS593fixAk89dRT+O2333Dx4kX07t0bzz77LMLCwkTXtWrVSvT+nTx5Uonu60TuPZYIDw8X3YOvr6+6zpLfw+XLl4vuKyYmBrVq1arwM2gu7+Hx48cxefJknDlzBocOHUJ+fj769euHrKwsjc+xtM9C2QQr1KlTJ2Hy5Mnqx4WFhULdunWFRYsWVXr90KFDhYEDB4rKOnfuLPzvf/8TBEEQioqKBD8/P+HTTz9V16empgqOjo7Ctm3bFLgDaXLvr7yCggLBzc1N+Pbbb9Vlo0ePFp577jljd1Vvcu9x48aNgoeHh8b2qtt7+Pnnnwtubm5CZmamuszc3sMSAISffvpJ8ppZs2YJrVq1EpW9/PLLQv/+/dWPDf2eKUWX+6tMy5Ythfnz56sff/DBB0Lbtm2N1zEj0uUejx49KgAQUlJSNF5Tnd7Dn376SVCpVEJUVJS6zJzfw/j4eAGAcPz4cY3XWNpnoVxWN0KUl5eHixcvom/fvuoyGxsb9O3bF6GhoZU+JzQ0VHQ9APTv3199fWRkJGJjY0XXeHh4oHPnzhrbVIo+91dednY28vPz1UltSxw7dgy+vr4ICgrCpEmTkJSUZNS+60rfe8zMzETDhg3h7++P5557Djdu3FDXVbf3cP369Rg2bBhq1KghKjeX91AubT+DxviemZOioiJkZGRU+Bm8ffs26tati8aNG2PEiBGIjo42UQ/1165dO9SpUwdPPfUUTp06pS6vbu/h+vXr0bdvXzRs2FBUbq7vYVpaGgBU+DdXliV9FurD6gKixMREFBYWonbt2qLy2rVrV5jLLhEbGyt5fcl/5bSpFH3ur7zZs2ejbt26on/UTz/9NDZv3ozDhw9jyZIlOH78OJ555hkUFhYatf+60Oceg4KCsGHDBvz888/YsmULioqK0LVrV9y/fx9A9XoPz507h+vXr2P8+PGicnN6D+XS9DOYnp6OnJwco/y7NyefffYZMjMzMXToUHVZ586dsWnTJuzfvx9r1qxBZGQkunfvjoyMDBP2VHd16tTB2rVr8eOPP+LHH3+Ev78/evXqhUuXLgEwzu8uc/HgwQP8/vvvFX4GzfU9LCoqwvTp09GtWzc89thjGq+zpM9CfTDbPYksXrwY27dvx7Fjx0SLjocNG6b+/9atW6NNmzZo0qQJjh07hj59+piiq7KEhIQgJCRE/bhr165o0aIFvvrqKyxcuNCEPTO+9evXo3Xr1ujUqZOo3NLfQ2uxdetWzJ8/Hz///LNofc0zzzyj/v82bdqgc+fOaNiwIXbs2IFx48aZoquyBAUFISgoSP24a9euuHv3Lj7//HN89913JuyZ8X377bfw9PTE4MGDReXm+h5OnjwZ169fN+maNHNgdSNE3t7esLW1RVxcnKg8Li4Ofn5+lT7Hz89P8vqS/8ppUyn63F+Jzz77DIsXL8bBgwfRpk0byWsbN24Mb29v3Llzx+A+y2XIPZawt7dHcHCwuv/V5T3MysrC9u3bdfrlasr3UC5NP4Pu7u5wdnY2yr8Jc7B9+3aMHz8eO3bsqDA1UZ6npyeaNWtmEe+fJp06dVL3v7q8h4IgYMOGDRg5ciQcHBwkrzWH93DKlCnYu3cvjh49ivr160tea0mfhfqwuoDIwcEBHTp0wOHDh9VlRUVFOHz4sGgEoayQkBDR9QBw6NAh9fUBAQHw8/MTXZOeno6zZ89qbFMp+twfULwzYOHChdi/fz86duyo9XXu37+PpKQk1KlTxyj9lkPfeyyrsLAQ165dU/e/OryHQPGW2NzcXLzyyitaX8eU76Fc2n4GjfFvwtS2bduGsWPHYtu2baLjEjTJzMzE3bt3LeL90+Ty5cvq/leH9xAo3r11584dnf4oMeV7KAgCpkyZgp9++glHjhxBQECA1udY0mehXky9qtsUtm/fLjg6OgqbNm0S/vrrL+G1114TPD09hdjYWEEQBGHkyJHCO++8o77+1KlTgp2dnfDZZ58JN2/eFD744APB3t5euHbtmvqaxYsXC56ensLPP/8sXL16VXjuueeEgIAAIScnx+zvb/HixYKDg4Owa9cu4eHDh+qvjIwMQRAEISMjQ5g5c6YQGhoqREZGCn/88YfQvn17ITAwUHj06FGV358+9zh//nzhwIEDwt27d4WLFy8Kw4YNE5ycnIQbN26or7Hk97DEE088Ibz88ssVys3tPczIyBDCwsKEsLAwAYCwbNkyISwsTLh3754gCILwzjvvCCNHjlRfHxERIbi4uAhvv/22cPPmTWHVqlWCra2tsH//fvU12r5n5nx/33//vWBnZyesWrVK9DOYmpqqvuatt94Sjh07JkRGRgqnTp0S+vbtK3h7ewvx8fFVfn+CIP8eP//8c2HPnj3C7du3hWvXrgnTpk0TbGxshD/++EN9jSW/hyVeeeUVoXPnzpW2aU7v4aRJkwQPDw/h2LFjon9z2dnZ6mss/bNQLqsMiARBEFasWCE0aNBAcHBwEDp16iScOXNGXdezZ09h9OjRout37NghNGvWTHBwcBBatWol7Nu3T1RfVFQkvP/++0Lt2rUFR0dHoU+fPkJ4eHhV3Eql5Nxfw4YNBQAVvj744ANBEAQhOztb6Nevn+Dj4yPY29sLDRs2FCZMmGCSX1JlybnH6dOnq6+tXbu2MGDAAOHSpUui9iz5PRQEQbh165YAQDh48GCFtsztPSzZgl3+q+SeRo8eLfTs2bPCc9q1ayc4ODgIjRs3FjZu3FihXanvWVWSe389e/aUvF4Qio8ZqFOnjuDg4CDUq1dPePnll4U7d+5U7Y2VIfcelyxZIjRp0kRwcnISatWqJfTq1Us4cuRIhXYt9T0UhOIt5s7OzsK6desqbdOc3sPK7g2A6OeqOnwWyqESBEFQbPiJiIiIyAJY3RoiIiIiovIYEBEREZHVY0BEREREVo8BEREREVk9BkRERERk9RgQERERkdVjQERERERWjwERERERWT0GRERkUVQqFfbs2QMAiIqKgkqlwuXLl3V+/rx589CuXTtF+kZElosBERFZLH9/fzx8+BCPPfaYzs+ZOXOmKPnkmDFjMHjwYAV6p59evXph+vTppu4GkdWxM3UHiIj0ZWtrCz8/P1nPcXV1haurq0I9IiJLxREiIqpSu3btQuvWreHs7AwvLy/07dsXWVlZAIDz58/jqaeegre3Nzw8PNCzZ09cunRJY1vlp8yOHTsGlUqFw4cPo2PHjnBxcUHXrl0RHh6ufk7ZKbN58+bh22+/xc8//wyVSgWVSoVjx47hySefxJQpU0SvlZCQAAcHB9HoUlkl7X711Vfw9/eHi4sLhg4dirS0NPU1JaNR8+fPh4+PD9zd3TFx4kTk5eWp648fP47ly5er+xMVFSX3W0xEemBARERV5uHDhxg+fDheffVV3Lx5E8eOHcOQIUNQkmM6IyMDo0ePxsmTJ3HmzBkEBgZiwIAByMjIkPU67733HpYuXYoLFy7Azs4Or776aqXXzZw5E0OHDsXTTz+Nhw8f4uHDh+jatSvGjx+PrVu3Ijc3V33tli1bUK9ePTz55JMaX/fOnTvYsWMHfv31V+zfvx9hYWF4/fXXRdccPnxYfe/btm3D7t27MX/+fADA8uXLERISggkTJqj74+/vL+veiUg/nDIjoirz8OFDFBQUYMiQIWjYsCEAoHXr1ur68sHGunXr4OnpiePHj2PQoEE6v85HH32Enj17AgDeeecdDBw4EI8ePYKTk5PoOldXVzg7OyM3N1c09TZkyBBMmTIFP//8M4YOHQoA2LRpE8aMGQOVSqXxdR89eoTNmzejXr16AIAVK1Zg4MCBWLp0qbp9BwcHbNiwAS4uLmjVqhUWLFiAt99+GwsXLoSHhwccHBzg4uIieyqQiAzDESIiqjJt27ZFnz590Lp1a7z00kv4+uuvkZKSoq6Pi4vDhAkTEBgYCA8PD7i7uyMzMxPR0dGyXqdNmzbq/69Tpw4AID4+XufnOzk5YeTIkdiwYQMA4NKlS7h+/TrGjBkj+bwGDRqogyEACAkJQVFRkWjKrm3btnBxcRFdk5mZiZiYGJ37R0TGx4CIiKqMra0tDh06hN9//x0tW7bEihUrEBQUhMjISADA6NGjcfnyZSxfvhynT5/G5cuX4eXlpV5joyt7e3v1/5eM6BQVFclqY/z48Th06BDu37+PjRs34sknn1SPahFR9cOAiIiqlEqlQrdu3TB//nyEhYXBwcEBP/30EwDg1KlTmDp1KgYMGIBWrVrB0dERiYmJivbHwcEBhYWFFcpbt26Njh074uuvv8bWrVs1rkMqKzo6Gg8ePFA/PnPmDGxsbBAUFKQuu3LlCnJyckTXuLq6qtcKaeoPESmLARERVZmzZ8/i448/xoULFxAdHY3du3cjISEBLVq0AAAEBgbiu+++w82bN3H27FmMGDECzs7OivapUaNGuHr1KsLDw5GYmIj8/Hx13fjx47F48WIIgoDnn39ea1tOTk4YPXo0rly5gj///BNTp07F0KFDReuB8vLyMG7cOPz111/47bff8MEHH2DKlCmwsbFR9+fs2bOIiopCYmKi7JEtItIPAyIiqjLu7u44ceIEBgwYgGbNmmHOnDlYunQpnnnmGQDA+vXrkZKSgvbt22PkyJGYOnUqfH19Fe3ThAkTEBQUhI4dO8LHxwenTp1S1w0fPhx2dnYYPnx4hQXZlWnatCmGDBmCAQMGoF+/fmjTpg1Wr14tuqZPnz4IDAxEjx498PLLL+M///kP5s2bp66fOXMmbG1t0bJlS/j4+MheP0VE+lEJJftdiYhIJCoqCk2aNMH58+fRvn17yWvnzZuHPXv2SKYRGTNmDFJTU9WpR4jIfHDbPRFROfn5+UhKSsKcOXPQpUsXrcEQEVk+TpkREZVz6tQp1KlTB+fPn8fatWtN3R0iqgKcMiMiIiKrxxEiIiIisnoMiIiIiMjqMSAiIiIiq8eAiIiIiKweAyIiIiKyegyIiIiIyOoxICIiIiKrx4CIiIiIrN7/A4W3g6UC9WBlAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -225,7 +215,7 @@ "\n", "# Generate line points\n", "regression_line = slope * x + intercept\n", - "plt.show()\n", + "\n", "# Add the regression line to the scatter plot\n", "plt.plot(x, regression_line, color='red')\n", "\n", From 92e53c0a2d776545999151b91c4dc6550c802bf6 Mon Sep 17 00:00:00 2001 From: Dan Norris Date: Sat, 19 Oct 2024 10:01:59 -0700 Subject: [PATCH 43/94] adding plots --- D3-Pandas_Graphing.ipynb | 93 +++++++++++++++++++++++++++++++++------- 1 file changed, 77 insertions(+), 16 deletions(-) diff --git a/D3-Pandas_Graphing.ipynb b/D3-Pandas_Graphing.ipynb index b2fb022..864c5b8 100644 --- a/D3-Pandas_Graphing.ipynb +++ b/D3-Pandas_Graphing.ipynb @@ -30,7 +30,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -49,9 +49,39 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " gage height ft temperature C \\\n", + "datetime \n", + "2024-09-15 20:00:00 5.37 20.4 \n", + "2024-09-15 20:15:00 5.58 20.4 \n", + "2024-09-15 20:30:00 5.75 20.3 \n", + "2024-09-15 20:45:00 5.99 20.3 \n", + "2024-09-15 21:00:00 6.21 20.3 \n", + "\n", + " specific conductance uS/cm dissolved oxygen mg/L pH \\\n", + "datetime \n", + "2024-09-15 20:00:00 159.0 8.6 7.8 \n", + "2024-09-15 20:15:00 165.0 8.6 7.8 \n", + "2024-09-15 20:30:00 165.0 8.6 7.8 \n", + "2024-09-15 20:45:00 166.0 8.6 7.8 \n", + "2024-09-15 21:00:00 166.0 8.6 7.9 \n", + "\n", + " dom ug/L salinity ppt \n", + "datetime \n", + "2024-09-15 20:00:00 14.7 0.1 \n", + "2024-09-15 20:15:00 16.6 0.1 \n", + "2024-09-15 20:30:00 16.5 0.1 \n", + "2024-09-15 20:45:00 16.7 0.1 \n", + "2024-09-15 21:00:00 16.7 0.1 \n" + ] + } + ], "source": [ "cols = {'datetime': 'datetime',\n", " '288768_00065': 'gage height ft',\n", @@ -181,7 +211,7 @@ }, { "cell_type": "code", - "execution_count": 56, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -191,6 +221,16 @@ "slope: 2160.6322894868645 intercept: -19.685058556168173\n" ] }, + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAGwCAYAAABIC3rIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABz2klEQVR4nO3dd3xTVf8H8E+6W7qggzIKFChlyCggUJAlCAr4iKgID7IEfEAQEBH0JyJDBVRQZIoyRAQERFRQhkyBsssUKtCWFqF7Dzrv74/atLdtbnKT3CZpPu/Xqy/NOTcn5za0+fasr0oQBAFEREREVszG1B0gIiIiMjUGRERERGT1GBARERGR1WNARERERFaPARERERFZPQZEREREZPUYEBEREZHVszN1ByxBUVERHjx4ADc3N6hUKlN3h4iIiHQgCAIyMjJQt25d2NhIjwExINLBgwcP4O/vb+puEBERkR5iYmJQv359yWsYEOnAzc0NQPE31N3d3cS9ISIiIl2kp6fD399f/TkuhQGRDkqmydzd3RkQERERWRhdlrtwUTURERFZPQZEREREZPUYEBEREZHVY0BEREREVo8BEREREVk9BkRERERk9RgQERERkdVjQERERERWjwERERERWT0GRERERGT1GBARERGR1WNARERERFaPARERERGZVmYmkJdn0i4wICIiIiLTEASgZ0/AzQ1wdDRpV+xM+upERERknR48AOrVM3Uv1DhCRERERFVr3TpxMOTmBuTnm64/YEBEREREVaWoCGjQAPjf/0rLPv0USE8H7Ew7acUpMyIiIlLezZtAy5bisrt3gcaNTdOfcjhCRERERMqaN08cDLVpUzxaZCbBEMARIiIiIlJKbi7g5CQu27IFGDHCNP2RwICIiIiIjC80FOjaVVwWFwf4+pqmP1pwyoyIiIiMa/x4cTD07LPFZw6ZaTAEcISIiIiIjCU9HfDwEJcdOAD062ea/sjAESIiIiIy3N69FYOhjAyLCIYABkRERERkqL59i6fFSkyeXDxF5upquj7JxCkzIiIi0s/Dh0DduuKy8+eBjh1N0x8DcISIiIiI5NuwQRwMOTkVZ6y3wGAIYEBERERUrUQkZOJoeDwiE7OUeYGiIqBpU2DcuNKyRYuAnBzA3l6Z16wCnDIjIiKqBlKz8zB122WcuJ2gLusR6IMVw4Ph4WKkQOXvv4GgIHHZ7dvFAZKF4wgRERFRNTB122WcupMoKjt1JxFvbAszzgt89JE4GGrRonS0qBrgCBEREZGFi0jIFI0MlSgUBJy4nYDIxCwEeNfQr/G8PMDFBSgsLC3btAkYPVq/9swUR4iIiIgs3L3kbMn6qCQ91xOdOwc4OoqDodjYahcMAQyIiIiILF7DWi6S9Y289BgdmjQJ6Ny59PHTTxefLVS7tvy2LACnzIiIiKhURgbg7i4u27cPGDDANP2pIhwhIiIisnBGmzL7/feKwVB6erUPhgAGRERERBbPKFNmAwaIA5/XXiueInNzM7B3loFTZkRERBausY8regT64NSdRBQKgrrcVqVCt6be0jvM4uIAPz9x2Zkz4vVDVoAjRERERNXAiuHB6NbUW1TWrak3VgwP1vykb78VB0M2NkBurtUFQwADIiIiompBgKD9IvXFAtCyJTBmTGnZggXF2+sdHIzeN0vAgIiIiKga0Pmk6rt3i0eCbt4sLbt1C3j/fcn2Fc+RZmJcQ0RERGThdD6peskS4J13Si9o0qQ4P5mN5vGRqsiRdjw8Hpfvp6J9g5roHuhjlDblYkBERERk4bRtu78Xm4qA+l7F64NKfPONOGO9BlIjT5vHddKrv+p+JWVh8KpTSMnOV5fVdLHHL5OfgL+X9M45Y+OUGRERkYWT2nb/WOwd9GpdXxwMPXigUzBUMvJUducaIB55MkT5YAgAUrLz8Z9VJw1qVx8MiIiIiKqYsdfjlGy7t1WpROXz//gKe7+dXlrQp0/xguo6dXRqV7EcaSieJisfDJVIyc7Hn5VMASqJU2ZERERVRMn1OCuGB+ONbWE4cTsBLnk5+Ovzl8QX/PIL8OyzstpUJEfavy7fT5WsvxSdUqXriThCREREVEV03gmmBw8Xe2we1wlnOhRWDIZSU2UHQwBwPjJZsv5ClHS9lHb1PSXr2zeoqXfb+mBAREREVAWUXo8DABg8GH5Dnyt9PHZs8RSZh4dezYVGJknWn7qbKFkvpWeQL2pqGBWr6WJf5bvNGBARERFVASXX4yAhAVCpgJ9/Li07dQrYsEH/NgGEBHhJ1ndr4i1Zr80vk5+oEBSV7DKralxDREREVAUUW4+zdSswYoS47NEjwNFRv/bKeLlTA7y35zoKiiqegm1no8JLHf0Nat/fywVhc/vhz9sJuBSdYtJziDhCREREVAU07QSzVanQI9BHOgFrZQQBaNNGHAzNnVtcboRgqMQvk7vBzkbcZzsbFX6Z3M1or9E90AfT+jQzWTAEmFFAtHjxYqhUKkyfPl1d9ujRI0yePBleXl5wdXXFCy+8gLi4ONHzoqOjMXDgQLi4uMDX1xdvv/02CgoKRNccO3YM7du3h6OjI5o2bYpNmzZVwR0RERGJ6ZWAtTKRkcWnS1+7Vlr211/A/Pk4Hh6P5Yf/Ntq29Zb1PHDn4wH49MU2GBxcF5++2AZ3Ph6AlvX0W5dkrsxiyuz8+fP46quv0KZNG1H5m2++iX379mHnzp3w8PDAlClTMGTIEJw6dQoAUFhYiIEDB8LPzw+nT5/Gw4cPMWrUKNjb2+Pjjz8GAERGRmLgwIGYOHEivv/+exw+fBjjx49HnTp10L9//yq/VyIisl4lO8EiE7MQlZSFRl415I8MLVsGvPVW6WN/fyAyEvdSH2HwgoOKnfr8Ukd/g6fIzJlKEAQZ6XGNLzMzE+3bt8fq1avx4Ycfol27dvjiiy+QlpYGHx8fbN26FS+++CIA4NatW2jRogVCQ0PRpUsX/P777xg0aBAePHiA2rVrAwDWrl2L2bNnIyEhAQ4ODpg9ezb27duH69evq19z2LBhSE1Nxf79+3XqY3p6Ojw8PJCWlgZ3d3fjfxOIiIi0KSgAatUCMjJKy9asASZOBAAElwuGStR0sUfY3H5V1UuzIufz2+RTZpMnT8bAgQPRt29fUfnFixeRn58vKm/evDkaNGiA0NBQAEBoaChat26tDoYAoH///khPT8eNGzfU15Rvu3///uo2KpObm4v09HTRFxERkclcvgzY24uDofv31cGQuZ36bIlMGhBt374dly5dwqJFiyrUxcbGwsHBAZ6enqLy2rVrIzY2Vn1N2WCopL6kTuqa9PR05OTkVNqvRYsWwcPDQ/3l7199hwiJiMjMvfUWEFxmjVGPHkBREVCvnrpIl1OfSZrJAqKYmBhMmzYN33//PZycnEzVjUq9++67SEtLU3/FxMSYuktERGRtsrOLzxZatqy0bPdu4Pjx4vIyzO3UZ0tksoDo4sWLiI+PR/v27WFnZwc7OzscP34cX375Jezs7FC7dm3k5eUhNTVV9Ly4uDj4+fkBAPz8/CrsOit5rO0ad3d3ODs7V9o3R0dHuLu7i76IiIiMRWty1yNHgBrlFlsnJwPPP1/p5eZ26rMlMllA1KdPH1y7dg2XL19Wf3Xs2BEjRoxQ/7+9vT0OHz6sfk54eDiio6MREhICAAgJCcG1a9cQHx+vvubQoUNwd3dHy5Yt1deUbaPkmpI2iIiIqkpqdh5GrT+HJ5cex9iN59H7s2MYtf4c0squ/3nppeKs9CVGjiw+W6im9CjPlnGdKj0v6PtxnY15C9WWybbdu7m54bHHHhOV1ahRA15eXurycePGYcaMGahVqxbc3d3xxhtvICQkBF26dAEA9OvXDy1btsTIkSPxySefIDY2FnPmzMHkyZPh+O+hVBMnTsTKlSsxa9YsvPrqqzhy5Ah27NiBffv2Ve0NExGR1ZNK7rp5cBPAu1wqjBMngO7ddWp7yf6/UX7fuCAAi/eHY/O4ToZ02yqYfJeZlM8//xyDBg3CCy+8gB49esDPzw+7d+9W19va2mLv3r2wtbVFSEgIXnnlFYwaNQoLFixQXxMQEIB9+/bh0KFDaNu2LZYuXYpvvvmGZxAREVGVkkru6vbL7orBUE6OzsFQlSSOreZMfg6RJeA5REREZKij4fEYu/G8uFAQ8MvmN9Em9k5p2bvvAv8eLmxQ22VsHPs4egf5ymqzOpDz+W0WJ1UTERGZo+Ph8bh8P9UoSUfLJ3etlxaPU2tfFV907RpQbjmJPm2Xp3fiWCvCgIiIiKice0lZGLzqlGJpMMZc+AXzDq9TP06o4YnMu/cQUFu/WYiSxLGn7iSKps1sVSp0a+otPz2IFTLrNURERESmUD4YAopPfP7PqpN6t3kvORs2RYW49OV/RcHQ3L7/w+NTtiAq9ZHebQNGTBxrpThCREREVIYuaTD0mT5rGhuJiE+fE5V1nbQBD9yL1/YYOq1llMSxVowjRERERGUokgZj9mz49+qifnixbnM0mvUrHrj7wlalQo9AH6MFLwHeNdA7yJfBkEwcISIiIirDqGkwcnIAF/GaoxUTP8ZSjzbqx5zWMg8MiIiIiMooSYNR2bSZrDQYx48DvXqJy5KS8EatWhjEaS2zwykzIiKicn6Z/ESF3GAlu8x08t//ioOhl18uPja6Vi0AnNYyRxwhIiIiKsffywVhc/vhz9sJuBSdovs5RMnJgJeXuOzo0YojRWR2GBARERFp0D3QR/cpsh9/BF58UVyWnQ04Oxu/Y2R0nDIjIiIyhCAAXbuKg6GZM4vLGQxZDI4QERER6SsmBmjQQFx2+TLQtq1JukP64wgRERGRPlavFgdDXl5Afr5OwdDx8HgsP/w3/rydoGAHSQ6OEBERkUWLSMjEveTsqtvCXlgI+PsDDx+Wln3xBTBtmtanKp0jjfTHgIiIiCxSanYepm67jBNlRll6BPpgxfBgeJTbMm80N25UzEYfGQk0aqTT06VypIXN7WekTpI+OGVGREQWaeq2yzh1J1FUdupOIt7YFqbMC86ZIw6GOnQAiop0DoZ0yZFGpsOAiIiILE5EQiZO3E5AoSCIygsFASduJyAyMct4L/boEaBSAR99VFq2bRtw4UJxuY4UyZFGRsOAiIiILM695GzJ+qgkIwVEp05V3DqfkAAMGya7KT83J8n6uh7com9KDIiIiMjiNKwlvQC5kZcRFlePHg08USZVx5AhxWcLeXvr1Zyvh3RA5O3mqFe7ZBxcVE1ERBansY8regT64NSdRNG0ma1KhW5NvQ3bbZaaCtQUZ7T/78sfwu6pp7AiO1/vBdtVEsSR3jhCREREFmnF8GB0ayoerenW1Bsrhgfr3+jPP1cIhlq8uQunG7XDidsJmLjlot5NlwRxtuXWHdmqVOgR6MNErybGESIiIrJIHi722DyuEyITsxCVlGXYOUSCAPTuDRw/ri7a0OE/WND3NdFloRFJiEzM0vt1ZvUPwuC7iUCZteAqFfDO00F6tUfGw4CIiIgsWoC3gQcyPngA1KsnKho4+gvc8Gta6eVnIpL0fr2RG86ioEi8M66gSMCI9Wd5DpGJccqMiIis17p14mDIzQ0r91/XGAwBQFJmrl4vxXOIzBsDIiIisj4lByr+73+lZZ9+CqSnw6umq+RTvV312w3Gc4jMG6fMiIjIosnOZXbrFtCihbjs7l2gcWMAQOcAL8mnd24sXa9Ju/qekvXtG9SUrCdlMSAiIiKLpFcus3nzgPnzSx+3bg1cuSI6cbqxjyu6NvHC6btJFZ7etYmX3uuHegb5wtPZHqk5FafNPJ3t0T3QR692yTj0CogePHiAkydPIj4+HkVFRaK6qVOnGqVjREREUqRymW0e10l8cW4u4FTuYMTvvgNeeaXStteM6IA3toVVGmwZItDXFefvVZwaC/SVnqYj5ckOiDZt2oT//e9/cHBwgJeXF1RlomqVSsWAiIiIFFeSy6y8srnM1CM5Z84AISHiC+PiAF9fje0LEDTW6SsiIbPSYAgAzt9LMWg7PxlO9qLq999/H3PnzkVaWhqioqIQGRmp/oqIiFCij0RERCI65zKbMEEcDA0aVHzmkEQwBEiPPumryvKvkV5kjxBlZ2dj2LBhsLHhBjUiIjINbWkwAhwKK2ai378f6N9fa9uyRp9kYOoO8yY7qhk3bhx27typRF+IiIh0IpUGY2p2OBo1rit+QkaGTsEQoNxIDlN3mDfZI0SLFi3CoEGDsH//frRu3Rr29uKV/MuWLTNa54iIiDRZMTy4wsLnPb/MR+u/zpVeNHkysHKlrHa1jRTY2ai0XKFZZX02OP8aGYVeAdGBAwcQFFScd6X8omoiIqKqUDaX2YNbkejWvbX4gnPngMcfl93ug7Qcyfp/UqTrpRg1/xoZleyAaOnSpdiwYQPGjBmjQHeIiIjkcf3+W3SbPrm0wNGxeIrMXsNZRFokZORJ1+uZuqMsg/OvkdHJXkPk6OiIbt26KdEXIiKqxiISMnE0PB6RicbZTZWa+Qhxvv7wKRMM7RgyCWnJ+gdDxaS33HMupHqSPUI0bdo0rFixAl9++aUS/SEiompGrxOltfn7b3j+u3SjRM/X1uF+rXrYW9nBjERayA6Izp07hyNHjmDv3r1o1apVhUXVu3fvNlrniIjI8sk6UVoXH30EzJmjfni3Vn30Hb8agsoGMHBrfDHpMSDjH9lI5kB2QOTp6YkhQ4Yo0RciIqpmjHqmT14e4OICFBaqi2YOmI5drftWuDQqSf+AyMfNQbpez2z3ZN5kB0QbN25Uoh9ERFQN6XKmj06By7lzQOfOoqLHJ3+HBNfKM8QbsjVeqWz3ZN5kL6qOjIzE7du3K5Tfvn0bUVFRxugTERFVE0Y5nfn118XBUP/+OHorTmMwBAAFRZzYInlkB0RjxozB6dOnK5SfPXuWW/GJiEiksY8rujapfESlaxMv6dGhjIzi9Btr1pSW7d0L7N+PG/fTJF/35oN0fboLgDnHrJXsgCgsLKzSbfddunTB5cuXjdEnIiIyEWNvjQeKc6nKKQdQnHfM3V1clpYGDBwIALiTmCn5mn/HZ8jooRhzjlkn2QGRSqVCRkbFf2hpaWkoLLPQjYiILEdqdh5GrT+HJ5cex9iN59H7s2MYtf4c0rLzDWo3IiEToRFJldaFRiRVHngNGAA880zp49deK46eygRIIVrW+XRr4q1XfwHmHLNWsgOiHj16YNGiRaLgp7CwEIsWLcITTzxh1M4REVHVkNoabwhZ00/x8cVTZL//Xlp25gzw1VcVnvdypwYaF07b2ajwUkd/vfpbYsXwYHRrKg6qmHOsepO9y2zJkiXo0aMHgoKC0L17dwDAn3/+ifT0dBw5csToHSQiImUZdWt8OTonSt28GRg9urRCpQIePQIcNG+B3/JqZwz75kyF8u/Hda7kanmYc8z6yB4hatmyJa5evYqhQ4ciPj4eGRkZGDVqFG7duoXHHntMiT4SEZGClFxEXKSlvqCwCGjZUhwMLVgAFBVJBkMAsPr43UqntVYdu6tnbysSJBc6UXWi8wjRhg0b8J///Afe3t6oW7cuPv74YyX7RUREVUTJRcRSbTdIeYjeLfzEhbduAeVSclRGyVEtQKF0I2TWdB4h2rJlC+rXr4+uXbtiyZIluHXrlpL9IiKiKqLkImJNbU86+yNOrJtQ5sLGxSdQ6xAMAcpvjZ+05VKFgOvE7QRM3HLRoHbJfOkcEB05cgQPHz7E66+/josXL6JTp04IDAzEW2+9hRMnTqCoSNvAKBERmasPB7eCu7N40sDd2Q4fDTZ8KUTZBcp2hQW4ufQFzD5WJuvBunXA3buAje6rOHRem6QHvXbGkcWTtYaoZs2aeOWVV7Bjxw4kJiZixYoVyMnJwYgRI+Dr64tRo0Zh165dyMriPxYiIksyZ88NpOcUiMrScwrw3p7rBrddskD51FMeuPPZYDgX5JZWPngATJig+ckaaF2bZMBJ1WcjkyXrz2gIlsiyyV5UXcLBwQFPP/00Vq9ejZiYGOzfvx+NGjXCwoULsWzZMmP2kYiIFFSyHqew3ALisutxDDZ1Kur17V76uE+f4rOF6tTRq7n4tEeS9YkZuZL10qSDKf3Hnsicyd52X15BQQEePXqEjh07omPHjliwYAHy8w07yIuIiKqO0RKwViYrC3B1FZf98gvw7LP6tfev2AzpgOhBWo7ebTO5q3XSeYTo119/xaZNm0RlH330EVxdXeHp6Yl+/fohJSUFAGBvzxX4RERKpMFQgmK7zP74o0IwtGbPBfzZvIt+7ZXh5+YkWV/Xw1nvtg3Kv0YWS+eAaNmyZaK1QadPn8bcuXPx/vvvY8eOHYiJicHChQsV6SQRkSVRKg2GUhTZZTZ4MPDUU+qHe4L7odHsvVgSGouR688heMFBxCRJj0xJ8fWQDoi83Rz1bhsA1ozogB6BPqKyHoE+WDOig0HtkvlSCTqeOuXr64sDBw4gOLj42PIZM2bgr7/+wv79+wEAv/32G6ZNm4bbt28r11sTSU9Ph4eHB9LS0uBePtkgEVE5o9afw6k7iaI1ObYqFbo19cbmcZ1M2DPN0rLz8ca2MMPP3UlIAHx9RUWjXl2GEz7NKlzq4WyHKx/016u/x8PjMXrjeY31343rhO7lAhp98KRqyybn81vnNUQZGRnw8iodQjx58iReeukl9eNWrVrhwYMHenSXiKj6UPrAQKWU7AQ78XcCwmJS0L5BTfkBxdatwIgRoqITV6Nx4vurlV6ellOAP28n6BW4aFsj9E+K/muIygrwZiBkLXSeMqtXrx5u3rwJAMjMzMSVK1fQtWtXdX1SUhJcXKTnoYmIqjulDwxUSsk036gN5/D5odsYuf6c7tN8ggC0aycOht5/HxAEHIlMk3zq4ZtxevZYeq8XE26QXDoHRC+99BKmT5+O7777DhMmTICfnx+6dCldGHfhwgUE6XjCKBGRuTD2wmcl02AoSe9s95GRxQcqXrlSWnbjRnE+MgC1akjnI/N21W+tT+eAWpL1XbgTjGTSecps7ty5+OeffzB16lT4+flhy5YtsLW1Vddv27YNzxq4jZKIqKoolauqZIGypjVE5jj9ovc037JlwFtvlT729y8OkMp8NrSt7yn52m39pes1aezjipDGXpWeKB3SmDvBSD6dR4icnZ2xefNmpKSk4ObNm+jevbuo/ujRo5g9e7bRO0hEpAS9R0R0UDZVRYluTb2xYniwwW0rQfY0X0EB4OEhDobWrAGio0XBEAA80HKA4n0D1voseaENapYLXmu62OOTF9ro3SZZL4MPZiQiKhGRkIl7ydlmvyNH6YXPJQuULWWHkqy8YFeuFK8XKismBqhfv9LnJmg5QDEpU/8Tpefsua4x3Yi57uYj8yU7IAoICIBKpXkxW0REhEEdIiLLo9T0k1IUPZm5DKV2KBk78NR5x9ZbbxVPk5Xo3h04fhyQ+Ezw0XIekL5riCx1Nx+ZL9kB0fTp00WP8/PzERYWhv379+Ptt982Vr+IyIJITT+Z41/qlrrwWbnAU3rHls2jnIpBz+7dwPPPa21ZqTQYVRXUkvWQHRBNmzat0vJVq1bhwoULBneIiCyLJf6lbokLnwHlAs+6Eqc+h9y7gqE9B4kLk5OBmjX1fj1jsNSglsyX3tnuy3vmmWfw448/Gqs5IrIQlnrujqUtfFYyI32RhvKVexZj2/b3SgtGjCg+c0hGMLT3qvSBvfu01GuiSLoRsmpGC4h27dqFWrWkz4Uob82aNWjTpg3c3d3h7u6OkJAQ/P777+r6R48eYfLkyfDy8oKrqyteeOEFxMWJD/GKjo7GwIED4eLiAl9fX7z99tsoKBAvsjt27Bjat28PR0dHNG3atEKSWiLSn6X+pV6y8PnozF7YOPZxHJ3ZC5vHdTLLNU+AsoFn+ffQMycdUUsGYVD4ydLC48eBLVtkt60tUItI0L/flhbUknmTPWUWHBwsWlQtCAJiY2ORkJCA1atXy2qrfv36WLx4MQIDAyEIAr799ls899xzCAsLQ6tWrfDmm29i37592LlzJzw8PDBlyhQMGTIEp06dAgAUFhZi4MCB8PPzw+nTp/Hw4UOMGjUK9vb2+PjjjwEAkZGRGDhwICZOnIjvv/8ehw8fxvjx41GnTh30769fDh0iKmWp008lLCU1g5KBZ0l299N3kzDw5p9Y9csS8QU5OYCTdDJVTTydpQ9m9DQgALW03Xxk3nRO7lpi/vz5osc2Njbw8fFBr1690Lx5c4M7VKtWLXz66ad48cUX4ePjg61bt+LFF18EANy6dQstWrRAaGgounTpgt9//x2DBg3CgwcPULt2bQDA2rVrMXv2bCQkJMDBwQGzZ8/Gvn37cP36dfVrDBs2DKmpqerEtOXl5uYiN7d0K2h6ejr8/f2Z3JVIA6MlBiVJwQsOIqWSVBo1XewRNrefQW2/uPoU5nw4Fu0eliboXt3lRRwd9SZ2Tuoq8UxpXx7+G8sOaU76PbNfM0x5MlDv9omkKJLctcQHH3ygd8ekFBYWYufOncjKykJISAguXryI/Px89O3bV31N8+bN0aBBA3VAFBoaitatW6uDIQDo378/Jk2ahBs3biA4OBihoaGiNkquKb9brqxFixZVCPyISDP+pa68iITMSoMhAEjJzjdo8fq9sJvYNfkJUVm/V1fib59GwL0Ug9r2cZMeWfLSc9s9kbEZbQ2Rvq5duwZXV1c4Ojpi4sSJ+Omnn9CyZUvExsbCwcEBnp6eoutr166N2NhYAEBsbKwoGCqpL6mTuiY9PR05OZWfvfHuu+8iLS1N/RUTE2OMWyWq9gK8a6B3kC+DIQUotoboyy/RsH1L9cOEGp5o/PbPxcHQv85Ukh5DV7djMyTr78Zn6t02kTGZ/KTqoKAgXL58GWlpadi1axdGjx6N48ePm7RPjo6OcHTkXy1E5sRSTsEuy5h9lnWatC4KC4HatYGk0mBnbt//YXOHijkpZbYscjM2XbL+xoM0A1onMh6TB0QODg5o2rQpAKBDhw44f/48li9fjpdffhl5eXlITU0VjRLFxcXBz88PAODn54dz586J2ivZhVb2mvI70+Li4uDu7g5nZ2elbouIjMTSTsEGlOmzUXOCXbsGtBHn++o6aQMeuPtWerm+hycCQLcm3giNSNZY3z3QR++2iYzJ5FNm5RUVFSE3NxcdOnSAvb09Dh8+rK4LDw9HdHQ0QkJCAAAhISG4du0a4uPj1dccOnQI7u7uaNmypfqasm2UXFPSBhGZNyWTsCpl0pZLFQ6rPHE7ARO3XDSgVen9LzqP4rzzjjgY6twZKCpCvGftSi+3s1EZNLo1pY/0gunXezfVu20iY9I7ILpz5w4OHDigXocjc7MagOK1OidOnEBUVBSuXbuGd999F8eOHcOIESPg4eGBcePGYcaMGTh69CguXryIsWPHIiQkBF26dAEA9OvXDy1btsTIkSNx5coVHDhwAHPmzMHkyZPVU14TJ05EREQEZs2ahVu3bmH16tXYsWMH3nzzTX1vnYiqiJKHESolIiEToRrW3IRGJOndZ4NTYOT8m35jSZkt9Tt2AGfO4PjfCSgoqvx3eEGRgD8rOYlcVxEJ0muEzPE9JOskOyBKSkpC37590axZMwwYMAAPHz4EAIwbNw5vvfWWrLbi4+MxatQoBAUFoU+fPjh//jwOHDiAp556CgDw+eefY9CgQXjhhRfQo0cP+Pn5Yffu3ern29raYu/evbC1tUVISAheeeUVjBo1CgsWLFBfExAQgH379uHQoUNo27Ytli5dim+++YZnEBFZAEs8BftspObpIcCwBcp6O34ccCl3jlFSEvDSSwCAy/dTJZ9+KTpF75e2xPeQrJPsNURvvvkm7OzsEB0djRYtWqjLX375ZcyYMQNLly7Vua3169dL1js5OWHVqlVYtWqVxmsaNmyI3377TbKdXr16ISzMfIfXiahylngKdkKG9FqfpMxcyXpN9E5mOmIEsHVr6eOhQ4EffhBd4qdla3xdD/3XW1rie0jWSXZAdPDgQRw4cAD169cXlQcGBuLevXtG6xgRkSWegq3UuTuyA4uUFKB8OqUjR4DevSs811ciuSsAeLvpv+vWEt9Dsk6yp8yysrLgUn7oFUBycjK3qhOR0VlaviqpzPEAUL+mfqMtspKZ7t5dMRjKyqo0GAKUH8WxtPeQrJPsEaLu3btj8+bNWLhwIQBApVKhqKgIn3zyCXpr+GEjItKXpZ2CrSlzfAlNi5d1sWJ4cIUUKaLAQhCAbt2A0NDSJ82cCXz6qd6vaQyW9h6SdZIdEH3yySfo06cPLly4gLy8PMyaNQs3btxAcnKyOukqEVknJQ9PtJQkrEY/QLEMycDi/n3A31/8hMuXgbZttbar9/okmSzlPSTrJDsgeuyxx/D3339j5cqVcHNzQ2ZmJoYMGYLJkyejTp06SvSRiMycJR6eqBQlR4hKVDjmZPVqYPLk0sc1awLx8YCdbr/iufCZSM+Tqj08PPDee+8Zuy9EZKGkDk/cPK6TiXplGkoGF+UDT5uiQlxcNw4108p875ctA2Ses9bYxxU1XewrTR5b08WeozpkFWQvqt64cSN27txZoXznzp349ttvjdIpIrIclnh4YlkRCZk4Gh5vtH7KWvwsU9nAMzDhHiI+fU4cDEVGyg6GgOLvQWXBEACkZOeb/XtIZAyyA6JFixbB29u7Qrmvry8+/vhjo3SKiCyHpR68l5qdh1Hrz+HJpccxduN59P7sGEatP4c0DYGBHErsqiobeM448R0ObSidIrteuwki4zOARo30attS30MiY5IdEEVHRyMgIKBCecOGDREdHW2UThGR5bDU9SdK5kgTtOQd08e95Gw4FuQhaskgTA0tPVhx6rNvY9CY5YjSEtRIsdT3kMiYZAdEvr6+uHr1aoXyK1euwMtL/4zIRGSZStafVMZc158oPc2nRHLXZrevIHzpEFFZ8Bvf45eWPQEYFrTEaAmm7qfoH2wRWQrZAdHw4cMxdepUHD16FIWFhSgsLMSRI0cwbdo0DBs2TIk+EpEZs8T1J0pOESmS3HX0aNR7tp/64e/NuqLR7L1IcfHQt5siSuYyI7IUsneZLVy4EFFRUejTpw/s/t3SWVRUhFGjRnENEZEVqqozbIxJySkiXZK76vz9SEsDPD1FRSNe/hCnGrWrcOm+qw8w5clAHXsppmQuMyJLITsgcnBwwA8//ICFCxfiypUrcHZ2RuvWrdGwYUMl+kdEZs4S158om19Lev2Qzscy/vwzMHiwqKjFm7uQ41B58BKRoP+olpK5zIgshewpsxLNmjXDSy+9hEGDBjEYIrJiSm4zV5JS+bU6B0ivpezcWMtaS0EAevUSB0PTpmH+z9c0BkMANK7j0sWf4QmS9aduJ0rWE1UHskeICgsLsWnTJhw+fBjx8fEoKhKfy3rkyBGjdY6ILIPWHFtmSKn8Wo19XNG1iRdO3624jqhrEy/p13jwAKhXT1x28SLQvj2anZPexdu0tps+3QUA3IxNl6y/8SBN77aJLIXsgGjatGnYtGkTBg4ciMceewwqlf55eYioerDk5J1K5NdaM6JDhQCxJJWJRl9/Dbz2WunjGjWAlBTAvnjkp3NALQ1PLNZF28iThG5NvBEaoXntU/dAH73bJrIUsgOi7du3Y8eOHRgwYIAS/SEiC2aJyTuVSEgrK0AsKgIaNwbu3Sst++QT4O23RZed17JY+0JUst79n9InEJ8d+ltj/eu9m+rVLpEl0WtRddOm/OEgIstWFQlpo5OycPV+KuxsVJUHK7duAS1aiMvu3i0OkMo5dDNO8rUO3IjFSx39Ja+R8sOELnj56zOVlhNZA9kB0VtvvYXly5dj5cqVnC4jIoulZELae0lZGLzqlOh8ppou9vhl8hPw9/p3V968ecD8+aVPeuwx4OpVQMPvVf+a0rv5tO3206ZzEy9ELR6I1Ufv4M/bCege6MORIbIqsgOikydP4ujRo/j999/RqlUr2NuL/5LavXu30TpHRKSEkpOqyyt7UrUh02flgyGg+JDK/6w6ibDZPQGncrvFNm8GRo6UbLO5n/Si6eZ13PXqa3mv927KQIiskuyAyNPTE88//7wSfSEiqhJKHiZ5PDxe48ndjW5fA5z6iwvj4gBfX63tnoms/PTrEqF3kwyaMiOydrIDoo0bNyrRDyKqQkosJLYkSh4mqSkNxqLfv8TwqwdLCwYNAn79Ved2Mx8VSNZn5FYehBGRbmQHRERkuapiIbElUPKk6nb1PUWPXXOzcf2LoeKL9u8H+pcbKdKidX0PHLoZr7G+bbnXJSJ59DqpeteuXRg6dCi6dOmC9u3bi76IyHxJLSS2NkqdVB2b9kj9/73vnq8QDO0+flN2MAQAg9rUlawfqKWeiKTJDoi+/PJLjB07FrVr10ZYWBg6deoELy8vRERE4JlnnlGij0RkBCULicuOiADihcTWpOSsoKMze2Hj2MdxdGYvbB7XyeCRstB/1/ps/uF9bNxVuotsc/BANJq9Fyce5ujVbmMfV3RqVLPSuk6Nalrl1CeRMckOiFavXo1169ZhxYoVcHBwwKxZs3Do0CFMnToVaWk83p3IXOmykNgaBXjXQO8gX6MFFL3dCxG1ZBB6RJWOuv1n1DLM7TcJQPGp0Pr6etTj6FHu1OgegT74etTjerdJRMVkryGKjo5G165dAQDOzs7IyMgAAIwcORJdunTBypUrjdtDIjIKS8xKX5ZFLATfsAHPjRunfphra4dWb+5Cga1xlmtacooUInMn+6fUz88PycnJaNiwIRo0aIAzZ86gbdu2iIyMhFBuKJ6IzIeSC4mVpPRCcKMEWkVFQFAQcOeOuuiTHqOwOmRohUtP3U00eHu8JaZIITJ3sgOiJ598Er/88guCg4MxduxYvPnmm9i1axcuXLiAIUOGKNFHIjKSDwc/hudWnRSdk+PubIePBj9mwl5JU+pEaaMFWrdvA82aiYp6TfgKUbXqVXp5M1/9s9ITkXJkryFat24d3nvvPQDA5MmTsWHDBrRo0QILFizAmjVrjN5BIjKeOXuuIz1HfJ5Nek4B3ttz3UQ9kqbkQnCj7Lj76CNxMBQUhLe2XtQYDAHF90RE5kf2CNH9+/fh71863Dts2DAMGzYMgiAgJiYGDRo0MGoHicg4lE5XoQSlTpQ2+HuRlwe4uACFhaVlGzcCY8bg7qqTkq99hwERkVmSPUIUEBCAhISKv0iSk5MREBBglE4RkfFZ4i4zpRaCG/S9OH8ecHQUB0MPHwJjxgAA+javLdl2v5Z+unaTiKqQ7IBIEIRKs9xnZmbCqXzCQiIyG5a4y6xkIbhtud85tioVegT66D2ipff34vXXgU5l1i316wcIAuBXGuS0ru8h2ba2eiIyDZ2nzGbMmAEAUKlUeP/99+HiUvoLpbCwEGfPnkW7du2M3kEiMg5L3WW2Yngw3tgWJpriMsaJ0rJkZADu5bLJ790LDBxY4VJNucxKXIpOQfdyZwkRkenpHBCFhRUvNBQEAdeuXYODg4O6zsHBAW3btsXMmTON30MiMhqzCC5kUuLsHVlrk/bvB8qfwp+WVjFA+pefm/RIeV0PZ537SURVR+eA6OjRowCAsWPHYvny5XDX8MuAiMyXJR/sZ8yzd3SeMhs0CNi3r7Ri/Hjg668ln+vrIR0Qebs56tRHIqpasneZffHFFygoKKhQnpycDDs7OwZKRBbAEg/2M+ZJ1TFaRoji7txDgE8rceGZM0Dnzlrb1rYw086m4hpMIjI92Yuqhw0bhu3bt1co37FjB4YNG2aUThERlUjNzsOo9efw5NLjGLvxPHp/dgyj1p9DWpnDJeU6Gh6vsW7I9cPoElIuGMrN1SkYAoAiLfUFRTzRn8gcyQ6Izp49i969e1co79WrF86ePWuUThERlTDKAYrl1KpRybSVIODQN5OwbN/npWXz5hXvIiuzZlIbjhARWSbZAVFubm6lU2b5+fnIyckxSqeIiADlTqoe1KaO6HGDlIeI+uRZBCbFlBbeugV88IHstq/cT5OsvxyTKrtNIlKe7ICoU6dOWLduXYXytWvXokOHDkbpFBERoNxhkr9dfaj+//+d3YUT6yaoH0d71MbqP8KLk7XqITJR+iTqyATzOwCTiPRYVP3hhx+ib9++uHLlCvr06QMAOHz4MM6fP4+DBw8avYNEZHzGXKCsJKWmn3Zfug+7wgJc++JlOBfkqsvf6T8F29s9jcZh/+D1Ps0kWtAswNtVut7HfL/fRNZMdkDUrVs3hIaG4tNPP8WOHTvg7OyMNm3aYP369QgMDFSij0RkJEbL8F5Frmg55PBKTKpehxwGRN/CkZWvi8o6vf4t4t28AAD5hfovfK6tZVu9nztP9CcyR7IDIgBo164dvv/+e2P3hYjKUGIUR2qB8uZxnTQ8S3fG7nNylvROssTMPPmNTpuG9Su/VD883aAN/jvsI6BMepAGWs4pkhKb8Uiy/kEa11oSmSPZAVF0dLRkPbPdExlGqVEcJbPdK9Xn3kE+2HQ6SmN9nxa+ujeWlQW4iqezxg95H38EVtxO7+qo19+KAHhSNZGlkv1T36hRo0qTu5YoLJsBmohkU2oUR1a6CpkmbbmE0IgkUdmJ2wmYuOUitr3WRa82AaBnkC/sbICCSg73sbOB7tNlf/wBPPWUqKj19B+Q4Vj5/Wbk6n/GURGkp9sKeQ4RkVmSHRCV5DQrkZ+fj7CwMCxbtgwfffSR0TpGZI2UHMVRKtt9REJmhWCoRGhEkkF9jkjIrDQYAoqDJJ3aHjIE+Omn0sejR2PGM9OREfaPxqfUMWgUR3qhN8MhIvMkOyBq27ZthbKOHTuibt26+PTTTzFkyBCjdIzIGik5iqNUtvuzkcmS9WcikvRu26DvR2Ii4FNuBOnkSaBbN3j8ckOyXU9n/af5OgfUkqzv0thL77aJSDmyzyHSJCgoCOfPnzdWc0RWSalRnBIrhgejW1NvUZnh2e6lxzwMOZdZ7+/H1q0Vg6GcHKBbNwBAao70YuyUbD0Wa/+rsY8rQjQEPSGNvcz6mAMiayZ7hCg9PV30WBAEPHz4EPPmzeO2eyIDKTWKU6Ik2/2Jv+MRFpOK9g1q6rVtvazOAdIjHp2rckREEIDgYODKldKy998HFiwQXabSEqbZSKyT1MXaVzrgjW1hlS4yJyLzJDsg8vT0rLCoWhAE+Pv7V5r0lYjkWTE8uMKHqeGjOMWU2A3W2McVXZt44fTdiuuIujYxbETkbGTla5PU9WWn46KigIAA8QU3bgAtW1Z4nqBlVMvQdc8lgWdkYhaikrLM/gBMItIjIDp69KjosY2NDXx8fNC0aVPY2em/VZWIiin5YarUDrY1I5QaEdFxgfLnnwMzZpRW1KsH3LsH2NpqaFW6XQMHiNQCvBkIEVkK2RFMz549legHEZVj7A9TJXewKTEVBwC3YzMk6yMepgKebYC0MglVV68GJk2SfJ62ESKBW8GIrI5OAdEvv/yic4P/+c9/9O4MESlHyR1sSh3MeDoiUWNdi/gIvDd4kLgwJgaoX19ru57ODtL1ZpjGhIiUpVNANHjwYNFjlUoFocyfUGXXFPFgRiLzpOQONqWm4mq5VB64/N+R9XjtfJmzhbp1A/78U+e5rmZ+0glYm9V207mPRFQ96LTtvqioSP118OBBtGvXDr///jtSU1ORmpqK3377De3bt8f+/fuV7i8R6alkB5ttuaDBVqVCj0Afgw5PPHE7QbQrDhBPxenrfz2biB475T9C1JJB4mDoxx+LzxeSsfDHrHbGEZFZkH0O0fTp07F8+XL0798f7u7ucHd3R//+/bFs2TJMnTpViT4SkZEocQ6RLlNx+opNK02UGnLvCm4te1FUv+fw1eKTqImIDCR7UfXdu3fh6elZodzDwwNRUVFG6BIRKUWJHWxKTsUduhkHAFi5ZzEGhZ9Ul//UshfefHYm+sY8wmA92lVyPRURWSbZAdHjjz+OGTNm4LvvvkPt2rUBAHFxcXj77bfRqZP+awWIqOoYcwdbYx9X1HSxR0p2xYSoNV3sDXodm6QkRC0RL5we+t/FOOf/GADgUZ5+axaVPhGciCyP7CmzDRs24OHDh2jQoAGaNm2Kpk2bokGDBvjnn3+wfv16JfpIZJUiEjJxNDzeoDU4VSEiIbPSYAgAUrLz9e//jh1Y99YzoqKgGT+qgyEAyNIzIFJqPRURWS7ZI0RNmzbF1atXcejQIdy6dQsA0KJFC/Tt27fCCdZEJJ9SW9iVYvTpJ0EAOncGyuRGXN3lRXzSc0yFS73dpLfPS1HyRHAisjx6HS2tUqnQr18/9OvXz9j9IbJ6Sm1hV4pRp5+io4GGDUVF/V9diXCfRhpeW/+RHG2HMxKRddErIDp8+DAOHz6M+Ph4FBUVieo2bNhglI4RWSMlT5NWitES0q5YAZTdqerjgwHvbEd4fI7Gp5y6U/F7pStLCzyJSFmy1xDNnz8f/fr1w+HDh5GYmIiUlBTRFxHpT8kt7Er6cHAruDuL/75yd7bDR4Mf0/CMMgoLAV9fcTD05ZdAfDzS86RHcTJz9VtDpOTZSURkmWSPEK1duxabNm3CyJEjlegPkVWz1N1Pc/bcQHpOgagsPacA7+25Lj3acu0a0KaNuOzePaBBAwBApwAv3A/7R+PTOwfU0qu/3HZPROXJHiHKy8tD165djfLiixYtwuOPPw43Nzf4+vpi8ODBCA8PF13z6NEjTJ48GV5eXnB1dcULL7yAuLg40TXR0dEYOHAgXFxc4Ovri7fffhsFBeJfzseOHUP79u3h6OiIpk2bYtOmTUa5ByJjssTdT3qPtrzzjjgY6twZKCpSB0MA8Fy7upKv/VxwPb36bKmBJxEpR3ZANH78eGzdutUoL378+HFMnjwZZ86cwaFDh5Cfn49+/fohK6v0F+ibb76JX3/9FTt37sTx48fx4MEDDClzMm1hYSEGDhyIvLw8nD59Gt9++y02bdqEuXPnqq+JjIzEwIED0bt3b1y+fBnTp0/H+PHjceDAAaPcB5ExKXGatJJkT/Pl5BSn2ViypLTshx+AM2cqpN94UOak6srcT9G8vkiKJQaeRKQs2VNmjx49wrp16/DHH3+gTZs2sLcXbwNetmyZzm2Vz322adMm+Pr64uLFi+jRowfS0tKwfv16bN26FU8++SQAYOPGjWjRogXOnDmDLl264ODBg/jrr7/wxx9/oHbt2mjXrh0WLlyI2bNnY968eXBwcMDatWsREBCApUuXAig+JuDkyZP4/PPP0b9/f7nfAiJFWdruJ1mjLSdOAD17ii9ITAS8Ks8ddj4yWbLti1HJGN6pgeQ1mnDbPRGVJTsgunr1Ktq1awcAuH79uqjO0HOI0tLSAAC1ahWvC7h48SLy8/PRt29f9TXNmzdHgwYNEBoaii5duiA0NBStW7dWn5oNAP3798ekSZNw48YNBAcHIzQ0VNRGyTXTp0+vtB+5ubnIzc1VP05PTzfovojkqIrdTxEJmbiXnG2U1B06GzECKDu6PHRo8ciQhPRHlR/4WCI1R7peihJpTIjIcskOiI4ePapEP1BUVITp06ejW7dueOyx4p0psbGxcHBwqJA7rXbt2oiNjVVfUzYYKqkvqZO6Jj09HTk5OXB2dhbVLVq0CPPnzzfavRHpSult90oc+jjnp2uS9Yu2nMK6N8uNxB45AvTurbXtdvU98cfNeI317RvU1KmPUoyZxoSILJfsNURl3b9/H/fv3zdKRyZPnozr169j+/btRmnPEO+++y7S0tLUXzExMabuElkJpbfdT9pyqULAdeJ2AiZuuah3m+HxmRrr+oefrhgMZWXpFAwBQJGW+vILuYmI9CU7ICoqKsKCBQvg4eGBhg0bomHDhvD09MTChQsrHNKoqylTpmDv3r04evQo6tevry738/NDXl4eUlNTRdfHxcXBz89PfU35XWclj7Vd4+7uXmF0CAAcHR3h7u4u+iKqCkrufopIyERoRFKldaERSXqfvdPAs+LPEAQBO7fMwld7Pi4te+ut4rQcLtL3WFZkouZgCwAiE3heEBEZh+yA6L333sPKlSuxePFihIWFISwsDB9//DFWrFiB999/X1ZbgiBgypQp+Omnn3DkyBEEBASI6jt06AB7e3scPnxYXRYeHo7o6GiEhIQAAEJCQnDt2jXEx5cOqx86dAju7u5o2bKl+pqybZRcU9IGkblQcvfTWS0LlM9oCJa08XZzFD32S09E1CfP4vF//iotvHwZ+Owz2W0HeLtK1/twqouIjEN2QPTtt9/im2++waRJk9CmTRu0adMGr7/+Or7++mvZZ/tMnjwZW7ZswdatW+Hm5obY2FjExsYiJ6d4K62HhwfGjRuHGTNm4OjRo7h48SLGjh2LkJAQdOnSBQDQr18/tGzZEiNHjsSVK1dw4MABzJkzB5MnT4ajY/Ev6okTJyIiIgKzZs3CrVu3sHr1auzYsQNvvvmm3NsnUtys/kHld59DpQLeeTrIwJalp5f03RIRk1I6zffKpX04s2aM+nGaYw0M/OwPoG1bvdoe1KaOlnrpc4qIiHQlOyBKTk5G8+bNK5Q3b94cycnSf4GWt2bNGqSlpaFXr16oU6eO+uuHMjtPPv/8cwwaNAgvvPACevToAT8/P+zevVtdb2tri71798LW1hYhISF45ZVXMGrUKCxYsEB9TUBAAPbt24dDhw6hbdu2WLp0Kb755htuuSezNHLDWRQUiYOXgiIBI9afNajdzgGVb21X1zeWrtekZR0P2BQV4syqUfjw0Bp1+cInx6Pt9B/Qwl+/doHiETM3R9tK69wcbbkYmoiMRvYus7Zt22LlypX48ssvReUrV65EW5l/BQo6LIh0cnLCqlWrsGrVKo3XNGzYEL/99ptkO7169UJYWJis/hHpwphb2I+HxyMlu/Kt5CnZ+fjzdgK6B/oY9BrG1jQhGhGfPicqe2Lietz3KN7Z6enioHfbEQmZyNCQrywjt9Ask90SkWWSHRB98sknGDhwIP744w/1GpzQ0FDExMRoDUqIqhMltrBfvp8qWX8pOkXvgEiR/F3vv4/XP/xQ/fB67SYYNPoL0YnTF+7JGzku62yk9LqmsxFJDIiIyChkT5n17NkT4eHheP7555GamorU1FQMGTIE4eHh6N69uxJ9JDJLUgco6qtdfU/JekPO3YnXkgYjMSNXsl7k0aPioKdMMDT12bcxaMzyCuk3XB1k/91VhvTKJm66JyJj0es3Vb169fDRRx8Zuy9EijH2ycxKHaDYM8hXst6Q6bI/bsZJ1h/6KxYvdfTX3tCpU8ATT4iK2r/xPZJdPCq93MWAgEhbNvsueq57IiIqT/Zvqo0bN8LV1RUvvfSSqHznzp3Izs7G6NGjjdY5IkMpMa0FKDT9hOI1RFIMWUOUmVtgUD0AYOxYoOxu0sGDMfyZWUiO0DwtlpWnQ7saNPZxRUhjr0rPTwpp7MXpMiIyGtlTZosWLYK3t3eFcl9fX3z88ceVPIPIdJSY1gKUO0BRlzVE+hrcrp5k/fPB9TVXpqUVT4WVDYYOHQJ++kmH7fqGTWytfaUDepQLAnsE+mDtKx0MapeIqCzZI0TR0dEVDlAEind6RUdHG6VTRMagZF6wxj6u6NrEC6fvVhy56NpE/5ELJdcQ+Xk46Vf/88/A4MHissxMoEbJPWoLiQxL+swkrERUFWSPEPn6+uLq1asVyq9cuQIvL87nk/lQOi+YplMjDEmv5a9l5Kl+Td3TXpT31fG7kvVrj5WrF4TinGNlg6E33igur1EakAhVtLQ5wLsGegf5MhgiIkXIHiEaPnw4pk6dCjc3N/To0QMAcPz4cUybNg3Dhg0zegeJ9GXqvGD6fHArtTYJAO5qyQt2NyGj9MGDB0C9clNsFy8C7dtXeJ6ro/SvkRoaDlYkIjInskeIFi5ciM6dO6NPnz5wdnaGs7Mz+vXrhyeffJJriMisKJkXTKnRJyWDOAdb6R93e9t/A5evvxYHQy4uQF5epcEQoH3UypBRLSKiqiI7IHJwcMAPP/yA8PBwfP/999i9ezfu3r2LDRs2wMFB/xNpiZSwYngwujUVbwLo1tQbK4YHG9SuUoFLYx9X1NSw+62mi71BQZy2wKShpxPQqBHw2mulhUuWAFlZgL3mHXnN/KQTsDar7Sanm0REJqH3ASGBgYEIDAw0Zl+IjK5kQe6Jv+MRFpOK9g1qGiX1Rcno06k7iSgss2jIVqVCt6beegcuEQmZkqk7DFkILjW11TjpPrYsGSQuvHMHaNJEa7s2WhZN29oYtqiaiKgqyB4hIlJSREImjobHIzLRsAXPJVKz8zBq/TmM2nAenx+6jZHrz2HU+nNI0xB0yKHE6JOSC8ETNJxEPfXUNhz5ZmJpQatWQFGRTsEQAJzRkl4jtJKdeERE5saQM/WJjEapAxSlziHaPK6T3u0CymwHV3INUbmlVHAoyMffS58XF27eDIwcKbdlvftERGQuOEJEZkGJAxRLziEqLLcPvuw5RMZgKdvBnexLd3sF/3OrQjA06bN9egRDQBct6TVCmvA4DiIyfwyIyOSUClyUPodICUr2+VF+IQDg4/0r8NOWmeryI407otHsvYhzqjwXmTa+Wg589HZz1KtdIqKqxFxmZHJKnb2j5PSTUhSdMstIR1S5hdOjXpqPE42LU2Dk/BswyWWJ32ciovKYy4xMjh+opRr7uMLdqfK/U9yd7PSfltu3D7vfHSgqavnmTnUwBOiY3LUSSp73RERUVWQHRMxlRsam1AeqJU6ZRSRkIv1R5YFJ+qMC/aYP+/UDBpWODH0XPACNZu9FtoNzuQv1T8Gh1HlPRERVRfaUWUkus0aNGonKmcuMDLFieDDe2BYm2mVm6AeqJY487b36QLJ+39UHmPKkjud/xcYCdeqIiv4zahmu1mlW6eX9W9WptFwXTMBKRJaOuczILPADtVhylvT5SImZebo1tHEj8OqrpY/t7TFr4ylcvRav8SlpOYafzRTgbZ3vGxFZPtkB0cKFCxEVFYU+ffrAzq746UVFRRg1ahTXEJHBjPmBqmSiVKW08JNOc9Gqrrt0A0VFQPPmwO3bpWUffQT83//hxMd/SD71zzKjc0RE1kZ2QFSSy2zhwoW4cuUKnJ2d0bp1azRs2FCJ/hHpzRKnzAzawn77NtCs3HTY338D/6bYsbeVPkBRW/JXIqLqTO+Tqps1a4Zm5X/5EpmRxj6u6NrEC6crSR3RtYmX2Y0OAdp3Odhpygu2aBHwf/9X+jgwELh1C7DRPcgRDFhUTURk6XQKiGbMmIGFCxeiRo0amDFjhuS1y5YtM0rHiIxB0PAZr6nc1K7cT5Wuj0kVJ6fNywNcXYH8Mut/NmwAxo6t8NwaDtI/7lLJX4mIqjudfgOGhYUh/99fuJcuXYKqfFKkf2kqJzKFiIRMhEZUnlg0NCLJoMzxSolMlF73FJFQZtv9+fNAp3L52B4+BPz8Kn1u1ybeuBWXqbHtbk19NNYREVV3OgVEy5cvh7t78WLOY8eOKdkfIqOxxEXVmY+kd3pllRye+PrrwJo1pRV9+wKHDkk+N0XLLrLkLB13sBERVUM6LTAIDg5GYmJx4s3GjRsjKanyv7rJOkQkZOJoeLzRkqMqxRIXVcekSAdx8Q8Ti9PWlw2G9u7VGgwBQGSC5tEhAIgy8/eTiEhJOo0QeXp6IjIyEr6+voiKikJRUZHS/SIzlJqdh6nbLosOT+wR6IMVw4Ph4WJvwp5VrrGPK0Iae1U6bRbS2DwXVUtNOveMuIhvd34gLkxLA9y1bMUvaVvLjDYXVRORNdMpIHrhhRfQs2dP1KlTByqVCh07doStrW2l10ZERBi1g2Q+pm67jFN3EkVlp+4k4o1tYdg8rpOGZ5mWpiDAmMvdIhIycS852yiHSXZp7I2bsRVHctbvmo8+d8+XFowfD3z9tay22/l7IiwmTWN9+wY1ZbVHRFSd6BQQrVu3DkOGDMGdO3cwdepUTJgwAW5u0gfIUfUSkZApGhkqUSgIOHE7wWgLlI0ZXEQkZFa65R4ATt81fFG1EiNmZ++KA06vrFRcXPmK+KLQUKBLF9ltjwxphI2n72msfyWkkew2iYiqC5332T799NMAgIsXL2LatGkMiKyM0guUlQgulO6zEiNmZXeBPX/9CD7fJz7GovlbP+GWHsEQUDyF6OZoi4zcwgp1bo62ZjmFSERUVWQfTbtx40YGQ1ZI6QXKUsGFvpTsc8mIWWG5A43KjpjpQwAAQcCB9a+LgqHPu/0XjWbvRa6d/mu1IhIyKw2GACAjt9DsF8kTESlJpxGiIUOGYNOmTXB3d8eQIUMkr929e7dROkbmpbGPK3oE+uDUnURREGCrUqFbU2+DRheUmo5Tss9KjT61yIrDbyvHicr6jF+Du17+AIpHcvRliccQEBFVFZ1GiDw8PNSHLnp4eEh+UfW1YngwujX1FpV1a+qNFcODDWpXlw9qfc3q36zCAmqVCnjn6SC92wQUGn365BNRMHTf3RcBs35RB0MA0NTXVX67/7LEYwiIiKqKTiNEGzdurPT/ybp4uNhj87hOiEzMQlRSllEWPgPKflCP3HAOBUXiaa2CIgEj1p9F2Nx+erd7PjJZsv5CVLLu35v8fMDTE8guDQzf6T8F29s9XeHSAB/9AyIlR8yIiCyd7DVEkZGRuH37doXy27dvIyoqyhh9IjMX4F0DvYN8jfYBWvJBbVtuKMdWpUKPQB+9X+d4eDxSsis/nTklOx9/VjJNp6tDN+Mk6w/eiNWtoUuXAAcHUTDU6fVvKw2GACA27ZHOfayMUqN8RESWTnZANGbMGJw+fbpC+dmzZzFmzBhj9ImskBIf1Je1JEq9FJ2id9v+NaVHtfy1jHoBAKZNAzp0KH3cuzeeXnoU8W5eGp+SnJWraxcrVTLKd3RmL2wc+ziOzuyFzeM6meXBmkREVUl2euuwsDB069atQnmXLl0wZcoUo3SKrI8S03Ht6ntK1htyEOHIkIbYeDpKor6R5idnZRVnqC9rzx7guefg/+153IrXvGZKp0BLBwHexpnuJCKqLmQHRCqVChkZGRXK09LSUFhY+ZZeIl0Z84O6Z5AvarrYVzptVtPFHt0DTZDd/Y8/gKeeEpelpBSvIQKQlCE9ApScyQSsRERKkD1l1qNHDyxatEgU/BQWFmLRokV44oknjNo5Mk9KJnc1dtu/TH4CNctNB9V0sccvkw37t6rXzrghQ8TB0OjRgCCogyEAiNCyo+6OlgStRESkH9kjREuWLEGPHj0QFBSE7t27AwD+/PNPpKen48iRI0bvIJkPJZO7KtW2v5cLwub2w5+3E3ApOgXtG9Q0ysjQjfuac4IBwM0H6egd5Fv8IDER8Cn3midPApVMPdfxcEJqjuagp56ns+y+EhGRdrJHiFq2bImrV69i6NChiI+PR0ZGBkaNGoVbt27hscceU6KPZCaUOE26KtoGgO6BPpjWp5nRpsnuJEqP1Pwd/++08tatFYOhnJxKgyEAGNU1QLJd5hsjIlKG7BEiAKhbty4+/vhjY/eFzJiSyV2rKnGsMUUnSE9t3U/MAoKDgcuXSwvnzAEWLpR8Xl0PJ8n6+jU5QkREpATZI0RA8RTZK6+8gq5du+Kff/4BAHz33Xc4efKkUTtH5kPJ06SVbLuEsdcmRado7nP9tDjsmtJdHAzduKE1GAKAB1rOGbqfkqNrF4mISAbZAdGPP/6I/v37w9nZGZcuXUJubvGumLS0NI4aVWNKniatZNup2XkYtf4cnlx6HGM3nkfvz45h1PpzSNNwYKOu3J0qX9c07vwenFxbJhdZvXpAQQHQsqWOLQuStSrJWiIi0pfsgOjDDz/E2rVr8fXXX8PevvRDoVu3brh06ZJRO0fmQ6nTpJU2aculCtNxJ24nYOKWiwa162gv/tGxLSrE1S9exvtHviktXL0auH8fsNU9IWvnAM2HMgJA58bS9UREpB/ZAVF4eDh69OhRodzDwwOpqanG6BOZKaXSPuy9+kCyfp+Wek0iEjIRGpFUaV1oRJJB02f/lJm6ahEfgbufPgf33NL2npq+GZg0Se/2iYioasleVO3n54c7d+6gUaNGovKTJ0+icePGxuoXmSGlkrsmZ0lPXyXqeRjhWS0JWM9EJOndf1ub4pGy/zuyHq+d/0ldfr5eS7w0YkmFs490pct6KnMdjSMismSyA6IJEyZg2rRp2LBhA1QqFR48eIDQ0FDMnDkT77//vhJ9JDNj7LQPLfzcJOtb1XXXq92EDOkFykmZ+ucFcynIRdiS50Rl/xv8fzgQ1BVAacAkl5LrqYiISDPZAdE777yDoqIi9OnTB9nZ2ejRowccHR0xc+ZMvPHGG0r0kao5Xy1bzb3dHPVq18dNul0vV/3axZEjOPWhOBhqM2070p1K85MVFkkvjtakZK3WqTuJKBRK27BVqdCtqTdHh4iIFCJ7DZFKpcJ7772H5ORkXL9+HWfOnEFCQgIW6rClmKgySo2KaPvHbafPKM7QoUCfPuqHe1r2RKPZe0XBEAA42eu+kLo8pdZqERGRZnodzAgADg4OcHNzg5ubG1zLZ+4mMgM3Y9Ml6/96IF0vkpwMeIl3eA3972Kc86/8dHZnB/0DIqXWahERkWayR4gKCgrw/vvvw8PDA40aNUKjRo3g4eGBOXPmID/fsLNdyDIY+5BDpQ5mTM8pkK5/pOO/1x07KgRDo1cc1RgMAUBdD8NPlA7wroHeQb4MhoiIqoDsEaI33ngDu3fvxieffIKQkBAAQGhoKObNm4ekpCSsWbPG6J0k86BUAlZFprYAxGo59VlbPQQB6NwZOH++tGz2bGDxYgT8cgPH72sO1JrWll4oTkRE5kV2QLR161Zs374dzzzzjLqsTZs28Pf3x/DhwxkQVWNSCVg3j+ukd7tFWuoL9FygnJ0nPUIkWR8dDTRsKC67ehVo3RqAcjvjiIjINGRPmTk6OlY4gwgAAgIC4ODgYIw+kRkqScBaducTIE7Aqi+lRohctKzjqeGg4e+BFSvEwZCPT3H6jX+DIQC4pWV90q2HMtYnERGRyckOiKZMmYKFCxeqc5gBQG5uLj766CNMmTLFqJ0j86FkAlalRohikqUToVa4p8JCwNcXmDq1tGz5ciA+vkL6jVuxmZJt33yYIauvRERkWrKnzMLCwnD48GHUr18fbdu2BQBcuXIFeXl56NOnD4YMGaK+dvfu3cbrKZmUkgcGKjVClJwlffCiqP7aNaBNG/EFUVEVp83+VUfL2Ul1PaXriYjIvMgOiDw9PfHCCy+Iyvz9/Y3WITJPSh4YqNQI0aN86ZYf5f1b/+67wOLFpRWPPw6cPQuoNAdiHs7Si8jdtdQTEZF5kR0Qbdy4UYl+kAVYMTwYb2wLE+0yM8aBgUqNPmkLtBzycysGPT/8UHz4ohapOdL51VKzeQQFEZElkR0Q5eTkQBAEuLgUf4jdu3cPP/30E1q2bIl+/foZvYNkPkoODDzxdwLCYlLQvkFNdA/0MXW3NHKwBXILK6/rFHMdO7a+Iy5MTKxw3pAmns7SGwg8DTiGgIiIqp7sgOi5557DkCFDMHHiRKSmpqJTp05wcHBAYmIili1bhkmTJinRTzIDSp1DpFRWejsbW+QWVoyIvvj1Uwz+63hpwUsvFR++KEMzP+nT2ZvxHCIiIosie5fZpUuX0L17dwDArl274Ofnh3v37mHz5s348ssvjd5BMh9S5xAZRnqNkH5LqoFHBeJgyP1RJqKWDBIHQ0eOyA6GAKBzgPRIUufGuo00ERGReZAdEGVnZ8PNrfiv34MHD2LIkCGwsbFBly5dcO/ePaN3kMyDsucQSYc8tnruMiurf/hpXF0+TFT22Fu7gN699WqvsY8rujapPOjp2sSL6TaIiCyM7ICoadOm2LNnD2JiYnDgwAH1uqH4+Hi4u/N03upKyXOIbsZKn9lzQ04S1jKc7W0AQcDOLbPw1Z6P1eVfPz4YjWbvBVykF3Nrs2ZEB/Qot4aqR6AP1ozoYFC7RERU9WSvIZo7dy7++9//4s0330SfPn3U+cwOHjyI4GDDdhuR+YrXkvcrMUP6zB8p6Vp2bGXqmoS1nFop8bi+coyobMCYL/FX7cYAgPxCbfvQpDErPRFR9SF7hOjFF19EdHQ0Lly4gP3796vL+/Tpg88//1xWWydOnMCzzz6LunXrQqVSYc+ePaJ6QRAwd+5c1KlTB87Ozujbty9u374tuiY5ORkjRoyAu7s7PD09MW7cOGRmik8Rvnr1Krp37w4nJyf4+/vjk08+kXfThNgM6YDoQZr0qdBStJ0ypNcxRGvX4kSZYCjdsQaavP2zOhgCgHwNO9DkYlZ6IiLLJzsgAgA/Pz8EBwfDxqb06Z06dULz5s1ltZOVlYW2bdti1apVldZ/8skn+PLLL7F27VqcPXsWNWrUQP/+/fHoUemH84gRI3Djxg0cOnQIe/fuxYkTJ/Daa6+p69PT09GvXz80bNgQFy9exKeffop58+Zh3bp1Mu/aurWr7ylZ375BTb3bNuoW9sJCoH59oMxux4W9x6HN9B9QaCNOv+FoZ/jaJCIiqh5kT5kZ0zPPPINnnnmm0jpBEPDFF19gzpw5eO655wAAmzdvRu3atbFnzx4MGzYMN2/exP79+3H+/Hl07NgRALBixQoMGDAAn332GerWrYvvv/8eeXl52LBhAxwcHNCqVStcvnwZy5YtEwVOZeXm5opytaWnM1FnzyBf2KqAwkpGa2xVMOg8ovsp0uuT/knRcfTpr7+AVq1ERU/87xvc9/Sr9HJvN6bXICKiYnqNEFWFyMhIxMbGom/fvuoyDw8PdO7cGaGhoQCA0NBQeHp6qoMhAOjbty9sbGxw9uxZ9TU9evSAg0PpKET//v0RHh6OlJSUSl970aJF8PDwUH8xNUnxLrPKgiGgOEgyZJdZWEzl70OJi9HS9QCA998XB0Nt26LVnH0agyEASNGS64yIiKyH2QZEsbGxAIDatWuLymvXrq2ui42Nha+vr6jezs4OtWrVEl1TWRtlX6O8d999F2lpaeqvmJgYw2/Iwu29+lBL/QO9287KLdC//tGj4vQbH35YWvb998Dly8jOl158lJVn2KJqIiKqPkw6ZWauHB0d4ejoaOpuGCQiIRP3krONtvMpMjFTuj5B/xEiFwc75ORr3klWw8G28opTp4AnnhCXxccDPsXTdzYApNZNm+1fA0REVOXMNiDy8yue6oiLi0OdOnXU5XFxcWjXrp36mvj4eNHzCgoKkJycrH6+n58f4uLiRNeUPC65pjpRKr1GgLd0qooAH/2Drkd50tu9ciqrHzsW2LSp9PFzzwHldil6utojKVNzoFXTVXoxNxERWQ+z/SM5ICAAfn5+OHz4sLosPT0dZ8+eVZ99FBISgtTUVFy8eFF9zZEjR1BUVITOnTurrzlx4gTyy4xAHDp0CEFBQahZU/+dUeZKqfQabet7SNa38/fUu+2sfOmpK1F9WlrxFFnZYOjgwQrBEAD4e0ofvNigpmEHMxIRUfVh0oAoMzMTly9fxuXLlwEUL6S+fPkyoqOjoVKpMH36dHz44Yf45ZdfcO3aNYwaNQp169bF4MGDAQAtWrTA008/jQkTJuDcuXM4deoUpkyZgmHDhqFu3boAgP/+979wcHDAuHHjcOPGDfzwww9Yvnw5ZsyYYaK7Vo6S6TW0nTOk804wQ/zyC+DpKS7LzASeeqrSywN8pEe1GvHcICIi+pdJA6ILFy4gODhYfcL1jBkzEBwcjLlz5wIAZs2ahTfeeAOvvfYaHn/8cWRmZmL//v1wcirdLv3999+jefPm6NOnDwYMGIAnnnhCdMaQh4cHDh48iMjISHTo0AFvvfUW5s6dq3HLvSVTMr2GthSr+pydqDNBAJ58snharMQbbxSX19Ac1AxuV1ey2efb1zNWD4mIyMKZdA1Rr169IAiaP0pVKhUWLFiABQsWaLymVq1a2Lp1q+TrtGnTBn/++afe/bQUDWtJTwE18tJ/RCRJS2qOlCzp9Bv68s1IwrnVo8WFFy4AHbTnC+sZ5At3JzukP6q4S83dyc6gs5OIiKh6Mds1RCRfYx9X9Aj0ga1KPJpjq1KhR6CPQbvNLt9PlawP0+WsIJlevnJAHAw5OwN5eToFQyX2vdEdNcstJq/pYo99b3Q3VjeJiKgaMNtdZqSfFcOD8ca2MNEus25NvbFiuGGJd92dpHeouTvrv4OtPJVQhONfTUCDtDK7A5csAWbNkt2Wv5cLwub2w5+3E3ApOgXtG9TkyBAREVXAgKiaUSoDu4eWgMfTSAFR46T7OPLNRFFZj9e+xolZ4w1qt3ugDwMhIiLSiAFRNRXgbZxAqETo3UQt9Ul6t+1oq0JuoYCpp7Zhxsnv1eV/ezVAv3Gr4GjHmV0iIlIWA6JqytgnVd/Xsq0+WkuCVimOQj7ClwwWlc0Y+CZ2P9YHAGDLeIiIiBTGgKiaUeqk6oIi6dOkCwql6zU6exZXFw0WFXWYsgVJNTzVj/M1ZZUlIiIyEv7tXc0odVK1k7107OzsoEew9dprQJcu6odHGndEo9l7RcEQoPAZR0REROAIUbVSclJ1eWVPqtZ3+szN0Q6pOZqzzrs5yvinlJ4OeIhTgYx5cR6ONeloeNtERER64AhRNaLkSdXJWg5eTMqUPrhR7bffKgRDAxfu1RgMAYCXq6NubRMREemJAVE1ouRJ1bISsGry9NPAwIGljydNAgQBiSrprPOZuZoz1hMRERkD5yKqkZKTqk/dSRQleLVVqdCtqbdRt+HLEhsL1KkjLjt7FujUSccGpPOoERERGYojRNXMiuHB6NbUW1RmjJOq9bZxozgYsrUFcnNFwVANLWuEajgwbiciImXxk6aaKTmp+sTfCQiLMWGqiqIioEUL4O+/S8s+/BB4770Kl2o7BVtbPRERkaEYEFUzSp1DJMvt20CzZuKyv/8GAgMrvbyRdw2ExaRpbK6Rt/TaKCIiIkNxyqyaUeocIp0tWiQOhgIDgcJCjcEQAHQJ8JJsMqSJt2Q9ERGRoThCVI0oeQ6RNvaF+YCDA5BfZkfY+vXAq69qfa6vh5Nkvbcbt90TEZGyGBBVI7qcQ6REQNT64W38uvlNceGDBxV3lmmg5HEBREREuuCUWTWi7c20szH+9vUFB9eIg6G+fQFB0DkYAkqPC7BViftnq1KhR6CP6Y4LICIiq8GAqBrRdjRiQZHxsoK55OUgaskgjArbV1r466/AoUN6tWd2xwUQEZFV4ZSZiUUkZOJecjYaedUweCTkxn3NO7UA4OaDdPQO8jXoNQCgZ8RFfLvzA1HZY9N34PqgQXq3WXJcQGRiFqKSsozy/SAiItIVAyITUWJ7/Km7SZL1J28n4vXeTfVqu8Q3u+aj793z6sfb2vTDu89MNajNsgK8GQgREVHVY0BkIlLb4zeP0zWlhVgNR1vJelcDssZ7ZaXi4spXRGXPv/IZwuo117tNIiIic8GAyASU2h7v4aTlxGd9D2b87jtcXDlKVNTsrZ+QZ8cTpImIqHpgQGQCSm2PP/53vGT90Vtx8hoUBKB1a+DGDXXR593+i+VP/Fd234iIiMwZAyITUOrcnbTsfIPqRSIigCZNREV9xq/BXS9/fbpGRERk1rjt3gSUOnenUMuuem31ap9+Kg6GGjZEwKxfGAwREVG1xYDIRJQ4d0fbOUTa6pGfD7i6ArNmlZZ99RUQFQVBxX8qRERUfXHKzETM7tydS5eADh3EZffvA/XqAQDsbIACiYjKjvESERFZMH6MmViAdw30DvI1bTA0fbo4GOrVCygqUgdDAODnLp2Ata6HszJ9IyIiqgIcIbJmWVnFU2Rl/fQTMHhwhUv9a9XA/dRHGpuqX1N6oTgREZE54wiRiUUkZOJoeDwiE7Oq9oX/+KNiMJSSUmkwBADN/VwrLS/Roo6bkTpGRERU9ThCZCJKpO7Q2ZAhxSNBJUaNAr79VvIpI0MaYePpexrrXwlpZKTOERERVT2OEJmIVOoOpdTMTgNUKnEw9OefWoMhoPiogPb+HpXWtff3YP4xIiKyaAyITKAkdUehID4YqGzqDmP7z1/HEbZihLgwJwd44gmd29g4tjN6BPqIynoE+mDj2M7G6CIREZHJcMrMBJRK3VEpQcDeb6fjsbi7pWXvvQd8+KHspszuqAAiIiIjYUBkAtqG5exsVFqu0E39tDicXDtOXHj9OtCqlUHtBngzECIiouqFU2YmcOV+qnR9jHS9Ll49/7MoGIpzrYXGb/9scDBERERUHXGEyASSs/Ik6xMzc/Vu27aoEBdXjIDno0x12ZynJmFL+4F6t0lERFTdMSAyARtIT4nZ2eg3cNciPgK/b5wqKguZtBEP3X00PIOIiIgATpmZxKXoFMn6i/eS5Tc6c6YoGLpQrwUazfqVwRAREZEOOEJkArkFhdL1+Vrz0pfKzgZqiBc4Txz8LvYHddOna0RERFaJAZEpCNov0cnRo8CTT4qK2kzbjnQn6TQbREREJMaAyARuJ2RK1v8dn6G9kZdfBnbsKH08fDgaNRih+XoiIiLSiGuITKBAy4yYZH1ycnH6jbLB0LFjwNatxugaERGRVWJAZEl27gS8vMRl2dlAz56m6Q8REVE1wYDIEggC0KULMHRoadmsWcXlzs7qovqeTpLN+NeUriciIrJWDIjMXXQ0YGMDnD1bWnblCrBkSYVLP3q+tWRTHw9pY+zeERERVQsMiMzZihVAw4alj729gfx8oE3lgU3PIF8421belLMt0D2QZxIRERFVhgGRGbIpKgR8fYGpZU6dXr4cSEgA7KQ3Bh6c0Rs1XexFZTVd7HFwRm8lukpERFQtcNu9mWmWEIWDG6aIC6OixCNFEvy9XBA2tx/+vJ2AS9EpaN+gJkeGiIiItGBAZEZmHd+E18/sKi3o2BE4d654m71M3QN9GAgRERHpiAGRGXDMz0X4shfEhdu3Fx++SERERIrjGiITezzmeoVgqN3UrQyGiIiIqhADIhN69fzP2Ln1HfXjfUHd0Gj2XqQ6u5uwV0RERNaHAZEJ/VYmI/3wYR9h8uB3TdgbIiIi68U1RCYU6+6NYcM/xuU6zfDInqdIExERmQoDIhM704CnRxMREZkap8yIiIjI6jEgIiIiIqvHgIiIiIisHgMiIiIisnoMiEwgavFAg+qJiIjIuBgQERERkdXjtnsTKRkFavTOvgplREREVLUYEJkYgyAiIiLTs6ops1WrVqFRo0ZwcnJC586dce7cOVN3iYiIiMyA1QREP/zwA2bMmIEPPvgAly5dQtu2bdG/f3/Ex8ebumtERERkYlYTEC1btgwTJkzA2LFj0bJlS6xduxYuLi7YsGGDqbtGREREJmYVAVFeXh4uXryIvn37qstsbGzQt29fhIaGVrg+NzcX6enpoi8iIiKqvqwiIEpMTERhYSFq164tKq9duzZiY2MrXL9o0SJ4eHiov/z9/auqq0RERGQCVhEQyfXuu+8iLS1N/RUTE2PqLhEREZGCrGLbvbe3N2xtbREXFycqj4uLg5+fX4XrHR0d4ejoWFXdIyIiIhOzihEiBwcHdOjQAYcPH1aXFRUV4fDhwwgJCTFhz4iIiMgcWMUIEQDMmDEDo0ePRseOHdGpUyd88cUXyMrKwtixY03dNSIiIjIxqwmIXn75ZSQkJGDu3LmIjY1Fu3btsH///goLrYmIiMj6qARBEEzdCXOXlpYGT09PxMTEwN3d3dTdISIiIh2kp6fD398fqamp8PDwkLzWakaIDJGUlAQA3H5PRERkgTIyMhgQGUOtWrUAANHR0Vq/oZaqJIqurqNgvD/LV93vsbrfH1D975H3Z34EQUBGRgbq1q2r9VoGRDqwsSnejOfh4WEx/wj05e7uXq3vkfdn+ar7PVb3+wOq/z3y/syLrgMZVrHtnoiIiEgKAyIiIiKyegyIdODo6IgPPvigWp9eXd3vkfdn+ar7PVb3+wOq/z3y/iwbt90TERGR1eMIEREREVk9BkRERERk9RgQERERkdVjQERERERWz2oDolWrVqFRo0ZwcnJC586dce7cOcnrd+7ciebNm8PJyQmtW7fGb7/9JqoXBAFz585FnTp14OzsjL59++L27dtK3oIkOff39ddfo3v37qhZsyZq1qyJvn37Vrh+zJgxUKlUoq+nn35a6duQJOceN23aVKH/Tk5Oomss+T3s1atXhftTqVQYOHCg+hpzeg9PnDiBZ599FnXr1oVKpcKePXu0PufYsWNo3749HB0d0bRpU2zatKnCNXJ/rpUi9/52796Np556Cj4+PnB3d0dISAgOHDggumbevHkV3r/mzZsreBfS5N7jsWPHKv03GhsbK7rOUt/Dyn6+VCoVWrVqpb7GnN7DRYsW4fHHH4ebmxt8fX0xePBghIeHa32epX0WymGVAdEPP/yAGTNm4IMPPsClS5fQtm1b9O/fH/Hx8ZVef/r0aQwfPhzjxo1DWFgYBg8ejMGDB+P69evqaz755BN8+eWXWLt2Lc6ePYsaNWqgf//+ePToUVXdlprc+zt27BiGDx+Oo0ePIjQ0FP7+/ujXrx/++ecf0XVPP/00Hj58qP7atm1bVdxOpeTeI1B8umrZ/t+7d09Ub8nv4e7du0X3dv36ddja2uKll14SXWcu72FWVhbatm2LVatW6XR9ZGQkBg4ciN69e+Py5cuYPn06xo8fLwoa9Pk3oRS593fixAk89dRT+O2333Dx4kX07t0bzz77LMLCwkTXtWrVSvT+nTx5Uonu60TuPZYIDw8X3YOvr6+6zpLfw+XLl4vuKyYmBrVq1arwM2gu7+Hx48cxefJknDlzBocOHUJ+fj769euHrKwsjc+xtM9C2QQr1KlTJ2Hy5Mnqx4WFhULdunWFRYsWVXr90KFDhYEDB4rKOnfuLPzvf/8TBEEQioqKBD8/P+HTTz9V16empgqOjo7Ctm3bFLgDaXLvr7yCggLBzc1N+Pbbb9Vlo0ePFp577jljd1Vvcu9x48aNgoeHh8b2qtt7+Pnnnwtubm5CZmamuszc3sMSAISffvpJ8ppZs2YJrVq1EpW9/PLLQv/+/dWPDf2eKUWX+6tMy5Ythfnz56sff/DBB0Lbtm2N1zEj0uUejx49KgAQUlJSNF5Tnd7Dn376SVCpVEJUVJS6zJzfw/j4eAGAcPz4cY3XWNpnoVxWN0KUl5eHixcvom/fvuoyGxsb9O3bF6GhoZU+JzQ0VHQ9APTv3199fWRkJGJjY0XXeHh4oHPnzhrbVIo+91dednY28vPz1UltSxw7dgy+vr4ICgrCpEmTkJSUZNS+60rfe8zMzETDhg3h7++P5557Djdu3FDXVbf3cP369Rg2bBhq1KghKjeX91AubT+DxviemZOioiJkZGRU+Bm8ffs26tati8aNG2PEiBGIjo42UQ/1165dO9SpUwdPPfUUTp06pS6vbu/h+vXr0bdvXzRs2FBUbq7vYVpaGgBU+DdXliV9FurD6gKixMREFBYWonbt2qLy2rVrV5jLLhEbGyt5fcl/5bSpFH3ur7zZs2ejbt26on/UTz/9NDZv3ozDhw9jyZIlOH78OJ555hkUFhYatf+60Oceg4KCsGHDBvz888/YsmULioqK0LVrV9y/fx9A9XoPz507h+vXr2P8+PGicnN6D+XS9DOYnp6OnJwco/y7NyefffYZMjMzMXToUHVZ586dsWnTJuzfvx9r1qxBZGQkunfvjoyMDBP2VHd16tTB2rVr8eOPP+LHH3+Ev78/evXqhUuXLgEwzu8uc/HgwQP8/vvvFX4GzfU9LCoqwvTp09GtWzc89thjGq+zpM9CfTDbPYksXrwY27dvx7Fjx0SLjocNG6b+/9atW6NNmzZo0qQJjh07hj59+piiq7KEhIQgJCRE/bhr165o0aIFvvrqKyxcuNCEPTO+9evXo3Xr1ujUqZOo3NLfQ2uxdetWzJ8/Hz///LNofc0zzzyj/v82bdqgc+fOaNiwIXbs2IFx48aZoquyBAUFISgoSP24a9euuHv3Lj7//HN89913JuyZ8X377bfw9PTE4MGDReXm+h5OnjwZ169fN+maNHNgdSNE3t7esLW1RVxcnKg8Li4Ofn5+lT7Hz89P8vqS/8ppUyn63F+Jzz77DIsXL8bBgwfRpk0byWsbN24Mb29v3Llzx+A+y2XIPZawt7dHcHCwuv/V5T3MysrC9u3bdfrlasr3UC5NP4Pu7u5wdnY2yr8Jc7B9+3aMHz8eO3bsqDA1UZ6npyeaNWtmEe+fJp06dVL3v7q8h4IgYMOGDRg5ciQcHBwkrzWH93DKlCnYu3cvjh49ivr160tea0mfhfqwuoDIwcEBHTp0wOHDh9VlRUVFOHz4sGgEoayQkBDR9QBw6NAh9fUBAQHw8/MTXZOeno6zZ89qbFMp+twfULwzYOHChdi/fz86duyo9XXu37+PpKQk1KlTxyj9lkPfeyyrsLAQ165dU/e/OryHQPGW2NzcXLzyyitaX8eU76Fc2n4GjfFvwtS2bduGsWPHYtu2baLjEjTJzMzE3bt3LeL90+Ty5cvq/leH9xAo3r11584dnf4oMeV7KAgCpkyZgp9++glHjhxBQECA1udY0mehXky9qtsUtm/fLjg6OgqbNm0S/vrrL+G1114TPD09hdjYWEEQBGHkyJHCO++8o77+1KlTgp2dnfDZZ58JN2/eFD744APB3t5euHbtmvqaxYsXC56ensLPP/8sXL16VXjuueeEgIAAIScnx+zvb/HixYKDg4Owa9cu4eHDh+qvjIwMQRAEISMjQ5g5c6YQGhoqREZGCn/88YfQvn17ITAwUHj06FGV358+9zh//nzhwIEDwt27d4WLFy8Kw4YNE5ycnIQbN26or7Hk97DEE088Ibz88ssVys3tPczIyBDCwsKEsLAwAYCwbNkyISwsTLh3754gCILwzjvvCCNHjlRfHxERIbi4uAhvv/22cPPmTWHVqlWCra2tsH//fvU12r5n5nx/33//vWBnZyesWrVK9DOYmpqqvuatt94Sjh07JkRGRgqnTp0S+vbtK3h7ewvx8fFVfn+CIP8eP//8c2HPnj3C7du3hWvXrgnTpk0TbGxshD/++EN9jSW/hyVeeeUVoXPnzpW2aU7v4aRJkwQPDw/h2LFjon9z2dnZ6mss/bNQLqsMiARBEFasWCE0aNBAcHBwEDp16iScOXNGXdezZ09h9OjRout37NghNGvWTHBwcBBatWol7Nu3T1RfVFQkvP/++0Lt2rUFR0dHoU+fPkJ4eHhV3Eql5Nxfw4YNBQAVvj744ANBEAQhOztb6Nevn+Dj4yPY29sLDRs2FCZMmGCSX1JlybnH6dOnq6+tXbu2MGDAAOHSpUui9iz5PRQEQbh165YAQDh48GCFtsztPSzZgl3+q+SeRo8eLfTs2bPCc9q1ayc4ODgIjRs3FjZu3FihXanvWVWSe389e/aUvF4Qio8ZqFOnjuDg4CDUq1dPePnll4U7d+5U7Y2VIfcelyxZIjRp0kRwcnISatWqJfTq1Us4cuRIhXYt9T0UhOIt5s7OzsK6desqbdOc3sPK7g2A6OeqOnwWyqESBEFQbPiJiIiIyAJY3RoiIiIiovIYEBEREZHVY0BEREREVo8BEREREVk9BkRERERk9RgQERERkdVjQERERERWjwERERERWT0GRERkUVQqFfbs2QMAiIqKgkqlwuXLl3V+/rx589CuXTtF+kZElosBERFZLH9/fzx8+BCPPfaYzs+ZOXOmKPnkmDFjMHjwYAV6p59evXph+vTppu4GkdWxM3UHiIj0ZWtrCz8/P1nPcXV1haurq0I9IiJLxREiIqpSu3btQuvWreHs7AwvLy/07dsXWVlZAIDz58/jqaeegre3Nzw8PNCzZ09cunRJY1vlp8yOHTsGlUqFw4cPo2PHjnBxcUHXrl0RHh6ufk7ZKbN58+bh22+/xc8//wyVSgWVSoVjx47hySefxJQpU0SvlZCQAAcHB9HoUlkl7X711Vfw9/eHi4sLhg4dirS0NPU1JaNR8+fPh4+PD9zd3TFx4kTk5eWp648fP47ly5er+xMVFSX3W0xEemBARERV5uHDhxg+fDheffVV3Lx5E8eOHcOQIUNQkmM6IyMDo0ePxsmTJ3HmzBkEBgZiwIAByMjIkPU67733HpYuXYoLFy7Azs4Or776aqXXzZw5E0OHDsXTTz+Nhw8f4uHDh+jatSvGjx+PrVu3Ijc3V33tli1bUK9ePTz55JMaX/fOnTvYsWMHfv31V+zfvx9hYWF4/fXXRdccPnxYfe/btm3D7t27MX/+fADA8uXLERISggkTJqj74+/vL+veiUg/nDIjoirz8OFDFBQUYMiQIWjYsCEAoHXr1ur68sHGunXr4OnpiePHj2PQoEE6v85HH32Enj17AgDeeecdDBw4EI8ePYKTk5PoOldXVzg7OyM3N1c09TZkyBBMmTIFP//8M4YOHQoA2LRpE8aMGQOVSqXxdR89eoTNmzejXr16AIAVK1Zg4MCBWLp0qbp9BwcHbNiwAS4uLmjVqhUWLFiAt99+GwsXLoSHhwccHBzg4uIieyqQiAzDESIiqjJt27ZFnz590Lp1a7z00kv4+uuvkZKSoq6Pi4vDhAkTEBgYCA8PD7i7uyMzMxPR0dGyXqdNmzbq/69Tpw4AID4+XufnOzk5YeTIkdiwYQMA4NKlS7h+/TrGjBkj+bwGDRqogyEACAkJQVFRkWjKrm3btnBxcRFdk5mZiZiYGJ37R0TGx4CIiKqMra0tDh06hN9//x0tW7bEihUrEBQUhMjISADA6NGjcfnyZSxfvhynT5/G5cuX4eXlpV5joyt7e3v1/5eM6BQVFclqY/z48Th06BDu37+PjRs34sknn1SPahFR9cOAiIiqlEqlQrdu3TB//nyEhYXBwcEBP/30EwDg1KlTmDp1KgYMGIBWrVrB0dERiYmJivbHwcEBhYWFFcpbt26Njh074uuvv8bWrVs1rkMqKzo6Gg8ePFA/PnPmDGxsbBAUFKQuu3LlCnJyckTXuLq6qtcKaeoPESmLARERVZmzZ8/i448/xoULFxAdHY3du3cjISEBLVq0AAAEBgbiu+++w82bN3H27FmMGDECzs7OivapUaNGuHr1KsLDw5GYmIj8/Hx13fjx47F48WIIgoDnn39ea1tOTk4YPXo0rly5gj///BNTp07F0KFDReuB8vLyMG7cOPz111/47bff8MEHH2DKlCmwsbFR9+fs2bOIiopCYmKi7JEtItIPAyIiqjLu7u44ceIEBgwYgGbNmmHOnDlYunQpnnnmGQDA+vXrkZKSgvbt22PkyJGYOnUqfH19Fe3ThAkTEBQUhI4dO8LHxwenTp1S1w0fPhx2dnYYPnx4hQXZlWnatCmGDBmCAQMGoF+/fmjTpg1Wr14tuqZPnz4IDAxEjx498PLLL+M///kP5s2bp66fOXMmbG1t0bJlS/j4+MheP0VE+lEJJftdiYhIJCoqCk2aNMH58+fRvn17yWvnzZuHPXv2SKYRGTNmDFJTU9WpR4jIfHDbPRFROfn5+UhKSsKcOXPQpUsXrcEQEVk+TpkREZVz6tQp1KlTB+fPn8fatWtN3R0iqgKcMiMiIiKrxxEiIiIisnoMiIiIiMjqMSAiIiIiq8eAiIiIiKweAyIiIiKyegyIiIiIyOoxICIiIiKrx4CIiIiIrN7/A4W3g6UC9WBlAAAAAElFTkSuQmCC", @@ -213,14 +253,9 @@ "slope, intercept = np.polyfit(x, y, 1)\n", "print('slope:', slope, 'intercept:', intercept)\n", "\n", - "# Generate line points\n", + "# Generate line points and plot it over the scatter plot\n", "regression_line = slope * x + intercept\n", - "\n", - "# Add the regression line to the scatter plot\n", - "plt.plot(x, regression_line, color='red')\n", - "\n", - "# Show plot\n", - "plt.show()" + "plt.plot(x, regression_line, color='red')\n" ] }, { @@ -228,17 +263,43 @@ "metadata": {}, "source": [ "#### *Exercise*\n", - "As mentioned above, both plots share the same figure. We can generate two separate plots by adding `plt.show()` before the second plt.plot command. Try this.\n", + "An alternative way to generate a regressiono line, rather than generating a list of points on it to plot, is to use plt.axline. axline() accepts arguments xy1, a point the line passes through, and either a second point xy2 or the slope.\n", + "* Comment out the two lines generating and plotting regression_line\n", + "* Add a plt.axline() line\n", + "* set xy1=(0, intercept)\n", + "* set slope=slope\n", + "* set color='r'\n", + "And re-run the cell. Docs on axline: https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.axline.html\n", + "\n", + "As mentioned above, both plots share the same figure. We can generate two separate plots by adding `plt.show()` before the second plt.plot command. Try doing this to see the result.\n", "\n", - "## Box and Whiskers Plot" + "## Box and Whiskers Plot\n", + "Matplotlib has two functinos for this: plt.boxplot and plt.box. Boxplot works on a dataframe by taking a list of columns to plot as separate boxes, e.g. `df.plot(kind='boxplot', columns=['A', 'B', 'C'])`, and box works on a series object and accepts another series to group the data from the first series on\n", + "\n", + "For our plot, let's group our 15 minute data by day and show the temperature each day. " ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "ename": "AttributeError", + "evalue": "'PlotAccessor' object has no attribute 'boxplot'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[15], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m tol[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mdayofyear\u001b[39m\u001b[38;5;124m'\u001b[39m] \u001b[38;5;241m=\u001b[39m tol\u001b[38;5;241m.\u001b[39mindex\u001b[38;5;241m.\u001b[39mdayofyear\n\u001b[0;32m----> 2\u001b[0m \u001b[43mtol\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mplot\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mboxplot\u001b[49m(y\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtemperature C\u001b[39m\u001b[38;5;124m'\u001b[39m, by\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mdayofyear\u001b[39m\u001b[38;5;124m'\u001b[39m)\n", + "\u001b[0;31mAttributeError\u001b[0m: 'PlotAccessor' object has no attribute 'boxplot'" + ] + } + ], + "source": [ + "tol['dayofyear'] = tol.index.dayofyear\n", + "tol.plot.boxplot(y='temperature C', by='dayofyear')" + ] }, { "cell_type": "markdown", From 27915946f7702f5a19633be78bdc06f4a2fab122 Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Sat, 19 Oct 2024 13:29:56 -0700 Subject: [PATCH 44/94] more plots --- D3-Pandas_Graphing.ipynb | 192 +++++++++++++++++++++++++++++++++------ 1 file changed, 162 insertions(+), 30 deletions(-) diff --git a/D3-Pandas_Graphing.ipynb b/D3-Pandas_Graphing.ipynb index 864c5b8..783ff12 100644 --- a/D3-Pandas_Graphing.ipynb +++ b/D3-Pandas_Graphing.ipynb @@ -9,6 +9,13 @@ "Feedback: https://forms.gle/Le3RAsMEcYqEyswEA\n", "\n", "## DataFrame.plot\n", + "The built-in pandas plotting is based on matplotlib by default and gives a simple inteface to make a lot of plot types. You'll notice that there are a couple of variations of the plot commands that work fairly interchangably:\n", + "* `df.plot.box(by='dayofyear')`\n", + "* `df.plot(kind='box', by='dayofyear')`\n", + "* `df.boxplot(by='dayofyear')`\n", + "\n", + "df.plot.box and df.plot(kind='box') are equivelant and use the pandas plot wrapper to call plt.boxplot. df.boxplot is a more direct call to plt.boxplot - and not all plot types have this call available directly in the dataframe. In any case, you'll notice that plt.box and plt.boxplot don't have a \"by\" argument. There's a bit of code in the pandas wrapper that the above three meuthods use to groupby the data for you. There's a comparison with the plt.box function in the boxplot example below.\n", + "\n", "The plot function built into the Pandas DataFrame object works with matplotlib to generate plots for you using a few standard arguments:\n", "\n", "* **data** is the dataframe object to work on. If you call df.plot, this is implied, and if you call pd.DataFrame.plot(data=df, ...) it must be given as an argument. \n", @@ -16,21 +23,23 @@ "* **y** is a label, position, or list of balel, positions, defaulting to None.\n", "* **kind** is the type of plot to make: line, bar, hist, scatter, etc... \n", "\n", - "As well as a bunch of more detailed options for the plot axis, subplots, style options etc. Read over the documintation for a few min to see what options are available: https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.plot.html" + "As well as a bunch of more detailed options for the plot axis, subplots, style options etc. Read over the documintation for a few min to see what options are available: https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.plot.html\n", + "\n", + "Many of the arguments you can pass into df.plot can also be called in some form against `plt`" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Let's make a few typesc of charts! We'll start by pulling some data that we can work with. This is from the USGS gauging station at Toland Landing in Rio Vista, CA. This data clearly shows the tide, includes a lot of parameters to play with.\n", + "**Let's make a few types of charts!** We'll start by pulling some data that we can work with. This is from the USGS gauging station at Toland Landing in Rio Vista, CA. This data clearly shows the tide, includes a lot of parameters to play with.\n", "\n", "Note that we're importing numpy and pyplot here, as these are needed in a couple examples below." ] }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -42,6 +51,8 @@ "tol_all= pd.read_csv(data_url, sep='\\t', comment='#', header=0)\n", "tol_all = tol_all.drop(tol_all.index[0])\n", "\n", + "# If you open the above url in your web browser, you'll see information on what the numeric pcodes represent.\n", + "\n", "# regression/scatter of specific conductivity and salinity\n", "# time series with nitrate and chlorophyll; ph,do and chlorophyll...\n", "# Boxplot of daily temperature" @@ -49,7 +60,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 2, "metadata": {}, "outputs": [ { @@ -108,7 +119,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 40, "metadata": {}, "outputs": [ { @@ -117,15 +128,15 @@ "" ] }, - "execution_count": 27, + "execution_count": 40, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGrCAYAAADqwWxuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZxlVXUvvs65Q1X1yCBIA80gCoKIAUUfOCcOwSF5xPgSQxKn+ExiYkxifoYkDokijmjEiDxjkPjERI0a4/iCERDQMKo4ME/N2NI03dXdVbfucH5/nLvPXmvttfc5e+/qulXde30+/emqunffs8+5e1j7u77ru7KiKApIlixZsmTJkiVbRpZPugPJkiVLlixZsmTckoOSLFmyZMmSJVt2lhyUZMmSJUuWLNmys+SgJEuWLFmyZMmWnSUHJVmyZMmSJUu27Cw5KMmSJUuWLFmyZWfJQUmWLFmyZMmSLTtrT7oDITYajeC+++6DtWvXQpZlk+5OsmTJkiVLlqyBFUUBs7OzcPDBB0OeuzGSFemg3HfffbBx48ZJdyNZsmTJkiVLFmCbNm2CQw891PmeFemgrF27FgDKG1y3bt2Ee5MsWbJkyZIla2Lbt2+HjRs3Vvu4y1akg6LCOuvWrUsOSrJkyZIlS7bCrAk9I5FkkyVLlixZsmTLzpKDkixZsmTJkiVbdpYclGTJkiVLlizZsrMVyUFJlixZsmS7x4bDIfT7/Ul3I9kKtU6nA61Wa1E+KzkoyZIlS5YMiqKABx54AB555JFJdyXZCrd99tkHDjrooGidsuSgJEuWLFmyyjk58MADYdWqVUkEM5m3FUUBu3btgs2bNwMAwIYNG6I+LzkoyZIlS7aX23A4rJyT/ffff9LdSbaCbWZmBgAANm/eDAceeGBUuCeRZJMlS5ZsLzfFOVm1atWEe5JsTzA1jmK5TMlBSZYsWbJkANBMPCtZsjpbrHGUHJRkyZIlS5Ys2bKziTgow+EQ3vrWt8KRRx4JMzMzcNRRR8E73/lOKIpiEt1JlixZsmTJFt3e8Y53wC/8wi9EfcYll1wCWZZ5ZVctxnWV7dq1C172spfBunXrvPsRaxNxUN773vfCeeedBx/96EfhZz/7Gbz3ve+F973vfXDuuedOojvJktXawmAELzvvSvjTf/3BpLuSLFmyvchOPfVUuP/++2H9+vWL+rnPec5z4E1velPt+y688EL47ne/C1deeSXcf//9sHXrVsiyDH7wgx8san8km4iDcuWVV8Kv/uqvwotf/GI44ogj4Nd//dfhBS94AVx11VWT6E6yZLX2s/u3w7V3bYUvXX8vPLxzYdLdSZYs2V5i3W53UTRFQu22226DY489Fo4//vgl78dEHJRTTz0Vvv3tb8PNN98MAAA//OEP4fLLL4fTTjtNfH+v14Pt27eTf8mSLaVtm9Ns9Id29CbYk2TJkmGbnZ2FM844A1avXg0bNmyAD33oQwY68OlPfxqe8pSnwNq1a+Gggw6C3/qt36q0OpR95Stfgcc97nEwPT0Nz33uc+HCCy80QhqXX345PPOZz4SZmRnYuHEjvPGNb4SdO3fW9vHTn/40HHHEEbB+/Xr4zd/8TZidna1eG41GcPbZZ1eUhyc96UnwhS98oXpdCvF84hOfgI0bN8KqVavg9NNPh3POOQf22Wefxtd91ateBZdeein8/d//PWRZBlmWwZ133mm0f85zngMf/OAH4bLLLoMsy+A5z3kOHHnkkQAAcOKJJ1Z/221WTMCGw2Hxlre8pciyrGi320WWZcW73/1u6/vf/va3FwBg/Nu2bdsS9jrZ3mz/du2m4vC3fLU4/C1fLb5320OT7k6yZItqc3NzxU9/+tNibm6u+ttoNCp29vpL/m80Gnn1/fd+7/eKww8/vLj44ouLG264oTj99NOLtWvXFn/yJ39SveeTn/xk8fWvf7247bbbiu9973vFKaecUpx22mnV67fffnvR6XSKN7/5zcWNN95YfPazny0OOeSQAgCKrVu3FkVRFLfeemuxevXq4kMf+lBx8803F1dccUVx4oknFq961ausfXv7299erFmzpvi1X/u14oYbbiguu+yy4qCDDir+6q/+qnrPu971ruLxj3988c1vfrO47bbbigsuuKCYmpoqLrnkkqIoiuI73/kO6cfll19e5HlevP/97y9uuumm4h/+4R+K/fbbr1i/fn3j6z7yyCPFKaecUrzuda8r7r///uL+++8vBoOB0f8tW7YUr3vd64pTTjmluP/++4stW7YUV111VQEAxcUXX1z9jZs0npRt27at8f49EaG2z33uc/CZz3wGLrroInjCE54AP/jBD+BNb3oTHHzwwfDKV77SeP+ZZ54Jf/Znf1b9vn37dti4ceNSdjnZXm44rPPIrhTiSbbn21x/CMe97VtLft2f/t0LYVW32dY0OzsLF154IVx00UXwS7/0SwAAcMEFF8DBBx9M3vea17ym+vkxj3kMfOQjH4GTTz4ZduzYAWvWrIHzzz8fjjnmGHj/+98PAADHHHMM/PjHP4azzjqranf22WfDGWecUSEzj3vc4+AjH/kIPPvZz4bzzjsPpqenxT6ORiP41Kc+BWvXrgUAgN/5nd+Bb3/723DWWWdBr9eDd7/73XDxxRfDKaecUvXv8ssvh/PPPx+e/exnG5937rnnwmmnnQZvfvObAQDg6KOPhiuvvBK++tWvNr7u+vXrodvtwqpVq+Cggw6yPt/99tsPVq1aVYWZAKCKYOy///7OtothE3FQ/uIv/gL+8i//En7zN38TAACe+MQnwl133QVnn3226KBMTU3B1NTUUnczWbLKdvQG1c8P70yF1JIlWw52++23Q7/fh6c+9anV39avXw/HHHMMed+1114L73jHO+CHP/whbN26FUajEQAA3H333XDcccfBTTfdBCeffDJpgz8ToKQi/OhHP4LPfOYz1d+KooDRaAR33HEHHHvssWIfjzjiiMpJACjl31V46dZbb4Vdu3bB85//fNJmYWEBTjzxRPHzbrrpJjj99NONvnIHxXXdlWITcVB27doFeU7pL61Wqxo0yZItN5tbGOqf+0PHO5Ml2zNsptOCn/7dCydy3cW0nTt3wgtf+EJ44QtfCJ/5zGfggAMOgLvvvhte+MIXwsJCczR0x44d8PrXvx7e+MY3Gq8ddthh1nadTof8nmVZtdft2LEDAAC+9rWvwSGHHELeF3sod113pdhEHJSXvvSlcNZZZ8Fhhx0GT3jCE+D666+Hc845h8Bwk7bNs/Pwmk9dDc8++gD4ixc+ftLd2WPsk5ffAZ+/ZhP8wxknwVEHrPFuf8uDs3DQ+mlYO92pf/Mi2s4FjaAsDPwn+ebZeXjdhdfAy5+yEX77fxy+mF1Llmy3WJZljUMtk7LHPOYx0Ol04Oqrr66chG3btsHNN98Mz3rWswAA4MYbb4QtW7bAe97znooacM0115DPOeaYY+DrX/86+dvVV19Nfj/ppJPgpz/9KTz2sY9dtP4fd9xxMDU1BXfffbcYzpHsmGOOMfrGf29i3W4XhkP/w1a32wUACGrraxPJ4jn33HPh13/91+EP//AP4dhjj4U3v/nN8PrXvx7e+c53TqI7ov3rVZvgx/duh3/4zm2T7soeZe/86k/hxgdm4R+/e7t32xvu2QbP/9Bl8OoL/CdjrO1CCEpv4D8x//7iW+CH92yDv/nyjxezW8mS7dW2du1aeOUrXwl/8Rd/Ad/5znfgJz/5Cbz2ta+FPM+rdNjDDjsMut0unHvuuXD77bfDV77yFWOvef3rXw833ngjvOUtb4Gbb74ZPve5z8GnPvUpANCy7W95y1vgyiuvhD/6oz+CH/zgB3DLLbfAv//7v8Mf/dEfRfX/zW9+M/zpn/4pXHjhhXDbbbfBddddB+eeey5ceOGFYps//uM/hq9//etwzjnnwC233ALnn38+fOMb3/BO/z3iiCPgv//7v+HOO++Ehx56qDG6cuCBB8LMzAx885vfhAcffBC2bdvmdV0fm4iDsnbtWvjwhz8Md911F8zNzcFtt90G73rXuyrPbDnYg7Pz1c/DUVK4XWzbGsDj+Ndr7gYAgGvu2rrY3ak1HOIJQVBu/3l9KmKyZMn87ZxzzoFTTjkFXvKSl8Dznvc8ePrTnw7HHntsRVo94IAD4FOf+hR8/vOfh+OOOw7e8573wAc+8AHyGUceeSR84QtfgC9+8YtwwgknwHnnnQd//dd/DQA61HLCCSfApZdeCjfffDM885nPhBNPPBHe9ra3GYRcX3vnO98Jb33rW+Hss8+GY489Fn75l38Zvva1r1XpvNye/vSnw8c//nE455xz4ElPehJ885vfhD/90z+1knRt9uY3vxlarRYcd9xxVdiribXbbfjIRz4C559/Phx88MHwq7/6q17X9bGsKFaevvz27dth/fr1sG3bNli3bt1uucaZX/wRfPaqTQAA8IO3PR/2WbV8nKeVar3BEI75m28CAMBLn3QwnPsKmQRmsz//3A/h3667BwAAbjnrNOi0ls6//t1/ugouu/nnAADw2mccCW99yXFe7U//2BVw/d2PAADAne958WJ3L1myKJufn4c77rgDjjzySO+NbrnZzp074ZBDDoEPfvCD8NrXvjb4c8466yz4+Mc/Dps2bVrE3u0ee93rXgc33ngjfPe73510VwDAPZ589u/lHWCcoG2f15yDXsCJOZlpOFW30/JXI8Shldn5Aey32s9pHI4KmO8PYfWU/7Cfi+Sg4LsdjQrI81Q1NlmyxbDrr78ebrzxRnjqU58K27Ztg7/7u78DAPA+2X/sYx+Dk08+Gfbff3+44oor4P3vf39U+GZ32gc+8AF4/vOfD6tXr4ZvfOMbcOGFF8LHPvaxSXdr0S05KBbbijbTXj85KIthO3uYx+H/THGYZT4gk+bML/4I/uOH98N//PEz4LEH+hF0F4YaaAzhoOD4cG8wgpnu4mYqJEu2N9sHPvABuOmmm6Db7cKTn/xk+O53vwuPetSjvD7jlltugXe9613w8MMPw2GHHQZ//ud/DmeeeeZu6nGcXXXVVfC+970PZmdnK12X3/u935t0txbdkoNiMXzaD9mQkpmGnYr5Bf9nOhuJan3umjI89NH/ugU+/Jt+4aU+ul4sgjLXHyYHJVmyRbITTzwRrr322ujP+dCHPgQf+tCHFqFHu98+97nPTboLS2ITIcmuBKMOSkJQlA2GI3jrl38MF1xxh3db7KCEaInM9sLDLPjaU21/56A/RA7K0H884DYh6E+yZMmS7W2WEBSLbZ/XWSbJQdF2+a0Pwae/fxcAALziqYfBtIeo0jwKlQ2G/tzsWfKd+G3yP5/VBf5CinFiByUk5IfbJKG3ZMvVVmDORLJlaIs1jhKCIlhRFGQzTSEebRhZwhV+mxjemPsBioY7IhCUWKG1PnKoQhCUeTSG5gLCW8mS7U5TqqO7du2acE+S7QmmxhFXs/W1hKAIxhGThKBoe2SXdkp8QxX4/b4ISlEUURyUWIIudkr6IQ5KP47gmyzZ7rRWqwX77LNPVatl1apV3sJfTWxhMII8A2gvoURAsqWzoihg165dsHnzZthnn32g1Yrj2iUHRTAO4acsHm3YSZj3fC54Y/bd5Of7IyKY54uCzEUqweL+hoSnsFPk+9ySJVsKU5Vpd1dBueGogAe2zUOeARy0fnq3OEDJlofts88+i1LpODkogs2zDSyFeLTtQqESXy4FQVA81XlnezSc5Pud4BBPCIKCs3j6AcrCsQThZMl2t2VZBhs2bIADDzwQ+v3Fr9h97Z1b4e3f+SEAAJz320+Gox+9tqZFspVonU4nGjlRlhwUwTgEn0I82vBG7x/iwSiE3zM1UC3P7wQ7ViGIGOag+Padc5qSg5JsOVur1Vq0DQbbw70C7p0tx/7OQb7iFWuT7X5LgUDBOASfavFow1wOXweFkGQ9wySxvCDKQfHrd1EUhNTrG+LhpNoQDZhkyVa6bd2lCfY7EeE9WTKbJQdFML7x+oYj9mTDC0sMB2XgmcXDnQpfDsquiBDPcFQAzprzzUDizykkCyhZspVuuEDojuSgJGtgyUERjDsow7ShVLYrgmw6F5HFw52KkWeefUwWD0d7fBG1HhtPIVlAyZKtdNvRSw5KMj9LDopgfAMLQVCKooBHEKS5p9hicVD8s3gYquXp4FAOil+/OeIR61wlByXZ3mj4cJMclGRNLDkoghkISoCD8uGLb4Ff+Lv/hM9edfdidWtZGHUywpEEX6ePb/K+3wlFfnwRlDgHg48n3+eWLNlysYd29OAfvnMr3LVlp3dbnOqfOCjJmlhyUASbXwQE5e+/fQsAAFx45Z2L0aVlYzis4+skRIV4+nHfCdExiWgb0t7goKywrLCiKOBl510Jb/jMdTBKfKy92j7wrZvg/d+6Cf7qSzd4t8XzP2QOzPeH8F83PkjKkCTbsy05KIItBoKi7MHt87HdWXTb9PAueONnr4dbHpz1bosdBf+NOlzqnvNdfDkoeEH0/T77A/p+XwSF992XIDxpu+yWh+Dau7bC1264H+59ZG7S3Uk2QfvidfcCAMAVt27xbhuDYgKUqPRrPnUNnPXVn3m3TbYyLTkognGOQkwWT74M1RJ/4/zvwVd+eB/88Wev926LFxZfPRB8gioKP0fB4AV5IjBEx8TTQYjloHAEZaWFeO5DTskDy9DhTrZ0FrOcxao5f/zS2wAA4F+v2RTeiWQrypKDIpiZteG3oWEYPM+Xn4Ny37Zyk7nxgQAEZRDOIzE36ubP1eSghDsZ3giKEeKJ46CstBDPdlQUctuuBK/vzRZTpBYfUFL5kGRNLDkogvENyHcj3oEyRtrL0EGJsV5EqCRGXyYW1cJOQX9YeJUDV4hJp5UFXXulZ/FgQqNvBetke5b5hlaxxWgRJds7LTkogvENyBfSxyfOmAm9u2264/f1F0VBNvoYDgoAwNDjucZm8XCnwKe5Ql9mOqX8t294ysziWVmLMzn5po1lrzY86n2cfACKoPqGeFIF8L3TkoMiGN84vbNVFsIzXZbSVnf9SjGZPJA4RdWhxwIXi6DEhGlU25luy/hbE+PFJ1caB4U6KGmj2JsNH7ii6mF5tuW6Kct5XU22eJYcFMF4tVp/zkG4VsjuNryxtjzDT7EoRkw2S+y1Oe/Dp716ZquQQ+fjIPFrrzSp+7kF3d+Vxp9JtnhWFLTkw5xnTSmSxePJQdkxTx2U5CjvHZYcFME4AdObaxGhFbK7DUOlvox808HwuzceKovJ4vF2UIbc6fR3UFSIB8APPeL37Ys8TdrweE4Oyt5rfA7u8gi7FEVB2vs6GBxB8a0DlmxlWnJQBIvloMQUxdvdFjOx+anHmwcS4fip56hQn+gQj8d3ujDWQcGcHR9kTCEmyiGcxCb/ycvvgCe+/Vtw4wPbvdvi6ssrDf1Jtni2iyEmPggKny+xIZ6EoOwdlhwUwRQHRW2G/tkqWCtk+SIo3lL1hsKu3yITg6Co90638/HvnmnGEX1Xzk23nVdZWSHtV40RmJAhccM92+BX/+EKuPK2h/wbA8A7v/pTmO0N4MP/eYt321gF0GR7hnF5ep85YGgJea6p/NopTXnvsOSgCKYmz9R4M4zJVhmM/FJaAUo49H3fvBH+7dp7vNo1MXzy8C2aZ4R4PHbaoiiM5+jHAxl/J+NNPhZBCeGgdFo5tFWqsce9c5Ktr3MFAPC6f74GfrjpEfitT/y3d1tsIWnC8ymLZ4+y0agghNWmxhEUrrDssn4kwX4nuzYnnjex6+7eCu/86k+9uTPJJmd+aRx7iamTwXSnBbsWhlE1ZwDKlNaWB9/jp/dvh49dUqomvviEDTCNuA+xhtEdX7g+psozfm+elc/EK8Qz7qtGUJYuxKPe223l0M5zABh5clhUiKjlfW1lMQquWDgwBBqfI+mhyUFZ6fbKC66Cq+54GP7jj58BRz96beN2HD3zKVfB15qYQqPl7/7j8Nc+dmXZdjCEd/3PJ3q3T7b0lhAUwYYGguK5kUfqXmDG+t0P7/JqW2c8xONT/C2Gg4I35am2CnX4OzihCEqMc7UgIigei/OAkmxDiNMxen+zaDy1W/5Tfj6FePYY29EbwHdveQh6gxFcetPPvdoaTobHWIjJogMw52+MLsrP7vdX0E42GUsOimDKu+8GntYNvQ/P9tvRhvLQjp5X2zrjffM5Ecdk8eDTliKbhqAYymn0EXkDkEI8/hySTlshKH4nQB7iCantpMZiiG3dtaB/CeC/zCWS7B5jOMQ361kVOKaqt8lBiUNvY5C8PU3de0+25KAIxhGUpZR0B6CLyGKTwcy+LU09HAlB8VHZ5bwgH/QFwHQoQtKMO60Myd37OzjTbeWg+H+nMYLEO4lAlv/Jk6YZp/j9SjZMNuWckjrjDoqPs8rb+hP0GQfFE0HB119eaQvJXJYcFMH0Zhh24uUELl9CGHZQFlvimfNjYrRIfBaZAUq17bT9U4XVpj4VECYZjorq/QqJ8CO5ag5KSJpzxUHphnNQsIPiG2aZj+SQENL3MstKS+ZnONzHiad1FpeqHxniiawIjtdU36SFZJOz5KAIppABtZn51tPBypvl54VPphC2ussWtWCfzwlqfJ1OrsMkQWnGARwUvLCG8EDU4tpuZdBp+Ts4upZPGCIHQBEj7mTWWS9SaA1vBiHhqWTLxzCCMueZybPAsnZ8uHUYhfRtCyAc+jxRSBra8s9gSjYZSw6KYH3Od4hEULh0fp1tJwiKPBG/fsP98InLbvcv2BVxkjFCPB6XVs5Mu5UF6cuoBW0qQAcFQ9Gruv5hFpxm3ArRQRlQqXzf8VQUBWnj62T0IhAUjD6p333t1s074L3fvBHue2TOu+1ytru27IT3f+tGuGerP5F921wfPvj/boIfbHpk8TvmsB2LGOLxcTJ6jCjuTXLvh6M3ALsXlU62+yw5KIJxDoovZYCz230Jndvn3ZNpvj+EP/zMdXDW138G1939iNdnxxTdMyoCB4Q52nkGrczfQTEQFJ8QzcBEUEJ0TMo0Y/++DyLQHwAz1u9LVI3RMYkpsqjsXV/7KZx3yW3wtn//iXfb5Wx/+W83wD985zZ411d/5t32H797O5z7X7fCGz5zXdC1f3LfNrjt5zu82+EMwXgHxX/+Yyfd53AVKxK5rcGhr842b5+Hr/3o/uTgLKElB0WwAecreE6G2EUdT0ZpMt2zVZ9EN3vqY/DJ5eM8DZCTARAmVY9RiCChtgBUS23o7VyHaEKuHS3UFphmzBdnbw5KBMk1RlxP2SXjdNaLf/agd9vlbN+7fQsAAHzzJw94t/3v2x8GAIB7A1Cl+x6Zgxd/5HL4pQ9e6o2gUgTFL9QRU1NqoUIRUT0rL/Q2riL49kUIm7/houvgDRddB/969aag9jG2a2EAv3fhNXDO/7tpya89SUsOimBq4nXbYdLkZjVkz4wT4qCYk2nbnE4bfcRTGZQ7PF6hCiRgBxCmgxIa4qlIsgHqvkrxstsOJbkiHZTc//qVDko3VFcnHFoHiCPJGgqgiYNiWDdAWyZE0VfZT+/T9ZQe3rngeKdp2EGZ80QSTLE1/zDpqilccDMCQYlAEUMRkKvv3AoAAN++cXNQ+xi78tYtcPHPHoSP/Net8Mguv+98JVtyUATjKa0+oQwASdY5HNKXvH2sk+I72QwEJcDJCEn17VcoRhiCoq/tn6IsCq0F6aBkuhZPwOIcjqDQ78w/i4eGeHxO3TEFHvcWmwrQqJkjgol+3yd2MnwVhnHKue8mHxPiqRCUjhYv91GiNTgoEdpU832/OQBA94BJZAHhg+iD2xdXG2s5W3JQBIvVQTGqIUcUtpPqXWC40jejw2TD+6cKhzwXdZ0OQlBCpPJDRN7U8yQk18A0Y+3gBKQZL5IKri8KwlGzEO6AMm9nG/W141PvYZkb3rB8NXkA6NzxncNYeG/zrN9mhTf62HpWPo5VlcmGQjw+4WXlpIdWM+cHM985NIucQt+szsUwjJrEoG8rzZKDIhjnoMTWffFtjxd1KVsFp8nNexLdYlRu+yO60YZk4bSRk+Az0bXTGH7tbiuDTkCK84IY4glAUFSxwIhNXvq96fWV+fSdn7JjUuZDQiHL1bBTEbJhEZ6Z5xzeisI6vm0xOuvPrQsPXVdihZ0cxhz5IARldaUlFOek+wpg4kPhzt7Sk2RxKG9HLzkoe7VppMC/ZgyAkO3i2Z4uImZb4qAIm9WO3gA+/f27YJNQx+eNv/g4+Pzvn1ItEiEISojjNhCyeEIXuLKtv4PQDhVaQwhMCEl2gYV4YhEU3ywevpjHZG75bmo4HOGbbr8U9rZ//zE89ayL4YFtfqESnAGjnFYfw3okvlklRGna01nFzm0MGib93qRtp5VXhwQ/Dkr5vNdMlSEiX5IsR459USv8zCdRDXl3qosvZ0sOimBcddSXg2Ky3WMQFLPtHIkjm69/9L9uhbd++cfwln/7kfHaYfuvgpOP2A8O22/V+PN9NvoxitEJkao3N3mfa/M045DwUruVoWuHoD+IgxLkXAVyUHjxSd9NKWI88o0ghj+z4Ml/WQr75+/dBZtne/B/Lrvdqx3epHw5JMNRQTZI381yjnCKPBEUHD6OrGcVckjotsOcfOWIrZoK0xLiIR5f7h52tCdRj4pwaAKykG58YDv88ocvg09/785F7NXut+SgCBZd94WnZvoiKPiUI0zEefK6OVm+cO09AABw5W1brNcI4WJUTkJIJo2YxdO4uZFm7If8jPkviKDrl4GgOShhCEz5Xo2ghKedAywGguK/sei2cafumCJvi20YxfAtxojJpjEkV4AQByU8K2uhZu1w2WKQZLuBYofqPlcrBMWz7zHZiwA0JTu0ovfnr9kEZ37xhqAsIuyUhCAof3/xLXDjA7Pw1hWmRdSuf8veZ5wM6ouA8BOur7ZVrwZBmScZAObrTU6pMVomIcgScRIyfwRF1+Lxv7ZazDACEsxBUToqAVk80xXyVPY/b1hVNVYHJUbLJBZBkQrMqecwaXsQZcD4Ijs4xDMqyufSavp9sg3KN2RAsrIiUoW91zX2fj+SrCLJ57pcRECZjbVjB8W377E6Kvj7Dim4WRQF/MUXSkT7KYfvCy978qFe7XuRadI3PjDr3WY5WEJQBDPSjD0XL+6de2fx1HBQ8KIkbfJNNr5WgJ6HRjH8uTkD5CSEIChDdu0QBAVzUEJSpDuBIR4pgyFOpCp8PAGEicxVbWMzkJZR/BxvOr6qqnyTCJF9D2nLrx0X4okbR14OikJQ2lqNOeSZrZ4KI8nGSuVTB8V/DGNpiK0BOiaxBT8xWig540VRwLV3PQz3b1te5SiSgyJYTMYIgOmde5Nka7J4MNwnTTTsn9j6HoSgcKJqAJeBOAkBInEhTqPqdyfPggoVVuhPO0yoTbWfQciBVw2kSA2IGJKs6rsaUzEZaQCTid/bLOZUHOM08mfg+0znIjbLuvCxyxQyvDqgKjcWOwxRc1ZO2eqxVH5smrFviGgX2uBDHASM1sVWFA+R6sfrpYQeXXf3VnjZed+DXz/ve96fvTstOSiC8TRjXwcjpiw5QD3THg/Wuom60yJnHcSlYI5bqJMQItTGncaQfmP0JrYWT4xQG4AfqmYgINGk7fC++55cDQ5KADx92c0/h4t/uvgy+XP9xdnoAcJ0eZTFVPb17XcPXcu3Ho4adzNjJ8HH2cQIiuaB+ZNkVweGeAz9J18EBY2VELL3Qzu0Xk00ByUgxITXWolkq9SJ731kjqAtk7aJOChHHHEEZFlm/HvDG94wie4YZnBQAjcEhTTEpBnLHBQ30Q2/bsv4aAegGNVz6QSEhyQnoWH7oihQBlEIAqJPbyHOkaxEK7ffPDsPz3n/d+DXz7sS+sMRjEYFWthDERRePykyxLOEGUh8E/LdULft6sPv/tNV8Hv/fI23rHud4Ww439BTTJiGOyhRCIrnZmc6RyGhypB6VsrJz1AWT7NnNhiOqjG7aCRZzznEeUK+SOCuXhyHhCvh+hp2yOquHxKC2l02EQfl6quvhvvvv7/695//+Z8AAPDyl798Et0xbLGE2vSi3rwtL28vaUe4SLJFUVDtCcsCFKTmqhwvhaAEOAntACcBvy1GxbaF0ZtYDorluV78081w55ZdcM1dW+GOh3aShVQ5V7hPTWyxERTbs+sNhkbxyaYquEVRkFOisoVhHH/muru3Vj/fLej6xFhMiCcmdBX7fcZsVrxYpFdGl6opFaDngxGUjmeYFD+vNVNhjrIZ4vFrz8XZfInqGMkOcTDw+PRNMy6KgiBAkjOOlXJ5ltkkbSIOygEHHAAHHXRQ9e+rX/0qHHXUUfDsZz97Et0xjIcTvGvxKAelbU8r7Q9HcN4lt8Gtm2fFtrovZltXls98f0QdHMvC6dIiuOqOh+ED37rJGKhViEehGF4hnjGPI0eZNA3b43sI4QVpkbg8iHuj0oRxFo8LQVH20I4ecRBxiCgmk8bbQWFjyDYmfvsf/xuedva34cf3bjPeW4cG/t//vhue8q6L4d/GKe7KjFCIZ9/xaW7H/OIunDHER5MwGh7iidlsvdO+I/qtFZHHWiQB6AtGMZs6q3hDXdUNDPH0eYjHE0Hp07HnO14wAhOLoHgrUQ/pniBdH4t/LvY8i7GJc1AWFhbg//7f/wuvec1rIMvk7JNerwfbt28n/3anqcHfDdRBGbCNXFrUP3n5HfDeb94IzzvnMvJ3s2pnHYJC3z87T2WQ+YL0uas3wae/f1c1IKXF8fcuvBo++p1b4TPfv4v1hTpePhNFp/oiBKVhe9zHMARFIyAxHJROAw4KliHf1RuSEFsnUEelKQJiMy7UJrUvigKuvnMrFAXA/0N8Dy7Tb+v3W7/8YwAA+PPP/5BeO3Iz3okWdl+9kDrjRRR9zOSghId4fJ0M/Bx8QrTitQP0gGYCQrwEQWn5lbpQ3007z6o1NbSidzuA/wJgZnn5Iii4vaT+XWcxTukuhv5ICA52SpaTVtHEHZQvf/nL8Mgjj8CrXvUq63vOPvtsWL9+ffVv48aNu7VPA5YxEhziadvZ7t+xlOxusqDjAcQ/my/ifCK/55s3wlu//GPYsqPcSLnztbM3qFLibnqQojsDzgMJQVBa/mEWfI8h147NIFrAIZ4aDsrWXVSGXDlmeVaGmNqezlnZ/zjSNd+EpMUZp0GCwPhXY7ko/BDFGBVbAJo9sdgOyqRCPOYhpHnboijiEJQI52ihQtMUiulPtqYISlMHZVhd1zc8xD9jzbTKAgp3MABC0pTROA6Qyq+TlnAZT5SQQkT4YOvr/O1Om7iD8slPfhJOO+00OPjgg63vOfPMM2Hbtm3Vv02bNu22/oxGRcV5COGgYEKnCxbfYclLbxKfnicnKPq6QYIb8A2CEl15+/se0XnwOUO0eKpvkFw8EWprGOJBE1IVnPPZKKUMohCiaLm4uu8dhyR6gyFxjgAgSEWTEwJ9F9cmCAzmj2DnT12rqYbLFFNkXVQExZKR9vlrNsFF/3231+cCMAfFm8sRTzZV5usk4LfHpn37KSpHcFBQ4kHbM81Ynfin2mEIJP4MXcsnjhQd4+D4OsPDUVGrjdX02gAWDsp8PW9xEjZRJdm77roLLr74YvjiF7/ofN/U1BRMTU0tSZ/w4qw1N0onwhaCIu1xOMJBklUnaYBy8KtTSZMFnYR42ESpk0XXInQylwNvCLyst85OCqkorDbqDDLwc1DU+1pIxwSg/K5yqP9OSC2eAJIsDvm1axyMRxCCMt8fVSEe5Vj5Ls74+tXvkbwDqe+kQi5awNR4nHZouODT4drpDr023xCFa9/28x3wG+d/D/73sx4D//tZR9HP7rlPnjt7g0qh8wVPeDQ8ak3zdYJoS/giKIsgWqbMK6MsMjwUo8HCHZRgHpenk6E29ClSx8fXwYgrNmhk0kWE5Xw5KNyh8XbyGZdQWvswSdb32e5OmyiCcsEFF8CBBx4IL37xiyfZDWI0nKAX5aZjAg98FxSKJyd2KposQK4Qj6kaKn+eTeMFbwi72Ik1pkaRegbtPIPxHt0cQRmiti3tkHi3xwhIwwUKpwk3qWb8yBxFUDD/BSA0eyoOhTCUjYW+27geqp/TDg0XHL/utBjqxvtuKW750I4FePfXb3T2a5ewsG/aqjN7MPqn7Ns/exBeeu7lcOVtDxmvYYcntrLvUjkZMXwkjO6GtFdOxnSAUJvSXyG1eJqSZAcK9W1pmXzPGmLqvtdOh5FsY8jF5fvRGh851mKyvgDk/YjUGkoOCsBoNIILLrgAXvnKV0K7vXxKAuHFFy+2TSE9klbqCIVgJ4NXfMUmDaa+A+7juidGBgjTeOF92+EoA6/b+vMRVJfzPKsNk5httYPQyvwdFCmDqOkk77PxUNf+kZ2Ug7IwoCGeoCwe/h17LiBNEJg5kgaJELoqtRQhV44xU8fNkK69xaFvghfOeQFB2fSwdkqk7IOzvvYzuOHebfBXX7zBeC0GNudIpRcvxxANiwn3eTg36L0hekBq3K0KKHqpxlGnHYCgoBBPRXL1uDYezwpB8S4/EhmqxKF2X4SiaS2tn9y3Df7y334Et/18B2tff0DBYZ/lFOKZmINy8cUXw9133w2vec1rJtUF0fB3OdVqiX93GUFgKqTBfN+cJf7NdSP44OSnID7YXdAz5tfYHBRXrFSfpmmYpYkppKaVaQSlsZMw1CEeXJCtaXsd4smrOkXN0Rf9vhKetpP0+sMRgUp7/RFRoVX34NN3AP0dhzg3AM1CPDstQlJcPbhsz8KCPTxm2HhsQvp2wN/4syWSLOb8SPV0bn9oJwAA3LnF1FCpE0R0mclJWBoOiomgNN/scNuQiuS8plSI2GG35c9BkUI8ITL5AEjozbvYYH2o0mUxY61piPetX/4x/MvVm+BvvvRjZ3uRNkDKpywfBGVi0MULXvACb7ngpTC8eOMS7E03Yvzld6uJKGwIFkitLs2YD07+u+sEi99rc1BcgkJ9hqCo9k2K02IeSeZJktUICnVQfEmy7RANFpYm7IqBc86OFOIJkcrHtXxme4NgobaZTgvm+kPxuePwCXaeeYr1YFQY7Wd7mHfDCHkNyIX483p9Wu0YIyjSfeP4uq2sg81oSQn5+7h18w7otnI4bP9V1rYAfuHOmNO4WbbAB4nT153utGDngjwW6q5dJ9onXls5KG1/FBOHeNQBwcfBUGm93VZeremxJRtiDgm+CGgTbSwAgOvufgQAAL53+xZneznxIrx/u9MmnsWz3EwtNCottPp7wwE5Qu31ad18H85N7wmkRNt1zcHqdlD6Fs/dVpF4Z0+G+gHMNGOA5loG+rmGC7W18owUQvRHUDJvDRZ1bZ0mbD95YoIsgBziCUFQqgyIwHo4hpaJcO9zFsdUlwmwZ0BhlGMwKkj/mqRIzztUMnfW8ERwWMc3fdMVKgUA+PlsD57/oUvhtL+/rFbq3C/EE46g8JN7qHMTUsYjjiSrnIRWAAcljiSr1rGpjr+KrbLY+kn4oOMvtBjulAKYzlwdiplCPMvY8Ek/xEGhGSey5sbCYEQWOPLzQG8IAKYDUDfY+MJJq5cK/JihfbPhn63aTzvgfpuNhOfa1EmoHIw8hyzT7Zs6RzjF2ff0hhUwy8+wL5Db510IimofnsUzHSCQBYAFtuzcAVsoRbXF2Rf8e9vRs4sDNjl52sJLvL103zsWMKnbnu2As+aU1TkoNz0wC0VROklYIbjslzsU67JewxOxZDEZXQPkbHcCpAJ4iCfEye60M+9QpU4zRiTZgBDPdKdVOTi+DsZCtYaEhVnJWIvUMYpVkhYRFDTPEoKyjA07GHhN83VQ8iyzIij8NIa9V1MMKQ5BwYOxieCZC1LnBfsA5JPjrZtnSXlx3M+QejhVBhDLhPEmyWIEpSnpWaUYV2nCdgeHkzgxB6UK8dQIvYn9V1okgQX7KsfS4eBgp2RBWKyoCi59djt65n1Ln2W7NtZgsIUVAWSnECMoPOsMv5ZLDgoiLkrPFNf+4eE7fl9+dakiwjQxacKIixVDkg0ZhwsozFJXLoJbDyEgITpCakxNd/KgLCDch1UBGUwA9GDpS9CNLXXB2/OxOhoV4pxfDpYcFGbVRjqusOx7Wq/IoA6+A4+VS/HJVRYimrFAsc92Qc9qYGeZPsnzwYo3G8NzZ4RPqX/3PTIHzzvnMnjO+y8hHCMc4vEWaqtq6YwdlECht3bLX+ip2qDbNEQjXZuTOHGIhyMwNgfpkps2w5lfvIHxQMYISMDJFUDDyxV3QFhc8ebeF8Zju5VZNxaePUPS5hugBTscHJY6lGNnz46gYG7MYDgyOG+cuMhf//msFq/jDkrMpmEikz7OajyCQrPZmm9GvHCkl/YL4zIBeCAoavy2kZKsT4qzQlDaraAsIADd/9VVFpBniCiGJGuE9cy+43Wc++J1CIxZmTuFeJat4ZM+gHszvGvLTviny+8gAwA7OHkmb0bGRiacOKtTCls06xjZTgSFaJHIzpMTQUFcDjUJ+PV/dM8jAFDe44Pb9QKvLtPK/REQ9T7lVPkucAPk4LQ9HU4DAXEskPz079RBsSwCr7rgavjsVXfD+76lNUF4aM2bgzLiIR7BQelhhwg7KBpByi1zgSu84uwvvolJpzlanZc5KDUhHhe5D782KqSF2L1w47lgICj8IOClCeSewy4zNXH8HYy247u02RCRo0OyeCr0te1fLFCHaHIUovEI8QxwiMffwRmNdOakRlDCeGDlz3EIiNT3WaJFRLd1LlPAxwzP1lxOCMryESBZJsYdlDwHgKE8GZ/7gUtKlVkAeO0zjiTtc+wEsO+bSw1LQm22EE+dEqQBPWPZ8mqjtiMJO4miIJ8YFO4fDQvDwcFOyb2PzMFB66dJP/Ms83ZQ8CkeQMP1TU8xREfF8wSGORi4D9LJU8pgwSESADcHBZ/gr7trq9GH6YCNAUB/b3pjMfu+S0Bsyp8RgmL53lwbf5WB0c6hNxjVjmdeSA2LWkmbAnWGeL9MYivOEJLCJTgjDSOd2+cGxnux+Wx4A7TGDEeFF4oRhaCgA4pvqBE/K1+pe+zcBCEofb0mdhzzr769LlToVdwRvbeqphzFQfFzAJoINWL+22CMBqpsSa6NxfvuCqtO2hKCwmyIQjQAdgSlP9Q1MRRqwNtbSbIOrRKu1spDMN4cFBL71EhCFboyHBSZJIs1VHB7vjDTuL3WqMDPxTeOXCEoLEziTZJ1bLJ1bbucJCsSzXjV0CGR+AZwZ/Hggn0KSgbQC1SIdsUQfW8amnf3XQo5dhy8BZcmSF01ZO6s+4Z4eo7YuVmXyv26KzupTlxN4lMNRwVsQTWO9N/pmPJybmr4BE3altls8vpiM8lB8Z1DAGOhNk8OCkZQfJWgAWixwSpN2eO54TFWISi+PJKBuQ43tSaIG61wzbSyajK/zDmXQjzL1tQkrhwUSygEC0Stn9H1R5qQZF2ZDernrmUzqgvx8EUab+KYbKohXto3KnMubw5tpOjKnQRMjsWwOM7iaVuei804ByW3OEc2q6Tq89wbfakUMFktHTlVt3x2agFfQNWMOUlWWmQeQWNKyl5xcUis/UcP2dW+ZwmVSATjuhg2cYoV+tOW0RuOcrjQGBlBMftq7ZcxV9hcMjLa7PLfVckIh+jYx75zKzz5XRcblcurQ0hAVtZiKMmGZLPREh5+WiL4e+gGICiVgxHIIcFZQCFpynguulL1XVbnaDvbNkDNuJMx70AW6+avT7hyd1tyUJhhxVMAsCINWPMCn7TUvGnl9pO+y0Gpq5VTl+5mpjDi06xyEnJr34jybKHvm5cAsCmy4lAB/ll23DwRFIZq+SIo2Dlq2hanR+I+SCcoNdGVw9ob6GKBTXRQZudlwifnJYWGBGYsmVsADDURSK4Ymq8bzwNhPNs2Y7448jFRt7CT7AMhnd/2WQD1CrvSd1C9F3Eqyn6bffvgf94MAAB/8Jlryd/VnAqpCo4dRv+22lkODbO28sy7yjtBUNC1m3NQcIjHH3XCCIwO8TRvX6ngtt1K0k0+A0AmZLusSYjHLEtiHhJs7blz4xtC3p2WHBRmVXy4prgbrv6KsxCGyMFRKAVf+Fxy9hWCYjmZGRWFPTYLvNHnlo3WRhzE/SBia6x/O5jUuzI5uwkameojR7UaC7URaNtvgdLoTYMQz3iiKwdlYTAyTtquLJ7tCHEi0tMVglK/Mdy9ZRdBrrCz4SpeaeNy6GeXW5ErV4FKHZ6ST55GOQX0ulnWQUB+iER3c2QHoJ4kS9WeWdvxM5xqEO7IWMVtAxELcDKq5+mDvqDvspX5zSGsz+Q7/3CKcZbpbLDmHBSTJDvw2OSxgxMU4lFpzgGVmJU1UXO1t6UObRP+G35PnVgib5sQlGVsVShiPIFtbHcc4pF4Gy6SrKsgoBo8GkGh5Ek12PBmhV936TNgLkbLEuKxedv49l1aJqS428B8Lq3MX4vEyKzyzeJBYmnRHBTHyVWFeNbNlPyRheHIQLzcHBTkoBAFVb3Aln2S+37jA9vhOR/4DvzKRy+vxgRGFbqO2P8CQ01U+4rc6ECfXKJlqr1Nd8fNX+HQdE2IxxNBqSMPNlF4tqEgeE6qsABv6yqFYbOqNlKAFolEkm167SpMWlOPSuyzkQnnt8lrJVgd4gHwd3Cm2hpB4d+9y7SSc5iSLUCzTBybaR0j+3duU/0GMJFFM8xaj9BMypKDwmzANkPbooydElwgbiSQQXl4yLUoq8GD693g5tVksb3eEEFRmWi8bwaBd9wfmmdvh4htEv5qvlDHrdlE4CEefyejHjmyt+UhHkea8YAiKL3+SJNk2/VZPDhThCo7MtTMct+X3vRzGBUAd23ZBQ+PEb7K4W3lFSooEQxtY1I9pzzHiGBzpKJCGiyk7yYEW+m1qj1xItzoDN8k6jgoLkVcXvbBSL1GGwY/6fOwlw8pccAOKCE1nSjhuVlb7KhjJ70JilEhKFxLqOF9EwQEpdA2dnCkNGMPp5CIzAUI3AFIzrD/9+bKnuLZb64Qj5nFw0M8jbu22y05KMxGzEGxcS0wOoDJdBJSwAeEDwel/JuJsOBT2dCxqJM0Y7XR43RbSwip+uzx7/jkm2f27CYc4sHPSD9Xt7bMwzsX4Lf/8b/hP354n3F/dd+JzWIQFA1tcw6JBLOWf1unQjzDUfU+Xs1Y2pQIgiKQleuE2vA4VAifmMEkcVAsaIPqJj51G06tY/HVXI1mWTxDIYOIfxa5NuGouE+G+PWiKGo5KBRVkrOLbDWtuHgdNs1BCUBBGjqrksnZbM12IzwPfFEMW7mIpkTXuUpojV67KYelJyjJ+jiF2MFqB7QHMLmBNgTloR09uHXzLPmbgZqLGkz2EE8dh4U7Nz6I3u625KAw0wiKWznUJhClFp88z6xkTle5dZ7FU36mfi8frLxvPKQgSd0TBMVBksXtcRHELGtGkiUICnquLgTlvEtuhctvfQj++LPX67Ys9TtYqK3lL7OPoW38v5jFM14k1k0rBGVofB+NOSj9YXU61Zkw7lPzVkTcVt9Dn3zndvTGyJ4ZoxGqnzQ9vMZBEVLbbaEQg4MijOWqT1IWT9/OQTGdrkL82RZyIARchs7UhXhwyrjtBBtSW6k/ovM/JIun49BBsl4XIYm4RlmT9hxBCeegaJIsQPMwSdW+HaajorV8Wt6OHYDiUtWjgaNRAS/5yOXw/A9dBjc9MGu818VZ6hkOCkYxPREUP99rt1pyUJjpzRDG/9scFEQqRAsZJslGIShYTl7goOAQz1DgoKjTNpW61ycoG7fGdqpU81G1s4W+8IaDf5aei7RA3fvIXPUz50FUCEoW5mSU6ZW+Qm0yAuJaJNYjBIWHeJrqoIwKvYlqp1Q+rSvDvCjloFQITttN8DM283E7nHavka86pAI7xe74uSsk2agKq0MHxaWQKel6uLJ8bM6SzUEhZHHLCVbroPjD/dMB6AvOxPHP4tGOuppDTdsb9aw8nSP1HU93WkHVzEmxwDwWQfEnyZahMPo3yUHasTCAB7bPQ1EAfO+2h/R7Kw6Mi4Nid+bV/tRUx8hHW2d3W3JQmA2rBXm8oVg2Q+KgCAiIi4Pigq45qRD/rWxb/qwWVdxnAD3YJDGlAbo3G9xvK2RW1dJxaJFgSWgAlsWDQzyOBQq3V4gARl8AwJ/gF5FeyatLu6oZ8xBPf1hUoQGuoyLBtNuZnLoKkfETlK3vOHtHkZWVg4TVg2UOilxFWBrPdaRvST9nyqLr4yLo1ZFYB8MRdYY8kB3ioFTOPHk7DfFY+mLbNGZRuG5hQOsAYadRausy7qz6ZLNowUONpvk66hh9UdevMxsHpaljhrN4sizzRkGwkmwIybWHHZSAWkCSMyS134YQUBq6ZAhqgywe6dBra98kjXlSlhwUZvqkX/6unQz6PuKgEO0QaUGvQ1DMOPqUpSCfGOIRs3xMOFBDvJl1s7Ip1fLsJslxM2XLTQSlTFG2L8w4dq9E3zSvB6rPKP9uNBetP6z/TuramlL30imGIigAmkzdYSGeuiwe/Hn8O7ctjjuEwnl9hJrZHEPuWALo56O+N1oeQUYaJDSBk0nrSLI2lMN1Xdv7jc8mqZe6H5Wj4EjZt4VlrQgK46D0iSMP47Zjx8hHE4OFh8r2DdsSFERGQG2G9YB8OShmuQe/OYgRkLK9n5Og1qEpIpVvb/u927bAH3/2erj95zsAQDvvmCTrg6DgseMKzeEDBi3aSg8oo8KcR1zFWipXYTvgGL+nNOPla+qLV5PApmVCOCg4xKNCIT4xewGB6VgcFFwPZ9w1cUOY6ZiLH9YTyQUEpSgK85SqQjyIg6I+A4A6bnxDkBGUDBRCLC1QNH17QN7XyvkC1xBBQSTZJhyU79++Bb50/T0AgGPvNAtHWmDmBAdFOQ1NqiHzarz9YUG0QOpSS3EGVRXiQfC6NU0YLaBqTFUkWQkRtGzkSgZcktm2kmQH9pOfqa/inkfcyXJzYyRUTb+fk2jNz3KH3WYNB8U8hNjUol3G4X78eXVWOauOtcnaFpFk8zyrxkkTJKLHEBR/qfvxsx6PIV0wsNl99yQdFIdz8wefuRb+44f3wUe+fQsA6O9+qqMz4XwQGFnN2WyPEVTs4HLeEYCE6NtREe7gmHpAbodlkpaKBTJTk0ZtolXmAhsQcwRBMR2MFsp0MXgaDkitCsOMF87hqCDt8Ym+lWUwKAqQ4Dxp8cPOT9U3S8y/286J0BjWdwGQs1mcjhcKEVUIiuAkYAdFLWyauAykD03XCEySHY7M0BS2WzfPwm/+n+8DAMBJh+2LoO2s+ozy2rQgF4A+6a2ZakOWlRWclZPFSbJN5Kr7rLhenTgXFhabW6DoiwtBwY7l6m4bdvQG1XUHAvpkE1tb1W3D1l19hghSpMGYC3xhFeaCMrMYoBuqdsvmS6iafq+rWjGuS9WEgwJQzo3VU0DeGxbiGW82mIPWsL2EoIQiiZ08H2ep+SAo/iT3oihQmnAgAlNJ5TcL8SiV8Kvv3AoASEm2lUOngQbMjQ9sh/1WdeHAdWWhVHz/HYdzhhEUqWgrLnQ5HNHClu4QD3Vw+HNTz0Kt+cvJQUkICrMRgrQB7OEEykHRMeaQEI9Vq0QgslItExMN4NkFkgNiy8gQK5YO1X1B1Rb/jxduV6Vl9VJJkjVfV4ZLCKhnzFO/XXLzklWbdE0GEQDApTdrctrDOxesKZLSZ1RkwHZeEQJ3jh2FKv7u4M/MGZs13QC05oZ83xiBmWPhIVx/xVYPJ8tMMTg83uqqGa+eMtuq4TFlyUBwqdCa4UYW4qkTWnM4KFqALhfHU5PMJAC7g8LvS+IUBEndC6dp30ycNipVEUsW9wnxdMdOlY/UfSkaWP6sxpBvqq8old+g3+rsgTk0dYVOf3zvNvjlD3+3OuQAACkY2nY8dxriwQ4KRZCk/hskWYJEMgSFr1s1h4hJWnJQmKmBw5ECV5pxUaCYvUIaHNkqTbJ4bOm4WEhO4pG4ERQT4iUhIPQ53NvWIR7+XOz3hSfxiPRbXpiHo4JsKuoZc/E8W6jBZho5qoe2+SJhCK05hKIqKLidV89fnYS4g9MIQRkWstNoQ1CERa06+bYdUvVIiIrXeJGqUNu4GjPjUvQV+oK+f2t1boeTscA2xTrBKdNhrHcyWpaMNvccxffVLDsJ/x6DoEinad+imS5n1WYLFhTEiyQbgKDgdVatSR3PA0qPZPG4nSM8B5WDgtOM62ogfeHaMjR8+0M7q0MrqWelwlOSzADioGE0VKsH4xRr2p5zUMRyE5YQcRU2DBiPu9uSg8JMkwIZGbQmdt6vkIbmCIpUW0FESCQnA8vVCxWLu8KGoIXa5M/GpzxOHMSOFwCIKafOKs3IwWn6TCsEhRVwrHhBTU9/1X3XL8w4Djw7PyD8FQCKoBgnEbQQqY1LxZK11L19ETAdlBFzGs3U8aovwxFx7tSpqeIsNUBAptAJUS2gchaPfN+rWLou7rutjgjXaJAy1mzEwrrsA+N1gY9FZd/taKCtsrdNSdaVsqxRzpBUYerc+LQXs9mapuqzEI8LCTT7HM5BUc5FluFyE74ICpa6dxNsaQX28n+KoLivjdewnSzM2kEhIuk72ykQY8uf6X4htXfpoAyMeSQfCmw8sUlaclCYGRuxZSLPcUKjx4Kufpc8WkJkVSRYgYPSyjNxkXCldWqhNhmdIXLWbCJpx6t8r8QDcUHuI+G51MGU6lRgI8k2RVDwJl0HTeNTzOx8Hz0TevrDn6sML2RTDEGpFmfHyXNOQlDG322WuUmVu4xaHGMEhTilMvcHbyBqAdccFD0eJecK8zG40i1xUKqxTvvNNzgJ8dPQtDukU/e6nHIvO8xOBEV0vNghxDI28GfFhHhctZFshtcO32wUkyzevL1ygEOyeDBBVvG9/DkoehzpLDzZsdo2R+c/AD1Q1iEo2HHZsqM3/pteQ1zhLXxAIdXFkXNY7Qns+nztkMpNSNITuC+2TLtJWnJQmOnNEMb/m2RSACGti+lG5KiasaE1wp0IgWRLwjAj6fVcLPin4WMzu4AgKMKijEu5843cJtRG4vZDO1ELC+BZn2mfIyjc6Rv3wYMkizfQtuB4ccP1cGbnB1V9Fy51D2DflDotXZJ+x8JAbC9pkSinFwuHVd9J7iY24gwe1RaAZl/Y2kuOK8/iKTlRYLTHUDUPC5JQiKUwnqm7MzJew7yYwhKSdN2X9DqZRxKa2EB8Ls/091on/08clPE9uIo32gxXJM49nQxCklfzIFawsEF7LtTmKvfAjRNkAcBby0StKzMNsnh4iLcoCp1m3DbnBzeMwCodJ+zc2WQrcD/552uBTXsWoiu8rh0QGSExEL3EQVm+hhcuAHvdFy59LYV4rBvCiHqsdo6JeeIVOSiCkyHF/PFpWEozrmTZW7nhwAwtHBR8enMVjZO4OXWSy+p3G4LSCF5G72m3NOpkW9QxgrJrYYiIheW1M9x/dH84LRUjKOrx1GXxjEaaf7Nmul19PiE2omJ9XJwLx6wB9HiUUqxtXA5ysmYCfTYEhaIJ9IRGPledPNljx1L8/LlwR964tieiIqXc28KdLgE5zOWwjWWXtHldoUGXDdB4qBCUpigI4aCZ/XKZyUFp7lxVYodt//nLNVDwtXl4ULKiKHQtn65GQGzODRZLGxXlOMAISp1MP6lFNr4uPuQ0qeUFIGecYQTY4JE5Mt7q1If7jj1j0pYcFGbVRlpxUOjflXGSkz5xlr+7SLJ8wIhZPC20iJCNHi8yEomW81vMhbWT29KMzc3MDPFQHogrxMNDAaq9bWHlIR4VV7WnGZsTqSgK+PG92yolVfzsbJlR2PAJaK4/NFQw1eeU/aKwvdr/uq2cvB9Akrpn94qe3bqxg9IfjsgGjsNLvPscQVEbCq3FYxuPevPhfIyh8L3Z1Fs5V0Rv5LLWCP5dDndSBAVAdtYrPaCatGSpwqst5Oiql0VqO1mkBGy1e/DP3ZrN7o6HdpINE/cDz+GmTobut0ZQGoeHGJLoo+bM0RcfDgrOwFFW52Rg6w10FhCuZmxDUHh6eK8/ImRtTbKV2+8UHBS8rrpQUCJdMTDHOUaAzfGm9wUAeV23OcQGSTYhKMvXMKQNACKKASB5sCPyvlZu30hdLH4sRy8tfiLRVUwzFmrxYI2VltlWi3pJIR6FgJTvlU5Btnou+DpOBIXLrRuoVH38+8Ir74SXnHs5vPZT15B7KtvVC7Vhga05hKAoDgq5PvpsTjCe4g5KTd/x4rRmWknl62rInZYWiSrbcwfHHXJ0nd5w2EBD4CPST4K6CagcAEZQRuQ1l3PUr5wQKdxJF04ACo1ztLAuq2ckzJNOLi/6TbJ4XIJnLhVcnmknjcWf3LcNnvuBS+D0864gaBnRtanhQ3AjjmgoByUgxIORRdy2GQdFE1yVNRGZ6w2GJSqJDj0znVaVAWSrpMy5HL3BkAjN2RxtZbPEQSnfg7OYXPduDfGg702tv7bxJgkHVo6+hQRbIZUWIbdJWnJQmJmhjPHfLV5n1Y5t5K4QD887l2Pj8oaAwx3SZGmSZtxBSIK0ybYFBIUjSyJJlsHAtN9QPRebk2CUDOebJMsgkk5/X7r+XgAA+N7tWwCALkR4YS4KGcrEIZ55VI2YICjCCRCfeDoSgjJ+Ji1LLR61MGLnpj8syGmdIChsfbRxJnCBOF1/ibbFYw5/dyOECrUtHBgxPFRdG53YLciVPr2ZRFgpY4Vu9Hb0Bd+75MD0Ub+l9GszDGbOMTxPDAl/R4aRGreuNOPr734EAABu//lOuG/bvNEv1zO1WUWYrqnLJLa1pBk3uba9npW97aU3/xxuemBWDvHUZOLc+MB2OPHv/hNO/9gVVeizHNs6RIOlIbBxNef5/og4KHVS+RhBUYcGiqA4svgspRX6aH6q/vPxxtFGV0jRVhsu6aCsADMRFAuEawnbNCHJ6pOhVC9HbyiiVgmGzSWSLFvUiQqt4NxQHRS9kPBTiupiizPppUrKgifeJP3apipalR9o0e9EWiTwX3YiRdRWnpX8EYJCsBP2qCAQLw7x4NID0uLcQwThdp6RatQAOsTTsfQdE/lwMTQp7KZew8Y3xArRaxBmker19EcF+W5tVaj7GCVp0c1avrY8bySVS57twl83M9bk8SMfBEwuB8mW46GooeWebYeQBiRbV5rxlh1aUfnerbrCN87i8UEi8HXbAQgKFyxs+XBQKhSSCrXZMmm+fsP98Mp/ugpe+OHLNH8EkWTrigVedvPPYdfCEH54zza4c8vOcfsWaQsgE13nGJdrfjBEHJQW1BVZxBL1FQcFPTulUC7qIC24EZR2Kyc8NGxai0gdgExnZ9pCguVIpA8nandbclCYGUiBRXPDiqBgkixbsHVbuxMhLeoE9hZj5+bpzpUh1LGIUxEZfebAcKG2CkHBE6GqyUIFu/DPnJuD4WtTW4YiKAZBV5hIOP37we3zZDMB0A4W7x9ACc/iuTu3MDTEwgDkWiD4tJ9lWbX5KFMhHpuTMI8QlA6Kk1ecg5oy90Z4jZUJKDcleXHFWTw6zZhKXrdaMvIlyadz9MZGRMXvVc+LkvvoRs7b1xVRcwlUYQ6KNBeGbNEWeWIeIZ6hMA9dG8KDsxo1IaJdhEfi66Do+V8XquAWU/CvyiRrZ+QzbG3/e4x+ApTKrAAySdbmJGze3qt+vuXBHaQ9Pmg0SfWfZzw0l0jcaFRU2idlW8oDw9WQZQRFLp+CvzcrKs+cENEhtnFQ2IF5GfknyUHhhhEK/D9HUGwQcHVizzKrt+s62ZEsHQGBkYiHeK4Yi58QvyZZFcJpGNfqUdczycNmuEBt5qu65iQZCfcFQCeDWfCKISgM1ZIWmId26MVpZ29oCkw5UAhMkAUoIVeu/1D2w/zesBorAAgk2fF4skDEtKif5oFgBwt13XqCUmYW+7NvaBLxGjtH/LXarDMDQbFzf9R3oDRUxGwZFHuXUBCCsAhzRVqYKQfF/E442Vxy5HGYxVWA0fxsekCRNjt8EsciXGKRw6ZEV/H7aNS0CmFyHokNQfnqj+6Db//sQQAwFYHr2t7+0M7q55/evx0AqMx7XamLR9A8vvnBWQDQyIJLxwjADPH0BiMxzVjqO8+kk0iyIRwU8XuzOCjiPKqSMmwOCp0nTRV6l8KSg8KM132xphmjUAx+HRfFqz01Cic7aVEnxEAhBCQpZEopY4TfIjg/OM7M0R8u1CazxemJFp/OKvKwEWbR7zGUVBXZkjtHFgRlOCoq7QGA8jSE00lxv8v2pLlRgXZ+YVgtzFMCgiJpDagF3CDJMmjcdoopNVQUcjYim2FmCbMASHVnivHnmg6tLc0QoyzDES1CSRC7oTneJOKllMprKwAoqVxigq9UYJKPN35vGro25xnmoPDQlPTZ0onUVYCRZ/GQYoOMgyLtB7uEkzjuV9vCQXOZFOLxR1Ay8r+0yd+1ZSf80UXXw2svvAYe2bVgKsnWcFDufnhX9fM94/CWpINiy6R5BBUcrRAUVgcIwIKgGByUIRNqsyMgPANIIyjq/u0ICAAvQCuFeOxOKS8iKYUrbdXQTWkKo2sTs+SgMBswB0VCMQD0l6y80j477bcyu9JjJUcvDHaSNdEQQVGfh0XJJJKsTO7T/SIiUAxBsYV4XFCiBIvnud1JMEmy1OlTfo1tU5DgWbyg47ZlexZmYSGmOUSSxQiKtNlyIqCBoNRk8SitBJxJszAsCC/Ide92BMXt0JafpU94evNgIR7LeBbVicd/k1KcTSSSQdOE64HRGSHcydBC/lz6HAURSkLgVGFpvErhISnEYwi1NUFQWvYT61zf5DIAWDarhhsK1W9xh0n+5aq74aP/dUsVglUOnZHFI2y0t27eUf18z9Y5A12sU3N9eKd2MB4YE4RlkqwFQUGHlJs3KwSlbJ9lptYPNnMNGRGiPEYYue3kFayHSgcFc1Dsz01yRHE/myAo0wpBEeaRcvIMPmUDTtSkLDkozLjeh8R2L4pCQAvGm+l4jOW5I8TjEGqqFj8BxcD9aBG4cPwaGng6nmg6ELYMIyp1T6+N9V0A5EwaI53NQpLNM9lJMITeVNgM3TO+dl35gfn+EE3uso0LheAOko0kK5Vc59k+3EHhBF8bgoJrwxAEhYccDQeFVk3m9XCwjoqNg4JDf4NRUfUpy/h4NpEjiXhJUpxrwp0SUlGn+cNTKwHoPOUcFQldwc9F1I4QwjAS5M43WzNNWR8itC6H2jDAEN6bIwgKDvGoZ4odK3OjfmDbPHzqijsIr0tGUMzNqD8cwV9+8Qb4wP+7Ga69a2v5N0Ou3o4k3PfIHPnZlLq3t+0PRwTJVG0pB8UdItqKEBTlrFAHx/7czBAPQlBQsT8JeeII7IA56kQHRQjLYZIsRjAlErudg0LXpqLQn1ObZpx0UJa/4cUa/y9pjQCYdUKwDoqVJOsYELQWjxQbR6c3VrAP90siyeLFTfpsDONyT18jKOV7JQ2GJhkZ+CRePhvzuej+cATF7jQCCA7KYEQmtzLbZskdJBtJVjo98gWck2RVZpNtccUwuLoW1kFp15xcVT/XTCmRt4K8z0WqxCdr7MTwjDa9qZltaXydQttNCOOSs45DT655iL8bKUTk5nrJp1ruOEncF8wD4fuVdp7oPMTXUFkt/PMBWIgHjUspxCMBEX900XXwjv/4Kbztyz8x7kma39ge3K4JuooDYpW6lxwUlBZ9/7Z5vcF36ttuRegJNpEka3FQtjEumbW9hKDUpBm72u60iiUKHBQB/TEqErN1HTulfG1Vv3IOCkZipAKy5b3Q7ycpyS5j45VzJQgXTwy+sOIQjw1B0QunsPgJsLi0ONJ0XbNfUoYQEYETIHcq2EU3BM7NkWFxetpRE6wo9ATC3Bz8HgB96lSLulQPBveBe/q7+iaHBJ/ildnTnMsFQim5liEiHT9WJtUC4Y4MR1DUwmFN9cUnehRjxwx+/Ax4e5WirQjK0rOzE3QRjwRpvODMKwDMxxIQlNyOoLjSI7mWCY69iyRbEsLR360aUhLC4nJQCIIioYFCuFIMPVmUpXlGG75G1xKaAqChhroQj4QEXDNGPv71mk1Gn7AjKmle3I8cDIVA6FCnexwCANyPEJT7t80bcwNrEfE5+PAum4OCSep29KcoChLiUbZKRFDM9rsEoitOM/ZpqxEUNL8szhlGS832NfMAzZmqIGBhH282/kqqZrwCDCMYAOBEGgA0bMZP+3gjNhEUGg6oy+Kx6qCwBUpS9ZTi6h0koy85P0QkTm10tlo8woahBX8oLwagdGyyTK7UXGV0MB0VI4PIskCZCMqQbKDKbAucOintu7pbfh5OMWy5IWYXSTbP9O+1qb4tnGY8IpsKvvd6BGU8JrBDm8mbCh5zmPxoQ1CkMUUdZr6wavKtKRLFx4xlLgjhKRqysHOu5IPA+Lm0bEJtNC6Phf1EsTS2phuaQKqtgHLy+wbgIR79fdG0c7uTIZmUZiwhAThEo9AIq5KssJlhB2dHr2+Ui8BoJneuHm6CoAhp/vp6A7FPqr4VgDsLaG78rPddVao58zRjzNHiZgtRYwfDlnQxPzA/rxozNen6ZD8yKAf6fRXB15KBOp0QlOVv6rt2hXjwpOaQmkSS9RHGwafGXHQi0OLIFigRQREGMk4JlbJ8CEdl/HKFgPAwiwC589opuP8uJ0NNZHXqVP1V92cgKHUOCuagYATFcgpSJ9V9ZsrFiXBQMILiSDPWIR59vdXddlUqvi6G3EUOSskD0RsSbm+UWhhwB4WhGBZEDn8WhqD76Np8LkjlE3CFXCOLJ8+sAlUcTbRly0ibcd298TCLRDbv5HJGCw9X2u6rZeEkqDINHGHFm4MTQbFwUEjauWUscD5L1RatLS4UAuuIaAeFjkNJpkAZdjJ29ahUvLq+Mt6e8ziUTaNn5eq7hJ4A6HmBry+HeMrrq0MKLhZIQjzCtbmDoojvdaKAACb/rewfD/HYEBT98zQ/3DVAUDhpO3FQlrENGYIiEujQYsSZ+HiTt8V5m+qgSBuhnMUD5H2lAzL+m21B9+S3GCEex4bAlT/xptKkvVF0bjzZDA0W9lwlmWqcBlv1wdJeLTD7rCoXp6IwJy+AfIJTG5IU4lFOLG5rc1DaLY1i9IcjI4vHRjBUfV/NEZSKYCyPJwAgVW71exCC4jg1SyRZfnpzSXzz71wKpeK0eCnUQkKSgsNdISgCH4vow0gaKoJInCw3T25Ln0rbHEFBawepMcQcFGvKKX6mMoKyk80D5bA0DQ/hdFkTQaHjUMpmwRyQnQsDEiIBoJl0vL0Kk+w3dhCUqUNL2X/7tZs4KC70R60h+47XgF5fO1hlNWN7Wy40aSIoSCvIcsDoCuHKSmbBUscMHzw7LXndVp9dvkb7rXlgKYtn2RtHUKSaM0TZj1d/xSEeoWIwfq+c/ogWZWHRxZk43IkQU5Txgo3CNLnDgckdzg9X2JU2BIygYC4DAOL2iEq2NG5fnSA4gmLZ5HmK4BxJM0YOimVxrhCUMbyLTUozFhGU8fvwM1iFHBSNUMhhlnZOhdoWGAJkW1x7DEFR/dFIQW5FjqR6P5gkq75rF1ejI8THKVejfL/t9CZn8WgnQnLshgKSQREYhmL4OOuMOFi+TsNmNvQFX5s7XqoPWUbH5ICNJek+8LXbFqI7ABV5A9Bjo0m6KgDlUijxQo4Qujgo2EHZtUB1RHBb6fqKaLph/TT5+1ohRCNdW2XwrEZzDoCGePgmjk2tISrEg6UG6kI8NqFJTHSvI8l30EFCIV4SUigVtpTE+6QQjy3VP9XiWQFmkGSFuD2e6HzA4RCPbTMZoAGP25TvxQ5I+TfrwsqdCCHmjweo+hGjM7YTq6GxwrJ45DRl6nipPuH+K8dIzoQpf57pMF4P2yhtCEjTEI9GxcjbEdG0bdTSwb9XIRiiNUCJgOtntJNDTn/quQ3lBarbzrSGDdZB4YgeVy6tygxQsilF5CwhHuwcCSRZ1U4KKRAEhTkRtLaTfHJ0Z9roe3dB27a0WUMHRdj0cWVviU8licCRg0BNyI47XviZ4pR3fG0+jrEzi/kMNjRudp6iCOrzJOE8Cc7HCIxSR23KQZlHiANA6aD0WAp8mbIOpE/6/eX1Dt5nhvx97bSeTy6hNqUie/j+q8nfVwsIitR+jiEoGE2qD/HIWTwVkugIsxI0sEXXCIKMO7MvTSQRf78SuR/AHOuJJLuMzRZ3l5T52mjh5TE/nq0iOQIuIiteRKS2lJRIT3YtFPPHE6EQEBR8bR3GMTVWuOMmV1pWp069qPdHI9L/qtigUJVTPdeZSiqfTvC6LB5JZEkM8Vh0EFSa31Q7Jyfnsr2JoPBTL4DO9qEOiomg2FKqsdO7MNQnaaNQIoeIhzTEozfE+hO3WEQOXdsIdwoOs5TRQqBpi3aNSySKOBGC5oeU5YPHjNYbkWT0kfPjyEijKczK8RpvOJbQEn6vdo5YyI2NZXxtsyYVfiZ6PEsoJkBZUwrbrr5yUIqqrYuHsQu1V4iGlYPC2m9nztHO3sBAUADsoUp1vQPXTpH1EyMoNjVmAK0iu3G/GdJ+HUFQ5HvHyJXioGyfQw5KqybE06f3qb6rPh7HlrVLKmHAlbRt6fo4DM0PEeoyNOmC9psjKEVh5zEttSUHhZmda6Hfg2PrHC6sQkQZdVDk+HZNFo8wmF2plxKZStpMskw7Cvie9bXNdFgsQKfuz7gvIUtgyEM8LEQkcQpsWTwu/gqAxEEZojBD/eKoFpjpTqvqg7oe/i6laqr8hIkdFMxBsUllD/ApCC2gGqGgJ1fjBMYQlApexiJsNQ4zT0XGzjKA/J25NmtSwbomvCRp50iIHlE+FrkzaizrN9bpoEhOhm0sk36hDCA8D4g4lgVBcYU6DRVa9HtFdHU4R5xoqhyOpiEegqD0KIJSp4Myv8ARkaEhYkjaWzgoa6ba8Kg1moeCHRRXwT517+tnOhUKAgCwDs1HW4gXH3BUWxyummqYxbOGHRI0Cmr/zhR63GmZcvoku1KYgzj8ZuOB5Zl97eBJG9J7JmXJQWHG04zFdFrEpOcTVTs4lAwmkveY9DBWmbSVtxdTLwXoWVr4yIYhOE+i88Py6asQj3CCkhb9waggcXeVzSJvCixMIRCPbW0BTPXOhcGomtwddL8aXmaLK0JQsFPBwz2STDgvR48dFJwVYUdQ9AmqS0iyBem/bXHt1zw7zNPg18dhMImDolEvexgFEwD5Zpwj58iWci9m8TgQEgBACsPCXBAyG6Q5iFFQOXxkFogTFZmFeSBde1jUj2VbvSJ8bVe4gHNQlOPuCsfR9+v2CwwF0DooNrI2PSTs6A2qtoRobpkHyjla1W3Dofuuqv6O51Pl7DpCNDOdFuyPiLa4fduCoKi27TyrOCsqXNZltbBGhTmW1b2vtvDAnDWphPCbWfBT5jzRquGUb4XD43b0Zvz9OLLKJmXJQWFmkGQ9T40SSRa/jk9XfFHG12jnuZOIimuIjAwHQ46Nqx9zju4IiyeHvXkJALlOECZ66YVbzSX8PFxZPMo56A/ofZnEZXmTV6fx3mBIeArK6hCUqU5OEBQcHgKQT3BDdOIGADhg7ZRxr+W1bX3X/cRZCnrh4uREvsDRE7sSwZKcRt6ekD5JijN31u1cDtfpLbSyt5ieKTgw0skUbwBart52yDCfyZCgM9QJEYnBFhkCnpGm56/mY9j6xn/HmkJEGZhtOJyD0uOEaYdwHgBVRJUq8gK4OCi077hw35SgZcKJqgrtWT3VqtL9AWhWj1Rqgvd3utuCfVfr9sRBsfRdOWYzCEFVCIrWcLFv4nYEBR0SBAcDv6eT59X6Yswjsq6jtsrBEEi40qHUDEfSQwJuN2lLDgoza5qxRY6enxolkiyAXkTwoOYkWTxw8lzexKVqxhKCIi3o6joY7sPvIXwCFus0iKo5/UwAGk7AJ17stCkTuT2VDopcPoBnk9gclDVT5WLUG+g0XaKDYmk/j9IhCYLCZOulxZnzNTqtHN75P4+HddNt+NgZJxltbZsQhngxgmJwUAyYljp3VXshtl22N4mXFPkaGY6hi6AnnQ7x4mgNL1UhHqHicE1IQpwL4zZECkDITqBkcwFBcaA3AwG5kVAlAJNbwzko0vpiFhocGZ/rqsvC04z7FQoiOF01CEpvMBrXHqMhHhvhUqEIKiSDP56Wi5CdDIygvOzJhwIAwItP2FAhr2Vbu3OlwjQznRZJLZYdFDMcBVDOIeVYbh+jUU0ykNQBR6Ev6tngLB4rioHnESMBy+v6CLUVHBgeHs9kzhKtK7f8Qjzt+rfsXaYOPy4yqJQ9wFNijTAKGzAA5skOL1Kk1gZeWAVvXDsRZqwSTwRckRgX7KucJzTQ1au6b1C1Ld9jLjDkRItO4h0WKlDX4M+jQlAsWTycC8EnuVZTbcFDOyjpDYd4rFokSJAJIyhdhqBI4S0cHlP2O//jcPid/3E4aYtF2LDh0y3muAz4xmBRZFXf3QxL8SZOo4DolT8LJNlRYTooQpiGpkfzk1/5npKUnZE2Xeaoueo32YTYXDwRCovbx2pJCDefiUskTk4zNvsFgCp7CxsGgC0zijvehfGeDqpIXBvqZJo4NsEvZRhBKYoxkscQFBsKoVCE/VZ3DS5Mh6CYcqhDOUerui140RM3wHf/v+fCQSzluGNxjgC0gzLdaRHEBod7bPNfoS+ruq1Kv2a7gaDoe+iPRjAD+hrKOatS/ZmD4XIMcYiYjxUtVCkr0UohIL6n4DArQDmH8zxj+xFCUMxHOxFLCAozvFgDgJjqi+E4zurGSAMaD1V7fHI2EBR0DUxktZ3UOYFXqhGCBxp2MlpssJJ7z03OgFmLR3guYt/MjQ7/TOXFx5ss10Fh6E2d2JmKAfcGqBpwTRYObt9tZTTEwysTM50Cfu8uw8+lIOiRfvYVgjIotA5KjdR9lQGFM6gGI3GT5+2pro/OQMBtbdeWwopqA9cICj15SjoqOtw5Ml6zEcZJ+IoRlyWemFQVXIrb48/GCIt5opVDJbgKtBbHMg8w6vPxc8R957/juVKGeMFoC2A6KP0qxGNyUFwohLJ5FCpVzoHNOVKb/PqZDln/uu28EQoyj4jqAAAb91tFMujK/jtSfft6Hrzq1CPgUWum4P/75WPItW0ic9i54eRmUQWXtediiQPBMbSp/xLxP3borbLhctkxlNLHddi/fA9GV3B7CdEHMA9/k7KEoDAzQxnmabkvnDilzAVFqsKbtOSxqsFQoHWlZVlY8UmbxzNdJFfctzynaEblXLHFU3qtei5CmrCtnLtuq+/PBW3PdKgDwDdKW3ql4qxgsTKuxAqAMyfYQo6e37STJGu2x86dyzpogRuMCqIaW/ZTIxH90Yg8U3pteYGb6uSQZeOT72hENlM8HiXNDxLiGZpS967N1KUky9FE9bmEj1URxsu/Z1nGxpPEf8HhK5bFI6AFJKwlOON1xOFqjlf3JSNa+ADD56FxABLmaZ85GFLYyhaaAgBYGHJF04JA+bZQgbIec1B2orTjDgt12BCU6XYLVnXblY7IFHPybWJpUkoyN76BY8MhnpOP2A+u+ZvnGe+x3Tu+9jSTGVBrAJ7eTTkopKq3bf5aeGA4caKd5wbvEH8WT07ArxmHUkHIDa9zyyXEMzEE5d5774Xf/u3fhv333x9mZmbgiU98IlxzzTWT6k5l5qlROF0Rb9eeuQBgphHiQd1hpxg86DAsTlVszbg757e0chpvVCd1EuLJM1A+CueZtJBuxchoC+S+6rIu+sORgb6oPpjty3szlGQ5elODgGiIdUScDmUcearaIzVYEuKxLK5U4dO8R8lIoTQBPeq0smoTwE5Cp+W+d/zsKxLh0BRbk1EQvdHLQm32FGfZEXAvjtJcmJYk5dH1xYJ+DmhbPFWi71skHgohO1f4KM9lPSFJmdfGQZGcXc5B4QiKFnkzrw0gICjDEeGCdCzIj+36OCuoY4wF+l6FoEx1cqL/wx0OCUHFfedzDhtfN7GpTByuY4TNJvSGr40F+vDnZRmWk6ft1b2vmWqRzxuQsWTuJwA6HIQPKJi/ByDzDvHPLoHNFjuUSnPQRaSdlE0EQdm6dSs8/elPh+c+97nwjW98Aw444AC45ZZbYN99951Ed4gZDoZIBsXeLl+8yve0MAIzNBc3rN0ghXjyDEStEQLZZ3xDMBdlgPJU2sr0Ao0VWQdFYXJQhE3U1IexPxcbgoL7JAkOKQREoRejonzdBotzHgYXK+sNhsBJz/janCSHTzHYQcEqlOVnmRAzdwRsZoth41BUp4KgzWrGttMfefatDBaG1MFR123nGSwAXYAkkThMkuXqvxIhVBrPJINAWhwFrkZ57QLaLeqMV/dtPSjIBwEbH0vkBQght1ZuhkOq8Zihe5aEHBHKYeOgSM4y3zj5SVyjLzIfSUq3x2EjjEjxtqNRYVwfC791WnQO2lCEqXYL1ky3YfNsmWLPN3ybIqukmcJNSvNXpqQCZtj1pGu7eCAcQcH8jFaeQX9YGOuHUaqDCa1JyuPK+PxV94f7aEPVJaRSGm/kkCAgKKo9XrMnbRNxUN773vfCxo0b4YILLqj+duSRR1rf3+v1oNfTWhLbt2/fbX2zhhOkxU3IWccea/k/XTj7AgLCERSlFyKdUqS4vFEGPjdPrK08IwiK+gx8UsY1b9Ttah2U8nftuJknAYnvgD8fE3NFoTaBRyGRNW2nvwpBmcYhHn16UWaHxvUpBp/+eF0PiaSHQykuIyEeQoxEIR5JB6UhgmILEWnukBTOQE6GsDgaCEqNkyDyscaInUp/Lt+nn9+0kOKIUQwprCc5GWZqp7wpVM+FFPwzP1uqMYSddReC4pIhML8PFH5C39lwpAmq5vdhXhtAQmAK8p5Oy16XCbdd1W3BroVhhaBkGTokWAQHqzTfTk6yaFZ36VZj48Dgonk242m42OZQJo7NpGKf5e/l53XbOXFIACQV3JHhIGkOHRdLVGNNRuvweymCQr83SXcL/yyRcG3K5lLSBj4Uc8d1UjaREM9XvvIVeMpTngIvf/nL4cADD4QTTzwRPvGJT1jff/bZZ8P69eurfxs3btxtfeMpsSKsPdKbiS1nXS2oakxwjxVD4gBUpM3gvwjQNE1/LKyvAQhhGovzJEHy5muqLe0PAEMB0AJW6aBgFEM6jQ8lB8VMd63QF0M2vfwdc1BEkmymPtt+iiHF/gwExVwkMOnSZaQOCXFwdJhFpxnrU1qlg1JDEMYkW9HJEGL/2OGWFkczHGFu9K7CmXwzboKg4P+lEA5+ZhK0LaU/S6dOm+CZ/Ewo0TVHCEpR6M8XU685suPgFFUncaaobHKCTPQGAEgtHPV5eKy5sklwW5UqrHgknVZuCC3yTZogKGjerJriCIqMBPYahHiqQ6HEn1EcGAeCYgtjYEVWI8QjqeBa5qBav4zsKQeCsoDnEUKXmiEo+NBLD47EmUZLkynOmbFD8V7soNx+++1w3nnnweMe9zj41re+BX/wB38Ab3zjG+HCCy8U33/mmWfCtm3bqn+bNm3abX2rwhyGkyBsxBjCFWBtAPOkQRAQluprOgF0Iy4KumkYCIrts6u+wfjzLRuGgIAY5N/K8TKfixVBYcgNgJy+zU8gAOWz5rB4haAY6ZjjEE9XZ/HgsI0yG4KCtR5wH9aw059Uy6MpBwVAj4m+OKby6vRYhnj0M3X1nZzAMAJjbGqm00sJoZSgh9u6NnIREbS1VxltKNsFZ2pUgmhYB0UICVbjjaT707EscWNs/ZYcL7LoGweBekVmw2lDmjOq7/zaVeHHKVr4cVTQsWBDEiUOCg7b8O8KZ5PhtsrBUAgK1TExkR8AKna42oGg2DkotLCgZLZyEQBUSdba3hJewvPfFeKxcVDU77xUhyvLRhnWa8IidsRBySwICtmPaF/w2pmhzFK9Z5TX1VXqx+335hDPaDSCpzzlKfDud78bAABOPPFE+PGPfwwf//jH4ZWvfKXx/qmpKZiamjL+vlv6xhYBFzGwrvIkgLmRk8GETtvDUWGEYHhbPB+IE8EXxpaGnvHrWqht/Plssmjp8LyqMsUdFNVGiuNKmRFDAQFR78F9A7AgKEMBQbGcHNXiikM8EoJiZdKj984QBKVeqK1pFo96zwJQBAVL3Ss5cSy0phZsW2opXgSx0JudJGuiNzTE43JuzLkgK8mW77FlxOGTJX5sItHVJRInaIJIoVQp04aiHCPjdQ6542sYsPmogE6L9jtnIRzNX4Hx/3anr+Qy9AySrIsHhu9d2QIT7MsyeoAZFbo/uPKwQhE0guJGQAE0B2S63YK1GEHpenJQHCEeHVYXHBQUYrIZDmOSazcgyeLrmxy28vOmmdAkJslaOSgI0Wuj+8Mp61idXAqtt9A80GKJ5Xvwuo2LkKpbcO13k7SJICgbNmyA4447jvzt2GOPhbvvvnsS3SE2QIsPAIrJCUqyHQHC5SEeg8WP4TiGcvAQj60tAJAKrxwBydkCNKwGqxrIwD5//D6EknCEw9xsgLyOf+aqohxVwj/TmhLl+7ptvWENRwIHxRJ711k8WsNALTo49NKynIAwzEpIsjx+LvTdC0FxnII6LY2g9AajijiseQe2059+HxaDw5sl/hw7l0O/zp0uvtkCcEIofd3Kx2LOb4vBy1oQDffLgaDk5sIvo3mSU5ajzwbh9cxwrLC2BHZItXNk9stEX+yZUdxRtxfNtGzyjMfRHxQEjQIA43DE20618yqsoQTX6ip6AzgQlCk/Doorzdgmkw+AURAXSVZ2MPD85yH4JpWYeWiuPyzRqQFCzaR1T723vDfqbBsOhCAS6eKgmFXogbzepJzFJG0iDsrTn/50uOmmm8jfbr75Zjj88MMn0R1iI/RlA9hqZejJzgc734xtXI5StEdfl5JJgVxbitljBIaT92zQs7qFLOP3xkl4bn2Xso+mJ0+JiXijo/eFP0ciinZRqKE/Kgh5V30+vl9lPIsHQCtTYnKqnUmvv5t9kfIkrgOC2+MQDUcqXCaFiDBJVqElC4MR0dzBn2+iPziGrREYviHWpsW6wkPVeAOhbW4s3Dw05+KJ4Nc50VUKH5Xt0aLekucKreyt+42/Lz4P8HU4L6f8HOTIC3pCLsXWJrwetUmvViEei8ibdEgAwPNAh4gwRwn/b1x7iB0UhaD0q/tRZuNCKQ2WbiuvkEwAk7QqJgCgdGhXiKedm/NHWTWP2vZ5aBN64ynO06gPPIunvJa8fuB7JYeEPBPXPdJvjNgh5MsIy0sISsuOqqth6qrfVt4b/cxJ20QclD/90z+F73//+/Dud78bbr31Vrjooovg//yf/wNveMMbJtEdYhxBkU5uUjqtDUGpPNZKSVYvMliboywERq/NByNNQxbSjKssIDneyPumGdv03ktCFb02Dw9JacK2OkGSDkr1XCWF3jYNNQzZd2LLXuBCbQC6tgdBb2xCbWiROGidltfmUttKpM5WybnOpCwCvFmrk++ClMVjgacrvZcWKjMwpOJcAJbQHAqVkPRwvpkKz82JJhphQergYJ4IeZ0hBm3LydOFoMhEVRnx0uFG9DyRs22iifq+8EZfkWQdiq2NhNqqja5Nfucp83VS98pRJ44quy5/Lhh9UWENFeLpEqKo7CSo37ttnsUjk2TxJo8ziJwOigV9wWJ0XH1WujYXeuNy/jjMQxAUi3OmnuM0CVEXIIULbRyUDhsz3IEQw6zCwdRKVK97XYgYTNIm4qCcfPLJ8KUvfQk++9nPwvHHHw/vfOc74cMf/jCcccYZk+gOMRuCYpXBZpuVmm8GX0KAnvFhe1gUJomVxZjrlGbrIHVFhlPX5a9jR8KWkVGhO2K6KpqISGtEJMmy9kVRVAsU3ihxVoE+ibsh1plOqzox7BLi53qSgti+3cqIU/LodawWiLDh+SAortownVZWLc5FodM2G+ug5FpICmdAuWLMhGyKMojMkIKwOGIi6/h1ldGCC2cCmCEifqrn41Emsup7lpwQ9VxImjBzxEm/ceqnRRnYlsXTymgBTCnF2STYAnkWTbJ4yvBvQUJL5fXNtQkAcbGwYCHjYhHJdgG96YohHn2vtlRfHCYhWTwGSdacw5ig6+Kg2BwMnkptbW9xcCoEt206KF0S4jHnf9l+7FiidgsIvcKEa+PayBnHhG+OuMm1eKSD4RjRr5nDnNdkqxQ/KZuY1P1LXvISeMlLXjKpy1sN8zgA8KlRv0cvjEJ562pAwPhz6OdiTgCXwucOBB8sXGnWyJpgDk75f4Ha09fNRV0PdPVeHj5qktHBOSgiSZYhMPhzuihNuYfKtyv0QCIWAlCRp24rh95gVCEobRGelheYbiuHA9ZOwatOPQJ+vqMHTzp0PXmfKyukLs0YQNZRwSmOeDHcVfXffuIu0bfxveUyyc5JdBUWx+GoII44uXbN6U39nSNfnOthd57KN1TzIbeEBLADwxxeObtICOHkeeXM2kJXnBvD50I7L/WENGwuOTfma+Vn2MN9mJyNia4thmLW14TR40A5FtiPxuMYpwnrEI+dg8JTfTHyRDkoFi0hwUHJMzpfudkIthiR7DjmoQ394dwdTIzF92LPpFMISk7+psP6ZpZN1fdKxdqUui+v2QxBsaGQxpovZJzh15cLgpJq8TCrsngMnQLztNwRFj+TJCsjKGqQt7IMhmMnoq6QGHVQzMHEwzA2OM+ms4I3jFHhdn7k07S5MA9HMkmWIygY6sXQuMoqUM+KXNvQQdGb/FS7dFAUBwUjGzaCHyeUvuNXngCSSRwSSbHWZhil0NfWCwU+PVYcmpYeL7zvpEYLcu5c0L6YDUPgZTN7qrYtuvdRYY5nzvUwT/VsM0dcD+namM/FN+uBiK4AaoschYz+DQDEels8hTnH94UcOlztvI6DImWzKUcbZ75Ijn5dVW/Vvi8gKLa6TBKCotKMZSffttHmFVkdAGCfGcrj0sRj/cybaKDga9tCvABuBKVjmf8L6IACALBuulO9htEgmwaM+jxF8h8V5d9w+NUaGkOIH+Wg0P1CRFAkEi7TvjLGzIiP5fKzqvVF4PdMwiYS4lnOVg2IJjoordzIiTcGBJsMOM24fB2q9mp9zDJ5AcLzSRLVwUq0Ut/xibT8fCCv44WXh5cM58apsEu1Jzisje+/ynwY4dOPJlySEA/bKM30Sr1AdMenP1U6npz+BASmafwaX19KS8XQuc0kiJjGoHUWk+q/k8WPfsZCb0Tq3lFDZSgsjlKIR0rvlpCG8t7MEA+Pv9cVQpS4HjY5ehvBlqe8835L6AuAfr4lMkRPzDwMzHlqWMjRml3UkjcMAL3RznRkB6WOMC2FePizVvfO7xs7CQYHhbS1bbSj6r3rZvQG/2jG45KI6k1SjElbIZ2av0eyloBgAiAUc+wgPWqNdqoogmI74Oj1Q81BUrAUjUVTZFLmLUVzUFRY0JIZqmU12PqwTBCU5KAws50a8VikpzM6Uc3MhfHn8tRJIe3TKMhnGUzV6xadFLPv7HWO7jAEBi/KttCV5CQQqBGJKUkhnroMJRFByekzNU9QFEEB0JVY29LiKvQdgGb8SCYVC5Tu0WaSDgN3jqoFjhH3XCnK5esaTVgYjFAlVIaCCNfGxO3hyFShlTKAJKIqQLnBq0sQpAFdG58aAYTxjOaSs6BfLmQQVQcFk+SKr403BKnCsySVb0MiDQQlN7kxJsIqHYA0l0r3Z2SsLTa+QCX0hki2PFxnuzZ2ElSIR0oztjpHaBw/ao3WrtrAiebCHNTojT1FuLy2HOLRzpFWvJWsw8aKMk6Sxf3HCIpUiRlX5i55YHr+4nXZ6twQIq26PxPFlFAz/B7rWFWHUsu6ax7+YFlYCvEw4zE/Vw0QfOI0wijVF85DPDQGXaEYBQqFsIWPS9XbeCBGiIfxZzTCYkF30L1n7JpGhhFryyconij8vvD9c26OEiSqSLKYg5LJz1QZJugpB2WuTxEIAJP/AsDi144URXx9kYPSxEER2vOU2+44RFX1SYV4HAJ55fu0kzGPnTt26rbp+rhVaDV5dzQqIM8zslnzzBDtYKj7ZosjPwzwjBc03iXHDDtWfDzqRVveTHGotWCHBwCKaPEUZjt5eMzlElAlfoBx8XowWRNz1ExES3YS1H1UacaDERqfJo+EICioGnEV4nFwUAyiaKU7lMORj1oNTz58X8gA4MhHrSbvk9RYm2iglJ8tb/IKeXLxT3Df+3z9YCGmA9bKDooc6kSHBISsK5K7+rv0fZft0RxEn28LCdrWnmp9UNpX1gO3PB5tYcNJWXJQmDXRKXClMBoDIqOfy9M+8eerS2SZfG3b65onohyQ8n3W9MgKoQHSZ7wAZoqDwsSp+KmRy+wDAMnowEqyGJgwHTc6USqS7IA6LgAyDwOA6qjwOHbdwowXmLoQjxR/r55dIEmWp9xOtXOYFa7pQlBaeUbKwSvZb9xO5HJYtEyMtFYs/lcUkENGnGZO+q47/WEnoOwjD6WU18rRwjsiJ0dzUTfLzMvVjAkakdGxjJ+P5BwZ5Syqa9N+SZA75xS4xqIKEQ1HBeET8fCxbbObQRwU/qzx50hiiZ1W7iTJ2pwjPQdLFOHf/uBUkExC8jgHzGZ1IR4Xwba8D/O+ed8BAI46YE31GtZ0kXRYBuyQoJ4VnoM4Fd94bsiBxFICNodWrMXTMkOhVpKsGqsWNHCvLha4nM2++BTmezIHpGb5wk3WtBDiYYQlEyEB+tmWEA5vr9ZnvuFIJ0OeD29Dd6Sy3VwfRlaSBfrcLI7hvICAVCdatuGoLpQcFOagoEXPBavza0mmeRp4YafImLv9mMSKr4/CUwBmHL7DNjQJ/ani1OO28xh9YiiIhMDg0Jp0epPUR21jcjAqDDSRn3w5cbNCE7kjIGj+ADAeieEk6HmoEbOqKXHmXeJ1VGxNDtOY6dOyw4f/t/FXyvZ6LEh8IhfBFvcdF63D/DBl3LHC99BpZRUHRfW5i5BFm9iZGtO1Tr6AwPC6U9a2LeWs2p+by9Say4XWcBYgAMCJh+0DeVaiJ487cA1qX4OgIDXnuT4NUVtRL6xiK4lcVuuiG73lqHhd9WyuyyMJk07SEoLCjC8C0ukLn+ywKBZ+zZb5wDkoOO3M0I1gg1l1wYh9q2vbsnR4mMaCwGDnaQi0v7YQT0VyHdLNEEONfEFX18Cfy+PrbYag4LYSyZWmGOYGTIwXLUmyHQuiueLX0r2T/jdxUAQEpc9CfzYHS1ocOfqishTw4qgWPc4DwT/zTJyqTADbEPH9SmJsCyCPZ17K3dysZR5JnsthOXzfHEGRnG0cChMRFuH7FJVk2Rzn6dM4pdcUaqPPS1aq1mRNnFVlEBot6fbq+qsIgiIdElxOQk6UVAFkBMUQDEQhHpdJGy0/vNnb6nsYjArosr506xAYSwbSAjskHL7/avj3NzwDVk21CElWQmDIAS2XUcxOnovPHIA6V1UIaijpGJXvl0o+tATKQWE5WFZj1RBylJ/NpCw5KMhGI10Px/xC0YBAG73BQeGLMkM5OAeFkmSh+lz8GWoNsGXSGGnGjMjK+8azfHjtE7wAmCq09Pnw8JNqX6EMAtSP70HivwDoTVZEUNB9FUUBWZYRBj/XEuHtpZMjVlOts45wemy6uJL2AuFTLZ78FGhmbpiLo7rFToWglM8Oh8ekBQzzE/DGwp1DSda92qwFp9fkY/HvXM7iGYy/V+yQy44ZzuKh3wmeh6ptUUA1XvCYlA4hfeGzqxRmJj9uT5/GKcoj0j8DQRGyk7qIT9RHiqS2Q4J+LmMEhZBkzRCPS1W408phqsO1S9xhUtre7SRIHBR+eKtry9svIMfOZRICin/H6OUTmQYSgOWQMFRjovx+OIKi/m7noKh7p5mhtlo5dg4KXRur0LzlwG0g45k5HidpKcSDDC9QNgQEgCq2co+Ys6Y5qbFK5a0WN31tW5owV4rlcDp3EozwUkERGBsBGG90Nn5LHUFXfS6GxUWSLDsRVxlEKlulyuIZT3zBQcH33CeE0swIkeCNtyWcgJourPj6Nun0pu37gpOhXuMOFg/xyONxvOmxDCjRuZNCczlFUHoOBMUck6YDZaBijHeET+u4byPk1Kr2rqq/OBNHQnYk1VSM6lXPBBFZ1VwpT730eqZaNHP0JZJsdV264UiI1kJ1qtWb1WBo1qSyIXmq7zMdCUFxOxk41OBCISVHGX9WXaqwxEFpWhEcz7G+MIebhogMBKWxgyOFSfn6RTkoXOvHhnphomt/aIbHKwQFh7dJFh513oZs7eUilUbEACH6y8GSg4KMLIpsEcAbMM6WMfLK2RfOSbIjtrjhhdfGuFaDt7CcSHnMXp94wfl65SRUDoy+vumAAGlru7a6LobFuRePP4cjKOrvmiRr32Tx9XH8Ossyc4MXOCg2YmKdKWdBREAaOCg8TRkrwarxwPuvfndnpNBnpzgo+HmZ2VPIQWEhHoXAKIdOknXnBGi86ZmaQLQtJ25K6Iu6roQG6hRq0xEgKfMts994HnIuB3Y82wjF4HO8ynxgmy0O8XTYZmhDULgysHqtyqrCZHOnRpPuuwrxLAxGpE/K5Pba6Zti6b5UB8WcQ+paAGEcFCkMJRmWAcBp5005KPbwlJ9zRYQWh/T5qmfFswhtUvcYQcUhJDMN2Fx7cHgYz9FhYe4p+lBqXhe/LyEoy9BEB0XioCCkgquCco/VQEEci4wVARmZ1yVtDY4JvQd+qqyyfDI6UZ2hK8P5YSdx9NlZlhFBMf5MAMyN1sZW7wmbrOSgcDIYX1yl8JIN2q6zunBDnWnYnqJu+DW+SCoHxRW75yhGdXoTTs1DFnIAoPFvABNBwT/bnF58MuZ8C847spI+RyNCaJUcZtOJ4OMJqmuL3BmE7hjEQrYO2FAnI2xm3BflEwDY0z7FkF2eEWeYOzeSg4G/T5XFIxGe7e11qJMjKJRgK6MQPF3eZhLJVkqFlizPs2oNkxCUWiVawTkCMEmy9r6b3xknfPMQj+GQ2hwUNN5weLz6zh18KRFBGdE13xb2r5Rq2Z4waUsOCjIpxCNBXrhwnm2jNVCOGj0RXM3YriQrOyAGSdbwlmlM35aJgx0gWzVjtUbxzAj+2SSLR1gcbSnQerMaowADsxoxmYRq02AnDRNBEQh+goMSWkuHn0RcZoQj8IbYkvvvWuDMEA99di71UHwPrTH6pDVoVPwcPXtE2iyvTT8XOyGcn8KRBpvq8nBET3BU6n5EPkM9EyOUgjOAJOQHE3AtY1Hdu80p40UQDWebZWTg6/MDkMxnolW9q3nElXfRs8Lfpyo2WKqZlu+pSxXGZHFciwZArujrSvV3GQ+r4c9q4uRLKGZTFNTWd3/0x3TsqpR5RpJVn2nLksFObRWCQoc726EUt8XzQP3dFpo3DgncgUkIyvIzPFl43BxPYhxqsUHLNql87QSo/3V7XjHY5u1WOihGKjD9zGojRM4Jfp1nVWApfL6JGidlI12NTyT93LjTBmAPNegwhdokR+R6+BoAgKpI0+fuIsmqCtRSRkjdwor7aCOq1VmHoSCcB8L70W3nhriedGrmz04jKPZTc39oXrtCr0QEhW4MrswwjWrRz7dpNOCTLQ3x4M2U3rO6pqGDgp4J0W9hY52jMwVyrPjrXGwtZ866EfZCSGKfvVY9ayE7iSKZedVebyZ25wZ/n0QHRXCgpXGMlYuNEI9Q0dfgUjR1EoRr85RXl7nCW3U8MknHxKc9J03jz+JhVjUHDb6SA0Gh4XH6vUnfWXU4Q2nt6u+cB8bHDEdQbP2blCUHBZkTQcGkpBFeQOjCaBRIY6ergi3o1IngKAJ1QGwICHeOKgcHOSBkwbd44/i+jFMhc37yqm/lPXENF1yQS584qy6YoS9GADTSjOsQFHa6bELwIwv7wAdBMZ1WXLCrzrBaK+9HLjhY3ZpTL0eoKg6KkKJtcxIUekLaVxwUO7FyyMYc7h93QGxIgxnuoAXsiNQ9c0DU60bJCTTP8jyr+scdakzABSjHM1kHXHOcOeOm4KGeByaCkpPPkBCUVp4RtI5zXyTnBp/k1RjCQm0SEinVKGoLqfrYYeFOnbKmRFOOiJFrN3Dy+RzCP4fwXwCwk9CsfZ88d9q2y0I8Wglaf9/4uWEHB/ePk5slB4LooKBHNyzsmXS2VP/lpiSbHBRkeLHlKIVKUQSgSIXpJIxfs0DyRkxQDYihUCzQAolzhMXIqDAg84JA5rY0ZHxfdeRfktFRCCRaFKeVEBQz1EDfU4UZBJIsJWuaGw6AXUdEum8AquRYZ/xEje+jGUmWbaYSgoIdlLbkIAgZQMzp7fWFQomWlFmycbEMKryBVxumTTkZPZs60cMCjTf8PuzcqNe1YzW+Z3aYsI/X8T0hRK90qMu/Y76UeO3ckcKs7rlyfug8xOEljc7wfpkbDnbWMcdtwOaRS7wOi4UtIKl7TDAVNXEQmZaHeCiCkqM2aB4xsqjNXKn6jZx8aQ5XUvd1IR4ZQeGHS5tJvCFDFZmjmEwmAIBKMxAeScucB2qMSSEinP3Ei8jWaWvxgx3fUyZtyUFBJnnQEiFTIx3CZsPj0xYnQOKB2IoB8hCOIYVvCfFgQpUU4jH7pq9vOi+y8wNQLmo8Lk9gSgdJ1lYTQjsoJoKC712tEdwJmuJpxvg7FU+tzdOMOQ8DX78ZSVadwKhzlWW6/xg1kTKQRE6UQlByRtBzZDBxVA6/Z15ob/Keyr+7nAxb1hmPrxP0xZrFQx2jipRtQ3aq8QpVv/HaK4WAbGnbNp4ZT5/Gr2NiKSWr2jkJ2FnHDqmBMgqbCeZSqTG0gNOMhbFANVjG1xBCPBhRkVSFy2dX/q1pRXCShePh5PPkhLJ90xCN+cxxX+rmsHbS5edWvkcmyUqHK/xz6Wxr5AsXvcSfIyIoUjac7cBscFBo//izmZQlBwUZjy0D0MHKFz/urUqfwQeELWaPSbJ6sNB+GVL4bJJzuD1H1+YnUnwd6URrvS/mPJV91/en2eLacRNJsjwWaiF6Kg4KX7Q4ksAdHFNkCi3MEjTOEByXaSKo/gysY1BnuNYG7jt+pvUICjpxMzKqur8qRCMgV7bvFd/ffIXAZMZrBtmUXZtUYrXwsXAohN+bVZGZOUamvoN8UJCqNKvXySFEOiiwZ26eSoG+jq6Nx4NUW8VJes5wiKcweA5cIA73AcvkE6E2B4pZXseugyJxUHB7WnDTP8yiMsua1LOSEZRmIR6J5F72pZmDJHJQuBK04aBQBwNAz1t8H5iDMhyZmVuSCraNR0IyKMePhIdZjbChkCU0SUsOCrI6BEWqeYMnGo+L4/ZqMBfMycAbNT+NVosqy6SxcUg4v4VorAghHlv4iRAHmWPF74vfuwTnSzoo3EngAlYVSXZgZpKIfWf3zsmu0iaNJzk/nbrMYMqj784vA0FxUMwwCz69Ev6MoMBp1ryhBL2OMJ7NbBbz+WgdFen6VJtHOxLaEagT9zM5V8iJsCByFeJmJefWhJ6EuUAcFKE0g22s8X5zNBAjIKpvRhaPQMLHhxzsEPI5op9J1ZSIlSmHYjgqqgwV8l2KSrLawTE5KBZkeWg6KHXzSEJAdBiqgYOC9GF43xuLxHEEpWGIR8ziYeRg1b9dLMTDx4P+WV8bP5sh4w5p7Sow2hpORmGGeHBpFX5d/P9y0UFJUvfItFiY/hvJGBGQjBZaJHhmAW6vSYnl61nGB1wBWaFeU5/Brzv+e22GkPnZeEAbIR7mhGQZ/Wwcs+dwPUB5EuDXxhuGFOLhJwGzJoQ6xcvkVRukr/7eJM0YL8xcKM5lGFEYjEaQZXJs3mZ6cVWOJ+0XgBbZAqALrqThwnkNukyAnRjJyyPg91Sl4gfKwTHbGxktGXt9ZG70Jim7bCNlKPGyDRxx46/XOawSeVf1CY/LAdJgkZwb3G8DyRiar+NxRzgB1Wfr1/D7yj7n5LRvEPAlBAURTfE4nRPQMImDgkNE0x17iIciKKNxW/05jVEMBxLgMsm5WhjKa4V5bZP/Qq/vbi8dcLhMAc/iqUiywn4CgJEMWk+Hqxa7EZTxmML8P354MZxpukbodd/5CJbMEoKCrDpFC1kLAFgwTS9++L24HoyNJGvTUMDwr+HcsLYGwdayKGPVQC5Fj9vrNGP9upHZwDcbPNEKSZTL3GzkDAJ1DXZiZghKizkOPJPGCPE40oz5ZofbN0FAOIJCNjyfLCBe2wV97gx2UARyorShqWdUkSOFtEkeKpGcR/Wegi2O+Po2rgdF7Wh723jlKAlBX2whHONkyPvFrk0WfToXcJYPznwwDwJK+4U707Kj38poVgUOtRgICs4SRLC8K81Y8xH0NTQfISdOwq4Fu56Q5Kh3BKE2jOpJ4W2cKVTP4xjf18C8diMOyvg9IVk8eg7otkVhrr/2vpvPja8/qg+7FgakjUQZwD9jkmxZLJCGjpzfOXvPQJhHLmcav2+5ICjJQUFW8RDwYs1OVwB0s8aTaQHVg7FXJKYnTnyqtGU12Oqe8JOd9bMRwY68Xk00qPqgPr/FUAJcf0jdl3o0+HV+barvYp7ebDUhOEmWLxottkDxjZIjKGRhdiwwPiEagNLJwAuN1+Jq4c8AUASlrkibGeKRnxW+Bq/6i50jvsC7rs9JtpSgR8dMiz13MzxktuVl5g1n3HYQsIyn4aiAgumc4P9d5F4TNZIPEngsZ1lGNjT+XfMMIP75LqE2uSq3SZIFMGvCkHsmJFndHtcSArDPKYUESg6xzfgcKPtO789l3DnC7WvRG0GNGYMpTTkoVG5eIyBlH8rP4AgKduykisTtFnX8jMwtAb2xoSAS/089WluoVELVJmnJQUEm8RDwRsyzZfhJQZ321Wv4s3jbzDgFmcUCeXio1oFhXA+CoFTXNVOo+ckwz6ljVoZw7M4bfl068fIQBL5vfhKv0vGYDgp3HLi+BL8+XkynkNBZ+VkOFKKBg8GltonAXxMHhWV+8cwOAIDVXR19nUFQu+Rc8TizWQkZhYhqHAzpHqTwj9oIbSRZkl7OxptJNqd9GBGiKh+rsgNiQ4Z42jsXgZPCpXXp0Xys8LFs6xsWTNNwfE7a4M/HqcKS1H2bHTBwHzp5TmT+qxCP4KyKacrj62IUZZqlHWMyZnl/+tp1Jlf0bk40l9o3lbrXYwEjGCb6bTP5uckhnp0Ox1BCUPIsIyEog8SaC985Si0HoPPIqGZc48hXIceEoCw/44uHMtvpLM/AiqAYPA/LwkmUZPnCZ1Fz1RwV6sCYxEGo/i46GAS9kcvbl30b6YFuac8dL3zKkE7pnIzFNzPNozChaQBzkeHfHYajbeEeKXOiyeJY9k87OaQuTKPFlZ6CJAQFh3jwz+IJyoImSH2q22wB6GJa/m5+bzxjxdTWMUMh3KE2QikoY8UVoimvC6Stjw4K/t7l0JSe3+Vn0DCMEV4yCN/0++gI17Y5N7Q9RRqM67IDBoCdC6FCDS3huxwKYRJV7G6fmU712uopSlnkY7EKsdQ4CLhfOETDxc5cJm3yFQelZg5WIpLo2jhkUo+g2B07dV+cg0IKLQo8MrwG4OdqI7FKtZs4B0UK8dRmlbKw/6QtOSjI8MKAjZ/O8JeKF3YS4uELnzEgyvdhIquBkPCYvXWwWj4b6TPwgYqvMxyBoZNikGCFjUwvcPaFV8rIwO/jKEKbTTIbgmJIrrPrd8nJTy4caDvBNDHcf3zvWYP2+kRtdxJwiIcgKMzhJe0bICi2UAnuNs+iwBsGR3+4QB8OIdlIsgZ6Y4wZs62Ng8I1gSqnzzgIQHVt7jjxvhnX5k4dd8o4MmRzvLCTIThGynD/8PPmJFJXmEPrcZTvaZLRBWCGKh69frp6DaN60nNpKhVf9k/NAXOjDa2H5ctBGRWmTABA/RqAqw1X12boj3rPgtAnEYFBYZqOcLizrfn4Zz2PTIfY0CIydIxg/LrJiZqkJQcF2ZBNTmWcmIhl30lxNYKgqLbUI+WLMibJcgfD5K8AacMHq/HZ6HUc4qnuS2B7A4Ah/21FYJDzxfkvUvq1xIXgCIp6j5qkUnok/3zcXhI644qY0iQfeSyO+H1UfKtZWzPN2Gw/Y3FQJIKvTVis6qsDQXE5nlUbUeiNOgISj8QWKuHfuVQc0+A8sfvmr3MHxuQ0CYs2mQvImbdl8VicYT7HbegNHitth5OBHU6SxcM+V3RQmN5Jd4wkSiRZ2cGhCMz+q6eq19ZOcwSFcjmaFusr32M/JDSZR6JzNSbc1lcj1q/zcCNAGAeFIyhc5I4cElwk2xYVHXQd/Kq2hTwuBqTYIIz/z0gbXFcOf0ZCUJahSQsXAN6MbNoP1EHJM0Guni1e/OQ3KkwyqY4lQvUe3D/8Omaha46Jvi+uoYJ/5tVjs9wkwfKBDkAnGncQ8AYukmQtfATbJsv9hjoEBjslfLGQF3Y/BEWn246QY+vv3OB+4PaEg9I1OSj4+7KlaPO+4vcYzx3dt0GSFU7dJmpndwS4iqYhUFdt5IJzY0MxeLiDbZYuHRSOkOCfpfFap4PC57itvUhadIzFVk6LBVoRFEJypY62Ci3sWpBE98z2fKPFTgkP8fBslqYIBn5PHx3qBg1DNLj9QEAx6osFosOX4KDUOUiu7KeWsP7wPtW1bwtOKRdqw9+ZNUxTSDoozJnmvEfB8ZukJQcFmeYhyAiKjdynBs+CEI7gaVuuisUabpMXL42C0Nd1e+YtowVIhrX1ffMQD74va4gnc/Udw5RgtDWF2uiz5zwIgyTL0oz5htaI3OeASeusJZyKm7Zts/i7xNFZZeGgSPAw/267bdoPgoBYFFfxtV0ZUJicSHlL9L0S94gjKAX7ziqHV2jL54JRBM0SDpXIu9JckHRSTOdmRO7ZKiLncI7snAL0faL3BCMoKsQz/i41l0sI9wly8eqeVk/J2WT8vgCwkmv9PMCOl+5783nE9XgAmiM4eD7wTDp8uLRZFaJ1IE/TvBK0oGWERQXVmMI6KHi88IMfHS/0c0VnXBiL5eewtkLIcZKWHBRkfDAo45NBfXd8kVHxRhIGYbLmNp7JYITCJJYFyJbKq9uzfgkOBJ57kuon/nw8kSoHBF1TKkYoaloICw9HUPiz5zwIvmjZkAD17Nag054NQQmtpQOAY+Ba4bM5wVbeTG0k2VUdTJI1NxW+yNgcbPwevTiOPxcNDO7QiToqI0o2lSDoap4YhHAaHuJZZVJ4yOSvuF+3thdK0OPXh8K1peJt+HVbUc8qXClkNplZGej7RCdizdUw6/hIbSsERTmrFUm2vi5T2Z4SXQ/eZwZshlFEAL1he4V4BA5Kk/YcMQPAFcnd7blMAIB+5j5Ci6RYoOr7uD1HUKTnzp1tAIqaSaUR6jhLvH9GCLaGE4kR/eVgSUkWGU/pUsYJXTxcoiaEC0ExBgRboEYC9MwhXBs8rD6Xh3gwSiHB2nhDwAMeIyg9KDcxqT0+OdoyjGh4CLdlCIhl4a76aiAodIHjCMzaaZ19wL9P16bABeFshu9vMFJ9bubvc5lvSeqe9L+GYMdj0M04KOXvfDwC2EnFADQDCR+yTLKqK34O5H+Jo2I6XXThHDLHqk7ITXKcpKwyLA+uF20TLcPteajENo+pk8Gfl0wW1ejtCG2idLMZFaXDlmWZQJIdZ5MISrIyB4VutL97yhFw3V2PwEuftAG42REUnyyeMARFLthHM5BspsLXRaERFB4mdRkn6ONrq3HIMwc7Dg4Kd3rFasbMKcXfuXXtHdaHeDiKKSlVT9KSg4KsDkGxx93L/xeE8vS2mB/3WHGqrk0ASqMg5iYuhngEEqsY4kGLNrk+WjxdWUB1ZC5JB4UvjnxxMuFkN7zMoUyMoPB4qhgmQZtCE8NaBQN2aq0zzmmSQg5rUf/Xzeif60ICuG/8erQ9J7nq988YhRbNsAAmdePPlU5vpgaDjculnynng2mUgjqk5qKs7ou2o/PMfN5S1pnEQSH3bMxThkqx7wPPBa76iXWxsHOF0Vt12uey5apNu5WhEM/42ka4riaLh3FY1ky14R9f+RSQjB8yYrN4fDgo/PsG8ERw8hwWUNjMB0F1OnYWkizN4qHPjQs94tTyARoLvH/qO3eFaazzoDqglP8bulzLBEFJIR5kG9ZPw8uffCj80uMPJH/nJ17OI9FZPOPCdsLJzBrzQ4PdpgQLQFOFq9czOlg5pC7zW/R9YY5KgQYkvy8inGVxMmwZRjaSrC18xU/E1fvZusFJchoBKV/HPAp+GpCE2nxJsh20wPqGh3jIUDq95XkGx25YB+08gxccdxDqu/3EzTdU3QYtjuzkKZGnbSEx0nemTmyGcczTm02cTzsZ4/sZCmEWdHIs/7c7xPi+XDookrJxeeqk9900rGUjyWoEZVR9by6nDSM8pHAcQ1DwXOSZNOo752iCJNRGCNcNiab4vtS1pZRam0n1cPwQFHMO+yA4LTYHmxYKBADkQKBrszCviaDgg135fzVemNCj+s6LwkRmeFi/fJ+MytFigfS+DXFOfihdJkqyCUFBdvwh6+H9L3+S8Xe++BVoAQHQkJ0Y4mGLgF2OHjsB8mC0Sd0b7QUEhod/8H2NLAsvXZiBfCZpX0iESHNDkJ6LWhi4zLXBo7AR9IyMEHNx4tVNRaE2drKtsw4K6021/dCXiiBohKdo+y/8/ikw3x/C/mt0qqcL4rUhKBTWpwu7tFl3XCRby2bNCeMEiWCcKqtQG9JgsJd14KRGc1GWXscLLyeb4n6L2XQEDdRtuEotJ3xrVMme2WSG3PTn4zRjzF/RDp++gVE1j3iasZ3wzOcQ/jmEi9FUah6/R6FKeZ6h0FZzB6MvhFmaXL/dygD6prPcCEGROChcgdeBQpoICtLPymRtLWnNtyVeEBVvtjbwLCB+cOXzaNKWEJQGxkt721IrRZIsWwQMJ4Q4EUDa88HIUYosQ0XORnYeCIG1LSEavDDyEJI00PE9SBou2LlxCmNVDgYNj7lOIAAC0UzYdPZZVfI4nnX0o0hbCdq2hfdshmPowQRbS3hL2eqpNnFOAKgTY+Nb2LIt8HtsZFIAU6q8LSEwQ7pZ8zBNf2hmu/DnzkndTTJpOLFQt81rXhfGsm0uWK5tyOSzOWxLG69O3BIHhYWHyGbVyshpnbeVEJQq3b4ljwW5qrddidZlHAkMCfEAIB6IxyFBFEsLqAVUaRF5cFA6AgeFf+dODopl7cqzcv3B/VeovMTNs6GgLhVvI8TDX1e8JoY6T8oSgtLAqsWvpsS8RlB0W55mrD1WuxNQbfIshMMHm+rbwrgUu+2zcRobnn/YgeHIDr6+hM7we3PV4qkj2Ko+4D65Nll13wAaZpU22i/8/qnwXzc+CK9++pHiZ0kk2aYISrdyUDRs35Rga6ixesDLfIFqt8DgevDNRVoc9WkfjL67OCw45V4K8UjcAr7RW4XaHE4t/85qs3iY0yaFaQiaKBHKmYOByeIAQiiUbziSc1RtZJT0qPtdfXzJQanGysjgSREERTkoFpJs9ZnSAQOHKiqiaQMUwspBacYBUTYYFjDVDuOBYARlwQPBqZ4rWz98+C9D4blVacYuHRSLqCAfEwCmkjatkWbZU8ZvkZxxW4jHTG5IDsqKMa6eyU9+6v+egyTLY+MSpMYXXXxCorC3/nueA8CQMbYFb5mndOLXMUmWnLZFJwOM9hiBkeLukg6KLc24So806uewhbbSzOAnIP2+xx64Bh574Brgxnk/WZYZBMQ6U/3rD0cGZ6HO2ujZ2Ppub2tya+qKBcocEo7ooWs4soDwAofRBL7AkbpU3IngcX9ho7cR/0aF/LpqW6jXudOG+i2igQRNpP3CCApuaxVjtDjruLaKet6GHhBDaHA6e8VfqUK41VvRPGIhHqezaa5Nah57hVkqB6W5g4A3bDUPqk2+wTzizhEACm81cq7oWPThoHEeF/6cJiTZOpFK7Lwp/RoXB8V05nWotBZBUes+G6uJJLuCDGsRAAikxBZ1UFwkWVtsHYd4NKOanpB4iAdARjGqzQLBx7X1RyQHBiMowulGZQhgESnVZVwgTYLUjYWZQay2kE51beumALWGP0tNUN8046rWxkBOo3a3pac3GwdFMmmB4hVLDXjZ4nQCyOiNydkxwwI8rJcx50gtrABo8WMIih0FGRkOMXHMCtNhxkXwJIKuxKeSHLfhWIyt/Gw6D4c4zOJCA9lckCB39ZnGZsUJkwgpVI6wul6G+ArqfvsMQXE5+pyP1EfwTaMQDwuz+CAo+Nm7alJZr105R2aIhwsVuvpuFOz0IgfjDCJGkjV0UKTQmjz/sYp3j3FQeFgfwERBCE+MOSAc0edjXUKmJmnJQWlghmaH8aVqwmT5u+kEhIR4+AlJQlAkrodRSbkmhDNCC7r02TQLCDkoCAkwngmWuhdCU2ZtFSDvMRZWS9qxTejNZXSTdxNVbYazKyTnzd1WbfI0A6mJg8OJ0bi9ekTcQWlJDgYPR5AQj905xNA4V7AE0GNiXiicaTs5NuE8YQdEep1zc5pwUOSxbjp8ZI4x5wO/z0SGMvJMiINT9av8IBFByajsOc8Awteo5oFRzZh9lw4EBXMqOA9JMo6I+XBAMkQAHjAOik+Ihqjg+oR4LOrgTQ4o1eFLIhdbEBRSzZg/d2HtUtfo9U1UydSQKv/O197h0KyDZiD6zLnpCMjUJC05KA3MEGpjsHgTHRTTuQHyXhVuwH/D3jKGX61hGp4eWX02WnQxMZA4MObrBN0phEmEN+kmpEQha8L2XPgmayAoFrEjXxTCIKo1dTJwqCOwrS285TLqtFLhQDxu8PMjOiiMlCnygwgczb9zPRekMdGWEBQ1JozvjL7ucratfCyBUF4iMPyzsWPlQhNHhoNRfdcWFVp7ijPtWx8VzuSpwnyjLF/LSGkBaYyr9nyzUxtNk7pK2rnR1/YhyaprL1SbdLN5oOvxhCMoOMyyUIWIQkI85uHSZhJPg6dnm+uXQDR3HI40bcCUruDfueHMI6fVHuJxH5gxh2ySlhyUBmYiKOXf+QK2MBR0UDI+IOiAwSdSF09kiNIfqQOk441mJk35P9ZQwQcEKSXU+tnSwow2K+UcSadhaRO0OW42HoWhi8Imkg+K4YrjhiAonEvRtG114h7fQ8vz5Mk3JYyUEAdFWPiahng4ctWRkCMBfcGVvW0qldwhb5LFA0DHOkciVHtbxWHibEuOfmG2lUKhNIzLTuPsPTil1oqgsPAQ73dfkC3H7TlRtSoW2CDNWDsYKMTTyEngKERzBwFfIySLh2/yAH4hHh6m8eGRSfVweBaQEWZFv/N5IDlHnDbgQlCGbG2XU+bl+3alKC8HSw5KA+PCPByaVl+qhKDkfEMweCbKkx+JYRQMo/JaPeXrUL0+Yg4OOTU6OCgY5cAOTPXZ+ESLro0zWWyER/JcHIsjf6Zm7DwTfzdg0iYkN0f2gz+C4h/i6UQszPg6ZhaQfg+WqyfxbwuKYdNBMZErRA4WQiWcg5JlmKjqXlhdIR4SwhEQO4osCVomony4PM+MLJyW+7vmoQpe3wjH9U3HS/cZPxPNxdLOrCjoN/6R6wmpdpxPJNdVoinOnVZGDkk2MyXby7/7aglpwcLmKAZHQPDPIUJxIQgKUcFlyFWWZWQNwyGeOg4K/pln8QDo73wwogU7Jb6VSaCXDwl8ji6XLJ7koDQwzhmwsaYlkqwtlGGkZVpCIYRsyjbx8vP1CYwTokjmghTiEcJL0smw3BDM9pg8bCNbAeiTmQiLM24OX5j1teTf+2yT9g+T0I2hMYIinGybkmSxUqSNROwyNSZc1ZAxSU8SajMzAFD/hDAA/6z+UC4gqb63nqqeS5xtINe2oSS4AjbnU6n2/PUsy5xOo6sQYXnP5qlTyuKRxokW3rOgIIhMOhjREzEv/mio75LnLfSbKapysmaTjC71LH1E2nB7jqA0dtRb8jhuJhJnbqQ+SrY2J7+RBotDiRrf+zRBMe3k5Kpty/xeq3kkfOdlYoTul1G5e2gifi02Vq2VkFOIZ+WYLcZcwWLjHyQdFMzzADCV+zDZS5Idb6HTmeQk4Bg2R1hwOhxHV8p+6kWZh63Kn9Vnm3A9AF1gOLEQT8gFwXHDyFIhwOrNERT7Jm0zvJlxJVpfJ2MonIrr2+r3lToqYe35CYxUJEYkPSnc4wrx4AXeIPu18XduPjPVt/m+5KzTTaU6+bHNFHM1bE6Ei9SNERR1Ky00XiTUCLfl2UX6EICQNuGebaRnLNTGHXHuqJshHv3MpAwivtHW6aDIgmEszbdhrJJvZlJ2lMs4t4+LzDnbsmsXReHVfy705iPUhhMAlEnjFavJdoQ5aGbxme+RQjwV2ZzVw+IK4i4EhdcBy9nrKcSzgsw8rZd/b1Is0JSylhcv7IBICIk1iwdn4jAnREoJlQr2WcWrKoVccxIAaPjYpSRb91zKZ2LC/TZ5+ur3lm2S+y2u/PTWeHGtEBT5RO4yIlI10kXgmm8MMnpEF0fZybBl0pDvFYV4TMGp8ZgYyPetvrd5poCJ788s+McWz6GbJ0IdEGGuoXCIOc/cmj5DhM5UoVLUBwly58rAJoeFIqz4Na6hYnBU0DOTClqaoU5K1nRxUPgc8smiwdeORVBC5rC0yau9uonIHA674Wv7hJfwJi6imOjZu6pIS86RIV0hrJ1YWqK8tvk6nycmcjRuy9btlGa8gox72zblzkrqHodJWNaEK2fdle0yEKTDy/fihZe+rmHQkZilgzcEqwgc6CJc+G/8vl2cATGOSiB7s1oyX2RatjRjjoA0XBy7EYsjAIXtpRN5k7YAME4f9UNvbBlMtoJ/UkaPgb4ISAcA5bKU15Y4KObCOi+EeHiBNzNbxs1vqRZ2Ml6luWCOR516aeNj6b4ZNYLQ98Vro/B+l9enn18Rh6XMJrWZWBAtjL5IZGhehoNvdma6PpqDnKzpgSLgfvDv07vg5oByYJqhGIy/gpyFJiJz1rHY5NoC2iYlGVAHRUKu2HcujCl9T/KaL9aGQodaG7Jt0+WSijBO0pKD0sC4V8mzD/gJyUmS5egLdhKkEI9warSlGdt4IHUISX84MuB2/Dpm90uhANx3rK6pLuXi5qhnw+89zzPyng5bODpoMwKQFwiX2U7z3qnCITooxDnTG6Y3+sOcXhL/xghKp35xpAgKdlBkkiUN8eB7UyRZMzOJo1YFc8hJSFJ4plXfhZBg2R45GWw8SQcBKngIVVtbBhDuu4igcB4JO7ViBEUSaisKs9+4arec4kw3FL7ZzXAHk4QRLHykpnPIQDHo3+vbq5AedZCacFC4UCNxUDycjBAEla9dAPg71+/Dzr1cA0lGzaR7sGVAknIT7MCMuYVmiId+55yojgXwJmnJQWlgRvYBW5h5vNBFkrXFtzHpEDsRHQzxiqfKcd8KEwWREBIcRZA4KpJOCmarUwQG8REEdKciTA4kwiRzUJTjJjhA/P0AOqbLIdqQNGGA8DRjKWOkzrAC6MByMnYZz36QFleKoKCMHjYeJfQHb2rThuAUGq8C50CFh6TvnC+OZohH3ZesLUN5JPbXJSIsQUhE50dwbpiDASBnpPGN1hBqq+aB6egboU620Uk1raSNzIbecAdTchhtVZjrjCvJqv+bF9ykhwQfLhbPQMKiaT4p0iZ61Jygi/ssrQF1qf5Gerbw3fD+4tcw2gegnQzMUdFjmV27SvigbRIHZQUaz9fnm6n60p1pxgVflMvX8YCQTjAUThx/piUzgvdLn5Bkgq20IeA9lnNrzPb6uUikRbWZ9SrCpH7NEN4SnK+uBSLFfXNlsriMIzC+YRZM0uObik/7fkB7Y3EWnAyCoLTNxY2T5PC1V08hB8US4lmwhFk4giKSZCvF1XGf2EZeasvQ18r2ei64Xpc2czmUaptH1JnH19AVy/UzsaNx6rPHTpsQ4uEKuZwwiTOERAelxll1Iyh0o/Qma0ciKLYsniZKtDwUQYj8HigIdyp9+C/4+iJJ1hJm5eRkKbTmrEiOxnmBgA6ppITNWR7waABz5HH69iQtOSgNrC2EMgBMr3NhIKSEVaeU8nebTD4mW+I5IoVRqA5KPv58M0wikWQlshVxbrBzlalN1IQR8XPpI8KkpDoqpRnjz5EyJ/C9878D0GwSgAB4miEo1cbQkKgqkZebLuwAlCCoNxVPcqJDB8WGoBghHmFhnenqGqJGiEc9d1yDCL3F5kgCYMRO6YXITkRfkOjmfa/N4hnxeaY3BTmLx46g5LlWdJYQFL7o8/GgnOEecfTH17U56rn6bO38SA4EP/Hya093qYNCNsqatnXGU6R9SbK8xpmPDoorRNNEw8XqVDZoS9YuVt7Aluq/akrPKT0WgVxbQlmk36Uq87jvhItlCTfyA4rJidyLQzzveMc7IMsy8u/xj3/8JLrSyIi+AhkQ5f8VgiKQZHWMWYbUMExa5aSLcKBFyG38o5TlQ+qmCJsJPtFKDgJHKfBnA7D4uOAAuU4BOMyBNwW8uODFlJP9OszBqE4hTR2MiAWKtpeVcn2u7xueMgh+wvUx8iFxUFzQ9Oqu6dDoa+sxwePb+HVlErrCN3KNJrrDZnhhFmX2kROi5oq5MFv4K2SO2/uuHRTzmfZHbLM0OGo6s4krLgMAKYLIie59NEekjBAblwKH6Lrt3FnHR+IUucxAUITn5jK8fuDrN+KgWNWUmx4waPuQDCLa9/J3PBcweoXnFJdIcDmeymxcLCnEI6omK2fZyDgr25j70fJAUNr1b9k99oQnPAEuvvhi3ZH2xLpSa1QsSf+dh1JUKAOPLe4tG8RAAeUgYRZM/HNkLki1evCJVVx00etSiIcvflnG+DHodSnDiDsoPPzSzjMYjgryXHF77JQY0tEcHvZEUDoIAQHwWxxV31V739g9vk6ZneEXuzc2JcG53G91p/p5mnBQyusWBUXdKIKi38/XKaIeLCARTmEwpnthhGEEAi5Ji28aDhVq5uBsGdc8cn72UKdPEzFF5KwWhRBqZSmj0mYDAKKmThWKHI4gE9rYxnFFku3KYQb8TIYM0Wo6B8xQo5+OCq/Fo8ItTQ4ZPNU+loM29Li2Olzhg5Uc4tHPEX8PPLVc5kQ1cFBGlJeIExQAFOo+bsMy5Qzkx8ik28sdlHa7DQcddFCj9/Z6Pej1etXv27dv313dEg2fWF2Q2oIAUeJ4oPoMAKxVglGOso0UV6dqrbpvEqxtxN0tGUIdBLGK6Iy6L4FbA6Dh/oWBScYCEDQYWPtuK4feYMT6hz6/hSc750LQzS60orC5WTZqzpAtP+cIgAomSaevJm1di+O+q7rVz9NdOVSGT2CSvg0AwKaHd5FrkxpELBRSvm46oVW/a7JGsK4Oz0grPwvNQxEFEZx5Tg4k80T3k5xKbffVt2n64PUBfSZzjuYWzBAwCfEI2UlaNRQJqUlpxhYuFiE8Mz4KR9MGwn27zIZC+PK4OPLUCMVg4cJg/gwn6Dbsu3JQXEgk3uLdRPV69FkK/wxHJgLCP5/vCdyp5HuKpPEySZsYB+WWW26Bgw8+GB7zmMfAGWecAXfffbf1vWeffTasX7+++rdx48Yl7Ck+sbK0LrYASRoJOZsI3BGQs3TkwVanBmsONinEYy6sAwtcb2QnsclLRebsDhDva9VekPHG/es2CfEMAiFeTi701nDAHBIw+l5/fTSmAp2j/sh+7/h5YWeFE/wk9U88vg7dd4ZcG/OK5BCPHTXDYTEAsCJ+kjIxgB7XtmfuCuNI88hauVv4PioBur5ZEFRCfvB7qvpEAkcN81ukUCl2+NRHS9ke1Wan3iM6KGzTs8yBxuOQfZ8xtXhwirWXUBvjv/jqGHFxveYp0vWHBNtawvVjXHXSpM/CmTjSuimFgIy09QZzcDnYRByUpz3tafCpT30KvvnNb8J5550Hd9xxBzzzmc+E2dlZ8f1nnnkmbNu2rfq3adOmJe0vhkLxAlTF/CqSrADhZsqBKH/nToTk/NAQD3YCYNwWD0bz9GZqrOC25mf3SXjIfF2nT9PngomqMkLDNivu4NRkbVDJdYuD4tACcRkOTwH4k2SlRcIHQZFP+74LO0OP0PWfc/SBMN3J4SmH72slG9vUiQEAPnbGSfCUw/eFj/7WSeTvXXRtrv6L+6bv03R47SRZk4MiIRUjy+vEybBoFWHnRXRuhnKIxwjTCOMUP0/8mQppVAgK3wRxvw2RNyHcQlApI4uHhgunLYrCZVt2ePJEEXhNmtA0Y+7YNarFw9A431R9nOGI28eHWfV7fveUw6GdZ/D6Zz+GXZs5Rw60sPpdUA+2qSKT5AcrgiI7Rzz9etI2kRDPaaedVv18wgknwNOe9jQ4/PDD4XOf+xy89rWvNd4/NTUFU1NTS9lFYlTWXP/dSM1yLXyWFGUaPqJtyGfb5OrxqdKIJ5oDVXIgbPwWl45J+fnawZD67uIjANBUX6lSMw41uATD1D3w/rtMOzhh8DQOs/imOANQiDlaIEtwcA7bfxVc8zfPN9JMOedB2qwBAF70xA3woiduMK6NycnSd+4SmMLhCuJk5Oqz9XslZz8Xx7N5b5gTpXli2HkZv19AC0e2EE+DgqB8o9Whq/L/SrwuN+eFCpnxk7zkMItEdgtZE2fx8OFpC/E0z+Lh45Beu87wAQULrTXhgXAypxZ585u/oQhME6L6iYftCz96xwuMOVgn3in1Q8waG8ncP6WyS4oFZqotc0rZwRV/p0VRNMqI2p02sRAPtn322QeOPvpouPXWWyfdFdHa6NQopRkbg0kksZa/29IfcUoYcRJqXsdpxnyTJynKdeGjEW2L29tCPOQEJJymDbl6Nto6NYXnKEnWIrk+oAuEN8QbUEkVQD93qk/RqOn4+tpBkr7XJtc2tC9Y+zVTbTOshn7HlZgbn5oV78iCmjWp/aKubdSOQg9QOcV14U7JUSDKx8Y8k/krONtO2jA6lZNhl/Af8I2WHUJ6Qn0i/FmSsyuNZ6JKauEjSSEeBO7QfjvCFC4zyyb4kmT1HPRVgrXpIDV3rji5WP09zDmzPbtV3baxyZv6MQIKwsPjUnKDreQDys7i44n3m3O98CFhOaAoy8JB2bFjB9x2222wYYN5YlsO1jTNWJmYvlhwOK98Had9ueqPYBIt5aCA8bokdS+GeHK8IUjkv/GCL5waAfRmZIPFO236fhuHpW+ZaNjBqc3i8UQxbGqsDf2TWoG9pu0HSIXXFxrn9Z2aLK68krPvpiRK3TsQFCnjRF97/B5hcdQZL+ZnSSEc/DoRFmRIxNCSEi/NcenUWmXqCY4XPkTg96i2EkkW/04IvOO+4e+Lv7/st3aUVR/wfWNnZsg8FGOT9+RhmVk8gSjmcESUYJuMRUMJ1jNEy5EEbw0XhoL4PDuceQlgiqXhz+dt8Gu0/InZN1z12xBqY86Ras9DwJO2iTgob37zm+HSSy+FO++8E6688ko4/fTTodVqwSte8YpJdKfWKFdCf6G8CqsyiSQ7HCMcFfQspH3JYmcSCqKvhUmyfIEgmSLSoowh9SqVGL9OERTzNC6cpn1CPESEznwP5aBYsniqWjzj9qEZBIUvguLeqBtfHzsJDZtj3hKAv3PWFpCvppuKchqLAtWlQU07DgSFL35mSq1uK5FR61AQzgXDr2OOiSuF2aZro+aCRHQlaq/CAaZyUPqyg4LngZQy7kLBOBIohd2UKedKui6APw/LEAz0JMniEgFYGMwniyekGjG/NoCcqu8yg4PigcDYERT8nTuQSCm5wTZP2HjAjhVJiWcODO7fJG0iHJR77rkHXvGKV8CWLVvggAMOgGc84xnw/e9/Hw444IBJdKfW8GlZjPkZgwn9jN43KiQlWeREiAqXerBx5wZfW3Jg8Guily7E/PH84gq5fO7RDCSzb00dlD5xoOT3TxkcFB7iCdNgMCXCGzUXSa5eJFkUR/Ym+LL4N0ciatvnOczDiGTD+F4bQG/WNCTJvnNLVpeUtaYyWkaFjOhRZxyqNvp1iqrh9hj2lpwbqu9ijgVdkVhSktU/q2vn6ACj6hOpOcI34I54bTqP8CGBFvyUNzvp+5xDUvsAFPnBbb1DjRWKEUaSHbD7bqQEW220iuQamMXD0oyDs3g85nCL9b1aOy1jivcLO2fSniGihZWDQh0QW4FZACCo1qRsIg7Kv/zLv0zissEmnpYbEpow4WsgbMQ81Q6/BsAzccyTsvr4kYjO6AVIVxvWn90hIR77ybCqq2JwUEweBu4756DYmOn9gZymjDeaxiGexgQ9fgLybF8hMP5hEgBK0uPaOM2vbc8gcLbHY8o7xIPGjFBvx5VajgWurOrGrRwWBqOqbo0N2pZL1I8darSw6kw7vZm6Qjx9y2fzVGEJXcHPRJpH0jMp2+uxKG10ziJyNkcb9W/jfjOw6eE5OPWo/WlbhPzgNF/fcJ8txbm+vUmSbc5/sR0wmk0CgyQ79EUh5VCJT4jHzOIx3yP93hEON6J6+dAM8bTJIcGcg5yjNmlbvvKty8hkPRH9Oh9MEmEJoDzp8uwCEn92LJy2lDJXlVYKHZt9wyfW/sAM8XSqyrRyiAc7CXItHfskA6DCXRLh8sB1OnOLb968zk8oxBusJItPKQE6KPi074ugcD2R0JMvD1k2MfydVmGYhgsrQDmeh6OCogWMFL4AbtVVrqDJX5dCPFLKPXUCNGzu4tZoBwSM1wBkQnnjUOeoqL5TW8qpgb6gQwiAPA8ueNVT4d9/cC/8wXOOIm25Jo4vl8rkoPghKNgx883C4ciRPwIih3gWUwelrq163i6HWJmYuWU5GJKMNLZf4c/pC4RwSSV3kpYclAZG03XLvzVGUPAiUJhhGBkexu1xCMe8NiXJ0s2mLmYPoE+sUpVW5UAsCKfGsq1eYPRG13xhlkoI4Pe84bmPhVs373Cmu9qquNaZSZIzHU+XSdwhL5IsWuBsWTi11w6AlwHiCL5ZlkGnVabFzgtOBH5d6lM7z6BXXbv8G0Fg2jnAwhCVjZAcFJl3w0nduH0Hf1+CQ4dP1NVYFMayhDQSVEl4vcvI4jZOCXZWqdaJa62hJFmJS/HYA9fAn7/gGOBGTtOjABSDbdL+isg4+ylUaG08fy3jzX5tef77OmchpTbMLLzy75IAp/Q7Ln8iUw7U4c18nZCmHdmd6hAxaUsOSgOTwiw07YvuahKHBEAeELjtgiCIhjM2ZKn78s0jgaNCnJ+RQkjovVUnVkd2gk2ojQpUjftDEJiGHBSLbPqG9TPwL//7FJCMVzP212DQpxAAQBuDH4IipfJ5Xd+yUbtMEz7DMpj0tf1DPADl99YfaidCCv31hzIhtBzvQ0IOltCCKpRCwpkmgiItzKS4ZU7ngo0YjE/UEuFbPTMp3FnyJkp01CXkpq8lPRMV7qP9xtfG79WfrZ9J+X/z75MTIn3HAueg+KqxShlh/P7s145DUEz+jF+IyCpX36C5ukWTv4I+34E+SxpKmbDu9hDnCJPF1VjF858jMOoQMWmbSBbPSjNJ0ExK61LWEhZVAMUFKX+WNFQWBHi3WnQJQiIjKPz0hPshyfDj9ywI6I2RxWMJs/QH8kA3OShye0qYhEbGRej80wSpg6MXKM/rD/21RABoSEFaoFxmxP49T38YTfCtQFte387HAKDfs007B/OxJCKt5DCTcKgLQZFqYiFCtlRagFSXbiJaaAlXyrycOkcdPZOR4OAIlZN5v42MLg+iKYA9tNWkvU719QzxkCweTwQEFb2Uwtu117ao6DbOYOIaMl4kWdmxa4rK48MND+EA6HW3J6Tb48/GKKaUvbkcCgYmB6WB4ZOZK61L+h3X2iACU5KD4ohfW5Vmx+8dFWaIpyOgM6aTQQezJBLX68sbkWq7YEmRdol2lfeOTq2BgmFle1Rwr+ECVWm48E2+MclOT2LfWjoAiDtgSWt1GV9Awjks4QgKABItY23x926gBWJavdk3Sb0YC4NJ33erCknaM9IGFrSOpryb32eHoYk2R6EuBCS2rdYXtNG2zPvG7+X3zMsHNEESCB8BOavNUQjqHI082xOhNk8OCk8+qEJEvjooDEHx1YAJOSSYHJTy75JycXU9YU+w1VDj85O/Ls5B4cCdEJQVYh1hYWzq7QLg05udJwIgq2e20EYmEwP1RmvL4gGQw0dl36gTIi2skrx3+To++dFr49f5vVSvt/VEkzx5l2F0JkRwzKpE6Rk/XwjVQcEp1r4OSq6fe/m/773r8RjS9y7brHlTrFljc95tfC7XmBPLPgjz0EVUxXwn6fWFmhCQDU10XdtUVJYd/T4S7ZM2FABzA+6wzcRnLCi+UNlORm9cZkv19RVL7A+1g+GLoABwbZumIRqKoIYWC1SHVp8wLV7TAUCUWOCyCnaS7Pi6giM/L4R4zL7b2y8HDkpyUBoYJqK5KgpXv3OkgcQMaRusFFkJX+VCW6vUPVSfrUzKaZeE2AD0RJVDPOzUaEFQ+gOMLJmvV321PJd+wEkefzZe4HxRCINk2/AEpoiPmNMQoiQ7xEQ2TwcjVKK8I4QzvPrepic0/szx4mp1avG1sVNsOAK6raT2ii+tvjupjk8HhUJcxQAHI1mLhC/6tkOIRlDQPbflOaf7hjkoQt8JIsXCpgxN8y08iU/TvtloRpjDkyRLBDDHn8HXDHtbjKDoEFFoLZ7QYoE826UZSZY6lRIKwp18KQRjSzMWQzwWJFJMa19GBQOTg9LAiJ5Ig42YD3I8EcV4I1tYqfNjElGl13G8UJLJtod4FIIiOEfsvvjcw8iQK25f/l16Luam0fQgr8heAGMlWwUvN4V4GQoRiqBg/o1PmARzi3zVXI06Qt7t9ZiRiNd1xlEOft+4/ouNEGorb+ByBLD+i+hEcEffAouLIR6xKKew6AscE3xtiTjso4MinYinkYNiCw8ZXApPJMCmLeMyvtF6oyDIKQzNIAKgIaIQFBEAywz4zX/M/QPwQ1BUO0kHCes+cQQOo2YS908M8RBn23QMiaOPxsSkLTkoDYx4nMICUougoIkox/x47Fw42VmIpGrs4gJpWY5fz8jrfP5wIqxP6Aqz8CXYHE8sKTuGZC94nvzK65sTLZTHIZHNXKaziMKIpliuWtIycLelC4hUJqBZ+7DwlK5LIyMo0x1cQVfeUCm8jF43+C258ZrNiajGulRxGI8VB4JSonlm36tDhOD8ANAQEW9bF+KRdJbw3JtyOnx0LPhyKQg52BNF5FL3oarE/UHh7SAovY7yuhp58uWwGGnGAQgK1jNr0t6YvwKCih0UI1RODnbl36TQOvYv6H6DERSzPT8ATdKSg9LA2kKIx72Ry+2xxkImLX5CgTQ8mKVQAHdueN+qhVNAZ/DnSzH/OnIfqcviICaWnwuGYXlxaVOos65wKg4Jc+AU7aZpxnhDilKStcCsLmuiHupurzcW3/RsAM1BmbegCW4EhY51AB7ioYurRFSlTp05D2VNH42+yOFI/X24OChSn/F9iVL4NToo4n1ZNiuOEBKnDYcaPMcSUXMNRFAk58p5bfSd6PB283GIUcjQLKAQ7g4AXZcxguIX4hmjXiIHRc8hnmzQQYcbaT+SkG9pv8FzwVY4c9KWHJQGRkiyTZRkHRCuC0FRp3mJ34JPjfh1NXhxvFE6GTbOPnAOdHlxJO0bxs7Lv+mJElMRmOgoeC+O/gtMeW3z3oNIspYSBs62bAHxRX/IiT0ii0ePGfo6QVAsaAFG/FxOsT3lXnqdOuMS4bsoABYG5jwihwghi4dvEjZkSEpxbqqDQiXf9etTJMQjfxZO2wbwGMc4fO27SXP0Zig7rNZrE+6N3/wFoNw+7/nPiKC+h4SWcG2AZnOQk2Ql3R2Muhnjpy7NmGdPWniH9iweGv6apCUHpYGJacYCaal6vwX+tVZhNU5+5uKGyVgSSoHjjRkZbHQiGiEeTkoksDg7+bG2GCHpCQgNnljSxJcg+6abLG6/MAjhcZjoC4AHSRbd27ygelpnNM0YvNobi2sMSTYixGOr0TSNSLLdFp8LJoJiq7ANIG/0w5HsRLjmUZuMVYHfUivkJjv2vG89Qf6ftzWIw4KTgB16TJjs8H5U87sIGsdS6Cs0m6xCvXx5XEPNQWkq1IbfSx27pggoc64COSh4LAL4IShqzZNCjphobjooeu1ypRkrs/GlBiM5exKX8Zi0JQelgRFCVEiaMXISXDG/qr10aqxJj8QOigRN24Ta+IbhlSZMig2aDg7loJgTt0s2SrPvdSZXoPXdpP1Z+Lg9gK4S66OD0q5xWp1tWQzbNxNH0p/x8E+0UqUFOcIhHgxV42urtrzfzWqQyE4E56DYUAwpK61uLLnUosvXy997gnOUZRmZCwbpscZJwJuVLUU5JJsE95ugEA2dm6oOWJUJ4ymWKCCgPkgeVpPWWUB+c0CHSf36jjVgCHLViIOi5z4AiKm+Lg6KdLiRHIyqT2wsSKi8LY150pYclAYmpZRRfYYaB0VACvCYMWFt/Jq+tpRxIYZ4hL5JxEEAE0GRoD5lPMST55qoVpEabVk8DgRlwTJR6ixmgcOhBt8FRr1P3aot3bauPQBNt23a3Fbo0Ffq3la6oc4MDgprOtNF8XMLPI0RFAnxUyYpG5N6ORISWVOwr/q+BAfEtmhz5MLGM5M4KOX169EYOo7169MIQTE5KKbTVt4bNLK2tLZ5IygqVAHjvnseEkb+acIA1Kn0zuJhKKT/+qFREFwpvomOE+fuyLwjzEFhTj4+3Dgyzvj1lEnoj7TuJw7KCjGMFEihEmPRsCxOg5EsjMMHlCRORU+75sJLc97Na9uzeNSiboe9q74Ik0/dq7TouxZl/PkhUvf4M6maa8PFsa03pOHQ30HBp2KbNobz+hJJNjDNmJdUr7+2udGHhXjk+8YclCkWD+ekbN6+CYJi1QTiY53xxNRbZWd8PJYswnlGXSlbur4FqcQIDP8siYtBNiuEoBg6KMhJwOO4cU0pQbSvKRJoFOzzJMniVH01lkPm0MJAi8yFpAkDxBUL9EUwDQ6KRJIlacau/UQK+9sPvACcE6neY677SahthRjeqMVUYON0JS8iJMURL8oOlj8uBuZK5e0RDop5MnQVdgOQs3jqPHH8HnWaJlVYHfoNAIiNHnB6w30nOgoB5EBy8vRwkPi9e6E/SMnSP8TDFlffLKCazbjOXOURAKiDwgl7PK0dgKNuLgRFL+wSsbhW86cBibYkyYLxeh2PhIeubKfWsh/ygQZ/HyTNuEnpAEb2bjoUpXpY/mqsJbrrX8tHO0chCArOpPPloGAEEyA8i8eGqjdpq6XuzbVr2sFBIeElIcTTyjPy/Vu1c0Yyos8RnklaclAaGP6CRQKexSGpfq8J8RgIishBkYmkdaJZLn0G3FeJ6Mnj7tIexrOAbA6OtPBgdEdCluqMnDzVJA8hB6LFqanUPoDAxQjIQArRgDERFPBsL4UzmvUbwERQ+H3POBAUiSRLQjwOp1h2aPF7tdMHIJBRGaFcdH4sacZ1qshG5W/2VeBTML9H8fsgfATM6ZFDZriuUp41LxkRk2aM5zfOygqpxeNbzRiAaRF58mc6zMmPKRboq6DLhdCk+dttIWK0kQWmxos9ROtKUMBOrbTu4nV10pYclAYmFt0TeB7KTIY/huTKvxEUxFFUD8cD5RAPX3R538cLp2UzqTgsDuVO232Wn89i7wEclBAdk7K9hiJ9wxyitLmHgwGAn30AgoLQH18NGFsVWV+Cr01Hoc6UzL/NKSZZPCx+3kLcn/K6PPNLdqAB6PddaQIJSKYNQdFZXwKCkrvnOJ/TpvNDP9t4nZAeZadtgJAAmw7KFOcjkMrUBflbE5PCZr4hHgA9B3jfXdYRnKMQBKU/CFCiRQcEgACBO4ygBCKYhkyALYvH4uRjBIR/5dh5tBG6bfOfO1CTtOSgNDA87qRKqa7USACTiFq2xw4KW8SFRRd76mRBZ3VR+MnJhOPpvVVhCgEFqDs14vfMSzVIajgoGEWQkKU6w6cgvbB7tmUIio+pe58LIMkS7oC3c0WhdYkw6jKsJxKSPVVXAsGJoDAnwkT07HwsrFyqicXmwio5GGW/mWNVk4bsiuuboRb7Z/P2phOmQx2SVD3erAxOD3K01Wbrk6pfx39xGXlmlsq5Tdr3hyMYBnBQ1NqFC3Z666CwUhdNnTvMI/FVgs6rtg6htjZ2MHjfTcTN5oTgvlavCSGeXFi3U5rxCjFc9VMKZdgcEmUSrE1THPnpTP/cErxdAv/yEE8deY/1FcOkAG7HS4KNcRG2sj12vOwnv7ItWpgjsnjwc21MDoxMcQTQC2QM+hOiASPpGPhcX9YTCXdQ+JjDWTy2kIQtRdn12RhWd9XiUam+dmddOfPydWVVZfchxNBBcaBKVuGtgaxLg7N4bCGzELI1vg9M9mwcokEDFiMovuMwNIungwp2hlZDLgrKI/FP9R95r12ag1L+Ls1BvF4iatG47/ratgNGx4mgYAfHfI9GOROCsmJMDR6xlHudDLaAoOB6Oa4QD5ZklmqXdFiasRnicfMkXFkT5mtgmKs9XkxnOqaDUiEBA1Tl2QeFEDRgvMMcARCtMvN7a96WkGQDFzi8UQN4nFzRphQS4qkTgiIpkha+Rc+SomyQZFFzvClI2Qs5ui8A8/twytETNEBAWDiyU8NB4d+FK1W4KzleFrif68q0BCTQLyNLnZb9iepEZgDr2gQ4ylqB14ODgsJqoQgKQKBMQY2z7LIWG6dqCmOHGju0eH0j13bIM7g5KOpgJ2tnrRqPsbmFQaP72Z2WHJSG1mGxcyKmVpNmLJ30ncXERJLsSIS1O+wUb3BMUDigfJ3elyHh7XFqLO/N3t5F7gPgJwHz3upMtSehs8YoxOKFeKprh5BkQ/QnhAUKwOPeBXKxz61zxI8/t9VTdqG2KsRjKbrnSm2XSNFSCEjip5TXZmgjaouLz4llG2oy2gxBRPZd4MwmfqCRtExsp2lb2nbISR73ux+w0QKYHDgA/xBP2X5EPq/ZtfWarHVQGiKo6H0hh5Qq0yVg/eA6IzpNWb8Hr4M7maOgQ7Syow5A13WbLhcWYsNvWTPdBgCAHT3qGE3CkoPS0LiTQeBhjqBYZLCpg6Jfb+IkUJIsGK8r42uDQe6rQ1Acp0bJeTA2K0uIZ9qBoGAoMSRMghfHmBCPj4MB4E6Jrb2+WM3YDwEx1EMbw9sYifBrC1Af4tmwfqb6ed14sdN95Bu5vNHr98vOupQ5we/BSmStyWgTUdJakix1blzy/wYHReCB2JBIM8SD25Z/80Mhx2MhAMkD0GufcjCyzIMki5WoQ7SEVHg6EkEZDgt/oTeBx+FP0C85ZIXgbGN73IFrye9UBbv8mxnOxM633HeceYXbr55SDkq/0f3sTmvXvyUZgLCwZvICAmAn0C0MZUjNteDTNGOzrUvkTfpsPlhN/osDQREmoCst1CXXjP/WIzL9xtusJmlqNCbJVqcI/8WNf4aysAwkuUp1s7Zcw8UPgcHpmSHp1cp4vw/dVzsoRsYKywCylV5QJo1HQu5zONR16IzkrPcGI0tdKvdn8xCwS7yOfxZ2GLNx7NfuoPAQj+BoBzibg4BNGmA8FnpysdH6a+v3KqJ5mJIsJsn7ORgAdv0Zl7XQd+b73DscvbEcUD73+lPgS9ffC3/1osezvuv7bpRmbHHEbQdmNd6WQ5pxclAaGie64kmc5xl023n1mqGLwuLuAM3TjHEIpxBOOHWn2TqxNbNKq/45y+h9yWnG9kUfL8rSYBeRJa/TGz21AvhwUOJDPHUVbptcn6QpNkZQdPx7FIKgCPoTUQiKsBmf8bTD4O6Hd8GxG9aR1+rUd5sgerbsAwNBqeVb0ftqI7SSv14ndW/oERkISj0vpz8sIM+klFN7qDSWJBtbUdzQUfIYR/i9ejwEcFACavFkWQbtPCsJuhYBTZeJCEoAemMjqgIAPPXI/eCpR+5ntKfinTLB3slBYUgifw8+FE/akoPS0KoUxqEZ4gEAmMYOikUHhZSYR29xhXioLLGZistPs7VZER4bAkCZJWRLCa37fLwob921YLQVZc8DNvmQDAKi3hlIko1CUPD1PVOkpQJvAAEkWez0+uigNOAmnXX6E8W2psgb65vjmUr37VJ0NhdttwPjIsKaqJGMmvYs6f44xOPSSeoUmXEv084043CyJmkfTLJ1O5wuU9mR/WEBc3157XReu60PjSqLxyvM2iodlBiS7DCiGjnA2DH01p9BHDQL+oLHuo0kazsw6xBySjNeMcZP+y4It45AB8BOSA4nAYciJEEvF8EWAAwZfb5wupwjAF72u4mDYrwFADSES/tGF7eyvf/iinUrmoYqFgNBMUnEzduKacZN+26TN/dcXEMKFQLEOWbcqawL8UiihQNLWIxzv+rS/206KfK13d81P5Xy12dc8v8Ksh/ITsK+q7rVz+tnOqwtcto809VJ+1EB6sDsJ5amEBR/B6VsX3Z2bsE/xEPDtODfXlAmjsmkCwrxEA2okMNV+TcXWmgqF+tDrzLcnBeBnKQlB6WhuSqlAvCCXhYExRLKMNM2UVsh3ujkoLAxXoeQ1G02+PPFLB5j4ZaHVAaCc5PHOSiawxKi5KonYUjsHcAU2AslyXoLrWFYX6gbU39t7RwNA9o3EfCzma6+7Z/2jsW1pOwjVyVkAH+00cUTszlWTQ4wq7sUuO6g+5Lk5vdbrR2UQ/ddRdpiTY1qHAeSZIeeWiJl+/EcdoSBne1ZmNaLg9LGDopMunZeW0DkfDkow4DQWJ7rWjmlYwle7fHhxpbF06T2k+3A3EKHt0lbCvE0tIoEZ8kAwDoHZsxPTUKLmqujUqpCQHAaIW7PEZL6Rbf5tfnr/LPK67vbv+l5j4PzL70d3vuyE4y2/LlI7V2mNvmQxZFIm1tSXms/o0Gow2Z6s/VPM65IlQGVVMtr65OjxGuqvX7NRu+ybnXilr8zHsKQMmlsmh38swyEpMaBcZFoXTwxAD0WbXwC7KCs6rLU6xpdi04rh8+9/hR4cPs8HH/IetZn3S9bDSKXYbG0qMKRfX+SLG4fw0EJlcpv5bi9X4iI1G4KCI21x6FzHGb1lkhwXJsiKHycmxwUKcSzHBCU5KA0NKPWBhuLhKVvxKcpgc5WD0eZRILtW2LE9RwTtwPDERg+P6ccjheAsOizSfam5x0Nf/Tcx4pFwDDBz9Y/lxnwcsDJkbT3RVCidFD06U+ZrwZDeWqWdTfc19ZO72LooITA8pKaK4CZjk7Je+bJTgoBKatzQGw6KdJnTzvKUYif7XC8VBonb+viQkhkSQD67F1cMZsR0b4gNI3NwdAQj8riCdBB6Q0CU6SxhIMKETW8vlQDySfE28kzWIAwmQG8pvctB+Zu2z4vpDRjCYlMHJQVZBVJtkGBNJuTYNNfcOugmCd9FzGwLoTj4xzx16XJ24SPYKtQGsNlwP2xyfg3aYvbT4Ika0v1c7bFY8KSNeK+tuD0BjhXysJIlfXzCIBn8ZgbuQtBqQsfcafOdDLs/bLpoNiujeX/DQclhgtBxnGIoy5ttGFOgm/b8vrl+2M5KCFhWhwy9C24ibWIfAuVltd2h+6btAWwz38ngsI4kVlG+S9t4eA4KUsOSkPjMWYXhGsTYlqwnBpdMX1JghvPwSzLyEm+9rPzutcdDkoD5yNkktquXduecVhCCHK4vc9GC7A4ZNFeQIp1J9K5wrF3qbp2/fXDv3NOjHal4wIwPhYKR8g6KHYHo0m/DVVkS6ovgJ3oKrUFoGGd1UaIR38f/uE+fd0QRx1rsEj8lzrTacZxCEpImjLloPiHeCp+3yCAB4aJqhElBnA1c1+CLgCiHHBnO8/FnwH0/K8r2LkcOCjJQWloPM3YrD+CPVYZUrNtJjzubtM56VUer92JcJFcARqgNw4dFUml1SX0VmeGtkQgByRkk8ZEtV6AgwMg8H88+q9Jdv5pwvg+JVn2OpNk9mNIsiHiWmoz9AnxiGXiBQdGaiv100BBHBwWPkf5vKrL6Hr8QVoPxgzxIETLM5Mmz7PqGep50Khp+V6cTRYwFrrtcAcDwAwR+Y0lvdFq9Kf5zUscuKZK1CJvKIgkLyuEN7k2AD608nVdPuSW1+YOCu+bdp4mbYmD0tDqOCh4o+eF8cy2zZ2ItrAZ8WvjAVirzOmR1gngzk4q20ecpqNDPIygF9B+ASuHejpIRnp4YIjJt710avYLLwnwstemFO6U8rZGiMeilApAyXttIfOBi5jVZvF4kGSn2jlkma7zY1Ykdo+Fxx+0Fl77jCMhz6QQz/g0PhyFVZfOc1gYho1jKdXWK1TKERTPOaQc0tleWW+m5eFdSWrQXjwQxn8BaM7lIuGlIJKs/s6HniGe1tgpLQo7bcCdZjzejyxVv1tonk3akoPS0LjX6ZqIPF7tquMD4OaBqBAOWYCM+LdubyutbXvdQG9cCIow+2PCNOaG0Lhp2Z4jU56LY3fsoMTC08pCNgZsPlVk1QJlI167TEQiPG69qfZNk7aumjUA8vgbDAsYtkztiDq00IWQSH3j83CqnVdIgRnXp7/zRT/LMnjrS44DydT8H4z8JdtVXxaG2lEP3SjVWAjhgYSmGavDnFbh9r/2ApHpbz4YlXO0CxXja46gIAcjIDRGw5Xl33zJzf1hYT0wEwfFgiRqgq3cdrgMHJQU4mloVS0ei9eJjZ8CeSXkWvIeh9zGk8HGF3DJGptS9/Sza2v11HBQYkI8dQTdOuMpjr4cEg7xel/fIDf7X5u093ESGNEtJERDQjwxJNlFbMtDPCTNHcX9JaTBFSoFqOdLNZHwr/plhHgiuFgSghIQLgxx1LHTN/DkvwBIacJ+c8iGJjWxioMyCHOulHO0Y147KL4VwfuW1PDa9pGomVk924GgGPOAHpj5913xaxIHZeUYL2zHN/pVSHzJqNBaIyiGF+E8kypTNncijIHqqSRr8mNwkTNzAsWQZE3nyW848tObL4eEk2yXMotH0pQJQZ+CEBS8OCqnN4qD0vx7MzPW6OvcQZGg6qIonRQA6tTV8anq5pFLgwWAHjyMIoiLMBZiM2lsm5WzLeIbBG2UkWnGPBwekma8gMMsHvNAoXU7ev7V0CsuFVKx9dVBKdsXYgmT+vZuJ2PGWZySHW4Mkmz5e0ozXkFmkGTZl8qZ+dh4zM8Fx4laI3XQNeGguNt6K8nWICh1qZsu4xlIPqECAHNx9M/CiUNQjJo0AU6CMp7qV2d1ae/ua+v4uTKfhb0OlfNqWxPiwc8J36O0MJvONr12Ld/KUTiT941/VkzhSJ3WGVa8keta+AxjStAN53GEqDkDSN+Zj7Nrhll8HByVmbWzhxCUhs2rOkCYXOyDgEZ+51xPiLddPWXPKuWIGx+qWMhx0pYclIbG00L5Zvh7z3wMTLVzOP3EQ8y2bDMxERLsYDQIo7iyeDy1H+ri9q7spPLzufftN6Rcfa8zw8HwbG84ON7X58/W38Gofg+8dkgWT6yCb0z2Ut0z4+FRPFfwWJPSQuvGcl0tnikHQReASwkwrkyNc+QySZdmqZwErOcRpokznkMB4xC35/1p1lYjASGbvCK5Y/SneT0c7eSHoF4axSyCUv25U8qb4tCZNc3YkpFakWSXQYgnkWQbWl1q1sb9VsF1b32+IWMNgHVQ5LZULbNBGMXBI/EVkKoP8fihO95E1XYO0Bv3LTBEE1zsjyn8+oaI6soEuAyXewfwd46qU5CgjVNncm0on/bygudz7eq67L5dY0AKi5GMt1YOrTyznqbrHCsjC4jPBUfBvzhVYRMZ8kESNLrr72gTkmzEST4kTRggjoempe7DiKrtCOeKhnj857AkkBdWYkA+nGEHxXaItOugaKd10pYQlIZmeJ3CYFo91RY9cN7WqfonOgH0by6OireSbA1BFytgNqlm7Amg1BYjdFlMLRyAem5Q/fXDERR8/bKtV1ONyg3DQzy2YmG1147YjGOcunaeGSdFFyLIT44uKXuA+ow2nFZeh6CE8BEA0GYZsNGGISgazg9DAsr2c4uEQkprjLVtG3NQwsnicwv+BxTt2IWRZIlQW0B7H8qBVdncpoOC+jZpSw5KQ1MTMUh5ky2M3MHAE4NXyAXwczL4gl1bq6cmdo7JVtKpLtZJcInM1VkdZN+0fTg8bedLNGqP+u+LPLXYphTGeZBr2tSZyUEJb+tz25yzBOBGBG1VxXVb+vkukTj+O0dn6pwbl4lq0T6IFkMCQ66NkQCvjXaMStnSr+ssioOiEJSBrsodQrINcQoxQTdMP0aH9UYVAtO4uUCSpa/jpA2DJNum920kTjDEf5KWHJSG5hJx8m7rcCI43wRAIuDx9ugk7pm5UOdgYARFTDOOIAfy9qEckqp9IAITXCyQhQz4s6gziqCEOTdhSrJmP30efYxTGivO51N92yZQpaxOE8gVAuKOUgyCQoX3YjhFITooAv8l4PAVUo0YwHyOQWnGw1GVcRLinFWZmR7ODe53SD0s7BgGZdLVpBmvndYOCieeKyRQHbZt5SaU0zlJSw5KQ4sTp3I7N3ij4oiGdO0oHZS6EA93UNCpki/g4ud7Z8LEhHji+C9qcQ6X6Y5DUPCG6evYxWi4SP301d3Abw+pxaPM977rnAga4nEjKCYK4kZQVnUdJNmaUKnLcNkFtVkFiaVZ+AjOtooQGVxThnMhGjcFgLj1A5NkBxH8mbnoauhxmXRhHBY6/3nbddOd6mdD2bzmwKsc8bn+EIpisjyU5KA0NKOOh9eC7t5IcahCOt3W1RChOio8hONum2UZWbh53zCCwgc6v7bUvs5cfa+zuudSZ7FZQBT5yr3ShAGAKJv6OketCARFysbyaV+OmTDHss4h9m9PX6dZZ26Ei4cITal8+tnOg0DkPKhDd1zWMRCU5tfFGRsjy4naZQa/zlfLyPhO/O97ARF8fbIIYwoV0hppMeTkonICQgT2bAeU9TPaQalTTObrFg519iYc5kkOSkOLIURKmhfYMBz38M4Fo31diKfrOInXVVmta4+NL+Bi3yIge9/4dcziBoBPf/4QLwBTOfU9OrLr+ZMLx4tzBLyMzde5CkW+jPCQ74m7JuuDfif0vYbCM7s4fj3P/J5J7Dyok+F3tuUSCCHZJMGFI/l6E+dwSs5zXVtaD6f5tWMKFXZEBMXn2uq56zRlrzCrIslWPBL6Ot5TOJfEQPRZv/E86E04zJMclIZWR7Bzt3U7Cdhj3YFEg5q2pyc72rYJ9Iw3ej5Yt+7qVz/vWhgCt5gQDQA98Xpv0tEk2TgEBd+7FJqrM0KS9WzOxZaiNFgCvjeCunmjL+GOWR3nyZUWz0mwfDPEDrjUr6cf9SgAADj60WuM1xar8GVI+zgkQCEoYXoei80pCuGgjFDRvDAExZ+7o2QCAAJRzFwjKJKmT50Z89+Rrs/LCdSFSTutrPp8RaSdlCUHpaFF1drwINhKzGkzzZi93rZvFjzEI00C4mSwD/+VEw6ufj75iP3MvkWQXI1rey/qzZ+r3J4T/MJDPFJorv769tBa7bVr5KqbtA29NgC935jUUmlTeO4xBwAAwCmP2d94rc5BcWXxcATQeN1RMgIA4PSTDoFzX3EifOJ3n2K8xhd9fzRvERCUEC6F4kIEIigxjhXA4nBQAFB2pcc05By0UAR2PiiTboygkCwe/3vvW6QrAABe/uRD4Yj9V8FLn3Sw2FYZv26WZTDdpmvjpGziDsp73vMeyLIM3vSmN026K07jE9EH/uUbgr9ehntDwQOuro6PNAlcsfX1qzpwx9kvgjvOfpFxAgVwpzg3scVQklUWuikEFwtE1+cLbRPDpz3fEEtMDRRMyiyv7XVpAKBjJia1VOr2O37lCfC/n/UYePevPdFsW4MIOkM8HEExHBSUUm+ZJy990sFw+P6ra/sVWhfKdX2bddt0LPiRXBGCErBR8qzDWKG2EHIwbe8TIgqfQwBxQm+yDor/tRX6In1l73/5k+A7b34OrGEISl1xWoDlk8kzUSXZq6++Gs4//3w44YQTJtmNRmbUXQlIA1Tmi6jXaj84EJAmDkrdydG1eU7FIiiO8FKdRQulRRBNASiBOMQ5ww6OL4elrvRCnbVbeVAdH2VxjqUbNTt8/9XwVy86trat1N6FyHEOiiHU5qi1U2d5TpWBfbgUAPVkdmfbSs8jvJoxRm5DslGU+RPVYxAU870xKrih6E+QFpFQ3sDnkNJUA0r6zCZ7gnZQ9lIEZceOHXDGGWfAJz7xCdh3330n1Y3GZrLsfdrGhSJMUpPdCaktgCZ84y4l2jqLEVoDcCt/1llMJeWyffl+VVbct/8Hrp2ufn4EcXWaGtGY8d3QjAwkv2tjUqbveMTXB4jLxPEm57Lx7KrObZBgmQPC22IExVfTpu7adcZR1rA0Y38ERfV5HjsoEWnjsQiKT6hUEu4LCU/NB5QXAMCHhAAEpa2RK5seifva4XtKE+0qnGo8SZuYg/KGN7wBXvziF8Pznve82vf2ej3Yvn07+bfUFnNaN0I8vptJ3amxjRd82naqnZPrSZMgJtU3NN1UvHZs5kPkpuCt5oquHyIXgFMBfTkssac/qsHi1ZRcHyCOb+H7zOtqQ2ElZu7w4hCP5Azjzw4J2VFn3a99lNCbEapsfl3VFtdd8el6DLKMr199nqdjGFdskN6771ceE2ZVaw8uMRDlZESk+kuXVWjjXomg/Mu//Atcd911cPbZZzd6/9lnnw3r16+v/m3cuHE399C0GI+VIyjSqfHEw/YBAICnHG6iSXUEXRcCkmUZkT2WIT98GjZedlqMc8Pbe6MAi4SgVO1DduqxhbRcO40dlDAHI7QScyzyFSMyV8dBadpWdLYd3BjsoMhxd4SAhCAohDQdhySEyK6HcEimWiavzEvXZpERFF/HkH9PcSUbPJ3KqPRuhd5qDoqfYxh+6G2yl6m5sNdxUDZt2gR/8id/Av/5n/8J09PT9Q0A4Mwzz4Q/+7M/q37fvn37kjspMZthkzjrF37/VLj6zofhhEPXC+2502F/XQoVzHRbVfqyfOoM36xw22EAjBBViyf69Ba+uHGbFdLD68yVcVJnsQTfpto39vYIBYl47nHhIfN1zCPhKAkWGhwIlVpJiCcSQfENVy5WNguAZzZI23yv3yZPHZxY4T1fxzAuuzLOuTJRTP+2ZRZP+bfFDtPYrN0qUfWRI/NJhZ97E04zXnIH5dprr4XNmzfDSSedVP1tOBzCZZddBh/96Eeh1+tBiw36qakpmJqaWuquEqsTW/NpK82DVp7B/xDSKgH8QjySHP000Xdwf36MFshw6O+gTEVslLEORmyhw1ijJ27PhbmqgRJGkq0jRtdePyrEs/s4T5gI6yroJ5WSJ85NrIPiiaDwFOil0iKRHDG/DKLF5qDEOawhoTFloQhsiI5SpYOCsniWqio4QDlmXP1eLiGeJXdQfumXfgluuOEG8rdXv/rV8PjHPx7e8pa3GM7JcrEYKJG/11sSveaUgKFraYJPEYVM6fXwzQq3lU6ldRazqPPFMFZefMkdFEdKbJ2pk2+I9gW/dkj2VXuRUJC48JDZdg1S0HSVQqhDUEJGQlSIJwIJiMswpKdp3/Yx1YgBzPpHvshVHAoZe8BhYdYAgu5giDgoHrfOn5vvFO4iB0Xq916bZrx27Vo4/vjjyd9Wr14N+++/v/H35WQm0bX5iFDqmSpbxJ8ka19oASh0LZHMCPmvphih74aBnS3pVFpnMRwWVbROizR5LjCRDg42JS7mdX0SmgtcHANTpKmCr1fT8nqojffGgMIK/s6Nm0eyZkq/Lun2uAw/k5ASaVMxIZ4okmz42qTaq80qyzwl/o1N3uvS5JlJmVV1FqNKbBT79J6D5fuDijQiDkpIFk9dyYfa67dzgJ79ulMd6nxNyiZCkl2JFiN1D0AXrKiYvdDUVWWV/016PfY0rWww8ve2Y5RksywjjmNMNeGQ62MLSUuNUaLVSpJhKdIUufLvO0YgfB2Bbs14dratCfGsmUJVXLsRDkokn8pfvA5nGAVsNsh8v86Y+R+NoKDQVjzvJy7EG+rg6CKNPiGesm2o/kydXH2ddWsQUDWnJ51mPFGhNmWXXHLJpLtQa4YOSgihcyyVsdipvHghljZK3EZaOClp0atrxAIAFLIwh4UaMlAlgpaaZAsA8KyjD4DLbv45vObpR3q3jdLNiIyfT0VsiABaYrv8rHBioz+5F49l87qrEYKyuuu3vOHT+yjSQfF1OOs2DJfFhjqn2jnMBl47VuKfqPdGcqFiSfKxUvch4p24WnAMcuWNHuPyKE4Oyl4W4lmpVqfmWmdRE6kmDEJCPMLCiC8nvY7XYpz6uhQWne6KnS/vEE88gnLeGSfB/dvm4LEHrvVuGyVSF6ngGfvc91+jSevesHzMRo7bCv3GTgl2VnwtxNmejnD6aPZRHIoRo+bq72DEzaHYsNpiOij+zy3cMeTVyAHiuD/+tIEasnkK8awsiz1t44nvnymD2grXxTonEoKCnRppAcIVK9dNL63PGq1Ei9t7a4nEIyirp9pBzglA5Ik7FtaPFNjzRU1s1465b+n7Pmi9li44aF0zGQPJts/5KwOvQjVPYhCUWLJnlCZOdIgnvH2I2CEdx75IHu3rUjqGvMwGQBwHZbFDPOrQu9elGa9UixUFi9F+wKflOgRFWhhxG2kB6SEv2fc0HGsuYS3f9hwRqbNJZ/FQDsoSw/qdOAclZDNRtljZLtL3ffwh6+Hdpz8R9l3VCeLWKNu6a8G7zaqOPcW5zgjBNpCPpGxJdWkiQzz4/bFhtaXO4jE0XDy+c65jBOCbxbN4Tqn03JZLFk9CUBqa4W1HnNa9nZuajAtS00V4Q4HAU8kBefYxBwIAiCJxu9vwRJvxJFsCAExFbAqLmcUTYjHOWSw8HXNiBwgjkSrD8W//bJd6zsJvPe0wOO2JG4L69rxjHw0AEMQpovMwHBlaarJnDJoWG/qOPRB1atBld9vFQ39820sk2TihtsZNAaA+c3O5hHgSgtLQzGKBESGeCGKgHOLRC6O0b+zsuQfZbzxlI+wz04GTBJn93W34JO+bDQIQt9FOHEGJ0UGJJMnGhtaO3bAOvvyD+7zbATDkSFAydVls9tGpR+0PV962BZ525H7i6x/8X0+CK259CH7x8Qd6fzaeh6s8M4hixnFsqm9Mqj/XUQlBQZX5PjOAOA5KbIg3Bj2SSLJ+2jexqBneU8zXp6oQTyLJrgiLVR2NgVHrCU1uCe+FmkHWbefw0icd7NWnxTKMmgQ5KFHQeDwHJcaw4xmaZqzMn5wYftoHAHj104+EhcEInh2g/xITlovJfAIoHZDPX3MPvPrpR4ivr5/pwIsC0Re8v+BCkE0sRsU29vBEERSvpgBQjqW5wKKV2HznAMDicndiMuEAPEsMsBRlgLAq1CHXxtcHkL+zXzvxEDj9xEOCvpPFtOSgNLTYjA8a4vG7Nl6AJEgU90UiyfrqQfjaxv1mYNPDc0FtsVMSrT2xxBBvrC1m35c6i6fbzuGPf+lx3u34tWM4KCH93rB+Bt4Y2O8666NSD1EISmzKeYwmToCz2m3n2kGJCNn8fLYXdG1lsXWAfB1DA0Hx+N7UfNeFBr0uHU1OnqpBzWL4W4tpy6MXK8AMMSTvEE84jNqkPP3LTjoUnrRxH3jJCebp792nPxEO2WcGPvjyJ3ldt6md+4qT4JB9ZuCjv3Wid1uMoDz1SLkWkcuiQjycg7LkCIqb3OwyA56OIclFwPIhRtJaPe+bKI/GiPbsZvPlVsQItcXC/XST92pqtA+ZQ8cfsg4AAH7pWP+wWlxNqMz5e53FVENuVwhKWLFPjt5E1cNa4nXPxxKC0tBiNzMiyRyxANmu+8H/ZXc+jjt4HVzxl7/odU0f+4WN+wR//j6rNBQ+3Qk7vSlrxYZJlpoku0hIAkCcwNYks5d81UM7EUjD7rZD950JbhuDYvDD0+44ALksNhPvk688Gb5w7T3wmyf7V6iPKdPRbuXQzrMqLO773HmBRx8ngeug+PY9Vn8mpmDnUlpyUBpabDiASN1HpSh7NV32hmP1B+/jv8DXCXe5zEAhlnjDi+HPGATfiAUuJIsnxqYi0JvY0/rutN88+TC44Z5t8KyjA3g5Ec8kXgcF1TeK1MTxvTYAwKPXTcMbnvtY73YAlGTNHbUmNtXOYTCWoo4+JHhVM479zsLDSwBxnMiltOSgNLRWnhG2egwHJUgmX/VjGXu7IZZlGVz+lufCjt4AHoXUSZtazIYVU0F2MSxGsCw27X2SGz1WeI1Skl0mcXJl3XYO7w8Mo8Y4jCYHxe/a0QhKJIclxqbQzU4FjIepTgt2jh2UGO0aAL/vrdvm39nSOUfl9ROCsscZrvoZBan5pgFGwJgrwQ7dd1Vw26mITX6KZQ1NkiTrX4snboGKqbwba1j5OObUutTIz+60mE0+drOKDffFZlbFWEzKOkBcuQnOA/FBYM3563VpIcXZd8yEH5iX0pbXEWSZW1TOfYTU/UqB4yZhND1zaeO4sbb/6m71s++VzZCjX/s9AUFZbhyUGMOOtr8IZCRJNsLJB6DzKEQqIMZwWCekGvJi1kDy46AsHrE5pH3MgXkpbRl3bfkZIbouoZPRWSFw3CQMn8aXutBZrGGCsK+kdLx6aFw14xgj31lEFs9SIz+702IcxsXUaAoqNzFBB2UxnavYNGOf576YCChAAAdlhewpe84MXwJrR8DLUVL36FoJQaG2KkJenId4lprTgFNRD1znx7+JF2qbHIKyBhXV8y1vMEly7+40HC6IKTQIEMdHiBVLC8nEizGCoASRZPFzXzoOW2wF6t1dLHC5WOKgeFiMSBTJ4ok44cTUQNkTDYvQ+WbhxJDcFssueNXJ8P3bt8BLTvBT8l1MiHipQyXYqVw347cErUHVtvuCavJKtUkKDsakfQPQKs5Lj6Bk6OdIBMXXyedpxh7zKJagb4jMxQg1LmMEJTkoHtaOCvGEoyD4lBBS8XNPNlxB1le4izsoISewWHvu4w+E5wbUfeGLYRSLf4kds0OQXsgBnplbGHEZDCdbJ2QxLSrNeDEr2wY4q6uRwzndXloHBYcLgxCUiBIDMUJtZojW69KQZRl0WzksDEOTNhCiv4y5XMlB8bCYWO1UhMeKB9NwDzo1LobFLFCxaoyTtFj10ElyOabaLfjKHz0dts8NYH9PBwWHxbC0/Eq3KKG2SA7KVGSIB8/BpQ7xrEM6SiF9n45R8I1AYFt5Blmmi7uGhFm6be2gxOigJARlDzE8AH1PKdPdcDEkjAzEliff02wVygjxrX/SadFFYrnparhsMaXulxqWBwA44dB9oj+jvychKFjPw9PR7rZyMo59HfXYEA++Hud17W5bOx2HoODwlD9hO7xYYJZl0GnllZJsCIo51c5hx7h80VJXM18qWzkr8jKwmDgxhqZ9B9NyJjFN2lajBcbXQcmyLPr0OClbTJLs6t1cTHKx7fEHrQUAgP954mQqcO8Ow1wqX1zIHMdLG+LBG/OSIyjTcQgKCRFHPDeAALHESH2rGNmLlaKtlRAUD4shyRIHZeXsg8ve8AKFs0OaWreVVym+K0lXg/NtfPuOYfndXe16se2CV58MP71vO/xiAHdnuRp2EufGyqY+NtVuVePYFwWJTdXFXKAQBCbG1k2Hi/4B0LHvL9QWS07GiLxXU+N6vn0nyQXL+ACcHBQPw1C4L6oxExHiwZZIstSOOWgtPGpNFw5aPw0HrPWXyseTc0UhKEw107fvuAbSSrMN62dgw/rwwnzL0XDodkdv4N1+upPDtrnyZ9+xgNemkE3+0eumq5+XOgSNOSghSyMWDYwpFwEQmUkTsCfgNr5E15lOeFr7UlpyUDxsOkJ1cDoixIPt4Z0LwW33RFsz1YbL/r/nQp5lQYsjhjeXWqY7xvii4jsecThsTyKb7gmGBfya2nTEhhO7Wb3y1CPgji074WlH7ufdNtYwihHEQemGh4gXs6JwSJiFOCie7fF3PonsxaaWHBQPw6Qo3wGFB0RMzG9XAPy7pxteZHwtj4BJJ2ncIfHdWLAztyel665ke+tLjoNPf+9O+IsXHuPdFmej8EJ0dUYRlDCS7LtPf6J3u8UwPI6ftHEf7/Z4XfYNEcfKzcfyQIiDEoHoJwdlDzF8wvY9bc9EhIeIpcPuohr+KlYSglJmAWQV+hHDn/FN9U22e+y1zzgSXvuMI4PaYnQ3BkFZSTwsZRe97mlw95Zd8OyjD/Bui0M83g7KIgrkhYR42uRwFe6ghFSBXipLDoqHYW/d1+skHmvEIrCcCU0r0TA0utJSuDutHPrDcan4APTnY2ecBJfd/HP49ScfuthdS7bEFiOVj0MbvmKHy8FOPepRcOpRYW1nEPqKVYqbWJuld3vr1yCkK+TQilEX3/arOnHp2UtlyUHxMDwEfNnq04sU81tJYmIrwVaaU4Jtqp1XIb8Q9OdFT9wAL3rihsXuVrIJ2FQEgoLXppWW0RVreD0NyQJs5xrFjOOgeF8aYnzJ6W647s5S2vLt2TI0vJn5ivrEkpL+9leeAAAAH3nFid5tk9ltJSNS0wSaT1N5bzZ8YPI9PGEEZaVp4sQa1lFaHcBlwyhGTA2lkMSJ/iA83r/PTLf62bdQ6VJaQlA8LOawTUM8/ovAK089An7j5I0TUf1MtjyNOCgr2NFKFm8Y4ucp6HW2OgA52FPs6UftD6869Qg46sA1QWGWdp7BWMw1jiQbcO0YJeVuO4dzX3Ei3PHQTjjpsH2DP2d32947MgMshkS5GGldyTlZfFvJGSxTkQqgyfYco2Tv8BDP3obEtVs5vGOMTodYTCYN3gdCzhcLkWvXS5+0/JWY967RGGmPedSa4LY0zXgxepNsMWypa4csplEEJU3lvdliQg0AAC8+YQMcsHYKXnrC8t+0lpPFaJGQisJLjKCsFEsIiof9zimHw4Pb5+F5xz3auy0mJe1tp5TlbH/4nKPgL77wI/iVFXCa4BZTfyXZnmW4ynkI8fujrzgRhqMirU2ehh0L7yKwi1iLZ0+15KB42HSnBX/zkuOC2sZUK022++zXn3woPOHg9XDUgasn3RVv25uh+WTUYksXZFmWwoQBFkOyj6ntBgDwspMOhb//9i1w7IZ1wX1Y7pYclCWyLMvgecc+GjY9vGtZk5L2NsuyDI47eGVOcCLOleKGe7W98tQj4Js/eQB+7cRDJt2VvcoyCJ93sQjKG577WHjsgWvglKP2D+7DcrfkoCyhfeJ3nwwAK1t7I9nysW47ISjJSjv+kPXwg7e9YEWnza9EG0YUbyVCbQF7Qredrwiia4wlB2UJLTkmyRbTMCKf4PlkyTlZeitiHBQS4lmM3ux5lh5LsmQr1BAvElat4GykZMlWqo0iaqPRNOPkXEqWHJRkyVaojdDpLYV4kiVbeuv1w6vLxwq17Q2WVrVkyVaoDWOOb8mSJYu2nQvhDkqs1P3eYMlBSZZshZpi76/1rMKaLFmyxbHnjzWxnnbkft5tY4sF7g2WVrZkyVao/fbTDocsy+CUx+y5aYbJki1ne9f/PB6efPi+8IqTD/NuS5VkE1YgWXJQkiVboZbnGfzO/zh80t1IlmyvtUevm4bff/ZRQW0xSbbrWeBxb7HktiVLlixZsmRLbJgkuzfI1odYeirJkiVLlizZEttMNxX7rLP0VJIlS5YsWbIlNlxLq5NCPKIlByVZsmTJkiVbYptBDko3hXhES08lWbJkyZIlW2JblUI8tZaeSrJkyZIlS7bEhkM8U520FUs2kady3nnnwQknnADr1q2DdevWwSmnnALf+MY3JtGVZMmSJUuWbMkNIyhrppLih2QTcVAOPfRQeM973gPXXnstXHPNNfCLv/iL8Ku/+qvwk5/8ZBLdSZYsWbJkyZbUZpKDUmsTeSovfelLye9nnXUWnHfeefD9738fnvCEJ0yiS8mSJUuWLNmS2b6rutXP61d1JtiT5WsTd9uGwyF8/vOfh507d8Ipp5wivqfX60Gv16t+3759+1J1L1myZMmSJVt0m+604K0vOQ5u+/kOeOZjHzXp7ixLm5iDcsMNN8App5wC8/PzsGbNGvjSl74Exx13nPjes88+G/72b/92iXuYLFmyZMmS7T577TOOnHQXlrVlRVFMpGb7wsIC3H333bBt2zb4whe+AP/4j/8Il156qeikSAjKxo0bYdu2bbBu3bql7HayZMmSJUuWLNC2b98O69evb7R/T8xB4fa85z0PjjrqKDj//PNr3+tzg8mSJUuWLFmy5WE++/eySb4ejUYEJUmWLFmyZMmS7b02EQ7KmWeeCaeddhocdthhMDs7CxdddBFccskl8K1vfWsS3UmWLFmyZMmSLTObiIOyefNm+N3f/V24//77Yf369XDCCSfAt771LXj+858/ie4kS5YsWbJkyZaZTcRB+eQnPzmJyyZLlixZsmTJVogtGw5KsmTJkiVLliyZsuSgJEuWLFmyZMmWnSUHJVmyZMmSJUu27Cw5KMmSJUuWLFmyZWfJQUmWLFmyZMmSLTtLDkqyZMmSJUuWbNnZxKsZh5hS509VjZMlS5YsWbKVY2rfblJlZ0U6KLOzswAAsHHjxgn3JFmyZMmSJUvma7Ozs7B+/Xrne5ZNsUAfG41GcN9998HatWshy7JJd8cwVW1506ZNe0Uxw73tfgH2vnue1P2m57xnW7rfPduk+y2KAmZnZ+Hggw+GPHezTFYkgpLnORx66KGT7katrVu3bq8YhMr2tvsF2PvueVL3m57znm3pfvds4/dbh5woSyTZZMmSJUuWLNmys+SgJEuWLFmyZMmWnSUHZTfY1NQUvP3tb4epqalJd2VJbG+7X4C9754ndb/pOe/Zlu53z7bY+12RJNlkyZIlS5Ys2Z5tCUFJlixZsmTJki07Sw5KsmTJkiVLlmzZWXJQkiVLlixZsmTLzpKDkixZsmTJkiVbdpYclGTJkiVLlizZsrPkoATaD3/4w1SsMFmyZMmS7dW2O/fC5KB42r333gv/63/9LzjxxBPh05/+9KS7s9ttx44dsG3bNgBoVn1ypdt9990HT3va0+CDH/zgpLuyJLZ582a47LLL4Pbbb1/S66ZxtWfbpMbVpGzz5s1w0UUXwRVXXAFbt26ddHeWxJZiL0wOiof92Z/9GRx22GEwNzcH++67L6xdu3bSXdqt9o53vAOOP/54+NKXvgQAsCwLMy6mvelNb4IjjjgCHv3oR8MZZ5wx6e7sdvvrv/5reMxjHgNve9vb4IQTToB3vetdcNdddwFAWZBzd1kaV3u2TWpcTcr+8i//Eh772MfC+eefD7/8y78Mb3zjG+HOO++cdLd2qy3ZXlgkq7VvfOMbxbp164pf+IVfKC699NKiKIriBS94QfEbv/EbE+7Z7rEtW7YUr33ta4uTTjqpOPzww4uXv/zlxc0331wURVGMRqMJ927x7Wc/+1lx8MEHF8ccc0xx9dVXT7o7S2If/ehHi6c+9anFJZdcUszOzhYf//jHi1NOOaX4tV/7td12zTSu9nybxLialN1zzz3FC1/4wuKpT31qcemllxa9Xq/453/+5+L4448v/uM//mPS3dstttR7YUJQGtgDDzwA559/Plx//fXwrGc9CxYWFuCII46A2dnZPZKHMhgMYMOGDfB3f/d38E//9E9wxRVXwLe+9S3o9/t75Gl327ZtsG7dOjjttNPgKU95Clx33XXwt3/7t3DBBRfA9ddfP+nuLaoVRQGDwQC+9rWvwUknnQTPfvazYc2aNfD6178ejj76aPjSl74EF110EQAADIfDRbmesr1hXOH73RvGlbrfpR5Xy8H6/T686EUvgk9+8pPwrGc9C7rdLrzsZS+DLMvg6KOPnnT3dost+V64W9yeFW7qNLewsGC8NhgMiqIoire+9a3F4x73OPL+lWr9fp/cQ7/fLx588MHq91e96lXFqaeeWlx11VWT6N6iG7/f+fn54vzzzy9Wr15d/Mqv/Epx+OGHF8973vOKww8/vHjUox5VvO9975tgb+ON3++WLVuKE088sTjnnHPI+970pjcVRx55ZLFhw4ZqnMdYr9cr5ufnST/25HHF73dPH1f8fpdqXE3K1BxS99Dv94uHH364en3r1q3FS1/60uLoo48uXv3qVxdf/OIXV/zeMOm9MCEozM4991x4xzveAQAAnU7HeD3Py0f2i7/4i3D//ffD/9/euYdFcZ1x+BsUVwyImAgoBaFQRQggoqABiprLErViooZHEDUxQqpExCRPk1j6aKBKqxYvtTUUGoEaE+qVx7R9iFU0RIPGayMqCiJqQAhqgIXIZX/9g+zIChgus8vs7vf+tTs7s+e8Z87O+XbOmXMuX75s0P/+1q1bRy+99BJFRERQTk4OqVQq6t+/P9na2or9xUlJSXT79m3av38/3b9/n4gMd2Djo751dXWkUChoypQpFBoaStXV1bRnzx7au3cvlZaWUlRUFO3bt08cL2FoaHwjIyMpJyeHamtraejQoTR+/HhKT0+ntLQ0amhooISEBNq3bx+tXLmSLC0txX+7PWX16tUUFBREYWFhlJqaSnfv3jXqevWob3V1NSkUCpo8eTIplUqjq1eP+n733XdivUpLS9NZveor2rYL/fr1IyKi/v37k42NDRER3bx5k0aOHEn19fX0/vvvk0qlolWrVtF7773XV1nuNbJoCyUNdwyYc+fOQalUQhAEeHl54b///S8AoKWlpcP9Dx06BGdnZ3z++ef6zKZkFBQUYOzYsXj66aeRkpKCkJAQ+Pr6IiUlRWs/TZScmJgId3d3/Pvf/xY/M6R/B535bty4EUCrS35+Pk6dOgW1Wi1637x5E56enli/fn1fZr/bdOa7YcMGAEBDQwNefvlluLq6wsbGBq6urjh+/DgAwN3dHR999FGP0m1qakJUVBTc3NyQkZGBefPmwdPTE9OnT9faz1jqVWe+06ZNA/CwXp08edIo6lVnvi+++CIA3dWrvqIr7YKmvp49e1br2ISEBPj6+uL777/XW36lQE5tIQcoP7Jx40bMnDkTGRkZmDZtGqKiotDU1ASg4wtmQ0MDnnjiCXz88ccAOj95cqSqqgrR0dFYsmQJamtrxe3h4eGIjo7Wup2ncVer1fDx8cHixYtRUlKC/fv3Y+vWrXrPe0/4Kd8HDx4AgHi+NWjc7ezssGrVKv1luJf8lG99fT0AQKVSoaioCCdOnBD3efDgAZ566imkpaX1KO2SkhK4u7sjJydH3JabmwsLCwutW/+a34sh1yvg8b6a4PfRbg1DrVfA4301XVb19fW4cuWKpPWqr+huu9B2+7x58xASEoL6+nqDCrrl1BZygPIj5eXl4qjkTZs2ISAgADt27ADQ8Umpq6uDUqlETEyMXvMpBVVVVVi9ejVOnz4N4GH/4ttvvw1/f/92+2susNnZ2Rg2bBicnJzQv39/bNmyRX+Z7gXd9W3LgQMH4Ovri4sXL+o8n1LRG98dO3ZgwoQJqKqq6lHaV65cgSAIuHHjhtb2tWvXYsiQIVrbDb1eAd3zbYsh1ivg8b7W1tad+va2XvUV3W0XNJw+fRqTJ09Genq6XvIpJXJqCzlA6YCbN29i7ty5mD59OioqKgB0HBWOHTsWkZGRWgPFDIW2dws0lW7hwoWIj4/vcP/S0lK88cYbEAQBr776Kqqrq/WST6noju///vc/nDx5EitWrMCTTz6J9957r93dFbnTHd/KykocOnQIy5cvx+DBg5GYmIiWlpYe/esrLCzE2LFj2w0A/f777/Hzn/8cK1euBPAwODH0etVVX7VabRT1qqu+LS0tktYrOfBT7cLly5dx7NgxxMXFYfDgwYiJiRHvVhoqfd0WmkyA0tUfhabwP/74Y0yaNAm///3v2+2juah88sknuHDhgnSZlJDH+bbttmlLYGAgMjMzO/wsPj4e9vb2sn3iQkrf7du3Y8KECZg0aRK++uorHeS290jpe/XqVcTGxiIwMPAnfX/qd1RXV4fw8HDMnj0b169fB/DwN7V+/Xo4OTmhoaFB3N+Q6xXQNV9NI2Xo9Qro3vntTr3qK6RsF3bv3o2wsDBMmTIFBQUFkuZTSgypLTSJAOXu3buoqakR37eNAB/9B6N5X19fj5iYGISEhOD8+fMAIN4yl/ujct3x1bhcv34dVlZWWpWsvLxcfN12LIPckMr39u3bAICamhrxnMsRqXy//fZb8Ziu3HqvqqrCnTt3xO/sLN1du3bB29sbf/jDH7SOT01NxdNPP63VDSDneiWVr6Yhr6urk3W9kvr8qtVqWXfpdNW37fuO2gXNJHwqlQrFxcX6yHqPkcpZX22h0QcosbGxcHV1RUhICObPny9elNuiVqvFPjbg4Uk7fPgwnn32WYSHhyM0NBSCIHR4vJzoiS8A/OUvf8HYsWMBtM6Q+Morr2DChAlaz/nLEal95d7F0Fe+S5cuhb29PXx8fPDss8/i6tWr7fZpbm7GP/7xDwDAG2+8gYkTJ2rNqLl27VoEBQXJPsAH2Jd9u9cuaP7cyBmpnfXRFhptgFJbW4sZM2YgMDAQR48eRVpaGp555hn4+vrim2++Eff78MMPYWtri2nTpmlNIgUAd+7cgaenJwRBwEsvvYTS0lJ9a3SZnvhWVlaK2+Pj4xEXF4e1a9fCwsICU6dOxa1bt/pCpUuwr/5833rrLfj6+iIvLw+ZmZkICgqCl5cXjh071i7dF154AY2Njbh06RJee+019O/fH7/+9a8RGxsLa2tr8QkdOY9DYF/2NZZ2QYOhOhttgPLFF1/Aw8MD586dE7fdvn0b5ubmWLJkCe7cuYM9e/bAwcEB6enp7aL+EydOYOjQoXB3d0d+fr6+s99teuOrUqng7OwMQRAwatQo5Obm9oVCt2Bf3fuq1WqoVCpMmDABq1evFrfX19fD19cXkZGRuHHjBvbt24cRI0YgPT293W3iDRs2IDo6GkqlUpxPQa6wbyvs+9DX0NsFQ3c22gBl7969eOKJJ7S2nTt3DnZ2dnBxcUF2djaAzvvA6+rqkJWVpfN8SkVvfKurqxEVFYWdO3fqJa9SwL768b116xbs7e3FeS80c8ZkZ2fD09MT27dvB9D6e2mLnP9BPw72ZV+gva8GQ2sXAMN2NooAZe3atVixYgW2b98uFn5BQQFGjRqFhIQEcb+lS5ciPj4enp6eiIiIANDxD03uPz4pfeXuCrAvoB/fPXv2aM16qTl20qRJ4ve3/QcdFhaGmTNntrsdbCiwL/t2x9cQrh3G5mzQAcrly5fh4eEBLy8vhIeHw8bGBr/85S9x9uxZtLS0YPPmzRAEAc888wwGDx4MNzc31NTUICsrCzY2Nn2d/W7DvuyrC98jR45g9OjREAQBH374obhdc3FKT0+Hubk5ioqKAEB8jDQ3NxcDBw4Ux7L09cWsq7BvK+xrHL6A8TobdICyceNGTJo0SYwIy8vL4ePjg7lz56KkpAQAkJeXh23btuHgwYPicdu2bYOfnx++++67Psl3T2Ff9pXat7CwEOHh4Vi2bBmio6Ph5OTUbnR+SUkJgoKCMHXqVK3tRUVFsLa2lv3Yg7awL/saky9g3M4GG6A0NTXhtddeQ1hYmFbUl52djYCAALz77rsdHtfc3IyIiAi8+uqr+sqqJLBvK+yrTW99KyoqkJaWhsLCQtTU1MDBwQFvvfWW1j5qtRr/+te/oFAo8Mc//lF8Oig1iAT6fgAADYlJREFUNRXjx4/XmpNF7rAv+xqTL2DczgYboABAZGQkXnjhBTQ3N2uNPF62bBmmTp2KM2fOiNuKiopw7do1xMTEwMnJCYcPHwYgv1taj4N9W2FfaX3bTtb097//HQqFQutpIQ1/+9vfYGdnhzFjxmDOnDlQKBRISkqCWq02qHJmX/YFjMcXMF5ngwxQNBfvI0eOwMzMTFzmWnNrPC8vD25ubuKTDUDrRFWjRo1CQECAbKen7wz2PQuAfXXp2/biFBAQgJkzZ3a4TsyXX36JLVu2YMWKFR1eAA0F9mVfwHh8AeN0lm2AUlpaips3bwJoP52uptAbGhoQEhKC5557DoD2CXJ1dcUHH3wgvq+urhanJJYj7PsQ9pXOtyvpatCkd+zYMZiZmYmPJTY3N2tN+iZn2Pch7Gv4voBpOmuQZYCyf/9+CIKAWbNmaW1ve3Kam5tRUVGBvLw8mJub469//at4m+vu3bvw9vbGn//8Z73mu6ewbyvsK61vV9JtamoSVyltS2RkJPz8/HDo0CEolUr89re/RWNjY7fS1zfs2wr7GocvYJrObZFlgPL+++9j4sSJGDduHHbv3g1A+4Rs3rwZAwYMENcMSEpKgq2tLV5//XUcO3YM8fHxcHFxwaVLl/ok/92FfdlXF75dSVehUOCjjz5q1/98/PhxCIIAQRCgVCplvyYTwL4A+xqTL2Cazm2RVYCi+ce4bNkyvPnmm1i8eDGCg4PFqO/+/fuIjIzEiBEjkJGRoXVCtmzZguDgYHh5ecHHx0fWy11rYF/21YVvd9LNzMzUSre5uRkZGRkwNzdHQECA1sBcucK+7GtMvoBpOneErAIUoLUPTalU4quvvsLBgwfh4eGBzZs3A2g9KadOnep0qfmWlhZxvghDgX3ZVxe+3U1Xg0qlwqZNm7QmezIE2Jd9jckXME3nR+lPfcTu3btpyJAh5OnpScOHDyciopaWFurXrx/169ePGhsbaeLEifTyyy9Teno6FRQUkJeXF61cuZIGDBggfo+ZmZnWaxcXF727dAX2ZV9d+EqVroZBgwZRXFycFEWiE9iXfY3Jl8g0nbuMviOizMxM2Nrawt/fH8OGDUNgYCD27dsnfn737l3Y29uLa5DEx8dj4MCBsLCwwNdff63v7PYa9mVfXfhyObMv+xquL2Cazt1FbwFKU1MTNm3ahDFjxiAtLQ0PHjzAl19+iQULFuDFF1/EDz/8AKB1Cfnw8HDs2rULXl5eeOqppzBjxgy4u7uLj1U++qiVHGFf9gWk9+VyZl+AfQ3VFzBN556itwDl/v37WLVqFZKTk7X62ZOTkxEYGCguE19WVgZBEGBubo5ly5bh3r17uHjxIkJDQxEUFKSv7PYa9m2FfaX15XJuhX3Z1xB9AdN07ik6HYNy9epVcnNzI0EQyNramubMmUNeXl5kZmZGarWazMzMyNHRkVQqldiX5ujoSLt27SIXFxfy9/cnIqIhQ4bQrFmzqLa2lgAQEZEgCLrMeo9gX/bVhS+XM/uyr+H6EpmmsyToIur59NNP4ezsjNGjR8Pf3x9paWlan7eNGiMiIrBo0SIA6HASGc3jU3K+lcW+7KtBSl8uZ/bVwL7aGIIvYJrOUiJ5gJKbmwtnZ2ds27YN//nPf7By5UqYm5sjNTUVDQ0NACAuTNTQ0ABvb29kZWW1+x5DOQnsy7668OVyZl/2NVxfwDSdpUayAEUT3a1ZswZ+fn5aEeDSpUsxfvx47N27V+uY27dvw9nZGUVFRQBaV2iNj4+XKks6hX3ZVxe+XM7sy76G6wuYprOuMPvpTqCuoekHKywsJFdXVzI3N6empiYiIkpKSqKBAwfSgQMHqKKiQjzm0KFD5OjoSMOHD6e4uDjy8PCgGzduUFNTk9i/JlfYl3114cvlzL7sa7i+RKbprDN6Gtnk5ubizTffREpKitY03KmpqbCyshJvS2mix9TUVIwaNQpHjhwB0Bplzp07FzY2NnjyySfh6ekp69Vo2bcV9pXWl8u5FfZlX8DwfAHTdNYX3Q5Qvv32W8yYMQO2traIjIyEl5cXrK2txRNz5coVODg4ICEhAQDESWYAwN7eHikpKQBap+OdMWMGfvazn+GTTz6RQEU3sC/76sKXy5l92bcVQ/QFTNNZ33QrQFGpVFi4cCHCw8O11gjx9/cXRx/X1NQgKSkJFhYWKCsrA/CwTy4kJASvv/66eJzcZ8Nj31bYV1pfLudW2Jd9AcPzBUzTuS/o1hiUQYMGkUKhoEWLFpGLiws1NzcTEdG0adPo0qVLBICsrKwoIiKCxo0bR6+88grduHGDBEGgsrIyqqyspFmzZonf5+fnJ2l3ldSwL/vqwpfLmX3Z13B9iUzTuU/obkTTdkSy5hnuiIgILFmyRGu/W7duwc3NDc7OzpgzZw5GjBiBqVOnoqKiomehVB/BvuwLSO/L5cy+APsaqi9gms76RgB6P0Q4KCiIlixZQgsXLiS1Wk1ErSuxXrt2jU6fPk0FBQXk4+NDCxcu7HVAJQfYl3114cvlzL7sa9iYorNO6W2EU1xcDDs7O60+tLaDgYwN9mVfY0q3r2Bf9jU2TNFZ1/R4HhT8eOMlPz+fLC0txT60NWvWUFxcHFVWVkoTQckE9mVfY0q3r2Bf9jU2TNFZX/R4sUDNZDQnT56k2bNn0+eff07R0dFUX19PWVlZZGtrK1km5QD7sq8xpdtXsC/7Ghum6Kw3enP7paGhAW5ubhAEAQqFAsnJyb28oSNv2Jd9jSndvoJ92dfYMEVnfdDrQbLPP/88/eIXv6A//elPNHDgQKniJtnCvsZNX/lyORs37Gv8mKKzrul1gNLS0kL9+vWTKj+yh32Nm77y5XI2btjX+DFFZ10jyWPGDMMwDMMwUiLZasYMwzAMwzBSwQEKwzAMwzCygwMUhmEYhmFkBwcoDMMwDMPIDg5QGIZhGIaRHRygMAzDMAwjOzhAYRim20yePJlWrFhhcmkzDKM/OEBhGEan5OXlkSAIdP/+fUmO27t3LyUmJkqXQYZhZEmPFwtkGIbpC4YOHdrXWWAYRg/wHRSGYR6LSqWiBQsWkKWlJQ0fPpw2btyo9XlWVhaNHz+erKysyN7eniIiIsQl5ktLS2nKlClERGRjY0OCINCiRYuIiEitVtO6devIxcWFLCwsyMfHh3bv3v2Txz3axePs7ExJSUliHkeOHEk5OTlUVVVFYWFhZGlpSd7e3vT1119r5Ts/P5+Cg4PJwsKCHB0dafny5aRSqaQuPoZheggHKAzDPJZ33nmHjh49SgcOHKDc3FzKy8ujM2fOiJ83NTVRYmIinT9/nvbv30+lpaViMOHo6Eh79uwhIqIrV65QeXk5bd68mYiI1q1bR5mZmbR9+3a6ePEixcfH0/z58+no0aOPPa4jUlJSKDAwkM6ePUvTp0+nqKgoWrBgAc2fP5/OnDlDrq6utGDBAtKs7FFcXEyhoaE0e/ZsunDhAn366aeUn59PsbGxuihChmF6Qh+upMwwjMypra3FgAEDkJ2dLW6rrq6GhYUF4uLiOjzm1KlTICLU1tYCAI4cOQIiwr1798R9fvjhBwwaNAjHjx/XOnbx4sWYN29ep8cBQEhIiFbaI0eOxPz588X35eXlICIkJCSI206cOAEiQnl5uZhOdHS01vd+8cUXMDMzQ0NDw+MLhWEYvcBjUBiG6ZTi4mJqbGykgIAAcdvQoUNp9OjR4vvTp0/T6tWr6fz583Tv3j1Sq9VERFRWVkYeHh4dfu+1a9eovr6enn/+ea3tjY2N5Ovr2+18ent7i6/t7OyIiMjLy6vdtsrKSrK3t6fz58/ThQsXaOfOneI+AEitVtP169dpzJgx3c4DwzDSwgEKwzA9RqVSkVKpJKVSSTt37qRhw4ZRWVkZKZVKamxs7PS4uro6IiL67LPPyMHBQeszhULR7XyYm5uLrwVB6HSbJniqq6ujmJgYWr58ebvvcnJy6nb6DMNIDwcoDMN0iqurK5mbm1NBQYHYcN+7d4+KioooJCSELl++TNXV1ZScnEyOjo5ERO0Gow4YMICIiFpaWsRtHh4epFAoqKysjEJCQjpMu6PjpGLcuHFUWFhIbm5ukn83wzDSwINkGYbpFEtLS1q8eDG98847dPjwYfrmm29o0aJFZGbWeulwcnKiAQMG0NatW6mkpIRycnLazVEycuRIEgSBDh48SFVVVVRXV0dWVlb09ttvU3x8PGVkZFBxcTGdOXOGtm7dShkZGZ0eJxW/+c1v6Pjx4xQbG0vnzp2jq1ev0oEDB3iQLMPICA5QGIZ5LOvXr6fg4GD61a9+Rc899xwFBQWRn58fERENGzaMduzYQf/85z/Jw8ODkpOTacOGDVrHOzg40Jo1a+jdd98lOzs7MQhITEykhIQEWrduHY0ZM4ZCQ0Pps88+IxcXl8ceJwXe3t509OhRKioqouDgYPL19aXf/e53NGLECMnSYBimdwjAj8/dMQzDMAzDyAS+g8IwDMMwjOzgAIVhGIZhGNnBAQrDMAzDMLKDAxSGYRiGYWQHBygMwzAMw8gODlAYhmEYhpEdHKAwDMMwDCM7OEBhGIZhGEZ2cIDCMAzDMIzs4ACFYRiGYRjZwQEKwzAMwzCy4/+ZGLootWv1bAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAy0AAAG5CAYAAACDeNt6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9ebxlWVEniseZ75BTDVlUFRZWicygYot8EGnhKSIPfTZPfa2N/RyRdmi6sfEn/LrtpyIUtlgovBZwaCgVB1REmkGbQkGgLJmKAgqKmuesKcc7nnG/P/ZZa8WKFRFr7XvWzsybd8fnw4fMrHP23uecvdeKiO8QraIoCmiiiSaaaKKJJppoookmmjhLo32mL6CJJppoookmmmiiiSaaaEKLpmhpookmmmiiiSaaaKKJJs7qaIqWJppoookmmmiiiSaaaOKsjqZoaaKJJppoookmmmiiiSbO6miKliaaaKKJJppoookmmmjirI6maGmiiSaaaKKJJppoookmzupoipYmmmiiiSaaaKKJJppo4qyOpmhpookmmmiiiSaaaKKJJs7q6J7uE85mM7j//vth//790Gq1Tvfpm2iiiSaaaKKJJppooomzJIqigLW1Nbj00kuh3ZbxlNNetNx///1w2WWXne7TNtFEE0000UQTTTTRRBNnadxzzz3wVV/1VeJ/P+1Fy/79+wGgvLADBw6c7tM30UQTTTTRRBNNNNFEE2dJnDp1Ci677DJbI0hx2osWQwk7cOBAU7Q00UQTTTTRRBNNNNFEE1HZSCPEb6KJJppoookmmmiiiSbO6miKliaaaKKJJppoookmmmjirI6maGmiiSaaaKKJJppoookmzuo47ZqWJppoookmmmiiiSZ2R0ynUxiPx2f6MprYxdHpdKDb7S486qQpWppoookmmmiiiSaaCGJ9fR3uvfdeKIriTF9KE7s8VlZW4JJLLoF+v7/jYzRFSxNNNNFEE0000UQTXkynU7j33nthZWUFDh8+3AwEb2JHURQFjEYjePjhh+GOO+6Axz3uceoASS2aoqWJJppoookmmmiiCS/G4zEURQGHDx+G5eXlM305TeziWF5ehl6vB3fddReMRiNYWlra0XEaIX4TTTTRRBNNNNFEE2w0CEsTOWKn6Ip3jAzX0UQTTTTRRBNNNNFEE000UVs0RUsTTTTRRBNNNNFEE03UHL/8y78M3/AN37DQMT7ykY9Aq9WCEydOnNbzmtjc3ITv+77vgwMHDlS+jkWjUtEynU7hl37pl+CKK66A5eVleOxjHwuvec1rGleJJppoookmmmiiiSaaqDm+5Vu+BY4cOQIHDx7MetznPve58B//43+Mvu7qq6+Gj33sY3DttdfCkSNH4Pjx49BqteBzn/tc1uvhopIQ/9d//dfhLW95C1x99dXwlKc8BT796U/Dj/3Yj8HBgwfh5S9/eV3X2EQTTZzFURQFvPQPPwPb4ym8/ceeAb1OA+A20UQTTTTRRB3R7/fh4osvPmPnv+222+BJT3oSPPWpTwUAgDvvvPO0nbtSdnHttdfC937v98KLXvQiuPzyy+H7v//74Tu/8zvhk5/8ZF3X10QTTZzlcfexTbjmyw/Cx299BK67/eiZvpwmmmiiiSb2cKytrcFLXvISWF1dhUsuuQTe+MY3BijCH/3RH8E3fdM3wf79++Hiiy+Gf/Nv/g089NBD3nHe+973wuMe9zhYWlqC5z3veXD11VcHdKiPf/zj8JznPAeWl5fhsssug5e//OWwsbERvcY/+qM/gssvvxwOHjwIP/iDPwhra2v2v81mM7jyyistq+nrv/7r4S//8i/tf+foYb/3e78Hl112GaysrMCLX/xiuOqqq+DQoUPJ5/3RH/1R+OhHPwq//du/Da1WC1qtFluMPPe5z4Xf/M3fhH/8x3+EVqsFz33uc+GKK64AAICnP/3p9t/qikpFy7d8y7fAhz/8Ybj55psBAOCGG26Aj3/84/DCF75QfM9wOIRTp055/2uiiSbOnbjt4XX757uPbZ7BK2miiSaaaKKuKIoCNkeTM/K/KjKEn//5n4dPfOIT8N73vhc+9KEPwcc+9jH47Gc/671mPB7Da17zGrjhhhvgPe95D9x5553woz/6o/a/33HHHfD93//98K/+1b+CG264AV72spfBf/7P/9k7xm233Qbf9V3fBd/3fd8Hn//85+HP//zP4eMf/zj83M/9nHp9t912G7znPe+B973vffC+970PPvrRj8LrX/96+9+vvPJK+MM//EN461vfCjfeeCO84hWvgB/+4R+Gj370o+zxPvGJT8C/+3f/Dv7Df/gP8LnPfQ6e//znw2tf+9pK5/3t3/5teNazngUvfelL4ciRI3DkyBG47LLLgmO8+93vhpe+9KXwrGc9C44cOQLvfve7LXBxzTXX2H+rKyrRw171qlfBqVOn4IlPfCJ0Oh2YTqfw2te+Fl7ykpeI77nyyivhV37lVxa+0CaaaOLsjEfWRvbPR05sn8EraaKJJppooq7YGk/hyf/1787Iub/0qy+AlX48ZV1bW4Orr74a/uRP/gS+/du/HQAA3v72t8Oll17qve7Hf/zH7Z+/5mu+Bt70pjfBM57xDFhfX4d9+/bB2972NnjCE54Av/EbvwEAAE94whPgi1/8olcMXHnllfCSl7zEIjiPe9zj4E1vehN827d9G7zlLW8RZ5HMZjN4xzveAfv37wcAgH/7b/8tfPjDH4bXvva1MBwO4XWvex1cc8018KxnPcte38c//nF429veBt/2bd8WHO/Nb34zvPCFL4RXvvKVAADw+Mc/Hq699lp43/vel3zegwcPQr/fh5WVFZV6dv7558PKyopHUTNgxAUXXFA7ba0S0vKud70L3vnOd8Kf/MmfwGc/+1m4+uqr4Q1veANcffXV4nte/epXw8mTJ+3/7rnnnoUvuokmmjh74uH1of3z/Se3zuCVNNFEE000sZfj9ttvh/F4DN/8zd9s/+3gwYPwhCc8wXvdZz7zGfie7/keeMxjHgP79++3xcDdd98NAABf+cpX4BnPeIb3HnxMgJJt9I53vAP27dtn//eCF7wAZrMZ3HHHHeI1Xn755bZwAAC45JJLLDXt1ltvhc3NTXj+85/vHfcP//AP4bbbbmOP95WvfCW4Nvr32Hl3S1RCWn7hF34BXvWqV8EP/uAPAgDA0572NLjrrrvgyiuvhB/5kR9h3zMYDGAwGCx+pU000cRZGY+goqVBWppoookmzs1Y7nXgS7/6gjN27lyxsbEBL3jBC+AFL3gBvPOd74TDhw/D3XffDS94wQtgNBrFDzCP9fV1eNnLXsYaUT3mMY8R39fr9by/t1otmM1m9pgAAO9///vh0Y9+tPe6RXNp7by7JSoVLZubm8FEy06ns+s+dBNNNJEvjq67Rf74ZvqC30QTTTTRxO6JVquVRNE6k/E1X/M10Ov14FOf+pQtHE6ePAk333wz/Mt/+S8BAOCmm26Co0ePwutf/3qr2/j0pz/tHecJT3gCfOADH/D+7VOf+pT392/8xm+EL33pS/C1X/u12a7/yU9+MgwGA7j77rtZKhgXT3jCE4Jro39PiX6/D9PpdEfvA4AdvbdqVKKHfc/3fA+89rWvhfe///1w5513wl//9V/DVVddBS9+8Yvrur7TGkdObsHrP3gTfPG+k2f6Upo4i+LDX34QrvrQzbA1qv+B3I1xdMMhLVvjer6jyXQGv/+x2+HG+5tns4kmmmiiCT72798PP/IjPwK/8Au/AP/wD/8AN954I/zET/wEtNttaLVaAFCiIP1+H9785jfD7bffDu9973vhNa95jXecl73sZXDTTTfBL/7iL8LNN98M73rXu+Ad73gHAIA9zi/+4i/CtddeCz/3cz8Hn/vc5+CWW26Bv/mbv4kK8WPX/8pXvhJe8YpXwNVXXw233XYbfPazn4U3v/nNohTj3//7fw8f+MAH4KqrroJbbrkF3va2t8EHP/hBe52pcfnll8M///M/w5133gmPPPJIMiBx0UUXwfLyMvzt3/4tPPjgg3DyZH37dKWi5c1vfjN8//d/P/zMz/wMPOlJT4JXvvKV8LKXvSz4sXdr/Nr7vwxv/eht8Mq/uOFMX0oTZ0mMpzP4ias/DW/68C3wP2+4v5Zz/MHH74DnveEjngvXboq17Yn982ZNhd1bPnIb/Nr7vwz/9g8ae/UmmmiiiSbkuOqqq+BZz3oWfPd3fzd8x3d8Bzz72c+GJz3pSVYYf/jwYXjHO94Bf/EXfwFPfvKT4fWvfz284Q1v8I5xxRVXwF/+5V/Cu9/9bvi6r/s6eMtb3mLdwwxN6+u+7uvgox/9KNx8883wnOc8B57+9KfDf/2v/zUQ/VeN17zmNfBLv/RLcOWVV8KTnvQk+K7v+i54//vfb62FaTz72c+Gt771rXDVVVfB13/918Pf/u3fwite8QrRCECKV77yldDpdODJT36ypcylRLfbhTe96U3wtre9DS699FL43u/93krnrRKt4jSPsz916hQcPHgQTp48CQcOHDidp47G4//zB2E0LSvLO1//ojN8NU2cDXHzg2vwnW/8RwAA+PnnPx5e/u2Py3r8oijgileXEPR3f90l8P/+m2/MevzTEd9x1Ufh1ofKgmvfoAtf/JX8nOfv/e+fgBvuOQEAALe97n+HTrtaB6mJJppooolqsb29DXfccQdcccUVlRPgsyk2Njbg0Y9+NPzmb/4m/MRP/MSOj/Pa174W3vrWt+4KQ6mXvvSlcNNNN8HHPvaxM30pNrT7KbU2OLvJiac5TMECUCaTVaG1Js69eOiUoz49vDZUXrmzOIVQipNb4+zHPx2xOXSfYWPup5/72cHnOLU1hvNW+1mP30QTTTTRxLkR119/Pdx0003wzd/8zXDy5En41V/9VQCAygjA7/zO78AznvEMuOCCC+ATn/gE/MZv/MZC1K864w1veAM8//nPh9XVVfjgBz8IV199NfzO7/zOmb6s7NEULfM4te0njMPJDJYyulU0sTvjGBKWn6ihqHjgpHPbOrVbixakYymKep6djaFf3DVFSxNNNNFEE1K84Q1vgK985SvQ7/fhX/yLfwEf+9jH4MILL6x0jFtuuQV+7dd+DY4dOwaPecxj4D/9p/8Er371q2u64sXik5/8JPy3//bfYG1tzc6d+cmf/MkzfVnZoyla5oGTR4CSm98ULU0cQ3a+a9v5i4ojaK7J0Y16nLceXhvC73zkVvixb7kCHnPBSvbjUx1LHc8ORqF2KyLVRBNNNNFE/fH0pz8dPvOZzyx8nDe+8Y3wxje+McMV1R/vete7zvQlnJaoJMQ/l+MIKVpwZ7eJvRvHNl2CjAXnueLBU+6+W6/pnnv1uz8Pb//EnfDT71x8Eacxmc5gNPEdRnI/O5PpDDZQYdQULU000UQTTTSx96IpWubxAJnkXZcLUhP5Y2s0Deh9ueI4Qj/qQVpc0bK2XepBcsc1Xy4n3t54/6nsx8bUsJV+ia7ktj2mxVxTtDTRRBNNNNHE3oumaJnHAyd9kfXGqEFadkPMZgX8wNuuhX/53/4BHjqVfxr7MVS0bAzzF7KYljidFbA9zjuolRZBm5nvazO7pt0COG+lPz9HU7Q00UQTTZwrcZpNZps4RyPHfdQULfN44BRBWmpIUJvIHzc/tAZfvO8UnNgcw9/f9FD242MEZzjJW1AA+PQwAIC1Yd6EnKIep7byFi2mQFnpdy3SspmZHkaLoKZoaaKJJpqoPzqdck0fjerRWzaxt2JzcxMAAHq93o6P0Qjx5xFoWhqkZVcE/t2Ob+ZPZnGXfzTJX8ieIjqZYWak5RgR9+e+rw1ys9LvwPJpoofVpf1pookmmmjCRbfbhZWVFXj44Yeh1+tBu930uZuoHkVRwObmJjz00ENw6NAhWwzvJJqiZR6PrPv0sK1G07IrAlPC6tC1YFE5nuOTK6jNcW405/iGf/zcCKJDWjow6JYbGhXmLxpU2L+duShqookmmqgjTmyO4K+vvw+e94SL4PILV8/05VSOVqsFl1xyCdxxxx1w1113nenLaWKXx6FDh+Diiy9e6BhN0TIPk8wdWunBic1xg7Tskji2Ua8V7jpCQoaTWfbBidSRbJgZzTm6Ua9WyxQty/0uDLpl9yR34dUULU000cRujLd85DZ42z/eDn/4T3fBP7zyuWf6cnYU/X4fHve4xzUUsSYWil6vtxDCYqIpWuZhkq/D+wZwYnPcaFp2SeBCpQ5L4jWUMBcFwGRWQK+Tr2ih6FBulOL4pr/R5Bfil8dbrRVpCefANNFEE02c7fHPdxwDAIA7HtmArdHUUmh3W7TbbVhaWjrTl9FEE40Q34RJ5i7YV48DUhP1BC5atjIn5EVRBF3+nCjCeDqz99kF8wnvuVGKY4QeltsBzRxvud+B/rxoyY0WUXSooW420UQTuyFwk+ihtfzulk00sdeiKVrmYZLHQ8tl8jiuQb/QRP7AmpDcCfnWeAoz4tCXE0XA1DNTLOcuWqhmJjfSYua0YE1L7s9ghPeddolw5Rb6N9FEE03UEY+sO6T7wVND5ZVNNNFESjRFC5SJ6GSenR5cLq3YmqJldwRGWjZrcq1qtQC684Q5J4pgqGEr/Q6sDkqm5jDzZ6BFSvbCzrqH1a9pObxvAACNpqWJJpo4+2MynXn0XNpAaqKJJqpHU7SAn4juXyqTxzqcoprIH3XSwwwSsq/frUWvYTQ4+5fQ8TPfd+uBHqQuIX4HBr050pK5qDCF1oX7SzSqQVqaaKKJsz2ObY4Az9Krw92yiSb2WjRFC/iJ6Mq8410X0jKZzrILlfdynKyRHmaOt2+pC4NefhTBIAir/S70DUqReU5LgLRk1oNsz693qYvoYZmfHfM9XbBaIi2NpqWJJpo42+Poum+CUodRTBNN7LVoihZw3e1ep2UTr/Gk0N6yo9gYTuB5v/kReObrroGH1xp+a47ARUtulMJMp18ddKHfyY+0GDrbco16EItSzDUzuRN+g1Iu9dpOiJ+58DJC/AstPawp+ptooonF4+TWGP74urvg7qOb2Y9NZ7819LAmmlg8mqIFXCLa77RtcloH0vKxWx6Ge45twfHNMVx/9/Hsx99rMZsVHuSe+zezSMug66hPGTUtW8xgxtzOWwZpOW+lHqG/Od6g26lN07Le0MOS49aH1uD73nIt/P1ND57pS2miibM+3vThW+C/vOeL8B///Prsx6Zzw9aG9SAtD61tw5GTW7Ucu4kmzrZoihZwRUuv27YzOOrQtNx73C0sdx/L39k5W+OjNz8M7/zn/NN014YTjzOcm3a3Pkda9g26tSAhbpp8/SJ2U7Tk/o6MKH6p166v8CJC/Ny6nHMpvuOqf4TP3HUcfvwdnz7Tl9JEE2d9vO/z9wMAwGfvPgEzahW5YFC7/DqQlqPrQ/j2N3wUnvPr/wD3Ht87OUUTezea4ZLgEsV+pw29bn1IC6aEHdvYG9Nl17bH8CP/45MAAPAvvvo8eOLFB7Idm24CuX+zdYS0nNiqo2gxzltOxJ59MKOx8l4pXfFyF+MOaWkH/5YrDLJiCq/t8QyKooBWK9+QzyaaaGLvRa/j1q2TW2M4bz4vK0dQDUsdmpa/v+khi+B8+cgafNV5K9nP0UQTZ1M0SAu4ZLffbdtFbDzNr2nBnu0UOj5X4/q7T9g/3/nIRtZjm03A5K7jaQFFke93M+5hqwOHhGTVtCDnLUNLrAulcEhLZk2LRVo61qygLjTH2JED5C+MzoWgnd3GGrqJJvTAz8zRzI1EO3h3vi7W4R524/2n7J+b4ZVN7IVoihZAmpZuvZqWk1t7r2i5/eF1++cHTuZdVLfG5YZzCCWzOZEEs6HtX+qioqIOehi2C64JaVmdIy11aVp67Vq+IwAnvDdoEUD+7+lcCCr8fagZZtdEE2LMZoW3D+OZKjnCGIgc3l+f6yGmnDfDK5vYC9EULeAS3X7HIS112BIf33QL5Kk9Yn+IP3NueNwk/bgDnxMhM8MlVwcdRxvMeF+YuTKrNWlaiqKwhdf5BmnJXIxbTUu3vjktBn1aHXShU8OQz3MlHiEWq81ciCaakOPU9hiwjGU98/5k9g/j3Lhdw5qFBfgPN0hLE3sgmqIFXIEyQEL8OpCWE6iTk5umc7YG7mStZ3ZPYYuWGoY/7hv0oDtPlqcZxZobiB7Wmx9/Mst3/aPpDCbz661LiH86kBaDqiz1nMtaY3scBkVaNpt5Nk00IcaJTb+o36hpOLGxaq8DaTmC2AsNstrEXoimaAGfHuaE+Pk1LXiR3CsDJjHknhtdMkL2/Us924HPiSSY468OOrZoGWcsKrDlsbnvRhnnA22iYZtWiF+Xe1i3Y+e05C74TYdy0K3PoexciOOEk99YQzfRhByUDpa7yLdDcWuaL7U9nnqGPs3wyib2QjRFC+DhkvVpWoqigBM1DkI8WwMXanUhLcv9jrOqzpiU44S828mPtGzZ6+/aoign0mI6h4NuG5b79Vgqc0hLzmdnOitsA2Gp14Gluai1QVrC2CBJ11ZjDd1EE2KcILrS3EgIpYflbrTQoiv3/tpEE2djNEULIMtj5B6Wu6hYH068hHecsaN+NgemxOXWOnhIRQ2/G07Iu+38CNwQIQjm+icZj2+KutWBMxKoS9MyQEhLzsIRb/R4Fkwd/PDTEf98+1H44+vuyupyZ2KTJC0NPayJJuSgyER2ephBWladVXvOoG6BzfyqJvZCNHNaAFked+rTtNAuyJ5BWlA3K//gRDycsQ1rkPd3wwm5Q1ryak7K47dtsVKH+9lyr56CAsD9pku9ti3KcxZ2eKPHhVFO7ZKJ4WQKn7v7BDzj8vOh3c4/A2Z7PIV//bvXAQDA4y7aB8/8mguyHn+TNAWaoqWJJuSgwvvcSItZfy807mGZm3YbQ/9468PmeW/i3I8GaQGiaTEUl8xICF1g6tK0FEVxVullTnlFS+YZJGM3nLGO3w0n5FbTkjEht/ddp22LokkNSNFSr11f0TI2hZcrKHIWp6Zw7HVa0Gm3akNCAQCu/MBN8K9/9zr43Y/dnv3YAAC3IfvvL6L5CrmCIi3NnJYmmpBjjbjr5S7yTRFhhPgl1TV/U8qgzxR5yRmjyawWdLiJJqpGU7QAmdNSk5iYQrd1IS0/96fXw7Ou/DDce3yzluNXDYww5U6YeXpYvo3HTXvvQLcG+pb5PnoI4Ztk1My4+9q5buW874qicCL5Hh7MWo+uCABqHf76jmvvBACA13/wpuzHBgC459gm++dcQTUtDdLSxG6PE5sjeNtHb4NbHlzLfmzKfshNr9ogmhaAvI0Ec/2POrAEACWSk1NzaeLz956AJ/3Xv4Xf+LuvZD92E01UjaZoAWp5XE8nlyYQdVgqAwC8//NH4OjGCN704VtqOX6VGE6mXnKZmx7mhjN2EZKQk5pkpr23keVxTnpYea2elirjd+QPTc0/rX48LcA03waoMMp5bztdUXn9dQ5/rTseWnOWpHgoXK4wSZcpgJuipYndHr/6vi/BlR+8CV75FzdkP7bRtCzN50vlfF4m05mlg52/OoDWnG2aU9diNDiPOjCw/1aHruX3P3YHTGcF/M5HbmvQlibOeDRFC9DhkvVoWsxiYmaK1EHhwsPkHl47857tlBKXv2hh6GF1JMzdjhPiZ0VCyu+n33VC/5xIyxAV43XQw7aJSL6OwgsXjgAAvW49z+eshg4lDWxPWsfgR5N0ubkQjTC3id0dH/zCAwAAcMO9J7M/86ZoMUhFzqIF61dW+h2LFOdFWkxR1LeW/3TPzREPoaGVx4itehNNnO5oihagNJ16uP9mMTHzMuroFB854RaXOhavqkE5ttk1LcjyuF+n5XGvXYvlsS2WaxpqaqhyuGiZzIpsCbrRs7RaZcFfxzm2x67wAoDank9aRNQxCA7PUck9fRvAzeW5YE5Haea0NLGboygKb72lwyAXjfVhebxH7TdFS75n0jx7rVa5dpmmS86ixeyvq4MurMwt7XM7oAEA3HPMocL3nciPEDfRRJVoihbwLY8NDWhW5O2+miTo0Hwy+XiaL7Ezcf9Jt6DU0cmtGoFjWm30sHoGG2JqkhPi10Df6rRr0Wrg45vvByAf9dG5q7Wh1WrZwivrOSamcKT0sLzPDp0mf3QjP1J5DCVda8P8z6dJWC5YLZGWhh7WxG6OU9sTbx3JvacZpOXw/vzDH7dHcxOUbgdarVYt86Vs0dLvwr5B1/u3nIHXwtyFYxNNVI2maAFkedxtW8E1QF6qjkkoDs3pYQB5p6sDADx8yi0uJ7fO/OJCi5bc9DBTCK72u9m1SLOZc2Fb6mJNS757Yow0LXW6h+HBj/jfsx2fiOQB8hV3Bs0xm36vJqOMR9Z92sPxjfzPzzG0+dcxvdoUKeevmsbI7tP9NNGEiVNkD8u9p5kE/7zV/JRt02wxQ31t0ZKRbWDYFKuDrkWic++x2+OpV2jRgZZNNHG6oylagFoeu25xzunkmyOfHobPmyvwon42FS0Hlsou0DD3cK15IbiM3cMyfae4+Bn0nHtYXUhIHZoc//jovs6MtBjqAy6Mcv0Owwl/jtwJOeVq1zFd+hgqhOqgn1HdXB0Oa000cbqC7mG59zST4JvnJSd92TzfS5bWOkfqM+75pujaN6hvDhctUs6GvKKJvR1N0QK+EN8IogHybvqbHNKSOanAC8rWeJrk9FEUBVz5gS/Dr/zPG7PT1cyiesFcGDycpF1TaviWx3mRkKE31LAeJISdD5TxnsC0x1arZdGiXAgiRVra7Vb2eTZ4wCeA2/xzu/tRjUkdM05OkUGruZ14jKbFFS35kZaH14bw8j+9Hv7sk3dnP/Zejf/x8TvgP73rhloK5e3xFF71V58/K9wkqwZFWujfFw3zjB9YqgFpMQ2dOdLSr8Fyfn3kNC1mfcxetBDEuaGHNXGmoylawLc87qJJ2DmpQAbK3bfUteeoE2kpijT+7BfvOwVv+8fb4e2fuBM+f9/JrNdjihZDV5kV9bhjLfU61j0l1/ENjG8GGuamhxVFYTcwfPyc6B4tKrqZzQqGSNNiInfHb9vSw3whfvbhr0TAWoeInR4z98wcS0FdMZ3j/EXLn37ybnjvDffDq979BTjZJDALx+ZoAr/6vi/BX332XvjAF45kP/57rr8P/uxT98BVH7q5ltlARVHAB75wBG5Hg1NzxSnSSMjd5Tdry4Hl/M/LljBfKueej4X4dQz2BSjn5OCoix62PZ7C1dfeCV/MnIM0ce5FU7SA7x7WbrfA1C05u+rOnrdb2wBLuqinuKF8+YibzH3X0Y2s12MsGS9YdcO1ci7aOGm2lsGZtRQmIc9teYyRiLqQFozkAEB2ChouGk3k1hZZelgwXDK3ux8pWmqgb9Fj5hTlDiczMLdmnUjLV9CQv9sfyZ+o7rW4/WG35t5Xw+wevL7f9ED+AY1/9dn74Gfe+Vn48Xd8Kvux6cT63EWyaUzVMYbAPNtG01LH+u7oYV1Lm83t0Hl8s97fwMTvfOQ2+H/eeyP8uz/+TC3HPx2xNZrCS37/OvjpP/5M1tyxCT+aogV861kAcPqFrEL8cHp77q5IWLTEF7AHTjmb5IdO5XVMMpSb81HRkvMz+xPrc1OffBTBWR7XoJmpy/JYKFrq+o7wuXIjLXa4ZE0F/zqxCN/MjLTMZkWAtORMMPCzXmfR8uBJtF6cBbOgdnvc+pAr/B5A322uuB8dsw49woe+VM5RufPoZnZKJaXL5abPUXpYzr3JHHt5vm4NLD0s/5wWjLTUrWmpy5X0H29+GADKobu5C6/TFZ+88xh84taj8MEvPgDX3nb0TF/OORtN0QJMctfOr1/ATlenD2mJP/wPoqJlLfOmYOgq+5e6NinPtSBNZ4VNvgfdtqWHZdO0kHvCIi2ZOmV4c6lLiE+Lil5metj2OERacgvlt8fCZ6hp+Ks9b2akhXMNymlMYbqu5UyI8vfITaEDAHgQDZqjNtFNVI+7EWXrWA3UmyPIBp8iFzkCryX3ZkaKqMNezqKiKIpAiF/rUNwaaK3O8riDiqJ66GFmH8yJDuPA330dxfvpiPvRDJvcrJUmXDRFC/hCfACoxSnKLDArg449T90D8lIKBOyalHtTW7fwdc/qKnIlavi7G/Ta2UXmY6Q3AYDsmhZz/d12qxSwW6F/ffQwS6E7DUhLvqKFWB7XRA+jXdzcmhbcQLBuehk7ipiqV1dTpCgKD42tw7Z5rwUWNh+vYdo4Hjhcx0DTB9D9cO/xvJqZOi3zR9MZGB+MA8td+2+5zGispoXMl8pZVGyOQk1LfqSlvD8vPVgO4KxrYC1Gbe8/sTuLliOoaHkwM2ulCRdN0QJccpd/JgcehOioTPXMLTGRkrRg+Df3puaEgvk/M074+p02dKymJa/mpE/oYbkSQayjwv8/mRXZXKVoMV53QQGQH82hlsd1CfGN85YpwHJvztYCtde2PPecXUtsJpJbV2Ti1NbESxzrSIL3WtRpUz+dFXAUN6VqcCfDaFvuItY00Vb7+Z2x8LNn6GEAOQfv8vOlcn6GdaxpqUmIb+7JRx0oi5Y6XBUn05k3wBKjg7spMBXzaA0NiCbKaIoWYIqWGvQF28hNxDpdZbY8pgvKKCGxw52+FM5wURTwz7cfhYdOxbsh/+7bHgu/939/E3zHkx6VnV5lFudOuwVdNIckm+Zk4if8uX8zqqPq1WC1PSR6kNy6GVXTUtPmX9ecFkNlvHBuz51biG+KoJV+136WvEjL/Lfo1aOPAgB4ZMPvHtZBNzob44/+6U544W9/DO4+mt99CxcqOQcPAoTree6iYjYrPKQ+xfilShj3MGyZnyuMiUu7VbIf7L9nSvq3iKYl9zM5mc7s2oiHS+ZGWkzj8fD++bpYQ9HyyPoIcJ8ut7X16QpMtafGLk3ki6ZoAZdgUaeonPa89hy9tk1Qcx4fwC0ohn6SskDioiVlwfvgFx+Af/2718EP/t510dc+6ZID8PwnPwouv3DVLtq5kn7q7pXb8nhMi4p5spybHkYLZYB8aJS95zr+fZ1vhopfFAHkt/bclnQ5NdHDLpxvzrk7igZpXe45/nlOTQs2paiLfko34jo692dbFEUBv/Q3N8KXj5yCN15zc/bje7N7MusFaFGZW8h+YmvsrYcbw8xFly1aSiOXOpCWpV6nlqG4VNOSu6jYQE2V1UGntjktdl2cF465tX4A4KEsAPlNUE5XYIvu3AW8iTsf2YCX/+n18OEvP1jL8XdDNEULcFSdGgcJdvLPFAEou17Udz6paNlynbKURPCaL5UPy+0Pb1TqJlj0KjM9bEAofbkHJ1JNS67rp9StHto4c1GfAoOJbmZbaAZpyW3tOSTc8F5Neg2DrFw4d7pLMbHYyfGX+x37WXJ21ocMPSz38FqalOZOss/GwIVZHZQPD2mp2X0rNzJ2lBgx5E7U7HDi+TOZ13nSrSutVss1EjI9k9Q9LLcWz3w3vU6rbFTUJMTfsEVL+Rts1zD7iQ6srMNuHqCknf3RP90Z3Le5Yn27GmtlJ/H/vPdGOydrr0ZTtECY3NVRVPjTz/MXRXhBT53wuz2eetzelE3hBNpk7zuRzj3tZdachIMTc2taqDlDPUL8PkEQAOor7HrtvBQFTtOS29rTCczprJl6UMpDK33v7/mOb+Y01YS0IJe1Xk0JDE1Kd6s1aZXwjQfy01Zw0ZJbj0DpYLk1SLSI26iJUnmgxjkqS11f75frHCbxHgRC/DzrljX26Xe94w9rKnzros0ChEVLbsTOxKv+6gvwS39zI1z5wZtqOT5+3ur6DJ+84xgAADy8NtyzFLSmaAG5651Tc4ItdOsoinCStX/JuaFoQReLlAX7IWR5enQ9vfPYzVyohZbE9WhaeoQymCtZpkVRq9XKr5sR5rTk2jhVpCUTWoS1YAD1aVrMec6bT5Ovix621Ksbael4/Plcpg4AYVKaO8k+GwNr947VgLRgx8fhJO/vRYuU3EUFPf5mTXNUDtqJ9fmu39JO7RwVozPLRWstj7NckxAfi/AB8msJTZjk29LDJtOs9yiAz/YAcA2e3PHR+SyYv/zMvbUcH6MrGzXQwzZHEy/PozN09ko0RQsoQvyM7l7Y3Sc3KgDgFvh+B81piBx/J5aS2MqvykOTe6I8TZg7lr5VE9JSU1HURwl/NzMSEhR2mQtHbU7LMPM5BgRpyc3dNufZv1TPYMYh+q7q1LT0u20YdMrfoygyOyDS9WIP0MOwFWtuyuB0VgTHzFkImoLIrI2jzMgYTcxyF0XmmbRzVGowxjHPYm7NyRZqUgDkp4eZ+2Z14A+vzN1IMDmC0RUVRf5z0OZp7ucMwG9CGdQ+Z0ymM++660BB6PDvVLfBqz50Mzzt//k7+Pubzg0dzJ4vWoqiCJycupmpTPQcTn+R7+HfQsK/VGtbSveIbWqT6czjg1bpPOamxNnOco8UFdndvcrj5i40aUEBkH9iPXVAy41SYB2FCas5yS1o7dbjwkPPY1HKzBsz/q5MdzcnmoOL+F4XUQ1zzpqab8r7593d3G5XJkaTWfbvf6eBkeXcSAJHQcyZEK4TTUhd5hUmcmtaAqQlY5FMGy65k37zPC736ymK1u04AR9pyT2Ac4PQwwDyo9BmgKVZe+ugVt2FnP+wU2euoNdcx2fADRSA9KLlTR++BdaGE7jqQ/mNRM5E7PmipZyLUf7ZdChzJ9h4s+jXhLRgoW9qcko7GrFN7ejGCHA+XYXfmntgp3MPI5qWmhL+Ts1CfID6KHQmSXZW3nlF8gPUudrJELUHTm7DGz90M1x76yPhOchncEL8fM8Ono7tTCzyUiBwUdGvQZeD7a2xqUPWYXbzBOY8I4yuAWmZzQr4v972T/Ctv/73Z4WlMuapb46n2YYPArgkv9Uq/weQV5Ngrv38mn6vTZKY5e6Qb1s3zPqQllArlxdpqcvyeEOih2U1K5jZ/fTgSs82BnPOlwJwSMulB5cBoB56GHYoWxtOsiLQAOFg743RJDuNjhYpKRbmOJc4skuHdtKoVLRcfvnl0Gq1gv/97M/+bF3XV3vgh9x0KHNrTnD3o99p1zK8EruVpA74Mwvr/HKir6cwbpWOS250KbSpruf41FEuF5JjkIieRw/Lm8xKWq1sQnwjku8ietj8GaqCtPznv/4C/PaHb4Gf+qPPBEkhTS7q0LTg57N+pKVTy3RsjOSYZwEg7/dkkBZbtNSAtFx721H43D0n4KG1IXzmruPZj181MJpQFHnRJbP+rvQ69hnK2Sk3RcR5K/UiLQbJoUXMomHWl0Mr+YX4zuBjrpXLPV+KaGZyP/N2cDMR4uf8jjDFabXftQVYbpMScx896mA5wLIOehid/ZJ7Fsy6NUZw1Nzc3xO95pSmMTZO6qB9YTdHpaLlU5/6FBw5csT+70Mf+hAAAPzAD/xALRd3OmJECgoATNPJq18A8JOKOoT4S6jTGlsgzeJgHJNiC976kBQtFTbwKuYGZedbP/aQcJKzz2mZC8l7NWlmOKTFIny53MOMzqnrJ/y5EL5tdM+Z2ElRcf09JwCgXPgpBO645z43vI6uK4ArWnLTz6ymrefoW6nnKIoC3vB3X4E3fuhmsXuHkZxWq1UpiZnOCvita26GD3zhiPo6gwycv2KE0fmRlhvuPWH/fM+x/MMcq0YgZs+YmJtjLfe7Fq3MKjYn9KrchfgmGci6mbFDPp7ObFPPCfHr07RYJCSzpqU+Ib7RtJTrlSmOcv7GOBHvtFu10FoBXDPE2CrnLn4BQpQityUxR6PLXXxR5DlF7I8bzRQN2q1RqWg5fPgwXHzxxfZ/73vf++Cxj30sfNu3fVtd11d7mMSh3XIUIyeIzk81arVajgaUkJye2h7D//aGj8BLfv86FW7E9DCnK9Cv39z0hxI3NQpHVqEbdBPh8aIo4P/+H5+Er/vl/wXX3y13WkORefn/+TQtztgAoL7hklgPkpu+FaBRmQcz0sIRwH1PqUL88XTmGTocOenbaFs0p0eSi6xFi0HVWtZCNHdCbpLRfqdd2Uzg+ntOwP/7D7fCb3/4FvjKg2vC8X26ZCraCgDwdzc+AL91zS3wM+/8rLqZmyT7vBrmZpg4jnRyxzfP/CZLE4Ocug1Dg1kdOKQlJ/Wm7qLFJM4GCcnlGAjgd6nrsTyWhPJ5B+/WJcS3SMvAR3JyFr1UN5Nbl2PC0E4P11D8mqBFS+7Cy/zeK/1ObbrLUyT/SkJa0N66PZ5l/9xnInasaRmNRvDHf/zH8OM//uPQasmw03A4hFOnTnn/O5uCE0Tn1pwE7mQVhP4fuvFBuP2RDfjErUfhpgf4hAXAp+qkdru3Rv6mE0tmadGiIS0Prw3hf/vNj8D3vPnjAJA+/PHWh9bhY7c8AsPJDP72xgfE1wVzWnIjLfPfhloq51qIOPcwN8tm8XMURREURrmtvFn3sMSC2cRDa0PAtbhPx3GfgW7+OTfOLST2r2vDGSIXtKpo1JePuDXzzkd49GFIXNa6FdBijG7c+ciG+LpQGJ1/A8TmHnVYDFeN9RoFtpuoG18H0mLW9wPLZdI5mRVZNTkmcTaambyNhPLaWy2Hfub8boZovwTA9LA856DDJQeZtXimmA4Kipx00Pm9vo+cI3ezwiAt5j7KrZkBCIuW/HO4GKZL5u+J0sNSkBxK6T8XHB93XLS85z3vgRMnTsCP/uiPqq+78sor4eDBg/Z/l1122U5PWUuwgujc9raBO1k60vKF+07aP9+vDHPcxkL8ZPcwnx42nuqbGu3CaovL1mgKtz+8Abc9vA4AuFDTrwl/3jselhMoyfI4N6XPWR5nRlqsZsYV/A6BW/wck1lhTRPonJZ87mG+3gSfI3Xzf4AgK5iOgzdHyj3PKWK3VBFkR5yb/+/PUan2GR446QSUD57ixZTBINEKqN1tD7nnDLtlSeeog65j4hjqDKa649QZ1Lo0J9JiksKVfj1IyxYpMgEyGzMYpH6lhon1Y1dUYOOKXEWXKMTPhBZtCcfPlcieDiF+gObUhbTM76PzVvIXvyZObVVHKarETtxbqwZtGqfQw+hYinNhIPCOi5Y/+IM/gBe+8IVw6aWXqq979atfDSdPnrT/u+eee3Z6ylrCdbxdt7g+pyufppOSnOKp8w8Sn24cW4wQP7aJbBF6GIC+qVFOpQY1WnoVnX0T+U7xZ6T6Bu/4xPK4l3tiPRHiO2evetA3fK4ciYWvo6rHwSYH0nLkpJ8k48IY318ULcrFPcfnWeq1azk+AHEPq1gY4UJFom+FyGN6kX37vLEAUCKkUphzmCR4MiuSUMHZrIBrb30kiZqA6WGpvPPP3HUcvvXX/x4+GNHk7CTqHNBo6GErp0nTUh4/fyc+FamvEttMEpjzHIErYUbqbFEUAdKSW4tnvvvVvo/k1KFpsWL/zGiUieA+qqEZEtDDss/5cr+3o+rlpoeVn8FYzqd8TyEtbo8iLXfddRdcc8018JM/+ZPR1w4GAzhw4ID3v7MpOG1BL7sTlZ/AdyrQw/BEZm2YIwdPxpLTDYK0lNcqv8ds4OZzaA/AkCAVqeYGmIOZkkCZJK3Kd5oSIaWvLsvjsFjO8Rk8gwmi+8nG22aQlqouOQ+oRUt5jE67Fbi45U2QXPFV12RpvM5ULYyObbiNR7K5pDNzqmjI7kWNEY3+ZG2hl6p17v/qs/fCv/n9f4b/9K4boq89ioqW1AFtP/o/Pgn3Ht+C//Bnn0t6/WQ6g5OJehlzP5r7LuesFoN0ryCb+jpmkeyb06sAcjtw+ZbEdejMloiFdy76r5v/lB+FHk1nFuUeUHeyXTSnhaI5dQzFBQgRuzqKFtoAyY202KKlXx1JTw2z9ptBnynfU0AP26tIy9vf/na46KKL4EUvelHu6zntodF0siEtQQKfjrQ8su42cc2X2wnx28kL8CbhPAPoD4IRghnBnPYAiEl/5DvFD5k2p8EsnDuh3KXEmNwXJuEvCshCUeA1LfnmtJh7rtNuWepcdstj4uxVnqNaUREULR49zE8sAOqxPMbFF95wcvrsD72ipRrihV1fpGeCzsxJHVS6Ppx4z7xGfzKfYT9KglMSmLd85DYAAHh/AhKCi4lUVGNtnpCk3HNFUcD3veVaePpr/hd86s5j0dcbCsb5NQxo3ET0MHvf1eAoudzr1lKMm/thXw024VwTDiD/0FpaVORYV3AzbzfPaTGJvvl967iHZrMCWXM7BDen9gogLFJyC9LN8Ze6nfoMC+Zr0cEKNDq6X9RB6T3dUblomc1m8Pa3vx1+5Ed+BLrdbvwNZ3lwyWPdQvxOheQUJyzUchiHSbyWES8/ViAYeti+QTfJItX68u8zgrl4V5Z2+WPfKUaTNkbTJItXgPyWxxSBwx7nOdAWp5lhiuWMRVFdCGJJgfApegCOZpm6YBt6mPHyWB+FSAumn5kEZlbkowIOkRC/DioKAJnTUnHzxwJMiTLlnOJ8Y4rYxoabIgB6oTD0uolpFNTymO6aNfSkKIrk1+40Hjw1hBvuPQmzAuAvP32v+tqiKGwRfV4NXWA3Nb2TfbAsgO8oOahBHGyL2EF+m3Ds7tVpt+wssVxIN11bcg58NdfebrliZZCxKAJgkJYaft/QPWw+S6gG3RVAOcDSRG6kmwrv63IPW+qnM11M/PF1d8F3XPVR+Kfbjqqvc0h3epNgLdAh70Gk5ZprroG7774bfvzHf7yO6zntQUXyADUI8c0gwYr2ubNZ4SUpGtJihPhV5rRsMOJ97UEwD/55CcLL0cRPolJnkOBhSNNZIZ6DFkW5NS0OafGPn+scY+a+c+5eOSgKPiURAM8KWPz6OZE8QPWO4v1zIf7jL9oPAD7SQmcpAPjDOOvQ5mBDjqwT6ycOCXGi3LTj46JFpIcFurm0JsEj6z4FU6M/4Wc61WJ1Nis8FzDJSKA8lqPVAKRROOhrYs/mHcgdLTa3AE8Er2NAoy36Kzg+Vjo+QirrmZheHt/NNqpPKJ+d2lqjUB7rG4yzanYhvnUPm2taevmHkwZoTkU7+6RzzD9Hq1WddlolzG9iENO63MOWe2m5FI7/8p4vwq0PrcOVH/yy+jrzGfDzFgva+NmTSMt3fud3QlEU8PjHP76O6zntQV2iANBk8prsczuJVKn10cSzg9U6j95E7MQZDVuIU51C69kmMK4qxBdsnuP0MNL5FT6zTfo71XVCKUGLIg9pyag54YrlHJ/BJET+8Mo0XVFKeEVLNxTiJyMtJ8ok9nGP2gcA/u/NDa/ExWO26dWMEB8gc4KHioqqCSr256fCcHt8wT0s9lsfJUWLirR4a0za83x8c+S9RnME28kGe3TDv/7YpGv8+pg7Gb6e81bNLJL4NT14ahv+8jP3JhRF7jfLTUkG4B0l67inTVILkBEJoZbEmQ0ywrlG+ahPWwiRNOGOn+f33STDJbGWMBet1Q6wJEL8nFbnm+gcXsMoc3JtfpNDNneppygq95Cd6S5vOiKPtCjPYZCWdPfG0PF1DyIt51rwLk55oXqTOFhNSyKSQzdg7Sb1LFUTnYMMR3K5103qzLoHP+6nbukqVMcT+U6pcEwSBlOkoj5Ni/nN3P2RA2kZkqILAHUTc9DPzPffC+/rHN3cIUOBAKimOZlMZ9Zi93EGaUGLLHX4AfB/hzr47VgDlLPrjelbvQpUkcl05n0nUiJMv6tUDRmlh6VoWga9dvLz9jApirRCgc4dSBGNHt/wjxcrRB5Zq1K0hJbEKUXFz7/rc/DKv7gB3nTNLerrfJ1TPpTVBNv9zej85DROqEOe65kcuSQQIL0ITz4+RVq68+clC9LiF0QAuJmT5/uXnL0AcjqUETSnjlkwI+Og14F2u1WL0QqAa9Cev1IP0rK9Q6QFr+2YUcAFRTZTviPa5NqTSMu5FrzlcebJ5PNzmON2EpGcYAJ9Ah2r73Xt9BvUJAmrgw6ixMnX5ARzKZoW3vJY05wURREULdIma34ba0lck6bFXH8b8aqz0LeY+84VdhmRHAZpycPbdpQqPFy2yoJ9bGMEs6KkBjzmgmUA8BNXmlgAlL9DakKeGlJXt46udL/btjqmlKKFdsrS3cPSkEdTBJmfUHcPmz/TnXayBTh16VKRFlIwJd1DBJmNFi3r6XNg1uYawtVBN7kTXxQFfOLWkpv+Pz9/v/paNxC0HschLGavw4aVJlEAdTgTzovwipTK+PEFJCcH0oIQLhM5NTOT6cyZIBBnL4DdNQvG5SDlOeoazGip7avx3GWR41dxbwUAOIKcG4cRlIwiLSkFttG0OMfXBmnZ9cENl+xkHiQYJNhGfxFLKCohLZhqkHb9uBPXTehkOd//uPCSCsEdPUx+z9Z4an+PfdaLnP8M5jgmge1W0LTMZgV88o5jaifXUvpqog1SdzLv+Bndw7xiPCOCsE3oSCaq0CDW0KZoOoa4A7ZN7iF6jtwuaLSrm1eI776vKhtz6LPP37M7pYeZTtyj9i8BQCrS0nHDYis2XjSdCkY2zPliVJdjG+lIDkA1ephJEpZ7HduJj/1m9xxzScgyQgi58O+JvJbqRVF4hWzuhBMff6nnml7ZkBYy58Ssw7mQliGhnvYrrFuxYK3gMwrxcWOB0sMA8hWmohC/Bt2MeebrGsy4VYHavpPAVOYq7mF4Lt1oMlOn3C+CtFy4mn8A7JmKpmixyZ1LHnPPaaH0sNSZH6co0pLo1pWqjRiO8aYTL3RMQnlg2fjyy6+lSEUKinB83pXtd9p2IJr0YFJ6WBVNy7uvvw/+r7f9E7zqr76QfP0A6cVmSmjHz4EWce5heW09Q71J1XOYhPbAUs92JbdYpMU/R9Wi4sTmCH7xLz8P/3w7784SOAlVdEBLCY++WSFBopOcxaKFUFJSNWQmMXnUwbJokZCWoijIrJk0uiels2m0DDoZGyB+/ccIPSymI6EW8tp65w0E7Rh6mP557z62ia5Fdz9jNUKZkITJrLB6yH7FQjklSkvw8s+DXrrNfmpsIxQKIH3uUPrxKT0s49o48gsuAN+CfFGzAuOw2O+0PSZAL1HLmnweyfK4DqSlT8T+Gc8xnoaGGrW5h1VEWihSLGl4p7PCroX7K8xFco6v8zEVDdKy+4MKugGqO5V87JaH4fq7j4v/3bmH+TM/YqiAsThOWSxwUpRaFGHntBRzAJNQGnhSSxoly2PtmowI/9BKL5r8ms09pIfFH+T//g+3AgDAX19/n9jJpZoWAGSgkNHy2Lckzsdr54X+9dDDcFRJjkwXaN+gazttuNNkO7ldWhilJZAmfuPvvgJ//ul74F//7nXs700TmCr0rdSwv3fFBM8k4aaIlyY5Y70JADZ10M+xZpGWclOjFC16fIBqQnyKFms6OFMwGdF7eV59k6WbfExgSzne6iwo/JslIi0ntlwScnxzFCmKUCGbe6Axus4+Mn/IRZ/FvwtGcnIlmyFymJceJgnxs9DDajYQoVoTE7lprRI9LOeAQou0DIghQsaiBTdKTMM1l2GPCbzfVnkWTtKiRUBacJG1P9HyeIpm4FxoxlQ0SMvuD5pcA1QT4t94/0n4t3/wSXjx71wrJ9jzB6RLE+zIg2M28fMrWAzjrlqsKDJVd7/TTtK0UKRF+34o7S7l+EbPcmilF12ATeEQUO4in7koCs929chJ3oKVvy/y0QZZq+2MWiq66QNkFuIL9LAq3HBTlO9f6sJyr1yIvaKF0bSU5zCi2bTv6ZYH1+2fv/Jg6NDipmPXM70aAFiqTlLRMk/6H3WgLCqms4J97ujvkTrzxxQth/ebThx/TTjRwo2RWJJN6WFah9NOxl52SEts468q3qf0Nw35Ge7Akhhr8opCp6CxNtiZCmWvaOmk6xxTY0iOn5vWEyL1eelhUqMij+Vx2NDJKZRft5Qqf05e7uGP1D2sjqGJFGlJnTFXJQzy1W45GlpuoT/Od6rol44HxkN808gvWuJNYwC/AeWQlqZo2fWhWs8mJKfvvcGJLW97eJ19De3ap+hHAByyYWz6UouWVEtl7DCVck3mekylrw34G5LBgymFmita+q6zGaGHmetO/c1ObU+8ROcBYW6E+R7McQEgq6sUnd2D/5xjY2aRnIxDUyWkpUrCb+gz+5Yc0oIXZzenhaA5FTfnR5COwVgs46A0tNwJJIBvTFHFvtUkvRfNNScAYbcM6wsosjmNIi3l8S+ITHzHm12v00q+lyhda1spKjaQMUhq15gWIbFNmXYytdf79LA0Sl+qZTs+N0ausg00nv+O7VZ5L+QW+uMivNVqZe/yUyOR3BPl6fpVO9KS0fXQ2ARjq2mA/MMfKdJSR9GC3cMA6mkYmd9jpd+tTTPjUWcrfAZqPCQND95Gz4MptGPHN6hyv9O2OVtOlOxMxZ4vWlgaUIUN5PaH3bCy+45vsa+Z2CqcJNiR41O3Lu2G4zz/NSRkhjiS/U47qgnBvFCDtJh/58J1Hnz3Fy0hNwnagaUEpGXiC+VTNS1HTvq/0UNS0ULMEwCwVXVGpMUrWjK6hynDK/NqWvwlpIrexCyq+5GmZXM0sRQul1jQc6R/jqIo4H7k0MINN8TTjAHyb5yYj1xaHqd/RybpN/B+eb3+OuDpCwzdJbGIp5xnKaHC60ur1Uru3BtNjnEnU4sExjY0hrRQDU4UmakwC2a4g0QksGxPMTbodipREj9x6yPw9F/9X/CBLxwRXyNrCjMhLWTwa3akZUqvPx89rCgKZyRCh0tmaeiY+9itW1hzsmjhuC7RwzLaWk9nhU32qeVxTr1JMG+mBmtu3tmrHnpYr1NtDhemkwLIRij2eatAL8b3CdZU7fbY80WL+RG55DSl442T4IfWhuxrRiQB7iQ671hh6moC0oIW+ZQb1KN79DpRpMLjhXoWl0LRQju/FehnKwnD0AL0KvE3o512mmSYMN8DHirZyUjf4oX4+Tr81mKXKYpyFi0UBamS8K8hTYspWmaFu8+Hk7BjCVCtaDmxOfZ0DicYug6eHO4fP699NkB19zCT9B9a6Yu2lVRfAJCuyzO/gZkULU27ppbKvVT3sDkF8PC8KNLcw3ASn9rVDZCWGD1M+e6060m950K6R2qjKf2e++X33gjHN8fwM+/8bPTaHVKRt6igc4Fyi8ADC++Mmp9yAGP5Z4u0mKIrCz1MX7cW/Y42iKuXiZy6IlxsBwVFjUhLbu0SALagrj7YNzVw/lWFpheMeBC+W4wMpq6Na4jJkNM59EzHni9aqHUuQDUhPk6CHxGKFkdlIl2vyAK8aelhc+qGYgGKqQadhAWecpJjRQXmha724778NClPoaxxk8lFnZChb1lzgzQUhGpYJOHb1Baz2FXOoDn56FseEpKIwCUdHw0zNFHVYEILO+cg0JvsVNPirtPcB9RByJ0jfQG+nyBr3ER5mmTUxc8HmBctiQk/gENaDix1bVFFxeb0WQZI76ybBMgULdIaM9yhm5NZw8zxNXoY7iamin43rTlImjjVdHZTusZYU5V6T5zcqkAPY8wZUtYWvIZJn5fOgcr57AMwRaxxfapJ05LzmaSmEgB557RQu2YTuWinJtGn9LCcFD2zTnbbLfsd1WF5vElszvsZG3cmtpCbW11zYHxNcXoBnzrWYpuxzI89yxtoAGlu+umZjD1ftJgfsct0pGNFxfZ4Ckc33CYl2W06hzIzXLIaPex8ZAEqPcwuSUVJkXJ8kwy05hPNY5oWPOW3jaaGS5us5P6iuulU8DoP6WGuKNJmO1A4VkoqzG/W8YrZ/PQwrDlJodClBmck0K+QGEWPH7E8nhXx86wjznSv4xZ7c99vEwqKiSrdOIqscZzhwPK44sa2OZrA973lWvg/f+cTLJJgnoVOu1XqC7rpRZfZ1PYv9ez10UQeOyC2zdyixJlCBt086FE+w/fQ+zV1EzS/4aGE+Qg4Ea6KtJyfMIdgNJnZz2Ffr2paQvpWaneTXh97fLSmpqKg4+nMOyZHdwQIf6/cmhBKD8uplwOQhfh5nA/d3mee9X6FZzIWnKalPEeehJnOTzFhqG5ZkBZkd2yGB9dieWwKvH59aA6eR5f7OTCBkc0qqKb5LU2aIX1u3JRO/Y4wc6XXIC3nTpgEsccIrmML8PHEaczh9PZq9DCz4QPICxLeAFNcqLDQsdVqRTUhhmNKhfViEUU6cSkidte9j9MxQnqYu5W1r5V22jVfdHrcTs7hkowQvw73MM6dLAdvW7Ijxp8n3gny+cymM2mLFnQ/cOdIWYAfXvfRT75oIU5CFYX+H/rSg/CZu47DZ+8+AZ+681jw3ylVB1tPx4Yn2o1n0LHfA0VaTAHf7YQFtlY4FkUhFC3he6zToKWHJZqJjP0iQbMk9oqEipqW81bjuj9cUFr0WuHOc0hI7J6gbmSpA4HtPR1ZWx5ZH3rr20NrQtFCk/4K6F5KhJbBeTUzkvtkFqRl7NYuk5Dn1bTw61YuNMd10OuzPF5HXXp6/FxoGgDAlkAPy5lce5qWGtzJAABGaL+tUsBTJDrWlO6jtbGkOcaZK8v9+j73mYg9X7RQO2KA9KKCJsBy0eLTw1KdrswNjROKmCUpHi45TaCHDUgSIrqBkcQrZusXCikTNC0jt7jEkhY6UR4nbFoiRZNWTihbFIX9bfBx3WdIoCWd2IL33nC/uKiwQvka6Gece1idQnzP2jOacBqkpdywjIWnObZkeVxlEFzgzsLQw4akOKrKz7/rqBsoyDkIDonoF+uMYmuASfqXex37PdABYdT+G/9ZO345cb78MzbX4D43TVJTHQq3CcVVR1pcEj9IHPBpEhJrVqLNgUFD+fbPC+Vk97DEe85ZuMadnLzZWtbGWz/+Q6f8IhwPy8QRuG8lzplJjXAuUL6GDgBTdNWiOQmfl1EGdyXX2efXxsWLlrl72JJgeZwFaQkdygbC+rNIYDQAoB6HMqdpSbcurxoe06UCmuMa046eyx7fo5+lNQYxLS6nJuxMx54vWiYk+cV/jg5mG1IqAP8wSwl27Phb1gK0izjY4Tkm05ktBlLtMynnuRMppKRNRPoMdNNMQSl4TYvkZkbRK1S0KJ/bFC3GjYkTyuLCirc8jm/MP/VHn4aX/+n18KefvCf4b9S5zZ4rcbZGSrCamYzdUElsir+vWFea0hyW+wLSQsX+FTYFY0FrLH25IjWc01JteCXWGHDGDtsI2gdwCSRAAr0KFfImkae6ELq+AKR1pnEBsdrv2Pub+90kDUN0DbNFhT4cE8C3SU/VtJjCN8UW3iQIK4M0JMenbyXS1YZ+EpIk9O+l65woHUwqAg2C5IxQ8lFPARj6b8aiAiBsuqS64aUEh4TkpJ9J1NlcZgXOwKTn/XtOdy/OoawOvcnmyP+u6qCH4fV9J7qiv77+XnjRmz4G1972iPgavN9WKeDN92zWx1jRMkDuZAD6+s65pjWalnMgxpYGVF2IT7u2UlfN3Ch0A4lpI0yCtdzvqAsSfgAx0qJNbqebQkzTEsyBiNDDpNdrKAVOUqu6h2Htibaxmd/MzL3g6GH4/Z7WKdFWeWs0hS/edwoAAP7qs/cG/53+XvRcWTQnbNGSkxceIjkAUM5sqNyVpvSwyfwcPkJhogqVwxQRX3XeMgCEmgN8niVrf1otuXgAif05XRs1RcCUw9jmaQoUjLRI9DCfahi/V833Xw4f1AWk0vDKOFI0R1rmAyO3K7qHpQ6XPD+hSNgaOdRKawKF15M+MM5w9GOOj7TRlKpzog6VkhubLGTPRA8b+/d0FcfNlBAtj7OsjaFWLmcHfgvRcnBkE+IThNqEQycXR0I4hzJjwpFzQKG5fx09LN0OPjXMM7jc35mm5aoP3Qw33n8KXv6n17P/fTKdWcpmv9NOLuCns8Ku5efFkBbUhPBYJRrSgrQ83Rq+1zMVe75oMQmiTw9LE1xTqpHkjDMiCXaq846FTnsd2/3lbmpp+rEqeg80J3qSM5qQTSqyiVM6iUOXUpAWHcbF9C2zCOHhXdrnNoWgmTDOdd4nEaQltjHfe9zRhY6uh45yeOFgrbYzWipj9zDHm9e5sCnhCopO8N9SudV0Y6QDJocEATFhP0dCUWGMF77q/BXvnDiocNYaFiR2dTHSwlFEhxRpQZtOdA1AnUhRiE+c9ADSksgtUqxpnVR7P/X8wiv2HQVC/MRZUynIRlEUyBZe3/TxuZd6nSTRMjuxPrGIcrO19KYOwJwe1k5Lmh8h6wnV0NDj16EJ8Y7fpXtaZnpYx7ckrmswbk53MvPMLmIHr8U6Esmzx8/wGTiHslqcvQg9rA6kxZu3ZPeO9PvonmNlU0qiYuJ7vt9tJxfw2FDDFi0JIyRwTqI1prcRLS4n9fxMR1O0TP3kFwCSkAoA17V3XHMdFTDHTS2KsM2oNnjQPJTGnShF6BsKNfVrkjp3UXoYEeJrSQ7ueGsLMF4kTLHZbrfsADtV07JtipYSaVnn6GHo+Jx7WGxjvumBNfvne49vBd/pmBSZ9LPUTQ8risUd0CSRPD5PleFXACE9jGpN3PHTE4zjBGmhjYaicN2uYNBc4saJKTvUwhIgNEVotVrJA2Zx19aiAwHS4jdFANJmCmGud3l9cmMkpIelUQ3NM210ebqjIaJLJSA5w4nrcMaKBAC/eEyZHu7PaYnvCZPpzH53hyoULZinXhXdl4oW2X0rV9EiuYdlQlqE/SnrjCmPHpZP82PWEwlpyTZcsu8XLbmGVwI4RBojLTstKGazQnS527S6i7l72LxIzYq0jMNmyE7voxmzHo2EZznGBDDU9E67ZSfWRzUtc+OklD3Wc03r5qNXnunY80XLyBYU1agVAE7TcsFq2bWXuojWkpTahcaKFpQodJVNMxBdogJMFtb7m05U02IoLqRzl9IZKK8pTonD/vbaJoIfVC/pT0gEzYJvihaeHuaOj7saqRvz7Q9voGMVAdrikLeWtag1f085fkrY35cRZ5vrWuj4gkgeIH3ImUwPm2taRLF/egJzcl60PPpQWbTQ3xtfoymOUpFQc414oCCLtKhUvbSkXyvkzW/pDRJNoKBu2y5n+f1rIljqHpZSwI+nM/vfjdBfS0Y4DYn2/eDfMkXT4gv9E+hhY7z+JtDtUAFxnr0eCQkp/73XKe3jU5/9AN2X6GGCEUouTnvoHpaZfibsHzmSWTpMFh8/p6UyPj6Ae74WLbxiSEtWy2NMD0vUmdH4pb/5IjzzdR+G3/vH24P/RhsnliZZB9KC84rE34BalnPDiYdz6larVeYLqZplPFgz9tuFdPv4eoQbXqlI7m6IPV+0uDkt1ZPHDSLqlpEWXjQe20A8Gz3lJqXuRCn6jmBifeQz03PE6WGOL4+vSRcGu8661nHBx/ARsviDbIX4+wfedeIw31mn3bKWmOXx04TyMStsWmRWuf7UsEUmSvjxPZ66aB/fGMGL3vQx+C/v+YL375JIHiAtIS+Kwi7alB62ZYsWPzGix0/RtJjfwhSpdFPA38NOBs1RNyeuaOGc3JIpogmD0WzjhbE8ThVqAuj0knBCuWm8aM+ze7ZMJ1G7nqoT4p2It20L3tQJ9ykuRT49LL4nmN8Kd06lPSHQhKQiLfP1y/xWVZGWXB3sIUEnU9kJqUEtj08XPSxLURTTtCyYkHMFBT5+jsRUK1q0Idc0iqKAd/7z3QAA8Oefvif4b5vE8niQ+T4FEOhhicc31DAT2vpuUJDU/WMTObTF7j/ahEhZ3ze9vSMvffNMRlO0MHahqe4PZgO5YF8a0kI1LTtBWrhNk/KXUzrqgeYkwlEPLTR11MG6Y1l4P73zO+i1VYtO8wC3WoS+lcAlNQvFoWXZrQMXLThSkRa6sNG/2/uBdOJSKCipwRVGWPeTuvn/yNs/CTfefwr++Lq7va6T5B4GkEYj2BxNrd3uPuIeZhIxp0Gg31PaplAUhe2MXYyKFrzh4qSSPj8pCzwV3nObGn3+8bm0c+A5KstI5xUgLaQpAlBNiL9MDAi4Lqc8lyPe6Wu13G+sdVBZOlbCprzS74rUOf/4bn2xouLE60nZE0yit4Kc3mKdU2pskEqpPDzfc2KOlRYZz+weFBoz5D1+nfQwToiPmQCLUmel4ZK5RObr23zRklMPsk5maAG4Z39WpCP12E3x2IbfzBshAfvyApqWh9a24ZffeyPc8cgG+99xA7WqIQWltalFC3kWUhsQGGlJsTwGSLO032aQlkbTcg4ERUEA0iefG95nHGnxO6EpyXVRFGT2irxpOpGs3/UCqK45SdW0xDaRCemUpWha8GKvTW+3SVq77SMhCcWgSYQNXYVbWKb2+H7RkmImAOBsdk2ERYtxrOOT8RwbP0dJardbSYgXjvtPuE7TUSREpBOxcaQk5AZlabdcUWJ4zVbTIgxpSxXib42n9r69+OCSu3b0PtzRpYPmkibWz4sW871ybk42gaxIDxtPC7upLykbmy2K0P2UIgalHWFLUdCE+BU25m3k1pWSLGBNi/b80+tf6raTZvd4U6Xnx9fnxqDXJ1ASNxHVJYbkUJ1TShIC4BLWw3OkOBVpqWITnhK0iM19/MDyuAbnwyVG01KeY7HPYDUtdLhk4uwhLYqigHVGJA/gCtS8SEuIRgGkfwbsdre+PfEaRnitNN/VThDBH/zd6+Ad194J//93f4H97xgVrFqcxhqQ+Fqp3i/unumYBjHzGkkCoP0O2MQlt1HGmYw9X7RMGOedVKcVDmnhYFPjVEEnYmvJaSmiL/+Mh49xlsEUaUmhhw1JURGD9yWOsTxc0qfdpfA8PWRJoWJxcynKc+jf6xTNR9GEb+Y7oEiLKxz1++I4mdWxQRJZzvyhvP58Gz/nHobPmbLpDCdTzzEFT5eXpj4DYKqFnBAaEeJqv2uLBUcPKze3bUJJtMdP/J5Ml6/XaVnNQ/m5UNHCFHdVfodTW8ZCe74GMI0Lcw6uMZJC3wLw6WH0PQ65wwV8PMmzm5pNPOWNM6CHphRFyK4ZJyMStQQXws6iU75+bqBuWlGEp0orr7fX00las4cTlyTE+P9U55hKHbJIi73f0oqW1O5vakhISzb3MEEHWtdgXH9g32JFRQxpWeT4HkK9xNPDsgyXJNRdAH+NTNXNPLTmkIrRdGbXSwBX5Pc6LXvtVZGWoiishvQzdx1nX8MhuACJmkhSpGwyGtiwoEhrPm4gTWesyRE0jRLcG9kmcDNccvcH7tqbSL3p1udd1gvnRUtR8Is2nVidYp1LufbapkwHRaa4Ew3HfhJi3Iam0usr0hkCSlwC0oITbW1miUSviiFYeIM/sCQLg00HBm9k5d/TkBaz0JnCaIuI+TiL2vL6823MXDIOAMlD7AAAHjjpQ+MYaZGoWwB484xTafCmiOlhZXJb/vtONS1Gz3JopT9HUsp/x4kkpzdJnckBALA2XwNMEjmazoIO3mga3k8p5zD3aynUbosbG4fcOfeteJMgZbCbff4J3SipKOp1fGpiAmU1hYrJTYnWP29YFKUcf9BrJxWZDhmM089GQSMr/nsB4OG4c6RFoIfRplR29zCqacloIoK74LSznIUexhQV/sC+nRdevrGHvzbmEOKbdbPd4pCcfEUL5x7Wabu8IhlpIZq/Rzbc3zH11UTVz4AbhAdXeuxrOCt1gJ0VLZwEYKdOfRvIPbOqpiVFY4f3ttxNhTMZe75oodQt/Of0DaRv/427qQN6WMocFZRgm+FvALrlcRWhbyB0TNW0JIqVJ7ZoMZS49E5lubjIBYJEr4rRw/yixSEttPNrzhkgLYkbs6GHXXqwdKyiiQVXKAPgRLMeehgAJNFoTNx/wi9a8IwIiboFkObnv0HsjgF89zCMWASalsTPYJzDDi33oNVqsboHzRo65Tta2/aRFgBmjso0PEfKvYRF+Pj9Ij2M0+UlPm/4/bx7mEMpkq8fdbQxCiR9r5xgNr3JEW8oYGOHlOK96vVUGY5JZ3elcu03hjujh6UUsVWCDkzNOZyRWsji/88ixJ+Ea1cbJeSLfAa8x0i01kWKijXU7MHUaO/4NQnxAaoXFXQY6iPo71tIk2aianGNNSePrA9ZZNO3Uq9WnFILew1JD0TykWfNauD63ej3StGclCLEQ6Iz0zfPZOz5ooUOKQRI018AOLHaoZW+6+IyN7VID9M2ZJT0t7ElJvMgjEkBgs8hWh6TTlkM/XFFDrWF5Y8fOKZFCrWiKPzOgKLhcZ+XRyqkjW0bPfi4e08/g6UMivQwXTxtE9kDJrHwv9MJUyiXf8+3MXOFLEC1hPxhYtWMrZtVpMUkYMrGxtEPsHuY2XxardBlLXVjMyJ8Qw1bYrrfeNJwcP0VihbT+QYINzaOHpaSYFCaiYQw0QYBQCIdk6wBGoUgoANV0KiVk6hRsiAgcJxbl+7uFSItqqUyg7Skvd5d/3RWsLMa8PWUGhhTIAv0MHNPkO8zXYhfNsokpEXs/lYYqqcFHZiaal6TElzRYo6fIyGX9Hg5igrz7HfbLQiR+jSEWAupmADIi7RwSDhAddtj6qR5FInxN4ndMT5+6u+Mi6KiCMX+AL5TX6eirjNAWpjneUiaUv3Efdxa/g+6zi01UYifgszivFNzn91t0RQtHLVi/ufYEL4hgjfNw8bd1NShzNxwRcEPKyqP7XeytM7pTtCioAipKMTX6FtFUQQUqNhDNpk50bHfOZWLNJEeJnVyESUOJ6l08TKJWDfYdBIg2enMvv+C+ZRu2g01G3uAFGV0yBlNwmQcnzOly0Tny+AFfBvx/WmkdF23kEjbBKaHWSSn2wk6iqmaFrrxcs8o1YMBuOe/Cj3s4EpPtKHliuyUAtUl/X63ObQ8DulnqcMZAdJsd6nYNKXxso2QItwAkCiZ5ryehiSBQpu6KXOC3JSiDncqATTdn3vmYu5hdO5VSiE+mXJzbxLX68yWxNRIICc9jM69AMg7w0rS4+Vw9+IoTyZyFBWScxg+fo79Yz2CtKRqWmgRsYbcFll6WMXCMcXdK0SU0ylu9Hjc5w5RkMT9yTTu8JwWKXehhVHCb80hLY2m5RwILeHH/50L3FnTNinXaS2P20HHjw1zTOEwulkz6fSQkJOsb/rBg690WqczZyJA4cyZUKhJU2W56zF8cNrJig3t9ObAKE4orpDlkZAUHj8AwPmrvFiW64yXf48ngjgePLUNn7rzWJINtglHs4gvXljDAuBQBW6KvH+O+ObPiVV9ehgvwgdI74iac9gZAMwzytLDKgyvNO5hB5Z6dpgc/b25c6QUXttkU5ctj0MkpxI9rBffbMO5IlXoYZ3o/AL8W2KkQkMG8PeasilzglytyMFrcIpduL8f6MkdNU9I0VHi3z0290aac5JyT09nBXzmruOBnTd3/HC2UQaUeOyuPXT0y0EP45GWHEm/Wf8HTNGSQ1ckDZYESKPlpkQ5Q8vNEMERK8Zp0KLFsFMAnNZzBSEtVdGohwn97OQmV7RIzZn0osU8b1xTOmwQpN2rlh426EbXU7EJoa0XKAfIPfz1TMaeL1ocPSykbuD/zgXe9A1NhruppeGS5fElVMDfFCykyVyPRXKYmSUicmJoMeSaUpGWjtJpxf9GzQek99CiResMyvStiBAfUZo67RaYt4dIyyy4ZgD3/Wrom4F8+522XejoVN0xU2SWf09PlkeTGbzoTR+HH3jrP8Hvf/wO779hu2ya9FshZUrRMhdNGs2WSWK4KfI4UooKmpADOG7zFtK0aMMrYxubm0PiIy2cEH8n0+oBXCG3f6lrv4ugaGGKCnuOBJ99Sw8TaHecm141tz6/KNJ0c1XcqGhHW6Mm4t9kEHn+6Xt8znYhu5NheliEzoSfoV6n5TWy4kVL3EiAUgYxMia7q7lj7RsYy3b9+K7JlE4PufraO+H73nIt/NQfflp8TUB5zul8yGjAcuo1pBlTOSh01jGvH6ZWOYT4EgICsHMkp0Q53XuGE2cmgjWHOzmHKVrMHrKB3Lc4elhlzUwS0uLvhVUKbHM8M5w4xR2y+nDJTrRpIWlaUpocvU5bXXt3W+z5osUiLUzCD5C26fuVbPj60EkrXhRRrr25Safs8U0SHCYtoruX2XQSiiIAZhNUkiK8sVB6GIDEmXe/g3FLKo+vaFoo9SnSPXVzHchcCrJATgV6mENy5HvCTvgddBzdacQXRbToqpJY3PLQmhXGf+LWR8jxkV12h9+YU85h7I6vuHAVAFyCjpMnrqhI6fhxU6MxPWxRzQwAErLPEwizaeHfm6WHVXIPixctvBA//hnMfWOOK02LZmdNpQjNqS5BocfImpZ4UWHXDCVpM79Dp92CbmJn0HMPQ2uqqONDAmy7PgrfP0WLY/Q2AEo/rWaEgtca6TObZ6LXadnnQrp+SYifkvRf8+UHAQDgutuPeeYb3PV3KyRRqcE5+p0OeljMwSnp2MRGHEcVWpKJ2x5eh+tuP2r/rmladqKZObk1hn/53/4BvuFX/hd88b6TAODWNIDSjhdHVTTHaFouO3/Fu36AmHtYmmaGCv25YatUw7QTpOVRB2SL8YA6m+gyujFyQvzYNe3EWMNHovM9n2c69nzRwk2TTplzAuD7/kvUnqIoArE/3gBFi2GSUGh0rAnZQPDnka6fivfNtXFzYADC7pcmxMcPhkkmvE6lgrSEx+c6Gzw9LOYIRB2vpIVCpofFIVk7pbvXsYtxSA+T6G3pvFOzwQBAMAkYJ+WBe1iFjovpkl1+QVm0GCcVk4y2WyHFDQAXFXEaHS5KMD3MFRwcDSLtMzh6WHkMk0hgcfTi7mGOHuZ+b/99nBA/5TMEQvwun/Ts1AFRcg/Tigo7pyWl0yeIwTkr7GC9q2Lp2WlH1xd6jtjcAvyM9+Y0pViiwLmNiUYlRIifMj8CU/RiSJ005yQlacGUmy8fOcVfP0H3cg6XpF3l8jzpjYRYbJMkNjzHAkXLJGzG0OOnJvz3ndiCb//Nj8IP/d518Pl7TwCA7x5GYydIy2fvOg73ndiCjdEU/teXymJ1A01qb5M90DZ+lKGsOMwe8lXnlUXLOi5arHtYSA9L/Z0p/Yxz0wvoYRXov7Zo2b80P1a65bE2kwoA5Qp9R1eVkOVwgGX8t8bFfy8Bud4tseeLFm7DT5lzQt2uekLnztv85jdcu92ybmPR4Y8JdAxbFKEFphO5/hHZdDqRLr/kFsN1Nc132mm37KKH0SWuUAs7uXIBwqFj5nz4v9OgQ8UkpxJzzpAeplM+AHzI2ySxkjA7dA+LU1xM3PawK1TuP7HlfWbOfcd+hgobsxHiXz5HWk7NO3C4U0lF8gC4GydvbJymBQ+XdNQuBmlJhd/nnSzzO3BIC90M8PFTNn+HtPREiqh5Zjl3P40eRjvO1mEmQFrCJM9SFJTCETddAPRChA4rTaEDhdevFUU+spzyG+M5KrgglJLCbc89TE+O8DEoVz1K4UhwM6P3RAr6zhdFegFl7pkqlsRY3My5MeHj0OvP4h6m0MOyzGlhLI9zncOioxwCXZEe9p7r7wOA0rDnTz95DwBE3MN2cP23Pbxu/3zjvBG2rhVGFQqv6cw5aV56aMm7foCIe1hi4WX2JOMQybnpUSfN1MKoKAo31iJheDBtAAPoVHJMU4xRE4P1NwFJxwwfs97FzKV2Q+zpogWjINLMjxi8D2A0GPyijd+PKQwxekUV4SunkYgdnzpwxSxMg86dUrlzHPsOKtS491DOvGo8MAs3NYC4rbKjHOkTwA3aJE6s12xekY3hErLw9a+fv+dw0hlbWHBiMSt8P3nzeQzVjv0MSe5hlB5WnoN+jzRSZk6YxX+ZKVo2x1PYGjvonEZlTQsV4jNzWrALWhVDBNwtG0hIC5eEJVDcqAOcPKclpIemDVvk0Q0VaangHhaIwRWkQqJLJc0h6PhFS7TxguhhsfURwK11sT2B07QkC+U9zYx0fFd0uaJUOL6IXOv39PZ4ahNBgHBOhbvGeaOsBvcwDv3MqZmhzSsTBi2q4lz1ka885H1me2wNaUk8/rW3Odrv9XcfB4CYe1h1+tmtD7mixaBqWmFkh6YyyTuNdXQfmZllnhDf0sPceapS9E4RJIRHWnzDkWTNyWhqKaLGCVSjh9GGS3mOtKZUbL0W6WHCZ5jNXG5L3Q93u4PYni5a8IYbzIKIUY2I201MJAsQJvEAcSQkpZPFuVHF6BuUBx+bTUM7dxrdwB5bsPTlEnIK4WpJy1hyD4t8p9u0EBQ6X+acYcIfR1o2UHd/peeScBySexguOmMJM500jBMN2rXGkdpNHE6mlorg6GEGaeHpFSZSbCs5pMVs9EUBcGLuAqPRLGKfYXvsCgp8vTmF+HgWyZKArLFzWhI0IaEtLp+4scMlk+acSPQwGWkJhOMJSEgKPYyuRykUPXx83BRJSfqtrXWks8k5WMlrJDp+RDNjv895otlqtaJrMEY4HcUljvrga4/d04Ebk1C0BMMxMyIh+jO5eJc4F9LyY2//FPzo2z8Ff/GZe+2/uUQ8XBsHCc0cE0VRwPV3n7B/v+vo5rzzPxdvs+5h+qwPLu45vmn/fOTUNgwnUzRDa2d6RRPGuGWp17ZIyEYqPSwZaSnPcZGgOaFW6vgcsc9gvod2yyE57JwWoUEAoNOx8Pti67VE90xFin2ddoO07NrAPx6l6nRs115HQgDmnT4hCTE3VavlJ8E9hV5VHp+3I2WRFqZzH9sAA3g/pmmpgoQQFMeERq+QLf3krqxkSSxv+n6HzXx2SYgfambiAjvcebfCbIK0jBhkjH6e2Mb50JrvmsIhLVxRkTr4CosxH33e8vy6Z7A9xnoTHmlJ2RRY9zD0Z0NLWWHOERM5m9gc+edYYpAQ2hwor19POHHg4kuyPOaQx6pCc/z/kkW3r5mJHz+YBaUkbZTSmIKEhOipfPzQ6CN+nwbHj1CUMFoUm1rN/2Z6YsEjLfr665snxJAc14yI8eZFlCvyzNC5F3gd4K8//X5IDc4cw61bacnsic0R/Pmn7maTzJimJUXIfmp7DF+aIxN/d+MDwbF36qpo4ujGyBOVb80RsPVhuc5z1K0qWg0TD5x0v3dRAHz2rhNwfGM+lHe5H7y+Cn0L28EbJ811jx42b/Ax7mHSvBIcs5mjbxl3L8pqoFbqAOnr+8a8QFztO5MVfU7LvChCeZiOpLv1IrZeSxS0FCZQr9NKop/ultjTRQvesAJ9QcRrG1e+rVZLhN/x5oT5/6YoitKxLNIioxTchPVU32/qaJYygwBAL4rEokJ5j9T11TQttCiKCWUDpEVYKCRNi92YE+hhK/2uLTjFuRpUM5NAcTFhkBbzmdc8pCXsVLrP0GKviYYdzNjvwP5B13axT22P1QFq+Lwq0mKE+GjD6nYc7cU4l3HnSO3GhfSwEGnhvqvU5GU6c7q2ZTT7RxLKV6W70KJF0mBpRVESPcwW8fLzMyWNkSpIkd3MFU4/TeJTCt9gQG5kzeMtiSNNHfybJRp9YI2NWFQo910KvS1myy8jLfo9fYLMueDoNvg4tOmVSj15eG0YdSbjnpdUZ6zXfeDL8It/9QX4//3l54P/JloeJ7oSAgDceN8p++d7j28Fx9bWrRSU4v4T5TEv2j+Ag/NBog+d2raJ9H5Nb1IBaXlwvo989QWlUP6uoxvW8eu8Vblo4QTpNAwyf2C5Z13IWE2LMFwyputcG04sfeuiueaE3q/USh2gAtJi56h0RGdIgHCtaLfjqGl5bSHSEjP5oA0aMX/EutYORVoWR0PPZOzpooVzubJ/j9jWpdrojYUENVnT0ovTpbhZMzFhJE10Yg8Z5dfrlsQ8UqGhV1XcwyZkw7THjxSaAdIidq75oiulW4mRFmkTsZoWiu5FdD8mxtNZSN1Cg+C0oiU2P8KEKYJWB11ot1t2k1zbnqgbc3mOeEJudTHkGk2BYUwAdBcefVOj9ANu4J+aPEYSMLwhekUL+dy6G5JSVATdcj6pGjPPfw81UVLmlgC4NYanb/FISxX3MM1hytKNur5+RC26xmTNiAxcG07c8x9v6sjfqfge9Hv1I0UFZ56Qmrgsdf3jpyBXGFnSksG1ISlaGGEzgLsHzX2QiuAClAMAX/Bb/wgv/O2PeUksvfY+ozNLRRHe9emSsvXeG+4PPq/7HonlcYVz3Pzgmv3zHY9s2PdIdsoA1YT4BgG55OCStdt94NR2mntY4ne0PpxYpOJrD+8DAICN0dQWrufNKVHsOSohLV17vRhpofRdACD3tX4vGXbBUq9tC7uwaCmv01ipA6ShuACocTfoqsNiNQdKnZ7rnlHcVOCbHHQERgRpIfTWNppL1wjxd3GYzafdgsDaL0YfkKas0gdBQgWqalq0ziY7ayZC97KFBaV7iUWOv4mrwx8lzYZSVISfV15YqPOZCTf8UUBaqBBfKlokc4aEOSqbaMqvc6uS3MOYoiJhmi7e6C85VFK3eHqYpgdJW7ANd/rAfFM4tTVWN+byvPHNWaKYGfGn6cJy9LDUBIbqZgYMxM9Pq0/ruOKEDk9Bp/fTiCniU8wKRHoYbYxMwvspZe5HlUnRzqGwfE1Hef6l6zfH1ykWfhKsuZ/RjnwsKcR0OPMsS4UvNxA0RoHClF5TfEnXw90TMXTf0pp6HW/t476j4LuZnyfmHrRO6GAS0kLX4CpDa//p9kfg2MYIHl4bwvs/fyQ8Nlvkpwv96fNnUFuAUisiCvEr0Kuwzfx0VsCRE2WRwWn16GdISfgfmNP0Lj64ZKlPD5zcTnIPi1nt2nPMC6P9g67VhGwMJw5pWdGQloSiZb4nHVju2etNHS4JEP8djN7qwFLPHoMiIdT1FAD9Domaln2DrlqUs3OFUoxKMN0zQt8K6Z56LsIOHM7o8HcmY08XLVYLoiSPMXtLypNMGfwGoFsGA/hUA3yN2lwUzj0sxqk2D0EnkvDTQsQOu1QeMEkozwrxCbJkNn21SAuQlkin1SbbJDES6FsdWnRFClkAvBC7hY4u8FaDQAplfA5d7O8Wu/Pn3TBMD+N0GiZifvAm6OTl/UvzomV7om7M5Tni3Tg66NOEOZ+hLXDuYam8alq8GVQHzxiwOgGm4x0r7LYQ2tput+x5AnoY54YU0S/g41Cxc3A/GTc9dL/GOvEA4Yau0cMsZbJjROlxfRc1hNDNO/zPqjVFTIwkm/RYkYaRloimpYpBA0c/K1+fSg+LoPtoz8GoLJd8SRO0AfRE6hQpWjg6DACniUxHWu466sTf191xlLn2UHNSRYhvqFUmsNh8PC3AfPyBIMRPoaDdTmZjPbxOi5Zw7U1p5pg4YpGWZbh4XrQ8eGo74h6WVpiaMEXLow4uOfrWCBctiyItzg7eIC0boynM5tfG0sPQbx47h0VylnvejC8cFE0GSL9XjenBSr+jUltZXWTCb+0hLbEmh5Bvpg6jBECN7EaIv3tD0hYAYLpUbIOiizYtWvhzdCPIhplxEXCG2S5oeI7Yg0l1J7ENn4r9NacurojCnyHlwcddR9o1kuhhWiEFECbK0oPvkBaJHqYhLUa812E7+wAuEeOK5VixCeDrTSwCgulhY9k9zE1ijy3Y/uZ4YMnQw8YVhPhal7z8bwOyuRvBpnEx0gStKQ5oAO4Z5SyJNXpYrGNpbZv7BLmj9DCmiK8yhyQmZLfGDm18fMxhjtOlAHR6GF0rY6gAvn7rfpaAFlcZhihSSkVNG3b3iqx3Wrdf3BPQHJiIqQYnxI+hV/j45bBL+R6idD58P2gdZjuXYl/ZZecmjE9nLvGv4iZn4j5UVNDBuPj62KIlQm8DALj/pF+0HENIyzajcaDnSEnIb0fzTQCcFihJ05KCtJiC4oBDWh48NQwQcO74AGmIl0VzDizBiqFvbU+sEJ/XtMiCdBpriB6GiyzjpunoYe6/dZAeJPYZrGZmqWvXYEpnpGgyAKIyRhp3m2gP1JBEtkCINKWKovDQUK3JMZnO7POW6h7GUcRT0PHdEHu6aOHmm5iIbZrBMDRBExKjh6UiLRrcqM1pkelh/nUlu40Rzrm2YfYpUqEiLb5bmjagiYM+8d+ljZMKMKXuHRUdu+uPJ5rYEUUSFXJuT+4zxBdUPPxrxQockY0vs+mbSOVt0wFjFmnZmqi2ngC4GyeLNc1/o9+B2YzNZ+Ddw9yzMFM6is7adF60MCJS7rtKnZdDi2BJw0SfHYC0Aphem4Qw0enqABDtxAMoFFdy781QktqlSWqKED8QwCrIQ4UkWJoSzX2nRVF4nzd1DhfugMY1M+7ztlot9Vlzn5cxT4hYttM5U0nGBph+otxzJtE8rMy98Gz8E35bGtihjLNU1lCoFBTBULVM4AGZ5pltteSiJcVK3RReT7rkAACERYvqHpbwHXmaloPlb3H/iS1YH8WRFoC0wuhBREEziP2xjZFKD7PuXkn0MCfEX+q1rabCFF4cPQwgnUbHIS0BPYzMaAFIs4MH8PdA7d7QzFxkpkthTQQGnY7a5OAG3caMULimiPlzo2nZxWERCpL84n+LDfuh06TT6WFpok7TpdSKCk5DEqvETaedJgnSDT0h3dyUIioQ4ic4jpnPq9EZLEok0cNilqemMBIgXAlpiaFjAFiI3/UWSnxfSJof7xwammO8+gddu1jj5ILb9O3xE7sthoZgBPgHlsv/P7U9ThDix7vw0j1iiiMT0c05Bano+EJ8Dmnx6QN4A5E/A57Rgq8rQNbIdQDI6wV7/USzMSv8dYNDWlutFtJHpaHFMeQRwD1jiyAh3JpHNR4p/OuAAqWsqfh7xu5eMXoFp2mJunvR71MxNuC6sylIjnd88hm8InN+TOxopCXl5rk/bNyYGKSFmz2WUsSaeAjNguGGV2roZ3n+SNFCkZZNV7Tg3wi7eQLoRhE4Hl4bQlGU1/fYw6URyoktU7SU7+XWxpRmjglTUDzqwJKlh930wBoURVlwcdStbkKjAocpjC5GaM5Da8OkoqWq5XGr1QrE+JvMnBYAX5ujHn/+ne9f6okzsjhNS8pgXADXCFzpd12jLEGPC5Bu2gFQrkclcsrff9QJDCCe33HPUMrzvxtibxctDK3CRGpXjSbZkhA/tP/VH5xA45E0pwV17SpW4jE6HKUbaAUIfa29JmXTDzQ8SueB6yLgv0uFF+Vhy5oWn78fXr/80OPuPl7E8MLDzdUxkYLmmEV/pd+xC/62p9OQkRZn6xlbsAnSgoSUnF0xjhTNCeeeBBAWKeczFAX8Hq3jR4tU8yzhDSOWIGkbp/0eIsYObNc+Iemn35GUuHGi7vLv8iY1mc7scxII8cm9gdcEKrxOordFnrfynD5aVHW4JIBuSU6HAZvrnxXAonVcUR1DKR3y41s8s5QSZg2Lo/vk+AKdDzckekxRpH2nRhtnLGR5i1d3vp6lC8fvZxN4MO7JrXHo7sUmgejejxRGD5EBmccR0jKcyEhIqvuWScYPLvdsYn9ynuibNYHSXgHw/RP/jkwRdP5q3xYtBt05b6XPskMwZTClqDCzvh51YGCF+A+e2objxj1sNSyMqlkeGySkXNOpGF9qfqW6rJmiZ9+gI+45LD3MGC5EvqNNi2p1IvSwkI4da0qxhYjwDJnXtlsY6U5bi7xnKMLu2S2xp4sWKbkGSBDKE9hR6tJY/QVJILsRZCPQeCgLnpvTElbVsTkwLgnRNx1qq5yksRGRFnkT5xI0ek2SkD22KY/IbyGZJ0yZzrV/fIWSZHnzHa9owEkTN1fHRMzFDcAvKJYYLm+Ke1iUz2u6YPOpyPuspmWC7IpjSEtC0UKeiwNL8aLF4+cLG4+flLe9/8eJGDcTwnNmUj6DNKxUsjz2E+B4AklpBxL9Qxrm6pDESBJPGgU0KcTvt0irvY/i9LzQpjPerUwp6sLhlXIyYpoirVZ5jm4kCdYsiWPDH933KT8H3D0R1cxQynCk6QLg08JSkmZjqXtYmHuBz9dpt6zrplag4SiKwhuMO54WwTk0ehhAPNk0ybJBI4569LB5U0lzVow0dLCWwkxKN0XGZgJ9K5aMF0XhJfzG8tiE0RtxMahQGBntyvmrA7hoTge89/iW/f5zIi0ArgG2vj2Boig8p03vHImF14Z9f1e8LlaIn+iilUoP40XvsQaEoUejZ0jIR3j6mY7kcPtrbDbgbok9XrTI2oJUH2wqxE8dVBgrKsINUN7QHGKU3skN3HqUhGI2K4Ip8eqcFmbGQeya6IOvzSxxc07I8SOdBKqjkDapsf3NeCQnaWAf4bX7Sab5friiJb6x4Y2xKj2slwgR0wGS+wblxrM+nMDWqHyvJMRP2diGNmnzv4MUpKXVakW7ohwPmBORuunb7rNgqF5LmreopoVxJ8PXUnVOS4AkoGdiOHXnkMw+UnjY+LokuiR+nqxxB2q6SMJoWhCq7mH2s+4cydGeTypi9+aoaEVUBVqJ5Mam6v5YJETQtEz4+00rWnBjJMWZ0BTi588TVo4eNmKeXYvsR9aVteEk+HxU18KtX61WSx1OjMO4Vl1+YUndOs5oWjgkJFXTsoa0FGY+iNG0bCB6sHT8mBZvazy1n3H/Ug8u2Dfw8ocLVgfSW13xmFBUHN0oEanzVnu2SDXR77RZPWEVIT7WtACARw8bTpy4nO4jqcUdnsMlXRdF2wHSf2dneNNF15S2VsSaUtrsrgBp4RooESo8e/wKaOjZHHu6aJGGCAKkQ/Uxvrbp2ovT4RNvarVIYJL4eCXuow6acB8XDXa4nKKNGAtaIW3T4WBc6SGb2qLCP0ZUx0OKVGnxcgWaoGmp0P3lfO1VelhCh3kdcW25ooWz8TWhdd9xBEXLkuuSpQ6X1LquEsXvEClSDjHcbQDXUZQ25yHSrZjvgZubIxV4KTQ9KvQX56gwaGvsXsXHMdfvO0a599kimCItSuKP7xHT6ZNmEXDzrHAHP5VXXUk4XgHJsQN4laSfri/dCJrGJuaRNTXQCCnJF50oX15TZM8JkBb+OfPWa0wZTtAKmGfbOEdh/Ze79vDZNdc+K3T6iUkEe50WXDA/h0luTYjPZKKA2hQVl85nWK15Aw1lpCUVRTBF0YGlHhyaF3cWabHdefn4APpvYCh67VbpENlpt+CKeQEGAHDhfrloSUUpAMDSwM5f7cNSr+Otteet9gLND/4MKcc3g0oNer5v4GyJMdpN9xFtnhMOLOSvQg9LdbozBegqcg+bMgUndUkESHf3wrbbojukfR7cayW3Wnp8TtOSojs7m2NPFy3cJGkTMU0IHlQGoOgjdoy0+BuUPiE+3GC1408Z5ETbMDm6gUZv44bdAUTcw1iIlS8SpgIS0kksBKPC4yn/m6UksnTGALfIa0L8FEGrGzDWgeV+efxtBmnhuokpHWx8PNMF24+6ZLSgoZGysZnFnOpunnjxfu/vHMUt5RzmfuqiScgmURlGLI8B0gov+l5u48TPGifUrIK0APDFGrUvt+dQkmYuKZd421xTBCf9MbMSKpTnGh1Ux1AJyUlBWsZ+ou1r5mRdHue+I7k/OTRH15yU/8YdP7LnBEJ8PjHCyDtOPFMmgZuk/vy5nmE0nTE2/vL9XP53+Z7Gc0YMShEgLYLeLbVDboogowXBaBG1+faPn7Y24qGJh8xnmGtaNgRxOT4+gL6u4OOb3+9pjz5o//uj58UYF6m6nOmsgBPzazZo9kWoGOKoYQDpInkA9zsYcxU8C8YUHJSq6X2GSNFikZZeRzRBGU7Ceyl15o/bA9teQ4iuXxqdsRLSIgw35Z0G9QYqxyKKDTTfLbGni5YUFyexi2hFl2YTnD8IMz7Bpl31mGic0lY0lIIzFNA6lZz7S8rxATDSIj/43KaG38tqWriiRUhybNFCfraYA5rUzaUL8ERAx1L0JrSDwgkXVavtlDktI6RpYYZqcUJWE5oLCg4qMt+Hi5aIED8mWOaKZhPfcNkh++cL9ykdxcjGxib880QFz2qQUKkUisKQdMC4ooWzhwVISyC5z8AXwfx3qSXN7PBE4d7g5lmlOKwFlsSKCYSllJrX7gDJ0dbsMbkWn24kowmcpoVriviWyvEiiqeHpXVnA8t28gzIRijxpNw0JExBAcAhh3JBB6Cvj1gnIDk+cY5+AAgJjNDDDNJiihZDpwVwRRkdLIk/Q6oQX9O0sPQwfE8rCbkbyuiOgdfFpz/mEEiRahd8cmts6VmmQLkUFUOXCoURh1ZzMZsViEZXfg5DD9scTkW74/IzpBUV9rsedN3aO515SIg2ZDE652vscjB/WC+PtHBC/FgDwnuP8PxbPfEOhP7cNe12IX74ZO2h0JPHSFFBBvj1BEcKqWufjLSQoogtQmbhJqV11P2ixd/wNZE8Pq62gY+FpL+jcCq5QkFK7GzREiA5fOFoP0cg3NXRsXA4ZjzRpL8bm2QK30/qOTaYOS1eN3EcLlj2+O20jZmiKdSuEsBNmKeh8X/Lf+cTeYDyN7nu1d8OH77pQfiup1wsXp/rKPKbJyfAtAUkRloEQ4AqRUXwW0/D45fHrEbVUYfsoffF3PT4JkFY6EgWyRxa7M/9SNs4U4ZL0vXIvL7P9NcCXaGyvnCznXqdNkxmU+H1IaVPs3mfzNDcBYu+y2swNULBf47NmXKaGf336pFGWQol0ZzjALIeH01mgBvvbsZXuN9o1w/gD601aAd1KFuUHmaSfjPfBDd0UuaopCI5B5Z7tmg5vjGC0WRmv9tVpmhpt0ut3Hha6EgLEbADAHzvN1wKf/GZe2D/oAfPfcJh8b2mgRL7DMbWeD8SmT/5kgPwka88DAAAjzl/hX1fjJZrYmM0sUWR+RwGfdoY6RTjVKQFo1qUerfU7njHYAuKSFE0RHuDbwxEkBBNnyaYOnAOnzG6esdrGumfgXM0O1csj/d00aInj/oPHHTVhA1NOkeypiWimSn/LdRgaFQsz7Ky42/4ZgI9phXgeTbm37WijnZN7bkSzAR8nrRA37JIC685kQZq0kTBJtfU4nX+Olpo9hR6i4khSSw4gaA+XDKFHjbn2vY77FAtar3KHT9OD/O7uvuRpsXcW5IQP2a7KSXyJi4+uAQveeZXq9dnEjaJ98xxmbnfQurq2gSpAn3LoKIe0sII3vHx1eGMjEkAR4PgEuDyffHGhVe0CPQE7n5tt1vQbs1nxiQ2CbSkOTQ2SUdyAvcwtUggv8GY/435OS2aRsj9G3X3SqWHxZougeVxl79HJXfClKTcFPQrg679fcNhqTz1pNUqhz9qz8wGKlrM7xYULbFGgtIpns4KWxg5pAUVLUwzw0Ss2WICFxUHl8tqbm048Ro62to4nk5VhzI3f8SlZ4dW+vC+f/8c9boA3DMfHZzIoDmYgvZdT+UbRg5pSSsc+9223UNWkeWxNKOl/AxpxSMnxDfXZs65E+qWCbwmafc3T/U0z3I6EiLmOwz9Nz7SQqZwNkjLLg4teYw6xQjCzlyaFlGYqnQRMT1MSxCwZaW5DjqB3ut0MvQz+3m5AkSwDK4620X6DWRzA33TCZEW/TcLh0uW7zNTmelvCiDb1HKUIc1qO5UeVtk9LLHLRDthmB5mOqSx4ZKj6SwogAHkRL5KpGpaPHoYQ9WTihaJeoPDoDx2DglzTbigwN+D3ZiV5EXbcFPoYV0laeaQB+nek+7Xbqc97y6H39FsVtjniGpO9CJqvh5FkBxsaZ12fAZZUp4FrshR3djQ81fl8+L7zlqSpjbKhDVeYhDEGiLTmUMAluc6ge3xLByWaumC7vhmmGmpgZHvaSMy37fUhfb8eRgSsT/n6Od/3jiSAwDWKpijh7FzWpKRFkd7MjS6onADIfudNrv2ApTP8uZoKiLE5fW64cFVI1XTsk7mcAEAPO+JF8GLnnYJHN4/gGdecT5/fKYxw4Whhu1Hx3dIy9T+Jlxxl4q02GP0uvP1tfwdyvW9/F04+m+q5TFFK3p2vRPoWww9X9o/dKSFP34nMb8D4HVhseHbuyUqZwz33Xcf/PAP/zBccMEFsLy8DE972tPg05/+dB3XVntoyWOqU0yMaiRx981NJ0+g9zdxTcTq6Ewh55ylbzEJC07AaZHAfU+afR634eO/8+hPuBFKv4E5ZSiUT9O0BEmFpEMSNDn4WDh8Xjudku42KVcUyUiLbnns+MBLcyH+1nhqBcspRUsyPWx+fOseNpxYWJ7b+Ol5NYtImshXiXjREnZUlywqNYt+VykzLQKLWwYFkey/q1ge4+eUo3/I9LBqyIOUtIm6PEXYyVlOa2sqvR48wZ1rcnDHd+gVh/4ynU2NQmu+e0SB0sSv2MKbzi5JLqIi69eQUJtkeivfNNKQn/IzuDUKD8elRQs3LBVANk7B4c2YYjRm5fVJSAtPwcZhEtlepwWH5ijIeFrYY1ohvrY2RlEEh7T0u84a+P758McVxjksPIf8Hbn1fedFS6zwsjQ9hLQs9Trw31/yjfDL/8dTxHVZQmNpbDGalX1W0zLxUJLgM5j7LvEcq4OOOF6Aa0o5bV0EaSGIX18oRGxTl6N6JqLQ3nvEHDI8fowJxGta9M99tkelp+L48ePw7Gc/G573vOfBBz/4QTh8+DDccsstcN5559V1fbWGljwmz1EJNmRKNeKRlpjnPO2W6e5eYQKSQg9LFVLy9pwt77/518PTwxynkueE4+OWf+YTR/PQBd9pqmMHLTSlRSigh8nfEYCfSNkp7EwiqxpA2GJQXliGaD6IQTvKDlMJi3MJu/0MiXaPkhAfAODh+cRpbsMBACJanAXJh5TIV4mYiw3noIb/PJrOYNDtRKkoGhWQak64a5KOryGVJobMe2mxVhQO0aD3ky4EZ9aArrCGMZq58u9tAJgKc1G4okUuBHm6VAums4IvujAdi1J0lUYNOxdBaaKk2piyk7e1otEWRendU+ooKRWZrslE7rkIpQTr4pa6nVKsvj0J6WHMb+X+PlUbIiZZ3j/o2uOmalqkJhOODWwHj9anrdHUIkcAkqYlTgkFCOePHFruweZo6ooWoZkDkOa+ZW2ThfVVi1S7YEzTqxIxWq4J0/TCe8SKdQ+buhlX3O+QWFRQp7ZBtw3DiY8MssODE61/A/dDBqksioJtAHUjvzNvxcy/h9UURhgTXCNLy792U1S6Y3/9138dLrvsMnj7299u/+2KK67IflGnK3TrWf2mCO1z+RvOdSl5qpRU9QZ0CRU5Cc+hQaCsM44ipOSpW/L1S8PuNM0Jt9FKmywnTMPvTbUBlIWselEEMF9QibkVl0ix3XfNACLiWgfgUxwwRWt7PIWlXicJaak6p2XQbVsRqQnRFhOLIiczoLPQpES+SiTTw9B3jIu44WQGvXabLcgB0O+g0cMEKuCQoerRBC9GDyuKgv0daSLsTauvcA679jHuVZTWx60v5WeS71X8u9BNP3XYYq9TJiHaMNp2Czd2lOth0AEdiZKREM39kJu8TS2ScaLDcc5FdH/MN8okzQktMmNd+G30zLTbLTHBloYyJ+nx0PDFVqv8M50FI1ke26IuAWlZnYuzzZq1OZ7AQejpDZ1ElAKfA6AsXu4/uQ13H9u0f5ciBQnZHIcoRWqkUtzWd1i0pJoVcEL7VTunJU3TEiseqcV4iUJPWKSFa1ZI1uX0vUGOh9ZT3BTmjFZi+SM3uys0HprnRu0w/6qkmYmYS+2WqJQ1vPe974Vv+qZvgh/4gR+Aiy66CJ7+9KfD7/3e76nvGQ6HcOrUKe9/Z0skWc+KlnXmpjCaFv6GkzQtMWtb1z1te+/nnWvCxEilYjCJlEYP4xApFfkR5qhon3lik8f4gy8WLQq65CUKZhEShKzicEk82yHWXe74SAvnHkaLuvKccnfcxDaaNdDtOBqH2Qg41yl6/FS7R7Nxtlotb4NrteTNuTMXaUvnkRL5KiENEzPBd77bbqL8eMZSjEykFHfSIFF8XK5BABAX4uPzDhghvjkHfr90Dm7zd9cV6mwA/GdIoodpbl048TTFj+a+xU59Vr4jjf6Qiix1lWehKhLCinGFjjH+/FW49oEQX+LAS4V4ZM9xzlry2lVev3BPJ0zcxrMvqrqH9VOKIoO0zNcqkzSbfx+maFoU6lZ5vf4xjIPYnUfLouWgVrQkFF4adSoWvci6aGKnRUts3TWxNQq/Z4O0rA+n6DOG5+8LTqw4cFNnQNZfzmiFn/8WK4pIU4pZL/CzXGW4N1c8S8iseV6ruYdxRYvO7tktUSlruP322+Etb3kLPO5xj4O/+7u/g5/+6Z+Gl7/85XD11VeL77nyyivh4MGD9n+XXXbZwhedK7TkMTqdmDww0oI6VakVcf2FudE0KgPHqewoCQJnWenNLZDmNHCWyswGMhU6fR2l0uemxEtJV7QQVJKW8nP4nRN5kfAfj3IieZzX3u+6RM0UtZxweqdzWujGazZ/g45QrYV3/ATNzGTqEno8ORrznw8s9VgjAhPSsC987p2K8PHxq/jUt1ot+51sj6e+4xNxWkvpWNIunma6IBVF0uY/FgoqSs/ACVYVtygOSZAcu2Qhvvy8sZxthQ/PUQY1Uwq2yFGeHY4uIa130uv175MrovjPi39zzza4qhBf6NpzFvix6wcI7YAlNJPTWuHzpcw2GnQ7nsaMO37g6CcgVzgoCmKE5iZJ1pCWVD3INhlQaYqUu+dFC54sT8P83ppeQ5v1EotBwroF4NzDVqvSw+bf0azQO/ZbDFpkkRY0oFgrHjWkZTIrrKWybRoZZzNUBLMU20huZyLFuAf/mRvXIN2rmhVziqYwtj9xTanUYu1sj0pZw2w2g2/8xm+E173udfD0pz8dfuqnfgpe+tKXwlvf+lbxPa9+9avh5MmT9n/33HPPwhedKyQYHSBeKdvJ52ZivbCgxhLsVPewlLkrXMKv0clCcwBhk1U2cG7hms5Fzu0W3TTla+JsOiWx/8w+xPymzF2T11UPihYeydFog5qDEDsbBCeyQlIBAOKAPxx00zQbwxZBWlT3MGXD2UbXijcdPDfgPGVjxudJcYraSXCiSxxScoJtj73kMUjwKiRgZJDorHD3s5TgSYPETHj0KmVj42Yo2fcpmzOnS8B/xseVimzVfUuhJ1RN+rWioo854arwPSxydGRGu560ezqmOZGvR2qU+XtOT9gTOLdH7/hRpIUULcTpSto/Uswr8KwZ0xAJhPhSoZ+gddggHfxlNBsEADV0evLaGKMluc8wR1rmgv+7jm14f+ciBWnRqFOxSJ5xMgwtj1PCWyM0tIijh81/k83RVKeHJXyGEdNwYjWFCg1L+50590MOaeWaoeVr9fyRcw+UkFzNaCnVKRVAZ6LspqhUtFxyySXw5Cc/2fu3Jz3pSXD33XeL7xkMBnDgwAHvf2dLSIJFgPThj4FIK3EDiWlaqI2ptuFwQlzNvUKkrAhICJe0YFGXcWIyMbOFmn9eleKmdH5pUmHe3yZJmiY0GzNJYCyp4JAErZvLUpI4epj5rJx7WIJIkG6adFYLN9/DHj9Bq4EFuXhRxbSHg4Kehb6PnYGRUdMizmkRJl9j22Nc2FC3nJRBfLTbTwec4f8P+P9d/XceoXsQ34f0fuJmKNlzKJszl2TjP+N1zFl6Co0XhV7FJeU6vYrZmLmiYsKseZqbGXN8pwnR1kgOXa6KzPivN9fSahHKh9KYKooiKBYktE7SasYKcUd78tdHaknskHq+6aWaiEzMOTpxelhQFMXXRitin3f1V8nwXdfw2dkMq6IoRHqY+XcVaUlImBcpWlId0NYYy+OU4NY4LrasHXGItGyMJva/c58x5TvimjpmrfeGB7PrUPw+8k11ZLc+c6+3ybMcQ0JYzZxw/3GalthnGDI5XsqethuiUtbw7Gc/G77yla94/3bzzTfDV3/1V2e9qNMVEvcXoLqQKjadWERamONjRyCzEWj8br6oULqgQiIlFwl6ghMUOYKmRbU85sRmESQknKOiJFHM4iIt8NLxAXQKAee9zs0G0RC+2MLCbZrm/zctBSKlm5jAO+91vEQYFy3JSEviYL2qEevGSWJePBxNMyxIoYcZZI2uAfi6uMnqAD71iRb9+P1B4kY+t+bEliJ8x+/DFFF8/8nGFPPPwCKb4UTmFKTCSy4qrmGW0svR1Sq+fsjco44ynPZ9Smgjvhb8fGmUZPx7OE0ev1ZwVFt8/JimZTlAWoSiRZqTpXRyMXV1iUkyAWRNSwo9LBlpUZ55LeHHTRJTdFFt30FlbUwS4tsZJovMaYnpcuSJ9FrgPVFFWoymhXEP2xxObdHEaWqSkBamqcM1ylQalqJd4vSpnObEPmtCA1h6Fjh2jDygnNG0RPRjzrKdQ1r0gvZsj0pZwyte8Qq47rrr4HWvex3ceuut8Cd/8ifwu7/7u/CzP/uzdV1frcElyiZiQny6yUadHwR9By+sR5Dj/HVakjNmtDlax37MdB3pObzXc+5k6CENhj/Or4/m5KrlMVN49YROrhXiC51lVuirCPKkQpOzwlbFx0zRwiItTBFIrynGawdwCbjZmEOkhSta4l0mjo8MAPCo+YRpAIDD+4glGAmJWgIg00uqhB1yJn1PAg3EUFKwEF+zhlY1LQQx6nba1oDA/AYx9zCAiO6MOkCRRFhbw6pqWqT3SMMr3YRlOennaRka3St8PjU6KYvMsEjr/DMkctu5IkSjP4045EfQ8Jj3D+j3qbmTqfRWHmmprmkxz4xPdxTntATooUkGtaTfUdw4pGU2Cw1Tqhw/RFr8ho6OtMQ70bjAokiLiRR6mJ7wT71rrxKpSAtF1VKj1WolFV4sPWxeoIymMzi6PgIAgP1LYYGXYhZjfgfOHdIbHszRsCK5HQDRndnGcXh/2HWIUtUjZgLsHChjDBQgp2E+0hMaCvb6WaRFp5Ttlqh0xz7jGc+Av/7rv4Y//dM/hac+9anwmte8Bn7rt34LXvKSl9R1fbWGKoiOIC028aIiLYHKJNmFaoMWy+O3gvdTZx9Tw3h2wcoCHJuYTK9JE7EChEnXLIIucUkOl4RIvvy2KBI4/NyCrU+4pp2NeReH1Zy0vOPhGE7C7jLWUNjjC5RBALnbYs+BN835sQ3EboX4CoIgzabBIXXhHnvRPvvnx5y/Ir4fn0el3mSgh1XWtKCBdq7rurMEhrUkJomeRMXEm5U2fDBwUKJIi/JduuSCaxLwiSdXyHOcagCdKqnSMhQ6mW95Lncr+eGMcSSE28R5+pxMV+V+L87BUSpy3GcljSy16MJJlN/5DZDxSJEpNUSoOFp6xrgCECCN2mpNRLAQn0ky8fmrHN8gLcu9MkF23f040hJLBPG1dtot+/3SIiWNHiavK5vMYMbUSDYTUITw0XMkFEas5TH6PPfNZ9ocWA6RlhSHMtMM8+ZwmbWXo4d5hiDx7wgXztb9UBHiB7lUZB/nx06Y9/A5ZIdrSkc0M+ei5XFl/PG7v/u74bu/+7vruJbTHvqQP7moAMDwnk81opCjs+f1b+qOhoSgBc3caHiDm8wKMHmW517BdB01oTxFKhwSEt8Etbku0mdWkxDFPUw6vtRJ1Dj8vsWg1KmU6WFaYsTpKLgFWHJjwv8mz1IoF+t2y923ZmNIcchJGdBmjkNRiq897IqWxz1qH2iRIsTP4h4m0cOEwm3AIC1cwq/Z4dJz0HtqGx07RnUpz5HW6TfHB3CcZSlBLf8tTg/rk6nmFn1A98eErHX2MyiNHY2WwSJLmi4vkY7lNDBphbJGAdaEsroxQHh8kV4lJDpaIwvTYaTGgIS+xRJmm8gauiPjfAjg9ixxtpFqE+7WFpMMYvcwDlGi158i9F/ul681DR0z+2Tbnl/XtOA5Rdzxl9DvTC2ODyXMaVETfgUNikWqJTGnv0yNfrcNMIwgLUzh1e204byVHhzfHMMdj5SmBQcYpEVrttDrx/cIR2fk9J0a7dQe3+hGI3TP2MwiqQB26114/dIwbW7w9qwom8RU38u7McYRpt0QO88azoGQuL8A8eQxcPeKiMaDDV/RtOBN2g2XdNfoJRQMlQwfn7v+WSTpp0kFl2Tjql/SnNA8qirdQ0oqzN+pO5m2IfBzFPjvSJpL4V0Tk1ika1r4pMU7foLDj9lUzea2RelhbDIepz0Z97AlsqE99dEH4MJ9Azi43INvvuIC8f343Nxv4fQCYVKQGjuZ04LfN/SQFgalqGTfijcen6c/Yu5r+nfNTUum4BTe69gCWHXr4jdbiz54bnf886BRDXk3MPk3mzKbuDoXhaWHyQ0F7vXqcEluvVAptwzyI6Ca3Gctr1++Hu6Zkelh+vGl7uw2oYVK1rPyPR0v9LcRusnRw7ihpPb4imW2CbPOUhR6k8xp4Z55Mw+pKORmJdUTAoTIiqZpqUJ94q4xFrFk2QSdybOTc0gmKAA8PQwA4MI5rdh8v5x7mfmOtONze9yArL0AwjqUcB9p6xdPnZUaOkL+yLo3CvQwJof07Om59YhpXBgkd6oUa7shqiu9zqGQuL8AcXhPcvcKRN1TnsqUomnptJ0jkIRs4BuQFWopx6dJvzinhUlazMyS8bQIZ9PELI/VWTPxzsCs4JMoTTytdUJTLAbtNSmbAjswinR/ZshffidaKuy+Y2IZFS3cEE0c5jsyGzPnkCYVPfuXevDxX3weFEWcuqAl/VrRlhoxL39p1gOmEHBicRNVHGxwF4+KQTlrXgAnep/MCv47Ego797nLa9eQlj4pcLzjS0URuzHz66Q6R4X5/rsquuyQhJTXc59bcw+rIpQHkIocGamoUhTFjA2Sr1+guUhIbsxcYkiaFVF6mHDvqB1sZNduPj9XtPQ6raB7rBXhJraJls0MmaSaFpYS6lE2HZvBP36IglxycMl7zfmriqYlAQlZCAVJWLcAQgfKSueoomkh+8QF+/pwy0Pu79yA4pTPwFGgWU2Lar1ejfrrnmf3Pml8Qcz+m9MsSvQwl0OivAI9e+NpAdTPQGPH7KnhkudaSFUyQLwjTTepmPNDFU0LZ88pIRtTJMr3OI/K8SXNiURZk6gkHSFJkCfWyw+y5h4mFVEUCEnr7ocPvpRUaOJmbbgki7TMN1NcjOxES8XRE6wQfzSF0qjBnDvckLreYiclL3Iyv9TrJHGtteGPY6EoqhI71bQYjvvWWEdaUublcMUhvS5pTkv5b1qSyieGkqaFtc/WCkdBV8EhiZKbXmU3MGUjt+hDO3x9Kh1LczOrOrySs/XVZ1+Z7zOhKSLQT1Ukx4j3cRIloOnOOIUgLRFHI0uJmSf8XBKIzxcgOQn0k9hwSc1EJI025BcVK9ZZ0de0cAgD/jxSwrxNviOAsEi5aL9fxHifIcXgQ2i4pEQvoSgC2LkQH0BHTE1YepiAtJhgkZYEw4URU9hxewJLI4ugIP7x9SaHbS4FTn0xpo5CDwvongzSotDz8Xm7CUXRbos9XbTo9DA9aQmQlq6UwPNdNXVmCbOBe9PY0U2HixJ8CkmfAqAhIfxnljZBqVCTihZtMWI7p0KSMBN+N/PQT2aFfQ39DCmd1qnwefE1sRSOcZjs0+Qdf7d8IqsvdnSgIYCPtHj+8oorlnaORTZNdx55Y5PsiKtEdE6L8BkMXWR9ONGHcCrPjwnue6K0NU2/owvB+WujHTzbPOnKRZGq8RC42PgZlYw7tCS4yhwCAPdcYPMLbeO3tDhudkFiEdVXaCImcWCHP2pFFPN6+vtKmjyVDsfSSczxaVHEF8oxRyM620FEWsTjx5NNb7iktR8Phfg8+plAbSWNiGXiHqahGCl2vtasAL2fal849NqE1swBKC3tNU1iLFKs2gHC4m5n55CLR2niPS1aWE1LFZSbRVpwERzuySnaK9ZkhUOhBapnjAbIWrALRT+XQ2r0fHxdXUYysNuF+Hu6aMkhxLealrZ70LAlMVcl47+nTofH58Cb5gw5aeHFU9tgRZ2NRGeQricilA/dvfhOIjeXprw+Pily9Dn/c+HfMeBhR+Be7jfjNh9tMeIWMMqzxb+HZqksLaic1eMycg/TOOEAfiEcm6a7SNGibTx5LI/1jY3rxAE4283N0YT9Lk0kcc+ZDZFaPZuEUqPqVZmlFAyXVAtsOYmMWh4zQvyQt60UCcycADXpZ2zbNYor72iY8n0yx0+kMGpIgrun4/Qwt77wBWPqnBmpSOBEvgBxyrN9HowQX2g8iHqrBPqJN1yyqyAtnB4vgR5Gk3H8vJfnkrUcrVYrmvSba6Vo84uedgkAAHzvN1wqXhtAHKWYIPrwItStqBCf0eZUPgdjZ2+CE+IDAFxx4ar982q/w57f7DspmpMBt9fiosW8jkNMZjN2RhYAKuAjxY5ExXQNlHR6WIyujl8rNbHp8TE75lwZLrmnNS1SBxFA36C4JJsOW7TuXbaDSOFD+QaSO5vhpmAT+GCit7yBxC2JhYdGGFYWWB4L7mTScDD8Hfj0kFhRxCd05TFn3oLoOqFokfBeX9gHfMosEvYzKL8b192gbk/4flLntIiT0sNE2bmHzeymzXHCAQDac/ehqaClKM8hJw6poXVdtcQkNdzmzG+cku2znco8nNrfhOe3m+PzC/xs5iaUc9242JwW/G+67ocU/qSbqCE5OrLBX1eXKXSkAbl6YyQsQqTPO0O27RzFlW/szJ9RLqlQNnGuiOI0KlwTRbNK5Yoci/wK6HvqnCx8fP9e49cKeU6LjOzhfzfPAzesD1+feO8kuD4Num2bnGNNi2bXLn2f3vEJ0rKCkJYSxZCf+fIztWA0jVNnadHzy//HU+A5j7sQvvMpF4vXhj9DDEkH4IcDxyLFjhgAO5Qtcg75d5Bs85/66IP2zxcd4Gl0KfQzrmGkGTtwzUqj6+S0q7xlO4O0xFBokR4mX1eQ7zCaFnOO8XQqmDk1SMs5GTvVLnhJtqGHEWGUO4dJ+AWkRauSaSeLWfBMAUIbrdrxp/Y9wqZJbmqbeHWFz5CoaZES2Ymn8+DoIfzxQ064+xKC7qAC95bnmAV/5pCWvppIhfeTncA+9oXTXYKM0WuSNmYOBXFIy0TlhJvQnOXKa40fIxYDmxCmJXhVI7axxTQtG8OJWjw5bYee4NH3S0UF91mrTqzHfzf/Xer04dfqv0EcDXXrJN9E0ZGHsKiYzCiyiZ//dvBnNYln6aSJ9Kqu/Cxza4xmlaoJ/aWkPxTiy9dTiR4mupPJyBI+h0VaBAqmLXi7+r1JYzyd2e910O3YZ3MyK+wxtfXL/BYpc1QMfdY+76MpO82eRqyo2GboYQAAh/cP4Ae/+TGqCB8gYd1CCfdO1t8UkfwUNVzo50iJFJOSLQHResqlB+yfL9rPDyhOQYt4aq6PtEymM1sY95l1BUBGBTXLdi5XCIdL6gV8Fbp6TBetre98PqUXtGd77OmiZacJxYTplksWdJKmResa2SQh6MSF1yTZ82pUCee+lbZpikmL0NmsSg/jikDvMwjHp0VXu+0g02Cgm5JUlK+Pf6f43zR6GP7dKI1JSzLxv8c6cX6Hyc1pSUExYpxk2nHdSSz1HfoTHF8ogquE1AWm56Ddyn3ITUifZ6P/DpJ2SERCFHqYOsE9Qg/TqHYpjRdpfgxOhOO2nnIS7yEVAjURd/78IiFOl/LFqRoSMv+8+PlXXx+u2xoXnvs+Rc1czNhA1SAxyJWgOaHHjz73QtEiaVr6HeH6E1EEjIQbm3WH8i42sZ4iLVujiX9+EWnRUQTO8rhKxH4DLBznkPJYpNgFYyRiR2hOBe0SRVqWeh34hRc8Ab76ghX4j9/xePa9KbbNrKaFaKSkxpJGIzfh9lk034V1D5OomPr+wT2j3U649gK49a8a0s00jc4RpKWhhwGfQHaUHxi7O1ikBW3I+CaSp0lrXVBpUwsXPGdf7B9DoxlFLY8pPUxIWqTOoxX6C0iOJByl55A6p1Oh6CrfU0Kmgdc5A5d22i1ot8oBTfh30CyPtQ4K5wpkOn5W0yJQ7UxoPH4AfrHGQvwUu8xetw0wjCcXi9C3zPTjjTmXHIdGaUqNuHsY35DwhPgJSIuUvOBZAPhzUCG+6xzLVMBUy118HGfsIDde0ix9yWbLJCSOHkY76wn0LQbZKI85gz6Ez1IK0lpen0wP454drWnBGQlwjQtVc8K4xMmWx3xTpFORHiZ2ZiXKSrQh4lNupGdMnPGT6E4GUD4nWE6wPZ7CvkFX1dM5R7840mLdwxA9zJwfD+YNzhHVtPCDd1MjdSjuTvWEKUgLLlrqQlq0tfVnn/e18LPP+1rxvVVsob3mHdFIefpOz3WPz9XY6+eQTbw2SlRMhCJywdNVdTp8qgYZ/xtXFO12TcueRlpSNnxtAwRwN4XRCgDwXftFN3wAjM6492AhPg4NaZGHP/LvkTQ2kkWyubyg6BI2HW4uDT4ffsiKonBIC0evEkSCIo+cKwSFTiWA3kFxxQ7qvJMFXpsNhK8vqjdB53BFyyyp4IjRLHJoTowAdn0YFi1WnF5j0SIVRvuwEF8p8FLdX/qdtnfPUoqCVBzEziGhwDQpkWhe+N8q0c+YZ1oU4itJKnddOEnHjR/cGPIG5CZoZnh3L+3zMkURuYewZtHX2MgdZlbTYl/PN2mCRMc2ysLjc0V4bA5MQFmJ3dMkYZbMLrjBeAA63Q7AoSn9bvnMtNstez+bRFptJCQ4+oVIC0ZW3fPOUXPxeWXL48WQlljCv2jDKHb9AOh32CGakyKUzzFrJuX4XsOIIi3z17Ra/l4u5Wo4RpOwOOUow+IgV7PHSvsT404ojmCI6GZSjUo6yvqym2JvFy2a4FpNTt0G6CXZzHtkPmK8qyY+CAlFkcQfB8BCfKGQosJOYROUkgpLiROGS0qdR8kYAF8Pfj41LRLtkLvZLgJlYr644OGPmnsYPyAzLHaopkUzfwBI78ThTW0FzWlJKTg0WBlAn9OSGqY42OCKFsZZqmrEBKeWNkU1Lfa69O9K66rj89L30tkWEg0LoLpmo/x7xzt/Cj2ME5qLtrXMeyRreN1imONsu3ONmaKo1fKfzxR6mF8UafSt8PfqC88y/qtf5KQUaRhZEpIQsXMqP5c6Bz6tyRRzNKJOS5bqOPavX7x3os6H4YypJVu0mCJfo2zGO8V0+KNDWiZJKAln+e0df8JrWlJjp/Olko8fWRcBwnk8VUOa3G5iOnNF/45sm6toWtBnGBCkBRc2tEiN6To5dzJujgpHUwXgCxwcrDuhcH9LSIuGqqkjJHY5PWxPFy3S/BEAPbEzN608kT3sIkp8RBXaExIK/vjk+tG1SW5g9D0dAZ2J0kMSNSfSpmOLqIS5MfhcHabYlLqDMR65+c7xsE5++KO8YKdoWqQCMHb9JrhkeamP6WHxTS+K5mSwPF5VipYcQvxYR1FK+jFtTSvOXFddL+zod+SK1HkSZt3cwnNopg5SMUL53ilCfN6SWDg+g4bauUUBShkvEvAz1Gq1WPOOmDuhRg/jhjmy5iZMZ1Oak+OtMVwRpf5eYREVHF9yA1LczzRhcHh8vSCNPffmO5Ldw4SmWqIeD8+YcgMmCdKirL1pHX6DtLhE1sxq0QqOGBKiWSanxE7mcFWJlAGcC+tyEvWE+LU5j4//m2niAMialqp28wD888Y2pSXEOlJgc02XnTZ16eulERJSfrfbYk8XLRpVR9OEjEWqUbipSVQjXejPb+Ic33wqJPw4oU+1JJY6mzOhyJE6mxJSUVWYyn1HuACj1w8gdx9ixSM3/FF1lWO1QnOECf1ubiEtPeEXRVq4oYnecMkKSEuqIHcnsYQ+Nw1NnJ4aseGSUmK1yiAtWle3KoWO0sM4AbgJTdcmmRWEQnw5yVOHJ87474ej4JjXhrOm4s8C1fJwz7RL4uPrqb0mtlMpIwma5bHEIQfwG1PmmZ0VYSNIcw8L1yIdqUgdXtkX6FjibLDIc0+pSeZeTtW0xBBcPFjShEmcLZ1SszyOFF3Y0niJuIcBABzfHJXnV5EW/TtaNOGnmjcalN5WNVLsghexO045Bx4WupPPgX8DaY4K27wTNC3cNcQKYNU9jBk5ETYI9ONXWS9EYybhecP5njdC4hwR4u/tokVwfgCQRekACh+cSXSiMw6U49OblHPfkkXviIohbMrBe4TOqYS0mA09RHJM8p7WGZCoW9wwNK9oYS2J+QU1RtMzD75kv+xeL3eXueJrMO8EFQV41p6SpiWZHsZpWkbTpGnz3cjmn2NiveZiI7kPVTr+/N6YCQswJ4wGAFhlLI935B6WTA+TkzCHaqSvMZJ7GNt4SRB2y914tDELhTZHlzAxYpAQ//hMUSQl8RwVkymKNPcwXoivr3cAvHsYdw5W0yJ0vcXOaQJyxQvxyfEZlKt8fSrC2vHOFZqaSPtfGoqw5CEt8+dl7E+sV9HPSNFVfoa2Pb7pbZmiRUNaonNUFkZaYmvvgvSwFE2LLR4XRXP0+6jdkptzKccH0LQ/IUouaVp41C5yLzF7INc0lqmY+nfE07eEIkRo6oh0fsHYxOp4Gk3L7g3JGhIA00OYLmKFTtNUKIw07qw4vItx35pFknF8DfTvUieOvl5EWoRNyjwTFAmRNnHRTCCGtHC/W5enZIg2zGQBlrqs9vjKYjRhEki8qA4ns6h7WNTKl0leljE9zHTqlE5gP5ZcLNjtK88hF1+Ss1eV6NgFm990pGfIDJfcGk/tLAHucybTB8jxaedY+6za7yBrWvz7T6PaaWgRR5cC0J+5Kt3EiYTkKBTXKmj0iKG3pVgGe5bKUmdTQFvxd0XPwVoqC3sI5zLoX7/2zITXLw9/TG+UAYSFuJQAuwKKR95E9zCmSWDpYZTSswN6GNbemOO2Wi1Ymf/5+Ma4PL9ScMTQHOpOVjViCLGdkZVB0yJOe7do0eLnYI+/gAgfHx8gzgbw7iWKtCTQw2L3ku86xqDQkeZPTD/GGYNIuUvAvLG/g38O/H6uKGqQll0cUvGB/417aOwNJ1A3OCG+SJVSBN3Bg8BU+hJKgf8qCbskdCagSxg0h4rZhAezqo5HpoeEr4/Sw4QFVb4mf6HA3xUnO9FQCg7N8bpGk5mqQSivn6dk4GMA+BuC2UCns8JaDKchLfqCusicFg0xyqFpiXnOSwiHoYcBAJzYHLOvAYijUY57LiAtY1pUaEhIeuOCfq/mnqtMD2PoUvh83MYczl2af1aVvhVHWzn9C74WfQ6Me4/qNsYYIki/sSkaqDEAfq4DShazJ9iiLjA24buzmuNjjE7iDeu0BZqU5Oj3tC1ahNfH9FaiexhHDxMoPTvRIZgOe7vl/1bGfCMFaYmJzLcSdDFaxDrwORN+qTiVBmQmnyOim1nYAQ19hirW0NT0RruXNPo/AF/wsEwa4VnTjJAABGQ2QvdKMSrC11Qen0FaGk3L7g2JKwjg36D0prPFjiBM59y9YgJwHJJbD9eZlUTsrZYbtBgI5QVNi9QpkxJ+KXGcijbMAjIT09gwXVmaUNj3iDxy/julxSnuKvMT68NrMsHNX+i0nfh4OJmKVBt7/ERNC+ceBuC6iVoXbafUpyqhUQg0R63UcHbbvDueRP0cdNu2GLUcd9bymO96meAsN83xy/+eYOGqbP6SVTLtfpvj60J8ZtOsMPS2isbOHj+GRjOUz1AzI9MZOIphT3k9t/FLz7LU2cTvDYbXMoiaNEhwJzpHnh5Wvr4o/DXY7k/knpOSHBP0npZQAXHGT2JCjlEKk2imWB7HGglYb4LXbrM+HttI17TELI8XndMiJ/x56GEA8T1kUdtmES1a8DO00Z4ZpTCzqF28AJZQCnt8pnjk6LzicMkIWrSjYbSJaI48QsLka/x3ultiTxctmnsYvplCS0l+0eY45LK+Q+sK8okIV1RIBYJ2DplSJiAtFZOKOBUrsShi0ChJm0LPIWlaKFpEKRxSV5leE7epSb8bFl9G3cPMwjgrWL2GJBA034ftJiobUsyOMUfRotHcNK5xauDfn35NY0WX1Gq1LNpikxiVP69vmkFRROhhmlBemzthZ2F0hft1LlKVaFgA+r1qHcGEZxq/J+5mKCfZKc0aSZdT1QLYvJ4m8eUxwuuRkC4J+dUaQRy6gekYU24Nq0Df0obdlecP9xy6xsQSZjqbok8KcHcuAUWLILgc0kJtalNsyGM6B/o8GzG+a1IoRYtSiANkoIelUqsWdCfTzrGoA1qqpmWR/SOKCo7D5wHvs9iUgWtKxQp47jPQwb4ACitG0b/h9YAzEpH0cin0efx30TilQVp2b0g3HADlVQo3RQJ9ayoURj0lqZMSHX1aNVe0tLzX0PdQpKIjvD5mYSx1KqUCYUoS8pgw1bNfVT4vgMxVnQqoGn29hMjQz5CKtAD4HUtNOI1fCyAk/MK9YcT4rmiJdxNjdr4LDX9UaG456GH49w8TSPe5uM9gxPiPrJff1QqijNn3RRK8sbAxD9Bvjd+vdfs0DUagaSH3h2RdXP6b29QoGiU1O7hCRHrmtMI0pvtjNTOJlur4/dymT49fHiP8DBLSJTVpvOsnz477ncPj0+uxCL+A5EwZ9FCb0wJAi0yJfpbYvTZIi0QPE3RasdlGXBK5RJEWQ01VKNuyOxmPIIRIi6b3ixVei6EUqXbBO6WHdTsOSZYRKVOcLjggs4LDZdWIaX/sfYL2OfybDCczVR+1k8KLp87qDQiA8H7F78e5p3TvyWwd/vXS2ivld7st9nTRYmlYyk0NwBUt/E3B0bdETUuC53/4ICj0MK5oEZATiY4ldTbl1wt0r0gRAuB3wyUhPsfxlCye7XsEpMVcYvA7EOG+1AW1r9fEx0KHA1uHap1xfHwAfsEeCbNFzKyW43OdxrKKtMg0GnzenXb78PVxG5smkEwNnPAFm8IEbwpM0TLwv5vVPkcP0zc1biI7ALI8JnQXHglpea/xPoNAO6B8b8l+Hb+WQx6k4pz73aIFCOceJqHRzEZrnhsJjdbnwGB6GLonhM/rJf0RN0NuDpSELvOaE76IEp0M23jPIfQzhR4G4K/xEu05ih6SZNM8/5QiHaP+ic0QpsMfCPGT3MOqIi3lOUyTQlsbY3OyuAGZVSJqeXwaEv7tBc8RdVhbsPACSKcaenNasOnNeKZTDSP6DpZ+yhRrkn7Mc28V1gp8TAA5n5KaoTHUV0J/JM3Zbom9XbSYH5dJ+Dvtlu1YyJaPwqbA8bWF185YKgNfTHETnDXkocu8Hr8ntBjmHwKp8MKdQe71wQRXgc7gkBly/UyCoNHhADAnmX5mvqCg3YqJ8Drp9TikgodFWiJIEYCQ8AsLsUVaNuL0MJs4RrpYi1keKwm5gnCmho+08J2sdou/T1YJsoJnOZiICXKlWRUUaZGSd/xv/DBE/n30GUoZkFueg39G6WVxSZU0p0VL8CSqJLdxisJ0ZZPlkKiukMTjYWsc0iKtj+qcpgTKsFSEGPSdFkX4mab3BFf8YroaZ1EtuQ1JlGTzNdg5LcSuvfxzIc740TRIADGkZeZ9zp3Qw2JIy4MntwEA4MBSj30/gGtixVCKZabRkRJujtOU/e+mKMpBrYp9hp1T3CJrY056cYVzdFHOtj3RBy2nu3u592oNHfpZ/WeTb3rT42PkHTcJpkITRWrqSEhrg7Ts8igh+PLPUVE0uemiQkSmEldRh6Cy5osprjMroSAAiB4mCLXopmxtZFPdwIQ5CtLsGB8yRYWI0EngkJ8oPayipoXy2iU+u3u9vKnFaDQpQvxWq6Umg87Zy3+/ScQfWR8CgL4hccWvd46MQnzOWUpDH1ID37u0aNYKBQDfuAAgRF4AZJqhCac5IUULGaopuZjhf6syR6Xddpvh9ngqXkf5XlQAU7qkvc/1ogtAabyoDnHzzTyBHiY1CnQL47Bo9GdTuffgt3OWx6E7Fr9mA2g88vB62u0WcuxJQFoUPULMWpV3Y5O/T0o/82ec+HNa8PXgfVP6bUV3r7GvmQFwDlZ2ToumAYsdX0hSDy6XRcrasHRW3L8UNinoOWTLY74wSo0BeuY558McSEvMNt8Wdwu6h1XVFu3kHFGkBZ2j1Wo5y/nxTLX/j/3OrLsX87mlhk75b/z9anIf2lSTmhzSeiE1daT8MWZ5vltizxYtEq8Qh7yp8YmnxtfW5qjQB6eKO4ukTymvj+98SfQtKVGrMkfFOz4pEEo3i/LPnMNaWOSED6UrDPhbV1qMzGcIusWksxbTtDihPNddjlNuJgqdh3s9DU6ACABwcLnciB9aK4sWbcPgxNbeOTK7h0n8/EWO30ZdNUnTIiFF+5KQlvK9HBJanoP/HWknVR1wZn4HLelnviNLqRlPVWMHj55E6ZLC8+CuHyfBOj1BFeKLlschMiAajyjH75GkhRPY4vd7wyIFZFlbA6T1RdQhMo0mTdPCrY/4+PS5Zm1YkQMijq6355BCH10fndMCEGq0AEAxidDXFX+4pH+/uYZJ9URToiVdtH/J+/uBZRlpiQnlF7ULxgUbh7bkpFbFJtYvOiCzTqQlinQLhZH5+/Zk6kwTWCc6HVFzlFh3j3P3hpQLep8hNb9DzxNekyT6rJSvSfRWi7Q09LDdGbjalDqyMctKOtGbm4sgUR80oZZIH6hQFAG4yj20JC7/X3TSkuhkwuuD61coXNx73Ov917JuaRH3MAlWngjfKV2ANRts75pYehj/Xty91ug8JnaiBzGUB/P9qO5h1tBBR1oW2Tg5aomJsZLIV4mucH9zCS0OWqSwSIuiacP/Jloe0zktXeVZYApgDS1yRctMpKkB+Ek83TilZofVMUzCTVO6r9WigtLbmKI/hjyoSJTYfQzXjPIcYedUmliv2kiL91w8kZeGS2KUNSwqpH2E2XOk5klCo6yD0CFs127uB2lwXXltadQqf7hk2/tvKfQwafbFNoPkAABcdGDg/f1AEtISHr8oisWdt9B3hodh2n/LqGlJsYbe0fFjup+cuhxJfyXsgzzSojUf+D2QW784BEszc5KppHxTDT+veG+WmSj8+iiOdxD2y90We7doQTdeVftcWXxlbup4ko01M7LwSkI2MPVBLhA4agIAsjyWqAaBiF3+DPh6zbHNfsJdE1t4CVQVjf8eo4eJXucxTUtEc6JPAZfQHIS0CAmg93qlkyUVFAdJ91AV4ifaPebYdPDxTAxtgrfY8uM6R3zXWEKzsKal1eK7phq1qvw3vljA9LCiKMQNCl8fVzxqDmsmYdoaT92mKXyXeBPHIT0PdmAk6gLHZhxx96nY7W+Hnzm2nmpmJcFwTAadwesTh7RIa4XmyCjRw6Tvk6V7ML+t9OzLFLqwARGjhwHIz4zkVmf++1jZNzU6HwCfzGLU0LsOtjsuI0X+8XWkZb+maVES8vG0sFTDnTpvdTvOnp4Tyg8nfOFVJdwzLBQVCxZevUhRNFHWruRzxHSXwv2KqdjbFo2R53BJeyCHoHD5oNaEjFkSh4N9ETLONXUEJFpCiunyZRq23EDz3RR7tmjBi15c1M1vULFp0pIA1AQ3hwRAGbaodO0oCoKPH2paZux7pIRcom+xlsSoA8bqbJhzuGGX8euPaVrMZ6ALdmxOi/kMC1keC1AxptxIg/pwOO5sSB+QNnVatKTMaRFtNxUdRmpIRUuZyOtFRWpIw01jlsrYLWyl1xGGlLp/q2LbjOlhXldac0NSLX3Da1u2hchURBxM4ALHRFEUsv6KaHLw9UlNDmp6ASB3+7vMZ5Y0M1Insfw3/vvvMomzj7S4c0h0I82MQ1pT48Nr09DxWNNFogzz9DD/tfi3ps/+UHAlpMNS8X1Jh+/GEk1+uKQ/p0WzW9eQovIYfDIeIC3LCtJi2BLMZ9hGhfwiDR1HiZPpYYuZoOgogpbMp4Sxo5aoWxplKjVS0Rz6W2MUejjmXwMQp7hx6y8rxFfo3tL6YgcCM0grl4PFBpTLc/hoQ6ehh+3qwDcbN/kcQN5ApEShTxY8nEtxCXxfWOQl3Qb3EGhIi9RNMG9PHv5okJNgYr2p9PkEgbMM5RZUEf7k3MNiSMuclhRs+pKmhSwS42hRJHeZpGQHL3ZSF5R/vdxNjBct8qPNTfa1n2E6s9/xIhun575HFmBJyFv5HEJnN6ZpwXNZuBktALr7CwCIwx8xFdDTCXCaFiW5MJ1z7n3YJlayn3XX43eyAWRhenm+cL6O5Ebl7tMw+ZKG6nJrnoRuqu5qU/5Z46amuyaN33gR6a2Kbo6ztcfnkCzVU4Ty+JpEemuC7m+sJEV94TuVKD3UPlebC8TReXHwwyXLP1vLY0G7U55TRor8z+An4486QDQtCtKiGXDg3ySHUJ5FWhTxeGpo9GIATA9bFGmJUat23pRy09v5czikxf+ezNq4OZpEhkuGuQuOCbMHYgMbUxhoDTJxjorStLDPENr7xQHlQmEnUX9jOs3dEnu3aEnQFogbSKTrZRZtvDFwG5QEH7pN0389RzWQChD8b+LcFeGmpg+BJNx39LCwqADgCzVuNoJDcshrd4K0mLkrtBC0mhapU1nMj68vuBpvW1qMcLcyhgIA6F0myY744EoFpEVxQMPnXISiAKDD6fi/7zQkIXXsO8acduokhkObOxHTtIwmMy8p4TvHcufLJbZy0bI1ihfBxpp1G9HD8PclaVqGXjeRR0K0QXwx9AQnCxOhSJDcD/HxgzWYeY+01ksaCTWpED5zzNqeb9Iw6yOZGxV7D7dmS5bE+ProPS0huNQxSTt2bA4Eb3mcTg/TkCJ8DJqMH97nIy20wYNDc/TDDSOp0ZkStlAbc0hLBuetCIqwuOWxfvwUNkEsYtPbpfvE6BM3R1OVBmcazNK9atEQhh4GgJ4HwUQEQH4e3FohP0MePUxcv4Smi6ARjuk0d0vs2aKlSsdbhPci9pOSADR8Pb8BSnQsP+GfV+FsgcB3E2ySkEA/816fAE9iehi3ZnF82Jg7GU4qosMlI92HYNMn1zMWOpr29UqiJrkg+ZoWOWHhXk8jnR4WL8a5zxBDB6oEx63Gx1+E84zfHyRgivgdAOCCfX3755QEppqmxSUC69uT+WtaAgVNQ+3k+xAnejGnHit0RmgIrvGkApsV4ot6sPD6q0xxligWHJXMvUdaM0IkQWp0SBoJzfZcKpSl6+E6926N4QpZ/tkfC91W/veS0RCJkijdR25Yqlkf453lqCWxZ3lsEviZeh0AOlJUHp/vrPe7be8+PLzfL2K4z8A+8+b4C65bA+KYhiOHe1jdwx9j9OKU3CoW0nMGUD7PFgmhRcvcZGUjEWnhqK34vBw9DMB9h25tlJFHqQGhGRVxmjxxQLnkDivkd/j6d2Ps2aJFQktwSEOUpKnmlNOLiwUugZeg6GkFTYs+XJLvqEvIiUSHkSfchwnIDH1mtpDikhZJiM9MuJagUhMyJ5wv7qRCU9a0yB0a6b1Y05LC900pWmgnjtp4cja+JjgKDT1+u7UYJxnA2Zbi8+AFXCvcUoLy7U1IgxlNXIg6r+ev9tnX4PdXccfCv8vavGiRij8H7ytIBfMdLSOdSiwBMSYD2yP3HeFNTqKI4u9UHHZrncAK77k3/1Yen0c3WLerYD1VkBah+Od0MGnDbsNGUOpwSWw+IpoVcMevwIOXkBxK38I6Sq37S48vaSloE8jRFuX9JjYfJAVpkZAGCSnC7+UKHtycSNL71SSSBwgdBnHkNEGJIy07O0fs+ClsglhogxA1mp4xWdkYTtTPSbWsNDjaLTf42RVPHGoqICEJRQvHLhGbOonH94T+DdKy+0LiROOQOgpSt5zynfFGziXBUoIdn6OCkQ1gX4v/LbA8FpAcxzfn4cZwMGNY6UtOPfQ9aUL8kMNs560IXRypUyl9T/Q30zZ8gIj4OKEbmjKnxVkrMkJ8QSRPEQMNQdC0GjlmtJhgp6uj61+EYlEen+9YxhoSF6yiomVFLlo0frvE28ZTmU9ujcvrFJKklAI4FWmRkhysf6HHBgiLeNpZB1BQSmxWIHUThWGuviMgvxbr9uJS95Hb9PkigVtf8LG1pJ8TvnPX45Ls+PcJINtISxQR83vRJAqAp+dIaIi9j3ohSgHgHKcciqkcW3QPY5AWOqclYgKSgoRw733F8x8PAAAvfvqj2eO648trozZzqUpIzZby38zvsPNzSPNBTOSih1WZcVI1NNSOmylkwtDDNoZ6Q0f7nfG/4z3EtyT3kUGWSRNxJ+Tpp9z6wucVMfoZfT13/bsx5HbsOR4ahG4iNl2dCs1p59RDWpjnV1pcpDkqHHIiFTjl8fVKP0aVoq8PNmSmG2Kup90CNinlCjUZyUGdgdkMlqGjuqUByEWFlLi4ztr8N5vqSI5mlSjRw3xNi47kACi2p4pInopL9aJF3hBy0BNMsBOEBS3IToKbKZJyjgv3u0Ll0kPL4vG1AWdjIbkyU5k3R1M4tT1WryOFHsYlzsuoaIlx4Lk1bKok2dx8BGn+EF47x9OZlwRNhTWSez5jRZFEEeGunxuoG9PMlNcTfj+8jancCeU/g4ws85x2oekioUXk98XXpekopYF3lPpEZ1NozT7s5jebFUFTbMhMYqdzWmLuWepsI/ve8Npe8szHwGMP74Ovv+wge1wTWlI3FAq7qqHTw2T3tNTok0KWhkO86kJa4myCWGhIy3DezGu1wvvQ0MM2RzrSojkTlv/O3+f9bhtG01nQJFBR0wCFNmwGJj9S1hfZmTCtyVy+pwWjqfzb7YZokBalGxDTnKRTjXiHMvn4epLA8R1Zy+O2VBTx75G6WDFOOGd5XEUTEuualucgSEuEHkYdjWT3Hf871bqg3uuZh34iLC6V57QImwL+XWiyTGlOKQLzqt3KqsEVX7EZKjs5Pu1Yxs6B0ZWnXHpAPL7+PclND0PNO7E5L1oiXWNeyC4nh56tZ6TI5NAu/DzTdQm/vigKb9aMNqwwNclmZy8Jxb5WXEtugFxRoQ1z5AojTdPCvl6j2ymUXs3ymDZdYm5spsjExZo6HFOa0yIJ8Y17mKZpwUJfpqjYTkFaIutPymwjSQ/zrMdeoNJm8Xs5JP20IC0Z3MNiKII5706RFmxgQWmh+LyL0MOce5iOeNH1y/y+61GkRUccrAOlMEvF7AnaTBoOZQXQ2SLc2AxJZxs3cmKOH9E77YbYs0jLky45AO/7998qduwBFPqWsGHSxSI2CFFKgGMT6Lnhkjvx/E/VtMReX8Xdi05Yxp+Bvqc9p9rMCrc4SHZ+7pr4RFCefeN/Zs3ZA/87Z+spCZaxxaU5j9blojx1ExqX9zzkHsYlo/5n4GFlANmdbCfBOblpk96rBud0BcDzkXF0O234hRc8AR44uQ3f+ZSLxeNrTkLaxmwKxuObI+844XXIyYWEDgD49LAYnYS7lyQjDgD/vhpOZmSuSfh8dtstmMyK4DuKzUXiGi/yxGf/+9HmzHCWxNo63Ou0YTydChOouUZQeE/oSEvYOBonaGYkdD9Acc0zMO8q47WYpYcxwzfx+UQhPila2In1pMlE3cSHTId/CVlyF0WxED1smGHt0ppSuRo6zoZcQXMyWCrHLY93SA8jLlpLbf84lgK9gGbR0cg1NkD4HTn3sAlrsW1Ca4jMZkUysqntNZJphD5bz18vcJoRrC2C0ZI2BsM1EnmEaTfEni1aVgddeOqj06BiaQMJNCGkSJgqHTvv+EGRAOz7tMFDXBJfteiSPq+U8HNe51F3r274IEtFGkCZYI4mM1skxI4vLdiyAxpBWiJaJ62LJVrDomtKGdwo3ReaSB4XKUuRDU+zqh0qC33V4NzDpA7WToLTX5TnmG+ayjl+9nlfGz2+lsBoswhM0XLCFC1CEsVRAUxoibOhO2yMJvZ1Ij2MFYIrm1pg6+n+LiX9k9nUex5mShLPUQYlSqakkdBcGXmzEhnd5NDoWJFDj69pWjRhbRUhvmRWQn9f8122W/yewM2NAZCtdul6qiGMkkbInSNMljE9bIIMDQYdPqFO0pwsQG3VOvA57IgBwkITxyin5XEUadnZOTRaaPlvi9PDzHu5eSLa74yF+BqdT53BhXITuocEc4s0uqQtQPj1K8XoQxubITV1dKRYvzd2QyyeOZzDIWlOYpZyY3LDxWaKSEVF7PjlOcwNGh5f1kbwhU5sGJJsSZxWREnXpD7EhtsaICExpIVHi2JTvV3hIXT65klDUYQLqtQxxt1KbdM3IdHDYiL5n/jWKwAA4NX/+5PEY+Nzq3NgchQtTNGci2IBoLiHZUKLUoT43Dlc0WKE+ALSIgg1AXRE0SQJRugPIP9eTkid9rzhzzMcz3xhN9dNVJAcgFDTor2eMzUw18vNUUk+vrKJc00UScODr3EiFIHBlHjmGdAsj6WmS3LnN4YUC+YG0toSaGYUIxFJI2SCHS45v5dnRZlo0vPS0PQaOainfWFODkA+kxJ1uGQG3Yy2vk8RKrq0w+JOo4UC6A2d1Oi2w+eMnpNHWkzRouv9tEGoGlpJ8xfN9EVyKNMo9BLzA18zPX5q/gggG33sptizSEtKSMljTGRq3cMi+ouY6FIuKsKupuZOloqc9JguKD5HKMQPN0ANmvSuiek8cglauflOg4c4enyhUAssWM1DTISs4m+GedvTGXTm0DimrGi2pCn0q5imRXrvq174RHjx0x+t6jS04+N/y4K0MAlGDr6zCWnzH2XYNAFAHPRX/pu8WRle9fHNiBBfeN4AYpbHflEEoGlaOsE5tIKo1WrBoNu292pv6l6jdQY59BcgXGO4poX0bNI5KiahTBO+h9ejuWl5E6iVokKzVNboGBzyw9FnpA5wCopbXrt8bHw9NJGSaJu0MaA9v0YjNJ4WASWmKAo26cfrzKmtlKIlvnYtUlRo6GoO6lb5fl6I731HCwnx5e8ID7TcKT0M00K5tSvF5CgW2sR6rbG22sf0sBDZM+HsiOWiCyDcQ/pkPdW00bEGagqSq6O4prCjSE75/9pssEaIf45G9KaL6CM0XjqATNORu2oMPUx1iggLBHz8cAK9Oz7ubEoTVjltRKqQ3UtaFMpXjyQJMXqYiI4JhVqfoEUxHZLXiRYcmWRNy9TC/yo9TCpaIvSHXqcNT330waiVcN0bvz0P0/GrA8kJNC0JaFZKaAu8nQXDfI5lSg+LULfopqNpNgAcrQMXRVWK+FQzi+GcsmOCT8rDNSllDoz//PNFJv67ZKtO1z3u+GPlu+TcxlyRw6EJITIjzYzBnyGVfiYNNJWMGULNSQRpkRwrhUQzQHLsnBYdyZEcK+l7B902mJ/QuO112i1l/ZUbCSl6wVholvb5NC1+IWiPjz7TYpbHcjcdFy05ZsFohggLDZdEYn8anDbKhBPiT1SkRbIjLv+tPGerFV+/bIHGNkTCBgd+D78e+Tmh5wYoNY0pfVZZ37VG3G6JpmhRQhSyC2gC7dqldu2loohWyvYmxQmIRg+LUg146JNSn8yGJs1p8V6r6FOka5oJXUR8jea7jLmTRW2qhd9sZIsivUvf67TsJssVXuXnkDf+lI1vwCT7+HycpWeVSJkTUNuclozuYVLHMheao7l7aRQI0+07Yea0VBTia+JLANc5NEWRluCwRUJEa4e/V7yGaRbm/vMsXz+raYkguQDpwvcBk7AlDXPkmiiae5iHtMyU18tIThXLY1HTEgiDY+sXX1TEBnAakfsokpBKTSNpfTTIHgDAqS0dmQSQ92R8zixIi0IPW9QO3jqmES0eXsfqGi45ROuvROGucg5uD7H3oGLrHwtrecwVj1O58bcP0cNUpCVlbW+H7mSDjvC8McMlpSHOWlHRJ41gs7a0Wkw+KM1pMbo2DfltkJZzM8RBhRFnHLN4RqlMkZta1LTM8IYpUz1cp9tfWCTkxBfYhUhL6O4TPvgmYYlbHqehRbQTuuPvNKZpIZ1K6fh4k8Vdq4mSSGFBuhWiKxtz3EFoscdW6ubic2ad01KXe1hE07JoYaQlSJqmZZlYHkvfpSi6VpAKAFy0lMdfVmge3HcUe4ZwsRnrmnL8ee36uUJWsg2VJjib6+c2chbJ1YSprJlIvMjh57pUo89VcXyUigr6fUpDKN31SPQzvvByonFaFEnH14si7jOY+9nONUowKeH0IE7TsvO1ReP850da+KYUwGL0MM09LJfeT9PlWJ0Hk8inhoaEaLrIlYHv3AjAN3VU50ZlOCZ+PouiEHWs+Pok1JEfvu3ffxq1Vc4fy//nmSvy3r9boilalHBJv3/TST7b1S2PBSqTgJ6w9LCUDZBOuI8UXfSaRDqZ6YZgqkQECYnNjaBBN8Go0F9EWvhNmc510QbLuc8QdvhxtyPc+J22I2Xjk3U5i8PuAHIxDpDHNtQEa/eakR4mDZfMVtypQnyZgha4hwmftSeIojXxJYArUrYSJluzRULEIAQnJLHngSsS3PoSDphlNS3C84/nqCwy50QtKhi6hLZus3NgFBowd/1aIRhrlAWaFpvEzzUnBikWEkZ54J2EtPAcfpEeJjoaub8HRUvXN5bYydqI/y2L5XGdRQsZqGkCa2ZiFF8tdBTBFBT1Nb6co9bOz7HU99c4HBobwCAtMdRKszx2aCJTKKD7zzcp4QoQ/llImaNijYESqGT0M2gDx7VG3G6JpmhRoicmj3zST5OcHQvxBeSBpYcpThGS9aEk3pc6m5K4np8OrSdE3GKnFy0+BKolIOXr+QXbIkDSMD1SaErHx+/B3es0pGWaZnlsji90WxeB3QH0TlxWTQvTjYtx4quERA+L2Vanhrn32K6u0nE29DDze8lCfKnr7e4lDWlxf09I8pjnOT6gdaY6aeHXpiCz0vWkuJmlFl2aZo6dcM9oMLRCjW3UJCAt/OeVk6nQwVFHQpzlsb5GWHSc7jkCZa3KXAr/+v3j489DP4PpjjtkUr6f1aIiCz3MPJO+Yx1ARstjYd0yFsiLrr2S1g8gH3VWa3yNFaQiNcxk+62RXLTwmhZ/bWy1+PVXQxycxk5GN4bTma834c7BrI0Asec/Pd/h9HgAeuPY0cPCYm23RFO0KBG1lKPUhK6/Aca445XteZmHQKWHCd0Q9x7/9a1Wi+0uS0J587l8ESuwr7WfwXTfcWdWKbyo2Cx1DsyImAnEkBZDf7AzI5QFl05xLt/nfuuAB4sSi5RuYFVdTtWQNk18zjxC/PI8+F4aZto0AcLfzkSu70lLkBxiFJ5jmUzdFodLImqSZ3yhiC8BQjqYhrRobl0SWomLcivsjpqJ8M9C8HoW+UlAThgkRyuKOGMADdngLYnl7maqe5g210X7fvCzOZsVVuck6RCpe1hMcxIMvIvQz+hcihiSI83W4bRRpjt+LIJM4v9Wm3sYeq+oKaxJiJ9LM5O0bi1MMZatp7Up8alhzEw2RpPgv2k0wBWy9kqolUYPc0Yu+nqE7w/utRLFTcvZ6PBXm7ewx+eRFi1H6qGia7dGU7QoEbU8FkXdM/V19PhSJR7St1yRYJKcWUqXj1y/ZktszzF/cIvCDfyS+OncNGlZcxJasGpDOIPOQ4R+JupyhEKQJvApaAavaZG7+7Y7M54hIaSyMYtiXPPeBelhpxlpYYX4GYX+22TztzzgbEJ8bmPTNk4/6YgNfizPESbBANKcljb5u1K0MElwDK3Ez4T7LoXnzdCrEume7Jwm8/wrHVFurovmZpaqaeGSF8mpq7weha6mceA9Ib78HGuaP+4zBMPuYnS+CCUxRp+NdeolSoxGiTNd9WPr+jBWgAhKnCEhl55JgHxFhaQHyWWprK3vufV+PJrDo3ZVYsVaF4dIi31+mO+p0255TR1pbTSCeo4eNtaQFoxC46KFtUc3BTzJvxLoqm7Wn4LKCEi9RqGnIx52YzRFixKcnSeAjDyEmhaZxlAev1pRxLl7aTdo3D1M41T6hRd3PZrINFqocUhLQmdTK3AA/AU/hYJCN8HY9QMgcWpiIriEkJYUTUcMacklxJ/MCm96eflv8wV7QZQCn4eb05KVHlYT0jIQmgr431KKFjPwjAbuVqfSjQA4epimaQlRNfe8CcUUI8SPrmFMkp2KJKQgLalrjI7MaEVCWDRqQnyOTqY2gRjL5lTOuWZ7Sr/PWGNDpiTyhVpQFEWMRGIDirnkbt+SmWs0d8NLoIdpJiI53MMAwsQu1wwr0T3MDN9cwO4YQKaFA0DScOOU0IrHHHuIRg9z9xJ//NWBWw+l30pybgVwv7vWhMCalnYrNhOFfxZY4yGKtCgOtNKgWLceBW9RdZq7JZqiRQmJXiUhFbQISddfCMenmhamC6RDgRF4UoEPueFG9MFkEwTFCQxfk8exV900fDqDPX4kiQJwmwD+HPS6KFSvISbuPeGmo3WXLLqEhPjaxkd1NvYzRAq21OgLhR2ALiquGqzlsUKrqhpLPf+3MxF77lJDQiqLolA1LZSigDdRHJ6lL0YrI2hiULRULIBjui38TGgTn/G/VxfKh8hGMp0sgX6WSsfSJ9xz3dNwTdXWDK0o4jnzDFKECh4JKaaaE3FOS5vfc+x3Ghzf//5jDl3c9wmgO7JZethGAj1MSchzmHzgGTH0O8qnaeHXLfOZFkVyOMMeEw7xylS0TDnL4/n9vcD3ZAo3Togf26Nwk0hq6GjFr1aYY31q7LuUqJgakosbiuVrq61dAFizyCFF4fqy26IpWpSITayPDR6Kde2rwnueUJ4k8dw5pG6I6i4hmAkAyF241AJEuqakYWuJhWC73bLv2U7gwZvXzory4ddmKJjgkmXtujAyU0WIL3VDF4X28aYboBSZ6AP4GP5wSZ2+UiWkjmXdmhZcyLO2mwRpoUWMO374PAPowwoBdkYP4+hYoqYF3a/OCUhaw+Sigju+9vyrQvxEIwGOs50mfE+7Ht4iWU6i6ByY2OBQrQjkPkMw7C7SdLFJkdCdpUgI/b1iFtic5gf/nfuOTFGfVLQoe1rMJCA1JFfPXINxjZvkdoC05Dk+bpLRcEj3go0vVYgfb/ylHp+bWB+jrOL1VkRaNE2LUmBjPau93yprlsv/53Qq5jsLnmfutREnwJSm9G6MpmhRIjbzI9R4+FSMmF1oX1jgneiSFC1eZzZeGInTlRU0hD7MeMOUNDZY9B63eQ6/U80BjXYSY8MrAVznmZujEnYSXcI3RJBvdaRFXlzMwjmdFWjB1bqJ/KYjDZirGqUYtvzzkHTKNGpM1eBF4HrSUyVM8h5qWhbfNAF4vQaAf+9ynyOkh/FFRavVYjUAMVopFeJXntMScw9Dv1t0pktVpIW5t1PWsKpCdm5YpLrxY7qXprFjGk0pRRe3nrKzFxT6HEBJReGOH7iHRTQnMsIao4clIi1U6K84SpnO+NGNuKZFaiTiz7No0i9R3HJYKgMkIC01FV0AGd3DNHpYhuJRKn7Lf9PXx1W0/koNHSn3AtD1ikvIrlrT1pSfwawVtEEwv/4Upos6Y4ovvNSB43a9CD/3bommaFGC6jtMSIkz1QqkJvDSTBHaqWx70HV5bF1UryNF6vC0OV0F7z1BkTZPQIoiDc4E0IXBWmfWFoKRhAvALVS4aLEPsvCbAfg8VVXTwiWCSoG63A8Xzp1pWuaL5ILJOHaJq6swAkAOM4kJbdUw8x3ovINcn0FqWmAqF/cMHVzpeX+XkBYA/hl1z6e0Gba9wkizPOaohvHhkq75EktAuAQvRdPCzUXRBrT530+cjuUdX0ly2DkqyvE5elVKkUMt1QEER6BIERjMvSFrUeow0HD4I/8+iX4W17SQZ0ajh82fj7XtifeZuJBQaK9oWTQhF9ZGK5RfUHMiCfFjv11qqEYrmdCoum2VpeIXIG60gulhMtISNjdMaPorvDam2n8HVMkEIyQ6l467FnN8rHHG79GE+A097BwNydParPcSXQqgXES14gC/nj740kwRAEbsr/G7Bd5miiUeNRPgXo+FxJROFrUkTqSH0AIhJsQHCIsWPLmWvq/Tdt3u0i0pTo/iNp2Yrao0u4UL6b7IioJExP51CfFzmQkAyDSLFLQsJSR3P/xMcJvJoeW+9/dVpWjhBmSmFM4HllxhtMQUxfb4DCooGYnQa/LoYRFh9zCxqDDfKUYdU5AWyV48uHYFmalO94onFdHjKxpB3XjAvU7rLFP6llYA4usXNS0RCnDMfcohhzz9jLsuI8R3n6nasFT690WLFqnwskMNO4u6h0nzpfIUFLTQ9M+howOp4bQdctGyyD6VMiBTRFoGcaTFfH7O+lez9cZIS8xUpicgLTtZLzTnQ/x6AL2x2wjxz/EQhfgiPcx9ncMxdpfQaRiSkFgrRMxioQ6XZDbwonCe/6olnqEzzI/fajFCfPSwJut4OHqY8h6bQI3969GLFrOwmO/I/bfYLAiNe+2Or89podFqtQLKkFYUScWmcxLJkPBHBjNqc2pSo6qTU9XgrKcB8mtaZKSVf4YOEaSFQ9pMcJt/ynd0cNmdAxcwNLjp27NI8YvXpdi1cLN4NE0LRTbL18eRE9a+XOk+8vQz5vUMBTAlqUhFrqjDjzYZHkBCluJNHao5Ed3DhGRQ6ug6u3ZieSxSYngkR9M5UHc9iU4JIO/J+PiSVis1KDpmQpvEXiWsJpKsW7nsiDl3S3qORTUtXLPFRI4hyJr2QjN1APCbRNLaiIt3OkRUQ1AGXdcoS0U1A3mBOuJh/h7S0NFYMQBC00XJCfcM0vLLv/zL0Gq1vP898YlPrOvaznjI9C1+U6ZaAc2PG0C+gTTNiekuBxqPRHpYNIEnnTgN9el22pZjnVq0aPQQ7vPSBD7FkniZIC0eWqRoTlKSNPx6TjMjvW8f2pj7XX7gFf7vALKWIgfSInUsc2w4JrjiK8ZHrhJc8QgQ39RSIybEl4rHpV7Ho2xpSRiXYMSaHQB+0YL/HBxf0UiI9DDUKIjO/eDmtCR0+vB7JL0ZgI7WsUURw9nWnk034DOke3FoINfFVlFWooHx6GEVNTysM2FQtMSphfT4+BxBI67nP8MxSozUydUMTvbRoqUinRL/Pcd8KYk6lMukZCCsW7FnLfn4QjMHICM9jJm3ZiLHPiXN+yn/Td9r96NC5YCwNnLjI9zxTQEcfkfYhCf2LEhOfSn0sDFpQmjOqgC8+yGfE8rf624JeXUQ4ilPeQpcc8017gDdyofYNSEtwJI+otVqwaDbhu3xzENaok5awvG1Cc7OoleuqnmnHvdntdAxnMqIxXCv0/ZcsbQHBl8/ptxZNyCuoCALfIoQn9KGPF2O0n3whPgaPYxDWiIbzgramOkmHRxfKmYzbWoAcscyF0oBwH+OrJoWBkUAyIdIWUFronsgjvNW+nDk5DYAROhhTBKcUnQdSC5a3L1aFAW0Wi1VCArgJySxYaDcGqm7ablzliYQvTSL5ESnPo6zXdlSOel6Uj+v/3o8d4FrXKgaJxZpIcNxI4m1aUoFQnnhnqNIYIwSI00a1xyfKNKyoqyPkpA461BcAY3KR99y36l5Jsvj56Fucc+8CU1kXiWkxlpR5HFxk7RXANghjz/+JQeX7J+ltRHfJ+NpAZiRaH4HzpYfO1bGtDvm/RNSFKW4B9oRD8qz35k3yYuCd1dkcx2BPbCbonLF0e124eKLL67jWs666AswsSo07ZRFS6lp0ZOPmK6AR1r8TURL+DkqQCyBp10mC2UqGpXhxM0fiToTKcJg9vOaBX6emKYkvVTT4iEtkY1fE+1K11ReVwyydqui5vYEEC8ociT8jvZRTzexPIaSEGbQtGCkBW/OKUVFSohd44TfARemlBrIncM3dSj/X7t+fMwLVvvi67BoeDSdwaDbiR4fIy0x8wfuO3KFb/j6Vqu0JMczi1KE+Bw9LMWyHUB3ruKPHy9yUodjShpBmT4b7jkpc2mo+YuElHbtM8kn5CHS4hdF5jcTLY8ZjRCA3jGmTZx9KfQwQql2epN8DR3RTGDBdcWjkU9mdh2zSfCix2eeeRN1u4d57ngLaVpcwk8Lr1gOcMkhV7RcuI9fG/HnH01nsAz4O5KbEBbFQnNaZH2Xnt9pw7RNUa6tja1WC3rtNoymM6+4s+sjlxPuNXoYAMAtt9wCl156KXzN13wNvOQlL4G7775bff1wOIRTp055/9stIcHEunDUdU5jQ5A0z3np+FUsgLXhj9LxKWc7VoRQtCiGhGicbVVomojkADjL4y1S6Eifg5tyqy3qHOUmBlljBymNLgTgvqPprPBg36z0MEv7kCyP60Fz8iItvl21iVzFHUUdTdikVvkdcMJz3kq8qGDpRsr13/LQuv3zZeevyMcnCRJAvMDGdMmoQw7zLMwi696ArAEab5vrDFZFQrR1mHMC1NBW7tlP65wW3mvl7my1+4GavyS7hwUD7/jvFK/XZRc9rbscUKuUYiqghylIi0QPy5WMe+cQKW6LFi38ujXOdvzwmXfnyERxE2ybcfG/yB7CDdKmf5eOf8nBZftnaW3E97mECnLPm4+0RNZG8uyb0GQDlB4WM3My/84Zg6QYLe3GqHRXPfOZz4R3vOMd8Ld/+7fwlre8Be644w54znOeA2tra+J7rrzySjh48KD932WXXbbwRZ+uEOecKJ1EvKk5QRR/fIkeNlXgPbppWs2JtoEjsdkU3dz8e3x4P1YkuMLO35Sl9aqqkNV2NokQvxrSon9mTtOS4k7Gi6f5D44LFc0CFyDslIXnyIe0hJbHcaQp+RxqApmhaEGb8/Y4pA8taibAzfwASCuKnnH5+QAAcP5qXy2wNSG+Zgbxqhc6LeGjDy2Lr+t32k5nN/aRDbGx4BlTpCXB3MT3VLRVQx80i/RUpCWFfsabajDID9PpT5rTQjQnouZPQ66Uog5gjoxFEymeviV1dCmNJmZ5LNFPtPuIuofpdMrwfgNwa8yi0+oB4rTQHLRT+0zi+yib3iR85k3k0rRIFGY8JHeRwqjvFS3pRQUAwGXnufXwqY8+yL4G2/5X0Zzg2WBx0wv9WVOH7ya4hwEg7Q/63vWmN//87KaoRA974QtfaP/8dV/3dfDMZz4Tvvqrvxre9a53wU/8xE+w73n1q18NP//zP2//furUqV1TuOANmaefyJ27JKRFGCLoCoXwPbTDoW34PdKt6HdbPtKSwKlOF9aX16PNjfFe76E/8vVIAztThPiusDNJGrA8cg9pUVxu3DXNFy6UKMeSO9w9TEVaAMpNxzTqYx2mKhGzVc5BD2O75Anfb2p0O6WV9GRW1Iq0pNrD4vhP3/kEGPTa8F1PuUQ9h66Pko//bY8/DHe+/kXqsQGIzm6SRrHk5rSISSpT2GnuNfg9do1RUEoVeUgW7seLolQNCVtkzu8P3o3R0L38pk6soOPocPysBsdrH06nUQqT5B42EdBDv2s/jSIaMdpQCj1MQ1pkk5I8yTg+RkAPy4R0t1otWOp2YGs8ZQcUL/oZuGc+9zlECjO6rxYxc8HfsehEJ/wOFx1Ygiv/z6fBSr+jNnR6nRaMpsxIiwQN2fZ46qizMaSFDg+vgBTH9kuOymhOxw8P55+f3RQLqegPHToEj3/84+HWW28VXzMYDGAwGCxymjMWFHo3N2yKzXCSXahED0sYzuaQBxCvZUCuv99t+xPuVQ62v8lKXVk6jDLWJebF2XJSEQyXTEJC/KIiJpLH50ihR3F2wbHrwuhKDGmRkvFcrlgAStGSdbikjLTkKLwAStRrfTjxndwyoUWipi2h43rxwSX4tX/1tPg5OLpkQlFUJQbdzjyBoc9QPPEcRRIEI+zm6FupjQvt9dqwRU3ov1Mhe3k9cqKA3bRMI6uKpiUVufKemYider/jdIWaSxe+RtHdS6CHmWtKtVSuMoMkdA+TmzoSdUsbXlk1Ylq2HIXRoNcuixZMD8ukmQEIn3l7DmusseDaGKHptVs6hTsW+DuQ11/5+D/0zY+JnqPXbQOMpmLhxV3/Ep5hNdHvhy6zNgLodFXayI4jLWFhpBk5Sc/PboqFnr719XW47bbb4JJL9G7ibg0fogzpDxoSMsL0sIrDJbUblW6yGhToIS1UuB/txKW9XrQkFtYTPQnRi8DYa00Y+tbWKO09ng4pok0BwGYI6dA+3oi1Tdmeg+EMx3QzVUK2PJ5vajWdI5dI3oT5rTdHnLvUojSOEEUAyOywxt1LGWmAACEyqAnl8euHk2kC3Sh8nlPnwASaFpWOxRRFzOG5DrCGUKpIC6dpmScVRRHqVFLoarF7k6X0VigCY0YaRoNEu7/SOdrtlmcOYBENyU1O6MBrCXmn3fIKl50gLRpaVzXcZxA6/BnXRr/Zon+3Ozl+YLQy05HT1JByl5xokRPj86jaoo0vCXXQhuNipGUUedbMdzwRiq6U9cutRXph5NNJTeEo51N7RtPyyle+Ej760Y/CnXfeCddeey28+MUvhk6nAz/0Qz9U1/Wd0eCSfgAM7+mbYCz54JK6oijAMLhY9MQKd2kCwm8G5t8pR1K2JPYfgiobJn69eHzidgOg63IkephqeSw9+JHfoURa4l16PGDKRCyRxTaemqWnPQdLGzKLaQ4UhKcm5kzIua5O7oTcOA1tDCfBOfINl0ynD1QNKkrHx190SJ49B3EcTEVDh5MUW0+5qIhpZoZkTUqZ+B67ftxEoUl/DuE+Rt+HpBvKzoEh62nMUp1SegHiKIL3e0WKIkPZkS2Jw/fZNRjZvFahC8aOD+APZN2/lGJ5zK9bORBceU5LRqSFQfhyuYcBoKGyhB42ylRUxJD6rDS9gL6Vp3jciaZlgAZXO9RUKijM8YUGQUITJbZfcmJ/zR1S0mvtpqhED7v33nvhh37oh+Do0aNw+PBh+NZv/Va47rrr4PDhw3Vd3xkNk/RPZ4UviLY3dfgevBhNlYoXIOyqlTMU3M2XQpfSkBaA8sHcmk3tTSrNmDFBE00NVTLHB0BFThTJ8WHfpXZH7QzQpCVp+CNy+PA/Q6zwmiZpOrjueGwh3THSMg6TtaxCfAEaz7HpmO91OitgOiug025lFfoDOKrdBoO0LKrLkbpSKYVtavDDJfN1dAH8pBMgXVcxmsxswhyjA/mGEfr1S40O1U2norDeDI3rdlpJRdEwcQ6MRxmezAAGaXNajC4ydv9TAXK/20Z0QanIxEhxjH7G08PGMd3PMM2dTBbi6/vUow4swb3HtwCg1CRIIY8JyPdMykNlMz73GpKesygiSEu2OS0RelgOmh4nMgeIF/6pETel4Ohhbu826L5UwMeOr81RoU6PMYt0r6meMKdlNyMtlYqWP/uzP6vrOs7a6HXmRQvDOY/ZDKe66AA4zQwWyvPuEgR5KORrMde/NU5HHXq2UzZHQWwRktZpjfHx6Wde6nWsLifF3Sc27BJApqylIC0pizpXUMQ2HIyuLEc0Lf411bOpUW2UiVwbAj4HQLlIdtqdqL6oahhaiY+05EkuxE5cTnoYg3jFzCyqn8O/l2LXj9cYsw5I9xwrBFU6fQBhwqMK5c0mztFJFSE+QPn8dzttVQvG0Zli6LXRm6V0Q+n1pBaMAOX3szrAdsFxmrE2kwZA6f5qZggdt1YMI+ujSDtNLHYA9OG7UrKcq1EBgLRskmtgRst537UuT0EBoFkS602I5OP3eKTeUZjz7VGy/ioPWhRoZjRNC7KrXtsu95xYQyfcP+Smjrv3pvP36uuF+Q4MwloeX6GrngPuYXkyh3M4uM7RVEnk8WIxUzZXfGwAQEiI+++65TFxAhJ1M7ywK2phTC2PhTUuKFoiRRT3mdOE+OnDJSkSEkti8UY7tpuf/GhYS+XE7iyAPzDtYqWT6K5JFvvn2JgdhY5Ok8/XTfRc0GhXPcNnAABYmX+v66hoya5pEako+Qo7Th+VC2mhFt0x+pynaUkcLskZa6QO1VXntDBFXYrwHcA1XjQhO0fPS3XscWtSfP0qXx+nb3XaLbvWplJ0vbk6Mc2MwLNX0Si0ntrJ8xXdw2JDL3/gm74KAACeePF+9r/T44fOXjoaVSUk3aXpJy7iimWCQ0JyFRTl8Xn6lrWsXlA3I9P0zP2RA2kx96qfYOdCoiUnPY0tgu2q17bH5esier9Z4Z7h8vjl//NNGjNo1Ke2Sve11f0kaoQlo4zdFAu5h+2F0ISa3H3kdb1iXTUmgY9Pb/c75DGNB+18xbq4Eh0rdYJzjK5m3G5G0xk6R/nfWGSJdHRSutw0kTJfaYrFa8rGwSItkYX0sYf32T9ffoE8DNCeg6GgaVOlq4YsxM/JSUZUwESObtVYJjN58DkW17QYeL/UX5n7M0bXqRJVNRuLnGNI1oAUrV1M08Jdf0zTUmUWAU8Pk5+Dbtu3AAboqfccT8+Lr5Gbo2ka0oIL9/EsWtABlHvI9niGvh/9PW4uFUaKJaTFrNc8z577nc0ztoXEx9I8lJgVrtTA+1ff8GhY6XfgWY+9kP3v9PhGE2mfyYwGIpyWDd9/OZoVS9z6nlMrxzS9ANzvkg2lkJCWHPuH4N6YS78UHx4eHh/bVZtGmVTA4/vEMA3K40eomBCujVWQU00TeS4I8ZuiJRIcfSPFLQZTAaTkwzizjKcFSvrdf68yIT7KeQyQkzROcvT1ApKjFhVdv2hRfcsDjmf8+DQRsZqZGMd+mkYPo8MrARC9Qlhcnvbog/CL3/VEOLE5gmd+zQXise1nYAqjmJ1plTgd3PBWq1X+1hOUgGXWtLBJfyakArv4jGczGMw3nZyFFzf3oy73sKFxD4tQOP0iXr/nNEQwRdMyQx3squ5h3PFL16H2vOAqyOuZ4zOzslKn1ts1SUnIzcyM4WTmubFpv22vMy9azPoVKZKxxbsVygtFhRPu0mRTfi7Nere+PbG/lXR8832Gjph6UdFut+C7nhp3IeU0keX156NUckgLFjrXJcS39LAM7mG2KBrXRA+L0M9yFHY9CWnJtL7HrK0l3e/S3K56PUYPQ8+rL5SP07eMDjRZ08JprhVNy54R4u/F4DpH6sT6nks2Yzc/QHkTjafTYOK7fHwfVtZEV971JwrZ6YwTC5UmCju178a7piFTVKjfJ+Hjq98p7zgW1bSMp0n0MA56j9EyWq0W/PRzHyseMzyHPHQwRzeRS5YBkBA/V5d/nkCm2NvuJNiJ5pmQFmp5bqj2WTUtvXATiVmlVz6HcbtLFHd6QvxIksMhFdE5MGjjxJt5sntYrOgK7jk5kdLdw+JFHX69tr6URctMLaDsNZHuaXzNDpEQ2aJ6vl4L3WXuHAZpOTWnwwAoRUvNHXjq3mY+e6zQ3Mk5vKIFIy05hfjjULOYlX4mCOUXpoeJ2qU5/Syne1hN9FwJyYk1IMvvdmw1LTI9DCEtc9MOgGpGH+nuYe4zpIzB2M1IS57M4RwOWpl6lsQKJ3E0nUVvfoCwKIoNf6QdjtgGS919qohwAeJuYwH9LAUJCShrIL4nGC6ZIMSn74kOu0MJfEqnCGsEnK1qPQiCP78jIz2MSZbLc+TZEEyIFo6Zj8+6by3sLoOKlprcvU4L0kIL/0SK6GRW2OaFiDp0wuQrNgcGr3l4s9U0KlWGV/ZI0qlqWpj7p+pQ4KiFNGo0pdz/VW1Pl6w+osJcHbTP4HPwSEv5npNbqGipqGnJNRiXuqvRP+fR4oXda0y/yeseFn6GuoT+5TnyFHcSvTjnkE9uBglAPrRenNMSWR/N87A2NEgL/13i92MHNE1XTCUDMZTVDYt196f2LHMjJ3ZbNEVLJKQNCiAiWhzPojc/QEg/S9WcJFseS0J54ZcfEKQlPteFFkWgXo93TdO4mxG1hU4R4tPPrM3VAXCfeWs8dfSHBKQFABVGEdeeqsG7y2TsJjKuTOU58iXkADszUqgSHL0nF9KC5xylDkOtGtw8HlsAK2hipXPQwj+GDPTc/bUx1IuWHSEtjO6vfH0aEhJ1NOzwa3bynJZEW2LaOIqh1yU9LJ5whY0mPRFc7iNNSwRpsZoW1HApzyF/p+b4pmhpt+LdZcnyeNHnHg8dTB0IWjVcMst9Py1oZXgueXpYvvWdG14JkG/4ozhEdGL2j5xIC19gL/oZRCF+lB5mzF/K50EyHTD6XXoOjQ6P84fhdBpdq81ziCl0LocMX0/dDHdjNEVLJGgnF2+yWqU8SrjhuONXRUK0mTH+9SQm8BWRFmmDTRHKp3xmcz1FUT74KYP3JDQqVnhh29wUTQtAOAsmn3g6dJfJibSIwyUz6mYAfJEwQN6OKECIGGGNRA6ahdlE6kJCaAKMj58PtSN0JsXSE8C39TxlHXL09Wgyc89mFKmwDjkOjZZez7kUxZEWP3EeK88mTr5mwfXrhVqK+yGA//2n3DsS0lJN06JfC4BLpIqiUBEg8wybokWjFskGH/mSWY6Xn/OZ5NC9nCgIQIh+4nPkcQ/T6WELz7BCyTju2JvfIQc9rO45WVFNS6RxHKOHlf+tPMaEWb+49dfoQAEMPUy/77jPoOmQvaJol+pamqIlEkHSX0Q2We+GiycfItUgVaMSgQ/pg++cffjrkTQtlZGcmKYF0jq/PqpRrRBM1fGYbrdZhAD0oqXbdrakdSEILD0sI5ojTjTOjYSQjl92TQtqEgD4TYUcmhCWnpTTPYxBKmZKArmToE5FsQGw7XYLVubd9RObppsoNTl8OgNAQuOF0f1Jr9fcG2OujIGmJbK+BEVO4gDFFE0LgD9HRbt3Ane1CEphEtRS06J3obnPi9kDqqZlS3dLKv+bK0hx1LF2jZlnMq9JSdhIyKX1ozbkAHFdZJUQhfKTPEWF1LHPSnETPkMu3aU0/DG2/tJ8QfsuJftsAOV5RutXHGmRmQC88Yj7t92qa2mKlki4IXx+0gWgT3AfTmbqZmmPX1lzwicgYpET2P9WRHJSNTP29eW/q3NUKhQ6lOOZIsSv+hks0jLCRYt8/FarFWw62TtxisA856Y2ohtCRk4yQOi0VpumZZyWgFUN3pI4H4WOcyesDWkZ0+dBvo9W564DxzdHAKAhLX5TAaDaHJgY7YZ1cooOsCWOhoq2kEu+UjUt4fepf97tsZt7IyEh+PXDcdr36VkeR+g/vgUzU+grRYtDWjrBa+zxRaQlX6HPzZrI+0wySM7pWN/r0LSQ4cH2/sgkxAegupx8xaM1EBEGIC+MtEj23BEkh5o/YOYFDWybbyKaj2DNX1TT0p5fc3h87i2YsrZbHcSaoiUSmlA+5nYTo2F4xw8SeP71tDOr3aD68XX+Ne2Mx7qmtKtZ6TMr52i3Wx6dLEUnVFXIaj6D4e+n8JYpZzg70sJ04uximrFbKScXebv825O0hLBqhDM/3OfJOSCTLSpqQrxyo1GiMYVy+fvnRYub+ixsmp22/Z5T58DgJLvK4FcTsQS1yvpC56ik6OZsoZmMtDAW0irSQpsuOqVnGQ27jRUtxmYfX79f6IfvM5oWQxWUZrQAaK5S+ahPXLI5zrhucc9kzmQcgNecWGpfTZbKAHhOSx5qFQBf3OUYLslR6PA5Fr2X3JyWwvv3WGOU3v9LPfn30pCWFDZN3D1sXhTh9bGio+xui6ZoiYQ0bBFA8MFGC15s8/ZfXz6YyUjImCYI/E9JB2XFOt0SSiEPiqOvB/X6AcJOaDq6NIu+1n+9X1DENC2xBM0/B0Va6tnUPFemjJaYrJV3Zj0IAKJBzD9Hdk2L8nxmQaR6foKKz5G3q1ujpoVs/naNUe5Vg7SY0BIE5yDmIxtVkRb22IolsfQ8S7OsuPvB45Cj2VrS673rNw2Lqf594u8/pZsezpmKIS0uATbJi24k4u8huEu7qKbF7mdUoJ1TB6ZQBmuboZIRycHn2OYsjxdEQcrj89SqXEJ8+tzY49dCcaunsSbZ/8ZyDIqsaEhLl0NaImMkqkgMOKpkLIeUzDJ2SzRFSyQkpKLVkiyJXUKeAolLVCnRPlMUmaddf0xYT5GWeNeUf31sNg1ABUocQnOqCPGNQ05sw9k3T9BORKgwOEJEKvemxtAHMiazA5Jolsd3f85GDwtmhGTWtAioGoCMVlY6voa01NTVzY9GVZsrAgCwOvA3YnVuEdXMJNIrtsfxTZlz+EmeuzS/nnEMzZHmxsSSip1oWhK0EbLjHv8eTMG0mhaFfhZcP0peuHV7yWpadH0T/m+BO1mksKsSnPg4ZzOE3s8A+Wmtdk9jPkOOwovTzJTnmGtachRGzNpo3cNqNBPI5bImC/1jjV3/vMsqPSw8R4zyhZ+hGMrKWeZX1SHvtmiKlkiEc0jKf0+B3lKSD3p8d0Pzr++ThNzOjIm4e41JgSB2KXt8giN3NavpR8pzkE5lDC5FDkuaXSC9plkx9yOPPMQHlnsAUM35JEBaak40AfJSLLhNE9sm5ioq6GTmuue0YNFyDmvSnQjBqwTPn8+MtAhJsNZY2BcgLSlJNm28VEBaYnM/pngmUqyxQzQ8MSF7L7we9fUBuhejuGF6WALSIiAhcaQlrmnB1081OW2hERdqWuJICwCdHTG/rrqRlpqfyWxDd8lvAIB0kRk/Q6BpmeQrjHgUNN/xJbQol+W8hDjE2CXGpMRep0IP09y9YjnkMEHTwlrORzV/4d6/m6IpWiIROsWkcbBLT/4KmhbiTibzKd0GWIXKQOfAyIPK/KKoKjKTVLRQpMV85ohbB+5UpriT2fdEkpaD86LFRMqCG3zujJ1EAL7bl5OCxs43wUVL7mnsNWl/6OfIaQsNwCMhWd3DWKQlM4VO0MFpx6f0MK2bKDUuYpqW4XiWIKp333GqUF6iV8VsQwOkJSbET9XMMXtClSIwNjsJIy0pughKSY4ZfCz3fbQrxfIYgKIIOdcupsOf9ZmUG0a5DUo43UwWFITZPwAc6pjXgZKhuNVpJpB5eLA4YFm4l2hDR6OHsQV2BSQk1T7eoy9HdMuNEP8cj5BeVf57yoZmnWIS+OCUkx/ja9PBbFF6WGB5rBcI5hw2wamqgdmJED8ifBthnZDaqURFy3gaTdIOrvhFS8piKFFucnT6yuOHC3bOhF/rkuU6B4DfBcYi5+woQmJCWzW4OSHninuYdp9X2ZgDymqkWVNJ08IIfqu4k+HXi8MoPfMUnSqFrylVk4eLtHHCvUMTzljRxRUtKUVR6vXTgjXF4hUfv/wM+ZNl9pnMabWLUZDazDG4OS0ZC6/APSydTRALbg9xSOLix19iisecc7gkTUtME0IbOniuFQ2uQEh1Mx1PZ1GDCR51BPU9UrG2W6IpWiIRzBSpYDEc88znjh+jMslUBv4cdHpwqugdALw5CslISwXzgbBQ018/nEyj11Mex3cciyU5KxU2ZRMD8rlzd/hVMWhNrlX4e8pBrQLwE6pJwv1aNUSnuEyIF7U8x+fIq2lxx08x8KgSdE6LuY80tDIsWtLXsFT3LdzYiW3gAC7hihVdAb0q0iXn0GuJKgWgIDlRHSJCfVOE8sGazb/HPGObo2lSp5v+XjHK2oCujwoS0Gm37G9ZF+WRS7piaHqV4Gdk5Su6ynOEdr610MPQZ5jOXNMoJ32Lp9HVoy0aY3fIjAMyccSQ0/1LO18bAdy9lIa06M8md/zY/iENgN0t0RQtkTDwG7WfTKEypfBHwwS+/PcYPWw8LbybTqY++PBhrCjqIQvT7ck0XkRJTmAJQvzhZOZN04279aQJ8QH8oiLmsNbttL3kaCfuYSnd6yrBbpw1OLPUNVXanqcXJoQAdWhaaqKfCS5ruc5hfodZ4TaznPQzALcGbFOkpQI9LAlpMcePmIngRkfsWtrtlv1vqRTAQGNTwaEspegN94T0RlNK8ku/z9hzaSi960M0Z0qlcFWj8wVIS4S+pE+sz9jhZ6aM55wPwlG36tKZ4XNkoYexn8H9OYdDGecUN86qaQk/A95Dcg2XlDQtItLSr742jryiovz/lKLCFeN6bjRiCmzRLVUwINgt0RQtkQjnkJT/HkMehgme+QDhBpi6IQMAbKLub6plaErHyy8Syn+rOtdFdfdCnUqPQx4p1LAlaSxh9Lq5CZ95GYnrduIe5rpkmegDjMAuZ7eSEzjHuPM7Cfw9pegFqsZO7u8qoRV3Oea0DBC1IDWJrBp0k9qJpkXfmPm5JdLX4yMt8WupTCclHdpUigUurKsgxalzWrbHsySaUVCIR+5p89sYy3aANIevcBgo/x5atGj3Ar5+3+SjBnpYXeYYnLg5M4JLzzHLjYIwn8ErWnL8DhrilVOI76FR+fYQM3oBzzgBiK+P+5bS9X5cYRdFl9HzkzyIkimKomZRTdFyboZkzysl5eYG3hpN7Xu06cc71cwAAGzMO2sancdNZCVIi4KEWErPZJoANfpFl0NmxMOj97jjAyTQwzDSEqEvcd1ctWhBC89CSEtNOgSAvLMCOIFz7lkzAL7l8RQL/WsqKmpDWmpKkLjJ0rk1LdIwQe34+wY0UVU699QNMGJKwSMt8vF7ZA2Oa1r4Z1N6rj2hfIqRCCkqZpEi1hfixymeoTOh/tybhsvafPgjQJpFdeozs0zcklb7iUVLTTotzfI4p6ZlOisc+plRk1Oew1/fMe0pry4nRHIA8s764gqjLEL8+fG3CcXNxKLrL82N6DlEelglIX6oWYzmeIwxSBSV4dzJIpoWaiW9W6IpWiLhFuA0u1BbtIyn9kZNEkVOfU2IlJR32y07fwIXLdHjE6QoZc4JdveRXk8RhxRqyxJyBak0zA0XUZFFkTMs0L4nbGOYomlZIs4mtQ2XZBbsnHzk8hz1JPwAPk3P4yPnLlqou19mmh4nKs5B3+ow9KfcVEMqOE15HvYNnDlFF2nEuJAsj9M0LTtHWmJzFOiE+0oc8qxIC1qLEjQnIr1NKgKRxTtAOUNM/T5J0hJL+GkneYXQY6Tjc3bqWax2FXFzTnMMAKahk9sKnphXAOQRyfPuZK7DH6NXpwSXkI8z/s6DHtO4M9SnVpwiHguHQFNNi06voig0ndvC/Tef5q2vMZyZkzgzipm3FnUna4T453ZIwyVFqL7vNhBTVFTRtMScK1qtll2QDIdZE72Fc1rimzJGWqYR5CToalZEclIc0NgCJIK0YKvdFGEz7iamcIrt8WvSUvBC/PzdSgB37+XsVppYQr8DTh5zCf0tvTLQa+RZ2nj3sHrQHCqUz13YBUJ25TvCNuD7l7rq71V1VpNHGUy45+RhtOnICYDcXcbHrzQQmKypsqYFu4fFv3uKXMWKIoqExBJGcz2pSAsVHtPBo8HxOVepGlBi//j5NTMAoZlDdqSFrL0AuYX47riuiVpjQ6cGxIsf8rn470wRXBMxzQmmh/W77UpOqUVR2OOnsHViBhPcvLXUJk2jaTlHI9yg9BsCd6VOzTnGKb72qZbH+BwpSIvk7JOKtMTmtJjXTuZQuiu6xMOjRNYX4sc4mNvjqRumGVnYl7BuJmFeDv7daBKgHn9cT8LPzdYoIotplWi1WkHHJXfCD0BmctSA5FB+bm7BLEt1qVk3k2JmUSWo21LMrQ8A4KIDA/tnyuGmIc39iGnUZoUzB0hZwyhSJG/kvPlD1DxlHJ/phK8nFMrHi6hxQuIYFIGR9YsWFbFOPUVaYs0Q6iQXRVqUZybLnBb7zLvfNqflMUY/w+HBeZH0ck8r7PoVQ8nSj+8o2CZyWioDhCwU7xw1zbDK6RInWR7Hmka4oaPpWQBke3QArQlRPl+bozh9lpu3FqPQY7fB3RhN0RIJCr+luG/RmzFl0Bfla6cgIaYoquROFhFpAbhNfHs8TXACInNdIq8vj486rQnibLMA44cstrAPvA5/vMuHCxU68VY9PqUN5naXIZbKAPmoTyHNpQakBVt0Z9xwTGD+Obb0zI+CnA6kpSZNi7jGyM/oRftd0RJLgoMBtjH6FtLHmMaLWiRUnIuCk52UDjaPtCRQbhMbWZzFs255zCNvEqI+6Pp7jkZXAdA0Lfz7up22p2OJIS1uTwuprTmTTY6WVNcclamhVmVGWmaFafg5WlUOFBqjq+a7N/d2DvoZAARDogFccZdT6I+pczkROzoOwkTM+OKC1b79M9aRcUHXRp9Zwh/f5B9b40mUCisxdbTrP28+l+7E5ki99rM1mqIlEkFRkeJE1UuH6+mGnCaUL9+zvh1HWmg3YZaweWABnNuQ9dcC+J3NFCF+KmXInAMXLTE+K0ZaYpQ+AL9QSSpaCNKSU28CIFNuAPJ0scpzkGS5hqLCzWlxg/VyJeMAxFBgEp/7Ufn4xN0PIP8smLrts7FwuSiKJFQQdxNjgs1w0GqELoXNREamaElvvFSZQJ/S2fSNPqogIb4eIUXTMk54xoLnMnK/tVotj2cfQ4qpe1jK/XAA3Q/JmhZGT5FzxhRXFGVrGvXoPT1f37Md3983HUJRx/HL7ylFY1slKOIIgOlhGehbDI0pp4sbZ+gAEG8a4TwFLS9sSPo0AHkNMPnH5ihuDCI1vLT3nL9aNqSObegF19kaTdESCTqHJKmoCDjGO6Fvydfk3GIqIC2ky6ol/ZjSE6OT4UGOuAjR3L3wlPSUgVpmAd4cOUvPZMtjhOaoSAumh/X0TRnAzUYwSEvuhJzS7k6LXXAt9LCwAM7pTua7b02z0lAAwq40QP2alphmo/Lx599FQbu6yvHxxlzENmahgJfWyFarZe/vFIqrWT+DWVkxZGM8gxSLVGyGktKUEi2YRQ0PXotm3jHY6yEC5JRmAqZwxSgrVd3DAHwKWsw9jHMnmmRs6mhairr0GrmNVjDaMRyj8QgJesrqx/cpzD3FzbTSORjnqpThpqnBaU5yDuB0RZG/wMXmugH8f+2deZgU1dX/v9U9Mz07zCA7wyKICAJBUERRXFBQo7jGBMSYxGjeENckb+LPkLglkMUYY0wCEfMqr8YYFULcoiZiXBJccIn6KioqBkFQkNmnt/v7o6eqblUvdWu4p6tr5nyeJ0+Gsaf69ula7tm+Bzht2nAAwOkHDS/4Hvl6ooECLQay0+Lxed1OUVrh+P1Dnmnx3p31cfJPb1eL2gOFb0Rup8Wr/AywH0qtXQnP18Z6kMmRLwSV+vpYWQTxVNqVafF2iuRG/EIPM7uHR8q0KEoed0lSuwV7WqTooVqmxdUArrAR9IMcKYunaOWC/URc/b+HnVWjyOSURQwYRmZjLWdadEUscyohETmoqpkEv8iblEQqrVwGGI0YSKUFpjb1K/i6rFIaxRKrrmTaCrwU2sRn9bR4OBZyP5i8IffK5MYdr/eT+SlsT9lJUCljylceVsieslPhlWmJuZwKlZK4+kop0xLrSU+LvmvGlqq174m6SyqzvgPNTpEZ7Iun0uiUzgtdWZCy7jL1ZFpIzf66qwEKZNQ0PAdzSRJTlxkCaufS9046ALPGDsCpn1F0WlLOfQKQf09llYf5yLS41W0LHb8yR/N+mOBMiwf5MiGqUXtAbdBXllOkoL5lqocV2nyU98DpqpR7WhSi47Fcry8oeSxncrw3UKZD0SJNfPbT06KyCTSjDwBQX6WQafE5wM4v7kiZmckxjL2XerTeI5+UrNbyMDurRnF8OWqvKqHrh1zNpvqV4nLfYyjOpc5EWjka+uhlR+Ks6SNwxQkHFHxdT8rbYq6+vMJ9f3my3QrlYSob/gqf54/7+/JyRJySx973u3znQ6HvS860eA1/zK8elv87kMvDlOe05JhYr2U+SKGhhrqyk67SJ92N+PJ7xAnKw4D8QSldPS25+v2sLK6GjFHuMkP68jCvnhYAGFAbw+dmNHkqjbo/g0rFhFnp0R5Pel6bWcqKCnPv8jlrYYGdFg/8DpcEsh8ahQd9+ZOflI9vRilV6qP9RHFzbQJVX6+WabFvpio13qYT2Nxh12B6bRjlTEtaQRxgwpA662e5nj8f7uFguvsQzEgZ4LSrrkwOkEt2U3/5luw8Jjw053uKo5FaczSRelBervfQnWkpi0Yc5VhJxWjovgNr8dOzpqKpsbrg6/KtX6VE1GxkLZiNzjNcMr+TIDW+K5wPOTMtCiW97nt2PqciVwDFj3qYrYiX/zPICm+qikbuzWzhTItUHqaYaUnkciq09LTk6jPTmyXO6tMiyELLGUTd5WFA9qyWuObPYClX5Sjf0uF82f249kZc72Df7EwO4D1nyg92b1T3IFop4JIv8yv3tMQ9Mnzy3ksI4arIUHN0wgY75gPp9AAAWzxJREFULR7kndNS4HyWHxoRQ23Ql59p1VVZTot3VqPTpS6h4lTIyluqr1fZ0MmSxyoRMvMibjY3OFHvOR+5oqeFbkIjGqqsn1WcFrlXA9Bba2vinKStd6PsPj5AlWnJ3kDqjFYC0iZG7pHSXduesxmUZoOkcs35xYzEt8dTdtRYs42yz6NCjoLzHlY40+LcXCirhyX8D69U2cC7o6def5O7Eb9QIMtcv8ueipkWzzkqOeTUvY7fICkmDetflfd1QHb5GSCpPmnpdaAtGwKKc2+UzyPdpVuA8zoAIMlt0wV07HuLhvKwXBk7jff3XE4RQDMPLasUs8D+xVYPS1l/ly+jY95HzX5FR6Ylz1u4q2/CBjstHrhvXmmFB3K1j0GF+ZyiQlFK22nJbOKVSg3MB6DC8XNFKgtnWrLnIqg01svR98LlYWamxVt4wERWTVNJ9w6qq7R+3qc2lvd1JnkzLTozITnmTVBMq3erPlFIHgO2kILOzwA4HQuy4ZI5osbaGuWz6uf1O6jVMbuk1K7P17P+npS3WdnT7ntYRYHm4KwSCw/7yJncpC81MNX7Vx5lqTz2dEi896A8TCUgIjst/asr8r4OyF+yUuj4k4dn+poaayo8gzruRv90Wp4xpaGsJ2cvhd4ssfveSJGFNnvNZPUwvfd3Z5Rft2OUuzxMX++P7JyK7hNIp1hMvuGSOstz/Q4PB5yN+ObfmfeofMc338M8fsRA/h6+PGVxYYEb8T3IW/pQ4JqRU/We04n34qRuVZhxkC/TUuih6Xzoe9+snZkZ9UxLMi2sTb9KI76dafG+YZVJF6aKstew/lWYPqoB0YiBaSMbPI/v7mlJao5eA85Imbl0naVV2SUQ+h0vuVTSFFLQuRkHnNdQQrNzV4w5LXmHS2q0U43ZF9aZ8Jz47JcsUQqFa8EM7Hza3u20KCggqvYVyjLVftTAnFlZtXK1dNp7NpB5/0qmBTq6g0eFy9Xs9QshlM4H2WlpqFZzKrKdzPxrOmXqMEQjBiYMqS94bPf6ATvLAui5PxbMfmq7JnPLeOvsOZF7Kqx+E43lYfYAS+dn0N3TknO4pMaeEyEy329Z1NAaWJMDm0IIGIahfL2pkk+SuNB5akqKy+Xw+c4Lt9OiMt4h7JkWdlo8MC/8tMhEEVTUveQHiOd0Yre6hI+eGZXyMHn4XkKSzlXJtKg2TzuHp6mUn8kbWW/JU3ODY+vMe99MKswoTVIo1bVHIwbu/a/DPI9rItsIgKc0YU+Qs3xmVI6iPCEr06JZ3StiZK6fNgXhiJ4gZyp0157n7mnRW76Vb1Ous1TE7EMwG98BjVHpLLUr73uMuZ7d3bKbhT6re9aUV4Agt3qYmhOi4nDJ6lxtDhn23O8h94Ds6XbSVDLR7jUVspEcKOtf5ZVpcd5PVe5dZdEIFngoJZnE3AEdqfxGSyN+gWtSf8kjXaZFFpggLQ/LmtNCE2wBaCbWAxn7l0X1Ht8tBV8eNRxzV7T0tGQFpDL/r6I+KwfK8g2MjUYMS+VROUiTpywuLHB5mAcOT1Z6gBR6INdJ8pBeNyFr42iVb2V+r9KYbg6XLJw1cU2st5yK/Gvyq74j12CrTJ+XL0CVbJFbwtNXeVg6rVQi4hc505JOCzt6TdDETtUP4q6dT2hsljUxDMN2si0HVe9tR97EUA35pJzT4n4PiiGc5vnaJinwad+8pNxOl7fTYmVaFCSP3Q9+r9kFqbRAZ/e5XVjJzL4O1Hry7LW2OJzA3H9TLgkhmNeAijAA0F06pHA+OMvDPDIteZxM3T1adoTf3hzpkTzOLm/RLV5hq4c5JY8pGvHlXiq9Qa/cgg7aJY/lRnzzWashYySvU1WEww/uLEXm+PZn0aHSmR2Uzvzez34HKBz8lh0jlZEWuaoHwgQ7LR7IJ0tcsalb1sz3GuSUfVJ3P6BUlHcUshTyA7AzkVJS0so1XLJgCZr5kFLMtEQihvW5VR7ibjUcf+VhQqn51S/yg5li8CPgjFhSlAzl60XQ3Shvnk/mhllniQWQu6GVKgsCqA1o9UNW06/mmT+Z93AGOgA6eViVQEetq1m84LDFrFKdwvcwuf67Pe5dkhiT71+KWQfTIWvt8nZaAKdTATh7vdy45c5Vzgd5jopnT0sPZPz9kG/GCaDHUS6G5LH73qhTstnErAaIU5WHuWX5iQZYOnqLkvrsJJ8rqllWP7iDA4DaxPqevIfbKSqYacna7xgFX2/vIVNKlTq5nP4wwU6LB2XRiNVPIDc6qQ768ioPM0/qREp010dnfl94EKL6Jt4wbAfBoe6lNFxSLfIoRypVhAoAO1qpUjJUXeF84KvcsMwHQjKlNhvBL7Eczb6A3myOUwWJ4DO4I/wEdgKk7zru7WT3BKvxV/qudX0PueQhqXtadM/8kd+jlSTTkmdOS0GxEuc1rZJ5UFVykjd+rZaj7B0UcUwm97hvu0t0M+vJ/zdumeB8jbWAe/ZQSul8OHhMo/ReHuphefo0dWVA8234C8m8+iF3IEFvdjK/o0yVaSmCelgx5rRofE4ZhpGlFKdzSKk54BPIvrfoeg+7v05dha4sGnF8R54tBlKZt0r7Qq6yvjDBTosC8sWpor4lR9XkUrFCxwa6GzsV0nvuOTBeF1eltH7b6Srw+nI7i6BS412Zo6fF6/kXc0Xf/aRLVW66cjRBZTaCX8yHWlrYZRCA7o2mv4Zi/8cPJtOivaclaj+cdQ+BK8aclrzfg9ZyRqd4h64NJJC/3KiQfbI38d6ZX7t/rPDxoxF7s9Ou4ChXVWTeuyORUu5dqHQpOBqGevmW/Pf5yDX7qtD5MGafGpw7axSmjuiHaU0NBY+d1RysuTSp0iXMoLv0KWd5GFHpkztbpPMZYjrubfFkUcrD4prfw62gCegvQbO+66RTPUz399zpEhEB9DxD3Ep6qhUTVT4UaOUePpVKoLBnWrgRX4FYWRSdibTyA0R2VOSsSy7y9swo9LSYeN1IK8ujaO5MOtS9Ch1fvmGbF26hKJyzp0Ux02INl/MWE6juQU9LmRUhF9IDQd9mXC7vkPsE9JagZZeHaS1PyFfbrj0TYjotZqmOXqfI+hyptPYZJ7miUqrZRFWyFAoJRR1UggR+qXSrUSk0y7rLwwpd07I6IaAmGBEriyKRSqK1y1Tr8g4CdToyLR6bCpcT6HVdup2WWIHysMx/jwKdyUyWVfF8uGbBgQX/u3XsPFkE3U3snUQzTty9FEII/YEE12aTohHflI7e05GwSoJ0DpfMKg8zS7c0vUdNzHkNAPqdO/OcsXpaNAfvYuURtHRlPwOB/HNO/OAuoVN1WqorotjTrR5WKCsr//euRNq6NgoF1c3nTTKdqe7RVeZcLDjTokCuRl/VTIv7YZV1bFfPjEqjvNtp8doE2nMCFHtUcmVaFGWVVR8eZnamVSH6Xu5Kl6o8XMsd5WH6My3yeszP4BVt9UuuCApVJgegKw+zmpA7iXpapDI33d+127EDKDIteTaRBNLTrQo9ZH5xR1xVGsfd5WEqPS2dibSy6IV5zrUr9P2ZtumIp5R7F7IG/Hqcb+6SrUrPjYi98dd9PrilarU7FVmZFr0b/nwzsgC6kkcKZUXZaTG/Y12lW0CO61JzeZgZnJWdFt3ftXmu2j0tuhXQnDaSy/8pShlJMi3SM8qsVC8oeSzZzj2jJgyw06JAroh3oZNin1q7EdIr02IYhsMbV8lUZPW0KDoIXcmU4nBJ+/MqqYd1v74jbm/svG7ulS4FNK9NVLX00Fe56To08Ak2gXLdOUX0GnDeUClKhuwMGU1DrolbuYp0Tovuh2b3cUzJc0C/nfLNgqKY+aMSJOjpsd3qYX4a0wtd07JSnzzxWeWe1BY31cMK3E+lII0lC+shoFJZ4bx/eZ3TcjlcxFDLjgNmPxtVJoS6p8WZGdO20ZTOBznLAhAIcLhKEnU6+6bT0tyR0F66BWRnvFSziKqYe5vWrqQ1/DGheZ5Nlty55sG+hfqvdB4/2T3PSfXZ4WdAuSPIrLC/c1f3hA12WhTIKSlX4KQb0VBt/ayyefLbM+NWnvHMauRQAyvcWN+zTItcJuWVcrQ2sorN2TVSZNarHhxwZpcoGvHlddiyzXovJ0czrsYGRPfxzRsXRQkEIJ0fcfo5LSqS235wz8wAKJp+c9fPU0zHbiM4V037p9Iik9lUCBK4e1oKlazkun9lju99D1Pqmet+bTyVtjZ4qkIiKuqHgDN4VVke9YziVkkla7rPB7n0SR6mRzXjRHdJT6XUT5hICVemhcbxoshCmxvTjnjKdoooysNcGS9dNjIDD6m0QHs8E9A1Ywrae1rcmRbdWUFX1rFQT7Ef5L2KLIRUaH8HANXl9v2iUL+f/N8dz79ClSvSvS0RwmZ8dloUqMjRaF7opJYzIdMVpqvLkVaVRnlTkcLEa5NpN5vZkscqc1SU1cNc6lBexwey1Xe8oj9y5MHrIgZsCdA9HQmSKJm8DrNXQ3+mRXJmCXpa7EyOecOmUg9zN4Hr/R4ckse6S2lc5ZuA/kZ5OWhBN/PHVaJHIEoBAO2JlLVxKXQ91PgQ18hVKgUo3pMUsnvy/dq0j1d00/wbsxHf69r3G3Spkhx98yNr2/S7ZnfpDohYTiZRuaMcSMgMlNWfacmviKc/kNCZsL8DnaWz+cp/dT0Hq1wbcrmxW9e90bxPxV2N+NoDRgn3uUrjtJhBaS/7+CkPcwZ1Mr8rtD+NSEIlYcy0cCO+AjHXpgLwvmie/O+jsX7TTpw6zXuKsJzJUWmUd5/Eqg6CrEJV6Pi5e1oKbCpcjdaAt31i7p4WjwdadczfQ1+uFzZvEPrLnmhVsWLlOZxlAsnNrKnPxOVhVM5dPKk/q2ZKnqdFjvItgg0S1cwfymyXHESQs61RheGSJhUFyrEcD2Vpg6qiONjc7VSoOEWALAyilglpVXy9/HkrFYIuZvmZQ+RD02ZT7qeRxVm0Ra+lIBmgvznbOXss7WiY1j9rxilDrrXPzCyrTqSszSOJ5LErW6RrFoy5+U2kBOKpNCoc83iIMi3a+6OcJXRWpkXTuRqVbNSZtO9fXpkcR3mYYlBabl/wqnQpj0aQSKUscYYwwZkWBZwnReZ3XhuKpsZqLD50lNLGwzEcSEHy2J1p8J4pkJ1p8TunpeBE6R5kWmLujaxXI6vPTItVL9yZsKIousue3FOuqY7vUGWjmAOT1ZCr+3M4nVoypyWlJvnol6xmSs111Y7yUM3DzUysnhZLDEHfdxyJGNY9xjm80ofTEs0fiLDuX66ZSIUb/TPH+7S922kpcM8wDHv9ZuZEdU5Lq+K17y4P86LKpa4I6JQMNqyNvjwcV1+fgDvCr3ejKc8ec1cDaJPxtkroXCWbBDLkmRJAgvIw130rrtl5zLyH1HslBRR0l+mRBYxcohG6y8MA1/esGHyUe/789LSo7O/kY8ZTqYKvK0XYaVHAqR6mv7dAHg6kkoZ2n8SFpisDsvqOmicuXwQq9dS2Uo96psVdMuS1iZLVhrzkQgGgtnuTIISsmETU02KWlFA5LQQlHO7jAzQKOYB9frYSNeLLTbO6I3FAIXUvvVHdeDLt2JRTOKiW46j5WrDUtORMi4+5JYWuzVz3L68Nqnm/+LTD22kBstXAVBvlzUyOt3qY+iYEsNfvcFo0fWcZJ02yaUpvQESWwAdoSqvMLIXT6aIrraIoMZZVN0nKw/KouNFkc+zPoFNF0yqhI3Ie8z0DKbLczvL8wt/BwLqYtEbVmU7qTpG5V5FnzIUFdloUkG9gKo3yfskpqezDaXFLILvxO3xIdgo6EuZsDYVG/O5MS8SAZ8QrayPrQzLUSy7U/RprY0HUKE/VYO447whrqqmkSU3ckWWVTJkfKhyZFopoYu6MlHalIld9PoXksa1SpPc7cJdLeb2HW1XRnXmRqSz3v0G1My1xAN4BBXP9zR1qmRYz89vcoRZ0qZdmd6lkWtw9fwDN+dCVTCtJVPf02ICtKKVX+dBuoE4SbPjd6mEJgoBOlXX/TWnvNwHkodLmnBb9FQfy3iVhlRkSOHauTAiV4IIZM6KYYyXfv7xMNEhyWryD0vbxVdsXzPtte5wzLb0SOXJEWX7iUCdTlKwDsiWQ3TjmHCion8kbfrukx7sm3LwAVB6u5s3IUhvx3IT4K6+QS1bM9yhUN98T3BsL/UMZc5TpEQyvzJKq1f45XE3Xup0WqRFft1IR4FRbAmCXcJJkWjLH1j7zJ6ukVPO1UJG9yS60/OqKqOM8KOS0xGTJdp+SoWZ5mFfZjXv9Xhs7c72fdmScIq/valC9+iYEkIdXJqzf6bws7UyFuk1VkaPXQgg7+0kw3Jcu0+LczFJkcOWy7QSJeljuRvwKooCO7t4lwC6TNIOnCd1KdFmiEd0OvM4yQEnwRnUw8aD6SutneVh5zuOXZ98fvXpazEy3fH8JC+y0KBCL2ps7y5MlGFTYpZhpcW9A3JtCN445BwqSe+VRA+Z/VpEkdpdJqdxQ+lc5L0TPTYLkmNV6zL4xcWegyDItBAP75OM7pKp1nndFkPUEsjdpup2WXIIFJCprLolYCqUiqhI9d2BDdzbNvcku8yjfMgwDDdX2PcA9fFFGjrbGFcskq7olQ1WH9lmZFqtxX+2hv8d0ijxeP7jO3oQo9bRUOHtaMvdk2jp73U4LYD7TKGaQyJkW2rIngKjEzRxqKmVaSOa0dG/4KZr9HZmWlP5MTqWUjQJshUvdohFF6WnxUb4lZ1q8Zv05VEatoHfhNdlOC2daeiWy3jl1pkWl0d/9APYqD3M0aimkPw3DsKIDlnxpgavAXXqispkbOaDa8W+vjXJ/aYPjdRGbZDkt1HNaCMvDKB9qWcMliTa09vt6b9r8YDv9KRLHK1dQAdD3XcjXP0WmCMjlwBP1tChOiAec2VNZEtiNo1w1ribm4HaCvEoSzfW3KwyjBOxht82KmRk506KyaXTbU/tAVqmfwhKW0DyxHjDvXfpFRCodJc8U/X7OsiSK+4qcLdKt7AXkUEAjUSiTn1Gm86i/hM687hPWpl/vuZqlHkZQHtYRV++JHixlWtz9f25iUgBCVUzHDPzK5bxhgZ0WBXL1Fuj0xM3jx1NppTkqhmFg7MAa69+ePS2OOQeZi8Yrfehudi8458D1/ioX/ICamOPfXpuQnkQZK13RZapMiKXIRNaInyK5meZV+dG8QXJvSLWXh+XoCdPaiJ+jPBSgGS5JMY8HyI7u6z5XzUyOn0Grsv0K3cOc5apqs37cmSVVBR4Tr2vAvZFQHfCrcmz59S2KQiV+kUuTdGf3ZHWyLumZQ7JZTtBkWszzx4zwWxlcgs/gKA8jOj5AIybgLA+jKAN0ORVkohHujBpFX466+qzciO9FrnluXsvn8rBeTi5JVZ0D8nLVtHs1+o9stDMVZilBPhxzDsxBZR7Hd0cmCz3Q3OU/Kg8/95q9bhLyegyo3bCoo8sx4o1FLgEFvWVPrrptotKkbHlbIqclJamHEamsOTMtuqJ98vWvv6YayFUeRpR19JEZaJeUxgoFUeRNsFmu6jmM1t1HpShhbL3ew8lxO+Iq0eWj9x8IADhNYXaXrR6W2VToPh8qc2yYdV0zhmHklMKlaG6mmmFVJZVuASDJdFuOUTJtBY4oju/OFuns7ZTl2q3yM43Ht0ro4jSCCNnPQLWeEH/vYTteVqbFU6jIvh+NclWl5HutY6SFck8Ll4f1SmwlEf3ykPLx4z6GV8qDHL3UtCqlTIvq8d0PcZWeFpXXmpg15yZeD/3PHzLS+vnUacM8j595D9o6fndPC1l5GFFPi9xgLvdq6P4c7lId7T0tDgUbyvp5muGP5vHTwt5gUKl7mZCph/kYIHry1Mx1PHvcPgVfJ2+CzYest3qYv+xellPnOezWvz1/d+4M/OuKY3H8pCGerzWDOqaamW5Hv9JR8kyQCckhIqI30Cf15BCUbpnnczItkJCCIRSSx4D9DNF5bzTFKDqsnhba3h9bxU2njey9C6C/hNldbUDTu2SXASZ9PMevPmUSzjhoBE6aPLTg63JmWjycojCXh6k1B+Rh+fLluOKKK3DJJZfgF7/4haYllR45G50I5rTEU2qN+ADw7Hu7rJ/dZVBubGlbtWGRQK5MS/6bhNtpUnJafDYG18bK8N7ykzyPW+g9dCsmxVyyzWTDJSVlFq2b8ai9WTYfzpn30Ps53JkWKsnjrmTaullTPJjjxD0tgOQAa852VRNfC26nReUecPGx+2HisHrMGjvA87WV5RF0JFJWdsZTPcyno1zlyhZ72cddHqbyfZVFIxjSr9LzdZn1ZNa/R3HOjF/kshuKnhNZhpVCVSpXpkXrZlmqBOiQS+i0qkrZ76E61NQPWf0gxD0tqnsLP1RJWQQA2rN28nkE0PS0yJ/BvC5U1v/Fw0YrHb8nohphLg/rsdPy3HPPYcWKFZgyZYrO9ZQkVs9JMg1zy6Kzp6Uil1Pk4/jejfiyJ67WCOYr0+Iq9VK54N2bKN2bNIA+umwNyLSmjNM14pPIekobNTlKo3tD21hT4XpfvY34snNnPpC1BhUcw7vsAWq6SgjkDandCE5TvmWifxZP5nh+5L9rYmVY8BnvUqnM8aMAEspOkfv+4rXpd2dmPOe0uB1xBRljP5jfl+lQ6Hb0ndPY9QcrHHNgCAe+diboxDciRnf2M66u+uSHsmgE5VEDiZSw5v1QqZMJIUicFrlKhEKdrNLltOj+ruXeKED/4GDAqYBmHldvT7S9v1OtpLGdlvBlWnp0drW2tmLRokX43e9+h4aGBt1rKjlkp4Li5iVvitI9uGi8JDQrHal0tUYzd/ak0HoqohFH+YKfRlM/f+OXYmVaKG7W8vGdDoXGB450rC6ptl1nGQcAjB5Q49g0uvsN9pb+1Rmn6NO2BEmpCPWQz2jEsI5nDSrV7gBHID8ndTvYla5GfO09GOYAW4W5UUB2+alXeZU7c+I9XNKdPdR7TrsDLhWaj5+rZIVkICvBHBjAVd5G4BQZhmF9B23xlDRPTO+90XSWd3cPQVWRw1Y/tn2szkTaGi5JNXiXdpYNTfmWLVLkPL7Onha7xI2mUsdWD1Mfft7nelqWLFmCk046CXPnzvV8bVdXF5qbmx3/CxtOdR+CqE6uRnyPk3pfST3M6/yP5aqp9CkZWujzGoaBemnuSo8yLZo3/IDzwR/1mBvRE7IcO+09LfaDn8JZjkSMnHK+uj9HNGI4NoXu735vMTXtW7qS1pwNkvp8ubeIwKkAgHbFng2/yJswQP93bJWHdRKJUpj9YwpzowD/fVRuGXUv+/iVVPaLO+Ci+/jFUq7qIu4zkxUxtTvi5uyeDruERneZXo3UjC+/pw7kY3UkUiQ9LU65dv3fQ6W7xE2zupesDAnYg4MpMi2dRD3RlTmC3p6ZFqunJXzlYb6/+bvuugsbN27EsmXLlF6/bNky9OvXz/pfU1OT70UGTa6IN0lPS1KeWF/4b35/3sHWzwNqC8vjWRNZZUlVz4eyP0nPflX261VsUx6NOG4MurMggH+ZUb+4S0L0Sx7TRvgz7yE1sRP0zbjfB8jekO0ttbEy6+G5s6ULAN10bApJTMCOltnqWLROPN1wSZq5In5nIrkdY69Nv3tgrac6WVamhcaeVMeXZ3fRZCdpI/ByIIFiMw5ITou0saOSCrf+rdFpiUYM674oD7Ckc07pxArsRnyi8jAr06J/5k+unhOvTIgf7J5l9aB0XV8pD/vggw9wySWX4I477kBlpVpD4RVXXIE9e/ZY//vggw96tNAgqYhmbx611iRKKk6q6g+jBtTgH98+Go9dPkdh+JCcaVG7KN2RR6/yCmemRe20km/YukuSAOeDnmIT6KeErieY60+mhSXJqHszmKv0UfeGHIBDpNq94dvrYxuGZas0QRmH3NNmP3S0HR6AfX2ZPS26v2fAeb3pjkqbx7YkeomGV6pKKlf5VA+rqyx3/Nur3CsacWaudPdp+Z0z4xdZlYlkM5urUZ6oZJPC6QLs78DsNwH0B9fcwUGv8QV+sRTE4knLTjqV6GTn0Sw/o2jEt8UENGdaXAM4KYb7xizHUW0On18qJaU+1aC6ed61hbA8zNfu4YUXXsCOHTtw0EEHWb9LpVL4xz/+gV/96lfo6upCNOqKEMViiMXUB+WUIrEcGzutnriV6vaXyXFPlc+HXApgXzTqNdsRwztKVtWDrEZVedRq3KXItMgPet0PNCA706JdPUw6vl3LT1SCJmcRCGz14Z5O62d3aY0O3A9iivJNZwkdzXfdRqREB9BmWvxmQvxS7XKK/A5/rIgWPufqXK9XKdOpiZVZcrK6JYmpe2bk2V0UQ2Urc0gSU2wE5T5N7VkQl4JbeVR/iXF2RlB/b9SnSKAjLk2s1zmnxVI+pRkiKgs6APrVvdxzWmicihyZFgpJ/kRauRLAzCy3hLA8zJfTcuyxx+Lf//6343df+tKXMGHCBHznO9/Jclh6C3LdYyqdMZnWmsRcw4E03hzlC988rGrNI6B2I3X3j6gg37ApovtOcQD6TItux0tef3ucSFbZofJDVx4mM7x/lfZjuh+UNMMlUySROCA700LxHTiuN6KeFjPTpTtzWmk5LWqZlvrKMpRFDGuT4LenxT0wNxe1sSg+bs38rLt8yy3ZrL08TJrdRTunRc600GxmKXpmAPucpuiTM3FnnXWXzprHa48nSQRjHJmWlP6MWrbksV4xAdl5B0ATlJZ7WijnwCTVJY/l8jAhhHZnnBJfTktdXR0OPPBAx+9qamowYMCArN/3JuQ5KkkChSVbIYPKE7ePb34WP5FKFTlPOTKp8sAHnCUcFNF9eaNSUYRMi+6HWll3308yLegzLQkahbJcUNwg3dFDvfKqOTItur8HV6aFojxMLuHUnRnIlhcnKg+z5rQUXr9hGGioqbB6nLzEH9w9LaqZFhPdksexsqglh5v5N1FPS1zuOaGJ/lIEQ4qRaam0ysMonRa6nhb5eC2dcombxkZ8ScjFliPWvzfqcEsS6xouKZVWAbRzWpxCLvrLlxMpYWWkvIVEMvcuc6CxbmeZEtrdSS9BbnTqyRwVL3J54noHcdlRqbhiqt7htCg8MOWHtmqKWx7oRt38TVFukz37gu4zqKom9fT48ZQseRyeqItJVnkYgaRkl4+eML+4My0U5ZKy0+LVB+cX90OPqqfFmgOjYJ/Gans+UL+q8gKvzO5pUXJapKCL7j4twOkU6e5pMb8vuadFZzY6t3gFzTMtQTC8ErCfT2amRfd3AGSXAepUDwOys0WA7p4Wqd/PdB6JshSA/uGSsnMtH58kKO3oOdF2eEeQ2Ax6eTmm1RVRq+qmJWQDJvf6Trt+/XoNyyhtckVaaSamqtck+kE+qf164oDazbonmZZqR6aFoDxMcp4oHQoT3TKvQOah0BZPkU1Kr5AyLXaZiH5bzR63D556+2MsPnSU9mMDOcrDCJSQ4im6TIu7J4RCmELeuHtt4v1CPXfJ3GRbE+IV7hdy71S/6sKf1+3EVSrc8+Tj63YCgcyG9tP2zOelUidrlwYnUgXKaIZL2pkWiuMD0oa/uxFfd3YScJYBVkQj+p1913UD0KnEWWV6JMMl0xBCWM8o3XNazH0RdU8LRaZFPi9VM/WGkRlD0NKZRGtnEoPqtC2HHP132l6IrUWuXjPoh5hUHmZ6vxSa9jKqjVr5/t6N3N+hmmmRNzr1lfpPRdnZonAoiplpMSPMuqN9DlllouGSALD8jMn41+ZdOG2a2gR0v7jtQhU1pqh5BrLLn3SrewHAmAH2bCfdTkv2METaRn+/x6/1yIS4nQ6VjVcN4eyhzPGlDS1RpqUjTiRJ7Cjf0q8qJTtFuvsc3O/R0mk34utGPm9Ug31+cIsJGAZNmV48lUYiqb9MT87gOhQutUke2+tPpwVRT4t5LaRJ9o9yGbkfIZQ602kJmewxl4cp4My0dJeHENyAO4iGCJZHjSyJVq+LRp5arhJh6snNV15DU6OaEpofnOVhRci0EETi6J2WHJEygg3ziIZqnDl9BFnpmfsc1VoCIWWj0gSZUECaKK/YaN4TDhhab/2s3WlxS/RqvhbcToHf7K9Xj2BP7E1Zbge4emY0q0pZUrgJ+7rX6Sjnqk7QK0MuZVqorkmrtIpudpJcbaC7NAzInaHU2VMYI87UyxlPuX9J33BJ2+ZyJl3rSIsyOdNCU15snjt+KjJqQjqrhZ0WBZya8AQ9LdZJTSOpahhG1g3Ry+mSNyEqUcSGGrt+XPUBu6stbv08QPp7XcjZImoJWYAmEmfa0pZW1ftgc6j8pNSUlkoR94aiUuO8A8f1T5RpMe8BrYo1yT1BVsiqD1mmpSfDFq879UCMHViDH5w8UetaTEY02Cp47p4YHcj9DlSZq7auJIQ524ig16ErYQ8dpFBkihdhTssewkb8GunZStEMbT6797TT9OVYG/JkSvsMFSDz3Dafq5mgrt5Nv+wUORrlidRhu09Vst5UW7DH+zsw90etneFyWrg8TIFYrp4QiuFAiZR18lGoRJlNvirHlzcJ7gFYuWissR/aqvXXcp05haKU3IhLUW4zoDbmUPhRsZNfshXKdJ8XUpkIUb9GMXAOKjVoMi2Es2zMoXLNRMMZAacTT14eRqxOpnL8fQfW4m/fPErrOhzH36dWeq+aAq/sGXJ5mHZJ5W6HqFnasFD1OlCUb8mZnATB0ERA7mnpdloIgjmOTIvmbBpgb5g/7aDpjTKdovYuaUipxjkwQMYuiVTSEdTV5UCWdfcRpboHOFM8A+1GfKlSR/N+xypl7FKfe1cb0kwLOy0K9KTRyQ+ykkt1OvOz7k1R5qS2m/G8J0rLTov3zbSxxh4gOqhebZjoRceMw662OM45dKTS6/3SKGVvWgiiCdGIgaH9qrBlVzsAmmir+yFD3SsA0DycqWmQHNTq8qjeEohys6fNzrREND90siV9acsZdWda3Jkt7ecp8YR485jx7qCUCsceMAifP7gJIxqqSAIWtTH7O6JSlZI/L0WmxVHHT9Cg3eFoxKed00Ihmy834g+o1V9tUN0DAQs/WJPV40nbOdVcphcrj6KlK4mOOI3CpRnQzThFmc+g8/4uZwWpFDrN/Vprlxn08v4OzMx7GzstvQ/5YW8Nf9Nat5lDZ1v3he+zUVmObFaVK2RapE3jSMX+lCkj+uPe/zpM6bU9YWi/SuvnTTtaSN5Djli7p2rrwF1qp99pcfbMADQqOdTID3zdZRZmSZ7c00Y1h8Qs1aHowRrarwoTh9ajsjyiXfiiIhpBxLCHS1KXh1E4LctPn4yla1/Fr8+ZrvT68mgEy8+Yon0dJgPr7OBPfw/1M7/kukaoBrKa6NyoVctCAmmaZ6bpKHd2y+FSSx4P7ad/6K67EV/3Z7Ccli6pt4goCy1LBuvO2rXHU4SZFvtaoxpd4JaEV7HPadNG4KCRDZg+qlHrWqhhp0UBwzCsKJw5mZzCEwfs+kKaTIuN1zUjP9RMGcBCNEqbxhEN+pvqe4Ic2aMqeJJvPu6p2jpwO5tU0qfNsiRmCMvDZOdRt9OSa7q39ppkd88ZgYJbNGLg/otmwzD0l2MahoGqbnluoBjlYfpLaU4/aAROmza8ZKZDD5KclkbNPX+5hhjqjl4DmWvGfFbqPCccmZak/o0skKtnUf81OdDxHevP1FvlYUQ9LWYVRls8ac060R5YM/tm4nYJmt5zNVOF0pW0hVa09rRI9mglEnXImmOlYJ/jJg7WuoZiEb6QakDEuk8yM5JIIakKgKyvQN4UlUUMzwdzVXkUDd3RvZljvD1xuZG+qUScFgCY2tQfAHDK1GEkx9/dbosJHDi8n/bju3tadG/W3Ao5hhHO4ZKyWITuqdK2Qg5hT0sRRB2AjIoW1aZcDozol+h19XZprps3KRWHBQAG19uZYt1OS0VZxPGMKY/qPS9yDTTWuVGTr3dzOB7VnBYTCqdl0jBb0a9N6jnVhdW7RJVp6T6+EMCejsyzULfSnUPeWnNPCyAHpST1Vo3Xgiwm4CcT4gczK2gLCfTerT1nWhSJlUfQ0mX/W+fGLhIxECuLWKVhgP4bsF/5X8MwcPeFs/D8+7vxuRlNnq+vLI9i1RdnAPAe5FZMfrd4Ou5/ZRvOmD6C5PgJ6TujkKx0PwB0b9bsCI2tkFNKGzdV5A2G7pkZOdUDNWdCqCfKFwP5/NcfSXQ+qsJYwugXuZeQIntd1d0rANCVI3cmUtZGWedGTb7ezeGPus85t3Q/xTlnGAa+cMhI/On5D3DuLP2Dd01nP04kViBf881EsvyV0hw7iuHeZianK0E4PLhbTEB+zuqkyi3YE8LnhyrstCji3jxSlG85nBYiHe/MsdUumP0G12G/weqjUo89oPTSjYPqK/Hl2WPIjj+sfxU+3NNJdnz3/Af9Dx1nT0tYb3ZVhNKh5gYsmRZWeYL+69Pdcxa+74HyO3AfT3eZZCki33t1q70BGZu2+BhG5wfZ0TdjIDoFPiIRA5XlEXQm0lajPH15GM01+aPTDsQVJ05APYGQC3UvWDRiWAqaZjYnpj3gmkMsRmeli1T+SzGxPvMemWuthUjSvto1PJdixEOp0Hs/mWbcF7v+4UDEx5fWH8Yobqmy/IwpGFQXw9LP0syCqK9yOS1E6mFmiUUYlcMAp1OuIhzhB9nmphAHVSOlSRgfOrKDrbtErxiN+KXG8P5VWPP1w/D4t44iOb7sCOreRMklN2bPif6Bo87SJ6pGfBOK8jAgk22hcFgAoKrC/fygqwagGoBs7o1klSudPSdyVpCq/DcrOEjcsxzGoJcqnGlRxB3Zo9LZNqGQDTTpzSd0sRk3qBbPXjmX7PjuhxmZ09JJUyZSLGjLw2SnhUaS2H39h7H8qUEqC9XutBRB8rgUmTaygezYVY5yPpphd12JNMoj+ntaAFmSmCZb5FaDDGNApydDWf1SWR5Ba5ctDa37PUynqM3HnLmeHL+LUNI+a39H3H9FoT5ZKoTvKgyILKeFaCK2dXzdnjhnWkKJe55GTHMjvls9jGIWQTGQldt0Oy3mADLAfnDqvobccz7cAgxhoL8ke+6OUu8tdbEyyPsICvWwvobsCOrux5PVveIEwyWB7Bkkuo/vnrul2xEvBu57IYWzT51pMfdecnkYlTx3mqqnJWtINK1QSW8OTIfvyRgQ7gtRe/qwgja9V8mZllDizrRonzbcfV6YqnhhjCYCzvp/M1qmE/PB1k40/LHGVcahW4GnGMizRKo1b/AiEQO1ko36SqaFEnlDSzUpvTMhTUrXXh7mVEzSPVG+1iVhrzsYUgzczqjufhMgh8Klbqel+zM4ysN0Oi05JO0jxEFp6v6rsFZMqNB7P5lm3JsIyp4TgEDyWM60hDSa3hfJ6mnhCE1O5H6KjoR+6VDLabEyLXq/B/eMnzA2mvevkjItBFFpOevITsveI290dH9f1d19ZYmUsK4ZqtLWfP/eW2oqoo7snm5xiWJQjLJK995Id8DFvBe2dWXOI+3y3DnUw7Q7Fe6gtPbnuLsRP5zPcRX4zq9IVqM8cc2j/kZ/qX65F3vhvQ050xIxKKSwi9NsWkymE/QBmHaynRa9x88qDwvhprxBGo6ne4I74HTswtjzU2rIGx3tQ2vlOSpEA/XcmQ/dn8EwDEcwRHf2sBi410zhtNTGaN/D3Lu0dovF6B/sK4lGEAyvBLKfs9TDd3tzpoUb8RVxe7K6y2hkp0hl+KNfYtzTEkr6EUeXe1OD86OXHYknNu3EOYfqn3dg2qWtuxFfd6alxvXgj4VwgyQ7FYPqYwVe2TNkBz6MUe9So8ZRHqbXnhVlEUsK10R/T4u7D4wgu1dZbjld1bHwbZey7u8Ezr5bjlv3e7h7WvQf3yxllDItupXo3D0tmsu83aWMvTnTEr6rMCCyIhaEQ5oonArq4zM0yCUxurN7QO+SSvQ7V8gPdk9LJtOiv3wziopohGwIXDGYMaoRQCYCPqCGwGmRSiUp5pb0NeTsnntTpYOq8sxAPRP9pa30ylhypsXddxYGYmURa54NQCPw4RaLoVa4pGr070qmkCAYXgnkes5qLi92K92x08JQRyyc8pM0soQmvdkL723I0euU0N9gnj1ALXyb5WJgPuzbE2amRf81VFtZhl1tccf7hYmmxmo8cPFsxMoiJPaRs93stOw9stNCIfxQXVFmyRED9OVhFH1U8v03jOecYRgYWBfDB7s6AGRnp3Tgtot+yWPnjBOqTE5muGT38GCiOS0muj+DuydSdyVAKdF7P5lmZKelLGLoV5cgzoTID6UwKhP1VeQHvQGKTAutFGNvwepp6aKRPAacJWL1leGMJ00a1g/jBtFku2TCap9SQu5FqCUofXI7FbpLqouRaZGzCGF0WgBgn1o760nxPZM7LdZgRpoByGZZYVcibZUzah9U6u4dpS4PC3HFhBe8Q1GkmjgTIkdWKVJ78vEpSgEYeigyLdRSjL0F80HcTFSiAAC1sfBvkCg5fuJgABmHRbcgRV9EnkPi3vTooDpGe28xFcpMKDItDdLsobBek7LTQiHbnNXTors8rMycJUadaUlZPS2hKw9zj0boxfdHDlcpIkd1KDZ28uaRuqcljEOyGCCeTGs/ZiRioKIsYh27N9/s9gbzmtnTkSnfoug5kbMH7jpxBvjslKFIpQUOHtMY9FJ6BfJm1l1eogO3U6G7uTlLPYwgGCc/6wfUVhR4ZekysK64mRb9c1oyx4sTzfuxMi3SnBbdezzq8jD399qb+5Z5h6KI7LRUEJRXOcvPKLTU7WOGUZmoL3P+7DEAgCtOmEByfOp+qt6AeX2a5QMUmRZ5ExbWqC4lhmHg1GnDMbx/VdBL6RUMIt7MUpdUu7NDuodLAs4eELcseViQnVOKYIh7ALLuDbnb7lSN+J2JFJJEksfuTIv28rCYO+vYe5/j4bwKA0DeUFSQZFpoG+WHSQ96iqm4DB2XHz8eJ04ZimlN/UmOX1MRxZ6O7nphLg/LCfVMCMD5YOO+M4aa0QNqrJ8pnGS5R4siGCJvlg2D5t71jWPG4cUPduPI/QZqP3axGFBjZ4iaGqq1H98p6BDRXrrp7l+jbcQ3My20g1B1B6ajEQNV5VFrsHJvrqZhp0WRKinVrbsRDHCe1BRNVPvuYz+gzFkTTDiorijDQQQDE03qKsuBPZ0AeP5FPrJmQpBMluZgAlM8+lWX49B9G/Hm9hYce8Bg7cd3PDMJHApZAruyLKp9thkANNZUYM3XD9d+3GIiOxVD+1cSHJ82Q+zu19CfabHLw6iGS7ozIRTXQ3nUQHfssVc/x9lpUcSZaaF2WvQfX45+pPS3RjAhRi6zoGhm7Q0UYwgnRTM0wxTif750CBKpdNbGUAeOZybB9SKvOYwS4cXis1OG4olNOzH3gEEkGS/ZKaJwWqg3/Oa5Izfi6w4cN0jZrvKo/uHhgHOPR1EqWSrwU1IR+QZMocAh1yDqrnd0U0F8fCZcyE24vTmtvDe47UJRvrXk6HF46N/bceaMEdqPzTC5qCyPkgUqqon7NOWyod68SdtbKsujuOkL08iOX0vstBSrp6UrYTfi6y5xa5RU6Ciuhcxx7X2d7v6xUoKdFkXkqA7FgCb5weFWXdEN1UXDhBP5ocNOS27cgQqKyPHQflV4/ntzSaJwDFNs5OckRaBPfib35sbjUkfuLaLI5GTN+yHqN+lKppFM0WRa+lfbNqIa7t2bFcNk+EpXRI4gUNyA5c0idT3iYWMHkB6fCRfyw78318LuDVnlYURiFuywML0F+TlJcV+RM8Ssehgc8ndLsXEuj0YcTgSpepiVadH7OWqKEBhM9JG6f77SFZGdFv0j/pw1j1Qn9d++OQfLT5+Mz81oIjk+E07quKfFk2JkWhimNyFv1GhKqmk3y4w6p08bDsMAFs4cSXL8KsKeYrkRP5nObPx1Z1qolfQA4MbPT0NZxMB/z9+f5PilApeHKSKnn9u69KtvNcqNWkQborEDazF2YC3JsZnwUidtLuQ0NmNTVU6vHsYwvQlndQLtViPeR6LMpcr1n5uK7588Ef2raQZwVldE0dKZ2XeR9bQkU9YA1KjmEvoY8fBwADh83D547Zp5vV4un5+8ishlG2mhP9fSX7rBx5Mp7cdnmHz0kxwV2XlmbDjTwjD+oC6pBuws8XEEks2MOoZhkDksgNPp1Z2psNXD0kgQZVpkKI/d2x0WgJ0WX3z+4ExZ1X/P1z+ZXFarMKduM0wxGCdl39hpyQ07LQzjD9lpqSOS877na4fhsrnjcenc8STHZ0oDuRSQak6LEEBnottpIRyyzG2LeweXh/ngh6dNxiVz98PQflXeL94LKD1xhnFz8JhGnDh5CMqjEYwfVBf0ckoSdyNxX4hoMczeMLhfzPq5gSgYsv+QOuw/hO9ZvR3KOXm5lOcoFVZZvXXvYKfFB9GIQe6wAMABQ+vJ34NhTMqjEfx60fSgl1HSZM9p4QcPwxRiYG0s588M4xfKQaW5nCCKwPE1CyZh+UNv4LrTDtR+7L4EOy0lxB8vOBQPv7YdX5szNuilMAwj4W4k5vIwhimMYRi48fOfwYZ3d+Gs6axYyfQcOWhUo7k/yjAMxMoi6EraYg5RgvKwc2eNxqKZo1jpbi9hp6WEmLnvAMzcl2eoMEypUaw5LQzTm1jwmeFY8JnhQS+DCTny/VeeK6YLt9NSTlTCxQ7L3sNPXoZhGA/cjfg8hJNhGKY4yPffWgJRh5ir/Jedi9KFnRaGYRgP3DKbPISTYRimOMjZFQolOnePIoshlS7stDAMwzAMwzAliSyfTSHqIGdyIgYQYaelZGGnhWEYhmEYhilJuhL2wO0RDdXajy8LrbAkcWnD3w7DMIwC5x02GgBw5vQRwS6EYRimDzG1qT+ATK8JRT9hbUxyWggHSzJ7D6uHMQzDKPDdEyZg0rB6nDh5aNBLYRiG6TMcM2EQbl54EA4e3UBy/JqY7QhxP0tpw04LwzCMApXlUZw1g+dNMAzDFBPDMHDSFLpgUY2UaWGRldKGy8MYhmEYhmGYPklNBTstYYGdFoZhGIZhGKZPImda3PLHTGnB3w7DMAzDMAzTJ6mVelo401LasNPCMAzDMAzD9ElkyWPOtJQ2/O0wDMMwDMMwfZJabsQPDey0MAzDMAzDMH2SukrZaeFtcSnj69v5zW9+gylTpqC+vh719fWYNWsWHnroIaq1MQzDMAzDMAwZ/arKrZ8bqisCXAnjhS+nZcSIEVi+fDleeOEFPP/88zjmmGOwYMECvPbaa1TrYxiGYRiGYRgS6iWnpbGGnZZSxtdwyZNPPtnx7x/+8If4zW9+g3/961+YNGmS1oUxDMMwDMMwDCUDam1HRXZgmNLDl9Mik0ql8Kc//QltbW2YNWtW3td1dXWhq6vL+ndzc3NP35JhGIZhGIZhtDGkvhIzxzTi1a178NkpQ4NeDlMA307Lv//9b8yaNQudnZ2ora3FmjVrMHHixLyvX7ZsGa6++uq9WiTDMAzDMAzD6MYwDNz25UPQlUijXzVnWkoZQwgh/PxBPB7Hli1bsGfPHtxzzz245ZZb8MQTT+R1XHJlWpqamrBnzx7U19fv3eoZhmEYhmEYhgktzc3N6Nevn6dv4NtpcTN37lyMHTsWK1as0LowhmEYhmEYhmF6N6q+wV4LUqfTaUcmhWEYhmEYhmEYRie+elquuOIKnHDCCRg5ciRaWlpw5513Yv369fjrX/9KtT6GYRiGYRiGYfo4vpyWHTt24Nxzz8W2bdvQr18/TJkyBX/9619x3HHHUa2PYRiGYRiGYZg+ji+nZdWqVVTrYBiGYRiGYRiGycle97QwDMMwDMMwDMNQwk4LwzAMwzAMwzAlDTstDMMwDMMwDMOUNOy0MAzDMAzDMAxT0rDTwjAMwzAMwzBMScNOC8MwDMMwDMMwJQ07LQzDMAzDMAzDlDS+5rToQAgBAGhubi72WzMMwzAMwzAMU0KYPoHpI+Sj6E5LS0sLAKCpqanYb80wDMMwDMMwTAnS0tKCfv365f3vhvByazSTTqfx4Ycfoq6uDoZhFPOtA6W5uRlNTU344IMPUF9fH/Ry+gxs92BguwdDmO0e5rWHGbZ7MLDdg4HtHgxedhdCoKWlBcOGDUMkkr9zpeiZlkgkghEjRhT7bUuG+vp6vlACgO0eDGz3YAiz3cO89jDDdg8GtnswsN2DoZDdC2VYTLgRn2EYhmEYhmGYkoadFoZhGIZhGIZhShp2WopELBbDD37wA8RisaCX0qdguwcD2z0Ywmz3MK89zLDdg4HtHgxs92DQZfeiN+IzDMMwDMMwDMP4gTMtDMMwDMMwDMOUNOy0MAzDMAzDMAxT0rDTwjAMwzAMwzBMScNOC8MwDMMwDMMwJQ07LZp4+eWX0dzcHPQyGIZhGIZhGKZoFGsPzE7LXrJ161Z87nOfw7Rp07B69eqgl9NnaG1txZ49ewAALIBXXD788EPMnDkT119/fdBL6TPs2LED//jHP7B58+agl+IbvlaDga/TYAjztRpmduzYgTvvvBNPP/00du/eHfRy+gzF3gOz07IXXH755Rg5ciQ6OjrQ0NCAurq6oJfUJ7jqqqtw4IEHYs2aNQAAwzACXlHf4dJLL8Xo0aMxePBgLFq0KOjl9AmuvPJK7Lvvvvj+97+PKVOm4LrrrsP7778PAEin0wGvrjB8rQYDX6fBEOZrNcx897vfxbhx47BixQrMnz8fF198Md57772gl9XrCWIPzE5LD3j44YfRr18/PP7443j88cfxl7/8BTNmzMCDDz4Y9NJ6Nbt27cL555+Pv/zlLwCABx98EG+99RYAjuBS88Ybb2D48OF4+OGH8cwzz2DdunUYMmRI0Mvq9dx888147LHH8MADD+D+++/H9ddfjwcffBCXX345ACASKc1bOF+rwcDXaXCE9VoNM1u3bsX8+fPx+OOP4/7778ejjz6KX//613jppZfw6quvBr28XkuQe2C+inrA9u3bsWLFCrz44os48sgjEY/HMXr0aLS0tHBfCyHJZBJDhw7FNddcg1tvvRVPP/00/vrXvyKRSHAEl5g9e/agvr4eJ5xwAmbMmIGNGzfi6quvxu9//3u8+OKLQS+v1yGEQDKZxAMPPICDDjoIc+bMQW1tLS688EKMHz8ea9aswZ133gkASKVSAa82g+yM8LVaPGS783VaPEy7h/Fa7S0kEgmceOKJWLVqFY488khUVFTgjDPOgGEYGD9+fNDL67UEugcWjCfpdFoIIUQ8Hs/6b8lkUgghxNKlS8V+++3neD2zdyQSCYctE4mE+Oijj6x/n3feeeKwww4Tzz77bBDL69W4bd/Z2SlWrFghampqxCmnnCJGjRol5s6dK0aNGiX22Wcf8ZOf/CTA1fYO3Db/5JNPxLRp08TPf/5zx+suvfRSMWbMGDF06FDr/hM0XV1dorOz0/o3X6vFwW13vk6Lg9vuYbpWw4x5fzRtmUgkxK5du6z/vnv3bnHyySeL8ePHiy996Uvivvvu4/2YBkppD8yZFg9uuukmXHXVVQCA8vLyrP9upnyPOeYYbNu2DW+88QZHEjWwbNkynHbaaVi4cCHWrVuHtrY2lJWVYdCgQVZt8HXXXYetW7di7dq1+PTTTwFw6YkO3LZvbW1FLBbD0Ucfjfnz5+OTTz7Bvffei/vuuw/vvfceFi9ejDVr1lh9C4x/TJsvWrQI69atQ0tLCxobGzFjxgysWrUKt9xyCzo6OrB06VKsWbMGl19+OWpra60IbpBcddVVmD17NhYsWICVK1di165dfK0WAbfdP/nkE8RiMRx11FGYN28eX6dEuO3+8ccfW9fqLbfcUtLXapiR92LRaBQAUFZWhoaGBgDABx98gFGjRqG9vR3/7//9P7S1teHKK6/EFVdcEdSSewUltwcmc4dCzksvvSTmzZsnDMMQkydPFn/729+EEEKkUqmcr3/sscfE6NGjxaOPPlrMZfY6NmzYID7zmc+IAw88UNxwww1izpw5Ytq0aeKGG25wvM707q+99loxYcIE8dBDD1n/jSMrPSOf7a+//nohRMauTz31lHjuuedEOp22voMPPvhATJo0Sfz0pz8NcvmhJJ/Nf/aznwkhhOjo6BCnn366GDt2rGhoaBBjx44VzzzzjBBCiAkTJojf//73ga09kUiIxYsXi3HjxonbbrtNfOELXxCTJk0SJ510kuN1fK3qJZ/dTzzxRCGEfZ0+++yzfJ1qJJ/dTzjhBCFEaV+rYUZlL2beR1588UXH3y5dulRMmzZN7Nmzp2jr7S2U6h6YnZY8XH/99eKUU04Rt912mzjxxBPF4sWLRSKREELkftB2dHSImpoaceeddwoh8n+xTH527twpLrjgAvHVr35VtLS0WL8/++yzxQUXXOBITZrfQTqdFlOnThVf+cpXxObNm8XatWvFTTfdVPS1hx0v23d1dQkhhHUNmJjfw+DBg8WVV15ZvAX3Arxs3t7eLoQQoq2tTWzatEn885//tF7T1dUl9tlnH3HLLbcUfd0mmzdvFhMmTBDr1q2zfvfII4+IqqoqR5mMeS/ka1UPhexuBhjcpUh8ne49hexult21t7eLN998s+Su1TDjdy8m//4LX/iCmDNnjmhvb+cAiU9KdQ/M5WF5WLhwIb75zW/i3HPPxfHHH49NmzbhjjvuyPv6VCqF2bNn44knngDASiE9ZdiwYfja176G2tpaJBIJAEBTUxNeeuklR2rSMAykUikYhoErr7wS69atw1FHHYUzzzyTy056SCHbV1RUAMik42UMw8C6deswbNgwLFy4sOhrDjuFbF5VVQUAqK6uxn777YdDDz3U+rs//OEPGDNmDBYsWBDIuoFME+ybb76JqVOnWr877rjjsHTpUlxzzTXYsmULgMy9kK9VfRSy+7XXXostW7ZY5TMmfJ3uPYXs/sMf/hBbtmxBVVUVxo8fX3LXapjxuxcDMuf7xo0bsW3bNpx77rmoqqrisn2flOoemHfWeRgyZAiOPPJIAMAZZ5yBkSNH4k9/+hM++ugjGIaRpbleU1ODjz76CK2trejq6gpiyaFnn332wZVXXomDDjoIgL1B3rlzJw4//PCs10ejUbz//vv4+9//jo8//hjHHnssPvroI1x00UVFXXdvwK/tX331VTz33HO47LLL8OUvfxnz589ntRaf+LX5zp078be//Q2XXHIJLr74YpxyyilobGwMbOOfSqUwdepU/PGPf3T8fsmSJWhsbMSNN95ovY6vVX2o2l0IwdepRgrZfcCAAZbd0+l0yV2rYcbPXuzNN9/Ek08+iUsvvRRHH3009t9/f3zhC18IaumhplT3wH3WaVG9eaTTaYwYMQKnnXYadu3ahVWrVgFwepHJZBJAZsDRd77zHcRiMf0L7iUUsrsQAmVlZdZrzMjI22+/jWnTpuX8+xtvvBFr167Fhg0bcOutt6KxsZFo5eFHp+2ffvppLFmyBBs2bMADDzyAH/3oR1lZGEavzffs2YO1a9fihRdewCOPPILvfe97iEQiZBFEr3vkyJEjsf/++2PDhg3WILd0Oo36+nr813/9F+655x50dnZaUX++VtXQYfeOjg4YhsHXqQ90ne+RSKTo12qY0bkXe/XVV3H99dfjlVdewaOPPorf/va3VsaacRLaPTBJ0VmJs2vXLtHc3Gz9W669c9fsm/9ub28XF154oZgzZ454+eWXhRBCvPDCC0KI7PphJjd+7G7a9N133xV1dXXilVdesf7btm3brJ/lXgAmP7psv3XrViGEEM3NzdZ1wORGl80//PBD62927txJuWSLnTt3io8++shaV761/+EPfxBTpkwRP/7xjx1/v3LlSnHggQeK999/3/odX6ve6LL7u+++K4QQorW1la9TBXSf7+l0umjXaphRtbv871x7seeee04Iken/e+edd4qx9FCjy+5B7IH7XKbloosuwsEHH4yTTz4ZixcvxrZt2xweoxn5vO2226x/p9NpVFVV4eyzz0ZZWRl+9KMfWcO7tm3bllU/zGTj1+6mTR966CGMHTsWkydPxtatW3H22WfjlFNOwe7duwEAtbW1xf8wIUOn7U899VTs2rULdXV1mDJlSiCfJwzotPmCBQssGeF99tmHfO1LlizB5MmTcfzxx2PevHl4++23s9aeSqVwxx134POf/zwOO+wwrFmzBvfff7/1mo8//hj9+/fH8OHDrd/xtVoYnXZvamoCkCnZ4Ou0MBTnu2EYRblWw4yK3VX3Yocccgg+/PBDVFdXY9999w3qI4UCnXYPYg/cZ5yW1tZWnHzyyXjxxRdx6623YvHixdi8eTNOOukkvPbaa9brVq5ciSFDhuDuu+/Gjh07ANhpsEmTJmH79u24++67UVVVhXfffRdDhw4N5POEhZ7YfefOndbv33rrLcyZMwfLli3Dfvvth48//hhr1qyxtNmZ/FDZnst68hN2m3/rW9/CP//5T9x111345je/ia6uLpx++ul48sknHWsfNmwYbr/9diQSCVxyySWYOHEiTjvtNHz961/HRRddhB//+Mc4++yzEY1GuY5fAbZ7MLDdg0HV7n72YsOGDQvks4QJCrsXfQ9ctJxOwDz55JNi4sSJ4qWXXrJ+t3XrVlFeXi6++tWvio8++kjce++9Yvjw4WLVqlVZ6a5//vOforGxUUyYMEE89dRTxV5+aNkbu7e1tYnRo0cLwzDE+PHjxSOPPBLERwgtbPviE1abp9Np0dbWJg4++GBx1VVXWb9vb28X06ZNE4sWLRLvv/++WLNmjRg2bJhYtWpVVhnBz372M3HBBReIefPmWZr+TGHY7sHAdg+Gntid92J7T2+ye59xWu677z5RU1Pj+N1LL70kBg8eLMaMGSPuvvtuIUT+uuvW1laxevVq8nX2NvbG7p988olYvHixuOOOO4qy1t4G2774hNnm//nPf8SQIUOsORTmbJ67775bTJo0Sfz2t78VQmTuhTI8/2DvYLsHA9s9GHpqdxPei/WM3mL3XlketmzZMlx22WVYsWIF4vE4AGD48OEYPnw4vv/971uvW7lyJRYuXIjq6mqsXbsWQKYG2I0QAjU1NTjnnHOKsv6wotPuQgg0Njbi9ttv57kCCrDti0+YbX7fffehubnZ8f7Dhw/HmDFjcNdddwGwSwLOOussjBs3Dg8++CB27NiRtXZWRFKH7R4MbPdg0Gl38+95L+ZNr7Z7QM4SCW+88YaYOHGimDx5sjj77LNFQ0ODOPLII8WLL74oUqmUuPHGG4VhGOKwww4T9fX1Yty4caK5uVmsXr1aNDQ0BL380MJ2Dw62ffEJs80ff/xxsf/++wvDMMSKFSus35vR41WrVony8nKxadMmIURmyrEQmcnflZWV4j//+Y/j9YwabPdgYLsHA9s9GPqC3XuV03L99deLWbNmWbWn27ZtE1OnThVnnXWW2Lx5sxBCiPXr14ubb75Z3H///dbf3XzzzWL69Oni448/DmTdYYftHhxs++ITVpu//vrr4uyzzxZLliwRF1xwgRg5cqQlp2yyefNmMXv2bHHMMcc4fr9p0ybRr18/rt3vAWz3YGC7BwPbPRj6it17jdOSSCTEl7/8ZbFgwQKHl3j33XeLmTNniu9+97s5/y6ZTIqFCxeKL33pS8Vaaq+C7R4cbPviE2abb9++Xdxyyy3i9ddfF83NzWL48OHim9/8puM16XRaPPjggyIWi4mf/OQnYseOHUKIzByKGTNmOObOMGqw3YOB7R4MbPdg6Ct27zVOixBCLFq0SBx//PEimUw6lA+WLFkijjnmGLFx40brd5s2bRJvv/22uPDCC8XIkSPF3//+dyFEaafFShW2e3Cw7YtPmG0uDxG79dZbRSwWcyidmfzud78TgwcPFgcccIA488wzRSwWE9ddd51Ip9N8vvQAtnswsN2Dge0eDH3B7r3CaTE3Do8//riIRCLixRdfFELYkzzXr18vxo0bZyn3CCHEr3/9azF+/Hgxc+ZMx/RpRh22e3Cw7YtPb7G5/FCaOXOmOOWUU7LkXIUQ4umnnxa//OUvxaWXXprzwcf4g+0eDGz3YGC7B0Nvt3tonJb33ntPfPDBB0IIkaUfbX4hHR0dYs6cOWLu3LlCCOeXN3bsWHHNNddY//7kk0/Ec889R73s0MN2Dw62ffEJs81V1m5irvkf//iHiEQilgxmMpm0SgYYNdjuwcB2Dwa2ezCw3TOEwmlZu3atMAxDnHrqqY7fy19cMpkU27dvF+vXrxfl5eXiN7/5jZUq27Vrl5gyZYr41a9+VdR1hx22e3Cw7YtPmG2usvZEIiG2b9+e9beLFi0S06dPF4899piYN2+e+N73vifi8Tj5mnsDbPdgYLsHA9s9GNjuNqGY0/Lss89i5syZ2LJlC+69914AQCqVQjQaBQD88pe/RHV1NR5++GHMmTMHP/jBD/CDH/wAF154IZ588klce+21aGlpwbHHHhvkxwgdbPfgYNsXnzDbXGXttbW1eOihhyCEcPztkiVLsHHjRhx33HEAgMsvvxzl5eXF/QAhhe0eDGz3YGC7BwPbXSJQl8kDM4K5ZMkScdFFF4mvfOUr4ogjjrC8xE8//VQsWrRIDBs2TNx2222OMo1f/vKX4ogjjhCTJ08WU6dOFRs2bAjkM4QRtntwsO2LT5ht7mftt99+u2PtyWRS3HbbbaK8vFzMnDnTISDAFIbtHgxs92BguwcD2z2bknZahMjU5s2bN0/861//Evfff7+YOHGiuPHGG4UQmS/sueeec8i0yeoJqVTKmpvA+IPtHhxs++ITZpv7XbtJW1ub+MUvfuEYQsaow3YPBrZ7MLDdg4Ht7qQs6EyPyT333IP+/ftj0qRJGDp0KAA7/RWNRhGPx3HooYfi9NNPx6pVq7BhwwZMnjwZl19+OSoqKqzjRCIRx89jxowp+mcJE2z34GDbF58w21zX2k2qq6txySWXkK877LDdg4HtHgxs92BguysStNd0++23i0GDBolDDjlEDBw4UBx++OFizZo11n/ftWuXGDJkiOjq6hJCCHHZZZeJyspKUVVVJZ5//vmAVh1+2O7BwbYvPmG2eZjXHmbY7sHAdg8GtnswsN39EVgjfjKZxI033ohly5bhRz/6EZ588kmsXbsWY8eOxcqVK9HV1QUA6OjowJw5c3DfffdhypQpWL16NebOnYtRo0ZZDUepVCqojxE62O7BwbYvPmG2eZjXHmbY7sHAdg8GtnswsN17SFDe0qeffiquvPJKsXz5ckd9+PLly8Xhhx8uWlpahBBCbNmyRRiGIcrLy8WSJUvE7t27xWuvvSbmz58vZs+eHdTyQwvbPTjY9sUnzDYP89rDDNs9GNjuwcB2Dwa2e88oak/LW2+9hXHjxsEwDPTr1w9nnnkmJk+ejEgkgnQ6jUgkgqamJrS1tVk1ek1NTfjDH/6AMWPG4JBDDgEA9O/fH6eeeipaWlosT9MwjGJ+lFDBdg8Otn3xCbPNw7z2MMN2Dwa2ezCw3YOB7a6BYnhGf/zjH8Xo0aPF/vvvLw455BBxyy23OP677GUuXLhQnHfeeUIIkXMAjinp5p4IymTDdg8Otn3xCbPNw7z2MMN2Dwa2ezCw3YOB7a4PcqflkUceEaNHjxY333yzePjhh8Xll18uysvLxcqVK0VHR4cQIvMlpNNp0dHRIaZMmSJWr16ddZy++gX1FLZ7cLDti0+YbR7mtYcZtnswsN2Dge0eDGx3vZA5LaY3ePXVV4vp06c7PMavf/3rYsaMGeK+++5z/M3WrVvF6NGjxaZNm4QQQmzatElcdtllVEvslbDdg4NtX3zCbPMwrz3MsN2Dge0eDGz3YGC700CmHmbW173++usYO3YsysvLkUgkAADXXXcdKisr8ec//xnbt2+3/uaxxx5DU1MThg4diksuuQQTJ07E+++/j0QiYdXtMYVhuwcH2774hNnmYV57mGG7BwPbPRjY7sHAdidCl/fzyCOPiIsuukjccMMNYsOGDdbvV65cKerq6qzUlultrly5UowfP148/vjjQoiMV3rWWWeJhoYGMWDAADFp0iTx3HPP6Vper4XtHhxs++ITZpuHee1hhu0eDGz3YGC7BwPbvTjstdPy4Ycfis9+9rNi0KBBYtGiRWLy5MmiX79+1pf25ptviuHDh4ulS5cKIYQ1IEcIIYYMGSJuuOEGIYQQbW1t4rOf/awYMWKEuOuuu/Z2Wb0etntwsO2LT5htHua1hxm2ezCw3YOB7R4MbPfisldOS1tbm/jiF78ozj77bLF582br94cccoilftDc3Cyuu+46UVVVJbZs2SKEsGv95syZI84//3zr7/ridM+ewHYPDrZ98QmzzcO89jDDdg8GtnswsN2Dge1efPaqp6W6uhqxWAznnXcexowZg2QyCQA48cQT8X//938QQqCurg4LFy7EQQcdhM997nN4//33YRgGtmzZgh07duDUU0+1jjd9+vS9KnXrK7Ddg4NtX3zCbPMwrz3MsN2Dge0eDGz3YGC7Fx9DiL3r7kkkEigvLwcAazjOokWLUFNTg5UrV1qv27p1K4466igkk0nMmDEDzzzzDCZMmIA777wTgwcP3rtP0QdhuwcH2774hNnmYV57mGG7BwPbPRjY7sHAdi8ue+205GL27Nn46le/ii9+8YtIp9MAgEgkgrfffhsvvPACNmzYgKlTp+KLX/yi7rfu07Ddg4NtX3zCbPMwrz3MsN2Dge0eDGz3YGC706Hdadm8eTMOO+wwPPDAA1aqKx6Po6KiQufbMC7Y7sHBti8+YbZ5mNceZtjuwcB2Dwa2ezCw3WnRNqfF9H2eeuop1NbWWl/W1VdfjUsuuQQ7duzQ9VaMBNs9ONj2xSfMNg/z2sMM2z0Y2O7BwHYPBrZ7cSjTdSBzkM6zzz6LM844A48++iguuOACtLe3Y/Xq1Rg0aJCut2Ik2O7BwbYvPmG2eZjXHmbY7sHAdg8GtnswsN2LhE4pso6ODjFu3DhhGIaIxWJi+fLlOg/P5IHtHhxs++ITZpuHee1hhu0eDGz3YGC7BwPbnR7tPS3HHXcc9ttvP/z85z9HZWWlzkMzBWC7BwfbvviE2eZhXnuYYbsHA9s9GNjuwcB2p0W705JKpRCNRnUeklGA7R4cbPviE2abh3ntYYbtHgxs92BguwcD250WEsljhmEYhmEYhmEYXWhTD2MYhmEYhmEYhqGAnRaGYRiGYRiGYUoadloYhmEYhmEYhilp2GlhGIZhGIZhGKakYaeFYRiGYRiGYZiShp0WhmEYhmEYhmFKGnZaGIZhmCyOOuooXHrppX3uvRmGYZjShJ0WhmEYZq9Yv349DMPAp59+quXv7rvvPlx77bX6FsgwDMOEnrKgF8AwDMMwMo2NjUEvgWEYhikxONPCMAzTx2lra8O5556L2tpaDB06FNdff73jv69evRozZsxAXV0dhgwZgoULF2LHjh0AgPfeew9HH300AKChoQGGYeC8884DAKTTaSxbtgxjxoxBVVUVpk6dinvuucfz79zlYaNHj8Z1111nrXHUqFFYt24ddu7ciQULFqC2thZTpkzB888/71j3U089hSOOOAJVVVVoamrCxRdfjLa2Nt3mYxiGYYoAOy0MwzB9nG9/+9t44okn8Oc//xmPPPII1q9fj40bN1r/PZFI4Nprr8XLL7+MtWvX4r333rMcjKamJtx7770AgDfffBPbtm3DjTfeCABYtmwZbr/9dvz2t7/Fa6+9hssuuwznnHMOnnjiiYJ/l4sbbrgBhx9+OF588UWcdNJJWLx4Mc4991ycc8452LhxI8aOHYtzzz0XQggAwDvvvIP58+fjjDPOwCuvvII//vGPeOqpp/CNb3yDwoQMwzAMMYYw7/AMwzBMn6O1tRUDBgzA//7v/+Kss84CAOzatQsjRozABRdcgF/84hdZf/P888/j4IMPRktLC2pra7F+/XocffTR2L17N/r37w8A6OrqQmNjIx577DHMmjXL+tvzzz8f7e3tuPPOO3P+HZDJtHzmM5+x3nv06NE44ogjsHr1agDA9u3bMXToUCxduhTXXHMNAOBf//oXZs2ahW3btmHIkCE4//zzEY1GsWLFCuu4Tz31FObMmYO2tjZUVlZqtCLDMAxDDfe0MAzD9GHeeecdxONxzJw50/pdY2Mj9t9/f+vfL7zwAq666iq8/PLL2L17N9LpNABgy5YtmDhxYs7jvv3222hvb8dxxx3n+H08Hse0adN8r3PKlCnWz4MHDwYATJ48Oet3O3bswJAhQ/Dyyy/jlVdewR133GG9RgiBdDqNd999FwcccIDvNTAMwzDBwU4LwzAMk5e2tjbMmzcP8+bNwx133IGBAwdiy5YtmDdvHuLxeN6/a21tBQA88MADGD58uOO/xWIx3+soLy+3fjYMI+/vTIeqtbUVF154IS6++OKsY40cOdL3+zMMwzDBwk4LwzBMH2bs2LEoLy/Hhg0brM387t27sWnTJsyZMwdvvPEGPvnkEyxfvhxNTU0AkNXwXlFRAQBIpVLW7yZOnIhYLIYtW7Zgzpw5Od8719/p4qCDDsLrr7+OcePGaT82wzAMU3y4EZ9hGKYPU1tbi6985Sv49re/jb///e949dVXcd555yESyTweRo4ciYqKCtx0003YvHkz1q1blzVDZdSoUTAMA/fffz927tyJ1tZW1NXV4Vvf+hYuu+wy3HbbbXjnnXewceNG3HTTTbjtttvy/p0uvvOd7+CZZ57BN77xDbz00kt466238Oc//5kb8RmGYUIKOy0MwzB9nJ/+9Kc44ogjcPLJJ2Pu3LmYPXs2pk+fDgAYOHAg/ud//gd/+tOfMHHiRCxfvhw/+9nPHH8/fPhwXH311fjud7+LwYMHW47Btddei6VLl2LZsmU44IADMH/+fDzwwAMYM2ZMwb/TwZQpU/DEE09g06ZNOOKIIzBt2jR8//vfx7Bhw7S9B8MwDFM8WD2MYRiGYRiGYZiShjMtDMMwDMMwDMOUNOy0MAzDMAzDMAxT0rDTwjAMwzAMwzBMScNOC8MwDMMwDMMwJQ07LQzDMAzDMAzDlDTstDAMwzAMwzAMU9Kw08IwDMMwDMMwTEnDTgvDMAzDMAzDMCUNOy0MwzAMwzAMw5Q07LQwDMMwDMMwDFPSsNPCMAzDMAzDMExJw04LwzAMwzAMwzAlzf8H0/fYCoIkkBcAAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -156,7 +167,7 @@ }, { "cell_type": "code", - "execution_count": 52, + "execution_count": 62, "metadata": {}, "outputs": [ { @@ -165,7 +176,7 @@ "" ] }, - "execution_count": 52, + "execution_count": 62, "metadata": {}, "output_type": "execute_result" }, @@ -181,7 +192,8 @@ } ], "source": [ - "tol.plot(kind='scatter', y='specific conductance uS/cm', x='salinity ppt')" + "# tol.plot(kind='scatter', y='specific conductance uS/cm', x='salinity ppt')\n", + "tol.plot.scatter(y='specific conductance uS/cm', x='salinity ppt')" ] }, { @@ -274,36 +286,161 @@ "As mentioned above, both plots share the same figure. We can generate two separate plots by adding `plt.show()` before the second plt.plot command. Try doing this to see the result.\n", "\n", "## Box and Whiskers Plot\n", - "Matplotlib has two functinos for this: plt.boxplot and plt.box. Boxplot works on a dataframe by taking a list of columns to plot as separate boxes, e.g. `df.plot(kind='boxplot', columns=['A', 'B', 'C'])`, and box works on a series object and accepts another series to group the data from the first series on\n", + "As mentionMatplotlib has two functinos for this: plt.boxplot and plt.box. Boxplot works on a dataframe by taking a list of columns to plot as separate boxes, e.g. `df.plot(kind='boxplot', columns=['A', 'B', 'C'])`, and box works on a series object and accepts another series to group the data from the first series on\n", "\n", "For our plot, let's group our 15 minute data by day and show the temperature each day. " ] }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 68, "metadata": {}, "outputs": [ { - "ename": "AttributeError", - "evalue": "'PlotAccessor' object has no attribute 'boxplot'", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[15], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m tol[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mdayofyear\u001b[39m\u001b[38;5;124m'\u001b[39m] \u001b[38;5;241m=\u001b[39m tol\u001b[38;5;241m.\u001b[39mindex\u001b[38;5;241m.\u001b[39mdayofyear\n\u001b[0;32m----> 2\u001b[0m \u001b[43mtol\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mplot\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mboxplot\u001b[49m(y\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtemperature C\u001b[39m\u001b[38;5;124m'\u001b[39m, by\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mdayofyear\u001b[39m\u001b[38;5;124m'\u001b[39m)\n", - "\u001b[0;31mAttributeError\u001b[0m: 'PlotAccessor' object has no attribute 'boxplot'" - ] + "data": { + "text/plain": [ + "temperature C Axes(0.125,0.11;0.775x0.77)\n", + "dtype: object" + ] + }, + "execution_count": 68, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjEAAAGzCAYAAADe/0a6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABMsElEQVR4nO3deVxU9f4/8NewzLANq+wgIiruVuZuimkumcrVFu370+yqlUGG3Mjl2oJlFJbUza3StHLJ7Kbc6zVNETWvaLlQ0k0Fw3IBXFllUz6/P7xzLiPMPjhz4PV8PHjonHPe5/M5C595c+aceSuEEAJEREREMuNg6w4QERERmYNJDBEREckSkxgiIiKSJSYxREREJEtMYoiIiEiWmMQQERGRLDGJISIiIlliEkNERESyxCSGiIiIZIlJDBEREckSkxgimTp48CBef/11FBcX27ordmfDhg14//33bd0Nvfbu3Yvx48cjKCgISqUSAQEBGDNmDL755htbd41INpjEEMnUwYMHkZyczCSmEfaexLz22msYMmQIcnJy8Oyzz2LlypVISkpCeXk5JkyYgA0bNti6i0Sy4GTrDhARGXLjxg24ubnZuhtW6cfXX3+NhQsX4tFHH8WGDRvg7OwszUtKSsLOnTtRW1traVeJWgReiSGSoddffx1JSUkAgMjISCgUCigUCpw9e1ZaZt26dejZsydcXV3h6+uLiRMn4ty5c1rriYmJQdeuXfHzzz9j8ODBcHNzQ7t27fD1118DAPbt24c+ffrA1dUV0dHR2L17d4N+KBQKnDx5Eo8//jg8PT3h5+eHF198EVVVVQ36bUqfjh49ikGDBsHNzQ3z588HAKSnp2P06NEICQmBSqVCVFQU3njjDdy6dUsr/l//+hd+//13ab+0adMGALB27doG+wm4/dGOQqHA3r17jepHdXU1XnvtNbRr1w4qlQrh4eF4+eWXUV1dbeDIAa+88gp8fX3x6aefaiUwGiNGjMAjjzxicD1ExCsxRLI0fvx4nD59Ghs3bkRaWhpatWoFAPD39wcALFq0CK+88goef/xxTJ8+HZcvX8aHH36IQYMG4fjx4/D29pbWdf36dTzyyCOYOHEiHnvsMaxYsQITJ07E+vXrkZCQgOeeew5PPvkkFi9ejEcffRTnzp2DWq3W6s/jjz+ONm3aICUlBYcOHcLf/vY3XL9+HZ9//rm0jCl9unr1KkaNGoWJEyfi//2//4fAwEAAt5MQDw8PJCYmwsPDA3v27MGrr76K0tJSLF68GADw17/+FSUlJTh//jzS0tIAAB4eHmbt58b6UVdXh7Fjx+LAgQN45pln0KlTJ5w4cQJpaWk4ffo0tm7dqnN9ubm5OHnyJP785z832IdEZAZBRLK0ePFiAUDk5+drTT979qxwdHQUixYt0pp+4sQJ4eTkpDV98ODBAoDYsGGDNO3kyZMCgHBwcBCHDh2Spu/cuVMAEGvWrJGmvfbaawKAGDt2rFZbzz//vAAgfvrpJ7P7tHLlygbbfOPGjQbTnn32WeHm5iaqqqqkaaNHjxYRERENll2zZk2j+ywzM1MAEJmZmQb78cUXXwgHBwfx/fffa01fuXKlACD+/e9/N2hXIz09XQAQaWlpOpchIuPx4ySiZuabb75BXV0dHn/8cVy5ckX6CQoKQvv27ZGZmam1vIeHByZOnCi9jo6Ohre3Nzp16oQ+ffpI0zX//+233xq0GRcXp/X6hRdeAABs377drD6pVCo8/fTTDdpxdXWV/l9WVoYrV67ggQcewI0bN3Dy5Emj9o8pGuvH5s2b0alTJ3Ts2FFrWx588EEAaLAt9ZWWlgIAr8IQWQk/TiJqZnJzcyGEQPv27Rudf+d9GGFhYVAoFFrTvLy8EB4e3mAacPvjpzvd2VZUVBQcHByke09M7VNoaCiUSmWD5X755RcsWLAAe/bskRICjZKSkkbXbYnG+pGbm4tff/1V+ujuTpcuXdK5Pk9PTwC3EzAishyTGKJmpq6uDgqFAt9++y0cHR0bzL/z/pDGltE3XQhhsA93JkWm9qn+FReN4uJiDB48GJ6enli4cCGioqLg4uKCY8eOYc6cOairqzO5Xxr1bww21I+6ujp069YNS5YsaTTmzuSvvo4dOwIATpw4YairRGQEJjFEMqXrDTkqKgpCCERGRqJDhw53pS+5ubmIjIyUXufl5aGurk56Ksgafdq7dy+uXr2Kb775BoMGDZKm5+fnN1hW177x8fEBgAbfrfP7778b3Y+oqCj89NNPGDp0qM52dOnQoQOio6ORnp6ODz74wOwbjonoNt4TQyRT7u7uABq+IY8fPx6Ojo5ITk5ucNVECIGrV69avS/Lli3Tev3hhx8CAEaNGmW1Pmmu4NSPr6mpwfLlyxss6+7u3ujHS1FRUQCA/fv3S9Nu3bqFjz/+2GD7Go8//jguXLiATz75pMG8yspKVFRU6I1PTk7G1atXMX36dNy8ebPB/O+++w7btm0zuj9ELRmvxBDJVM+ePQHcfqR44sSJcHZ2xpgxYxAVFYU333wT8+bNw9mzZxEbGwu1Wo38/Hxs2bIFzzzzDF566SWr9iU/Px9jx47FyJEjkZWVhXXr1uHJJ59Ejx49AMAqferfvz98fHzw1FNPYdasWVAoFPjiiy8a/XirZ8+e2LRpExITE9GrVy94eHhgzJgx6NKlC/r27Yt58+bh2rVr8PX1xZdfftloMqHL5MmT8dVXX+G5555DZmYmBgwYgFu3buHkyZP46quvsHPnTtx///0645944gmcOHECixYtwvHjxzFp0iRERETg6tWr2LFjBzIyMviNvUTGstFTUURkBW+88YYIDQ0VDg4ODR4d/vvf/y4GDhwo3N3dhbu7u+jYsaOIi4sTp06dkpYZPHiw6NKlS4P1RkREiNGjRzeYDkDExcVJrzWPWP/nP/8Rjz76qFCr1cLHx0fEx8eLysrKBvGW9EkIIf7973+Lvn37CldXVxESEiJefvll6dHv+o9Hl5eXiyeffFJ4e3sLAFqPW585c0YMGzZMqFQqERgYKObPny927drV6CPWuvpRU1Mj3nnnHdGlSxehUqmEj4+P6Nmzp0hOThYlJSWNxtwpIyNDjBs3TgQEBAgnJyfh7+8vxowZI9LT042KJyIhFEIYcZceEVEjXn/9dSQnJ+Py5cvSF+4REd0tvCeGiIiIZIlJDBEREckSkxgiIiKSJd4TQ0RERLLEKzFEREQkS0xiiIiISJaazZfd1dXV4eLFi1Cr1SZ/FTgRERHZhhACZWVlCAkJgYODaddWmk0Sc/HiRb2F14iIiMh+nTt3DmFhYSbFNJskRq1WA7i9EzTl7omIiMi+lZaWIjw8XHofN0WzSWI0HyF5enoyiSEiIpIZc24F4Y29REREJEtMYoiIiEiWmMQQERGRLDGJISIiIlliEkNERESyxCSGiIiIZIlJDBEREckSkxgiIiKSJSYxREREJEtMYoiIiEiWTEpiUlJS0KtXL6jVagQEBCA2NhanTp3SWubjjz9GTEwMPD09oVAoUFxcbHC9r7/+OhQKhdZPx44dTdoQIiIiallMSmL27duHuLg4HDp0CLt27UJtbS2GDx+OiooKaZkbN25g5MiRmD9/vkkd6dKlCwoKCqSfAwcOmBRPRERELYtJBSB37Nih9Xrt2rUICAjA0aNHMWjQIABAQkICAGDv3r2mdcTJCUFBQUYvX11djerqaul1aWmpSe0REZF9q6y5hTOXy1FVewvnr1cizMcVLs6OiPL3gKvS0dbdIztgURXrkpISAICvr6/FHcnNzUVISAhcXFzQr18/pKSkoHXr1jqXT0lJQXJyssXtEhGRfTpzuRyPfNjwqvy2Fwaia6iXDXpE9kYhhBDmBNbV1WHs2LEoLi5u9KOfvXv3YsiQIbh+/Tq8vb31ruvbb79FeXk5oqOjUVBQgOTkZFy4cAE5OTlQq9WNxjR2JSY8PBwlJSXw9PQ0Z5OIiMiOaK7E5F0qR8KmbLz/xD1oF+DBKzHNTGlpKby8vMx6/zb7SkxcXBxycnKscu/KqFGjpP93794dffr0QUREBL766itMmzat0RiVSgWVSmVx20REZJ9clY5aV1zaBXjwCgxpMSuJiY+Px7Zt27B//36EhYVZu0/w9vZGhw4dkJeXZ/V1ExERUfNg0tNJQgjEx8djy5Yt2LNnDyIjI5ukU+Xl5Thz5gyCg4ObZP1EREQkfyYlMXFxcVi3bh02bNgAtVqNwsJCFBYWorKyUlqmsLAQ2dnZ0lWUEydOIDs7G9euXZOWGTp0KJYuXSq9fumll7Bv3z6cPXsWBw8exJ/+9Cc4Ojpi0qRJlm4fERERNVMmJTErVqxASUkJYmJiEBwcLP1s2rRJWmblypW49957MWPGDADAoEGDcO+99+If//iHtMyZM2dw5coV6fX58+cxadIkREdH4/HHH4efnx8OHToEf39/S7ePiIiImimzn06yN5bc3UxERPYr50IJHvnwAB+tbqYsef9m7SQiIiKSJSYxREREJEtMYoiIiEiWmMQQERGRLDGJISIiIlmyqAAkERGRLqxCTU2NSQwRETUJVqGmpsYkhoiImkSUvwe2vTCw0SrURNbAJIaIiJoEq1BTU+ONvURERCRLTGKIiIhIlpjEEBERkSwxiSEiIiJZYhJDREREssQkhoiIiGSJSQwREel04cIF+Pr6wtnZGb6+vrhw4YKtu0Qk4ffEEBFRo1QqFWpqaqTX169fR1hYGJRKJaqrq23YM6LbeCWGiIgaqJ/ABAcH4/PPP0dwcDAAoKamBiqVypbdIwLAJIaIiO5w4cIFKYG5evUqLl68iMmTJ+PixYu4evUqgNuJDD9aIlvjx0lERKSlW7duAG5fgfH19dWa5+vri6CgIBQWFqJbt264du1ak/Qh/0oFKqpvAgDyLpVr/QsA7ionRLZy17sOVtFu/pjEEBGRlrKyMgDAO++80+j8N998E9OnT5eWs7b8KxUY8u7eBtMTNmVrvc58KUZvIsMq2s0fkxgiItKiVqtx/fp1zJkzB5MnT24wf8GCBdJyTUFzBUZT9frOKymaqtia5XRhFe3mj0kMERFpOXHiBMLCwlBQUIBr165pfaR07do1FBYWSss1pfpVr+9vY3o8q2g3f7yxl4iItISGhkKpVAIA/Pz8EBwcjNWrVyM4OBh+fn4AAKVSidDQUFt2k4hXYoiIqKHq6mrpMevCwkJMnz5dmsfviSF7wSsxRETUqOrqapw/fx4+Pj5wcnKCj48Pzp8/zwSG7AavxBARkU6hoaFN9hg1kaV4JYaIiIhkiUkMERERyRKTGCIi0qmyshLx8fEYMWIE4uPjUVlZaesuEUmYxBARUaNiY2Ph5uaGZcuW4bvvvsOyZcvg5uaG2NhYW3eNCACTGCIiakRsbCzS09OhVCoxd+5c5OXlYe7cuVAqlUhPT2ciQ3aBTycREZGWyspKKYEpKyuTvvguJSUFycnJUKvVSE9PR2VlJVxdXW3cW2rJeCWGiIi0JCUlAQASExOlBEZDqVQiISFBazkiW2ESQ0REWnJzcwFA61t665s2bZrWckS2wiSGiIi0tG/fHgCwatWqRuevXr1aazkiW2ESQ0REWhYvXgwAWLJkCWpqarTm1dTU4P3339dajshWmMQQEZEWV1dXjBs3DjU1NVCr1ZgzZw5Onz6NOXPmQK1Wo6amBuPGjeNNvWRzTGKIiKiBrVu3SolMamoqoqOjkZqaKiUwW7dutXUXifiINRERNW7r1q2orKxEUlIScnNz0b59eyxevJhXYMhuMIkhIiKdXF1dsXTpUlt3g6hR/DiJiIiIZIlJDBEREckSkxgiIiKSJSYxREREJEtMYoiIiEiWmMQQERGRLPERayIialRlzS2cuVyOqtpbOH+9EmE+rnBxdkSUvwdclY56Y/OvVKCi+iYAIO9Suda/AOCuckJkK/em6zy1CExiiIioUWcul+ORDw80mL7thYHoGuqlMy7/SgWGvLu3wfSETdlarzNfimEiQxZhEkNERI2K8vfAthcGIu9SORI2ZeP9J+5BuwAPRPl76I3TXIHRLH/nlRzN+jTLEZmLSQwRETXKVemodcWlXYCH3iswd6q//P1trN07It7YS0RERDLFJIaIiIhkiUkMERERyRKTGCIiIpIlJjFEREQkS0xiiIiISJaYxBAREZEsMYkhIiIiWTIpiUlJSUGvXr2gVqsREBCA2NhYnDp1SmuZjz/+GDExMfD09IRCoUBxcbFR6162bBnatGkDFxcX9OnTBz/88IMpXSMiIqIWxqQkZt++fYiLi8OhQ4ewa9cu1NbWYvjw4aioqJCWuXHjBkaOHIn58+cbvd5NmzYhMTERr732Go4dO4YePXpgxIgRuHTpkindIyIiohbEpLIDO3bs0Hq9du1aBAQE4OjRoxg0aBAAICEhAQCwd+9eo9e7ZMkSzJgxA08//TQAYOXKlfjXv/6FTz/9FHPnzm00prq6GtXV1dLr0tJSE7aEiKj5s6QKta0pnEqRX3oKDi4N6zTll5ZD4dT0Y76c919LYVHtpJKSEgCAr6+v2euoqanB0aNHMW/ePGmag4MDhg0bhqysLJ1xKSkpSE5ONrtdIqLmztwq1PbA2fsw5v/wlp75QwE83KR9kPP+aynMTmLq6uqQkJCAAQMGoGvXrmZ34MqVK7h16xYCAwO1pgcGBuLkyZM64+bNm4fExETpdWlpKcLDw83uBxFRc2NuFWp7UFvcB++NfhJRAQ37euZSOWatP9PkfZDz/mspzE5i4uLikJOTgwMHGmapd4NKpYJKpbJJ20REcmBpFWpbEjc9EekZjc5+DftbV1UCcfNyk/dBzvuvpTAriYmPj8e2bduwf/9+hIWFWdSBVq1awdHREUVFRVrTi4qKEBQUZNG6iYiIqPky6ekkIQTi4+OxZcsW7NmzB5GRkRZ3QKlUomfPnsjIyJCm1dXVISMjA/369bN4/URERNQ8mZTExMXFYd26ddiwYQPUajUKCwtRWFiIyspKaZnCwkJkZ2cjLy8PAHDixAlkZ2fj2rVr0jJDhw7F0qVLpdeJiYn45JNP8Nlnn+HXX3/FzJkzUVFRIT2tRERERHQnkz5OWrFiBQAgJiZGa/qaNWswdepUALcfj67/1JDm0ev6y5w5cwZXrlyRlnniiSdw+fJlvPrqqygsLMQ999yDHTt2NLjZl4iIiEjDpCRGCGFwmddffx2vv/663mXOnj3bYFp8fDzi4+NN6Q4RERG1YKydRERERLLEJIaIiIhkiUkMERERyRKTGCIiIpIlJjFEREQkSxYVgCQiIrJH+VcqUFF9EwCQd6lc618AcFc5IbKVu036RtbDJIaIiJqV/CsVGPLu3gbTEzZla73OfCmGiYzMMYkhIqJmRXMFRlN1uqr2Fs5fr0SYjytcnB2lqtSa5Ui+mMQQEVGzVL/q9P1tbNsXahq8sZeIiIhkiUkMERERyRKTGCIiIpIlJjFEREQkS0xiiIiISJaYxBAREZEsMYkhIrJjly9fRmRkJDw8PBAZGYnLly/buktEdoPfE0NEZKe8vb1RUlIiva6oqEBAQAC8vLxQXFxsu44R2QleiSEiskP1E5guXbpg27Zt6NKlCwCgpKQE3t7eNuwdkX3glRgiIjtz+fJlKYEpKSmBp6cnAGD06NEoLS2Fl5cXSkpKcPnyZfj7+9uyq0Q2xSSGiMjO9O7dG8DtKzCaBEbD09MTnTp1wq+//orevXsjPz/fFl00SOFUivzSU3Bw8WgwL7+0HAqnUhv0ynisgi0PTGKIiOyM5ubdd955p9H5ixYtwvjx4+36Jl9n78OY/8NbeuYPBfDw3euQCVgFWz6YxBAR2Rl/f39UVFRgzpw5GD16dIP5f/3rX6Xl7FVtcR+8N/pJRAU0vBJz5lI5Zq0/Y4NeGYdVsOWDSQwRkZ354YcfEBAQgF9++QWlpaVaHymVlpbi119/lZazV+KmJyI9o9HZz6vBvLqqEoib9nsVSYNVsO0fn04iIrIz/v7+8PK6/ebp5eWFzp07Y8uWLejcubPWdHu+EkN0N/BKDBGRHSouLpYes/71118xfvx4aR6/J4boNl6JISKyU8XFxbh06RLatGkDd3d3tGnTBpcuXWICQ/RfvBJDRGTH/P397fYxaiJb45UYIiIikiUmMURERCRL/DiJiKgJ1dTUYPny5Thz5gyioqLw/PPPQ6lU2rpbRM0Ckxgioiby8ssvIy0tDTdv/u9L0ZKSkjB79mykpqbasGdEzQM/TiIiagIvv/wyFi9eDD8/P3zyyScoKCjAJ598Aj8/PyxevBgvv/yyrbtIJHtMYoiIrKympgZpaWkIDAzE+fPnMX36dAQFBWH69Ok4f/48AgMDkZaWhpqaGlt3lUjW+HESEZGVLV++HDdv3sSbb74JJyftYdbJyQkLFy7Es88+i+XLlyMhIUHneiprbuHM5fIGtXui/D3gqnRs0m2wZRXnytpbAICcCyUA0GjtIkPkXkWbjMMkhojIys6cuV3c8JFHHml0vma6Zjmd67lcjkc+PNBg+rYXBko1fZqCras4n/lvkjL3mxN6l3NX6X4Lk3MVbTIekxgiIiuLiooCAGzbtg3Tp09vMH/btm1ay+lcj78Htr0wUKqarKmqHOXf8OqCNdm6ivPwLkEAgKgAD7jWa0/TH8DwlSA5V9Em4zGJISKysueffx5JSUlYsGABpk6dqvWR0s2bN/Hqq6/CyckJzz//vN71uCodta641K+qfDfYqoqzr7sSE3u31tsfQ5pDFW0yjDf2EhFZmVKpxOzZs1FUVISwsDB8/PHHuHjxIj7++GOEhYWhqKgIs2fP5vfFEFmIV2KIiJqA5ntg0tLS8Oyzz0rTnZyckJSUxO+JIbICJjFERE0kNTUVb775Jr+xl6iJMIkhImpCSqVS72PURGQ+3hNDREREssQkhoiIiGSJSQwRERHJEpMYIiIikiUmMURERCRLTGKIiIhIlviINRFRE7FlFWqyjDWqYPP4Nz0mMURETcRWVajJctaogs3j3/SYxBARNRFbVaEmy1mjCjaPf9NjEkNE1ERsXYWazGeNKtg8/k2PN/YSERGRLDGJISIiIlliEkNERESyxCSGiIiIZIlJDBEREckSkxgiIiKSJSYxREREJEtMYoiIiEiWTEpiUlJS0KtXL6jVagQEBCA2NhanTp3SWqaqqgpxcXHw8/ODh4cHJkyYgKKiIr3rnTp1KhQKhdbPyJEjTd8aIiIiajFMSmL27duHuLg4HDp0CLt27UJtbS2GDx+OiooKaZnZs2fjn//8JzZv3ox9+/bh4sWLGD9+vMF1jxw5EgUFBdLPxo0bTd8aIiIiajFMKjuwY8cOrddr165FQEAAjh49ikGDBqGkpASrV6/Ghg0b8OCDDwIA1qxZg06dOuHQoUPo27evznWrVCoEBQUZ3Zfq6mpUV1dLr0tLDVcUJSJqKfKvVKCi+iYAIO9Suda/AOCuckJkK3ed8ZZUca6svQUAyLlQAgANqjjX74c+mirQd/bfUBVoa7Vva5ZWwbZ1/N1gUe2kkpLbJ4ivry8A4OjRo6itrcWwYcOkZTp27IjWrVsjKytLbxKzd+9eBAQEwMfHBw8++CDefPNN+Pn56Vw+JSUFycnJlnSfiKhZyr9SgSHv7m0wPWFTttbrzJdidCYyllRxPvPfJGHuNyf09tNdpf8t6M4q0Jr+G6oCba32bc3SKti2jr8bzD6CdXV1SEhIwIABA9C1a1cAQGFhIZRKJby9vbWWDQwMRGFhoc51jRw5EuPHj0dkZCTOnDmD+fPnY9SoUcjKyoKjY+PZ3rx585CYmCi9Li0tRXh4uLmbQ0TUbGiuwGiqJjd2JSJhU7a0XGMsqeI8vMvtq+pRAR5wrdeepj+A4StBwP+qQDd2JUAfa7Vva5ZWwbZ1/N1gdhITFxeHnJwcHDjQMEsz1cSJE6X/d+vWDd27d0dUVBT27t2LoUOHNhqjUqmgUqksbpuIqLmqXzX5/jamxVpSxdnXXYmJvVvr7Y8x6leBNqX/1mrf1iytgm3r+LvBrEes4+PjsW3bNmRmZiIsLEyaHhQUhJqaGhQXF2stX1RUZNL9Lm3btkWrVq2Ql5dnTveIiIioBTApiRFCID4+Hlu2bMGePXsQGRmpNb9nz55wdnZGRkaGNO3UqVP4448/0K9fP6PbOX/+PK5evYrg4GBTukdEREQtiElJTFxcHNatW4cNGzZArVajsLAQhYWFqKysBAB4eXlh2rRpSExMRGZmJo4ePYqnn34a/fr107qpt2PHjtiyZQsAoLy8HElJSTh06BDOnj2LjIwMjBs3Du3atcOIESOsuKlERETUnJh0T8yKFSsAADExMVrT16xZg6lTpwIA0tLS4ODggAkTJqC6uhojRozA8uXLtZY/deqU9GSTo6Mjfv75Z3z22WcoLi5GSEgIhg8fjjfeeIP3vBAREZFOJiUxQgiDy7i4uGDZsmVYtmyZUetxdXXFzp07TekGEREREWsnERERkTwxiSEiIiJZYhJDREREssQkhoiIiGSJSQwRERHJkn1Xv7JQ/pUKXC2vxvnrlQ3mhfm4ws9DZbB2hhyqeBIRWZOtq1A3B5ZWEW8O7sb7Z7NNYnRVcb2TviqugDyqeBIRWZOtq1DLnTWqiDcHd+P9s9kmMZoMOHVCdyidGn5qVnOzDi///We9VVwBeVTxJCKyJltXoZY7a1QRbw7uxvtns01iNDqHeDaa8WkukxoihyqeRETWZOsq1M2FJVXEm4O78f7JG3uJiIhIlpjEEBERkSwxiSEiIiJZYhJDREREssQkhoiIiGSJSQwRERHJEpMYIiIikiUmMURERCRLTGKIiIhIlpjEEBERkSw127IDlbW3oHAqxbenfsT+sw03s/aWgMKp1AY9IyK5sGUVe1ZBtpwtq2grnEqRX3oKDi4N6wTll5Y3+fuPpefP0fO/42JZEQDg3LUbcHC5gP1njyO/1A0AEKIORM+wiCZr31jNNok5c6kczt6H8fm5DJ3LOHsPhbtq7F3sFRHJia2q2LMKsnXYsoq2s/dhzP/hLT3zhwJ4uEnatvT8yb9SgUlfpkHl/7/3T/dIYEXe/5apvjwUO6cu0hl/t87fZpvEDO8ShLLaqXB3ewzFN2obzA/wdEGkTzAHACLSyVZV7FkF2TpsWUW7trgP3hv9JKICGrZ15lI5Zq0/02RtW3r+VFTfRG1xHyT0i0W4rxuqb9bhUmkVAjxdoHJywLlrN7A4t0BvvCXtm6LZJjG+7krMGHCPrbtBRDJm6yr2Lb0KsqVsWUVb3PREpGc0Ovs1PF/qqkogbl5u8j5Ycv6Im54Y1ObeRs/3nAslSL1Z0aTtG4s39hIREZEsMYkhIiIiWWISQ0RERLLUbO+JISIiItu4W4+YM4khIiIiq7pbj5gziSEiIiKruluPmDOJISIiIqu6W4+Y88ZeIiIikiUmMURERCRLTGKIiIhIlnhPjB7WqMJpyyq49tA+UUtl6yrU1njE1ZZVoG2psvYWgNtfrw+g0do/9s7WVbTvFiYxOlirCqetquDaS/tELZE9VKG2xiOutqwCbUtn/pukzP3mhN7l3FX2+xZqyyrad5P9HgEbs1YVTltVwbWX9olaInuoQm2NR1xtWQXaloZ3CQIARAV4wLXe8dIcT6Dpr6RZypZVtO8mJjEGWFqF09ZVcG3dPlFLZssq1NZ4xNWWVaBtydddiYm9WzeYLqfx0x6qaN8NvLGXiIiIZIlJDBEREckSkxgiIiKSJSYxREREJEtMYoiIiEiWmMQQERGRLDGJISIiIlliEkNERESyxCSGiIiIZIlJDBEREckSyw7oYWkVUFtXsSVW8Sb5smT8aQ5VmO2BLat42/L9Q07nD5MYPSypAmoPVWyJVbxJviwZf5pDFWZ7YKsq3rZ+/5DT+WP7HtgxS6qA2kMVW2IVb5IvS8af5lCF2R7Yqoq3rd8/5HT+MInRwxpVQG1ZxZZYxZvky5LxpzlUYbYHtq7ibav3DzmdP7yxl4iIiGSJSQwRERHJEpMYIiIikiUmMURERCRLTGKIiIhIlpjEEBERkSwxiSEiIiJZYhJDREREsmRSEpOSkoJevXpBrVYjICAAsbGxOHXqlNYyVVVViIuLg5+fHzw8PDBhwgQUFRXpXa8QAq+++iqCg4Ph6uqKYcOGITc31/StISIiohbDpCRm3759iIuLw6FDh7Br1y7U1tZi+PDhqKiokJaZPXs2/vnPf2Lz5s3Yt28fLl68iPHjx+tdb2pqKv72t79h5cqVOHz4MNzd3TFixAhUVVWZt1VERETU7JlUdmDHjh1ar9euXYuAgAAcPXoUgwYNQklJCVavXo0NGzbgwQcfBACsWbMGnTp1wqFDh9C3b98G6xRC4P3338eCBQswbtw4AMDnn3+OwMBAbN26FRMnTmy0L9XV1aiurpZel5bqryhtKnup4mnrKsy2bt/WuP0td/strSLMKtQtlzWOn5zPn7vZvkW1k0pKbnfQ19cXAHD06FHU1tZi2LBh0jIdO3ZE69atkZWV1WgSk5+fj8LCQq0YLy8v9OnTB1lZWTqTmJSUFCQnJ1vSfb3spYqnrasw27p9W+P2t8ztt0YVYVahbrmscfzkfP7czfbNXkNdXR0SEhIwYMAAdO3aFQBQWFgIpVIJb29vrWUDAwNRWFjY6Ho00wMDA42OAYB58+YhMTFRel1aWorw8HBzNqVR9lLF09ZVmG3dvq1x+1vm9lujijCrULdc1jh+cj5/7mb7ZicxcXFxyMnJwYEDDf9KuxtUKhVUKlWTrd9eqnjaugqzrdu3NW5/y95+S6oIswp1y2WN4yfn8+dutm/WI9bx8fHYtm0bMjMzERYWJk0PCgpCTU0NiouLtZYvKipCUFBQo+vSTL/zCSZ9MUREREQmJTFCCMTHx2PLli3Ys2cPIiMjteb37NkTzs7OyMjIkKadOnUKf/zxB/r169foOiMjIxEUFKQVU1paisOHD+uMISIiIjIpiYmLi8O6deuwYcMGqNVqFBYWorCwEJWVlQBu35A7bdo0JCYmIjMzE0ePHsXTTz+Nfv36ad3U27FjR2zZsgUAoFAokJCQgDfffBP/+Mc/cOLECUyZMgUhISGIjY213pYSERFRs2LSPTErVqwAAMTExGhNX7NmDaZOnQoASEtLg4ODAyZMmIDq6mqMGDECy5cv11r+1KlT0pNNAPDyyy+joqICzzzzDIqLizFw4EDs2LEDLi4uZmwSERERtQQmJTFCCIPLuLi4YNmyZVi2bJnR61EoFFi4cCEWLlxoSneIiIioBWPtJCIiIpIlJjFEREQkS0xiiIiISJaYxBAREZEsMYkhIiIiWWL1MAM0VXzvrGJrTBVfS6qQApZX0bU03hosrYJsyyrK1th/LbkKdEtm6yrCUj8sGL9I/iw9/nI4f5jEGHBnFV9NFVtjqvhaUoXU0iq61qjCaw2WVkG2VRVla+2/lloFuqWzdRVhqR8WjF8kf5YefzmcP0xiDNBU8W3sL2lDLKlCamkVXWtU4bUGS6sg26qKsrX2X0utAt3S2bqKsIYl4xfJn6XHXw7nD5MYA+pX8b2bVWw1LKmia414S1laBdnWVZQt3X+27j/Zhq2rCGtYMn6R/Fl6/OVw/vDGXiIiIpIlJjFEREQkS0xiiIiISJaYxBAREZEsMYkhIiIiWWISQ0RERLLEJIbIzlVWViI+Ph4jRoxAfHw8Kisrbd0lIiK7wO+JIWoi1ihbEBsbi/T0dOn1d999h2XLlmHcuHHYunWr9TtNRCQjTGKImoA1yhZoEhilUonExERMnz4dq1atwpIlS5Ceno7Y2FgmMkTUojGJIWoClpYtqKyslBKYsrIyKJVKAEBKSgqSk5OhVquRnp6OyspKuLq63rXtIiKyJ0xi7JilVbDJMpbuf4VTKRxdLsDBxQNuLkAHNQDcrmrs6KI/PikpCQCQmJgoJTAaSqUSCQkJSE1NRVJSEpYuXapzPZZU0W4OVbwtad8av38toYow6Wbu8bOXKuiWuhvnL5MYO2ZJFWyynKX735L43NxcAMD06dMbnT9t2jSkpqZKy+libhXt5lLF25L2rfH71xKqCJNu5h4/e6mCbqm7cf7a9x5o4Sypgk2Ws3T/WxLfvn17fPfdd1i1ahVSUlIazF+9erW0nD7mVtFuLlW8LWnfGr9/LaGKMOlm7vGzlyrolrob5y+TGDtmjSrYZD5L978l8YsXL8ayZcuwZMkSJCcna32kVFNTg/fff19aTh9Lq2jLvYq3Je1b4/evJVQRJt3MPX72UgXdUnfj/OX3xBDZIVdXV4wbNw41NTVQq9WYM2cOTp8+jTlz5kCtVqOmpgbjxo3jTb1E1KIxiSGyU1u3bpUSmdTUVERHRyM1NVVKYPh4NRG1dPw4iciObd26FZWVlUhKSkJubi7at2+PxYsX8woMERGYxBDZPVdXV72PUTcVPuJPRPaOSQwRNYqP+BORvWMSQ0SN4iP+RGTvmMQQUaP4iD8R2Ts+nURERESyxCSGiIiIZIlJDBEREckS74lpIvZQhdTSR2StUcXYlizpv6XHz1rH39ZVqG2tpW8/tWysYm4Yk5gmYg9VSC15RNZaVYxtxdL+W3r8rHX8bV2F2tZa+vZTy8Yq5oYxiWki9lCF1JJHZK1VxdhWLO2/pcfPWsff1lWoba2lbz+1bKxibhiTmCZiD1VIrfGIrKVVjG3N3P5bevysdfxtXYXa1lr69lPLxirmhvHGXiIiIpIlJjFEREQkS0xiiIiISJaYxBAREZEsMYkhIiIiWWISQ0RERLLEJIaIiIhkiUkMERERyRKTGCIiIpIlJjFEREQkSyw70MTMrUJqL1WULdEcqghbWkXWllVoLalibo3zx9Ljb2m8rbefiJoek5gmZm4VUnupomyu5lJF2NIqsrasQmtJFXNLzx9Lj781zh9bbj8R3R38DWxi5lYhtZcqyuZqLlWELa0ia8sqtJZUMbf0/LH0+Fvj/LHl9hPR3cEkpomZW4XUXqooW0ruVYQtrSJryyq0llQxt9b5Y+nxtyTeHrafiJoWb+wlIiIiWWISQ0RERLLEJIaIiIhkiffEkN1qDo9oExFR02ESQ3apuTyiTURETYdJDNml5vKINhERNR0mMWTX5P6INgBUVlYiKSkJubm5aN++PRYvXgxXV1dbd4uISPZ4Yy9RE4qNjYWbmxuWLVuG7777DsuWLYObmxtiY2Nt3TUiItkzOYnZv38/xowZg5CQECgUCmzdulVrflFREaZOnYqQkBC4ublh5MiRyM3N1bvOtWvXQqFQaP24uLiY2jUiuxIbG4v09HQolUrMnTsXeXl5mDt3LpRKJdLT05nIEBFZyOQkpqKiAj169MCyZcsazBNCIDY2Fr/99hvS09Nx/PhxREREYNiwYaioqNC7Xk9PTxQUFEg/v//+u6ldI7IblZWVUgJTVlaGlJQUREVFISUlBWVlZVIiU1lZaeuuEhHJlsn3xIwaNQqjRo1qdF5ubi4OHTqEnJwcdOnSBQCwYsUKBAUFYePGjZg+fbrO9SoUCgQFBRndj+rqalRXV0uvS0t1V6Ql81hSBdge2LL/SUlJAIDExEQolUqteUqlEgkJCUhNTUVSUhKWLl3a6DqOnv8dF8uKAADnrt2Ag8sF7D97HPmlbgCAEHUgeoZFNNk2AJZV4Zb7+QPYtgo5ERlm1Rt7NUlF/Y+CHBwcoFKpcODAAb1JTHl5OSIiIlBXV4f77rsPb731lpQINSYlJQXJycnW6zw1YEkVYHtgy/5rPkLVdc5PmzYNqampOj9qzb9SgUlfpkHlnyFNc48EVuT9b5nqy0Oxc+qiJn3E3JIq3HI/fwDbViEnIsOsmsR07NgRrVu3xrx58/DRRx/B3d0daWlpOH/+PAoKCnTGRUdH49NPP0X37t1RUlKCd999F/3798cvv/yCsLCwRmPmzZuHxMRE6XVpaSnCw8OtuTktniVVgO2BLfvfvn17fPfdd1i1ahVSUlIazF+9erW0XGMqqm+itrgPEvrFItzXDdU363CptAoBni5QOTng3LUbWJxb0OSPmFtShVvu5w9g2yrkRGSYVZMYZ2dnfPPNN5g2bRp8fX3h6OiIYcOGYdSoURBC6Izr168f+vXrJ73u378/OnXqhI8++ghvvPFGozEqlQoqlcqa3ac7WFIF2B7Ysv+LFy/GsmXLsGTJEiQnJ2t9pFRTU4P3339fWk4XcdMTg9rc2+hf/DkXSpB6U/99ZtZgSRVuuZ8/gG2rkBORYVZ/xLpnz57Izs5GcXExCgoKsGPHDly9ehVt27Y1eh3Ozs649957kZeXZ3hhIjvk6uqKcePGoaamBmq1GnPmzMHp06cxZ84cqNVq1NTUYNy4cfy+GCIiCzTZ98R4eXnB398fubm5OHLkCMaNG2d07K1bt3DixAkEBwc3VfeImtzWrVulRCY1NRXR0dFITU2VEpg7v56AiIhMY/LHSeXl5VpXSPLz85GdnQ1fX1+0bt0amzdvhr+/P1q3bo0TJ07gxRdfRGxsLIYPHy7FTJkyBaGhodK9AgsXLkTfvn3Rrl07FBcXY/Hixfj999/13ghMJAdbt27lN/YSETURk5OYI0eOYMiQIdJrzc21Tz31FNauXYuCggIkJiaiqKgIwcHBmDJlCl555RWtdfzxxx9wcPjfRaDr169jxowZKCwshI+PD3r27ImDBw+ic+fO5m4Xkd1wdXXV+Rg1ERGZz+QkJiYmRu9NurNmzcKsWbP0rmPv3r1ar9PS0pCWlmZqV4iIiKgFY+0kIiIikiUmMURERCRLTGKIiIhIlpjEEBERkSwxiSEiIiJZsmrZAbI+S6vomhtfWXsLwO2vtwfQoHaMZj32Su79t1Rz2H5LqmA3h+0nIsOYxNg5S6vomht/5r+D/NxvTuhdv7vKPk8hufffUs1h+y2pgt0ctp+IDONvsJ2ztIquufHDuwTdjg/wgOt//3JN2JSN95+4B+3+W5XYXeWEyFbulm1gE5F7/y3VHLbfkirYzWH7icgwJjF2ztIquubG+7orMbF36wbT2wV4GHUFyNbk3n9LNYftt6QKdnPYfiIyjDf2EhERkSwxiSEiIiJZYhJDREREssQkhoiIiGSJSQwRERHJEpMYIiIikiUmMURERCRLTGKIiIhIlpjEEBERkSwxiSEiIiJZYtkBajKWViFWOJViV95R5Jd6oPpmHS6VViHA0wUqJwecu3ZDb7zcWasKs6VV0M1laf/lvv1EdHcwiaEmY2kVYmfvw/j0bAZwVne8u2qs5R21Q9aqwmxpFXRzWdp/uW8/Ed0dTGKoyVhahbisdip8PCdKV17e3XUaLz3UAeG+bgCAEHVgs61CbK0qzJZWQbdV/+W+/UR0dzCJoSZjaRXiGQPukV7nXChBalUFBrW5t0X8BW2tKsyWVkE3l6X9l/v2E9HdwRt7iYiISJaYxBAREZEsMYkhIiIiWWISQ0RERLLEJIaIiIhkiUkMERERyRKTGCIiIpIlJjFEREQkS0xiiIiISJaYxBAREZEssewANQl7qULMKsa2xeNHRE2JSQw1CXupQswqxrbF40dETYlJDDUJe6lCzCrGtsXjR0RNiUkMNQl7qULMKsa2xeNHRE2JN/YSERGRLDGJISIiIlliEkNERESyxCSGiIiIZIlJDBEREckSkxgiIiKSJSYxREREJEtMYoiIiEiWmMQQERGRLDGJISIiIlli2QHSi1WIbYv7j4hIN4UQQti6E9ZQWloKLy8vlJSUwNPT09bdaTZyLpRoVRHWMLaKsKXxLR33HxE1d5a8fzOJIb00VwIaqyJsypUYc+NbOu4/ImrumMSASQwREZEcWfL+zRt7iYiISJaYxBAREZEsMYkhIiIiWWISQ0RERLLEJIaIiIhkiUkMERERyRKTGCIiIpIlJjFEREQkSyYnMfv378eYMWMQEhIChUKBrVu3as0vKirC1KlTERISAjc3N4wcORK5ubkG17t582Z07NgRLi4u6NatG7Zv325q14iIiKgFMTmJqaioQI8ePbBs2bIG84QQiI2NxW+//Yb09HQcP34cERERGDZsGCoqKnSu8+DBg5g0aRKmTZuG48ePIzY2FrGxscjJyTG1e0RERNRCWFR2QKFQYMuWLYiNjQUAnD59GtHR0cjJyUGXLl0AAHV1dQgKCsJbb72F6dOnN7qeJ554AhUVFdi2bZs0rW/fvrjnnnuwcuXKRmOqq6tRXV0tvS4tLUV4eDjLDhAREcmI3ZQd0CQVLi4u/2vAwQEqlQoHDjSsxKuRlZWFYcOGaU0bMWIEsrKydMakpKTAy8tL+gkPD7ew90RERCQnVk1iOnbsiNatW2PevHm4fv06ampq8M477+D8+fMoKCjQGVdYWIjAwECtaYGBgSgsLNQZM2/ePJSUlEg/586ds9p2EBERkf1zsubKnJ2d8c0332DatGnw9fWFo6Mjhg0bhlGjRsHaxbJVKhVUKpX0WrP+0tJSq7ZDRERETUfzvm1OnmDVJAYAevbsiezsbJSUlKCmpgb+/v7o06cP7r//fp0xQUFBKCoq0ppWVFSEoKAgo9stKysDAH6sREREJENlZWXw8vIyKcbqSYyGpiO5ubk4cuQI3njjDZ3L9uvXDxkZGUhISJCm7dq1C/369TO6vZCQEJw7dw5qtRoKhaLBfM2Nv+fOnTPrxl/GM57xjGc84xlv/XghBMrKyhASEmLyuk1OYsrLy5GXlye9zs/PR3Z2Nnx9fdG6dWts3rwZ/v7+aN26NU6cOIEXX3wRsbGxGD58uBQzZcoUhIaGIiUlBQDw4osvYvDgwXjvvfcwevRofPnllzhy5Ag+/vhjo/vl4OCAsLAwg8t5enpa9PQS4xnPeMYznvGMt268qVdgNExOYo4cOYIhQ4ZIrxMTEwEATz31FNauXYuCggIkJiaiqKgIwcHBmDJlCl555RWtdfzxxx9wcPjfPcX9+/fHhg0bsGDBAsyfPx/t27fH1q1b0bVrV7M2ioiIiJo/k5OYmJgYvTffzJo1C7NmzdK7jr179zaY9thjj+Gxxx4ztTtERETUQrWY2kkqlQqvvfaa1hNNjGc84xnPeMYz3r7j9bHoG3uJiIiIbKXFXIkhIiKi5oVJDBEREckSkxgiIiKSJSYxREREJEtMYoiIiEiWZJvEpKSkoFevXlCr1QgICEBsbCxOnTqltUxMTAwUCoXWz3PPPacV7+bmBmdnZzg5OaFVq1aYM2cObt68Ka0jKysLDz74INzd3eHp6YlBgwahsrJSivfw8ICLiwucnZ2hVqsxbdo0lJeXGx2vUqng7OwMR0dHqNXqBtupL75Hjx5SrKOjI8LDw/Haa6+hpqbG6PadnJykeH9/f0yePBkXL140Ol6z/8eOHYuOHTtCoVAgOzvb6HgHB4cGx+jtt982qX1vb2/4+PhApVLBx8cHsbGxRsVr+tvYz48//mhU++7u7lCpVFAqlfDw8MDAgQORmZlpdP/d3d2hVCrh7OwMb29vPPPMMygvL8fZs2d19m3z5s1a559KpYKjoyN8fX2RlJSEmzdvGh2vadvBwQEdO3aU+m1MfJcuXbTOv7Zt2+KDDz4wOv7ee++Vzj8HBwcEBQUhPj4epaWlRvdfc/49/PDDCAwMhEKhQHFxsdHxjc3/8ssvTWrf09MTXl5eUCqVCAgIQFxcnFHxkZGROpc5cuSIUe3XP388PT0xYsQI/PTTT0b3X9/4V1hYiMmTJyMoKAju7u6477778Pe//11r/NQ3/hkTr2/8MxRvaPwzpn19458x8frGP2Pi9Y1/xrava/wzFG9o/DOmfX3jn754jWPHjuGhhx6Ct7c3/Pz8pPHPJEKmRowYIdasWSNycnJEdna2ePjhh0Xr1q1FeXm5tMzgwYPFjBkzREFBgfRTUlIixScnJwsnJycxc+ZMMXjwYBEYGCg6dOgg/vKXvwghhDh48KDw9PQUKSkpIicnR5w8eVJs2rRJVFVVSe0PGDBAdOjQQfTv318EBgaKtm3bikmTJhkd/9xzz4m//OUvIjIyUigUCq3+G4pPTEwU48aNE8uXLxcxMTHC399f+Pv7m9T/l19+WXz++ediyJAhIjAwUPTu3Vv069fP6HjN/m/Tpo1wcXERAMTx48eNjg8ODhbPP/+8GDp0qAgNDRVnzpyR9oEx8WlpaUKtVouuXbuKkJAQ8eOPP4pNmzYZFf/JJ5+IvXv3it27d0vtP/XUUyIyMlLU1dUZ1X7r1q3FwIEDxQMPPCBCQkLEjBkzhJubmygoKDAYv2TJEuHp6SkeffRRMXjwYBEUFCT69OkjJkyYIG7evKl13hYUFIjk5GTh4eEhysrKxIgRI8Tq1atFu3btRJ8+fcTAgQOFv7+/8PPzE/PmzTMqfs2aNeLJJ58Uc+fOFaGhocLZ2Vna98bEP/300+L//u//xKpVq0RMTIzw8/MTLi4u4sMPPzQqfunSpWLBggVi/fr1YsiQISIgIEC0b99eTJo0yej+a86/wMBA6fy7fv260fEARHJystb5V1lZaXR8UlKS8Pf3F/fcc48ICQkRWVlZIj093aj4jz76qMH5N3ToUDF48GCj4lesWCE8PT3F2LFjxeDBg0VwcLAYN26cCAwMFJWVlQbjDY1/Dz30kOjVq5c4fPiwOHPmjHjjjTeEg4ODOHbsmFHjnzHx+sY/Q/GGxj9j2tc3/hkTr2/8MyZe3/hnTLy+8c9QvKHxz5j29Y1/+uKFEOLChQvCx8dHPPfcc+LkyZPihx9+EP379xcTJkwwKReQbRJzp0uXLgkAYt++fdK0wYMHixdffFFnzLx588T999+vFf/WW28JFxcXUVpaKvr06SMWLFigM/4///mPACB+/PFHKT41NVUoFApx4cIFg/H1ffDBBw36b0q8pv3nnntOREZGmh3/1ltvCYVCIWpqaoyO3759u2jXrp0AoPVLbEx8RESESEtLa/T4GYqvra0VoaGhYtWqVWbF16eJ9/LyEgsXLjQq/vLlywKA2L9/vxT/7bffCgBi165dBuM/+ugjERAQIG7duiXFf/rppwKAyM3NbbD8PffcI/785z9Lr7dv3y4cHBxEYWGhFJ+YmCg8PT1FdXW1wfj6XnrppQb7z5R4TfuxsbFiyJAhZse/8MILIiwszKT45cuXi379+knn3/Xr142OByC2bNnS6PljKP7atWvC1dVV7N6926z4+jTxjo6O4vPPPzcq/scffxQAxB9//GHW+WNo/HN3d2/QF19fX/HJJ58IIQyPf4bi62ts/DMlvrHxz5z4+uOfsfG6xj9j4vWNf4biDY1/5mx//fHPULyh8c9QfP3xT+Pnn3/Wef7qItuPk+5UUlICAPD19dWavn79erRq1Qpdu3bFvHnzcOPGDWledXU1XFxctOJbtWqFqqoq7N69G4cPH0ZAQAD69++PwMBADB48GAcOHJDis7Ky4O3tjfvvv1+Kf+ihh+Dg4ICdO3cajK+vsrJSq/+XLl0yKV7T/q1bt+Dr62t2/L59+9C/f39cv37dqPiioiLMmDEDqampWtNNaf/tt99G+/btAQDp6em4efOmUfHHjh3DhQsX4ODggMGDBwMA5s+fj5ycHLO3v7S0FE8//bRR8X5+foiOjsbnn3+OgoICAMDu3bsREBCA1q1bG4yvrq6GUqmEg4OD1H5gYCAANOjn0aNHkZ2djWnTpknTsrKy0K1bNwQGBmqdf6Wlpfjll18MxtdXXV0NoOHvj7HxmvZra2sbXYex8VlZWdKxNCb+P//5DxYuXKj1EaSp/Y+Li0OHDh0A3C6JIhr5/s/G4nft2oW6ujpcuHABffv2BQAsWrQI586dM6l94H/b7+rqikcffdSo+OjoaPj5+WH16tW4fPkyACAjIwOdOnVCmzZtDMbrG/+OHj2K/v37Y9OmTbh27Rrq6urw5ZdfoqqqCjExMQD0j3+HDx82GF/fneMfAJPi7xz/zI3XjH/Ozs5Gxesa/0xpv7Hxz5h4feOfuduvGf+Midc3/vXs2dNgfP3xT8PV1RVAw/FPL6PTHTt269YtMXr0aDFgwACt6R999JHYsWOH+Pnnn8W6detEaGio+NOf/iTN37lzp3BwcBDr1q0TDz/8sOjVq5d44IEHpEvMAISvr6/49NNPxbFjx0RCQoJQKpXi9OnTQgghFi1aJDp06NCgfX9/f5GUlGQwvn7/e/ToIRwdHaVpWVlZJsWPHj1a9OzZU3h6eoqPP/7YpPikpCTh4OAgAIi+ffuKK1euGBVfV1cnRo4cKZKTk8Xo0aPF/fffL/0lYmz77733nsjIyBAPPPCAiIqKEt7e3mL27NlGxW/cuFEAEOHh4eK+++4TPXr0EJMmTRJ+fn5ix44dJu8/Hx8fMWrUKJP2/7lz58R9990n/RUWHBwsjh07ZlR8Tk6OcHJyEm+//bYYNWqU9FES/vsXYX0zZ84UnTp10po2Y8YMMXz4cK3zr6KiQgAQ27dvNxhff/vbt28v3NzcGp1vTPzo0aNF9+7dhZOTk9i5c6dJ8U888YR0/o0ZM0ZUVlYaFV9VVSW6d+8uPvvsMzF69GjRtWtXnVdidLW/cOFCsX//fjFw4EAREREhVCqV+OCDD4yKT0lJEc7OzqJDhw6id+/eonv37mLo0KEiOjq6wZUwY/afq6urmDlzZqPL6Io/ceKEaNu2rXT+RUdHi7NnzxoVr2/827Bhg7h+/boYPny4ACCcnJyEp6en1rHVN/4tX77cYHz97b9z/BNCmBR/5/hnSnxj458x8frGP2Pb1zX+GROvb/y7evWqyfuv/vhnbP91jX/GxGvGv9TUVFFdXS2uXbumc/zTp1kkMc8995yIiIgQ586d07tcRkaGACDy8vKkae+9955wdnYWAISLi4tISUnRSmLmzZuntY5u3bqJuXPnCiH+90t8Z/uaz2UNxdfvv5+fn1Cr1dK0f//73ybFh4WFiYiICDFt2jST46dOnSpCQ0PF+vXrxYABA8TDDz8sDhw4YDD+gw8+EAMGDBDPPvusiIiIEAcPHpR+iU3tv2b/rV69Wjg5OYnMzEyD8evXrxcAxKBBg6T4qqoq0apVKymJNGX/KRQK8fXXXxu9/+rq6sTYsWNFeHi4CAoKEtu3bxczZ84UoaGhIj093aj2169fL1xdXQUA4ezsLF566SURGBgo3n77bWmZGzduCC8vL/Huu+9qrUuTxNTff40lMbri62+/l5eXzjdZY+JDQkKEj4+PeOONN0yOnzJliggJCRGrV68WnTt3bvBGrit+9uzZ4oknnpC2/6uvvmo0iTGm/5r998orrzT4OEtX/KJFiwQAMXr0aCn+0qVLwsHBQezYscOk9oOCggQAceTIkQbzdcXfuHFD9O7dW3To0EEEBweL9PR0MWHCBNGlSxdx48YNo9rXNf59+eWXIj4+XvTu3Vvs3r1bZGdni9dff114eXmJn3/+Wdp+XePf8uXLDcbX3/47xz8hhEnxd45/psQ3Nv7V1dUZjNc3/pna/zvHv6qqKoPx+sa/lStXmrz/6o9/xvRf3/h38eJFo9pfv369CAwMFI6OjkKpVDY6/hki+yQmLi5OhIWFid9++83gsuXl5QKA1gCjic/KyhI3btyQPufdsmWLACC++OILrXU8/vjj4sknnxRCCLF69WqhVCq12q+trRWOjo5ixYoVBuPrt5+amiq8vLyk6b/99pvR8cHBwaJNmzZi8uTJ0ueLpsTX7/+5c+cEAPH1118bjB83bpyUgTs4OAhHR0fpc/0//elPZrWfk5MjAIjdu3cbjN+zZ48AIAICArSOf+/evcXzzz9vUvuzZ88W/v7+oqamxuj9p+ljaGioVvvt2rWTkihj2z98+LAoKysT5eXlwsHBQXz11VfSMp9//rlwdnYWly5d0lrXK6+8Ivz8/LT2n6bfmr+G9MXXb3/WrFmiR48eDeYbEx8UFCT8/PzE/PnzzYqv3//vv/9eABAXL140GN+jRw+t80/z17Sjo6N49dVXzWp/27ZtAoCoqqoyGK+5/yQ4OFjr+AcEBEhXA4xt/7HHHhP33HOPSftv1apVwtXVVav/1dXVws3NTWzcuNGk9u8c/7755hsBQOTk5GgtP3ToUPHss88KIfSPf8uXLzcYX7/9O8e/vLw8o+MbG/9MiW9s/NMkxPrijRn/TG1fM/599913BuP1jX8zZ840qf07xz9j9p++8U9zj52h9jUKCwt1jn+GyPaeGCEE4uPjsWXLFuzZsweRkZEGYzSPvgUHBzeI79u3L1xdXbFx40aEh4fjkUceQUhISIPHtk+fPo2IiAgIIZCRkYGamhr87W9/k9rfs2cP6urqMGbMGIPx9dv39/fXWq5NmzZGxX/99ddQKpXo27cv1qxZI32+aGz8nfuvrq4OwO3Ppg3Fe3l5ISAgANu2bcNPP/2E7du3AwA2bdqEDz74wKz2s7Oz4eDggHvvvddg/MaNGwEAL774ohRfW1uLs2fPonv37ka3n5GRga1bt2LKlClwdnY2ev8tWbIEALBt2zat88/BwQFeXl4mbX/v3r3h4eGBTZs2wcXFBQ899JAUs3r1aowdO1brHBFC4Pjx47h69So2b94stb9r1y54enqic+fOBuPrt+/j4wNd9MVv3rwZNTU1+POf/4xFixaZHK/r/NPco6Mvvlu3blrn36pVqwAA33//PeLi4sxqPzs7W3pc1VB8RkYGAEiPSwPAtWvXcOXKFURERBjd/j//+U98++23Ou+X0RX/2Wefobq6GhkZGVL7mkd2NfvR2O2/c/yrv776HB0dUVdXZ3D809xjpC9e3/inuXfRULyu8c/YeF3nX1lZmcF4fePfzJkzzWpfM/65ubkZjNc3/mn2pzHtNzb+GbP/9I1/mt9fXfF3CgwM1Dn+GWR0umNnZs6cKby8vMTevXu1HiPUXEbNy8sTCxcuFEeOHBH5+fkiPT1dtG3bVgwaNEgr/tlnnxV79uwRe/fuFUlJScLJyUls2bJFCCFEWlqa8PT0FJs3bxa5ubliwYIFwsXFReTl5UnxvXv3Fl27dhXbt28X6enpIioqSnrE0Jj4TZs2iV27domXXnpJuLm5iaysLHH8+HFRVlZmMN7T01OEhoaKgQMHimPHjomffvpJ/Pbbb6KgoMCo9j08PMSsWbPErl27xA8//CA2b94s+vTpI6KiokRVVZVR/a+//3/44Qety6nGtB8XFyd2794tDh06JJYuXSpatWolpkyZYvT+mzBhgggKChIbN24U33//vXjqqadEQECAuHbtmtH91/zVtX//fq3L8Mbsf09PT/Hwww+L3bt3iwMHDogXX3xRODs7i+zsbKPanzVrlti5c6c4cOCA9GRI/XsycnNzhUKhEN9++22j539kZKQYPHiw2L17t9iwYYNo1aqV1kdYhuLXrVsndu3aJSZPnizatm0rnX+aezr0xavVaukY/PTTT9L5V/8vfn3x7u7uYs6cOSIzM1P88MMP4osvvhDR0dFa97YZ6n/98+/vf/97g4+TDLX/0ksviczMTHHw4EGRkpIiXF1dta7iGGpf84jxP/7xD5GZmSlGjRolOnfuLP1Fa0z/33vvPaFSqcTJkye1zj9j9r+zs7N46qmnxL59+8TevXvFxIkThZeXl3Qly1D7usa/mpoa0a5dO/HAAw+Iw4cPi7y8PPHuu+8KhUIh/vWvfxkc/4yN1zX+Xbt2zWC8vvHPmPb1jX9lZWVG9V/X+Gds+7rGP2P3n67xr6ioyOj+Nzb+GdO+vvHvxx9/1Buv8eGHH4qjR4+KU6dOiaVLlwpXV9dG70nTR7ZJDP57Ge/OnzVr1gghhPjjjz/EoEGDhK+vr1CpVNIlfs33xOiK19xUpZGSkiLCwsKEm5ub6Nevn/j+++/1xg8cOFCUlZWZHa/5yczMtCje3PZjYmLE+fPnLeq/JokxJ37ChAlal/JNje/cubPWJUxT4zXnj7nxbdu21bofxdT4GTNmaLU/b948ER4ervUYor74ESNGiNraWrPjNT/5+flmx0dERJjd/sMPP6yVhJjTviXxU6ZM0VrW1Pj77rtP/PHHH2bH33n+mRrfqVMnkZWVZXZ8/fHv9OnTYvz48SIgIEC4ubmJ7t27S4/M6oqvP/6ZE6/5yczMtCje3Pbrj3/mtq8Z/8yJrz/+mRNff/wzJ77++WdOfP3xT1+8xuTJk4Wvr69QKpWNzjeG4r8dIiIiIpIV2d4TQ0RERC0bkxgiIiKSJSYxREREJEtMYoiIiEiWmMQQERGRLDGJISIiIlliEkNERESyxCSGiIiIZIlJDBEREckSkxgiIiKSJSYxREREJEv/H1Ukl2AH7S1uAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" } ], "source": [ "tol['dayofyear'] = tol.index.dayofyear\n", - "tol.plot.boxplot(y='temperature C', by='dayofyear')" + "\n", + "# These three are all pretty much equivelant:\n", + "tol[['dayofyear', 'temperature C']].plot.box(by='dayofyear')\n", + "# tol[['dayofyear', 'temperature C']].boxplot(by='dayofyear')\n", + "# tol[['dayofyear', 'temperature C']].plot(kind='box', by='dayofyear')\n", + "\n", + "# An example using pyplot directly:\n", + "# grouped_data = tol.groupby('dayofyear')['temperature C'].apply(list)\n", + "# plt.boxplot(grouped_data, tick_labels=grouped_data.index)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### *Exercise*\n", + "* The labels are kind of hard to see... use the `figsize` argument to make the plot wider and the `rot` argument to rotate the labels. \n", + "* Day of year works, but isn't very understandable. The dataframe index is made up of datetime objects, so we can use the strftime function built into datetime objects to get a formatted date. Use the following line for a month_day column and update the plot command to use it instead of dayofyear:\n", + "\n", + " tol['month_day'] = tol.index.strftime('%B %d')\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 55, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0UAAAHACAYAAABtZcP3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD6iElEQVR4nOzdd3zT1frA8U/SpnuXtmmhCyiUvfcQASnIEIooiCCKG1AEvI7fFUS9cl33ugeogKOiMhyA7C2FQtmrtNDSAg0d0D3SJt/fH5Fqr6y2GR3P+/XKizT55pwno/T75JzzHJWiKApCCCGEEEII0UCpbR2AEEIIIYQQQtiSJEVCCCGEEEKIBk2SIiGEEEIIIUSDJkmREEIIIYQQokGTpEgIIYQQQgjRoElSJIQQQgghhGjQJCkSQgghhBBCNGiSFAkhhBBCCCEaNHtbB2AuRqORixcv4u7ujkqlsnU4QgghhBBCCBtRFIX8/HyCgoJQq28+DlRvkqKLFy8SHBxs6zCEEEIIIYQQtURaWhpNmjS56XH1Jilyd3cHTE/cw8PDxtEIIYQQQgghbCUvL4/g4OCKHOFm6k1SdHXKnIeHhyRFQgghhBBCiFteViOFFoQQQgghhBANmiRFQgghhBBCiAZNkiIhhBBCCCFEg1Zv1hQJIYQQQoiGTVEUysvLMRgMtg5FWJidnR329vZm24pHkiIhhBBCCFHn6fV60tPTKSoqsnUowkpcXFwIDAzEwcGhxm1JUiSEEEIIIeo0o9FIcnIydnZ2BAUF4eDgYLYRBFH7KIqCXq8nMzOT5ORkIiIibmmD1huRpEgIIYQQQtRper0eo9FIcHAwLi4utg5HWIGzszMajYZz586h1+txcnKqUXtSaEEIIYQQQtQLNR0tEHWLOd9v+eQIIYQQQgghGjRJioQQQgghhBANWpWSogULFtCtWzfc3d3x9/dn9OjRJCQkVDpm4cKFDBgwAA8PD1QqFTk5OTdt9+WXX0alUlW6REZGVumJCCGEEEIIIWqHAQMGMHPmTFuHccuqlBRt376dadOmsWfPHjZu3EhZWRlDhgyhsLCw4piioiKGDh3Kiy++WKVA2rRpQ3p6esVl165dVXq8EEIIIURDoivUEZceh65QZ+tQRAOxbdu2Wx70qGuqVH1u3bp1lX5esmQJ/v7+xMfH079/f4CKjHDbtm1VC8TeHq1WW6XHCCGEEEI0RCsTVzI/dj5GxYhapWZer3lER0TbOixRR6hUKpKTkwkLC7N1KLVGjdYU5ebmAuDj41PjQBITEwkKCqJp06ZMnDiR1NTUGx5fWlpKXl5epYsQQgghRH2nK9RVJEQARsXI/Nj5MmL0PxRFoUhfbvWLoihVinPdunX07dsXLy8vfH19GTFiBGfOnAGgd+/ePPfcc5WOz8zMRKPRsGPHDgDS09MZPnw4zs7OhIeHExMTQ1hYGO+++261Xrdz584xcuRIvL29cXV1pU2bNqxdu5aUlBRuv/12ALy9vVGpVEyZMgWAwsJCJk+ejJubG4GBgbzzzjt/a7e0tJQ5c+bQuHFjXF1d6dGjR8UgSl5eHs7Ozvz222+VHrNq1Src3d2tsiFvtfcpMhqNzJw5kz59+tC2bdsaBdGjRw+WLFlCy5YtSU9PZ/78+fTr149jx47h7u5+zccsWLCA+fPn16hfIYQQQoi6JjUvtSIhusqoGEnLT0PrKrNuriouM9B67nqr93vilShcHG79FLuwsJBZs2bRvn17CgoKmDt3LmPGjOHQoUNMnDiRN998k3//+98Vm9F+//33BAUF0a9fPwAmT55MVlYW27ZtQ6PRMGvWLDIyMqod/7Rp09Dr9ezYsQNXV1dOnDiBm5sbwcHBrFixgrFjx5KQkICHhwfOzs4APPvss2zfvp2ff/4Zf39/XnzxRQ4cOEDHjh0r2p0+fTonTpxg2bJlBAUFsWrVKoYOHcrRo0eJiIhgxIgRxMTEMGzYsIrHfPvtt4wePdoqe09VOymaNm0ax44dM8van78++fbt29OjRw9CQ0P54YcfmDp16jUf88ILLzBr1qyKn/Py8ggODq5xLEIIIYQQtVmIRwhqlbpSYqRWqQl2l/Ogumjs2LGVfv7yyy/x8/PjxIkT3HPPPcycOZNdu3ZVJEExMTFMmDABlUrFqVOn2LRpE/v27aNr164AfP7550RERFQ7ntTUVMaOHUu7du0AaNq0acV9V2eH+fv74+XlBUBBQQFffPEF33zzDYMGDQJg6dKlNGnSpFKbixcvJjU1laCgIADmzJnDunXrWLx4Ma+//joTJ05k0qRJFBUV4eLiQl5eHmvWrGHVqlXVfi5VUa2kaPr06axevZodO3ZUesLm4uXlRYsWLUhKSrruMY6Ojjg6Opq9byGEEEKI2kzrqmVer3l/W1Mko0SVOWvsOPFKlE36rYrExETmzp3L3r17ycrKwmg0Jbupqam0bduWIUOG8O2339KvXz+Sk5OJjY3ls88+AyAhIQF7e3s6d+5c0V7z5s3x9vau1MewYcPYuXNnpdvatGlTMfoUGhrK8ePHAXjqqad44okn2LBhA4MHD2bs2LG0b9/+uvGfOXMGvV5Pjx49Km7z8fGhZcuWFT8fPXoUg8FAixYtKj22tLQUX19fAO688040Gg2//PIL48ePZ8WKFXh4eDB48OBbeyFrqEpJkaIozJgxg1WrVrFt2zbCw8MtElRBQQFnzpxh0qRJFmlfCCGEEKIui46IpndQb9Ly0wh2D5aE6BpUKlWVprHZysiRIwkNDWXRokUEBQVhNBpp27Yter0egIkTJ/LUU0/xwQcfEBMTQ7t27SpGcW7V559/TnFxccXPERERrF27lsaNGwOg0Wgq7nv44YeJiopizZo1bNiwgQULFvDOO+8wY8aMaj/HgoIC7OzsiI+Px86uctLo5uYGgIODA3fffTcxMTGMHz+emJgY7r33XuztrfMeVqnQwrRp0/jmm2+IiYnB3d0dnU6HTqer9CLrdDoOHTpUMcpz9OhRDh06xOXLlyuOGTRoEB9++GHFz3PmzGH79u2kpKSwe/duxowZg52dHRMmTKjp8xNCCCGEqJe0rlq6abtJQlSHZWdnk5CQwD//+U8GDRpEq1atuHLlSqVj7rrrLkpKSli3bh0xMTFMnDix4r6WLVtSXl7OwYMHK25LSkr6WxuNGzemefPmFRcwjQ5d/Tk0NLTS8cHBwTz++OOsXLmS2bNns2jRIsCUuAAYDIaKY5s1a4ZGo2Hv3r0Vt125coXTp09X/NypUycMBgMZGRmV4mjevHml6tMTJ05k3bp1HD9+nC1btlR6rpZWpdTrk08+AUybMf3V4sWLK6pPfPrpp5UKIFwt1f3XY86cOUNWVlbFMefPn2fChAlkZ2fj5+dH37592bNnD35+flV9PkIIIYQQQtQJ3t7e+Pr6snDhQgIDA0lNTeX555+vdIyrqyujR4/mpZde4uTJk5UGDSIjIxk8eDCPPvoon3zyCRqNhtmzZ+Ps7FwxNa6qZs6cybBhw2jRogVXrlxh69attGrVCjAlUiqVitWrV3PnnXfi7OyMm5sbU6dO5dlnn8XX1xd/f3/+7//+D7X6z7GXFi1aMHHiRCZPnsw777xDp06dyMzMZPPmzbRv357hw4cDprxBq9UyceJEwsPDK03JszilnsjNzVUAJTc319ahCCGEEEIIKyouLlZOnDihFBcX2zqUKtu4caPSqlUrxdHRUWnfvr2ybds2BVBWrVpVcczatWsVQOnfv//fHn/x4kVl2LBhiqOjoxIaGqrExMQo/v7+yqeffnrdPgElOTn5mvdNnz5dadasmeLo6Kj4+fkpkyZNUrKysiruf+WVVxStVquoVCrlgQceUBRFUfLz85X7779fcXFxUQICApQ333xTue2225Snn3664nF6vV6ZO3euEhYWpmg0GiUwMFAZM2aMcuTIkUr9/+Mf/1AAZe7cuTd97W70vlc1N1ApShWLqddSeXl5eHp6kpubi4eHh63DEUIIIYQQVlJSUkJycjLh4eE4OTnZOhybOn/+PMHBwWzatKmiGlx9daP3vaq5Qe1ffSaEEEIIIYS4pi1btlBQUEC7du1IT0/nH//4B2FhYRVLWMStkaRICCGEEEKIOqqsrIwXX3yRs2fP4u7uTu/evfn2228rVZQTNydJkRBCCCGEEHVUVFQUUVHW34+pvqlSSW4hhBBCCCGEqG8kKRJCCCGEsABdoY649Dh0hTpbhyKEuAmZPieEEEIIYWYrE1cyP3Y+RsWIWqVmXq95REdE2zosIcR1yEiREEIIIYQZ6Qp1FQkRgFExMj92vowYCVGLSVIkhBBCCGFGqXmpFQnRVUbFSFp+mo0iEkLcjCRFQgghhBBmFOIRglpV+RRLrVIT7B5so4iEsL4BAwYwc+ZMW4dxyyQpEkIIIYQwI62rlnm95lUkRlfXFGldtTaOTIia2bZtGyqVipycHFuHYnZSaEEIIYQQwsyiI6LpHdSbtPw0gt2DJSEStYpKpSI5OZmwsDBbh1JryEiREEIIIYQFaF21dNN2k4RI3NC6devo27cvXl5e+Pr6MmLECM6cOQNA7969ee655yodn5mZiUajYceOHQCkp6czfPhwnJ2dCQ8PJyYmhrCwMN59991qxXPu3DlGjhyJt7c3rq6utGnThrVr15KSksLtt98OgLe3NyqViilTpgBQWFjI5MmTcXNzIzAwkHfeeedv7ZaWljJnzhwaN26Mq6srPXr0YNu2bQDk5eXh7OzMb7/9Vukxq1atwt3dnaKiomo9l6qQpEgIIYQQQtQ/igL6QutfFKVKYRYWFjJr1iz279/P5s2bUavVjBkzBqPRyMSJE1m2bBnKX9r8/vvvCQoKol+/fgBMnjyZixcvsm3bNlasWMHChQvJyMio9ss2bdo0SktL2bFjB0ePHuWNN97Azc2N4OBgVqxYAUBCQgLp6em89957ADz77LNs376dn3/+mQ0bNrBt2zYOHDhQqd3p06cTGxvLsmXLOHLkCOPGjWPo0KEkJibi4eHBiBEjiImJqfSYb7/9ltGjR+Pi4lLt53OrZPqcEEIIIYSof8qK4PUg6/f74kVwcL3lw8eOHVvp5y+//BI/Pz9OnDjBPffcw8yZM9m1a1dFEhQTE8OECRNQqVScOnWKTZs2sW/fPrp27QrA559/TkRERLXDT01NZezYsbRr1w6Apk2bVtzn4+MDgL+/P15eXgAUFBTwxRdf8M033zBo0CAAli5dSpMmTSq1uXjxYlJTUwkKMr0nc+bMYd26dSxevJjXX3+diRMnMmnSJIqKinBxcSEvL481a9awatWqaj+XqpCRIiGEEEIIIWwkMTGRCRMm0LRpUzw8PCrW+aSmpuLn58eQIUP49ttvAUhOTiY2NpaJEycCphEbe3t7OnfuXNFe8+bN8fb2rtTHsGHDcHNzq7gAtGnTpuLnNm3aVBz71FNP8dprr9GnTx/mzZvHkSNHbhj/mTNn0Ov19OjRo+I2Hx8fWrZsWfHz0aNHMRgMtGjRolIc27dvr5gqeOedd6LRaPjll18AWLFiBR4eHgwePLhKr2d1yUiREEIIIYSofzQuplEbW/RbBSNHjiQ0NJRFixYRFBSE0Wikbdu26PV6ACZOnMhTTz3FBx98QExMDO3atasYxblVn3/+OcXFxRU/R0REsHbtWho3bmwKWaOpuO/hhx8mKiqKNWvWsGHDBhYsWMA777zDjBkzqtTnXxUUFGBnZ0d8fDx2dnaV7ruapDk4OHD33XcTExPD+PHjiYmJ4d5778Xe3jrpiiRFQgghhBCi/lGpqjSNzRays7NJSEhg0aJFFdPjdu3aVemYu+66i0cffZR169YRExPD5MmTK+5r2bIl5eXlHDx4kC5dugCQlJTElStXKrVxNfn5q9DQ0OtWnwsODubxxx/n8ccf54UXXmDRokXMmDEDBwcHAAwGQ8WxzZo1Q6PRsHfvXkJCQgC4cuUKp0+f5rbbbgOgU6dOGAwGMjIyKp7ntUycOJE77riD48ePs2XLFl577bXrHmtukhQJIYQQQghhA97e3vj6+rJw4UICAwNJTU3l+eefr3SMq6sro0eP5qWXXuLkyZNMmDCh4r7IyEgGDx7Mo48+yieffIJGo2H27Nk4OzujUqmqFdPMmTMZNmwYLVq04MqVK2zdupVWrVoBpkRKpVKxevVq7rzzTpydnXFzc2Pq1Kk8++yz+Pr64u/vz//93/+hVv+5SqdFixZMnDiRyZMn884779CpUycyMzPZvHkz7du3Z/jw4QD0798frVbLxIkTCQ8PrzQlz9JkTZEQQgghGixdoY649Dh0hTpbh1KryOtiHWq1mmXLlhEfH0/btm155plneOutt/523MSJEzl8+DD9+vWrGI256quvviIgIID+/fszZswYHnnkEdzd3XFycqpWTAaDgWnTptGqVSuGDh1KixYt+PjjjwHTiNP8+fN5/vnnCQgIYPr06QC89dZb9OvXj5EjRzJ48GD69u1bMXJ11eLFi5k8eTKzZ8+mZcuWjB49mn379lV6PiqVigkTJnD48OGKdVPWolKUKtYNrKXy8vLw9PQkNzcXDw8PW4cjhBBCiFpuZeJK5sfOx6gYUavUzOs1j+iIaFuHZXN18XUpKSkhOTmZ8PDwaicD9cX58+cJDg5m06ZNFdXg6qsbve9VzQ1kpEgIIYQQDY6uUFdx4g9gVIzMj53f4EdG5HWpe7Zs2cIvv/xCcnIyu3fvZvz48YSFhdG/f39bh1anSFIkhBBCiAYnNS+14sT/KqNiJC0/zUYRVc35K0VM+mIv02IOUG4w3vwBt6iuvy4NUVlZGS+++CJt2rRhzJgx+Pn5sW3btkoV5cTNSaEFIYQQQjQ4IR4hqFXqSgmAWqUm2D3YhlHdmvhzl3ns63iyCkwlm3uG+zCpV5hZ2q7Lr0tDFRUVRVRUlK3DqPNkpEgIIYQQDY7WVcu8XvNQq0ynQlfXzmhdtTaO7MZWxJ9nwsK9ZBXo8XE1lUd+e8NpLhfqzdJ+XX1dhKgpGSkSQgghRIMUHRFN76DepOWnEeweXKtP/A1GhTfXn+Kz7WcBGNI6gLfv6cC9n+3hZHoeb61PYEF01Tb0vJ669LoIYS4yUiSEEEKIBkvrqqWbtlutPvEvKC3nsa/3VyRE025vxqf3d8HDScMrd7UBYNm+VI6ezzVbn3XhdRHCnCQpEkIIIYSopdIuFzH2491sOpmBg72ad+/tyLNRkajVpo05u4X5MLpjEIoC8345htFYL3ZaEcLqJCkSQgghhKiF9qVc5q6PfifhUj5+7o58/2hPRndq/LfjXrizFa4OdhxIzWHVwQs2iFSIuk+SIiGEEEKIWuaH/Wnct2gPlwv1tAny4OdpfegU4n3NYwM8nJgxKAKABb+dIq+kzJqhClEvSFIkhBBCCFFLGIwKr60+wT+WH6HMoDCsrZYfH+9FkJfzDR/3UJ9wmjZyJauglPc3JVopWiHqD0mKhBBCCCFqgfySMh5euo/PdyUD8NTA5nx0X2dcHG5eLNjBXs28UaaiC0t2p5CUkW/RWIWobyQpEkIIIYSwsdTsIqI/3s3WhEwc7dV8MKETs4a0rCiocCtua+HHHa0DKDcqvPzLCRRFii4IcaskKRJCCCGEsKE9Z7O566NdJGYU4O/uyA+P9WJkh6BqtfXS8NY42KvZlZTFumM6M0faMOgKdcSlx6ErtM7rN2DAAGbMmMHMmTPx9vYmICCARYsWUVhYyIMPPoi7uzvNmzfnt99+A8BgMDB16lTCw8NxdnamZcuWvPfeexXtlZSU0KZNGx599NGK286cOYO7uztffvmlVZ5TXSRJkRBCCCGEjXwXl8r9n+/lSlEZ7Rp78sv0vnQI9qp2eyG+LjzevykAr605SbHeYKZIG4aViSuJWhHF1A1TiVoRxcrElVbpd+nSpTRq1Ii4uDhmzJjBE088wbhx4+jduzcHDhxgyJAhTJo0iaKiIoxGI02aNOHHH3/kxIkTzJ07lxdffJEffvgBACcnJ7799luWLl3Kzz//jMFg4P777+eOO+7goYcessrzqYtUSj0ZW83Ly8PT05Pc3Fw8PDxsHY4QQgghxHWVG4z8a+1JFv+eAsDw9oG8fXcHnB3satx2sd7A4P9s50JOMU8NimDWHS1q3GZtV1JSQnJyMuHh4Tg5OVWrDV2hjqgVURgVY8VtapWa9WPXW3QT2wEDBmAwGNi5cydgGgny9PQkOjqar776yhSbTkdgYCCxsbH07Nnzb21Mnz4dnU7H8uXLK2576623ePPNNxk/fjwrVqzg6NGj+Pr6Wux52MKN3veq5gYyUiSEEEIIYUV5JWU8tHR/RUL0zOAWfDihk1kSIgBnBzv+ObwVAJ9uP0NqdpFZ2q3vUvNSKyVEAEbFSFp+msX7bt++fcV1Ozs7fH19adeuXcVtAQEBAGRkZADw0Ucf0aVLF/z8/HBzc2PhwoWkpqZWanP27Nm0aNGCDz/8kC+//LLeJUTmJkmREEIIIYSVpGQVMuaj39lxOhMnjZqP7uvM04MjUKluvaDCrRjaVkuf5r7oy428uuaEWduur0I8QlCrKp8aq1Vqgt2DLd63RqOp9LNKpap029XPh9FoZNmyZcyZM4epU6eyYcMGDh06xIMPPoher6/URkZGBqdPn8bOzo7ERCnTfjOSFAkhhBBCWMHupCzu+uh3zmQWovVw4sfHejO8faBF+lKpVLw8sg32ahUbT1xi++lMi/RTn2hdtczrNa8iMVKr1MzrNc+iU+eq4/fff6d37948+eSTdOrUiebNm3PmzJm/HffQQw/Rrl07li5dynPPPcfJkydtEG3dcfPC90IIIYQQoka+2XOOl385TrlRoUMTTxZN7oq/R/XWvtyqiAB3Hugdxhe7kpn/y3HWzeyPg718H34j0RHR9A7qTVp+GsHuwbUuIQKIiIjgq6++Yv369YSHh/P111+zb98+wsPDK4756KOPiI2N5ciRIwQHB7NmzRomTpzInj17cHBwsGH0tZf8ZgghhBBCWEi5wci8n4/xz5+OUW5UGNUhiO8f62XxhOiqpwdH0MjNkbNZhSz+PdkqfdZ1Wlct3bTdamVCBPDYY48RHR3NvffeS48ePcjOzubJJ5+suP/UqVM8++yzfPzxxwQHm6b+ffzxx2RlZfHSSy/ZKuxaT6rPCSGEEEJYQG5xGdNjDrAzMQuAZ6Na8uSAZmZfP3Qzy+PPM+fHw7g62LFlzgACrJSQWZM5qs+JukeqzwkhhBBC1GKKojBz2UF2JmbhrLHj0/u7MO325lZPiACiOzWmU4gXhXoDC9bKuhIhrkWSIiGEEEIIM/tiVzJbEzJxsFez7NGeDG1ru6lYarWKV0a1RaWCnw5dZF/KZZvFIkRtJUmREEIIIYQZHT2fyxvrTgHw0vBWdAj2sm1AQLsmnozvFgLAvJ+PYzDWi9UTQpiNJEVCCCGEEGZSUFrOjO8OUGZQiGoTwP09Q20dUoVno1ri6azhRHoeMXGpN3+AEA2IJEVCCCGEEGYy9+djpGQXEeTpxBtj29tkDdH1+Lg6MHtICwDeXp/A5UL9TR4hRMMhSZEQQgghhBmsOnielQcuoFbBu+M74eVS+/aDua97CJFad3KLy3h7Q4KtwxGi1pCkSAghhBCihpKzCvnnqmMAPDUogu7hPjaO6Nrs7dTMH9UGgO/iUjl2IdfGEQlRO0hSJIQQQghRA/pyI099d5BCvYHu4T7MGBhh65BuqEdTX+7qGISiwLxfjlNPtqwUokYkKRJCCCGEqIE3153i6IVcvFw0vDe+I3bq2rOO6HpeGNYKFwc74s9dYdXBC7YORwibk6RICCGEEKKatiZk8PmuZADeHNueQE9nG0d0a7SeThUjWq+vPUV+SZmNIxK3atu2bahUKnJycmwdSr0iSZEQQgghRDVk5JUw54fDADzQK5QhbWy3QWt1PNQ3jPBGrmQVlPL+5kRbhyNuUe/evUlPT8fT09PWodQrkhQJIYQQQlSR0agw64fDZBfqidS688KdrWwdUpU52tsxd2RrABb/nkJSRr6NIxK3wsHBAa1WW6vKvdcHkhQJIYQQQlTRpzvOsCspC2eNHR/e1wknjZ2tQ6qW21v6M7hVAOVGhZd/OSFFF4AynY7CPXsp0+ms0t+AAQOYMWMGM2fOxNvbm4CAABYtWkRhYSEPPvgg7u7uNG/enN9++w34+/S5JUuW4OXlxfr162nVqhVubm4MHTqU9PR0q8RfX0hSJIQQQghRBQdSr/DOhtMAvDyqNc393W0cUc3MHdEaB3s1u5KyWH/cOolAbZWzfDlJAweROmUKSQMHkbN8uVX6Xbp0KY0aNSIuLo4ZM2bwxBNPMG7cOHr37s2BAwcYMmQIkyZNoqio6JqPLyoq4u233+brr79mx44dpKamMmfOHKvEXl9IUiSEEEIIcYvySsp46ruDGIwKI9oHck/XYFuHVGMhvi481r8pAK+uPkmx3mDjiGyjTKcjfe48MBpNNxiNpM+dZ5URow4dOvDPf/6TiIgIXnjhBZycnGjUqBGPPPIIERERzJ07l+zsbI4cOXLt2MvK+PTTT+natSudO3dm+vTpbN682eJx1yeSFAkhhBBC3AJFUXhx5VHOXymmibczr0e3qzfrOp4c0JwgTycu5BTz6fYztg7HJvQp5/5MiK4yGtGfS7V43+3bt6+4bmdnh6+vL+3atau4LSAgAICMjIxrPt7FxYVmzZpV/BwYGHjdY8W1SVIkhBBCCHELftifxuoj6dipVbw/oRMeThpbh2Q2zg52/HOEqejCp9vPkHb52tO06jOHsFBQ/8+psVqNQ2iIxfvWaCp/llQqVaXbribfxv9N2m7weFkfVjWSFAkhhBBC3ERSRj7zfjkOwOwhLegc4m3jiMxvWFstvZv5Ulpu5NXVJ2wdjtVptFoCX5n/Z2KkVhP4ynw02rpVal1Uj72tAxBCCCGEqM1KygxMjzlISZmRvs0b8Xj/Zjd/UB2kUql4eVQbhr23kw0nLrHjdCb9W/jZOiyr8rr7blz79kV/LhWH0BBJiBoQGSkSQgghhLiBBWtPckqXj6+rA/+5pwNqdf1YR3QtLQLceaBXGAAv/3ocffm1p2vVZxqtFtce3SUhamCqlBQtWLCAbt264e7ujr+/P6NHjyYhIaHSMQsXLmTAgAF4eHhUqqF+Mx999BFhYWE4OTnRo0cP4uLiqhKaEEIIIYTZbTiuY2nsOQDevqcD/h5ONo7I8mbeEUEjNwfOZhby+tqTsjbFwrZt28a7775b6baUlBRmzpxZ6TZFURg9ejQDBgxAURS8vLwAmDJlyt/Ot0ePHi3vWxVVKSnavn0706ZNY8+ePWzcuJGysjKGDBlCYWFhxTFFRUUMHTqUF1988Zbb/f7775k1axbz5s3jwIEDdOjQgaioKKmaIYQQQgh0hTri0uPQFVp3D5303GL+scJUAvnhvuHc3tLfqv3bioeThvmj2gKwZHcK//7tlNlPsG31ngpxPSqlBp/yzMxM/P392b59O/37969037Zt27j99tu5cuVKRSZ7PT169KBbt258+OGHgKmyRnBwMDNmzOD555+/pVjy8vLw9PQkNzcXDw+Paj0fIYQQQtQuKxNXMj92PkbFiFqlZl6veURHRFu8X4NRYcKiPcQlX6ZdY09WPNEbB/uGterg273n+L9VxwCYMbA5s4e0NEu7lnhPS0pKSE5OJjw8HCen+j+aJ0xu9L5XNTeo0W93bm4uAD4+PtVuQ6/XEx8fz+DBg/8MSq1m8ODBxMbGXvdxpaWl5OXlVboIIYQQov7QFeoqTp4BjIqR+bHzrTK68MGWROKSL+PqYMcHEzo1uIQIYGKPUF4eaSrT/cGWJN7fnFjjNm35ngpxI9X+DTcajcycOZM+ffrQtm3bageQlZWFwWCo2JTqqoCAAHQ32EF4wYIFeHp6VlyCg+v+jtJCCCGE+FNqXmrFyfNVRsVIWn6aRfuNS75ckQC8NqYtYY1cLdpfdRTl6Vn1zgF+/eAwBgsWQ5jSJ5z/u7MVAP/ZeJpPttVsY1dbvadC3Ey1k6Jp06Zx7Ngxli1bZs54btkLL7xAbm5uxSUtTX6ZhBBCiPokxCMEtaryqYpapSbY3XJfhOYU6Zm57CBGBaI7N2ZMpyYW66u69CXlrPnoMBcTc0g9ns2hTakW7e+R/k15Nso0de6Ndaf4fOfZardli/dUiFtRraRo+vTprF69mq1bt9KkSc3+s2jUqBF2dnZcunSp0u2XLl1Ce4NSiI6Ojnh4eFS6CCGEEKL+0LpqmddrXsVJ9NX1J1pXy5RKVhSFfyw/wsXcEsIbufLKXdWfCWMphnIj6xYeI+NcPnZ/TOk7vDmNcr3Bov1Ou705MwdHAPDampN8FZtSrXas/Z4KcauqtHmroijMmDGDVatWsW3bNsLDw2scgIODA126dGHz5s2MHj0aME3N27x5M9OnT69x+0IIIYSou6Ijoukd1Ju0/DSC3YMtevL8zZ5zbDhxCY2divfHd8LNsXbtca8YFTYvPUnaicvYO6i565lOpB7LplWfIOwd7Cze/9ODIigzGPlo6xnm/nwce7Wa+3qEVLkda76nQtyqKv22T5s2jZiYGH7++Wfc3d0r1vx4enri7OwMgE6nQ6fTkZSUBMDRo0dxd3cnJCSkoiDDoEGDGDNmTEXSM2vWLB544AG6du1K9+7deffddyksLOTBBx802xMVQgghRN2kddVa/MT5ZHoer645CcBzQyNp18TTov1VR2lROVlp+ajVKoY+1g5tuCfacOvFqVKpmDOkJWUGhYU7zvLiqqPY26m4p2vVp75Z4z0VoiqqlBR98sknAAwYMKDS7YsXL2bKlCkAfPrpp8yfP7/ivquluv96zJkzZ8jKyqo45t577yUzM5O5c+ei0+no2LEj69at+1vxBSGEEEIIcyvWG5jx3UH05UZub+nH1L41nwljCU5uGqLndEGXnEtoG9+/3X/h9BX8wzzQWHDUSKVS8cKwSPTlRpbsTuG5FUfQ2Klq5dorIaqiRvsU1SayT5EQQgghquOFlUf4Li4Nf3dHfnu6H75ujrYOqZKCKyW4ed94753flydyaFMaXe8Mo8eophaPSVEU/vnTMb7dm4paBe9P6MSI9kEW7/d6ZJ+ihqnW7FMkhBBCCFGXrTmSzndxaahU8N97O9a6hOjcsWy+fimWYzsu3PA4bTPTNLoDG86Rc6nI4nGpVCpevast93RtglGBp5cdYt0x2WtI1F2SFAkhhBCiQbpSqOeFlUcAeOK2ZvRp3sjGEVWmS85l3cKjGMsV0pNyuNHknqYd/Qhp44uxXGH7dwk3PNZc1GoVC6LbE92pMQajwozvDrD55KWbP1CIWkiSIiGEEEI0SB9sSSKvpJxWgR48c0cLW4dTyRVdIWs+PEK53khwax8GTm6FSqW67vEqlYr+4yOws1dz/tQVkuIzrBKnnVrFW+M6MLJDEGUGhSe+OcD205lW6bu+WLduHX379sXLywtfX19GjBjBmTOmTXJ79+7Nc889V+n4zMxMNBoNO3bsACA9PZ3hw4fj7OxMeHg4MTExhIWF8e6771r7qdRpkhQJIYQQosFJu1zE13tSAHjxzkg0drXnlKgwp5Rf3z9MSWEZ/qHuDH20bcWeRDfi6edC56GhAOz6MRF9cbmlQwVMidF/7unAsLZa9AYjj361n9+Tsm7+QCspKzVc91JeZrj1Y/U3P7Y6CgsLmTVrFvv372fz5s2o1WrGjBmD0Whk4sSJLFu2rNLI3/fff09QUBD9+vUDYPLkyVy8eJFt27axYsUKFi5cSEaGdZLi+qR2FeAXQgghhLCCt9YnUGZQ6BfRiH4RfrYOp0JpURm/fnCI/MslePo7M2J6Bxycbv10rXNUCAl7deRlFhO3Opm+4yIsGO2fNHZq3hvfibJv49l0MoOpS/ex5MHu9Gz69yp51rbw6e3XvS+0rS8jpneo+PnLZ3dSrjde89igCC/GzO5c8fNX/7ebkoKySsdM+3RgleMbO3ZspZ+//PJL/Pz8OHHiBPfccw8zZ85k165dFUlQTEwMEyZMQKVScerUKTZt2sS+ffvo2rUrAJ9//jkREdZ53+uT2vO1iBBCCCGEFRw5n8Mvhy+iUsHzwyJtHU4lp+MukX2hEBcPB0Y91RFnd4cqPd5eY0f/8S1w9XRA29S6ey052Kv5aGJnbmvhR0mZkYeW7GN/ymWrxlAXJSYmMmHCBJo2bYqHhwdhYWEApKam4ufnx5AhQ/j2228BSE5OJjY2lokTJwKQkJCAvb09nTv/maw1b94cb29vqz+Puk5GioQQQgjRYCiKwutrTZu0junUmDZBtWuT1ra3Naa8zEhwK288GjlXq43QNr7c/2ov7C24X9H1ONrb8dmkLjy8dD+7krKYsngf3zzcg47BXlaP5apH37vtuvep/md44KG3+l3/2P9Z0jX5X71rElaFkSNHEhoayqJFiwgKCsJoNNK2bVv0ej0AEydO5KmnnuKDDz4gJiaGdu3a0a5dO7P0Lf4kI0VCCCGEaDC2JWSy5+xlHOzVzB7S0tbhAKZEzWAwTdlSqVR0uiOERk3ca9TmXxMixWjdLSmdNHYsmtyVnk19KCgtZ9IXezl2IdeqMfyVxtHuuhd7jd2tH+tw82OrKjs7m4SEBP75z38yaNAgWrVqxZUrVyodc9ddd1FSUsK6deuIiYmpGCUCaNmyJeXl5Rw8eLDitqSkpL+1IW5OkiIhhBBCNAgGo8K/fzsFwIO9w2jsVb2RGHPbtyaF1R8cRl9i3sIIiqJwak86370a97e1L5bm7GDHFw90o2uoN/kl5dz/xV5OpudZNYa6wNvbG19fXxYuXEhSUhJbtmxh1qxZlY5xdXVl9OjRvPTSS5w8eZIJEyZU3BcZGcngwYN59NFHiYuL4+DBgzz66KM4OzvfsFqh+DtJioQQQgjRIKw4cJ6ES/l4Omt4ckBzW4cDwLEdF9i3Opnzp65w7mi2Wds2GhUObkjlSnohsT+fMWvbt8LV0Z7FD3ajY7AXOUVlTPx8L6cv5Vs9jtpMrVazbNky4uPjadu2Lc888wxvvfXW346bOHEihw8fpl+/foSEhFS676uvviIgIID+/fszZswYHnnkEdzd3XFycrLW06gXZE2REEIIIeq9Yr2B/2w4DcCMgc3xdNHYOCI4ezCTHd8lAND1zjAiugWYtX07OzW3TWjJqncOcGLXRVr1CrR68QV3Jw1LH+rOxM/3cOxCHvct2sv3j/WkmZ+bVeOozQYPHsyJEycq3fa/m+8OGzbsuhvyBgYGsnbt2oqfz58/T0ZGBs2b147Ev66QkSIhhBBC1Htf/p6MLq+EJt7OTOoVautwuJh4hQ1fHEdRoHXfILqPDLdIP0ERXkT21IIC279LwGi4drlpS/J01vDN1B60CvQgq6CU+xbtISWr0Opx1Fdbtmzhl19+ITk5md27dzN+/HjCwsLo37+/rUOrUyQpEkIIIUS9ll1QyifbTNPH5gxpiaO99auyVYrnQgFrPj6KodxIWPtG3DahhUXXf/SKbo6jiz1ZaQUc23HBYv3ciJeLA99M7U6LADcu5ZkSo7TLRTaJpb4pKyvjxRdfpE2bNowZMwY/Pz+2bduGRmP70dC6RJIiIYQQQtRrH2xJoqC0nDZBHozqEGTTWIxGhfWLjqEvLiewuSdRD7dBbWfZ0zEXDwd63tUUgL0/n6Uwt9Si/V2Pr5sj3z7ck2Z+rlzMLeGBxXGU22Dkqr6Jiori2LFjFBUVcenSJVatWkVoqO1HQ+saSYqEEEIIUW+dyy7k273nAHjxzlao1batyKVWqxjycBuCW3lz5xPtrbaXUOt+jfEPdUdfYjB7QYeq8HN3JOaRnni7aDibWcjmUxk2i0WIv5KkSAghhBD11lvrEygzKNzWwo8+zRvZOhwAGjVxZ9TTnXBytd70JrVaxe2TIome05nWfW07Whbg4cT47qYKal/HnrNpLEJcJUmREEIIIeqlQ2k5rD6SjkoFzw+LtFkcBoORDV8c52JSjs1iAFMyFtjcy6YxXDWxRwhqFexKyiIpo8Bs7V6vQpuon8z5fktSJIQQQoh6R1EUFqw9CUB0pya0CvSwWRxbvz5F4r5L/PbJUbNv0FpduZnFnDlgu6lrTbxdGBhpKkH+zZ6ajxZdLSpQVCTFGxqSq++3OYpKyD5FQgghhKh3tpzKYG/yZRzs1cwe0sJmccSuOkPCHh0qtYpBU1rh4GT7U6/sCwX8+O/9qFTgF+qOh6+zTeKY3CuUTScvsSL+PM9GtcTVsfqvjZ2dHV5eXmRkmBI9FxcXi1b0E7alKApFRUVkZGTg5eWFnV3N1+bZ/jdTCCGEEHWarlBHal4qIR4haF21tg6HcoORf/92CoCH+oQT5GWbk/5j289zcEMqALffH0lYu9qxpsknyJWAMA8uJuaw64dE7nyivU3i6Nu8EeGNXEnOKmTVwQvc37NmFdO0WtNn72piJOo/Ly+vive9piQpEkIIIUS1rUxcyfzY+RgVI2qVmnm95hEdEW3TmFYcOE9iRgFeLhqeGNDMJjFcSslj5w+JAPS4qymtegfaJI5rUalU9J/Qgh9e20fy4SxSjmbZJGFTq1VM6hnKK6tP8HXsOSb2CKnR6I5KpSIwMBB/f3/KysrMGKmojTQajVlGiK6SpEgIIYQQ1aIr1FUkRABGxcj82Pn0DuptsxGjIn05/9l4GoAZAyPwdLb+BpYlhWWsX3QMo0GhaUc/ugytfXvG+Aa50WFQMAc3prLz+9M0aelttfLgfzW2SxPeWp9AwqV89iZfpmdT3xq3aWdnZ9aTZdEwSKEFIYQQQlRLal5qRUJ0lVExkpafZqOI4MtdyVzKK6WJtzP39wyxSQxqOxUBYR54NHJi4OTIWru2pevwMNy8HcnLKiF+nW1KY3s6axjdqTEg5bmFbUlSJIQQQohqCfEIQa2qfCqhVqkJdg+2STzZBaV8uv0sAM9GtcTR3jajBQ5O9gx5uA1j/9EVRxfrj1TdKgcne/reEwHAgQ3nyLlkm8ptk3uZRtLWH9dxKa/EJjEIIUmREEIIIapF66plXq95FYnR1TVFtpo698GWJApKy2nX2JOR7a2/QWnBldKKfVNUKhUuHg5Wj6Gqmnb0+2OKXxhuPo42iaFVoAfdwrwpNyrE7E21SQxCyJoiIYQQQlRbdEQ0vYN6k5afRrB7sM0SopSswor9bl64MxK12rpT1orz9Sx/Yz8B4R4MnNwKR+e6cYqlUqkY+lhbm0/xm9wrjH0pV4iJS2Xa7c1xsJfv7YV1ySdOCCGEEDWiddXSTdvNpuW431qfQLlR4faWfvRuZt1KaopRYdPiExTmlHL5YiG1dAnRdf01ITIajJTrDVaPIaqNFj93RzLzS1l/XGf1/oWQpEgIIYQQddrB1CusOZqOSgXPDYu0ev/x686ReuIy9ho1Qx9tWys2aK2OjHN5/Pjv/ez5+azV+3awVzOhu6kwhhRcELYgSZEQQggh6ixFUViw1rRR692dmxCp9bBq/+cTrhD3qymJ6D+hJb6N3azavzkVF5SRlVbAka3nyTpfYPX+7+segp1aRVzKZU7p8qzev2jYJCkSQgghRJ216WQGcSmXcbRXM2tIC6v2XZhbyoYvjqMoENk7sFZt0FodoW18adbZD8WosD0mAcWoWLV/racTUW0CAPhKRouElUlSJIQQQog6qdxg5I11plGiqX3DCfR0tmr/m5eepDhPj0+QK/3HWzchs5S+4yKwd7RDdzaXU3vSrd7/5F5hAKw6cIHc4jKr9y8aLkmKhBBCCFEn/Rh/nqSMArxdNDw+oJnV++92ZxjeWheGPtoWjYNt9kQyNzdvJ7oPDwdg94ozlBRYNzHpEe5DiwA3issMrIg/b9W+RcMmSZEQQggh6pwifTn/2XgagBkDI/Bwsv4mqYHNvZgwtwfeWler921J7Qc1wSfIlZLCMtYtOmrVanQqlYpJf4wWfbPnHEYrT+ETDZckRUIIIYSocz7fmUxmfikhPi7c3zPUav3mXy4h++KfRQhUVt4PyRrs7NQMntIajaMddvbWHwEb06kxbo72nM0q5PczWVbvXzRMkhQJIYQQDYCuUEdcehy6wrq/B0xWQSmfbT8DwLNRLa220afBYGTD58dYvmA/yUfq98m6X4g70c924c4n2mFv5amBbo72jO3cGJCCC8J6JCkSQggh6rmViSuJWhHF1A1TiVoRxcrElbYOqUbe35xIod5AhyaeDG9nvYpve1adQXc2D7W9Gp/A+jVl7loaNXHD7o+EU1EUkuIzrFaR7uoUus0nL3H+SpFV+hQNmyRFQgghRD2mK9QxP3Y+RsUIgFExMj92fp0dMTqbWUDM3lQAnh/WCrWVpq+dPZTJoU1pAAya3ApPP+tWursmxXrrbX5fnsT6RcfYsew0ihX6be7vRp/mvhgV+PaP91sIS5KkSAghhKjHUvNSKxKiq4yKkbT8NBtFVDNvrU+g3KgwMNKfXs18rdJnbmYxm5eeBKDDoGCadvKzSr83VHQZPuoBn/YDveVHUvxD3UEFx3ZcYPfKM1ZJjCb1DAPg+31plJRZr9iDaJgkKRJCCCHqsRCPENSqyn/u1So1we7BNoqo+uLPXeG3YzrUKnhuaKRV+jSUGVm/6Bj64nICwj3oNcb6pb//RlHglxmQlQC6I7DjTYt32aK7ltsnml7zQxtT2bcmxeJ9Dm7lT5CnE5cL9aw9av09k0TDIkmREEIIUY9pXbXM6zWvIjFSq9TM6zUPravWxpFVjaIoLFhrGq0Z1yWYllp3q/R7bMcFMlPzcXS1J+qRthVrbGwqfjGcWg1Xk93dH8Cl4xbvtnXfIPqOiwBg3+pkDm6w7LQ2ezs19/UIAaTggrA8e1sHIIQQQgjLio6IpndQb9Ly0wh2D65zCRHAxhOX2H/uCk4aNc/c0cJq/bYb0JjiAj3app64+zhZrd/ryjgJ614wXb/jVUiNNSVIv86Eh9aD2rJJW4dBwZTpDez9+Sy7VyahcVTT9rYmFutvfPcQ3t+cxKG0HI6cz6F9Ey+L9SUatlrwdYcQQgghLE3rqqWbtludTIjKDUb+ve4UAFP7hqP1tF5yorZT0/OuZoS1a2S1Pq+rrASWT4XyEmg2CHo+CcPeAAc3OB8H8V9aJYyuw8LoPDQUlQo0jpYt193IzZE725k+szJaJCxJkiIhhBBC1Grf70/jbGYhPq4OPHab5df0lOsN7P8tBUOZ8eYHW9PGlyDjOLj6wZhPTaNCnk1g4Eum+zfNh3zrVBXseVdTxr3QjZY9LV8S/Wp57l8PX+RKod7i/YmGSZIiIYQQQtRahaXl/HdjIgBPDWyOh5PG4n3u/P40e38+y28Lj1q8r1t2ai3ELTRdH/0puPn/eV/3RyCoM5TmwW/PWSUclUqFX8if67oKc0tJO3XZIn11DvGiTZAHpeVGfthfN6smitpPkiIhhBBC1FpvrU8gq6CUUF8X7usRavH+Tu1J58Tv6aAyrZ+pFfIuws/TTNd7TYeIwZXvV9vByPdAZQcnfoLT660aXlGenlXvHGDNh0c4b4HESKVSMbmX6b3/es85DFbaQFY0LJIUCSGEEKJWWnngPEt2pwAwb2RrHCxc+S37YgHbYxIA6D4inOBIH4v2d0uMBlj5KBRfBm17GDT32scFtoeeT5iur5kN+kKrhejoao9PoCuGciNrPjlK+plcs/cxqkNjPJ01nL9SzLaEDLO3L4QkRUIIIYSodY5dyOWFlabpa08NbM7AyACL9qcvKWf9wmOU640Et/Kmy7Awi/Z3y35/F1J2gsYV7l4M9o7XP/b2F8EzBHLTYOvrVgvRzk5N1MNtCW7tQ3mpgdUfHCIzNd+sfTg72HFPV1OVOym4ICxBkiIhhBBC1CqXC/U89nU8peVGbm/px8zBli3BrSgK22MSuKIrwtXTgcEPtkGtVlm0z1uStg+2/Mt0/c43oVHzGx/v4ArD3zFd3/MJpB+2bHx/YadRM+zxdgQ290RfYuCX9w6RfbHArH3c39NU8W776UxSsqw3EiYaBkmKhBBCCFFrlBuMTI85wIWcYsJ8XXh3fCeLJyj5l0tIOZqNSq1iyMNtcfFwsGh/t6QkF1ZMBcUAbcdCx4m39rgWQ6D1aNPjfn3aNP3OSjQOdoyY1gH/UHdKCsv45d1D5GQUma39UF9XbmvhB8A3e64/WqQr1BGXHoeu0DqV+ET9IEmREEIIIWqNN9adYveZbFwc7Fg4uSuezpavNufh68w9L3Zj0ORIgiK8LN7fTSmKaV1QzjnwCoER/wVVFRLDYW+AoydcPAhxiywX5zU4ONsz8qmO+DZ2ReNkh52Z14FdLbjww/40ivV/T/hWJq4kakUUUzdMJWpFFCsTV5q1f1F/SVIkhBBCiFrh50MXWLQzGYB3xnWgRYD7TR5hPp5+zlbZc+eWHF4GR380VZMb+wU4eVbt8e5aGDzPdH3Lq5B73vwx3oCTq4ZRT3dizOzOuPuYd6Pd21r4E+LjQl5JOT8fulDpPl2hjvmx8zEqpv2ljIqR+bHzZcRI3BJJioQQQghhcycu5vHciiMAPDmgGcPaWT5BObk7nbQTltlbp9qyz5hGiQBufwGCu1evnS4PQpPuoC+w2t5Ff+Xi4YCr559FIVKOZlFcUPONV+3UKu7vGQKYCi4oyp/luVPzUisSoquMipG0fNnbSNycJEVCCCGEsKkrhXoe+2Y/JWVG+rfwY/aQlhbvszC3lB3fn+aX9w9ZbNPRKivXw/KHoKwQwvpB31nVb0utNu1dpLaHU6vh5GrzxVlFifsvsfbjI/z6/mFKi8tr3N49XYNxtFdzIj2PA6lXKm4P8QhBrap8aqtWqQl2ryX7TYlaTZIiIYQQQthMucHIU8sOkna5mBAfF94f3xE7K1R+2/PTGcpLDQSEe9CkhbfF+7slW16F9EPg7A1jPjNtyloTAa2h91Om62ufhZK8GodYHY2auOHkpiEzNZ/VHxymrLRmxR+8XBwY1SEIqFyeW+uqZV6veRWJkVqlZl6veWhdtTXqTzQMkhQJIYQQwmbe2pDAzsQsnDV2LJzcBS8Xy1d+yziXx6lY0zqTvuMiUNWG8ttJm2H3+6broz4Ez8bmafe2f4B3GORfhK3/Mk+bVeStdWXkUx1xdLFHdzaXtZ8cobysZonRA73DAFh7NJ3M/NKK26Mjolk/dj1fRn3J+rHriY6IrlE/ouGQpEgIIYQQNrH6yEU+234WgLfGtSdS62HxPhVFYdcPiQC06B6AtmkVixhYQkEmrHrcdL3rVGg1wnxta5xN1esA9n4GF+LN13YV+AW7M2J6BzSOdpw/dYX1C49hKDfe/IHX0baxJ51CvCgzKCyLS610n9ZVSzdtNxkhElUiSZEQQgghrO6ULo9nfzQVVnjstqaMaB9klX6T4jNIP5OLvYOaXmOaWaXPGzIa4acnoDAD/FpBlAVGc5oNhHb3AIpp7yJDzdf1VIe2qSfDp7XHTqMm5Wg2W746WaP2rpbnjolLpdxQ/QRLCJCkSAghhBBWllOk59Gv4ikuM9AvohH/iIq0Sr/lZQZiV54BoHNUKG7e5i0XXS17P4WkjWDvBHd/aRrZsYSo18HJC3RHYe8nlunjFjRu4c2wx9uhtlOhGJUaTaO7s10gvq4OpOeWsOnkJTNGKRoiSYqEEEIIYTUGo8LTyw6RermIJt7OvD++k1UKKwDY2avpPbY5QRFedLwjxCp93lD6Ydj0x35CQ14zFUawFDc/GPKq6frW1+HKuRsfb0GhbXyZ/HpvhjzcFntN9YtJONrbcW83U2W5pbtt93xE/SBJkRBCCCGs5j8bE9h+OhMnjZrPJnXB29XyhRWuUqlUNO/iz5jZndE41LCyW03pC2H5VDDooeVw6Paw5fvsNAlC+0BZEaydA3/Z48fa/rqHUU1M7BmKWgWxZ7NJvJRvljZFwyRJkRBCCCGs4rej6Xy01TR97Y2x7WkTZL0iBzWtdmZ2vz0H2YngHgR3fQgqK4yWqVQw4l1QayBxA5z4yfJ93kRuZjF7fz1baRPWqmjs5czgVgEAfL1HRotE9UlSJIQQQgiLO30pn9k/Hgbg4b7h3NXRTCWnb8GllDy+enE3x3ZcsFqfN3RsJRz8GlBB9Gfg4mO9vv1aQL8/NoX97TkozrFe3/+jXG/gxwX72L8mheTDWdVuZ3KvMABWHrhAQaltikiIuq9KSdGCBQvo1q0b7u7u+Pv7M3r0aBISEiodU1JSwrRp0/D19cXNzY2xY8dy6dKNF79NmTIFlUpV6TJ06NCqPxshhBBC1Dq5xWU89nU8RXoDvZv58vww6xRWgD9LcBfnl6E7m2u1fq/ryjn4dabper/ZEN7f+jH0nQW+zaHgEmyeb/3+/2DvYEfb/qbkOO7XsyjG6o0W9WnuS1M/VwpKy1l14Lw5QxQNSJWSou3btzNt2jT27NnDxo0bKSsrY8iQIRQWFlYc88wzz/Drr7/y448/sn37di5evEh09M03zho6dCjp6ekVl++++67qz0YIIYQQtYrRqPDM94dIziqksZczH0zohL2d9SaqJO3PQHfWVIK75102LsFtKIeVj0BpLjTpBgOer1FzZTodhXv2UqbTVe2BGifTNDqA/V9CWlyN4qiJjneE4OBsT/aFQpIOZFSrDZVKxaSepvLcS2PPVXsq3q3SFeqIS49DV1jF193GbVuj/brMvioHr1u3rtLPS5Yswd/fn/j4ePr3709ubi5ffPEFMTExDBw4EIDFixfTqlUr9uzZQ8+ePa/btqOjI1qtbLIlhBBC1CfvbjrNllMZONqbCiv4uplngf2tKNMb2L0yCYAuQ0Nx87Ze39e0401I2wuOHjD2c7DTVLupnOXLSZ87z7TPkVpN4Cvz8br77ltvILwfdJwIh7417V302I4axVNdTq4aOg4OJu7XZOJ+TaZZJz/U1Uiax3ZpwlvrE0jKKCD2bDa9mzWyQLSwMnEl82PnY1SMqFVq5vWaR3TEzb/8t3Xb1mi/rqvRVzW5uaZhaB8f01zY+Ph4ysrKGDx4cMUxkZGRhISEEBsbe8O2tm3bhr+/Py1btuSJJ54gOzv7hseXlpaSl5dX6SKEEEKI2mP9cR3vbzElJQui29G2sfUKKwAc2phKwZVS3Hwc6TjYxiW4U36HHW+Zro/4L3iHVbupMp3uz4QIwGgkfe68qo8YDXkNXHwh4wTsfr/a8dRUh4HBOLlqyLlUxOm46u035OGkYUwn01S8r2MtU3BBV6irSCoAjIqR+bHzzTLqYsm2rdF+fVDtpMhoNDJz5kz69OlD27ZtAdDpdDg4OODl5VXp2ICAAHQ3+EUdOnQoX331FZs3b+aNN95g+/btDBs2DIPh+pViFixYgKenZ8UlODi4uk9FCCGEEGaWlJHP7B9MhRUe7BNGdOcmVu2/4EopB9abTo57RzfH3pYluIsum6bNKUbT6Ey7KozoXIM+5dyfCdFVRiP6c6lVa8jFx7SpK8D2N+Hy2RrFVV0OzvZ0ijIlrfvWJGMoN97kEdd2teDChhOXSM8tNld4FVLzUiuSiquMipG0/LRa3bY12q8Pqp0UTZs2jWPHjrFs2bIaBzF+/HhGjRpFu3btGD16NKtXr2bfvn1s27btuo954YUXyM3NrbikpcmbKoQQQtQGeSVlPPp1PAWl5fQI9+HFO1tZPYbUE9mUlxkJbOZJ8y7+Vu+/gqLAr09B3gXwaQbD3qxxkw5hoaD+n1M4tRqH0GqMhrW/F8Jvg/ISWD3LZnsXtRvQBK8AF1r20GKsZsGFllp3uof7YDAqfLe3igniLQjxCEGtqvy6q1Vqgt1r/sW8Jdu2Rvv1QbWSounTp7N69Wq2bt1KkyZ/fvOj1WrR6/Xk5ORUOv7SpUtVWi/UtGlTGjVqRFJS0nWPcXR0xMPDo9JFCCGEELZlNCrM+v4wZzMLCfR04qOJndFYsbDCVa37BDHu+a7cdl9LVNbYA+h64hfDyV9NewPd/QU4utW4SY1WS+Ar8/9MjP5YU6Spztpslco0nc/OEc5uhaM/1ji+6tA42DFhXg+6j2xao411J/cyFVyIiUtDX80Rp+vRumqZ12teRXJxdV2O1rXma+It2bY12q8PqlRoQVEUZsyYwapVq9i2bRvh4eGV7u/SpQsajYbNmzczduxYABISEkhNTaVXr1633M/58+fJzs4mMDCwKuEJIYQQwsY+2JLEppOXcLBX8+n9XWhkxcIK/8s/1MZfmGacgnUvmq4PngdBnczWtNfdd+Paty/6c6k4hIZULyG6yrcZ3PYsbHkN1r0AzQdbd++kP6jVNU9eo9po8Xd3JCO/lNVHLpp92mZ0RDS9g3qTlp9GsHuwWZMKS7Ztjfbruip9dTNt2jS++eYbYmJicHd3R6fTodPpKC42zdv09PRk6tSpzJo1i61btxIfH8+DDz5Ir169KlWei4yMZNWqVQAUFBTw7LPPsmfPHlJSUti8eTN33XUXzZs3JyoqyoxPVQghhBCWtPnkJf676TQA/xrdlg7BXlaP4cLpK+RcKrJ6v39Tkgff3w/lxdBsIPScZvYuNFotrj261ywhuqr30+AXCUVZsHFuzdurJkVRSDtxmTUfHaas9Ppry69HY6fmgd5hALyz4TQlZVVv42a0rlq6abtZJKmwZNvWaL8uq1JS9Mknn5Cbm8uAAQMIDAysuHz//fcVx/z3v/9lxIgRjB07lv79+6PValm5cmWldhISEioq19nZ2XHkyBFGjRpFixYtmDp1Kl26dGHnzp04Otq4dKYQQgghbsnZzAJmLjsEmKYwjetq/bUKZaUGNi0+wXev7CXt1GWr919BUeCnJyA7EdyDYMzCv68Bqm3sHf7cu+jg16ZqeTZgNCpsizlFytFsjm6r3kasD/UJJ8jTiQs5xXy+0zbFI0Tdo1IsvcOVleTl5eHp6Ulubq6sLxJCCCGsqKC0nNEf/U5SRgHdwrz59uGeONhbPwmIW53MvtXJuPs4cd/LPWxXcW7nf2DzfLBzgAd/gyZdbRNHdfz6NMQvgUYt4PFdYG/9L6hP7Uln85KTOLlqmPRaLxycq7TaA4CfD13g6WWHcHGwY+ucAQR4OFkgUlGbVTU3qOVfWwghhBCiNtOXG5m57BBJGQUEeDjy0cTONkmI8i+XcPBqCe6xNizBnbQZtrxqun7nW3UrIQIY/DK4+kPWadj1rk1CaNFdi7fWhZLCMg5vqV514VEdgugU4kWR3sBb6xPMHKGojyQpEkIIIUS15JeU8dCSfabCCnZqPrm/C/7utvlGPnbVGVMJ7uaeNOvsZ5MYuHIOVkw17UfUeTJ0mWKbOGrC2RuGLjBd3/k2ZFo/oVCrVXQbYSrmdWhjKiWFZVVuQ6VSMW9kGwCWx5/n6Plcs8Yo6h9JioQQQghRZRn5Jdz72R52JWXh4mDHoge60jnE2yax6M7mkrjvEqig3z0tbFOCu6zYVFih+Iqpytywt6wfg7m0HWuqQGfQw7d3Q95Fq4fQvLM/vo3d0JcYOLSxensOdQz2IrpTYwBeWX2cerJiRFiIJEVCCCGEqJKzmQVEf7ybE+l5NHJzYNmjPbmthW1GZxSjws4fEgFo1SsQvxB3GwShmDY+1R0BF1+452vQ1OE1LCoVjP4EfJpCTip8PQaKrFu4QqVW0X2kabTo8NbzFOfrq9XOs0Nb4qyxY1/KFdYe1ZkzRFHPSFIkhBBCiFt2MPUKYz/ZzfkrxYT6urDiid60b+Jls3iMikJ4h0a4eDrQ466mtgli/xdwOAZUarh7MXhZv/Ke2bn5w+SfTdXzMk/BN2OhNN+qIYR3aEREtwAG3h+Jk6umWm0Eejrz+G3NAHh97UmLlOgW9YNUn7MAXaGO1LxUQjxCzF4H3pJtCyGEEDey5dQlpn17kOIyA+2bePLllG423Zz1rwxlRuw0NviuN3UvLBkOxjK441Xo81TFXWU6HfqUcziEhZpnLyFbyEyAxcOgKBvC+sHE5XVuFKxYb2DgO9tIzy3h2aiWTLu9ua1Dqpdq2zlqVXMDSYrMbGXiSubHzseoGFGr1MzrNY/oiOha37YQQghxIz/sS+OFVUcxGBX6t/Djk4mdcXWseqnkeiX/EnzWHwp00Ho0jFtimnoG5CxfTvrceWA0glpN4Cvz8br7bpuGW20XD8KSkaDPh5Z3wj1fgV31Rm5qwmhUUKurt17sryW6t80ZgH8DK9GtLzfy27F0ftifhqJAtzAfejT1oVOwN85mqNRYG89RJSmyYVKkK9QRtSIKo2KsuE2tUrN+7PoaZ8yWbFsIIYS4HkVR+HBLEu9sPA1AdOfGvDG2PRo7287Az79cwvpFx+h5V1OaRPpYPwBDGSwdBam7wS8SHt4Mjm6AaYQoaeAgU0J0lVpN8y2b6+6IUcou0xS68hJofy+M/tRqG9IqisLRbRc4uPEcY2Z1xqORc7XaiP5kNwdTcxjXpQlvjetggUhrn6yCUmL2pvLNnnNk5Jf+7X6NnYr2TbzoHu5D93AfuoZ64+5UtYS3tp6jVjU3aOBf8ZhXal5qpQ8EgFExkpafVuMPhSXbFkIIIa7FYFSY+/Mxvt1rqv715IBmPBvV0jbV3f5H7MokLiXnsW9NCo1bels/pg0vmRIiRw+495uKhAhAn3KuckIEYDSiP5dad5OisL4wbil8PxGOfA9OnjDszYqRMUtSqVQkH86k4HIp+9emMHByq2q18dKI1kR/vJvlB84zuVcY7Zp4WiDa2uHYhVyW7E7hl0MX0RtMn0V/d0fu7xmKj6sDccmX2ZuczaW8UuLPXSH+3BU+2XYGtQraBHlWJEndwnzwcXW4YV/15RxVkiIzCvEIQa1S/y1TDnav+YJLS7YthBBC/K+SMgNPfXeQDScuoVLByyPb8EDvMFuHBUD6mVwS92eACvqOi7B+QnTkB9j7ien6mE+hUUSlux3CQk2jKP8zUuQQGmLFIC2g5VDTCNHKRyBuITh5wcD/s0rXPUY15fypeE7t0dE5KhSvAJcqt9E5xJvRHYP46dBFXl19gu8f61krEnxzKTcY2XjiEot/TyEu5c9qgR2CvXioTxjD2gZWbKx8f89QFEUh9XIRe5MvE/fHJfVyEUcv5HL0Qi5f7EoGoEWAGz3CfSsSpYD/mXpYX85RJSkyI62rlknNZ7Pk9NuoVErFnEpzZMlaVy3zes3723zNupSBCyGEqBtyivQ8vHQ/+89dwcFezbv3duTOdoG2DgswleDe9YNpKl/r3jYowa07Cr/8UUyh/7MQOfxvh2i0WgJfmf+3NUV1dpTor9qPg9JcWDMbdrwJzl7Qa5rFu9U29SSsnS8pR7OJW53MkKltqtXOc8MiWXdcR1zKZX47pqs1n+uayCnSs2xfGl/HnuNCTjEA9moVd7YL5ME+YXS6zv5hKpWKUF9XQn1duaerKYFJzy2uSJD2Jl8mKaOA05dMl6/3nAMgzNfljwTJlx7hPjTxDqgX56iypsjMTqbnMXnpBi7rL9LIsTFfTxlCiwDz/YetK9SRlp9GsHtwnfuwCSGEqP0u5BTzwJdxJGUU4O5kz+eTu9Kjqa+tw6pwak86m5ecRONkx/2v9MLF48ZTe8yq6DIsHAA550ybm973A6ivv0i9TKdDfy4Vh9CQ+pEQ/dWOt2HLq6broz6EzpMs3mVmaj4/vL4PVDD+n93xbex28wddw7ubTvPupkSaeDuzadZtOGlqXmjAFhIv5bN4dworD5ynpMw0SuPj6sDEHiFM7BGK1rPmxSSyCkrZn3K5YjTpRHoe/5s5BHk60T3ch8gmClrfAnoERxDoZvtkUwot1IKS3OevFPHAl3GcySzEw8meL6Z0o1uYDRaBCiGEEFVwSpfHA1/GcSmvFK2HE0sf6k5LrQ02Q70OfUk5387bQ1Gunl5jmtE5KtR6nRuNEHMPJG0Er1B4dBu4NOC/7YoCG1+C3R+Y9mcatwRa32XxbtctPMqZA5k07eTHsMfaVauNv5bo/sfQljw5oO6U6DYaFbYmZLBkdwo7E7Mqbm8V6MGDfcIY1SHIoklebnEZB85dYe8fa5KOns+l3Fg5lXhqYHNmDWlpsRhulRRaqAWaeLuw/PHePPzVfuLPXWHi53t5f3xHhra1fdYshBBCXMues9k88tV+8kvKifB3Y+lD3QnyqnqVL0s6HXeJolw9Ho2c6DDQyusVtv/blBDZO5kKKzTkhAhMBRbueBVKcuHAV7DiYXB0h2YDLdpt9xFNOXMwk7OHMsnNLMbTr+qfUWcHO54bGsnM7w/x0ZYk7u7cpNaX6M4vKWN5/HmW7k4hJbsIALUKhrTWMqVPGD3CfayyPsrTWcPtkf7cHukPQJG+nIOpOX+MJGVzMDWHjiFeFo/DEmSkyIJKygxMjznIppOmRaqvjGrDpF5htg5LCCGEqGTNkXSe+f4QeoORbmHeLJrcFS8XK05Lu0WKopAUn4GDsz2hbaw4pS/hN/huvOn6mIXQ4V7r9V3bGQ2w/CE48RNoXGDyzxDc3aJdHtqUSuMW3jVaT2Y0mkp0H0rL4Z6uTXjz7tpZojslq5Alu1NYHn+egtJyADyc7BnfPYRJPUMJ9ql6wQlLKi03oEJVUdDBlmT6XC1KisBUCeSln4/zXZypnOm025sxZ0jtKGcqhBBCLPk9mfmrT6AoENUmgPfGd6qzaywsIvuMaR1RaR50fwzufNPWEdU+5XpT0nhms6lU95S1oG1r66hu6kDqFaI/3o1KBb9O70vbxrWjRLeiKOxKymLJ7ylsScioWMPT3N+NKb3DiO7cGBcHmex1M5IU1bKkCEwf7vc3J/HfTaZqOeO6NOH16HY23/hOCCFEw6UoCm+sS+DT7WcAmNQzlJdHtcFOXfu+tMu5VISzhwOOzlY+ESwtgM8HQ+ZJCOkFk38B+9o3glYr6Avh62hI2wOu/vDQOvBtZvFuC3NLcfV0rPbjn152kJ8PXaR7uA/fP2r7Et2/J2Xx8i/HScwoqLhtYKQ/D/YJo2/zRjaPry6pam4gZ+UWcEVXyNpPjlBSWAaYSh4+PTiCf0e3Q62CH+PP88hX+ynSl9s4UiGEEA1RmcHI7B8OVyREc4a04JW7amdCpBgVNnxxnG/nxnIx8YoVO1bgl+mmhMhNayokIAnR9Tm4wn3fQ0A7KMyAr0ZD3kWLdrlreSJfvbib86cu3/zg63huaCROGjVxyZdZd0xnxuiqbnn8eR74Mo7EjAJcHeyY0juMrXMG8OWUbvSL8JOEyMIkKTIzRVHY+OUJkg9nsWPZ6Ur3je8ewsJJXXHSqNmWkMmEhXvILii1UaRCCCEaooLSch5aso+VBy9gp1bx5t3tmT7QBhug3qIDG86RmZqPocyIV4Cr9TqO/QiOrwK1PdzzFbjXs5LaluDsBZNWgk8zyE01JUaF2RbrzliuYDQo7P0lmepOfArycuax/qYRrdd/O0lJmcGcId4SRVH4cEsic348TLlR4a6OQcS+OIiXR7UhvJEVP/MNnCRFZqZSqegzpBEqFSTuu8SZgxmV7h/cOoCYR3ri7aLh8Plcxn6ym9Q/qogIIYRouHSFOuLS49AVWu7b6sz8UiYs3MPOxCycNXZ8PrlrxaaNtY2iKOxbk8yen84C0H1UU+vtSZS8AzbONV0f+m8I6WGdfmuRMp2Owj17KdNV8fPo5g+TfwKPxpCVAN+OhZI8i8TYZVgodho1urO5pJ6o/mjRY7c1RevhRNrlYhb/nmK+AG9BucHI//10jLc3mL5If2JAM/57T0c8nDRWjUNIUmR2OcuXkzd5BCEp6wHY+uURivP1lY7pHOLN8id609jLmZTsIqI/2c2xC7m2CFcIIUQtsDJxJVEropi6YSpRK6JYmbjS7H2kZBUy9pPdHL2Qi4+rA9892rOirG5toygKu1eeIe7XZAB6jAqn/e1NrNN57nn48UFQDNBhAnR72Dr91iI5y5eTNHAQqVOmkDRwEDnLl1etAa8QmPQTuPjCxYOw7D4oKzZ7nK6ejrQbYPpc7P35bLVHi1wc7HlumGlfnY+2JpGRX2K2GG+kSF/O49/EE7M31VSl+K42PDc0EnUtnMbaEEhSZEZlOh3pc+eB0Uh4ylpcCy5QWqZm6+LDf/tFbebnxqone9Mq0IOsglLu/SyWnYmZNopcCCGEregKdcyPnY9RMe1Ib1SMzI+db9YRo9OX8k0zEy4XEezjzIonetMx2Mts7ZuT0aiwLSaBQxtNVVv7joug653h1pneV1YC30+CoizQtoMR/zXtx9OA/PVcBgCjkfS586o+YuTXAu5fAQ7ukLLTlGgaysweb+chIWgc7chMzSf5cNbNH3Add3VoTIdgLwpKy/nPhtM3f0ANZReUMmHRXjadzMDRXs2n93dhsmzbYlOSFJmRPuVcxX8iaqWc1qe+QmU0kHwin6T9GX873t/DiR8e60mf5r4U6g08uHgfqw6et3bYQgghbCg1L7UiIbrKqBhJy08zS/tGo8LzK46QXainTZAHK57oXavXKSgGhfysYlDB7ZMi6TDIitP7fvsHXDwAzt6mDVo1tWvzWmv467lMBaMR/bnUqjcW1MlUfMHeCU7/Bj9P+3vbNeTs7kD7gX+MFv1yFsVYvdEitVrF3BGtAfh+f5pFZ/CcyzaN2h5Oy8HLRUPMIz2IaiNr1mxNkiIzcggLBfWfL6l7wXnCUk3T6E7Fpl/zMe5OGhZP6c6oDkGUGxWe+f4wn20/U+0hYCGEEHVLiEcIalXlP8dqlZpgd/MkA6sOXuBAag4uDnZ88UA3/N2dzNKupdhp1Ax7vD0jZ3SgdZ8g63UcvxQOLAVUMPYL8A6zXt+1yP+eywCgVuMQGlK9BsP6mApVqO3hyPemxNPM5zgdB4fg4GxPXnYJl9MLq91Ol1BvRnUIQlHg1dUnLHIudigth+iPd5OS/eeobZdQH7P3I6pOkiIz0mi1BD55N6j++CVSq+n5UE9uu68lw6e1v+7jHOzVvHtvRx7uGw7Agt9O8crqExir+W2HEEKIukPrqmVer3kViZFapWZer3loXWv+zXF+SRkLfjsFwPSBzdF61s6EqKzUwPGdFypOQjWOdoS09rVeAOfjYe0c0/WB/4Tmg6zXdy2j0WoJfGX+n4mRWk3gK/PRaGvweWwRBWM+A1SwbxFs/ZdZYr3KyVXD0EfbMvm1Xvg2dqtRW88Ni8TRXs3e5MusP27eoiebT14yVR4u1NO2sWnUtplfzeIV5iObt5qbolD2Vm/0yUk43PEYmujXqvTwRTvO8q+1JwEY3j6Q/9zTAUd72VlcCCHqO12hjrT8NILdg82SEAG8vvYkC3ecJbyRK+tm9quVf09Ki8pY/eERdGdz6XFXU7oOC7NuAAWZsPA2yLsAkSPgnq//PlLSAJXpdOjPpeIQGlKzhOiv9n0Ba2aZrg/5F/Sebp52zew/GxJ4f0sSwT7ObJp1m1l+b76LS+X/Vh3FqED/Fn58PLEzbo5W3oy4gZHNW21NpUIz/B+4BujRnP66UhlKQ5mRvb+epeDK9auaPNK/Ke+N74jGTsWaI+k88GUceSXmX5gohBCidtG6aumm7Wa2hCgpo4Avd5mqt80d0bpWJkTF+Xp++u9BdGdzcXSxp0mkt3UDMBphxVRTQuTbHEZ/IgnRHzRaLa49upsvIQLoNhUG/VHqfMP/wYGvzdf2X1xMzMFQXv21S4/d1owAD0ezlOhWFIX/bEjghZWmhGhclyZ88UBXSYhqIfnNt4RWo6BRCyjJgf1fVNy87dtT7F+TwtavT91wnupdHRuz5MHuuDnas+fsZe75NBZdrnXKQwohhKj7FEVh/q/HKTcqDIr0r5WltwuulLDqnQNkpRXg7K5h9KzOaMM9rRvE4RhI3g4aV7j3W3Cy4UyThqLvLOj9lOn66pmgO2rW5jcuPs6qdw5wcve113LfCldHe54bGgnAh1uSyMwvrVY7ZQYj/1h+hPe3JAHw1KAI3ry7PRo7Of2ujeRdsQS1nemXHmD3h6A3bc7aKSoUO3s1qScuc/L3G/+y9mneiO8f64mfuyOndKZSqkkZ+ZaOXAghRD2w4cQldiZm4WCn5qU/KmrVJrmZxax8+wBXdEW4eTsSPacLjZpYeW1F8ZU/N2i9/QXwj7Ru/w2VSgV3vGKaqmgsh5+egHL9zR93iwLCTIn1/rUplJcZqt3O6I6N6dDE01Sie2NClR9fWFrOw0v382P8eezUKhZEt2PWHS2sU1peVIskRZbS7m7wCjXtdXBgKQA+ga70uKspALuWJ5KXfeONzNoEebLyid40beTKhZxi7v40lvhz1d+xWQghRP1XUmbg1dUnAHi4Xzhhtaz8dlmpgZ/+c4D87BI8/ZwZM6czXgEu1g9ky2tQlA1+kdDjcev335CpVKY9oJx9TCNFO98xW9Nt+gbh5u1IYU4phzdXv6y9Wq1i7kjTFwrL9qVx/OKtl+jOyC/h3oWxbD+dibPGjkWTuzChezWr9wmrkaTIUuw00PcZ0/Xf34dy09Brh0HBBDbzpKzEwJavTt20nn6wjwvL/9hkL6eojPsW7WXjiUuWjl4IIUQdtXDHWc5fKUbr4cS025vbOpy/0Tja0W1EOL6NXRkzpzMevjbYC+jiQdOif4A73zb9zRbW5eYPw982Xd/5NqQfNkuzdho1Pf/4AnrfmhRyMoqq3VaXUB9GVrFE95nMAqI/3s2xC3n4ujqw7NGeDIwMqHYM5mQoN3LuWDaXUvJufnADJEmRJXW8D9yDIP8iHIoBTN88DJzcCnuNmgsJVzi248JNm/FxdSDmkR4MivSntNzIY1/v5/OdZ2UvIyGEEJWcv1LEx9tM6xdeHN4K11q0mPuvXwK27hPEuBe64erpaP1AjEZYMwdQoN04CO9n/RiESZto0zpsYzn89KTZptG16KGlSaQ3hjIj27698Trum3luaEsc7dXsOXuZ9cdv/KV0/LnLjP1kN+evFBPm68LKJ3vTIdir2n2bS25mEbGrklj6wu+s/vAwZw9lVtxnNBgxGMy7oW5dJUmRJdk7Qp8/FhPu+g8YTFXkvAJc6BXdDIB9a1Mo1998zquLgz2fTerC+G7BGBV4bc1JZv94mJIazJcVQghRvyxYe4qSMiPdw30Y2T7Q1uFUSD2RzY//3k9R3p8nvXb2NjoFOfQNXNgPDu5wx6u2iUGYqFQw/D/g4guXjsGOt8zUrIoBEyOxd1BzISGnRkUXmni78Gh/08jT62tPUlp+7fOudcd03LdoLzlFZXQM9mLFE70J9bXd1FWDwUhSfAY/v3uQb17aw4H1qRTnl+HgbE+zTn4Vx6Uev8zif+xiy1cnOXcsu0ZV++o6SYosrfMD4NIIclLh6PKKm9vd1oROd4Rw9z+6YO9wa2VS7e3ULIhux7yRrbFTq1h54AL3fiaV6YQQQsDupCzWHE1HrYKXR7apNQu6zx7MZM3HR8hMzefA+nO2DaboMmycZ7p++wvgUXsSxwbLzQ+G/7GmaOc7cPGQWZr19HOmx6imeDRywt23ZpsWP35bM/zdHUm9XMSSa5To/io2hSe+jae03MjgVv5890hPfN1sMAr6B0OZkW/+Gcv6Rcc4f+oKqCCktQ9DH2vLQ2/3xT/0zyqL545nU1pYzsnd6az+8DBfPruLTUtOkHIkC0NZw0qQZPNWa9j1X9j0sqlM95N7TNXpauj3pCymxRwgp6gMP3dHPr2/C11Ca76/g65QR2peKiEeIWbbK8Na6nLsQghRE2UGI8Pf38npSwVM7hXKK3e1tXVIACTs1bF56UkUo0KzTn7cMbWN7UaIAH6dCfGLwb81PLYD7DSmTUpTzuEQFmrePXlE1fzwAJz4yfTePLrNNNumhowGI4ZyBY1jzc+7lsefZ86Ph3FztGfrnAH4uTtiNCq8uT6BT7efAeC+HiG8MqoN9lYuuW0wGNGdyaVxiz/PA9ctPEp6Ui6tegfSum8QHo2uvXbPaDByMSmXMwcyOHsws9JorsbJjonze9pmmqsZVDU3kKTIGkry4N12pn2Lxi2BNmP+dsj5U5dx83aqUgWe1OwiHvlqPwmX8nGwU/PamLbc0zW42mGuTFzJ/Nj5GBUjapWaeb3mER0RXe32rKkuxy6EEDX15a5kXll9Am8XDVvnDMDLxcHWIXFs+3m2f3cagMheWm6/PxK1LfdnuRAPiwYBCkxZC2F9yFm+nPS580zrjNRqAl+Zj9fdd9suxoasMAs+6mGq2ttvDgx6yexdGI0KanX1RlCNRoXRH//OkfO5TOgewvxRbfjH8sP8dOgiAM9GteTJAc2sOkKbl1XMiV0XObk7naI8PRPn96w4jyzK0+Poao9dFX7njEYF3RlTgnTmYCYOzvbcN69Hxf2Ht6Th5uVISFtfNLc4y8mWJCmqjUkRwNYFsP3fENAWHt9lmkf7h2M7LrA9JoGAcA+in+1SpV/YwtJyZv9wmHXHdQBM6R3G/w1vVeWNwXSFOqJWRGFU/hwqVavUrB+7vtaPutTl2IUQoqayCkq5/e1t5JeU868xbZnYI9TWIXFgwzliV5q+PW93exP6jYtAVc2TUbMwGuDzQaaqc+3vheiFlOl0JA0cZEqIrlKrab5ls4wY2cqJn+GHyaCyg4c3QePOZmlWMSoc23GBI1vPc/dzXXB0qV61wf0pl7n701jUKmjfxItDaTnYq1W8MbY9Y7s0MUusN2MwGDl3JJvjuy6QeuIy/HEW7+yuYeDkVoS1a2SWfhSjQmGuHjdv0yhRmd7Al8/uorzUgL2DmtC2vjTr7E9oW18cnGpPQZe/qmpuIGuKrKXHY+DgZlpIeHpdpbtMHyg7LiXncWhjapWadXW05+OJnZl1RwsAluxOYfIXcVwurFoFl9S81EpJBYBRMZKWX/0a/9ZSl2MXQoiaemtdAvkl5bRt7MH4brbfC0VfUs7xPyqrdhkWSr97bJwQARz4ypQQOXpUFFfQp5yrnBABGI3oz1Xt77Awo9Z3QduxoBj+2NS11CzNGgxGjmw9T86lImJXnal2O13DfBjRPhCjAofScnB1sOPLKd2slhBlnS/gqxd389tnR0k9bkqIglt5E/VIWx5Y0MdsCRGASq2qSIjAtE6p3W2N8WjkRLneyJkDmWz4/DhfPruLtZ8cIfV4ttn6thVJiqzFxQe6PWy6vuNt+MsAnbuPE33viQBg769nyb5YUKWm1WoVTw2K4LNJXXB1sCP2bDajPtzFyfRbr0Mf4hGCWlX546BWqQl2r/50PGupy7ELIURNHE7L4Yd40xdAL49sg52tkw/Awcmeu2Z2ot+9Leh5l3WnE11TYTZsnm+6fvuL4G7aM8YhLBTU/3MapFbjEGr7xLJBG/YWuPpB5inYtsAsTdpr7BgwsSUAx3de5MLpK9Vu6/lhkfi4OhDg4cj3j/Wifwu/mz+omowGI7mZxRU/ewU4Yygz4uyuoXNUCPe/2pNRT3eieRd/i6/Vc3LV0Du6Ofe/2ot7XuxG56GhePqZ4kk+nEVmWr5F+7cGmT5nTQUZprVF5SUw6SdodnvFXYqisObjI5w7mo1fiDtjn+tSpXmgV52+lM8jX+3nXHYRzho7/nNPB4a1u7XqOnV5XU5djl0IIarDaFSI/mQ3h9JyGNOpMf+9t6NNY7mUnEdgM0+bxXBdvzwFB5aCf5s/iiv8OdVH1hTVUid/he/vB5Uapm6CJl3M0uzWb09xYudFPP2dGf9Sd+w11VsXk1tchouDXZWXKtyq/MslprVCv1/E3tFU7ODqlwtZ5/Px1rratmDJHxRFIftCIWcOZBDZKxBPPxtsxHwDsqaoNidFAL89B3s/hdC+8OCaSncV5pTy3St7KS0qp/vIcLoND69WFzlFemZ8d5CdiVkAPDWwOTMHt7iltUq6Qh1p+WkEuwfXufU4dTl2IYSoqh/3p/Hs8iO4Otixdc4A/D1qVna4ukoKytjy9UlSjmYz9NG2NO1ouW/Oq+z8fvh8MKDAg79BaO+/HVKm06E/l4pDaIisJapNVjwMR380Ve59bCdoav75Li0qI2b+Xopy9XQZGkrP0c3MEKh57f8thbhfzlZMKHJ213D3c12vWz1OXJ+sKartej8Fag2c2wXnYivd5erlSL97TWuD9q9JqTRkWhVeLg4sntKNh/uakqr3tyTx6Nfx5JeU3fSxWlct3bTd6mRSUZdjF0KIqsgrKeONdacAeGpQhM0SojMHMoiZv4fkw1moVKbF2bWG0QBrZgMKdJhwzYQIQKPV4tqjuyREtc2wN8HVH7JOw7bXzdKko4uG28abptEd3JBK1vnaNeXr8OY09v5sSogat/RmyMNteOD1PpIQWYkkRdbm2Rg6TTRd3/n23+5u0T2AVr0DGTSlFR6Nqv9Hzt5OzT9HtOadcR1wsFez6eQloj/eTUpWYbXbFEIIUTu8tymRrAI9TRu58mCf6s0qqImiPD3rFh5l3cJjFOeX4R3oSvScLjTr7G/1WK4rfgmkH/qjuMIrto5GVJWLD4x813R99weQts8szTbt5EfTTn4ogO7sra+9trRTe9LZ9WMiAD1GhTP6mU5EdA3ATiOn6tYi0+ds4XIyfNDFVF3lka1mKzl5PYfScnjs6/1cyivFw8meD+/rbNGFgUIIISwn8VI+w97bSblRYcmD3RjQ0rqJyJkDGWz7NoGSwjJUahVdhobSdVhY7Tp5K8wy/Z0tyTGNOPR4zNYRiepa+Sgc+R58I+DxnaCp+ahJYW4pRbl6/ELczRBgzSmKwm+fHiX5cBYdBgbTZ1xz2xcoqQdk+lxd4BMO7caZru9854aHlhSUcUVXs9GdjsFe/Dq9L51DvMgrKWfK4jgW7ThLPcmHhRCiwVAUhfm/nqDcqDC4VYDVEyIwlTcuKSzDt4kb457vSo9RTWtXQgSw6WVTQhTQDrpOtXU0oiaG/hvctJCdCFv/ZZYmXT0da01CBKBSqYh6tC0DJrakz92SENlKLftfrAHpNwtQwanVcOnENQ+5lJxHzCt7+e2zY5SXGWrUnb+HE9892pN7ujbBqMC/1p5k1g+HKalhu0IIIaxn/XEdu5KycLBXM3dEa6v0qSgKedl/rnGN6BrAHVNbM+6FrrXqxLJC2j44+LXp+vC3K1WbE3WQiw+MfM90ffeHkLrXrM1nXyjg9+WJNvmiuOBKaUW/dnZq2vRrbPs9vRowSYpsxa+laZMyuO5o0dXShlfSC4n7NbnGXTra2/HG2PbMH2Xay2LVwQvc81ks6bnVK+gghBDCekrKDLy6+iQAj/VvSoivi8X7zL9cwuoPDrP83/spKTAV61GpVLTopq3WthEWZzTAmlmm6x0nQkhP28YjzKPlUOhwH6CYNnXVF5ml2dLicla+Fc+hTWkk7NWZpc1blXOpiB9ej2P7d6cx1qYCJQ1YLfwfrQHpN9v07/GVkJX0t7ud3DQMuM9UJeXQxlR0Z3Nr3KVKpeKB3mF8PbU73i4ajpzPZeQHvxN/7nKN2xZCCGE5n24/w4WcYoI8nXhigGVLCStGhWM7LvDdK3tJPXEZfbEBXXLN/wZZ3P4vQXcEHD1h8HxbRyPMaegCcA+Ey2dgy2tmadLR2Z4uw8IA2PVjIkV5erO0ezMFV0r4+b2DFOeXkZGSR7leZu3UBpIU2VJge2gxFBQj7PrvNQ9p2tGPlj20KApsXnqSMjP94vRu1ohfpvclUutOVkEp4xfuYVlcqlnaFg2LrlBHXHocukLrfssmREOSdrmIT7adAeDF4a1wcbDclLDczGJ+fu8g22MSKCsxoG3qyb3/7EZYu0YW69MsCjJhy6um64NeAjcpKFSblel0FO7ZS5nuFv92OHvByPdN1/d8/LdtTaqrw+BgGgW7UVpYzq4fTpulzRspLtDzy3uHKLhcileACyOmd8DBSaZ41gaSFNlavzmmf48sg5xrJyV974nA1dOBnEtF7P35rNm6DvZxYcUTvRnWVkuZQeH5lUeZ+/MxygxGs/Uh6reViSuJWhHF1A1TiVoRxcrElbYOSYh66fW1JyktN9KrqS/D2wVapA9FUTiyNY1lr+7lQkIO9ho1fcdFMGZOZ7y1rhbp06w2vQwluaBtD10fsnU04gZyli8naeAgUqdMIWngIHKWL7+1B7YYAh3vBxT4+UmzTKOzs1Nz+/2RqFSQuD+DlCNZNW7zevQl5az+4DBXdEW4eTsy6umOuHg4WKw/UTWSFNlacDcIvw2M5fD7e9c8xMlVw+2TWgFweEsaF5NyzNa9q6M9H0/szOw7TJvGfhV7jke+2i+JkbgpXaGO+bHzMSqmz4pRMTI/dr6MGAlhZr8nZfHbMR12ahXzRrW2WGUqlUpFZloB5XojjVt4MX5udzoMCkZdFxZ+p+6FQ9+Yrg9/B9R2to1HXFeZTkf63Hlg/OM8w2gkfe68Wx8xivoXuAfB5bOw2Tz7T/mHetBhcAgA279LQF9SbpZ2/6q8zMDaT46ScS4fJ1cNI5/qiLuPbTZdFtcmSVFt0P9Z078Hvoa89GseEtrWl1Z9AonsqcU3yLzf2KlUKmYMimDR5K44a+zYlpDJCyuPSslucUOpeakVCdFVRsVIWn6ajSISov4pMxiZ98txACb1DCVSa959+IxGhZLCsoqf+97dnNsnRXLXzE54+lm+kINZGMph7R9rdDvdD8HdbRuPuCF9yrk/E6KrjEb0525xCr+zF4z6wHR976eQ8rtZ4uo+MhyPRk4UXCnl2PYLZmnzr3RncrmYmIPG0Y4RMzrgE1gHRl8bGEmKaoOwvhDcEwylEPvhdQ8bMDGSQQ+0xtFFY5Ew7mgdwEcTO6FWwfL487y7KdEi/Yj6IcQjBLWq8n8hapWaYPdgG0UkRP2zdHcKSRkF+Lg68MzgFmZtO/tiASvejGfjlycqvgRzdNHQuk9Q3SoLvP9L0B0FJy8prlAHOISFgvp/Tj/VahxCQ269kYjB0GkSf06jq9l+jgAaBzsG3B9Jn7ub0/GOKsRyi5pE+jDssbYMe6IdAWHm/XJDmIckRbWBSvXnaNH+L6Ew+5qH/XUKg9GokLBXZ/bRnIGRAbw2uh0A721O5Pt9UnxBXJvWVcu8XvMqEiO1Ss28XvPQumptHJkQ9UNmfinv/fHl1D+iWuJppi/EDAYj+9cm88O/9pGRkofubC55WXV0a4aCjD8rkQ2aC661vBiEQKPVEvjK/D8TI7WawFfmo9FW8W9H1L/AowlcSYFN5kmGgyN96Dg4xKxTRv86FS+8gx/BkT5ma1uYl5S7qC2aD4LAjpB+yFRVZdBL1z1UURQ2LT5B4r5LXL5YQK8xzc0ayn09QriYU8yHW5N4cdUxAjycbLJruqj9oiOi6R3Um7T8NILdgyUhEsKM3lx3ivzScto19mRcV/OMwGam5bPlq5NkpRUAENbOl9vui8TN29Es7VvdxnlQmmv6+9lliq2jEbfI6+67ce3bF/25VBxCQ6qeEAE4ecKo9+GbaIj7DFqNhPB+ZouxXG8g/WxujZKYA+vPcXzXRe56uiMejZzNFpuwDBkpqi1UKuj/RyW6uIVQnHODQ1UEtzL9kh5Yn8rhzeZfwzF7SAuiOzXGYFR48tsDHLtQB/anEDahddXSTdtNEiIhzOhg6hV+jD8PwPy7TBtu14TBYGTvL2dZvmA/WWkFOLrac8dDrbnzyfZ1NyE6FwuHYwAVDP+PFFeoYzRaLa49ulcvIbqq+aA/k+Gfp0FpgVliKy7Qs+y1OFZ/cJjsi9Vr8/jOC8SuOkNeZjHnjl17BpBVZZ+BLf+Cj3rAF1Fw6DsoK7F1VLWKJEW1Scvh4NcKSvMgbtEND23VO5Ceo5sCpg3HEvddMmsoKpWKf49tT5/mvhTpDTy4ZB9pl82zg7QQQojrMxoVXv6juMLYzk3oHOJd4zavpBdyfNdFjEaFZp39uG9eT1p011qskp3FGcph7R9fJHaeDE262DYeYTt3vAqewZBzDjbNM0uTTq4avLWuGA0KW78+hdFYtaUKSfEZbI9JAKBzVCjtBjQxS1xVVpwD+xfDF0Pgg86w403IPAVpe+Cnx+E/rWDjXLicbJv4ahlJimoTtfrP0aI9H9/0G4/OUaG0u930i7ZpyQnOn7ps1nAc7NV8cn8XIrXuZOaXMmVxHDlF1tntWQghGqrl8ec5fD4XN0d7nhvW0ixtNmrizn3zejB8WnuGPtqu7u+Nsm8RXDoGzt4wyDwnwqKOcvL4sxrdvs/h7PYaN6lSqbhtQgs0TnZcSs7j2Pbzt/zYtBOX2fjlcRQFWvcLqvgC22oM5XB6A/w4Bd5uAatnQtpeUKmh2SCIXgQDXzKtxyq+bNoO5v1O8O04OL0ejAbrxluLSFJU27QZAz5NTR/U+MU3PFSlUtFvXATNu/hjNCis/fQoman5Zg3Hw0nD4ge7EejpxJnMQh79Kp6Ssob7CyOEEJaUW1zGG+tOAfD0oAj83c23j4mTq4awdvWgEEG+Dra+bro+aB64+to2HmF7zW7/c8PeX6ZDac3Phdy8neg9phkAsT+dJf/yzaea6ZJzWfvZUYwGhWad/bltQkvrjcbqjsL6/zON/sSMg+OrTFWN/VrBHa/AMydg0kpof4/pC/inD8P470yJEgokboCYe+D9jrDrv1BouU1saytJimobtR30nWW6vvsDKLtxRSCVWsXgKa1p3NILo0GhMKfU7CEFejqz+MFuuDvaE5dymdk/Hq7yULIQQoibe3fTabIL9TTzc+WB3mE1bm/fmmSLVCq1qY1zTdPMgzqbps4JAaYTf88QyEk1fUbMoE2/xgQ296S81MC2bxNu+HukKAq//5hIeamB4NY+3PFQa8tvfFyQAbEfwSd94dO+pm1dCjPAxRd6PA6PbocnY6HP0+ARWPmxdvYQeacpUZpxAHpNN5W1z0mFTS+bkquVj0JaHNSn/z9uQKXUk/8p8/Ly8PT0JDc3Fw+POl7/vVxvmvuZmwZ3vg3dH7npQ0qLy7miK0Qb7mmxsHYnZfHA4jjKDAqP9Avn/4a3tlhfQgjR0Jy+lM+w93ZiMCp8PbU7/SL8atRe+plcVr4dDwrc/XzX+rE3SsrvsOROQAWPbIbGspZI/MXZ7fDVKNP1ST+ZRpBq6IqukGWvxWEsVxj8YGta9rh+YYiiPD17fzlL33ERaBwtVPijrAQS1sLhZZC0CZQ/Zu/YOUCLodBhAkTcAXbVKOGvL4LjK03r2tMP/Xm7th10exjajQOHurPpbFVzA0mKaqu4RaZFpJ7Bpgzevmrzv/Mvl+DoYo+Dk3mrrv908AIzvz8EwLyRrXmwT7hZ2xdCiIZIURTu/2IvvydlE9UmgM8mda1Re+V6A9//ax85l4qI7KVl0AP14EssQxl81h8yTkCXB2Hku7aOSNRGa2ab1hZ5BsMTu01rjmpo/9pk0s/kcdt9LfDwrVxa22gworaz8MQrRTGN2Bz+zpS0lPylInDjrtBxArSJBhcz7oF0IR72fQHHVkD5H1MHHT2h433QbSo0ijBfXxZS1dygSu/iggUL6NatG+7u7vj7+zN69GgSEhIqHVNSUsK0adPw9fXFzc2NsWPHcunSjSujKYrC3LlzCQwMxNnZmcGDB5OYmFiV0OqfTveDW4BptOjI91V6aNb5Apa/sZ/1C49hMBjNGtboTo35x1DTwt9XVp9g3bF0s7YvhBAN0aaTGfyelI2DvZp/mmEUfu+vyeRcKsLV04E+d9f+k5dbErfQlBA5+5g2ahXiWgbPB69Q0/nTb/8wS5Odh4YxYnr7vyVEpUVlLH8jnhO/XzRLP39z5Rxsf9M0e+jLIaa15iW5piIJ/WbDtH2mEdNuD5s3IQLTKOzoj2HWSRjyGniHm/YE2/sJfNgVlo6CE7+YCjvUE1VKirZv3860adPYs2cPGzdupKysjCFDhlBYWFhxzDPPPMOvv/7Kjz/+yPbt27l48SLR0dE3bPfNN9/k/fff59NPP2Xv3r24uroSFRVFSUkDrp+ucYbeM0zXd/2nSh+68jID+uJyUk9cZutXp1DMvP7niduacX/PEBQFnl52iPhzt1b1TleoIy49Dl2hzqzxWENdjr0uk9fdNuR1t64yg5EFa08CMLVvOME+LjVqT3c2l8ObUgEYcH8kTq7VmEZT2+Slw9YFpuuDXzb/CaCoPxzdYMynpmprh78zTTOrIbVaValggr64nDK9gTUfHyEzNZ+9P59FX2ym5KBcDwe/gSUj4L32sPVfcPksaFxNU+Mm/wIzj5q+GPBrYZ4+b8TFx3Q+OuMA3L8CWt5pem2Tt8MPk+DddrDtDVMBlDquRtPnMjMz8ff3Z/v27fTv35/c3Fz8/PyIiYnh7rvvBuDUqVO0atWK2NhYevbs+bc2FEUhKCiI2bNnM2eOqRx1bm4uAQEBLFmyhPHjx99SLPVu+hyYSnK/285UiS76c2g/7pYfmnI0i7WfHEUxKnQaEkLv6OZmDa3cYOTxb+LZdDIDLxcNK57oTTM/t+sevzJxJfNj52NUjKhVaub1mkd0xI2T5dqiLsdel8nrbhvyulvf0t0pzPvlOL6uDmx7dgDuTtVPYv46ba5lTy2Dp9SDaXMAKx6Goz+avr2eusm0hYUQN7LtDdj2uimZeHwn+DarcZOlxeX8/mMi5xOu4BPoyrlj2Tg42zNmdicaNXGvecxGIyybAKfX/XGDCsL7QYf7oNVIU8JXG+SkQvwSiF8KRX9UqVPbQ+QI06hVWF+oBXugWXT63P/KzTXNafTxMX1jEx8fT1lZGYMHD644JjIykpCQEGJjY6/ZRnJyMjqdrtJjPD096dGjx3UfA1BaWkpeXl6lS73j6AY9nzRd3/mO6ZflFoW1a8Tt90cCcHBDKoc3p5k1NHs7Ne9P6ESHJp7kFJUxZXEcmfnXrnynK9RVnGQBGBUj82Pnm+1baKNRYd2xdCZ/GcdXsSlmafMqS8curk1ed9uQ1936covLeHfTaQCeuaNFjRIigNQTl8m5VISLpwN9x9WDaXOKAoe+MyVEqGD4O5IQiVvTfw6E9oWyQlj+IJTXvDqvSgVppy6Tn13CuWPZ2GvUDJ/W3jwJEZg2Vz29DuydYOA/TSNCD/xqWjNUWxIiAK8Q00jVrBMw9gsI6QXGcjjxEywdYbZNdK2t2v+zGI1GZs6cSZ8+fWjbti0AOp0OBwcHvLy8Kh0bEBCATnftP6pXbw8ICLjlx4BpfZOnp2fFJTg4uLpPpXbr/gg4ekDmSUhYU6WHtuodWLFp2K4fEzm9z7wnNi4O9nwxpRshPi6kXS5m6tJ9FOn/PnycmpdacZJ1lVExkpZfs0TNYFT4+dAFhr63g8e/OcCO05nM/fk4G0/ceA1bVVgqdnFj8rrbhrzu1vfR1iSuFJUR4e/G+G41/zvWtKMfo5/pxOAHWtf9aXO55+G78fDT46afu02FoE62jUnUHWo7iF5oWoOWfhg2za9xkw5O9gyYaPrCWa1WEfVoW4Kae9W4XcC04eq2f5uuj/gv9H8WvGr5ua29I7S7Gx5aB4/vMhVA0bhCq1G2jqxaqp0UTZs2jWPHjrFsWc3nalbHCy+8QG5ubsUlLa2e/tF29oLuj5qu73iryrXiO0eF0u72JgAc2XLe7OuLGrk5svSh7ni7aDhyPpfpMQcp/5/iDiEeIahVlT9qapWaYPfq/bKXGYz8uD+Nwf/ZztPLDnH6UgHujvb0CDeNWM76/hDJWYU3aeXWmDt2cWvkdbcNed2tKzW7iCW/pwDw4vBW2JupglXjlt4Et67Da26MBti7ED7qYfrWXK2B256HqAW2jkzUNZ6NTcUCAPZ8BKfX17jJ0Da+3DWzI3c/39V8myFfPgsrHwYU6DrVVOGtrtG2M1WEnJNQZ0vlV+t/4OnTp7N69Wq2bt1KkyZNKm7XarXo9XpycnIqHX/p0iW02mvXdb96+/9WqLvRYwAcHR3x8PCodKm3ej4JGhfTNx1Jm6r0UJVKRb9xEfQc3ZRRT3dEZYGNxMIbufL5A91wtFez5VQGL/18vNIGZ1pXLfN6zas42bq6TkHrev3391pKyw3E7E3l9re38ezyIyRnFeLlomH2HS3Y9fxAvnm4B93CvMkvLefxr+OvOWpVVeaKXVSNvO62Ia+7db2x7hR6g5F+EY0Y0KJmexKd3H2R3Mwbb/ZdJ2SchC+j4LdnQV8AwT1M30Df/kKVt6YQAoCWw6DHE6brPz0BeTWvFNck0ge/EDNNmdMXwfeTTVXlmnSDof82T7u24uheK9YTVUeVCi0oisKMGTNYtWoV27ZtIyKi8nzlq4UWvvvuO8aOHQtAQkICkZGRNy20MGfOHGbPng2YFkb5+/tLoYW/Wv9/pp2Kg3vAQ+tr/IEr0xvQOJh3Y7F1x3Q88W08igLPRrVk2u2VizvoCnWk5acR7B5cpZOskjIDy+JS+WzHWdJzTRUJG7k58HC/ptzfMxQ3xz/3YsrIK2H4B7vIzC9lVIcg3hvfsVLFmOqqbuyiZlLzLnIqK5n2Ac3kdbci+bxb3v6Uy9z9aSxqFax9uh+R2ur/3bqUkseKN/Zjp1EzYV6Pv5UNrhPKS2HH27Drv2AsAwd3GDzP9K25rCESNVVeCp8PBt0RCOsHk382Ta+zNUWBVY+Ztl5x9YPHdoBHkK2jqjcsWmhh2rRpfPPNN8TExODu7o5Op0On01FcbPp2ytPTk6lTpzJr1iy2bt1KfHw8Dz74IL169aqUEEVGRrJq1SrANJIx8//bu++wps72gePfhL0REQEF3HvvvWfVaq3V2qq1aqfd8/V921rtsP11T22d1dpq3aPuvbe4B6AMkaAgeyUk5/fHUSwVlJEQxv25Li5jSJ7zJOeEnPs8z3Pfr73Gxx9/zNq1azlz5gzjxo3D39+fYcOGFaZ75VvHl8DGAaIOQ/i+IjejKAonNkew9OMjpCfrzdhBGNDElw+HNAbgi82XWHniWq7f+7r40ta3bYFPstKysvl1TxhdPt/Jh+vOE5OUSVV3Bz4Y3Ii97/Ti+e61cwVEAD7ujvz8ZCtstRrWnrrOggPhZnlthe27KL641CwmzgnhudmJfLUhFl1SBU7RX8LkeLcsRVH4+G81BffINgHFCoiMBhPbf7uAokDN5lXKZkAUcQBmdlYXmZsMasrfyYfVNbUSEAlzsHWAEfPV9S7he2Hv19bukerIbDUg0tjAYwskILKyQv21mTlzJklJSfTo0QM/P7+cn6VL7xYX/eabbxg8eDCPPvoo3bp1w9fXl5UrV+Zq59KlSzmZ6wDeeecdXn75ZZ599lnatm1LamoqmzZtwtHRsZgvrxxx94NWY9Xbe74ocjP6TCNn90STdCOD9T+eQp9p3qJbT3WqwbPd1OQO7yw/zf7QuEK3kZxp4KedoXT5fAefbrhIXGoW1Tyd+HhYE3a/3ZMJXWridJ9RrrY1vPjfoIYAfPL3BY6GF6yOkig9kjIMjJt7hJAbqSgKLDt+jR5f7uSrLZdIzSo/heJExbTudAzBUYk429vwRr/i1Rk5uuEqCTFpOLnZ0W1UCdQsMafMJFj3GswfCPEhasHyx36Dx/9Q14IIYU7eddTshaCm6o7IP8NxiYg8DJunqLf7TlfTWAurKladotKk3E+fAzUv/Pct1bSHT61Xc9cXpZnYdFZ8cZzMVAMBjbwY9GIzbGzNdzXOZFJ4ZclJ1p+Owc3Blr+e70hDvwfvk8R0PfP2h7Ng/1WSbwdrQZWdmdyjDo+0qoZdIRYhK4rCa0uDWRN8nSpuDvz9chd83CXILgvSsrIZM/cwJyMT8XZ1YNrDjZm//yrHIhIAderk633rMapNgNkWpgtRUjINRnp/tZvoxAze7FuPl3sXPW32jYhkln9+HMWkMOC5JtRu6WPGnlrYhXXw91uQejsraqtx6omhUyXr9kuUfyufVUdn3Kur9YusUQg4JRZ+6aYe/40fUUexyug6nNKsROsUiRLmGah+cQCsflG9ylaUZqo6M3hyc2zttUSdv8WOhRfMmpVOq9Xw1cjmtKvpRUpWNk/PP0pMUv4LgONSs/hs40U6f7aD77eHkJyZTR0fV74d1YLtb3RnZNuAQgVEoE7LnDG8KfWrunEzJYvJf5zAYCx4nSdhHZkGI88sPMbJyEQ8nOz4fVI7BjXzY9nzHZk1phU1KjsTl6rnf6vOMuC7vey4GEs5ua4jKoj5+8OJTszAz8ORSV1rFbkdY/btaXMmhTptfMpOQJQcA0uehKVj1BNCr9rqRb6Hf5CASJSMQV+BVy1IvgZrXy50Vt9iMxpg2Xj1+K/SAB7+UQKiUkKCorKmzzSoVAOSItWrbEVUtaY7A55tilar4fKRWA6uCjNfHwEHWxtmj21DHR9XdMmZjJ93lORMQ67HxCZn8tH683T5fAezdoeRpjfS0M+dn59sxZbXujGsZbVijQQ429sya2xr3BxsORqewKcbLhT3ZQkLMhhNTF58ggNh8bg62LJwQructRYajYYBTfzY8np3pg5phKezHaE3Upmw4BhPzjnM2eiiXSAQoiTFpWbx085QQE1Gc79pwA9ydnc0t66XoWlzJhMcmwc/tYOL60FrC13fhBf2F3nWgxBF4uAGI+apqd4vroejc0p2+1s/gMgDajKRUb+XrqKsFZxMnyuLoo7AvAGgGGH4HGj2WJGbungohu0L1GBh+Nut8avtYa5eAnAtIZ1Hfj7AzZQsOtaqzG8T2nEzNYtZu8JYeiwKfbY6etO8ugcv96pL74Y+ZskW909bz8fyzMJjAHz3eAuGtpC56qWN0aTw6u0pl452Wn57uh3ta1XO9/FJGQZ+3hnK/P3h6I0mNBp4pGU13upXH3/PMrjQXFQI760+w++HImlazYM1kzujLUaJBKPBxLGN4XhXd6V2q1I+SnTzMqx7VT0RBPBvpY4M+Taxbr9ExXbwJ9j8XzWJ1TM7SuZ4PLMcVkxUb49aDA0HW36bFVhhYwMJisqqXZ/Brhng4K7WcKgUVOSmTmyJwM7ehqY9qj/4wUVwNjqJUb8cJE1vpIGvG6E3Usm+PV2vTVAlXu5dl251vc0eDP3Tl5sv8ePOUJzsbFg1uVOxsj0J8zKZFP6z8jR/HbuGnY2GOU+1pXsBa7ZE3Urnyy2XWBOs1p1wsNUyqWtNnu9eGzdHO0t2W4hCCYlNof+3ezApsOTZDnS4T9BfbmTrYf+3anIgo17N/NXrPWj/XOlIhywqNkWBP0ZByGbwrgfP7gJ7F8ttL/acmhbckA5d3lBTzguLkqCoogRFxmw1Y8+1IxDYCcavL9VfMrsv32TCgqMYbwdDnWpX5uVedelQy8uiwdAdRpPC+PlH2BsSR43Kzqx5qQseTnLSbG2KojBt3XkWHAjHRqvhpydaMqCJX6HbORWVyCcbLnDkqpppsLKLPa/1rcfjRViPJoQlPD3/CDsv3aRfo6r8Oq5Nkdu5HpJA1Voe2JT24zrqqLpe4+btact1+sLgr9W1sUKUFmlxajr4VB20HAtDf7TMdjISYXZPuHUFavWEMStK9TlbeSGJFso5g05H2qHDGG7GwfBf1TmpkQfUgndmkJlqYN33wdyMTDFLe3d0r1eFmU+2YmSb6qx4oSN/PNOBjrUrl0hABGCj1fD94y2p5ulEeHw6b/4VjMmMySWKS5em40jMEXRpujLVdnF9teVyTi2pL0Y0K1JABNA8wJOlz3bg17GtqeXtQnyanvdXn2XAt3vYej7/ZAyl+b0R5cfekJvsvHQTW62GKQ81LHI7N6NSWPNNMMs/O0ZWRilNTZ+VAhvegbl91YDIubI6zfvJZcUKiHK++3TyWRVm5OINj84GNHBykTq9zdxMJlj1vBoQeQTAo3PvGxBZ+liXz1L+JCgqQxKXLye0V28ix48ntFdvEncch4du1yzaNQOijxd7GwdXhxF5/hbrfjxFclz+GeOKol9jX/5vRHNaB1kh/SVQycWeWWNaY2+rZduFG/y8K9Qq/fi3lSEr6b+iPxO3TKT/iv6sDFn54CeVgraL6+ddofx4e9H5R8OaMLxV8aZvajQa+jX2ZfPr3Zg+tDFeLvaE3UzjmYXHGD37EGeu5U7GUJrfG1F+GE0Kn9wu1Dq2YxA1vYs2PcdoNLFj4QVMJgV3byfsHUvhVeZLm+CnDnDkF0CB5qNh8lF13WsxLoDd89233AInrqLiqtkNut1OXLXuNbh11bzt7/sKLm9U1y6NXAgu+U+dtfSxLp+l+5Ppc2WEQacjtFdv9YrDHVotdbZvw27fFDi3Sk1t+tyeYmUyycrIZtWXJ4iPTsXDx4lH32mNk6u9GV5B6fHX0SjeWXEajQYWPN2uwOtXLEGXpqP/iv6YlLv7VavRsvnRzfi6+JbatovrtwPhTF17DoApAxvwXPfaZt9GcqaBmbvCmLvvak5Cj0daVuOt/vWxsUsqte+NKF+WHo3k3RVncHe0Zc87PfF0Ltrf06N/X+XIuqs4uNjyxNQOOLuXkr/LigIR++Hgz3Dpb/U+zyAY8i3U7lXs5vP97tuxHTtf+awKMzFmw4JBEHUIqrWGpzeBrRk+Y6Hb4PcRgKImF7lTViUPlj7WK+JnSabPlVP68IjcBzKAyYQ+MgoGfwPu1eBW2N3qyEXk4GTLkJeb4+blSNKNDP7+6TSGLGOx2ixtRrYNYHS7QBQFXl1ykqhb6VbrS2RyZK4TcwCTYiIqJapUt10cy45F5QREr/SqY5GACMDd0Y53BzRg51s9GN5SzTi46mQ0Pb/cxWfb9pXK90aUL2lZ2Xy55TIAr/SuW+SAKO5aKsc2hAPQbVS90hEQZaXC0bkws5N6Mnnpb9BoodPL8OJBswREcJ/vvohIs7QvBAA2tvDoHHD0VGfd7Pio+G0mRMCKSYACrZ66b0AElj/W5bP0YBIUlRH2NYJA+6/dpdViHxSoFrx75BdAAycWqpXCi8HF04EhrzTHwcWW2KvJbJlzFlM5K3z64cONaF7dg8R0Ay8sPk6mwTqBX6B7IFpN7v2q1WgJcAso1W0X1d+nY3h3xWkAJnSuyet9LV9fpZqnE1+PasG6l7rQoZYX+mwTa47qQck9ncfa740of37ZHcbNlCyCKjszrmONIrWRM23OqFCzuTd121Y1bycLKy4ENr4LXzeEv9+AG+fBzhlaj4cXDkC/j82aweu+331CmJNnwN1ECwe+V0d5isqQoRYozkhQU9DfWepwH5Y+1uWz9GASFJURdr6++E2fdveA1mrxmz7t7pBnza7Q+VX19tqX1arhxVDJ14VBLzbHxk5L+Jl4Dqw0b3FXa3OwteHnMa3xcrHnbHQy768+m+9ifEvydfFlasepOcGLVqNlasepZpnCZcm2i2LnxRu8uuQkJgUebxvA+4MblliiDYCm1T3485kOzH2qDbUq+ZMZMxzldmBk7fdGlD8xSRn8uvcKoE4Rtbct2tftyS2R3IxMwcHZlu5P1C/Rz0wOkxEuboCFw+DHNnB4FmQlq1O2+8+ANy7AkO/Ap+hJJPLzwO8+Icyp4RBoO0m9vep5SIktfBuKAn+/CbrTaqKRUYvA1uGBT7P0sS6fpQeTNUVljEGnQx8RiX1Q4L0HcrYe5vaBmFNQqweMWXXvVYFCunrqJvuXhzL4peZ4VnUuVlul0f7QOMbOPYxJgU8facoT7a1zxUSXpiMqJYoAtwCzn5hbsu2COhgWz/j5R8jKNvFwc3++GdUCm2IUriyubKOJP49E8uGGA2AXx4+P9WVgQ/Of0JVVN1IyScnMpnYVqbReVG/8FczKE9G0q+HF0uc6FDmYSdClsf23CzTtUZ367Uv485sWDycXwtF5kHRnio0G6g2AdpOgVq9if8cU1H2/+4QwJ0MGzO4NN84V7Vzq6Fx1FFWjhbGroVb3wm3ewsd6RfosSZ2ich4UPVBcCMzqCtkZ0P9T6Di52E0as03YFPEqZ1kwc1cYn2+6iL2Nlr+e70iLAE9rd6lcORmZwJg5h0nTG+nTsCozx7QqNbWD/rvqDH8cjqSxvztrX+pi1UCttFh36jrvrjhNVraJP5/pQLua1skWWZaduZbEkB/3AbBmcmeaF/NvismkoNFQcqNE0SfgyGw4uwKMWep9TpXUNRFtJkClGiXTDyGs5eYl+LWHWmi191To+kbBnnftGMwbACYD9JkGXV6zZC/FA0iihYrOuy4M+FS9ve1D0J0pdpP/DIgiz8dz9dTNYrdZmjzfvRb9G1dFbzTxwu/HiU/NsnaXyo3z15N5at4R0vRGOtepzI9PtCw1ARHAm33r4eZoy7nrySw/XrGTLBiMJqatO8fLf54kXW/EaFJ4e/kp0vWltB5OKaUoCh//fR6AYS38ixwQpSfrc25rtRrLB0SGTDi1BGb3UotMnvpDDYj8msPQn9Upcn2nS0AkKoYq9WHg5+rtHR9D1JEHPyf1JiwdqwZEDR++u6RBlBml5+xEmE/rp6H+Q2DUw4pn1KFgM9BdSeLvH0+zec45YsKSHvyEMkKj0fDlY82p5e1CTFImL/95kuxylljCGsJupjJ27mGSM7NpHVSJ2ePa4GhXumqrVHZ14NXedQH4YvMlUjINVu6RdcQmZzL610PM3x8OwLPdauHv4UhEfDr/t+mSdTtXxmw9H8vhq7dwsNXy9oAGRWrj1vU0Fv3vAPuXh2C09N+ixCjYNg2+aQSrnlMzb9nYQ7NRMHEbPLsbWj4Jdk6W7YcQpU3LsdDkUVCMsHwiZCTm/1hjNix/GlKug3c9GPZzsWpzCeuQoKg80mjUfPiuVdWK4lunmqVZnyA3Aht7YTSY+PvnU9yKSTNLu6WBm6Mdv4xtjbO9DQfC4nPS6IqiibqVzpg5h4lP09PY351549vibG9r7W7laVzHGtTydiEuVZ9TTLYiOXQlnkHf7+NYRAJuDrb8OrY1/32oIZ892gyABQfCORgWb+Velg36bBMzNl4EYFLXmlTzLHwgYTKa2L7wAtkGEwm6dLSWmNKpKBC2E5Y8Cd81g31fQ3q8Wtqh1/vw+nkY/isEtJUTO1FxaTRqyRPPIHVN3bpX1c9OXrZ/COF7wd4VRv0ODm4l2lVhHhIUlVcu3uqUB1Cri4dsLXaTWhst/SY1oWpNd7LSsln3QzBpieVnqlndqm783wj1RHDW7jA2nS1eBr+KKjY5kyfnHCYmKZM6Pq4snNAODyc7a3crX/a2Wv43SE2yMH9fOBHx5SfYvx9FUfh1TxhPzjlMXGoWDXzdWPtyF/o1VhfedqtXhdHt1MQj76w4RVqWTKN7kMWHI7gal4a3qz0v9KhTpDaCt0VxIzwZeydbejzZwLzT5jKT4fCv8FM7WDQMLq4HxQQ1u6kncq+ehm5vgav1CloLUao4esCI+aC1hfOr4cRv9z7m3Co48IN6e+hP6tQ7USZJUFSe1e0D7V9Qb69+UZ3vWkx2DjYMmtwMz6rOpN7KYt0Pp8jKKD8nS4Ob+TOpS00A3lp2mtAbqVbuUdlyK03PmDmHibyVTqCXM4sntaey64NTkeZFURQ2/XKGX1/bzY5FF4i9mmyxtOm9GvjQta43eqOJT/6+YJFtlCYpmQZeXHyCTzdcxGhSeKRlNVa92Jma3rnry/xvUEOqeToRdSuDz26PgIi8JaUb+G57CABv9K2Pq0PhR0YTdGkcWXcVgC6P1cG1UtE+O3kK2QZfN4KNb0PcZfWKdttn4MXD8NQ6NRWxTekczRXCqqq3ht4fqLc3vgs3/vEdceMirL6d0KrTK9B4WIl3T5iPBEXlXZ8PwacRpN2AtS/lP/RbCE6u9gx5uTnO7vbER6eyceZpjIbyswbnPwMb0L6mF6lZ2Tz/+3FS5Qp5gSRnGhg37zAhN1LxdXdk8aT2VHV3LHJ7Fw/qCDt5E0OmkQv7Y1j++TGWfnyU6EsJZuy1SqPR8P7gRthoNWw5H8uB0Dizb6O0uBybwtCf9rPxrA47Gw0fDWvC1yOb42R/73ovVwfbnNHTRYciyvX7Ulw/7AghMd1AvaqujGxTvdDPN5kUtv92AWO2icDGXjTo6Ge+ziWEw4oJoE9R1zs89KWaOGHQl+BTtHVPQlQoHV+G2r0hOxOWPa2u1c5MhqVPgiENanRVs9SJMk2CovLOzhEenQM2DnB5ExybZ5Zm3b2dGPxSc+wcbXDzdipXR5KtjZYfn2hFVXcHQm+k8u7y01Yp7FqWpOuzmTD/KGejk6nsYs/vk9oT4FX0ulbpyXr2L1evujfpXo167atiY6slPjoVe6e7V7MNWUaz7Zt6Vd148nadqunrzxc72YYuTceRmCPo0nTm6J5Z2l976jpDf9zPlZtp+Hk48tdzHRnbIei+U7Q61/FmTAf1fXl7+WmzXCSw9HtjSXn1PSI+jd8OhgPw34caYluEDItnd18j9moydo425p02l50Fy8ZDZhIGj1aktfoGQ+AQcDRv6QqDTkfaocMYdGVvn4ryx+zHo1YLj8wCFx91rfam/8DqFyA+VF2LN2K+jLRS9v8OlKNTWZGvqo3VESOAzf9T8++bQZVAN0ZOaUuvsQ2wKUVpls2hipsDPz/ZGjsbDX+fiWHO3qvW7lKplWkw8uzC4xyLSMDd0ZZFE9tTx6d4RT8Tb6SjtdHgHeBKl5F16ft0Y8Z/3pk+TzeiSuDdBax7ll7mz+lHOLU9iszU4meOe71PPTyc7LioS2HpsaKn6F4ZspL+K/ozcctE+q/oz8qQlcXuW3Ha12eb+HDtOV758yQZBiNd6niz/uUutAysVKDtTRnYkOqVnIhOzODTDcWbXmjp98aS8uv7ZxsvYjAqdKtXhR71fYrUtp2DLfaONnR6pDZuXkUfYb3H5v/B9ZMkRnkTOvsGkROeIbRXbxKXLzfbJhKXLye0V28ix483e9tCFJbFjkdXHxj+i3r7+AJ1TZ6NPYxcJOvwKB9/B6R4a0VhMsHiRyFsB/g2g0nbwdbezJtQiL6YQECj8lPsceHBcD5Ycw4brYbfJ7anY+3K1u5SqaLPNvHi4hNsuxCLs70Nv09qT6sCnmg/SGaqgcw0A55V8x5xMmab+G3KfjJS1GDIxlZLrZZVaNzVH/+6nkW+0j5//1WmrTuPl4s9O9/qUegkEbo0Hf1X9Mek3B1p0mq0bH50M74uxa8eXtj2dUmZTP7jBMcj1GmHk3vW5o2+9QtdqPZgWDyjZx8CYNHEdnStW/iTAEu/N5aUX9//r/1SnpsfhlYDG1/tRn3fomedSkvKwtnNHo25Ms6dXQHLJ2BI1xK6zi/39Gmtljo7the7or1BpyO0V2/1O8bMbQtRWCVyPG6dCvu/VW8P/hbaPG2edsuw0vp3QIq3irxptTBsJjh5ge407PzYrM0bjSY2/XKGtd8Hc+lw2Rw2zcvYDkEMb1kNo0nhpT9OsC9E1lTccSM5k9GzD7HtQiwOtlrmPNXGbAERgKOrXb4BEahB0JPTO9J9dD28A1wxZpsIORrL6q9P8seHh7lw4HqRtjumQxB1fFy5labnh9sL5wsjMjky14kzgEkxEZVinuKwhWn/YFg8g3/Yy/GIBNwcbZk9rg1v929Q6IAIoGPtyjzVMQiAd5efLlJNJ0u/N5aUX9+/2nEAgFFtA4sUEP3zuqSLh4P5AqK4EFj7CgD6mk/cu57UZEIfEVnszejDI3KfCJmxbSEKq0SOx17vqYVZB3wOrcebr90yrLz8HZCgqCJx84WhP6q3938PV/eYrWmtVoN7ZbUmx46FF4i6cMtsbVuTRqPhk0ea0sjPnfg0PWPmHubFxceJTjRPQdyy6nhEAoN/2Jdzsj3nqTZ0qu1d7HaP/n2VkKOxBV4n5OBkS5Pu1Rn537Y8NqUNjbr4Y+dgQ2Jseq508SaTgmIqWJt2Nlreu52ie8GBcK7cLFwGwkD3QLSa3H9atRotAW4BhWqnOO0risIvu8MYM/cwcal6Gvi6se6lLvRtVLVY2353YAMCvZy5npRZpCx9ln5vLCmvvmvQEhLtiIu9DW/0rVfoNjNTDSz/7BgRZ81cB0qfDn+NA30qBHXB/uEp6oWxf9JqsQ8KLPam7GsEWaxtIQqrRI5HGzvoOx06PC91vG4rL38HJCiqaBoMun1lQ4GVz0G6eYIXjUZD5xF1qNPGB5NRYeOsM9yMTDFL29bmZG/Dn892YHynGmg1sOGMjt5f7eKH7SFkGozW7l6JW3w4gsd/PciNlCzqVXVl3UtdijSV6t90V5M4sv4qW+aeK/Sxo9Fo8Alyp+eYBoz/vDM9xzSgYSf/nN9fDb7J7x8c5PimcNKSHlxbq0d9H3rWr0K2SSn0yb+viy9TO07NOYHWarRM7TjVbNPDHtR+SqaBF34/wYyNarrt4a3UdNs1/pVuuyic7W354nY2uiVHo9h16YZZ+16a5dV3+8SRKNkevNCjNlXcCp8+e/+KEG5EpHBgZSimYib2yGXD23DjvLoofMRc7KpVx2/6tLsnLVotftOnmWVai52vr8XaFqKw5Hi0jvLyvsuaoopInwa/dFOzpjQaCo/9ZrarHUaDiXU/BhN9KREnd3tGvNMad+/CV3Uvrc5fT+bDtec4Eq4Gk4Fezkwd0ojeDYt3Bb4syMo28uHac/x5RJ3q9FBTX74Y0RyXItRj+TdjtollM44SH51G/fa+9Hm6UbHb/KcNM09z9ZQ69VGr1VCjmTeNuvgT0MgLbT7TlcJuptL/mz1kmxQWTmhHt3qFC/x0aTqiUqIIcAuwyEl/Xu1fjk3h+UXHuRKXhr2Nlg+GNOLJ9oHmLQAKTFt3jvn7w/F1d2Tz692KtO7Kku+NJd3p+44zRmZuj8ffw5Edb/XA0e7elOb3E3XhFmu/CwYNPPp2a3xreZingyd/hzWTQaOFcWvUwqy3GXQ69BGR2AcFmv1kxZJtC1FYcjxaR2l73wsbG0hQVFFdPwlz+oApG4b+DC2fNFvTWRnZrPryBPHRqXj4OPHoO61xcjVvUgdrUhSFtaeu8+mGC8Qmq6MOPetX4YMhje8pflle6JIyef734wRHJaLRwDv9G/B891pmO9k+tiGcw2uv4OhqxxMftjf78WLIMhJ6/Abn911HdyUp535XLwd6jmlAYKO8E2hMX3eeefuvUtfHlY2vdi1SquWSsiY4mv+sOEOGwYi/hyM/j2lNiwBPi2wrQ29k4Hd7CI9P57HW1fniseYW2U5pdTMli55f7iI1K5tvRjXnkZaFq0tk0BtZMv0wyXGZNO1RnW6PF37qXZ50Z2HO7Voqvd6Dbm+bp10hhCiDJNGCKBj/ltDzf+rtje/ArStma9rByZYhLzfHzcuRtIQsbkWnma3tvGTrjdy6nkbkuXgyUvUW3RaoU7WGtqjG9jd78Fz3WtjZaNh56Sb9v9nDF5svkq4vX8Vej4bfYvAP+wiOSsTDyY4FT7fjhR61zRYQJcamc2xDOABdHqtrkQDazsGGhp38ePSd1jz+QTua9aqOnaMNqbey2LnoIqZ81hu92rsulZztCLmRyuLDpXPB6J10268uCb6bbvuVrhYLiECdUvrlY83RaGDZ8WvsuBhrsW2VRt9su0xqVjbNqnswtHm1Qj//6LqrJMdl4lrJgQ7DapmnU5nJsOwpNSCq0we6vGmedoUQooKQkaKKzGSE34ZAxH6o3hae3mTW4mMJujSyMrLxrVm8aSGKSSE1MYuU+AwyUgzUbnW3Dsi674OJPH93XZRnVWce+0+bXAU+LS3sZiofrj3H3tuZ6fw8HPnfoIYMaupn9mlLJUlRFH4/FMG0defJNik08HXjl7GtCapsvtEwxaSw+puTXA9JJLCRF4Nfbl5i75k+I5tDq8No1jsAT5/8s9wtOhTB+6vP4ulsx663euDpXHpGPWOSMpi8+AQnIhMBeKlnHV7vW69I2eWK4uP155mz7yo+bg5sfb07Hs6Fm0ZXFl2OTWHAt3swKfDXcx1pV7NwJQhuRqaw7LNjKCaFQS82o0az4icoQVFg+QQ4t1ItJPncXnCR8gFCiIqtsLGBlN+tyLQ28MgvMLMzXDsKe76AnlPM1nwl39wnz+nJepzc7B540nvpsA5dWBLJcRkkx2eSHJ+BKVuN3W1stdRqUSUnba2dozqP397RBkVRRx12LLpI/2cal9jJde0qriyc0I4t52P5aP15riVk8NIfJ1lcK5JpQxtTr2rR65ZYS6bByPurz7Ls+DUABjfz4/9GNMPZ3rx/Mq6HJnI9JBFbey3dn6hfokGkvZMt3UbXf+DjRrcN4PeDEVyKTeHbbSF8+HDjEujdgx0Ii+PlP04Sn6bHzdGWb0a2oE8xs8sV1lv967Pj4g2uxKUxbf05vh7ZokS3bw2f/H0BkwIDGvsWOiACCDtxA8WkUKe1j3kCIoCjc9SASGsLjy2QgEgIIYpARopEToE/NFp1tCiwvdk3cSMimfU/nqJu26pU8nVRA564TJLjMkhPyuKpzzrnnBBv+uUMYSdv5nq+VqvBtbIj7pUdGfhc05yRoNSELGzttTg42xJ7NZlVX57AZFLoOqoezXoWbp6/OWQajMzaHcbMXWFkZZuw0Wp4qmMNXutbF3fHsnEV/XpiBi/8fpxT15LQauA/AxvwTFfzrR/6t2sXb5GakEWDjn4Wab+g9JnZ2DvmHfTtC4ljzNzD2Gg1bHq1K3WtHOguOhTB1DVnMSnQ0M+dWWNamXUEz2RSMGQZcSjAiOvxiAQem3UAkwKzx7Updtrv0mz1yWheWxqMnY2Gra93L3JGvyvBN6la0x0Xj8JnrLtH9HGY2x9MBuj/KXScXPw2hRCiHJBECxIUFc3K5+D0EvAMguf3gaN538Pz+66z8/eL+f5+/Oedc04QLh/RcSsmDXdvp9s/jrh6OqAtwCL3U9uj2LcsBM+qzjz+fjtsbK2zbC7qVjof/32ezefUtRbervb8Z2BDhreslm+2s9Lg8JV4Jv9xgrhUPZ7Odvw4uhVd6prpanYplZGiZ8+Sy+iuJjFmWkds7PI+Zib9doxtF2LpVq8Kvz3d1ipTIxVF4YvNl/h5VxgAw1tV45NhTXGyL1zms/tJS8xi9TcnyUjV8+jbre8Z8c3LjA0X+GXPFaq4ObD19W6laoqhuSw6GM4Ha8+hKPBct1pMeaihtbsEGQlqJtHESGgwGEb9LnVThBDiNgmKJCgqmsxkmNUFEiOg8XB4dO69hbiK6eTWSC4d1uFWySFXwOPu7YSnrzM2ZsjspSgKwVujaNjZD0cX64/M7L58k2lrz3ElTk020TLQk+kPN6FpdTOl3zUTRVH47UA4H/99gWyTQiM/d34Z25oAr/zX2hRHTGgirl6OuHk5WqT9wjAaTCx6/yBpiVl0H12PJt3zHmG8GpdGv292YzAqzB/flp4NfPJ8nKXos038Z8VpVp6MBuCNvvV4uVcdswdn2+af59JhHQDVG1Ti4VdbPHAbmQYjg77fS9jNNIa18Ofbx1uatU/WpCgK32wL4fvtIQCM6RDItIebFGrdlqIonNgcQcNO/ji7mylgVBT4czRc3giVasCzu8HJ0zxtCyFEOSBBkQRFRRd5GBY8pKbp7vgS9P/E2j0qF/TZJubtv8r320NI1xvRaGB0u0De7lefSi7Wv6KeaTDy31VnWHlCPdke2sKfz4Y3M+vowz9lZWTz54eHyMo08vDLzfGr42mR7RTG6Z3X2Lv0Mq6VHBgzPf/Rok83XODXPVeoVcWFza91w66EUnTfKci6LzQOG62GGcObMrJNgEW2pc/MZtfvF7lyKg6jwUS/SY2p2+bBU+KCoxIZ/vN+TArMGtOaAU2sX6OiuIwmhffXnOWP25kHX+tTl1d71y10IHrxYAzbf7uAi6cDYz7qgG0haxrlaf93sPUDsHGAiVvAv0Xx2xRCiHJEUnKLogtsD0N/Um8f/BH2f2/d/hSToiic3RNN8DbrplK2t9XyfPfa7HizB0Nb+KMo8MfhSHp8uYtFhyIw5pMOuiREJ2YwYtYBVp6Ixkar4b1BDfl2VAuLBUQAh1aFkZakx8XdniqBpSMJRaMufjh72JOakMXFQzH5Pu6lXnWo7GLPlZtpLDwYUSJ9i03OZOQvh9gXGoezvQ1zn2pj9oDonynJ7R1t6TepCa0HBAGwb1kI+owHp5lvEeDJc91rA/De6jPcSrN8evy86NJ0HIk5gi5NV6x2Mg1GJi8+wR+HI9Fo4ONhTXitT71CB0TpyXr2LVdHmZr1rG6egCjiIGybpt4e+JkEREKUMINOR9qhwxh0xfs7I0oXCYpEbs0fh34fq7e3vg/Bf1q3P8Vw7VICu/+4xIGVYVwPSbB2d/D1cOS7x1uy9NkONPB1IynDwPurzzLkh30cC7/14AbM7EBYHEN+2MfZ6GS8XOxZNKEdkyyYUAHUaXNn96gjUj3GNMDWgsFXYdja2dCqnxoEHN8YgTHblOfj3B3teKu/mrHuu22XLX7iHxKbwvCfD3AhJhlvVweWPtuRHvXNO23PmG3i759Oc3xTeK77W/YLxMPHifQkPUfWXS1QW6/1qUu9qq7EpeqZuvacWftZECtDVtJ/RX8mbplI/xX9WRmyskjtJGcaGD//CJvO6bC30fLTE60Y0yGoSG3tWxZCVlo23gGuNO9jhmA29SYsfxoUIzQdCa2fLn6bQogCS1y+nNBevYkcP57QXr1JXL7c2l0SZiJBkbhXp5fVH4A1k+HyZuv2p4iq169EvfZVUUwKm+ecIz3ZOleu/619rcqsf7kL0x5ujLujLedjkhkx6yCDf9jLW8tOMWfvFfaFxBGXmmWR7SuKwtx9Vxk79wi30vQ0qebO2pc606mOZRMqGA2mnGQbDTv5Ub1+JYtur7Aad1XXe6TcyuTSofyv/o1sE0BDP3eSM7P5eusli/XnyNVbPDrzANGJGdTydmHVi53MvhbNZDSxdd45Is/Fc2xDOMnxGTm/s7Wzodvj9QBIuZWJUoARTQdbtairjVbDulPX2XAm/1E3c9Ol6Zh2cBomRQ1oTYqJaQenFXrE6EZKJo//cohDV27h6mDLgqfb8lDTomVGDD8TR8jRWDQa6DmmQfHXTZqMsHISpMSAd30Y/I0kVhCiBBl0OmI+mAqm2xfOTCZiPpgqI0blhNQpEnnrMx3S4uDUn/DXUzBujUVSdVuSRqOhxxMNuBmZSkJMGlvmnuPhV1uUiuxvtjZanupUg0HN/Phi0yX+Oh7F2ehkzkYn53qct6sDDXzd1B8/dxr4ulHHxxXHIk7BydAbmbLyNKuDrwMwvGU1Ph3etMjtFcbxTeEk6NJxcren06N1CvakHZ/AxfXg3xICO0JQJ/CqZZETQVt7G1r2C2T/8lDO7Y2mURf/PB9no9UwdUgjHv/1EH8cjmRMhyAa+Jp3HeOGMzG8tjQYfbaJVoGezHmqLV5mXn+mmBR2Lr5E2ImbaG01PPR8M9wrO+V6TGCjyoz4Txuq1ij462tW3ZMXutfmx52hvL/6LO1relHZ1Qyppx8gMjkyJyC6w6SYiEqJwtelYOubIuLTGDv3CJG30vF2tWfB0+1oUq1ogag+M5vdf6pBc/PeAfgEmeEY2fMFXNkFds4wciE4uBa/TSFEgenDI+4GRHeYTOgjIrHzLfvrKCs6SbQg8mc0wJInIGQLOHrChM3g08DavSq0WzFpLPvsGNlZRto8VIP2D9eydpfuEZ2YwZlriVyISeGSLoWLumQibqWT16fTRquhprcL9X3daOjrRn1fNViqXsnpvlPfom6l89yi45yPSc5ZPzS+U40SSS19KyaNpR8fwWRUCrxwn7gQ+LEt8K83wbXq3QApsCNUbawWIjYDg97IuT1qQJRfzaI7Xvj9OBvP6uhcpzK/T2xvtvdx3r6rfPT3eRQF+jWqyvejW5o9aFUUhX1/hXB65zU0Wg0DnmlCrZZVzNZ+VraRoT/u56IuhUFN/fjpyVZmazs/ujQd/Vf0zxUYaTVaNj+6uUBB0dnoJMbPP0Jcqp5AL2cWTmhX5DpEAIfXXuHYhnDcKjsy+oP22DkUcx+G7YRFjwAKPPIrNB9VvPaEEIVm0OkI7dU7d2Ck1VJnx3YJikohyT4nQZF56dNg4VC4dhTcq6lZjjxKvihqcV0+omPrvPMADH65OUGNS3/F93R9NpdjU7kYk8zF24HSRV0KiemGPB/v5mBLvTujSrdHlur7uuHuaMe+kDhe/vMECekGKrvY89OTrehQq+Teg2y9kWMbwkmITWfAs00KFkCsegFO/QFBnSGgnbq4/PoJMP5rGqSDOwS0h6COENgJqrUCW8uPTETdSqf317vRZ5v4dWxr+jUu3heiyaQwY+MFZu9V1++M6xjE1CGNC5X6uaDunLAD9BnfkPodHjw9LD1Zz9G/r9J+SC0cXR+c7v5sdBJDf9qP0aTw4xMtGdws75E3c1oZsjJnCp1Wo2Vqx6kMrzv8gc87EBrHs4uOk5qVTSM/dxZMaIuPW/HSxeszsjm0Oowazb0JbFTMz1rydZjVFdLjoNVT8HDZToIjRFmWuHz53Sl0Wi1+06fhOWKEtbsl8iBBkQRF5pd+C+YNgLhL4F1PHTFy9rJ2rwpt1x+XOL83ms6P1aV5L8ukM7Y0RVG4kZLFhZjk2yNK6k/ojRQMxrw/ytU8nYhJysCkQLPqHswa0xp/T6c8H2tpiqIULCBKiIDvW6qLySftgOqt1fsNGRB9AiIPqEFS1BHQp+R+ro0DVGt9N0gKaFekYsSKopCWqMe1Uv4B1v9tusjPu8IIquzMlte74WBbtNGArGwjby07zbpT6rTGdwc04Pnulkl6EXs1meWfHwOg2+P1aNqjYBc5Vn11gushiTTq4k/PMQUbMf5662W+3x5CJWc7trzenSpulg9WdWk6olKiCHALKNAI0YYzMby2JBi90USHWl78Oq4N7o7Wr3GWw2iA34ZA5EHwbQoTt4Gd9et7CVGRGXQ69BGR2AcFyghRKSZBkQRFlpF0Deb2g+RoqNYGnloL9kWfWmIN2QYjcVGp+NYqXYVTzcFgNHHlZlrOaNLF20HT9aTMnMeMaF2dj4c1KZH1Q3dkZWRj52BT+HVc69+AY3OhVg91PVt+jNkQe1Y9YYw4oP6bdjP3YzRaqNrk7nS7oE7gev8Mbgk6dQ2aPtPIkx+2R5vPAvnUrGx6frmLmylZTBnYICcldWEkZRh4duExDl+9hZ2Nhi9GNGdYy2qFbqcwzuy6hj4zm9YDahT4OddDE1n15QkAHn2ndYE+R/psE0N/2s+FmGT6N67KrDGtS2S6ZkEtOhTBB2vOoigwoLEv3z7eotifj7hrqVSu5mK+17n1A7UmkYM7PLsLKhf+GBNCiIpIgiIJiiznxkWYPwAyEqBOXxj9J9iUoiuqhWQymvI92S0vktINXIpNwc5GQ4sAzxI9IVUUhQ0zz5CelEXvpxrh5V/AIDpFB982A2MWPLUeanYtzEYhPuzuSFLkAUgIv/dxXrXVkaSgztDk0Xum2+kzs1n03kEyUw0PnF627FgUby8/jauDLTvf6lGo0ZDriRmMn3+Ey7GpuDrY8svY1nS2UBZAxaSgKeZUvO2/nefiQR3eAa489p82Bfr8nLuexNAf95NtUvju8RYMbWHZgK8gFEXh220hfLddrR/0RPtAPhrapNhTFRN0aSz5+Ah+tT146Plm2DsVM5fRxQ2wZLR6e+RCaDS0eO0JIUQFIsVbheX4NIAn/gJbJwjdCmteujcLSxmRoEvjr0+PcuXkzQc/uAzzcLajXU0vWgZWKvEr9GEnbhJ+Oo64a6ko/06WcD8HflADooAOUKNL4Taq0YB3HWg1Dh6ZCa+egjcuwIh50PYZdcQIDdwKg5O/w+oXYOUz9zRj72hLi9s1ZY5tjMhV3PTfHm1VnabVPEjNKlyK7ou6ZIb/fIDLsalUdXfgr+c6WiwgCj8dx8ovT5CZmvd6tILqNLwODs62xEWlcmZ3dIGe09jfg5d71QVg6tpz3EjJfMAzLMtoUnhv9dmcgOjV3nX5ZFjxAyLFpLBr8SVM2Qo2tlrsHIs5IpsQAaufV2+3f0ECIiGEsDAJikThBLSDkb+BxgZOL1ELvJZBFw/piI9OY/tv50m6mW7t7pQ7mWkG9i69DECr/kFU9i9g6uD0W3Bsvnq721vmSb3t7q+OBg36El7YD+9eVYP7Tq8AGji/BuJC73la0x7VcXCxJTE2nZCjsfk2r9Vq+GBIIwCWHI3i3PWkB3bpQFgcj808iC45k7o+rqx8sTON/C0zwn3tUgKbfj2L7koSp3ZEFastJzd7OgxTp28dXnuFtKSC1dJ6sWdtGvu7k5hu4H+rzmKtCQqZBiMv/XGCxYcj0Wjgo6GNeb1vPbNcMDi//zrXQxKxtdfSfXT94rWZnQXLnoLMJHW6ct/pxe6fEEKI+5OgSBRevf4w9Cf19sEfYX/Zy4TUbkhN/Gp7oM80sunXs2QbjNbuUrlycGUo6cl6Kvk602ZgjYI/8dBMMKSBX3Oo08cynXOqpB7D/T5S/wU4POueh6mjRYEAHNsQft/RorY1vBjczA9Fgenrzt/3pH9NcDRPzTtCSlY27Wp6sfz5TlSzUOIL3dUk/v75NMZsEzWbe9N2UI1it9moiz8+NdwxZBo5uv5qgZ5jZ6Plq5HNsbPRsPV8LKuDCzbKZE4pmQbGzz/CxrM67G20/Di6FWM71jBL22mJWRxYGQZAh6G1cfcu5v7c8h5cP6keq48tAFvz1qgSQghxLwmKRNG0GA19P1Jvb30fgv+0bn8KycZGS79JjXF0tSMuKpV9f4VYu0vlRvSlBM7vjwGgx5gG2NgV8M9MZjIc+UW93fVNixRovUeHF9R/g/+AjMR7ft2sR3UcnNXRotDj+Y8WAUx5qCEOtloOX73FprP3VjdXFIVfdofx6pJgDEaFQc38WDihHR7OllmXF3ctlfU/nCI7y0j1BpXoP6mJWdbQabUauo9Ws9Z1fKTgi/4b+Lrzau/b0+jWnOOiLrnERoxupGQy6pdDHLpyC1cHWxY83ZZBzR6chryg9iy9jD4jG58gN5r2LGbJgrMr4Miv6u3hs8GzbGbKFEKIskaCIlF0nV+Bji+pt9dMhsubrdufQnKt5EjfCY1AA+f2XufS4XtPZEXhZOuN7Fx8EYDGXf3xr+NZ8CcfnaNOF/KuDw2GWKaD/1azO/g0UkenTi6659f2TrY0762elF49FXffpqp5OvFcN7Uw8CcbLpD5j9FHo0lh2rrzzNiovjcTu9Tkh8fNX5T1jsTYdNZ+H0xWeja+tdx56IVmBQ9OC8AnyJ1uj9fDoZAB3fPda9O0mgfJmdkM+HYvzaZt4YnZh5ix4QLrT18nIj7N7IFSRHwaI2Ye5HxMMt6u9ix5tgOdzLh268rJm1w5eROtVkPPsQ0Ln2nxn+JCYe0r6u2ub0LdvubppBBCiAcqZmocUd4YdDr04RHY1wgqWO79vh9BWpy6vuivp9RU3QHtLN9RMwlsVJk2D9Xg2N/h7Fp8kSoBbgXPkibukZlmwMHZDmcPIx2H1yn4E/XpcPD2lMyub4BWPYEv9PFYWBoNtH8e1r0Ch39VF7Tb5P6z2KxXAN7VXanR7MEn0s/3qM1fx65xLSGDufuuMrlnHTINRl5bEsymc2rQ/d6ghkzqWsv8r+U2RVHYtuA8Gcl6vANcGfxSc+wcLJeGXVEUEnTpePk9+HNja6Plh9Et+c/K05yITCQlM5sDYfEcCIvPeYy7oy1Nq3vQpJoHzap50rSaBwFeTkVao3M2Oonx848Sl5pFoJczCye0o4a3eT/fLp4OePm7ULOZN97VC7h2Li+GDHUdkT4VgrpAj/+ar5NCCCEeSFJyixxFrtJsNMCfo9WMdI6eanFXn4IVdywNTCaFdd8Hk6030f+ZxrhWksKIxWEyKSTHZeDp41zwJx2aBZveBc8gePkE2NiWXNVwQwZ83QgybsHIRdDo4WI1t+rkNV5fegpnextWT+7Mf1ee4VhEAvY2Wr4e1ZzBzfzN1PH8Jcams2fpZfqMb4SzexHWoyhKgaYvZmVks3HWGWKvJDF6avtCraUxGE1cjk3hbHQSp68lcTY6iQsxKeiN92a09HCyo2k1D5pW91D/reZB9Ur3D5QOhMXx7MLjpGZl09DPnd8mtMXHzTKfbWO2CRSKNxq37jU4Ph9cqsDz+8BNCkIKIURxSJ0iCYqKxKDTEdqrd+4U21otdXZsL9gVen0aLBwK146CezWYuAU8ijm3vgRlphmwc7TBppzXLSqVsvXwfQu1MPDgb6DNhOIfj4W1fTrs/QoCO8GEjfk+TJ+ZTVpiFpV88x9tMJkUhs88QHBUIrZaDdkmBXdHW34d14YOtSqbv++3KYpinrTr2Xr44zGIvwKTtoFb1ftuc/XXJ7kekkiNZt4MerFZsTatz1YDpTPRSZyJvhMoJWMw3vs15elslxMg3QmYqnmqgdKGMzG8tiQYvdFE+5pezH6qDe6O5l27ZTIpxZsq909nV8DyCYAGxq6C2j3N064QQlRghY0NZPqcAEAfHnFvzSGTCX1EZMFOQu1d1DTH8wZA3CVY9Ig6YuTsZZkOm5mjS+4TppRbmbh5yYhRQZ3eeY3UhEzaDq6JnX0hp2qd+lMNiNz8oMWTgBmOx8JqOwn2f6cWe70eDP4t7nnI9ZBENs46g4unPaP+1y7fQqharYapQxrxyM8HyDYp+Hs4smBCO+pVdTN/v2/TZ2azYeYZWvYNJKhJMQOvHdPhyi719s5P4OH8s0tqNBq6j67P0o+PEH46jqunblKzeZUib9reVkuTaurUudslS3MCpdPXkm4HS4lc0qWQmG5gb0gce0PurvWq5GxHfV83Dl+9haLAgMa+fPt4C7Ov3co2GFn++XHqtPahZb/A4l1MiQ+Dta+qt7u9JQGREEJYiVwWFwDY1wjKWceRQ6vFPiiw4I04e8HYlepIUdxlWPyYOoJUhpiMJvYvD2Hx1EPcjEyxdnfKhOT4DA6uDuPklkjCjt8o3JON2bDvG/V2p5fB1gEw0/FYGO7+0GiYejuP9NwAXv4uGI0m4qPTuHLq/kV/WwZW4n8PNWRQUz9WvtjZogFRtsHIhplniL6UwPaFFzBkFSO9/OXNavHcO04ugtjz932Kl78LLfqqySj2Lg3BoDdvevs7gdIT7QOZMbwp61/uytlp/Vn7Umc+eaQJj7cNoLG/O7ZaDQnpBg5dUQOi0e0C+enJVhZJZnF8YwTx11I5s/MahsxivN7sLFj+NOhT1FHK7v8xXyeFEEIUigRFAgA7X1/8pk+7eyJ6ew1Hoa/Ke1SHMSvVtUXRx9TkC0aD2ftrKRqNhsTYdIwGE5t+PUNWetnpuzUoisLuPy6TnWXEr44H9dsX8ng5twoSroJzZWg9Pudusx2PhdHhRfXfsysg5d70244udjS7nW756N/hKPepWwTwTLda/PRkK3w9LDfiaDSa2Dz7HNGXErBzsGHQC82KnlQhKRpWPafebv8CNBwCiqlABZrbPFQT10oOpNzK5PjG8KJtvxAcbG1oVt2TJ9sH8dmjzfj7FTVQWjO5Mx8Na8I3o5rz6SNNsDHX9LZ/iI9O5cSmCAC6jqp3zyhzoWz9AGJOgZMXPDrnniQfQgghSo4ERSKH54gR1NmxncDffqPOju1FX9Tu0wCeXAa2TmryhTUv3TsVqpTSaDX0Ht8INy9HkuMy2f7bhRKrpVLWGI0m9i65TOS5eLS2GnqOaZDvlLI8mUzqOh5Q6wXZ516nY7bjsaCqt4bq7cCoh2Pz8nxIi96B2DnYEH8tlaun75+i29IUk8L2BRcIPx2Hja2WQS82o2rNIq6nNGbDiomQkQB+LaDvNOgzDbS2ELoNQrff9+l2DjZ0HVkPgJNbIknQlfwIsaOdDc0DPBnbIYhHWlY3z/qqfzGZFHb+fhGTSaFmc29qtyr6VEEurL87KvnIL+BRzTydFEIIUSQSFIlc7Hx9cWnfrvhX5APawcjfQGOjpuve9oF5OlgCHF3s6P9sE7S2Gq6eiuPU9ihrd6nUyUjRs+67YM7sjgagy4i6900+kKdLG+DmBXBwh7bP5PkQsx2PBdXhefXfY3PVqU3/4uhql1Oc8+jfV60WMCuKwu4llwk5GotWq2HAs02oVr9S0Rvc9SlEHlT3xWPz1WmMlWvf3S9b3gfT/aeJ1WzhTVCTynj4OBdvCl8pZTSa2P3nJWKvJmPvaEO3x+sXPfBKiIA1t0cmO70C9fqZr6NCCCGKRIIiYTn1+sPQH9XbB36A/fkv2C5tqtZwp8uIugAcXBlGTFiSlXtUeiiKwsZZZ4i+nIidgw0Dn29K0x6FzDSoKLD3S/V2u2fAydPs/SyShg+ra+LSbqrT6PLQok8Atg42xEWlEn4mPs/HWNqV4Juc2xMNGujzdKMC1VDKV+h22Pu1envId+D1jxpK3d8BRw+4cQ6CF9+3GY1GQ+/xDRn1v7b4BJW/DKBb5pzj/N7roIFuj9fDtZJD0RoyGtRMc5lJUL0t9C47F4yEEKI8k6BIWFaLJ6DvdPX21vch+E/r9qcQmnSvRp3WPphMClvmnC2XV7+LQqPR0HlEXbz8XXj03dbUalGEKURh2+H6SbBzvruWpzSwsVMz0QEc+lkN3v7FydWeZj2qgQZuRCSXcAdVtZpXoVbLKvQa25C6bfNPmf1AKTpY+SygQJsJ0GR47t87e0G3t9XbOz6BrNT7Nufkao+Nbfn8WmnQ0Q87Rxseer4p9Tv4Fb2h7dPV9ZaOHvDoXPWYE0IIYXVSp0hYnqLAlvfg4O1RI+966tqNgNs/3vXvzTRWSugzs1nzzUla9A2kbptinHyWcYpJIf56Kt7V3XLdV6g1RP80b6Ca/rrDizBghpl6aSbpt9RirtkZMH4D1Oh8z0MyUw2kJ+vx8i/klMFiCD1+g6AmlXMSKRS7LpHJqNYWC98LVZvApO1gl0dSiOws+KkdJISr2dF6Tnlg08ZsE8HbItFnGuk4rHbR+2hl2QYjtv/IXpeZZiheYoXLW9QaUACjFkPDwcXsoRBCiPwUNjYonWeionzRaKDvR+qVaFDTdQf/DutegZ87wOc1YNFw2PUZhO2ATOtcfc+LvaMtI95tkysgMhrLRtIIc9FnZLNh1hmWf34818hIkQOiiANqQGRjr6bhLm2cvaD54+rtQz/n+RBHV7sSC4iy9UZ2LLzA5tln2f3HpZx1TMVOJLDnSzUgsnOBxxbkHRCBur6oz4fq7QPfQ3LMA5vWhSVxaPUVTm6O4GZU2Uxtf+mwjsUfHCI5LiPnvmIFRLmy+z0vAZEQQpQyEhSJkqHVwuBv4O0rMHopdHkDanRVp09lJanTqXbNUIu+fhYIP3eCda9C8B8QF5rnNKaS8s+T/8Qb6Sx+/xBXgu9fp6a8SIxNZ/nnxwg/HQcKJMdlFr/RPbfXErV4Qq0PVBq1v51w4eLf6gjJfSTdTLfYib/6/h/nwoEYNBrwrOpknoav7oXdn6m3h3wL3nXv//hGw9TRXUM67Pz4gc1Xq1+JOq19UBTY8+elB6YvL00UReHw2itsm3+e1ISsnGQixWLMhhWTIOMW+DW/O6VYCCFEqSHT54R1GbMh9ixcOwpRhyHqCCRG3Ps4Jy91ql31thDQHqq1uieFc0nYsegCF/arV8qb9qxO5+F1sLErn9cWIs/Fs2XuObLSs3HxdGDg802pWqOYn63oEzC7p5qV8OXj4FXTPJ21hEWPqCOXHV+C/p/k+ZCQo7FsnX8enyA3Hn2ntVnTQIcev8GORRcwZBpxcrOj38TGVG/gVfyGU2/CrC6QqoOWY2DoTwV7XtQRmNsX0MDze8G36f03k5DFHx8ewpBlpOfYBjTqXEoD4H/I1hvZvvACocfUIsSt+gfSYWjtoo+K3rHjY9jzBdi7wXO71cx+QgghLMri0+f27NnDkCFD8Pf3R6PRsHr16ly/j42NZfz48fj7++Ps7MyAAQMICQm5b5sLFixAo9Hk+nF0tFzBQ1GK2NiCfws1A9mjc+C10/DmZRj1u5qqNqAD2DioV1gvb4IdH8Fvg2FGAMzqCn+/Baf/Uq/ml0B83310fVr0CQDgzM5rLP+/YyTGplt8uyVJURRObolk/Y+nyErPxreWO49NaVP8gAju1iVqOqJ0B0SgFjAFOLEQsvIeCfKv54nWRkPs1WSiLtwyy2aN2Sb2/nWZzbPPYshUi+KO+l878wREJhOselYNiKo0gIH/V/DnBrSDxo8At9cIPuDz5lrJgXZD1H18cGUYmamluxByerKe1d+cJPTYDbRaDT3HNqDjI3WKHxCF7bw7OjrkWwmIhBCilCp0UJSWlkbz5s356ad7ry4qisKwYcO4cuUKa9as4eTJkwQFBdGnTx/S0u5fzM/d3Z2YmJicn4iIPEYLRMXgVhUaDoF+H8HEzTDlmroIvP8MdRqPezVQjKA7DUdnw8pn4Lvm8GU9ODLbol2zsdXSeURdBk1uhqOLHXFRqfz16VEuHdZZdLslKfT4DQ6sDEVRoGFnP4a93goXjyKmH/6nGxfg4npAo06fLAUMOh1phw5j0OWx/+r0gcp1ICs536yJLh4ONOmqFt08uj7cLHWLMtMMhByNBdSRimGvt8TF0wzvP8D+b9XRL1sndR1RPqOt+b4vvaeqa8Gu7FKLuj5A057VqVzNhcw0AwdXhxW7+5aSdDOd5Z8dI/ZqMg7Otjz8agvzjGylxN7N7td6vHox4D7uezwKIYSwKNvCPmHgwIEMHDgwz9+FhIRw6NAhzp49S+PGjQGYOXMmvr6+/Pnnn0yaNCnfdjUaDb4lVaBRlC229lC9jfrT8Xb65qRr6nSeO9PuYk5D2g3Y8LZaZ6VOb4t2qUZTb0a9146t885xPSSRbfPPo7XRlIsMdbVb+VCzeSzVG3jRtEc1800Ju1MLp+EQ8GlgnjaLIXH5cmI+mKqOnmi1+E2fhueIf5y0arXq2qINb8HhmWqq7jyyJLbsH8jZPdHoriRx7WICAQ2LN6Lj4uFAv4mNMWQZqdm8COnO8xN5SJ3GBfDQF+DTMM+H3fd98aoJ7Z5VM0lueQ9q9VRHe/NhY6Ol2+j6rPryBJcO6Wg3uKb5AjwzcvZwwMnNDq2NhsEvNcezqnPxGzUZ1Qs2aTfApzEM+Oy+D3/g8SiEEMKizLoYIitLrQD/z6lvWq0WBwcH9u3bd9/npqamEhQUREBAAEOHDuXcuXMP3FZycnKuH1GBeFRXa6oMmAHP7IApUdBqHKCoGZ5SYi3eBddKDgx9vSVtB9XAt5Z70er1lBI3IpLJNqh1mLRaDQOfb0qzntXNFxDdugJnl6u3u71lnjaLwaDT3T0BBTCZiPlg6r1X6JuPBgcPtf8hW/Jsy8XDgUZd1VGFo39fLfRokcmkLuwPO3Ej577qDbzMGxCl31ILhipGaDZKXUuUhwK9L93eAqdKcPMinFz4wE371/Gky2N1GfVe21IXEN3ZV3b2Njz0YjNGvNvGPAERqBcBru5Wk8k8tgDs8k+SUeDjUQghhMWYNShq0KABgYGBTJkyhYSEBPR6PZ9//jnXrl0jJib/NK7169dn3rx5rFmzht9//x2TyUSnTp24du1avs+ZMWMGHh4eOT8BAQHmfCmirLFzUtdH+DSGtJvqFVqT5YutarUa2g2pxSNvtsopWmk0mgg5FmuWqVQl4fy+66z4v+PmTff8b/u+BcUEdfqq2besTB8ecfcE9A6TCX1EZO77HFyh9Tj19uGZ+bbXql8QWlsNMaFJRF9OLHA/0pP1rPs+mGMbwtmx8AIZKfoCP7fAFAVWvwDJ0ep0wEFfqWny81Cg98WpEnR/V72989N811v9U/PeAVTyLfnEKPkxGU3s+fMSR9dfzbnPxcMBR1czFVIN3w+7PlVvD/oaqtS778MLfDwKIYSwGLMGRXZ2dqxcuZLLly/j5eWFs7MzO3fuZODAgWjvU5yzY8eOjBs3jhYtWtC9e3dWrlxJlSpV+OWXX/J9zpQpU0hKSsr5iYqKMudLEWWR3e11EnbO6hXafV+X2Ka1NneP7yNrr7Blzjk2/3qWrPTSu7jcePvEcOfvFzEZFQxZRkxGCwRySdFqanUoFaNEAPY1gu6dCqfVYh8UeO+D2z0LGq26jib2fJ7tuVZyoHFnf+ydbElNKFja8uuhifz1yRGuXUzA1l5L9yfq4+RmX8hXUgAHf1KTlNg4qJ8PB7d8H1rg96XNRHWaatpNNeAthBsRyaQlZRXqOeakz8jm759Pc2Z3NEc3hHMr5v7rXQstLQ5WTFQvAjR/AlqMfuBTCnU8CiGEsAiz5xJu3bo1wcHBJCYmEhMTw6ZNm4iPj6dWrVoFbsPOzo6WLVsSGhqa72McHBxwd3fP9SMEVerBQ7czPe38VC0UWsKc3R3Q2mgIO3mTpR8fRXclqcT78CAZKXrWfRecU4Ol/cO16P9Mk5zRLrM68AOYDBDUBQI7mL/9IrDz9cVv+rS7J6K313DY5bWu0TMQGtwutHl4Vr5tthtSi3GfdKRBB7/7bltRFE5siWD11ydJS9JTydeZx/7TlnrtLLCm8tpx2DZVvT1gxgPTaBf4fbG1v1tr5+CP6hq/AgjeFsmyz46xf3n+f9stKTkugxVfHCfy3C1s7bQMeLYJXn5mHMEymWDV85ASA9711LVbBVCo41EIIYRFFDrRQkF5eHgAavKFY8eO8dFHHxX4uUajkTNnzvDQQw9ZqnuiPGvxBFzdA6eXqAUTn98HzmZIZ1xAzXsH4Fvbgy1zzpIcl8mqL0/QfmgtWvYNLH56XzOIu5bChp/PkHIrEztHG/o+3ci861f+KfUmHF+g3u72pmW2UUSeI0bg0qUL+ohI7IMC738C2uFFuLAWTi9VM7C5VL7nIQWZemUymtj061munooDoF67qnR/oj72jhb4U5yRCMvHgylbzdrYZkKBnlbg96XBYAjsBJEH1AQOj+QfMN7hX9cTUOs7efm7ENS4MpWrueQaabUU3ZUkNsw8TUaKAWcPewa92AyfIDNfTDv4A4RuBVvH26NyrgV+aqGORyGEEGZX6G/i1NTUXCM4V69eJTg4GC8vLwIDA1m2bBlVqlQhMDCQM2fO8OqrrzJs2DD69euX85xx48ZRrVo1ZsyYAcD06dPp0KEDderUITExkS+++IKIiIj7ZqsTIl8ajbpuIvoYxIeq6ylGL8l3HYUlVK3hzsj/tWPX4ouEHrvBwVVhRF9KoPf4Rji7W2CKVAEZDSb+/uk0qQlZeFRx4qEXmuHlb8G1Hod+huwM8G+lZiorZex8fQt28hnYQV0LFXMKjs+/7zRARVGIunALJ1d7qgTmnqqmtdHiVtkRra2GriPr0birv/nXb6mdgLUvQWIkVKoBD39fqOO/QO+LRgP9P4bZveDUn2qmPv8W932KT5A7TbtV48zuaA6vucLhNVewtddStaY7zXoGWCxZScixWLYvuIAx24R3gCuDXmyGayUz18KLOgLbb4+eDfwcqjYudBMFPh6FEEKYXaEvzx07doyWLVvSsmVLAN544w1atmzJBx98AEBMTAxjx46lQYMGvPLKK4wdO5Y//8xd4yMyMjJX4oWEhASeeeYZGjZsyEMPPURycjIHDhygUaNGxXltoiJzcIUR89V1FJc3qSfnJd0FJ1v6TWxMzzENsLXTcj0sCX1Gdon3459s7LT0HNuAoCaVGfGfNpYNiDIS4egc9Xa3t0o0KDU7jUYdLQL1NRnzXyt2YnME674/xYGV6sUjRVHXa93RaXgdRk5pS5NuZkx3/m9H58CFdaC1Uz8Hjh6W2U611tD0MfV2AQq6AnQeUZdOw+sQ2LgyDs62ZOtNRF9KJCv97mcj7loqOxZe4Pz+69yKSUMxFW+tm9FgwphtokYzbx55s5X5A6KMBDW7nykbmjwKrZ4yb/tCCCEsTqOUlRRZD5CcnIyHhwdJSUmyvkjcdWS2WmdGawcTt0C1VlbpRvz1VJJvZuSapqYoiuVOiv+xjZT4TDJSDFSt6Z7rfktvm91fwM6PwacRPL8/zxo/ZUp2FnzTRK078+jcfAtxJsdnsPj9Q5hMCkNeac6lwzpS4jMZ9nrLEpkmxvVgmNsXjHq1Nk6HFyy7vcRI+KENGLPUEdn6edexy4tiUkjQpaO7kkRgY6+cYOXU9ij2LQvJeZyDsy2+tTzUn9oeVK3pjp29TaG6GXE2noBGXmjNPYVVUWDpGLUwcaWa8NwecJTvICGEsLbCxgYSFInyTVHgr3HqepBKNW6fsFjoqnkhRF9K4Mj6q/R5uhFuXua5aq27koTuShLJcZkkx2eQHJdJSnwG2XoTDs625q3B8iBZqfBtU8i4dd8AoszZ9bmaarlaG3hme74P27noAuf3x4AGUECj1TD0tRZUq1fJsv3LTIZfu6t1leoPgscXl8wI3dapsP9bqFwXXjwINsVLbX0jIpmwkzfRhSVxIzyZbEPudNWPvNkS/7rqe5lyKxNFUXDzcswJ9DNS9Oz9K4Quj9W1/HTVQ7Ng07tgYw8Ttz5wCqEQQoiSUdjYwGKJFoQoFTQaePgH9ep5Qjise1WdTmTFqVyKSWH3n5dI0KWz9JMj9B7X8L6JDrINRlLiM0mOzyQlLiNX0PPwKy1yFviHHI3l9M48soBp1JTR/5zCZXHH56sBkVctaPxIyW3X0tpMgL1fquvVoo5CQNs8H9Z6YA0uHtRhMik4e9jTf1KTnCQDFqMosP41NSDyCIChP5bccd71DTi5COJD1MQa7Z4pVnM+Qe45SRCMRhPx11KJCVOD/hvhyVT5R4KE4K2RnN55DRcPe3xre+AT5M65vdEkx2WSlZ7NkJctWBcr+oQ6bRCg3ycSEAkhRBkmQZEo/5w8YcQ8mD8Azq2Cmt2hzdNW645Gq2HQ5GZsmXOOGxEpbJh5hmY9q1OrRRWS4zOo3conJxvZodVhHN8UkW9byfEZOUGRb20P0pP1uHs74lbZCXdvR9wrO+Hm5YiNXQlOXTNkqmm4Abq8DtrCTXMq1VyrqGtogher69QC5uf5MHdvJ3qObcCN8GTaDKpZMsk1TvwGZ1eA1lY93ksw4yKOHtBjijpVddcMaDbSbCOyNjbanCCpea97i3TrM7LRajWkJekJO3GTsBM3AXD3dqTLY3XM0oc8ZSbB8qfVdPMNBhc7EBRCCGFdMn1OVBz7v4OtH6jpcp/ZUaTsUOZkzDZxcHUYp7blLjz82JQ2OVfJg7dFsn95KLYONrhXdsTd+26w4+7tiH9dTxycizdVyeyOzoG/3wT36vDKSbWmTXkScxp+6QoaG3jtDHhUs3aPIPacmgUuO1OtH9T51ZLvg9EAP3dUR4s6vwZ9p5XYpg16Izcjkm+PJiXj5GZHx0dq4+RqoWNPUdSA6Nwq8AiE5/eAk4WnRgohhCgUWVMkQVGpZdDp0IdHYF8jyCJpZx/YvskEf4xU64h414Nnd4G9BbOvFVD4mTgOrAjFZFRw93ak4yN1clI5Z6UbMBkVHF3tLJ8YwRyMBvi+FSRFwsD/g/bPWbtHljF/EETsU0fC+nxo3b5kpcLsnhB3Ger0hSf+sl5Si4sbYMloNevjy8fUwrfl0bF5sP51dVRuwmao3sbaPRJCCPEvhY0Nyng6KFFWJC5fTmiv3kSOH09or94kLl9e8u1rtWqBSTc/9QRywztm7UNR1WjqzRMfdmDMRx15+NWWuWrbODjb4eRmXzYCIoAzy9SAyKUKtBpn7d5Yzp2MbscXgD7dql1hw9vq8ezmB4/8Yt0sf/UHQo2uaia6OzV7yhvdWdj4H/V2nw8lIBJCiHJCgiJhcQadjpgPpqojNQAmEzEfTMWg05V8+y7eMHw2aLQQ/Duc/sssfRCAyQh7v1Zvd5wMdk7W7Y8l1R8InkFqfZrTS63Xj+A/4NQf6vH86FxwqWy9voCa2KHfx+rtM8vg2nHr9sfcslJg2Xg16KvbHzpMtnaPhBBCmIkERcLi9OERdwOWO0wm9BGR1mm/ZlfodnuUaP3rEBdqln5UeBfWqutJHD2gzURr98aytDZ3pwYenlWgoqVmd/OSunYLoMd/oUbnku9DXvxbQLPH1dsFLOhaJsSHwdz+6jHu5g/DZpb92ltCCCFyyF90YXH2NYLuPXnQarEPMs96gyK13/0ddZqPPhWWj1czpomiUxTY85V6u/3zFaN4ZcsxYO8KNy/ClZ0lu+3MZHXEwpAOtXqoKbFLk97vqwlNIg+oRU3Lukub4NeecOMcuPjA479bf1ROCCGEWUlQJCzOztcXv+nT7gYuWi1+06eZLdlCkdrX2qjT6Jwrg+4MbH3fLH2psEK2QOwZNUho/7y1e1MyHD2gxZPq7UMzS267lzerWd5unFdP0IfPLn1pzz2qQ8eX1NtbP4BsvXX7U1QmE+z8FP4cBVlJUL2dWgC6Wmtr90wIIYSZSfY5UWIMOh36iEjsgwItl32usO2HbIXFI9Tbo36HhkPM3q9yT1Fgbj+4dgQ6vQL9PrJ2j0pOfBj80BpQ4KXj4G3BujipN2HTu2otIlDXNI2YD9VL6Ql6Vgp83xLSbsKAz6FDGQuW02/BymfVbJUAbZ+B/p+WvxTzQghRTkn2OVFq2fn64tK+nUUCoiK3X7eveiIPsGYyJORfKFXkI3yvGhDZONwdHagoKteGegPU24dnWWYbiqImVPiprRoQabTqMfviodIbEAE4uEHP/6q3d3+mJqUoK2JOw6891IDI1lHN6jfoSwmIhBCiHJOgSIjeH0C1NmqF+hUT1Vo7ouD2fKn+22ocuFW1bl+s4c4ISPAfkJFo3rZvXYVFw2D1C2pQ4dtULTzc7yOwdzbvtiyh5Tio0kDt+53jpLQL/hPm9oXECHU0buJWaP64tXslhBDCwiQoEsLGDkbMAwcPuHYUdnxs7R6VHcF/wNXdahHLzq9auzfWUbM7+DQCQxqcXGSeNo3ZsP97de3QlV3qaEWfafDMTvBvaZ5tlAQbW+h7ezrlkV/VIK+0ytar2fxWPw/ZmWoh3Gd3gV8za/dMCCFECZCgSAiASkEw9Af19v5vIWSbVbtT6pmMsHWqOoIB0HYSeAZYt0/WotHcTS5x+Fc1oCmOmFMwp5ea/CM7Q82S+MIB6PKaGsCXNXX7qhnyjHrYPs3avclb8nVYMAiOzlH/3/1deOIvcPaybr+EEEKUGAmKhLij0VD15B5g1XOQHGPd/pRWWSmw5Ek1eATo+ib0n2HVLllds5Hg5AVJkXBpQ9HaMGSogeavPdXAyNEDHv4Rnlqnrl0qq3IKumrg3CqIOmLtHuUWvh9+6a6ui3PwgNFL1bVQUoNICCEqFPmrL8Q/9fsEqjaF9DhY+Yw6IiLuunUV5vSFyxvVxArD56hrsir6CaSdE7SZoN4uSnruq3tgZic10FSM0GgYTD4KrcaqQUVZ59v0bvryzf8rHQVdFQUO/gy/DYG0G+DTGJ7dCfUHWLtnQgghrKCCn8kI8S92jvDYfLBzUbOqlZXF4SUhfB/M7gU3L4CrLzy9EZo9Zu1elR5tJ6lrqyIPwPXggj0nIwHWvKSemN+6Am7+8PgfMPK38pe0otd7YOesjsicX23dvujT1KQqm6eoQWjTx2DS1rI9IieEEKJYJCgS4t+868Lgr9Xbuz9Tg4GK7th8WDgUMm6pC/2f3Vm600Fbg7sfNH5Evf2g9NyKAudWw4/t7iZnaDsJJh+GBoMs2k2rcfe7m/5+24eQnWWdfsSHwZw+anpzra1aQ2n4bLB3sU5/hBBClAoSFAmRl+aPQ/MnQDHBikmQFmftHlmHMRs2vAPrXwNTNjQeDuM3gLu/tXtWOrW/nXjizHJIic37MUnRsOQJWPaUOm3Lux48vQkGfQWOBS88bdDpSDt0GINOZ4aOl5BOL4NrVUgIh0WPwP7vIPpEyU1TvbRRrT9047zaj6fWqynVCzFFsUy+70IIIR5IoyilYXJ38RW2aq0QD5SVCrN7QtxlqNtPXYBdkdbOZCTAsqfhyk71/z3fg25vlY81LpY0p686Raz7f6DnlLv3m0xwfB5s/RD0KaC1g65vqIkqbB0KtYnE5cuJ+WCq2qZWi9/0aXiOGGHe12Epp5ep6/X4x1ePgzsEdYIaXdRse75NQWtjvm2ajLBrBuz5Qv1/QIfbUxQLV0i6TL/vQghRwRQ2NpCgSIj70Z1V19EYs9QMWp1etnaPSkZcCPz5OMSHqutAHvkFGj1s7V6VDWdXwvKnwaUKvHZWXad28xKsfQWiDqmPqd4WhnwPVRsVunmDTkdor97qifkdWi11dmzHzrdwJ/lWc+MChO2Aq3sh4gBkJeX+vaMHBHW+GyRVbVL0CxLpt9TR3rDt6v/bPad+lm3tC9VMuXjfhRCiAilsbGBbAn0SouzybQIDZsDfb6jrIDyDyn9wELpdHSHKSgL36jD6TylgWRgNh4B7NUiOhlN/QtpNdYTCqAd7V+g9FdpOLPJIiD48IveJOYDJhD4isuycnPs0VH86TlZHcXSn1bV7d4KkzCQ1tfmd9OaOnrcDpNtBkk+jggVJMadg6RhIjARbJxjyHTQfVaQul4v3XQghRL5kpEiIB1EUdbrPmWWABgZ+Du2fs3avzE9R1AQBm/+rrqUKaA+jfgdXH2v3rOzZ940aRP9T3X4w6OtiF7kt9yMWxmzQnbobJEUeBH1q7sc4eUGNzmqAVKMLVGl4b5AU/Aesfx2yM6FSDfVY9m1a5G6V+/ddCCHKGZk+J0GRsARjNmx8G47NU//f6WXoM738rDHK1sOGN+HEQvX/LZ6Ewd8Ueq2LuC39FnzdCLIzwNlbDaSbPGq29VgVam2LMRtigtUU+eH7IOIgGNJyP8a5sjrdrmY3COyofk6PzVV/V7cfDP8VnCoVuysV6n0XQogyToIiCYqEpSiKOgKwfZr6/8bDYdhMdc1IWZYWD3+NhYj9oNFC3+nQ8SVJqFBclzbB9ZPqqKKzl9mbN+h06CMisQ8KrFgjFUaDWgcqfI8aJEUeAkN6Hg/UQI//QLd3zHrxosK+70IIUcZIUCRBkbC0U0thzWQwGdSr048vNstVaKuIPacmVEiMVDOAPToX6vWzdq+EKLhsvRp85gRJh8HBFYb+BPX6W7t3QgghrESCIgmKREm4sguWjoWsZPCuD2OWg2egtXtVOBc3qGul9KlQqSaMXgI+DazdKyGKx2hQi7LKSKcQQlRohY0NysmCCCFKWK0e8PRGcPOHuEswp4+a6aosUBTY+7VaQFSfqi5Wf2aHBESifLCxk4BICCFEoUlQJERR+TaBSdvU9MCpsTD/IQjdZu1e3Z8hE1Y+e3tdlAJtJsLYVRZZ8yKEEEIIUVZIUCREcXhUgwmb1NEWfSosHgknf7d2r/KWooMFg+DMX6CxgYe+hMFfq1fWhRBCCCEqMAmKhCguRw8YsxKajgTFqCZh2PW5Ok2ttLh+En7tCdHH1EKYY1dBu2es3SshhBBCiFJBgiIhzMHWXq2F0uUN9f+7PoW1L6uLvq3JkAFHZsO8gZByHbzrqeuHanW3br+EEEIIIUoRW2t3QIhyQ6OBPlPVKXUb3oaTiyAlBh77TU0RXJKSr6vB0PEFkHFLva9OXxgxVx3ZEkIIIYQQOSQoEsLc2k5Ss9Itn6AmXljwEDyxDNyqWn7b147DoZ/h/GowZQNgsA1AX+1h7HtNxs4CAZFBp0MfHoF9jSApZikKxJLHjByPQgghikLqFAlhKdeOwx8jIT0OPALVWkZV6pt/O0YDXFgLh2bCtaN37w/qTGJqa2JmrgSTCbRa/KZPw3PECLNtOnH5cmI+mGqx9kX5Y8ljRo5HIYQQd0jxVgmKRGkSHwaLR8CtK2qCg9F/QlAn87SdfgtO/KZOk0uOVu+zsYcmI6DD8xg0VQnt1Vs9QbxDq6XOju1muYJu0Oks2r4ofyx5zMjxKIQQ4p+keKsQpUnl2jBxK1RvC5mJsHAYnFtVvDZvXIR1r8HXjWDbh2pA5FIFuv8HXjsLj8wEv+bowyNynyACmEzoIyKLt/3bLN2+KH8seczI8SiEEKI4ZE2REJbm4g3j1sKKSXDpb1j2tJoIoePkgrdhMkHYdnWKXNj2u/f7NoUOL0KTR8HWIddT7GsEgVZ7z5Vz+6DAYr6gkmlflD+WPGbkeBRCCFEcMlIkREmwd4ZRi9QkDCiw+b+wacq9V7b/TZ8GR+fAT+3UaXhh2wENNBgM4zfAc3uhxRP3BEQAdr6++E2fpp4oQs4aC3NNJbJ0+6L8seQxI8ejEEKI4pA1RUKUJEWB/d/Btqnq/xs+rNY3snPK/bjEKDjyq7pmKDNJvc/BHVqOVYuuetUs8CYNOh36iEjsgwItcoJo6fZF+WPJY0aORyGEECCJFiQoEmXDmeWw6nkwGSCgg5qAwakSRB1WU2pfWA+KUX1spZrQ4QV1RMjBzbr9FkIIIYQoAwobG8iaIiGsoekIcPWBJWMg6hDM7asGPNdP3n1Mze7qeqG6/e5OCRJCCCGEEGYnQZEQ1lKzG0zYBIsfg/hQ9T4bB2g2Uh0ZqtrYuv0TQgghhKggJCgSwpqqNoJJW2H7R1C5FrR+Ws1WJ4QQQgghSowERUJYm7u/WltICCGEEEJYhSxUEEIIIYQQQlRoEhQJIYQQQgghKjQJioQoAINOR9qhwxh0ujLZvih5sk+FEEKIskOCIiEeIHH5ckJ79SZy/HhCe/UmcfnyMtW+KHmyT4UQQoiyRYq3CnEfBp2O0F69wWS6e6dWS50d27Hz9S317YuSJ/tUCCGEsL7CxgYyUiTEfejDI3Kf3AKYTOgjIstE+6LkyT4VQgghyh4JioS4D/saQaD918dEq8U+KLBMtC9KnuxTIYQQouyRoEiI+7Dz9cVv+rS7J7laLX7Tp5ltGpSl2xclT/apEEIIUfbImiIhCsCg06GPiMQ+KNAiJ7eWbl+UPNmnQgghhPUUNjawLYE+CVHm2fn6WvTE1tLti5In+1QIIYQoO2T6nBBCCCGEEKJCk6BICCGEEEIIUaFJUCSEEEIIIYSo0CQoEkIIIYQQQlRoEhQJIYQQQgghKjQJioQQQgghhBAVWqGDoj179jBkyBD8/f3RaDSsXr061+9jY2MZP348/v7+ODs7M2DAAEJCQh7Y7rJly2jQoAGOjo40bdqUDRs2FLZrQgghhBBCCFFohQ6K0tLSaN68OT/99NM9v1MUhWHDhnHlyhXWrFnDyZMnCQoKok+fPqSlpeXb5oEDBxg9ejQTJ07k5MmTDBs2jGHDhnH27NnCdk8IIYQQQgghCkWjKIpS5CdrNKxatYphw4YBcPnyZerXr8/Zs2dp3LgxACaTCV9fXz799FMmTZqUZzujRo0iLS2N9evX59zXoUMHWrRowaxZswrUl8JWrRVCCCGEEEKUT4WNDcy6pigrKwsAR0fHuxvQanFwcGDfvn35Pu/gwYP06dMn1339+/fn4MGD991WcnJyrh8hhBBCCCGEKCyzBkUNGjQgMDCQKVOmkJCQgF6v5/PPP+fatWvExMTk+zydTkfVqlVz3Ve1alV0Ol2+z5kxYwYeHh45PwEBAWZ7HUIIIYQQQoiKw6xBkZ2dHStXruTy5ct4eXnh7OzMzp07GThwIFqteRPdTZkyhaSkpJyfqKgos7YvhBBCCCGEqBhszd1g69atCQ4OJikpCb1eT5UqVWjfvj1t2rTJ9zm+vr7Exsbmui82NhZfX998n+Pg4ICDg0PO/+8sjZJpdEIIIYQQQlRsd2KCgqZPMHtQdIeHhwcAISEhHDt2jI8++ijfx3bs2JHt27fz2muv5dy3detWOnbsWODtpaSkAMg0OiGEEEIIIQSgxgh34pL7KXRQlJqaSmhoaM7/r169SnBwMF5eXgQGBrJs2TKqVKlCYGAgZ86c4dVXX2XYsGH069cv5znjxo2jWrVqzJgxA4BXX32V7t2789VXXzFo0CCWLFnCsWPH+PXXXwvcL39/f6KionBzc0Oj0RT2ZZUZycnJBAQEEBUVJVn2yhHZr+WP7NPySfZr+SP7tPyRfVo+FXa/KopCSkoK/v7+BWq/0EHRsWPH6NmzZ87/33jjDQCeeuopFixYQExMDG+88QaxsbH4+fkxbtw43n///VxtREZG5lpj1KlTJ/744w/ee+89/vvf/1K3bl1Wr15NkyZNCtwvrVZL9erVC/tyyix3d3f5oJdDsl/LH9mn5ZPs1/JH9mn5I/u0fCrMfi3ICNEdxapTJEqe1GMqn2S/lj+yT8sn2a/lj+zT8kf2aflk6f1q3pRwQgghhBBCCFHGSFBUxjg4ODB16tRcmfdE2Sf7tfyRfVo+yX4tf2Sflj+yT8snS+9XmT4nhBBCCCGEqNBkpEgIIYQQQghRoUlQJIQQQgghhKjQJCgSQgghhBBCVGgSFAkhhBBCCCEqNAmKSoEZM2bQtm1b3Nzc8PHxYdiwYVy6dOmexx08eJBevXrh4uKCu7s73bp1IyMjI+f3t27d4sknn8Td3R1PT08mTpxIampqSb4U8Q/m2q81atRAo9Hk+vnss89K8qWI2x60T8PDw+/ZV3d+li1blvO4yMhIBg0ahLOzMz4+Prz99ttkZ2db4yVVeObap3n9fsmSJdZ4SYKC/f3V6XSMHTsWX19fXFxcaNWqFStWrMj1GPleLT3MtU/lO7V0Kch+DQsL45FHHqFKlSq4u7szcuRIYmNjcz3GHJ9VCYpKgd27dzN58mQOHTrE1q1bMRgM9OvXj7S0tJzHHDx4kAEDBtCvXz+OHDnC0aNHeemll9Bq7+7CJ598knPnzrF161bWr1/Pnj17ePbZZ63xkgTm268A06dPJyYmJufn5ZdfLumXI3jwPg0ICMi1n2JiYpg2bRqurq4MHDgQAKPRyKBBg9Dr9Rw4cIDffvuNBQsW8MEHH1jzpVVY5tind8yfPz/X44YNG2aFVySgYH9/x40bx6VLl1i7di1nzpxh+PDhjBw5kpMnT+Y8Rr5XSw9z7VOQ79TS5EH7NS0tjX79+qHRaNixYwf79+9Hr9czZMgQTCZTTjtm+awqotS5ceOGAii7d+/Oua99+/bKe++9l+9zzp8/rwDK0aNHc+7buHGjotFolOjoaIv2VxRMUfaroihKUFCQ8s0331i4d6Io8tqn/9aiRQtlwoQJOf/fsGGDotVqFZ1Ol3PfzJkzFXd3dyUrK8ui/RUPVpR9qiiKAiirVq2ycO9EUeW1X11cXJSFCxfmepyXl5cye/ZsRVHke7W0K8o+VRT5Ti3t/r1fN2/erGi1WiUpKSnnMYmJiYpGo1G2bt2qKIr5PqsyUlQKJSUlAeDl5QXAjRs3OHz4MD4+PnTq1ImqVavSvXt39u3bl/OcgwcP4unpSZs2bXLu69OnD1qtlsOHD5fsCxB5Ksp+veOzzz6jcuXKtGzZki+++EKmWpUS/96n/3b8+HGCg4OZOHFizn0HDx6kadOmVK1aNee+/v37k5yczLlz5yzbYfFARdmnd0yePBlvb2/atWvHvHnzUKQMYKmR137t1KkTS5cu5datW5hMJpYsWUJmZiY9evQA5Hu1tCvKPr1DvlNLr3/v16ysLDQaTa6CrY6Ojmi12pzzJXN9Vm3N8QKE+ZhMJl577TU6d+5MkyZNALhy5QoAH374IV9++SUtWrRg4cKF9O7dm7Nnz1K3bl10Oh0+Pj652rK1tcXLywudTlfir0PkVtT9CvDKK6/QqlUrvLy8OHDgAFOmTCEmJoavv/7aaq9H5L1P/23u3Lk0bNiQTp065dyn0+lyBURAzv/ls2pdRd2noE7H6dWrF87OzmzZsoUXX3yR1NRUXnnllZLouriP/PbrX3/9xahRo6hcuTK2trY4OzuzatUq6tSpAyDfq6VYUfcpyHdqaZbXfu3QoQMuLi68++67fPrppyiKwn/+8x+MRiMxMTGA+T6rEhSVMpMnT+bs2bO5RgvuzJl87rnnePrppwFo2bIl27dvZ968ecyYMcMqfRUFV5z9+sYbb+Q8p1mzZtjb2/Pcc88xY8aMXFdORMnKa5/+U0ZGBn/88Qfvv/9+CfdMFFVx9uk/72vZsiVpaWl88cUXEhSVAvnt1/fff5/ExES2bduGt7c3q1evZuTIkezdu5emTZtaqbeiIIqzT+U7tfTKa79WqVKFZcuW8cILL/D999+j1WoZPXo0rVq1umf9dXFJUFSKvPTSSzmLw6pXr55zv5+fHwCNGjXK9fiGDRsSGRkJgK+vLzdu3Mj1++zsbG7duoWvr6+Fey7upzj7NS/t27cnOzub8PBw6tevb5lOi/vKb5/+0/Lly0lPT2fcuHG57vf19eXIkSO57ruTRUc+q9ZTnH2al/bt2/PRRx+RlZUlJ1pWlN9+DQsL48cff+Ts2bM0btwYgObNm7N3715++uknZs2aJd+rpVRx9mle5Du1dLjf3+B+/foRFhZGXFwctra2eHp64uvrS61atQDznQPLmqJSQFEUXnrpJVatWsWOHTuoWbNmrt/XqFEDf3//e1IUXr58maCgIAA6duxIYmIix48fz/n9jh07MJlMtG/f3vIvQtzDHPs1L8HBwWi12nuGioXlPWif/tPcuXN5+OGHqVKlSq77O3bsyJkzZ3L9Ad+6dSvu7u73BMjC8syxT/MSHBxMpUqVJCCykgft1/T0dIB7rjTb2NjkjOLL92rpYo59mhf5TrWuwvwN9vb2xtPTkx07dnDjxg0efvhhwIyf1eLliBDm8MILLygeHh7Krl27lJiYmJyf9PT0nMd88803iru7u7Js2TIlJCREee+99xRHR0clNDQ05zEDBgxQWrZsqRw+fFjZt2+fUrduXWX06NHWeElCMc9+PXDggPLNN98owcHBSlhYmPL7778rVapUUcaNG2etl1WhFWSfKoqihISEKBqNRtm4ceM9bWRnZytNmjRR+vXrpwQHByubNm1SqlSpokyZMqWkXob4B3Ps07Vr1yqzZ89Wzpw5o4SEhCg///yz4uzsrHzwwQcl9TLEvzxov+r1eqVOnTpK165dlcOHDyuhoaHKl19+qWg0GuXvv//OaUe+V0sPc+xT+U4tfQryN3jevHnKwYMHldDQUGXRokWKl5eX8sYbb+RqxxyfVQmKSgEgz5/58+fnetyMGTOU6tWrK87OzkrHjh2VvXv35vp9fHy8Mnr0aMXV1VVxd3dXnn76aSUlJaUEX4n4J3Ps1+PHjyvt27dXPDw8FEdHR6Vhw4bKp59+qmRmZpbwqxGKUvB9OmXKFCUgIEAxGo15thMeHq4MHDhQcXJyUry9vZU333xTMRgMJfAKxL+ZY59u3LhRadGiheLq6qq4uLgozZs3V2bNmpXv/heWV5D9evnyZWX48OGKj4+P4uzsrDRr1uyedM7yvVp6mGOfyndq6VOQ/fruu+8qVatWVezs7JS6desqX331lWIymXK1Y47PquZ2h4QQQgghhBCiQpI1RUIIIYQQQogKTYIiIYQQQgghRIUmQZEQQgghhBCiQpOgSAghhBBCCFGhSVAkhBBCCCGEqNAkKBJCCCGEEEJUaBIUCSGEEEIIISo0CYqEEEJYVI8ePXjttddKdJu//vorAQEBaLVavv322xLdthBCiLLH1todEEIIIcwpOTmZl156ia+//ppHH30UDw8Pa3dJCCFEKSdBkRBCiHIlMjISg8HAoEGD8PPzs1o/jEYjGo0GrVYmZQghRGknf6mFEEKYTVpaGuPGjcPV1RU/Pz+++uqrXL9ftGgRbdq0wc3NDV9fX5544glu3LgBgKIo1KlThy+//DLXc4KDg9FoNISGhgJq0DN06FBcXV1xd3dn5MiRxMbGArBgwQKaNm0KQK1atdBoNEyfPp3KlSuTlZWVq91hw4YxduzYnP+vWbOGVq1a4ejoSK1atZg2bRrZ2dk5v//6669p2rQpLi4uBAQE8OKLL5Kamprz+wULFuDp6cnatWtp1KgRDg4OREZGFvctFUIIUQIkKBJCCGE2b7/9Nrt372bNmjVs2bKFXbt2ceLEiZzfGwwGPvroI06dOsXq1asJDw9n/PjxAGg0GiZMmMD8+fNztTl//ny6detGnTp1MJlMDB06lFu3brF79262bt3KlStXGDVqFACjRo1i27ZtABw5coSYmBjefPNNjEYja9euzWnzxo0b/P3330yYMAGAvXv3Mm7cOF599VXOnz/PL7/8woIFC/jkk09ynqPVavn+++85d+4cv/32Gzt27OCdd97J1df09HQ+//xz5syZw7lz5/Dx8THfmyuEEMJyFCGEEMIMUlJSFHt7e+Wvv/7KuS8+Pl5xcnJSXn311Tyfc/ToUQVQUlJSFEVRlOjoaMXGxkY5fPiwoiiKotfrFW9vb2XBggWKoijKli1bFBsbGyUyMjKnjXPnzimAcuTIEUVRFOXkyZMKoFy9ejXnMS+88IIycODAnP9/9dVXSq1atRSTyaQoiqL07t1b+fTTT3P1bdGiRYqfn1++r3fZsmVK5cqVc/4/f/58BVCCg4PzfY4QQojSSUaKhBBCmEVYWBh6vZ727dvn3Ofl5UX9+vVz/n/8+HGGDBlCYGAgbm5udO/eHSBnmpm/vz+DBg1i3rx5AKxbt46srCwee+wxAC5cuEBAQAABAQE5bTZq1AhPT08uXLiQb9+eeeYZtmzZQnR0NKBOdRs/fjwajQaAU6dOMX36dFxdXXN+nnnmGWJiYkhPTwdg27Zt9O7dm2rVquHm5sbYsWOJj4/P+T2Avb09zZo1K/qbKIQQwiokKBJCCFEi0tLS6N+/P+7u7ixevJijR4+yatUqAPR6fc7jJk2axJIlS8jIyGD+/PmMGjUKZ2fnYm27ZcuWNG/enIULF3L8+HHOnTuXM20PIDU1lWnTphEcHJzzc+bMGUJCQnB0dCQ8PJzBgwfTrFkzVqxYwfHjx/npp5/u6buTk1NOoCWEEKLskOxzQgghzKJ27drY2dlx+PBhAgMDAUhISODy5ct0796dixcvEh8fz2effZYz0nPs2LF72nnooYdwcXFh5syZbNq0iT179uT8rmHDhkRFRREVFZXTxvnz50lMTKRRo0b37d+kSZP49ttviY6Opk+fPrlGm1q1asWlS5eoU6dOns89fvw4JpOJr776Kieb3F9//VWId0cIIURpJiNFQgghzMLV1ZWJEyfy9ttvs2PHDs6ePcv48eNzgojAwEDs7e354YcfuHLlCmvXruWjjz66px0bGxvGjx/PlClTqFu3Lh07dsz5XZ8+fWjatClPPvkkJ06c4MiRI4wbN47u3bvTpk2b+/bviSee4Nq1a8yePTsnwcIdH3zwAQsXLmTatGmcO3eOCxcusGTJEt577z0A6tSpg8FgyOn7okWLmDVrVnHfMiGEEKWEBEVCCCHM5osvvqBr164MGTKEPn360KVLF1q3bg1AlSpVWLBgAcuWLaNRo0Z89tln96TfvmPixIno9XqefvrpXPdrNBrWrFlDpUqV6NatG3369KFWrVosXbr0gX3z8PDg0UcfxdXVlWHDhuX6Xf/+/Vm/fj1btmyhbdu2dOjQgW+++YagoCAAmjdvztdff83nn39OkyZNWLx4MTNmzCjCOySEEKI00iiKoli7E0IIIcQ/7d27l969exMVFUXVqlXN1m7v3r1p3Lgx33//vdnaFEIIUfZJUCSEEKLUyMrK4ubNmzz11FP4+vqyePFis7SbkJDArl27GDFiBOfPn8+VEU8IIYSQRAtCCCFKjT///JOJEyfSokULFi5caLZ2W7ZsSUJCAp9//rkEREIIIe4hI0VCCCGEEEKICk0SLQghhBBCCCEqNAmKhBBCCCGEEBWaBEVCCCGEEEKICk2CIiGEEEIIIUSFJkGREEIIIYQQokKToEgIIYQQQghRoUlQJIQQQgghhKjQJCgSQgghhBBCVGgSFAkhhBBCCCEqtP8HstZTcdfJjvoAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "min_max_field = 'temperature C'\n", + "gate_max = tol.groupby('dayofyear')[min_max_field].apply(np.max)\n", + "gate_min = tol.groupby('dayofyear')[min_max_field].apply(np.min)\n", + "gate_avg = tol.groupby('dayofyear')[min_max_field].apply(np.mean)\n", + "stdev = tol.groupby('dayofyear')[min_max_field].apply(np.std)\n", + "(gate_avg + stdev).plot(label='avg+stdev')\n", + "(gate_avg - stdev).plot(label='avg+stdev')\n", + "gate_max.plot(label='max', figsize=(10, 5), style='.')\n", + "gate_min.plot(label='min', style='.')\n", + "gate_avg.plot(label='avg', style='--')\n", + "plt.legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Histogram\n", + "We can use a histogram to \"bucket\" values and see which buckets are most common. Let's try this with the temperature data:" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 54, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGdCAYAAAD0e7I1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAmT0lEQVR4nO3df3BU5b3H8c+GZAOB7IYAScglCXhFMPLDa6ywVW+rpASIDghOoUUNNqOVBgtEbeVeCrfq3ABWVCyIOkpgrKKZolYsWAwQbktECVEBNaKigSabUDDZBJofJOf+YbPjCghsdrObh/drZmc85zz77Pc8Hs1nnn32HJtlWZYAAAAMFRHqAgAAAIKJsAMAAIxG2AEAAEYj7AAAAKMRdgAAgNEIOwAAwGiEHQAAYDTCDgAAMFpkqAsIB+3t7aqqqlJsbKxsNluoywEAAOfAsiw1NDQoOTlZERFnnr8h7EiqqqpSSkpKqMsAAAB+OHTokAYNGnTG44QdSbGxsZK+HiyHwxHiagAAwLnweDxKSUnx/h0/E8KO5P3qyuFwEHYAAOhmzrYEhQXKAADAaIQdAABgNMIOAAAwGmEHAAAYjbADAACMRtgBAABGI+wAAACjEXYAAIDRCDsAAMBohB0AAGA0wg4AADAaYQcAABiNsAMAAIxG2AEAAEaLDHUBQCAMvv+NoPX9xZLsoPUNAAg+ZnYAAIDRCDsAAMBohB0AAGA0wg4AADAaYQcAABiNsAMAAIxG2AEAAEYj7AAAAKMRdgAAgNEIOwAAwGiEHQAAYDTCDgAAMBphBwAAGI2wAwAAjEbYAQAARiPsAAAAoxF2AACA0Qg7AADAaIQdAABgNMIOAAAwWtiEnSVLlshms2nevHnefU1NTcrLy1O/fv3Up08fTZs2TTU1NT7vq6ysVHZ2tmJiYpSQkKD77rtPJ0+e7OLqAQBAuAqLsPPuu+/qqaee0qhRo3z2z58/X6+//rqKiopUUlKiqqoqTZ061Xu8ra1N2dnZamlp0c6dO7V27VoVFhZq0aJFXX0KAAAgTIU87DQ2NmrmzJl65pln1LdvX+/++vp6Pfvss1q+fLmuv/56ZWRkaM2aNdq5c6fefvttSdJf/vIXffjhh3r++ed1+eWXa+LEiXrwwQe1cuVKtbS0hOqUAABAGAl52MnLy1N2drYyMzN99peVlam1tdVn//Dhw5WamqrS0lJJUmlpqUaOHKnExERvm6ysLHk8Hu3fv79rTgAAAIS1yFB++Pr167Vnzx69++67pxxzu92y2+2Ki4vz2Z+YmCi32+1t882g03G849iZNDc3q7m52bvt8Xj8PQUAABDmQjazc+jQIc2dO1d/+MMf1LNnzy797IKCAjmdTu8rJSWlSz8fAAB0nZCFnbKyMtXW1uqKK65QZGSkIiMjVVJSohUrVigyMlKJiYlqaWlRXV2dz/tqamqUlJQkSUpKSjrl11kd2x1tTmfBggWqr6/3vg4dOhTYkwMAAGEjZGFn3Lhx2rt3r9577z3v68orr9TMmTO9/xwVFaXi4mLveyoqKlRZWSmXyyVJcrlc2rt3r2pra71ttmzZIofDofT09DN+dnR0tBwOh88LAACYKWRrdmJjYzVixAiffb1791a/fv28+3Nzc5Wfn6/4+Hg5HA7dfffdcrlcGjt2rCRp/PjxSk9P16233qply5bJ7XZr4cKFysvLU3R0dJefEwAACD8hXaB8No8++qgiIiI0bdo0NTc3KysrS6tWrfIe79GjhzZu3KjZs2fL5XKpd+/eysnJ0QMPPBDCqgEAQDixWZZlhbqIUPN4PHI6naqvr+crrW5q8P1vBK3vL5ZkB61vAID/zvXvd8jvswMAABBMhB0AAGA0wg4AADAaYQcAABiNsAMAAIxG2AEAAEYj7AAAAKMRdgAAgNEIOwAAwGiEHQAAYDTCDgAAMBphBwAAGI2wAwAAjEbYAQAARiPsAAAAoxF2AACA0Qg7AADAaIQdAABgNMIOAAAwGmEHAAAYjbADAACMRtgBAABGI+wAAACjEXYAAIDRCDsAAMBohB0AAGA0wg4AADAaYQcAABiNsAMAAIxG2AEAAEYj7AAAAKMRdgAAgNEIOwAAwGiEHQAAYDTCDgAAMBphBwAAGI2wAwAAjEbYAQAARiPsAAAAoxF2AACA0Qg7AADAaIQdAABgNMIOAAAwGmEHAAAYjbADAACMRtgBAABGI+wAAACjEXYAAIDRCDsAAMBohB0AAGA0wg4AADAaYQcAABiNsAMAAIxG2AEAAEYj7AAAAKMRdgAAgNEIOwAAwGiEHQAAYDTCDgAAMFpkqAsAgGAbfP8bQen3iyXZQekXQGAxswMAAIxG2AEAAEYj7AAAAKMRdgAAgNEIOwAAwGiEHQAAYDTCDgAAMBphBwAAGI2wAwAAjEbYAQAARiPsAAAAo4U07Dz55JMaNWqUHA6HHA6HXC6XNm3a5D3e1NSkvLw89evXT3369NG0adNUU1Pj00dlZaWys7MVExOjhIQE3XfffTp58mRXnwoAAAhTIQ07gwYN0pIlS1RWVqbdu3fr+uuv1+TJk7V//35J0vz58/X666+rqKhIJSUlqqqq0tSpU73vb2trU3Z2tlpaWrRz506tXbtWhYWFWrRoUahOCQAAhBmbZVlWqIv4pvj4eD388MO6+eabNWDAAL3wwgu6+eabJUkff/yxLr30UpWWlmrs2LHatGmTbrjhBlVVVSkxMVGStHr1av3617/WkSNHZLfbz+kzPR6PnE6n6uvr5XA4gnZuCJ5gPdVa4snWJuCp54CZzvXvd9is2Wlra9P69et1/PhxuVwulZWVqbW1VZmZmd42w4cPV2pqqkpLSyVJpaWlGjlypDfoSFJWVpY8Ho93duh0mpub5fF4fF4AAMBMIQ87e/fuVZ8+fRQdHa277rpLr7zyitLT0+V2u2W32xUXF+fTPjExUW63W5Lkdrt9gk7H8Y5jZ1JQUCCn0+l9paSkBPakAABA2Ah52Bk2bJjee+897dq1S7Nnz1ZOTo4+/PDDoH7mggULVF9f730dOnQoqJ8HAABCJzLUBdjtdl188cWSpIyMDL377rt6/PHHNX36dLW0tKiurs5ndqempkZJSUmSpKSkJL3zzjs+/XX8WqujzelER0crOjo6wGcCAADCUchndr6tvb1dzc3NysjIUFRUlIqLi73HKioqVFlZKZfLJUlyuVzau3evamtrvW22bNkih8Oh9PT0Lq8dAACEn5DO7CxYsEATJ05UamqqGhoa9MILL2j79u1688035XQ6lZubq/z8fMXHx8vhcOjuu++Wy+XS2LFjJUnjx49Xenq6br31Vi1btkxut1sLFy5UXl4eMzcAAEBSiMNObW2tbrvtNlVXV8vpdGrUqFF688039aMf/UiS9OijjyoiIkLTpk1Tc3OzsrKytGrVKu/7e/TooY0bN2r27NlyuVzq3bu3cnJy9MADD4TqlAAAQJgJu/vshAL32en+uM8Ovgv32QHM1O3uswMAABAMhB0AAGA0wg4AADAaYQcAABiNsAMAAIxG2AEAAEYj7AAAAKMRdgAAgNEIOwAAwGiEHQAAYDTCDgAAMFpIHwQKXMh4nhcAdA1mdgAAgNEIOwAAwGiEHQAAYDTCDgAAMBphBwAAGI2wAwAAjEbYAQAARiPsAAAAoxF2AACA0fwKO59//nmg6wAAAAgKv8LOxRdfrOuuu07PP/+8mpqaAl0TAABAwPgVdvbs2aNRo0YpPz9fSUlJ+vnPf6533nkn0LUBAAB0ml9h5/LLL9fjjz+uqqoqPffcc6qurtY111yjESNGaPny5Tpy5Eig6wQAAPBLpxYoR0ZGaurUqSoqKtLSpUv16aef6t5771VKSopuu+02VVdXB6pOAAAAv3Qq7OzevVu/+MUvNHDgQC1fvlz33nuvPvvsM23ZskVVVVWaPHlyoOoEAADwS6Q/b1q+fLnWrFmjiooKTZo0SevWrdOkSZMUEfF1dhoyZIgKCws1ePDgQNYKAABw3vwKO08++aR+9rOfadasWRo4cOBp2yQkJOjZZ5/tVHEAAACd5VfYOXDgwFnb2O125eTk+NM9AABAwPi1ZmfNmjUqKio6ZX9RUZHWrl3b6aIAAAACxa+wU1BQoP79+5+yPyEhQf/7v//b6aIAAAACxa+wU1lZqSFDhpyyPy0tTZWVlZ0uCgAAIFD8CjsJCQn64IMPTtn//vvvq1+/fp0uCgAAIFD8Cjs/+clP9Mtf/lLbtm1TW1ub2tratHXrVs2dO1czZswIdI0AAAB+8+vXWA8++KC++OILjRs3TpGRX3fR3t6u2267jTU7AAAgrPgVdux2u1566SU9+OCDev/999WrVy+NHDlSaWlpga4PAACgU/wKOx0uueQSXXLJJYGqBQAAIOD8CjttbW0qLCxUcXGxamtr1d7e7nN869atASkOAACgs/wKO3PnzlVhYaGys7M1YsQI2Wy2QNcFAAAQEH6FnfXr1+vll1/WpEmTAl0PEHYG3/9GqEsAAHSCXz89t9vtuvjiiwNdCwAAQMD5FXbuuecePf7447IsK9D1AAAABJRfX2P99a9/1bZt27Rp0yZddtllioqK8jm+YcOGgBQHAADQWX6Fnbi4ON10002BrgUAACDg/Ao7a9asCXQdAAAAQeHXmh1JOnnypN566y099dRTamhokCRVVVWpsbExYMUBAAB0ll8zO19++aUmTJigyspKNTc360c/+pFiY2O1dOlSNTc3a/Xq1YGuEwAAwC9+zezMnTtXV155pb766iv16tXLu/+mm25ScXFxwIoDAADoLL9mdv7v//5PO3fulN1u99k/ePBg/f3vfw9IYQAAAIHgV9hpb29XW1vbKfsPHz6s2NjYThcFoHOCedfnL5ZkB61vAAgGv77GGj9+vB577DHvts1mU2NjoxYvXswjJAAAQFjxa2bnkUceUVZWltLT09XU1KSf/vSnOnDggPr3768XX3wx0DUCAAD4za+wM2jQIL3//vtav369PvjgAzU2Nio3N1czZ870WbAMAAAQan6FHUmKjIzULbfcEshaAAAAAs6vsLNu3brvPH7bbbf5VQwAAECg+RV25s6d67Pd2tqqEydOyG63KyYmhrADAADChl+/xvrqq698Xo2NjaqoqNA111zDAmUAABBW/H421rcNHTpUS5YsOWXWBwAAIJQCFnakrxctV1VVBbJLAACATvFrzc6f/vQnn23LslRdXa3f//73uvrqqwNSGAAAQCD4FXamTJnis22z2TRgwABdf/31euSRRwJRFwAAQED4/WwsAACA7iCga3YAAADCjV8zO/n5+efcdvny5f58BAAAQED4FXbKy8tVXl6u1tZWDRs2TJL0ySefqEePHrriiiu87Ww2W2CqBAAA8JNfYefGG29UbGys1q5dq759+0r6+kaDt99+u6699lrdc889AS0SAADAX36t2XnkkUdUUFDgDTqS1LdvXz300EP8GgsAAIQVv8KOx+PRkSNHTtl/5MgRNTQ0dLooAACAQPEr7Nx00026/fbbtWHDBh0+fFiHDx/WH//4R+Xm5mrq1KmBrhEAAMBvfq3ZWb16te6991799Kc/VWtr69cdRUYqNzdXDz/8cEALBAAA6Ay/ZnZiYmK0atUqHT161PvLrGPHjmnVqlXq3bv3OfdTUFCg733ve4qNjVVCQoKmTJmiiooKnzZNTU3Ky8tTv3791KdPH02bNk01NTU+bSorK5Wdna2YmBglJCTovvvu08mTJ/05NQAAYJhO3VSwurpa1dXVGjp0qHr37i3Lss7r/SUlJcrLy9Pbb7+tLVu2qLW1VePHj9fx48e9bebPn6/XX39dRUVFKikpUVVVlc9XZW1tbcrOzlZLS4t27typtWvXqrCwUIsWLerMqQEAAEPYrPNNKJKOHj2qH//4x9q2bZtsNpsOHDigiy66SD/72c/Ut29fv3+RdeTIESUkJKikpET/+Z//qfr6eg0YMEAvvPCCbr75ZknSxx9/rEsvvVSlpaUaO3asNm3apBtuuEFVVVVKTEyU9PXXbL/+9a915MgR2e32s36ux+OR0+lUfX29HA6HX7UjtAbf/0aoS7hgfLEkO9QlnLdgXR/dcSwAk5zr32+/Znbmz5+vqKgoVVZWKiYmxrt/+vTp2rx5sz9dSpLq6+slSfHx8ZKksrIytba2KjMz09tm+PDhSk1NVWlpqSSptLRUI0eO9AYdScrKypLH49H+/ftP+znNzc3yeDw+LwAAYCa/ws5f/vIXLV26VIMGDfLZP3ToUH355Zd+FdLe3q558+bp6quv1ogRIyRJbrdbdrtdcXFxPm0TExPldru9bb4ZdDqOdxw7nYKCAjmdTu8rJSXFr5oBAED48yvsHD9+3GdGp8OxY8cUHR3tVyF5eXnat2+f1q9f79f7z8eCBQtUX1/vfR06dCjonwkAAELDr7Bz7bXXat26dd5tm82m9vZ2LVu2TNddd9159zdnzhxt3LhR27Zt85ktSkpKUktLi+rq6nza19TUKCkpydvm27/O6tjuaPNt0dHRcjgcPi8AAGAmv8LOsmXL9PTTT2vixIlqaWnRr371K40YMUI7duzQ0qVLz7kfy7I0Z84cvfLKK9q6dauGDBniczwjI0NRUVEqLi727quoqFBlZaVcLpckyeVyae/evaqtrfW22bJlixwOh9LT0/05PQAAYBC/bio4YsQIffLJJ/r973+v2NhYNTY2aurUqcrLy9PAgQPPuZ+8vDy98MILeu211xQbG+tdY+N0OtWrVy85nU7l5uYqPz9f8fHxcjgcuvvuu+VyuTR27FhJ0vjx45Wenq5bb71Vy5Ytk9vt1sKFC5WXl+f3V2oAAMAc5x12WltbNWHCBK1evVr//d//3akPf/LJJyVJP/zhD332r1mzRrNmzZIkPfroo4qIiNC0adPU3NysrKwsrVq1ytu2R48e2rhxo2bPni2Xy6XevXsrJydHDzzwQKdqAwAAZjjvsBMVFaUPPvggIB9+Lrf46dmzp1auXKmVK1eesU1aWpr+/Oc/B6QmAABgFr/W7Nxyyy169tlnA10LAABAwPm1ZufkyZN67rnn9NZbbykjI+OU52EtX748IMUBCD/cjRhAd3NeYefzzz/X4MGDtW/fPl1xxRWSpE8++cSnjc1mC1x1AAAAnXReYWfo0KGqrq7Wtm3bJH39eIgVK1accgdjAACAcHFea3a+vaB406ZNPk8oBwAACDd+LVDu4McD0wEAALrUeYUdm812ypoc1ugAAIBwdl5rdizL0qxZs7x3Jm5qatJdd911yq+xNmzYELgKAQAAOuG8wk5OTo7P9i233BLQYgAAAALtvMLOmjVrglUHAABAUHRqgTIAAEC4I+wAAACjEXYAAIDRCDsAAMBohB0AAGA0wg4AADDaef30HBeGwfe/EbS+v1iSHbS+AQA4HWZ2AACA0Qg7AADAaIQdAABgNMIOAAAwGmEHAAAYjbADAACMxk/P0aWC+bN2AABOh5kdAABgNMIOAAAwGmEHAAAYjbADAACMRtgBAABGI+wAAACjEXYAAIDRCDsAAMBo3FSwG+MGfQAAnB0zOwAAwGiEHQAAYDTCDgAAMBphBwAAGI2wAwAAjEbYAQAARiPsAAAAoxF2AACA0Qg7AADAaIQdAABgNMIOAAAwGmEHAAAYjbADAACMRtgBAABGiwx1AQAgSYPvfyPUJQAwFDM7AADAaIQdAABgNMIOAAAwGmEHAAAYjbADAACMRtgBAABGI+wAAACjEXYAAIDRCDsAAMBohB0AAGA0wg4AADAaYQcAABiNsAMAAIxG2AEAAEYj7AAAAKMRdgAAgNEIOwAAwGiEHQAAYDTCDgAAMBphBwAAGI2wAwAAjEbYAQAARgtp2NmxY4duvPFGJScny2az6dVXX/U5blmWFi1apIEDB6pXr17KzMzUgQMHfNocO3ZMM2fOlMPhUFxcnHJzc9XY2NiFZwEAAMJZSMPO8ePHNXr0aK1cufK0x5ctW6YVK1Zo9erV2rVrl3r37q2srCw1NTV528ycOVP79+/Xli1btHHjRu3YsUN33nlnV50CAAAIc5Gh/PCJEydq4sSJpz1mWZYee+wxLVy4UJMnT5YkrVu3TomJiXr11Vc1Y8YMffTRR9q8ebPeffddXXnllZKkJ554QpMmTdLvfvc7JScnd9m5AACA8BS2a3YOHjwot9utzMxM7z6n06kxY8aotLRUklRaWqq4uDhv0JGkzMxMRUREaNeuXV1eMwAACD8hndn5Lm63W5KUmJjosz8xMdF7zO12KyEhwed4ZGSk4uPjvW1Op7m5Wc3Nzd5tj8cTqLIBAECYCduZnWAqKCiQ0+n0vlJSUkJdEgAACJKwndlJSkqSJNXU1GjgwIHe/TU1Nbr88su9bWpra33ed/LkSR07dsz7/tNZsGCB8vPzvdsejydogWfw/W8EpV8AZgvW/zu+WJIdlH6BcBa2MztDhgxRUlKSiouLvfs8Ho927doll8slSXK5XKqrq1NZWZm3zdatW9Xe3q4xY8acse/o6Gg5HA6fFwAAMFNIZ3YaGxv16aefercPHjyo9957T/Hx8UpNTdW8efP00EMPaejQoRoyZIh+85vfKDk5WVOmTJEkXXrppZowYYLuuOMOrV69Wq2trZozZ45mzJjBL7EAAICkEIed3bt367rrrvNud3y1lJOTo8LCQv3qV7/S8ePHdeedd6qurk7XXHONNm/erJ49e3rf84c//EFz5szRuHHjFBERoWnTpmnFihVdfi4AACA82SzLskJdRKh5PB45nU7V19cH/Cst1uwA5grm+hfW7ABnd65/v8N2zQ4AAEAgEHYAAIDRCDsAAMBohB0AAGA0wg4AADAaYQcAABgtbB8XAQCAFNxbePBT/AsDMzsAAMBohB0AAGA0wg4AADAaa3YAwE88DgboHpjZAQAARiPsAAAAoxF2AACA0Qg7AADAaIQdAABgNMIOAAAwGmEHAAAYjbADAACMRtgBAABGI+wAAACjEXYAAIDRCDsAAMBohB0AAGA0wg4AADAaYQcAABiNsAMAAIxG2AEAAEYj7AAAAKMRdgAAgNEIOwAAwGiEHQAAYDTCDgAAMBphBwAAGC0y1AUAAMww+P43Ql0CcFrM7AAAAKMRdgAAgNEIOwAAwGiEHQAAYDTCDgAAMBphBwAAGI2wAwAAjEbYAQAARiPsAAAAoxF2AACA0XhcBABcQHikAy5EzOwAAACjEXYAAIDR+BoLAIBuJJhfRX6xJDtofYcSMzsAAMBohB0AAGA0wg4AADAaYQcAABiNBcoAAEBS8BY/h3rhMzM7AADAaIQdAABgNL7GAgBcsEz92ga+mNkBAABGI+wAAACjEXYAAIDRCDsAAMBoLFAGACDAgvmwTpw/ZnYAAIDRCDsAAMBohB0AAGA0wg4AADAaYQcAABiNsAMAAIxG2AEAAEYj7AAAAKMRdgAAgNGMCTsrV67U4MGD1bNnT40ZM0bvvPNOqEsCAABhwIiw89JLLyk/P1+LFy/Wnj17NHr0aGVlZam2tjbUpQEAgBAzIuwsX75cd9xxh26//Xalp6dr9erViomJ0XPPPRfq0gAAQIh1+weBtrS0qKysTAsWLPDui4iIUGZmpkpLS0/7nubmZjU3N3u36+vrJUkejyfg9bU3nwh4nwAAdCfB+Pv6zX4ty/rOdt0+7PzjH/9QW1ubEhMTffYnJibq448/Pu17CgoK9Nvf/vaU/SkpKUGpEQCAC5nzseD239DQIKfTecbj3T7s+GPBggXKz8/3bre3t+vYsWPq16+fGhoalJKSokOHDsnhcISwyguLx+Nh3EOAcQ8Nxj00GPfQCOa4W5alhoYGJScnf2e7bh92+vfvrx49eqimpsZnf01NjZKSkk77nujoaEVHR/vsi4uLkyTZbDZJksPh4D+GEGDcQ4NxDw3GPTQY99AI1rh/14xOh26/QNlutysjI0PFxcXefe3t7SouLpbL5QphZQAAIBx0+5kdScrPz1dOTo6uvPJKXXXVVXrsscd0/Phx3X777aEuDQAAhJgRYWf69Ok6cuSIFi1aJLfbrcsvv1ybN28+ZdHyuYiOjtbixYtP+ZoLwcW4hwbjHhqMe2gw7qERDuNus872ey0AAIBurNuv2QEAAPguhB0AAGA0wg4AADAaYQcAABjN+LCzY8cO3XjjjUpOTpbNZtOrr77qc7ympkazZs1ScnKyYmJiNGHCBB04cOCs/RYVFWn48OHq2bOnRo4cqT//+c9BOoPuJxhjXlhYKJvN5vPq2bNnEM+i+ykoKND3vvc9xcbGKiEhQVOmTFFFRYVPm6amJuXl5alfv37q06ePpk2bdsoNOb/NsiwtWrRIAwcOVK9evZSZmXlO/41cKII17rNmzTrlmp8wYUIwT6VbOZdxf/rpp/XDH/5QDodDNptNdXV159T3ypUrNXjwYPXs2VNjxozRO++8E4Qz6J6CNe7/8z//c8r1Pnz48IDVbXzYOX78uEaPHq2VK1eecsyyLE2ZMkWff/65XnvtNZWXlystLU2ZmZk6fvz4GfvcuXOnfvKTnyg3N1fl5eWaMmWKpkyZon379gXzVLqNYIy59PXdN6urq72vL7/8Mlin0C2VlJQoLy9Pb7/9trZs2aLW1laNHz/eZ1znz5+v119/XUVFRSopKVFVVZWmTp36nf0uW7ZMK1as0OrVq7Vr1y717t1bWVlZampqCvYpdQvBGndJmjBhgs81/+KLLwbzVLqVcxn3EydOaMKECfqv//qvc+73pZdeUn5+vhYvXqw9e/Zo9OjRysrKUm1tbTBOo9sJ1rhL0mWXXeZzvf/1r38NXOHWBUSS9corr3i3KyoqLEnWvn37vPva2tqsAQMGWM8888wZ+/nxj39sZWdn++wbM2aM9fOf/zzgNXd3gRrzNWvWWE6nM4iVmqe2ttaSZJWUlFiWZVl1dXVWVFSUVVRU5G3z0UcfWZKs0tLS0/bR3t5uJSUlWQ8//LB3X11dnRUdHW29+OKLwT2BbioQ425ZlpWTk2NNnjw52OUa49vj/k3btm2zJFlfffXVWfu56qqrrLy8PO92W1ublZycbBUUFASyXGMEatwXL15sjR49OvAF/ovxMzvfpbm5WZJ8vg6JiIhQdHT0dybK0tJSZWZm+uzLyspSaWlpcAo1iL9jLkmNjY1KS0tTSkqKJk+erP379we11u6uvr5ekhQfHy9JKisrU2trq8+1O3z4cKWmpp7x2j148KDcbrfPe5xOp8aMGcP1fgaBGPcO27dvV0JCgoYNG6bZs2fr6NGjwSu8m/v2uPujpaVFZWVlPv+uIiIilJmZyfV+BoEY9w4HDhxQcnKyLrroIs2cOVOVlZWd7rPDBR12Ov6Hs2DBAn311VdqaWnR0qVLdfjwYVVXV5/xfW63+5S7MycmJsrtdge75G7P3zEfNmyYnnvuOb322mt6/vnn1d7eru9///s6fPhwF1bffbS3t2vevHm6+uqrNWLECElfX7d2u9370NsO33Xtduznej83gRp36euvsNatW6fi4mItXbpUJSUlmjhxotra2oJ5Ct3S6cbdH//4xz/U1tbG9X6OAjXukjRmzBgVFhZq8+bNevLJJ3Xw4EFde+21amhoCEitRjwuwl9RUVHasGGDcnNzFR8frx49eigzM1MTJ06UxY2lg8LfMXe5XD4Pdv3+97+vSy+9VE899ZQefPDBrii9W8nLy9O+ffsC+503ziqQ4z5jxgzvP48cOVKjRo3Sv//7v2v79u0aN25cp/s3Cdd7aARy3CdOnOj951GjRmnMmDFKS0vTyy+/rNzc3E73f0HP7EhSRkaG3nvvPdXV1am6ulqbN2/W0aNHddFFF53xPUlJSaf8kqKmpkZJSUnBLtcI/oz5t0VFRek//uM/9Omnnwax0u5pzpw52rhxo7Zt26ZBgwZ59yclJamlpeWUX0Z817XbsZ/r/ewCOe6nc9FFF6l///5c899ypnH3R//+/dWjRw+u93MQyHE/nbi4OF1yySUBu94v+LDTwel0asCAATpw4IB2796tyZMnn7Gty+VScXGxz74tW7b4zDzg7M5nzL+tra1Ne/fu1cCBA4NYYfdiWZbmzJmjV155RVu3btWQIUN8jmdkZCgqKsrn2q2oqFBlZeUZr90hQ4YoKSnJ5z0ej0e7du3iev+XYIz76Rw+fFhHjx7lmv+Xs427P+x2uzIyMnz+XbW3t6u4uJjr/V+CMe6n09jYqM8++yxw13vQlj6HiYaGBqu8vNwqLy+3JFnLly+3ysvLrS+//NKyLMt6+eWXrW3btlmfffaZ9eqrr1ppaWnW1KlTffq49dZbrfvvv9+7/be//c2KjIy0fve731kfffSRtXjxYisqKsrau3dvl55buArGmP/2t7+13nzzTeuzzz6zysrKrBkzZlg9e/a09u/f36XnFs5mz55tOZ1Oa/v27VZ1dbX3deLECW+bu+66y0pNTbW2bt1q7d6923K5XJbL5fLpZ9iwYdaGDRu820uWLLHi4uKs1157zfrggw+syZMnW0OGDLH++c9/dtm5hbNgjHtDQ4N17733WqWlpdbBgwett956y7riiiusoUOHWk1NTV16fuHqXMa9urraKi8vt5555hlLkrVjxw6rvLzcOnr0qLfN9ddfbz3xxBPe7fXr11vR0dFWYWGh9eGHH1p33nmnFRcXZ7nd7i49v3AVrHG/5557rO3bt1sHDx60/va3v1mZmZlW//79rdra2oDUbXzY6fjp27dfOTk5lmVZ1uOPP24NGjTIioqKslJTU62FCxdazc3NPn384Ac/8Lbv8PLLL1uXXHKJZbfbrcsuu8x64403uuiMwl8wxnzevHlWamqqZbfbrcTERGvSpEnWnj17uvCswt/pxlyStWbNGm+bf/7zn9YvfvELq2/fvlZMTIx10003WdXV1af08833tLe3W7/5zW+sxMREKzo62ho3bpxVUVHRRWcV/oIx7idOnLDGjx9vDRgwwIqKirLS0tKsO+64gz+433Au47548eKztklLS7MWL17s0/cTTzzh/f/NVVddZb399ttdc1LdQLDGffr06dbAgQMtu91u/du//Zs1ffp069NPPw1Y3bZ/FQ8AAGAk1uwAAACjEXYAAIDRCDsAAMBohB0AAGA0wg4AADAaYQcAABiNsAMAAIxG2AEAAEYj7AAAAKMRdgAAgNEIOwAAwGiEHQAAYLT/B1Qu8Ue5vqrOAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# histogram\n", + "# tol['temperature C'].hist(bins=20).plot()\n", + "# print(tol['temperature C'].hist(bins=20))\n", + "tol['temperature C'].plot.hist(bins=20)\n" ] }, { "cell_type": "markdown", "metadata": {}, + "source": [ + "## Multi Axis" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [] }, { @@ -311,11 +448,6 @@ "metadata": {}, "source": [ "\n", - "## Multi Axis\n", - "\n", - "## Scatter Plot\n", - "\n", - "## Box and Whisker Plot\n", "\n", "## Histogram\n", "\n", @@ -339,7 +471,7 @@ ], "metadata": { "kernelspec": { - "display_name": ".venv", + "display_name": "venv", "language": "python", "name": "python3" }, @@ -353,7 +485,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.12" + "version": "3.12.3" } }, "nbformat": 4, From e58b3e96029de508027e7ac41f97ab7e223dc79e Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Sun, 20 Oct 2024 08:58:39 -0700 Subject: [PATCH 45/94] more plots --- D3-Pandas_Graphing.ipynb | 54 ++++++++++++++++++++++++++++++---------- 1 file changed, 41 insertions(+), 13 deletions(-) diff --git a/D3-Pandas_Graphing.ipynb b/D3-Pandas_Graphing.ipynb index 783ff12..5a9a1b7 100644 --- a/D3-Pandas_Graphing.ipynb +++ b/D3-Pandas_Graphing.ipynb @@ -101,7 +101,9 @@ " '291459_00300': 'dissolved oxygen mg/L',\n", " '291463_00400': 'pH',\n", " '304254_32295': 'dom ug/L',\n", - " '305297_90860': 'salinity ppt',} \n", + " '305297_90860': 'salinity ppt',\n", + " '291460_32316': 'fchl mg/L' # chlorophyll\n", + " } \n", "tol = tol_all[cols.keys()].rename(columns=cols)\n", "tol['datetime'] = pd.to_datetime(tol['datetime'])\n", "tol = tol.set_index('datetime')\n", @@ -346,7 +348,9 @@ { "cell_type": "markdown", "metadata": {}, - "source": [] + "source": [ + "Just for fun, we can sort of graph the data used to generate a simplified boxplot using " + ] }, { "cell_type": "code", @@ -380,11 +384,12 @@ "gate_min = tol.groupby('dayofyear')[min_max_field].apply(np.min)\n", "gate_avg = tol.groupby('dayofyear')[min_max_field].apply(np.mean)\n", "stdev = tol.groupby('dayofyear')[min_max_field].apply(np.std)\n", - "(gate_avg + stdev).plot(label='avg+stdev')\n", - "(gate_avg - stdev).plot(label='avg+stdev')\n", + "\n", "gate_max.plot(label='max', figsize=(10, 5), style='.')\n", "gate_min.plot(label='min', style='.')\n", "gate_avg.plot(label='avg', style='--')\n", + "(gate_avg + stdev).plot(label='avg+stdev')\n", + "(gate_avg - stdev).plot(label='avg+stdev')\n", "plt.legend()" ] }, @@ -398,7 +403,7 @@ }, { "cell_type": "code", - "execution_count": 54, + "execution_count": 82, "metadata": {}, "outputs": [ { @@ -407,7 +412,7 @@ "" ] }, - "execution_count": 54, + "execution_count": 82, "metadata": {}, "output_type": "execute_result" }, @@ -424,24 +429,47 @@ ], "source": [ "# histogram\n", - "# tol['temperature C'].hist(bins=20).plot()\n", - "# print(tol['temperature C'].hist(bins=20))\n", - "tol['temperature C'].plot.hist(bins=20)\n" + "tol['temperature C'].plot.hist(bins=20)\n", + "\n", + "# group by day of year and generate the histogram again:\n", + "# tol.groupby('dayofyear')['temperature C'].apply(np.mean).plot.hist(bins=20)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## Multi Axis" + "## Multi Axis\n", + "\n", + "We need to pay more attion to matplotlib for multi-axis plots. Let's say we wanted do show plots of several parameters on separate graphs - we can define subplots using plt.subplots and tell each plot we make which axis to draw on. It's a convention to call multiple axis \"axs\". fig, axs = plt.subplots... is equiv to fig, (ax0, ax1, ...) = plt.subplots..." ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 84, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAHCCAYAAADxQ/PgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADzXElEQVR4nOydd5wU9f3/X9v3+sHBHe1o0rs0xYqKoIIGNTGamIjR7y+JqFFjoiYWLAmaRImJqIkasQZLRBRsSBXpvR/14Ap3x/W2fef3x+znM5+ZnS2zd9ztwfv5ePBgb3c+O5/Z3fnMa97VJEmSBIIgCIIgiA6Eub0nQBAEQRAEYRQSMARBEARBdDhIwBAEQRAE0eEgAUMQBEEQRIeDBAxBEARBEB0OEjAEQRAEQXQ4SMAQBEEQBNHhIAFDEARBEESHgwQMQRAEQRAdDhIwBEG0O6tWrYLJZMKqVavaeyoEQXQQSMAQBHHaWLBgAUwmE//ndDoxaNAg3H333SgvL2+VfXzxxReYM2dO3Ntv2rQJd911F8aNGwebzQaTydQq8yAIom0hAUMQxGnnqaeewjvvvIOXXnoJF1xwAV555RVMmjQJzc3NLX7vL774Ak8++aSh7V9//XWYTCb079+/xfsnCKJ9IAFDEMRp5+qrr8att96KO++8EwsWLMB9992HY8eOYfHixW0+l1//+teoq6vDli1bcOWVV7b5/gmCaB1IwBAE0eZcfvnlAIBjx45F3e6jjz7CuHHjkJKSgi5duuDWW29FSUkJf33WrFmYP38+AKhcVdHIy8tDSkpKC4+AIIj2xtreEyAI4uzjyJEjAICcnJyI2yxYsAC33347JkyYgLlz56K8vBwvvvgivv/+e2zfvh3Z2dn45S9/idLSUixbtgzvvPNOW02fIIgkgAQMQRCnnbq6OlRWVsLtduP777/HU089hZSUFMyYMUN3e5/Ph4ceeggjRozAmjVr4HQ6AQAXXXQRZsyYgXnz5uHJJ5/EpEmTMGjQICxbtgy33nprWx4SQRDtDLmQCII47UyZMgVdu3ZFfn4+br75ZqSnp2PRokXo2bOn7vZbtmxBRUUF7rrrLi5eAGD69OkYMmQIli5d2lZTJwgiSSELDEEQp5358+dj0KBBsFqtyMvLw+DBg2E2R75/On78OABg8ODBYa8NGTIEa9euPW1zJQiiY0AChiCI087EiRMxfvz49p4GQRBnEORCIggi6ejTpw8AoKCgIOy1goIC/joAKkRHEGcpJGAIgkg6xo8fj9zcXLz66qvweDz8+S+//BL79+/H9OnT+XNpaWkAgNra2raeJkEQ7Qi5kAiCSDpsNhuee+453H777bj00ktxyy238DTqvn374v777+fbjhs3DgBw7733Ytq0abBYLLj55psjvvfx48d5yvWWLVsAAM888wwA2fLzs5/97HQdFkEQrQgJGIIgkpJZs2YhNTUVzz77LB566CGkpaXh+uuvx3PPPYfs7Gy+3Q033IB77rkHCxcuxLvvvgtJkqIKmGPHjuGxxx5TPcf+vvTSS0nAEEQHwSRJktTekyAIgiAIgjACxcAQBEEQBNHhIAFDEARBEESHgwQMQRAEQRAdDhIwBEEQBEF0OEjAEARBEATR4SABQxAEQRBEh+OMrQMTDAZRWlqKjIwMKjVOEARBEB0ESZLQ0NCAHj16RG36esYKmNLSUuTn57f3NAiCIAiCSICioiL06tUr4utnrIDJyMgAIH8AmZmZ7TwbgiAIgiDiob6+Hvn5+fw6HokzVsAwt1FmZiYJGIIgCILoYMQK/zhjBQxBEATRsah3+3DlC6tx2eBcjOyVhYsHdEXvnNT2nhaRpFAWEkEQBJEUXP631Siv92Dh5iL8cdEe3PfB9vaeEpHEkIAhCIIgkoLKRo/q720nattnIkSHgAQMQRAEQRAdDoqBIQiCIFoFfyCIO97agtUHT/Hnvn/4cvTMTmnHWRFnKmSBIQiCIFqFZfvKVeIFAP7f21viGhsISqdjSsQZDAkYgiAIolVo9PjDnjtW2RTX2GavMvYP1wwBADisdIkiIkO/DoIgCEJFIChhT0kdDpY3QJJaZhlp9gbi2s4V2s5kAn44Tq6i7vEHDVtmKhrccYsmomNDAoYgCIJQ8cdFuzHjn2sxdd4avLH2WNzjthfVJrzPl1cdAQCk2CxItVv4898froz7PUprXZg0dwUu+9sqfLH7ZMJzIToGJGAIgiAIFfvLGvjjAuFxLDKdtrDnRudnxzW2qsnL38NpUwTM8ermuPd/5FQjt9gcMDBvomNCAoYgCIJQ4RLiUZp98bmAxHH3XD4Ab9w2Xn4yThcUG3vflIEAgOvP7Rk2l1iI7ioj44iOCQkYgiAIQsXB8kb+2BVnDAugCIgUuwUpITdQvDEw4ljx/32l9XHvf/GOEv74g81FcY8jOiYkYAiCIAiONpOo2YgFJGStSbVZkGq3hsYbEzBsnD8QBACcrHPHNd4XCOKL3WX873q3H9UhtxRxZkIChiAIguDUu3yqv41YYFyCCGGBuK44XVDKWHnc8B5ZAACLOXpHYkazJ3w/tc0kYM5kSMAQBEEQHK3FJF4LCgA0haw3KXYLUmzMhRSfBafZp4wFgO5ZTkP7Z+NtFhNyMxyGxhIdkzYXMHPnzsWECROQkZGB3NxczJw5EwUFBapt/v3vf2Py5MnIzMyEyWRCbW1tW0+TIAjirGTtIXUl3UMVjXHXgtl4rBqAbEVhlhS3L4igTi2XF789hNFPfoMLn12BHUW1YRYY5kqK1wJ0vErOVhLTsCkT6cymzQXM6tWrMXv2bGzYsAHLli2Dz+fD1KlT0dSkFB5qbm7GVVddhT/84Q9tPT2CIIizmqIaV9hztc0+nS3DsYbcPV3SHVyAAPpupI+3FaHO5UNJrQsr9pcrMTA2eRwPAvbFZ8Epr5djZerdfn4MWncYcWbR5s0cv/rqK9XfCxYsQG5uLrZu3YpLLrkEAHDfffcBAFatWtXGsyMIgji7YULivikD8fdvD8nP+QLoFGOcJEnwhywtvTqlwGkzw2SSs6ibvH6kOdSXGzFmpckb4CInhVtgQjE0BoOALx+Si5w0Oz7aWhx3/A3RMWn3btR1dXUAgM6dO7fzTAiCIM4cDpTVo6TGhVS7FRP6doLVEp/BndVPSXdYkZViQ53Lp1tTJRCUsKWwGjnpdgzIzYAvoLiJrBYzTCYTUmwWNHsDYSKkqLqZF65jfzMvVapGwMQbx3KqwcPnzcSS0Syk0loX9p+sh9lswsS+ncNEF5FctOu3EwwGcd999+HCCy/EiBEjWvReHo8HHo+H/11fH3/tAIIgiDOJI6cacdXfv+N/Pzp9KO68uH9cY8V6LKyZ4vYTtRiQm6HabuHmE/jjoj0AgA2PXIEMp3I5sYfEksNqRrM3gF3FdeiTkwZADvS9/PlVqvf6Zl85f8yCf1OELCZJkmAyRc9Gent9obxvq5nPe8WBCjw2Y1hcx+0LBDHjn2u56Ll2dA/885Zz4xpLtA/tmoU0e/Zs7NmzBwsXLmzxe82dOxdZWVn8X35+fivMkCAIouNxvErdzLDIQDl+t1+uv+KwWlDvlmNIvKGaLCKFQsPEoppm+FUWGFls1IViUERXzqkGj8paAwBOm5n/bw7F0bAYGkmSA4FjkZUitzEYlJeOzNDjLun2mOMY9S6fymJTSA0hk552EzB33303lixZgpUrV6JXr14tfr9HHnkEdXV1/F9REVVhJAji7ETrdtETIJHw+uWxDqsZ04Z3A6AfhyLuo9kbUO2DBfNeNSJ8vJ5LiAkUMfA3ReiHFE8qNtvHef1yMKxHZsR9RSI8fZxaESQ7be5CkiQJ99xzDxYtWoRVq1ahX79+rfK+DocDDoejVd6LIAiiI6O9GHv8RgSMvK3dao4ahyJ2id56vAaD8tIByHVYmLsnxRZejbesPjzLiSGKFovZBIfVDI8/iGZvADkx5l0aqtibarfA7ZPfZ6+BNgRHNRYXIwX8iPahzQXM7Nmz8f7772Px4sXIyMhAWZlc+jkrKwspKSkAgLKyMpSVleHw4cMAgN27dyMjIwO9e/emYF+CIIgYaC++RgSMRxAwegKEERBqw+wqrsWNY+XmizYhWFjJJFKsGUdPKULBYjbBBPDsJVa8Thzv8QdjZhOxFGpATuE2C9V7Xd4Aj6eJhrb+jZEmlkT70OYC5pVXXgEATJ48WfX8m2++iVmzZgEAXn31VTz55JP8NZZeLW5DEARB6OPVCBbt3/GMdQgWGL0spKDwlkFJ7GWkiIVYmURf33cJqho9OFDWALMJmDw4V/V6qt2KmmZfTFdQnVDvpVOancfDAHJvp3gEDIvLGZOfjR1FtVTFtwPQLi6kWMyZMwdz5sw5/ZMhCIJIYiRJgjcQhMMa+wIs4gnFsdgsJvgCkjEBE1AETLSO0mKMiMvrD+smLT5ucCvbMqHww3G9MCA3HQNy03Fef30HkSKA9ASUBF8wCKvZzPfdM1u24pvNcgq3yxeewq0dzz5b1sRyfJ9O2FFUC68/iEBQirsXE9H2UJI7QRBEEuL1BzHjn9/hYHkjbp6Qj2dvHGVoLCDXRKlp9nFBEw+eUECt3aKU5Ndzp2iDeHkrAJtyWWHjP9hShAsHdsF1o3vwLtM2S2xhwPfvCQ+wvfrF73C8qhld0u244JwuANTiKdUuCxi9Sr71bh+u/vt3KKl14cphefjVpefg463FAICcdCWWsqzezUURkXxQM0eCIIgk5ER1Ew6WNwIAvt1fHmNrNZ6QSMhwyq6UhCwwNnPEariSJKniaty+ALeSiCJifF8lZnHNQTnGxMcFTOzLT0oEAXWwvJH3Pqps9GJVQQUAoFGw9ESzHh042YCSWjmY+Nv95dh4rIq/NukcxRp0nFKpkxoSMARBEEmI1sJhBGZFYcXljKVRMwuMGSl2FsSrtmJo388bUAJtxRiYsb074Q/XDAGgiCBfKGDXao59+VEaOqr3r51PfUi4/N8lSrG+aK0IxPGSpHTRvnFsL4zJz8aoXlmh7SgOJpkhAUMQBHEaKal14dt95QjodGSORr1Lucg2ewNxd4QGFIGRHiqF79EpBCdJEtYcPIXKRo/qeeZuslvNSIsgAvSChFnn51RNwGx2ilxMbs2hU1hxoBzNIbFgs8Z2ITErCrO2MOoiNJdMVcXfRM6g0h4PK2CX5tC0MaBMpKSGBAxBEMRp5Bdvbsadb2/B0t0nDY3bXFit+ruwKv5qukxgMBeSXhr1ZztL8fP/bMLVLyotB4JBiQfZ2qME8Wrfz+MP4pVVRwCEu4aYFajB7ccvFmzBW+uPy9vFYYFhBfE+3V6ien7jsWq9zVUCJi1KALD2eD7bUaqaeyTLD5FckIAhCII4jRSUy5aJ7w9VxthSjVnT+4c1K4wHJjCyU2UBo1dH5Zu95WHvK26XarfwC3lYZV8dCwwTDNeO7qF67dLBXXXnGE9q85j8bABAulOdb2IP9TrK1DwvVvKNlsKttaw0hbZhLRCixc8QyQMJGIIgiCREmz1jpLQ9aweQHaqHEm9VWfGC7bQqWUhaAaQVMB5/kIuC8X06qV5LtVuRodPVWay6G4nRIQETqcz/rAv7oXOa0u8ofheS/mfJmlCm2kjAdARIwBAEQZwmTghunx1FtYbGakWHkdL2TGB0Cl3cm73+qDE0zP1zKGQtSrFZeC0VQI4RKa5RjoVZeJiRKBCUwN5ez7Ki95w2VkYPtk1xjQsVDXK13ZN1Lry74QR/XRRCqjTq0POf7yxVveeyfeX48xcHdPenuJDksVrXVSyu/eda9H14KRrc+jE6ROtCAoYgCOI08ekO5QKYlWqLsmU44VaH+AUMa47IKtIGpfC4FXE+f/36AHyBII8tYRaXHKGb8+c7lRgeHmOjsazkpNlVbhxGn5zUsOd6xFFfpVum0lrg6z1y25mlu5R59O6cqnpvsWYLE1e1zUqHaQB48KOdEffH5mQNCRmxAF8syurc2F1SBwB4YdnBuMcRiUOF7AiCIE4TrLorABit56q1uBjJiGHbdhEEiMsbgFOwVqQL4oO1AmAiZ8ao7gBk98/FA7vgu0OVaPQoVgVvQH7/DKeNpzBPH9kdD189RLdy7au3jsP6o1W4+/3t/LmLB3aJeRzZqXaM7pWFncV1aAh9luwz7d8lDVcN74bz++dg49Eq9MlJQ54geG4c1wsLNxfxoGSG2HbguRtHontWChrcfmSmWHlBvOvP7Yk31h7jNWviQXSzHa5ojHsckThkgSEIgjhNqMrtG0zJ1ca8GMmIYdtmOG08rkMUU/rvH+Dj+uak8edH9JRrohRWNaPO5UMgKKHRE17zZVSvLOR3Dre0AHJ12xmj1MG9JlN8ko7HwYT2yYTd5UNyYTab0DnNjqtHdsewHpmqccz6FC12qFOqHZcM6orpo7rj4oFdufjKDGVvVTV5I47VIoqdk3VuQ+Kntahq9KCk1oX6s8SFRQKGIAjiNNGSYnRse+VCbMACI/QlYnEhN/97Q8S5yX/78WkonVgvlmTprpMY/eQ3uPGVdbjtP5sAyNV6Gc44gnITgc3lpZWHASgxLbFiaFLiCMTVc3eJ+wSUuKBYzA/ND5AtMFf9fY3h2j8tYeGmExj3zLe48NkVGP/0t9hdXNdm+24vSMAQBEGcJkQ3kJEgXCA8DsXIeN6XyG7BhQPk0vhl9W5VIG+Yi8obQPcs2QUjipFLBqnToMVg5Okje+DmCfnom5OKa0Z2jzmvC0Jl+n80rlfcx9I7ZNVh7rDckJsoVisCJnA8oaaMDNaDyW41Y1R+lu5Y0fW2t7Q+rnlWa6w1R041qdxVp5utx2v4Y28giF0ltW227/aCYmAIgiBOE2oLjLGiaGxslzQHjp5qSsgCk2qz4tkbR+GL3WUIBNWdrbXv5/IFuGga3Uu5sI/Oz8brPx+PO9/eoto+w2HFryefY+iY3v+/8w1tDwAXD+iqmi8TXmM16dpaROuKyxfgMT9My6z53WXcVaTFZDJhytA8fLu/PO7Pnc3r1VvH4t6FO+D1B9Hs9avSvE8n2hgpo4K5I0ICxiAfbSmCyxfAsO6Z+OGr6wEAB56+6rSZTwmC6Li4WuBCYmOZBSbe8WV1bi5EUuwW7gICgK2FNbhgQBcUVTdjdai5IuODzUWoavTycSJ67ppUR9useWJRuV8s2MwLA8YqhOe0mWEyyb2Oapq8SHdYEQhK3BrjsMZnwdETnhuPVvFKyZ3S7LhxbC9sCVlAUuxWpNot8PqDbSYi6t0+np1lMZsQCEpYc6gSd17cP2zb9Ueq8Ob3x5CTbsdVI7rj0pCFrarRg0XbS+D2BTCuT2dVU0uRmiYvPt1RgksGdcU5XdNP30HFAQkYg7y86giOaTqUvrWuEL+81NidCEEQZz5iMTrmytDL0tEdG7pwdkl3qP6OxV+/LuCPM5xWWC3KhfyBD3diwx+uwFNL9vFt2Gsfby3mz2Wnqq0G2r8BOQC2LchwWmE1m+APSlhxoEKZU0r0tHSTycRr03y1pwz/d0l/VQE+e5wCRitC/IEgbl+wWSUoa4XeTJ1SbUi1WVALX5sVwrtHyO7qnuVEcY0Law6eQjAowSz83rz+IG55TYmF+u+mImx5dAq6pDswf+UR/Of7YwBk8bfziancWifyl68P4L+bijAwNx3LHrj0NB5VbCgGxiBa8QIAqwpO6WxJEMTZjp6bxuhYoxaYqia5NcBFA7pwy/DDV8kdoVnX5YpQ+4DRvbLwya8vwK3n98YtE/Nxy8R8PP2D4ap6KgAwtHsG/nDNEPTvmoYrh+Xhlom9Mee64XEfS0tw2ix4/qbRYc/3j+Puv1cn+TjYZ8caVQKxBQy3/GjbDngC/P36dZGztfYJcTIje2a1eSsC0Zr2+m3j+WO3X71/bSYaAG51Y4UCAbmOUGOEGjhrD8stMQ4lQao4WWAM8stL+uNfa46qnqOOpQRB6BEeKOtX1V+JRCAo8ZosOSELjNF2ADdPzOfP/WBMT8z98gCafXJXa5Yu/furhuDc3p1wbu/o8SQmkwn/75Jz8P8uaR9L8w/G9MRvFu7gf2t7IEVi2vBueGPtMW4JYxYYs0lpFBmJSBYY9l5WswkXnJODY5VNvKP3gNx0mEwmpRmkz1jcU2swKDdDmas3oIoF0rPiBUNmKr2gbn0nUvJAAsYgen7XnUW16PvwUrz9i4lhEfsEQXRsvP4g7npvK3p1SjVkdZAkCSfr3Krn4hUhxyqVu9suoSDQTYXVePh/uzD3hpFRa6hsClXTVfcFkh8HghJ+//EuHCxvVD3f0YiU/hy+nXx8b687jkeuHspFod1qjlmHRmlkqb7ol9S4AITii0Lvvz2UmcX+Zp/r13vKcfmQvLjmKknyd7P1RA1MAH5yXh/ccVG/sO2eWbIPKwoqcPSU7A3o3yVN9TprAeHyBXCy1s1dkA1uH374yvqw93v4k93onunEcsE9BwBFNc2quj4vfnsIi3eWoKjaxZ/bXFiNCX07x3V8pwNyIRlkoKButfw8VBuBIIgzh+0navDt/gosWFdoKJOopFZZ6J2heinxuhTWH63mj4d2z+Rl8RduLkJlY+TiamKadNd0pSqtaPX5SIh16R2h8FwycoEQVDogN77gUVZDh1lbuICJkYINRK4jUxwSMA1uP78eMMvOgJBbi7nqmGUmHioaPPhoazGOnmrCkVNNeOO7o2HbeP1BvL72GBcvAHBUJ6yBuSoLq5TXNh2rRlm9O2zbnUW1+GpvWdjzTKgx/r3miGq/APDJtmK0J2SBMcg1I7vh6/suQZ3Lh85pNpTVeXDrGxvbe1oEQZwmxB5CTZ5A3Hf/TR7lwtc1w4GialfcAsYtVJvt2yUNa353GS7+y0oAzCLg0B/nU+bav6tyZ24xm/D0D4bjscV7+XN/uGYIvzvvCLx5+wRsLayBzWrGyJ769Vu0TB/VHc8s3c9jQZjQcMSRNRrJhcTEwQXn5OBH43thRM8sNHr8sJhNGBVKP//Fhf3w2492hsWgREMbn9Kk81vRE9A2iwnv3Xk+6l0+XDhAboUwsW9nbCqshlsIb2DvbzIBH/y/SQgEJVVALwCs/t1kPLZ4L9YcPAW38LsPBiU+n9d+Ph6fbCvGl3vKVL/x9oAEjEFMJhMGd1OsMAOiWGQA+Y7ocEUj6t1++ANBjOmdzSO7fYEgDpxsQLcsJ7pmJOdCUtfsQ1CSeFdbgjjbEBv6GUmLZRebntkpSLXJS+2+0jr07pwa83x/Z8NxAHJzRADI75yKLukOVDZ6uAiqqHejuNaFrukObuoXL3Apmot0tyx1YG6/Lu2bAmsUh9WCCwbE7p8kwj53X0DCnpI6Xt4/HgtMqoO5kNTf+cmQZS0n3QGTyRTWwgCQM6f0xkZDW/RO77em9349slMwsZ/ajcMCv0VRxDKlLh+cy7d32sxc9A7rnok+OWn8N1cqWBBFIXbBOTmobPTgyz1l2HC0Ck0eP9LiiOs6HZAL6TTz7objuHLeGtz4yjr8+N8b8NPXFGvNPe9vx7UvrcUFzy7HqYb4TY1thdsXwCV/XYmLnluhG71OEGcDT36uWC0+31Ua9zixGi6rmfLY4r248LkVUc/3YFDCiepmAIBfqCCbYpeX6/9tLUZJrQsT/7wcN7y8Dhf/ZSXWHpIzQ1gTQYfVrEqfBYC0OGq7nGmIMT4z/rmWp5jHqgEDKC0URFHY7PXjHysOq17XHcuCeA0ImLvf2wYAyA51CfcGgvBr+il9uSfc1ZOX4Qx7jonXf61W3FBPfCb/jp3CZ5ImWBPZ74H9/8qqI3zdL6xsVr0326aiwcPr8rQHJGBagR+MkZuU6cWE7S9Tf7lbhHLPB8rk1DtfQMLxqnA/ZntTXu9GncuHJm9ApcYJ4mxC7PdjpElesyBgbpnYG31yUmE1m+D1B6Oe72Kq9Y/Gh5fc9/iDYd2O2UWENR8U3V6Mc3t3wqT+OeiZnYLz+3fGub2z4z6WjordasZtk/pwUcDaIMRTeDRVJxW6TAjK/sG5PcLGMBJJo/aGxMrlg3P5c9oM19pm+fsVLUgPTB0U9l7dQi0h2HEDShzUeKGC8awL+qJXpxT0yUnFLRN7AwCuG60cF7M2lQsp1mazCRcO6IJze2ejZ3ZKXNas0wW5kFqBn0/qi8U7SpHfKTwgLpoCb0mjt7Yg2edHEG1Bov2MmoVquDeNz8dN4/Nx9YvfYf/J+qjnU5NXiVWY1F8JXP3JxD547qsDaBa6Rivzkv9m76uXDZlit+C//894Kf+OzpM/GIGRvbLx4Ec7VaIyFnoihD3OzXDggnMiu7P0xE8s2La/mTIQn+4oQVCSf29iuwO2ze0X9cUjVw+N+F6XD8nFy6uOcDEsSRK3JIk9q+65YiDuuWKgaux5/XPQI8uJ0jp3WPuGCX1l8dMl3YFFd10Y97GdLkjAtALsx3qiuhmNHqXOQ02TF4u2l4Rt/+6G43j00z2q577YfTJs0dl2ogaf7yyFJMnVFe+8uH/cVTxbQiAo4WdvbFRZXcp1otfPRHYV1+KZJfsxuFsGLhnUFVcOiy8FkjhzEbN+4g7C9QXw168PAFCn/LK14v2NJ/C3bwpwuKIRzd4AfjdtMO6afA5MJhNO1srnWorNokr1ZWP/t60YxTWKSR8A/vbNQVQ2elEQsvhGc2+cjWgFSzzp4+x7E7PJToWyimIJIPa6XhZSVaMHb35fiEaPH5kpNtx5cT9kOKzq9g92Kxo9ftS5fMjLdEKSJLy6+ijeWCtXymWxPZFgx3e8qhnl9W4cOdXIe0AZEW9HTjVidH42VoeKtabEGcDeVrS57Wfu3LmYMGECMjIykJubi5kzZ6KgoEC1jdvtxuzZs5GTk4P09HTceOONKC8vb+upxk2OEOC6VPCRL9xcpLu9VrywbcUUSAB47NM9ePP7QixYV4i5Xx7g9R1ONx9sLsK6I1UorFIWyf0n4+vI2tG57qXvsamwGu9sOI4tx9vm8yaSlxKN6zReC8zy/RW8XobY2ZjJka/2lmFXcR0XRH/9uoC7gZbvl9c6r8YNJAb+btRZCxasK8T6o1XyPjMo6F5EGzTdNY7sK7EJIxMirOKu9rvRIrZe0Lrf/7vpBF5aeRgL1hXiH8sP4dPtJXD7grztQardyt9/T0kdAGD/yQY899UB/h4S1NcKLWJ22X++P6a65sSTRecLyO/Pqsx/uUfusxSr+F9b0+YCZvXq1Zg9ezY2bNiAZcuWwefzYerUqWhqUnzC999/Pz7//HN89NFHWL16NUpLS3HDDTe09VTjJjfTyaPOq5sUH3l1k6K+bzi3p+7YsYIf2qsJ2GLt2VnJ65rmyPUfWhOxLfvZzNnQzZWITk2T+pyLtw6MeO7ff6USo/CzSX0ijql3ye/tCa0D2hiVK4bmRo036JHlxD2XD8CDUwfhnssHRtzubGRc70748/Ujcc/lA/DAlYPw22mDY44RRU+tZu3trmm1oCVL6NPUoCnJX6X5TVU3ecOyx5joZVlT2v0P7R6e+SSSl+nEiJ7yNjVNXj6HP14zNC4r/oWabC8WEH7bBX1jjm1L2lzAfPXVV5g1axaGDx+O0aNHY8GCBThx4gS2bt0KAKirq8Mbb7yBF154AZdffjnGjRuHN998E+vWrcOGDRtivHv7MXOMLFBcqoj1kE/zioF44cdj8I9bzg0b97tpQ/hjvVLOgOxvFf8+3Yjlr2eFfrBn48Wc4n4I7W8g3t8E2+6Gc3uiu5C+PKRb5AsPyzhh59r5QvwLIKcR/+pSpbuw3WrGD8cpQb7De2bht1MH4+7LByIvMzwz5WzGbDbhJ+f1xm+nDsa9VwwM6/UUie6hYFj2fTKhEU8dmrxMed32aW5Mw+rKeJXeSg6rGRazCeeGAm3Z89p6MvG4gW4c24u/B9vnlDhd4qyejXLc8v/ndE2LOKY9aHeHVl2dbCLr3FnOS9+6dSt8Ph+mTJnCtxkyZAh69+6N9evX4/zz9YPQPB4PPB7lrqe+vm1dHuwH9Y8VhzEgLwMNbh/e23hC9ZqeXzrDaYXdYoY3EERRtYubHisbPbwuQE66A8U1Ljz40U5cM7IbUu1W+AJB/PS1jSiqacYLN43RbX2+7kglfvvhTkw6Jwcv3DRG9drJOhd+9sYmXDE0NywYjKVkAkrPESMX84oGN259fSMCQQkmkwnP/2g0Rudnxz0+Wdh4rCrmNrXNXtz87w1o9gYgQUJdqNaC3WrBE9cOw7WjI2cqdFRu+88mrD54ClcN74ZXbh0bsyR7R2ZXca3q782F1Rg152tMGZqHuy4bgOtf/l51h33wmatht5p512RtrEW0C89PXlcXxNSL00jRxNOIF8cz91toP9h3cMu/N6BXp1QM6S7X/YpHQNhC1jKtgGGhBekOOc7lX2uO8v562mvFk5/vw7xlB1GvseKY4vi22Xst2XUy7Ll4x367vxybC6u5SyveIo5tRbumUQeDQdx333248MILMWLECABAWVkZ7HY7srOzVdvm5eWhrCw8B54xd+5cZGVl8X/5+fkRtz0djOqVzR9/vrMUS4UfzYiQWh/cLSOsA2rvnFTuOjperbjRNgs+7ilDlLS63cWy4Dtc0YhNhdU4WefG1zploAHg0+0lOFnnxifbSsJ8th9vKcbhikZVnQCGKIZS7MYFzGc7SnGwvBFHTjXhcEUj/u/tLXGPTSa0pl89tp2owYGyBpyobkZRtQv1bj/q3X5UNnrw+c74a4Z0FCRJ4p1vv9pbxt0eZypiJVOH1YygBNS7/fhkewleWXUk7DfCSrKzQH7t3XZuZvwFKy06wnBkzyxermFUr2z4A0osxMwIbmoiccaE1vUmbwAF5Q34LnRzZ0TAiLV8gsLj6UI2EGMU35/yu9KKFwAYE0cK/PAe4VaieHtfDRNcVB8KsZyiaywZaFcBM3v2bOzZswcLFy5s8Xs98sgjqKur4/+KivQDaE8X00d1xx+ukd1BLm+Ax8T8eHw+9yfmd07F5j9OwYrfXoqVD07G3ienIdNp45ku1YJvlJVtntivM+65YiA6hfL5WWqm6DON5N4RFzftNnplqhnm0Ar5+IxhSAsV4DLSVVW7r1pX/LUz2hNxcQGAPjmxzaXaUtppdovyOzgDu5SLpeoBpTPvmQoT7rMu6ItNf5yCZfdfwl/Tq42kTWe+dLA6s9BhtWDej0fzv3c+PhU9svTdPeP7hneIvmhgF2z6wxSsfHAy3pw1QRU3d43OBZFoGX/70WisenAytyAzq3g82Tg2i7yO+oSbR3FNmHPdcLx353mqff1n1gQAwGVCLZgMofP2jWN7Yd9T0+LqaD6iZxYW3D5B9Vy82WkD85QK8yxm5/8u7tcmWbBGaDcBc/fdd2PJkiVYuXIlevVS/LjdunWD1+tFbW2tavvy8nJ069Yt4vs5HA5kZmaq/rU17IJ3ss6FsnrZnTW2T7Zqm6wUG/p3TUe/Lmm8/DLzlR4qV4pTHQplJHQOuZRY87LCUOOuYqHR1ppDp8IuvsGghHVHFBdIkSbtstGjiIqjp9RFsdjim+G08oqOxTXxF7I7oKnMGCtiX0uD24eVByqwfH85juk0KovFscomLN11EuuPVIVldkVDG0S9vzTcDRkMSthdXIeKejeW7y/n1ghGmsPKG+R9d6gSByNUqQwGJWw6Vo3l+8tRXu9GbbMX3+4rx4ebi8JMzm2F2xfA1uPVYdU/RbQF1JrO4ArNkiTxyqdpDguyUmwYmJfBL0yFOsXoPtpSjDqXj2cD6ZncxRL/Wak29M7Rb6iYEiFVtmuGA/26pMFiNkX9roiWYzab0LdLGnelB0LrbDwWGKtZaeC57nAlKhrc/HwxmeQy/mIzzX5dUrlAEH83YjBxj2ynITeOGOtjt5hhNVB0jgUSM3eomFmVLLS5Q0uSJNxzzz1YtGgRVq1ahX791O3Cx40bB5vNhuXLl+PGG28EABQUFODEiROYNGlSW0/XEEwVHxE6dsbTIyI7Rf5hvLPhOJ6eOQIub4D7RNl4p+ATvW1SX/xm4Q4+/mSdGx9vK8ZN4xW32cfbilWdR299YyN2PD5VeV3oSHv586ux/bEreb8jpQS6FYGQANgVcl3F4sipRpX7LBHu/e92rAyl79mtZmx85Iq4ezHVNHlx2d9W8b9f//n4uAPXtNVLvYEg1hw8parP848Vh/D3bw9FfI90h1X1nU+dtwZrfndZ2EXq463F+P3/dgEAumU60S3LyauEvr2hEEvuuTiuObcmT36+D//ddAK/v2ow7po8IOx1ty+Aa19aq3pu0fYSVSD6mcQ3+xQBzfqXAfI5Wdvsw8m68NpIW47XYPST3wjb6sW9qc3wLN1aSzx32RSs2zbsLlGvf/Gs60yM3BlyoffMTsH/XSxf72wWM0wmk+o7FoWJ+LvpkubgXaDjdQHpzVPvtxhrrFgDKZ72C21NmwuY2bNn4/3338fixYuRkZHB41qysrKQkpKCrKws3HHHHXjggQfQuXNnZGZm4p577sGkSZMiBvAmC+P6dML0Ud25tSI3w4GLB4ZXxNRyXv/OeGmlcmcmFj/6yXlyeeefnteb+1/d/gCsZpPKt1qosVRo/27U+FG7Z6WorBsn69xcJJyTmwa3P4Au6Xakh+48tI3hIhHJUiNJUtzBnmL9Ga8/qJpbLLR1Oz7aWhS3gNGzFH26vUQlYF5cri9e7FYzhvfIxE/P64MJfdWN1U5UN4cJmGPC3XtZqGUDY09J+9Tc+e8mOej8lZVHdAWMXhq/x3fmWgBEIS66c+67YiAW7SgFJAk7Ywj7cX3C3UCT+ufglon5GBwy02t/s4z8zrEzZX5/1RDUuXy4aULbxvydbbBGiIBsEbk0jnVdm3JfUuvi7nQW39QpzY5fXtIfNc1e/nsA5Ay0a0Z2Q3m9B3de3A+XDu6KLYXVPLMoXrpnOTHrgr7YXlSL68cYSyiYfdkA/P7jXfxvvUSR9qbNBcwrr7wCAJg8ebLq+TfffBOzZs0CAMybNw9msxk33ngjPB4Ppk2bhpdffrmNZ2ocp82C+T8Za3gcS610+QIIBiXuJ+2cZucL4NRhivus3uXn4uVn5/fBOxuOR0z3vPX83nh3wwn4gxK8/iAPItaeXGKMy9wbRvHHrOkcm5u2QZwW5u8dnZ+Nd++YiJFz5LtRjz8YV/+RWHOLRUviTjz+2GNtFrOu0Dn4zNWqv8Uur3q1Q8JSKZMoXiYQwe0muhbvvKg/5n17MKxXy5mE+DmI6c+zLuyHWRcqluOCsgZM+/sa3fcQLTcMs9mkOseG98jEXo278tbze8cl+Dun2fHKreNibke0Hm//YiKyUmMHs142OBdHTh1TPcfqCrEbUwB45JrwlgBOmwUv/1T5XqcOT2yuJpMJc65LbPBN4/Ph8gZ4E8hzuiZf9/J2cSHFwul0Yv78+Zg/f34bzKj9Ef2ppxo9vGGYaPUwm038onjF86v486xa5Gc7S1U/1M9CGTA5aYr/9M9f7McT1w6DPyihPBSjY7fKF2R2cVp3pBJvrzuOMb2z8atLz1HNrdkXiGnW9gfli7bNbFKZRJu9gbgEzFd7TobNrajahXGR639xAkEJcz7bq3ruYHljhK3D0RMmn2wvQWaKDb+bNhhpDitsZhOMlhO8671tWHrvxRjcTbnD+v5wZZQRwCOf7ML9UwYh9zS6CKoaPXhh2UHUunzcxw/I39X3hyvDilm9ta4QQKi7cuh3sbrgFP78xX4ubn83bTDPvkgWyurceHF5KBVVkqtK33FxP/z0PPlHtbe0Dm98d0z1PQNqkRkt5sFqaf3AxmRLVyUU4q0aoPebeWv98YivJTvJ6EJKvhmdhYhCZfn+Ch742agJkGQeI5ZB1CXdzrOTqnWqOwJAp1Qbb3WwYF0h9p9swIajSnBvr06ymZoJmMLKZny1twxbCmvC5ra3JHYcjDeU+WSzyAWZIll8IjHns338sSN0IYw3kHdHUU3YnayRk44F8WoXlwXrCrGyQA5ky9EpQd6vS3i20oxRirnWH5Tw7zXqdPVAMLqQ/++mIny8rTjqNi3ls52leG/jCSzddRL/3aTO2hPLlgNyLYu3Q4tvp1Q773ZbUuvCv9ccxetrj+Hfa462WbsLI3y8tQj/3VSEpbtOYunukzha2YQ/LtrDU6RfXX0Un2wvwYJ1hVgeClgEoBJ10X5H2jL1jHgvdKxWEDsXAYptSTZuFlx0uRnxfTfdsiK7AP0xzv9kYVDIrZXhsCZlvSeS+UmA2WzCwNx0HKpoRLPXzy9u4h07IKc1iz0t3rnjPHRKtWPO5/JFPxCUYDGbVBfHq0d2x3n9c3D1i98BkNMAWbyF3WpGj6wUHD3VxO82mdBgAV9mswkOqxkefzAudwHLimB3pal2C7z+YNyVfFn9g7/cOArf7i/HN/vKEYwzk0hMaZ7YrzM2HatGjzgrbgJKPEd2ig0v/3QsZr25mb/GPrPz+nXGiepmdM1w4E8zR6C8wYOLNZYKAHhs+jAMzE3HG2uPoaLBo4pxART3xNMzR/AMsn5d0rBoewmKa5qxubAmbExrE+39ta81C5/tSz8Ziz45qfjHLefiuS8PqGI4TvecE4HNaUx+Ng+UBuQbBKfNopqz+Ji5f6aP7B518c502rDorgvQ5Alg8Y4SdM9OQXF1M564Nj7T/R0X9UPfnDRM6NsJRTUuHD3VSCnRScYj1wxFVqoN5/fPUfVIisaN43riD4t26742Xic2Khk5v39n/Ptn49BX5yYtGSABkySM79sJhyoa0ejx86ZeA3PVPkexfPXInlkY2j1TJQxcIRePaO3ISrEhL9OJkT2zsLukDi6fn1tbLjgnh5v7tSWjRSvEqF5Z2FxYEyZCJEmCJEEVF8NSgFnPllSbBbXwxV0Ij42fdE4OjlQ2quYU79jRvbJw6/l9sOlYdVyWH3Yc7I7cYbNg8uBc3HBuT3wS6ibOgqDZndOdF/XD1OGR0/qzUm345aXnIC/Tifs+2KFKWw8EJR4UOLZ3tqrg1CWDuuL5bwp0P+94CAYl+INSWMFEEX8giIAkRS3Upw36ZvVerGYTT+m/bnQPvLvhuErA1Lt8hgK29eYfKc4q1rF5/UFYzaaw8ez3M75PJ5WAcXkD8AeCaBYsnapWIKHfw9g4Ljbn9pa3uWhguJiNhc1ixlUj5N9STroDYzpg1eoznawUW1jF8ljoxT8xsuOIoUkGTCZT1HWuvSEBkySwmg9iiq7WlSH+zdLpnDYzTCZAkoCSGhcGd8vA/4QUaWb6Ztt/uLmYVwtNtVu4gFlZUIGfnNebV/UVa1Cwok3rjlTyO8Pff7wTH26R97PqwclcobMupswCw/YbrwjxCy4o1jI+fgHD9m3mBZtiiYBAUMLVL65Rxcow8cXECwDM/fIA+uSkYlHouXjrKbDj33C0GruL65BiN+PGV9bzO33dOiGhMZ/tLMVTPxgR134AuSbL1S9+hxPVzbjjon54bMawsG2+3H0Sv/lgR8zaPFVNXuwoquUX02MR0ji1v9GHP9mNhz/ZjcJnp8c9b8ZDH+/CN/vK8MldF4a55erdPlz99+9QUuvCryefg4euUqduP7F4D95afxz9u6Thi99crIq3YvFgndPVd86X/W0VLGaTKn3+z18cwP+75BxIksQrKXfEeAUiuYlU44cwBsXAJAl6KWpdNPEW+Z1T0TeUjsvcFiaTiVtsSmrl9OOv95bzMexOmLmVyhuU2hUXnNOFu13YIt0pVKyIBeMCSuQ8K8wEgIsXAPyiDghWjNDdB7tAx5NJJEkSt3DYLCY+J1ec8TPMAiOOjSV+yurdYYG+FwyQv4tBeWoL2NNL9vPHY+Mo5Q0oTdEAubfSpmOKa6h/lzT0yA73pzMB1c1gHERBudzSAACW7y/X3WbNoVNh4uXCAfrpkRuFWKlTodR+rdXmogFddGM9jBYvBIAPthShptmHT3Rif/aX1nNLj96xLdsnP3e0siksZorFk6TZrbhAOM/8QSms9g8gnytipephMTr/EkQkbj2/N7qk23HDWKXNQ69OKbpxc4RxSAYmCVcOy8OsC/piQSjTgz0n4rRZsPy3k+H2BVQFili8B7tY54TuNO+8SEn1/Nn5fbD1eA2qQoWJTCbg1vP7wGSSG3Zpu61ecI5iCr9qRDfsLqmL6I4RK8e6NC4oIxYYn9D6wGoxG7fesAwoixmpjvisN3riiMUufHLXhdhbUocf/1vugl7vloXHhL6duMsgFt2zUvDDcb3w8dZi1VwuG9wVr982Qbc097khcWS0G7ZobYo0Vu/59+48H00evxx0bTHjj5/uwX83nVBtyx5PGZqrGnvnxf15Sui8ZQfx2nfH+FyiubGioSd+xPgrvWMQXxdbaLC5AHJq/88n9cGGo9W45TWls/29lw/A/13Sn6f8u3wB1W9dFKEEYYRnZo7Ek9eNgMVswtwbRsJsMsFsMiVdSf6OCgmYJKKTplSznnvBYjaFVYFMC13oD5Y1AKOA7SdqAQDnCDE0TAywO3SWmcSExtbjctbRvpP1qucBJROJFdLTFsljF3ZAbm4o7o+9T1Vj7ORjUQjZLWbFAhNnrRGfX3A/hcaW1LqixmREiwNJd1hVF2FWBjwrxVhJbdYA7YVlB/lzeZnOiIsYMy+z7yoaHn8Ay/dXwGo2qdoaVDR4dLc/FCGtXPxNpYcCuLcX1WLhphM4WtmET7bJVja9HjDsd5opVJg9Xt2EUanZqu2qm7xYcaAC/kAQTd4AslJsmDo8D5lOW1grDC1lQtXb2mYf/re1GFOG5vF6HGKhMbElRGWjh1tuUu0WmEwmXiKdkZ1qR7rDyl2xf/u6gH9nbAxBJAo7z6PFxBCJQQImichMUb4Okwm8Cm4sWBzL/FVHMPvyAXzBFmu2ZGrKlzN3EHu+usmLerePF18Ty05nhhbzk3VulNW5MevNTar3Yh2yvf4gbwHA9m0Nnbwbj1Xhtgv6Rj0OUcBYLUodmXgtEezCZTWbVMe7u6RO1S1chAm3SIjdV9k1Vvye4kH72cvvETmIT3z/OpcvagfYj7cW44+L9ui+VtnoCXNDMoHK6N813JTN5rvm4Cms0fR6yozymxQzvp74bC8W3XWh6vUnP9+LxTvUHbpvLszHszeOUlUmho5eEN1KjR4/fvvRTtw8QR5bpinpL/YHuvMtpRM6a4qn/ewzU2wwmUzIcFhR7/arrKB63x1BEMkBxcAkETNG9cCNY3thytBc/PGaoXH1QgHkTtiAfLcopoFeNkQx94/v2wmzBAHxo/FySWqxWFmx0JNlWHfFbC66ssrq3WGlz1kdDNESw/oyMREST2EuZmmxmk0qK0q8AobF36TYLbxOCaDfNZihzdB+9oaRqr/7d03HrefLLpIpQ3MxfWR33CG45uLhh+PDy3/fMrG3zpYyvTopbQeqGvUtKYySKE02K+rDxzIB8uR1w3Hd6B74249Gh21z47heuP7cnmHuIgBRRejMcxU/v17wNJuraHliFrtTgsVIL2tevHsd3kOOSWG/Q7HnF6B2RYpZR91DdTnyMp347ZWDMGVoLn48Ph9XDpV/39q054sGdMEfphvLPCEIou0gC0wS0TXDgedvCr+gxGJiP7n3jssbUMWgiALIZjFjznXD8cm2YtS7/fjBGPli47RZ0DnNjuomL6qa5IuIOdQplZGVYuN1aupdPn6BeOoHw/H44r1cYLB9O21m5Ie6rI7tnY3PdpbGlRLM3kfrfoo3iFdJAZeP++KBXfDdocqoAoi9dsvE3pirES+MZ2aOxDMz9V+Lh546tWhiBfHlZjhQ0eCJKd60r18yqCsKK5tworpZN3CaicQrh+VFFCM9slMw78djAAB9H17Kn59z7TBe2EoPi9mE//16Em58Zb1+nEroua7pjjDRoY7fCZ83e+7VW8dBkiT8+r1tYbWLGL5g7ADie64YGPbcjeN6obLRg7lfykX8Xrhp9GmthEwQRMsgAXMGwNKN/UGJd7GOZPFgLiK9GJdvQtlLqfbwqots+18sUIq7sTYF645UQZKkMAEhPv5mX1nM41gZqoKqDQAurGrGL9/Zgn/9bHzEscGgxGNM+PjQcT3w4U5YzCb8YExPSJKEJz7by6vKao8vWWDzeXt9If7yQ7Wo/XZfOd5YewzrhSwhPs6mlPm/8ZX12PLoFO5GOljewMVnIscbTysIMX5H7L1V5/Jx91WG04qykCfrYHmjSiQBwMoDardVk8ePbaG4rlS7Bcy+suV4DT7cXIT/fK/uN3PsVBMuG2zkyBRE65DRzr8EQbQt5EI6AxDjVd7fKHcUbvKE38X6A0Hdcvm1oS7Dn7KibTpje+fIFgOxBLYYm7GnpJ7fCYvtBxwhS0487edZECqr+tpdKMUtpobrIcZ29A5Zf/oIHaBfDNXXOVTRGCZe5H213Z02m180mFhg6cEiL686rCteAKB3TioqhYDp/6xVLu5iunu87kmx+2088xY/RzG+aFWBUqI/Vod2bdl+FjwOyKUE8oWS+7//3y4cKGtQba9tq2EE1rAuw2GlfkQEkeTQGXoGYLWYMXNMD3wqBEg+OC38FtRkMuHfPxvHK/YybpnYG6+vPYaGkHDRSxv90/UjMH1kd2w4WoUF6wqRl+lQZejIFYTD7+5Hh4JnfXHUBWHps2zu8ZbsZvtnsLTeB64cjK3Ha7DtRC0/tkhZRz+f1DfufSXCrjlT8eHmIgzrkamqvBuJZ28chZnzv1fFczC0AvPJ64Yjv3MKgkG5EmxFvZv/FsT4H1Zx9rrRPeIuxPf0zOEY1SsLvXNSdWsVaemUZkeGw4oGj181T/a59+qUgkeuGYJLBnXB3e9v1xXLYhaReLyd0+wRXW/PzByBdUcq8cXuMpULiTVAXXLPRbEPFsDkwV3xwf87Hz2yUyjVlSCSHBIwZwiDNH2TxLtUhsWsXxZa2y9I704702nDyF5ZKA/FLvTvkh5WwEyvDUFqyDrU5A2o0plLal0orZUrB7NMDxaf0Utn7rEoDgWIjuiZybOyUuwWPH/TGFz2t1U41SCn00aKxUm0Zkm8ZDptuPPi/nFv3yNkyWj0+OH2qTt5ay0MV4/oporVEJvIlda6eY+sotBnpO2xFY1UuzVm9piWkb2ysO5IlSo2hX3u4/t0gs1ixuTBubhpfH6Y+0ees0vVUoBZEyf27cy3GZCbjsMVSkr41GF5/Ld5vLKZ75O5TLvFaWEzmUw4r39soUYQRPtDLqQzhFRNfIIR83e0lgUil/1tFZ74bC/fRrxDDQQl7tYQYwfEeWwPZYTUu3248NkV+NGr6zFqzjc4ckrd8yhS7IGeOwWQ3WYPfrRT3p+mRLd4LBc+uwK3vrFR9z2SDfEzGPLYV1wMVDS4VS4i7baA+pg3FVbj5n+vxzvrC7FCE2N0umDvLzYe5S0qVPFR+vMISsBPXlcKzYm/uUhjU+wW/jl8tbcMjy/eg4l/+jbmvgiC6LiQgDlDuHBAF3TPcsJuNWNAbjpG5cdfPXTSOTnomZ0Cu9WMrBQbrhym37zLYTHDbjUj3WHFVSO6cfcQIGeCMEEjFhVLEy4cBaFYBdZXh7G3VI5fcekEAf/1h6P44+0n9Gu2bDlezR+zlHJGV00dFD3EMt/JgjZGpSiU4l4gxHtkOK2YMjQvbNtLBqljTLYcr8EWIR7lQp3u2a0JK6Aopj5nsxYVgnvosiHqef7+KsXtueGo8p0y69gIoZnptaN6IMVmgd1q5p/BJUJszSfbSrjbcNrwPFVcFkEQZwbkQjpDGJiXgfWPXJHQ2D45afj+4ctjbrf7yWlhz11wTg7WHalSlV8X3VQmkwnXju6Bz3eWhnW8ZrA0aTZeFD0/Gp+PY5VNeHnVkYgpxUz4PPWD4WGxLGazCYXPTsdra47iT18ovYz+cuMo3DQhP+Yxtxcmkwk2i4nHwDTzz0g+1nN7Z4cVimOMyc9G4bPT0eD2YeScbyBJQE1IVP7p+hFRU6Fbg1sm9Ma/Vh9Vpb+zlG5RPI3r0zms6eNfvirgjyVJQlBSYqPEOjP/d0l//N8lapfciJ5ZePP2Cbj9zc08bqZPTmrU7DWCIDouJGCIFsFM85sLq7klJcwlFbr7fXrJPvxwXC98ueek6vUNR6sxomcWv8hqXSIsg2nBukJMG94Nf/36ACYPzgXzYDGrRLS7bO17drQU2fkrj2DGqO6474MdAOJziYiWrIOhz6gtXClsH03eAP7+7UHYLGZ8fzjcvRiLZm8ANc2KuyyuY9b8BsjyQhBnLiRgiBbBAmYXbiribgJt8kZ2mpJufVgnjXnR9hJViq+21Ht2qvI3a8LH6oKIaHtJqeepnlS0bZOFYd0zsTPUpuHb/eX4VujCHE8atMVsQobTiga3nxeOy26D484Qyu//PZS+zoj1ueek2VEVClJetq8cu0vq+Gva9Go9Omky1zrC90wQRGKQgCFaxI8n5OPLPWVwWM28eu+QbpmqbWZd0Bf/Wi0X2Cuuid2gUNt/5trRPTDns71hKcW3TFRcQLkZTlw8KHJsh9ga4QdjeuD8/p0jbpssPHvjKDzyyW5VOXzGvTqVZPV44aYxWHFAFj55mU5cdJrjX4DIVpYJfTthXJ/oXbxfv208rn95HQC5PlFDqD3F6F5ZcTVVHJibjkenD8WRU40wm0z4cRK7CQmCaBkkYIgWMSzUl6bZF4AjFJ+Rm6kOnO2elYK+OakorGrmXam7ZznRKdUe1lxQj0ynDY9fOxyPCVktADD3hlERRoTTSbACPXTVkLjroLQnQ7tn4tPZF4bF7wCIq5YMILcMEHtZtRX9u6ThqKZr+YNTB8esrXJu70744bhe+HhrMZp9AR7zw1pfxMJkMhlKVycIouNCAoZoESzOQpKU+iTaVGZASZ99asm+0N+WuKvByu/ZslgGuyBY4nFFJBMdLV4HgG5H6XhT+1msy2trjsLjD68cTRAEAVAaNdFC9IQF604t0ilV7Rbq3yVdt0DaoxG6/w4IpeYyHpw6yMAs1bEf2hibZEfbg2h0fnb7TMQArBs5w2YxxV2gcGDou65p9nELjPb7JwiCMEmSXvP6jk99fT2ysrJQV1eHzMzM2AOIhFl/pIoH17548xhdc39JrQsXPruC/13wzFVwWC2qRn7ThudFTXktrGxCWb0bFrMJ4/t0iismQqSmyQuTqW0CWVuTQ+UNuHLeGv73vqemJX2fHkmSsO9kPfp3SceBsnr0yE5BXpydndnYplBPrC7pdvTvSgKGIM4W4r1+J/cqSHQIxAZ++REa/mU6lZ+a02ZWFTljXBSjyV/fLmnoG6EXTjxoM1Q6CuGVdpP/tDWZTDxO59ze0QN3o40lCIKIRLu4kNasWYNrr70WPXr0gMlkwqeffqp6vby8HLNmzUKPHj2QmpqKq666CocOHdJ/M6LdSRW6YUeKVRAvurYIAbSODhBY2x6kdQDBQhAE0da0yxWjqakJo0ePxvz588NekyQJM2fOxNGjR7F48WJs374dffr0wZQpU9DU1KTzbkR70zXdgevP7YkrhuRiYK5+lVeL2YTbL+yLXp1SMPuyAfz5OdcO448nD45ugTlbyU61Ib+zHD/y2d361XcJgiDONto9BsZkMmHRokWYOXMmAODgwYMYPHgw9uzZg+HDhwMAgsEgunXrhj//+c+4884743pfioEhiI7DqlWrcNlll2HlypWYPHlye0+HIIh2JN7rd9LZ7D0eDwDA6VTiKsxmMxwOB9auXRt1XH19veofQRDty4IFC2Aymfg/p9OJQYMG4e6770Z5uX53caN88cUXmDNnTlzbBoNBLFiwANdddx3y8/ORlpaGESNG4JlnnoHb7W6V+RAE0TYknXN9yJAh6N27Nx555BH861//QlpaGubNm4fi4mKcPHky4ri5c+fiySefDHuehAxBtB8ul9xF+49//CP69OkDt9uNDRs24JVXXsGSJUuwYcMGpKamcvdwU1OT4XP2008/xWuvvYYHHngg5raNjY24/fbbMWHCBMyaNQtdu3bF5s2b8cQTT+Cbb77B559/bji7jSCI1oWtAbEcREnnQgKArVu34o477sDOnTthsVgwZcoUmM1mSJKEL7/8Uvd9PB4Pt94AQElJCYYNG6a7LUEQBEEQyU1RURF69eoV8fWks8AAwLhx47Bjxw7U1dXB6/Wia9euOO+88zB+fOQaIQ6HAw6HUkAtPT0dRUVFyMjISMo7qvr6euTn56OoqOisiNGh4z2ziXS87733Hu666y6sXLkSY8eO5c9//fXXuOmmm/DYY4/hwQcfxHfffYcZM2ZgyZIluPjii/l2ixYtwrx581BQUIDU1FRMmTIFTz75JHr06AEAuOOOO/Dxxx+Hzaeuri7suWjs3bsXF1xwAf7yl7/gl7/8pdHDbzPOtt8VcPYdMx2vbHlpaGjg53kkklLAMLKy5FoQhw4dwpYtW/D000/HPdZsNkdVbslCZmbmWfEjZdDxntlojzclRc6eSk9PVz3P3ME9e/ZEZmYm0tLk+j5paWl8uwULFnB3z9y5c1FeXo4XX3wRmzZtwvbt25GdnY1f/vKXXMC88847qnkYobGxEQDQq1evDvF9nW2/K+DsO+az/XjZ9T8a7SJgGhsbcfjwYf73sWPHsGPHDnTu3Bm9e/fGRx99hK5du6J3797YvXs3fvOb32DmzJmYOnVqe0yXIIgWUldXh8rKSrjdbnz//fd46qmnkJKSghkzZuhu7/P58NBDD2HEiBFYs2YND+q/6KKLMGPGDMybNw9PPvkkJk6cyMfceuutCc/vL3/5CzIzM3H11Vcn/B4EQbQt7SJgtmzZgssuu4z/zYLvbrvtNixYsAAnT57EAw88gPLycnTv3h0///nP8dhjj7XHVAmCaAWmTJmi+rtPnz5477330LOnfpfpLVu2oKKiAnPmzFFlJE6fPh1DhgzB0qVLdYP2E+HPf/4zvv32W7z88svIzs5ulfckCOL00y4CZvLkyVGji++9917ce++9bTijtsfhcOCJJ55Qxe2cydDxntnEOt758+dj0KBBsFqtyMvLw+DBg2E2R67icPz4cQDA4MGDw14bMmQIL6ngcDgwYcIEbN68OaF5f/DBB3j00Udxxx134Ne//nVC79GWnG2/K+DsO2Y6XgNIBEEQp4k333xTAiBt3rw56nYrV66UAEgrV66UJEmS/vvf/0oApOXLl4dtO3PmTKlLly7879mzZ0uJLGXffPONZLfbpRkzZkg+n8/weIIg2pekK2RHEATRp08fAEBBQUHYawUFBfx1AAllGW7cuBHXX389xo8fjw8//BBWa1LnMxAEoQMJGIIgko7x48cjNzcXr776qqq+05dffon9+/dj+vTp/DmWwVRbWxvXe7Pxffv2xZIlS3imFEEQHQu67SAIIumw2Wx47rnncPvtt+PSSy/FLbfcwtOo+/bti/vvv59vO27cOABy7Ny0adNgsVhw8803675vQ0MDpk2bhpqaGvzud7/D0qVLVa+fc845mDRp0uk7MIIgWg0SMARBJCWzZs1Camoqnn32WTz00ENIS0vD9ddfj+eee06VLXTDDTfgnnvuwcKFC/Huu+9CkqSIAqaqqgpFRUUAgIcffjjs9dtuu40EDEF0ENq9lQBBEARBEIRRKAaGIAiCIIgOBwkYgiAIgiA6HCRgCIIgCILocJCAIQiCIAiiw0EChiAIgiCIDgcJGIIgCIIgOhxnbB2YYDCI0tJSZGRkJFRqnCAIgiCItkeSJDQ0NKBHjx5Rm76esQKmtLQU+fn57T0NgiAIgiASoKioCL169Yr4+hkrYDIyMgDIH0BmZmY7z4YgCIIgiHior69Hfn4+v45H4owVMMxtlJmZSQKGIAiCIDoYscI/KIiXIAiCSBr8gSD2ldYjGKQuN0R0SMAQBEEQScOTn+/DNf/4Dq+uOdLeUyGSHBIwBEEQRNLwzobjAIAXvjnYzjMhkh0SMARBEETSYbPQ5YmITot+Ic8++yxMJhPuu+8+/pzb7cbs2bORk5OD9PR03HjjjSgvL1eNO3HiBKZPn47U1FTk5ubid7/7Hfx+v2qbVatWYezYsXA4HBgwYAAWLFjQkqkSBEEQHQibJbH6XY99ugc/enUd6pp9rTwjItlIWMBs3rwZ//rXvzBq1CjV8/fffz8+//xzfPTRR1i9ejVKS0txww038NcDgQCmT58Or9eLdevW4a233sKCBQvw+OOP822OHTuG6dOn47LLLsOOHTtw33334c4778TXX3+d6HQJgiCIDoTdavzyVFTdjHc2HMfmwhp8vqv0NMyKSCYSEjCNjY346U9/itdeew2dOnXiz9fV1eGNN97ACy+8gMsvvxzjxo3Dm2++iXXr1mHDhg0AgG+++Qb79u3Du+++izFjxuDqq6/G008/jfnz58Pr9QIAXn31VfTr1w/PP/88hg4dirvvvhs//OEPMW/evFY4ZIIgCOJMpLCqiT8+Wedqx5kQbUFCAmb27NmYPn06pkyZonp+69at8Pl8queHDBmC3r17Y/369QCA9evXY+TIkcjLy+PbTJs2DfX19di7dy/fRvve06ZN4++hh8fjQX19veofQRAE0THx+oOGxzR5lFCE6iZva06HSEIMF7JbuHAhtm3bhs2bN4e9VlZWBrvdjuzsbNXzeXl5KCsr49uI4oW9zl6Ltk19fT1cLhdSUlLC9j137lw8+eSTRg+HIAiCSEJ8AeN1YBo9Af6YBMyZjyELTFFREX7zm9/gvffeg9PpPF1zSohHHnkEdXV1/F9RUVF7T4kgCIIwgCQposUfJAsMER1DAmbr1q2oqKjA2LFjYbVaYbVasXr1avzjH/+A1WpFXl4evF4vamtrVePKy8vRrVs3AEC3bt3CspLY37G2yczM1LW+AIDD4eBtA6h9AEEQRMdDtLokZoFRBIzLF4iypT5NHj9+9sZGvLO+0PBYou0xJGCuuOIK7N69Gzt27OD/xo8fj5/+9Kf8sc1mw/Lly/mYgoICnDhxApMmTQIATJo0Cbt370ZFRQXfZtmyZcjMzMSwYcP4NuJ7sG3YexAEQRBnHt6A2uoiWmTiQRQwPr9xAfTOhuP47lAlHlu81/BYou0xFAOTkZGBESNGqJ5LS0tDTk4Of/6OO+7AAw88gM6dOyMzMxP33HMPJk2ahPPPPx8AMHXqVAwbNgw/+9nP8Je//AVlZWV49NFHMXv2bDgcDgDAr371K7z00kv4/e9/j1/84hdYsWIFPvzwQyxdurQ1jpkgCIJIQrSBux5/EE6bJe7xogvJl4ALqpZqx3QoWr0b9bx582A2m3HjjTfC4/Fg2rRpePnll/nrFosFS5Yswa9//WtMmjQJaWlpuO222/DUU0/xbfr164elS5fi/vvvx4svvohevXrh9ddfx7Rp01p7ugRBEESSoBUwLm/AkIBRWWACxgUM0bFosYBZtWqV6m+n04n58+dj/vz5Ecf06dMHX3zxRdT3nTx5MrZv397S6REEQRAdBK2AafL60SnNHvd40QLjTyCGRsQXCFI7gySHvh2CIAgiKfAG1IG3zV5jgbhNQhp1IhYYCYroaXT7o2xJJAMkYAiCIIikwKO1wHiMiYgGlQvJuAXGJQimHcW1hscTbQsJGIIgCCIp0IuBMUKDWwnCTcQC0yBYXWqbqY5MskMChiAIgkgKwmNg4hcwXn8QhZVKL6REYmDqXYoASiQjKRCUMOvNTXhi8R7DYwnjkIAhCIIgkgJtHZhmb/wupDqXD0FBs3gDQcN1ZNQWGOMCZl9pPVYVnMJb64+rMqKI0wMJGIIgCCIp0FpgjATx1rnCBUcgaEzA1LtFC4xxF5I4vqCMGgqfbkjAEARBEEmBVsCU17vjHusOtQ7IcCrVQYwG8ooWmKoEeilVNCjzPVDWYHg8YQwSMARBEERSoHUhnayNX8CwoN1Uu1L4zmg1XjEIuLLRY2gsAJxqUMbUtFMzyT0ldYZcbx0ZEjAEQRBEUqBNozaSScSsLal2wQLjj3+8JEmaZpDGs5gq6hUBo+fSOt2sPVSJGf9ci5+8ttFw/E9HhAQMQRAEkRRoBYvWIhPPWIfVDIvZBADwG4iBafIG1EHABsQP41Rj+wqYJbtKAQA7imoTcoFVN3nx6faSDhOATAKGIAiCSAq0osGIBYaJHZvFDJvFZHh8vUZwePzGatAA7W+BKaxS0si1xxMPz315APd9sANPfqbfjftwRSP+ufyQ4fo8pwsSMARBEERSEC5g4regMHeRzWKCzWw2PL5B0zqgpRYY7fvFiyRJPCDZKMU1Lv64PoH9f7ytGADw0dZi3ddv+88mPL/sIJ5aoi9w2hoSMARBEERSwERDSqgDdSIxMDaLGTarfGnzGxjf5G0FASME8WrjeeKhstGDfo98gSGPfYUKAxlYjAph/4lYSSwmU9TXS2plgfTfTUWG3/t0QAKGIAiCaFVqm72qmijxwtxAaQ45ENeICPAHFReSNRQDYySGxh264IeGGhYgbl9A5TZKxAX18soj/PGHW4yJBF8gqBJdiexf/LwStQK1JSRgCIIgiFbD7Qvg8udX4+LnVhoOBmUX4DSHcQuMV3QhWZgFJn4Xkjt0wc9MsaneL160adeeBLKYGj2Jx81oi/65De5fa/HpCIG8JGAIgiCIVuNUgwfVTV7UuXzYUlhtaCyzeqSFUqETdiElEMTr8srbZjEBY7AZZGWjOusnERdSTrqDP2YiLF60LiOjFpiTdWoBY7QTeHtAAoYgCIJoNcTgVSOVdAFFNKSHXEg+v4EgXpaFZDXzi7+RIF7mMmECJhCUDMXQNGsu+Im4cMTWBylCQb649q+J4TFqAarVZC2RBYYgzjJKal14fPEeVVdcgjibEINhtVaJWDC3TbozEQuMvK3dYoaVCxgDFhiNgAEMxtCEBAsLQE7EAuMR4k6MurDCXEgGBVSVxgVmtA1De0AChiBakT98shtvrz+OH766rr2nQhDtQqNbFDDGyvErMTDGg3iVOjAm2C2skJ0BARISD5lOQcAY2D+LOWECKJEYGI8qCLeFAsZgEG55vVbAqPcf1BQFNCIOTxckYAiiFdl3Uu5Aa/TOkyDOFBoE10Nds7GgVG6BSSCIl7mbrIIFxmvABcUu+Mx9Je8/cReUxx8wXM5fFC1GLTDaNPBIAupQeQMOloc3mhQbUQLhbRi0YjQZYmRIwBBEK9I51d7eUyCIdkW0wBh1Y1Q3y8K/ayiY1VglXnlfdiGN2pgFJlSDxm5JaDwTH0zABCVjrQzkOSifl1ELTKOmcJ3eZ1/Z6MH0f67FD176HtWaVgPaysE+zdy1rQkSLdTXmpCAIYhWJHgWNFAjiGiId+ZG3CiSJGF/yILZq3MqAIOVeEPb2q1m2K2Jx8A4bGZYmQsqAQtMphBDY1SEtMQCoxUUemnUR081wesPwuULYPXBioj7BsItMFoXVTIE+ZKAIYhWJCAImLOhGyxBaBFdSEYsML6AxC/Cw3tkAjB2EWfbihaYRFxAKTaL0IrAuAUn05lYN2xAnbnELErxos1C0ouBqW1WrCgnqlyq17RiU3vs2jRtciERxBmGGOhmtI4EQZwJiBc2I8XURLGTHXLFegPBuG8E1M0cE7fAOG0WWEIWmIABFxATDKkOC++GbTTQVRQRRi0wWguKnvVHTJWuaVa7hLTrldaFpBVIDSRgCOLMQvR5J0vHVoJoS9RxHPGfA2ycyQSkCTVQ4o0j4c0crYlV4mXiIcVmgTWBZpBMgDmsFl5Iz3A7An/iadTa7fUsMGKHaq3LyaPZXms9cmle18bctAckYIgzjuKaZry74Xi79PIQFyztCR8Pc7/cj+teWouGBPrIEEQyIJ4DRiwwTEA4rRYewwLEb8UQ68AkVImXW2CU8UaCeFkWlN2amAUI0FhgjI4Nfe6pIfGn99nXNosCRr3GNGt6QWmPvclDMTAEERNJkvD8NwVY8P2xhMb/6NX1ePTTPXhtzdFWnllsxLsSbdBbLNy+AP61+ih2FddhvtDUjSA6El6VgDFugZEFhCBg4kyFZhd8u1UsZGfcBeS0WXgQr5HxvJmk2QSH1fj+AU0dmAjizxcI4r2Nx7GjqFb1PPvcWR0bPetXrUtxG2mbbTJB0zlNzgDzBqK7kMgCQxA67C6pwz9XHMacz/eFVYeMB9bT49sDFTG2bF0CQUlldTHqQhLvjhI5boJIBsQLpxEXCrMYOKxyGrOJdYWOM5iV1XxpjRgYFsRrJAbGpxODYzyORQzi1R/75vfH8MdFezBz/vcoE/oXsaDfjFAQsZ4AqnMpoqNCU7iOWVQ6p8kCKMyFpFnPKAaGIHQoqlai44trXFG2DEfsXeK0tu3PW2tSNepCEvvGaBurEURHwZOoBcavWGBMJpPhfkZ6LiQjvYzcQgwMC8I1Mp7N0yoKmATdQNrHIiuEG7Otx2v4Y26BCaVx62WAuQQryrGqJlWANLMYszo2WhdSs+a71MbMtAckYIikQzRtGnXDfHe4kj9OpCaLJEn4ZFsxth431kUXCBcwRudeUuvSfUwQHQnxzt9IHRjRhQPIQgSIPxXZy4N4RQGRqAsptO+ELDCmhGJwxDkA8VlvmKtL3J4JED3xKK5JkqSIJElSrMfMBaUVjloLTCIxfq0NCRjitNDo8ePoqcaExorBZS6fMTPl0VNKE8Uyg51wAeC7Q5V44MOdmPXmZsOLj9YnbNSFJC5YJbUuqiNDdEhEq4M3EAzroRMJ7kIKCRijIkCxwJiEQnTGBVSKTckiChgJ4hVcSHar8VYIkiTFVciuT+c0/tgkPO/hMTCR+0hpRQc7Zo8/CLbcMBeUdv8sBoa1WkiGLEtDAmbu3LmYMGECMjIykJubi5kzZ6KgoEC1jdvtxuzZs5GTk4P09HTceOONKC8vV21z4sQJTJ8+HampqcjNzcXvfvc7+P3qxX/VqlUYO3YsHA4HBgwYgAULFiR2hES78NPXN+Ly51djT0md4bGiEHB5ExcR9S7jPlrWI6TB7UeJQfdVo0cdFGdUfKkWfn+Q6sgQHRJt8Gi8cTDcAhJy/bJMpHjPA58QxGtPwIUjZiElUgiPbWuzmHkzSSMxML6ABPGeJdLc04ReTW4dwZPhjGyBiWRFES1lLIhXG7TLrDed0piLqv3XJ0MCZvXq1Zg9ezY2bNiAZcuWwefzYerUqWhqUu5677//fnz++ef46KOPsHr1apSWluKGG27grwcCAUyfPh1erxfr1q3DW2+9hQULFuDxxx/n2xw7dgzTp0/HZZddhh07duC+++7DnXfeia+//roVDploC3aGIuTfWX/c8FgxOEx7EsVCrF7Z4PYZtmKI/UGMxt9o6yoYdSFpFzujNSQIIhnQuo3ijYPRupCMBsKy80UWEIlU0hVcSGbjdWTULiTj+w8Xfvqfm3hjJMa0MMGTmSILHL00au13wbZhQsZmMSEnXS4iWKtpxMnEDxM4yWCBscbeROGrr75S/b1gwQLk5uZi69atuOSSS1BXV4c33ngD77//Pi6//HIAwJtvvomhQ4diw4YNOP/88/HNN99g3759+Pbbb5GXl4cxY8bg6aefxkMPPYQ5c+bAbrfj1VdfRb9+/fD8888DAIYOHYq1a9di3rx5mDZtWisdOtEWHE7AjaRqBmfQzyounkEJaPIGVN1lY8Eamk0ZmotxfToZ2re2ToLRE1y72BnNYCCIZEBrOYjbAhPazmkLWWASDOK1WcywMetNnCnYkiTxi7mYRm2oDozKhWQ8Bkf7OUU6/8UbI3HNYTdQTGDoCaBILiRufbJauAsqUkxflzS7amx70qIYmLo62T3QuXNnAMDWrVvh8/kwZcoUvs2QIUPQu3dvrF+/HgCwfv16jBw5Enl5eXybadOmob6+Hnv37uXbiO/BtmHvoYfH40F9fb3qH9H+FJSFt22PRaMn8Voq2sXTaEG4+tAiMDAvw7ALJ8yF1EIBQxYYoiOSqAXGE8ECE38MjNDM0aALSTzXnDaljowxC0x4GnckEfLl7pPo+/BSrDuiJB1oP6dIY5siWKgrQjF/fUKNMN2+8DYM2jWJC5jQ8067UkQwUgxM55CA6dBBvMFgEPfddx8uvPBCjBgxAgBQVlYGu92O7Oxs1bZ5eXkoKyvj24jihb3OXou2TX19PVwufbP+3LlzkZWVxf/l5+cnemhECxFPmkaP37BSF10x/1xx2NBY7eJptOU7K7X9yqojeOM7Y4XwtPsyWqlSO3eywBAdEe2df7wNHZmIcCQYAyM2c2QWmHgzmMQLu1wHJnELjDUOF9Kv39sGAPjJaxv5c/FaYMqF+i0qawyzkGQ4Ir4nszKlaar1uoQA5kifO3v/ziEXUzK4kBIWMLNnz8aePXuwcOHC1pxPwjzyyCOoq6vj/4qKitp7Smct2h9+VZM3wpb6iDEwRtw/QPjiadwCI5TaNihAtIKlzmVs342aeB8SMERHJKypYJyp1KILRv4/FEgb53kgjncYtMAwkWU1y+Ijnkq8JbUuXPjsCrzwjZzIwqw1dotZqMQb/zmsjTmJNPeTdcpNvChg2NrH0qgB9WfvDyiJAaxZJs9CEgWMxRJ6P40FJrS+dQm5qIx0Gj9dJCRg7r77bixZsgQrV65Er169+PPdunWD1+tFbW2tavvy8nJ069aNb6PNSmJ/x9omMzMTKSkpunNyOBzIzMxU/SNahscfSEhluzWZQwcNupEaBRHRVbibiAftSV9v0AJTKVTANdounsXusMVLW6o73vEMI43wCCJZYMKbp9vGaYENFzAGLTBCFpLNaiwFm61zKSH3lRLEG3n8jH98h5JaF/4RshKrLTDGs5D+8tUB1d++gBSWgh4ISqhsVG4I2RolxvCkO6y8n5G4hohZQ9mprN2A2gLjtJkjupAUC09I/HQ0C4wkSbj77ruxaNEirFixAv369VO9Pm7cONhsNixfvpw/V1BQgBMnTmDSpEkAgEmTJmH37t2oqFCqCS5btgyZmZkYNmwY30Z8D7YNew/i9OP1BzHlhdW4/PlVhi/EWmWubdseC9GSYXSs9m7PSL8OSZJU5bW1QbmxaApZUHIzQ3coBop4yfsjCwzRsfEHgrx7NMtmqY/TEinGsIj/xytCeCE7iymiFSES2ho0ShCvvgXmQFk9agSLiSRJXEDZYlTijXQ8G49Vhz2nHa8dy4SHuJ3TZuZxROIaxESaySTUegloBYziQgqzwITWtxyWhdTRYmBmz56Nd999F++//z4yMjJQVlaGsrIyHpeSlZWFO+64Aw888ABWrlyJrVu34vbbb8ekSZNw/vnnAwCmTp2KYcOG4Wc/+xl27tyJr7/+Go8++ihmz54Nh0P+YH71q1/h6NGj+P3vf48DBw7g5Zdfxocffoj777+/lQ+fiMShigYUVbtwss6NrYU1sQcIaANvjf7QRdFRY9D9lGgGBCCf7OL2Rl1ILAamS3piaYZhpncSMEQ7EgxKhssQiOdfXoYTAFAbp4ARBYj8v7E06pZ0o+YxIHZ5n9wCE0HArDtcpfq73u3nN0+yBYjF4ISP166P7DNmWY+XD8nlr2nXgEiB/uJ2DquFW4HFm0nRysQL7TELDHvNblECoP1q9xQTmB02iPeVV15BXV0dJk+ejO7du/N/H3zwAd9m3rx5mDFjBm688UZccskl6NatGz755BP+usViwZIlS2CxWDBp0iTceuut+PnPf46nnnqKb9OvXz8sXboUy5Ytw+jRo/H888/j9ddfT8oU6i92n8RN/1qP0jOs9HudcHdR0WCsoq22Aq+RC3kgKHFTJSCbLeOt5Am0LBBW7NQKJOBC8qgFjFEfcbxBfARxunH7ArjhlXW47G+rDAWji79ZdqFrjnO81oWkZBLFPv8DQQlsmVClMcdbQ0ZII5bfI3olX22V76OnGlWVapW5xy4mxwQNi5m78yLFs6GdvzYriq0ZLJbFZJLnziww4nqoCtRlLq6AWgA5rGbdIN5mwRrN1zedLKe2xlCEZDyTdTqdmD9/PubPnx9xmz59+uCLL76I+j6TJ0/G9u3bjUyvXbgrFE0+98sD+Oct57bzbFoPMXbEqCtF63IykoXUpFO4zhsIwmm2xDXeEzrpUmwWuHwBQ3EkNU3qeRttF9/YYgtMfIWsCOJ0s/ZQJXaEilGuO1yJqcO7xTWOXQgtZhPSnSwGJrEgXiMiRNxGlUYdbxaSJoXbEqMSL6vYzahz+fiNV6rdghR7uAuHoV3jGj1+pDms/IYp3WmF3WrWrcbt02RFKUG4oRo2VgtMJkXAqCwwOm4i9vkoVYwV64342Z0KxQZmOK38ewXk75vtqz2gXkgtQGy1/vnO0nacSesj3nUZtURoy/8bqeXC3DAmocmHEVcKu5OK1M8jGloLjGHXV+hz6hry/Rt1AYVZjwzUoCCI1qSwSqmufrSyKcqWathv2GE1IzV0EXfFWU3bJ2TxAMbqwIgXetECY7iPklW970AE62+NJmOoyRPga02a3cqDgfXWEO16ytY85q6ymoUsqjgtMOxmxxEqAshdSD4dF5LgJmLHLVYR1hOOpxpkAdMt08lbPYjv2V6QgGkBWhV+JiGeZNr03lhoT1ojQoBZMTql2rmIMWKJYAtZRpSGZpFgZlLl7suYAGELEcucMlxFOGyxIhcS0T5UNCjB7JXC41jwC6nVHPUirod4EQWMWWB8KgFjiit+JhCUBAuExMcCUHohRagDwz4TJgSqhWSDVIeFH7tepo62rARba5lYsgoiQrv2hQmY0GfrFoQjoAQjixYgdbNKdaCuKB71rFdsHqxTN9umveNgSMC0gK3HleBWdtE7U2iJBSa834YBAROqZpvhtPKTMd46EuK2rKGZEQsMO5kTsd4AiuuMCRijJ7e4+APGqoASRGtyShAtRopBMmur06a4UQwLGKvaimDEhWS3mGEymWKW8g8EJUz/x3eY8KdvsfV4jSH3lccfQEko5nFo9wwASrKB1WyC3WKGM8qxF2osWo0aAWMx61tBgHBBpQ3iZe4cvc9Or1idTxMDY7OYuRVH21xWfF+2TXu3EyAB0wLK6pRArkBQSuiO+VSDx3CxtbZAVa7aYAxMpCC1eGCLpToQrgUiJIFmbpkJiJ+6Zh+fe98uaar3ixft3CPd/RHE6UYUMHpxaZFgZQ+yU+3cChHv+S+W4pf/j98SqrXe2HQyaUSqmjw4UNaAOpcPv3p3K79ZYONSdCwYDPE5drPCmsCm2OUYlGjWJ7GSLqCsedwCYzZFFG/amzkPj4FR3/w4dCw40doFqPo4CT2oWAIFD/K1qT8fssB0YLQnttH24qW1Llz03Apc+cIaw+6K043KhWQ0BobFoTiMWzLYYpdmt3IzqCELjF8tQjwGTjCtgPAY+E4OVsjuxJ7ZKbxOgtEofXacaaHPLd4KpATR2ogCxkicA7MudM1wCIGsxiwwdo0VJB43cCTrTaQgXDHL8lSDh5/rzHWk1FEJnztbU8wmpVgfyyBicT/RxJvWLcTWV9a2IJoFRhunp7XAOKzxWGDC3URsrbFZlX0DellKoeMz+N2eLkjAtACta8Xol7mq4BQ8/iDK6t0orkmuNOxGweryzb7yKFuGw06UrFC1RyOfS7MQaKZ3FxGNYFASUpnlQNqWWmDiFSDst5CVYuPddAGDAch+RbwBkWtQEMTpRqxIbcSCWhqySg/KTTdsgfEKbgwAvBhdPOewx68WP7Gq+GrbfLCYFiaAuAtIV4AoF3MmdFixPuUCH9nFol0TWOXxgBDEy8WbZv5MeLFMR20QL+/krZMKra4Dox/EaxcCoMXxooWJvYf8nu17k0UCpgU0aQu2GYzIPl6t+EK3FFa3ypxai2atdSnBQFzA2EWcZSykRumKGokGtx9MbzDTrjHrjdoCA0TvhSLCzMpiFUz5ef3PzR8IYsmuUlX9ILZ/lqYY774JojUJBiVVBexmA+c+c4dkptgStsBwN5A1/l5IWvcTWzsCQUk3k0jbd4j1F2JNHKO5SNjxOG1KzyMmiNh+nbYoAkhbLdyjzkKyhOJo9LZl8+mcpr45VIJ4Lar/xfEsVCHDaQtzz3t1gngBZe3dcaIWADCqZ5b6+MgC03HRFmgyWrdDtOD87uNdrTKn1kLrNjplIBOBLQZ9cuS27oYygVQWGGPlwBs8yiLCTLtG3EDcAiM0Q4vXgiNG6dssZm6KjnSCf7ilGHe/vx2/WLBZeI+QgAnNnbKQiPag3u2DeM2PtxAdoFwk0x1WXhQu3pYaXISwVgIGYuDC06CVpAq9GyCtBeZAqF8bE0DOKEGquhYYN7PAxI4RYWsFS/xo8PhDVY/l162iCylC64DsFPnm0B+KvQyzwOh8dqy2V7rTGiawRBecyWQKczGxtTUv0xnz82lLSMC0AG2BN+O9b1r25bt9AXy15yQ377UmWveYkUA+dhfWPUv+sRsRds1CMSiHAR84oJyMsvUmkfiZcAtMvNYf5a5Ma2LVP/YNR6sAKAunPxDkd4o8BoYEDNEOaNN8EwnCz3BaWxwDk2gWEgCVG0QvGF7b3uDYKdkabg0L4o1ugUkNuXurQg0WuYCJcuzs5rBbSAw0uv0qd7HZbOLrl/bY2XrC3POALFK0MSrcBSXsn+03w2nlawwLFYiVhSVmSImfD1lgOigV9W5s0rh9Ei18BgD9u6YZnsOCdYX41bvb8NsPd0TcZtuJmohBuCW1Lvzuo504XhVeqKol4owteErLdgMuJB8TIVbDMTBc/NiEapIJWGBSbBZuQYlfwCguJECuBSHOSYu4wPoD6h5M6aGxvg4YA9Ped2REy9H2H6tq8sQdCya6Kdi5EO+66NVcRGMVsqt3+7DuSCWCQUnJsAnt02YOd4OIaC0wrNYVK7Ef3YKiiAXmymGij8fARLmBYftmN3gubyCsjk0k8ebmFhib8FyQPx+WhSS878dbiwHI301aaI1hN6qKANTU4AmNZxqQCxgK4u3Y6KfXGRQwQn0FI5YCxjd7ywAAKwtO6e777fWFuOHldXjq87264y98dgU+2lqMS/+6KnxuGtFjJL5HETCsZbuRsfJ+xUCzeEWE6H7SuwOJhV6Qm2ELTGgBY3dm8QiYerdfJWB4EG8Hs8C8s+E4hjz2FRbvKGnvqRAtgFl0h3bPBCCvdfWu+Cyw7Pee7rBGzeTRI1Ihu0gW2DmL9+Inr23E6Ke+4S4cFj9mNpuipmFrqwMzfcZdSFHquIgWmM6hjEOGXpqxVvwxKxXvWu8PqD4jp1VcfzRxlqHt0hxWfnxuX0CpgGxTW2DY+iVa1D2+ALcys3U+Yh+q0HgxQ0o+9ugW5raCBEyC5HdO4Y97dZIfG3YhCSdRIkq2e5Yyh4Ky8KrAT3wmC5cPtxSHvRbrjorNLZqv85u9ZXjx20NhCwTblgfxGrHeeEQXkrEYGJdPnnOaw5qQBYbXsEizR6yEGQm3ZgFh6ZTaYGhGQAjQrXf5+Gdms5j4ItjRgngf+3QPAOBv3xS080wIACiuaUbfh5di9vvbDI1j50H3LCe/YMXbmJTfyVvNhi9yrHOz1gIT6Sbik+2yUG5w+/HB5iIASvyYOF6vI3SkNYW5kKLF74gWmE5pNtVrbN1hAigoha9B3IoSWh9d3oDQp8gMs9mktBLQxsCEsn5S7BaVQHRrimBqxZ94rZl5bk9+k8QtMBGCoNl4thRZTNo0c8pC6pCYTCasenAyPrv7Qi5gDLuQ3C0TMCeqm/ljMWuAwX6kAFDVqA7CZY3aItHE05EjV5Wd/f42zPv2IBZtU+64JUniF21m5kwkiDfVbuEX8nitKM2CBSWRGjLMtJudYjPs43VrgugUAaM/Xrwg1Ll8/E4o3WGF1RzddB6LlnSIrW32JtREUsz0SLaSAGcr/1x+GACwdNdJQ99pdaipaec0O+97E68I8QgChseRRDn/xd9qpDiMeM6D7aEsmXSHIiiipVJHEkXchcRcJDrHzd01NjOv+cTHa1xI8ntoBYz8N1sfXb4AtDF0igVZM9avrHHiGqVYYJgLSR1DI7YK6JLu4JYqboHhdWAixcCELDBxuNjaEhIwLaBvlzSM6pVt2FTKEP2wRovgAcBJoRKw1qfr9QdVbiDtReXIKSXuxWI2qRYSjz/Af/BK63T1sXn9Qb5NcY0ipLyBIM9g6JTG0qgNuJBYHIrdGvEuJOJYQfykGixjLo5Pcyhl0OMNYNQuQLFcSGIzuAa3X53i2IJWAvNXHsaEPy3H94crDY89XNGAiX9ajmGPfx32e4pFkSCmJan9feOE+gZHrBoeC1YsLVtIhTYex6J0RPb6g7qpzIcrGnHRcyu55c4bwYWkd/5rBRUL1BUD8KMJIB6wL1hsgPAg3tgxMHbVa8wCEi0T0aOxULt9QcWyEtqvXpqyJElYf6SKb5cqxKHwVgKaIF7uAmKF+kKfbbpD34Vk17qQAkzAyHNgFphoQc5tCQmYViCF3+3H/2VKksT9toB8B6t3okmSpHu3IEkSagWri/aErte0J9BmKok+0UBQUpkCxQBeVhBOexKKcQ4moXW0OI9sXsgu/oJwYh0YxQJjNAvJyk9uI32cmvi+rUInXWN3nkoMTHQXUkW9WnyyGIMMpzVmI7lIuLwB/PXrAlQ2evD0kn2GxgLA6oOV8Iayod5aV2ho7K6SOtXfpyMzjjBGcW1iAkbM5ks0jkVs5gjo38TMW3YQJbUuvLPhOCRJihiHoecCYqUaGGx5EV1Iek0J2djPd5YCkFOYRbRp0H6ddVmMgemUqu9CEt9DK0LYPrOFQp9inyLxOMT165NtJTgWqnTsFL6bZm9AZRUS58E+d3azydYW9v7N3oDq2mO36jfSZBYYqyaIl2JgzgASKerj8gXCYhz0xs/5bC9GzPkahzSdrxs86tQ77Z2+tgGbVtBo06L1mjc6bWaebqf9oW4pVBpZ+oULLZuHzWLiYwH9u6iyOnfYwtiSOjDsmNIcFu4+M5ICKi7cqTZj48VFTX6PyONrmrw8fRqQvxv2/WQ6bQlb9A5VKO9Z2Rh/3R5GmXBR2HisytBYbZ0gEjDti9sXUFldyw3UcVIuhhbDrgIlm8WiuphHq2gLyP2BuJsjSj8fRiRBlu4UY2D0g3gf/t9uvnZOGZqreo01gXUI1bTDLCiCBcZqMSNLyAhiaxagX8338cVKQoWSpSnGwMhjtGnOgJJFBABOq1klIiKlUWuDcNnz4trc5PVHjIHRplGbtUG8ZIHpmOwpqcOrq49gxYFy4W4//i+T3XGLXaz1LlhvrT8Orz+Iz0J3DIzaJrUg0f6QtA0itRdSrWVCJWC8SjxGJFPhthOKgBHFkngnIS5gWhFy9FQjzp+7HD98dZ36OHRSoeNOo+YBwFaextzk9cdt/RFdUCkxLChaPDyNWmOB0bEAbTymTr+vc/lU9TPSdRaveNh/sp4/rmry8kZs8VIqXBQKK5ujbBlOdZP6ApmIgCJaj1MNHog/+3IjFhif4s5IuJqu1SQHo4bOYT0XufibeWnlIX6RtPE6MPq1UACgIoIgU1lgIrigVh88xR9fOKCLenxIADmsZjDDsvbYtTcrmSnKPsXYNj3x986G4/wxs964fAElA9LOLDDhFuTO6Yq7KsWuiYHRxOBpkxiYFYvF1zmsZi7wmjx+nu1k09bgCcjPi40mxf2QC6mDsqWwGs9+eQD/21rCFbiRuAG2rdg7R+sqES+8FZoOptqgXe2FtlFjgQkrTBdW5yUQtm2aKhVSPTfRolMvHLd4IoolqbXHtnTXSQDAnpJ61fPNghvIaCpzk+B+YhYYOR4j3hgaHRdSvEG8WgsMF1Dh409pLu71KgFjUwLsDHYpF4WRJBm/OxLvasU70HjQWlxYYS+iZewpqcPji/cYcgEB4WtRRUP848V4LuYSjafnTTAoqYJF2XvI48N/i5XCb6REsBaxCyv7DeqJn3qh4q9IhlMnCylKLFlOukN1E8nGix2ltUG4X+6Wy1cwgVVep5zP7288wR/HihNh8YV1QhZiisYCI1rKWY82QHZVi+8f3kpAfU1h7mgWA2MyKRbyRrc/vBWDxv0WkNQWGAri7eCwYNNUu4ULmHoDAkZxGUSulyBaRYQwEwB6AkYbA+OP+npYnRdVxUZFREQyFYoCSc8Ck2q3wmQyRbSiLAkJGECdwcLrwAiVeOMWIB4WhGtV+d/jqSLsCyhByWoLjP4J+u2+cox/Zhle/+6oPEehlQCAqC6oSs3do2yBYUG8Vh5YGK0LuNcfDBN20eKc4kG8SBqtS6QVLFVNZIFpDf76dQHeXn8cf1y029A47VpkpKM8v5jazdwNEuki/O2+csxfeViO1RMsHXZNLIneePH3aRNudrRWAL3YQrbmDMpLVz2vl0Yd7QbIbjFjYK7yHpmCAOLNKH3KPAsrm1BQztoOyIvyhQNylPcTrM7RGkICSll+ty/IBWa4C0kUMMrcrBYTv9GpbfaFW2B4Bpj8vF8jLAF1IK8nQho2cy0FNDE0FMTbwRHrlcS6Wy+sbEJJrTrojHUVzUqxRaw5IN5FaU9CrYDRniRaF5L2Ih6tWWMTT+nV94F7/UGVZUG0xoipzIB+vQBJkvgiAABHTjWGjVcFEMbpQhItMGazSXDjxB4vCo0U4TuNJGCe++oAKhu9+NMX+yFJUtgdUBqvxBt+4WBCgS1I9W6/0gTPaRUsMPoXndpmLy54dgVufGWdWvxpjlPP+hOJQFBCuRBYbPTOiomnntlySQGywLQOzN3BWk/ES1ilWQPuSNEakBKlmm6jx487396Cv35dgI3HqjXVZJkFJtzVUO/24QcvrVW1LBB/e1oXUlj3Zo8ff/1arjU0uFum6jU9F5I2BkbMPKpq8qgyiVhmEKC4k8QbtH2Cm5at6X++YSR/7j+3TeCPo312gLzOsDVgw1HZeso+L70gXrNgKeqTk4a+OXL19sMVjeHrD6/zwgSM2gIj7kMWMMwFrl+Dh1tgWB2YBLI8TwckYBJECTaNbKUAgBNVzZg6bw2u/eda1Y+RW2AEF5L2Qi0uQtog3Jqm6DEu2iBe7cVNu6C5VRYYxYXE28IL719Uo46PUFlgBAsKoB+Ip50ru9h5/UEeXJdqtyhm1AiLb0WDW1WtlqdBh05eFkgbjwWGCUDWCZa9h7ZiJwDsK63HoQpZdEmSHG+gdSFFs+AcC7VuGNO7E4BQFpLwe2ALizZDgrFsXzkqGz3YXVKnMr1rj9OIBaaq0aMKCjd6Z8ViEgZ3ywCgdg8QiSFeeNnvKV60AsbIb4GtY2IQr97v4T0hnqOszq26ydK6kMQbmHWHK7GzWJ21xkpCWMwm7tJhawdrWMh48duD/HFepgOD8zL4350EMcLGa2/uREE0smeWyu3Uv6tojZEt6+LNoNg9ns25e1YKCp+djgNPX4WLBioxNXo3f8xt9PYvJgIA+nWRRciKAxUAFIGgt/axWi39u6ShX5c0fq4VlDcIQbwsSFfeN1vLmXXMag63wDR5/EIrAv0gYB4DExJARht1ni5IwCQIr/oquBv0TIXf7CuDNxBEdZMXW44rga9sgZEFjP4icbJWuSvRuoTYBYMtFLEETKyLmzqNWhAwOifhiSq1gFHFwAiuNUDxY4uLhjbAk6WDuzRWkDSduxDGZztLMfFPy/GbD3bw53gMiyO2FUQLH2uzyP5vFpit852uO6KusXKwvDFsAVCyoML3zT6vfqFu3fXaIF6hyJReALKYASa6amIFaovHunTXSdXcxAsIIP8W4w1+DgYlntY6qldW2LzOdlYcKMcvFmxWpc7Hg1hbx2hbLLa+sAuRMRdSfEG8Yup8Sa1LVcclWraKXqwgW8+cogtGlYatrB/LQxd7QL7gPzhtMOwWMy4fkqtyBzHLimit9geCfJ7/+tk4jOqVjdwMp97HwIWN2EZB/BweuHKQantxvoB+vyB2I5ffWT73p43ophrTLdQfSVunBQC/wZg+qjsAYFio1UNBWQPvX8XWPK0Fx6/p9C1vq1iYuACyaVxI2maOJkqjPiNgyjglhgtJjHg/JrhK2EmR6bRFrFkiZpXUalxGrHjcwJAP2OVTj2V3DZHcKOx1dsESf4jK3PTjc5gA6R06CUWxxD4XNs6h0xVaW1SPXXirQ8fI2gikRckEejQUE7B010l+oY1ogdEc++IdJdisacQppm+zOQDhJ6jbF8B7QqAeILvAtM0cxQA5LUzAsEWsXhUDY0NGqJqoJIWLksMVDdhyXJm76Kphix37TiNZnn797jbMfn8bfvfRLv4cEyB9Q6IqKOkHPx4oq8e1/1yLv3x1gD9X2SSnwJpNSv+cRFxI+0rr8dKKQ3EHbXcUfrFgC1YcqMBzXxlrsXBcuFGobvIasooxix5z6RmywHiVc5idv3prW51QjPHoqaawjtCAfqxEtGxNUQTYI2Qxim6iVLsFVw7Lw44nrsQbt41X1aRi1g4xaF4MCL50UFcAwL1XDET/rmn4v4v7qeaiZ4Fh8/jRuF5hGUyRjkVcQ8RKxQAwNmSFZdx+YV/VMTYJNzFaK0rvzqmwWUzw+IMoC4njc0IWJLb+NHsDCAYlnkZtE9xQ7EapptnLM9Z4JWBeyC7kgorQjZpiYDooYrZMtEj7/SeVWI/jwh2VmIXE7hSqNW4h0d96UpOFwPyvg0Lm0/AYGHnBYi3btRczVreDiRDRfcXuWDqn2XXvoGpDCxcXMB4/V+hHQxV+2cKpqHxhsatUd79mAoWlVbLPQ3EBqY/N5Q2oLFIs/oIt0kx86Amg9Ueq8JuFO/CjV9ej78NL8dWek6rjY2NTIlhQFm46wYtJMUpqXUIQnTyeFanSu9tkc2ctKOrdaguM02bmC4XqDiwQxJQX1qiqKKssMKFt8zIcoc9D/6LDRPWXe5RAavb7YiZtQD/26MVvD2F3SR1eXnWE/4ZKQ5bCvEwnD0xMpA7MNf/4Dn/75uAZ2wxSr+t7NLTZauUGLDjajsdGBIxHLFfPhXzkTCBAdue6NaUE5MfhcSCia8ysSU4Qx1qEhoyiC1rsG3bzxN4AlKQBkZxQ2nFlg37BT+Zu6ZrhwIrfTsYfpw9Tjc8QYtS0++6kqcCrh9Z6LRYlZfs+R3BZAUp/O2ZJ8QclLnqUcv/ycZrNJm6xAeSio6y2jCjymoWaY6oYmNAaVy5kuKbyG0+1BSYYQcBQDEwHRWkcGLnY04dbilTuEtH1osQ8WHngWLRaGg1uv+pixmIfhoT8oOFBe6GLWWb4Aub1B3kpe97HSTixWXBdp1S7cGzKosMEDrMgiPtjxdSYebNz6EIumnGPCpYoeWzIAhMScDmhxYG7gDSL71d7T6r+ZncfoqgEgFQdP3JZvdr684dFe1RjmXBhJ7LWAiKar9kxFtc0hy3eLDOtVvO9+ANKi4deneTPT67Eq1hgTCaTEgcTIduLwWJNgkGJZ8Z11fnOGXtKFbN/UFIuDOz3kJfp5BcVvT4wB4XgaybkmPk6J93Ov7vKRk+YC8rtC+DxxXvwt68LwmrUiBe1dUeMBawmM6KVQsy0iQetFUtbLDDqfkNW1B6hGwm9IN6KBjf6PrwUY59epvr8FQuM2M8ofLzoOq5u8oYVYwMUi6YngoB547YJKkuLNttSz4LLLugL/9+ksDRqEWaBEUW+GKCsFTxaMll2qSDU+Hlujf1daq8LohWJCYQuQm2Xt0JxMYC6j12kcv8AVO4v9l2z92cZQw1uX1iVY0CxwDD3ncNq5q0UwgvhqQWM064I05b0XmspJGAShLuQoviJf//xLtXfJyJZYNL1LTBVmrtYVinV4w/wH92Y/GwA4UGT3IQcEijihZQJI6vZxC+iojgSL0h6Tc2Ui52Dn4hsMWPvkxUSLqzdvHgsb35fCADIDVkK2EU1HgvM8aom3P/BTtWxsqJr3ALjiGyB0bpFqpu82FJYrWphAIjxM+rvlFm0ACVgde2hyrAg3mwhtV68WG8K1WqxWUzID332voDEv09216fnA9cGcgPA/0LVOd3+ADcDdw0t3HpxD7s1Jf/Z74ZnnjmtfOGu1rgtJUlSWQILQxYFr7CwsrtejyZTDQDeXl+It9cfx0srD2PVwQrVa2IKt80S/cLSkThSqYh1o3er2gasRupMsfOxRxQX0tvr5CDc6iYv5n4huwQlSeJuFrFhoJ6YFS0TNYKLyynUEHLquKBYau7Pzu+Dy4bk4leXnsNfmz6yu2ofLEtHXD+UeLPoly8mDsQbQa2lNRrRYmActtjjtWunmGbOhJnJZMLC/3c+nv/RaO7SAmTrClsD2Hfp0xT6A9S1wrKFDCqTyaSyQPkD4WOZdZzFZonVeZXki5AFRtIImNDxSzrdttsSEjAJIvbdYWo5VqDciepmfjFjP5pMp43ftYoWmI1Hq7g7hsFM9ez/FJsFA/MUCwy7m272+vHdITnQlLkExLs5FknfLcuJzqF28LXCnSJr5tYp1a6bysxM4T2yU3jpbWYdcGniUNhJVB3avyjy7rhI9jlvDl3U2SLFRI9eEO4uTfYCIHfFlrtgR8pCCvdBi7y74bhQ+0ZTSErznYom2DtDPvN6t9LWgdV/YSIgKKmFx/9CnbtH9cpGZoqVLwhsPPO7Z+ikUutZYI5WNmHTsWpVNlLXDPkz18uA2qMRMOx3yPaT4bBy91+JJlapttmnek/2OxDv7sQigNoL8OIdSjXpDzcXq15Tx3vpX6gDQSlihd8mjx8PfrRTVW69tQgEJTz75QHD/aEAqM5ho9WJtTcwiRTK7JktC26XLxDWUFHMbFq4+QQvRMe2c9gsPF1W+1uSJEltgWlWLDDi+zq4e10577TWgAeuHIQjf74GX993CR66aohqP+wGSyxDoeeq0oNbYBrDXUixxgLRY2DiGa9NBBCtSKJIP79/Dm4c1ytsvBJaIM+fuZDENejnk/ryx+y7ZjDrTEWDGx6hRxWDpZOzmydR1GmtT5FiYIDwQn9tCQmYBGHFjVIdFu4PdfuCqostswAMzsvgwVbHqppQVN2MncV1MJuAcX066VopfidYb1hmB7vjLQyZ7nt1SkF2io2bCtmJWiD02RksCBy2cLDFoGd2CrJTwiP1P5t9EXY+PhXn98/hd1PiAsbcCEO6ZfAy2uyHrg2G5e6x0PuLCxE7aSsaPPAHglzkMNHDBIgvoPiO9S7igLywcBGhzUISRIhoyp45pgcAWRQxtxZzqWmFGYMtnj8en4/hPbJwzUgli2Bcn07c8uS0WfgdoBi0zFLQrxreDSaTSWXRAZSy5IoFRj+Vfsk9F/HH207UYLOQmaRXQ4KhjaNgi1cj7yNlFbI31BdMbcPGnUXy30ojOPm3wu/8hAuHLxDE3lJFpIiNBgGoMvT0BEwwKOH/vb0F45/5Fh9sPhH2+mOL9+DjrcV48KOdYQHvLWVLYTVeXX0ET3y213BFXLHGkdHA5vBsPeMWGBZTAYTHc2nrN1U3e8NK4WfwlH71vt2+oCbtPsgtt06hH5CeC0obywHIF8bB3TJUtU4A5XwUM7L0LD16iAJGG+gfT1p6tBiYWNYfQFn72OciFouL5b4ClPOIXRf03EAzz+2J3181GD2zU/Cj8fmq8V1DFu5TDR6+7jl0spC4BUZwW3EXeLNsQWaGHpaFFK3bdltCAiZBWC+iTKcNaULVWHGRYv7E+T8dy109u4preXbBgNx09MhO4Rc60ced31lZeCYPlhuOrSqQgy9ZGu/o/GyYzSZ+orIFb0x+Nib07YSe2SmYdE4O/6GxCym7kPTrksaDTcWgS7PZhKxUOb2bmSVrm+XeOpWNHlQ2emEyyfNn7orSWhckSeLHwPp85GjuIthd/aC8dHRKtXOfd02zj2/DLqBpwiLDLsai0Fr14GT+mF1YHFYzX3T1LDDsDuzH4/PxxLXDAchWDFYojGXRsMVLexFhF4GRIVE557rhuHRQVwzvkYk5ofdj9AkVmmKxInUuH3chMVH6s0l9VGOYaVmviBYzZY/tnY0RPbPwmysGyvM/1cgreY7r04kft55FkNXfYIs/FzBuVrxQETBaIcBcoOz1bSdq5Lt2v7rKZw4T5MJnJ2YtAXKJANH8LbZBOKmJUwKAb/eX8/ijN9YeC3t941FlvDbLraWIwfTa7LVYiPFeLl8g7t5agLKWsIt4IhaYrhkOfv5rg7q1gqqszs3dHWaTbCWI1CalXshiZN87s+yK4oAH8QrnoFcnliMS54TSoo/wuktS3FYQ9jv1BoL83NGW7I9Gpk6FdbcBCwyPB+MCJtwKEn282oKklPtXi5+7Jg/A9w9fHpbRlCsKGE2zR0BZY9j6yG78ALWACQjnqVhHJhkCeUnAJEBFg5sXGeue5ZT9jWlqtSxJkqovEIs2P17VzC8s7E6Z3SWVCXfH7C5mzrXDMG14HgA5fkKSJB41zi623UOmQ2auNplM+PP1I7HiwUuR5rDi3N7ZAJTFd0dRLQBgfN/O3Ee+p6SOC5BfvbMV3x06BUmSkJfhgNkknzyVjR5ufendORWpdquqmFJ5vQcuXwAWs4kH+GrNoKwJZM/sFFjMJh4rUt3kVVxIIdFktSjt6lnsBRMqd182AD07pXABxC4y7PsAlJNQvJCqgqfT7BgQWiC3nZA/kyGhyp5srMcfVN111woVlAHZTPvWLyZi6b0Xc1HDYJUymcXsi91K8DHbz88n9eEum0enD+Wvs8+tSLgYNwjF7gBgWA/5PXYW1XHX2rWjuvPMk8MV6mDp7w9XcktWvy6h32NobizQMd0hBpWrL3CHQ9/9pYO6wm4xo9kbQFFNs1D/Qx2YKFoUtwoWFqvZhKomL3+upNaFnaHfJCALEO2FXnQdHqpoVLkiA0FJJWz1YoXWH6lCXbMvYsDhfzedwDvrC3UbYIruLe1nCsj9bwY9+qVucPIRjRtYzwrz7b5yfLD5RNjcmHhmxdX0BIzbF8C+0nrV5yFJEv8MslJsQll6TYydTpaTSxPkqlzE1d8H+21kpdi41ZB9Ng4dC4yYRaRd/6LB1k1WOFIvEDYSTptFuREJ/b5dBgQMuzEU6/cwgRfPeO4+D+2bZyDFMVbef+g8Cn1PDfxzs0UcI8IsMBWiBUawWqU71PMwC1Yh8cZVtOgL+kVpV9COAib2L6gdmT9/Pv7617+irKwMo0ePxj//+U9MnDgx9sDTRCAoYdH2Ejz4kRxEOqx7Jl8ceuekorTOjZdWHML5/XNQXu/mC3tOmp3fRb3x3TH07ypf2NhYJkBqm3147qsDcFot/G4zJ92BgbkZsJpNaPT48dD/dvHO1Ew0nZvfCdtP1OL5ZQUormnGextP4GSdG7+5YiDuv3IQxuRnY3NhDZ7+fB/+EiqBDwDDe2Sif9c02C1m1DT78PuPd2FPaT32n6xHWb0bFw/sCqvFhO5ZKSipdWHin5fzz4K5plga979WH8WqA7KFKL9TCr+YMffaruI69H14KR/PhFOXdAdqmn14bPEebp0QS3v3yUlDTXMtrvnHd5gyNBff7pc/l7wsJ2wWM3LSHKhs9PDvREwrPCf0OX+6oxRf7imD02ZRBU8DwDUju+Mfyw/xMUwUdEl34Nze2dh+ohZ/XLQbE/t1xv6T9dxSwCxX0WAZYh9tLcaJ6mZ8FIrPyEqxcVdTqt2KT2dfiD2ldbhkoBLEd16/zvhkWwkWbS/GsO4ZyEqx4/NQ/yjm3uKFrMobeGuGUfnZXBRuPFaNtYcqYbOY4A9K+OnrG/n7XzEkF/tP1uPtDccxvGcmb6o5vEcWT3Nfvr8C04Z3gy8QxNFTTXhrvRz06bSZMahbOvaU1OO3H+7k2V6sSBb7/j7fWYrhPTIRlBSB+PTMEdhxohb/21aMdzYcR3aqHc9+KVtnxuRn41SDByW1Lry/8QSmj+oOn1/CqUY3Xlp5mM9dkmQrzE/Pk1No3/y+UOXi3H6iFn1y0uQ0URPw9Z4y/P5/ikv21VvHYkx+JwQlOd7jqz1l+NMX+wHIVqZfTx4AE+Q7d5c3wH9zgFzX6dbz+/D2ESW1LvwhVJPopZWHkZvpwNUjusMflItXsou6ySTPm91EWMwmHK9qxpd7TuLt0Oe67Xgt7r58AMxmE1YeqODWsZE9M7Hm4ClsO1GD2mYvbBYzfIEglu0rx7xlB3kX8QW3T8A5XdNR0eDhd+vZqTbkpNtR5/Jhd0kdctIcCEoSjlU2YWWBUqMKAL7eW4bS2izVbywrJE6Ka5pRUutCMChh38l6/PKdrQDku3yzyYTKRi8+DcU4paosMPLjvaX1WHPwFIprXPgkFAeW7ox9+WF1rnaX1OGJxXvw3WGliGQ8VpAu6Q40uP34cvdJNHsD+HS7vG9nHC4ktmaX1rnx9d4yfLKtGJtC3x9bP6LRLYu5v1x4Z8NxfLNXbgIZj+UJUATQhmNV6LE1hYv8zDg+N0CxwHy8tVg3Q0wrhCb1z+GPxWOf8c+1whihV5SQidReJK2A+eCDD/DAAw/g1VdfxXnnnYe///3vmDZtGgoKCpCbm9suczKbgFdXH+F/X39uT/545pie2HC0Gt/ur1AteID8o2F3Eg0ePzfjnxtyK2U4rOjfNQ1HTzXhlVXK+5tMwNDuGbBbzRjXpxM2HqvGh1uUIMXhoYvt5MFd8Z/vj6Go2oW/faOU2d5VXAtJkjCxXw5e++4YGjx+MC9VptOKAbnpsFnk915/tIpfYAHgtgsU18YNY3vinyuUCwggl+AG5Astg11Ex/ZRTJmDu2WgU6otLJ6Cjb9iaB4OVTRy8cJcU4zz+nfmFiPxcx0Q+jxH9crCigMV/AI2vo8yH/F9PP6g6u6NWUCmDsvjAubvPx6jOkGvG90D20/UYvmBCk31T6jKl0fisiG5eParAzhR3azKQPv15HNU23XNcOCywerf9GWDc+GwmlFU7cKv3t2m3j50Z9gzOwXpDiu/o3VYzRjWPRMOqxl5mQ6U13tw6xsbocdvpgzEyoIK7C2t51ldQ7tnondOKi4fkou/fl2AgvIG/GD+92FjLxrQFYPzMrCnZJ8qdmV86HtncT3rjlThupeU8Z1SbfjJxN44p2sa/retGIt3lKoCe2+7oA8OVzRi/sojeGbpfjyzdL/u3AG5ySHrh2PkNQBhn6fIa98dw2vfhbuoGDuKajHhT99GfP3xxXvx+OK9que6ZTqRl+nAzuI6PPDhzggjgQ+2FOGDLUWq57JTbTivXw7mrzyCXcV1GPPUsojjZ725WfV3/65pSLVbMaRbBo6eCs/eA2Rr2PRR3bF4Ryk+3FLM15fhgpC3mE0IBCVc+OyKsPE3jc9Hit2CRz7ZzZ+7eaISizG8p/w+u4rr8PP/bFKNzYtQAVekT+dUpNotaPYGuIBmxxZPWvqInlk4VtmkWhcBxcUdja7pDmQ6rah3+7lgY3SOow5Mjywnumc5cbLOjcc+3aPsOy0+CwpbI78/XIXvDyulBcR06WiMDl1fRIExoa+yPjLrOUOsLNwl3YELzslRlTSYPLirKnbntkl90eQJ8FId7YFJas8k7iicd955mDBhAl566SUAQDAYRH5+Pu655x48/PDDMcfX19cjKysLdXV1yMzMjLl9vCzaXozCymaMyc/GZUOUi44kSfhsZynWHKyEPxiExWRCZZMXfXNS8dQPRiAYlPDephMoKKtHUAL65aRh1oV9+Ul4oqoZb68v5LU87BYzrh7RDeeFVHFFgxvvrj+OWpcPaQ4rxvbuhCuH5fH9L95Rgu0nauHyBuALBJGTbscfrhkKk8kESZLvMtcfreJ3e0vvvQjDe8gnSFF1Mz7cUoTaZh9S7RYM7Z6J60b34AF1gaCE/246gUdDJ+Gj04fip+f14b7u7w6dwo4TtTCbZZPzdaN6cAsDIAcyXvH8agDAzRPyMX1Ud1w0oAtMJhPcvgA+21mKg2UNMJtNuGhAF1wipBN6/UEMe/wr+IMSLhrQBWsPV+LVW8diWigI9lSDBx9vLUady4ee2U78aHw+v8vwBYJ4Zsk+fLhFvgPJSbPj4oFdcME5XfCj8b34ybizqBYmk5wZJBIISvh4axG2FNagyetHcY0Lw3tkYuqwbqrvPhrfHTqF/20tRlGNC1uP1+CH43rhz9ePVNW+iMT6I1V4Z0MhyurcqHX5kOm0oVumE4/OGMqzM77ZW4YPtxTDFwjiJ+f1xrThclDxigPleGXVEVQ0eGA1m2A1m1Hr8iInzYFFsy+Aw2rBwfIGPPX5PhTXNKNrhgNPXDscI0KL5p+W7sOyfeXwBSTYLCbYLGYcqmjE/VMG4TdTBsIXCGLesoPYdKwaFQ0eXD2yGx6cOhg2ixnl9W48s3Q/jp5qRFWjF/6gBKvZhHuvGIifnNcbwaCE+z7YgQ1Hq+DyBZDptGFMfjZevHkMmrwBPPDBDqw/WgVfIAibxQybxYw6lw9ThubimZkjMevNTThY3qAqr39u72zMu2kMHlu8BztO1MITULp1m01yNtiA3HQcrmiE2SSby81mkxzrYTbj8qG5sJhMWLavnJvqzSbZHZKdasP9Vw7CygMVWHekCnUuH8wmVqnWjPzOqRjbuxMWrCtEhtOKBrcfdosZDpsZndPsuG/KQJhNJvzlqwLUu+SYAn9QCUy/dnQPBIMSdpfUoaimGTaLmb8278ej8YPRPfHUkn34dn95WHzPBefkYGTPLByuaMSBsgacavTA6w8i1W7Bm7Mm4Lz+OSiqbsY9/92OXcW1YS0JXr11LCb174Knl+7D9hM1cPuCyO+cgjnXDecif8H3x/DK6iOobfbBbDLBGwgiEJTwiwv74bEZ8hqz9XgN1hw8hZsm5HOXKCCvi6+uPoov95yE2xdAboYTJpN8o3H35QN4Vkusc+iDzUVweQNo9gYwtk82rh7Rnf9Wo1HT5MVfvynAxqNV3J03dVgeHpw2mFuPo7HiQDn+9vVBFNc0o97tR+/OqbhiaC4emz4sLOBYj9UHT2H+ysPYcaIW3kAQ4/p0wu+mDcb5grUjEsGghBeXH8KyfeUoqXWhzuXDszeM5MX74uHDzUVYuPkEtp2oxQNXDsI9lw9QiZDDFY1Yvr8cM0b3UH1vgOwmfHnlYewprUP3rBT84Zqh3C11uon3+p2UAsbr9SI1NRUff/wxZs6cyZ+/7bbbUFtbi8WLF8d8j9MlYAiCaH1WrVqFyy67DCtXrsTkyZNjbh8MSmALlwnQvZi4fQGYTXI113iyPhhK5159kRkMSlEvXrFej4YkSVHnKjYdtZpNYfuRJAneQFAVhyK+JkmyldPI50EQbU281++kDOKtrKxEIBBAXl6e6vm8vDyUlZXpjvF4PKivr1f9IwiifVmwYAFMJhP/53Q6MWjQINx9990oLy9P+H3Noa7FFrMJX331JebMmRO2jdNmgV0nZfW1117DpZdeiry8PDgcDvTr1w+33347CgsLAcjCJZJ4YfuONbdEiSUsUkLNY+1Ws+5+TCaTrnhhr5nNxsQcQSQzSRsDY5S5c+fiySefDHuehAxBtB8ul+zy+OMf/4g+ffrA7XZjw4YNeOWVV7BkyRJs2LABqampaGqSzftNTU2Gz9lPP/0Ur732Gh544IG4tt+4cSN69eqFqVOnIjs7G8ePH8dbb72Fzz//HN9//z26d+8e+00IgjhtsDUgloPojHEheTweeDxKWmBJSQmGDRsWth1BEARBEMlPUVERevUKr1LMSEoLjN1ux7hx47B8+XIuYILBIJYvX467775bd4zD4YDDoQQYpaeno6ioCBkZGUlpMq2vr0d+fj6KiorOihgdOt4zm0jH+9577+Guu+7CypUrMXbsWP78119/jZtuugmPPfYYHnzwQXz33XeYMWMGlixZgosvvphvt2jRIsybNw8FBQVITU3FlClT8OSTT6JHD7mK8h133IGPP/44bD51deEtJ6JRXV2Nfv364b777tO15CYLZ9vvCjj7jpmOV7a8NDQ08PM8EkkpYADggQcewG233Ybx48dj4sSJ+Pvf/46mpibcfvvtcY03m81RlVuykJmZeVb8SBl0vGc22uNNSZEzG9LT01XPnzwp17Tp2bMnMjMzkZYWqo2Ulsa3W7BgAW6//XZMmDABc+fORXl5OV588UVs2rQJ27dvR3Z2Nn75y19yAfPOO++o5hGLqqoqBAIBnDhxAk899RQA4JprrukQ39fZ9rsCzr5jPtuPNysrdpZZ0gqYH//4xzh16hQef/xxlJWVYcyYMfjqq6/CAnsJgkh+6urqUFlZCbfbje+//x5PPfUUUlJSMGPGDN3tfT4fHnroIYwYMQJr1qyB0ynXmrjoooswY8YMzJs3D08++aSqsOWtt95qaE49e/bkbuecnBz84x//wJVXXpngERIE0dYkrYABgLvvvjuiy4ggiI7DlClTVH/36dMH7733Hnr27Km7/ZYtW1BRUYE5c+Zw8QIA06dPx5AhQ7B06dIWu3q+/PJLuN1u7N+/H++++y4PJCYIomOQ1ALmTMbhcOCJJ55Qxe2cydDxntnEOt758+dj0KBBsFqtyMvLw+DBg2E2R05VPn5cLrg4ePDgsNeGDBmCtWvX8v1OmDABmzdvDtsuFpdddhkA4Oqrr8YPfvADjBgxAunp6Ul903S2/a6As++Y6XjjJymzkAiCODNgcSybN2/G+PHjI26nLWS3cOFC3HLLLVi+fDkuv/xy1bbXX3891q5di1On5F4+d999N+bPnx8z5TIWF1xwASRJwvr161v0PgRBtA1JWciOIIizmz595F5cBQXhPY0KCgr460DrVZV1uVyGs5cIgmg/SMAQBJF0jB8/Hrm5uXj11VdV9Z2+/PJL7N+/H9OnT+fPsQym2tramO/r9/tRU1MT9vymTZuwe/fuqFYigiCSC4qBIQgi6bDZbHjuuedw++2349JLL8Utt9zC06j79u2L+++/n287btw4AMC9996LadOmwWKx4Oabb9Z938bGRuTn5+PHP/4xhg8fjrS0NOzevRtvvvkmsrKy8Nhjj7XJ8REE0XJIwBAEkZTMmjULqampePbZZ/HQQw8hLS0N119/PZ577jlkZ2fz7W644Qbcc889WLhwId59911IkhRRwKSmpuLOO+/EypUr8fHHH8PlcqFHjx645ZZb8Oijj6Jv375tc3AEQbQYCuIlCIIgCKLDQTEwBEEQBEF0OEjAEARBEATR4SABQxAEQRBEh4MEDEEQBEEQHQ4SMARBEARBdDhIwBAEQRAE0eEgAUMQBEEQRIfjjC1kFwwGUVpaioyMjFbrlUIQBEEQxOlFkiQ0NDSgR48eUbvWn7ECprS0FPn5+e09DYIgCIIgEqCoqAi9evWK+PoZK2AyMjIAyB9AZmZmO8+GIAiCIIh4qK+vR35+Pr+OR+KMFTDMbZSZmUkChiAI4iwhEJQQCEqwWynEs6MTK/yDvmGCIAjijMAfCOKcP3yBQY9+icLKpvaeDnGaSUoBM3fuXEyYMAEZGRnIzc3FzJkzUVBQ0N7TIgiCIJKYwipFtPztG7pmnOkkpYBZvXo1Zs+ejQ0bNmDZsmXw+XyYOnUqmppIURMEQRD6SJLy2O0Ltt9EiDYhKWNgvvrqK9XfCxYsQG5uLrZu3YpLLrmknWZFEARBJDMBQcG4fYF2nAnRFiSlgNFSV1cHAOjcuXPEbTweDzweD/+7vr7+tM+LIAiCaF0+3V6CPSV1+OP0oYZreIlWFxIwZz5J6UISCQaDuO+++3DhhRdixIgREbebO3cusrKy+D+qAUMQBNHxuO+DHXh97TGsOFBheKwoWvp3TWvNaRFJSNILmNmzZ2PPnj1YuHBh1O0eeeQR1NXV8X9FRUVtNEOCIAiitalo8MTeSIMoYHIznK05HSIJSWoX0t13340lS5ZgzZo1UavxAYDD4YDD4WijmREEQRCnE39Qir2RBtGF5CIX0hlPUgoYSZJwzz33YNGiRVi1ahX69evX3lMiCIIg2pB6l8/4GLcyhmJgznyS0oU0e/ZsvPvuu3j//feRkZGBsrIylJWVweVytffUCIIgiDZg0fYSw2M2HKnijymN+swnKQXMK6+8grq6OkyePBndu3fn/z744IP2nhpBEARxmpCENOh0h3EHQZowxu0nC8yZTtK6kAiCIIizCzHsJZBQDIwiWjzkQjrjSUoLDEEQBHH24Qsobp+Egnj9FMR7NkEChiAIgkgKRKuLP2A8huXznaX8cSIxMHtK6tD34aXo+/BSVDS4DY8n2hYSMARBEERS4BUsKIEEQgl6dUrhjxPJQvr5fzbxx9tP1BoeT7QtJGAIgiCIpEAMvPUlYIHxB1rWC6m6ydui8UTbQgKGIAiCSApcXkU0JOIC8gfFXkgtS6P2UBp20kMChiAIgkgKWtqM0ddCC4xqLgmkYdc2e/H0kn14YdnBhLKoWorbF8BfvjqAlQn0keqIJGUaNUEQBHH2IYqGRCwgYuBviwVMAuM/21mKN9YeAwBccE4Ozu+f06I5GGXxjhK8vOoIgCMofHZ6m+67PSALDEEQBJEUiKLBGwgatmL4hO19CVhAJvbrLMzFuICqa1ZaGSTSCqGlFNecXdXqScAQBEEQSYHW6uIx6MYRLTCJpGGLgikRC4xoQRJr0rQVZ1sNWBIwBEEQRFKgFQ1iUG8sgkFJVck3KMnPGUHtgkrAAiNYXZo9fsPjW4q4/0SyuDoaJGAIgiCIpEBbPXfZvvK4x/qC4RdsveeivocQBJxIJV9xvisL2j6Q9p0Nx/njsyENnAQMQRAEkRRorR41zfHHkYg1YKI9Fw3RhZSIBaNbllJILzvFbnh8S9D2EDwbunGTgCEIgiCSAq3VwIgVoTUEjGixSSSGRmwg2dbdsL2a+ZIFhiAIgiDaCO1F38hFuDVcSIEWZjGJ821rAaG1uBgNgO6IkIAhCIIgkgLtRTgRC4zVbILVbFI9Z/Q9AMBnMItIkiQUVjXzvxNx4VQ3eXHdS2tx13tbw1xCsfCEWa+MizfWyPKcP3yhu822EzWYNm8NFu8oMfTepwsSMARBEERS0JKLMItZsVpMsFpMqueMvgcA+A1aYOpd6qyjRCwgG49WYVdxHb7YXYZTDR5DY1si/gDgWGUTfxwISqqMJsaflu5HQXkDfrNwh6H3Pl2QgCEIgiCSApb5Y7fKlyYjLiAmOKxmM2xms+q5eGlJEK+2e3YirQTEzCejWVDa7Y2O1woekyl8m+OChSkZIAFDEARBJAXsIprplLvc+Ay4gPytbYEx6H4KagSMkbkz1L2gjM09PAC6ZeON1tBpD0jAEARBEK2GJEn476YT2FNSZ3gsu+hmOG0AjMWh+AKKBcZqCVlwjFpRWmCB0QqYRCwwu0tq+WOjLqCWZHAB4dYVPetVZaMxt9bphpo5EgRBEK3GN/vK8cgnuwHAcENBdtHN4BYYIy4keVubxQSzKbEg3pb0UtLG3CZSR2bTsWr+2LCA8bcsBkZbeE8rwEprk6/PEgkYgiAIotXYV1qf8Fh2Ec4MWWC0tU2iwWNgRAHTgjRqo3VgtAImEQtMit3CHxuNYdFaq4z2YrJb1A4Z7fyrm7z8cYYjOaRDcsyCIAiCOOvhMTAp8qXJa+AizKwtNrOZB6AaiUORJKlVXUhGA4gBtcXIaAyLdr7ajK6Y+w5Gd4ElY2E8ioEhiFYkEJRwuKIhoSqeBHG2w11IjlAMjBELjBDEawtZE4y4kLRip+VBvMbXANHiZDQNW2utitQIs87lQ0WDO+x5rbVKK2hUAcZJUiSPBAxBtCL3/nc7prywBr94a0t7T4Ug2p0Gd/y9jAC9GBgDAiQoBvGGspAMuJC0FgejVXxbw4WktsAYdCFpPis9kVHT5MWkuctx3p+XY0dRbdTx0SwwvoCUFDdpJGAIohVZuvskAGDNwVPtPBOCaB+yUmz8cYnBwM+wLKQELDA2iwlWcwIWGK0Foh3SqEVR0FIXkt7+C6ua0OwNQJKAgjJ1rJJWsIQJGG2bB4MxNqcDEjAEQRBEq+HxJ34RDouBMSBgeBq1xQybhWUhGbDABFrmAtIaXAIGLTgA4BXmYDiINxBbgEWrMxM2XjP/llb6PR1QEC9BEATRarSkoaFSyC4BC0zogms1K1lIRlKhtRYYoxYUbe8ioxYcQC0ajH522oBnvQws0YqifX/tfLXDtYIqGQQMWWCIpOTZLw/gT0v3JTT2hWUH8fjiPa08o9iEL2AG7+CEZmp7S40XASOIZEC8sP1va7GxsX7mQgrFwPiNVOINZSFZlBgYI+eg9gJu+PzV1oFJwALTkiwkrbVKT4CJKe5vrz+uem390Sr1XDTz12Y1ldeHBwK3NSRgiKSjwe3Dq6uP4LXvjqHKYOXHQFDCP5Yfwtvrj6uak7UF2v0Z9RGvOaTEzfxj+aFWmRNBtDWigNlfFn9NGEmSuBWBxcAYycTx6WQhGbHghAfxtswCk0gQry+QuAVGK/b0XFiNHqXhpDY+KVWoQSOPj55GnQx9kUjAEEmHaAo1asYVTzIjNSRag2Zvy0ys4uJitBMtQSQLouXAiAVFPNeZBcaIFUJs5mg1s15IRvYfPSYkFmEWmIAUJmqMzMFoGnU8MTDR1kQ2ngmZcAHTss/ndEAChkg6RMuFUREiigYJbduMTLvgtMRHnPxt1AhCH1WchYGLsOiySA9VenX7A3GLADELyWY1q56LB3bBZkXwJMmYFYVlIbEAYvm5uIcjGJRU20eq4xIJboEysyrEekG8+u8ZCEpc7KWFPvtYFhijLq7TAQkYIumoEUpWGy2YVOdS6k4UV7dt747wKP3ET/C2th4RRGuRaBCvngVGkuLPRFJlIUW5iMca77RahOfiPw+ZgBFL8hsZr42ZibZ+bC6sDqvjwj4n1o7gyKnGsHGHKsKfk/cl3PiFjqPe7VdtQ0G8BBEHX+45yR8bPUm+3lvOH7/23dFWm1M8tLQbrIjFbIq9EUEkIdFSdaMhWkvSnUqCbLzvwZs5mk1CN+r4BQyzOIj9iIwIEGYoYtYfeU7Gg5AZkW7e6lw+/OjV9Zg5/3vVZ8ZuepgFRi9G5ahG1DCxIq5VlY3yDeSjn+5Wz6cVb9Bai6QVMGvWrMG1116LHj16wGQy4dNPP23vKRFthHgiG42Bac/qkC29QxEXywwnVTggOibi79hILRN2sbeYTQlZMRQLjCmhOjDMApJiUwSMkVRoJmAcooAxVMcmvjoragu1GDMjPx7RMwuAuqAgI13ThJF9Zux7sgtzZ0JG2Ze8Dbu5Mlqn5nSQtAKmqakJo0ePxvz589t7KkQbI564RgWJmDnQ1pUiW3qHkuidK0EkEz6NVSAYpxVCjOEwmRQRE6+A8QsuJFaJ10gmERvvsArNIA2kQjMXktVsBjOgJlKIj+GKsAaIW4lrJRMUvTqlhL2mbK/tWB1QPe+0RpYELI26U6ot4vu3NUl7m3f11Vfj6quvbu9pEAkiSRJcvgBS7cZ/YuJJZrSjq5g66PL6o2wZmZomL5w2i8qUHA8tdSGJ22szmgiio+DVXIg9/mBc55JYx0X+3wRvIP5MJtGFZDYnUAcmNN5iNsFmNsMbCBqywDABYzbLx+DxBw1ZkGPVXeHPRyhGx7bPSrGHvca310k0yHTa+LZOmyUs9kXZNhh6fxsqG72Gs6ROB0lrgTGKx+NBfX296h/Rfjz0v10YOecbLN11MvbGGj7dUcIfGxUw4oJzsLzRcBrjnM/24tynl+Hcp78xXExOu2BsPFYVYctI45UFbP/JesNzJ4hkQBuAHq+Q55V0Q+4fFkviDcQ3Xt1KIJSFlIAFRmxFYCyIV/7fBMV6ZCQYXyvUIn1u/16txPYdOaXUnvp2fwUAwULiD4atIWE3WV55fkyMRBOazMKTncoEUvtbic8YATN37lxkZWXxf/n5+e09pbOaD7cUIxCU8Nb6QsNj8zun8sdGXUjaBcuoJWP9EVl0uH1B7Co2JmA8msXKajF2emkXl0SawRFEexMWyxHnnToXIGZmgWEiwFgatdViEurAGE+jtiYYBOzTSeNuSRZSJPFTKcTA1DYrj5lw6Z4tu5DE1GhAtorHdiFZ0L9rGgBgSLcM9bZJ6EI6YwTMI488grq6Ov6vqKiovadEILF0YG3bdiNoBY/Rk0wMTGuJC6g1xuv1MiGIZCc8GDXeIFxFAAAwHgOjI0AMdaNWVfJladjxn4OiG4aNN7L+aeeqdcVp9wMAHp24uWHdM5XnBPEo3mAphQIDqv+dNjNmTx4AAMjNdOrul7mokiGIN2ljYIzicDjgcDjaexpEKyCeoEbLcWuD9oyeZHpBcfGiLTzVUgHj80uA3dBbEES749NctOMtyCZmEQEw7MZRgoDNCVlgmACymZUgYCMCiFsxbJaEWhnEWwlYVWcnJFBYzCEgd/I2meSsKBbjoh2XnWpDg9vP58z+d9gscIaysCIVriMLDNEhWLyjBE8v2Rd3FgFD9LvuKKo1HMsh3rF9sdtYDM1GTUMyo37aCqGEv+EsotBiwkpxtyQLCUisGRxBtDday0G8LiReSTckHuw8BsZYFpLNkpgLiPUys5hNsFlNUfftDwTxxOI9+EqnZpXTZuZzj7T/xTtK8IsFm/HN3jL+XCICholD0britFl4MT4W4yKPU4KU00LJFUz0uATrkdNmDtuPvA8WA2NTvV97krQWmMbGRhw+fJj/fezYMezYsQOdO3dG796923FmZw+/WbgDAHBev86YOrxb3OOOapoaHq5oxMC8jAhbhyOeONpqk7GwW9VBaEbuEk7WqSv3RsoCiAQ7obNTbGj2BoxbYDQLfTL0GiEIo7DfrdkkB7bGH8SrtcAYEyHKeLNQTj/+c4jVVznV6FH2HcEF9OmOUry1/jjeWn8chc9OB6AcZ4rNEtP9xdbWXcW1fG1l80+xWeDyBaIImPDaL6IryWmVRYjLF9DNWHJazdzKwtY4tp1D9Zq+JS0rNXKWU1uTtBaYLVu24Nxzz8W5554LAHjggQdw7rnn4vHHH2/nmZ19aAsaxaJRk4YnNimMhT8QNJx5JKKNmzWS6qedd6IuoOwET3BdFxJBdDDYhTczVEhNeyGMNU5Jo44uIrTwLCaz0o3aWBq0/P/Efp0VC0aEfZfXu8OeY+evQ3AhxbIeiWurtpmiLyDpWr9VdbJCr4tF5mxCN25x/24h08iuEYfsc7JblQyusNYGfrULSZu00B4krQVm8uTJlEaaJJgMVrUPr0hrIBAuwRRMRlg5biP7bqVCdJ3SEjOxagtXkQuJ6IiwC3GG04raZl/8FhghjRlIIIhXqCNjTSANml3g8zKcEd0o0ccrmTw8fieBIN4UuwUIGbF9wSAc5shWZeZ2Y9YRp9UsFwHUcWHxOBerRXg9qPpfbsMQ/tn5AkEej5jNgniToFZV0lpgOgKSJGHdkUos3lGCioZwRd6RES0XRnVkkydxC0xLM3m01hsjJ5nWhWM0iLewSl51shOM0g9PoyYBQ7QPgaCEVQUVWH3wlKFAeklSUnczHKweibE6MKwRY6w4FC2qLCIWhGtg7iU1sgvZaTNHDGRlNAjWWuZ64iLCplgx9Mo4RPo82fzThOKfeu4z8SYvoLHAsHnriT8xRodnSXEBo4g/u471ShsALO6zPSEB0wI2F9bgJ69txG8W7sDs97a193RalXfWH+ePjVpgNh2r1vwdf0G3grIG1d9GRQCvBRFaBI2cZC3NIjoc6vTK+o0YHa+NuTFi/iaI1mTJrlLMenMzbvvPJkOB9KV1yo0cu9C5vPEKEP0YmHhTkVVZRAlYYLYUyuuWxWyKGAfCED+T3328E4BaRLA1c6NmLQSANQdP6b6nT7TAsOc0xx4ISqrPg40RM6AAffebGKirzZJSxJ/+ZycWzNPLamovSMC0gOIapdsnU+9nCqKP12hjZLumn4bDGn9J/gZNHEpQMpZKzU7oNC4ijNdx4H8b9PGyJnAje8nN1Iz6iLVzNdJHhSBak2JhPSupjX9tqxSy+DqnGYsF08bAsKaI8Z6HogWGrTnxxt8AQJcMuQxHr06p3IUU6QaK9RsClM+K7SvFZuFW6zSdyrba+Bm2vjELlMNq5g0TtQJMG9PHxijxN6H4IR3rlUcUMFa1wGE3fnYhfka0/tQIBfNShCzL9g7zIAHTAlTN95IgoKk1aUljwZa4gdgJOjokAoDEqmkmYgVpSfyNJEn8DqxHttPweHn/ZIEhkgPRGmjkd8zO1b45qYobJu40aqUQHYCwTJm4x1vMSgyLAQssO85enVKUIN4I+1YVk/OrRYTTZsb5/XMi7j/S+sg+OzmQVt99pl2LmdWJW1esGguMTgyM02YOC+L1Cp8dc7/5dMTPuD6d+GcrHnt7QQKmBbgTPMk7Ai05Nu1JZsQNxPaVKbSCN2KJYHck2kqTRvbNMJJG7fEH+V1XollIWhcWxcAQ7YUo5o3cwPz/9s48MIoi/fvfuTIJuQkQrpAgyClHOEVQFNEgut7KT/A+YFdRjl3f9VhcXFlhVQRFXWBhFVgvVkFYXV1EBeQQkFM5Eq4kHAm572Ou5/1jprqre3omM8lMJhPq808yM11d9XRXVz/1PE89ZeGsKFEm//IhWaW9kJyvpagG4lDU8DE0/pbl2xlpMiCygVxOtYoJnjqbrZwMTst95mmiZOUUOE9LyN2yddvZMmp5hRGg7X7TWubN7peNu2/MemPTUH6iONmc9QoFJmzZwvky66x2v81pOcXVSHvuK6Q991XITXFqGjuAOY9vfMIjdixTQADfI/ntDpKWJTbGAiPv5ury3ftRtpAznSc0ojygHGAAocAIQsfybael//2zwMjLcdlMnU/W5g0+ER0ALpDW3xgaPcwNlK2qt+H6hVvQZ87X+HzfOVjtDpTXWl316rll1NoWlGN58mbBeeV1KKuxSM+72WRAlBcLkPp6Mhcdb0HytAIrp7hG8fnrX/MVcrJr7i2I12wyyC4mm2oVkkEnZSG22GUXEdsjjgUoMxdXqLcTEApME+Bfsg7yf+fkZ/99WPq/uNq/XCvBRitdtc9lXQ8FC/byJxeLMtCM+YF9u678SrAe7WOcbWmE8tQYxYuPGYiJlONv/FFM2XVj/Ups5igIFewZAPx7ftlkw2TQS/03Kca3/TD4rQAAOZ6jMbtZs/gZT20/nleBU4XVqLM68O3Ri8gtkRWDDg0soz5VWOX23S/ny2UlwigrUFoWCvW4kucKfLa42hphlDP5qssXVdUrPndxbdzIFBGmuGi5oJTLvFVBvCwAmlOeANklz9pT6JogRhr9uzfBQigwTaCuiSZ/fnmxv+n6g41WumpfYcfLL2L/A2kbs58Iv4wxoRH7dUjbxUf5X5YNnr2SYyQLCuC7j9jBrS5ozHUTCAIJ/8z78/xLcRwGPa68rC0A3ycC6ky83qwgmuWZBUffcCr/WtUEjb2oYyONLuuRZwsOq6ddTIS0Y7PV7pAtqBHexy5PMTC8guEpfoi1mwUHS5l4ufgZAJr18+Oj2kLDFE+jQc4D4/ydrXJyls3on+w6h3/3JlgIBaYJuKV+9zNzap0izXPLelkpg9T8XA5sUysw/m+IFuVHNkt12RizqVEPmLTbaiNiWGwO3nTuv49YuVOsU4ESCowgFBCRoj82KgbGqENDuVTU2OxKK4K3OBItlLtJe8/iW6eKYWFlWZ3eLDDsWW8TYZRWO1pspJ3IzgcFho0RvILBLEhq5ZG5udVxdrzlC5AVGV5+fpm3OsZGGr8Mcg4bQI5LUgcJ++veCxZCgWkCTV32eppbW3/4fFkgmqSgqt6GN/6XqfDX+gov28d7zvpZlikw/r+IlcmW/LPAyKmyvc+gPNftPFbabbURWTQNeqWP2FcFip8RCheSIJSU1lgVn3ecKvK5LJ8QzV8FRp0Hxt+VRFIeGIPO4yoeBt+mn06XSM++Sa+Ov9FQYBSKkqyo8MuUvWURVufJyrzozH3FKxgN7QittjBbVRYY9SojAPj26EXX+WUL1YHcUgDydTLqZZkAWQFS55lpTKbiYCAUmCbQ1MypiZyf+YsD5wPSJp7XvjmOd344iZve+tHvsmrZLviRC4J1dhYD42siKkC23kQaDYgwKAPNGq5XLttQHgfN8my31Si53b7moLGrsohGephBeazb1U4T57+3CQuMIAR8f7xA8dmf9QUWzhLg7yRC3stIaYHxexm13nMQLEM9vu1yKWlGlfVH6wXNxgTlaiEHF7+n56zH7hdP7VZmCwD4PDLSKioPK5YSJQuMMghXjoFxt16zMdxk0EvjLCsvrUJybUUgb4ZJrja7AoCNKuuYUGDCl6YqMINTEqT//UnW5iuHzpU3uqx61lNRZ/VwpEZZaSm0/7EcshmVS7bkY/l6bpbg7+AH8Kun5KBDX91n7rNH/1xYvPLlr+VJIAgkNRZlMkl/MnHzL1J/Z+lW1SokLSuCL3UbDfJeQJ4SYaoVg5Jq5/imzkGjpXxZHbKiZObGKD5+T8uFw3DpZ0jvlgBAVjZ467OnaydNsrh0/kQkKUomSQFzL6933cibruiEQV0TXG1RLpRgOWCMqsmjXR2f1IjxNRgIBaYJqDu3vy8cRSBZMHyJTVia3ZSNDeukGBjmQvI/BkYxi/ExtqhWcwDww/rjOjaey0Hja3k7N6g52+Df7FOSO8IgzQKFC0kQCthLb5QrGZs/uT745bj+5mLh09kD8HsCY+NW0vBxHFoWXPWLt6repcAYlBZUrQmIZG1V7PpMCjeL9yBe53eXtYtRnE8rj4y6nWoXEpHTyqLOYqy2IBGRND4mtjFJkzR2fqm8UbmNA7um7uOb/+NrMBAKTBNQp9j29UXL4G9+Y0xxJdUW7DhZpNjSgKehpdknLlZix8kiaTMyHmbWlNb7q1whRITD58rcNm50HstcSI1YhaQZaOanC4k3wTZiFVK0WfZh+z/4qvz3PpaX5dZ7DQBsiLzyWvzrpxy3WbQvOByEg2fLUKxaqukrrD/5k3peEDzqrHbsOlWMnOLqhg/mYM8ve0la7L67UvlEdpGcG8SXdALyKiJmgfHuQi6qqseOk0WSa6TENY7xrh2+TTzq8YytCDWoJiBaLmCrFO+mDBbmLSgRRi9BvOpVmq5ry54bM58ITzV+yCslZStxncUhB/G66lXnwXHmdAF3fqWLXb2EXT32svvP3geNGV+DgbHhQwRaaOUC8PeF05Rst0SEW97+ERfK62DQ67DnheuRFGOWfnc4SJGbpLTagsRoudPvzy3Fne/tBOBMnb39j+Ok33h3UWIbE4qqLG4zkdW7cvDnjUcwLDURn/3uKsVvTKtnD6g/wc1aZljfY2DkGZDZTxeOum6zSQ8LZxZuCBvnF2fn4M/pc91G7wGA3rDaHRg1/3sAwJ+++BXZC272q/y/dufgpQ1HkBQdgb0vjpfMy75wILcUd7j6U4RRjz0vXK9wxQman9+vPYSvXJsO/vj/rkNK2zY+lVO7KQBn/2QrbrzBVmKajHIyOLvDuUM1e6l7wqbKxOttAmN3ECa+9SMKKusRYdBjy7PXSr/xqfg9lVePC2wPNnUSPa00CHysDWtjvc0hHau1ykerbpZs0+ayoOzNdgbU6nWeLRxsnIiJNEKvc7rI6mx2qGNg1AoKfx6t3bZtKheUehJlUykw5haiwAgLTCPJLpJnNWlJzoHB3xcO/3D4u6dEvc0h7fxqd5DbrFetuat/51dAnSutVbQ9n9tRNjUp2lmf6nzfuDJA/pxT6tY2dxeS/yuBIk0GmLnBwbeynAnW6HkG1VB5M5+Hwddl0FxZ1gb+nL7WzStu/vYJ9UaY/nLctRN4cbUFNX4OTHx/stgcuFBW5+VoQXPAT7L4RG0NIaUT4Gf5floSzUa9lIgO8G0M8LgbtYYSUG2xocBlJbbYHTjMxft1SYiCTqfzaslUP9fVkgWmYQuqFNDKWVqYC8pZ1nMKCKbMAXLCS7uDUMU9u7UWuzSOeFpyHWlUKiHsGkkKjKo8fw0iDFymYVUQMLtmRr1SAbOrJ2hsfBUupPCE3fgR3dv6bSlg8C9X//cb0vaNevpdHYzqbcNF9n/n+Ei/9zPhH9DGrEJSBLJF+KkESCuYGhcDI+WgifB/FVMdN/ty/vWvfj72p7Hm2aYG/fJW/qZuRBnqBFcCqHK5+KPIO8u1iZCVaV9TCvDbYSjyifjQN6WVMB7cGFr1MMprne6jdjFm6HRKBUgrP5e6PHMhsbq9PYNasS785CHSyMfveR6XmQXGaieFjGajXrHjs1b5qAiDYmyWVn+57pe6vI1ze+l0OkRGyDE+RPKYrc4jY/PgQhLLqMMcrYyx/uaB4Qd5//fN8a6wuC+/a+B4jd2nIzlfqfp4TysT+OMal8iOt6L4lweijlvBJJuA/V9GHcmZv32NsucVL8B/H7HSfdW4JFFNHUz4a9XUDTxDPbAJlPegMRuqOvcE8jOWixs7DHodmBfSl7HRqlrpEuEliFcdWFxWI+9jxJDHZc9KCINZQNxWEWpuBeA+9le49lEyGXRe9zLi70O0WXaxKerR6TxmIfaUK8Y9iJdZcV0uImmJulI+dRCwUbLAKPPouCswIhNvWCNnJpS1bXX+BG/YHSQ9dID/A77aJfTLeeWSaW8WloY+85t+efJ17nRt7gUAh86WSf8XV8kBwcxEqrWUsMZiwz1Ld+KF9b+o2uGygpj8d+PIVpDGJbLjl2FLMxifl0ErLTDefMQnC6qQsWgbRvx1M2Z8cgBEyhUMbPD5xsdN8BgbD17w63g16/bLuYiWbT3tV9lP9+YqPod6l9pLnTNF1dIeOwDwc7a7q9cTWqth/FfE1VYU90nMfw5dwOgF3+O5zw8D4BPEqZKxaYwfaoXs3R9OSm1meFrFuODr4/h8/zkA8iSrUuVCkvZhsik36a2os+IvXx511sWN/V+4nj2meJg8BPF+sCPbrX3bTxYpxxkizYnjmaJq7DjpHHfNRoPUxsyLlVwMjGobBlWMi9oF5DzGocjEy7eNlWMKkDqIN9TPuVBgGglvymPR7+oMlt7IVq0M8Hfjv7xypQKjthSoYz/UD7y3GbNiObKGr1O9IoFleASAM5xc3gLhdp4sxt7sUny0O1e5Yyq3GsfvlTyc+bopq5D4GBrfXUDKgVueQbmX35JZgMyLlSiorMeGgxdQVmNVvDRYN0iK9i8I9tcLSiXWn/211Enzdp8p9nCkNjooTXKhTnB1qbMl0/fJlBplQsjGWxIB+YWo5Ub+cHcOzpfV4pO9Z11WBPYSdbmA2I7JWoGwqvZUuCwoudxuzZ42dFy69ZT0PwtUllxIqmXIRMrx65/bz0j/R5oMbu1gihCfw4YfL99xKVoApKDo2EijYrwe3y9Z87rzO4RHmvQ464prqqi1yps5qhLNSS4kybolB+ky61id1a5IQAjIrigmOxPBKFxIrQMp4txowBPXXOb8zp+XpUZwqT9Bm+oXq7qse8yLPy4keQCLinDvqL5Yb/p1ipPMz1rLMJlGry7Prou5CYMnv0zQ5iCfY0N4JcTfnXD5a8bOAWjfZy3lkrfoDUtNBOB/TFVDfcJrWbf+0zh3aBs/45YEwUGtQPrlSuVyEvkfy6VUYLzlcrFxikm9lXNj+BQDo92eWwd3lv73pe1sOTKbNBg0LBS8lYFPGxFp0mNUjyTF+R64MtX1G7+hq/a1v7xDjOt3ebVjUnQEOsVHaba9rEa2bkeaDLh1UBepfK3quptVMXw2LncNAGccDDe+qsurXYesvL6RqyyDhVBgGgm/8VYbD2mfvcE6NdsOHfA30K4hl5B3hcXNIsM9ZLIrRa/pi/WUHZL/LT7K5PUhdigCRp318ZvINcZ8XWt1L+treacbx9107nMQr3oA8OIjdvNrW+2KfVQaOzg01CeCVZY/Xt7JW7iQQkkgElGqV7r4U6+kwHjJ5WLjBoE6m112c7hl4m3YhcRguzTzbeCfN7WVm18qzrdXYaHwoICoxxlAdkkpxx/ta8+OsXAKSIe4SGXbOTn5tAaRJoMUQ1NntcuTNw+rIPkgXnX9dVZlDhuADwJ2fm9XuaDMfo6PwUIoMI3keH4FgIZfONlF1Xjjf5l4b8tJVHL5VYpcsSIxZqPUqWpUM/OzJTVYuCkTb27KdEtWd/hcmeKz+iE5XaR0UWWrPnuLmZE3ReQzQsrnVyfI+4Vbwshyz/Bl1e2z2h0KMy6rm5/1NxTHUlhZjyXfncARzm2isKAY9dz3vi3hZOOp8p5qDJ4WO5ZvO4X5Xx/Dh7tzlDEsrgefubCOXqhwK7+Lix8CnObvY64lzFERfPyNdrvzy+uw6Nss/NeV40OSUx247WHg3XWqGIs3Z+FihRwjwRIXSmU9XLP88jpc+/oP2KSKz7lY4SzPcr/8EoTNSS81HA7Cqp3ZmP/1MXx37GLDBTjqVS8kv1ypGsHw+RXuy+LLaix45/sTeOf7E5J1gLckAtpWlFqLHcu2nsJBLnbuQG4ZDpwtVZTxtJLnZEEl5rniUNREaigwBVzb1ZZgda4iZv3R6eRMwlUayTrZ+aNUCgz7bNDrJAVMK9knfywAfLr3rOs7pQuI3/jRyCkfvJt8zU852J9b5vxeNf64uZD0esU5AOd95N3vgLsL3E6qIF6jf5a5YCES2TUS9kBb7A454ltjkPjbN8fxtStnSnSEEQ9dlQZAfrFZ7A44XJ3jl/Pl6MxZZN78NgvrXZs85lfU4bW7B0m/7VUF5alfVltVPvAzKgWGD7YFPLuQtAZAPuYFkJUxwBmgCjgHHfYQqxPCbT9RpMjbwKwzma6XOMCCeD0Pvq//7zjW/nwOH+/Jxc7nr1ccF2UyQKdzborIm2e9kXVRWXeUl7q//jUPr/73uPR5YJcExawVkAeMixoD/68qpebX8+VSTJPF5nALwFOzdOspfLAzGwBw8KUb3NKCMzwNLvf94ycATmVkwV0DAQCbVffUU91Xzv8OADB1zT4pUV4Rl7mXzUB3ny5xLyzwi91nSvDnjUcAAO9vz8bhuTe6zfg9we5fYpsI5JXX+aXA8FZQpjwcz6t0O+7jPWfxxqYsAE7rwJPX9nSPgZFcSLLi8N9f8jD/6+OKcy3enCX1V71OtoIAzmfJ4SDJAvHXr47hhGucYc84oy2nkDCl6RjXdnUwcY/20YrPrP8C8gqcX8+Xo0f7GIVcgPPato1WWnASuLg1Vv7IhQrNJIL8udg7gpVhv/FWqjaccpbQxiQlJuUXg7Bj1FsRSEvUuQR/7LodPFsmTd6YZUX9TvO4CklYYMKTNiZnR++VHOt1ts5bK0q4/1lHSIqOkPbeqVIlIlOWVQYIM+1+iGtDMHVH4k2FABRJpQB5YGEo41gcrjLarhT1jIi3drB2dU2MUtTLn19twWH18TMdI59sScMSwWYcF7iVFvUq8zWbjfji/+fzOERwpnMtpbRE1f4SbgbDyvXtFAtANunymFXXnrjj+naKVShuWoHdfP0VtXK7fXED8ec7y1n12GDfIdaZzbne5mgwCJidix9A7xraFYB7/xL4D3+fLXaHm4XWG+yZim+ES4+3ZHaKd7o0+JwucvtkxZVtR8IrP4C2G6i81n2xg81B0rH9O8cpzsGf11mvs67eybHYOH0M/nRzXzxxdXfMvqEXJg1PkY5LjmNtl8dCfuyac0s/PHltT7w40Vl++nU98eR1PaXfWZ4Wu0KJkBWcWwd3Rs8OsZh/5wCkJrXB/w1Pwe1cDA5TJnjZmYtr4T2DYNDr8GxGb8V1YPtP9esUJ33HnsNoV93JcWYkx0Xi/zhZGX07sWunTEGhzqQLcBtCqrL0Ov+qXFCqRHaedstubsQo00isrqCmpOgIr/ESnoJf2bEDusbjmsvbAwBKa1Qvdi+J7lj5Pq4Oq86IyD6P7N7W+VkdOOr63M61/UCtRtu0Uk7z/0vn1ijbs4NyxqJ1jPoza9OgrvHKsj4O3PwKJoDLFmlp+CFjMl3RRTl4aj2gWteyVqU8tY91v67qutj1q7PYpXMmx0VKsyAHedjHxcO19HRdeTzl42DH3tAvWfquoUBedi4mT3KcGd3bRSu+EzQeX+5nQ2XZS6oxeWCiTAb06cjGF/fyWn1P7YrQypHFB/Azaupt0jFsdY6nODZW10u/6YfeHWPx+NWX4cWb++GZ6y9XuIT6dnJvO9+OR0enIcKoxxPXOMv/IaO3IiZxWJrn8e2BK1MlBee+Ed2w9dnrsOCugVL2ccCZ5FRdnin2A11jXEb/jorr0L+z83ve2sKeQ6YI3TvMqbgktIlQKDqAbAFmY5/VTrDZHW5bBQBAekoCAPm9o9PxWxEox227FEOj/F3sRh2mMK3c5GXbeLuD8CsXa8L7kS+6LAeRJoM0yPAzEyLC0TzZ1XBBtWyanSvRVZaPrwHk2VGC9LvSuqMuz3dEZgnyFAvCLCiJrsGCt6i4B7O6+0rVmwWytktpyFVl+TTdrDxvrWIzFPYgqlcCqd1rRVX1yMyvRGZ+JU4WVCkDeFlZo2f/tTq+6PC5MikXjnoGU6ZSSvlMxezenC+rle49nwcGcJ85l9daFfFPfGwUi0PRccsj1ShXNVjdvlfuxO19cGJl+JcWu35qKxXgNGNnXazEyYJKN+sOEeF0YRXOFFX7lU6A50xRdYtTnIgI2UXVOF1Y5bdc7qkP/FdC2CobT2ULK53PgnYaBbkvar2oeOsfsw7xkx+A21PHxisw7tehrJZPxe8s69wsUac4r1MW5WTBE+w8fDv5PYN0nrJxSuXdxz51bJHX8hrJMNUZb9XnUY8fzvqd5S0aSghf3qjXScukFeVtDrc8Lvwx0thjNEjXRC27FAMj/a5c5RQqhALTSPgdST35A3+/9qBitc2GgxdwoawWFyvqsM4V2xJpNEgrN3gLzPJtpxUuldOF1VIg7rnSGskUygaoAy6XCuB86f56vkLxO79nER/Qq2VGXPNTDgCnq0OtnNXb7PhsnzMJVGK0vFUAsyC4pdR3PcQHckul8yzefEJxnaat2QfAGRvD6uXP8RMXT3GqsAojX/1OoQz+acOvcDgIZ0vk3Vz58vx9ycyvxMhXv0PG4m3IWLwN49/cipf/cxQ7TrnqdsnLzrHxkDI53JeHL0hxSYz3tsgByZL7yvW3qMqiMCEv+PqY9D9TAD/YmS0lJow0GVyDq/MYfvArr7Fi9ILvJUUFAB5b9TN+OVeuvKeu/qSVvGzNrmzp/yMXKqQYHXaNos1GyUyszlVUoIrnYTk3+BcKW3ZfUWdzc909vvpn3LhoG8a/uQ0vfvGL4rdFm09g3MKtuO6NLXj7u5PwlwVfH8d1b2xBnznfNFoBCgbvbTmFa9/YgnELt+K1/2X6VXbFj6cVn49xE5qGYM8he761rGnH8iow8tXNyFi8Dbcs2Q4iUgSkm3kLrIYbln82NrgSubkto9aywGjkdeHdY7zblY0ffNydesWMJ1hZvp3qPX+8l3eenw9YV8vntbyrfd8ek+MRpd26Wcp/1XnYuMMrbyy3ljrbrrodvGua//9sSQ23wstd+WGTLP56qsd9yQXllqlYKDBhiZw1klNgVIOEOlgTcL6ATxXIm6xd37eDZDKtqZc7w9+5VToMFmh6gis/umc7Zzs4zZq33DBXDh+TwAessuA0viMyP23v5Fi3OBQ+YPd+V84DQE6spzYhsw3X2DuF3yiSmVGZ1s9iVpi1iPnfeXNqVn4lbA5SzCSOXKhAlUVW9i5PdsqklZL/eH4F7A6CyaBDrOu6H7lQLsnJZmus/SmJyuC7I9w9fWR0GtQM6OKUiV13QI4PAOR7F2nS4/b0Lm7leyXHKFZA8G3PKanWXBFxPL8Cmdw9ZfdaazNpdQZntuEfu79RJoM0WKkDvU+qdmBnwbt8/p20pGjud2V5plQDyusIAEc4S+URVUI+X+BXtfmbwyaY8LKoZW6IhChlgKh/MTDOY+OlCYp72cz8SmmCdbKgSrGjMqBcZaO2BKpX86S2beOm/Dj/uq9i5JMmTr3mMlzbuz2SoiOQFB2B+0Z0UzzbLDFciRcrrycGuMYXQLbSWlUKhDfYsczN7qzbN+sPf2xb1z1w7jmkVKDaRkdg4oCOSIqOwMCu8RjqygHlrF/5HGopX8xlCwDVXP/gl1wXVNbLeWBUK5kA2frFK1NuFhj1Zo6N2GsuGAgFppEoXEjcZo68aZw9aOufvAqDXf7GOqtDms0M7BqPK7rEa6at510krFOzlwyblQ9LTUTnBOdL3lPCNraqiW8bO8+oy5I062a/D0lNlANhVT7uuEgj+neOl2I9WEdWm1gnDuioKMfqaRcTgfcfHq5oGzvHuD4dAMg5cvhgVlb+qh5J+NdjI6U62fl1OkiKidZKIjaQXn15e7x9X7rUdnZeVjcLJNTK2QIAT17bA3/+TX/FgOOUW555ttHYkI2Vf/3uQbjysiRc27u99JtRr5OCBLVmvuw8l7WLRvaCmzHB5T+v41ZaXdUjCTdd0cmtXvU51NeDfylIsTkq2dVpw9X3NNKoh9GgR5xrJYf6pclbk7zmEmqiAhLqWSGP1r33tyxz6/kTb8COZVY+bXei+/3l73GUyeAxoaPW5rC88iMvx3V34zIF+dHR3fHCxL744JER2DfnBuybcwPm3zlAcd7Hx3R3K6+28nqCjw9hbWPbCkRoBCWrYUnqtFJMqAPxtRh9eTtXeVkJYBM5s8HZdp1Oh/emDMW+OTdg4/Qx0ga4AHDlZW0V9bPxna/7vhHdpP8fHd1dUT+/wEMriJcpl/I+UvL1jOLGHyI5m7DezcUkLDBhiZXzKUZxFgKtpG78TKbWapeCSuV4C/dgVd5PrH4hKH3U2oFuDEU8hattdVwSPjlQVg4UY52VX0atDrRVx7jUarQNkM3B6vJ8pl1AmY1S8gNHuAezSjM8VdvquGuq9uN6ClDms1Uy+aNUyxDrLO4DtZb8WmjXr+1iA1QzINcgxfcJt2yZ7OVisSvapc7CyeNpiwn+2nsKnm4o+FrKQRHRcHm3c/EB635YGrQI9ayQpyk7zjclEJcdm+ilrNb9ZN85XRh6zT4MaN9bXvlxS+jIW2BUmzZ6Q52Hyu4gyX2udr94Ksu3X8sN01B5Rb9V9XWv5Y3K55Bfws22SfClfikGxuY9BsY9nkYurxXEy35noQtmfvzhxhbe2KbeDNKX1YrBROSB8ZPZaw/ieF6l5Aox6fWKl9Ad7+6UtFxm9uSD4f7G5T+QzazOv3vOlGDiWz+61ck6y6Jvs/DBjmyFz5LXxu/++y4Y9DrUWGxuZfm2ScGuXNDl+gPn8NPpYiknDWsXU0DOl9Zi4ls/aqScdv79/dqDaBNhRHZRjdQ2/rhP957FlsxCqW38ixIA7nhvhyIOhD83ANz2zg7odTrumsrlz5fW4pEP9ijq5cuz6wYAxa7gZn6fl9ziGim+I1IVf3Oxsl5xT+Q2siBFLwqM61y/+9c+6XzMZSNfH85vrWHCnfHJAckqU1lvVZV1HvOPH08rtrlncq/bf84taR7bP4Xx16+O4Z3vT0rxLnxfffPbLLzPbT6nXv76xv8yseLHMxrB086/T398QPGS4ZXyvLI6xXU9XSS7pw6fL9N8Dnzl/pW7pXxEANxWajQnfP6lzPxKv+S64OprCW0ikFNcg3/8eAZfHPBtw072HMZLQbwOt7qLq5XB9Pev3C39r34Ojl6oUJRXryQqq7XinmU7AcjKj7O88++yrafwuSt2jsVdGbV8nCpY+Q0Hz2PPmRLF+NRQDAyLI7HaCf+3fBeMer00fvmyzJ/JfiBX7o+5rueHH5saKv9ztnNc59vukwLlqoM9h6xuvqwiXkil0LHPf/v6uDSp45VGOQbGfSdvOf6wGLcs2S59r46BAYBD58qQ3k1piW4uWrQC8+677+L1119Hfn4+Bg0ahCVLlmDEiBEhbVN2UbUUY2LU69AxPhJ6vQ7d2rZBbkmNIhYBcMZvtI81I61dNJBZqIhBYP5L9rfaYlfErzDSXL/nldcpdphNTYqGTqdD93bROFNU7VY34FxKmNI2CmdLat1+T02KRlo7Z4xHaY1VsRllp/hImI16dEmIkpLR8W1LTWojte1EQRWyuU3UDHodurpiRy5ztb242qJYrdS9XTQMep3UtuNcEjsWR2Ey6NAlIQrny5S/s2M6c207VVgtydTQdWPHdU2MglGvg8XukCw8qa4yHeMjEWnSo87q0L4nrnruHtoVWzILAQB/uLGX8ph20bhQXue2agkAurWVr598zjaKsqeLqhXXVV03K1vAZdFNS4rGZa7kXOp7ytO3UxyO5VXgfFmtok+mJrXxet14LpTXKfLwpLr6UlpSNHKKa9ySJwLOuBydTgebgzSvKwCP19xXeOUFQJPOFUjqbf7LFWHQ46oeSTh0tgyFlfVuGZO9YdDr0L9zHBLamFBWY22wbv66seeI9UlPbe+aGIWyGiuq6m3IuljlKqvsx4Czjxao2q6V3E0NK6/uy8lxZp+UiLQk5/jE2uZP3WxcrrW6j8ts3PSlvHpc7xQf6ZPy5uk57MZd33YxZmmc4scSvn7+GeVj+rqrj+fHziS57Sx4PCk6QpqQtDEZ0CHWjILKerd4qOZERy0pZJ/j008/xYMPPoilS5di5MiRWLx4Mf79738jMzMTHTp0aLB8RUUF4uPjUV5ejri4wM3ADuSWSjufpiW1kR70kmqLW3p+wBnM2SUhChabAz/nlHDL6HQYltpWmglk5le6peu2OxwY0i0R0WYj9uWUKnzMEQY9hqUlwmTQa9ZdUWtF306x6NkhFsVV9W4BxWajHkNTE2HU63DoXLnb7Lp/5zgpeC23uEaxy7ReB6ldNRYb9ueUScvsAGdAH3uYHA7CwXNlimXcep0zrqdNhNGtbUnREejfOU6aMRRV1bsFP5pdGx4aDXpF23QABndLkPzIVrvD7boBTtPzkG4JMBr0yCmWlQR13WdLajSVj7ZtInBFF+dxRIQtWYWoqbdj4oCOiqWZVfU27M8phfoB65oYJQVP27g28m2vsdiwL6cU6rHBqNdhaGoiIk0G2B2E/bmlUnBnQ/eU0T7GjB4dorEvp1Rh1u4UH4leybEerxvg7LeDUxJw6Gy5YmUJq9tk0KO63ob9ue5tB4C+HWNRb3NoXldnzBPhfJlnpckTRISc4hp0SYiCyahHbkkNsouq0b9zHJK4IMxQ0Dk+Ega9DmdLaxs+WEX3pGh0SYxS3GdfYc9hfnmd5uQGcD4LPTvEuI0fg7smSAHApwqrpC1C1AzqGo8ai12xsGBgl3gpS6zdQdiXU+rmgoqNNCI9JaHBpcxEpNmX+3WKk+LvvFFWY8Ghc0rZ+PGrIU5crFQoAIAz2WNfH616WuM6P7Z6Q+s5bB9jRr/OyrovlNWioLIeg7rGK66nxeYsb+GCf/l3DkvVUVRlUYwrjOP5FYoVj307xkp7NQHOJfhH8yowOCVBkX4hEPj6/m6xCszIkSMxfPhwvPPOOwAAh8OBlJQUPP3003juuecaLB8sBUYgEAgEAkHw8PX93SKDeC0WC/bt24fx48dL3+n1eowfPx67du0KYcsEAoFAIBC0BFpkDExRURHsdjuSk5MV3ycnJ+P48eOaZerr61FfL5u7ysudZsOKipbh/xYIBAKBQNAw7L3dkIOoRSowjWH+/Pl4+eWX3b5PSUkJQWsEAoFAIBA0hcrKSsTHx3v8vUUqMO3atYPBYMDFixcV31+8eBEdO3bULPP8889j9uzZ0meHw4GSkhIkJSU1GCgWCioqKpCSkoKzZ89eEjE6Qt7WTajkFde59XOpySzkdVpeKisr0blzZ69lW6QCExERgaFDh+K7777D7bffDsCpkHz33XeYPn26Zhmz2QyzWRnZnZCQEOSWNp24uLhLopMyhLytm1DJK65z6+dSk/lSl9eb5YXRIhUYAJg9ezYeeughDBs2DCNGjMDixYtRXV2NRx55JNRNEwgEAoFAEGJarAIzadIkFBYW4qWXXkJ+fj4GDx6Mb775xi2wVyAQCAQCwaVHi1VgAGD69OkeXUbhjtlsxp///Gc3t1drRcjbugmVvOI6t34uNZmFvL7TYhPZCQQCgUAgEHiiRSayEwgEAoFAIPCGUGAEAoFAIBCEHUKBEQgEAoFAEHYIBUYgEAgEAkHYIRSYIHHo0CGxD5NAIBAILmmC+S4UCkyAOX/+PO69916kp6djzZo1oW5O0KmqqpI2zrwUFrRduHABI0eOxMKFC0PdlGahoKAA27Ztw+nTp5u9btG3Wjeh7FuhoKCgAB999BF27NiB0tLSUDcn6DTHu1AoMAFk9uzZ6NatG2pra5GYmIjY2NhQNymozJ07F1dccQXWr18PAC1yz6lAMnPmTKSlpSE5ORlTpkwJdXOCzosvvojLLrsML730EgYOHIh58+YhJycHgHNrj2Ai+lbrJpR9KxQ899xz6NmzJ5YtW4YJEybgmWeeQXZ2dqibFTSa7V1Igibz9ddfU1xcHA0ePJi2bt1KREQ33ngjTZo0KcQtCw7FxcX02GOP0ZAhQyg1NZXuueceysrKIiIih8MR4tYFnmPHjlHnzp2pd+/etHfv3lA3p1l45513aMSIEbRlyxaqrKykpUuX0qhRo+jOO+8Mar2ib7V+QtW3QsG5c+coIyODRowYQVu3bqX6+npavXo1XXHFFfSf//wn1M0LOM39LhQWmACQn5+PZcuW4cCBA7jmmmtgsViQlpaGysrKVhkHY7PZ0KlTJ/zlL3/BP//5T+zYsQP/+9//YLVaW+VMuby8HHFxcbjpppswbNgw7N+/Hy+//DLef/99HDhwINTNCyhEBJvNhq+++gpDhgzB2LFjERMTg2nTpqFXr15Yv349PvroIwCA3W4PWJ2MS6Fv8fJeCn2LyRuKvhVqrFYrJk6ciJUrV+Kaa65BREQE7rrrLuh0OvTq1SvUzQs4zf4uDIpa1MphM0GLxeL2m81mIyKiOXPm0OWXX644PlyxWq0KGaxWK128eFH6/PDDD9NVV11Fe/bsCUXzAo5a3rq6Olq2bBlFR0fTrbfeSqmpqTR+/HhKTU2ldu3a0WuvvRbC1jYdtbzFxcWUnp5Ob775puK4mTNnUvfu3alTp05SP28q9fX1VFdXp2hLa+5banlbe99Sy9ucfSsUsOeIyWC1WqmkpET6vbS0lH7zm99Qr1696JFHHqF169aF9fsh1O9CYYHxkyVLlmDu3LkAAJPJ5Pa7Xu+8pOPGjUNeXh6OHz8e1jPH+fPn44477sDkyZOxceNGVFdXw2g0okOHDpKvet68eTh//jy++OILlJWVAQjfoEu1vFVVVTCbzbjuuuswYcIEFBcX4/PPP8e6deuQnZ2NBx54AOvXr5diNcINJu+UKVOwceNGVFZWom3bthg2bBhWrlyJFStWoLa2FnPmzMH69esxe/ZsxMTESDPlpjB37lyMGTMGt912G5YvX46SkpJW3bfU8hYXF8NsNuPaa69FRkZGq+tbanmLioqkvrVixYqg9q1QwL8bDAYDAMBoNCIxMREAcPbsWaSmpqKmpgYvvPACqqur8eKLL+L5558PVZObRIt4FwZUHWrFHDx4kDIyMkin09GAAQPou+++IyIiu92uefzmzZspLS2Nvv322+ZsZsDYvXs3DR48mK644gpatGgRjR07ltLT02nRokWK45iW/corr1CfPn3o66+/ln4Lp5mFJ3kXLlxIRE5Ztm/fTnv37iWHwyHJffbsWerfvz+9/vrroWy+33iS94033iAiotraWrrzzjupR48elJiYSD169KCdO3cSEVGfPn3o/fffb3TdVquVHnjgAerZsyetWrWK7rvvPurfvz/dfPPNiuNaS9/yJO/EiROJSO5be/bsaRV9y5O8N910ExEFt2+FAl/eDay/HjhwQFF2zpw5lJ6eTuXl5c3W3qbSkt6FQoHxkYULF9Ktt95Kq1atookTJ9IDDzxAVquViLQH09raWoqOjqaPPvqIiDzf3JZIYWEhTZ06lZ544gmqrKyUvp80aRJNnTpVYS5ksjscDho0aBA99thjdPr0afriiy9oyZIlzd72xtCQvPX19URE0v1mMNmTk5PpxRdfbL4GN5GG5K2pqSEiourqasrKyqJdu3ZJx9TX11O7du1oxYoVja7/9OnT1KdPH9q4caP03aZNmygqKkrhWmDPTDj3LSLv8jIFWe02Cde+ReRdXuYSq6mpoczMzID3rVDg77uB//6+++6jsWPHUk1NTdgo5S3pXSgUGB/Jy8uToqoXL15MI0eOpA8++ICItG9aVVUVZWRk0LRp05q1nYGgsLCQ5s6dS/v27SMi2b/5hz/8gUaMGOF2PBt8165dS+3bt6du3bqR0Wikt99+u/ka3QT8lZdnw4YNlJ6eTkeOHAl6OwNFU+T94IMPaPjw4VRYWNjo+jMzM0mn01FOTo7i+1dffZUSEhIU34d73yLyT16ecOxbRN7ljY+P9yhvIPpWKPD33cDYt28fXXvttbRy5cpmaWegaEnvQqHANIKzZ8/SPffcQzfffDPl5+cTkbZWOXjwYJoyZYoiiC1c4K0NrFM+9NBDNGvWLM3js7Oz6be//S3pdDp65JFHqLi4uFnaGSj8kfeXX36hPXv20MyZMykpKYmef/55N+tMS8cfeQsKCmjz5s30zDPPUFxcHL3yyitkt9sbPWM8evQoDR482C1Atby8nC677DKaPXs2EcnKS7j3LV/ldTgcraJv+Sqv3W4PeN8KNQ29G44fP07btm2jGTNmUFxcHE2bNk2yeIYjoX4XCgXGha8PDLs5H330EY0aNYr++te/uh3DBpxPPvmEDh8+HLhGBhBv8vJuIZ7Ro0fT6tWrNX+bNWsWdezYscWuFgmkvEuXLqXhw4fTqFGj6KeffgpCa5tOIOU9ceIETZ8+nUaPHu2TvA09S1VVVTRp0iS666676MyZM0QkP1evv/46devWjWpra6Xjw7lvEfkmL3uJhXvfIvLv/vrbt0JBIN8Nn332Gd1222103XXX0e7duwPazkARTu9CocAQUUlJCVVUVEifeQ1SPfthn2tqamjatGk0duxYOnToEBGRZJJv6csA/ZGXyXLmzBmKjY1VdMK8vDzpfz6WoqURKHnPnz9PREQVFRXSPW+JBEreCxcuSGV8NesXFhbSxYsXpfN6qvvjjz+mgQMH0t/+9jdF+eXLl9MVV1yhcDO05L4VKHnZi76qqqpF961A31+Hw9GiXUa+yst/1no3sCSF1dXVdOrUqeZoeqMIlLzN9S685BWY6dOnU48ePWjs2LF0//33S4M2j8PhkHx8RPJN/f777+n666+nSZMm0YQJE0in02mWb0k0Rl4iovfee48GDx5MRM7skvfeey8NHz5ckeOgJRJoeVu6+yKU8j755JPUsWNHGjRoEF1//fV04sQJt2NsNhv961//IiKi3/72t3TllVcqMpK++uqrNGbMmBY/CSAS8gp5/Xs3sAlQSyXQ8jbHu/CSVWAqKyvplltuodGjR9PWrVtpxYoVdNVVV1F6ejr9+uuv0nHLli2jDh060MSJExUJtoiILl68SP379yedTkd33HEHZWdnN7cYPtMYeQsKCqTvZ82aRTNmzKBXX32VoqKiaNy4cXTu3LlQiOITQt7mlff3v/89paen05YtW2j16tU0ZswYGjBgAG3bts2t7htvvJEsFgsdO3aMHn30UTIajfS73/2Opk+fTvHx8dIKo5YcByHkFfK2lncDUfjKe8kqMD/++CP169ePDh48KH13/vx5MplM9MQTT9DFixfp888/py5dutDKlSvdZgy7du2itm3bUp8+fWj79u3N3Xy/aYq81dXVlJaWRjqdjnr16kWbNm0KhQh+IeRtHnkdDgdVV1fT8OHDae7cudL3NTU1lJ6eTlOmTKGcnBxav349de7cmVauXOlmin7jjTdo6tSplJGRIeWUaKkIeZ0IeWV5w/ndEO7yXrIKzLp16yg6Olrx3cGDByk5OZm6d+9Oa9euJSLP/veqqipas2ZN0NsZKJoib3FxMT3wwAP04YcfNktbA4GQt/nkPXfuHHXs2FHK+8Hy5qxdu5b69+9PS5cuJSLnM8PTkmfg3hDyCnmJ3OVlhNu7IZzlvSQUmFdffZVmzpxJS5culW7O7t27qVevXjRnzhzpuCeffJJmzZpF/fv3p8mTJxOR9kPY0h/MQMrb0mUlEvISNZ+8n3/+uSJrKCs/atQoqQ5+Bn7bbbfRrbfe6mZyDheEvEJef+Rt6eNHa5O3VSswx48fp379+tGAAQNo0qRJlJiYSNdccw0dOHCA7HY7vfXWW6TT6eiqq66iuLg46tmzJ1VUVNCaNWsoMTEx1M33GyGvkDdY8v7www/Uu3dv0ul0tGzZMul7NoCtXLmSTCYTZWVlERFJy2Q3bdpEkZGRUjxNqAc8XxHyOhHyCnlbsrytWoFZuHAhjRo1StIo8/LyaNCgQXTPPffQ6dOniYhoy5Yt9O6779KXX34plXv33Xdp6NChVFRUFJJ2NxYhr5A3GPIePXqUJk2aRE899RRNnTqVunXr5rbC4PTp0zRmzBgaN26c4vusrCyKj49v8bEPPEJeIa+Q10lLl7fVKjBWq5UeffRRuu222xRa49q1a2nkyJH03HPPaZaz2Ww0efJkeuSRR5qrqQFByOtEyKskEPLm5+fTihUr6OjRo1RRUUFdunSh3//+94pjHA4H/fe//yWz2UyvvfaatMJp+fLlNGzYMEVempaOkFfIK+QND3lbrQJDRDRlyhS68cYbyWazKSKnn3rqKRo3bhzt379f+i4rK4tOnjxJ06ZNo27dutH3339PRC3PZOYNIa8TIW/g5eUTWv3zn/8ks9msWPHE+Mc//kHJycnUt29fuvvuu8lsNtO8efPI4XCE1bUW8gp5iYS8LV3eVqnAsMH9hx9+IL1eL21hzkzvW7ZsoZ49e0orM4icibx69epFI0eObLHp/z0h5D1ARELeYMvLD2AjR46kW2+9VXOfnh07dtDbb79NM2fO1BwkwwUhr5CXSMjbkglbBSY7O5vOnj1LRO7pitlNqa2tpbFjx9L48eOJSHkDe/ToQX/5y1+kz8XFxVK655aIkFdGyBtYeX2pm8Hq3LZtG+n1emnppc1mUyTGa8kIeWWEvEJeVi5c5OUJSwXmiy++IJ1OR7fffrvie/7m2Ww2ys/Ppy1btpDJZKK///3vkhmtpKSEBg4cSO+8806ztruxCHmdCHkDL68vdVutVmmnWZ4pU6bQ0KFDafPmzZSRkUF/+tOfyGKx+N2G5kTI60TIK+QNR3nVhKUC88ILL9CVV15JQ4YMoc8++4yIlDfsrbfeooiICGnPhnnz5lGHDh3o8ccfp23bttGsWbOoe/fudOzYsZC031+EvELeYMnrS91ms5nef/99Nx/4zp07SafTkU6no4yMjBa/LxaRkJdIyCvkdRKO8qoJKwWGzTifeuopevrpp+mxxx6jq6++WtIay8rKaMqUKdS5c2datWqV4oa9/fbbdPXVV9OAAQNo0KBBLXYrcx4hr5A3WPL6U/fq1asVddtsNlq1ahWZTCYaOXKkIni4pSLkFfIKeZ2Eo7yeCCsFhsjpw8vIyKCffvqJvvzyS+rXrx+99dZbROS8aXv37lUs+eKjr+12u5QvI1wQ8gp5gyWvv3UzqqurafHixYqEWOGAkFfIK+QNX3m1MKKF8tlnnyEhIQH9+/dHp06dAAB2ux0GgwEGgwEWiwVXXnkl7rzzTqxcuRK7d+/GgAEDMHv2bEREREjn0ev1iv+7d+/e7LL4gpBXyBsseQNVN6NNmzaYMWNGUy9J0BDyCnmFvOErr1+EWoNSs3r1aurQoQONGDGC2rdvT6NHj6b169dLv5eUlFDHjh2lPWBmzZpFkZGRFBUVRT///HOIWt14hLxC3mDJK661kFfIK+RtzbQYBcZqtdLixYupb9++tGLFCqqvr6cdO3bQgw8+SDfddBPV1dUREdH58+dp0qRJ9PHHH9OAAQOoXbt2dMstt1CfPn2kZaPqpWQtESGvkJcoOPKKay3kJRLyCnnDQ96m0GIUmLKyMnrxxRdpwYIFCj//ggULaPTo0VRZWUlERLm5uaTT6chkMtFTTz1FpaWldOTIEZowYQKNGTMmVM33GyGvEyFv4OUV19qJkFfIK+Rt3YQ0BubEiRPo2bMndDod4uPjcffdd2PAgAHQ6/VwOBzQ6/VISUlBdXW15MtLSUnBxx9/jO7du2PEiBEAgISEBNx+++2orKwEEQEAdDpdyOTyhJBXyBssecW1FvIKeYW84SJvwAiF1vTpp59SWloa9e7dm0aMGEErVqxQ/M5rnZMnT6aHH36YiEgzyQ5bHtaSTWVCXiEvI9Dyimst5GUIeZUIeVs/za7AbNq0idLS0ujdd9+lb775hmbPnk0mk4mWL19OtbW1RETSxlG1tbU0cOBAWrNmjdt5wuUmCXmFvMGSV1xrIa+QV8gbLvIGg2ZTYJh2+PLLL9PQoUMVGuSTTz5Jw4YNo3Xr1inKnD9/ntLS0igrK4uInDvszpo1q7ma3CSEvELeYMkrrrWQV8gr5A0XeYOJvmEnU2BgfrijR4+iR48eMJlMsFqtAIB58+YhMjISGzZsQH5+vlRm8+bNSElJQadOnTBjxgz069cPOTk5sFqtkn+vpSLkFfIGS15xrYW8Ql4hb7jIG1SCpRlt2rSJnn76aVq0aJEizfny5cspNjZWMnsx7XP58uXUq1cv+uGHH4jIqaXec889lJiYSElJSdS/f/8WvZuwkNeJkDfw8opr7UTIK+QlEvK2dHmbk4ArMBcuXKBbbrmFOnToQFOmTKEBAwZQfHy8dOMyMzOpS5cuNGfOHCIiKQkPEVHHjh1p0aJFRORMd3zLLbdQ165d6ZNPPgl0MwOGkFfIGyx5xbUW8gp5nQh5W768oSCgCkx1dTU99NBDNGnSJMUeLSNGjJCipysqKmjevHkUFRVFubm5RCT7BMeOHUuPP/64VK6lZxMU8joR8gZeXnGtnQh5hbxEQt6WLm+oCGgMTJs2bWA2m/Hwww+je/fusNlsAICJEyfi2LFjICLExsZi8uTJGDJkCO69917k5ORAp9MhNzcXBQUFuP3226XzDR06NJDNCzhCXiFvsOQV11rIK+QV8jJaurwhI9AaER9RzdawT548mZ544gnFcefOnaOePXtSWloa3X333dS5c2caN24c5efnB7pJQUXIK+QlCo684loLeYmEvEJegSd0RMEPYR4zZgyeeOIJPPTQQ3A4HACcO+mePHkS+/btw+7duzFo0CA89NBDwW5KsyDkFfIGS15xrYW8Qt7w5VKTN+gEW0M6deoUJScnK3x4fLBSa0PIK+RtjXWHAiGvkLc1canJ2xwELQ8MuQw727dvR0xMjOTDe/nllzFjxgwUFBQEq+qQIOQV8rbGukOBkFfI25q41ORtToK2mSNL1rNnzx7cdddd+PbbbzF16lTU1NRgzZo16NChQ7CqDglCXiFva6w7FAh5hbytiUtN3mYlmOad2tpa6tmzJ+l0OjKbzbRgwYJgVhdyhLxC3tZYdygQ8gp5WxOXmrzNRdCDeG+44QZcfvnlePPNNxEZGRnMqloEQt7WTSjlFde6dSPkbd1cavI2B0FXYOx2OwwGQzCraFEIeVs3oZRXXOvWjZC3dXOpydscNMsyaoFAIBAIBIJA0my7UQsEAoFAIBAECqHACAQCgUAgCDuEAiMQCAQCgSDsEAqMQCAQCASCsEMoMAKBQCAQCMIOocAIBAKBQCAIO4QCIxAIAs61116LmTNnXnJ1CwSC5kMoMAKBIKRs2bIFOp0OZWVlASm3bt06vPLKK4FroEAgaJEEbTNHgUAgCAVt27YNdRMEAkEzICwwAoGgSVRXV+PBBx9ETEwMOnXqhIULFyp+X7NmDYYNG4bY2Fh07NgRkydPRkFBAQAgOzsb1113HQAgMTEROp0ODz/8MADA4XBg/vz56N69O6KiojBo0CB89tlnDZZTu5DS0tIwb948qY2pqanYuHEjCgsLcdtttyEmJgYDBw7Ezz//rGj39u3bcfXVVyMqKgopKSl45plnUF1dHejLJxAIGolQYAQCQZN49tlnsXXrVmzYsAGbNm3Cli1bsH//ful3q9WKV155BYcOHcIXX3yB7OxsSdlISUnB559/DgDIzMxEXl4e3nrrLQDA/PnzsXr1aixduhRHjhzBrFmzcP/992Pr1q1ey2mxaNEijB49GgcOHMDNN9+MBx54AA8++CDuv/9+7N+/Hz169MCDDz4ItrPKqVOnMGHCBNx11104fPgwPv30U2zfvh3Tp08PxiUUCASNIYQ7YQsEgjCnsrKSIiIiaO3atdJ3xcXFFBUVRTNmzNAss3fvXgJAlZWVRET0ww8/EAAqLS2Vjqmrq6M2bdrQzp07FWUfe+wxuu+++zyWIyIaO3asou7U1FS6//77pc95eXkEgObMmSN9t2vXLgJAeXl5Uj1Tp05VnPfHH38kvV5PtbW13i+KQCBoFkQMjEAgaDSnTp2CxWLByJEjpe/atm2L3r17S5/37duHuXPn4tChQygtLYXD4QAA5Obmol+/fprnPXnyJGpqanDDDTcovrdYLEhPT/e7nQMHDpT+T05OBgAMGDDA7buCggJ07NgRhw4dwuHDh/Hhhx9KxxARHA4Hzpw5g759+/rdBoFAEFiEAiMQCIJGdXU1MjIykJGRgQ8//BDt27dHbm4uMjIyYLFYPJarqqoCAHz11Vfo0qWL4jez2ex3O0wmk/S/Tqfz+B1TrqqqqjBt2jQ888wzbufq1q2b3/ULBILAIxQYgUDQaHr06AGTyYTdu3dLL/bS0lJkZWVh7NixOH78OIqLi7FgwQKkpKQAgFuwbEREBADAbrdL3/Xr1w9msxm5ubkYO3asZt1a5QLFkCFDcPToUfTs2TPg5xYIBIFBBPEKBIJGExMTg8ceewzPPvssvv/+e/z66694+OGHodc7h5Zu3bohIiICS5YswenTp7Fx40a3HC2pqanQ6XT48ssvUVhYiKqqKsTGxuIPf/gDZs2ahVWrVuHUqVPYv38/lixZglWrVnksFyj++Mc/YufOnZg+fToOHjyIEydOYMOGDSKIVyBoQQgFRiAQNInXX38dV199NX7zm99g/PjxGDNmDIYOHQoAaN++PT744AP8+9//Rr9+/bBgwQK88cYbivJdunTByy+/jOeeew7JycmSkvDKK69gzpw5mD9/Pvr27YsJEybgq6++Qvfu3b2WCwQDBw7E1q1bkZWVhauvvhrp6el46aWX0Llz54DVIRAImoaOyLVuUCAQCAQCgSBMEBYYgUAgEAgEYYdQYAQCgUAgEIQdQoERCAQCgUAQdggFRiAQCAQCQdghFBiBQCAQCARhh1BgBAKBQCAQhB1CgREIBAKBQBB2CAVGIBAIBAJB2CEUGIFAIBAIBGGHUGAEAoFAIBCEHUKBEQgEAoFAEHYIBUYgEAgEAkHY8f8Bl7o3MuUe3gYAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, axs = plt.subplots(3)\n", + "tol['temperature C'].plot(ax=axs[0])\n", + "tol['specific conductance uS/cm'].plot(ax=axs[1])\n", + "tol['salinity ppt'].plot(ax=axs[2])\n", + "\n", + "for n, ax in enumerate(axs):\n", + " ax.set_title(f'Plot {n+1}')\n", + " ax.label_outer()" + ] }, { "cell_type": "markdown", From 6416c239388d3d503bed2c7b63fd0e73ae86df51 Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Sun, 20 Oct 2024 15:55:28 -0700 Subject: [PATCH 46/94] work --- D3-Pandas_Graphing.ipynb | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/D3-Pandas_Graphing.ipynb b/D3-Pandas_Graphing.ipynb index 5a9a1b7..f379195 100644 --- a/D3-Pandas_Graphing.ipynb +++ b/D3-Pandas_Graphing.ipynb @@ -513,7 +513,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.3" + "version": "3.11.6" } }, "nbformat": 4, From 0dd19fbd2a630567021c249a607978a5bce41a0e Mon Sep 17 00:00:00 2001 From: Dan Norris Date: Mon, 21 Oct 2024 19:34:48 -0700 Subject: [PATCH 47/94] graphs --- D3-Pandas_Graphing.ipynb | 82 ++++++++++++++++++++++++++-------------- 1 file changed, 54 insertions(+), 28 deletions(-) diff --git a/D3-Pandas_Graphing.ipynb b/D3-Pandas_Graphing.ipynb index f379195..7609bc8 100644 --- a/D3-Pandas_Graphing.ipynb +++ b/D3-Pandas_Graphing.ipynb @@ -39,7 +39,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -60,7 +60,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -83,13 +83,13 @@ "2024-09-15 20:45:00 166.0 8.6 7.8 \n", "2024-09-15 21:00:00 166.0 8.6 7.9 \n", "\n", - " dom ug/L salinity ppt \n", - "datetime \n", - "2024-09-15 20:00:00 14.7 0.1 \n", - "2024-09-15 20:15:00 16.6 0.1 \n", - "2024-09-15 20:30:00 16.5 0.1 \n", - "2024-09-15 20:45:00 16.7 0.1 \n", - "2024-09-15 21:00:00 16.7 0.1 \n" + " dom ug/L salinity ppt fchl mg/L nitrate mg/L \n", + "datetime \n", + "2024-09-15 20:00:00 14.7 0.1 NaN NaN \n", + "2024-09-15 20:15:00 16.6 0.1 NaN NaN \n", + "2024-09-15 20:30:00 16.5 0.1 NaN NaN \n", + "2024-09-15 20:45:00 16.7 0.1 NaN NaN \n", + "2024-09-15 21:00:00 16.7 0.1 NaN NaN \n" ] } ], @@ -102,7 +102,8 @@ " '291463_00400': 'pH',\n", " '304254_32295': 'dom ug/L',\n", " '305297_90860': 'salinity ppt',\n", - " '291460_32316': 'fchl mg/L' # chlorophyll\n", + " '291460_32316': 'fchl mg/L', # chlorophyll\n", + " '313341_99133': 'nitrate mg/L'\n", " } \n", "tol = tol_all[cols.keys()].rename(columns=cols)\n", "tol['datetime'] = pd.to_datetime(tol['datetime'])\n", @@ -288,7 +289,7 @@ "As mentioned above, both plots share the same figure. We can generate two separate plots by adding `plt.show()` before the second plt.plot command. Try doing this to see the result.\n", "\n", "## Box and Whiskers Plot\n", - "As mentionMatplotlib has two functinos for this: plt.boxplot and plt.box. Boxplot works on a dataframe by taking a list of columns to plot as separate boxes, e.g. `df.plot(kind='boxplot', columns=['A', 'B', 'C'])`, and box works on a series object and accepts another series to group the data from the first series on\n", + "The df.plot.box function from pandas includes a convenient 'by=\"col_name\"' option that isn't part of plt.boxplot - it will group your data by the given column automatically. There's an example commented out below of grouping the data before passing to plt.boxplot for comparison.\n", "\n", "For our plot, let's group our 15 minute data by day and show the temperature each day. " ] @@ -325,8 +326,8 @@ "\n", "# These three are all pretty much equivelant:\n", "tol[['dayofyear', 'temperature C']].plot.box(by='dayofyear')\n", - "# tol[['dayofyear', 'temperature C']].boxplot(by='dayofyear')\n", "# tol[['dayofyear', 'temperature C']].plot(kind='box', by='dayofyear')\n", + "# tol[['dayofyear', 'temperature C']].boxplot(by='dayofyear')\n", "\n", "# An example using pyplot directly:\n", "# grouped_data = tol.groupby('dayofyear')['temperature C'].apply(list)\n", @@ -446,14 +447,14 @@ }, { "cell_type": "code", - "execution_count": 84, + "execution_count": 9, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAHCCAYAAADxQ/PgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADzXElEQVR4nOydd5wU9f3/X9v3+sHBHe1o0rs0xYqKoIIGNTGamIjR7y+JqFFjoiYWLAmaRImJqIkasQZLRBRsSBXpvR/14Ap3x/W2fef3x+znM5+ZnS2zd9ztwfv5ePBgb3c+O5/Z3fnMa97VJEmSBIIgCIIgiA6Eub0nQBAEQRAEYRQSMARBEARBdDhIwBAEQRAE0eEgAUMQBEEQRIeDBAxBEARBEB0OEjAEQRAEQXQ4SMAQBEEQBNHhIAFDEARBEESHgwQMQRAEQRAdDhIwBEG0O6tWrYLJZMKqVavaeyoEQXQQSMAQBHHaWLBgAUwmE//ndDoxaNAg3H333SgvL2+VfXzxxReYM2dO3Ntv2rQJd911F8aNGwebzQaTydQq8yAIom0hAUMQxGnnqaeewjvvvIOXXnoJF1xwAV555RVMmjQJzc3NLX7vL774Ak8++aSh7V9//XWYTCb079+/xfsnCKJ9IAFDEMRp5+qrr8att96KO++8EwsWLMB9992HY8eOYfHixW0+l1//+teoq6vDli1bcOWVV7b5/gmCaB1IwBAE0eZcfvnlAIBjx45F3e6jjz7CuHHjkJKSgi5duuDWW29FSUkJf33WrFmYP38+AKhcVdHIy8tDSkpKC4+AIIj2xtreEyAI4uzjyJEjAICcnJyI2yxYsAC33347JkyYgLlz56K8vBwvvvgivv/+e2zfvh3Z2dn45S9/idLSUixbtgzvvPNOW02fIIgkgAQMQRCnnbq6OlRWVsLtduP777/HU089hZSUFMyYMUN3e5/Ph4ceeggjRozAmjVr4HQ6AQAXXXQRZsyYgXnz5uHJJ5/EpEmTMGjQICxbtgy33nprWx4SQRDtDLmQCII47UyZMgVdu3ZFfn4+br75ZqSnp2PRokXo2bOn7vZbtmxBRUUF7rrrLi5eAGD69OkYMmQIli5d2lZTJwgiSSELDEEQp5358+dj0KBBsFqtyMvLw+DBg2E2R75/On78OABg8ODBYa8NGTIEa9euPW1zJQiiY0AChiCI087EiRMxfvz49p4GQRBnEORCIggi6ejTpw8AoKCgIOy1goIC/joAKkRHEGcpJGAIgkg6xo8fj9zcXLz66qvweDz8+S+//BL79+/H9OnT+XNpaWkAgNra2raeJkEQ7Qi5kAiCSDpsNhuee+453H777bj00ktxyy238DTqvn374v777+fbjhs3DgBw7733Ytq0abBYLLj55psjvvfx48d5yvWWLVsAAM888wwA2fLzs5/97HQdFkEQrQgJGIIgkpJZs2YhNTUVzz77LB566CGkpaXh+uuvx3PPPYfs7Gy+3Q033IB77rkHCxcuxLvvvgtJkqIKmGPHjuGxxx5TPcf+vvTSS0nAEEQHwSRJktTekyAIgiAIgjACxcAQBEEQBNHhIAFDEARBEESHgwQMQRAEQRAdDhIwBEEQBEF0OEjAEARBEATR4SABQxAEQRBEh+OMrQMTDAZRWlqKjIwMKjVOEARBEB0ESZLQ0NCAHj16RG36esYKmNLSUuTn57f3NAiCIAiCSICioiL06tUr4utnrIDJyMgAIH8AmZmZ7TwbgiAIgiDiob6+Hvn5+fw6HokzVsAwt1FmZiYJGIIgCILoYMQK/zhjBQxBEATRsah3+3DlC6tx2eBcjOyVhYsHdEXvnNT2nhaRpFAWEkEQBJEUXP631Siv92Dh5iL8cdEe3PfB9vaeEpHEkIAhCIIgkoLKRo/q720nattnIkSHgAQMQRAEQRAdDoqBIQiCIFoFfyCIO97agtUHT/Hnvn/4cvTMTmnHWRFnKmSBIQiCIFqFZfvKVeIFAP7f21viGhsISqdjSsQZDAkYgiAIolVo9PjDnjtW2RTX2GavMvYP1wwBADisdIkiIkO/DoIgCEJFIChhT0kdDpY3QJJaZhlp9gbi2s4V2s5kAn44Tq6i7vEHDVtmKhrccYsmomNDAoYgCIJQ8cdFuzHjn2sxdd4avLH2WNzjthfVJrzPl1cdAQCk2CxItVv4898froz7PUprXZg0dwUu+9sqfLH7ZMJzIToGJGAIgiAIFfvLGvjjAuFxLDKdtrDnRudnxzW2qsnL38NpUwTM8ermuPd/5FQjt9gcMDBvomNCAoYgCIJQ4RLiUZp98bmAxHH3XD4Ab9w2Xn4yThcUG3vflIEAgOvP7Rk2l1iI7ioj44iOCQkYgiAIQsXB8kb+2BVnDAugCIgUuwUpITdQvDEw4ljx/32l9XHvf/GOEv74g81FcY8jOiYkYAiCIAiONpOo2YgFJGStSbVZkGq3hsYbEzBsnD8QBACcrHPHNd4XCOKL3WX873q3H9UhtxRxZkIChiAIguDUu3yqv41YYFyCCGGBuK44XVDKWHnc8B5ZAACLOXpHYkazJ3w/tc0kYM5kSMAQBEEQHK3FJF4LCgA0haw3KXYLUmzMhRSfBafZp4wFgO5ZTkP7Z+NtFhNyMxyGxhIdkzYXMHPnzsWECROQkZGB3NxczJw5EwUFBapt/v3vf2Py5MnIzMyEyWRCbW1tW0+TIAjirGTtIXUl3UMVjXHXgtl4rBqAbEVhlhS3L4igTi2XF789hNFPfoMLn12BHUW1YRYY5kqK1wJ0vErOVhLTsCkT6cymzQXM6tWrMXv2bGzYsAHLli2Dz+fD1KlT0dSkFB5qbm7GVVddhT/84Q9tPT2CIIizmqIaV9hztc0+nS3DsYbcPV3SHVyAAPpupI+3FaHO5UNJrQsr9pcrMTA2eRwPAvbFZ8Epr5djZerdfn4MWncYcWbR5s0cv/rqK9XfCxYsQG5uLrZu3YpLLrkEAHDfffcBAFatWtXGsyMIgji7YULivikD8fdvD8nP+QLoFGOcJEnwhywtvTqlwGkzw2SSs6ibvH6kOdSXGzFmpckb4CInhVtgQjE0BoOALx+Si5w0Oz7aWhx3/A3RMWn3btR1dXUAgM6dO7fzTAiCIM4cDpTVo6TGhVS7FRP6doLVEp/BndVPSXdYkZViQ53Lp1tTJRCUsKWwGjnpdgzIzYAvoLiJrBYzTCYTUmwWNHsDYSKkqLqZF65jfzMvVapGwMQbx3KqwcPnzcSS0Syk0loX9p+sh9lswsS+ncNEF5FctOu3EwwGcd999+HCCy/EiBEjWvReHo8HHo+H/11fH3/tAIIgiDOJI6cacdXfv+N/Pzp9KO68uH9cY8V6LKyZ4vYTtRiQm6HabuHmE/jjoj0AgA2PXIEMp3I5sYfEksNqRrM3gF3FdeiTkwZADvS9/PlVqvf6Zl85f8yCf1OELCZJkmAyRc9Gent9obxvq5nPe8WBCjw2Y1hcx+0LBDHjn2u56Ll2dA/885Zz4xpLtA/tmoU0e/Zs7NmzBwsXLmzxe82dOxdZWVn8X35+fivMkCAIouNxvErdzLDIQDl+t1+uv+KwWlDvlmNIvKGaLCKFQsPEoppm+FUWGFls1IViUERXzqkGj8paAwBOm5n/bw7F0bAYGkmSA4FjkZUitzEYlJeOzNDjLun2mOMY9S6fymJTSA0hk552EzB33303lixZgpUrV6JXr14tfr9HHnkEdXV1/F9REVVhJAji7ETrdtETIJHw+uWxDqsZ04Z3A6AfhyLuo9kbUO2DBfNeNSJ8vJ5LiAkUMfA3ReiHFE8qNtvHef1yMKxHZsR9RSI8fZxaESQ7be5CkiQJ99xzDxYtWoRVq1ahX79+rfK+DocDDoejVd6LIAiiI6O9GHv8RgSMvK3dao4ahyJ2id56vAaD8tIByHVYmLsnxRZejbesPjzLiSGKFovZBIfVDI8/iGZvADkx5l0aqtibarfA7ZPfZ6+BNgRHNRYXIwX8iPahzQXM7Nmz8f7772Px4sXIyMhAWZlc+jkrKwspKSkAgLKyMpSVleHw4cMAgN27dyMjIwO9e/emYF+CIIgYaC++RgSMRxAwegKEERBqw+wqrsWNY+XmizYhWFjJJFKsGUdPKULBYjbBBPDsJVa8Thzv8QdjZhOxFGpATuE2C9V7Xd4Aj6eJhrb+jZEmlkT70OYC5pVXXgEATJ48WfX8m2++iVmzZgEAXn31VTz55JP8NZZeLW5DEARB6OPVCBbt3/GMdQgWGL0spKDwlkFJ7GWkiIVYmURf33cJqho9OFDWALMJmDw4V/V6qt2KmmZfTFdQnVDvpVOancfDAHJvp3gEDIvLGZOfjR1FtVTFtwPQLi6kWMyZMwdz5sw5/ZMhCIJIYiRJgjcQhMMa+wIs4gnFsdgsJvgCkjEBE1AETLSO0mKMiMvrD+smLT5ucCvbMqHww3G9MCA3HQNy03Fef30HkSKA9ASUBF8wCKvZzPfdM1u24pvNcgq3yxeewq0dzz5b1sRyfJ9O2FFUC68/iEBQirsXE9H2UJI7QRBEEuL1BzHjn9/hYHkjbp6Qj2dvHGVoLCDXRKlp9nFBEw+eUECt3aKU5Ndzp2iDeHkrAJtyWWHjP9hShAsHdsF1o3vwLtM2S2xhwPfvCQ+wvfrF73C8qhld0u244JwuANTiKdUuCxi9Sr71bh+u/vt3KKl14cphefjVpefg463FAICcdCWWsqzezUURkXxQM0eCIIgk5ER1Ew6WNwIAvt1fHmNrNZ6QSMhwyq6UhCwwNnPEariSJKniaty+ALeSiCJifF8lZnHNQTnGxMcFTOzLT0oEAXWwvJH3Pqps9GJVQQUAoFGw9ESzHh042YCSWjmY+Nv95dh4rIq/NukcxRp0nFKpkxoSMARBEEmI1sJhBGZFYcXljKVRMwuMGSl2FsSrtmJo388bUAJtxRiYsb074Q/XDAGgiCBfKGDXao59+VEaOqr3r51PfUi4/N8lSrG+aK0IxPGSpHTRvnFsL4zJz8aoXlmh7SgOJpkhAUMQBHEaKal14dt95QjodGSORr1Lucg2ewNxd4QGFIGRHiqF79EpBCdJEtYcPIXKRo/qeeZuslvNSIsgAvSChFnn51RNwGx2ilxMbs2hU1hxoBzNIbFgs8Z2ITErCrO2MOoiNJdMVcXfRM6g0h4PK2CX5tC0MaBMpKSGBAxBEMRp5Bdvbsadb2/B0t0nDY3bXFit+ruwKv5qukxgMBeSXhr1ZztL8fP/bMLVLyotB4JBiQfZ2qME8Wrfz+MP4pVVRwCEu4aYFajB7ccvFmzBW+uPy9vFYYFhBfE+3V6ien7jsWq9zVUCJi1KALD2eD7bUaqaeyTLD5FckIAhCII4jRSUy5aJ7w9VxthSjVnT+4c1K4wHJjCyU2UBo1dH5Zu95WHvK26XarfwC3lYZV8dCwwTDNeO7qF67dLBXXXnGE9q85j8bABAulOdb2IP9TrK1DwvVvKNlsKttaw0hbZhLRCixc8QyQMJGIIgiCREmz1jpLQ9aweQHaqHEm9VWfGC7bQqWUhaAaQVMB5/kIuC8X06qV5LtVuRodPVWay6G4nRIQETqcz/rAv7oXOa0u8ofheS/mfJmlCm2kjAdARIwBAEQZwmTghunx1FtYbGakWHkdL2TGB0Cl3cm73+qDE0zP1zKGQtSrFZeC0VQI4RKa5RjoVZeJiRKBCUwN5ez7Ki95w2VkYPtk1xjQsVDXK13ZN1Lry74QR/XRRCqjTq0POf7yxVveeyfeX48xcHdPenuJDksVrXVSyu/eda9H14KRrc+jE6ROtCAoYgCOI08ekO5QKYlWqLsmU44VaH+AUMa47IKtIGpfC4FXE+f/36AHyBII8tYRaXHKGb8+c7lRgeHmOjsazkpNlVbhxGn5zUsOd6xFFfpVum0lrg6z1y25mlu5R59O6cqnpvsWYLE1e1zUqHaQB48KOdEffH5mQNCRmxAF8syurc2F1SBwB4YdnBuMcRiUOF7AiCIE4TrLorABit56q1uBjJiGHbdhEEiMsbgFOwVqQL4oO1AmAiZ8ao7gBk98/FA7vgu0OVaPQoVgVvQH7/DKeNpzBPH9kdD189RLdy7au3jsP6o1W4+/3t/LmLB3aJeRzZqXaM7pWFncV1aAh9luwz7d8lDVcN74bz++dg49Eq9MlJQ54geG4c1wsLNxfxoGSG2HbguRtHontWChrcfmSmWHlBvOvP7Yk31h7jNWviQXSzHa5ojHsckThkgSEIgjhNqMrtG0zJ1ca8GMmIYdtmOG08rkMUU/rvH+Dj+uak8edH9JRrohRWNaPO5UMgKKHRE17zZVSvLOR3Dre0AHJ12xmj1MG9JlN8ko7HwYT2yYTd5UNyYTab0DnNjqtHdsewHpmqccz6FC12qFOqHZcM6orpo7rj4oFdufjKDGVvVTV5I47VIoqdk3VuQ+Kntahq9KCk1oX6s8SFRQKGIAjiNNGSYnRse+VCbMACI/QlYnEhN/97Q8S5yX/78WkonVgvlmTprpMY/eQ3uPGVdbjtP5sAyNV6Gc44gnITgc3lpZWHASgxLbFiaFLiCMTVc3eJ+wSUuKBYzA/ND5AtMFf9fY3h2j8tYeGmExj3zLe48NkVGP/0t9hdXNdm+24vSMAQBEGcJkQ3kJEgXCA8DsXIeN6XyG7BhQPk0vhl9W5VIG+Yi8obQPcs2QUjipFLBqnToMVg5Okje+DmCfnom5OKa0Z2jzmvC0Jl+n80rlfcx9I7ZNVh7rDckJsoVisCJnA8oaaMDNaDyW41Y1R+lu5Y0fW2t7Q+rnlWa6w1R041qdxVp5utx2v4Y28giF0ltW227/aCYmAIgiBOE2oLjLGiaGxslzQHjp5qSsgCk2qz4tkbR+GL3WUIBNWdrbXv5/IFuGga3Uu5sI/Oz8brPx+PO9/eoto+w2HFryefY+iY3v+/8w1tDwAXD+iqmi8TXmM16dpaROuKyxfgMT9My6z53WXcVaTFZDJhytA8fLu/PO7Pnc3r1VvH4t6FO+D1B9Hs9avSvE8n2hgpo4K5I0ICxiAfbSmCyxfAsO6Z+OGr6wEAB56+6rSZTwmC6Li4WuBCYmOZBSbe8WV1bi5EUuwW7gICgK2FNbhgQBcUVTdjdai5IuODzUWoavTycSJ67ppUR9useWJRuV8s2MwLA8YqhOe0mWEyyb2Oapq8SHdYEQhK3BrjsMZnwdETnhuPVvFKyZ3S7LhxbC9sCVlAUuxWpNot8PqDbSYi6t0+np1lMZsQCEpYc6gSd17cP2zb9Ueq8Ob3x5CTbsdVI7rj0pCFrarRg0XbS+D2BTCuT2dVU0uRmiYvPt1RgksGdcU5XdNP30HFAQkYg7y86giOaTqUvrWuEL+81NidCEEQZz5iMTrmytDL0tEdG7pwdkl3qP6OxV+/LuCPM5xWWC3KhfyBD3diwx+uwFNL9vFt2Gsfby3mz2Wnqq0G2r8BOQC2LchwWmE1m+APSlhxoEKZU0r0tHSTycRr03y1pwz/d0l/VQE+e5wCRitC/IEgbl+wWSUoa4XeTJ1SbUi1WVALX5sVwrtHyO7qnuVEcY0Law6eQjAowSz83rz+IG55TYmF+u+mImx5dAq6pDswf+UR/Of7YwBk8bfziancWifyl68P4L+bijAwNx3LHrj0NB5VbCgGxiBa8QIAqwpO6WxJEMTZjp6bxuhYoxaYqia5NcBFA7pwy/DDV8kdoVnX5YpQ+4DRvbLwya8vwK3n98YtE/Nxy8R8PP2D4ap6KgAwtHsG/nDNEPTvmoYrh+Xhlom9Mee64XEfS0tw2ix4/qbRYc/3j+Puv1cn+TjYZ8caVQKxBQy3/GjbDngC/P36dZGztfYJcTIje2a1eSsC0Zr2+m3j+WO3X71/bSYaAG51Y4UCAbmOUGOEGjhrD8stMQ4lQao4WWAM8stL+uNfa46qnqOOpQRB6BEeKOtX1V+JRCAo8ZosOSELjNF2ADdPzOfP/WBMT8z98gCafXJXa5Yu/furhuDc3p1wbu/o8SQmkwn/75Jz8P8uaR9L8w/G9MRvFu7gf2t7IEVi2vBueGPtMW4JYxYYs0lpFBmJSBYY9l5WswkXnJODY5VNvKP3gNx0mEwmpRmkz1jcU2swKDdDmas3oIoF0rPiBUNmKr2gbn0nUvJAAsYgen7XnUW16PvwUrz9i4lhEfsEQXRsvP4g7npvK3p1SjVkdZAkCSfr3Krn4hUhxyqVu9suoSDQTYXVePh/uzD3hpFRa6hsClXTVfcFkh8HghJ+//EuHCxvVD3f0YiU/hy+nXx8b687jkeuHspFod1qjlmHRmlkqb7ol9S4AITii0Lvvz2UmcX+Zp/r13vKcfmQvLjmKknyd7P1RA1MAH5yXh/ccVG/sO2eWbIPKwoqcPSU7A3o3yVN9TprAeHyBXCy1s1dkA1uH374yvqw93v4k93onunEcsE9BwBFNc2quj4vfnsIi3eWoKjaxZ/bXFiNCX07x3V8pwNyIRlkoKButfw8VBuBIIgzh+0navDt/gosWFdoKJOopFZZ6J2heinxuhTWH63mj4d2z+Rl8RduLkJlY+TiamKadNd0pSqtaPX5SIh16R2h8FwycoEQVDogN77gUVZDh1lbuICJkYINRK4jUxwSMA1uP78eMMvOgJBbi7nqmGUmHioaPPhoazGOnmrCkVNNeOO7o2HbeP1BvL72GBcvAHBUJ6yBuSoLq5TXNh2rRlm9O2zbnUW1+GpvWdjzTKgx/r3miGq/APDJtmK0J2SBMcg1I7vh6/suQZ3Lh85pNpTVeXDrGxvbe1oEQZwmxB5CTZ5A3Hf/TR7lwtc1w4GialfcAsYtVJvt2yUNa353GS7+y0oAzCLg0B/nU+bav6tyZ24xm/D0D4bjscV7+XN/uGYIvzvvCLx5+wRsLayBzWrGyJ769Vu0TB/VHc8s3c9jQZjQcMSRNRrJhcTEwQXn5OBH43thRM8sNHr8sJhNGBVKP//Fhf3w2492hsWgREMbn9Kk81vRE9A2iwnv3Xk+6l0+XDhAboUwsW9nbCqshlsIb2DvbzIBH/y/SQgEJVVALwCs/t1kPLZ4L9YcPAW38LsPBiU+n9d+Ph6fbCvGl3vKVL/x9oAEjEFMJhMGd1OsMAOiWGQA+Y7ocEUj6t1++ANBjOmdzSO7fYEgDpxsQLcsJ7pmJOdCUtfsQ1CSeFdbgjjbEBv6GUmLZRebntkpSLXJS+2+0jr07pwa83x/Z8NxAHJzRADI75yKLukOVDZ6uAiqqHejuNaFrukObuoXL3Apmot0tyx1YG6/Lu2bAmsUh9WCCwbE7p8kwj53X0DCnpI6Xt4/HgtMqoO5kNTf+cmQZS0n3QGTyRTWwgCQM6f0xkZDW/RO77em9349slMwsZ/ajcMCv0VRxDKlLh+cy7d32sxc9A7rnok+OWn8N1cqWBBFIXbBOTmobPTgyz1l2HC0Ck0eP9LiiOs6HZAL6TTz7objuHLeGtz4yjr8+N8b8NPXFGvNPe9vx7UvrcUFzy7HqYb4TY1thdsXwCV/XYmLnluhG71OEGcDT36uWC0+31Ua9zixGi6rmfLY4r248LkVUc/3YFDCiepmAIBfqCCbYpeX6/9tLUZJrQsT/7wcN7y8Dhf/ZSXWHpIzQ1gTQYfVrEqfBYC0OGq7nGmIMT4z/rmWp5jHqgEDKC0URFHY7PXjHysOq17XHcuCeA0ImLvf2wYAyA51CfcGgvBr+il9uSfc1ZOX4Qx7jonXf61W3FBPfCb/jp3CZ5ImWBPZ74H9/8qqI3zdL6xsVr0326aiwcPr8rQHJGBagR+MkZuU6cWE7S9Tf7lbhHLPB8rk1DtfQMLxqnA/ZntTXu9GncuHJm9ApcYJ4mxC7PdjpElesyBgbpnYG31yUmE1m+D1B6Oe72Kq9Y/Gh5fc9/iDYd2O2UWENR8U3V6Mc3t3wqT+OeiZnYLz+3fGub2z4z6WjordasZtk/pwUcDaIMRTeDRVJxW6TAjK/sG5PcLGMBJJo/aGxMrlg3P5c9oM19pm+fsVLUgPTB0U9l7dQi0h2HEDShzUeKGC8awL+qJXpxT0yUnFLRN7AwCuG60cF7M2lQsp1mazCRcO6IJze2ejZ3ZKXNas0wW5kFqBn0/qi8U7SpHfKTwgLpoCb0mjt7Yg2edHEG1Bov2MmoVquDeNz8dN4/Nx9YvfYf/J+qjnU5NXiVWY1F8JXP3JxD547qsDaBa6Rivzkv9m76uXDZlit+C//894Kf+OzpM/GIGRvbLx4Ec7VaIyFnoihD3OzXDggnMiu7P0xE8s2La/mTIQn+4oQVCSf29iuwO2ze0X9cUjVw+N+F6XD8nFy6uOcDEsSRK3JIk9q+65YiDuuWKgaux5/XPQI8uJ0jp3WPuGCX1l8dMl3YFFd10Y97GdLkjAtALsx3qiuhmNHqXOQ02TF4u2l4Rt/+6G43j00z2q577YfTJs0dl2ogaf7yyFJMnVFe+8uH/cVTxbQiAo4WdvbFRZXcp1otfPRHYV1+KZJfsxuFsGLhnUFVcOiy8FkjhzEbN+4g7C9QXw168PAFCn/LK14v2NJ/C3bwpwuKIRzd4AfjdtMO6afA5MJhNO1srnWorNokr1ZWP/t60YxTWKSR8A/vbNQVQ2elEQsvhGc2+cjWgFSzzp4+x7E7PJToWyimIJIPa6XhZSVaMHb35fiEaPH5kpNtx5cT9kOKzq9g92Kxo9ftS5fMjLdEKSJLy6+ijeWCtXymWxPZFgx3e8qhnl9W4cOdXIe0AZEW9HTjVidH42VoeKtabEGcDeVrS57Wfu3LmYMGECMjIykJubi5kzZ6KgoEC1jdvtxuzZs5GTk4P09HTceOONKC8vb+upxk2OEOC6VPCRL9xcpLu9VrywbcUUSAB47NM9ePP7QixYV4i5Xx7g9R1ONx9sLsK6I1UorFIWyf0n4+vI2tG57qXvsamwGu9sOI4tx9vm8yaSlxKN6zReC8zy/RW8XobY2ZjJka/2lmFXcR0XRH/9uoC7gZbvl9c6r8YNJAb+btRZCxasK8T6o1XyPjMo6F5EGzTdNY7sK7EJIxMirOKu9rvRIrZe0Lrf/7vpBF5aeRgL1hXiH8sP4dPtJXD7grztQardyt9/T0kdAGD/yQY899UB/h4S1NcKLWJ22X++P6a65sSTRecLyO/Pqsx/uUfusxSr+F9b0+YCZvXq1Zg9ezY2bNiAZcuWwefzYerUqWhqUnzC999/Pz7//HN89NFHWL16NUpLS3HDDTe09VTjJjfTyaPOq5sUH3l1k6K+bzi3p+7YsYIf2qsJ2GLt2VnJ65rmyPUfWhOxLfvZzNnQzZWITk2T+pyLtw6MeO7ff6USo/CzSX0ijql3ye/tCa0D2hiVK4bmRo036JHlxD2XD8CDUwfhnssHRtzubGRc70748/Ujcc/lA/DAlYPw22mDY44RRU+tZu3trmm1oCVL6NPUoCnJX6X5TVU3ecOyx5joZVlT2v0P7R6e+SSSl+nEiJ7yNjVNXj6HP14zNC4r/oWabC8WEH7bBX1jjm1L2lzAfPXVV5g1axaGDx+O0aNHY8GCBThx4gS2bt0KAKirq8Mbb7yBF154AZdffjnGjRuHN998E+vWrcOGDRtivHv7MXOMLFBcqoj1kE/zioF44cdj8I9bzg0b97tpQ/hjvVLOgOxvFf8+3Yjlr2eFfrBn48Wc4n4I7W8g3t8E2+6Gc3uiu5C+PKRb5AsPyzhh59r5QvwLIKcR/+pSpbuw3WrGD8cpQb7De2bht1MH4+7LByIvMzwz5WzGbDbhJ+f1xm+nDsa9VwwM6/UUie6hYFj2fTKhEU8dmrxMed32aW5Mw+rKeJXeSg6rGRazCeeGAm3Z89p6MvG4gW4c24u/B9vnlDhd4qyejXLc8v/ndE2LOKY9aHeHVl2dbCLr3FnOS9+6dSt8Ph+mTJnCtxkyZAh69+6N9evX4/zz9YPQPB4PPB7lrqe+vm1dHuwH9Y8VhzEgLwMNbh/e23hC9ZqeXzrDaYXdYoY3EERRtYubHisbPbwuQE66A8U1Ljz40U5cM7IbUu1W+AJB/PS1jSiqacYLN43RbX2+7kglfvvhTkw6Jwcv3DRG9drJOhd+9sYmXDE0NywYjKVkAkrPESMX84oGN259fSMCQQkmkwnP/2g0Rudnxz0+Wdh4rCrmNrXNXtz87w1o9gYgQUJdqNaC3WrBE9cOw7WjI2cqdFRu+88mrD54ClcN74ZXbh0bsyR7R2ZXca3q782F1Rg152tMGZqHuy4bgOtf/l51h33wmatht5p512RtrEW0C89PXlcXxNSL00jRxNOIF8cz91toP9h3cMu/N6BXp1QM6S7X/YpHQNhC1jKtgGGhBekOOc7lX2uO8v562mvFk5/vw7xlB1GvseKY4vi22Xst2XUy7Ll4x367vxybC6u5SyveIo5tRbumUQeDQdx333248MILMWLECABAWVkZ7HY7srOzVdvm5eWhrCw8B54xd+5cZGVl8X/5+fkRtz0djOqVzR9/vrMUS4UfzYiQWh/cLSOsA2rvnFTuOjperbjRNgs+7ilDlLS63cWy4Dtc0YhNhdU4WefG1zploAHg0+0lOFnnxifbSsJ8th9vKcbhikZVnQCGKIZS7MYFzGc7SnGwvBFHTjXhcEUj/u/tLXGPTSa0pl89tp2owYGyBpyobkZRtQv1bj/q3X5UNnrw+c74a4Z0FCRJ4p1vv9pbxt0eZypiJVOH1YygBNS7/fhkewleWXUk7DfCSrKzQH7t3XZuZvwFKy06wnBkzyxermFUr2z4A0osxMwIbmoiccaE1vUmbwAF5Q34LnRzZ0TAiLV8gsLj6UI2EGMU35/yu9KKFwAYE0cK/PAe4VaieHtfDRNcVB8KsZyiaywZaFcBM3v2bOzZswcLFy5s8Xs98sgjqKur4/+KivQDaE8X00d1xx+ukd1BLm+Ax8T8eHw+9yfmd07F5j9OwYrfXoqVD07G3ienIdNp45ku1YJvlJVtntivM+65YiA6hfL5WWqm6DON5N4RFzftNnplqhnm0Ar5+IxhSAsV4DLSVVW7r1pX/LUz2hNxcQGAPjmxzaXaUtppdovyOzgDu5SLpeoBpTPvmQoT7rMu6ItNf5yCZfdfwl/Tq42kTWe+dLA6s9BhtWDej0fzv3c+PhU9svTdPeP7hneIvmhgF2z6wxSsfHAy3pw1QRU3d43OBZFoGX/70WisenAytyAzq3g82Tg2i7yO+oSbR3FNmHPdcLx353mqff1n1gQAwGVCLZgMofP2jWN7Yd9T0+LqaD6iZxYW3D5B9Vy82WkD85QK8yxm5/8u7tcmWbBGaDcBc/fdd2PJkiVYuXIlevVS/LjdunWD1+tFbW2tavvy8nJ069Yt4vs5HA5kZmaq/rU17IJ3ss6FsnrZnTW2T7Zqm6wUG/p3TUe/Lmm8/DLzlR4qV4pTHQplJHQOuZRY87LCUOOuYqHR1ppDp8IuvsGghHVHFBdIkSbtstGjiIqjp9RFsdjim+G08oqOxTXxF7I7oKnMGCtiX0uD24eVByqwfH85juk0KovFscomLN11EuuPVIVldkVDG0S9vzTcDRkMSthdXIeKejeW7y/n1ghGmsPKG+R9d6gSByNUqQwGJWw6Vo3l+8tRXu9GbbMX3+4rx4ebi8JMzm2F2xfA1uPVYdU/RbQF1JrO4ArNkiTxyqdpDguyUmwYmJfBL0yFOsXoPtpSjDqXj2cD6ZncxRL/Wak29M7Rb6iYEiFVtmuGA/26pMFiNkX9roiWYzab0LdLGnelB0LrbDwWGKtZaeC57nAlKhrc/HwxmeQy/mIzzX5dUrlAEH83YjBxj2ynITeOGOtjt5hhNVB0jgUSM3eomFmVLLS5Q0uSJNxzzz1YtGgRVq1ahX791O3Cx40bB5vNhuXLl+PGG28EABQUFODEiROYNGlSW0/XEEwVHxE6dsbTIyI7Rf5hvLPhOJ6eOQIub4D7RNl4p+ATvW1SX/xm4Q4+/mSdGx9vK8ZN4xW32cfbilWdR299YyN2PD5VeV3oSHv586ux/bEreb8jpQS6FYGQANgVcl3F4sipRpX7LBHu/e92rAyl79mtZmx85Iq4ezHVNHlx2d9W8b9f//n4uAPXtNVLvYEg1hw8parP848Vh/D3bw9FfI90h1X1nU+dtwZrfndZ2EXq463F+P3/dgEAumU60S3LyauEvr2hEEvuuTiuObcmT36+D//ddAK/v2ow7po8IOx1ty+Aa19aq3pu0fYSVSD6mcQ3+xQBzfqXAfI5Wdvsw8m68NpIW47XYPST3wjb6sW9qc3wLN1aSzx32RSs2zbsLlGvf/Gs60yM3BlyoffMTsH/XSxf72wWM0wmk+o7FoWJ+LvpkubgXaDjdQHpzVPvtxhrrFgDKZ72C21NmwuY2bNn4/3338fixYuRkZHB41qysrKQkpKCrKws3HHHHXjggQfQuXNnZGZm4p577sGkSZMiBvAmC+P6dML0Ud25tSI3w4GLB4ZXxNRyXv/OeGmlcmcmFj/6yXlyeeefnteb+1/d/gCsZpPKt1qosVRo/27U+FG7Z6WorBsn69xcJJyTmwa3P4Au6Xakh+48tI3hIhHJUiNJUtzBnmL9Ga8/qJpbLLR1Oz7aWhS3gNGzFH26vUQlYF5cri9e7FYzhvfIxE/P64MJfdWN1U5UN4cJmGPC3XtZqGUDY09J+9Tc+e8mOej8lZVHdAWMXhq/x3fmWgBEIS66c+67YiAW7SgFJAk7Ywj7cX3C3UCT+ufglon5GBwy02t/s4z8zrEzZX5/1RDUuXy4aULbxvydbbBGiIBsEbk0jnVdm3JfUuvi7nQW39QpzY5fXtIfNc1e/nsA5Ay0a0Z2Q3m9B3de3A+XDu6KLYXVPLMoXrpnOTHrgr7YXlSL68cYSyiYfdkA/P7jXfxvvUSR9qbNBcwrr7wCAJg8ebLq+TfffBOzZs0CAMybNw9msxk33ngjPB4Ppk2bhpdffrmNZ2ocp82C+T8Za3gcS610+QIIBiXuJ+2cZucL4NRhivus3uXn4uVn5/fBOxuOR0z3vPX83nh3wwn4gxK8/iAPItaeXGKMy9wbRvHHrOkcm5u2QZwW5u8dnZ+Nd++YiJFz5LtRjz8YV/+RWHOLRUviTjz+2GNtFrOu0Dn4zNWqv8Uur3q1Q8JSKZMoXiYQwe0muhbvvKg/5n17MKxXy5mE+DmI6c+zLuyHWRcqluOCsgZM+/sa3fcQLTcMs9mkOseG98jEXo278tbze8cl+Dun2fHKreNibke0Hm//YiKyUmMHs142OBdHTh1TPcfqCrEbUwB45JrwlgBOmwUv/1T5XqcOT2yuJpMJc65LbPBN4/Ph8gZ4E8hzuiZf9/J2cSHFwul0Yv78+Zg/f34bzKj9Ef2ppxo9vGGYaPUwm038onjF86v486xa5Gc7S1U/1M9CGTA5aYr/9M9f7McT1w6DPyihPBSjY7fKF2R2cVp3pBJvrzuOMb2z8atLz1HNrdkXiGnW9gfli7bNbFKZRJu9gbgEzFd7TobNrajahXGR639xAkEJcz7bq3ruYHljhK3D0RMmn2wvQWaKDb+bNhhpDitsZhOMlhO8671tWHrvxRjcTbnD+v5wZZQRwCOf7ML9UwYh9zS6CKoaPXhh2UHUunzcxw/I39X3hyvDilm9ta4QQKi7cuh3sbrgFP78xX4ubn83bTDPvkgWyurceHF5KBVVkqtK33FxP/z0PPlHtbe0Dm98d0z1PQNqkRkt5sFqaf3AxmRLVyUU4q0aoPebeWv98YivJTvJ6EJKvhmdhYhCZfn+Ch742agJkGQeI5ZB1CXdzrOTqnWqOwJAp1Qbb3WwYF0h9p9swIajSnBvr06ymZoJmMLKZny1twxbCmvC5ra3JHYcjDeU+WSzyAWZIll8IjHns338sSN0IYw3kHdHUU3YnayRk44F8WoXlwXrCrGyQA5ky9EpQd6vS3i20oxRirnWH5Tw7zXqdPVAMLqQ/++mIny8rTjqNi3ls52leG/jCSzddRL/3aTO2hPLlgNyLYu3Q4tvp1Q773ZbUuvCv9ccxetrj+Hfa462WbsLI3y8tQj/3VSEpbtOYunukzha2YQ/LtrDU6RfXX0Un2wvwYJ1hVgeClgEoBJ10X5H2jL1jHgvdKxWEDsXAYptSTZuFlx0uRnxfTfdsiK7AP0xzv9kYVDIrZXhsCZlvSeS+UmA2WzCwNx0HKpoRLPXzy9u4h07IKc1iz0t3rnjPHRKtWPO5/JFPxCUYDGbVBfHq0d2x3n9c3D1i98BkNMAWbyF3WpGj6wUHD3VxO82mdBgAV9mswkOqxkefzAudwHLimB3pal2C7z+YNyVfFn9g7/cOArf7i/HN/vKEYwzk0hMaZ7YrzM2HatGjzgrbgJKPEd2ig0v/3QsZr25mb/GPrPz+nXGiepmdM1w4E8zR6C8wYOLNZYKAHhs+jAMzE3HG2uPoaLBo4pxART3xNMzR/AMsn5d0rBoewmKa5qxubAmbExrE+39ta81C5/tSz8Ziz45qfjHLefiuS8PqGI4TvecE4HNaUx+Ng+UBuQbBKfNopqz+Ji5f6aP7B518c502rDorgvQ5Alg8Y4SdM9OQXF1M564Nj7T/R0X9UPfnDRM6NsJRTUuHD3VSCnRScYj1wxFVqoN5/fPUfVIisaN43riD4t26742Xic2Khk5v39n/Ptn49BX5yYtGSABkySM79sJhyoa0ejx86ZeA3PVPkexfPXInlkY2j1TJQxcIRePaO3ISrEhL9OJkT2zsLukDi6fn1tbLjgnh5v7tSWjRSvEqF5Z2FxYEyZCJEmCJEEVF8NSgFnPllSbBbXwxV0Ij42fdE4OjlQ2quYU79jRvbJw6/l9sOlYdVyWH3Yc7I7cYbNg8uBc3HBuT3wS6ibOgqDZndOdF/XD1OGR0/qzUm345aXnIC/Tifs+2KFKWw8EJR4UOLZ3tqrg1CWDuuL5bwp0P+94CAYl+INSWMFEEX8giIAkRS3Upw36ZvVerGYTT+m/bnQPvLvhuErA1Lt8hgK29eYfKc4q1rF5/UFYzaaw8ez3M75PJ5WAcXkD8AeCaBYsnapWIKHfw9g4Ljbn9pa3uWhguJiNhc1ixlUj5N9STroDYzpg1eoznawUW1jF8ljoxT8xsuOIoUkGTCZT1HWuvSEBkySwmg9iiq7WlSH+zdLpnDYzTCZAkoCSGhcGd8vA/4QUaWb6Ztt/uLmYVwtNtVu4gFlZUIGfnNebV/UVa1Cwok3rjlTyO8Pff7wTH26R97PqwclcobMupswCw/YbrwjxCy4o1jI+fgHD9m3mBZtiiYBAUMLVL65Rxcow8cXECwDM/fIA+uSkYlHouXjrKbDj33C0GruL65BiN+PGV9bzO33dOiGhMZ/tLMVTPxgR134AuSbL1S9+hxPVzbjjon54bMawsG2+3H0Sv/lgR8zaPFVNXuwoquUX02MR0ji1v9GHP9mNhz/ZjcJnp8c9b8ZDH+/CN/vK8MldF4a55erdPlz99+9QUuvCryefg4euUqduP7F4D95afxz9u6Thi99crIq3YvFgndPVd86X/W0VLGaTKn3+z18cwP+75BxIksQrKXfEeAUiuYlU44cwBsXAJAl6KWpdNPEW+Z1T0TeUjsvcFiaTiVtsSmrl9OOv95bzMexOmLmVyhuU2hUXnNOFu13YIt0pVKyIBeMCSuQ8K8wEgIsXAPyiDghWjNDdB7tAx5NJJEkSt3DYLCY+J1ec8TPMAiOOjSV+yurdYYG+FwyQv4tBeWoL2NNL9vPHY+Mo5Q0oTdEAubfSpmOKa6h/lzT0yA73pzMB1c1gHERBudzSAACW7y/X3WbNoVNh4uXCAfrpkRuFWKlTodR+rdXmogFddGM9jBYvBIAPthShptmHT3Rif/aX1nNLj96xLdsnP3e0siksZorFk6TZrbhAOM/8QSms9g8gnytipephMTr/EkQkbj2/N7qk23HDWKXNQ69OKbpxc4RxSAYmCVcOy8OsC/piQSjTgz0n4rRZsPy3k+H2BVQFili8B7tY54TuNO+8SEn1/Nn5fbD1eA2qQoWJTCbg1vP7wGSSG3Zpu61ecI5iCr9qRDfsLqmL6I4RK8e6NC4oIxYYn9D6wGoxG7fesAwoixmpjvisN3riiMUufHLXhdhbUocf/1vugl7vloXHhL6duMsgFt2zUvDDcb3w8dZi1VwuG9wVr982Qbc097khcWS0G7ZobYo0Vu/59+48H00evxx0bTHjj5/uwX83nVBtyx5PGZqrGnvnxf15Sui8ZQfx2nfH+FyiubGioSd+xPgrvWMQXxdbaLC5AHJq/88n9cGGo9W45TWls/29lw/A/13Sn6f8u3wB1W9dFKEEYYRnZo7Ek9eNgMVswtwbRsJsMsFsMiVdSf6OCgmYJKKTplSznnvBYjaFVYFMC13oD5Y1AKOA7SdqAQDnCDE0TAywO3SWmcSExtbjctbRvpP1qucBJROJFdLTFsljF3ZAbm4o7o+9T1Vj7ORjUQjZLWbFAhNnrRGfX3A/hcaW1LqixmREiwNJd1hVF2FWBjwrxVhJbdYA7YVlB/lzeZnOiIsYMy+z7yoaHn8Ay/dXwGo2qdoaVDR4dLc/FCGtXPxNpYcCuLcX1WLhphM4WtmET7bJVja9HjDsd5opVJg9Xt2EUanZqu2qm7xYcaAC/kAQTd4AslJsmDo8D5lOW1grDC1lQtXb2mYf/re1GFOG5vF6HGKhMbElRGWjh1tuUu0WmEwmXiKdkZ1qR7rDyl2xf/u6gH9nbAxBJAo7z6PFxBCJQQImichMUb4Okwm8Cm4sWBzL/FVHMPvyAXzBFmu2ZGrKlzN3EHu+usmLerePF18Ty05nhhbzk3VulNW5MevNTar3Yh2yvf4gbwHA9m0Nnbwbj1Xhtgv6Rj0OUcBYLUodmXgtEezCZTWbVMe7u6RO1S1chAm3SIjdV9k1Vvye4kH72cvvETmIT3z/OpcvagfYj7cW44+L9ui+VtnoCXNDMoHK6N813JTN5rvm4Cms0fR6yozymxQzvp74bC8W3XWh6vUnP9+LxTvUHbpvLszHszeOUlUmho5eEN1KjR4/fvvRTtw8QR5bpinpL/YHuvMtpRM6a4qn/ewzU2wwmUzIcFhR7/arrKB63x1BEMkBxcAkETNG9cCNY3thytBc/PGaoXH1QgHkTtiAfLcopoFeNkQx94/v2wmzBAHxo/FySWqxWFmx0JNlWHfFbC66ssrq3WGlz1kdDNESw/oyMREST2EuZmmxmk0qK0q8AobF36TYLbxOCaDfNZihzdB+9oaRqr/7d03HrefLLpIpQ3MxfWR33CG45uLhh+PDy3/fMrG3zpYyvTopbQeqGvUtKYySKE02K+rDxzIB8uR1w3Hd6B74249Gh21z47heuP7cnmHuIgBRRejMcxU/v17wNJuraHliFrtTgsVIL2tevHsd3kOOSWG/Q7HnF6B2RYpZR91DdTnyMp347ZWDMGVoLn48Ph9XDpV/39q054sGdMEfphvLPCEIou0gC0wS0TXDgedvCr+gxGJiP7n3jssbUMWgiALIZjFjznXD8cm2YtS7/fjBGPli47RZ0DnNjuomL6qa5IuIOdQplZGVYuN1aupdPn6BeOoHw/H44r1cYLB9O21m5Ie6rI7tnY3PdpbGlRLM3kfrfoo3iFdJAZeP++KBXfDdocqoAoi9dsvE3pirES+MZ2aOxDMz9V+Lh546tWhiBfHlZjhQ0eCJKd60r18yqCsKK5tworpZN3CaicQrh+VFFCM9slMw78djAAB9H17Kn59z7TBe2EoPi9mE//16Em58Zb1+nEroua7pjjDRoY7fCZ83e+7VW8dBkiT8+r1tYbWLGL5g7ADie64YGPbcjeN6obLRg7lfykX8Xrhp9GmthEwQRMsgAXMGwNKN/UGJd7GOZPFgLiK9GJdvQtlLqfbwqots+18sUIq7sTYF645UQZKkMAEhPv5mX1nM41gZqoKqDQAurGrGL9/Zgn/9bHzEscGgxGNM+PjQcT3w4U5YzCb8YExPSJKEJz7by6vKao8vWWDzeXt9If7yQ7Wo/XZfOd5YewzrhSwhPs6mlPm/8ZX12PLoFO5GOljewMVnIscbTysIMX5H7L1V5/Jx91WG04qykCfrYHmjSiQBwMoDardVk8ePbaG4rlS7Bcy+suV4DT7cXIT/fK/uN3PsVBMuG2zkyBRE65DRzr8EQbQt5EI6AxDjVd7fKHcUbvKE38X6A0Hdcvm1oS7Dn7KibTpje+fIFgOxBLYYm7GnpJ7fCYvtBxwhS0487edZECqr+tpdKMUtpobrIcZ29A5Zf/oIHaBfDNXXOVTRGCZe5H213Z02m180mFhg6cEiL686rCteAKB3TioqhYDp/6xVLu5iunu87kmx+2088xY/RzG+aFWBUqI/Vod2bdl+FjwOyKUE8oWS+7//3y4cKGtQba9tq2EE1rAuw2GlfkQEkeTQGXoGYLWYMXNMD3wqBEg+OC38FtRkMuHfPxvHK/YybpnYG6+vPYaGkHDRSxv90/UjMH1kd2w4WoUF6wqRl+lQZejIFYTD7+5Hh4JnfXHUBWHps2zu8ZbsZvtnsLTeB64cjK3Ha7DtRC0/tkhZRz+f1DfufSXCrjlT8eHmIgzrkamqvBuJZ28chZnzv1fFczC0AvPJ64Yjv3MKgkG5EmxFvZv/FsT4H1Zx9rrRPeIuxPf0zOEY1SsLvXNSdWsVaemUZkeGw4oGj181T/a59+qUgkeuGYJLBnXB3e9v1xXLYhaReLyd0+wRXW/PzByBdUcq8cXuMpULiTVAXXLPRbEPFsDkwV3xwf87Hz2yUyjVlSCSHBIwZwiDNH2TxLtUhsWsXxZa2y9I704702nDyF5ZKA/FLvTvkh5WwEyvDUFqyDrU5A2o0plLal0orZUrB7NMDxaf0Utn7rEoDgWIjuiZybOyUuwWPH/TGFz2t1U41SCn00aKxUm0Zkm8ZDptuPPi/nFv3yNkyWj0+OH2qTt5ay0MV4/oporVEJvIlda6eY+sotBnpO2xFY1UuzVm9piWkb2ysO5IlSo2hX3u4/t0gs1ixuTBubhpfH6Y+0ees0vVUoBZEyf27cy3GZCbjsMVSkr41GF5/Ld5vLKZ75O5TLvFaWEzmUw4r39soUYQRPtDLqQzhFRNfIIR83e0lgUil/1tFZ74bC/fRrxDDQQl7tYQYwfEeWwPZYTUu3248NkV+NGr6zFqzjc4ckrd8yhS7IGeOwWQ3WYPfrRT3p+mRLd4LBc+uwK3vrFR9z2SDfEzGPLYV1wMVDS4VS4i7baA+pg3FVbj5n+vxzvrC7FCE2N0umDvLzYe5S0qVPFR+vMISsBPXlcKzYm/uUhjU+wW/jl8tbcMjy/eg4l/+jbmvgiC6LiQgDlDuHBAF3TPcsJuNWNAbjpG5cdfPXTSOTnomZ0Cu9WMrBQbrhym37zLYTHDbjUj3WHFVSO6cfcQIGeCMEEjFhVLEy4cBaFYBdZXh7G3VI5fcekEAf/1h6P44+0n9Gu2bDlezR+zlHJGV00dFD3EMt/JgjZGpSiU4l4gxHtkOK2YMjQvbNtLBqljTLYcr8EWIR7lQp3u2a0JK6Aopj5nsxYVgnvosiHqef7+KsXtueGo8p0y69gIoZnptaN6IMVmgd1q5p/BJUJszSfbSrjbcNrwPFVcFkEQZwbkQjpDGJiXgfWPXJHQ2D45afj+4ctjbrf7yWlhz11wTg7WHalSlV8X3VQmkwnXju6Bz3eWhnW8ZrA0aTZeFD0/Gp+PY5VNeHnVkYgpxUz4PPWD4WGxLGazCYXPTsdra47iT18ovYz+cuMo3DQhP+Yxtxcmkwk2i4nHwDTzz0g+1nN7Z4cVimOMyc9G4bPT0eD2YeScbyBJQE1IVP7p+hFRU6Fbg1sm9Ma/Vh9Vpb+zlG5RPI3r0zms6eNfvirgjyVJQlBSYqPEOjP/d0l//N8lapfciJ5ZePP2Cbj9zc08bqZPTmrU7DWCIDouJGCIFsFM85sLq7klJcwlFbr7fXrJPvxwXC98ueek6vUNR6sxomcWv8hqXSIsg2nBukJMG94Nf/36ACYPzgXzYDGrRLS7bO17drQU2fkrj2DGqO6474MdAOJziYiWrIOhz6gtXClsH03eAP7+7UHYLGZ8fzjcvRiLZm8ANc2KuyyuY9b8BsjyQhBnLiRgiBbBAmYXbiribgJt8kZ2mpJufVgnjXnR9hJViq+21Ht2qvI3a8LH6oKIaHtJqeepnlS0bZOFYd0zsTPUpuHb/eX4VujCHE8atMVsQobTiga3nxeOy26D484Qyu//PZS+zoj1ueek2VEVClJetq8cu0vq+Gva9Go9Omky1zrC90wQRGKQgCFaxI8n5OPLPWVwWM28eu+QbpmqbWZd0Bf/Wi0X2Cuuid2gUNt/5trRPTDns71hKcW3TFRcQLkZTlw8KHJsh9ga4QdjeuD8/p0jbpssPHvjKDzyyW5VOXzGvTqVZPV44aYxWHFAFj55mU5cdJrjX4DIVpYJfTthXJ/oXbxfv208rn95HQC5PlFDqD3F6F5ZcTVVHJibjkenD8WRU40wm0z4cRK7CQmCaBkkYIgWMSzUl6bZF4AjFJ+Rm6kOnO2elYK+OakorGrmXam7ZznRKdUe1lxQj0ynDY9fOxyPCVktADD3hlERRoTTSbACPXTVkLjroLQnQ7tn4tPZF4bF7wCIq5YMILcMEHtZtRX9u6ThqKZr+YNTB8esrXJu70744bhe+HhrMZp9AR7zw1pfxMJkMhlKVycIouNCAoZoESzOQpKU+iTaVGZASZ99asm+0N+WuKvByu/ZslgGuyBY4nFFJBMdLV4HgG5H6XhT+1msy2trjsLjD68cTRAEAVAaNdFC9IQF604t0ilV7Rbq3yVdt0DaoxG6/w4IpeYyHpw6yMAs1bEf2hibZEfbg2h0fnb7TMQArBs5w2YxxV2gcGDou65p9nELjPb7JwiCMEmSXvP6jk99fT2ysrJQV1eHzMzM2AOIhFl/pIoH17548xhdc39JrQsXPruC/13wzFVwWC2qRn7ThudFTXktrGxCWb0bFrMJ4/t0iismQqSmyQuTqW0CWVuTQ+UNuHLeGv73vqemJX2fHkmSsO9kPfp3SceBsnr0yE5BXpydndnYplBPrC7pdvTvSgKGIM4W4r1+J/cqSHQIxAZ++REa/mU6lZ+a02ZWFTljXBSjyV/fLmnoG6EXTjxoM1Q6CuGVdpP/tDWZTDxO59ze0QN3o40lCIKIRLu4kNasWYNrr70WPXr0gMlkwqeffqp6vby8HLNmzUKPHj2QmpqKq666CocOHdJ/M6LdSRW6YUeKVRAvurYIAbSODhBY2x6kdQDBQhAE0da0yxWjqakJo0ePxvz588NekyQJM2fOxNGjR7F48WJs374dffr0wZQpU9DU1KTzbkR70zXdgevP7YkrhuRiYK5+lVeL2YTbL+yLXp1SMPuyAfz5OdcO448nD45ugTlbyU61Ib+zHD/y2d361XcJgiDONto9BsZkMmHRokWYOXMmAODgwYMYPHgw9uzZg+HDhwMAgsEgunXrhj//+c+4884743pfioEhiI7DqlWrcNlll2HlypWYPHlye0+HIIh2JN7rd9LZ7D0eDwDA6VTiKsxmMxwOB9auXRt1XH19veofQRDty4IFC2Aymfg/p9OJQYMG4e6770Z5uX53caN88cUXmDNnTlzbBoNBLFiwANdddx3y8/ORlpaGESNG4JlnnoHb7W6V+RAE0TYknXN9yJAh6N27Nx555BH861//QlpaGubNm4fi4mKcPHky4ri5c+fiySefDHuehAxBtB8ul9xF+49//CP69OkDt9uNDRs24JVXXsGSJUuwYcMGpKamcvdwU1OT4XP2008/xWuvvYYHHngg5raNjY24/fbbMWHCBMyaNQtdu3bF5s2b8cQTT+Cbb77B559/bji7jSCI1oWtAbEcREnnQgKArVu34o477sDOnTthsVgwZcoUmM1mSJKEL7/8Uvd9PB4Pt94AQElJCYYNG6a7LUEQBEEQyU1RURF69eoV8fWks8AAwLhx47Bjxw7U1dXB6/Wia9euOO+88zB+fOQaIQ6HAw6HUkAtPT0dRUVFyMjISMo7qvr6euTn56OoqOisiNGh4z2ziXS87733Hu666y6sXLkSY8eO5c9//fXXuOmmm/DYY4/hwQcfxHfffYcZM2ZgyZIluPjii/l2ixYtwrx581BQUIDU1FRMmTIFTz75JHr06AEAuOOOO/Dxxx+Hzaeuri7suWjs3bsXF1xwAf7yl7/gl7/8pdHDbzPOtt8VcPYdMx2vbHlpaGjg53kkklLAMLKy5FoQhw4dwpYtW/D000/HPdZsNkdVbslCZmbmWfEjZdDxntlojzclRc6eSk9PVz3P3ME9e/ZEZmYm0tLk+j5paWl8uwULFnB3z9y5c1FeXo4XX3wRmzZtwvbt25GdnY1f/vKXXMC88847qnkYobGxEQDQq1evDvF9nW2/K+DsO+az/XjZ9T8a7SJgGhsbcfjwYf73sWPHsGPHDnTu3Bm9e/fGRx99hK5du6J3797YvXs3fvOb32DmzJmYOnVqe0yXIIgWUldXh8rKSrjdbnz//fd46qmnkJKSghkzZuhu7/P58NBDD2HEiBFYs2YND+q/6KKLMGPGDMybNw9PPvkkJk6cyMfceuutCc/vL3/5CzIzM3H11Vcn/B4EQbQt7SJgtmzZgssuu4z/zYLvbrvtNixYsAAnT57EAw88gPLycnTv3h0///nP8dhjj7XHVAmCaAWmTJmi+rtPnz5477330LOnfpfpLVu2oKKiAnPmzFFlJE6fPh1DhgzB0qVLdYP2E+HPf/4zvv32W7z88svIzs5ulfckCOL00y4CZvLkyVGji++9917ce++9bTijtsfhcOCJJ55Qxe2cydDxntnEOt758+dj0KBBsFqtyMvLw+DBg2E2R67icPz4cQDA4MGDw14bMmQIL6ngcDgwYcIEbN68OaF5f/DBB3j00Udxxx134Ne//nVC79GWnG2/K+DsO2Y6XgNIBEEQp4k333xTAiBt3rw56nYrV66UAEgrV66UJEmS/vvf/0oApOXLl4dtO3PmTKlLly7879mzZ0uJLGXffPONZLfbpRkzZkg+n8/weIIg2pekK2RHEATRp08fAEBBQUHYawUFBfx1AAllGW7cuBHXX389xo8fjw8//BBWa1LnMxAEoQMJGIIgko7x48cjNzcXr776qqq+05dffon9+/dj+vTp/DmWwVRbWxvXe7Pxffv2xZIlS3imFEEQHQu67SAIIumw2Wx47rnncPvtt+PSSy/FLbfcwtOo+/bti/vvv59vO27cOABy7Ny0adNgsVhw8803675vQ0MDpk2bhpqaGvzud7/D0qVLVa+fc845mDRp0uk7MIIgWg0SMARBJCWzZs1Camoqnn32WTz00ENIS0vD9ddfj+eee06VLXTDDTfgnnvuwcKFC/Huu+9CkqSIAqaqqgpFRUUAgIcffjjs9dtuu40EDEF0ENq9lQBBEARBEIRRKAaGIAiCIIgOBwkYgiAIgiA6HCRgCIIgCILocJCAIQiCIAiiw0EChiAIgiCIDgcJGIIgCIIgOhxnbB2YYDCI0tJSZGRkJFRqnCAIgiCItkeSJDQ0NKBHjx5Rm76esQKmtLQU+fn57T0NgiAIgiASoKioCL169Yr4+hkrYDIyMgDIH0BmZmY7z4YgCIIgiHior69Hfn4+v45H4owVMMxtlJmZSQKGIAiCIDoYscI/KIiXIAiCSBr8gSD2ldYjGKQuN0R0SMAQBEEQScOTn+/DNf/4Dq+uOdLeUyGSHBIwBEEQRNLwzobjAIAXvjnYzjMhkh0SMARBEETSYbPQ5YmITot+Ic8++yxMJhPuu+8+/pzb7cbs2bORk5OD9PR03HjjjSgvL1eNO3HiBKZPn47U1FTk5ubid7/7Hfx+v2qbVatWYezYsXA4HBgwYAAWLFjQkqkSBEEQHQibJbH6XY99ugc/enUd6pp9rTwjItlIWMBs3rwZ//rXvzBq1CjV8/fffz8+//xzfPTRR1i9ejVKS0txww038NcDgQCmT58Or9eLdevW4a233sKCBQvw+OOP822OHTuG6dOn47LLLsOOHTtw33334c4778TXX3+d6HQJgiCIDoTdavzyVFTdjHc2HMfmwhp8vqv0NMyKSCYSEjCNjY346U9/itdeew2dOnXiz9fV1eGNN97ACy+8gMsvvxzjxo3Dm2++iXXr1mHDhg0AgG+++Qb79u3Du+++izFjxuDqq6/G008/jfnz58Pr9QIAXn31VfTr1w/PP/88hg4dirvvvhs//OEPMW/evFY4ZIIgCOJMpLCqiT8+Wedqx5kQbUFCAmb27NmYPn06pkyZonp+69at8Pl8queHDBmC3r17Y/369QCA9evXY+TIkcjLy+PbTJs2DfX19di7dy/fRvve06ZN4++hh8fjQX19veofQRAE0THx+oOGxzR5lFCE6iZva06HSEIMF7JbuHAhtm3bhs2bN4e9VlZWBrvdjuzsbNXzeXl5KCsr49uI4oW9zl6Ltk19fT1cLhdSUlLC9j137lw8+eSTRg+HIAiCSEJ8AeN1YBo9Af6YBMyZjyELTFFREX7zm9/gvffeg9PpPF1zSohHHnkEdXV1/F9RUVF7T4kgCIIwgCQposUfJAsMER1DAmbr1q2oqKjA2LFjYbVaYbVasXr1avzjH/+A1WpFXl4evF4vamtrVePKy8vRrVs3AEC3bt3CspLY37G2yczM1LW+AIDD4eBtA6h9AEEQRMdDtLokZoFRBIzLF4iypT5NHj9+9sZGvLO+0PBYou0xJGCuuOIK7N69Gzt27OD/xo8fj5/+9Kf8sc1mw/Lly/mYgoICnDhxApMmTQIATJo0Cbt370ZFRQXfZtmyZcjMzMSwYcP4NuJ7sG3YexAEQRBnHt6A2uoiWmTiQRQwPr9xAfTOhuP47lAlHlu81/BYou0xFAOTkZGBESNGqJ5LS0tDTk4Of/6OO+7AAw88gM6dOyMzMxP33HMPJk2ahPPPPx8AMHXqVAwbNgw/+9nP8Je//AVlZWV49NFHMXv2bDgcDgDAr371K7z00kv4/e9/j1/84hdYsWIFPvzwQyxdurQ1jpkgCIJIQrSBux5/EE6bJe7xogvJl4ALqpZqx3QoWr0b9bx582A2m3HjjTfC4/Fg2rRpePnll/nrFosFS5Yswa9//WtMmjQJaWlpuO222/DUU0/xbfr164elS5fi/vvvx4svvohevXrh9ddfx7Rp01p7ugRBEESSoBUwLm/AkIBRWWACxgUM0bFosYBZtWqV6m+n04n58+dj/vz5Ecf06dMHX3zxRdT3nTx5MrZv397S6REEQRAdBK2AafL60SnNHvd40QLjTyCGRsQXCFI7gySHvh2CIAgiKfAG1IG3zV5jgbhNQhp1IhYYCYroaXT7o2xJJAMkYAiCIIikwKO1wHiMiYgGlQvJuAXGJQimHcW1hscTbQsJGIIgCCIp0IuBMUKDWwnCTcQC0yBYXWqbqY5MskMChiAIgkgKwmNg4hcwXn8QhZVKL6REYmDqXYoASiQjKRCUMOvNTXhi8R7DYwnjkIAhCIIgkgJtHZhmb/wupDqXD0FBs3gDQcN1ZNQWGOMCZl9pPVYVnMJb64+rMqKI0wMJGIIgCCIp0FpgjATx1rnCBUcgaEzA1LtFC4xxF5I4vqCMGgqfbkjAEARBEEmBVsCU17vjHusOtQ7IcCrVQYwG8ooWmKoEeilVNCjzPVDWYHg8YQwSMARBEERSoHUhnayNX8CwoN1Uu1L4zmg1XjEIuLLRY2gsAJxqUMbUtFMzyT0ldYZcbx0ZEjAEQRBEUqBNozaSScSsLal2wQLjj3+8JEmaZpDGs5gq6hUBo+fSOt2sPVSJGf9ci5+8ttFw/E9HhAQMQRAEkRRoBYvWIhPPWIfVDIvZBADwG4iBafIG1EHABsQP41Rj+wqYJbtKAQA7imoTcoFVN3nx6faSDhOATAKGIAiCSAq0osGIBYaJHZvFDJvFZHh8vUZwePzGatAA7W+BKaxS0si1xxMPz315APd9sANPfqbfjftwRSP+ufyQ4fo8pwsSMARBEERSEC5g4regMHeRzWKCzWw2PL5B0zqgpRYY7fvFiyRJPCDZKMU1Lv64PoH9f7ytGADw0dZi3ddv+88mPL/sIJ5aoi9w2hoSMARBEERSwERDSqgDdSIxMDaLGTarfGnzGxjf5G0FASME8WrjeeKhstGDfo98gSGPfYUKAxlYjAph/4lYSSwmU9TXS2plgfTfTUWG3/t0QAKGIAiCaFVqm72qmijxwtxAaQ45ENeICPAHFReSNRQDYySGxh264IeGGhYgbl9A5TZKxAX18soj/PGHW4yJBF8gqBJdiexf/LwStQK1JSRgCIIgiFbD7Qvg8udX4+LnVhoOBmUX4DSHcQuMV3QhWZgFJn4Xkjt0wc9MsaneL160adeeBLKYGj2Jx81oi/65De5fa/HpCIG8JGAIgiCIVuNUgwfVTV7UuXzYUlhtaCyzeqSFUqETdiElEMTr8srbZjEBY7AZZGWjOusnERdSTrqDP2YiLF60LiOjFpiTdWoBY7QTeHtAAoYgCIJoNcTgVSOVdAFFNKSHXEg+v4EgXpaFZDXzi7+RIF7mMmECJhCUDMXQNGsu+Im4cMTWBylCQb649q+J4TFqAarVZC2RBYYgzjJKal14fPEeVVdcgjibEINhtVaJWDC3TbozEQuMvK3dYoaVCxgDFhiNgAEMxtCEBAsLQE7EAuMR4k6MurDCXEgGBVSVxgVmtA1De0AChiBakT98shtvrz+OH766rr2nQhDtQqNbFDDGyvErMTDGg3iVOjAm2C2skJ0BARISD5lOQcAY2D+LOWECKJEYGI8qCLeFAsZgEG55vVbAqPcf1BQFNCIOTxckYAiiFdl3Uu5Aa/TOkyDOFBoE10Nds7GgVG6BSSCIl7mbrIIFxmvABcUu+Mx9Je8/cReUxx8wXM5fFC1GLTDaNPBIAupQeQMOloc3mhQbUQLhbRi0YjQZYmRIwBBEK9I51d7eUyCIdkW0wBh1Y1Q3y8K/ayiY1VglXnlfdiGN2pgFJlSDxm5JaDwTH0zABCVjrQzkOSifl1ELTKOmcJ3eZ1/Z6MH0f67FD176HtWaVgPaysE+zdy1rQkSLdTXmpCAIYhWJHgWNFAjiGiId+ZG3CiSJGF/yILZq3MqAIOVeEPb2q1m2K2Jx8A4bGZYmQsqAQtMphBDY1SEtMQCoxUUemnUR081wesPwuULYPXBioj7BsItMFoXVTIE+ZKAIYhWJCAImLOhGyxBaBFdSEYsML6AxC/Cw3tkAjB2EWfbihaYRFxAKTaL0IrAuAUn05lYN2xAnbnELErxos1C0ouBqW1WrCgnqlyq17RiU3vs2jRtciERxBmGGOhmtI4EQZwJiBc2I8XURLGTHXLFegPBuG8E1M0cE7fAOG0WWEIWmIABFxATDKkOC++GbTTQVRQRRi0wWguKnvVHTJWuaVa7hLTrldaFpBVIDSRgCOLMQvR5J0vHVoJoS9RxHPGfA2ycyQSkCTVQ4o0j4c0crYlV4mXiIcVmgTWBZpBMgDmsFl5Iz3A7An/iadTa7fUsMGKHaq3LyaPZXms9cmle18bctAckYIgzjuKaZry74Xi79PIQFyztCR8Pc7/cj+teWouGBPrIEEQyIJ4DRiwwTEA4rRYewwLEb8UQ68AkVImXW2CU8UaCeFkWlN2amAUI0FhgjI4Nfe6pIfGn99nXNosCRr3GNGt6QWmPvclDMTAEERNJkvD8NwVY8P2xhMb/6NX1ePTTPXhtzdFWnllsxLsSbdBbLNy+AP61+ih2FddhvtDUjSA6El6VgDFugZEFhCBg4kyFZhd8u1UsZGfcBeS0WXgQr5HxvJmk2QSH1fj+AU0dmAjizxcI4r2Nx7GjqFb1PPvcWR0bPetXrUtxG2mbbTJB0zlNzgDzBqK7kMgCQxA67C6pwz9XHMacz/eFVYeMB9bT49sDFTG2bF0CQUlldTHqQhLvjhI5boJIBsQLpxEXCrMYOKxyGrOJdYWOM5iV1XxpjRgYFsRrJAbGpxODYzyORQzi1R/75vfH8MdFezBz/vcoE/oXsaDfjFAQsZ4AqnMpoqNCU7iOWVQ6p8kCKMyFpFnPKAaGIHQoqlai44trXFG2DEfsXeK0tu3PW2tSNepCEvvGaBurEURHwZOoBcavWGBMJpPhfkZ6LiQjvYzcQgwMC8I1Mp7N0yoKmATdQNrHIiuEG7Otx2v4Y26BCaVx62WAuQQryrGqJlWANLMYszo2WhdSs+a71MbMtAckYIikQzRtGnXDfHe4kj9OpCaLJEn4ZFsxth431kUXCBcwRudeUuvSfUwQHQnxzt9IHRjRhQPIQgSIPxXZy4N4RQGRqAsptO+ELDCmhGJwxDkA8VlvmKtL3J4JED3xKK5JkqSIJElSrMfMBaUVjloLTCIxfq0NCRjitNDo8ePoqcaExorBZS6fMTPl0VNKE8Uyg51wAeC7Q5V44MOdmPXmZsOLj9YnbNSFJC5YJbUuqiNDdEhEq4M3EAzroRMJ7kIKCRijIkCxwJiEQnTGBVSKTckiChgJ4hVcSHar8VYIkiTFVciuT+c0/tgkPO/hMTCR+0hpRQc7Zo8/CLbcMBeUdv8sBoa1WkiGLEtDAmbu3LmYMGECMjIykJubi5kzZ6KgoEC1jdvtxuzZs5GTk4P09HTceOONKC8vV21z4sQJTJ8+HampqcjNzcXvfvc7+P3qxX/VqlUYO3YsHA4HBgwYgAULFiR2hES78NPXN+Ly51djT0md4bGiEHB5ExcR9S7jPlrWI6TB7UeJQfdVo0cdFGdUfKkWfn+Q6sgQHRJt8Gi8cTDcAhJy/bJMpHjPA58QxGtPwIUjZiElUgiPbWuzmHkzSSMxML6ABPGeJdLc04ReTW4dwZPhjGyBiWRFES1lLIhXG7TLrDed0piLqv3XJ0MCZvXq1Zg9ezY2bNiAZcuWwefzYerUqWhqUu5677//fnz++ef46KOPsHr1apSWluKGG27grwcCAUyfPh1erxfr1q3DW2+9hQULFuDxxx/n2xw7dgzTp0/HZZddhh07duC+++7DnXfeia+//roVDploC3aGIuTfWX/c8FgxOEx7EsVCrF7Z4PYZtmKI/UGMxt9o6yoYdSFpFzujNSQIIhnQuo3ijYPRupCMBsKy80UWEIlU0hVcSGbjdWTULiTj+w8Xfvqfm3hjJMa0MMGTmSILHL00au13wbZhQsZmMSEnXS4iWKtpxMnEDxM4yWCBscbeROGrr75S/b1gwQLk5uZi69atuOSSS1BXV4c33ngD77//Pi6//HIAwJtvvomhQ4diw4YNOP/88/HNN99g3759+Pbbb5GXl4cxY8bg6aefxkMPPYQ5c+bAbrfj1VdfRb9+/fD8888DAIYOHYq1a9di3rx5mDZtWisdOtEWHE7AjaRqBmfQzyounkEJaPIGVN1lY8Eamk0ZmotxfToZ2re2ToLRE1y72BnNYCCIZEBrOYjbAhPazmkLWWASDOK1WcywMetNnCnYkiTxi7mYRm2oDozKhWQ8Bkf7OUU6/8UbI3HNYTdQTGDoCaBILiRufbJauAsqUkxflzS7amx70qIYmLo62T3QuXNnAMDWrVvh8/kwZcoUvs2QIUPQu3dvrF+/HgCwfv16jBw5Enl5eXybadOmob6+Hnv37uXbiO/BtmHvoYfH40F9fb3qH9H+FJSFt22PRaMn8Voq2sXTaEG4+tAiMDAvw7ALJ8yF1EIBQxYYoiOSqAXGE8ECE38MjNDM0aALSTzXnDaljowxC0x4GnckEfLl7pPo+/BSrDuiJB1oP6dIY5siWKgrQjF/fUKNMN2+8DYM2jWJC5jQ8067UkQwUgxM55CA6dBBvMFgEPfddx8uvPBCjBgxAgBQVlYGu92O7Oxs1bZ5eXkoKyvj24jihb3OXou2TX19PVwufbP+3LlzkZWVxf/l5+cnemhECxFPmkaP37BSF10x/1xx2NBY7eJptOU7K7X9yqojeOM7Y4XwtPsyWqlSO3eywBAdEe2df7wNHZmIcCQYAyM2c2QWmHgzmMQLu1wHJnELjDUOF9Kv39sGAPjJaxv5c/FaYMqF+i0qawyzkGQ4Ir4nszKlaar1uoQA5kifO3v/ziEXUzK4kBIWMLNnz8aePXuwcOHC1pxPwjzyyCOoq6vj/4qKitp7Smct2h9+VZM3wpb6iDEwRtw/QPjiadwCI5TaNihAtIKlzmVs342aeB8SMERHJKypYJyp1KILRv4/FEgb53kgjncYtMAwkWU1y+Ijnkq8JbUuXPjsCrzwjZzIwqw1dotZqMQb/zmsjTmJNPeTdcpNvChg2NrH0qgB9WfvDyiJAaxZJs9CEgWMxRJ6P40FJrS+dQm5qIx0Gj9dJCRg7r77bixZsgQrV65Er169+PPdunWD1+tFbW2tavvy8nJ069aNb6PNSmJ/x9omMzMTKSkpunNyOBzIzMxU/SNahscfSEhluzWZQwcNupEaBRHRVbibiAftSV9v0AJTKVTANdounsXusMVLW6o73vEMI43wCCJZYMKbp9vGaYENFzAGLTBCFpLNaiwFm61zKSH3lRLEG3n8jH98h5JaF/4RshKrLTDGs5D+8tUB1d++gBSWgh4ISqhsVG4I2RolxvCkO6y8n5G4hohZQ9mprN2A2gLjtJkjupAUC09I/HQ0C4wkSbj77ruxaNEirFixAv369VO9Pm7cONhsNixfvpw/V1BQgBMnTmDSpEkAgEmTJmH37t2oqFCqCS5btgyZmZkYNmwY30Z8D7YNew/i9OP1BzHlhdW4/PlVhi/EWmWubdseC9GSYXSs9m7PSL8OSZJU5bW1QbmxaApZUHIzQ3coBop4yfsjCwzRsfEHgrx7NMtmqY/TEinGsIj/xytCeCE7iymiFSES2ho0ShCvvgXmQFk9agSLiSRJXEDZYlTijXQ8G49Vhz2nHa8dy4SHuJ3TZuZxROIaxESaySTUegloBYziQgqzwITWtxyWhdTRYmBmz56Nd999F++//z4yMjJQVlaGsrIyHpeSlZWFO+64Aw888ABWrlyJrVu34vbbb8ekSZNw/vnnAwCmTp2KYcOG4Wc/+xl27tyJr7/+Go8++ihmz54Nh0P+YH71q1/h6NGj+P3vf48DBw7g5Zdfxocffoj777+/lQ+fiMShigYUVbtwss6NrYU1sQcIaANvjf7QRdFRY9D9lGgGBCCf7OL2Rl1ILAamS3piaYZhpncSMEQ7EgxKhssQiOdfXoYTAFAbp4ARBYj8v7E06pZ0o+YxIHZ5n9wCE0HArDtcpfq73u3nN0+yBYjF4ISP166P7DNmWY+XD8nlr2nXgEiB/uJ2DquFW4HFm0nRysQL7TELDHvNblECoP1q9xQTmB02iPeVV15BXV0dJk+ejO7du/N/H3zwAd9m3rx5mDFjBm688UZccskl6NatGz755BP+usViwZIlS2CxWDBp0iTceuut+PnPf46nnnqKb9OvXz8sXboUy5Ytw+jRo/H888/j9ddfT8oU6i92n8RN/1qP0jOs9HudcHdR0WCsoq22Aq+RC3kgKHFTJSCbLeOt5Am0LBBW7NQKJOBC8qgFjFEfcbxBfARxunH7ArjhlXW47G+rDAWji79ZdqFrjnO81oWkZBLFPv8DQQlsmVClMcdbQ0ZII5bfI3olX22V76OnGlWVapW5xy4mxwQNi5m78yLFs6GdvzYriq0ZLJbFZJLnziww4nqoCtRlLq6AWgA5rGbdIN5mwRrN1zedLKe2xlCEZDyTdTqdmD9/PubPnx9xmz59+uCLL76I+j6TJ0/G9u3bjUyvXbgrFE0+98sD+Oct57bzbFoPMXbEqCtF63IykoXUpFO4zhsIwmm2xDXeEzrpUmwWuHwBQ3EkNU3qeRttF9/YYgtMfIWsCOJ0s/ZQJXaEilGuO1yJqcO7xTWOXQgtZhPSnSwGJrEgXiMiRNxGlUYdbxaSJoXbEqMSL6vYzahz+fiNV6rdghR7uAuHoV3jGj1+pDms/IYp3WmF3WrWrcbt02RFKUG4oRo2VgtMJkXAqCwwOm4i9vkoVYwV64342Z0KxQZmOK38ewXk75vtqz2gXkgtQGy1/vnO0nacSesj3nUZtURoy/8bqeXC3DAmocmHEVcKu5OK1M8jGloLjGHXV+hz6hry/Rt1AYVZjwzUoCCI1qSwSqmufrSyKcqWathv2GE1IzV0EXfFWU3bJ2TxAMbqwIgXetECY7iPklW970AE62+NJmOoyRPga02a3cqDgfXWEO16ytY85q6ymoUsqjgtMOxmxxEqAshdSD4dF5LgJmLHLVYR1hOOpxpkAdMt08lbPYjv2V6QgGkBWhV+JiGeZNr03lhoT1ojQoBZMTql2rmIMWKJYAtZRpSGZpFgZlLl7suYAGELEcucMlxFOGyxIhcS0T5UNCjB7JXC41jwC6nVHPUirod4EQWMWWB8KgFjiit+JhCUBAuExMcCUHohRagDwz4TJgSqhWSDVIeFH7tepo62rARba5lYsgoiQrv2hQmY0GfrFoQjoAQjixYgdbNKdaCuKB71rFdsHqxTN9umveNgSMC0gK3HleBWdtE7U2iJBSa834YBAROqZpvhtPKTMd46EuK2rKGZEQsMO5kTsd4AiuuMCRijJ7e4+APGqoASRGtyShAtRopBMmur06a4UQwLGKvaimDEhWS3mGEymWKW8g8EJUz/x3eY8KdvsfV4jSH3lccfQEko5nFo9wwASrKB1WyC3WKGM8qxF2osWo0aAWMx61tBgHBBpQ3iZe4cvc9Or1idTxMDY7OYuRVH21xWfF+2TXu3EyAB0wLK6pRArkBQSuiO+VSDx3CxtbZAVa7aYAxMpCC1eGCLpToQrgUiJIFmbpkJiJ+6Zh+fe98uaar3ixft3CPd/RHE6UYUMHpxaZFgZQ+yU+3cChHv+S+W4pf/j98SqrXe2HQyaUSqmjw4UNaAOpcPv3p3K79ZYONSdCwYDPE5drPCmsCm2OUYlGjWJ7GSLqCsedwCYzZFFG/amzkPj4FR3/w4dCw40doFqPo4CT2oWAIFD/K1qT8fssB0YLQnttH24qW1Llz03Apc+cIaw+6K043KhWQ0BobFoTiMWzLYYpdmt3IzqCELjF8tQjwGTjCtgPAY+E4OVsjuxJ7ZKbxOgtEofXacaaHPLd4KpATR2ogCxkicA7MudM1wCIGsxiwwdo0VJB43cCTrTaQgXDHL8lSDh5/rzHWk1FEJnztbU8wmpVgfyyBicT/RxJvWLcTWV9a2IJoFRhunp7XAOKzxWGDC3URsrbFZlX0DellKoeMz+N2eLkjAtACta8Xol7mq4BQ8/iDK6t0orkmuNOxGweryzb7yKFuGw06UrFC1RyOfS7MQaKZ3FxGNYFASUpnlQNqWWmDiFSDst5CVYuPddAGDAch+RbwBkWtQEMTpRqxIbcSCWhqySg/KTTdsgfEKbgwAvBhdPOewx68WP7Gq+GrbfLCYFiaAuAtIV4AoF3MmdFixPuUCH9nFol0TWOXxgBDEy8WbZv5MeLFMR20QL+/krZMKra4Dox/EaxcCoMXxooWJvYf8nu17k0UCpgU0aQu2GYzIPl6t+EK3FFa3ypxai2atdSnBQFzA2EWcZSykRumKGokGtx9MbzDTrjHrjdoCA0TvhSLCzMpiFUz5ef3PzR8IYsmuUlX9ILZ/lqYY774JojUJBiVVBexmA+c+c4dkptgStsBwN5A1/l5IWvcTWzsCQUk3k0jbd4j1F2JNHKO5SNjxOG1KzyMmiNh+nbYoAkhbLdyjzkKyhOJo9LZl8+mcpr45VIJ4Lar/xfEsVCHDaQtzz3t1gngBZe3dcaIWADCqZ5b6+MgC03HRFmgyWrdDtOD87uNdrTKn1kLrNjplIBOBLQZ9cuS27oYygVQWGGPlwBs8yiLCTLtG3EDcAiM0Q4vXgiNG6dssZm6KjnSCf7ilGHe/vx2/WLBZeI+QgAnNnbKQiPag3u2DeM2PtxAdoFwk0x1WXhQu3pYaXISwVgIGYuDC06CVpAq9GyCtBeZAqF8bE0DOKEGquhYYN7PAxI4RYWsFS/xo8PhDVY/l162iCylC64DsFPnm0B+KvQyzwOh8dqy2V7rTGiawRBecyWQKczGxtTUv0xnz82lLSMC0AG2BN+O9b1r25bt9AXy15yQ377UmWveYkUA+dhfWPUv+sRsRds1CMSiHAR84oJyMsvUmkfiZcAtMvNYf5a5Ma2LVP/YNR6sAKAunPxDkd4o8BoYEDNEOaNN8EwnCz3BaWxwDk2gWEgCVG0QvGF7b3uDYKdkabg0L4o1ugUkNuXurQg0WuYCJcuzs5rBbSAw0uv0qd7HZbOLrl/bY2XrC3POALFK0MSrcBSXsn+03w2nlawwLFYiVhSVmSImfD1lgOigV9W5s0rh9Ei18BgD9u6YZnsOCdYX41bvb8NsPd0TcZtuJmohBuCW1Lvzuo504XhVeqKol4owteErLdgMuJB8TIVbDMTBc/NiEapIJWGBSbBZuQYlfwCguJECuBSHOSYu4wPoD6h5M6aGxvg4YA9Ped2REy9H2H6tq8sQdCya6Kdi5EO+66NVcRGMVsqt3+7DuSCWCQUnJsAnt02YOd4OIaC0wrNYVK7Ef3YKiiAXmymGij8fARLmBYftmN3gubyCsjk0k8ebmFhib8FyQPx+WhSS878dbiwHI301aaI1hN6qKANTU4AmNZxqQCxgK4u3Y6KfXGRQwQn0FI5YCxjd7ywAAKwtO6e777fWFuOHldXjq87264y98dgU+2lqMS/+6KnxuGtFjJL5HETCsZbuRsfJ+xUCzeEWE6H7SuwOJhV6Qm2ELTGgBY3dm8QiYerdfJWB4EG8Hs8C8s+E4hjz2FRbvKGnvqRAtgFl0h3bPBCCvdfWu+Cyw7Pee7rBGzeTRI1Ihu0gW2DmL9+Inr23E6Ke+4S4cFj9mNpuipmFrqwMzfcZdSFHquIgWmM6hjEOGXpqxVvwxKxXvWu8PqD4jp1VcfzRxlqHt0hxWfnxuX0CpgGxTW2DY+iVa1D2+ALcys3U+Yh+q0HgxQ0o+9ugW5raCBEyC5HdO4Y97dZIfG3YhCSdRIkq2e5Yyh4Ky8KrAT3wmC5cPtxSHvRbrjorNLZqv85u9ZXjx20NhCwTblgfxGrHeeEQXkrEYGJdPnnOaw5qQBYbXsEizR6yEGQm3ZgFh6ZTaYGhGQAjQrXf5+Gdms5j4ItjRgngf+3QPAOBv3xS080wIACiuaUbfh5di9vvbDI1j50H3LCe/YMXbmJTfyVvNhi9yrHOz1gIT6Sbik+2yUG5w+/HB5iIASvyYOF6vI3SkNYW5kKLF74gWmE5pNtVrbN1hAigoha9B3IoSWh9d3oDQp8gMs9mktBLQxsCEsn5S7BaVQHRrimBqxZ94rZl5bk9+k8QtMBGCoNl4thRZTNo0c8pC6pCYTCasenAyPrv7Qi5gDLuQ3C0TMCeqm/ljMWuAwX6kAFDVqA7CZY3aItHE05EjV5Wd/f42zPv2IBZtU+64JUniF21m5kwkiDfVbuEX8nitKM2CBSWRGjLMtJudYjPs43VrgugUAaM/Xrwg1Ll8/E4o3WGF1RzddB6LlnSIrW32JtREUsz0SLaSAGcr/1x+GACwdNdJQ99pdaipaec0O+97E68I8QgChseRRDn/xd9qpDiMeM6D7aEsmXSHIiiipVJHEkXchcRcJDrHzd01NjOv+cTHa1xI8ntoBYz8N1sfXb4AtDF0igVZM9avrHHiGqVYYJgLSR1DI7YK6JLu4JYqboHhdWAixcCELDBxuNjaEhIwLaBvlzSM6pVt2FTKEP2wRovgAcBJoRKw1qfr9QdVbiDtReXIKSXuxWI2qRYSjz/Af/BK63T1sXn9Qb5NcY0ipLyBIM9g6JTG0qgNuJBYHIrdGvEuJOJYQfykGixjLo5Pcyhl0OMNYNQuQLFcSGIzuAa3X53i2IJWAvNXHsaEPy3H94crDY89XNGAiX9ajmGPfx32e4pFkSCmJan9feOE+gZHrBoeC1YsLVtIhTYex6J0RPb6g7qpzIcrGnHRcyu55c4bwYWkd/5rBRUL1BUD8KMJIB6wL1hsgPAg3tgxMHbVa8wCEi0T0aOxULt9QcWyEtqvXpqyJElYf6SKb5cqxKHwVgKaIF7uAmKF+kKfbbpD34Vk17qQAkzAyHNgFphoQc5tCQmYViCF3+3H/2VKksT9toB8B6t3okmSpHu3IEkSagWri/aErte0J9BmKok+0UBQUpkCxQBeVhBOexKKcQ4moXW0OI9sXsgu/oJwYh0YxQJjNAvJyk9uI32cmvi+rUInXWN3nkoMTHQXUkW9WnyyGIMMpzVmI7lIuLwB/PXrAlQ2evD0kn2GxgLA6oOV8Iayod5aV2ho7K6SOtXfpyMzjjBGcW1iAkbM5ks0jkVs5gjo38TMW3YQJbUuvLPhOCRJihiHoecCYqUaGGx5EV1Iek0J2djPd5YCkFOYRbRp0H6ddVmMgemUqu9CEt9DK0LYPrOFQp9inyLxOMT165NtJTgWqnTsFL6bZm9AZRUS58E+d3azydYW9v7N3oDq2mO36jfSZBYYqyaIl2JgzgASKerj8gXCYhz0xs/5bC9GzPkahzSdrxs86tQ77Z2+tgGbVtBo06L1mjc6bWaebqf9oW4pVBpZ+oULLZuHzWLiYwH9u6iyOnfYwtiSOjDsmNIcFu4+M5ICKi7cqTZj48VFTX6PyONrmrw8fRqQvxv2/WQ6bQlb9A5VKO9Z2Rh/3R5GmXBR2HisytBYbZ0gEjDti9sXUFldyw3UcVIuhhbDrgIlm8WiuphHq2gLyP2BuJsjSj8fRiRBlu4UY2D0g3gf/t9uvnZOGZqreo01gXUI1bTDLCiCBcZqMSNLyAhiaxagX8338cVKQoWSpSnGwMhjtGnOgJJFBABOq1klIiKlUWuDcNnz4trc5PVHjIHRplGbtUG8ZIHpmOwpqcOrq49gxYFy4W4//i+T3XGLXaz1LlhvrT8Orz+Iz0J3DIzaJrUg0f6QtA0itRdSrWVCJWC8SjxGJFPhthOKgBHFkngnIS5gWhFy9FQjzp+7HD98dZ36OHRSoeNOo+YBwFaextzk9cdt/RFdUCkxLChaPDyNWmOB0bEAbTymTr+vc/lU9TPSdRaveNh/sp4/rmry8kZs8VIqXBQKK5ujbBlOdZP6ApmIgCJaj1MNHog/+3IjFhif4s5IuJqu1SQHo4bOYT0XufibeWnlIX6RtPE6MPq1UACgIoIgU1lgIrigVh88xR9fOKCLenxIADmsZjDDsvbYtTcrmSnKPsXYNj3x986G4/wxs964fAElA9LOLDDhFuTO6Yq7KsWuiYHRxOBpkxiYFYvF1zmsZi7wmjx+nu1k09bgCcjPi40mxf2QC6mDsqWwGs9+eQD/21rCFbiRuAG2rdg7R+sqES+8FZoOptqgXe2FtlFjgQkrTBdW5yUQtm2aKhVSPTfRolMvHLd4IoolqbXHtnTXSQDAnpJ61fPNghvIaCpzk+B+YhYYOR4j3hgaHRdSvEG8WgsMF1Dh409pLu71KgFjUwLsDHYpF4WRJBm/OxLvasU70HjQWlxYYS+iZewpqcPji/cYcgEB4WtRRUP848V4LuYSjafnTTAoqYJF2XvI48N/i5XCb6REsBaxCyv7DeqJn3qh4q9IhlMnCylKLFlOukN1E8nGix2ltUG4X+6Wy1cwgVVep5zP7288wR/HihNh8YV1QhZiisYCI1rKWY82QHZVi+8f3kpAfU1h7mgWA2MyKRbyRrc/vBWDxv0WkNQWGAri7eCwYNNUu4ULmHoDAkZxGUSulyBaRYQwEwB6AkYbA+OP+npYnRdVxUZFREQyFYoCSc8Ck2q3wmQyRbSiLAkJGECdwcLrwAiVeOMWIB4WhGtV+d/jqSLsCyhByWoLjP4J+u2+cox/Zhle/+6oPEehlQCAqC6oSs3do2yBYUG8Vh5YGK0LuNcfDBN20eKc4kG8SBqtS6QVLFVNZIFpDf76dQHeXn8cf1y029A47VpkpKM8v5jazdwNEuki/O2+csxfeViO1RMsHXZNLIneePH3aRNudrRWAL3YQrbmDMpLVz2vl0Yd7QbIbjFjYK7yHpmCAOLNKH3KPAsrm1BQztoOyIvyhQNylPcTrM7RGkICSll+ty/IBWa4C0kUMMrcrBYTv9GpbfaFW2B4Bpj8vF8jLAF1IK8nQho2cy0FNDE0FMTbwRHrlcS6Wy+sbEJJrTrojHUVzUqxRaw5IN5FaU9CrYDRniRaF5L2Ih6tWWMTT+nV94F7/UGVZUG0xoipzIB+vQBJkvgiAABHTjWGjVcFEMbpQhItMGazSXDjxB4vCo0U4TuNJGCe++oAKhu9+NMX+yFJUtgdUBqvxBt+4WBCgS1I9W6/0gTPaRUsMPoXndpmLy54dgVufGWdWvxpjlPP+hOJQFBCuRBYbPTOiomnntlySQGywLQOzN3BWk/ES1ilWQPuSNEakBKlmm6jx487396Cv35dgI3HqjXVZJkFJtzVUO/24QcvrVW1LBB/e1oXUlj3Zo8ff/1arjU0uFum6jU9F5I2BkbMPKpq8qgyiVhmEKC4k8QbtH2Cm5at6X++YSR/7j+3TeCPo312gLzOsDVgw1HZeso+L70gXrNgKeqTk4a+OXL19sMVjeHrD6/zwgSM2gIj7kMWMMwFrl+Dh1tgWB2YBLI8TwckYBJECTaNbKUAgBNVzZg6bw2u/eda1Y+RW2AEF5L2Qi0uQtog3Jqm6DEu2iBe7cVNu6C5VRYYxYXE28IL719Uo46PUFlgBAsKoB+Ip50ru9h5/UEeXJdqtyhm1AiLb0WDW1WtlqdBh05eFkgbjwWGCUDWCZa9h7ZiJwDsK63HoQpZdEmSHG+gdSFFs+AcC7VuGNO7E4BQFpLwe2ALizZDgrFsXzkqGz3YXVKnMr1rj9OIBaaq0aMKCjd6Z8ViEgZ3ywCgdg8QiSFeeNnvKV60AsbIb4GtY2IQr97v4T0hnqOszq26ydK6kMQbmHWHK7GzWJ21xkpCWMwm7tJhawdrWMh48duD/HFepgOD8zL4350EMcLGa2/uREE0smeWyu3Uv6tojZEt6+LNoNg9ns25e1YKCp+djgNPX4WLBioxNXo3f8xt9PYvJgIA+nWRRciKAxUAFIGgt/axWi39u6ShX5c0fq4VlDcIQbwsSFfeN1vLmXXMag63wDR5/EIrAv0gYB4DExJARht1ni5IwCQIr/oquBv0TIXf7CuDNxBEdZMXW44rga9sgZEFjP4icbJWuSvRuoTYBYMtFLEETKyLmzqNWhAwOifhiSq1gFHFwAiuNUDxY4uLhjbAk6WDuzRWkDSduxDGZztLMfFPy/GbD3bw53gMiyO2FUQLH2uzyP5vFpit852uO6KusXKwvDFsAVCyoML3zT6vfqFu3fXaIF6hyJReALKYASa6amIFaovHunTXSdXcxAsIIP8W4w1+DgYlntY6qldW2LzOdlYcKMcvFmxWpc7Hg1hbx2hbLLa+sAuRMRdSfEG8Yup8Sa1LVcclWraKXqwgW8+cogtGlYatrB/LQxd7QL7gPzhtMOwWMy4fkqtyBzHLimit9geCfJ7/+tk4jOqVjdwMp97HwIWN2EZB/BweuHKQantxvoB+vyB2I5ffWT73p43ophrTLdQfSVunBQC/wZg+qjsAYFio1UNBWQPvX8XWPK0Fx6/p9C1vq1iYuACyaVxI2maOJkqjPiNgyjglhgtJjHg/JrhK2EmR6bRFrFkiZpXUalxGrHjcwJAP2OVTj2V3DZHcKOx1dsESf4jK3PTjc5gA6R06CUWxxD4XNs6h0xVaW1SPXXirQ8fI2gikRckEejQUE7B010l+oY1ogdEc++IdJdisacQppm+zOQDhJ6jbF8B7QqAeILvAtM0cxQA5LUzAsEWsXhUDY0NGqJqoJIWLksMVDdhyXJm76Kphix37TiNZnn797jbMfn8bfvfRLv4cEyB9Q6IqKOkHPx4oq8e1/1yLv3x1gD9X2SSnwJpNSv+cRFxI+0rr8dKKQ3EHbXcUfrFgC1YcqMBzXxlrsXBcuFGobvIasooxix5z6RmywHiVc5idv3prW51QjPHoqaawjtCAfqxEtGxNUQTYI2Qxim6iVLsFVw7Lw44nrsQbt41X1aRi1g4xaF4MCL50UFcAwL1XDET/rmn4v4v7qeaiZ4Fh8/jRuF5hGUyRjkVcQ8RKxQAwNmSFZdx+YV/VMTYJNzFaK0rvzqmwWUzw+IMoC4njc0IWJLb+NHsDCAYlnkZtE9xQ7EapptnLM9Z4JWBeyC7kgorQjZpiYDooYrZMtEj7/SeVWI/jwh2VmIXE7hSqNW4h0d96UpOFwPyvg0Lm0/AYGHnBYi3btRczVreDiRDRfcXuWDqn2XXvoGpDCxcXMB4/V+hHQxV+2cKpqHxhsatUd79mAoWlVbLPQ3EBqY/N5Q2oLFIs/oIt0kx86Amg9Ueq8JuFO/CjV9ej78NL8dWek6rjY2NTIlhQFm46wYtJMUpqXUIQnTyeFanSu9tkc2ctKOrdaguM02bmC4XqDiwQxJQX1qiqKKssMKFt8zIcoc9D/6LDRPWXe5RAavb7YiZtQD/26MVvD2F3SR1eXnWE/4ZKQ5bCvEwnD0xMpA7MNf/4Dn/75uAZ2wxSr+t7NLTZauUGLDjajsdGBIxHLFfPhXzkTCBAdue6NaUE5MfhcSCia8ysSU4Qx1qEhoyiC1rsG3bzxN4AlKQBkZxQ2nFlg37BT+Zu6ZrhwIrfTsYfpw9Tjc8QYtS0++6kqcCrh9Z6LRYlZfs+R3BZAUp/O2ZJ8QclLnqUcv/ycZrNJm6xAeSio6y2jCjymoWaY6oYmNAaVy5kuKbyG0+1BSYYQcBQDEwHRWkcGLnY04dbilTuEtH1osQ8WHngWLRaGg1uv+pixmIfhoT8oOFBe6GLWWb4Aub1B3kpe97HSTixWXBdp1S7cGzKosMEDrMgiPtjxdSYebNz6EIumnGPCpYoeWzIAhMScDmhxYG7gDSL71d7T6r+ZncfoqgEgFQdP3JZvdr684dFe1RjmXBhJ7LWAiKar9kxFtc0hy3eLDOtVvO9+ANKi4deneTPT67Eq1hgTCaTEgcTIduLwWJNgkGJZ8Z11fnOGXtKFbN/UFIuDOz3kJfp5BcVvT4wB4XgaybkmPk6J93Ov7vKRk+YC8rtC+DxxXvwt68LwmrUiBe1dUeMBawmM6KVQsy0iQetFUtbLDDqfkNW1B6hGwm9IN6KBjf6PrwUY59epvr8FQuM2M8ofLzoOq5u8oYVYwMUi6YngoB547YJKkuLNttSz4LLLugL/9+ksDRqEWaBEUW+GKCsFTxaMll2qSDU+Hlujf1daq8LohWJCYQuQm2Xt0JxMYC6j12kcv8AVO4v9l2z92cZQw1uX1iVY0CxwDD3ncNq5q0UwgvhqQWM064I05b0XmspJGAShLuQoviJf//xLtXfJyJZYNL1LTBVmrtYVinV4w/wH92Y/GwA4UGT3IQcEijihZQJI6vZxC+iojgSL0h6Tc2Ui52Dn4hsMWPvkxUSLqzdvHgsb35fCADIDVkK2EU1HgvM8aom3P/BTtWxsqJr3ALjiGyB0bpFqpu82FJYrWphAIjxM+rvlFm0ACVgde2hyrAg3mwhtV68WG8K1WqxWUzID332voDEv09216fnA9cGcgPA/0LVOd3+ADcDdw0t3HpxD7s1Jf/Z74ZnnjmtfOGu1rgtJUlSWQILQxYFr7CwsrtejyZTDQDeXl+It9cfx0srD2PVwQrVa2IKt80S/cLSkThSqYh1o3er2gasRupMsfOxRxQX0tvr5CDc6iYv5n4huwQlSeJuFrFhoJ6YFS0TNYKLyynUEHLquKBYau7Pzu+Dy4bk4leXnsNfmz6yu2ofLEtHXD+UeLPoly8mDsQbQa2lNRrRYmActtjjtWunmGbOhJnJZMLC/3c+nv/RaO7SAmTrClsD2Hfp0xT6A9S1wrKFDCqTyaSyQPkD4WOZdZzFZonVeZXki5AFRtIImNDxSzrdttsSEjAJIvbdYWo5VqDciepmfjFjP5pMp43ftYoWmI1Hq7g7hsFM9ez/FJsFA/MUCwy7m272+vHdITnQlLkExLs5FknfLcuJzqF28LXCnSJr5tYp1a6bysxM4T2yU3jpbWYdcGniUNhJVB3avyjy7rhI9jlvDl3U2SLFRI9eEO4uTfYCIHfFlrtgR8pCCvdBi7y74bhQ+0ZTSErznYom2DtDPvN6t9LWgdV/YSIgKKmFx/9CnbtH9cpGZoqVLwhsPPO7Z+ikUutZYI5WNmHTsWpVNlLXDPkz18uA2qMRMOx3yPaT4bBy91+JJlapttmnek/2OxDv7sQigNoL8OIdSjXpDzcXq15Tx3vpX6gDQSlihd8mjx8PfrRTVW69tQgEJTz75QHD/aEAqM5ho9WJtTcwiRTK7JktC26XLxDWUFHMbFq4+QQvRMe2c9gsPF1W+1uSJEltgWlWLDDi+zq4e10577TWgAeuHIQjf74GX993CR66aohqP+wGSyxDoeeq0oNbYBrDXUixxgLRY2DiGa9NBBCtSKJIP79/Dm4c1ytsvBJaIM+fuZDENejnk/ryx+y7ZjDrTEWDGx6hRxWDpZOzmydR1GmtT5FiYIDwQn9tCQmYBGHFjVIdFu4PdfuCqostswAMzsvgwVbHqppQVN2MncV1MJuAcX066VopfidYb1hmB7vjLQyZ7nt1SkF2io2bCtmJWiD02RksCBy2cLDFoGd2CrJTwiP1P5t9EXY+PhXn98/hd1PiAsbcCEO6ZfAy2uyHrg2G5e6x0PuLCxE7aSsaPPAHglzkMNHDBIgvoPiO9S7igLywcBGhzUISRIhoyp45pgcAWRQxtxZzqWmFGYMtnj8en4/hPbJwzUgli2Bcn07c8uS0WfgdoBi0zFLQrxreDSaTSWXRAZSy5IoFRj+Vfsk9F/HH207UYLOQmaRXQ4KhjaNgi1cj7yNlFbI31BdMbcPGnUXy30ojOPm3wu/8hAuHLxDE3lJFpIiNBgGoMvT0BEwwKOH/vb0F45/5Fh9sPhH2+mOL9+DjrcV48KOdYQHvLWVLYTVeXX0ET3y213BFXLHGkdHA5vBsPeMWGBZTAYTHc2nrN1U3e8NK4WfwlH71vt2+oCbtPsgtt06hH5CeC0obywHIF8bB3TJUtU4A5XwUM7L0LD16iAJGG+gfT1p6tBiYWNYfQFn72OciFouL5b4ClPOIXRf03EAzz+2J3181GD2zU/Cj8fmq8V1DFu5TDR6+7jl0spC4BUZwW3EXeLNsQWaGHpaFFK3bdltCAiZBWC+iTKcNaULVWHGRYv7E+T8dy109u4preXbBgNx09MhO4Rc60ced31lZeCYPlhuOrSqQgy9ZGu/o/GyYzSZ+orIFb0x+Nib07YSe2SmYdE4O/6GxCym7kPTrksaDTcWgS7PZhKxUOb2bmSVrm+XeOpWNHlQ2emEyyfNn7orSWhckSeLHwPp85GjuIthd/aC8dHRKtXOfd02zj2/DLqBpwiLDLsai0Fr14GT+mF1YHFYzX3T1LDDsDuzH4/PxxLXDAchWDFYojGXRsMVLexFhF4GRIVE557rhuHRQVwzvkYk5ofdj9AkVmmKxInUuH3chMVH6s0l9VGOYaVmviBYzZY/tnY0RPbPwmysGyvM/1cgreY7r04kft55FkNXfYIs/FzBuVrxQETBaIcBcoOz1bSdq5Lt2v7rKZw4T5MJnJ2YtAXKJANH8LbZBOKmJUwKAb/eX8/ijN9YeC3t941FlvDbLraWIwfTa7LVYiPFeLl8g7t5agLKWsIt4IhaYrhkOfv5rg7q1gqqszs3dHWaTbCWI1CalXshiZN87s+yK4oAH8QrnoFcnliMS54TSoo/wuktS3FYQ9jv1BoL83NGW7I9Gpk6FdbcBCwyPB+MCJtwKEn282oKklPtXi5+7Jg/A9w9fHpbRlCsKGE2zR0BZY9j6yG78ALWACQjnqVhHJhkCeUnAJEBFg5sXGeue5ZT9jWlqtSxJkqovEIs2P17VzC8s7E6Z3SWVCXfH7C5mzrXDMG14HgA5fkKSJB41zi623UOmQ2auNplM+PP1I7HiwUuR5rDi3N7ZAJTFd0dRLQBgfN/O3Ee+p6SOC5BfvbMV3x06BUmSkJfhgNkknzyVjR5ufendORWpdquqmFJ5vQcuXwAWs4kH+GrNoKwJZM/sFFjMJh4rUt3kVVxIIdFktSjt6lnsBRMqd182AD07pXABxC4y7PsAlJNQvJCqgqfT7BgQWiC3nZA/kyGhyp5srMcfVN111woVlAHZTPvWLyZi6b0Xc1HDYJUymcXsi91K8DHbz88n9eEum0enD+Wvs8+tSLgYNwjF7gBgWA/5PXYW1XHX2rWjuvPMk8MV6mDp7w9XcktWvy6h32NobizQMd0hBpWrL3CHQ9/9pYO6wm4xo9kbQFFNs1D/Qx2YKFoUtwoWFqvZhKomL3+upNaFnaHfJCALEO2FXnQdHqpoVLkiA0FJJWz1YoXWH6lCXbMvYsDhfzedwDvrC3UbYIruLe1nCsj9bwY9+qVucPIRjRtYzwrz7b5yfLD5RNjcmHhmxdX0BIzbF8C+0nrV5yFJEv8MslJsQll6TYydTpaTSxPkqlzE1d8H+21kpdi41ZB9Ng4dC4yYRaRd/6LB1k1WOFIvEDYSTptFuREJ/b5dBgQMuzEU6/cwgRfPeO4+D+2bZyDFMVbef+g8Cn1PDfxzs0UcI8IsMBWiBUawWqU71PMwC1Yh8cZVtOgL+kVpV9COAib2L6gdmT9/Pv7617+irKwMo0ePxj//+U9MnDgx9sDTRCAoYdH2Ejz4kRxEOqx7Jl8ceuekorTOjZdWHML5/XNQXu/mC3tOmp3fRb3x3TH07ypf2NhYJkBqm3147qsDcFot/G4zJ92BgbkZsJpNaPT48dD/dvHO1Ew0nZvfCdtP1OL5ZQUormnGextP4GSdG7+5YiDuv3IQxuRnY3NhDZ7+fB/+EiqBDwDDe2Sif9c02C1m1DT78PuPd2FPaT32n6xHWb0bFw/sCqvFhO5ZKSipdWHin5fzz4K5plga979WH8WqA7KFKL9TCr+YMffaruI69H14KR/PhFOXdAdqmn14bPEebp0QS3v3yUlDTXMtrvnHd5gyNBff7pc/l7wsJ2wWM3LSHKhs9PDvREwrPCf0OX+6oxRf7imD02ZRBU8DwDUju+Mfyw/xMUwUdEl34Nze2dh+ohZ/XLQbE/t1xv6T9dxSwCxX0WAZYh9tLcaJ6mZ8FIrPyEqxcVdTqt2KT2dfiD2ldbhkoBLEd16/zvhkWwkWbS/GsO4ZyEqx4/NQ/yjm3uKFrMobeGuGUfnZXBRuPFaNtYcqYbOY4A9K+OnrG/n7XzEkF/tP1uPtDccxvGcmb6o5vEcWT3Nfvr8C04Z3gy8QxNFTTXhrvRz06bSZMahbOvaU1OO3H+7k2V6sSBb7/j7fWYrhPTIRlBSB+PTMEdhxohb/21aMdzYcR3aqHc9+KVtnxuRn41SDByW1Lry/8QSmj+oOn1/CqUY3Xlp5mM9dkmQrzE/Pk1No3/y+UOXi3H6iFn1y0uQ0URPw9Z4y/P5/ikv21VvHYkx+JwQlOd7jqz1l+NMX+wHIVqZfTx4AE+Q7d5c3wH9zgFzX6dbz+/D2ESW1LvwhVJPopZWHkZvpwNUjusMflItXsou6ySTPm91EWMwmHK9qxpd7TuLt0Oe67Xgt7r58AMxmE1YeqODWsZE9M7Hm4ClsO1GD2mYvbBYzfIEglu0rx7xlB3kX8QW3T8A5XdNR0eDhd+vZqTbkpNtR5/Jhd0kdctIcCEoSjlU2YWWBUqMKAL7eW4bS2izVbywrJE6Ka5pRUutCMChh38l6/PKdrQDku3yzyYTKRi8+DcU4paosMPLjvaX1WHPwFIprXPgkFAeW7ox9+WF1rnaX1OGJxXvw3WGliGQ8VpAu6Q40uP34cvdJNHsD+HS7vG9nHC4ktmaX1rnx9d4yfLKtGJtC3x9bP6LRLYu5v1x4Z8NxfLNXbgIZj+UJUATQhmNV6LE1hYv8zDg+N0CxwHy8tVg3Q0wrhCb1z+GPxWOf8c+1whihV5SQidReJK2A+eCDD/DAAw/g1VdfxXnnnYe///3vmDZtGgoKCpCbm9suczKbgFdXH+F/X39uT/545pie2HC0Gt/ur1AteID8o2F3Eg0ePzfjnxtyK2U4rOjfNQ1HTzXhlVXK+5tMwNDuGbBbzRjXpxM2HqvGh1uUIMXhoYvt5MFd8Z/vj6Go2oW/faOU2d5VXAtJkjCxXw5e++4YGjx+MC9VptOKAbnpsFnk915/tIpfYAHgtgsU18YNY3vinyuUCwggl+AG5Astg11Ex/ZRTJmDu2WgU6otLJ6Cjb9iaB4OVTRy8cJcU4zz+nfmFiPxcx0Q+jxH9crCigMV/AI2vo8yH/F9PP6g6u6NWUCmDsvjAubvPx6jOkGvG90D20/UYvmBCk31T6jKl0fisiG5eParAzhR3azKQPv15HNU23XNcOCywerf9GWDc+GwmlFU7cKv3t2m3j50Z9gzOwXpDiu/o3VYzRjWPRMOqxl5mQ6U13tw6xsbocdvpgzEyoIK7C2t51ldQ7tnondOKi4fkou/fl2AgvIG/GD+92FjLxrQFYPzMrCnZJ8qdmV86HtncT3rjlThupeU8Z1SbfjJxN44p2sa/retGIt3lKoCe2+7oA8OVzRi/sojeGbpfjyzdL/u3AG5ySHrh2PkNQBhn6fIa98dw2vfhbuoGDuKajHhT99GfP3xxXvx+OK9que6ZTqRl+nAzuI6PPDhzggjgQ+2FOGDLUWq57JTbTivXw7mrzyCXcV1GPPUsojjZ725WfV3/65pSLVbMaRbBo6eCs/eA2Rr2PRR3bF4Ryk+3FLM15fhgpC3mE0IBCVc+OyKsPE3jc9Hit2CRz7ZzZ+7eaISizG8p/w+u4rr8PP/bFKNzYtQAVekT+dUpNotaPYGuIBmxxZPWvqInlk4VtmkWhcBxcUdja7pDmQ6rah3+7lgY3SOow5Mjywnumc5cbLOjcc+3aPsOy0+CwpbI78/XIXvDyulBcR06WiMDl1fRIExoa+yPjLrOUOsLNwl3YELzslRlTSYPLirKnbntkl90eQJ8FId7YFJas8k7iicd955mDBhAl566SUAQDAYRH5+Pu655x48/PDDMcfX19cjKysLdXV1yMzMjLl9vCzaXozCymaMyc/GZUOUi44kSfhsZynWHKyEPxiExWRCZZMXfXNS8dQPRiAYlPDephMoKKtHUAL65aRh1oV9+Ul4oqoZb68v5LU87BYzrh7RDeeFVHFFgxvvrj+OWpcPaQ4rxvbuhCuH5fH9L95Rgu0nauHyBuALBJGTbscfrhkKk8kESZLvMtcfreJ3e0vvvQjDe8gnSFF1Mz7cUoTaZh9S7RYM7Z6J60b34AF1gaCE/246gUdDJ+Gj04fip+f14b7u7w6dwo4TtTCbZZPzdaN6cAsDIAcyXvH8agDAzRPyMX1Ud1w0oAtMJhPcvgA+21mKg2UNMJtNuGhAF1wipBN6/UEMe/wr+IMSLhrQBWsPV+LVW8diWigI9lSDBx9vLUady4ee2U78aHw+v8vwBYJ4Zsk+fLhFvgPJSbPj4oFdcME5XfCj8b34ybizqBYmk5wZJBIISvh4axG2FNagyetHcY0Lw3tkYuqwbqrvPhrfHTqF/20tRlGNC1uP1+CH43rhz9ePVNW+iMT6I1V4Z0MhyurcqHX5kOm0oVumE4/OGMqzM77ZW4YPtxTDFwjiJ+f1xrThclDxigPleGXVEVQ0eGA1m2A1m1Hr8iInzYFFsy+Aw2rBwfIGPPX5PhTXNKNrhgNPXDscI0KL5p+W7sOyfeXwBSTYLCbYLGYcqmjE/VMG4TdTBsIXCGLesoPYdKwaFQ0eXD2yGx6cOhg2ixnl9W48s3Q/jp5qRFWjF/6gBKvZhHuvGIifnNcbwaCE+z7YgQ1Hq+DyBZDptGFMfjZevHkMmrwBPPDBDqw/WgVfIAibxQybxYw6lw9ThubimZkjMevNTThY3qAqr39u72zMu2kMHlu8BztO1MITULp1m01yNtiA3HQcrmiE2SSby81mkxzrYTbj8qG5sJhMWLavnJvqzSbZHZKdasP9Vw7CygMVWHekCnUuH8wmVqnWjPzOqRjbuxMWrCtEhtOKBrcfdosZDpsZndPsuG/KQJhNJvzlqwLUu+SYAn9QCUy/dnQPBIMSdpfUoaimGTaLmb8278ej8YPRPfHUkn34dn95WHzPBefkYGTPLByuaMSBsgacavTA6w8i1W7Bm7Mm4Lz+OSiqbsY9/92OXcW1YS0JXr11LCb174Knl+7D9hM1cPuCyO+cgjnXDecif8H3x/DK6iOobfbBbDLBGwgiEJTwiwv74bEZ8hqz9XgN1hw8hZsm5HOXKCCvi6+uPoov95yE2xdAboYTJpN8o3H35QN4Vkusc+iDzUVweQNo9gYwtk82rh7Rnf9Wo1HT5MVfvynAxqNV3J03dVgeHpw2mFuPo7HiQDn+9vVBFNc0o97tR+/OqbhiaC4emz4sLOBYj9UHT2H+ysPYcaIW3kAQ4/p0wu+mDcb5grUjEsGghBeXH8KyfeUoqXWhzuXDszeM5MX74uHDzUVYuPkEtp2oxQNXDsI9lw9QiZDDFY1Yvr8cM0b3UH1vgOwmfHnlYewprUP3rBT84Zqh3C11uon3+p2UAsbr9SI1NRUff/wxZs6cyZ+/7bbbUFtbi8WLF8d8j9MlYAiCaH1WrVqFyy67DCtXrsTkyZNjbh8MSmALlwnQvZi4fQGYTXI113iyPhhK5159kRkMSlEvXrFej4YkSVHnKjYdtZpNYfuRJAneQFAVhyK+JkmyldPI50EQbU281++kDOKtrKxEIBBAXl6e6vm8vDyUlZXpjvF4PKivr1f9IwiifVmwYAFMJhP/53Q6MWjQINx9990oLy9P+H3Noa7FFrMJX331JebMmRO2jdNmgV0nZfW1117DpZdeiry8PDgcDvTr1w+33347CgsLAcjCJZJ4YfuONbdEiSUsUkLNY+1Ws+5+TCaTrnhhr5nNxsQcQSQzSRsDY5S5c+fiySefDHuehAxBtB8ul+zy+OMf/4g+ffrA7XZjw4YNeOWVV7BkyRJs2LABqampaGqSzftNTU2Gz9lPP/0Ur732Gh544IG4tt+4cSN69eqFqVOnIjs7G8ePH8dbb72Fzz//HN9//z26d+8e+00IgjhtsDUgloPojHEheTweeDxKWmBJSQmGDRsWth1BEARBEMlPUVERevUKr1LMSEoLjN1ux7hx47B8+XIuYILBIJYvX467775bd4zD4YDDoQQYpaeno6ioCBkZGUlpMq2vr0d+fj6KiorOihgdOt4zm0jH+9577+Guu+7CypUrMXbsWP78119/jZtuugmPPfYYHnzwQXz33XeYMWMGlixZgosvvphvt2jRIsybNw8FBQVITU3FlClT8OSTT6JHD7mK8h133IGPP/44bD51deEtJ6JRXV2Nfv364b777tO15CYLZ9vvCjj7jpmOV7a8NDQ08PM8EkkpYADggQcewG233Ybx48dj4sSJ+Pvf/46mpibcfvvtcY03m81RlVuykJmZeVb8SBl0vGc22uNNSZEzG9LT01XPnzwp17Tp2bMnMjMzkZYWqo2Ulsa3W7BgAW6//XZMmDABc+fORXl5OV588UVs2rQJ27dvR3Z2Nn75y19yAfPOO++o5hGLqqoqBAIBnDhxAk899RQA4JprrukQ39fZ9rsCzr5jPtuPNysrdpZZ0gqYH//4xzh16hQef/xxlJWVYcyYMfjqq6/CAnsJgkh+6urqUFlZCbfbje+//x5PPfUUUlJSMGPGDN3tfT4fHnroIYwYMQJr1qyB0ynXmrjoooswY8YMzJs3D08++aSqsOWtt95qaE49e/bkbuecnBz84x//wJVXXpngERIE0dYkrYABgLvvvjuiy4ggiI7DlClTVH/36dMH7733Hnr27Km7/ZYtW1BRUYE5c+Zw8QIA06dPx5AhQ7B06dIWu3q+/PJLuN1u7N+/H++++y4PJCYIomOQ1ALmTMbhcOCJJ55Qxe2cydDxntnEOt758+dj0KBBsFqtyMvLw+DBg2E2R05VPn5cLrg4ePDgsNeGDBmCtWvX8v1OmDABmzdvDtsuFpdddhkA4Oqrr8YPfvADjBgxAunp6Ul903S2/a6As++Y6XjjJymzkAiCODNgcSybN2/G+PHjI26nLWS3cOFC3HLLLVi+fDkuv/xy1bbXX3891q5di1On5F4+d999N+bPnx8z5TIWF1xwASRJwvr161v0PgRBtA1JWciOIIizmz595F5cBQXhPY0KCgr460DrVZV1uVyGs5cIgmg/SMAQBJF0jB8/Hrm5uXj11VdV9Z2+/PJL7N+/H9OnT+fPsQym2tramO/r9/tRU1MT9vymTZuwe/fuqFYigiCSC4qBIQgi6bDZbHjuuedw++2349JLL8Utt9zC06j79u2L+++/n287btw4AMC9996LadOmwWKx4Oabb9Z938bGRuTn5+PHP/4xhg8fjrS0NOzevRtvvvkmsrKy8Nhjj7XJ8REE0XJIwBAEkZTMmjULqampePbZZ/HQQw8hLS0N119/PZ577jlkZ2fz7W644Qbcc889WLhwId59911IkhRRwKSmpuLOO+/EypUr8fHHH8PlcqFHjx645ZZb8Oijj6Jv375tc3AEQbQYCuIlCIIgCKLDQTEwBEEQBEF0OEjAEARBEATR4SABQxAEQRBEh4MEDEEQBEEQHQ4SMARBEARBdDhIwBAEQRAE0eEgAUMQBEEQRIfjjC1kFwwGUVpaioyMjFbrlUIQBEEQxOlFkiQ0NDSgR48eUbvWn7ECprS0FPn5+e09DYIgCIIgEqCoqAi9evWK+PoZK2AyMjIAyB9AZmZmO8+GIAiCIIh4qK+vR35+Pr+OR+KMFTDMbZSZmUkChiAI4iwhEJQQCEqwWynEs6MTK/yDvmGCIAjijMAfCOKcP3yBQY9+icLKpvaeDnGaSUoBM3fuXEyYMAEZGRnIzc3FzJkzUVBQ0N7TIgiCIJKYwipFtPztG7pmnOkkpYBZvXo1Zs+ejQ0bNmDZsmXw+XyYOnUqmppIURMEQRD6SJLy2O0Ltt9EiDYhKWNgvvrqK9XfCxYsQG5uLrZu3YpLLrmknWZFEARBJDMBQcG4fYF2nAnRFiSlgNFSV1cHAOjcuXPEbTweDzweD/+7vr7+tM+LIAiCaF0+3V6CPSV1+OP0oYZreIlWFxIwZz5J6UISCQaDuO+++3DhhRdixIgREbebO3cusrKy+D+qAUMQBNHxuO+DHXh97TGsOFBheKwoWvp3TWvNaRFJSNILmNmzZ2PPnj1YuHBh1O0eeeQR1NXV8X9FRUVtNEOCIAiitalo8MTeSIMoYHIznK05HSIJSWoX0t13340lS5ZgzZo1UavxAYDD4YDD4WijmREEQRCnE39Qir2RBtGF5CIX0hlPUgoYSZJwzz33YNGiRVi1ahX69evX3lMiCIIg2pB6l8/4GLcyhmJgznyS0oU0e/ZsvPvuu3j//feRkZGBsrIylJWVweVytffUCIIgiDZg0fYSw2M2HKnijymN+swnKQXMK6+8grq6OkyePBndu3fn/z744IP2nhpBEARxmpCENOh0h3EHQZowxu0nC8yZTtK6kAiCIIizCzHsJZBQDIwiWjzkQjrjSUoLDEEQBHH24Qsobp+Egnj9FMR7NkEChiAIgkgKRKuLP2A8huXznaX8cSIxMHtK6tD34aXo+/BSVDS4DY8n2hYSMARBEERS4BUsKIEEQgl6dUrhjxPJQvr5fzbxx9tP1BoeT7QtJGAIgiCIpEAMvPUlYIHxB1rWC6m6ydui8UTbQgKGIAiCSApcXkU0JOIC8gfFXkgtS6P2UBp20kMChiAIgkgKWtqM0ddCC4xqLgmkYdc2e/H0kn14YdnBhLKoWorbF8BfvjqAlQn0keqIJGUaNUEQBHH2IYqGRCwgYuBviwVMAuM/21mKN9YeAwBccE4Ozu+f06I5GGXxjhK8vOoIgCMofHZ6m+67PSALDEEQBJEUiKLBGwgatmL4hO19CVhAJvbrLMzFuICqa1ZaGSTSCqGlFNecXdXqScAQBEEQSYHW6uIx6MYRLTCJpGGLgikRC4xoQRJr0rQVZ1sNWBIwBEEQRFKgFQ1iUG8sgkFJVck3KMnPGUHtgkrAAiNYXZo9fsPjW4q4/0SyuDoaJGAIgiCIpEBbPXfZvvK4x/qC4RdsveeivocQBJxIJV9xvisL2j6Q9p0Nx/njsyENnAQMQRAEkRRorR41zfHHkYg1YKI9Fw3RhZSIBaNbllJILzvFbnh8S9D2EDwbunGTgCEIgiCSAq3VwIgVoTUEjGixSSSGRmwg2dbdsL2a+ZIFhiAIgiDaCO1F38hFuDVcSIEWZjGJ821rAaG1uBgNgO6IkIAhCIIgkgLtRTgRC4zVbILVbFI9Z/Q9AMBnMItIkiQUVjXzvxNx4VQ3eXHdS2tx13tbw1xCsfCEWa+MizfWyPKcP3yhu822EzWYNm8NFu8oMfTepwsSMARBEERS0JKLMItZsVpMsFpMqueMvgcA+A1aYOpd6qyjRCwgG49WYVdxHb7YXYZTDR5DY1si/gDgWGUTfxwISqqMJsaflu5HQXkDfrNwh6H3Pl2QgCEIgiCSApb5Y7fKlyYjLiAmOKxmM2xms+q5eGlJEK+2e3YirQTEzCejWVDa7Y2O1woekyl8m+OChSkZIAFDEARBJAXsIprplLvc+Ay4gPytbYEx6H4KagSMkbkz1L2gjM09PAC6ZeON1tBpD0jAEARBEK2GJEn476YT2FNSZ3gsu+hmOG0AjMWh+AKKBcZqCVlwjFpRWmCB0QqYRCwwu0tq+WOjLqCWZHAB4dYVPetVZaMxt9bphpo5EgRBEK3GN/vK8cgnuwHAcENBdtHN4BYYIy4keVubxQSzKbEg3pb0UtLG3CZSR2bTsWr+2LCA8bcsBkZbeE8rwEprk6/PEgkYgiAIotXYV1qf8Fh2Ec4MWWC0tU2iwWNgRAHTgjRqo3VgtAImEQtMit3CHxuNYdFaq4z2YrJb1A4Z7fyrm7z8cYYjOaRDcsyCIAiCOOvhMTAp8qXJa+AizKwtNrOZB6AaiUORJKlVXUhGA4gBtcXIaAyLdr7ajK6Y+w5Gd4ElY2E8ioEhiFYkEJRwuKIhoSqeBHG2w11IjlAMjBELjBDEawtZE4y4kLRip+VBvMbXANHiZDQNW2utitQIs87lQ0WDO+x5rbVKK2hUAcZJUiSPBAxBtCL3/nc7prywBr94a0t7T4Ug2p0Gd/y9jAC9GBgDAiQoBvGGspAMuJC0FgejVXxbw4WktsAYdCFpPis9kVHT5MWkuctx3p+XY0dRbdTx0SwwvoCUFDdpJGAIohVZuvskAGDNwVPtPBOCaB+yUmz8cYnBwM+wLKQELDA2iwlWcwIWGK0Foh3SqEVR0FIXkt7+C6ua0OwNQJKAgjJ1rJJWsIQJGG2bB4MxNqcDEjAEQRBEq+HxJ34RDouBMSBgeBq1xQybhWUhGbDABFrmAtIaXAIGLTgA4BXmYDiINxBbgEWrMxM2XjP/llb6PR1QEC9BEATRarSkoaFSyC4BC0zogms1K1lIRlKhtRYYoxYUbe8ioxYcQC0ajH522oBnvQws0YqifX/tfLXDtYIqGQQMWWCIpOTZLw/gT0v3JTT2hWUH8fjiPa08o9iEL2AG7+CEZmp7S40XASOIZEC8sP1va7GxsX7mQgrFwPiNVOINZSFZlBgYI+eg9gJu+PzV1oFJwALTkiwkrbVKT4CJKe5vrz+uem390Sr1XDTz12Y1ldeHBwK3NSRgiKSjwe3Dq6uP4LXvjqHKYOXHQFDCP5Yfwtvrj6uak7UF2v0Z9RGvOaTEzfxj+aFWmRNBtDWigNlfFn9NGEmSuBWBxcAYycTx6WQhGbHghAfxtswCk0gQry+QuAVGK/b0XFiNHqXhpDY+KVWoQSOPj55GnQx9kUjAEEmHaAo1asYVTzIjNSRag2Zvy0ys4uJitBMtQSQLouXAiAVFPNeZBcaIFUJs5mg1s15IRvYfPSYkFmEWmIAUJmqMzMFoGnU8MTDR1kQ2ngmZcAHTss/ndEAChkg6RMuFUREiigYJbduMTLvgtMRHnPxt1AhCH1WchYGLsOiySA9VenX7A3GLADELyWY1q56LB3bBZkXwJMmYFYVlIbEAYvm5uIcjGJRU20eq4xIJboEysyrEekG8+u8ZCEpc7KWFPvtYFhijLq7TAQkYIumoEUpWGy2YVOdS6k4UV7dt747wKP3ET/C2th4RRGuRaBCvngVGkuLPRFJlIUW5iMca77RahOfiPw+ZgBFL8hsZr42ZibZ+bC6sDqvjwj4n1o7gyKnGsHGHKsKfk/cl3PiFjqPe7VdtQ0G8BBEHX+45yR8bPUm+3lvOH7/23dFWm1M8tLQbrIjFbIq9EUEkIdFSdaMhWkvSnUqCbLzvwZs5mk1CN+r4BQyzOIj9iIwIEGYoYtYfeU7Gg5AZkW7e6lw+/OjV9Zg5/3vVZ8ZuepgFRi9G5ahG1DCxIq5VlY3yDeSjn+5Wz6cVb9Bai6QVMGvWrMG1116LHj16wGQy4dNPP23vKRFthHgiG42Bac/qkC29QxEXywwnVTggOibi79hILRN2sbeYTQlZMRQLjCmhOjDMApJiUwSMkVRoJmAcooAxVMcmvjoragu1GDMjPx7RMwuAuqAgI13ThJF9Zux7sgtzZ0JG2Ze8Dbu5Mlqn5nSQtAKmqakJo0ePxvz589t7KkQbI564RgWJmDnQ1pUiW3qHkuidK0EkEz6NVSAYpxVCjOEwmRQRE6+A8QsuJFaJ10gmERvvsArNIA2kQjMXktVsBjOgJlKIj+GKsAaIW4lrJRMUvTqlhL2mbK/tWB1QPe+0RpYELI26U6ot4vu3NUl7m3f11Vfj6quvbu9pEAkiSRJcvgBS7cZ/YuJJZrSjq5g66PL6o2wZmZomL5w2i8qUHA8tdSGJ22szmgiio+DVXIg9/mBc55JYx0X+3wRvIP5MJtGFZDYnUAcmNN5iNsFmNsMbCBqywDABYzbLx+DxBw1ZkGPVXeHPRyhGx7bPSrGHvca310k0yHTa+LZOmyUs9kXZNhh6fxsqG72Gs6ROB0lrgTGKx+NBfX296h/Rfjz0v10YOecbLN11MvbGGj7dUcIfGxUw4oJzsLzRcBrjnM/24tynl+Hcp78xXExOu2BsPFYVYctI45UFbP/JesNzJ4hkQBuAHq+Q55V0Q+4fFkviDcQ3Xt1KIJSFlIAFRmxFYCyIV/7fBMV6ZCQYXyvUIn1u/16txPYdOaXUnvp2fwUAwULiD4atIWE3WV55fkyMRBOazMKTncoEUvtbic8YATN37lxkZWXxf/n5+e09pbOaD7cUIxCU8Nb6QsNj8zun8sdGXUjaBcuoJWP9EVl0uH1B7Co2JmA8msXKajF2emkXl0SawRFEexMWyxHnnToXIGZmgWEiwFgatdViEurAGE+jtiYYBOzTSeNuSRZSJPFTKcTA1DYrj5lw6Z4tu5DE1GhAtorHdiFZ0L9rGgBgSLcM9bZJ6EI6YwTMI488grq6Ov6vqKiovadEILF0YG3bdiNoBY/Rk0wMTGuJC6g1xuv1MiGIZCc8GDXeIFxFAAAwHgOjI0AMdaNWVfJladjxn4OiG4aNN7L+aeeqdcVp9wMAHp24uWHdM5XnBPEo3mAphQIDqv+dNjNmTx4AAMjNdOrul7mokiGIN2ljYIzicDjgcDjaexpEKyCeoEbLcWuD9oyeZHpBcfGiLTzVUgHj80uA3dBbEES749NctOMtyCZmEQEw7MZRgoDNCVlgmACymZUgYCMCiFsxbJaEWhnEWwlYVWcnJFBYzCEgd/I2meSsKBbjoh2XnWpDg9vP58z+d9gscIaysCIVriMLDNEhWLyjBE8v2Rd3FgFD9LvuKKo1HMsh3rF9sdtYDM1GTUMyo37aCqGEv+EsotBiwkpxtyQLCUisGRxBtDday0G8LiReSTckHuw8BsZYFpLNkpgLiPUys5hNsFlNUfftDwTxxOI9+EqnZpXTZuZzj7T/xTtK8IsFm/HN3jL+XCICholD0britFl4MT4W4yKPU4KU00LJFUz0uATrkdNmDtuPvA8WA2NTvV97krQWmMbGRhw+fJj/fezYMezYsQOdO3dG796923FmZw+/WbgDAHBev86YOrxb3OOOapoaHq5oxMC8jAhbhyOeONpqk7GwW9VBaEbuEk7WqSv3RsoCiAQ7obNTbGj2BoxbYDQLfTL0GiEIo7DfrdkkB7bGH8SrtcAYEyHKeLNQTj/+c4jVVznV6FH2HcEF9OmOUry1/jjeWn8chc9OB6AcZ4rNEtP9xdbWXcW1fG1l80+xWeDyBaIImPDaL6IryWmVRYjLF9DNWHJazdzKwtY4tp1D9Zq+JS0rNXKWU1uTtBaYLVu24Nxzz8W5554LAHjggQdw7rnn4vHHH2/nmZ19aAsaxaJRk4YnNimMhT8QNJx5JKKNmzWS6qedd6IuoOwET3BdFxJBdDDYhTczVEhNeyGMNU5Jo44uIrTwLCaz0o3aWBq0/P/Efp0VC0aEfZfXu8OeY+evQ3AhxbIeiWurtpmiLyDpWr9VdbJCr4tF5mxCN25x/24h08iuEYfsc7JblQyusNYGfrULSZu00B4krQVm8uTJlEaaJJgMVrUPr0hrIBAuwRRMRlg5biP7bqVCdJ3SEjOxagtXkQuJ6IiwC3GG04raZl/8FhghjRlIIIhXqCNjTSANml3g8zKcEd0o0ccrmTw8fieBIN4UuwUIGbF9wSAc5shWZeZ2Y9YRp9UsFwHUcWHxOBerRXg9qPpfbsMQ/tn5AkEej5jNgniToFZV0lpgOgKSJGHdkUos3lGCioZwRd6RES0XRnVkkydxC0xLM3m01hsjJ5nWhWM0iLewSl51shOM0g9PoyYBQ7QPgaCEVQUVWH3wlKFAeklSUnczHKweibE6MKwRY6w4FC2qLCIWhGtg7iU1sgvZaTNHDGRlNAjWWuZ64iLCplgx9Mo4RPo82fzThOKfeu4z8SYvoLHAsHnriT8xRodnSXEBo4g/u471ShsALO6zPSEB0wI2F9bgJ69txG8W7sDs97a193RalXfWH+ePjVpgNh2r1vwdf0G3grIG1d9GRQCvBRFaBI2cZC3NIjoc6vTK+o0YHa+NuTFi/iaI1mTJrlLMenMzbvvPJkOB9KV1yo0cu9C5vPEKEP0YmHhTkVVZRAlYYLYUyuuWxWyKGAfCED+T3328E4BaRLA1c6NmLQSANQdP6b6nT7TAsOc0xx4ISqrPg40RM6AAffebGKirzZJSxJ/+ZycWzNPLamovSMC0gOIapdsnU+9nCqKP12hjZLumn4bDGn9J/gZNHEpQMpZKzU7oNC4ijNdx4H8b9PGyJnAje8nN1Iz6iLVzNdJHhSBak2JhPSupjX9tqxSy+DqnGYsF08bAsKaI8Z6HogWGrTnxxt8AQJcMuQxHr06p3IUU6QaK9RsClM+K7SvFZuFW6zSdyrba+Bm2vjELlMNq5g0TtQJMG9PHxijxN6H4IR3rlUcUMFa1wGE3fnYhfka0/tQIBfNShCzL9g7zIAHTAlTN95IgoKk1aUljwZa4gdgJOjokAoDEqmkmYgVpSfyNJEn8DqxHttPweHn/ZIEhkgPRGmjkd8zO1b45qYobJu40aqUQHYCwTJm4x1vMSgyLAQssO85enVKUIN4I+1YVk/OrRYTTZsb5/XMi7j/S+sg+OzmQVt99pl2LmdWJW1esGguMTgyM02YOC+L1Cp8dc7/5dMTPuD6d+GcrHnt7QQKmBbgTPMk7Ai05Nu1JZsQNxPaVKbSCN2KJYHck2kqTRvbNMJJG7fEH+V1XollIWhcWxcAQ7YUo5o3cwPz/9s48MIoi/fvfuTIJuQkQrpAgyClHOEVQFNEgut7KT/A+YFdRjl3f9VhcXFlhVQRFXWBhFVgvVkFYXV1EBeQQkFM5Eq4kHAm572Ou5/1jprqre3omM8lMJhPq808yM11d9XRXVz/1PE89ZeGsKFEm//IhWaW9kJyvpagG4lDU8DE0/pbl2xlpMiCygVxOtYoJnjqbrZwMTst95mmiZOUUOE9LyN2yddvZMmp5hRGg7X7TWubN7peNu2/MemPTUH6iONmc9QoFJmzZwvky66x2v81pOcXVSHvuK6Q991XITXFqGjuAOY9vfMIjdixTQADfI/ntDpKWJTbGAiPv5ury3ftRtpAznSc0ojygHGAAocAIQsfybael//2zwMjLcdlMnU/W5g0+ER0ALpDW3xgaPcwNlK2qt+H6hVvQZ87X+HzfOVjtDpTXWl316rll1NoWlGN58mbBeeV1KKuxSM+72WRAlBcLkPp6Mhcdb0HytAIrp7hG8fnrX/MVcrJr7i2I12wyyC4mm2oVkkEnZSG22GUXEdsjjgUoMxdXqLcTEApME+Bfsg7yf+fkZ/99WPq/uNq/XCvBRitdtc9lXQ8FC/byJxeLMtCM+YF9u678SrAe7WOcbWmE8tQYxYuPGYiJlONv/FFM2XVj/Ups5igIFewZAPx7ftlkw2TQS/03Kca3/TD4rQAAOZ6jMbtZs/gZT20/nleBU4XVqLM68O3Ri8gtkRWDDg0soz5VWOX23S/ny2UlwigrUFoWCvW4kucKfLa42hphlDP5qssXVdUrPndxbdzIFBGmuGi5oJTLvFVBvCwAmlOeANklz9pT6JogRhr9uzfBQigwTaCuiSZ/fnmxv+n6g41WumpfYcfLL2L/A2kbs58Iv4wxoRH7dUjbxUf5X5YNnr2SYyQLCuC7j9jBrS5ozHUTCAIJ/8z78/xLcRwGPa68rC0A3ycC6ky83qwgmuWZBUffcCr/WtUEjb2oYyONLuuRZwsOq6ddTIS0Y7PV7pAtqBHexy5PMTC8guEpfoi1mwUHS5l4ufgZAJr18+Oj2kLDFE+jQc4D4/ydrXJyls3on+w6h3/3JlgIBaYJuKV+9zNzap0izXPLelkpg9T8XA5sUysw/m+IFuVHNkt12RizqVEPmLTbaiNiWGwO3nTuv49YuVOsU4ESCowgFBCRoj82KgbGqENDuVTU2OxKK4K3OBItlLtJe8/iW6eKYWFlWZ3eLDDsWW8TYZRWO1pspJ3IzgcFho0RvILBLEhq5ZG5udVxdrzlC5AVGV5+fpm3OsZGGr8Mcg4bQI5LUgcJ++veCxZCgWkCTV32eppbW3/4fFkgmqSgqt6GN/6XqfDX+gov28d7zvpZlikw/r+IlcmW/LPAyKmyvc+gPNftPFbabbURWTQNeqWP2FcFip8RCheSIJSU1lgVn3ecKvK5LJ8QzV8FRp0Hxt+VRFIeGIPO4yoeBt+mn06XSM++Sa+Ov9FQYBSKkqyo8MuUvWURVufJyrzozH3FKxgN7QittjBbVRYY9SojAPj26EXX+WUL1YHcUgDydTLqZZkAWQFS55lpTKbiYCAUmCbQ1MypiZyf+YsD5wPSJp7XvjmOd344iZve+tHvsmrZLviRC4J1dhYD42siKkC23kQaDYgwKAPNGq5XLttQHgfN8my31Si53b7moLGrsohGephBeazb1U4T57+3CQuMIAR8f7xA8dmf9QUWzhLg7yRC3stIaYHxexm13nMQLEM9vu1yKWlGlfVH6wXNxgTlaiEHF7+n56zH7hdP7VZmCwD4PDLSKioPK5YSJQuMMghXjoFxt16zMdxk0EvjLCsvrUJybUUgb4ZJrja7AoCNKuuYUGDCl6YqMINTEqT//UnW5iuHzpU3uqx61lNRZ/VwpEZZaSm0/7EcshmVS7bkY/l6bpbg7+AH8Kun5KBDX91n7rNH/1xYvPLlr+VJIAgkNRZlMkl/MnHzL1J/Z+lW1SokLSuCL3UbDfJeQJ4SYaoVg5Jq5/imzkGjpXxZHbKiZObGKD5+T8uFw3DpZ0jvlgBAVjZ467OnaydNsrh0/kQkKUomSQFzL6933cibruiEQV0TXG1RLpRgOWCMqsmjXR2f1IjxNRgIBaYJqDu3vy8cRSBZMHyJTVia3ZSNDeukGBjmQvI/BkYxi/ExtqhWcwDww/rjOjaey0Hja3k7N6g52+Df7FOSO8IgzQKFC0kQCthLb5QrGZs/uT745bj+5mLh09kD8HsCY+NW0vBxHFoWXPWLt6repcAYlBZUrQmIZG1V7PpMCjeL9yBe53eXtYtRnE8rj4y6nWoXEpHTyqLOYqy2IBGRND4mtjFJkzR2fqm8UbmNA7um7uOb/+NrMBAKTBNQp9j29UXL4G9+Y0xxJdUW7DhZpNjSgKehpdknLlZix8kiaTMyHmbWlNb7q1whRITD58rcNm50HstcSI1YhaQZaOanC4k3wTZiFVK0WfZh+z/4qvz3PpaX5dZ7DQBsiLzyWvzrpxy3WbQvOByEg2fLUKxaqukrrD/5k3peEDzqrHbsOlWMnOLqhg/mYM8ve0la7L67UvlEdpGcG8SXdALyKiJmgfHuQi6qqseOk0WSa6TENY7xrh2+TTzq8YytCDWoJiBaLmCrFO+mDBbmLSgRRi9BvOpVmq5ry54bM58ITzV+yCslZStxncUhB/G66lXnwXHmdAF3fqWLXb2EXT32svvP3geNGV+DgbHhQwRaaOUC8PeF05Rst0SEW97+ERfK62DQ67DnheuRFGOWfnc4SJGbpLTagsRoudPvzy3Fne/tBOBMnb39j+Ok33h3UWIbE4qqLG4zkdW7cvDnjUcwLDURn/3uKsVvTKtnD6g/wc1aZljfY2DkGZDZTxeOum6zSQ8LZxZuCBvnF2fn4M/pc91G7wGA3rDaHRg1/3sAwJ+++BXZC272q/y/dufgpQ1HkBQdgb0vjpfMy75wILcUd7j6U4RRjz0vXK9wxQman9+vPYSvXJsO/vj/rkNK2zY+lVO7KQBn/2QrbrzBVmKajHIyOLvDuUM1e6l7wqbKxOttAmN3ECa+9SMKKusRYdBjy7PXSr/xqfg9lVePC2wPNnUSPa00CHysDWtjvc0hHau1ykerbpZs0+ayoOzNdgbU6nWeLRxsnIiJNEKvc7rI6mx2qGNg1AoKfx6t3bZtKheUehJlUykw5haiwAgLTCPJLpJnNWlJzoHB3xcO/3D4u6dEvc0h7fxqd5DbrFetuat/51dAnSutVbQ9n9tRNjUp2lmf6nzfuDJA/pxT6tY2dxeS/yuBIk0GmLnBwbeynAnW6HkG1VB5M5+Hwddl0FxZ1gb+nL7WzStu/vYJ9UaY/nLctRN4cbUFNX4OTHx/stgcuFBW5+VoQXPAT7L4RG0NIaUT4Gf5floSzUa9lIgO8G0M8LgbtYYSUG2xocBlJbbYHTjMxft1SYiCTqfzaslUP9fVkgWmYQuqFNDKWVqYC8pZ1nMKCKbMAXLCS7uDUMU9u7UWuzSOeFpyHWlUKiHsGkkKjKo8fw0iDFymYVUQMLtmRr1SAbOrJ2hsfBUupPCE3fgR3dv6bSlg8C9X//cb0vaNevpdHYzqbcNF9n/n+Ei/9zPhH9DGrEJSBLJF+KkESCuYGhcDI+WgifB/FVMdN/ty/vWvfj72p7Hm2aYG/fJW/qZuRBnqBFcCqHK5+KPIO8u1iZCVaV9TCvDbYSjyifjQN6WVMB7cGFr1MMprne6jdjFm6HRKBUgrP5e6PHMhsbq9PYNasS785CHSyMfveR6XmQXGaieFjGajXrHjs1b5qAiDYmyWVn+57pe6vI1ze+l0OkRGyDE+RPKYrc4jY/PgQhLLqMMcrYyx/uaB4Qd5//fN8a6wuC+/a+B4jd2nIzlfqfp4TysT+OMal8iOt6L4lweijlvBJJuA/V9GHcmZv32NsucVL8B/H7HSfdW4JFFNHUz4a9XUDTxDPbAJlPegMRuqOvcE8jOWixs7DHodmBfSl7HRqlrpEuEliFcdWFxWI+9jxJDHZc9KCINZQNxWEWpuBeA+9le49lEyGXRe9zLi70O0WXaxKerR6TxmIfaUK8Y9iJdZcV0uImmJulI+dRCwUbLAKPPouCswIhNvWCNnJpS1bXX+BG/YHSQ9dID/A77aJfTLeeWSaW8WloY+85t+efJ17nRt7gUAh86WSf8XV8kBwcxEqrWUsMZiwz1Ld+KF9b+o2uGygpj8d+PIVpDGJbLjl2FLMxifl0ErLTDefMQnC6qQsWgbRvx1M2Z8cgBEyhUMbPD5xsdN8BgbD17w63g16/bLuYiWbT3tV9lP9+YqPod6l9pLnTNF1dIeOwDwc7a7q9cTWqth/FfE1VYU90nMfw5dwOgF3+O5zw8D4BPEqZKxaYwfaoXs3R9OSm1meFrFuODr4/h8/zkA8iSrUuVCkvZhsik36a2os+IvXx511sWN/V+4nj2meJg8BPF+sCPbrX3bTxYpxxkizYnjmaJq7DjpHHfNRoPUxsyLlVwMjGobBlWMi9oF5DzGocjEy7eNlWMKkDqIN9TPuVBgGglvymPR7+oMlt7IVq0M8Hfjv7xypQKjthSoYz/UD7y3GbNiObKGr1O9IoFleASAM5xc3gLhdp4sxt7sUny0O1e5Yyq3GsfvlTyc+bopq5D4GBrfXUDKgVueQbmX35JZgMyLlSiorMeGgxdQVmNVvDRYN0iK9i8I9tcLSiXWn/211Enzdp8p9nCkNjooTXKhTnB1qbMl0/fJlBplQsjGWxIB+YWo5Ub+cHcOzpfV4pO9Z11WBPYSdbmA2I7JWoGwqvZUuCwoudxuzZ42dFy69ZT0PwtUllxIqmXIRMrx65/bz0j/R5oMbu1gihCfw4YfL99xKVoApKDo2EijYrwe3y9Z87rzO4RHmvQ464prqqi1yps5qhLNSS4kybolB+ky61id1a5IQAjIrigmOxPBKFxIrQMp4txowBPXXOb8zp+XpUZwqT9Bm+oXq7qse8yLPy4keQCLinDvqL5Yb/p1ipPMz1rLMJlGry7Prou5CYMnv0zQ5iCfY0N4JcTfnXD5a8bOAWjfZy3lkrfoDUtNBOB/TFVDfcJrWbf+0zh3aBs/45YEwUGtQPrlSuVyEvkfy6VUYLzlcrFxikm9lXNj+BQDo92eWwd3lv73pe1sOTKbNBg0LBS8lYFPGxFp0mNUjyTF+R64MtX1G7+hq/a1v7xDjOt3ebVjUnQEOsVHaba9rEa2bkeaDLh1UBepfK3quptVMXw2LncNAGccDDe+qsurXYesvL6RqyyDhVBgGgm/8VYbD2mfvcE6NdsOHfA30K4hl5B3hcXNIsM9ZLIrRa/pi/WUHZL/LT7K5PUhdigCRp318ZvINcZ8XWt1L+treacbx9107nMQr3oA8OIjdvNrW+2KfVQaOzg01CeCVZY/Xt7JW7iQQkkgElGqV7r4U6+kwHjJ5WLjBoE6m112c7hl4m3YhcRguzTzbeCfN7WVm18qzrdXYaHwoICoxxlAdkkpxx/ta8+OsXAKSIe4SGXbOTn5tAaRJoMUQ1NntcuTNw+rIPkgXnX9dVZlDhuADwJ2fm9XuaDMfo6PwUIoMI3keH4FgIZfONlF1Xjjf5l4b8tJVHL5VYpcsSIxZqPUqWpUM/OzJTVYuCkTb27KdEtWd/hcmeKz+iE5XaR0UWWrPnuLmZE3ReQzQsrnVyfI+4Vbwshyz/Bl1e2z2h0KMy6rm5/1NxTHUlhZjyXfncARzm2isKAY9dz3vi3hZOOp8p5qDJ4WO5ZvO4X5Xx/Dh7tzlDEsrgefubCOXqhwK7+Lix8CnObvY64lzFERfPyNdrvzy+uw6Nss/NeV40OSUx247WHg3XWqGIs3Z+FihRwjwRIXSmU9XLP88jpc+/oP2KSKz7lY4SzPcr/8EoTNSS81HA7Cqp3ZmP/1MXx37GLDBTjqVS8kv1ypGsHw+RXuy+LLaix45/sTeOf7E5J1gLckAtpWlFqLHcu2nsJBLnbuQG4ZDpwtVZTxtJLnZEEl5rniUNREaigwBVzb1ZZgda4iZv3R6eRMwlUayTrZ+aNUCgz7bNDrJAVMK9knfywAfLr3rOs7pQuI3/jRyCkfvJt8zU852J9b5vxeNf64uZD0esU5AOd95N3vgLsL3E6qIF6jf5a5YCES2TUS9kBb7A454ltjkPjbN8fxtStnSnSEEQ9dlQZAfrFZ7A44XJ3jl/Pl6MxZZN78NgvrXZs85lfU4bW7B0m/7VUF5alfVltVPvAzKgWGD7YFPLuQtAZAPuYFkJUxwBmgCjgHHfYQqxPCbT9RpMjbwKwzma6XOMCCeD0Pvq//7zjW/nwOH+/Jxc7nr1ccF2UyQKdzborIm2e9kXVRWXeUl7q//jUPr/73uPR5YJcExawVkAeMixoD/68qpebX8+VSTJPF5nALwFOzdOspfLAzGwBw8KUb3NKCMzwNLvf94ycATmVkwV0DAQCbVffUU91Xzv8OADB1zT4pUV4Rl7mXzUB3ny5xLyzwi91nSvDnjUcAAO9vz8bhuTe6zfg9we5fYpsI5JXX+aXA8FZQpjwcz6t0O+7jPWfxxqYsAE7rwJPX9nSPgZFcSLLi8N9f8jD/6+OKcy3enCX1V71OtoIAzmfJ4SDJAvHXr47hhGucYc84oy2nkDCl6RjXdnUwcY/20YrPrP8C8gqcX8+Xo0f7GIVcgPPato1WWnASuLg1Vv7IhQrNJIL8udg7gpVhv/FWqjaccpbQxiQlJuUXg7Bj1FsRSEvUuQR/7LodPFsmTd6YZUX9TvO4CklYYMKTNiZnR++VHOt1ts5bK0q4/1lHSIqOkPbeqVIlIlOWVQYIM+1+iGtDMHVH4k2FABRJpQB5YGEo41gcrjLarhT1jIi3drB2dU2MUtTLn19twWH18TMdI59sScMSwWYcF7iVFvUq8zWbjfji/+fzOERwpnMtpbRE1f4SbgbDyvXtFAtANunymFXXnrjj+naKVShuWoHdfP0VtXK7fXED8ec7y1n12GDfIdaZzbne5mgwCJidix9A7xraFYB7/xL4D3+fLXaHm4XWG+yZim+ES4+3ZHaKd7o0+JwucvtkxZVtR8IrP4C2G6i81n2xg81B0rH9O8cpzsGf11mvs67eybHYOH0M/nRzXzxxdXfMvqEXJg1PkY5LjmNtl8dCfuyac0s/PHltT7w40Vl++nU98eR1PaXfWZ4Wu0KJkBWcWwd3Rs8OsZh/5wCkJrXB/w1Pwe1cDA5TJnjZmYtr4T2DYNDr8GxGb8V1YPtP9esUJ33HnsNoV93JcWYkx0Xi/zhZGX07sWunTEGhzqQLcBtCqrL0Ov+qXFCqRHaedstubsQo00isrqCmpOgIr/ESnoJf2bEDusbjmsvbAwBKa1Qvdi+J7lj5Pq4Oq86IyD6P7N7W+VkdOOr63M61/UCtRtu0Uk7z/0vn1ijbs4NyxqJ1jPoza9OgrvHKsj4O3PwKJoDLFmlp+CFjMl3RRTl4aj2gWteyVqU8tY91v67qutj1q7PYpXMmx0VKsyAHedjHxcO19HRdeTzl42DH3tAvWfquoUBedi4mT3KcGd3bRSu+EzQeX+5nQ2XZS6oxeWCiTAb06cjGF/fyWn1P7YrQypHFB/Azaupt0jFsdY6nODZW10u/6YfeHWPx+NWX4cWb++GZ6y9XuIT6dnJvO9+OR0enIcKoxxPXOMv/IaO3IiZxWJrn8e2BK1MlBee+Ed2w9dnrsOCugVL2ccCZ5FRdnin2A11jXEb/jorr0L+z83ve2sKeQ6YI3TvMqbgktIlQKDqAbAFmY5/VTrDZHW5bBQBAekoCAPm9o9PxWxEox227FEOj/F3sRh2mMK3c5GXbeLuD8CsXa8L7kS+6LAeRJoM0yPAzEyLC0TzZ1XBBtWyanSvRVZaPrwHk2VGC9LvSuqMuz3dEZgnyFAvCLCiJrsGCt6i4B7O6+0rVmwWytktpyFVl+TTdrDxvrWIzFPYgqlcCqd1rRVX1yMyvRGZ+JU4WVCkDeFlZo2f/tTq+6PC5MikXjnoGU6ZSSvlMxezenC+rle49nwcGcJ85l9daFfFPfGwUi0PRccsj1ShXNVjdvlfuxO19cGJl+JcWu35qKxXgNGNnXazEyYJKN+sOEeF0YRXOFFX7lU6A50xRdYtTnIgI2UXVOF1Y5bdc7qkP/FdC2CobT2ULK53PgnYaBbkvar2oeOsfsw7xkx+A21PHxisw7tehrJZPxe8s69wsUac4r1MW5WTBE+w8fDv5PYN0nrJxSuXdxz51bJHX8hrJMNUZb9XnUY8fzvqd5S0aSghf3qjXScukFeVtDrc8Lvwx0thjNEjXRC27FAMj/a5c5RQqhALTSPgdST35A3+/9qBitc2GgxdwoawWFyvqsM4V2xJpNEgrN3gLzPJtpxUuldOF1VIg7rnSGskUygaoAy6XCuB86f56vkLxO79nER/Qq2VGXPNTDgCnq0OtnNXb7PhsnzMJVGK0vFUAsyC4pdR3PcQHckul8yzefEJxnaat2QfAGRvD6uXP8RMXT3GqsAojX/1OoQz+acOvcDgIZ0vk3Vz58vx9ycyvxMhXv0PG4m3IWLwN49/cipf/cxQ7TrnqdsnLzrHxkDI53JeHL0hxSYz3tsgByZL7yvW3qMqiMCEv+PqY9D9TAD/YmS0lJow0GVyDq/MYfvArr7Fi9ILvJUUFAB5b9TN+OVeuvKeu/qSVvGzNrmzp/yMXKqQYHXaNos1GyUyszlVUoIrnYTk3+BcKW3ZfUWdzc909vvpn3LhoG8a/uQ0vfvGL4rdFm09g3MKtuO6NLXj7u5PwlwVfH8d1b2xBnznfNFoBCgbvbTmFa9/YgnELt+K1/2X6VXbFj6cVn49xE5qGYM8he761rGnH8iow8tXNyFi8Dbcs2Q4iUgSkm3kLrIYbln82NrgSubkto9aywGjkdeHdY7zblY0ffNydesWMJ1hZvp3qPX+8l3eenw9YV8vntbyrfd8ek+MRpd26Wcp/1XnYuMMrbyy3ljrbrrodvGua//9sSQ23wstd+WGTLP56qsd9yQXllqlYKDBhiZw1klNgVIOEOlgTcL6ATxXIm6xd37eDZDKtqZc7w9+5VToMFmh6gis/umc7Zzs4zZq33DBXDh+TwAessuA0viMyP23v5Fi3OBQ+YPd+V84DQE6spzYhsw3X2DuF3yiSmVGZ1s9iVpi1iPnfeXNqVn4lbA5SzCSOXKhAlUVW9i5PdsqklZL/eH4F7A6CyaBDrOu6H7lQLsnJZmus/SmJyuC7I9w9fWR0GtQM6OKUiV13QI4PAOR7F2nS4/b0Lm7leyXHKFZA8G3PKanWXBFxPL8Cmdw9ZfdaazNpdQZntuEfu79RJoM0WKkDvU+qdmBnwbt8/p20pGjud2V5plQDyusIAEc4S+URVUI+X+BXtfmbwyaY8LKoZW6IhChlgKh/MTDOY+OlCYp72cz8SmmCdbKgSrGjMqBcZaO2BKpX86S2beOm/Dj/uq9i5JMmTr3mMlzbuz2SoiOQFB2B+0Z0UzzbLDFciRcrrycGuMYXQLbSWlUKhDfYsczN7qzbN+sPf2xb1z1w7jmkVKDaRkdg4oCOSIqOwMCu8RjqygHlrF/5HGopX8xlCwDVXP/gl1wXVNbLeWBUK5kA2frFK1NuFhj1Zo6N2GsuGAgFppEoXEjcZo68aZw9aOufvAqDXf7GOqtDms0M7BqPK7rEa6at510krFOzlwyblQ9LTUTnBOdL3lPCNraqiW8bO8+oy5I062a/D0lNlANhVT7uuEgj+neOl2I9WEdWm1gnDuioKMfqaRcTgfcfHq5oGzvHuD4dAMg5cvhgVlb+qh5J+NdjI6U62fl1OkiKidZKIjaQXn15e7x9X7rUdnZeVjcLJNTK2QIAT17bA3/+TX/FgOOUW555ttHYkI2Vf/3uQbjysiRc27u99JtRr5OCBLVmvuw8l7WLRvaCmzHB5T+v41ZaXdUjCTdd0cmtXvU51NeDfylIsTkq2dVpw9X3NNKoh9GgR5xrJYf6pclbk7zmEmqiAhLqWSGP1r33tyxz6/kTb8COZVY+bXei+/3l73GUyeAxoaPW5rC88iMvx3V34zIF+dHR3fHCxL744JER2DfnBuybcwPm3zlAcd7Hx3R3K6+28nqCjw9hbWPbCkRoBCWrYUnqtFJMqAPxtRh9eTtXeVkJYBM5s8HZdp1Oh/emDMW+OTdg4/Qx0ga4AHDlZW0V9bPxna/7vhHdpP8fHd1dUT+/wEMriJcpl/I+UvL1jOLGHyI5m7DezcUkLDBhiZXzKUZxFgKtpG78TKbWapeCSuV4C/dgVd5PrH4hKH3U2oFuDEU8hattdVwSPjlQVg4UY52VX0atDrRVx7jUarQNkM3B6vJ8pl1AmY1S8gNHuAezSjM8VdvquGuq9uN6ClDms1Uy+aNUyxDrLO4DtZb8WmjXr+1iA1QzINcgxfcJt2yZ7OVisSvapc7CyeNpiwn+2nsKnm4o+FrKQRHRcHm3c/EB635YGrQI9ayQpyk7zjclEJcdm+ilrNb9ZN85XRh6zT4MaN9bXvlxS+jIW2BUmzZ6Q52Hyu4gyX2udr94Ksu3X8sN01B5Rb9V9XWv5Y3K55Bfws22SfClfikGxuY9BsY9nkYurxXEy35noQtmfvzhxhbe2KbeDNKX1YrBROSB8ZPZaw/ieF6l5Aox6fWKl9Ad7+6UtFxm9uSD4f7G5T+QzazOv3vOlGDiWz+61ck6y6Jvs/DBjmyFz5LXxu/++y4Y9DrUWGxuZfm2ScGuXNDl+gPn8NPpYiknDWsXU0DOl9Zi4ls/aqScdv79/dqDaBNhRHZRjdQ2/rhP957FlsxCqW38ixIA7nhvhyIOhD83ANz2zg7odTrumsrlz5fW4pEP9ijq5cuz6wYAxa7gZn6fl9ziGim+I1IVf3Oxsl5xT+Q2siBFLwqM61y/+9c+6XzMZSNfH85vrWHCnfHJAckqU1lvVZV1HvOPH08rtrlncq/bf84taR7bP4Xx16+O4Z3vT0rxLnxfffPbLLzPbT6nXv76xv8yseLHMxrB086/T398QPGS4ZXyvLI6xXU9XSS7pw6fL9N8Dnzl/pW7pXxEANxWajQnfP6lzPxKv+S64OprCW0ikFNcg3/8eAZfHPBtw072HMZLQbwOt7qLq5XB9Pev3C39r34Ojl6oUJRXryQqq7XinmU7AcjKj7O88++yrafwuSt2jsVdGbV8nCpY+Q0Hz2PPmRLF+NRQDAyLI7HaCf+3fBeMer00fvmyzJ/JfiBX7o+5rueHH5saKv9ztnNc59vukwLlqoM9h6xuvqwiXkil0LHPf/v6uDSp45VGOQbGfSdvOf6wGLcs2S59r46BAYBD58qQ3k1piW4uWrQC8+677+L1119Hfn4+Bg0ahCVLlmDEiBEhbVN2UbUUY2LU69AxPhJ6vQ7d2rZBbkmNIhYBcMZvtI81I61dNJBZqIhBYP5L9rfaYlfErzDSXL/nldcpdphNTYqGTqdD93bROFNU7VY34FxKmNI2CmdLat1+T02KRlo7Z4xHaY1VsRllp/hImI16dEmIkpLR8W1LTWojte1EQRWyuU3UDHodurpiRy5ztb242qJYrdS9XTQMep3UtuNcEjsWR2Ey6NAlIQrny5S/s2M6c207VVgtydTQdWPHdU2MglGvg8XukCw8qa4yHeMjEWnSo87q0L4nrnruHtoVWzILAQB/uLGX8ph20bhQXue2agkAurWVr598zjaKsqeLqhXXVV03K1vAZdFNS4rGZa7kXOp7ytO3UxyO5VXgfFmtok+mJrXxet14LpTXKfLwpLr6UlpSNHKKa9ySJwLOuBydTgebgzSvKwCP19xXeOUFQJPOFUjqbf7LFWHQ46oeSTh0tgyFlfVuGZO9YdDr0L9zHBLamFBWY22wbv66seeI9UlPbe+aGIWyGiuq6m3IuljlKqvsx4Czjxao2q6V3E0NK6/uy8lxZp+UiLQk5/jE2uZP3WxcrrW6j8ts3PSlvHpc7xQf6ZPy5uk57MZd33YxZmmc4scSvn7+GeVj+rqrj+fHziS57Sx4PCk6QpqQtDEZ0CHWjILKerd4qOZERy0pZJ/j008/xYMPPoilS5di5MiRWLx4Mf79738jMzMTHTp0aLB8RUUF4uPjUV5ejri4wM3ADuSWSjufpiW1kR70kmqLW3p+wBnM2SUhChabAz/nlHDL6HQYltpWmglk5le6peu2OxwY0i0R0WYj9uWUKnzMEQY9hqUlwmTQa9ZdUWtF306x6NkhFsVV9W4BxWajHkNTE2HU63DoXLnb7Lp/5zgpeC23uEaxy7ReB6ldNRYb9ueUScvsAGdAH3uYHA7CwXNlimXcep0zrqdNhNGtbUnREejfOU6aMRRV1bsFP5pdGx4aDXpF23QABndLkPzIVrvD7boBTtPzkG4JMBr0yCmWlQR13WdLajSVj7ZtInBFF+dxRIQtWYWoqbdj4oCOiqWZVfU27M8phfoB65oYJQVP27g28m2vsdiwL6cU6rHBqNdhaGoiIk0G2B2E/bmlUnBnQ/eU0T7GjB4dorEvp1Rh1u4UH4leybEerxvg7LeDUxJw6Gy5YmUJq9tk0KO63ob9ue5tB4C+HWNRb3NoXldnzBPhfJlnpckTRISc4hp0SYiCyahHbkkNsouq0b9zHJK4IMxQ0Dk+Ega9DmdLaxs+WEX3pGh0SYxS3GdfYc9hfnmd5uQGcD4LPTvEuI0fg7smSAHApwqrpC1C1AzqGo8ai12xsGBgl3gpS6zdQdiXU+rmgoqNNCI9JaHBpcxEpNmX+3WKk+LvvFFWY8Ghc0rZ+PGrIU5crFQoAIAz2WNfH616WuM6P7Z6Q+s5bB9jRr/OyrovlNWioLIeg7rGK66nxeYsb+GCf/l3DkvVUVRlUYwrjOP5FYoVj307xkp7NQHOJfhH8yowOCVBkX4hEPj6/m6xCszIkSMxfPhwvPPOOwAAh8OBlJQUPP3003juuecaLB8sBUYgEAgEAkHw8PX93SKDeC0WC/bt24fx48dL3+n1eowfPx67du0KYcsEAoFAIBC0BFpkDExRURHsdjuSk5MV3ycnJ+P48eOaZerr61FfL5u7ysudZsOKipbh/xYIBAKBQNAw7L3dkIOoRSowjWH+/Pl4+eWX3b5PSUkJQWsEAoFAIBA0hcrKSsTHx3v8vUUqMO3atYPBYMDFixcV31+8eBEdO3bULPP8889j9uzZ0meHw4GSkhIkJSU1GCgWCioqKpCSkoKzZ89eEjE6Qt7WTajkFde59XOpySzkdVpeKisr0blzZ69lW6QCExERgaFDh+K7777D7bffDsCpkHz33XeYPn26Zhmz2QyzWRnZnZCQEOSWNp24uLhLopMyhLytm1DJK65z6+dSk/lSl9eb5YXRIhUYAJg9ezYeeughDBs2DCNGjMDixYtRXV2NRx55JNRNEwgEAoFAEGJarAIzadIkFBYW4qWXXkJ+fj4GDx6Mb775xi2wVyAQCAQCwaVHi1VgAGD69OkeXUbhjtlsxp///Gc3t1drRcjbugmVvOI6t34uNZmFvL7TYhPZCQQCgUAgEHiiRSayEwgEAoFAIPCGUGAEAoFAIBCEHUKBEQgEAoFAEHYIBUYgEAgEAkHYIRSYIHHo0CGxD5NAIBAILmmC+S4UCkyAOX/+PO69916kp6djzZo1oW5O0KmqqpI2zrwUFrRduHABI0eOxMKFC0PdlGahoKAA27Ztw+nTp5u9btG3Wjeh7FuhoKCgAB999BF27NiB0tLSUDcn6DTHu1AoMAFk9uzZ6NatG2pra5GYmIjY2NhQNymozJ07F1dccQXWr18PAC1yz6lAMnPmTKSlpSE5ORlTpkwJdXOCzosvvojLLrsML730EgYOHIh58+YhJycHgHNrj2Ai+lbrJpR9KxQ899xz6NmzJ5YtW4YJEybgmWeeQXZ2dqibFTSa7V1Igibz9ddfU1xcHA0ePJi2bt1KREQ33ngjTZo0KcQtCw7FxcX02GOP0ZAhQyg1NZXuueceysrKIiIih8MR4tYFnmPHjlHnzp2pd+/etHfv3lA3p1l45513aMSIEbRlyxaqrKykpUuX0qhRo+jOO+8Mar2ib7V+QtW3QsG5c+coIyODRowYQVu3bqX6+npavXo1XXHFFfSf//wn1M0LOM39LhQWmACQn5+PZcuW4cCBA7jmmmtgsViQlpaGysrKVhkHY7PZ0KlTJ/zlL3/BP//5T+zYsQP/+9//YLVaW+VMuby8HHFxcbjpppswbNgw7N+/Hy+//DLef/99HDhwINTNCyhEBJvNhq+++gpDhgzB2LFjERMTg2nTpqFXr15Yv349PvroIwCA3W4PWJ2MS6Fv8fJeCn2LyRuKvhVqrFYrJk6ciJUrV+Kaa65BREQE7rrrLuh0OvTq1SvUzQs4zf4uDIpa1MphM0GLxeL2m81mIyKiOXPm0OWXX644PlyxWq0KGaxWK128eFH6/PDDD9NVV11Fe/bsCUXzAo5a3rq6Olq2bBlFR0fTrbfeSqmpqTR+/HhKTU2ldu3a0WuvvRbC1jYdtbzFxcWUnp5Ob775puK4mTNnUvfu3alTp05SP28q9fX1VFdXp2hLa+5banlbe99Sy9ucfSsUsOeIyWC1WqmkpET6vbS0lH7zm99Qr1696JFHHqF169aF9fsh1O9CYYHxkyVLlmDu3LkAAJPJ5Pa7Xu+8pOPGjUNeXh6OHz8e1jPH+fPn44477sDkyZOxceNGVFdXw2g0okOHDpKvet68eTh//jy++OILlJWVAQjfoEu1vFVVVTCbzbjuuuswYcIEFBcX4/PPP8e6deuQnZ2NBx54AOvXr5diNcINJu+UKVOwceNGVFZWom3bthg2bBhWrlyJFStWoLa2FnPmzMH69esxe/ZsxMTESDPlpjB37lyMGTMGt912G5YvX46SkpJW3bfU8hYXF8NsNuPaa69FRkZGq+tbanmLioqkvrVixYqg9q1QwL8bDAYDAMBoNCIxMREAcPbsWaSmpqKmpgYvvPACqqur8eKLL+L5558PVZObRIt4FwZUHWrFHDx4kDIyMkin09GAAQPou+++IyIiu92uefzmzZspLS2Nvv322+ZsZsDYvXs3DR48mK644gpatGgRjR07ltLT02nRokWK45iW/corr1CfPn3o66+/ln4Lp5mFJ3kXLlxIRE5Ztm/fTnv37iWHwyHJffbsWerfvz+9/vrroWy+33iS94033iAiotraWrrzzjupR48elJiYSD169KCdO3cSEVGfPn3o/fffb3TdVquVHnjgAerZsyetWrWK7rvvPurfvz/dfPPNiuNaS9/yJO/EiROJSO5be/bsaRV9y5O8N910ExEFt2+FAl/eDay/HjhwQFF2zpw5lJ6eTuXl5c3W3qbSkt6FQoHxkYULF9Ktt95Kq1atookTJ9IDDzxAVquViLQH09raWoqOjqaPPvqIiDzf3JZIYWEhTZ06lZ544gmqrKyUvp80aRJNnTpVYS5ksjscDho0aBA99thjdPr0afriiy9oyZIlzd72xtCQvPX19URE0v1mMNmTk5PpxRdfbL4GN5GG5K2pqSEiourqasrKyqJdu3ZJx9TX11O7du1oxYoVja7/9OnT1KdPH9q4caP03aZNmygqKkrhWmDPTDj3LSLv8jIFWe02Cde+ReRdXuYSq6mpoczMzID3rVDg77uB//6+++6jsWPHUk1NTdgo5S3pXSgUGB/Jy8uToqoXL15MI0eOpA8++ICItG9aVVUVZWRk0LRp05q1nYGgsLCQ5s6dS/v27SMi2b/5hz/8gUaMGOF2PBt8165dS+3bt6du3bqR0Wikt99+u/ka3QT8lZdnw4YNlJ6eTkeOHAl6OwNFU+T94IMPaPjw4VRYWNjo+jMzM0mn01FOTo7i+1dffZUSEhIU34d73yLyT16ecOxbRN7ljY+P9yhvIPpWKPD33cDYt28fXXvttbRy5cpmaWegaEnvQqHANIKzZ8/SPffcQzfffDPl5+cTkbZWOXjwYJoyZYoiiC1c4K0NrFM+9NBDNGvWLM3js7Oz6be//S3pdDp65JFHqLi4uFnaGSj8kfeXX36hPXv20MyZMykpKYmef/55N+tMS8cfeQsKCmjz5s30zDPPUFxcHL3yyitkt9sbPWM8evQoDR482C1Atby8nC677DKaPXs2EcnKS7j3LV/ldTgcraJv+Sqv3W4PeN8KNQ29G44fP07btm2jGTNmUFxcHE2bNk2yeIYjoX4XCgXGha8PDLs5H330EY0aNYr++te/uh3DBpxPPvmEDh8+HLhGBhBv8vJuIZ7Ro0fT6tWrNX+bNWsWdezYscWuFgmkvEuXLqXhw4fTqFGj6KeffgpCa5tOIOU9ceIETZ8+nUaPHu2TvA09S1VVVTRp0iS666676MyZM0QkP1evv/46devWjWpra6Xjw7lvEfkmL3uJhXvfIvLv/vrbt0JBIN8Nn332Gd1222103XXX0e7duwPazkARTu9CocAQUUlJCVVUVEifeQ1SPfthn2tqamjatGk0duxYOnToEBGRZJJv6csA/ZGXyXLmzBmKjY1VdMK8vDzpfz6WoqURKHnPnz9PREQVFRXSPW+JBEreCxcuSGV8NesXFhbSxYsXpfN6qvvjjz+mgQMH0t/+9jdF+eXLl9MVV1yhcDO05L4VKHnZi76qqqpF961A31+Hw9GiXUa+yst/1no3sCSF1dXVdOrUqeZoeqMIlLzN9S685BWY6dOnU48ePWjs2LF0//33S4M2j8PhkHx8RPJN/f777+n666+nSZMm0YQJE0in02mWb0k0Rl4iovfee48GDx5MRM7skvfeey8NHz5ckeOgJRJoeVu6+yKU8j755JPUsWNHGjRoEF1//fV04sQJt2NsNhv961//IiKi3/72t3TllVcqMpK++uqrNGbMmBY/CSAS8gp5/Xs3sAlQSyXQ8jbHu/CSVWAqKyvplltuodGjR9PWrVtpxYoVdNVVV1F6ejr9+uuv0nHLli2jDh060MSJExUJtoiILl68SP379yedTkd33HEHZWdnN7cYPtMYeQsKCqTvZ82aRTNmzKBXX32VoqKiaNy4cXTu3LlQiOITQt7mlff3v/89paen05YtW2j16tU0ZswYGjBgAG3bts2t7htvvJEsFgsdO3aMHn30UTIajfS73/2Opk+fTvHx8dIKo5YcByHkFfK2lncDUfjKe8kqMD/++CP169ePDh48KH13/vx5MplM9MQTT9DFixfp888/py5dutDKlSvdZgy7du2itm3bUp8+fWj79u3N3Xy/aYq81dXVlJaWRjqdjnr16kWbNm0KhQh+IeRtHnkdDgdVV1fT8OHDae7cudL3NTU1lJ6eTlOmTKGcnBxav349de7cmVauXOlmin7jjTdo6tSplJGRIeWUaKkIeZ0IeWV5w/ndEO7yXrIKzLp16yg6Olrx3cGDByk5OZm6d+9Oa9euJSLP/veqqipas2ZN0NsZKJoib3FxMT3wwAP04YcfNktbA4GQt/nkPXfuHHXs2FHK+8Hy5qxdu5b69+9PS5cuJSLnM8PTkmfg3hDyCnmJ3OVlhNu7IZzlvSQUmFdffZVmzpxJS5culW7O7t27qVevXjRnzhzpuCeffJJmzZpF/fv3p8mTJxOR9kPY0h/MQMrb0mUlEvISNZ+8n3/+uSJrKCs/atQoqQ5+Bn7bbbfRrbfe6mZyDheEvEJef+Rt6eNHa5O3VSswx48fp379+tGAAQNo0qRJlJiYSNdccw0dOHCA7HY7vfXWW6TT6eiqq66iuLg46tmzJ1VUVNCaNWsoMTEx1M33GyGvkDdY8v7www/Uu3dv0ul0tGzZMul7NoCtXLmSTCYTZWVlERFJy2Q3bdpEkZGRUjxNqAc8XxHyOhHyCnlbsrytWoFZuHAhjRo1StIo8/LyaNCgQXTPPffQ6dOniYhoy5Yt9O6779KXX34plXv33Xdp6NChVFRUFJJ2NxYhr5A3GPIePXqUJk2aRE899RRNnTqVunXr5rbC4PTp0zRmzBgaN26c4vusrCyKj49v8bEPPEJeIa+Q10lLl7fVKjBWq5UeffRRuu222xRa49q1a2nkyJH03HPPaZaz2Ww0efJkeuSRR5qrqQFByOtEyKskEPLm5+fTihUr6OjRo1RRUUFdunSh3//+94pjHA4H/fe//yWz2UyvvfaatMJp+fLlNGzYMEVempaOkFfIK+QND3lbrQJDRDRlyhS68cYbyWazKSKnn3rqKRo3bhzt379f+i4rK4tOnjxJ06ZNo27dutH3339PRC3PZOYNIa8TIW/g5eUTWv3zn/8ks9msWPHE+Mc//kHJycnUt29fuvvuu8lsNtO8efPI4XCE1bUW8gp5iYS8LV3eVqnAsMH9hx9+IL1eL21hzkzvW7ZsoZ49e0orM4icibx69epFI0eObLHp/z0h5D1ARELeYMvLD2AjR46kW2+9VXOfnh07dtDbb79NM2fO1BwkwwUhr5CXSMjbkglbBSY7O5vOnj1LRO7pitlNqa2tpbFjx9L48eOJSHkDe/ToQX/5y1+kz8XFxVK655aIkFdGyBtYeX2pm8Hq3LZtG+n1emnppc1mUyTGa8kIeWWEvEJeVi5c5OUJSwXmiy++IJ1OR7fffrvie/7m2Ww2ys/Ppy1btpDJZKK///3vkhmtpKSEBg4cSO+8806ztruxCHmdCHkDL68vdVutVmmnWZ4pU6bQ0KFDafPmzZSRkUF/+tOfyGKx+N2G5kTI60TIK+QNR3nVhKUC88ILL9CVV15JQ4YMoc8++4yIlDfsrbfeooiICGnPhnnz5lGHDh3o8ccfp23bttGsWbOoe/fudOzYsZC031+EvELeYMnrS91ms5nef/99Nx/4zp07SafTkU6no4yMjBa/LxaRkJdIyCvkdRKO8qoJKwWGzTifeuopevrpp+mxxx6jq6++WtIay8rKaMqUKdS5c2datWqV4oa9/fbbdPXVV9OAAQNo0KBBLXYrcx4hr5A3WPL6U/fq1asVddtsNlq1ahWZTCYaOXKkIni4pSLkFfIKeZ2Eo7yeCCsFhsjpw8vIyKCffvqJvvzyS+rXrx+99dZbROS8aXv37lUs+eKjr+12u5QvI1wQ8gp5gyWvv3UzqqurafHixYqEWOGAkFfIK+QNX3m1MKKF8tlnnyEhIQH9+/dHp06dAAB2ux0GgwEGgwEWiwVXXnkl7rzzTqxcuRK7d+/GgAEDMHv2bEREREjn0ev1iv+7d+/e7LL4gpBXyBsseQNVN6NNmzaYMWNGUy9J0BDyCnmFvOErr1+EWoNSs3r1aurQoQONGDGC2rdvT6NHj6b169dLv5eUlFDHjh2lPWBmzZpFkZGRFBUVRT///HOIWt14hLxC3mDJK661kFfIK+RtzbQYBcZqtdLixYupb9++tGLFCqqvr6cdO3bQgw8+SDfddBPV1dUREdH58+dp0qRJ9PHHH9OAAQOoXbt2dMstt1CfPn2kZaPqpWQtESGvkJcoOPKKay3kJRLyCnnDQ96m0GIUmLKyMnrxxRdpwYIFCj//ggULaPTo0VRZWUlERLm5uaTT6chkMtFTTz1FpaWldOTIEZowYQKNGTMmVM33GyGvEyFv4OUV19qJkFfIK+Rt3YQ0BubEiRPo2bMndDod4uPjcffdd2PAgAHQ6/VwOBzQ6/VISUlBdXW15MtLSUnBxx9/jO7du2PEiBEAgISEBNx+++2orKwEEQEAdDpdyOTyhJBXyBssecW1FvIKeYW84SJvwAiF1vTpp59SWloa9e7dm0aMGEErVqxQ/M5rnZMnT6aHH36YiEgzyQ5bHtaSTWVCXiEvI9Dyimst5GUIeZUIeVs/za7AbNq0idLS0ujdd9+lb775hmbPnk0mk4mWL19OtbW1RETSxlG1tbU0cOBAWrNmjdt5wuUmCXmFvMGSV1xrIa+QV8gbLvIGg2ZTYJh2+PLLL9PQoUMVGuSTTz5Jw4YNo3Xr1inKnD9/ntLS0igrK4uInDvszpo1q7ma3CSEvELeYMkrrrWQV8gr5A0XeYOJvmEnU2BgfrijR4+iR48eMJlMsFqtAIB58+YhMjISGzZsQH5+vlRm8+bNSElJQadOnTBjxgz069cPOTk5sFqtkn+vpSLkFfIGS15xrYW8Ql4hb7jIG1SCpRlt2rSJnn76aVq0aJEizfny5cspNjZWMnsx7XP58uXUq1cv+uGHH4jIqaXec889lJiYSElJSdS/f/8WvZuwkNeJkDfw8opr7UTIK+QlEvK2dHmbk4ArMBcuXKBbbrmFOnToQFOmTKEBAwZQfHy8dOMyMzOpS5cuNGfOHCIiKQkPEVHHjh1p0aJFRORMd3zLLbdQ165d6ZNPPgl0MwOGkFfIGyx5xbUW8gp5nQh5W768oSCgCkx1dTU99NBDNGnSJMUeLSNGjJCipysqKmjevHkUFRVFubm5RCT7BMeOHUuPP/64VK6lZxMU8joR8gZeXnGtnQh5hbxEQt6WLm+oCGgMTJs2bWA2m/Hwww+je/fusNlsAICJEyfi2LFjICLExsZi8uTJGDJkCO69917k5ORAp9MhNzcXBQUFuP3226XzDR06NJDNCzhCXiFvsOQV11rIK+QV8jJaurwhI9AaER9RzdawT548mZ544gnFcefOnaOePXtSWloa3X333dS5c2caN24c5efnB7pJQUXIK+QlCo684loLeYmEvEJegSd0RMEPYR4zZgyeeOIJPPTQQ3A4HACcO+mePHkS+/btw+7duzFo0CA89NBDwW5KsyDkFfIGS15xrYW8Qt7w5VKTN+gEW0M6deoUJScnK3x4fLBSa0PIK+RtjXWHAiGvkLc1canJ2xwELQ8MuQw727dvR0xMjOTDe/nllzFjxgwUFBQEq+qQIOQV8rbGukOBkFfI25q41ORtToK2mSNL1rNnzx7cdddd+PbbbzF16lTU1NRgzZo16NChQ7CqDglCXiFva6w7FAh5hbytiUtN3mYlmOad2tpa6tmzJ+l0OjKbzbRgwYJgVhdyhLxC3tZYdygQ8gp5WxOXmrzNRdCDeG+44QZcfvnlePPNNxEZGRnMqloEQt7WTSjlFde6dSPkbd1cavI2B0FXYOx2OwwGQzCraFEIeVs3oZRXXOvWjZC3dXOpydscNMsyaoFAIBAIBIJA0my7UQsEAoFAIBAECqHACAQCgUAgCDuEAiMQCAQCgSDsEAqMQCAQCASCsEMoMAKBQCAQCMIOocAIBAKBQCAIO4QCIxAIAs61116LmTNnXnJ1CwSC5kMoMAKBIKRs2bIFOp0OZWVlASm3bt06vPLKK4FroEAgaJEEbTNHgUAgCAVt27YNdRMEAkEzICwwAoGgSVRXV+PBBx9ETEwMOnXqhIULFyp+X7NmDYYNG4bY2Fh07NgRkydPRkFBAQAgOzsb1113HQAgMTEROp0ODz/8MADA4XBg/vz56N69O6KiojBo0CB89tlnDZZTu5DS0tIwb948qY2pqanYuHEjCgsLcdtttyEmJgYDBw7Ezz//rGj39u3bcfXVVyMqKgopKSl45plnUF1dHejLJxAIGolQYAQCQZN49tlnsXXrVmzYsAGbNm3Cli1bsH//ful3q9WKV155BYcOHcIXX3yB7OxsSdlISUnB559/DgDIzMxEXl4e3nrrLQDA/PnzsXr1aixduhRHjhzBrFmzcP/992Pr1q1ey2mxaNEijB49GgcOHMDNN9+MBx54AA8++CDuv/9+7N+/Hz169MCDDz4ItrPKqVOnMGHCBNx11104fPgwPv30U2zfvh3Tp08PxiUUCASNIYQ7YQsEgjCnsrKSIiIiaO3atdJ3xcXFFBUVRTNmzNAss3fvXgJAlZWVRET0ww8/EAAqLS2Vjqmrq6M2bdrQzp07FWUfe+wxuu+++zyWIyIaO3asou7U1FS6//77pc95eXkEgObMmSN9t2vXLgJAeXl5Uj1Tp05VnPfHH38kvV5PtbW13i+KQCBoFkQMjEAgaDSnTp2CxWLByJEjpe/atm2L3r17S5/37duHuXPn4tChQygtLYXD4QAA5Obmol+/fprnPXnyJGpqanDDDTcovrdYLEhPT/e7nQMHDpT+T05OBgAMGDDA7buCggJ07NgRhw4dwuHDh/Hhhx9KxxARHA4Hzpw5g759+/rdBoFAEFiEAiMQCIJGdXU1MjIykJGRgQ8//BDt27dHbm4uMjIyYLFYPJarqqoCAHz11Vfo0qWL4jez2ex3O0wmk/S/Tqfz+B1TrqqqqjBt2jQ888wzbufq1q2b3/ULBILAIxQYgUDQaHr06AGTyYTdu3dLL/bS0lJkZWVh7NixOH78OIqLi7FgwQKkpKQAgFuwbEREBADAbrdL3/Xr1w9msxm5ubkYO3asZt1a5QLFkCFDcPToUfTs2TPg5xYIBIFBBPEKBIJGExMTg8ceewzPPvssvv/+e/z66694+OGHodc7h5Zu3bohIiICS5YswenTp7Fx40a3HC2pqanQ6XT48ssvUVhYiKqqKsTGxuIPf/gDZs2ahVWrVuHUqVPYv38/lixZglWrVnksFyj++Mc/YufOnZg+fToOHjyIEydOYMOGDSKIVyBoQQgFRiAQNInXX38dV199NX7zm99g/PjxGDNmDIYOHQoAaN++PT744AP8+9//Rr9+/bBgwQK88cYbivJdunTByy+/jOeeew7JycmSkvDKK69gzpw5mD9/Pvr27YsJEybgq6++Qvfu3b2WCwQDBw7E1q1bkZWVhauvvhrp6el46aWX0Llz54DVIRAImoaOyLVuUCAQCAQCgSBMEBYYgUAgEAgEYYdQYAQCgUAgEIQdQoERCAQCgUAQdggFRiAQCAQCQdghFBiBQCAQCARhh1BgBAKBQCAQhB1CgREIBAKBQBB2CAVGIBAIBAJB2CEUGIFAIBAIBGGHUGAEAoFAIBCEHUKBEQgEAoFAEHYIBUYgEAgEAkHY8f8Bl7o3MuUe3gYAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAHCCAYAAAAASKhtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD8h0lEQVR4nOydd3wUdfrHP5vdzaYnpFFDGgEEpBfpRYoK51nghONQsZ1HQLFwgnpiBT1OPUFBUYSf2ABPLASVFnrvPaQXAqT3ZLNlfn9sZjMzu/Od7yabZDf5vl+vvCAz3535zuzmu888z+d5HhXHcRwYDAaDwWAw2ggeLT0BBoPBYDAYjOaEGT8MBoPBYDDaFMz4YTAYDAaD0aZgxg+DwWAwGIw2BTN+GAwGg8FgtCmY8cNgMBgMBqNNwYwfBoPBYDAYbQpm/DAYDAaDwWhTMOOHwWAwGAxGm4IZPwyns3fvXqhUKuzdu7elp8JgMNwEtm4wmhNm/DCo2bBhA1QqlfXHy8sL3bt3x/z583Hr1i2nnGP79u14/fXXiWNeeOEF9OrVyynnc4R169bhtttug5eXF+Li4rBq1SqHXn/lyhXcdddd8PPzQ3BwMObMmYP8/Pwmmi2D4RqwdaPh68bx48cxb948DBo0CFqtFiqVqgln2rZgxg/DYd58801s3LgRH3/8MUaMGIE1a9Zg+PDhqKqqavSxt2/fjjfeeIM4JiEhAVOnTm30uRzhs88+wxNPPIHevXtj1apVGD58OJ555hm89957VK/PycnBmDFjkJKSgmXLluHFF19EQkICJk2ahNra2iaePYPR8rB1w/F1Y/v27fjiiy+gUqkQExPTxLNtY3AMBiXr16/nAHAnTpwQbX/++ec5ANy3337LcRzHJSYmcgC4xMREh88RHx/PkT6WqampDT52Q6mqquJCQkK4qVOnirbPnj2b8/X15YqKihSP8Y9//IPz9vbmMjMzrdt27tzJAeA+++wzp8+ZwXAV2LrR8HXj5s2bXFVVFcdxytfIcAzm+WE0mgkTJgAA0tPTieO2bNmCQYMGwdvbG6Ghofjb3/6G69evW/c/+uij+OSTTwBA5CYXkpCQgMDAQIwaNQoAkJmZiXnz5qFHjx7w9vZGSEgIZsyYgYyMDOtrOI7D+PHjERYWhry8POv22tpa3H777YiNjUVlZaXsvBMTE1FYWIh58+aJtsfHx6OyshIJCQnE6waA//3vf5g2bRq6du1q3TZx4kR0794dmzdvVnw9g9HaYOuG8rrRvn17eHt7K45jOA4zfhiNJjU1FQAQEhIiO2bDhg34y1/+ArVajeXLl+PJJ5/Ejz/+iFGjRqGkpAQA8Pe//x2TJk0CAGzcuNH6I2T79u2YNGkSNBoNAODEiRM4fPgwZs6ciZUrV+Lpp5/G7t27MW7cOKs7XaVS4csvv0RNTQ2efvpp67GWLl2KS5cuYf369fD19ZWd+5kzZwAAgwcPFm0fNGgQPDw8rPvluH79OvLy8mxeDwBDhw5VfD2D0Rph6wb7u29RWtr1xHAfePf1rl27uPz8fC47O5v7/vvvuZCQEM7b25vLycnhOM7WfV1bW8uFh4dzffr04aqrq63H27ZtGweAe+2116zbSK7dyspKzsvLi1u/fr11G+8SFnLkyBEOAPfVV1+Jtn/22WccAO7rr7/mjh49yqnVam7hwoWK1x0fH8+p1Wq7+8LCwriZM2cSX3/ixAm78+E4jlu0aBEHgKupqVGcB4PhjrB1wxaadcPe8dhXtvNgnh+Gw0ycOBFhYWGIiIjAzJkz4efnh61bt6Jz5852x588eRJ5eXmYN28evLy8rNunTp2Knj17Url/AWDPnj3Q6/W4++67rduELmGDwYDCwkJ069YNQUFBOH36tOj1Tz31FKZMmYIFCxZgzpw5iI2NxbJlyxTPW11dDU9PT7v7vLy8UF1drfh6ANDpdHZfLxzDYLRW2LpRD826wWhaNC09AYb78cknn6B79+7QaDRo3749evToAQ8PeTs6MzMTANCjRw+bfT179sTBgwepzpuQkIDBgwejffv21m3V1dVYvnw51q9fj+vXr4PjOOu+0tJSm2OsW7cOsbGxSE5OxuHDh6ni6d7e3rIZWTU1NdZjVFRUoKKiwrpPrVYjLCzMul+v19t9PX8OBqM1w9aNemjWDUbTwowfhsMMHTrUrn6lqdm+fTvmzp0r2rZgwQKsX78eCxcuxPDhwxEYGAiVSoWZM2fCbDbbHGPv3r1WI+TChQsYPny44nk7duwIk8mEvLw8hIeHW7fX1taisLAQnTp1AgD85z//EaXbRkZGIiMjAx07dgQA3Lhxw+bYN27cQHBwsF2vEIPRmmDrhgXadYPRtDDjh9HkREZGAgCSkpKsGR48SUlJ1v0AZIt4Xbx4EVlZWTZ1On744Qc88sgjeP/9963bampqrGJIITdu3MCCBQswefJkeHp64sUXX8SUKVNE57dH//79AVjc8Pfcc491+8mTJ2E2m637H374YWs2CVDvzencuTPCwsJw8uRJm2MfP37c+noGg1FPW183GE0L0/wwmpzBgwcjPDwcn376qSj089tvv+HKlSuihYnPnpAuQtu3b0f79u1tnhzVarXIZQ0Aq1atgslkspnHk08+CbPZjHXr1mHt2rXQaDR4/PHHbV4vZcKECQgODsaaNWtE29esWQMfHx/r/GNiYjBx4kTrz8iRI61jH3zwQWzbtg3Z2dnWbbt378a1a9cwY8YM4vkZjLYIWzcYTQnz/DCaHK1Wi/feew9z587F2LFjMWvWLNy6dQsfffQRoqKi8Nxzz1nHDho0CADwzDPPYMqUKVCr1Zg5cyYSEhJw99132zzhTZs2DRs3bkRgYCB69eqFI0eOYNeuXTbps+vXr0dCQgI2bNiALl26ALAsdn/729+wZs0am1ocQry9vfHWW28hPj4eM2bMwJQpU3DgwAF8/fXXeOeddxAcHKx4D15++WVs2bIF48ePx7PPPouKigqsWLECt99+u41LnsFgsHUDsOie+LR93nP89ttvA7B4xubMmaN4DIYMLZlqxnAv5Cq1SpGr1Lpp0yZuwIABnE6n44KDg7nZs2db01x5jEYjt2DBAi4sLIxTqVQcAK6kpITTaDTc5s2bbc5VXFzMzZ07lwsNDeX8/Py4KVOmcFevXuUiIyO5Rx55hOM4jsvOzuYCAwO5P/3pTzavv//++zlfX18uLS1N8frXrl3L9ejRg/P09ORiY2O5Dz/8kDObzYqv47l48SI3efJkzsfHhwsKCuJmz57N3bx5k/r1DIY7wtaNhq8b/D2x9zN27FiqYzDso+I4Bd8dg9HCbN68GbNnz0ZBQQECAwNbejoMBsMNYOsGgwTT/DBcnqCgIKxcuZItYAwGgxq2bjBIMM8Pg8FgMBiMNgXz/DAYDAaDwWhTMOOHwWAwGAxGm4IZPwwGg8FgMNoUzPhhMBgMBoPRpmBFDiWYzWbk5ubC399ftmQ6g8FoWjiOQ3l5OTp16kRsfulKsLWDwWhZHFk3mPEjITc3FxERES09DQaDASA7O9taWdfVYWsHg+Ea0KwbzPiR4O/vD8By8wICAlp4NgxG26SsrAwRERHWv0d3gK0dDFcgvaAC2cXV6Brsg6gQX7tjPtubimPphRgeG4Inx8Q28wybDkfWDWb8SODd1QEBAWwBYzBaGHcKH7G1g9GSlFTV4pnvzmJ/cr5125i4MKyaNQCBPloAwOGUfPz1i+PW/Sdv5GLVwVxsevIODIsNsTmmu0KzbrhHMJ3BYGDt/lRELU7AbxdutPRUGAyGi/HMd2dxKKVAtO1QSgEWfHfG+rvQ8BHy0OdHm3RurggzfhgMN2HZ9qsAgH98cxqZhZUtPBsGg+EqpOVXYH9yPkyShg0mjsP+5HykF1Ti493JxGOsTkyx/n9fUh4+2n0NBwReJCkvbDqLUe/txqIt5xo3+RaChb0YDDfkekk1ImXi+QwGo22RWVRF3J9RWIlDqQXEMQeS8zG1b0fc98khFFcZrNvb+WjxS/woRIT4AAC2nsrGc1vOW/dvOZWDLadysPKh/rh3QOdGXEXzwjw/DIYb4uFGWhgGg9G0RAb7EPdHhfhiZGwocczouDAbwwcAiqsMuPeTg9bfhYaPkGc2naWbrIvAjB8Gw4WY+ME+RC1OQNTiBJjN9S5sk1nszmbGD4PBcISvj2YQ93+xP9XG8OEprjLgQHI+XlAwcNwpBMaMHwbDRbhRWo2UvArr74lJedb/55frRWOlxhCDwXBd0vIrkJiUh/QCea3ex7uTMWvtEZH2hhaasNet8lrimKJqI3H/6axiHMsoJI45kkYOrbkSTPPDYLgIUnumrKb+KazaYBLtqzWZm2NKDAajETQk/fxIWhH+/UeSQ+nnNGGv9v6euEkwgIK9NUQDaGDXdsgqqEJO8XXZMcNjyKE1V4J5fhiMZobjOCTdLEd1rclmuxCDsf536Vi9xBgCgMzCShiYUcRguAzNlX4eE+ZH3B8d6oujr0wijjm9dApx/+i4MLz/UH/imBUz+hH3uxLM+GEwmplPElMw5b/7cd8nh0TbDSax8cOh/vdLuaWifddulYt+33Y+F2NX7MW8b047ebYMBoOEXEjL2ennJJ76vxPE/U9vPAkAeGiw/WyshwZ3xgMfH7S7j2f66kO4452dxDEjlu0i7nclWNiLwWhmDiRbngSTJAaMUeK16dKu3pVtlMTEfDzFf7rfH88GAOy8fMtp82QwGPIohbSclX4+b3w3xbmcyi4m7j+RWQQAeG96f7w3vT9GLNuFG2V6dAzQ4fDLEwEAt/3rN+IxLt0oQ42B7Fm+UaYn7nclmOeHwWhmzIInQWFGl1THI/xdGs4ymsW/C71EDAaj6VEKaTkr/ZyGQRHtiPuHRAaLfj/88kSkvzvVavgAwG3tyf2wencMQHt/T+KYjgE6hZm6Dsz4YTCamas36j0+YgNHqvmp31drFBs70rEnMshPfgwGw3nQhLS+PpJJPMY3RzMR5k82FpT289x5W/tG7QeAZyd1V9z/3KQexDHPTSbvdyWY8cNgNDM6bf2fnd4o790RGjg2XiGj/O+FFe7jemYw3BGakNZhhbTvgyn5OJJOTh2XhsXk9EWOHueBjw/itn/9humr63WHZ3NKiMc4nVXs8HlcGab5YTCaGV+dBgUVlpRTAyG0VWuqz+gSZn7ZGxvgpUFZjSVNtbzGiBA/93E/MxjuBk1Ia0RMKK7erJAdM6pbGOLC/fDTmVzZMXxYTElfNDw6hOo4H+1Mwoe760XUJ7NKELU4AYsmd0f/LkHEaxrYtR06+HtRnccdYJ4fBqOZMQo9OkZS2IsT7JN6heT1QawGEIPRtMSE+UHjYb/KusZDhehQX7x2b2/iMV6d1gsPDe1KPM6MwREAlPVFDw3tSjwXfxyh4SNkxY5rGNsjnHiM0XFh1OdxB9zK+Fm+fDmGDBkCf39/hIeH47777kNSUpJozNq1azFu3DgEBARApVKhpKSkZSbLYMggNFxExo80lGUyo7BCjykf7sfHkpRXoaHEcZwofKZXyMhgMBiNY19Snk0GJo/RzOFAcj72CSq024PvmP5L/EgbA0jjocIv8SMB0OmL0vLlPUwAkF5QqZjKPva9PcT9W05m481fLhHHvL3tMnG/K+FWYa99+/YhPj4eQ4YMgdFoxMsvv4zJkyfj8uXL8PW1dLiuqqrCXXfdhbvuugtLlixp4RkzGLbIhbrseXdOZRbbpMQDYu+O0cxBuC4Kw2UMhjuRll+BzKIqRIX4IjrU1+6Y2WuP4HxuKfp3CcLGJ+6wO2bT8SwcSS/EyNjQJvFG0OhjlDidVYzRcWHo1TkQKcvuwZaT2TiUWmAzZxp9kRIZhZW4YmcdEZJdUk3cfyi1AFdvlBHHHEzJF/2+LykPZ3NKMLBrO+rMtebCrYyf33//XfT7hg0bEB4ejlOnTmHMmDEAgIULFwIA9u7d28yzYzDoEHptRIJnyZNkrdEs2g8AOo0H9EazyEskHcM8Pwx3g6YNxNp9KVj2W72n/0BKIaIWJ+C1qbfhsdExAIALOSW4f/Vhq1fmpzO5WPLjBfwSPxK9Ogc6bb40+hizQv+9gV3F6ekzBkfYNdRo9EXS6vD2xtzW3h+nc0plx0QEeSOzWN4AGhkbimBvT0UdE2CpNi/tEN/OR4tf4kchIoR8Pc2FW4W9pJSWWt7I4OBghZEMRvNiMJlxOKUAmXaeyqT6HI7jcCar2KZ5aVWtyWabr87yvCJ0uUtbXUiNIaPJjMOpBTZVoRkMV4GmDYTQ8BHyZsIV6/+Fhg+P0czhXkk19cZCo4+hGUNDTJgf2tUZgFLa+WgRHepLNebH+aOI59n30gTi/hmDI6h0TABsDB/A0hn+3k/IobfmxK08P0LMZjMWLlyIkSNHok+fPg0+jl6vh15f/wVTVkZ26zEYNHy6NxXv77wGlQo4t3QyArwsCxPHcaLwVnZRFW6W1thtS3E+pwSJSWI3so+nGkWVYgNK6ha/dqsc43vWL7zrDqZj+W9XAQAH/jkeEQpPkgw62NrhHHhNixShpuXVH88TjzHni6OY1rcTUYez5WS200JgNHqeXIIXBQD1fNLyK2wMCZ7iKgPSCyrBcZzimBe+P2N3P0/ckgTi/rHv7cHgKLKjYdGWc5jWtyNxLgeS810iBOa2np/4+HhcvHgR33//faOOs3z5cgQGBlp/IiLcR63OcF2yiy0GCccBhRX1nZRNEn2Oh0qFPVftL6TtA7xstvnWtbUQhr3KqsULjY+nWvR7RmG9cZSjsCAz6GFrh3Og0bScz5UP1wAWDU5z1qBpzpo4NPeHZoyS5segUCQ+u6QaxzLI13QkrcApeqjmwC2Nn/nz52Pbtm1ITExEly5dGnWsJUuWoLS01PqTnZ3tpFky2jJCXY/JTEhnN5khF66XFjIEAB+d2vo6uXG1knPUCMJirOu782Brh3Og0bT07UTW6/TvEoTh0SHEMc6sQUOj+XHWfGjuD80YpfYVWvsZ91YigrwxLIp8TcNjQqnujSvgVsYPx3GYP38+tm7dij179iA6OrrRx9TpdAgICBD9MBiNRZqNZW87YDFG5LI1pNodAPCr0/zIiab5Ywo5lVksu4/RcNja4RyyFbwWOcVVeGpsLHHMU2NjqWvmOIObpTWK+4dEk0NESiEknpgwP4yJC4NaJb42tUqFMXFhiA71xYubzhKPsWjzWUSH+RHHhCj07bqtE93nWymsLmzY3JK4lfETHx+Pr7/+Gt9++y38/f1x8+ZN3Lx5E9XV9a78mzdv4uzZs0hJsdRFuXDhAs6ePYuioqKWmjajDSIMSwmLGko7t9cazbJCRXvGT6dAb8vrCJ4fab0gYRiMGT8MV4MmTEIbSlGqmeMsaEJajqao3/HOTkQvTsCIZbtsxq6aNQAju4k9RSO7hWLVrAEAoBjSunSjTDFkdauslrj/RGYRVdjLGan5zYFbGT9r1qxBaWkpxo0bh44dO1p/Nm3aZB3z6aefYsCAAXjyyScBAGPGjMGAAQPwyy+/tNS0GW0QobfHJPi/NOxVa+Lg4ynOO/CtM1b0xvpw1dNjY7F69kCM7xlWdxz5VHepd0kYVrNnUDEYLQlNmIQ2lJJ0s8xutldKHrkIoKPQhLRoQlEA8ML3pxG1OAE3y2vBAcgt0yNqcQJe+uGsdWxWUSUOSzRCh1MLcL1OW0jTkV0pZNU+gOz5GRIZTBX2or3ulsatjB+O4+z+PProo9Yxr7/+uuIYBsNZGOtS1aUYZMJe9goZmiSLtZ+XxRiqrq03fp4aE4N7bu8InUZdd17La8xmDlW1RtHreeOH4zgYTWZUCvZLjS8Go6VxZtr4c1vsZ4U9oxAWchSaNg8xCmEmvojj/87esLt/08nr1v8rpfArpbH/MG8k3n+oP3HM0ZcnEfd/Omew4jFWzOhHlXbvCrhtqjuD0dIcTinA4/93EoOj2uGrx4ZCJYjJC0NRJoLmp9Zoa/xYavnocVKg1dGqVXX/Wp5XDCYziitrcfdHB3CzTKw/4HuCPf5/J20yyVjYi+Fq0LRMUCoY+Pa2yyiuJIdtFm05hxUz+jk8P3vQtJNIOCffABQAViem4KvD6cQxI5btwrMTuyum8A+KJIuI+XR4EptOZBH3H0jOx4d/2K+1xDN99SH8e0Y/xbR7VzCAmPHDYDSQHZdvodpgwoHkAhhMHDw19caP2PNDbmEhXdgGRLRDWr44Lu6psRg9vBFUazLjUm6ZjeHDH5PjOLsp9Mz4Ybgah9PIKd/SlglyYyr0RuKYIwrnsYdcewYaXYtSKvuB5HzcKicbbDfK9FT6olB/neJ8lDiSRj7P6axiKm0Rzb1hxg+D4cYIn6QMJrPVQLH8LqP5MUo1P2ZRKjwARAR7o32ADrfK6gvoaT3qjB9NvedH2sNLq1bBYOJQazTLdna3lz7PYLQkI2JCFVsmmM2c4pjiylrkFF+XHTM8hj7VXak9A42uZWRsKI6kySfajI4LQ3p+BW4SDKCOAToMjw7BT2fkvUi0+iIlz8/wGPJ5BnZtp9gio3fHAKb5YTBaC2ezS5Cq4Oa259HhMZo5lFYbkJiUhxqj2GCpNdp6frRqD/h71cfMNR4qeNRlsHjWhb2yi6ptenjVp8GbZY0cOaOIwWgpaFom0Iyh0aPQotSegUbXMv/OOOI55o3vhqOvkHU2h1+e6DR9kVLK/ENDyOcZHRdGpS1imh8GoxVwq6wG99WJCjPenSraZ+LktTxC48dk4vDXz4/iUm4Z7uwZbjNOqvnhOE4kdtao6xcrL2192np5jdjN7+elQXGVAbUms6ywWep5YjBocFZ3bntd22n0M1kKYZsDyfmKuiBpWwW5a9qXlKfYnqFzkLeirmXj4QzifN7edhlx4WSjZcvJbNxSqCm0OjEFIb7kTC2+lcaqWQOw4LszonYifMr8puNkzc+Wk9lYfyCNOGbaR/ux8q8DmeaHwXB3UgkpssL6PbaVmwW1fcwcLuVa+j7tlgqQjZyN8dMpyBvXS+prVwl3x4bVLxr5FeKmp346LYBqoueHaX4YjuCs7tykru1U7S2c0DLhdFYxRseFKV4TTU0hOQGycM40WqaCSj1xzKHUAkXj50ByPtoH2rbCkR5nxuAIcJCfN422KKWAbIRey6twG80PC3sxGATk6vUAYm+PtLCgyPNDWChr7Xh+IoJ9MLBrkN3Xq1QqeNd5f6Q9vfzrwl61Rhb2YjgHZ3XnJnVtp9GIOLMWkNI10RyHZs4jFDRGo7qFUdULUmqDMTqO7jgA+X2gOUY3BaOle7gf0/wwGK2BTIG73VbXQ67fw2M0yxscB5LzbZ4ivbVqkXhaahx51xVB/E7ipubrAyUm5eOiTCPIY5KMjrzyGkQtTsDi/5G7ZjPaHjThHxr4ru0mieCW79r+4uazxNe/9tMFrN2XShyzdl8qVcsJmmv65Sw5Rf2Xs7k4kU7uGHAyowg5xcptO2goUkjhL6qsRX452YOUX65XfB8+TkwmHmPtvlRcvkUOUV68UY5P9qQQx6xOJO9vLljYi8EgkCtYUA0ms0hzI/T22Kvfw0Py/Ph7aW32dwj0wtCoYByVyRThF8Myieana90TVzsfrawxwxdJ5Bn6zm4AwPcnsvHug31l58lwT576vxM4lV2MIZHB+HTOYLtjBr+1AwWVBoT7anH8X5Ot22nCPzT6H6UwyJWb5PRppXnwY0IU0r0PpRYohltOZxVTtXAwEB5o+HOdyiaH4k5kFsHLU00ccyi1AFdvlBHHHEzJRzsfsubnQHK+Ym+u6yVk4zGdsi0Fzf0TYk8H1hwwzw+DQUCYGWGvI7vcPqE3x2jmEBHsLdofVaeXMJrFYS+NhwqhfjrMnyCfKdI/Ikj0+6IpPfDD08Pxtzss2RpmTmwYfTZnEFZM72s9H6P18/WRdEQtTsCOK3korDDg90u3ELU4Ad8fy7SOWfD1SUQtTkBBpcUTkldpQNTiBDz3/WkAdOEfGpTCILd1ILdm6N8lyGld3WmuiaaFA825BkWQ78+QyGCq49CEz2hCY0rvQ+cgsm4omjJcRXP/AIsO7OF1xzHh/X2Yu/4Exv9nLx5edxylMp45Z8OMHwaDgImTD22JND+ksJeJs6ao8/Cdj7OLqkXF2Xp3tizywrCXlC7txIbUwK7tMDgq2OrVkep9pvTugA51gsiqWnGqfWMwmszILalWrB/CaH5e/fmy3e2Lt160/v/Xi7fsjtla126BtqWEEjFhfsRu6z/Gk9OnNz5xB755arjiGJqUcJprokmZpznX2keGEMd8OmcwVSd6mjR/mrR6pRT0Ay/dSTzGzhfG2WS8Ssl4dyp1yQGS/qg5YMYPg0FAFNoiiJqF4ziOE3mC1u5PhYektkaAd/0ilCUIC/CiZRLeWrGr3Etr+TPmDSa90dbA4cN1VwkhhvWHyKX2hXAchwfWHMaId/cg/tvT1K9jND1P/d8J4v6nN57E4Ld2EMcMfWsHZq89Qhwz54ujVPPZl5RHbM+w+SQ5xTq9LsPotam32d3Pb9+XZFvRXMiB5HynjaFJzweAd+/vY3e/cLtSJ/qPd5O1OKsTU6jS1NPyK4h6p4/3kM+z5WQ27nhnJ3HMiGW70Hfp78Qx/Zb+rqg/SlfIKnMGTPPDYBAwEL079uv8SENg/l5aVBvEBkmsnaJkoX6eeOu++kXxvv6d8NPZXCya0kM0TiqADK6r8aGrM37MHNC3SyDO55Qi1M+yL7DO2PKRaAzGdg/DvmsW4eqZrBLMHWkzLbsYTBzO11V6TbxKJ3xlNA80WpPCSnJoIa/SgGoZ0TyPVIvz8e5kHEotwOi4MMwb3012nJTDqWSNCJ8a/djoGDw2OgbDl+3CzTI9OgbocPjlidTnoU2HpxlDk+oeHeqLmcMiMXNYJJ7eeBInMovsaq96dQ5EyrJ7sOVkNg6lFmBkbChmDI6w7qdpk0GT6q7UAkPqhbF3DJp2HEp+4FK9ySXS4Znxw2AQqCXW8rFv8EiNpGqDCUbJNh9PNby1aqtRFOLriZOviqu9/nfmAPx35gCbOQ2KaieqFxRQVw1aGCrjjZ3nJnUXjZHOzd+rfgmw5zGSQ2rMMVyHQRHtsOOKvPdiSGQwTmYUWbU+9gj31SKuvT8OEdoz8PqZwyn5+OsXx63bj6QV4d9/JGHTk3dgWGyIos5mRCy5rQKfGr3j4g089XW9lzG3TI+oxQlY9/Bg3NmrPZWeR6kQIu2YzkHexDHSdG45sbmQGYMjREYPD02bjBBfz0a3wBjZjXyekbGhOJpSoNiOo0JvRJlefn0I1KldIh2ehb0ayLnsEiz58TyiFicganFCS0+H0USQPD/CMJhwnzQ8lpJXgYxC8ZOOTuNh44WhRRr24o0eoa6I1xHxXeD5hqgGEweO43AgOR8f70nGtvM3ZOdNolBQYJE3hPLKajB8+W7866eLyC6qwqf7UnEqs34x/f3iTZzKVH6yZjQOGq3JSUFWlz2O/2sylc4GgMjwEfLQ55aw2Nge4URdy18Gk/UzvAdAaPgIefyrk9bzkDQto+PCqMeQGB0XRtVOwlnQ6HloW2CQrp2UZMEfg6Ydx/k37iKOOffGXS7RAoN5fhrI7qt5+O54tvX3wgo9QvzIbkWG+yEyagiiZuH/zyiEHQCLJ2Z0XCh+qqspEuJHTlUVEiRZNPhwl0Zg/FwvtlSI5g0ircArVFJlwNz1J2xc93oHjJ8n675weG6W1uCO5Za0+Y1HM7HxaH1WUca7U5GSV46nvz5l/Z3RePiHLhWAdME9ffOXS8TXvb3tMq4ohLTmfHEUpxUM1T7/+g1Pj+tGHLM6MQV39elA1PzM/pysLXp640l0CiR7Wt7edhmvTuuFX+JH4d5PDtqt3syjNIZGY1OgUFeHnw/PpuNZOJJeaBPSEiKX8k0zn21n5Ru6AnRtJ5Q+N6sTU/D5fnK9pYFv/IGiaiNxTNTiBOx5YWyLt8Bgxk8DKakSu/6KKmuZ8dMKkRM1W/YJND+CfRUEl++soV0R7KvFlD4dMLJbKM7llCLQW4t/TbMv5rTHlN4dAJyz/q5R2zpwS+uqP/OeH6FXqLBSb/fLyBHjJzVfLEgkFWIzmswiUbfRZLY7ZwYdY97dhayS+i9fDpYvlNgQb+xeNIGqrYKwfYo9zuaUoNJA/jxUGMxUehSl+jLnr5MNsROZRQhTWFsPplh0Z/7eGtzeOUjURuP2zkGiBIN9127ZrfB8KCUfM0Miqa6puIqsfeHncyGnBPevPmz9e/vpTC6W/HgBv8SPRK+6zE5S649AHy3VfJzRdkLpc3MgOR/FCoaNkuHD4wqaH7YCNZAJkgaVLNm3dVJrdFzzU1OXTj6hZzhu61i/8A+JaoflD9yORVN6wk+nQYdALyS+OA4/xY/EoMhg6jn5eMo/s/CNEnlDhg93aUUhMfvGmSNhL5vXEtpmSI2qmkachwGR4SMktdBi0NDUhaGpm+OrJX89+Gk9nFJfpm9n8lyGRAZTXRNAlz6tVAaA5ppo5yM0fHiMZg731jVLppkzzXyc0XZC6ZpGx4WhnTfZXxKssJ+HaX7cGKnuYvKH+1m9EzeF4zi8uOUc3v3tqs0+kubnhqD68/Lfrlj/f7muIqu3Vg1vwReIl7ZhGh9H8JboiPhwl9pDBV52UVFj/+nsgp0n8Nd+voiJH+zDt8csqbSfJKbY1biV18iLZ/PK9XhsQ32YLFfB68CQR0lfGL04wer1k6O02oBUhVTt1LwKKs8PDdkKT/nXFCo8X8kto2oVQZM+TVMGYM8V+/WPePZcuUV1jzcdzyKG+/j0c6U5bz9PbrehtJ8nJswPY+LCRIVbAUsh1zFxYRjbg1y36fYugXh8VAxxzBNjYjH5NrJm6q7e7RXn0hyaH2b8NJAoO29OlsIfOcM1Sc6rwA+ncvDpvlSbTI9amRYW0pYU5TVG61hdncFzvaQaeQJtgLQdhTPgPTs80i8aYbiL9/4IiyoKCfASP7WV1xjw1ZFMpORV4IuDaQCAFX8k2X3tiQx5fYi0bsoVhXL9jIbDga69AE3KMg00IRmlFPR8hbT77JJqqvR9mlAKzXGu3CIbY5dulFHdY5ou6TRzpglp0YwBgFWzBmBkN7GHZ2S3UKyaNYCqVADN+01zj5Xm0hww46eBtA/wwuHFE7BgQr3gzxHNBMN1EBo40vdQzvNjL9W7pi5V3FAXKhsWE4wHB3ax7v/bMHJGhiNcfesurHtkMM4tFWftDI8Vl5YXhrs8JcZP+wAdtjw9HD88bcnqkT6kVguqQdvrTza2exh61+k5pBo4IaUSHYCe0mPAcBwV6NoLtPcnC+w7BtDpF2lCMkop6GG+9rN+eCKCvKlaRdCEUmiOc1t7cruN3h0DnNYCg2bONCEtmjEAsOFQmkhbBAD7k/Px9dEMqlIBNO83zT0GgEAfLb56fCgSXxyH9XOHIPHFcfjq8aEIlMkCczbM+GkEnYK8cc/tHa2/m8wcDCYz9l3LR2ZhJUxmDtdulSvWjaChoELfKE0GQx6hx1lq1AgNHj6DCrCkr/PwntuUvApcu1WOWpPlGF4ataiOjr+X8/ILvLRq3Hlbexv9D1/Ph0foGeJDYBV1IapAby2GRAWjU13NEqluR3gvDEazjQE0uXd7+NadnxQGkIbErik8WTPkUcqUS6dsL0CTskzTyoAmDVspvfyEQtr9vpcmUKXv06Sf0xznx/nkdhs/zBvptBYYNHPe/txY4phtz46hGgMAH+6231F9xY5rVCn+NO83zT0WEh3qi/E9wpu1qSnAsr0ajVD7YzJz+NsXx3As3eLWGxodjOPpRZg7MgpL/0Tuz0Iio6AS4/6zFz07+OP3hWMaPWeGmMs36rUu+eV6a8VkQFzkcPlvVzG1b0d0aeeDdQfrW0F4a9WoqjXhgdWHAQChdZkpOq2HyDjxJgiVnYWN5kcU9rIYQltO5Yj28f8aTGZwHAdVnTUnDGXVmsy4WSbu+uyn01hrDP1cl7KvVatshOHCWkIA8NvFm6I0YAY993y4j7h/2kf7cVefjsQxqxNTrB47OQ4k5+On0+T06UVbzil6LlYnpmDe+G7E9HKa1PzTGfLF9wBg+upDqJIJ5/JM+2g/tj07Bu/e30fU44yHbzlB097i5f+dJ44Z+94exaKhI5btwrMTuxPHbDmZjfUH0ohjpn20HwUV5DDliGW70CGAXAV6+LJdxP20n5tPE+0bWDxzvjhqrRHVkjDPTyOJDKn/4zdznNXwAYDjdf9ffyijUedIuGD58iD1ZWI0HKGBI9XDSEXOaXUp3uGCUvHSZqH8QqTTqDG2Rxj6dQnE0OhgDIqk64LdGKb17ST6XVj1mTdyeE8X78nxFGwXencqBfdCbzTjZqnY+JnSuwPKJF6d6FBfjIgNQU9Bp+6SaktILMxfh9gwX0ztS/5yZshDo+1whg7ndFYxla6F5lwAcOVGqd308mu3yqlS82l0OLS6F+HDjZAwf4txQHNvrkv+FqRkl1RT6apodEE010VzLqV7eFNB50X7uTnvYFuUloIZP41EpVJZ3XVNpfmxp7dgOA+9ILxDal4KADV1Y7u3t7ir7+wZjttlUnU9NR7oHOSNn+ePwua/D4cfRdPSxjIosh1iwurdx/Y0P5W1FqPmvgGdLWM09aExoddG+ORaazRb7023cD9kvDsVXlo1xnUXZ4jc1bsDvn3yDvy+cAyeHhsLAKip0/hM6BGO3S+Mw8v30Nc0Yoih0XY4Q4czsGs7Kl0LzbkAcnVmmrRxGh0Ore5FqVI0zb3prNBLKyLIm0pXRaMLorkumnMp3cMOCjov2s8NTRkFV4AZP06Ar7BbqOB6/N+pHLzx6yWcoWiex2M0mfHBzmuNmp+jfHkwHXGvbMcXCu7W1kKa4MlK+oWfWdeWgu+2/tTGU4hanGBt6qlRq6xd1aXoNC3z5+WlqQ99iTQ/vPFT59HxlIS9AEt4a29SHl7/5ZK14SlgMQI3Hs0AIC5oqJOk7wt/l94XnULdGIYyitlBBZUIU2hgqbSfR0mDQavRUAprncsuIe4P9vVU1M88NLQrPv7bIOKYVbMHUYXY1u4jVzFeuy8VQxWMlqExIShXyO4sq0uHJ7HpeBbukXhzpdzTt5Ni6n1JVS1O55A9MkoZfh/8kUTVHoS2LUpL41ar0fLlyzFkyBD4+/sjPDwc9913H5KSxKm3NTU1iI+PR0hICPz8/PDggw/i1i1y3YbGwgtDSY3lsouq8MKWc1h/KANLFf4AhXy2v/kNkDe3XYbBxOHthCvKg1sBwkVK6Pnhq7QCtlqab+rq3lTojbIev2Af+pYVzkTYvdlfV79Q8R4ea98vvi2Gh9DzY8aj609gw+EMHEqpd8mbOWD7hZsAxMaPh6ROh9Dgs2nwWkvWQLQVNh3PwsJNZ7DlZLbsmLT8CiQm5SFdEvKgqb1DE0pxVlozzRilsNblm+TSBweS852WNk4TYqMJ29CEBGneK5pwHs09rjaSowNVCvtp4FfJX+JH2RhA0hYir021792V294SuJXxs2/fPsTHx+Po0aPYuXMnDAYDJk+ejMrK+gXiueeew6+//ootW7Zg3759yM3NxQMPPNCk8+L1HyTrO0eQKaRUGl3IYYUPPqPxCL0jQkOmRKBRGBFr/0kvMsQXI+y4/l+depti0bCmYumfeuHZO+Pw+cODRWmjvIeHD0Pp6n5XqVRWL5CjodthMeLK1OMEGSMR7cRi2B4dyG731s6FnBJ0e3k7XvrxAn46k4tFP5xHt5e347KguGRJVS0eXnccE97fh7nrT2D8f/bi4XXHUVr3WaSpukwTSnFWWrMzqiH36kAW0Y6OC3Na2rizql/ThARp3iuacB7NPfbWqIhjfBT208AH7SNCfHDmtcnY+PhQPDcpDhsfH4ozr01GhED/+tjoGGS8OxWju4XA30uN0d1CkPHuVDw2mlwksTlxK+Pn999/x6OPPorevXujX79+2LBhA7KysnDqlKVhYmlpKdatW4cPPvgAEyZMwKBBg7B+/XocPnwYR48ebbJ59a77YyH1NxIaPI48AUtbEbAq0s5HVMjQzv8n3haOOJlFKjLYRyTu5Xl8VLQonNScxIb54blJ3TGpV3vRdul8xGJoy+JYpuA+lyL1bgUKeihJe93xKfVtFWe0Orj01t3Ec1x8626qFGtnpTXTjHntXnKm6//iRyoew1lp40pzeXVaL6qwDU2qO817RZNWT3OPr7x9D3HM5bfvoSpdQCJFsn90XBievbO7Vddlj41P3IELr9/lMqEuIW6d6l5aanliCg62PH2eOnUKBoMBEydOtI7p2bMnunbtiiNHjuCOO2zfAL1eD71eUIW3zPHqs3zbgiSCC1NYF6agohY/ns7B+zuu4Z939cCf+3fGlpPZ+DgxBf+Z0Q+B3lrEf3MaCyd2F2XcABZNhk6g6Vjw3Rn8ei4XL0zqjgUKfySNwWTmMPuLoziaVgRvrRp3xARj3SND4OHR+CcKe7z0w3lsOpmNl+7qiX+Mi22Sc/AIvR0vbDmHF7ZYmobyBoFOo5ZtTeGp8bC7T6VqmvvSGDxJxo/GA6g1KabMSpGGA4W6HmkLGOnv7o4jawdNq4NBke1sCtAB4lYH8RtP2jlCPdM+2q/4cDXp/b3oq+D5WbTlHP64eIM4pt/S3/HyVHLJgi0ns/H+H7ZtY4REK7TsmPT+XmL7FMCSyi1XuZyn39Lf0VnBAKctFUDT1b2Y8DAMWO7xrss3iWMGvvEHTi+dgk1P3oGHPrd9gN/0pOU7bfbaI8TjzPniKA6kkEN1Sq1TXCVF3Vm4ledHiNlsxsKFCzFy5Ej06WOpz3Dz5k14enoiKChINLZ9+/a4edP+h2z58uUIDAy0/kRERDg8F2F2jRxSr9Dzm8/hekk1Fv1gqRex6IfzyCyswrLtV/D85rNIzqtA/LenMVny9C70THAch1/PWXRG7zexKDqrqApH0yyp+9UGExKT8nGrnJzu2Rg21ekh3vudvHA6A7nikXzmk07jgfYymRA6jRo9O/jbtJlwRfpIstK0dlpfSNPZ7TFYkLIvTRsWan58dGJjJ8SvZTRQTYUja0dztjrIVOiDlV5YSaVZKZNpgMtTqjdRXZdSGraSLzu9sJIqlZtmvs4qFUCjHaK5x7Rd0ofFWsJGg7sGwVvrgcFdg5Dx7lQMqwvHN0d6uaukqDsLtzV+4uPjcfHiRXz//feNOs6SJUtQWlpq/cnOlhchyvHn/mI1/ucPD8a51yZj+zOjrV2982WeqKVfvNeLq0XaoXaSsIIwFVlaTK4psfc02VoErEqVsz01HhgSZb/ruqfGA1GhvjipUDHXFXjprh6iQmdCzw/vFaLpP/bDP0ZY/69Ve2CsIN1d6F1qLymq1lVBk+FuOLJ2NGerg8h25ONEh/hSaVYCdGRPXaBOTXVdSmnYSo8N0SG+VKncNPN1VqkAGu0QzT2m7ZK+4+INRC1OwMmsElQbzDiZVYKoxQnYfdmSzNMc6eWukqLuLNzS+Jk/fz62bduGxMREdOlS3zupQ4cOqK2tRUlJiWj8rVu30KFDB7vH0ul0CAgIEP04iqfaA8Loj4+nGoE+WvTqFGBtFpmh8MTBU1hZa+0NBdi2HBB+USsZH0WVtdhz9ZbdUEaF3oiNRzKowhxZhVXYfsHWBZ5f5/otrNAjMSkPx9OLsOVkdoN0SZmFlQ6HXJzFmbpGfHKp6aSUdX5fc/WjaQwqlQpdBaJETzvVn/dfsw27KOEjCH0Jw33SMFdzdLVvThxZO5qz1cHuReOJY3a+MI5Ks3L+jbuIY869cRfVdSm10khX0JrsfGEcVTsOmvnS3D9n6JhendaL6h6fWTqFOOZ03X6l2kQ0OqXGan5aU8gLcDPND8dxWLBgAbZu3Yq9e/ciOjpatH/QoEHQarXYvXs3HnzwQQBAUlISsrKyMHw4+cPRGFQqFXx1GmvKtFAH4VtXH+ZSrrweQBhqMJk5URsBvqIwT0GFHh3qCmydk7ghjSYzNIIvtJlrj+DarQpEhvhgn2RBnPj+Ptwsq8G/fr4k+tBLDZeUvApM/MB+Sf2H1h5FxrtTMePTI6JaOWeyS7Ds/ttlr1dKQYUeY1fsBWD5A7xeUk1+gRMpqzFYs58CvbWiLuw810tqoJbRNgnTxLu080ZOcbVom6txXFCBXFiHhw977bNj/HhpPaz3yB5BMin9PlI9UAvVPXIFnvq/E8T9T288ae2TJseiLeewYkY/LBgfi1WJtrVoFoy3aONe2HRW8ThK/QYXbTmHA9fIbR5GLNuF4QpeEhpdi5LWpM+/fkN3hayo6asP4axCvaC4JQk2GjUp/Zb+rjiGti3FjMERWPlQfzxj5/1YWWcYPfDxQeJxpq8+pKjPenvbZbw6rRdem3ob3rRTnoRPL79zRSLxOErvw9C3duC4oA9bWn4FMouqEBXi2+x9uZyBWxk/8fHx+Pbbb/Hzzz/D39/fquMJDAyEt7c3AgMD8fjjj+P5559HcHAwAgICsGDBAgwfPtyu2NmZLJzYHb+cy0V0iA/6CrQVFRRhhEuSeO2Y7mHWJ3Cj2Yx+EUHWQmDCZpMlksycyloTAr3rv2Cu3bKIrPlCfUKkfZp4pGviH5fICxcgLhIIAN8ey3LI+LkmaduRraB9cCZZgnszb1wsfjidg4vXxYbqxeulCPXT4R/jYrFmr/hLJ0rwR79h7hD8+/ckPNOEwnNnItQASTPB/L00GBEbgjl3RKFCb8Rn+1ORWViFFybbLvqPj4pGTnGVKM0dsPX0uKIIvLk4lU0ubHois0hREH6kTmcSI/NFExduMRBotCZKHElT1urcKNM7RdeiBG09HKVSNgYOMFDogpS0Q7RtKWYMjsC9Azrj3gGdsWjLORxJK8DwmFCsmNHPOo7muipqyfePr0f22OgYPDY6BnO+OIqzOSXo3yVI5K1R0oIpkVdp+b4pqarFM9+dFYnzx8SFYdWsAW7hAedxK+NnzZo1AIBx48aJtq9fvx6PPvooAODDDz+Eh4cHHnzwQej1ekyZMgWrV69u8rk9Pioaj4+Kttk+IDIIxwVN+Sb3ao8dl8VFF6ViaJO5/il7+qAuGB0Xhikf7kfSrXLZtGxAXFRO6sERNqwkYTSLjyltrTGhZzj2XCU/ETqKcF4Gk9mms7rZzDVZVplZcJ9GxYXi0ZHR6PXa76J+XbyR8NJdPZFVVIUEQaNOoYi3W7g/1j4s7ljsyogEzxKvzIMDu+B1gWv/rj72w8aApd3FxseH2d33wIDO+PEMuUFmW2BQRDvsuCL/dzMkMhi+nhrkFMvfq+F1OpPntthvqvnMprO4d0BnDIsKUTyO2cwpjjlwLQ83CQZQxwAd1bl2Xb7ZKAPIT+uB7u39iRWKe3cMwNnsEqIBpFVZvPIk4yZQp4a3p1rxuodHhxCL2kp1Q0KDR8htFNfVt0sQrt6skB0zqps41VwuPBXZzgepdh6EaQn3tRg2pHIMXz0+tMHHb27cyg/NcZzdH97wAQAvLy988sknKCoqQmVlJX788UdZvU9zIH2aC/C2tYylnhNhZd23t11B/LencS3P8oQgNHikFXSFv0sLLgqNGJLLW2rsKLXWyJPJ+JLOTY69SXmY/UV9CmdqfgWOpomfqiZ+uA9XFarAKnGztAaL/3ceUYsT8Povl/DruVws+fE8ckvq56/2sPw5qCVGojA8ZJRcV2tJ35Yay55tOETVFEg/01KOpBTgJwUjceupHKqQVvyEbsQx88Z3w739yS0T7u3fiWgAAEBumR7/U5jzD6dyFFPQlRjVPYyqvcU7Ct7mZQ/2RTcFXVVce3+M7CZftwYARsaFYUi0/QQInsEyCRJSaK5LqVgqbTHVp8aSS4YoFWUELKGu/cn5MEnWC2E5BneBrXBNjNSLYS/d9wLB8k+6VY6E8zesnbilvaeECIXSB5LFlrkwM+wiIS1SqYnqyG6heKCuISYAbDmZY3fcsbQiu9ulvLD5nCjU9vPZXJzJKhGNScuvxEs/2H/apWXLyWx8f8KSjbPhcAYWfHcG3x3PFvUv49+b6YO7iF4r9HpM6Fkf2lGpWo/xc17yGZRqzRoKvzC3lvvUUGjSsJVyJ42gC2nRpMzTtLdwBhwAhS4PipzILKIKM9GMoQkzOese0+CsViTOOJdSO468SoPTrtsVcKuwlzvCx+F5RsaG4rN94n5dZorsKA+VRY+jJ4S9ak31y6fU6Ko1mq1CPpIOiWT8vHN/H0wf1AVGE2cNZQgztP4+Jsbai4z2aa9QEvKrMZisqa/+XvUi8nMKTfmUKJMpknZDIDYP8LJ45Rbf3RMdArzw3fEs3HN7R0wTNBacMSgCwb46lFUb0KODv0hg7g4cf+VOvLv9Khbf01O03VurFn1mhEZ2Y7i3Xyf4empsagy1NQJ0yuGWCgUDSANQhZloUuaVPrUDu7ZTGEGHCoDGo3EG0JDIYKowk9nMKY7Jyq9UDDNFhvg65R7TQHNd4QqNaGnfK6Vz+Wo9iAZQuK/WadftCrjXyu2GBErCXNK6PYC8+FiIf90Xs95otob7bNPghTWApIaR2e7/AXEYTK52UKifJ2YPi4ROo4avTmPVN/HhNY2HCkvuuQ3DY0Lq5mm7jJvNnOhc9gyt6lqT1cC7tx/ZNc8jDNlIz8GHqaTGIA9/L4QtKnQaNf4+NhZ7F43HP+8SGwkeHipM6tUeDw7q4pZf6OH+Xvjgof4I9xfX4JE2KnRWFxWVSoWJvdpbMxTbKjRp2KkU7QVo0qdpUuZp2lvQpEYrjUl/dyqSlzUuxfrTOYPx0NCuslmUGg8VZgyOoBpD006C9h6PiQuzCZGrVSqMiQujzn6imTNNJ3Xac5FQasdx/F+TnXbdrgAzfpoYqbvf38vW2UYTYuBft+5AOqKXbEf0ku02rS+EBg9JDG3rMbL8nnSzHEPe2WX3/NLu3fx1/Xja8oTEa0T49gbSc1TVGjHh/b0Y/u5uFFbokVVYhdte+93mPNvO37C+Vmo47pIIxQHgk8QUDHhrJy7nlqFSb8S4/+zFiHf3oLiyFs9vOoter/2BbedzRToqIXytoraucZHG8H0VCsYxHIMm1V0p1ThqcQLu+dB+2QmeaR/tpzoXjXZIKTV60vt70Xep7d+wkH5Lf8dtr24njolbQr7uLXXV3n+JH2ljKGg8VPhF0BuMZswiOxmL0u0rZQwg4fZVswZgZDexsHlkt1CsmjVA/mLsQHddyp3UlXjzl0vE/WPe20Pc/3RdaxVnXXdLw8JeTcxtHcVhr1B/HcZ0D8OpjCJ0CPRCKqW2gs8IE/YPO5Yu1tVQGz92vEJeWjXW7E2RPb+0/o20ZgtvHMl1B0/Jq0BGXabBxdwyFFfW2q2s3DnI2+o1kta3eOKrkzZPiSv+SAJgMYKeGB2NrLqY9KXcMmto7ttjWegc5E0U49EWoWytrJo1EH/5rL4/UPx4smiW4Rg0qe400LRnuKHQdoY2rV6p1Ul6YSUUiqOjVEHrBFhS0EnwaeO9OgciZdk92HIyG4dSCzAyNhQzBotbitCMiZ8Qh/gJcZi++hAu3ShD744B+GGeuLmqUoo6YCls+tXjQ5FeUImMwsoG17uhmTPfSf1Acj5OZxVjYNd21B4fHqWWHDkK9dX4zyh/3W/+egmHUwswqlsYXp1G7vHmijDjp4kJ8dPBT6examB8PdX4v7lDUGsy49WtF0XGz/CYEByRyQoZ2z0Mv10U19yRZh6RMsFo9pF0OtMHiUXAI7qF4P2d9b+//xfLwqCrW1Slho2wGnWt0Wyz/5snhmH2F8dQbTCBq+v2Ex6gQ8o7d6PbK7/JzounrMYgCm0J/2/mOBjrwnn+Og3K7VyntEZNW2NodDBSl91jDSG6m5bJ1aFJdf/9kq1nU0q3UF9cviWf9tw93A+dgrydklZ/OqOImBodHeKLW2U1ilqmWpMZ1YQcdK2KbABJ08ZnDI6wMQ6k0IyRGjz2kEtRFxId6pwifzRzHh0X5rDRwzMiJpSYMt8lyBtZxfIG0JBISwbb4ZR8/PWL49btV29W4IuD6dj05B3WXmPuAFvhmgGNoOmlSqWCSqWCTqO2CbVEBMt3HJaGgABbb0wtRWjL7r6630l1gJRaFfDVfHnPj7AAY2mVAesOpovOp5cYYLwWKquoCtlF1dZj2fsSPpxSgP/8kYRt58XivUrBInxckNngoVJZW1iEyogH23o2EgCoPVTQyNxzRuNY+8gQ4v5P5wym0tjQtGegOReNroWmTQaNlunK2/cQxyQvJ1+3kkHAoEOpJcf+lyYQ9386x1LDTGj4CLHXdd6VYZ6fZqBDgBdKqmyzjaS2hj0xNI89rdANiVtaKFaWGhfCfVLjJyWvAp2CvImdyaXn5zOjePzq2njw15SSVx+eW/rLRVFhR73RBL3AM9POR2v3+vjWIOK5luOvXxyzO8dkwTk/P1BvbBlMZuv1yxk59s7PYDiLj3cnE/evTkzBv+tCuHJELU6AkonebXEC1AqDer6SgF4dyWL96asPYYFCpfIDyfl4+X/kEhRj39uDTII3AVBuqzDni6Otrq9US6CkF5v0/l7i/vSCSiSck88WAyyf43luEjJnj3jNwOv39sZdvTtgpUQQFhksdpWO7ykfeunZQbnhqjCcZZC4mcWaH/E+vpqxME1x+zOjsWb2QACWqtQzh4gzBSIkKY+8PofXzQo9VT+dFf/B1BrNIk/Umr8NQkSwD56VLLZRdU04HxzYpe6c3qKihEJUKpWoUaeQCoFH6M/9O+G+/p3wjKQQ3F+HkTMhGIzGcCiVrLc4IGgVQIKmFpCSzKbGRNdWgaa+zHUFXVC2E/r0Kc2DQYeSXixdoUZPRmGl0z7HrgAzfpqBO2JC8OmcQTap2z0lYuhgX0/cV1d5tXenemPH11Mt6sYth6j1hckkv0/i+amp88Lw258eG4tenQJw9+0dkfHuVKx9eLDi+fnGn7zAm9RxXm80Q19XT+Jvd3TFHXXp8c9NEmdh8GG4WUMtbm+1SiWbsq4SXIcUoTYqItgH/505AM9P7oEegmaJSunBDEZjkOpWpNDqOJQ8PxoASol6XmpLWwUSvTsGoL9CQ82BXduhs0IJg4gg+VA+LUrzYNDRTUGXFK1QoycqxNdpn2NXgBk/LYg0BOOtVVu9MMG+9SEwnVZN1KTw+4TVNQ+nioXTf994yvp/aV+WhZvOImpxAr6o0+U0Ju2b1wL9ev4GOI7DC5vP2YxZ+sslnKjrd+ap5KMXHDOjsEq2mqlKZZv9xiPs0yVM2W/DfTYZzcx8hRDSvPHdFNsL+Gk9qDw/NOSWkj0yuSXV+Eihtc1HO6/h/2R6uvFseHwY3nuA3HZi0eQexP1v3kffJJkhj5JebOcL41pNDR8amPHTgoRJxLfBvp5Wz4afQO/iqfYgFonjXyMs1cILkHmEmVz2UsyFXL3R8D5avCHmpfFAcl4F/nfafvsL3lNUobdfefmOmPreOMIQWr5E5M3j76WVFWxXCroi9+lc71F7rK5Q458V+hwxGM5g05P2dSv8dqX2AhWUZZJpwl40HdtpQmM07Q6U2irwXclJx2A4hwXj7ff34rcr1fBpqbBXWn4FEpPynNo7jKk8W5Au7cShJF+dBgsnxuGhIRHw0qitqe06rQdC/XT46rGhePhLW6V9n84BuHi9TNK8VP68fOf2p8bEYO3+NJv9AyPpyqUf+Od4fLovVRSuGlLX0M/EcTap88IWCnyIig958Rx7+U78dOY6Hh0ZZd0m7IdWJbOye6o9bFL/7b1GeM8fHNgFUSG+ohAjg9FU9OjojzFxYdgv+IIYExeGnh0tnz+l9gJ+Wg8qA0inJhtAXmogyMdTsXN5hwAv5VYQFO0OlNoqjOoWhiOEXoDu1DLB1XlhSk+8MKUnpn20H9fyKtA93A/bnh1j3a9Uu2hkbCjxvXJ22KukqhbPfHfW5m9m1awBCJSpek0L8/y0IGpBVU/+/4MigzGtbyfEta/XoPBCXqk3h6dDgCWuXlChx9G0QmQWVhJ7M+XX9eMaIVOTgTbtOyLYB+/cfztC/eo9WHwH9BqD2Ub3Mzqu/omCFy77S7LG2gd44e9jY6HT1M/BS/D/kmrLgt1ZoiWo1Butxpa0Wjwvro4JEy+iag8VhkYH280qYzCczTPfnbUJOR9KKcCC784AUG4vcPGtu6nS4ZPeIY+5+s5UHH1lEnHM4ZcnUrWCoGl3oNTCIX5CtzYVbnEFtj07BtfeuUdk+AiJDvXF+B7hNveeJnzrTJT+ZhoDM35cBGnFZKEBwmtwpn96BPbgw0Lfn8jGzLVHMXbFXruVozmOw6XcUmsdHR9P+1/6XgraAxJCvdBHgvRef51GVGPnel0WCM25PDxU1nEpeZYiXdK6R79fumntTC5XMkAuG4zBaGrS8iuwPznfpo2IieOwPzkf6QWV2JckX5gQsIQUaFpg0LSuiFY4TgzlcQC6dgdKLRxaS8uE1s4DHx8k7p+++pDTzkXzN9MY2CNvC/PI8EhsPpmDf4wVx2JD/XQY1S0UpzKLrV3FY0J9kVNSbaPZIdWomdq3IxLO3wBg8cZcELix5cI9f+7fuUHXAkDksTkuECC/+2Bf9Ojgj2+PZYnGS1tYyFFT5+4vqLB4fv7UrxMuy2iTHhsVjc/2pSLAW4scQY0ROc8Zg9HU0GhjzlOkltNwLIOssTmSVgClvrVmyuMAdG0elFo4OKtVBKNpodGBOQuav5nGfEbYo3AL88af++DKW3fZFBTz8FDh6yeG4cpbd+Ef4yyG0Z4Xx+Ha23fjlXtuE40d0DVI9vjC2jnVBpNVczOtb0f46jT45on6bI37+ndCxrtTbao3O4K9TLH7B3TG1L4d0S3cT/QkFxfuZ7dytT2GS7RBEcHeyHh3KtY9Mthm7KMjonD+9Sk4+NIEjOleH4P++1j7Yj8Go6mh0cbQpJbTMCyK3GJgeEwolBIdPSiPI0QuVCJkxuAI/PehAbJVm2mOwWg5aEokOAuav5nGwIwfN0QnCBV5qj1E2iEp3tr6Nhoj3t2NPVfzrNsBsbHi7QTPiL25CI0pYTjPkfNJxwo9TOTzCa6PtbBgtBAxYX42Xbl52vloER3qi7EK/eVGx4VRaX5oWlekKxwnjfI4jLYFjQ7MWdDoyRoDC3u5IcIQqKfGw0Y0LMRPp7E2q6wxmHEguc5VXedxEWqNmkoTUyVINQ8SfAHQen0A4HKu2J0aUBfqC/e3LQEgNMCCvOv1P0GNzA5gMBpKWn4Fiu20uAGA4ioD0gsq8cAnZD3FwDf+gNFMDlj1W/o7AhT+rsa+twchvvKtdACLdqO4kpwOP+n9vdj5wjjr72n5FcgsqmIhq1bOosndsWKHbQ2oRZO72xndOFbNGoAF350RZXs5SwvGjB83RJgJptN4yGZtAUA7X0/EhfuL9DGPjYzG3LoaN0LPz4OSzu0N5cOH+uG5TfXFDSME6eUDu7bDoik9cKO02qZlBoniKvFCPLgupV5Yt8ce/xgXC29PNdoHeOH2zuR+RgxGU0GjXyiuJpcoLFLYDwClehPKCdXVAUvLibwK+/WyeC7dKBO1xLEH3w6hKdORGa5H/IQ4xE+Iw/TVh3DpRhl6dwxwqsdHSFNqwZjx44YIU8s9NR7Qqj3gqfGQLV44uXd7kfHz2p962R3nrA/V/QO6iIwfYYFGDw8V4huQDhkZ4oNrtyqsv/PeHZVKhSm92+OPS5bGqcLiiAAQFeqL1xW6GTMYTQ2NfqGdt4ZoAAV7a2A0cygjFPEJ1KkR4K1FtkwPPMDSciLE11Oxhk9xZS1SC+WNNr4dAikd+avHh8q+nuHeNJXBY4/oUOd7E5nmxw0Rald4N7gXoSUFSesiLIbYGKFzU6PxoLs+puthuCLZCp6fnOIqa4FQOYbGhOCVqfYfXHhe/VNvlFbbD6/xlFTV4tlJ5BDFs5O6Y/ei8cQxO18Y1+TpyAxGU8GMHzdE6Pnh2z2U1cg/MXYLrw+TvfVnsRckUtCwVNtEmp+x3Rtf9XO+oAv71L4dRfuE1xfLGpQyXBCaDumnssmp7CcyixRbRRxKLSB6hgBLaIxmPgDw5Kgou/v57TThPAbDFWFhLzdEmPkUU+cKjArxQYbERc13kb/ztvb47dnRKKs2YJgkZdxXp8HJVyc2qpmpEhEKLn8a7rm9I3a/MBZVehN6dBCnW84b1w1juofBZOao6wYxGM0JTRr7pZxS7LgiX+hwSGSwYquIkbGh2HP5lmJojDat/pVpvfHKtN6Y9P5epBdWIjrEVyRybup0ZAajqWDGj5vDGy3edqo1CzvD30aovyD0JLkycl4dDw8VM3oYLs3YHuFo56O1m/HVzkeL0XFhGB0XRqzg/OkcS02rV366aDfrS+OhwozBEZgxOIJ4nHNv3GUdL3ccaY8mocEjhE/hl7sulvXFcFXcKuy1f/9+/OlPf0KnTp2gUqnw008/ifbfunULjz76KDp16gQfHx/cddddSE5Otn+wVgLf9FPaIR4AQv3I6awMBqP5+CV+lE2tn3Y+WvwSX1875d37+9h9rXC7UqsIAJh8m/1QM789Lb9CNm3eaOaotTo0KfwMhiviVp6fyspK9OvXD4899hgeeOAB0T6O43DfffdBq9Xi559/RkBAAD744ANMnDgRly9fhq9v63oC+WzOIKzdn4bl9/cFACycGIe8shpMH9QFbydcAQDMHhbZYvN7bGQ0vjyUjvdZITQGAwAQEeKDM69NxoHkfJzOKsbAru1sPCwzh0Vi5rBIPL3xJE5kFmFIZLDV48Oj1CoCANY+Ysmy6rf0d5TqTQjUqa0eH8B5rQOaugUBg9FUqDiOU2rz4pKoVCps3boV9913HwDg2rVr6NGjBy5evIjevS2iXrPZjA4dOmDZsmV44oknqI5bVlaGwMBAlJaWIiDAeaW6GQwGPe74d+hOc07Lr8CE9/fJ7k98cRyV0eKs4zAYzsCRv0G3CnuR0OstWU9eXsKaMh7Q6XQ4eFC+cqper0dZWZnoh9Fw9u7dC5VKhb1797b0VBiMJsWd1w5ntQ5wZgsCtnYwmhO3CnuR6NmzJ7p27YolS5bgs88+g6+vLz788EPk5OTgxo0bsq9bvnw53njjDZvt7rSQNQfffPMN5s2bZ/1dp9OhS5cumDBhAv75z38iPNzSl6iystL6r6P3cMeOHTh16hSWLFkiO+aVV17Bzp07cfz48QZcRcP44osvsH//fpw6dQo5OTn461//ijVr1jh0jNzcXCxZsgSJiYkwm80YPXo0li1bhujo6CaatXvDf3Zc2THt7mvHO1NjseiHChxOrU+fvyM2BO9MjXXoGpSOw9aOhq8dycnJ+PLLL3Hy5EmcO3cOer0e58+fR2Rky0kaXBlH1o1WE/YCgFOnTuHxxx/HuXPnoFarMXHiRHh4eIDjOPz22292j6PX661eIwC4fv06evUiFxJjMBjNQ3Z2Nrp0cU7bFWfD1g4GwzWhWTdajecHAAYNGoSzZ8+itLQUtbW1CAsLw7BhwzB48GDZ1+h0Ouh09ZlSfn5+yM7Ohr+/P1Qq+W7pNJSVlSEiIgLZ2dlNrgFo6nPxT2+JiYno1q2b9VzvvfcePv74Y6xbtw7Tp0/HgQMHMG3aNGzbtg2jR4926BwvvvgiPv/8c5SWisvu89d28OBBjBo1iurYzrwfWVlZiIiIgEqlQqdOnfDnP//Z5umNdL7//ve/WLp0Kfbs2YNBgwYBsGjU7rjjDjz77LNYunSpQ/NpTZ8rufNlZWVZ77erYm/tuHz5Mnr16tVs98sdEK4dAwcOtG5/5ZVXGrR22PtMyq0dPOnp6ejfv3+D1qXGQLN2kCgqKoJWq4W/vz9WrlyJf/3rX83i+Wnuv3tnwXEcysvL6dYNzk0BwG3dupU45tq1a5yHhwf3xx9/NM+kJJSWlnIAuNLSUrc/1/r16zkA3IkTJ0Tn2rZtGweAe+eddziO47jExEQOAJeYmCh6/ebNm7mBAwdyXl5eXEhICDd79mwuJyfHuv+RRx7hANj8CK/t3//+NxcYGMgZDAaO4zguIyOD+8c//sF1796d8/Ly4oKDg7np06dz6enp1teUlJRw48aN40JDQ7lbt25Zz6fX67k+ffpwMTExXEVFBfV98PX15R555BGb7aT7P2TIEG7IkCE22ydPnszFxsZSn5vmXM6mOc/VEudzNu4+/6ZAuHYIaeja8Ze//EV0j0lrB8/KlSup1w4es9ncLGsHLStWrOAAiObYVLSFz7FbeX4qKiqQkpJi/T09PR1nz55FcHAwunbtii1btiAsLAxdu3bFhQsX8Oyzz+K+++7D5MmTW3DWrZvU1FQAQEiIfGf5DRs2YO7cuRgyZAiWL1+OW7du4aOPPsKhQ4dw5swZBAUF4e9//ztyc3Oxc+dObNy40e5xduzYgUmTJkGjsXxsT5w4gcOHD2PmzJno0qULMjIysGbNGowbNw5Hjx4FYAmPfvnll+jbty+efvpp/PjjjwCApUuX4tKlS9i7d2+TlkEwm804f/48HnvsMZt9Q4cOxY4dO1BeXg5/f387r2YwWi+NWTsAoKSkBAEBAVRrx/bt26nXjsuXL8PHx6fF1w5GE9PS1pcj8E8G0h/emv7oo4+4Ll26cFqtluvatSv36quvcnq9vsXm25qe0Pmnt127dnFpaWkcAO7LL7/kQkJCOG9vb6sXR/r0Vltby4WHh3N9+vThqqurrcfjn/pee+0167b4+HibJzbhtXl5eXHr16+3bq+qqrIZe+TIEQ4A99lnn4nuB//7119/zR09epRTq9XcwoULHb4Pjnp+8vPzOQDcm2++afOaTz75hAPAXb161aE5tKbPVUufz9m4+/ybAuHakZ+fz2VnZ3Pff/99g9eOzZs3cwC4l156ybpNbu3gOI6rrKx0aO346quvRNubeu2ghXl+nItbpbqPGzcOHMfZ/GzYsAEA8MwzzyA7Oxu1tbXIzMzEW2+9BU/PlqtyrNPpsHTpUpEuwN3PNXHiRMTExAAAHnvsMfj5+WHr1q3o3Lmz3fEnT55EXl4e5s2bJypDMHXqVPTs2RMJCfJl+Hl0Oh1mzZoFvV6Pu+++27rd29vb+n+DwYDCwkJ069YNQUFBuHjxouh+PPXUU5gyZQoWLFiAOXPmIDY2FsuWLWvQPZCbo737X11dbd0vhb8f/JjGnqspaM5ztcT5nI27z78pmThxIsLCwhAREYGZM2c2eO249957ERoaip07d1Kdd8+ePQ6tHadPnxa9vqnXDlekLXyO3Srs5W7odDq8/vrrrepcn3zyCbp37w6NRoP27dujR48e8PCQt6EzMzMBAD169LDZ17NnT2INJh6dTofAwEAMHjwY7du3t26vrq7G8uXLsX79ely/fl2U3lhRUYGVK1eKjrNu3TrExsYiOTkZhw8fFi2AjcVsNuPpp59GcXF9Z+4OHTpYzyHMCuKpqakBAIfn0Ro/Vy11Pmfj7vNvSpy1duh0OowaNYpq7QCAhIQEh9YOe6Lpplw7qqurbc7ZoUMHpx2/IbSFzzEzfhgOMXToUGL2XFOxfft2zJ07V7RtwYIFWL9+PRYuXIjhw4cjMDAQKpUKM2fOhNlstjnG3r17rUbIhQsXMHz4cKfNb9OmTTbz4zgOwcHB0Ol0dmtN8dtcOaOJwXAWbO2wj9zawWhamPHDaFL4lMykpCRMmDBBtC8pKUmUsilXWuDixYvIysrC1KlTRdt/+OEHPPLII3j//fet22pqalBSUmJzjBs3bmDBggWYPHkyPD098eKLL2LKlClOSxmdMmWKXTe8h4cHbr/9dpw8edJm37FjxxATE8PEzgyGHdr62sFoWtxK88NwPwYPHozw8HB8+umnotDPb7/9hitXrogWJT5zQroAbd++He3bt7d5alSr1TZPSKtWrYLJZLKZx5NPPgmz2Yx169Zh7dq10Gg0ePzxx532hNWxY0dMnDhR9MMzffp0nDhxQmQAJSUlYc+ePZgxY4ZTzs9gtDbY2sFoSpjnh9GkaLVavPfee5g7dy7Gjh2LWbNmWdNVo6Ki8Nxzz1nH8gUAn3nmGUyZMgVqtRozZ85EQkIC7r77bpunu2nTpmHjxo0IDAxEr169cOTIEezatcsmdXb9+vVISEjAhg0brFU/V61ahb/97W9Ys2aNqPS+PX799VecO3cOgEUcef78ebz99tsALOLLvn37El8/b948fP7555g6dSpefPFFaLVafPDBB2jfvj1eeOEFirvIYLQ92Nph0R+tWrUKAHDo0CEAwMcff4ygoCAEBQVh/vz5xNczCLRIjhnD7ZArVCZFrlDZpk2buAEDBnA6nY4LDg62KXLIcRxnNBq5BQsWcGFhYZxKpbIWKdRoNNzmzZttzlVcXMzNnTuXCw0N5fz8/LgpU6ZwV69e5SIjI60ppdnZ2VxgYCD3pz/9yeb1999/P+fr68ulpaURr0muiBoAUfosiezsbG769OlcQEAA5+fnx02bNo1LTk6mei2D4c6wtaPha0d6errs6yMjIxVfz5DHbXt7MdoGmzdvxuzZs1FQUIDAwMCWng6DwXAT2NrBIME0PwyXJigoCCtXrmSLF4PBcAi2djBIMM8Pg8FgMBiMNgXz/DAYDAaDwWhTMOOHwWAwGAxGm4IZPwwGg8FgMNoUrM6PBLPZjNzcXPj7+8tWDWUwGE0Lx3EoLy9Hp06diP2fXAm2djAYLYsj6wYzfiTk5uYiIiKipafBYDAAZGdnW4vLuTps7WAwXAOadYMZPxL4PkvZ2dkICAho4dkwGG2TsrIyREREuFXfM7Z2MBrDweR8XLhein4RQRgRG9rS03FLHFk3mPEjgXdXBwQEsAWMwWhh3Cl8xNYORkPILKzEfZ8cQnGVoW7LDbTz0eKX+FGICPFp0bm5KzTrhnsE0xkMBhGO4/DruVxU6o0tPRUGg+EAYsPHQnGVAfd+crCFZtQ2YJ4fBqMVMOvzoziaVgQAyHh3qsJoBoPhCuxLyrMxfHiKqww4kJyP0XFhzTyrtkGr8/wsX74cQ4YMgb+/P8LDw3HfffchKSmppafFYDQpvOHDYDBcj7T8CiQm5SG9oFK0/WxOCfF1p7OKm3U+bYlW5/nZt28f4uPjMWTIEBiNRrz88suYPHkyLl++DF9f35aeHoPBYDDaCCVVtXjmu7PYn5xv3TYmLgyrZg1AoI8W/bsEEV8/sGu7Zp1PW6LVeX5+//13PProo+jduzf69euHDRs2ICsrC6dOnWrpqTEYDAajDfHMd2dxKKVAtO1QSgEWfHcGADC2Rzjx9c4OeSnNpy3R6owfKaWlpQCA4OBgu/v1ej3KyspEPwyGK7L9wg3c/dEBpOZXtPRUGGBrB4NMWn4F9ifnwyTpHW7iOOxPzkd6QSX2JeURj3FA4KFpjvm0JVq18WM2m7Fw4UKMHDkSffr0sTtm+fLlCAwMtP6wImUMV2XeN6dx5UYZXth8rqWnwgBbOxhkMouqiPszCiubVfNDM5+2RKs2fuLj43Hx4kV8//33smOWLFmC0tJS6092dnYzzpDBcJyyGtvskOhQpmdrbtjawSARGUyu0RMV4tusmh+a+bQlWp3gmWf+/PnYtm0b9u/fTyxzrdPpoNPpmnFmDIbzMUtc2Yymh60dDBIxYX5o56O1m8rezkeL6FBfxYcWZ2p+YsL8iPvb2gNUq/P8cByH+fPnY+vWrdizZw+io6NbekoMhlO5Xlxts81kZsYPg+FKpOVXEGv4NLfmZ9PxLOL+LSfbluey1Rk/8fHx+Prrr/Htt9/C398fN2/exM2bN1FdbfuFwWC4I3qj2WYbc/wwGK6Fq2l+jqQXEvcfSi0g7m9ttDrjZ82aNSgtLcW4cePQsWNH68+mTZtaemoMRpPBwl6MtsK+pDx8tPsa0StCM6apcTXNz/DoEOL+kW2smWqr0/xw7EuA0QZhxg+jtWPbABQ2DUBpxjQXMWF+GBLVDicybL03Q6PaWTU/Qd5alFTbhseCvLVO1fw8NLQrXt56ASY7S4VaBcwY3LayFVud54fBaIsoSX7SCypZ01OGW0PTANTVmoReu2W/JleSYHtcuH0hstz2xuDjad/fIbe9NcOMHwajFUDyeO66fAvj/7MXvZf+wTyjDLeEpgEozZjmZF9SHkrteHQAoLTaMp+0/AqcyLSv6zmRWezUwoP7kvJQLvMAVK43tmiIsCVgxg+D0cp5YUt9UUSDPZ83o02z6XgWFm46Q8z2+Xh3MmatPYLViSnNOLN6aITBLdUkVA6a+TRn4UFXuz8tTdvzdTEYrRKV7B6jqT47jGmDGDwXckpw/+rDMNbFTH86k4slP17AL/Ej0atzIADgcEo+/vrFcetrjqQV4d9/JGHTk3dgWCxZQOtMaITBZoXYr7ObhCpBM+fOQd7EMc4sPNjcTVRdHeb5YTBaOQbBl4KR1QNi1CE0fHiMZg73fnLI+rvQ8BHy0OdHm3RuUmgagI7tEQ6Nh/2HAI2HyulNQpWgmXNMmB/GxIVBrRLPW61SYUxcmFMLDzZ3E1VXhxk/DEYrQCXv+EGtoC6QtBgix3FY8uMFzF1/3GFBdHZRFR7+8nib0wq0BjYdz5I1hI1mDltOZuPj3cnEYzRnCIymQF9afgXxmpq7cSdtAcNVswZgZDdxmvnIbqFYNWtAi8ynrcDCXgxGK4Bg+2BUt1AcTLEUMJOGBvIr9Piu7ovlVGYxxnSnf/p7Ycs5HE8vwv5r+ch4d6rDc2a0HDQF726V1hDHHEjOx7zx3Zw5LVlo5hvqT241klFY2awtHGg0NqPjwhDoo8VXjw9FekElMgorERWi3PaiKefTVmCeHwajFSD0/EgNnIFdg6z/lz4Z6w1mwT7bytEk7LXZYLgWcmJmmoJ3SkXvmvOLkma+rta401GNTXSoL8b3CG8yA41pfsQw44fBaAWoBL4fk0TULLR3pIJng0AMbXQwE4z1E3NdLuSUoNvL2/HSjxfw05lcLPrhPLq9vB2Xr5cCsBS8U8us/moPS8G7+XfGEc/RXF4foG6+Mu5NvkBfc+pnaBjbIxztfLR297XzcW4BQ9r5+Hnaf9P9PD3alNcHYMYPg9EqEK73UqNEaPBI9wlT3x3NBLtZRg6LMFoOGjGzj1Zt97Vy21samgJ9zaWfoeWX+FE2BhBfcbolqKi1792V296aYZofBqMVIHzWtTV+5PcJxdAsE6x1QCNmDvfXoVxvsjumXG/CgeR8nMsqIZ5ndWJKs3l/aAr0Nad+hpaIEB+ceW0yDiTn43RWMQZ2bddiHhYaAXtzevNaGub5YTDcEGmlZpXA9SP94uMInp9ak3wmGMO1kWveSSMOphG/KnX5borsIDmNkqMF+mj0M2n5FUhMyiNmgTlrTOcgb/TtEoQu7Zq3v5iQlng/XRnm+WEw3BCTmYNGRgQhFTwLjRqpHsjAjB+3Q6l55/DoEPx0Jlf29SNjQxGukBk1sGs7qKHCkbQi2THO9GAoFVx0pli3pKoWz3x3FvsFX/Zj4sKwatYABNaFqJpzTHMxMja02d5Pd4B5fhgMN4QUopLuow17yRk/NQb74RElSqpqRYaY3tiw4zDEKDXvfGhoV+LrZwyOoCp415yCZyWNkjML9D3z3VkcShF7QQ6lFGDBd2daZExz4UoCdleAGT8MhhsiFSeTRM1kwTPZ+PkkMQW3v/6Hwy7xj3Ylo/+bOxHz8nYAwMYjGejx6u9IvEoutMYgQ9vgk4QzxzgDGo0STZFDGtLyK7A/Od/GA2riOOxPzkd6QWWzjmlOWJFDMcz4YTDcEKmhIvxdahiRND9GQkgMAFb8kQSDicN//khyaH4f7rom+v1fP18CADzTAk+8rQlnNfh0pUahNBolmjE00DQSbc4xzYmz308arZMrwzQ/DIYbIBU4kzK6bL1C8q/jCPuEVDjY+kIOD5neSww6nNXg01ljnAGNRsls5hTH0EBTCFH6t9aUY5oTZ+mmXEnH1BiY54fBcAOk30Ok0JZ0zRWFvRzwCgnReDR8qRCeQ67xJIMOZzX4pB3THEX6aDRKNGNoiAnzI153dKgvYsL8iMfgxygVVHTFoovOaPzqSjqmxsCMHwbDhTiXXYLnN53FTUlfJWnrCdsqzvJhL5Lnh7RPiLoRRovwsI05DoOuVgtNg0/aJqDNUaSP5pqcpfnZl5RHvO4DyfnU56IpqOhKRRed0fjV1XRMjYGFvRgMF+LPddkteeV6fP3EMOt2adstsuZHPJbk3eFA5/lpTBK88Pw6LXveagw0tVpu6xRAHEOjNeGbgDZHkT6aa2of6KV4DBrvD43uRekLnD8XTUFFVyq6SKNBUpqbM47hKrCViMFwQVLyKkS/23h+CNodUiaYVMch8vwQNAohvp7E+Urp3r4+dCA8R59OgQ4dhyGGptkoja7F0Sag57JKcDS1EBdySmVf01ABLM010TQ2pYFG9+LouWgKKjZ101Ihcu+DI++5M47h6jDPD4PhBtiEqwieIKnQUvhSYvVnQmNTR/t+Oeu1DDHz74zDf3Zek93P12oZERuCw6m2GVIjYkOsX8DDY0JwJM12zPCY+jGHU/Lx1y+OW/cdSSvCv/9IwqYn78CwWIuR0FgBLO01vfLTRbthG42HilrzM7ZHOIK8tSipti0XEORdr2N6eesF2Ptz4JuouiJK70NMmJ/i54LmGEOi2uFEhm1m2NCodm7j9QGY54fhIDUGE3ZcuomSqtqWnkqrplpSWNA2RV1eAyT9fiALnu0fQwqN/VJSVYs9V2+h1mgWzUHYQkPFJD+Npl8X+94z4Xa590u4Xe69EG4XGj5CHvr8qPX/zhDAkrqN8/wSP9JGsKvxUOGX+JHU5wGAuHD7gmbh9n4RQXbHyG13BWjeB6XPBc0xrt0Se6V5kmS2uyrM88NwiJW7k7F6byom3tYeXzwyuKWn02oplTyZkrK7AAVdj9DAMckfh6T5ofHeLPrhPHZevoWX7+kpGi+sIs1oHGn5FTgnE3o6l1OK9IJKcBxn16MDAEfSCq1j7HkAAOBwqmVMwjn51HLAIkS+q08HkZeARyiAVfIG7EvKI3Yb55uW9uociJRl92DLyWwcSi3AyNhQh70wafkVOJFpv57Nicxi6705LdPU9XRWCdU1NTe8EFmK8H1Q+lzsv5aneIyswkqbtYmntNpgfa/cAWb8MBzi27pMiF1XbrXwTFo30idcqbvfRAh7Eas/kzw/jRQ877xs+Ux8fyJbdFxm/DgPZxTOox3jLHG1kqFAI0IWfqEOimyHUH9dg/Qlzrp/wmtKy69AZlEVUcy8LykPZ3NKmqyruzOu60x2ieIxzjv4XrkyzPhhOARJF8JwHrbGDjnsJdxtW+dHuK9hnh9H0r00HirUGOrnZ5BaaowG05xF+mgaYTpDAEtbfM8ZxfWcdf9o56PUhNZZOOO6BiiE9KJCfBV1Ms4qfNkcMM1PK4f0gVf6Y7AHqaFmQ4/JUIYkeLbN4CIZOOLj0nt+yO+rcA5qDw/ROVnneOdBW6SPpgAfqYBhdKgvVSNMmvkoQdu01BnaIprrpr0mmvkoNaF1FrSfC9K1j+lOLoIYHerr1AazLQ0zfloxW8/kYMg7u3HWjjvzg53XMPLdPcgrr7F9IQGpEFd6vugl2zF2RaKjU2UoYOMJoixqCEj0QNKwl8CoIWWC2XiTCD3CrtwoQ05xtfV3PUXneAYdNEX6AOXiemn5FcQGqekFlXhh01niXBZtOUc9HxI0RQWdVVyP5rpprolmPjRNaJ0F7ZxJ81FqMOtIAUh3gBk/rZjnNp1DQYUe874+ZbNv5e5k5JbWYHViqlPPBwCZheT4M8NxpAaOSeD6IVV7toylq/NDfJ1kn0ESdpOG4XSa+qXFIAiVGljYtFHQNqfki+u99+DtuG9AJ6yY3hdfPT60PhxDoRE5lkFuJnokrcDhZpn7kvLw0e5roi9+mqalzmoSSnMcmmty1nGchTPmrPQ+nM4qdlqDWVeAaX7aALWEL5xapsdwKTQeKrtPX7aGSf3/pV4ZUp0fUtaY9LzC36UzInWHl86plnl+nAatPkaqNfnpTC6Wbb9i1ZrQaESGRYUgp/i67JjhMaENng9Qr32haWzqrOJ6NMeh0bV0DvJ2ynGcBc37oDRnpfdhYNd26ODv5ZQGs64A8/y0AUg6HKXOzQzXQFrUUOhpIfXrAhTCXkLPD8Ewkh5T6sExSn43yWh+mPi5cdBqLpS0JjQakfcf6k8814oZ/aibZZLmQ9O0lEarQwPNcWiuiUZX1VyNYQG6pqVKc35oaFfFYzirwawrwIyfNgDJvHGnRnRtAbnCcza6HoENYRP2IoW2CLoeYoZZ3bjsoios234FOcViF7rUqBG+lnl+nMe+pDzi/gPJ+VRaExqNyJu/XCKe6+1tl6maZSrN561t5PPwmh8lrQ4NNMehbQBK07S0ORrDAvRNS0lzpm2IS8Kdvk9aXdhr//79WLFiBU6dOoUbN25g69atuO+++1p6Wi1KeY18wbwagoCZ0fyooII9c1XqvBMaPJzEmeJIhWdiSEwYWqv7d866Y8gorMLPZ8XhENLnaMflm9b/G5jx0yicoSOhHXM4jazfOJiSj5Fx5DAHTW0YacaUzf7UAoT66xTPQ+P9cWadH5qmpc3RGBagbzhKmvPpbPLnoiE1kFyZVmf8VFZWol+/fnjsscfwwAMPtPR0XAJprFcYMoly4gdVrucLwwGoPT8kg4Ze8EyqDC0ysOr+m1EnZr9VpheNFWYB+nqqUVlb/7tQAG+Sxu8YDkGj7VAKZdOOKa004OpN+Sf9Ud3o6vwohRdGdgslnqe5NT+0dX54aMp7dA7yhtHMoUs759X2EeLo/YkOtTXUmuLeuDKtzvi5++67cffdd7f0NFwKT414+RFn8TTdeRiOI9f6ypFMLOnvQj0OSR9E6hyvFK4SFjUM8NaKjB9hSEyqDWI4xtge4fDSADVG231emnqNTYCXBmV2BgV4aajHjI4Lw5eHM2Tn8uq0XgCUG6RGh/qinY/WbripnY8W/5rWG/93OAP2CoFrPOp1JM5oqEnT3JPmmgC6IofOKMxIe11j4sJwKKVA9NCiVqkwslso1f1x5r1xB9i3lZtTYzDhcm4Z0SL3kAhJSB3AAUuPlsOpBawtQQvDEQTHojo/CoJnkTiaEBKTGibiTDDyZ0EY9pIaSsJsQ6UimQxl7Bk+lu3Ceyt3n51//2kapCppX/p2DrJ7DOF2ZzXUdFbTV5oih84ozEgLjQZJCWfdG3eg1Xl+HEWv10Ovr3fhl5WVteBsHOfFLeew7fwNrJ0zCJN7d6B6jT0th5DZXxzFxetl+Ouwrlh2/+3Uc1EJ/BZmMwcPmcwBhjzCBcRo5qBVWzbYpK8TvHc2nh9C2EuITdjLTG+0CI0fafkEreBzYGxF2V4tsXbMXnuEuH/OF0fxxOgYlNXY12CV1ZhwIDkfZjNn1+tjGWPEgeR85AoKVdpjy8lsDIpsp9ggNTrUl6h9ScuvwGmZvlKns0uc2lAzLb/CKU1fubpihlKkjUQb2/TVEWg0SCScdW/cxfvT5j0/y5cvR2BgoPUnIsJ9UvUAYNv5GwCAjUczRduFX3LtfDxF+8RaDtsvtYvXLYv4vqSGVyBlT/iNR+iJIXl+bNPX5Y0Y6VgjwcBpaNhL6jHsLWh+2Zo+Fy2xdpzPtd/RnedsTgmVKJpmTFMUH+wc5I2+XYJE2pfmLBhIc67mHNMUNLTFkCtfU1PQ5j0/S5YswfPPP2/9vayszO0MIID8tC91RzrypUaC4zioBAcXey3M8GS2tcMIvWcGsxneUANwsGqztCYQQfND+iyIPD8KWh2h50ea+dVa21u0xNrRt1MgDhGajfbvEuQ0UTRNQTtaoS1J++KswoM0NGdj2OYWBzdWX9TWBM9t/ttJp9MhICBA9NMaIGk0SDoPx84h/9rW9ITfnAgNSJPI8yOvx1ESPJMMJaOo9YRE8NxAzY/0rRcaP62pvUVLrB3fPDWcuH/jE3dQFUKkGUNbfLCxTUBpjuGshpq0TV9pxjijwawzaay+iLbpa3NeU1PS6oyfiooKnD17FmfPngUApKen4+zZs8jKIjdkc2V+u3ADd390ACl58sK+4+nip0Hhl8xRSRzXES2HEKnVTzKcWFZPwxDeYmH/LJs6P8IihwqCZ4OdPmBbTmZj6soDyC4WpqFb9v16LhfjViRi5+Vb1n1K7yep4a3eKBRDtx7NT0vw1P+dIO5/euNJquaTNMUSaQraOaMJ6KYTzdtQk0YYrDTGWQ1mnYUzGr/SFpJsrmtqalpd2OvkyZMYP3689XfeLf3II49gw4YNLTSrxvGPb04DAJ7ffBa/zLdfGVRaP0IoLI0L9xftExs/9F9G0j92YVgGcCw7iGEfuTAUqc6PjR6IEL7iX7foh/MAgEu59SJd/v19YfM51JrMePe3qzb75BBqfqToDSzV3VmcUihEdyKzCF6eauKYQ6kFik/op7OKFd9zmgKGNMeRE9kKj6H05X0otYC6tQKNMFhpDI0GaXRcWKNFyLTQFjl0xjH4a5q99ijO55agf5cgfPX4UIfn3NK0OuNn3LhxDRZ8uTrSbAfhdfrqxAse6YuTpOUg3TubL1VCfyf2JdcwhEYjreDZVu8l6bgu1PxQvL/2mt0qZWmRKjwLw14sHNo4BkW0w44r8l6bIZHBVI1CwxUqJjuzeadiQ82Ylmmoaa/QH+0Y2oaujpyrMTijCCTtMb4+ko5Xf75s3X4gpRBRixPw7v19MHNYJMVsXYNWF/ZqzdiGPgSiZkl5PAMhtCXWcsgLpaVINSGGRhTFY9hiNnOSooN0BiypqKF0LMmGaYyGi2z81O9jHsHGsfaRIcT9n84ZTKXVodHQxIT5EcfQNu9U0sc8NIQ8X1dsqOksDZKzoNVeOeMYQsNHyOKtFyln6xow46eRnM4qxru/XSXqcZwFKaNLipHQSdss8vzIewlIWWL2fhfOh3Xvlqe02oCVu5NxIkOs07JJQxfcQ1LHddv3QXzvb5bV2H2dFJJ3p3HGD/P8OAvaZqMk0gsq8fHuZOKY1YkpuHNFInHMpPf3AlAuYKikj3nrV/tfpjx8Y1MSzd1Qk0Yz1ZzQapAaewwazZm70OrCXs3N3PUnUFptwKnMImx5ekSTnkv6BUgyMAyk9GaC50fqzZE7JmDrYRBVEmZfcrKsO5CGlXtSoEv0QNLb9a1YSMYkSdcjtWdIGVWk94VkmJjMHPG1tJofjrMcS80KYDYIZzUbPZRKPs6B5HxkFpM1IOl1NV2Umncq6WMOpZK/mJ3Z2NRZ0Gp+mgtnzIfmGDSaM3eBeX4aCa/DuXKjvMnP1adzoOh3kpdGaIhIvwxJmh9iBpfEMJIaX+K0aWb8yJF0y/JZ0UuKAdqEIBtYn4fkMSIbPw3X9dQY6cJeNOdhyDMihmzY0DYbVdLIjI4LQ6RCE85oiY7EXgFDQFkfMzKW/KXckMamL2w6i1Hv7caiLedkX7MvKQ8f7b7WIC+No5qftPwKJCblNZmHytH5NPQYgyLIxxkSGax4HleBeX6cRHM8x2rVYlvVQPC0iMTHBG2OjTjWLP/FSdKSKB2XUY+cw056P0nvL6nOD6lqMznsxREF7yTjp7qWYBgZbI1kHVt5GsRr9/amajY6NKodjtttAhqM6FBfzL8zDv/ZeU32OPPGd8O88d0QtThBdszOF8YBUC6ux+uCZBub/qkX1h9Kh70/Cw/U63mUrgkAtp7KxnNbzlv3bTmVgy2ncrDyof64d0BnAEBmYSXu++SQaD58mC4ihK7r+tge4fD30qBcoXlsczU2HdsjHH46NSr0tn+H/jo1lRdqbI9wqma3pM/Ep3MGOzbxFoR5fpyFHeuH4zhcvUluOqqE8LUcCAaOTQhKfh+pzo/Ie6MghiZ6lFjYSxa5WjdE746N4Ln+/3LGT63RLKrjwx9T7vNoNHNEj10NodEteZ/U88M+G00N71203V5f2kAt88Qmt10OmuJ6SrogmmaZNNckNHxEc9x01vp/qeEDWOrY3PvJQfuTkIHmNjVnY1N7hg8AlMtsb+uw5y8nYe8PYeyKvcgqqoK/ToMLb0xp0HGFX0bS7yySd0cY+pDuu1WmF4xzJNQi70GynEfe4GLUcyzdflycFFaU3nux4FlynLoNs784ihOSJ2Uzx8mLGk1moseO6N0h7CuRfNG0puamzc0DH5O/oKevPoQFd8ahtNp+09LS6vqmpXJ/oibOIjL+6XQO8VxzvjiKN/7ch6p5J0kXtOl4luJcwv11itf00+nrxPku2nIO0/p2JBbyo22Qui8pT7ExbOcg72ZrbEojYJ83vhtxDM01JRLKLAAWwT3vfXR1mOfHSajsPLpk1RWNKtfb/0DRYCRU+RWGRUheGakhIu3BJXdMm9R2yXFIqe4s7CWP3IJH1vXIj5V6fvj3SWr48K+TM0yNJgXPTwM1P/bmwGgYV2S8HzyXbpQ5rWkpTRNVRxtdjo4Lw7N3dhcZGDRzobmmYxnk4xxJozuOEDmtDs1xmrMJKI2AXQmaa6IR3LsLzPPTCJqjmCI5nZ0+tCVsQkr9Ogc0PoDYWGKeH3mkYmU+84nshZM3NG20WQTD02SWz+gzmM1Er4xUuCyEZBjZnod9NhrKbe39cTpH3ijp3TGASrhKUzQwv7RGsYmqM4rrOasoY1ZBFXKK5b0/w2NCqYXBSlodmuPQFIl0FiNjQ3GE8F7ReLNorqm00oCrN+XLDozq1rz1jRoD8/w0AlGRwSZSPAu/AKWaHwMhtEXrlbH1GMmLbG09QazIYUMQempI99tI8PyIBc/ifSSD2czJe35MZvmQGEBOZyf19rI5DzOMG8yPMu1teH6YNxJje4QTi9XRFg2kaaLqjOJ6zirK+P5D/YljVszoR1WUEVDW6tDc4+ZsAjr/zjjifqWQF0B3Ta/d25t4DHcJeQHM+GkUwhBBY22fXZdv4ZEvjyNPUJAOEOsj9lwVx1tJGhuSAFocEiOkq9tkgjlyDhb2kuParfonJ1JmlpGg+SGJoUleN0vYS8bzY+JQSxIuEwyc7KJq2X0252Eh0QYze+0R4v45XxxFWn4FsVgd35CUxIHkfCodibOK6ynNxVnzBZTF1zRNQmnuMdB8TUBpPhdK0FwTTZFNd4GFvRqBcBG3p/lxhCe+slTGfP3XS1g9e5DgHPUfxnB/L9FrSFWcpV9wBpMZXlq17esIIROOs4RUPGTCMo7UnmHUE+ittdaHEtXkIaSskwpV2ra3MMvef5OZs9u7i0dae0iII94dEuyz0XCcpcOhaUh6NJWsoTmQnK9oyDqruJ4StPOdN76bYlFGZ2h1pE1Am7qxKc3nQgma62aaHwYAwED4ogCALu28kVNM/0QMADdL5T0/Uo0RqYqz1KiRS0O3DW3Zipp1HnVGk1KRQ7O8UcWwD0mYTgpPirq623nv5TxvBpOZ6BkiipoJYS9HaOtewRc2ncWxjEIMjwnFihn97I556v9O4FR2MYZEBotqp/TtFOgUHQ5NQ1I1VIo6kt6dAhSPI2RfUh7O5pSIDA4arYn0M97Q+Up/t2eY0dw/Jb2nVM9Dow+dvfYIzueWon+XIGx84g7F8UJoPhdK56K57hExoa1G88OMn0ZAMiKAhumASFlbJC+NrbEjn6lllOhMhGJoe8US+YJ0Ng1SSYUV2/gXHAm5MgQkQ9S2sSkE+8THN5nkjR+jmSOnsxONH+b5aQw0BfikHbN/v3RL1DH7m6eGE4vM8V9kA7oG4UxWic3+gV2DrB3G/XVquzVg+KJ4o+PCFAshAiAWMOSNC1JhQaUiiPwxnDVfJXitzqGUApGHVa1SYWS3UKvnZmBEIE5n23pcBkYEWcfQFDlcuy8Fy35Lsu7nu6S/NvU2PDY6hmrOtJ8LpXNFBnsj004IOyrEB9GhvtRFNt0BpvlpBEJ9hKMLelFlLTYcSscFSeZGYUUtKvVGfHMsE4lJeeKn/7ovtN8u3MDl3DKisWHTh4vgRSBpdUi6IqHBxUnqx9iLHS/8/gweXHPY7lPQ0bRC7Ll6y2Y7ACRezcM3xzJR2YiSAc1NjcGE749n4Wx2ic0+g8w9JVfilnh+6u7hweQCfH00U3J8ee+OwWQmprOTKzU7x/hpq61PaArwOatj9nk7nzsAOCfYXiXzfsptl0NJQwMoFxakOQbNfDc9ad9jIrddDhqtzvnr9kNN56+XWP9PU+RQaIwIeTPhikNzlnvWFm5XOpc9wwcAMgrrQ2K+nmq7Y+S2uyrM89MI8srriwUqufKF2hkAWPFHEr47ngWtWoXkd+6xbr9eUo3vT2TjrTrh2JeP1ru8jSYOpzKL8I9vTiPIR4t/P9i3/vgK+hxS3y2jiUOdHMjO62yNL3u/22QcSY5z8XopfjprSWf9+lgW5twRad1XYzBh5lqLIO/w4gnoJEgRvVVWg7kbLJ2E9QYzHhsVDXdg04lsLK0TB2a8O1W0T06rRerRJc2QMpk5lFYZ8Ld1x2zObTRxsloMo0k+2wtQCnsxz09DeUFg4Nhj0ZZzKK2qJY55euNJlFfbL9DHM+eLo5jWt5Ni0UCzmSO0WbGMuZJbZn9AHXxBOyUNzb6kPKrCgqRjbDqepTjfGYMjMCw2BBnvTsXqxBTrcWk9PkKUtDqbjmdBTvVgrJvPoMh2ikUOX/3RvkHMM+eLo1QhsE3HsyD3V8WBrmhln3/9RtzPF9CslHlAqqw1UReJdAWY56cRiFPNyQu69MsoLb+i7hji1w3sGoTCinqjqqC8fkE0mM24XLcglVQZiB4c255dBC+R2X4YxvaY9OeTht2SbtYXZ/vtwg3RvrKa+oWxqFL8BVAguBeFlXq4C5mCJyWpPkd4G2nvr73Mk1KZL0KjkuenwWEv54Qy22JIlKYAH03HbBphK03RQJoxjopbNx7OwFdHMvCNxBPpiKBZrjkqzXyFKGmEALrGpnJaHZr5UAnPHRQqyxVddEbRygqFv2/aApruAvP8NALhk7BUOyPFIGnmKPyTEv6BadUeIqNK+GVkE3ayIzj2rLNnSR4cG32QqWEGDqkVhtSoE2YYqSW1JPSCPzppIT1h9hEpDdvVENXyEYjGpYYH2fMjf3/NhKwtA0HzYyBUeAYc9/yoPVQOe3LaYm+vYVEhigX4SqtqsYPQPmBIZDDKqw2KwlaaooFmM6c4Jtjbk0rcqqRTohE0K2ljaK4JAA6n5OOvXxy3bj+SVoR//5GETU/egWGxIQDoGps6Yz40AmJaobIz5qNUtNJP60E0gGgLaLoLzPPTCKRpwdJFXfjQYPO0K9gn/BJTqcSGg8j4kRxfen5DXVfuWqNtjyZSbR+R54cY9rIvqq6uNaFM0ndH+oUo/OKUGohCg0fqXRC+zp20IkaZe0oKR8oZntW1JhvDz0TI6LLss3+vjCZyFWei5sdOhWcvjeNLSFtsfUJTgG/tI0OIYz6dM5iq8CBN0UCaMbQF7ZR0SjQFCpW0MTTzBSAyfIQ89Hl9nRuaxqbOmE9MmB9xTHSoL9X76az5KJ3r4lt3E/fzBTRJuEvIC2Cen0ZhY/wItDMARGnupNoqwi98FVRiz4/ky0hYIO+w5I/BZObw3Kaz+O3iTcyS/DGQavAIfyf187KXiZZTXIUpH+63iQNLPRzCeUuriN4srQ9n7U/OFwkNhYJw0j10NXYLnuBJbT+EhoBNmwqTGdlFVbjrv7b318TZFiT08VSjqtYEg8mMj2QKvhlNHNbsS5Wd9w8EXcB3x7Nttnlp1bIaADnaYuuTp/7vBHH/0xtPok+nQOKY1Ykp2HaW3Lxz2kf7RZo5uXP5epKXfloNklJ4iea63t52WVEbo5Qqnl5QiYRz8p4PwHL/encKUNQf0TQkpZnPRkJWFGC57tFxocQxtPM5nkYOe205mY31B9KIY/ou/Z24n28MqzRfdzGAmPHTCKR1fgxmM7xRb/14ajysX1Akr0VVrdhrIvxykIYaggQZEdIvHaPJbBUVf3PMNgPI+n8HvA+kjCOTmcPl3DK7X35Sge5tHf2t/5/Uq71oX61J/stT6CRSqqvkSnQN9sGNuppN4nIF9Mal0czhkuT+atUqGEycXc+Pt9Zi/BhNHH6V+SIwmM04kCyv5bh4XV7kai+85aV1PMOjLYa9aPQ8choungPJ+UgpIBfYu5ZXgRvlNcQxJzKL4K3wvh1JK1AsankiUz6EIhyjdF1KhfFoiwrSNPekKcqo9PmknQ+NZsrfm/wVTDsfGs2P0menzE4ZASFH0grQJZhsWEuLWtqr6+QqsLBXIyBpNDiOkzzxS8IWgieHSr0wJARZzQ8AVAjSvaVGk4Hg3SGlVJPmSdxnNqNGxiCxqUkkOL+0143Q82Wra5L3SrkyclopR5qXGs224UsvTZ12yGS28YT56OwXoxQidw891Q1bCnQNCnu1PeNnUARZCzEkMtiqW5FjdFwYuilUB+4e7kd1rmFRIcQxw2NCqY7jjOtSKowXFeJLpZ+huX80mhWac9EWBCQxqpvz5jM8mvx+jowNVfzsBOjIBrEjjWEzCysx4M0deGT9CXy4Mxlz1h3HgDd3ILuQLAJvTpjx0whIvZgsndTr95GaggpDWxwnNhykYa+KmnqDp1JiqQu9LTap5wTPD8m7o9Q/TC/zdEgyoqRPX0LND+k+uVPYSy7UZXN9pPpLdnptedXV0qg12tbr8dFq7B5Hekx7+CosfHLoGuL5caP30VnQ6HlomlNuf24sccy2Z8dQnctZGiRnXJdSYbzoUF8q/QzN/aPRrMSE+RGbn/LzUWroSqOZop0PiehQXyrNj9Jn5/wbdxH3841hSfDeHRpdVUvDwl6NwF5a+E9nruPXc7l4QlKZ02DisOKPq7h2qwIv3dUT5wValnJBqrfRbBaFd6SFvU4JUgmlnp+SavkYvdHE4XBqATafyEaR5EMp/BJNyxe7Rk1mM1LyyvHe70nYeVlchDDpVjmqZPQevEH1/o4klFQZEOavE80FADYcSsfVm+Vo5+spmIvl2id+sA8peRV4emysdd/JDNdKo8wqrMKy7VfQo4M/npvUXbRPaLSQSiLkl+mRX67HG79esrn3RjOHNXvF+hw+XFFr4rD5hFiDwxtGJE2NXPjVV6eR1UKQ8NIyzw8NNHV+LimkEU/7aD/u6kPWXKxOTMHn++U1XQAw8I0/bNovSJm++hByislP6SOW7VKcz9vbLiPI274hwdNbob7MiGW7FI8x7aP9WHRXT+KYA8n5yFVoN8TX5yHpgtILKpFVWKnY0HXR5rPEc41YtgsdAryIY6avPoRrt8qJY/ot/R19OpN1VXO+OIoMhbAXqUI0YPnc3NYxQPE8T4yOoarr1NIw46cR2POELKxb5G5IenRlF1Xhk0TLohQT5gt/Lw3K67w4OSVCYbQ4XFYjMS50mvonbannR9r1XTQ3sxkLvjtnN/4u9PxI09ANJg6bT+bYGD6A5YuYkymtZTBxyCuvwao9lk7Kd/YMF+wzg+M4vP6rJUtE+AdlMHHILalGSp5FIP3DqXoBbohfvQHlCmw9cx2/X7qJ3y/dxKMjokRGnLhqtnymXVWtET+fvY5t58W1jwCLRyw5T5xqzBs/BqMZR66L4/yRwT44l11iN7TF95mTC4kpaUDk8NI0xPPT9owfmjo/eWXkOlbX8irgT6FrKa4mV0IvqjaiWuEL9dKNMsW6TjfK9FS6lnY+nsQxlRTnKagki6+v5VVQ1aCR1seRcii1AKH+5HWGtjHsrXLynG+U6VGsoIe6dKMM1Qr3p1RvoqoXJP2+cJSiaiPVeWjeB1cwfljYqxHYNhOt/5BmS56aigWZE1V6kygkJswaM5rM4rCXxPMjDBFJPT8kYaHRJF8UT9yd3vZ1FTJtJVQQp/MLMZnNqBL8sZVUC71b4lYYQs+XwWQWXbOwyGEDWqU1KcL7L00DF4X5TPIhR5VKJes9s/flw3t3hMdcNKUHNswdgr/UpfsazZy14eS8cbFYNWuAtSy/0cRhcKQlLv/yPT3xzIRu+GPhGGjqND+hfrZfVFq1/J1viOdHqm1qC9BobGj0PDS6lnYKItpgbw1ua+9PHNO7YwDa+5ONlo4BOipdi9KcfRU+Qx0DdFT3hkaPQqONodHY0JyL5v7RvA9KWpxAnRp9FTLq+ncJQudAspdJiWBvDdV53KUWEDN+GoE9jQaPVKshNDxqDCZRFleVwLgwmMRhL6nxI+xvJc2yIvW+otWBSOdtNJtFRQiF1JrMskXxDGZOZNQJtUoGo1lSv0deECw9nyshvAab+yaTxWVPbC5XJNDevfWu+6IwmMzWc069vSPG9QiHTssXuDRbjdJhMSH4U79OCK9zr9eazFYDN6KdD56f3AM9OvhbDRz+PQsReLH8vcQhB+E+abaX0HMo1UTwomp3qtfkLGg0NjR6Hhpdy5mlU4hjTi+dgh/njyKO+WHeSBx9ZRJxzOGXJ1LpWpTmfEmhvszhlydS3ZuxPcIRKGP4BXprMDouDA8N7Qo5W16tqq/PEymT1cQ3+BzbIxz+MkYJ32iV5v7RvA9KWpxzb9xFVS/owOI7iWOkbXiknF46heo8Y3uEw0/23mhcwusDMOOnUdh2ThdWKhbvK6yo9/xkFlaJvhCFXpGsoirkltaHwcok3ppbAte49AtXGmoTIuddACxfyMfTi/DDqRyclnSCNpo4XJQ08OMzfAwms6iNgxCTicP1kvp9SQI3u9QwKhcYRiQDhw+XHUwuwJ6rt2Ayc0i+VY7fLtywayjkllRjxR9XbapGO4LBZMaOSzdt7gFA7u1WaxJ786pqjUg4f8MazuPRG82yHjnpZwioNzayiqqs59DWvR+84ZFdXG01qLR12/h/LQUwOdF4oN5Q4c/pKyhHLhVDC/dJjR9h1pinJBOMN7DaYm+vtg5N001n0KO9fU2KcHu/iCC7Y4TbaRp80jRafWhwZ7tjhNujQux7muS2uwMVMiG2chdqTs00P41A+gS7m1Ca/rP99QWmjmeI62MIRa01BjOuC0R5qfnKNSV4SPVbpHV/hFy7WW7V30ipMphEhgtQ/wVZa+RwJNW+lsFgNuMdma7ERpMZqQIjQGiYGU1mZMn0xDEYzTidVWJt5rly1gC8sPksDCYOi6b0QLykgeGId/cAADafzMGJVybaPaYSP57OwUv/uwAAuPD6ZJEXJDW//hpqjfKZf7UmMz7ceQ2fH0i3vSaTWdT3TIg9g86nLuxVXGWwenB4g4MvIWAyc1YPE2/gCLOyeGNToxYaPx5112F5XaBAYBrorUU26j+TwjCYhyROqlWrwNtynhoP0XvrqfFAZa2pTQqeaYoc7rKjqxMStyQB3gqds/st/R2xCtlB01cfwq0yci2gse/tkc1m4pn0/l7468hfIdNXH8KMwRHEpptKxfVohdV/HdbVZm3lOZ5RZC1OKH3A4zmdVYL0gkq88P0Z4rn4a6JptPre9P54b3p/jFi2CzfK9OgYoMPhl+vXorT8CpFBJSSjsArpBZWI33iSOJ9pH+0XrUX26PXqdmtoWw4lwfO0j/Yr1mwa+94ea7VtOVYnpjSo2ayzYZ6fRiB9gs0sojdU5NCqVaLMKKUFSAhpbBahvkKWzFMOALtVXvnT1JrMCLGjEQHIT/dGM4fKWvtPAAYTRwyz5QrE4Sm3yq0G6PUS+WvIL294Q9TrJfVfEsWV4j/8EN/690nqsRKLnDkk3bK/OBlMZgTL3EOh56dnB388MKAzHh4eBcCiteFDW7zx07Eupq9S1YfaeANHaMzwzWPVHvV//hpJLODu2zvggYGd8eToaNzWQfw0HSHQRHQIFItDhUaWVi31/NSH5doaNEUOjQo2oYFTLkRXqjfhCoWY+TrBSwwA2SXVyFTI9kovrKQ6l1IBPqVrohVW0zQSpRnjjGuSFlzMLdODq/tXCM18aApbVit8eKqMnOJ9VuJaXgXV54am2KQQmgazcg1dGwPz/DQC6RMsSXNDi8HEiT0hDjwl2xvrobLU/JETLQPkedtzX/bpHIjzOaUwGM12QzNAXQ0guQKIJnkdkcFklg1T1UrOVyYIl0krSjsL4Vxsm67S1SciFx2UN/b4Gkqeag/8vnAMAFiNP6EYWqsRe3c4rt5rJDRw/HQaVOiN1vdbKwx7SQyVUD8d5o2zPJ29vPWCaF9XgfET7Cs2fkRhL8kx+TBYW/T8DIpop9i0dNflW0QDSKsCvD3VxC+xQJ0asWF+OJ1jG6bl6d0xALfKapBdIv9FFhHkDY2HCqmEh6boEF/46zSK51JquhmgI18TL6xWarJKI1RWaksRFeKL29r7N/qaeJH3ba8koFpyaVGLE+CnBS6+NZVqzt1CfXFZ5uEJsIi9U/PJBpCPRgWN2qNRBlD3cD+UVhsUPzcjY0NxhNBAldf8OKPBbGNgnp8GIq3gDJANDEcoq3G83oocPnU9fOQMEYA87wq97Vz8vSzHJAmeLfvkDRy50vlKxxS+rkTglaoxmmA2c6IfIcY6YbF0jNKP0DCpqhWfQ3h9eoNZtE9UnNFoll109QaTrLHHH1+ozbHXToI3MoTVlvm0Vo3otZb9/GdBeFytxGuoIQiXhZofqbBROAdp9ed6wXPb8/zQFANMWU4WnCYvn0olfqUR0SqJX/e9NAG7F40njtn5wjiqcykV4FO6JlphNU0xQJoxzrgmPvQjNXx4KuqWVZr50Ii9r7x9D3HM5bfvUbzPSoLnbc+Oofrc0IjyAec0mG0MKk7JFG5jlJWVITAwEKWlpQgIkC/otOFQuqxOxpUI89c1Kuxjj4m3tceuK2R9AqPh6DQeImPVX6fBhTcsGTyVeiN6L/3Duk+lAtKW3QOVSgWO4xC9ZLvoWL89O9paR2nku3tE4cH//WM4BkUGAwCe+uokdgg0Jx/N7I8/97eIMt/89TK+PFSvV3pxcnf8Z8c1AMDHfx2A+d/WL0Q9O/jjap2GSfh/6e9KCy3t36ErQZrzgDf+INbfCfbWoEihPg+D0Vr4v7lD8Mh6eR3cxseHonOQNya8v092TOKL4xAtKYHgyLrRaj0/n3zyCaKiouDl5YVhw4bh+PHjTXIerVqFmLD6N0D4NK32UOHefp1ktTieGg+bujr20Gk8bDIU+BCCn06DqbfbFwO289Hi4TsirecQClUDvDSYOcS+MM1Pp7HpCj+me3164uK7eyLAq/7pv3t7PwzoGgSVCvjrsK5WUS5gCZ8IU6MbQkP6R7k6/SOC7PbT8lABc0dGw1dwD4fF1Ncm8fFUo7/gs3BHdAhUdW+wSqXCiNj6sR0DvRApyBgR7gv18xQJY+8QnMNPpxFVjB0c1c76GfbXaTCldwd0DfZBt3A/DI8JsdYGCvDSYPYdkdCqVdCqVfjbHZFWQWygtxazh3WFxkOF6YO6UN6l1gNN4UEGo61AUwiRRg/VGFql52fTpk14+OGH8emnn2LYsGH473//iy1btiApKQnh4eTeJLSWY43BhOpaE3RaD/h4alBabYDZzMFT4wEfTzVKqgzw1HjAV6dBpd6IWqMZGrUK3lo1ymuM8FCpEOijRYXeCIPRDLVaBX+dBiV1bsAAby1qDCbUGs3w0qrh7alGaZUBZo5DkI8WNQZLeMjbUw0vrdp6fl+dBhw4VOlN8NVp4KnxQHmNAUYTBy+tGp4aD5RVG+CjU0OnUaOsxgCTiYNarUKAlxalVQbotB7w0qqtr1OpLF9ehrr/a9Ue0BtN1iKGAd5aqABU1hrh76W13hvAEiLjYKnz46vTwGTmrGEtjVoFrdoD1bWW61CpYD0mL8A1mjh4e6qhVXtY0/61Gg94qCyhJpXKEgqS9kDjUaksrlSO4xDk49mg1FovrRq1RjPMdv5UfHUaVBtMNmE2/r5U1hqteiRvT8s8PTxUCPTWoqrWaA2r+egs+zRqD/jpNKJ7GOSjtRo4AGA21xeslO7jOM76GfLz0tiIjkuqasFxsH42hPDvN/+ZEsJ/hvnPjdFkhkqlgtpDhVqjGZV6o3UfX/zRx1Nj/Zzw+3i9ka9ClhDz/DAYrRdX8Py0SuNn2LBhGDJkCD7++GMAgNlsRkREBBYsWIDFixcTX+uOi64rsXfvXowfPx6JiYkYN25cS0+H4aa449+h0pxJqcR8GLCtjolanICarPO49d3LaD9rGby69nXp+bbWMc05lwFv7rDbA6ydjxZnXpsMAHh43XEcSimASWCmqFUqjOwWiq8eH2rzWkfWjVaX7VVbW4tTp05hyZIl1m0eHh6YOHEijhw5YjNer9dDr6/XxJSWWlT+ZWVlTT9ZN+Kbb77BvHnzrL/rdDp06dIFEyZMwD//+U+rR62ystL6r6P3cMeOHTbvnZRXXnkFO3fubLIwppScnBx8/fXX+OOPP5Camgq1Wo1evXrhxRdfxPjxZEGokNzcXCxZsgSJiYkwm80YPXo0li1bhujo6CacvfvCf3Zc+dnM0bVjUqwv/rhsm847pVeY9TVmvbyr313HfPPNN8h8r37tgFoLjX8ovCL7ImDogygrK4OnoQpVtZZ7aa7VW4/p5VF/nlCNHnmVth7ecF81fvjhB5w6dQqcfqDdmkIqAAsWLMDOnTvh8+e3UGGn7ZafZ/25fFEFe1JJf139mABVNUpqbM8W5KVCWVkZcnJyUHng/1CWehqGkptQqTygDYlAwLAHEBLb13ocT0MVauzkAHh5AKdOncKXX36Jol92o/xGGmAyoOPcj6EJtKy3XYN01uNo9FWw103ME/TvVXN+br55uC9mrj2CEoHHM8hbg28eHmQd887UWCz6oQKHBfXk7ogNwTtTY+3+nTm0bnCtjOvXr3MAuMOHD4u2L1q0iBs6dKjN+KVLl3Kw1NpiP+yH/bjYT3Z2dnMtHQ7D1g72w35c84dm3Wh1Ya/c3Fx07twZhw8fxvDh9X1I/vnPf2Lfvn04duyYaLz06c1sNqOoqAghISEiLUVDKCsrQ0REBLKzs5vcdd/U5+I9P4mJiejWrZv1XO+99x4+/vhjrFu3DtOnT8eBAwcwbdo0bNu2DaNHj3boHC+++CI+//xz6xM0D39tBw8exKhRo6iO7az7ceXKFYSHhyMkpF4QrNfrMWrUKFRWVuLy5cuK5/vvf/+LpUuXYs+ePRg0aBAA4Nq1a7jjjjvw7LPPYunSpQ7NqTV9ruTOl5WVBZVKhU6dOsHDwzUF7/bWjszMTPTv37/Z7pc7IFw7Bg4caN3+yiuvNGjtsPeZlFs7eNLT09G/f/8GrUsNhXbtIFFUVAStVgt/f3+sXLkS//rXv3D+/HlERkY25dSb/e/eWXAch/Lycrp1o6mfjpobvV7PqdVqbuvWraLtDz/8MHfvvfc261xKS0s5AFxpaanbn2v9+vUcAO7EiROic23bto0DwL3zzjscx3FcYmIiB4BLTEwUvX7z5s3cwIEDOS8vLy4kJISbPXs2l5OTY93/yCOP2LXghdf273//mwsMDOQMBgPHcRyXkZHB/eMf/+C6d+/OeXl5ccHBwdz06dO59PR062tKSkq4cePGcaGhodytW7es59Pr9VyfPn24mJgYrqKiwuH78fzzz3MAuLKyMtEc7d3/IUOGcEOGDLHZPnnyZC42Ntbhc7emz1VLn8/ZuPv8mwLh2iGkoWvHX/7yF9E9Jq0dPCtXrqReO3jMZnOzrB20rFixggMgmmNT0RY+x675SNUIPD09MWjQIOzevdu6zWw2Y/fu3SJPEMM5pKZa+pIJn26kbNiwAX/5y1+gVquxfPlyPPnkk/jxxx8xatQolJSUAAD+/ve/Y9IkSxfkjRs3Wn+E7NixA5MmTYJGY5GqnThxAocPH8bMmTOxcuVKPP3009i9ezfGjRuHqipLzFmlUuHLL79ETU0Nnn76aeuxli5dikuXLmH9+vXw9RVnDNBw8+ZN+Pj4wMeHXKHVbDbj/PnzGDx4sM2+oUOHIjU1FeXl5HL6DEZrpKFrx6+//goADq0d27dvd7u1g9HEtLT11RR8//33nE6n4zZs2MBdvnyZe+qpp7igoCDu5s2bzTqP1vSEzj+97dq1i0tLS+MAcF9++SUXEhLCeXt7W7040qe32tpaLjw8nOvTpw9XXV1tPR7/1Pfaa69Zt8XHx9s8sQmvzcvLi1u/fr11e1VVlc3YI0eOcAC4zz77THQ/+N+//vpr7ujRo5xareYWLlzYoHuRnJzMeXl5cXPmzLGZo/T+5+fncwC4N9980+Y4n3zyCQeAu3r1qkPnb02fq5Y+n7Nx9/k3BcK1Iz8/n8vOzua+//77Bq8dmzdv5gBwL730knWb3NrBcRxXWVnp0Nrx1VdfibY39dpBC/P8OJdWafxwHMetWrWK69q1K+fp6ckNHTqUO3r0aLPPoaamhlu6dClXU1Pj9ufiFzDpT2RkJPf7779bx0kXsMOHD3MAuNWrV9scs2fPntygQYOsv8stYDU1NdysWbM4lUola8DW1tZyBQUFXH5+PhcUFMQtWLDA5n5MmTKFa9euHRcXF8d1797d7gKoRGVlJde/f3+uXbt23PXr10VztHf/s7KyOADce++9Z3OsdevWcQC4M2fOODSH1vS5aunzORt3n39T4Oy1o6amhgsNDeUGDhxo3UYyfn799VeH1g57hk1Trh20NKfx0xY+x60u1Z1n/vz5mD9/fovOQafT4fXXX29V5/rkk0/QvXt3aDQatG/fHj169CAKyzIzMwEAPXr0sNnXs2dPHDx40Ga7FJ1Oh8DAQAwePBjt27e3bq+ursby5cuxfv16XL9+XZTeWFFRgZUrV4qOs27dOsTGxiI5ORmHDx+Gt7e34rmFmEwmzJw5E5cvX8Zvv/2GTp06WfeZzWY8/fTTKC4utm7r0KGD9RxCYSxPTY2lQaCj82iNn6uWOp+zcff5NyXOWjt0Oh1GjRpFtXYAQEJCgkNrhz3RdFOuHdXV1Tbn7NChg0PHdzZt4XPcao0fRtMwdOhQu/qVpmb79u2YO3euaNuCBQuwfv16LFy4EMOHD0dgYCBUKhVmzpwJs51O6nv37rUaIRcuXHBYA/bkk09i27Zt+OabbzBhwgTRvk2bNtnMj+M4BAcHQ6fT4caNGzbH47cJF0IGo7XC1g7H1g5G08KMH0aTwqdkJiUl2fzRJyUliVI25UoLXLx4EVlZWZg6VdwM84cffsAjjzyC999/37qtpqbGKoQUcuPGDSxYsACTJ0+Gp6cnXnzxRUyZMoU6ZXTRokVYv349/vvf/2LWrFk2+6dMmYKdO3fabPfw8MDtt9+OkydP2uw7duwYYmJi4O/vTzUHBqMt0dbXDkbT0uqyvRiuxeDBgxEeHo5PP/1UFPr57bffcOXKFdGixGdOSBeg7du3o3379jZPjWq12uYJadWqVTCZbKvAPvnkkzCbzVi3bh3Wrl0LjUaDxx9/nOoJa8WKFfjPf/6Dl19+Gc8++6zdMR07dsTEiRNFPzzTp0/HiRMnRAZQUlIS9uzZgxkzZiien8Foi7C1g9GUMM8Po0nRarV47733MHfuXIwdOxazZs3CrVu38NFHHyEqKgrPPfecdSxfAPCZZ57BlClToFarMXPmTCQkJODuu++2ebqbNm0aNm7ciMDAQPTq1QtHjhzBrl27bFJn169fj4SEBGzYsAFdulg6iq9atQp/+9vfsGbNGlHbDilbt27FP//5T8TFxeG2227D119/Ldo/adIkkZbAHvPmzcPnn3+OqVOn4sUXX4RWq8UHH3yA9u3b44UXXlC+iQxGG4StHRb90apVqwAAhw4dAgB8/PHHCAoKQlBQUIvrWt2altNaM9wJuUJlUuQKlW3atIkbMGAAp9PpuODgYJsihxzHcUajkVuwYAEXFhbGqVQqa5FCjUbDbd682eZcxcXF3Ny5c7nQ0FDOz8+PmzJlCnf16lUuMjKSe+SRRziO47js7GwuMDCQ+9Of/mTz+vvvv5/z9fXl0tLSZK9HqYWB9DrlyM7O5qZPn84FBARwfn5+3LRp07jk5GSq1zIY7gxbOxq+dqSnp8u+PjIyUvH1DHlaXXsLRuti8+bNmD17NgoKChAYGNjS02EwGG4CWzsYJJjmh+HSBAUFYeXKlWzxYjAYDsHWDgYJ5vlhMBgMBoPRpmCeHwaDwWAwGG0KZvwwGAwGg8FoUzDjh8FgMBgMRpuCGT8MBoPBYDDaFKzIoQSz2Yzc3Fz4+/vLlkxnMBhNC8dxKC8vR6dOnYjNL10JtnYwGC2LI+sGM34k5ObmIiIioqWnwWAwAGRnZ1sr67o6bO1gMFwDmnWDGT8S+CaT2dnZCAgIaOHZMBhtk7KyMkRERLhV09fmWjtKqmrxzx/O43BqoXXbiNgQrJjeD4E+2iY7L4Ph6jiybjDjRwLvrg4ICGDGD4MBwGgyw0OlgodH84dy3Cl81Fxrx/wtx3Hieg08dD7WbSeu1+CVhFR89fjQJjsvg+Eu0Kwb7hFMZzAYLYLBZMbYFXvx4KeHW3oqDABp+RXYn5wPk6Q2rYnjsD85H+kFlS00MwbDvWDGD4PBkOXqjXJcL6nGmaySlp4KA0BmURVxf0YhM34YDBqY8cNgMGThwLrfuBKRwT7E/VEhvs00EwbDvWHGD4PBYLgJMWF+GBMXBrVE06BWqTAmLgzRocz4YTBoYMYPg8FguBGrZg3AyG6hom0ju4Vi1awBLTQjBsP9YNleDAZDFo5FvVyOQB8tvnp8KNILKpFRWImoEF/m8WEwHIQZPwwGg+GGRIcyo4fBaCgs7MVgMBgMBqNNwYwfBoMhC4t6MRiM1ggzfhgMBoPBYLQpmPHDYDAYDAajTcGMHwaDIQvH0r0YDEYrhGV7MRgMRgPQ6/XQ6/XW38vKylpwNgwGwxGY54fBYDAawPLlyxEYGGj9iYiIaOkpMRgMSpjxw2AwZBEGvVgITMySJUtQWlpq/cnOzm7pKTEYDEpY2IvBYDAagE6ng06na7Hzp+VXILOoilV4ZjAaADN+GAwGw40oqarFM9+dxf7kfOu2MXFhWDVrAAJ9tC04MwbDfWBhLwaDIYsw0sWiXq7BM9+dxaGUAtG2QykFWPDdmRaaEYPhfjDjh8FgMNyEtPwK7E/Oh0liiZo4DvuT85FeUNlCM2Mw3Atm/DAYDIabkFlURdyfUciMHwaDBmb8OJlaoxlns0tgNrMYAaM1wNn5H6OliAz2Ie6PCmHCZ4YyafkVSEzKa9OeQiZ4djILvjuNPy7dwouTu2P+hLiWng6DwWhFxIT5YUxcGA6lFIhCX2qVCiO7hbKsLwYRJpavh3l+nMwfl24BAL44mN7CM2G4G6XVBlTojS09DYaLs2rWAIzsFiraNrJbKFbNGtBCM2K4C84Uy7u794h5fpoIlhnDcITqWhP6vbEDAJC+/B6oVKoWnpEFcbYXB8A15tWWCfTR4qvHhyK9oBIZhZWszg+DCl4sL0Uolqf5HLUW7xHz/DCouFFajVOZxY0+jtnM4VBKAUqrDU6YVeshS0HIymBIaY0Vt93dm+DKOEss31pKLTDPTxPR2ham4cv3AAC2LRiFPp0DG3ycr49l4rWfL6FbuB92PT/WWdNze0wCgTzHAS7i+GG4IK3lyVtIa7ymlkKu8rczxPLO8h65Aszz40RqDCbr/42tNNvrdFbjvD8/n80FAKTkVThjOq0GM+eaWVWczP8ZLUdrefIW0hqvqbkpqarFw+uOY8L7+zB3/QmM/89ePLzuOEqrLF52XiyvljxZqVUqjIkLozJaWlOpBWb8OJGSqvpQTlWtiTDSfWllDi2XQW80t/QUGG5Aayxy2BqvqSWgMSAbK5ZvTaUWWNiLwXAB/rh00/p/qbD4yo0yfH00E89OjEO4v1cLzI6fV4udmlEHzZO3u4QdeFrjNTU3tOEoXiy//1o+zmQXY2DXdhgdF2b3ePZCZzFhfhgRG4LDqYU2rxkRG+JW7xMzfhgMF+C2jv7W/98orUGE4Anr7o8OAACyi6vx1WNDm3VezOBxLVrTkzdPa7ym5obWgFTSVtFor+TWBHdbK1jYi8FwAQK86kWdv1+8aXfM5dyy5poOw0Vxhm7D1WiN19Tc0BqQSqGxf3x92saDtD85H09/fQqAxSN0JM3W6wMAR9IK3SpEyYwfhiJGE9OjNDXCpyb5TK+WfbTimOTZJWiNRQ5b4zU1JzQGpJK2av+1PEXDpjUJnlnYi6FISn59ZlZrS+F3RVylwCHA3m9XpDUWOWSGdeNZNWsAFnx3RuS5ERqQSobLnqu2miEhR9MKMSw6mDjGnUKUzPhhKKISiG9baQZ/i1BWY8CBawW487Zw0XY504fZIQwh0aHub/TwkMIxXz3evDo3d0XJKFYKjYX4kespqdC6esu1urDX8uXLMWTIEPj7+yM8PBz33XcfkpKSWnpaLU6t0dzg8JXQEWFm38BO46mvTiL+29NY+vMl0XYXcvyIYG89oylgqe7OJTrUF+N7hNsYIkqhsam3dyIed1hMCADHQpSuXLG71Xl+9u3bh/j4eAwZMgRGoxEvv/wyJk+ejMuXL8PX132sUmdiNJkxbNku+HhqcPCl8Y0Kq5iY68dpHE0rAgD8cDoHE3u1t26X9fw0w5xc4ZyMtgVLdW8+SKGxQB8tVRo7TdjVHSp2tzrj5/fffxf9vmHDBoSHh+PUqVMYM2ZMC82qZbleUo3iKgOKqwyoNZmh06gder3wy9jVbB+TmUNyXjl6tPd3Ka1MU1BUWdvSU2AwnA5LdXcucjV6AGXD5d0HbsefPzmEYkHB3nY+Wrz3QF+b85DCru4Qxmx1xo+U0tJSAEBwsH2hll6vh16vt/5eVta604kbG7pwtbDXS/87jx9O5WDRlB6IH9+tpafTIJiomNEQSF9y7kRr0pG0JI54W+QMl1d/uoSyaqNoW1m1Ea/8dJHaaHGX/l+tTvMjxGw2Y+HChRg5ciT69Oljd8zy5csRGBho/YmIiGjmWTY9KtlACuXrBS93tbDXD6dyAACr9iS38ExaJ8wucz2Ueji5IyzVvfEo1ehRwlnaK3dJh2/Vnp/4+HhcvHgRBw8elB2zZMkSPP/889bfy8rKWp0BVGUwKg+ixNWMn9YC56KNTRmuhzuEFBylNabvNyc0xQeV7qeztFfuEsZstcbP/PnzsW3bNuzfvx9dunSRHafT6aDT6ZpxZs3Pqt0pjTxCveunsSEaZ4Z4SqpahwZGekdc1dviqvNqS7hLSKGhtKb0/ebkWHoRcf/RtELF++oso8VdwpitLuzFcRzmz5+PrVu3Ys+ePYiOjm7pKbU4qYIihQ2j/gMsdYm2JHuTyEW5XBE542/3lbwGH/N6STUKK/R293Ec1yiDszHF5ziOw+XcMhhaaYVwvV6PsrIy0U9T4y4hBUZzQ/47pRE+OLPNiDuEMVud5yc+Ph7ffvstfv75Z/j7++PmTUufpMDAQHh7e7fw7FoGjbpxmh9hpKux32POzMgSHsoVbLL91/KhUaswIjbU7v7iylpMW3UQ99zeAa9M7WXdznHAppPZ9b87cM7SKgNGvrsHAJC+/B5kFVWha7APVCoVOI7Dw18eR6XeiB+eHgEPj8bde0cNoc8PpGHZ9quYPqgL/jOjX6PO7YosX74cb7zxRrOe011CCozmZVh0CHl/DHk/j1KVaCGNySpzBVqd52fNmjUoLS3FuHHj0LFjR+vPpk2bWnpqDeZgcgFe/ekCqmtNDXq9xqNxb7PQsGhstldTZTa1tO1TWm3Aw18ex18/P4Zao30LcePRTFwvqcbnB9KJx8oprsJLP5xH8q1yxfMKW498ui8NY1fsxSeJljBntcGEA8kFOJ1Vgusl1Q5cjXP4eI9lHrwovbWxZMkSlJaWWn+ys7OVX9RIYsL80E6mTko7H63LfcE4SnMWxWtN54oJ88OIWPsGjrBGj9J8eKMl8cVxWD93CBJfHIevHh8qyhZzRHAvV3DRFWh1np/mTBs2mMz4YOc1jI4LlX3adwZ/W3cMABDsq8Pzk7o7/PrenQJwNrsEQMM8JEKDx8wEz3Ypq67/wzeYzPDU2BqctPd+/aEMAEDChRu4+MYU0T6jyQyNuv7Ywvfmvd+vAgD+s+Ma5k+IQ6W+3lhusPdPYc7XS6qRXVSFO+w8Weq0aqDGeWJ7V6Ml9IJp+RWiGixCiqsMbqv5cSRNu7Ep/s4uwEeaT3MW+6Op0UM7H5L26qmvTuJ4RrFo2/7kfDz51Ulsfnq4sy6nyWl1np/m5NtjWVizNxV//fxYo47DcRxOZRahQk/+osgpJsf75Qjzr1+gG6LhEH7BNlbz49ywV/MXNUzJq0C2gu4i/tvTWPHHVZvtjk7X3ufBYBLf/98u3JR9fa0gRllY0XhxuL23fuS7ezBz7VGcyiy22adpZJiNYUtr1fyQMth4nJXi70hKOMljQzMfmutyFi/974KNYVxcZcA//3feafNJy6+wMXx4jmcUuWQbCzmY8dMIMgsbZoxI+d/p63hwzRHc98kh4riG1utpdGFDQRTHT9c4Z6E7F/QrrTZg4gf7MPrfiTbXITRs9ibl45PEVJvXX71ZL4hdtbthdYmkYccvD8mH0ITht9V7G5vxR+bH060ztOVqNIXmp6X7L9HWl3Hki1vummhSwgE6w+apr07aNaKe/OqkQ9flDGiuy5H5yN2/bedzifNIUNjvSrS6sFdz4izHw09nrgOweBWaAuFH3VHb40ZpNf70cX2dpH5dgpwyJ2cguv3NYFPdKK3XzZg5QBhJInmhOI5DVlEVygUhoPd3XqM656C3dop+d8TzJjR+iiprcb2kGmF+OrshOTloz/bNsSy8c//tom2uVg28NeDMNOLmDDWRoPFmcXVf0FKkKf5K10SbEv6Pr0/bGBO8d+i7p+6g8oA4WjenMfeY5ro6BHopzqedj5Z4/5QMtjRJZrErVyFnxo8b0WBjqxEF9FZKPBT2Xp9TXIVVu1Pw+OhodG/vTzxeU2V7NTdGsxlqj/oeaaSpfHc8Gy9vvdCg8xRK+nk5ornKL69Pf796sxwj392DPp0DsG3BaKrXl1YbMPuL+pAuzZl/OJWD5LxyLL6rp8v1gWstOJKRQ4KmWGJzaFaUTHGNh4rakFC+JuWUcBovCo0H5J7bOxLH8F46Z9zj/PIa4v7CCj2GRdtv8SScj9L9u1VKPk9emWXNcYfGpizs1QjcRdHQmO8g6cO7vbDVvG9OY9PJbNz7sXwlbdLrG0pj23Y4inDq0krXpKtqqOFjj4zCKkQtTsCv58iLr9nMWYXyAFBVlyl48Xp96K3WaMZrP1/EgeR81BhMMErqGHx9NJN6Xj3qjN4Xt5zDZ/vSEL1ku8j4AiwLYkZBJYpZg9ZGwWfkfPXYUDw3KQ4bHx9qk5GjRFOEmhpKrsIXak5xNZWBRHNNNCnhNF4UpSbDBTJ1t+zhjHss1HXaI9RPWZifXVSpeP+yFIxQ3kh9UjYkeEJxHs0F8/y0AAaTGVp1y9idjhofUu+KvVdfyrV8odYYzC12bY0pxifFYDJD46EieqmkwmN7HpnNJ7JlnyAbCq8LW/DdGdwkfGnUUhRkeuPXS/jmWBa+OpIJP50GnYK8sOO5sfXHkKTsJ90sw6BI+0+P7XyVv3g3n8zGsu1X8cCAzvjgof6K4xn2ccZTtTNDTTw0IY59SXk4m1OCgV3bYXRcGAA6r4VSyMZo5qiuaXyPcIyIDcHhVNu/Sz4l/GhagZ1X16MCML5HODYcln84uPO29tTeIWdU7O4USK5h17mdt+L9OVOXESyHRUyv/MCZll+BE7IhwWKXyUhknp9G0JCwS2ZhJfq+vgPvJFx2/oQocNREkBoAx+08FQm9ILe//gc+22cr9m0Krtyo92Io2XQpeRX44kAaagzkWkllNQYMX74H8745DcBybRdySmE0mWEUGDxp+RWipz97+pZ//u88ttbpuZqCd7Zfkd0n/Wzaq7L8zbEs6/8r9EZcu1VB7DF25UZ93SGpsWc0KX+yagyWOei0aoWRDBLOEP46K9QE0ImDMwsrMeDNHXhk/Ql8uDMZc9Ydx4A3dyC7sApKX6gc5XxpxeBrZg/CmDrDi2dMXBjWzB4EgK5g4Nge4Qj8//bOOzyKav3j391sSe+FJKRBaIGEFhIRMPQgoIKK/OgqCioognjFgsCFK1wFC4gXEZRysXCVosD1UgSUIiBVaYFACCUhIaT33X1/f4Rdts6Z3exu2vk8j4/s7My855zMzrzzVjfztgMfNxl6tQrC1TvC63clV1xckBhYrzoqDTHXMNRbWMGMDvBAoKdCcJ8gT2WDCYrmyo+TWfbLZZRXq5mF7sxhDycPEXDqegG2n8mySebqA8LjrqjWYOF/TdO8HcGne8VnMPX/cD8WbD+vKwBoiR1nsnCnpBL//asmhXzxzot45NMDiH37vyiruh+wPPyzQ+gyfxcu59QoBLeLxJu5nYGpu1LcceX6yqHRQdrU9ehZ29HirR04mXn/7U6lYbfRqFTVnFtpRcA1xxCx7iqWQmIvVxMgThkbZlR/BqhJw350+QFk3BFO9Lh2p1TUw71FkCd83Mxbvnzc7heAZBXyE1swcNvUXiYFJ/3c5dg2tSamrqRCOAW/tFJldfbep3suYdTKw/jM6D4m5jysNQzydrVYnkImlSAm0AOV1cJnqahWiwiKrh/p8PwuVAtsCd7Vt5Jo/cIHLgubWe/Ls1ocANMH37DlBzHl6xP462ahTTJ7f7BXl6pdyqhN5CxUGsKvaYbm48s5Jdh97rbBthOZpubYKpUGW0/dRE5xhYm76F/77luxvj6aaXwo+n/4K9RG8TX1AVvrvZRUqJBxpxQ9//kLlv5ieIM1bo8x/LNDun9XVKuhYkQ4a+OOXLnlx2bEWgpe2mC+ls2LG7S1bNiBv2IUDjHK2P6LOYKFGU8z3C3puaXIYShrd4orcSW3BIXl5uUUllebPJSFqg+zrEMA4OUmQ3y4r8E+8eG+8L6ngOUWC8cF5RRXokWQJxKj/Mx+3y3KTze2Q5dzET1rOxbvSsPhK3fx/v8uInrWdhwx476zBEtByimssPgbVmkIv13KRXGVsEJXXKlCCaOwKauenbPgyk8tYOkie87fNtmmr/y8bcdAWCEM4mH0/immTpHUjPaTkVeGJbvScP1uGWZsPGWHEdqH8V8e1f3717Rc9P9wP55b9weOZZi66korVTpLxef70zHt21N47NODBu6cYqM3t62nzJtrn11zzGJLC3vTtplwNp2WiWv+sOn8JZUq9F68DzfyTdthBDGCJoUamEbP2q6rXH32Flvp5phHzBv+ldwSszEtAHAovSZbSUyMiL1cY6duFAjuU1ol/DCUgJDNiAu6VVguKlBZH6H6RmJiCFkKprtCeAXdFTUvAWkW2thc1Ns+etVRs/uM/OJ3APdbyVji01/YdcXO69UhM8eJzHwEegjfA4I8lUzlhqUcOQse8FwLjLVk4x/MxLV/IGPREINt+m9I+jEUYrBHdpP+GMX8wIUk9np/b63H4yj0FSF9C5cEEly9U4o+i/dhSEIolo/uoqu5k1VYYZCePXaVOGvO/jTTgMW6RqiX17GMu1iw3Xy8UJHAjUlDJKjkVavE+dZ+uyTO0smxjSNXha0BR67kIadY2E176noBM77jZn45kkSkT7OUqBaBXsgusjzm6EBPuDDufXKpFGI7m4sJGBdT54elYD7QMgCHrlhWyLq3DMD+izkWf3NFFSr8dikXpzMLBOf12d7LOJcl/EJx7lYh87o4ykjOOH+riJlVFuSlRE6RsKJayYi7dBbc8lML9ONfLMU77PjTMLZG/w/fLlTcW3xtqU12eW3q8qz67Qqmfn3CJC3c2ejPXyIB1tyrirz9TJZJxtSfeopSfchIMEbIuiKWESsOW3Q1CFWerlZrkFdq+aFZqa4fN7XGjBjFRkwA8VVGnM3V3FL8ZMHSqWXb6VvMVi838suQ0iZYcJ/JKS0Evx/eJRynGdajU9fzRVmzAHaMkpg6P2L+DkMTwgT3GZIQhr0XcwT3+eV8Dg6mC78s/HYpF24yYVeyu1wG1nVhztqrz6nrBczXZTURcgXuEQCQY0UZAEfCLT924k5JlVkl46UNJ3B2Xio87rWFCPK6H1H/v7OmbjEhbI750f+3lXpIbQoJaq0Lj3UKx+H0PIR4O7cJpBbjTCz9uJ4/jeKe9LOztDEq9YlKB7vX9lywfDOuUpPFrK4L2cVI+sceUTJYxdY4QrAVmzyGVSe/tAq+bsJWHV93OXafs9w3DgDO3CjAekYtqPWHrjELc95muLSa+7kjnVH9Pj1HXFC0NkbJGP0YJTHus2NXzadya/kj4y7+LykSXkoXFFea3ke8lC6ICfRgxuwcvZKHtqHegvs093PHpRxhL4IGwKVs4X1YL6lyFynTOnTsSp5JbKAxrEBwZ8EtP04gv+x+4JvCqLt2nhO0YH2J1ipCtrra9H9Iu85l48uDV63OAqtUqfHW5j9NgpZrg0QiMchYKLIQIAkAO+0o1144WvkR4nZhBSZ8ZT72wBpmD42zw2iaJizF8YEWAdhzQfi63XUu22JgsBah34U+p8wkEOhzIvMutjAsSMv2CMerLP/lErN+kbebDGdvCLt+zt8qEhWjlMZQEi7fLkYR4wFeUF6NK7klZhUfACiurMmKulEobG25XlCGyEDhOK/m/m6QMO7lEhB2MpRZVsJCXKg3iizMR0thpRpSF+FnhovR93XVW45bfuxERl4pRqw4bPY7lZpwIjMfHgqZYSoxrLMu2MPyo6+IicHWIn369XQ2/nG/6aU1LrBvjmTi63v/mcROWXEeYyWvUs/yUyDyJl9fqEt/uVBdIWuIYATtcizTIsgT7nIJyqpNr393eU06cmGZcEBpUblKRIxIEQK9lCiqtKwsBHu7Ipvx8K6oVpskDhiTw7D8HLmah0g/4WvGUyljuocOXM7FoA7NBPeJDvDAJ5nCffdOZhagghGknV0gLgBbxXiZqVZpkMmoF3TjbjkCWRWevZS4yFDqKhm1uowrtlvCV6lAXonlv7nW6ljXLTC45cdOaCP3zZFdVIHHPzuE1I9/NVF2Jq51fLlv/Yf/DpH1fbToFxK0BktvlqfNvJ39dbMQH+68iHKjtcnWq51zKP0ONBrChewidJ2/C0t2XhQ9Fv3AbgkMKxeX1ZO0S7FU1KHlx14I/VY4NQh1JTen+ABAWTXh6p1SKGTCb0lKmRSujBgRpVzKbIArd5Ho3PmW8HKVI8JPOBZHyrAuq9SELEYQ7c2CcmYB04oqDY4xFJI/Mu4KVk4HajLLxIxHTOVq1juchiAq5odVcqSsUl3rXnt/3Spg+gEkAO6WCStJWm+HM1qnCMEtP3bCz92yD/2D/91/UG8zUj7Sbjumk7s++g//YCvjbsJ93QQzhyxRYKGuhzmGLqvpCVatIbwxqK1uu76la/QXR/B6ahvdWn6mV39HH42GTHzO+srfofQ7eLBloO6z2O7q9QVnpdQ7CrmLpM5au9QXhNpAsN6GFzKsb4t2nIcbQ7lUyqWoZFicq1UalDJSkssq1fDzUOC2QD0bX3cFM5BWpWFYP9QauJHwnCSQiHLjrzkkXKT1qwNXQSwfEoBm3q7IL7d8764JvmbHZ7Es2GoNMUMjxIROXM4tQe26PAJVasBFAggZiFwk7NIFZVUqUbFXjk44adp3ITsiVLjt+DVhv7g+9mj8qdEQ0nPvtyrQP6WYBnf6fD6uK3snM1jrXgMM16m8So11hzIMvtdXIi3R6e87ccYoM0R/RavVNdajxoIn4827vuHWhAscimkDwXobNq5VY8zh9DvMNXZXyJDOKIJ5ObcEBQx3VX55FfwFXvoAwN9DzqwfwygajPIqNUqrhR+opVUqZjxcRbUaxQwLSXFlteCLLAD4uyvQLsxHcJ92Yd4Qk3pvro6aPlKJhBlALJVKmK7F4gqVXV46PBiKtbvCBd6uwi4rL1e53dp61Aau/NQzWry1A4stPuTFBf3M++ks+i3Zb9Y6Yq1u1SFc+EduCVbXYwB4c9MZfH/8fjyQft+wdu/+jFIbsq2KKlR49NODBtuM51zfWlEAQKCnAk8/GG32O6GHmSOrpQ5qLxwfYQvuioalrNkTMSnWrGrJZYyA09IqNa7kMjKjckuYGVhqDZm4oY0pq1IzEyIkEgnTgsRCIZOinDHvskoVfBlxIn4eCngxrj9vpRzuMuF93BQuOJguXNvrwOVc5JcylMfSKvh5MBQtTwXzBcdLKWNahKtUaqZFkIUU7FIb1RpCmxDhEi7tQr2tbuvhCLjyYyesjUW21EOFCJBZiJYXG/C89nBN+qnWUiLUrNJe7J3Z2+CzGOXnm6PXMfM/px00ovtcrKWlh/HiZReOvd0fYb7mGwvuf703YoM9zX4Xb4NyKibmJjrAHe+PSLD63PaQ3RgRo9iIeRtmvQ6oCRZbSWjJL61CM2/hOJxmPm5geVhVGuDaXeE39Gt5pUzLBQul3EWUe0hMPEol4+FdrtKgTMV22xQxgsoLy1UoKBe+B+aXVUHOiM+Su0gt9ivT4u2mEGVBqm3pDgJQyShkWlmtQR7D6n+npFJ0/zRHwpUfByJ0PQoFEyoZwYjWyrd03xCrCPVvZ7lIWbtQb6QteNjkYs0TofyY40Z+GaJnbbfpWEuwUm1ZTLBgkQEAhYApeebA1gafv530gMV9JRIJZFLz51LKXHDZQp0TSzcQIcTcBN8a3E5wbizGPRBldntT7eguRrER079KDKysnSo1IcJfWPlhvZlryWf8zu+WVDEtAaJkMDQbiRTIZKzxtbulJr37jKlWa5hp41JI4O0ubI3xcZPBl6G0+Lkr2K0gKqvhw3Aj+bnJmc2CXWVSk3pn1kJg93vTgG0I0FoLLQ3HDpEfouDKj50wp+gI/RGFHkCu8vt/ltrEAGkPre3FtHJcIo693d/sdzKpRKfIHXijj2672LRIYyatO87eyYn4eygEzf8THjT/kJ/aJxbPP2RYufaBFgH49fU+ZvcHDIsx9m17X+EUejtk1Wv5v24Rgt9bQil3gavcBfOHdUCoj6lFauwDkYLHzx/WAWfnpZpstzV7sKEjpk/W74yqwYetaGLJgqUAs4JWtTDdIGoN2jD60bEelkTEbIbrKnOBl6uwQuKplDFdSJ5KFygZ1km5XIrYQOE5xQZ7oTVj3q1CvBDmbd7aqyXMxw2urAB2hRSVKkamm0pdq5cZLWKsa+GMsgTN/dxFVdF2NFz5sRP26LsFAD9N7YkhCaG6z/pxL7Zm+ug/VG1RpqRSicWeLi56Ju3mehf99jO2WVvO1bOHo5erzGLA+qD2zdAl0nxHZjWR2ZtNZIA73hsej6l9Yk2+0/876dcjMXce7d/jia7NLY7dQ+Ficwd113sK7bgHotDdyLr02ZguWDAs3mI36sUjOtbIV8oMsveaMrcYVp0b+eW4wLj2xSqObgxXiqtMghv5wlaSm/nlzIeDFIA7Q5nwcJXjFKM3FQtPpYzpLnVTyDAkXridxCMdwxHACGYO9FTCg/Gb8VLKkMdM565CcoywVTa5RQCUjPgipczF7MuHPmE+bmCV/6pWAwXltYu9cpGwvQViKoznlVTygOfGxiMdDX980/sbuj0WPR6v+7el7tzxzX0QrNcCQ19ZsYd6ZVjh+f6nPedvY/QXv+NDK+rnAJZjl4QaZNaWhOa2BWELMSQ+1Ox2F4kEYb7mXQRerjLILLxN+bsrLPZFG50ciZmpbdDM6K1P/yU6pXUQvnqmGzY8l2xWxr6ZvfHr633QLdpyxd/SKjX+L8my5effE5MtfqfvnhrcwXBttCb2p3tEmxy3ekIintRTyF7s3RJXFw62KKfpwM78uclICb/JUFi0+DAe8D7uCmbWU1FFtSgXRyjDchHq7Yp0RgA264GaX64S5aIPYBT68/NQiIpHEbOPvYInCxlxQYXlVShm3EuLK1TMeFCJCMWFBcObquNWEeM6LizjAc+NCgmw5N4br5Zwo+JeD+s9RBYb7WsJ/euNFdRm8RwGlh/z+2QXVeBQeh7OZxdDpdZg3eEMrDl4lWnWdjFSfiwpdbby9uB2JtYDVp8fW7D0MLhypxQv9W5p9rsKlcYk1ukfwztgYFwIxnU37w7TR2tR0boN9d2dId6u6NMmGD1iA80e66GUITKAHZfRtpnlvkCtQswHUQOGGWZdjCw8WtfBkPhQ7Hill8F3/dqFmJxLXwkcmWibG64+UllZiaKiIoP/LPEHoxfU8Wv5KGG4oljfa2H9ZlVqDaoZgatVjO+1sFPHVRZbPIiFAKgY46lWa0QVFSxgxCgVlFUzs9NKK9UI8BBWtAI8FVh/mNH37HAGWlpIZNASG+xl0n/QmNM3CpjKj72SNsS4vRRSYcuZwsUFLYI88VCrILgYDdxFIsFDrYJ4wHNDQyGTYt6j7XWfjQPefNzl2DX9Ifz2tz5ozqh6qsW4I7kt6N82LGVX6QehqTSEd7eexdyfzjFrZxibJy8wSqiLpUukL64uHIznH2qB8UaKBKuqrLVE+LsJxs546sUSzBhw35pXXqWGn1F67ZjkKKwcnyjK3TTnkTi80jcW/3v1IQDQWXGMLUKOwk3hgn8M72D2uwDP+9YDfaUMADpF+gKoUWriwrzx3vAai6aQJUnLsz1jbBxt/WPhwoXw8fHR/RcRYVmxY/Xb2n0uW1S1XzFUMJSk8mqNKKuOONg3pdpaHCSoybASoqZSO7uoIOsmSgCIMSUC4KZkxCDJXXCdYam7frcM8QwrdnxzH4MitZZGJObRwIiJFgWrOXWItxJyRm8v7ffLRnU2ebnrERuIZaM6126QIuHKj53Q/qbGJEdi9YREnJw9AG1DTa0grUK8EOHvDi9GBL8Oeyg/euewlF1w/9xkYGFipZiyauY80MK2Dt4zB7bRWQyM/f3P92qBMck1AbePdw43+G6lQFHGD540n7rtoZBhtIB7SD9IUt8KlFNcwUxD1QYud4rwNfnO112BGQPb6N5yOoT7YMNzyfhGICvMHMbuVrG4y10wJjkK21/piWGdDM+hX+jNOPvQ+PPo5EhkLBqCnq3MW6mAmnT97yY9wAx+bUi8+eabKCws1P13/fp1i/tWMir52bNtSSlDli31syzhxVACvJWyWj9kAjzkkDOe3Aq5FBmMINlrd0rRgmFRaBnkiWpWvy21Bp2a+wru0yXSj9mPLCrAA38ymrGeuVGIloEM61CQl8VMUS0yKauJiDjExENVMyp2V93zn/m4y7FuYhL2zuyNr57phr0ze2PdxCSzfb0c0fy06VYcszPaC0vmItWZ/oUKWBm7iyxhqPXb6PYS8e6lPTOR4dj0i6FpW12MSY7EhiOZZs/zzpB2WLD9fgn+Z3vE4Pcrwv10zKFvbTGOnXm6RzRkUgle7d8ae87fxqaTN3XfCd0k24WadwFdyC7Gk10jUFyhwv60XEzsGYOnv7rfcy0qwAMzBrSGr7vcIP7mzI1CizE/WpaP7oKd57LxUKsgwf20WHJzCaFvIn6kYxh+Oi0u2Fw79vZhPlg8oqNBSQD9a0DstSpEVIAHopzgx3cmSqUSSqW4iumMZ5PNLm1b8VRIUVJl+SHF+l4Ly0qigTVWJPMEebkiws8NO8/nWNwnMcofV+6wijuWIobRIT3Ux9WkQrwxZZUq5pzURMhnxPPcLa1ixkOl5xQjJkhY+XFXyBAd4I7zAq2SYgI9cN4OVvmcUuGX3dvFFcwK49VqQ+U7JtC0zYsWRzY/5ZYfJ9H5nqvAWvStNrY+g8SYy7U3XzKSo1+U7YcXH8R7w+PxzpA4i+cxTjfVd59Yivd4KrG5gbsQgGApdrmLFBJJTQaacQE1T6UML6TUWGeMsySEqlW7SCV4rlcLrJ+YbNZK80q/VhjfPdri8ZZwU7jgsU7hzEquLDY8Z9mlNDCuRtn291DYbDLWV+KM3Vyc2lPBUCRYrip748u4Hv0YMS1a4iy8UGhpH+Zd64dMaaUKHgxLubtCxvSvSQBkFQo/vG8VVIh6xfyToSD9eaMAxzKEX/qOZdwVVWySWQpARC8yCWrvfnSBcF0z3PueVWeKVShRH0c2P+V3OTthKbNH972ZbWLaBxjYfezg9rKIRLsvQSKR6BQgfctPMx9XjE6ONCiTHm6UCbXjz2yDz77uCnw+ris+H9fVbIDt2XmpeP/JjhiRaJiyzeqvo6VfW8MCjIlRfpj1cFtcXTgYu2ekmOw/OL5mzX948UGL52T9LbV0b1ETsHzlvcHY9nJPXP7Hw6KOs4UesYG6IonvG7nvOoT7YPeMFOx/vTeAGusbcN8FuHJcV/RtG4y5j1hWWvWRs8wUHKuxX4yNfWA/L8U9oFowXDItgjyhlNfOqnW3tBLZhcIZRLeLKlDEqHlVWF7NThv3dUWgp/A+QV6uBpZpc3gqZcxaZ7nFFXisk7DLeljncGZcUMfmvshnzD2vrKrWMT/RgR4IZmTUBXu5QskotcAqyKhFTFX02sDvcnaC9fM2FzuzYlxX/Dl3oOBx+pla9sj2soTO7XXv/1pXhyWr0cLH49E50hc7phlm+yTFGMb4uCtckNq+GVLbNzPopg7UuIS0wcvGPZ+aGd2kpvSpseYYp6QbK0laxUUikZgNjP5sTFdc+sfD6GqhRg1Q47fW0iHc9M32wBt98Eq/Vlh6z8oilUrQIdyH6QKrLQ+0CEDGoiF4yowFLTbYUxdH9lyvFrj0j4cx8J5yPbB9M3z5dDfBStX6mLvMDs3qCwBYMbaLbYNv4riKqMArBg+GVc5DLgUj3hQuEuBGAavuUIWoOj/f/mHe/a3lm6OZqKqunc1B7sKOVyEQchjZXreLyuHjxqrMLNcF9Fuic6QvhnUKF9xneJfmTAtHhYqw+zwrEP42OjLiizpG+MKfEXsY6KFgtithoZRJ4MroPqCUS0XEKAl/r8XRtYC48uMkLKU0GptGjZUk/U97zudg9Be/41aB8FuQWOb8eFb3b63SoNWTtJ+NtW4to5IisfmlHiYBv6OSDCv/usvv32yMq6sKBcgaM7VPK3w+riv+aWT1sKVvkNalpi1N8Epfw4KD+uc090Nt7ueOGQNaWyz8WB8w5zZkWbS0b2SdzRRuDPN1Q8aiIRjUwXw9JI4w0YyyBKxAXC1ShoLt4iJlxxdJxRWrE1M7hlVhvLC8mtmPjEUzHzeEMCw2zbzdmIG21RpiZqNeyC5GNONvERXogQhGnZrmjGBnLayYn0s5xUyroEpD0DD+Vpbu49bg56FAVpGwgplVWMHMxnVnBMlrcXQtIK782IlT1wvMbt/00oP4v24RFuNkjK9J42tY//ubBeU4lJ6H2Vv+smpslq77Ar0GiCaWn3t3Plb3Z2OMY370zcPGXYW9GaZjfdzuWZDMlaefnFLTRsJcxeHebWoCjc1lZT3RtTn+eKc/pg9obfLd5pcexKikCMweKs5V1BjY9NKDeCqxORY9Ec/emWMV4YwbeajI0heVjNigiio1JIwoZLHV6MVYq1h9p3zd5GCFkLEeQo90DIOfG6P7uYcCbnLGQ1fuggpGKeSyKhWCvIRlBXkqsY1RwV5shXtWkchwXzdRPd/8GWEC/rWMOQSA7i0DUchomltYVs12mLKi5O/h6FpAXPmxE+9YUEi6RPph0RMJFi8+Y93C2JJhLlPrjplCXVO+PoH/W3nYbANMMQ3ttNeX1kW2fmISvn+hu9XWDWOLg36mkIeRxm9sidAG2rL88sa8+XA7/Pa3PvhucneT73rGBqJbtB/eGmy+zUKgp9KsRaRzpB8WPp6AAM/6a92xhdfuKXrmGo+2D/PB+092RKiPuAcxRzwDzBR/1CdVRPwfwC49odYQM2DdVSYFIywDMgng78l4oHoqBRs0AzWB9CyrjXExWGNe6hOLTEbNnIy8UsQwLAExgR5mkxn06RLpJ6otxV1GscQ7JZVgGTiULkAQY20CvJTMLK2zt4pMQgqM6RErLttUiCEJYQj1ZcVMuTEr8CdEiK/Q78haQDzV3U7Ymg7MVExEGl5OXsvHrcIKs004RcU7Gw0/UaBtgq2w/MXfTuqOj3al4e17AbvWYMkM/VyvFniuVwuz3zVFpvSJRd92wbXutM2xjm4xwr8nsb83hUyKcoHgDYVMyrwXuUgl8HWX406p5bd4Pw+FgWXYHIVlVQhkvBxJwO71dKe4Agnh3jhz07RCdsK9mDvWOfJL2GMJ8nJF7zbB+OqQ5crLvY0SKCxRzOiTVVqpxtCEcPygV4bDmEc7NWe6dloHe5l9odWnpEL47wQAOcWVkEI4sF4qqSkZcNRMllpStD9iAj3QOcIPV+5YVkS7RPlhaEIYPtx1yeI+QxLE1yXT1gK6eqcUGXmliA6wnBZvLdzyYyeMTXNiuXRbWKs3p7iYk6T16ZobhijLj16FZ0fBis/pFOGLtc8moTV/MDsMqVSC9mGOD87mGHLkqnDa8+8WOlybwEjTkkjIpAilMUq5C1oxfmOtQ7xQwmhLIbZtBSvwt1JFZhUfADhzswhX75QyPSVqELPx67msIuy7mCu4z94LOaL+VrcY2Wc38suQyFB4u0T5iepH5s0I0vZ0lcHfgxHw7KmAJ8MU5alwwRfjE01qkj3UKghfjE8EAKQzaildyilGiyBPJEWbTyhJivazSXmJCfRAnzbBdm17we+AdsKWwFsAWLwzTfB7scqItp2P2bc+EefQub3s0LHv6sLBWDaqM35/s5/Jd9+/UOOamj/MfFsFDqcxIqbvlBhXlIpRQ6VaTUy3cbiPG9O1GerjKqqPUxWjj1iVWgOWns16b8zIK0WXCMvZmUCNxYIZfF1WhVPXhXusnczMh5gmtD0YbqZerYJEnUfMPn3aCFuj+rULwVCGNWVIQhhaMrKsWgV7Masus0obaBNEvhjfzYIS1U3weGfC3V52wlEv0mKVEa11x5zyY+kM5gpW2cPyI5FILLZcSIz2R8aiIbUXwuE0IIK8GLEdnkr4eshxp0TYFVVWqRLMalK4SOGqYFh+FFLmfUVDhDYhnoJVg9s187rX6duyYueplCHAQ4lsAbeVn4cCd0osx9BEB3gAbYAvD2VY3KdHq0BsO31L0BrlrpQxY/iCPF1FxfzEBHpg8S7LL64v9YnFFUYmV3KLAGYZEq0sHzcZCs242nzcZPcUrRqrytEMU+VOa23pGOmLkwLtNBL04qEsVV2e2jfWoKK+MVP6tqoZlwPdVfaCW37sxF8WzLa1xdxvQ8i1JdUrUHj/HOZ/YHvvFcWrOafj3V4cTlMlmeECeaBFgIhYHcBPRBCyuYxIfbyUcmbGl1QiwazBwrF3s4a0Q1yYsPusfZg3HowVViZ6tw5iZvWISXtmFjD0cTUb6K/PuAeFv9fnu+fN9+DTbm8R5IkHW5qf+4Mta5QaMfsAwLapvUyaKPu5y7Ft6v06ayxrS7tmwtW448KEvwdq5pTQ3Px+Cc29TRQcR7ir7AVXfhoJ2iwQqcQ0rXtYZ/MFufRTze+nunPth8OxNy2CPHUVwY3pfu/tPpTR6iDMx539AAv1ZlYf9lDKRFh+2FWnVRoSFcg99Z41wBJT+rZiZvWISXtmxc8EeroipU2wxWasXkoX9GoVJLq4XnLLmqKjf0ttg+4t/PG31DbIWDQEyXrKzL/GdDWrkPxrTFer9okIcMfJdwdi/cQkTB/QCusnJuHkuwMRoVc/iuWyCmYoh6yAcS3rn33A7HjXP2tdQ+a6hru96hEdzaRhmrtFpbQ2TVvU1uNxkUpMKkH3EtFUU3sIK5WWw+HYxoqxXfHyNyfNNmkEasornBJwS3SO9IWPuwK7BBp8dmjuw7TexgR54G6JcPaUn7tclLWF9fYc7udWYy0QyObSWgVYbpJlozqbrJ++gpTQ3Ae7BdZGm2K945WH8OjyA8jXy2bzc5fjxyk9AVhfXO+lPrF4qU+s2X3FuH+scRH1ahXEvJ9bclnZq2hgQ3BpiaHRKj/Lly/HBx98gOzsbHTs2BHLli1DUlKS3c5vbfE/Mbw71NTMrHVZKWVSHJrVF+XVanibKdjn76mAa6UaMhepSfC1mDT8iuqa97xjZnzGHA6n9rAeGq2bCbuQYkO8kJYt7F4vKK1i9sVzkUhwI184W+l6frnO2nLw8h2DCsEuEgl6xAYiJtCDmaWmlbN+4gOCip8WoQ7frPUTm2KttaL8dikXJzLz0SXSz0ChEDNvaxGalzX71AZ7z8vR43U0jdLt9d1332HGjBmYM2cOTpw4gY4dOyI1NRU5OZbfCqylpMow+CzMysJ8Wtrr+VnNFdvTf4sL8FSiuZ87vM1UVf3tb31xfPYAhPu6YZJAXZvnesbo/q3fT+uYXnont/5wOI7DUhyEmLigAkZ9mfyyapxidBw/kZmP64yigdfv1rh22EXmxGQ0sV0y1mBp/WpSrM2vobZOjT69WgVhWr/WZi0pjiyuV5c01nnZQqO0/Hz44Yd4/vnn8cwzzwAAVqxYge3bt+PLL7/ErFmz7CLDOOV03UTbrEpfjE9Er/f3IshTadBQ0xhryggNSQjF+t+voWXQ/R/7F+MT8d+/svDawDZ4uW8rSKSGFqHRyZH47o/rAIDSKpVZBYvD4TgObVzQYTPWFG1cUEwgo0dYkAfyGC6tKP+aF6gL2ZazkdqH1biIWNYWMZlR+jjaWvDF+ERRFiYWjcW1Y0xjnZctSEhMy+8GRFVVFdzd3fH9999j2LBhuu0TJkxAQUEBtm7dKnh8UVERfHx8UFhYCG9v4eBCIoJKQ5AADisaV16lxtGMu5BKxMXu1IZd527DUylD1yg/Ztl6DseRWPM7rC/YY8yFZdUWH94+7nJcyS1B3yX7LR6/d2ZvEJFd9hH7UBz9xe84lG6qsD3YMgBfW8iIcjT84d40seY32OgsP3fu3IFarUZIiGEvnZCQEFy4cMFk/8rKSlRW3n9TKioSn7IukUggd7GtuKFY3BQuZgOcHcGAOOH+QxwOx7Gw3sy1rh2hFgQA0CXCByeumwZPd4nw0e3TsbkPTpsJsO7Y3McqheFfY4QDueuChh6PwnE8Tf71fuHChfDx8dH9FxERUddD4nA4TRyh+iisFgQA8NUzyWb3+eqZZN3ndc+a32fds8mwBnvG83A4zqLJu72MLT+FhYWIjIzE9evXG4y5ncNpbBQVFSEiIgIFBQXw8RHfBbouKSwshK+vr9PuHRl5pci8W4ZIf3eLacr22ofDaQhYc99odG4vhUKBrl27Ys+ePTrlR6PRYM+ePZg6darJ/kqlEkrl/eJOWrcXtwBxOHVPcXFxg1F+iotrmhTzeweHU7eIuW80OuUHAGbMmIEJEyYgMTERSUlJ+Pjjj1FaWqrL/hIiLCwM169fh5eXl9nUczFotU9nvQE6U15DmRtfk4YnS19eZmYmJBIJwsKEGzbWJ8LCwnDu3DnExcVxy7EDcfY12RRpqGtMRCguLhZ132iUys/IkSORm5uLd999F9nZ2ejUqRN+/vlnkyBoc0ilUjRv3twu4/D29nbqheNMeQ1lbnxNGp4sAPDx8WlQN12g5t4RHl7TSsbZ69UU4WvseBriGou1FDdK5QcApk6datbNxeFwOBwOp2nT5LO9OBwOh8PhNC248uMAlEol5syZYxBI3VjkNZS58TVpeLLqQp69aejjbwjwNXY8TWGNG12qO4fD4XA4HI4Q3PLD4XA4HA6nScGVHw6Hw+FwOE0KrvxwOBwOh8NpUnDlh8PhcKxg+fLliI6OhqurK5KTk3H06FHB/f/zn/+gbdu2cHV1RXx8PHbs2OGkkTZcrFnjs2fP4oknnkB0dDQkEgk+/vhj5w20AWPNGn/xxRfo1asX/Pz84Ofnh/79+zOv+/oOV35s5PTp01Z1gOdwOA3/d/Pdd99hxowZmDNnDk6cOIGOHTsiNTUVOTk5Zvc/dOgQRo0ahYkTJ+LkyZMYNmwYhg0bhr/++svJI284WLvGZWVlaNGiBRYtWoRmzZo5ebQNE2vXeN++fRg1ahT27t2Lw4cPIyIiAgMHDsTNmzedPHI7QhyruHHjBo0YMYIkEgl9+umnDpVVXFxMBQUFRESk0WgcKouI6ObNm5SUlESLFy92uKzbt2/T/v37KT093arjnLkmzlwPItvXxFZZGzZsoAMHDtDdu3cdLs+ZvxtHkpSURFOmTNF9VqvVFBYWRgsXLjS7/1NPPUVDhgwx2JacnEyTJ0926DgbMtausT5RUVH00UcfOXB0jYParDERkUqlIi8vL1q7dq2jhuhwuOXHCmbMmIHIyEiUl5fDz88PXl5eDpM1d+5cdOjQAZs3bwYAm/uMieXVV19FdHQ0QkJCMGbMGIfKevvtt9GiRQu8++67SEhIwIIFC3Dt2jUANU1oLeHMNXHmegC2r4ktzJo1C7Gxsfj8888xaNAgvPLKK8jIyLCrDH2c+btxJFVVVTh+/Dj69++v2yaVStG/f38cPnzY7DGHDx822B8AUlNTLe7f1LFljTnWYY81LisrQ3V1Nfz9/R01TIfDlR8R/Pzzz/Dx8cHevXuxd+9e/PTTT0hMTHSI7/7u3bt47rnn8NNPPwEAduzYgUuXLgGoadpmby5cuIDw8HD8/PPPOHToEH788UeHmo6XL1+O3bt3Y/v27di2bRuWLFmCHTt2YMaMGQBqfoTGOHNNnL0egG1rYgs3b97EoEGDsHfvXmzbtg27du3CZ599hlOnTjnEDePM340zuHPnDtRqtUmPwJCQEGRnZ5s9Jjs726r9mzq2rDHHOuyxxm+88QbCwsJMFPuGBFd+RJCdnY3PP/8cJ0+exEMPPYSqqipER0ejuLjY7vELKpUKoaGh+Pvf/44vv/wSBw8exP/+9z9UV1c7xNJRWFgIb29vPPzww0hMTMSJEycwb948fPXVVzh58qTd5BARVCoVtm/fji5duiAlJQWenp6YPHkyWrdujc2bN+Prr78GAKjVagOlxtFroi/LGeuhlWftmtSW6upqDB48GKtXr8ZDDz0EhUKBJ554AhKJBK1bt671+Y1x5u+Gw+E4h0WLFuHbb7/F5s2b4erqWtfDsZlG29i0NhARJBIJqqurIZfL8fTTT+u+U6vVUCgUCAkJwd69e+Ht7a3b3xZUKhVcXFx0x/v7++Pll19GcHAwAGDgwIH45ptvkJycjG7dutV6bsbyOnXqhOnTp2PGjBm4cuUKTp8+jVatWuHSpUsoLS3F3/72N7z++uu1liWRSFBUVITs7GwMGDDAYD8/Pz9ER0dj5syZGDlyJNRqNVQqla60uiPXpKqqCkSkk+XI9TCWZ82auLi4WC1Le12q1Wq4uLigefPmGDduHPz8/AAABQUFGD9+PCorK7Fo0SI88sgjGDZsmM3XsjN/N3VBYGAgXFxccPv2bYPtt2/ftmgdbNasmVX7N3VsWWOOddRmjRcvXoxFixZh9+7dSEhIcOQwHQ63/BixbNkyzJ07FwAgl8tNvte6IPr27YusrCxcuHDB5hv4woULMXz4cIwePRo//vgjSktLIZPJEBwcrIvzWLBgAW7evIktW7agoKAAgO2uHmN5JSUlUCqV6NOnDwYNGoS8vDz88MMP2LRpEzIyMjBu3Dhs3rxZF2Nji6wxY8bgxx9/RHFxMfz9/ZGYmIjVq1dj1apVKC8vx+zZs7F582bMmDEDnp6eePLJJ9GzZ0889thjWLlyJe7eveuwNZk7d66BrLy8PCiVSvTu3Rupqal2XQ9z8u7cuaNbk1WrVllcE631xxr0r2Ot4iSTyXSKz/Xr1xEVFYWysjK89dZbKC0txdtvv40333zTprk583dTVygUCnTt2hV79uzRbdNoNNizZw+6d+9u9pju3bsb7A8Au3btsrh/U8eWNeZYh61r/P7772P+/Pn4+eefkZiY6IyhOhbnx1jXT06dOkWpqakkkUgoPj6e9uzZQ0Q1UfDm2L17N0VHR9OuXbuslnXkyBHq1KkTdejQgT766CNKSUmhzp07m2QpqFQqIiKaP38+tW3blv773//qvrMm08mSvCVLlujOdeDAATp27BhpNBqd3OvXr1P79u3pgw8+qLUsbcZUeXk5Pf7449SyZUvy8/Ojli1b0qFDh6i6upq8vb0pODiY1q5dS6NGjaL27dubZMrYY02qq6tp3LhxFBsbayBr8ODBButx9OjRWq+HkLyHH35YcE2IiNq2bUtfffWVaFlirmPtOp08edLg2NmzZ1Pnzp2psLDQrvL0qc3vpj7w7bffklKppDVr1tC5c+do0qRJ5OvrS9nZ2URENG7cOJo1a5Zu/4MHD5JMJqPFixfT+fPnac6cOSSXy+nPP/+sqynUe6xd48rKSjp58iSdPHmSQkNDaebMmXTy5Em6dOlSXU2h3mPtGi9atIgUCgV9//33lJWVpfuvuLi4rqZQa7jyc48lS5bQo48+SmvXrqXBgwfTuHHjqLq6mojMP1TLy8vJw8ODvv76ayKyfLM3Jjc3lyZNmkTPP/+8wYUzcuRImjRpElVVVem2aeVqNBrq2LEjTZw4ka5cuUJbtmyhZcuW2UVeZWUlEZFursayQ0JC6O2337aLrLKyMiIiKi0tpbS0NDp8+LBunwsXLpCLiwtNnTpVt23nzp3k5uZGH374oW6bdp1rsyZXrlyhtm3b0o8//mgiS6sQahWe2qyHGHnvv/8+ERGVlZXRxYsXDdaksrKSAgMDadWqVaJlWXsd628fNWoUpaSkUFlZmWhF0lm/m/rEsmXLKDIykhQKBSUlJdHvv/+u+y4lJYUmTJhgsP/GjRupdevWpFAoqH379rR9+3Ynj7jhYc0aX716lQCY/JeSkuL8gTcgrFnjqKgos2s8Z84c5w/cTnDl5x5ZWVm0f/9+IiL6+OOPKTk5mdasWUNE5m/iJSUllJqaanW9jtzcXJo7dy4dP36ciEin7MycOZOSkpJM9tc+hDdu3EhBQUEUGRlJMpmMli5d6hB5+mzdupU6d+5MZ8+edbisRYsWEQATa8R7771Hvr6+dO3aNd222q7JxYsXSSKRGJzTkix9rF0PMfJ8fHwsyluzZg1169aNcnNzRcuy9jrWcvz4cerduzetXr1atCxb5Nn6u+FwOBx7wpUfM1y/fp1GjBhBQ4YM0ZkBzb2hdurUicaMGUMVFRVWnV/fyqJ9QEyYMIGmT59udv+MjAx64YUXSCKR0DPPPEN5eXkOk/fnn3/S0aNH6dVXX6WAgAB68803TaxC9pKVk5NDu3fvpldeeYU8PDyoWbNm9M9//tPgoVlYWEgtWrSgGTNmENF9xac2a3Lu3Dnq1KmTzupiSZZGo6n1elgjT61WG6yJt7c3zZ8/n9RqtU0FHVnX8YULF+jXX3+ladOmkbe3N02ePFlnnbMFR/9uOBwOx140mYBnEhkQq9Fo0Lx5cwwfPhx3797F6tWrARjWWlGpVABqisW98cYbukwhMbKICDKZTLePNujz8uXL6Ny5s9njP/nkE2zZsgVHjhzBl19+aVJYyp7yDh48iClTpuDIkSPYvn073nvvPchkMoPz2SKrU6dOJscXFhZiy5YtOH78OLZt24aUlBQcPXrUoLift7c3XnzxRXz//feoqKjQBe8KrQnrbx0ZGYk2bdrgyJEjuuJ+xrLKy8shkUiY62EveRUVFZBKpQZrsnPnTrzzzjuQSqW6tbTndfzXX39hyZIlOHPmDHbt2oUVK1bAzc3NqrlZI4/1u+FwOByn4XR1qw64e/cuFRUV6T7rv40av8VrP5eVldHkyZMpJSWFTp8+TUSkc+cYx4PYKkt7nqtXr5KXlxedOXNG911WVpbu30JBZfaSd/PmTSIiKioq0s3XXrI8PDxo7969um03btzQHaM/z2+++YYSEhLon//8p8G5Vq5cSR06dDBwD1lak9zcXLp9+7ZOlqUxsmRdvXqViGrcNJbWw57ytHPTaDQW3VxiZel/NncdHzt2jIhqYq+EWmnYS56Y3w2Hw+E4k0av/EydOpVatmxJKSkpNHbsWLp165bJPhqNRhenQHT/Jv/LL79Qv379aOTIkTRo0CCSSCRmj6+NLCKizz77jDp16kRENYrBU089Rd26dWP2XLK3PCHXka2yHnroIZLJZNSxY0fq2bMnPfzwwyayVCoV/fvf/yYiohdeeIEeeOAB+umnn3Tfv/fee9SzZ0/mw/Oll16iZs2aUceOHalfv35msz3sJcvZ8sTIsuY61iq7zpIn9LvhcDgcZ9NolZ/i4mIaOnQo9ejRg/bv30+rVq2iBx98kDp37kx//fWXbr/PP/+cgoODafDgwXT79m2Dc9y+fZvat29PEomEhg8fThkZGXaTlZOTo9s+ffp0mjZtGr333nvk5uZGffv21VlH6lpebWS99tprFBwcTE888QSNGDGCpFIpeXh40A8//GBy3MCBA6mqqorOnz9Pzz77LMlkMnrxxRdp6tSp5OPjo8vkshT78tprr1Hnzp1p3759tG7dOurZsyfFx8fTr7/+andZzpZnjazaXMd1JY/D4XCcTaNVfn777TeKi4ujU6dO6bbdvHmT5HI5Pf/883T79m364YcfKDw8nFavXm3y5n348GHy9/entm3b0oEDBxwmq7S0lKKjo0kikVDr1q1p586dDp2btfJskaXRaKi0tJS6du1Kvr6+Olk//fQTde7cmcaMGUPXrl2jzZs3U1hYGK1evdrEjbJ48WKaNGkSpaam6mrHmEMrq1u3bjR37lzd9rKyMrvLcrY8W2TV5jp2tjwOh8OpKxqt8rNp0yby8PAw2Hbq1CkKCQmhmJgY2rhxIxFZjh0pKSmh9evXO1xWXl4ejRs3jjZs2CBKlrPl2Srrxo0bFBISQr1796YNGzbo6glt3LiR2rdvTytWrCCimnXWx5asphs3blCzZs10dXQcKcvZ8myVpcWa67gu5HE4HE5d0CiyvRYuXIjp06fj888/R1VVFQAgPDwc4eHhePfdd3X7rVy5EqNHj4a7uzu2bNkCAPDw8DA5HxHBw8MDY8eOdagsIoK/vz/WrVuH0aNHO3xuLHm2ytq0aZNB400iQlhYGFq0aIGwsDCMHj1al/UzYsQIxMbGYseOHcjJyTEZI6vlwaZNmwyaYhIRwsPDERMTg2+//RYA7CbL2fLsKUt7vKXruC7kcTgcTr2hrrQue3DhwgWKi4uj+Ph4GjlyJPn5+dFDDz1EJ0+eJLVaTZ988glJJBJ68MEHydvbm2JjY6moqIjWr19Pfn5+9VZWQ5nbW2+9RVKplCQSCX3++ee682ktHKtXrya5XE5paWlEVFPdl6imurGrq6suzkiMRWTv3r3Upk0bp8hytrzGPDcOxxoA0ObNm+t6GJwmQINWfpYsWULdu3fXxVRkZWVRx44dacSIEXTlyhUiItq3bx8tX76ctm3bpjtu+fLl1LVrV7pz5069lNUQ5nbu3Dnq2rUrBQUF0fjx4ykyMtIko+fKlSvUs2dP6tu3r8H2tLQ08vHxYcbXaDl37hyNHDmSpkyZQpMmTXKoLGfLa8xz43CsJSsrS1f8Utu2wrjqu63s3buXAFB+fr5dzudI1qxZQz169CCimlYT06ZNq9sBNUIarPJTXV1Nzz77LD322GMGb6AbN26k5ORkg6Zs+qhUKho9ejQ988wz9VKWs+XZKuvmzZuUnJxMw4cPp6KiIgoPD6fXXnvNYB+NRkM7duwgpVJJ77//vi4LbOXKlZSYmGhQM0iI7OxsWrVqFZ07d87hspwtrzHPjcOpDWKVH21cGouGpPwMHz5cVxOMKz+OocEqP0REY8aMoYEDB5JKpTLIOpkyZQr17duXTpw4oduWlpZGly9fpsmTJ1NkZCT98ssvRCTedO9MWQ1lbhERETpZq1evJqVSaZAVpuWLL76gkJAQateuHT355JOkVCppwYIFpNFoRI9Rv8Del19+6VBZzpbXmOfG4WhJSUmhl19+mV5//XXy8/OjkJAQk8aY+m4vWGhUOmHCBHrsscdowYIFFBoaStHR0UREtG7dOuratSt5enpSSEgIjRo1SleGwVzzU23jTrVaTe+99x5FR0eTq6srJSQk0H/+8x/BuURFRdH8+fNp3Lhx5OHhQZGRkbR161bKycmhRx99lDw8PCg+Pl5XUFTLypUrqXnz5uTm5kbDhg2jJUuWkI+Pj8E+2ua/58+f160bV37sT4NUfrQP6L1795JUKtW9GWjdNvv27aPY2FhdJhJRTWG/1q1bU3JyskFl4/okqyHOTf8hmJycTI8++qjZ3lcHDx6kpUuX0quvvmr2QSsGZ8pytrzGPDcOh6jmIe7t7U1z586ltLQ0Wrt2LUkkEoNyG/rKz9GjRwkA7d69m7KysnSFUSdMmECenp40btw4+uuvv3T1xlavXk07duyg9PR0Onz4MHXv3p0efvhhIqq51/3www8EgC5evEhZWVlUUFBAREQLFiygtm3b0s8//0zp6en01VdfkVKppH379lmcS1RUFPn7+9OKFSsoLS2NXnzxRfL29qZBgwbRxo0b6eLFizRs2DBq166d7rd24MABkkql9MEHH9DFixdp+fLl5O/vb6L8bNu2jVq3bm2wblz5sT/1VvnJyMig69evE5FpWXztTbq8vJxSUlKof//+RGR4Q2/ZsiX9/e9/133Oy8sz0cLrQlZDmZv2uJYtWxrUfMnLy6PDhw8bnEc7tl9//ZWkUqkuTVqlUhkUV6zNethLlrPlNea5cTjWkJKSQj179jTY1q1bN3rjjTd0n/WVH0turwkTJlBISAjT3XXs2DECoCvDYc7tVVFRQe7u7nTo0CGDYydOnEijRo2yeO6oqCgaO3as7nNWVhYBoNmzZ+u2HT58mADoWviMHDmShgwZYnCeMWPGmCg/zz//PM2cOVP3mSs/jqFeprpv3boVMTExePnllwFA18xSm04tk8mgVqtRWFiIefPmYf/+/VixYoWuCWN+fj48PDwMml36+/sjMTGxTmU1lLlt2bIFMTExeOGFF+Dh4YHAwEDdcf7+/njggQegUqlw+/ZtAPdTuHv16oVRo0Zh3rx52LNnD4YMGYKlS5eiurra7FqIHaO9ZDlbXmOeG4djCwkJCQafQ0NDkZOTY/V54uPjoVAoDLYdP34cjzzyCCIjI+Hl5YWUlBQAQGZmpsXzXL58GWVlZRgwYAA8PT11/61btw7p6emi5xISEqIbl/E27fwuXryIpKQkg3MYfyYi/PTTT3j00UcFZXNqT71Ufo4ePYrk5GRkZmbihx9+AFBzA9fezJcuXQp3d3f8/PPPSElJwZw5czBnzhxMnjwZv/32G+bPn4/i4mL069evXslqKHObN28e4uLicOzYMWRnZ6Nfv34mx3l6euK///2vSdfvKVOm4MSJExgwYAAAYMaMGZDL5bUao71kOVteY54bh2MLxteURCKBRqOx+jzGdaZKS0uRmpoKb29vbNiwAceOHcPmzZsBQFezzBwlJSUAgO3bt+PUqVO6/86dO4fvv/9e9Fy0LxLmtlkzv6NHj0KlUuHBBx8UfQzHRurM5mQGbSDmlClT6OWXX6aJEydSr169qKqqioiICgoKaMyYMRQWFkZr1641cAUtXbqUevXqRfHx8dSxY0c6cuRIvZHVUOamVqtp6dKlFBoaSgEBAeTv70+dOnUye9y6desMxqhSqWjt2rUkl8spOTnZIEi6tmOsrSxny2vMc+NwbMWc++axxx7TBR4TGbq9bt68SQDojz/+MDhGG/Cszx9//EEAKDMzU7dt/fr1Bm6zgwcPEgCDMiBFRUWkVCpp3bp1Vs0lKiqKPvroI4NtMKpRZOy2GzlyJA0dOtTgmLFjxxq4vd58802D9SDibi9HUa+UH6KaOITU1FT6/fffadu2bRQXF0effPIJEdXcxI8dO2aQaqufuaJWq3V1aeqbrIYyN41GQwMHDqRNmzaJOk5LaWkpffzxxwZF8+w9xtrIcra8xjw3DscWrFV+qquryc3NjRYsWEDZ2dm6AGVzyk9OTg4pFAp6/fXXKT09nbZu3UqtW7c2UD5u3LhBEomE1qxZQzk5ObpYoLfffpsCAgJozZo1dPnyZTp+/DgtXbqU1qxZY3Eutig/2oDnJUuWUFpaGq1YsYICAgLI19dXd0z79u0NGj9r12306NF08uRJg/+ys7Mtjo/DRlZHBid8//338PX1Rfv27REaGgrgvonexcUFVVVVeOCBB/D4449j9erVOHLkCOLj4zFjxgwDX6+2/L723zExMXUqq6HMLTo6GgUFBbrjpFKp7jiZTIbAwEDExcUxx6jF3d0d06ZNc+h6iJHlbHmNeW4cTl0ik8mwdOlS/P3vf8e7776LXr16Yd++fWb3DQoKwpo1a/DWW29h6dKl6NKlCxYvXmwQOxMeHo558+Zh1qxZeOaZZzB+/HisWbMG8+fPR1BQEBYuXIgrV67A19cXXbp0wVtvvWXX+fTo0QMrVqzAvHnz8M477yA1NRXTp0/Hp59+CgBIT0/H5cuXkZqaanLs119/ja+//tpg2/z58/HOO+/YdYxNCmdrW+vWraPg4GBKSkqioKAg6tGjh4G2fPfuXWrWrJkukn/69Onk6upKbm5uJubP+iSrocxNLpeTv79/vR5jY17/hjA3DofjHJ577jldBtySJUt0qfkcx+M05ae6upo+/vhjateuHa1atYoqKyvp4MGDNH78eHr44Yd1Jc1v3rxJI0eOpG+++Ybi4+MpMDCQhg4dSm3bttWlcxun8NalrIYyt4CAAIqLiyOFQkHvvPMOVVZW0q+//lqvxtiY178hzI3D4TiWDz74gE6dOkWXLl2ipUuXklwupy+++IKIiL777jv69ddf63iETQenKT8FBQX09ttv06JFiwxiWRYtWkQ9evTQ+V8zMzNJIpGQXC6nKVOmUH5+Pp09e5YGDRpkUiOiPshqKHPLyMigSZMmUevWrXU9Y+rbGBvz+jeEuXE4HMcyYsQICgoKIldXV4qLi6N//etfdT2kJotDY34uXbqE2NhYSCQS+Pj44Mknn0R8fDykUik0Gg2kUikiIiJQWlqqi0eIiIjAN998g5iYGF0NBF9fXwwbNgzFxcW6FF1tGmFdyGooc/vwww/RvXt3JCcnAwBefPFFdOrUCaWlpVCr1fVijI15/RvC3DgcjvPYuHFjXQ+Bo8URGtV3331H0dHR1KZNG0pKSqJVq1YZfK//Bjt69Gh6+umniYh0qbn6aNNyLZnsnSmrocxtw4YNJsfpy6oPY2zM698Q5sbhcDhNGbsrPzt37qTo6Ghavnw5/fzzzzRjxgySy+W0cuVKKi8vJyLSNUYsLy+nhIQEWr9+vcl5xNy0nSmroczN+LhXX3213o3RFlnOlteY58bhcDhNHbspP9o3zXnz5lHXrl0N3kZfeuklSkxMpE2bNhkcc/PmTYqOjqa0tDQiqukYPn369Holq6HMLSoqitLS0mjevHnUoUMHeuWVV+rdGBvz+jeEuXE4HA6nBru1t9DGEpw7dw4tW7aEXC7X9QZasGABXF1dsXXrVmRnZ+uO2b17NyIiIhAaGopp06YhLi4O165dQ3V1tUn5/bqS1VDmFhkZidDQUPz73//G2bNncePGDZSVlYGI6s0YG/P6N4S5cTgcDucetmpNO3fupJdffpk++ugjg3YLK1euJC8vL535Xfsmu3LlSmrdujXt3buXiGreeEeMGEF+fn4UEBBA7du3t9iZ3JmyGsrcPvjgA3r55Zfpww8/pH79+ulkhYaGkoeHR70YY2Ne/4YwNw6Hw+GYx2rl59atWzR06FAKDg6mMWPGUHx8PPn4+Ohu5BcvXqTw8HCaPXs2EZGu6BoRUbNmzXQlwUtLS2no0KHUvHlz+vbbb+tcVkOZ261bt0ipVJKnpyeNGTOG2rdvTzKZjIKDg+nbb7+tF2NszOvfEObG4XA4HGGsUn5KS0tpwoQJNHLkSIM+U0lJSbrMk6KiIlqwYAG5ubnpmsxp4xpSUlLoueee0x0nVHnWmbIaytxKSkpowoQJFBQURCNHjtQd1759+3ozxsa8/g1hbhwOh8NhY1XMj7u7O5RKJZ5++mnExMRApVIBAAYPHozz58+DiODl5YXRo0ejS5cueOqpp3Dt2jVIJBJkZmYiJycHw4YN052va9eu9UJWQ5mbh4cHqqur4erqinHjxumOGzFiRL0ZY2Ne/4YwNw6Hw+GIwFptST8bRVt3ZPTo0fT8888b7Hfjxg2KjY2l6OhoevLJJyksLIz69u1rVSdaZ8pqKHMLDQ3VyaqvY2zM698Q5sbhcDgcYSREtU8P6dmzJ55//nlMmDABGo0GQE0X8suXL+P48eM4cuQIOnbsiAkTJtRaWXOmLGfLs1VWQxhjQ5DXmOfG4XA4HD1qqz2lp6dTSEiIQRyCfrCmPXGmLGfLs1VWQxhjQ5DXmOfG4XA4HENsrvND9wxGBw4cgKenpy4OYd68eZg2bRpycnLso505WZaz5dkqqyGMsSHIa8xz43A4HI55bG5sqi3OdvToUTzxxBPYtWsXJk2ahLKyMqxfvx7BwcF2G6QzZTlbnq2yGsIYG4K8xjw3DofD4VigNmaj8vJyio2NJYlEQkqlkhYtWlRLQ1T9kOVsebbKaghjbAjyGvPcOBwOh2NKrQOeBwwYgFatWuHDDz+Eq6urvXSyOpflbHm2ymoIY2wI8hrz3DgcDodjSK2VH7VaDRcXF3uNp97IcrY8W2U1hDE2BHmNeW4cDofDMcQuqe4cDofD4XA4DQW7dXXncDgcDofDaQhw5YfD4XA4HE6Tgis/HA6Hw+FwmhRc+eFwOBwOh9Ok4MoPh8PhcDicJgVXfjgcDofD4TQpuPLDcTq9e/fGq6++2uRkczgcDqd+wJUfTr1m3759kEgkKCgosMtxmzZtwvz58+03QA6Hw+E0OGxubMrhNET8/f3reggcDofDqWO45YfjUEpLSzF+/Hh4enoiNDQUS5YsMfh+/fr1SExMhJeXF5o1a4bRo0cjJycHAJCRkYE+ffoAAPz8/CCRSPD0008DADQaDRYuXIiYmBi4ubmhY8eO+P7775nHGbu9oqOjsWDBAt0Yo6Ki8OOPPyI3NxePPfYYPD09kZCQgD/++MNg3AcOHECvXr3g5uaGiIgIvPLKKygtLbX38nE4HA7HAXDlh+NQXn/9dezfvx9bt27Fzp07sW/fPpw4cUL3fXV1NebPn4/Tp09jy5YtyMjI0CkqERER+OGHHwAAFy9eRFZWFj755BMAwMKFC7Fu3TqsWLECZ8+exfTp0zF27Fjs379f8DhzfPTRR+jRowdOnjyJIUOGYNy4cRg/fjzGjh2LEydOoGXLlhg/fjy0nWDS09MxaNAgPPHEEzhz5gy+++47HDhwAFOnTnXEEnI4HA7H3tRhR3lOI6e4uJgUCgVt3LhRty0vL4/c3Nxo2rRpZo85duwYAaDi4mIiItq7dy8BoPz8fN0+FRUV5O7uTocOHTI4duLEiTRq1CiLxxERpaSkGMiOioqisWPH6j5nZWURAJo9e7Zu2+HDhwkAZWVl6eRMmjTJ4Ly//fYbSaVSKi8vF14UDofD4dQ5POaH4zDS09NRVVWF5ORk3TZ/f3+0adNG9/n48eOYO3cuTp8+jfz8fGg0GgBAZmYm4uLizJ738uXLKCsrw4ABAwy2V1VVoXPnzlaPMyEhQffvkJAQAEB8fLzJtpycHDRr1gynT5/GmTNnsGHDBt0+RASNRoOrV6+iXbt2Vo+Bw+FwOM6DKz+cOqO0tBSpqalITU3Fhg0bEBQUhMzMTKSmpqKqqsricSUlJQCA7du3Izw83OA7pVJp9Tjkcrnu3xKJxOI2rWJWUlKCyZMn45VXXjE5V2RkpNXyORwOh+NcuPLDcRgtW7aEXC7HkSNHdEpBfn4+0tLSkJKSggsXLiAvLw+LFi1CREQEAJgEFisUCgCAWq3WbYuLi4NSqURmZiZSUlLMyjZ3nL3o0qULzp07h9jYWLufm8PhcDiOhwc8cxyGp6cnJk6ciNdffx2//PIL/vrrLzz99NOQSmsuu8jISCgUCixbtgxXrlzBjz/+aFKDJyoqChKJBNu2bUNubi5KSkrg5eWFmTNnYvr06Vi7di3S09Nx4sQJLFu2DGvXrrV4nL144403cOjQIUydOhWnTp3CpUuXsHXrVh7wzOFwOA0ErvxwHMoHH3yAXr164ZFHHkH//v3Rs2dPdO3aFQAQFBSENWvW4D//+Q/i4uKwaNEiLF682OD48PBwzJs3D7NmzUJISIhOwZg/fz5mz56NhQsXol27dhg0aBC2b9+OmJgYwePsQUJCAvbv34+0tDT06tULnTt3xrvvvouwsDC7yeBwOByO45AQ3cvf5XA4HA6Hw2kCcMsPh8PhcDicJgVXfjgcDofD4TQpuPLD4XA4HA6nScGVHw6Hw+FwOE0KrvxwOBwOh8NpUnDlh8PhcDgcTpOCKz8cDofD4XCaFFz54XA4HA6H06Tgyg+Hw+FwOJwmBVd+OBwOh8PhNCm48sPhcDgcDqdJwZUfDofD4XA4TYr/B580ZZJKd9xzAAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -461,27 +462,52 @@ } ], "source": [ - "fig, axs = plt.subplots(3)\n", - "tol['temperature C'].plot(ax=axs[0])\n", - "tol['specific conductance uS/cm'].plot(ax=axs[1])\n", - "tol['salinity ppt'].plot(ax=axs[2])\n", - "\n", - "for n, ax in enumerate(axs):\n", - " ax.set_title(f'Plot {n+1}')\n", - " ax.label_outer()" + "# fig, axs = plt.subplots(3)\n", + "# tol['temperature C'].plot(ax=axs[0])\n", + "# tol['salinity ppt'].plot(ax=axs[1])\n", + "# tol['fchl mg/L'].plot(ax=axs[2])\n", + "\n", + "# for n, ax in enumerate(axs):\n", + "# ax.set_title(f'Plot/ax {n}')\n", + "# ax.label_outer()\n", + "\n", + "fig, axs = plt.subplots(3, 2)\n", + "tol['temperature C'].plot(ax=axs[0][0])\n", + "tol['salinity ppt'].plot(ax=axs[1][0])\n", + "tol['fchl mg/L'].plot(ax=axs[2][0])\n", + "compare_col = 'nitrate mg/L'\n", + "tol.plot.scatter(x=compare_col, y='temperature C', ax=axs[0][1])\n", + "tol.plot.scatter(x=compare_col, y='salinity ppt', ax=axs[1][1])\n", + "tol.plot.scatter(x=compare_col, y='fchl mg/L', ax=axs[2][1])\n", + "\n", + "for row_num, ax_row in enumerate(axs):\n", + " for col_num, ax in enumerate(ax_row):\n", + " ax.set_title(f'Plot/ax {row_num}-{col_num}')\n", + " ax.label_outer()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ + "#### *Exercise*:\n", + "Let's take this to the next level and do a 3x2 plot so we can show the correlation between each of these metrics with gage height alongside the time-series graph. \n", + "* edit the first line with subplots(3, 2). Now axs will be of the format `[[ax00, ax01], [ax10, ax11], [ax20, ax21]]`.\n", + "* Cange the ax=... for each of the current plots to add a [0] on the end of each one, like axs[1][0]\n", + "* Update the loop over axs to a nested loop and adjust the title text to show both. E.g:\n", "\n", + " for row_num, ax_row in enumerate(axs):\n", + " for col_num, ax in enumerate(ax_row):\n", + " ax.set_title(f'Plot/ax {row_num}-{col_num}')\n", + " ax.label_outer()\n", "\n", - "## Histogram\n", + "Go ahead and re-run the cell now and you should have three plots on the left and three empty boxes on the right side. \n", + "* Add three more scatter plots with axis locations `[0][1]`, `[1][1]`, and `[2][1]`. Each should have `x='gage height ft'` and `y=...` matching either temperature, salinity, or fchl.\n", "\n", - "## Heatmap\n", + "Wow, no correlation at all. Maybe there's something we can do to visually see which parameters might correliate... \n", "\n", - "## Multiple Plots" + "#### *Exercise*:\n", + "If you want a fun little challenge, try making an nxn matrix of scatter plots with regression lines comparing n different parameters.\n" ] }, { @@ -499,7 +525,7 @@ ], "metadata": { "kernelspec": { - "display_name": "venv", + "display_name": ".venv", "language": "python", "name": "python3" }, @@ -513,7 +539,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.6" + "version": "3.10.12" } }, "nbformat": 4, From e52d2f7010284623ac80fad31a2d608793828d3c Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Mon, 21 Oct 2024 20:59:24 -0700 Subject: [PATCH 48/94] plotting stuff good enough for today --- D3-Pandas_Graphing.ipynb | 265 +++++++-------------------------------- 1 file changed, 46 insertions(+), 219 deletions(-) diff --git a/D3-Pandas_Graphing.ipynb b/D3-Pandas_Graphing.ipynb index 7609bc8..b227198 100644 --- a/D3-Pandas_Graphing.ipynb +++ b/D3-Pandas_Graphing.ipynb @@ -39,7 +39,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -60,39 +60,9 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " gage height ft temperature C \\\n", - "datetime \n", - "2024-09-15 20:00:00 5.37 20.4 \n", - "2024-09-15 20:15:00 5.58 20.4 \n", - "2024-09-15 20:30:00 5.75 20.3 \n", - "2024-09-15 20:45:00 5.99 20.3 \n", - "2024-09-15 21:00:00 6.21 20.3 \n", - "\n", - " specific conductance uS/cm dissolved oxygen mg/L pH \\\n", - "datetime \n", - "2024-09-15 20:00:00 159.0 8.6 7.8 \n", - "2024-09-15 20:15:00 165.0 8.6 7.8 \n", - "2024-09-15 20:30:00 165.0 8.6 7.8 \n", - "2024-09-15 20:45:00 166.0 8.6 7.8 \n", - "2024-09-15 21:00:00 166.0 8.6 7.9 \n", - "\n", - " dom ug/L salinity ppt fchl mg/L nitrate mg/L \n", - "datetime \n", - "2024-09-15 20:00:00 14.7 0.1 NaN NaN \n", - "2024-09-15 20:15:00 16.6 0.1 NaN NaN \n", - "2024-09-15 20:30:00 16.5 0.1 NaN NaN \n", - "2024-09-15 20:45:00 16.7 0.1 NaN NaN \n", - "2024-09-15 21:00:00 16.7 0.1 NaN NaN \n" - ] - } - ], + "outputs": [], "source": [ "cols = {'datetime': 'datetime',\n", " '288768_00065': 'gage height ft',\n", @@ -122,30 +92,9 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 40, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAy0AAAG5CAYAAACDeNt6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9ebxlWVEniseZ75BTDVlUFRZWicygYot8EGnhKSIPfTZPfa2N/RyRdmi6sfEn/LrtpyIUtlgovBZwaCgVB1REmkGbQkGgLJmKAgqKmuesKcc7nnG/P/ZZa8WKFRFr7XvWzsybd8fnw4fMrHP23uecvdeKiO8QraIoCmiiiSaaaKKJJppoookmmjhLo32mL6CJJppoookmmmiiiSaaaEKLpmhpookmmmiiiSaaaKKJJs7qaIqWJppoookmmmiiiSaaaOKsjqZoaaKJJppoookmmmiiiSbO6miKliaaaKKJJppoookmmmjirI6maGmiiSaaaKKJJppoookmzupoipYmmmiiiSaaaKKJJppo4qyOpmhpookmmmiiiSaaaKKJJs7q6J7uE85mM7j//vth//790Gq1Tvfpm2iiiSaaaKKJJppooomzJIqigLW1Nbj00kuh3ZbxlNNetNx///1w2WWXne7TNtFEE0000UQTTTTRRBNnadxzzz3wVV/1VeJ/P+1Fy/79+wGgvLADBw6c7tM30UQTTTTRRBNNNNFEE2dJnDp1Ci677DJbI0hx2osWQwk7cOBAU7Q00UQTTTTRRBNNNNFEE1HZSCPEb6KJJppoookmmmiiiSbO6miKliaaaKKJJppoookmmmjirI6maGmiiSaaaKKJJppoookmzuo47ZqWJppoookmmmiiiSZ2R0ynUxiPx2f6MprYxdHpdKDb7S486qQpWppoookmmmiiiSaaCGJ9fR3uvfdeKIriTF9KE7s8VlZW4JJLLoF+v7/jYzRFSxNNNNFEE0000UQTXkynU7j33nthZWUFDh8+3AwEb2JHURQFjEYjePjhh+GOO+6Axz3uceoASS2aoqWJJppoookmmmiiCS/G4zEURQGHDx+G5eXlM305TeziWF5ehl6vB3fddReMRiNYWlra0XEaIX4TTTTRRBNNNNFEE2w0CEsTOWKn6Ip3jAzX0UQTTTTRRBNNNNFEE000UVs0RUsTTTTRRBNNNNFEE03UHL/8y78M3/AN37DQMT7ykY9Aq9WCEydOnNbzmtjc3ITv+77vgwMHDlS+jkWjUtEynU7hl37pl+CKK66A5eVleOxjHwuvec1rGleJJppoookmmmiiiSaaqDm+5Vu+BY4cOQIHDx7MetznPve58B//43+Mvu7qq6+Gj33sY3DttdfCkSNH4Pjx49BqteBzn/tc1uvhopIQ/9d//dfhLW95C1x99dXwlKc8BT796U/Dj/3Yj8HBgwfh5S9/eV3X2EQTTZzFURQFvPQPPwPb4ym8/ceeAb1OA+A20UQTTTTRRB3R7/fh4osvPmPnv+222+BJT3oSPPWpTwUAgDvvvPO0nbtSdnHttdfC937v98KLXvQiuPzyy+H7v//74Tu/8zvhk5/8ZF3X10QTTZzlcfexTbjmyw/Cx299BK67/eiZvpwmmmiiiSb2cKytrcFLXvISWF1dhUsuuQTe+MY3BijCH/3RH8E3fdM3wf79++Hiiy+Gf/Nv/g089NBD3nHe+973wuMe9zhYWlqC5z3veXD11VcHdKiPf/zj8JznPAeWl5fhsssug5e//OWwsbERvcY/+qM/gssvvxwOHjwIP/iDPwhra2v2v81mM7jyyistq+nrv/7r4S//8i/tf+foYb/3e78Hl112GaysrMCLX/xiuOqqq+DQoUPJ5/3RH/1R+OhHPwq//du/Da1WC1qtFluMPPe5z4Xf/M3fhH/8x3+EVqsFz33uc+GKK64AAICnP/3p9t/qikpFy7d8y7fAhz/8Ybj55psBAOCGG26Aj3/84/DCF75QfM9wOIRTp055/2uiiSbOnbjt4XX757uPbZ7BK2miiSaaaKKuKIoCNkeTM/K/KjKEn//5n4dPfOIT8N73vhc+9KEPwcc+9jH47Gc/671mPB7Da17zGrjhhhvgPe95D9x5553woz/6o/a/33HHHfD93//98K/+1b+CG264AV72spfBf/7P/9k7xm233Qbf9V3fBd/3fd8Hn//85+HP//zP4eMf/zj83M/9nHp9t912G7znPe+B973vffC+970PPvrRj8LrX/96+9+vvPJK+MM//EN461vfCjfeeCO84hWvgB/+4R+Gj370o+zxPvGJT8C/+3f/Dv7Df/gP8LnPfQ6e//znw2tf+9pK5/3t3/5teNazngUvfelL4ciRI3DkyBG47LLLgmO8+93vhpe+9KXwrGc9C44cOQLvfve7LXBxzTXX2H+rKyrRw171qlfBqVOn4IlPfCJ0Oh2YTqfw2te+Fl7ykpeI77nyyivhV37lVxa+0CaaaOLsjEfWRvbPR05sn8EraaKJJppooq7YGk/hyf/1787Iub/0qy+AlX48ZV1bW4Orr74a/uRP/gS+/du/HQAA3v72t8Oll17qve7Hf/zH7Z+/5mu+Bt70pjfBM57xDFhfX4d9+/bB2972NnjCE54Av/EbvwEAAE94whPgi1/8olcMXHnllfCSl7zEIjiPe9zj4E1vehN827d9G7zlLW8RZ5HMZjN4xzveAfv37wcAgH/7b/8tfPjDH4bXvva1MBwO4XWvex1cc8018KxnPcte38c//nF429veBt/2bd8WHO/Nb34zvPCFL4RXvvKVAADw+Mc/Hq699lp43/vel3zegwcPQr/fh5WVFZV6dv7558PKyopHUTNgxAUXXFA7ba0S0vKud70L3vnOd8Kf/MmfwGc/+1m4+uqr4Q1veANcffXV4nte/epXw8mTJ+3/7rnnnoUvuokmmjh74uH1of3z/Se3zuCVNNFEE000sZfj9ttvh/F4DN/8zd9s/+3gwYPwhCc8wXvdZz7zGfie7/keeMxjHgP79++3xcDdd98NAABf+cpX4BnPeIb3HnxMgJJt9I53vAP27dtn//eCF7wAZrMZ3HHHHeI1Xn755bZwAAC45JJLLDXt1ltvhc3NTXj+85/vHfcP//AP4bbbbmOP95WvfCW4Nvr32Hl3S1RCWn7hF34BXvWqV8EP/uAPAgDA0572NLjrrrvgyiuvhB/5kR9h3zMYDGAwGCx+pU000cRZGY+goqVBWppoookmzs1Y7nXgS7/6gjN27lyxsbEBL3jBC+AFL3gBvPOd74TDhw/D3XffDS94wQtgNBrFDzCP9fV1eNnLXsYaUT3mMY8R39fr9by/t1otmM1m9pgAAO9///vh0Y9+tPe6RXNp7by7JSoVLZubm8FEy06ns+s+dBNNNJEvjq67Rf74ZvqC30QTTTTRxO6JVquVRNE6k/E1X/M10Ov14FOf+pQtHE6ePAk333wz/Mt/+S8BAOCmm26Co0ePwutf/3qr2/j0pz/tHecJT3gCfOADH/D+7VOf+pT392/8xm+EL33pS/C1X/u12a7/yU9+MgwGA7j77rtZKhgXT3jCE4Jro39PiX6/D9PpdEfvA4AdvbdqVKKHfc/3fA+89rWvhfe///1w5513wl//9V/DVVddBS9+8Yvrur7TGkdObsHrP3gTfPG+k2f6Upo4i+LDX34QrvrQzbA1qv+B3I1xdMMhLVvjer6jyXQGv/+x2+HG+5tns4kmmmiiCT72798PP/IjPwK/8Au/AP/wD/8AN954I/zET/wEtNttaLVaAFCiIP1+H9785jfD7bffDu9973vhNa95jXecl73sZXDTTTfBL/7iL8LNN98M73rXu+Ad73gHAIA9zi/+4i/CtddeCz/3cz8Hn/vc5+CWW26Bv/mbv4kK8WPX/8pXvhJe8YpXwNVXXw233XYbfPazn4U3v/nNohTj3//7fw8f+MAH4KqrroJbbrkF3va2t8EHP/hBe52pcfnll8M///M/w5133gmPPPJIMiBx0UUXwfLyMvzt3/4tPPjgg3DyZH37dKWi5c1vfjN8//d/P/zMz/wMPOlJT4JXvvKV8LKXvSz4sXdr/Nr7vwxv/eht8Mq/uOFMX0oTZ0mMpzP4ias/DW/68C3wP2+4v5Zz/MHH74DnveEjngvXboq17Yn982ZNhd1bPnIb/Nr7vwz/9g8ae/UmmmiiiSbkuOqqq+BZz3oWfPd3fzd8x3d8Bzz72c+GJz3pSVYYf/jwYXjHO94Bf/EXfwFPfvKT4fWvfz284Q1v8I5xxRVXwF/+5V/Cu9/9bvi6r/s6eMtb3mLdwwxN6+u+7uvgox/9KNx8883wnOc8B57+9KfDf/2v/zUQ/VeN17zmNfBLv/RLcOWVV8KTnvQk+K7v+i54//vfb62FaTz72c+Gt771rXDVVVfB13/918Pf/u3fwite8QrRCECKV77yldDpdODJT36ypcylRLfbhTe96U3wtre9DS699FL43u/93krnrRKt4jSPsz916hQcPHgQTp48CQcOHDidp47G4//zB2E0LSvLO1//ojN8NU2cDXHzg2vwnW/8RwAA+PnnPx5e/u2Py3r8oijgileXEPR3f90l8P/+m2/MevzTEd9x1Ufh1ofKgmvfoAtf/JX8nOfv/e+fgBvuOQEAALe97n+HTrtaB6mJJppooolqsb29DXfccQdcccUVlRPgsyk2Njbg0Y9+NPzmb/4m/MRP/MSOj/Pa174W3vrWt+4KQ6mXvvSlcNNNN8HHPvaxM30pNrT7KbU2OLvJiac5TMECUCaTVaG1Js69eOiUoz49vDZUXrmzOIVQipNb4+zHPx2xOXSfYWPup5/72cHnOLU1hvNW+1mP30QTTTTRxLkR119/Pdx0003wzd/8zXDy5En41V/9VQCAygjA7/zO78AznvEMuOCCC+ATn/gE/MZv/MZC1K864w1veAM8//nPh9XVVfjgBz8IV199NfzO7/zOmb6s7NEULfM4te0njMPJDJYyulU0sTvjGBKWn6ihqHjgpHPbOrVbixakYymKep6djaFf3DVFSxNNNNFEE1K84Q1vgK985SvQ7/fhX/yLfwEf+9jH4MILL6x0jFtuuQV+7dd+DY4dOwaPecxj4D/9p/8Er371q2u64sXik5/8JPy3//bfYG1tzc6d+cmf/MkzfVnZoyla5oGTR4CSm98ULU0cQ3a+a9v5i4ojaK7J0Y16nLceXhvC73zkVvixb7kCHnPBSvbjUx1LHc8ORqF2KyLVRBNNNNFE/fH0pz8dPvOZzyx8nDe+8Y3wxje+McMV1R/vete7zvQlnJaoJMQ/l+MIKVpwZ7eJvRvHNl2CjAXnueLBU+6+W6/pnnv1uz8Pb//EnfDT71x8Eacxmc5gNPEdRnI/O5PpDDZQYdQULU000UQTTTSx96IpWubxAJnkXZcLUhP5Y2s0Deh9ueI4Qj/qQVpc0bK2XepBcsc1Xy4n3t54/6nsx8bUsJV+ia7ktj2mxVxTtDTRRBNNNNHE3oumaJnHAyd9kfXGqEFadkPMZgX8wNuuhX/53/4BHjqVfxr7MVS0bAzzF7KYljidFbA9zjuolRZBm5nvazO7pt0COG+lPz9HU7Q00UQTTZwrcZpNZps4RyPHfdQULfN44BRBWmpIUJvIHzc/tAZfvO8UnNgcw9/f9FD242MEZzjJW1AA+PQwAIC1Yd6EnKIep7byFi2mQFnpdy3SspmZHkaLoKZoaaKJJpqoPzqdck0fjerRWzaxt2JzcxMAAHq93o6P0Qjx5xFoWhqkZVcE/t2Ob+ZPZnGXfzTJX8ieIjqZYWak5RgR9+e+rw1ys9LvwPJpoofVpf1pookmmmjCRbfbhZWVFXj44Yeh1+tBu930uZuoHkVRwObmJjz00ENw6NAhWwzvJJqiZR6PrPv0sK1G07IrAlPC6tC1YFE5nuOTK6jNcW405/iGf/zcCKJDWjow6JYbGhXmLxpU2L+duShqookmmqgjTmyO4K+vvw+e94SL4PILV8/05VSOVqsFl1xyCdxxxx1w1113nenLaWKXx6FDh+Diiy9e6BhN0TIPk8wdWunBic1xg7Tskji2Ua8V7jpCQoaTWfbBidSRbJgZzTm6Ua9WyxQty/0uDLpl9yR34dUULU000cRujLd85DZ42z/eDn/4T3fBP7zyuWf6cnYU/X4fHve4xzUUsSYWil6vtxDCYqIpWuZhkq/D+wZwYnPcaFp2SeBCpQ5L4jWUMBcFwGRWQK+Tr2ih6FBulOL4pr/R5Bfil8dbrRVpCefANNFEE02c7fHPdxwDAIA7HtmArdHUUmh3W7TbbVhaWjrTl9FEE40Q34RJ5i7YV48DUhP1BC5atjIn5EVRBF3+nCjCeDqz99kF8wnvuVGKY4QeltsBzRxvud+B/rxoyY0WUXSooW420UQTuyFwk+ihtfzulk00sdeiKVrmYZLHQ8tl8jiuQb/QRP7AmpDcCfnWeAoz4tCXE0XA1DNTLOcuWqhmJjfSYua0YE1L7s9ghPeddolw5Rb6N9FEE03UEY+sO6T7wVND5ZVNNNFESjRFC5SJ6GSenR5cLq3YmqJldwRGWjZrcq1qtQC684Q5J4pgqGEr/Q6sDkqm5jDzZ6BFSvbCzrqH1a9pObxvAACNpqWJJpo4+2MynXn0XNpAaqKJJqpHU7SAn4juXyqTxzqcoprIH3XSwwwSsq/frUWvYTQ4+5fQ8TPfd+uBHqQuIX4HBr050pK5qDCF1oX7SzSqQVqaaKKJsz2ObY4Az9Krw92yiSb2WjRFC/iJ6Mq8410X0jKZzrILlfdynKyRHmaOt2+pC4NefhTBIAir/S70DUqReU5LgLRk1oNsz693qYvoYZmfHfM9XbBaIi2NpqWJJpo42+Poum+CUodRTBNN7LVoihZw3e1ep2UTr/Gk0N6yo9gYTuB5v/kReObrroGH1xp+a47ARUtulMJMp18ddKHfyY+0GDrbco16EItSzDUzuRN+g1Iu9dpOiJ+58DJC/AstPawp+ptooonF4+TWGP74urvg7qOb2Y9NZ7819LAmmlg8mqIFXCLa77RtcloH0vKxWx6Ge45twfHNMVx/9/Hsx99rMZsVHuSe+zezSMug66hPGTUtW8xgxtzOWwZpOW+lHqG/Od6g26lN07Le0MOS49aH1uD73nIt/P1ND57pS2miibM+3vThW+C/vOeL8B///Prsx6Zzw9aG9SAtD61tw5GTW7Ucu4kmzrZoihZwRUuv27YzOOrQtNx73C0sdx/L39k5W+OjNz8M7/zn/NN014YTjzOcm3a3Pkda9g26tSAhbpp8/SJ2U7Tk/o6MKH6p166v8CJC/Ny6nHMpvuOqf4TP3HUcfvwdnz7Tl9JEE2d9vO/z9wMAwGfvPgEzahW5YFC7/DqQlqPrQ/j2N3wUnvPr/wD3Ht87OUUTezea4ZLgEsV+pw29bn1IC6aEHdvYG9Nl17bH8CP/45MAAPAvvvo8eOLFB7Idm24CuX+zdYS0nNiqo2gxzltOxJ59MKOx8l4pXfFyF+MOaWkH/5YrDLJiCq/t8QyKooBWK9+QzyaaaGLvRa/j1q2TW2M4bz4vK0dQDUsdmpa/v+khi+B8+cgafNV5K9nP0UQTZ1M0SAu4ZLffbdtFbDzNr2nBnu0UOj5X4/q7T9g/3/nIRtZjm03A5K7jaQFFke93M+5hqwOHhGTVtCDnLUNLrAulcEhLZk2LRVo61qygLjTH2JED5C+MzoWgnd3GGrqJJvTAz8zRzI1EO3h3vi7W4R524/2n7J+b4ZVN7IVoihZAmpZuvZqWk1t7r2i5/eF1++cHTuZdVLfG5YZzCCWzOZEEs6HtX+qioqIOehi2C64JaVmdIy11aVp67Vq+IwAnvDdoEUD+7+lcCCr8fagZZtdEE2LMZoW3D+OZKjnCGIgc3l+f6yGmnDfDK5vYC9EULeAS3X7HIS112BIf33QL5Kk9Yn+IP3NueNwk/bgDnxMhM8MlVwcdRxvMeF+YuTKrNWlaiqKwhdf5BmnJXIxbTUu3vjktBn1aHXShU8OQz3MlHiEWq81ciCaakOPU9hiwjGU98/5k9g/j3Lhdw5qFBfgPN0hLE3sgmqIFXIEyQEL8OpCWE6iTk5umc7YG7mStZ3ZPYYuWGoY/7hv0oDtPlqcZxZobiB7Wmx9/Mst3/aPpDCbz661LiH86kBaDqiz1nMtaY3scBkVaNpt5Nk00IcaJTb+o36hpOLGxaq8DaTmC2AsNstrEXoimaAGfHuaE+Pk1LXiR3CsDJjHknhtdMkL2/Us924HPiSSY468OOrZoGWcsKrDlsbnvRhnnA22iYZtWiF+Xe1i3Y+e05C74TYdy0K3PoexciOOEk99YQzfRhByUDpa7yLdDcWuaL7U9nnqGPs3wyib2QjRFC+DhkvVpWoqigBM1DkI8WwMXanUhLcv9jrOqzpiU44S828mPtGzZ6+/aoign0mI6h4NuG5b79Vgqc0hLzmdnOitsA2Gp14Gluai1QVrC2CBJ11ZjDd1EE2KcILrS3EgIpYflbrTQoiv3/tpEE2djNEULIMtj5B6Wu6hYH068hHecsaN+NgemxOXWOnhIRQ2/G07Iu+38CNwQIQjm+icZj2+KutWBMxKoS9MyQEhLzsIRb/R4Fkwd/PDTEf98+1H44+vuyupyZ2KTJC0NPayJJuSgyER2ephBWladVXvOoG6BzfyqJvZCNHNaAFked+rTtNAuyJ5BWlA3K//gRDycsQ1rkPd3wwm5Q1ryak7K47dtsVKH+9lyr56CAsD9pku9ti3KcxZ2eKPHhVFO7ZKJ4WQKn7v7BDzj8vOh3c4/A2Z7PIV//bvXAQDA4y7aB8/8mguyHn+TNAWaoqWJJuSgwvvcSItZfy807mGZm3YbQ/9468PmeW/i3I8GaQGiaTEUl8xICF1g6tK0FEVxVullTnlFS+YZJGM3nLGO3w0n5FbTkjEht/ddp22LokkNSNFSr11f0TI2hZcrKHIWp6Zw7HVa0Gm3akNCAQCu/MBN8K9/9zr43Y/dnv3YAAC3IfvvL6L5CrmCIi3NnJYmmpBjjbjr5S7yTRFhhPgl1TV/U8qgzxR5yRmjyawWdLiJJqpGU7QAmdNSk5iYQrd1IS0/96fXw7Ou/DDce3yzluNXDYww5U6YeXpYvo3HTXvvQLcG+pb5PnoI4Ztk1My4+9q5buW874qicCL5Hh7MWo+uCABqHf76jmvvBACA13/wpuzHBgC459gm++dcQTUtDdLSxG6PE5sjeNtHb4NbHlzLfmzKfshNr9ogmhaAvI0Ec/2POrAEACWSk1NzaeLz956AJ/3Xv4Xf+LuvZD92E01UjaZoAWp5XE8nlyYQdVgqAwC8//NH4OjGCN704VtqOX6VGE6mXnKZmx7mhjN2EZKQk5pkpr23keVxTnpYea2elirjd+QPTc0/rX48LcA03waoMMp5bztdUXn9dQ5/rTseWnOWpHgoXK4wSZcpgJuipYndHr/6vi/BlR+8CV75FzdkP7bRtCzN50vlfF4m05mlg52/OoDWnG2aU9diNDiPOjCw/1aHruX3P3YHTGcF/M5HbmvQlibOeDRFC9DhkvVoWsxiYmaK1EHhwsPkHl47857tlBKXv2hh6GF1JMzdjhPiZ0VCyu+n33VC/5xIyxAV43XQw7aJSL6OwgsXjgAAvW49z+eshg4lDWxPWsfgR5N0ubkQjTC3id0dH/zCAwAAcMO9J7M/86ZoMUhFzqIF61dW+h2LFOdFWkxR1LeW/3TPzREPoaGVx4itehNNnO5oihagNJ16uP9mMTHzMuroFB854RaXOhavqkE5ttk1LcjyuF+n5XGvXYvlsS2WaxpqaqhyuGiZzIpsCbrRs7RaZcFfxzm2x67wAoDank9aRNQxCA7PUck9fRvAzeW5YE5Haea0NLGboygKb72lwyAXjfVhebxH7TdFS75n0jx7rVa5dpmmS86ixeyvq4MurMwt7XM7oAEA3HPMocL3nciPEDfRRJVoihbwLY8NDWhW5O2+miTo0Hwy+XiaL7Ezcf9Jt6DU0cmtGoFjWm30sHoGG2JqkhPi10Df6rRr0Wrg45vvByAf9dG5q7Wh1WrZwivrOSamcKT0sLzPDp0mf3QjP1J5DCVda8P8z6dJWC5YLZGWhh7WxG6OU9sTbx3JvacZpOXw/vzDH7dHcxOUbgdarVYt86Vs0dLvwr5B1/u3nIHXwtyFYxNNVI2maAFkedxtW8E1QF6qjkkoDs3pYQB5p6sDADx8yi0uJ7fO/OJCi5bc9DBTCK72u9m1SLOZc2Fb6mJNS757Yow0LXW6h+HBj/jfsx2fiOQB8hV3Bs0xm36vJqOMR9Z92sPxjfzPzzG0+dcxvdoUKeevmsbI7tP9NNGEiVNkD8u9p5kE/7zV/JRt02wxQ31t0ZKRbWDYFKuDrkWic++x2+OpV2jRgZZNNHG6oylagFoeu25xzunkmyOfHobPmyvwon42FS0Hlsou0DD3cK15IbiM3cMyfae4+Bn0nHtYXUhIHZoc//jovs6MtBjqAy6Mcv0Owwl/jtwJOeVq1zFd+hgqhOqgn1HdXB0Oa000cbqC7mG59zST4JvnJSd92TzfS5bWOkfqM+75pujaN6hvDhctUs6GvKKJvR1N0QK+EN8IogHybvqbHNKSOanAC8rWeJrk9FEUBVz5gS/Dr/zPG7PT1cyiesFcGDycpF1TaviWx3mRkKE31LAeJISdD5TxnsC0x1arZdGiXAgiRVra7Vb2eTZ4wCeA2/xzu/tRjUkdM05OkUGruZ14jKbFFS35kZaH14bw8j+9Hv7sk3dnP/Zejf/x8TvgP73rhloK5e3xFF71V58/K9wkqwZFWujfFw3zjB9YqgFpMQ2dOdLSr8Fyfn3kNC1mfcxetBDEuaGHNXGmoylawLc87qJJ2DmpQAbK3bfUteeoE2kpijT+7BfvOwVv+8fb4e2fuBM+f9/JrNdjihZDV5kV9bhjLfU61j0l1/ENjG8GGuamhxVFYTcwfPyc6B4tKrqZzQqGSNNiInfHb9vSw3whfvbhr0TAWoeInR4z98wcS0FdMZ3j/EXLn37ybnjvDffDq979BTjZJDALx+ZoAr/6vi/BX332XvjAF45kP/57rr8P/uxT98BVH7q5ltlARVHAB75wBG5Hg1NzxSnSSMjd5Tdry4Hl/M/LljBfKueej4X4dQz2BSjn5OCoix62PZ7C1dfeCV/MnIM0ce5FU7SA7x7WbrfA1C05u+rOnrdb2wBLuqinuKF8+YibzH3X0Y2s12MsGS9YdcO1ci7aOGm2lsGZtRQmIc9teYyRiLqQFozkAEB2ChouGk3k1hZZelgwXDK3ux8pWmqgb9Fj5hTlDiczMLdmnUjLV9CQv9sfyZ+o7rW4/WG35t5Xw+wevL7f9ED+AY1/9dn74Gfe+Vn48Xd8Kvux6cT63EWyaUzVMYbAPNtG01LH+u7oYV1Lm83t0Hl8s97fwMTvfOQ2+H/eeyP8uz/+TC3HPx2xNZrCS37/OvjpP/5M1tyxCT+aogV861kAcPqFrEL8cHp77q5IWLTEF7AHTjmb5IdO5XVMMpSb81HRkvMz+xPrc1OffBTBWR7XoJmpy/JYKFrq+o7wuXIjLXa4ZE0F/zqxCN/MjLTMZkWAtORMMPCzXmfR8uBJtF6cBbOgdnvc+pAr/B5A322uuB8dsw49woe+VM5RufPoZnZKJaXL5abPUXpYzr3JHHt5vm4NLD0s/5wWjLTUrWmpy5X0H29+GADKobu5C6/TFZ+88xh84taj8MEvPgDX3nb0TF/OORtN0QJMctfOr1/ATlenD2mJP/wPoqJlLfOmYOgq+5e6NinPtSBNZ4VNvgfdtqWHZdO0kHvCIi2ZOmV4c6lLiE+Lil5metj2OERacgvlt8fCZ6hp+Ks9b2akhXMNymlMYbqu5UyI8vfITaEDAHgQDZqjNtFNVI+7EWXrWA3UmyPIBp8iFzkCryX3ZkaKqMNezqKiKIpAiF/rUNwaaK3O8riDiqJ66GFmH8yJDuPA330dxfvpiPvRDJvcrJUmXDRFC/hCfACoxSnKLDArg449T90D8lIKBOyalHtTW7fwdc/qKnIlavi7G/Ta2UXmY6Q3AYDsmhZz/d12qxSwW6F/ffQwS6E7DUhLvqKFWB7XRA+jXdzcmhbcQLBuehk7ipiqV1dTpCgKD42tw7Z5rwUWNh+vYdo4Hjhcx0DTB9D9cO/xvJqZOi3zR9MZGB+MA8td+2+5zGispoXMl8pZVGyOQk1LfqSlvD8vPVgO4KxrYC1Gbe8/sTuLliOoaHkwM2ulCRdN0QJccpd/JgcehOioTPXMLTGRkrRg+Df3puaEgvk/M074+p02dKymJa/mpE/oYbkSQayjwv8/mRXZXKVoMV53QQGQH82hlsd1CfGN85YpwHJvztYCtde2PPecXUtsJpJbV2Ti1NbESxzrSIL3WtRpUz+dFXAUN6VqcCfDaFvuItY00Vb7+Z2x8LNn6GEAOQfv8vOlcn6GdaxpqUmIb+7JRx0oi5Y6XBUn05k3wBKjg7spMBXzaA0NiCbKaIoWYIqWGvQF28hNxDpdZbY8pgvKKCGxw52+FM5wURTwz7cfhYdOxbsh/+7bHgu/939/E3zHkx6VnV5lFudOuwVdNIckm+Zk4if8uX8zqqPq1WC1PSR6kNy6GVXTUtPmX9ecFkNlvHBuz51biG+KoJV+136WvEjL/Lfo1aOPAgB4ZMPvHtZBNzob44/+6U544W9/DO4+mt99CxcqOQcPAoTree6iYjYrPKQ+xfilShj3MGyZnyuMiUu7VbIf7L9nSvq3iKYl9zM5mc7s2oiHS+ZGWkzj8fD++bpYQ9HyyPoIcJ8ut7X16QpMtafGLk3ki6ZoAZdgUaeonPa89hy9tk1Qcx4fwC0ohn6SskDioiVlwfvgFx+Af/2718EP/t510dc+6ZID8PwnPwouv3DVLtq5kn7q7pXb8nhMi4p5spybHkYLZYB8aJS95zr+fZ1vhopfFAHkt/bclnQ5NdHDLpxvzrk7igZpXe45/nlOTQs2paiLfko34jo692dbFEUBv/Q3N8KXj5yCN15zc/bje7N7MusFaFGZW8h+YmvsrYcbw8xFly1aSiOXOpCWpV6nlqG4VNOSu6jYQE2V1UGntjktdl2cF465tX4A4KEsAPlNUE5XYIvu3AW8iTsf2YCX/+n18OEvP1jL8XdDNEULcFSdGgcJdvLPFAEou17Udz6paNlynbKURPCaL5UPy+0Pb1TqJlj0KjM9bEAofbkHJ1JNS67rp9StHto4c1GfAoOJbmZbaAZpyW3tOSTc8F5Neg2DrFw4d7pLMbHYyfGX+x37WXJ21ocMPSz38FqalOZOss/GwIVZHZQPD2mp2X0rNzJ2lBgx5E7U7HDi+TOZ13nSrSutVss1EjI9k9Q9LLcWz3w3vU6rbFTUJMTfsEVL+Rts1zD7iQ6srMNuHqCknf3RP90Z3Le5Yn27GmtlJ/H/vPdGOydrr0ZTtECY3NVRVPjTz/MXRXhBT53wuz2eetzelE3hBNpk7zuRzj3tZdachIMTc2taqDlDPUL8PkEQAOor7HrtvBQFTtOS29rTCczprJl6UMpDK33v7/mOb+Y01YS0IJe1Xk0JDE1Kd6s1aZXwjQfy01Zw0ZJbj0DpYLk1SLSI26iJUnmgxjkqS11f75frHCbxHgRC/DzrljX26Xe94w9rKnzros0ChEVLbsTOxKv+6gvwS39zI1z5wZtqOT5+3ur6DJ+84xgAADy8NtyzFLSmaAG5651Tc4ItdOsoinCStX/JuaFoQReLlAX7IWR5enQ9vfPYzVyohZbE9WhaeoQymCtZpkVRq9XKr5sR5rTk2jhVpCUTWoS1YAD1aVrMec6bT5Ovix621Ksbael4/Plcpg4AYVKaO8k+GwNr947VgLRgx8fhJO/vRYuU3EUFPf5mTXNUDtqJ9fmu39JO7RwVozPLRWstj7NckxAfi/AB8msJTZjk29LDJtOs9yiAz/YAcA2e3PHR+SyYv/zMvbUcH6MrGzXQwzZHEy/PozN09ko0RQsoQvyM7l7Y3Sc3KgDgFvh+B81piBx/J5aS2MqvykOTe6I8TZg7lr5VE9JSU1HURwl/NzMSEhR2mQtHbU7LMPM5BgRpyc3dNufZv1TPYMYh+q7q1LT0u20YdMrfoygyOyDS9WIP0MOwFWtuyuB0VgTHzFkImoLIrI2jzMgYTcxyF0XmmbRzVGowxjHPYm7NyRZqUgDkp4eZ+2Z14A+vzN1IMDmC0RUVRf5z0OZp7ucMwG9CGdQ+Z0ymM++660BB6PDvVLfBqz50Mzzt//k7+Pubzg0dzJ4vWoqiCJycupmpTPQcTn+R7+HfQsK/VGtbSveIbWqT6czjg1bpPOamxNnOco8UFdndvcrj5i40aUEBkH9iPXVAy41SYB2FCas5yS1o7dbjwkPPY1HKzBsz/q5MdzcnmoOL+F4XUQ1zzpqab8r7593d3G5XJkaTWfbvf6eBkeXcSAJHQcyZEK4TTUhd5hUmcmtaAqQlY5FMGy65k37zPC736ymK1u04AR9pyT2Ac4PQwwDyo9BmgKVZe+ugVt2FnP+wU2euoNdcx2fADRSA9KLlTR++BdaGE7jqQ/mNRM5E7PmipZyLUf7ZdChzJ9h4s+jXhLRgoW9qcko7GrFN7ejGCHA+XYXfmntgp3MPI5qWmhL+Ts1CfID6KHQmSXZW3nlF8gPUudrJELUHTm7DGz90M1x76yPhOchncEL8fM8Ono7tTCzyUiBwUdGvQZeD7a2xqUPWYXbzBOY8I4yuAWmZzQr4v972T/Ctv/73Z4WlMuapb46n2YYPArgkv9Uq/weQV5Ngrv38mn6vTZKY5e6Qb1s3zPqQllArlxdpqcvyeEOih2U1K5jZ/fTgSs82BnPOlwJwSMulB5cBoB56GHYoWxtOsiLQAOFg743RJDuNjhYpKRbmOJc4skuHdtKoVLRcfvnl0Gq1gv/97M/+bF3XV3vgh9x0KHNrTnD3o99p1zK8EruVpA74Mwvr/HKir6cwbpWOS250KbSpruf41FEuF5JjkIieRw/Lm8xKWq1sQnwjku8ietj8GaqCtPznv/4C/PaHb4Gf+qPPBEkhTS7q0LTg57N+pKVTy3RsjOSYZwEg7/dkkBZbtNSAtFx721H43D0n4KG1IXzmruPZj181MJpQFHnRJbP+rvQ69hnK2Sk3RcR5K/UiLQbJoUXMomHWl0Mr+YX4zuBjrpXLPV+KaGZyP/N2cDMR4uf8jjDFabXftQVYbpMScx896mA5wLIOehid/ZJ7Fsy6NUZw1Nzc3xO95pSmMTZO6qB9YTdHpaLlU5/6FBw5csT+70Mf+hAAAPzAD/xALRd3OmJECgoATNPJq18A8JOKOoT4S6jTGlsgzeJgHJNiC976kBQtFTbwKuYGZedbP/aQcJKzz2mZC8l7NWlmOKTFIny53MOMzqnrJ/y5EL5tdM+Z2ElRcf09JwCgXPgpBO645z43vI6uK4ArWnLTz6ymrefoW6nnKIoC3vB3X4E3fuhmsXuHkZxWq1UpiZnOCvita26GD3zhiPo6gwycv2KE0fmRlhvuPWH/fM+x/MMcq0YgZs+YmJtjLfe7Fq3MKjYn9KrchfgmGci6mbFDPp7ObFPPCfHr07RYJCSzpqU+Ib7RtJTrlSmOcv7GOBHvtFu10FoBXDPE2CrnLn4BQpQityUxR6PLXXxR5DlF7I8bzRQN2q1RqWg5fPgwXHzxxfZ/73vf++Cxj30sfNu3fVtd11d7mMSh3XIUIyeIzk81arVajgaUkJye2h7D//aGj8BLfv86FW7E9DCnK9Cv39z0hxI3NQpHVqEbdBPh8aIo4P/+H5+Er/vl/wXX3y13WkORefn/+TQtztgAoL7hklgPkpu+FaBRmQcz0sIRwH1PqUL88XTmGTocOenbaFs0p0eSi6xFi0HVWtZCNHdCbpLRfqdd2Uzg+ntOwP/7D7fCb3/4FvjKg2vC8X26ZCraCgDwdzc+AL91zS3wM+/8rLqZmyT7vBrmZpg4jnRyxzfP/CZLE4Ocug1Dg1kdOKQlJ/Wm7qLFJM4GCcnlGAjgd6nrsTyWhPJ5B+/WJcS3SMvAR3JyFr1UN5Nbl2PC0E4P11D8mqBFS+7Cy/zeK/1ObbrLUyT/SkJa0N66PZ5l/9xnInasaRmNRvDHf/zH8OM//uPQasmw03A4hFOnTnn/O5uCE0Tn1pwE7mQVhP4fuvFBuP2RDfjErUfhpgf4hAXAp+qkdru3Rv6mE0tmadGiIS0Prw3hf/vNj8D3vPnjAJA+/PHWh9bhY7c8AsPJDP72xgfE1wVzWnIjLfPfhloq51qIOPcwN8tm8XMURREURrmtvFn3sMSC2cRDa0PAtbhPx3GfgW7+OTfOLST2r2vDGSIXtKpo1JePuDXzzkd49GFIXNa6FdBijG7c+ciG+LpQGJ1/A8TmHnVYDFeN9RoFtpuoG18H0mLW9wPLZdI5mRVZNTkmcTaambyNhPLaWy2Hfub8boZovwTA9LA856DDJQeZtXimmA4Kipx00Pm9vo+cI3ezwiAt5j7KrZkBCIuW/HO4GKZL5u+J0sNSkBxK6T8XHB93XLS85z3vgRMnTsCP/uiPqq+78sor4eDBg/Z/l1122U5PWUuwgujc9raBO1k60vKF+07aP9+vDHPcxkL8ZPcwnx42nuqbGu3CaovL1mgKtz+8Abc9vA4AuFDTrwl/3jselhMoyfI4N6XPWR5nRlqsZsYV/A6BW/wck1lhTRPonJZ87mG+3gSfI3Xzf4AgK5iOgzdHyj3PKWK3VBFkR5yb/+/PUan2GR446QSUD57ixZTBINEKqN1tD7nnDLtlSeeog65j4hjqDKa649QZ1Lo0J9JiksKVfj1IyxYpMgEyGzMYpH6lhon1Y1dUYOOKXEWXKMTPhBZtCcfPlcieDiF+gObUhbTM76PzVvIXvyZObVVHKarETtxbqwZtGqfQw+hYinNhIPCOi5Y/+IM/gBe+8IVw6aWXqq979atfDSdPnrT/u+eee3Z6ylrCdbxdt7g+pyufppOSnOKp8w8Sn24cW4wQP7aJbBF6GIC+qVFOpQY1WnoVnX0T+U7xZ6T6Bu/4xPK4l3tiPRHiO2evetA3fK4ciYWvo6rHwSYH0nLkpJ8k48IY318ULcrFPcfnWeq1azk+AHEPq1gY4UJFom+FyGN6kX37vLEAUCKkUphzmCR4MiuSUMHZrIBrb30kiZqA6WGpvPPP3HUcvvXX/x4+GNHk7CTqHNBo6GErp0nTUh4/fyc+FamvEttMEpjzHIErYUbqbFEUAdKSW4tnvvvVvo/k1KFpsWL/zGiUieA+qqEZEtDDss/5cr+3o+rlpoeVn8FYzqd8TyEtbo8iLXfddRdcc8018JM/+ZPR1w4GAzhw4ID3v7MpOG1BL7sTlZ/AdyrQw/BEZm2YIwdPxpLTDYK0lNcqv8ds4OZzaA/AkCAVqeYGmIOZkkCZJK3Kd5oSIaWvLsvjsFjO8Rk8gwmi+8nG22aQlqouOQ+oRUt5jE67Fbi45U2QXPFV12RpvM5ULYyObbiNR7K5pDNzqmjI7kWNEY3+ZG2hl6p17v/qs/fCv/n9f4b/9K4boq89ioqW1AFtP/o/Pgn3Ht+C//Bnn0t6/WQ6g5OJehlzP5r7LuesFoN0ryCb+jpmkeyb06sAcjtw+ZbEdejMloiFdy76r5v/lB+FHk1nFuUeUHeyXTSnhaI5dQzFBQgRuzqKFtoAyY202KKlXx1JTw2z9ptBnynfU0AP26tIy9vf/na46KKL4EUvelHu6zntodF0siEtQQKfjrQ8su42cc2X2wnx28kL8CbhPAPoD4IRghnBnPYAiEl/5DvFD5k2p8EsnDuh3KXEmNwXJuEvCshCUeA1LfnmtJh7rtNuWepcdstj4uxVnqNaUREULR49zE8sAOqxPMbFF95wcvrsD72ipRrihV1fpGeCzsxJHVS6Ppx4z7xGfzKfYT9KglMSmLd85DYAAHh/AhKCi4lUVGNtnpCk3HNFUcD3veVaePpr/hd86s5j0dcbCsb5NQxo3ET0MHvf1eAoudzr1lKMm/thXw024VwTDiD/0FpaVORYV3AzbzfPaTGJvvl967iHZrMCWXM7BDen9gogLFJyC9LN8Ze6nfoMC+Zr0cEKNDq6X9RB6T3dUblomc1m8Pa3vx1+5Ed+BLrdbvwNZ3lwyWPdQvxOheQUJyzUchiHSbyWES8/ViAYeti+QTfJItX68u8zgrl4V5Z2+WPfKUaTNkbTJItXgPyWxxSBwx7nOdAWp5lhiuWMRVFdCGJJgfApegCOZpm6YBt6mPHyWB+FSAumn5kEZlbkowIOkRC/DioKAJnTUnHzxwJMiTLlnOJ8Y4rYxoabIgB6oTD0uolpFNTymO6aNfSkKIrk1+40Hjw1hBvuPQmzAuAvP32v+tqiKGwRfV4NXWA3Nb2TfbAsgO8oOahBHGyL2EF+m3Ds7tVpt+wssVxIN11bcg58NdfebrliZZCxKAJgkJYaft/QPWw+S6gG3RVAOcDSRG6kmwrv63IPW+qnM11M/PF1d8F3XPVR+Kfbjqqvc0h3epNgLdAh70Gk5ZprroG7774bfvzHf7yO6zntQUXyADUI8c0gwYr2ubNZ4SUpGtJihPhV5rRsMOJ97UEwD/55CcLL0cRPolJnkOBhSNNZIZ6DFkW5NS0OafGPn+scY+a+c+5eOSgKPiURAM8KWPz6OZE8QPWO4v1zIf7jL9oPAD7SQmcpAPjDOOvQ5mBDjqwT6ycOCXGi3LTj46JFpIcFurm0JsEj6z4FU6M/4Wc61WJ1Nis8FzDJSKA8lqPVAKRROOhrYs/mHcgdLTa3AE8Er2NAoy36Kzg+Vjo+QirrmZheHt/NNqpPKJ+d2lqjUB7rG4yzanYhvnUPm2taevmHkwZoTkU7+6RzzD9Hq1WddlolzG9iENO63MOWe2m5FI7/8p4vwq0PrcOVH/yy+jrzGfDzFgva+NmTSMt3fud3QlEU8PjHP76O6zntQV2iANBk8prsczuJVKn10cSzg9U6j95E7MQZDVuIU51C69kmMK4qxBdsnuP0MNL5FT6zTfo71XVCKUGLIg9pyag54YrlHJ/BJET+8Mo0XVFKeEVLNxTiJyMtJ8ok9nGP2gcA/u/NDa/ExWO26dWMEB8gc4KHioqqCSr256fCcHt8wT0s9lsfJUWLirR4a0za83x8c+S9RnME28kGe3TDv/7YpGv8+pg7Gb6e81bNLJL4NT14ahv+8jP3JhRF7jfLTUkG4B0l67inTVILkBEJoZbEmQ0ywrlG+ahPWwiRNOGOn+f33STDJbGWMBet1Q6wJEL8nFbnm+gcXsMoc3JtfpNDNneppygq95Cd6S5vOiKPtCjPYZCWdPfG0PF1DyIt51rwLk55oXqTOFhNSyKSQzdg7Sb1LFUTnYMMR3K5103qzLoHP+6nbukqVMcT+U6pcEwSBlOkoj5Ni/nN3P2RA2kZkqILAHUTc9DPzPffC+/rHN3cIUOBAKimOZlMZ9Zi93EGaUGLLHX4AfB/hzr47VgDlLPrjelbvQpUkcl05n0nUiJMv6tUDRmlh6VoWga9dvLz9jApirRCgc4dSBGNHt/wjxcrRB5Zq1K0hJbEKUXFz7/rc/DKv7gB3nTNLerrfJ1TPpTVBNv9zej85DROqEOe65kcuSQQIL0ITz4+RVq68+clC9LiF0QAuJmT5/uXnL0AcjqUETSnjlkwI+Og14F2u1WL0QqAa9Cev1IP0rK9Q6QFr+2YUcAFRTZTviPa5NqTSMu5FrzlcebJ5PNzmON2EpGcYAJ9Ah2r73Xt9BvUJAmrgw6ixMnX5ARzKZoW3vJY05wURREULdIma34ba0lck6bFXH8b8aqz0LeY+84VdhmRHAZpycPbdpQqPFy2yoJ9bGMEs6KkBjzmgmUA8BNXmlgAlL9DakKeGlJXt46udL/btjqmlKKFdsrS3cPSkEdTBJmfUHcPmz/TnXayBTh16VKRFlIwJd1DBJmNFi3r6XNg1uYawtVBN7kTXxQFfOLWkpv+Pz9/v/paNxC0HschLGavw4aVJlEAdTgTzovwipTK+PEFJCcH0oIQLhM5NTOT6cyZIBBnL4DdNQvG5SDlOeoazGip7avx3GWR41dxbwUAOIKcG4cRlIwiLSkFttG0OMfXBmnZ9cENl+xkHiQYJNhGfxFLKCohLZhqkHb9uBPXTehkOd//uPCSCsEdPUx+z9Z4an+PfdaLnP8M5jgmge1W0LTMZgV88o5jaifXUvpqog1SdzLv+Bndw7xiPCOCsE3oSCaq0CDW0KZoOoa4A7ZN7iF6jtwuaLSrm1eI776vKhtz6LPP37M7pYeZTtyj9i8BQCrS0nHDYis2XjSdCkY2zPliVJdjG+lIDkA1ephJEpZ7HduJj/1m9xxzScgyQgi58O+JvJbqRVF4hWzuhBMff6nnml7ZkBYy58Ssw7mQliGhnvYrrFuxYK3gMwrxcWOB0sMA8hWmohC/Bt2MeebrGsy4VYHavpPAVOYq7mF4Lt1oMlOn3C+CtFy4mn8A7JmKpmixyZ1LHnPPaaH0sNSZH6co0pLo1pWqjRiO8aYTL3RMQnlg2fjyy6+lSEUKinB83pXtd9p2IJr0YFJ6WBVNy7uvvw/+r7f9E7zqr76QfP0A6cVmSmjHz4EWce5heW09Q71J1XOYhPbAUs92JbdYpMU/R9Wi4sTmCH7xLz8P/3w7784SOAlVdEBLCY++WSFBopOcxaKFUFJSNWQmMXnUwbJokZCWoijIrJk0uiels2m0DDoZGyB+/ccIPSymI6EW8tp65w0E7Rh6mP557z62ia5Fdz9jNUKZkITJrLB6yH7FQjklSkvw8s+DXrrNfmpsIxQKIH3uUPrxKT0s49o48gsuAN+CfFGzAuOw2O+0PSZAL1HLmnweyfK4DqSlT8T+Gc8xnoaGGrW5h1VEWihSLGl4p7PCroX7K8xFco6v8zEVDdKy+4MKugGqO5V87JaH4fq7j4v/3bmH+TM/YqiAsThOWSxwUpRaFGHntBRzAJNQGnhSSxoly2PtmowI/9BKL5r8ms09pIfFH+T//g+3AgDAX19/n9jJpZoWAGSgkNHy2Lckzsdr54X+9dDDcFRJjkwXaN+gazttuNNkO7ldWhilJZAmfuPvvgJ//ul74F//7nXs700TmCr0rdSwv3fFBM8k4aaIlyY5Y70JADZ10M+xZpGWclOjFC16fIBqQnyKFms6OFMwGdF7eV59k6WbfExgSzne6iwo/JslIi0ntlwScnxzFCmKUCGbe6Axus4+Mn/IRZ/FvwtGcnIlmyFymJceJgnxs9DDajYQoVoTE7lprRI9LOeAQou0DIghQsaiBTdKTMM1l2GPCbzfVnkWTtKiRUBacJG1P9HyeIpm4FxoxlQ0SMvuD5pcA1QT4t94/0n4t3/wSXjx71wrJ9jzB6RLE+zIg2M28fMrWAzjrlqsKDJVd7/TTtK0UKRF+34o7S7l+EbPcmilF12ATeEQUO4in7koCs929chJ3oKVvy/y0QZZq+2MWiq66QNkFuIL9LAq3HBTlO9f6sJyr1yIvaKF0bSU5zCi2bTv6ZYH1+2fv/Jg6NDipmPXM70aAFiqTlLRMk/6H3WgLCqms4J97ujvkTrzxxQth/ebThx/TTjRwo2RWJJN6WFah9NOxl52SEts468q3qf0Nw35Ge7Akhhr8opCp6CxNtiZCmWvaOmk6xxTY0iOn5vWEyL1eelhUqMij+Vx2NDJKZRft5Qqf05e7uGP1D2sjqGJFGlJnTFXJQzy1W45GlpuoT/Od6rol44HxkN808gvWuJNYwC/AeWQlqZo2fWhWs8mJKfvvcGJLW97eJ19De3ap+hHAByyYWz6UouWVEtl7DCVck3mekylrw34G5LBgymFmita+q6zGaGHmetO/c1ObU+8ROcBYW6E+R7McQEgq6sUnd2D/5xjY2aRnIxDUyWkpUrCb+gz+5Yc0oIXZzenhaA5FTfnR5COwVgs46A0tNwJJIBvTFHFvtUkvRfNNScAYbcM6wsosjmNIi3l8S+ITHzHm12v00q+lyhda1spKjaQMUhq15gWIbFNmXYytdf79LA0Sl+qZTs+N0ausg00nv+O7VZ5L+QW+uMivNVqZe/yUyOR3BPl6fpVO9KS0fXQ2ARjq2mA/MMfKdJSR9GC3cMA6mkYmd9jpd+tTTPjUWcrfAZqPCQND95Gz4MptGPHN6hyv9O2OVtOlOxMxZ4vWlgaUIUN5PaH3bCy+45vsa+Z2CqcJNiR41O3Lu2G4zz/NSRkhjiS/U47qgnBvFCDtJh/58J1Hnz3Fy0hNwnagaUEpGXiC+VTNS1HTvq/0UNS0ULMEwCwVXVGpMUrWjK6hynDK/NqWvwlpIrexCyq+5GmZXM0sRQul1jQc6R/jqIo4H7k0MINN8TTjAHyb5yYj1xaHqd/RybpN/B+eb3+OuDpCwzdJbGIp5xnKaHC60ur1Uru3BtNjnEnU4sExjY0hrRQDU4UmakwC2a4g0QksGxPMTbodipREj9x6yPw9F/9X/CBLxwRXyNrCjMhLWTwa3akZUqvPx89rCgKZyRCh0tmaeiY+9itW1hzsmjhuC7RwzLaWk9nhU32qeVxTr1JMG+mBmtu3tmrHnpYr1NtDhemkwLIRij2eatAL8b3CdZU7fbY80WL+RG55DSl442T4IfWhuxrRiQB7iQ671hh6moC0oIW+ZQb1KN79DpRpMLjhXoWl0LRQju/FehnKwnD0AL0KvE3o512mmSYMN8DHirZyUjf4oX4+Tr81mKXKYpyFi0UBamS8K8hTYspWmaFu8+Hk7BjCVCtaDmxOfZ0DicYug6eHO4fP699NkB19zCT9B9a6Yu2lVRfAJCuyzO/gZkULU27ppbKvVT3sDkF8PC8KNLcw3ASn9rVDZCWGD1M+e6060m950K6R2qjKf2e++X33gjHN8fwM+/8bPTaHVKRt6igc4Fyi8ADC++Mmp9yAGP5Z4u0mKIrCz1MX7cW/Y42iKuXiZy6IlxsBwVFjUhLbu0SALagrj7YNzVw/lWFpheMeBC+W4wMpq6Na4jJkNM59EzHni9aqHUuQDUhPk6CHxGKFkdlIl2vyAK8aelhc+qGYgGKqQadhAWecpJjRQXmha724778NClPoaxxk8lFnZChb1lzgzQUhGpYJOHb1Baz2FXOoDn56FseEpKIwCUdHw0zNFHVYEILO+cg0JvsVNPirtPcB9RByJ0jfQG+nyBr3ER5mmTUxc8HmBctiQk/gENaDix1bVFFxeb0WQZI76ybBMgULdIaM9yhm5NZw8zxNXoY7iamin43rTlImjjVdHZTusZYU5V6T5zcqkAPY8wZUtYWvIZJn5fOgcr57AMwRaxxfapJ05LzmaSmEgB557RQu2YTuWinJtGn9LCcFD2zTnbbLfsd1WF5vElszvsZG3cmtpCbW11zYHxNcXoBnzrWYpuxzI89yxtoAGlu+umZjD1ftJgfsct0pGNFxfZ4Ckc33CYl2W06hzIzXLIaPex8ZAEqPcwuSUVJkXJ8kwy05hPNY5oWPOW3jaaGS5us5P6iuulU8DoP6WGuKNJmO1A4VkoqzG/W8YrZ/PQwrDlJodClBmck0K+QGEWPH7E8nhXx86wjznSv4xZ7c99vEwqKiSrdOIqscZzhwPK44sa2OZrA973lWvg/f+cTLJJgnoVOu1XqC7rpRZfZ1PYv9ez10UQeOyC2zdyixJlCBt086FE+w/fQ+zV1EzS/4aGE+Qg4Ea6KtJyfMIdgNJnZz2Ffr2paQvpWaneTXh97fLSmpqKg4+nMOyZHdwQIf6/cmhBKD8uplwOQhfh5nA/d3mee9X6FZzIWnKalPEeehJnOTzFhqG5ZkBZkd2yGB9dieWwKvH59aA6eR5f7OTCBkc0qqKb5LU2aIX1u3JRO/Y4wc6XXIC3nTpgEsccIrmML8PHEaczh9PZq9DCz4QPICxLeAFNcqLDQsdVqRTUhhmNKhfViEUU6cSkidte9j9MxQnqYu5W1r5V22jVfdHrcTs7hkowQvw73MM6dLAdvW7Ijxp8n3gny+cymM2mLFnQ/cOdIWYAfXvfRT75oIU5CFYX+H/rSg/CZu47DZ+8+AZ+681jw3ylVB1tPx4Yn2o1n0LHfA0VaTAHf7YQFtlY4FkUhFC3he6zToKWHJZqJjP0iQbMk9oqEipqW81bjuj9cUFr0WuHOc0hI7J6gbmSpA4HtPR1ZWx5ZH3rr20NrQtFCk/4K6F5KhJbBeTUzkvtkFqRl7NYuk5Dn1bTw61YuNMd10OuzPF5HXXp6/FxoGgDAlkAPy5lce5qWGtzJAABGaL+tUsBTJDrWlO6jtbGkOcaZK8v9+j73mYg9X7RQO2KA9KKCJsBy0eLTw1KdrswNjROKmCUpHi45TaCHDUgSIrqBkcQrZusXCikTNC0jt7jEkhY6UR4nbFoiRZNWTihbFIX9bfBx3WdIoCWd2IL33nC/uKiwQvka6Gece1idQnzP2jOacBqkpdywjIWnObZkeVxlEFzgzsLQw4akOKrKz7/rqBsoyDkIDonoF+uMYmuASfqXex37PdABYdT+G/9ZO345cb78MzbX4D43TVJTHQq3CcVVR1pcEj9IHPBpEhJrVqLNgUFD+fbPC+Vk97DEe85ZuMadnLzZWtbGWz/+Q6f8IhwPy8QRuG8lzplJjXAuUL6GDgBTdNWiOQmfl1EGdyXX2efXxsWLlrl72JJgeZwFaQkdygbC+rNIYDQAoB6HMqdpSbcurxoe06UCmuMa046eyx7fo5+lNQYxLS6nJuxMx54vWiYk+cV/jg5mG1IqAP8wSwl27Phb1gK0izjY4Tkm05ktBlLtMynnuRMppKRNRPoMdNNMQSl4TYvkZkbRK1S0KJ/bFC3GjYkTyuLCirc8jm/MP/VHn4aX/+n18KefvCf4b9S5zZ4rcbZGSrCamYzdUElsir+vWFea0hyW+wLSQsX+FTYFY0FrLH25IjWc01JteCXWGHDGDtsI2gdwCSRAAr0KFfImkae6ELq+AKR1pnEBsdrv2Pub+90kDUN0DbNFhT4cE8C3SU/VtJjCN8UW3iQIK4M0JMenbyXS1YZ+EpIk9O+l65woHUwqAg2C5IxQ8lFPARj6b8aiAiBsuqS64aUEh4TkpJ9J1NlcZgXOwKTn/XtOdy/OoawOvcnmyP+u6qCH4fV9J7qiv77+XnjRmz4G1972iPgavN9WKeDN92zWx1jRMkDuZAD6+s65pjWalnMgxpYGVF2IT7u2UlfN3Ch0A4lpI0yCtdzvqAsSfgAx0qJNbqebQkzTEsyBiNDDpNdrKAVOUqu6h2Htibaxmd/MzL3g6GH4/Z7WKdFWeWs0hS/edwoAAP7qs/cG/53+XvRcWTQnbNGSkxceIjkAUM5sqNyVpvSwyfwcPkJhogqVwxQRX3XeMgCEmgN8niVrf1otuXgAif05XRs1RcCUw9jmaQoUjLRI9DCfahi/V833Xw4f1AWk0vDKOFI0R1rmAyO3K7qHpQ6XPD+hSNgaOdRKawKF15M+MM5w9GOOj7TRlKpzog6VkhubLGTPRA8b+/d0FcfNlBAtj7OsjaFWLmcHfgvRcnBkE+IThNqEQycXR0I4hzJjwpFzQKG5fx09LN0OPjXMM7jc35mm5aoP3Qw33n8KXv6n17P/fTKdWcpmv9NOLuCns8Ku5efFkBbUhPBYJRrSgrQ83Rq+1zMVe75oMQmiTw9LE1xTqpHkjDMiCXaq846FTnsd2/3lbmpp+rEqeg80J3qSM5qQTSqyiVM6iUOXUpAWHcbF9C2zCOHhXdrnNoWgmTDOdd4nEaQltjHfe9zRhY6uh45yeOFgrbYzWipj9zDHm9e5sCnhCopO8N9SudV0Y6QDJocEATFhP0dCUWGMF77q/BXvnDiocNYaFiR2dTHSwlFEhxRpQZtOdA1AnUhRiE+c9ADSksgtUqxpnVR7P/X8wiv2HQVC/MRZUynIRlEUyBZe3/TxuZd6nSTRMjuxPrGIcrO19KYOwJwe1k5Lmh8h6wnV0NDj16EJ8Y7fpXtaZnpYx7ckrmswbk53MvPMLmIHr8U6Esmzx8/wGTiHslqcvQg9rA6kxZu3ZPeO9PvonmNlU0qiYuJ7vt9tJxfw2FDDFi0JIyRwTqI1prcRLS4n9fxMR1O0TP3kFwCSkAoA17V3XHMdFTDHTS2KsM2oNnjQPJTGnShF6BsKNfVrkjp3UXoYEeJrSQ7ueGsLMF4kTLHZbrfsADtV07JtipYSaVnn6GHo+Jx7WGxjvumBNfvne49vBd/pmBSZ9LPUTQ8risUd0CSRPD5PleFXACE9jGpN3PHTE4zjBGmhjYaicN2uYNBc4saJKTvUwhIgNEVotVrJA2Zx19aiAwHS4jdFANJmCmGud3l9cmMkpIelUQ3NM210ebqjIaJLJSA5w4nrcMaKBAC/eEyZHu7PaYnvCZPpzH53hyoULZinXhXdl4oW2X0rV9EiuYdlQlqE/SnrjCmPHpZP82PWEwlpyTZcsu8XLbmGVwI4RBojLTstKGazQnS527S6i7l72LxIzYq0jMNmyE7voxmzHo2EZznGBDDU9E67ZSfWRzUtc+OklD3Wc03r5qNXnunY80XLyBYU1agVAE7TcsFq2bWXuojWkpTahcaKFpQodJVNMxBdogJMFtb7m05U02IoLqRzl9IZKK8pTonD/vbaJoIfVC/pT0gEzYJvihaeHuaOj7saqRvz7Q9voGMVAdrikLeWtag1f085fkrY35cRZ5vrWuj4gkgeIH3ImUwPm2taRLF/egJzcl60PPpQWbTQ3xtfoymOUpFQc414oCCLtKhUvbSkXyvkzW/pDRJNoKBu2y5n+f1rIljqHpZSwI+nM/vfjdBfS0Y4DYn2/eDfMkXT4gv9E+hhY7z+JtDtUAFxnr0eCQkp/73XKe3jU5/9AN2X6GGCEUouTnvoHpaZfibsHzmSWTpMFh8/p6UyPj6Ae74WLbxiSEtWy2NMD0vUmdH4pb/5IjzzdR+G3/vH24P/RhsnliZZB9KC84rE34BalnPDiYdz6larVeYLqZplPFgz9tuFdPv4eoQbXqlI7m6IPV+0uDkt1ZPHDSLqlpEWXjQe20A8Gz3lJqXuRCn6jmBifeQz03PE6WGOL4+vSRcGu8661nHBx/ARsviDbIX4+wfedeIw31mn3bKWmOXx04TyMStsWmRWuf7UsEUmSvjxPZ66aB/fGMGL3vQx+C/v+YL375JIHiAtIS+Kwi7alB62ZYsWPzGix0/RtJjfwhSpdFPA38NOBs1RNyeuaOGc3JIpogmD0WzjhbE8ThVqAuj0knBCuWm8aM+ze7ZMJ1G7nqoT4p2It20L3tQJ9ykuRT49LL4nmN8Kd06lPSHQhKQiLfP1y/xWVZGWXB3sIUEnU9kJqUEtj08XPSxLURTTtCyYkHMFBT5+jsRUK1q0Idc0iqKAd/7z3QAA8Oefvif4b5vE8niQ+T4FEOhhicc31DAT2vpuUJDU/WMTObTF7j/ahEhZ3ze9vSMvffNMRlO0MHahqe4PZgO5YF8a0kI1LTtBWrhNk/KXUzrqgeYkwlEPLTR11MG6Y1l4P73zO+i1VYtO8wC3WoS+lcAlNQvFoWXZrQMXLThSkRa6sNG/2/uBdOJSKCipwRVGWPeTuvn/yNs/CTfefwr++Lq7va6T5B4GkEYj2BxNrd3uPuIeZhIxp0Gg31PaplAUhe2MXYyKFrzh4qSSPj8pCzwV3nObGn3+8bm0c+A5KstI5xUgLaQpAlBNiL9MDAi4Lqc8lyPe6Wu13G+sdVBZOlbCprzS74rUOf/4bn2xouLE60nZE0yit4Kc3mKdU2pskEqpPDzfc2KOlRYZz+weFBoz5D1+nfQwToiPmQCLUmel4ZK5RObr23zRklMPsk5maAG4Z39WpCP12E3x2IbfzBshAfvyApqWh9a24ZffeyPc8cgG+99xA7WqIQWltalFC3kWUhsQGGlJsTwGSLO032aQlkbTcg4ERUEA0iefG95nHGnxO6EpyXVRFGT2irxpOpGs3/UCqK45SdW0xDaRCemUpWha8GKvTW+3SVq77SMhCcWgSYQNXYVbWKb2+H7RkmImAOBsdk2ERYtxrOOT8RwbP0dJardbSYgXjvtPuE7TUSREpBOxcaQk5AZlabdcUWJ4zVbTIgxpSxXib42n9r69+OCSu3b0PtzRpYPmkibWz4sW871ybk42gaxIDxtPC7upLykbmy2K0P2UIgalHWFLUdCE+BU25m3k1pWSLGBNi/b80+tf6raTZvd4U6Xnx9fnxqDXJ1ASNxHVJYbkUJ1TShIC4BLWw3OkOBVpqWITnhK0iM19/MDyuAbnwyVG01KeY7HPYDUtdLhk4uwhLYqigHVGJA/gCtS8SEuIRgGkfwbsdre+PfEaRnitNN/VThDBH/zd6+Ad194J//93f4H97xgVrFqcxhqQ+Fqp3i/unumYBjHzGkkCoP0O2MQlt1HGmYw9X7RMGOedVKcVDmnhYFPjVEEnYmvJaSmiL/+Mh49xlsEUaUmhhw1JURGD9yWOsTxc0qfdpfA8PWRJoWJxcynKc+jf6xTNR9GEb+Y7oEiLKxz1++I4mdWxQRJZzvyhvP58Gz/nHobPmbLpDCdTzzEFT5eXpj4DYKqFnBAaEeJqv2uLBUcPKze3bUJJtMdP/J5Ml6/XaVnNQ/m5UNHCFHdVfodTW8ZCe74GMI0Lcw6uMZJC3wLw6WH0PQ65wwV8PMmzm5pNPOWNM6CHphRFyK4ZJyMStQQXws6iU75+bqBuWlGEp0orr7fX00las4cTlyTE+P9U55hKHbJIi73f0oqW1O5vakhISzb3MEEHWtdgXH9g32JFRQxpWeT4HkK9xNPDsgyXJNRdAH+NTNXNPLTmkIrRdGbXSwBX5Pc6LXvtVZGWoiishvQzdx1nX8MhuACJmkhSpGwyGtiwoEhrPm4gTWesyRE0jRLcG9kmcDNccvcH7tqbSL3p1udd1gvnRUtR8Is2nVidYp1LufbapkwHRaa4Ew3HfhJi3Iam0usr0hkCSlwC0oITbW1miUSviiFYeIM/sCQLg00HBm9k5d/TkBaz0JnCaIuI+TiL2vL6823MXDIOAMlD7AAAHjjpQ+MYaZGoWwB484xTafCmiOlhZXJb/vtONS1Gz3JopT9HUsp/x4kkpzdJnckBALA2XwNMEjmazoIO3mga3k8p5zD3aynUbosbG4fcOfeteJMgZbCbff4J3SipKOp1fGpiAmU1hYrJTYnWP29YFKUcf9BrJxWZDhmM089GQSMr/nsB4OG4c6RFoIfRplR29zCqacloIoK74LSznIUexhQV/sC+nRdevrGHvzbmEOKbdbPd4pCcfEUL5x7Wabu8IhlpIZq/Rzbc3zH11UTVz4AbhAdXeuxrOCt1gJ0VLZwEYKdOfRvIPbOqpiVFY4f3ttxNhTMZe75oodQt/Of0DaRv/427qQN6WMocFZRgm+FvALrlcRWhbyB0TNW0JIqVJ7ZoMZS49E5lubjIBYJEr4rRw/yixSEttPNrzhkgLYkbs6GHXXqwdKyiiQVXKAPgRLMeehgAJNFoTNx/wi9a8IwIiboFkObnv0HsjgF89zCMWASalsTPYJzDDi33oNVqsboHzRo65Tta2/aRFgBmjso0PEfKvYRF+Pj9Ij2M0+UlPm/4/bx7mEMpkq8fdbQxCiR9r5xgNr3JEW8oYGOHlOK96vVUGY5JZ3elcu03hjujh6UUsVWCDkzNOZyRWsji/88ixJ+Ea1cbJeSLfAa8x0i01kWKijXU7MHUaO/4NQnxAaoXFXQY6iPo71tIk2aianGNNSePrA9ZZNO3Uq9WnFILew1JD0TykWfNauD63ej3StGclCLEQ6Iz0zfPZOz5ooUOKQRI018AOLHaoZW+6+IyN7VID9M2ZJT0t7ElJvMgjEkBgs8hWh6TTlkM/XFFDrWF5Y8fOKZFCrWiKPzOgKLhcZ+XRyqkjW0bPfi4e08/g6UMivQwXTxtE9kDJrHwv9MJUyiXf8+3MXOFLEC1hPxhYtWMrZtVpMUkYMrGxtEPsHuY2XxardBlLXVjMyJ8Qw1bYrrfeNJwcP0VihbT+QYINzaOHpaSYFCaiYQw0QYBQCIdk6wBGoUgoANV0KiVk6hRsiAgcJxbl+7uFSItqqUyg7Skvd5d/3RWsLMa8PWUGhhTIAv0MHNPkO8zXYhfNsokpEXs/lYYqqcFHZiaal6TElzRYo6fIyGX9Hg5igrz7HfbLQiR+jSEWAupmADIi7RwSDhAddtj6qR5FInxN4ndMT5+6u+Mi6KiCMX+AL5TX6eirjNAWpjneUiaUv3Efdxa/g+6zi01UYifgszivFNzn91t0RQtHLVi/ufYEL4hgjfNw8bd1NShzNxwRcEPKyqP7XeytM7pTtCioAipKMTX6FtFUQQUqNhDNpk50bHfOZWLNJEeJnVyESUOJ6l08TKJWDfYdBIg2enMvv+C+ZRu2g01G3uAFGV0yBlNwmQcnzOly0Tny+AFfBvx/WmkdF23kEjbBKaHWSSn2wk6iqmaFrrxcs8o1YMBuOe/Cj3s4EpPtKHliuyUAtUl/X63ObQ8DulnqcMZAdJsd6nYNKXxso2QItwAkCiZ5ryehiSBQpu6KXOC3JSiDncqATTdn3vmYu5hdO5VSiE+mXJzbxLX68yWxNRIICc9jM69AMg7w0rS4+Vw9+IoTyZyFBWScxg+fo79Yz2CtKRqWmgRsYbcFll6WMXCMcXdK0SU0ylu9Hjc5w5RkMT9yTTu8JwWKXehhVHCb80hLY2m5RwILeHH/50L3FnTNinXaS2P20HHjw1zTOEwulkz6fSQkJOsb/rBg690WqczZyJA4cyZUKhJU2W56zF8cNrJig3t9ObAKE4orpDlkZAUHj8AwPmrvFiW64yXf48ngjgePLUNn7rzWJINtglHs4gvXljDAuBQBW6KvH+O+ObPiVV9ehgvwgdI74iac9gZAMwzytLDKgyvNO5hB5Z6dpgc/b25c6QUXttkU5ctj0MkpxI9rBffbMO5IlXoYZ3o/AL8W2KkQkMG8PeasilzglytyMFrcIpduL8f6MkdNU9I0VHi3z0290aac5JyT09nBXzmruOBnTd3/HC2UQaUeOyuPXT0y0EP45GWHEm/Wf8HTNGSQ1ckDZYESKPlpkQ5Q8vNEMERK8Zp0KLFsFMAnNZzBSEtVdGohwn97OQmV7RIzZn0osU8b1xTOmwQpN2rlh426EbXU7EJoa0XKAfIPfz1TMaeL1ocPSykbuD/zgXe9A1NhruppeGS5fElVMDfFCykyVyPRXKYmSUicmJoMeSaUpGWjtJpxf9GzQek99CiResMyvStiBAfUZo67RaYt4dIyyy4ZgD3/Wrom4F8+522XejoVN0xU2SWf09PlkeTGbzoTR+HH3jrP8Hvf/wO779hu2ya9FshZUrRMhdNGs2WSWK4KfI4UooKmpADOG7zFtK0aMMrYxubm0PiIy2cEH8n0+oBXCG3f6lrv4ugaGGKCnuOBJ99Sw8TaHecm141tz6/KNJ0c1XcqGhHW6Mm4t9kEHn+6Xt8znYhu5NheliEzoSfoV6n5TWy4kVL3EiAUgYxMia7q7lj7RsYy3b9+K7JlE4PufraO+H73nIt/NQfflp8TUB5zul8yGjAcuo1pBlTOSh01jGvH6ZWOYT4EgICsHMkp0Q53XuGE2cmgjWHOzmHKVrMHrKB3Lc4elhlzUwS0uLvhVUKbHM8M5w4xR2y+nDJTrRpIWlaUpocvU5bXXt3W+z5osUiLUzCD5C26fuVbPj60EkrXhRRrr25Safs8U0SHCYtoruX2XQSiiIAZhNUkiK8sVB6GIDEmXe/g3FLKo+vaFoo9SnSPXVzHchcCrJATgV6mENy5HvCTvgddBzdacQXRbToqpJY3PLQmhXGf+LWR8jxkV12h9+YU85h7I6vuHAVAFyCjpMnrqhI6fhxU6MxPWxRzQwAErLPEwizaeHfm6WHVXIPixctvBA//hnMfWOOK02LZmdNpQjNqS5BocfImpZ4UWHXDCVpM79Dp92CbmJn0HMPQ2uqqONDAmy7PgrfP0WLY/Q2AEo/rWaEgtca6TObZ6LXadnnQrp+SYifkvRf8+UHAQDgutuPeeYb3PV3KyRRqcE5+p0OeljMwSnp2MRGHEcVWpKJ2x5eh+tuP2r/rmladqKZObk1hn/53/4BvuFX/hd88b6TAODWNIDSjhdHVTTHaFouO3/Fu36AmHtYmmaGCv25YatUw7QTpOVRB2SL8YA6m+gyujFyQvzYNe3EWMNHovM9n2c69nzRwk2TTplzAuD7/kvUnqIoArE/3gBFi2GSUGh0rAnZQPDnka6fivfNtXFzYADC7pcmxMcPhkkmvE6lgrSEx+c6Gzw9LOYIRB2vpIVCpofFIVk7pbvXsYtxSA+T6G3pvFOzwQBAMAkYJ+WBe1iFjovpkl1+QVm0GCcVk4y2WyHFDQAXFXEaHS5KMD3MFRwcDSLtMzh6WHkMk0hgcfTi7mGOHuZ+b/99nBA/5TMEQvwun/Ts1AFRcg/Tigo7pyWl0yeIwTkr7GC9q2Lp2WlH1xd6jtjcAvyM9+Y0pViiwLmNiUYlRIifMj8CU/RiSJ005yQlacGUmy8fOcVfP0H3cg6XpF3l8jzpjYRYbJMkNjzHAkXLJGzG0OOnJvz3ndiCb//Nj8IP/d518Pl7TwCA7x5GYydIy2fvOg73ndiCjdEU/teXymJ1A01qb5M90DZ+lKGsOMwe8lXnlUXLOi5arHtYSA9L/Z0p/Yxz0wvoYRXov7Zo2b80P1a65bE2kwoA5Qp9R1eVkOVwgGX8t8bFfy8Bud4tseeLFm7DT5lzQt2uekLnztv85jdcu92ybmPR4Y8JdAxbFKEFphO5/hHZdDqRLr/kFsN1Nc132mm37KKH0SWuUAs7uXIBwqFj5nz4v9OgQ8UkpxJzzpAeplM+AHzI2ySxkjA7dA+LU1xM3PawK1TuP7HlfWbOfcd+hgobsxHiXz5HWk7NO3C4U0lF8gC4GydvbJymBQ+XdNQuBmlJhd/nnSzzO3BIC90M8PFTNn+HtPREiqh5Zjl3P40eRjvO1mEmQFrCJM9SFJTCETddAPRChA4rTaEDhdevFUU+spzyG+M5KrgglJLCbc89TE+O8DEoVz1K4UhwM6P3RAr6zhdFegFl7pkqlsRY3My5MeHj0OvP4h6m0MOyzGlhLI9zncOioxwCXZEe9p7r7wOA0rDnTz95DwBE3MN2cP23Pbxu/3zjvBG2rhVGFQqv6cw5aV56aMm7foCIe1hi4WX2JOMQybnpUSfN1MKoKAo31iJheDBtAAPoVHJMU4xRE4P1NwFJxwwfs97FzKV2Q+zpogWjINLMjxi8D2A0GPyijd+PKQwxekUV4SunkYgdnzpwxSxMg86dUrlzHPsOKtS491DOvGo8MAs3NYC4rbKjHOkTwA3aJE6s12xekY3hErLw9a+fv+dw0hlbWHBiMSt8P3nzeQzVjv0MSe5hlB5WnoN+jzRSZk6YxX+ZKVo2x1PYGjvonEZlTQsV4jNzWrALWhVDBNwtG0hIC5eEJVDcqAOcPKclpIemDVvk0Q0VaangHhaIwRWkQqJLJc0h6PhFS7TxguhhsfURwK11sT2B07QkC+U9zYx0fFd0uaJUOL6IXOv39PZ4ahNBgHBOhbvGeaOsBvcwDv3MqZmhzSsTBi2q4lz1ka885H1me2wNaUk8/rW3Odrv9XcfB4CYe1h1+tmtD7mixaBqWmFkh6YyyTuNdXQfmZllnhDf0sPceapS9E4RJIRHWnzDkWTNyWhqKaLGCVSjh9GGS3mOtKZUbL0W6WHCZ5jNXG5L3Q93u4PYni5a8IYbzIKIUY2I201MJAsQJvEAcSQkpZPFuVHF6BuUBx+bTUM7dxrdwB5bsPTlEnIK4WpJy1hyD4t8p9u0EBQ6X+acYcIfR1o2UHd/peeScBySexguOmMJM500jBMN2rXGkdpNHE6mlorg6GEGaeHpFSZSbCs5pMVs9EUBcGLuAqPRLGKfYXvsCgp8vTmF+HgWyZKArLFzWhI0IaEtLp+4scMlk+acSPQwGWkJhOMJSEgKPYyuRykUPXx83BRJSfqtrXWks8k5WMlrJDp+RDNjv895otlqtaJrMEY4HcUljvrga4/d04Ebk1C0BMMxMyIh+jO5eJc4F9LyY2//FPzo2z8Ff/GZe+2/uUQ8XBsHCc0cE0VRwPV3n7B/v+vo5rzzPxdvs+5h+qwPLu45vmn/fOTUNgwnUzRDa2d6RRPGuGWp17ZIyEYqPSwZaSnPcZGgOaFW6vgcsc9gvod2yyE57JwWoUEAoNOx8Pti67VE90xFin2ddoO07NrAPx6l6nRs115HQgDmnT4hCTE3VavlJ8E9hV5VHp+3I2WRFqZzH9sAA3g/pmmpgoQQFMeERq+QLf3krqxkSSxv+n6HzXx2SYgfambiAjvcebfCbIK0jBhkjH6e2Mb50JrvmsIhLVxRkTr4CosxH33e8vy6Z7A9xnoTHmlJ2RRY9zD0Z0NLWWHOERM5m9gc+edYYpAQ2hwor19POHHg4kuyPOaQx6pCc/z/kkW3r5mJHz+YBaUkbZTSmIKEhOipfPzQ6CN+nwbHj1CUMFoUm1rN/2Z6YsEjLfr665snxJAc14yI8eZFlCvyzNC5F3gd4K8//X5IDc4cw61bacnsic0R/Pmn7maTzJimJUXIfmp7DF+aIxN/d+MDwbF36qpo4ujGyBOVb80RsPVhuc5z1K0qWg0TD5x0v3dRAHz2rhNwfGM+lHe5H7y+Cn0L28EbJ811jx42b/Ax7mHSvBIcs5mjbxl3L8pqoFbqAOnr+8a8QFztO5MVfU7LvChCeZiOpLv1IrZeSxS0FCZQr9NKop/ultjTRQvesAJ9QcRrG1e+rVZLhN/x5oT5/6YoitKxLNIioxTchPVU32/qaJYygwBAL4rEokJ5j9T11TQttCiKCWUDpEVYKCRNi92YE+hhK/2uLTjFuRpUM5NAcTFhkBbzmdc8pCXsVLrP0GKviYYdzNjvwP5B13axT22P1QFq+Lwq0mKE+GjD6nYc7cU4l3HnSO3GhfSwEGnhvqvU5GU6c7q2ZTT7RxLKV6W70KJF0mBpRVESPcwW8fLzMyWNkSpIkd3MFU4/TeJTCt9gQG5kzeMtiSNNHfybJRp9YI2NWFQo910KvS1myy8jLfo9fYLMueDoNvg4tOmVSj15eG0YdSbjnpdUZ6zXfeDL8It/9QX4//3l54P/JloeJ7oSAgDceN8p++d7j28Fx9bWrRSU4v4T5TEv2j+Ag/NBog+d2raJ9H5Nb1IBaXlwvo989QWlUP6uoxvW8eu8Vblo4QTpNAwyf2C5Z13IWE2LMFwyputcG04sfeuiueaE3q/USh2gAtJi56h0RGdIgHCtaLfjqGl5bSHSEjP5oA0aMX/EutYORVoWR0PPZOzpooVzubJ/j9jWpdrojYUENVnT0ovTpbhZMzFhJE10Yg8Z5dfrlsQ8UqGhV1XcwyZkw7THjxSaAdIidq75oiulW4mRFmkTsZoWiu5FdD8mxtNZSN1Cg+C0oiU2P8KEKYJWB11ot1t2k1zbnqgbc3mOeEJudTHkGk2BYUwAdBcefVOj9ANu4J+aPEYSMLwhekUL+dy6G5JSVATdcj6pGjPPfw81UVLmlgC4NYanb/FISxX3MM1hytKNur5+RC26xmTNiAxcG07c8x9v6sjfqfge9Hv1I0UFZ56Qmrgsdf3jpyBXGFnSksG1ISlaGGEzgLsHzX2QiuAClAMAX/Bb/wgv/O2PeUksvfY+ozNLRRHe9emSsvXeG+4PPq/7HonlcYVz3Pzgmv3zHY9s2PdIdsoA1YT4BgG55OCStdt94NR2mntY4ne0PpxYpOJrD+8DAICN0dQWrufNKVHsOSohLV17vRhpofRdACD3tX4vGXbBUq9tC7uwaCmv01ipA6ShuACocTfoqsNiNQdKnZ7rnlHcVOCbHHQERgRpIfTWNppL1wjxd3GYzafdgsDaL0YfkKas0gdBQgWqalq0ziY7ayZC97KFBaV7iUWOv4mrwx8lzYZSVISfV15YqPOZCTf8UUBaqBBfKlokc4aEOSqbaMqvc6uS3MOYoiJhmi7e6C85VFK3eHqYpgdJW7ANd/rAfFM4tTVWN+byvPHNWaKYGfGn6cJy9LDUBIbqZgYMxM9Pq0/ruOKEDk9Bp/fTiCniU8wKRHoYbYxMwvspZe5HlUnRzqGwfE1Hef6l6zfH1ykWfhKsuZ/RjnwsKcR0OPMsS4UvNxA0RoHClF5TfEnXw90TMXTf0pp6HW/t476j4LuZnyfmHrRO6GAS0kLX4CpDa//p9kfg2MYIHl4bwvs/fyQ8Nlvkpwv96fNnUFuAUisiCvEr0Kuwzfx0VsCRE2WRwWn16GdISfgfmNP0Lj64ZKlPD5zcTnIPi1nt2nPMC6P9g67VhGwMJw5pWdGQloSiZb4nHVju2etNHS4JEP8djN7qwFLPHoMiIdT1FAD9Domaln2DrlqUs3OFUoxKMN0zQt8K6Z56LsIOHM7o8HcmY08XLVYLoiSPMXtLypNMGfwGoFsGA/hUA3yN2lwUzj0sxqk2D0EnkvDTQsQOu1QeMEkozwrxCbJkNn21SAuQlkin1SbbJDES6FsdWnRFClkAvBC7hY4u8FaDQAplfA5d7O8Wu/Pn3TBMD+N0GiZifvAm6OTl/UvzomV7om7M5Tni3Tg66NOEOZ+hLXDuYam8alq8GVQHzxiwOgGm4x0r7LYQ2tput+x5AnoY54YU0S/g41Cxc3A/GTc9dL/GOvEA4Yau0cMsZbJjROlxfRc1hNDNO/zPqjVFTIwkm/RYkYaRloimpYpBA0c/K1+fSg+LoPtoz8GoLJd8SRO0AfRE6hQpWjg6DACniUxHWu466sTf191xlLn2UHNSRYhvqFUmsNh8PC3AfPyBIMRPoaDdTmZjPbxOi5Zw7U1p5pg4YpGWZbh4XrQ8eGo74h6WVpiaMEXLow4uOfrWCBctiyItzg7eIC0boynM5tfG0sPQbx47h0VylnvejC8cFE0GSL9XjenBSr+jUltZXWTCb+0hLbEmh5Bvpg6jBECN7EaIv3tD0hYAYLpUbIOiizYtWvhzdCPIhplxEXCG2S5oeI7Yg0l1J7ENn4r9NacurojCnyHlwcddR9o1kuhhWiEFECbK0oPvkBaJHqYhLUa812E7+wAuEeOK5VixCeDrTSwCgulhY9k9zE1ijy3Y/uZ4YMnQw8YVhPhal7z8bwOyuRvBpnEx0gStKQ5oAO4Z5SyJNXpYrGNpbZv7BLmj9DCmiK8yhyQmZLfGDm18fMxhjtOlAHR6GF0rY6gAvn7rfpaAFlcZhihSSkVNG3b3iqx3Wrdf3BPQHJiIqQYnxI+hV/j45bBL+R6idD58P2gdZjuXYl/ZZecmjE9nLvGv4iZn4j5UVNDBuPj62KIlQm8DALj/pF+0HENIyzajcaDnSEnIb0fzTQCcFihJ05KCtJiC4oBDWh48NQwQcO74AGmIl0VzDizBiqFvbU+sEJ/XtMiCdBpriB6GiyzjpunoYe6/dZAeJPYZrGZmqWvXYEpnpGgyAKIyRhp3m2gP1JBEtkCINKWKovDQUK3JMZnO7POW6h7GUcRT0PHdEHu6aOHmm5iIbZrBMDRBExKjh6UiLRrcqM1pkelh/nUlu40Rzrm2YfYpUqEiLb5bmjagiYM+8d+ljZMKMKXuHRUdu+uPJ5rYEUUSFXJuT+4zxBdUPPxrxQockY0vs+mbSOVt0wFjFmnZmqi2ngC4GyeLNc1/o9+B2YzNZ+Ddw9yzMFM6is7adF60MCJS7rtKnZdDi2BJw0SfHYC0Aphem4Qw0enqABDtxAMoFFdy781QktqlSWqKED8QwCrIQ4UkWJoSzX2nRVF4nzd1DhfugMY1M+7ztlot9Vlzn5cxT4hYttM5U0nGBph+otxzJtE8rMy98Gz8E35bGtihjLNU1lCoFBTBULVM4AGZ5pltteSiJcVK3RReT7rkAACERYvqHpbwHXmaloPlb3H/iS1YH8WRFoC0wuhBREEziP2xjZFKD7PuXkn0MCfEX+q1rabCFF4cPQwgnUbHIS0BPYzMaAFIs4MH8PdA7d7QzFxkpkthTQQGnY7a5OAG3caMULimiPlzo2nZxWERCpL84n+LDfuh06TT6WFpok7TpdSKCk5DEqvETaedJgnSDT0h3dyUIioQ4ic4jpnPq9EZLEok0cNilqemMBIgXAlpiaFjAFiI3/UWSnxfSJof7xwammO8+gddu1jj5ILb9O3xE7sthoZgBPgHlsv/P7U9ThDix7vw0j1iiiMT0c05Bano+EJ8Dmnx6QN4A5E/A57Rgq8rQNbIdQDI6wV7/USzMSv8dYNDWlutFtJHpaHFMeQRwD1jiyAh3JpHNR4p/OuAAqWsqfh7xu5eMXoFp2mJunvR71MxNuC6sylIjnd88hm8InN+TOxopCXl5rk/bNyYGKSFmz2WUsSaeAjNguGGV2roZ3n+SNFCkZZNV7Tg3wi7eQLoRhE4Hl4bQlGU1/fYw6URyoktU7SU7+XWxpRmjglTUDzqwJKlh930wBoURVlwcdStbkKjAocpjC5GaM5Da8OkoqWq5XGr1QrE+JvMnBYAX5ujHn/+ne9f6okzsjhNS8pgXADXCFzpd12jLEGPC5Bu2gFQrkclcsrff9QJDCCe33HPUMrzvxtibxctDK3CRGpXjSbZkhA/tP/VH5xA45E0pwV17SpW4jE6HKUbaAUIfa29JmXTDzQ8SueB6yLgv0uFF+Vhy5oWn78fXr/80OPuPl7E8MLDzdUxkYLmmEV/pd+xC/62p9OQkRZn6xlbsAnSgoSUnF0xjhTNCeeeBBAWKeczFAX8Hq3jR4tU8yzhDSOWIGkbp/0eIsYObNc+Iemn35GUuHGi7vLv8iY1mc7scxII8cm9gdcEKrxOordFnrfynD5aVHW4JIBuSU6HAZvrnxXAonVcUR1DKR3y41s8s5QSZg2Lo/vk+AKdDzckekxRpH2nRhtnLGR5i1d3vp6lC8fvZxN4MO7JrXHo7sUmgejejxRGD5EBmccR0jKcyEhIqvuWScYPLvdsYn9ynuibNYHSXgHw/RP/jkwRdP5q3xYtBt05b6XPskMwZTClqDCzvh51YGCF+A+e2objxj1sNSyMqlkeGySkXNOpGF9qfqW6rJmiZ9+gI+45LD3MGC5EvqNNi2p1IvSwkI4da0qxhYjwDJnXtlsY6U5bi7xnKMLu2S2xp4sWKbkGSBDKE9hR6tJY/QVJILsRZCPQeCgLnpvTElbVsTkwLgnRNx1qq5yksRGRFnkT5xI0ek2SkD22KY/IbyGZJ0yZzrV/fIWSZHnzHa9owEkTN1fHRMzFDcAvKJYYLm+Ke1iUz2u6YPOpyPuspmWC7IpjSEtC0UKeiwNL8aLF4+cLG4+flLe9/8eJGDcTwnNmUj6DNKxUsjz2E+B4AklpBxL9Qxrm6pDESBJPGgU0KcTvt0irvY/i9LzQpjPerUwp6sLhlXIyYpoirVZ5jm4kCdYsiWPDH933KT8H3D0R1cxQynCk6QLg08JSkmZjqXtYmHuBz9dpt6zrplag4SiKwhuMO54WwTk0ehhAPNk0ybJBI4569LB5U0lzVow0dLCWwkxKN0XGZgJ9K5aMF0XhJfzG8tiE0RtxMahQGBntyvmrA7hoTge89/iW/f5zIi0ArgG2vj2Boig8p03vHImF14Z9f1e8LlaIn+iilUoP40XvsQaEoUejZ0jIR3j6mY7kcPtrbDbgbok9XrTI2oJUH2wqxE8dVBgrKsINUN7QHGKU3skN3HqUhGI2K4Ip8eqcFmbGQeya6IOvzSxxc07I8SOdBKqjkDapsf3NeCQnaWAf4bX7Sab5friiJb6x4Y2xKj2slwgR0wGS+wblxrM+nMDWqHyvJMRP2diGNmnzv4MUpKXVakW7ohwPmBORuunb7rNgqF5LmreopoVxJ8PXUnVOS4AkoGdiOHXnkMw+UnjY+LokuiR+nqxxB2q6SMJoWhCq7mH2s+4cydGeTypi9+aoaEVUBVqJ5Mam6v5YJETQtEz4+00rWnBjJMWZ0BTi588TVo4eNmKeXYvsR9aVteEk+HxU18KtX61WSx1OjMO4Vl1+YUndOs5oWjgkJFXTsoa0FGY+iNG0bCB6sHT8mBZvazy1n3H/Ug8u2Dfw8ocLVgfSW13xmFBUHN0oEanzVnu2SDXR77RZPWEVIT7WtACARw8bTpy4nO4jqcUdnsMlXRdF2wHSf2dneNNF15S2VsSaUtrsrgBp4RooESo8e/wKaOjZHHu6aJGGCAKkQ/Uxvrbp2ovT4RNvarVIYJL4eCXuow6acB8XDXa4nKKNGAtaIW3T4WBc6SGb2qLCP0ZUx0OKVGnxcgWaoGmp0P3lfO1VelhCh3kdcW25ooWz8TWhdd9xBEXLkuuSpQ6X1LquEsXvEClSDjHcbQDXUZQ25yHSrZjvgZubIxV4KTQ9KvQX56gwaGvsXsXHMdfvO0a599kimCItSuKP7xHT6ZNmEXDzrHAHP5VXXUk4XgHJsQN4laSfri/dCJrGJuaRNTXQCCnJF50oX15TZM8JkBb+OfPWa0wZTtAKmGfbOEdh/Ze79vDZNdc+K3T6iUkEe50WXDA/h0luTYjPZKKA2hQVl85nWK15Aw1lpCUVRTBF0YGlHhyaF3cWabHdefn4APpvYCh67VbpENlpt+CKeQEGAHDhfrloSUUpAMDSwM5f7cNSr+Otteet9gLND/4MKcc3g0oNer5v4GyJMdpN9xFtnhMOLOSvQg9LdbozBegqcg+bMgUndUkESHf3wrbbojukfR7cayW3Wnp8TtOSojs7m2NPFy3cJGkTMU0IHlQGoOgjdoy0+BuUPiE+3GC1408Z5ETbMDm6gUZv44bdAUTcw1iIlS8SpgIS0kksBKPC4yn/m6UksnTGALfIa0L8FEGrGzDWgeV+efxtBmnhuokpHWx8PNMF24+6ZLSgoZGysZnFnOpunnjxfu/vHMUt5RzmfuqiScgmURlGLI8B0gov+l5u48TPGifUrIK0APDFGrUvt+dQkmYuKZd421xTBCf9MbMSKpTnGh1Ux1AJyUlBWsZ+ou1r5mRdHue+I7k/OTRH15yU/8YdP7LnBEJ8PjHCyDtOPFMmgZuk/vy5nmE0nTE2/vL9XP53+Z7Gc0YMShEgLYLeLbVDboogowXBaBG1+faPn7Y24qGJh8xnmGtaNgRxOT4+gL6u4OOb3+9pjz5o//uj58UYF6m6nOmsgBPzazZo9kWoGOKoYQDpInkA9zsYcxU8C8YUHJSq6X2GSNFikZZeRzRBGU7Ceyl15o/bA9teQ4iuXxqdsRLSIgw35Z0G9QYqxyKKDTTfLbGni5YUFyexi2hFl2YTnD8IMz7Bpl31mGic0lY0lIIzFNA6lZz7S8rxATDSIj/43KaG38tqWriiRUhybNFCfraYA5rUzaUL8ERAx1L0JrSDwgkXVavtlDktI6RpYYZqcUJWE5oLCg4qMt+Hi5aIED8mWOaKZhPfcNkh++cL9ykdxcjGxib880QFz2qQUKkUisKQdMC4ooWzhwVISyC5z8AXwfx3qSXN7PBE4d7g5lmlOKwFlsSKCYSllJrX7gDJ0dbsMbkWn24kowmcpoVriviWyvEiiqeHpXVnA8t28gzIRijxpNw0JExBAcAhh3JBB6Cvj1gnIDk+cY5+AAgJjNDDDNJiihZDpwVwRRkdLIk/Q6oQX9O0sPQwfE8rCbkbyuiOgdfFpz/mEEiRahd8cmts6VmmQLkUFUOXCoURh1ZzMZsViEZXfg5DD9scTkW74/IzpBUV9rsedN3aO515SIg2ZDE652vscjB/WC+PtHBC/FgDwnuP8PxbPfEOhP7cNe12IX74ZO2h0JPHSFFBBvj1BEcKqWufjLSQoogtQmbhJqV11P2ixd/wNZE8Pq62gY+FpL+jcCq5QkFK7GzREiA5fOFoP0cg3NXRsXA4ZjzRpL8bm2QK30/qOTaYOS1eN3EcLlj2+O20jZmiKdSuEsBNmKeh8X/Lf+cTeYDyN7nu1d8OH77pQfiup1wsXp/rKPKbJyfAtAUkRloEQ4AqRUXwW0/D45fHrEbVUYfsoffF3PT4JkFY6EgWyRxa7M/9SNs4U4ZL0vXIvL7P9NcCXaGyvnCznXqdNkxmU+H1IaVPs3mfzNDcBYu+y2swNULBf47NmXKaGf336pFGWQol0ZzjALIeH01mgBvvbsZXuN9o1w/gD601aAd1KFuUHmaSfjPfBDd0UuaopCI5B5Z7tmg5vjGC0WRmv9tVpmhpt0ut3Hha6EgLEbADAHzvN1wKf/GZe2D/oAfPfcJh8b2mgRL7DMbWeD8SmT/5kgPwka88DAAAjzl/hX1fjJZrYmM0sUWR+RwGfdoY6RTjVKQFo1qUerfU7njHYAuKSFE0RHuDbwxEkBBNnyaYOnAOnzG6esdrGumfgXM0O1csj/d00aInj/oPHHTVhA1NOkeypiWimSn/LdRgaFQsz7Ky42/4ZgI9phXgeTbm37WijnZN7bkSzAR8nrRA37JIC685kQZq0kTBJtfU4nX+Olpo9hR6i4khSSw4gaA+XDKFHjbn2vY77FAtar3KHT9OD/O7uvuRpsXcW5IQP2a7KSXyJi4+uAQveeZXq9dnEjaJ98xxmbnfQurq2gSpAn3LoKIe0sII3vHx1eGMjEkAR4PgEuDyffHGhVe0CPQE7n5tt1vQbs1nxiQ2CbSkOTQ2SUdyAvcwtUggv8GY/435OS2aRsj9G3X3SqWHxZougeVxl79HJXfClKTcFPQrg679fcNhqTz1pNUqhz9qz8wGKlrM7xYULbFGgtIpns4KWxg5pAUVLUwzw0Ss2WICFxUHl8tqbm048Ro62to4nk5VhzI3f8SlZ4dW+vC+f/8c9boA3DMfHZzIoDmYgvZdT+UbRg5pSSsc+9223UNWkeWxNKOl/AxpxSMnxDfXZs65E+qWCbwmafc3T/U0z3I6EiLmOwz9Nz7SQqZwNkjLLg4teYw6xQjCzlyaFlGYqnQRMT1MSxCwZaW5DjqB3ut0MvQz+3m5AkSwDK4620X6DWRzA33TCZEW/TcLh0uW7zNTmelvCiDb1HKUIc1qO5UeVtk9LLHLRDthmB5mOqSx4ZKj6SwogAHkRL5KpGpaPHoYQ9WTihaJeoPDoDx2DglzTbigwN+D3ZiV5EXbcFPoYV0laeaQB+nek+7Xbqc97y6H39FsVtjniGpO9CJqvh5FkBxsaZ12fAZZUp4FrshR3djQ81fl8+L7zlqSpjbKhDVeYhDEGiLTmUMAluc6ge3xLByWaumC7vhmmGmpgZHvaSMy37fUhfb8eRgSsT/n6Od/3jiSAwDWKpijh7FzWpKRFkd7MjS6onADIfudNrv2ApTP8uZoKiLE5fW64cFVI1XTsk7mcAEAPO+JF8GLnnYJHN4/gGdecT5/fKYxw4Whhu1Hx3dIy9T+Jlxxl4q02GP0uvP1tfwdyvW9/F04+m+q5TFFK3p2vRPoWww9X9o/dKSFP34nMb8D4HVhseHbuyUqZwz33Xcf/PAP/zBccMEFsLy8DE972tPg05/+dB3XVntoyWOqU0yMaiRx981NJ0+g9zdxTcTq6Ewh55ylbzEJC07AaZHAfU+afR634eO/8+hPuBFKv4E5ZSiUT9O0BEmFpEMSNDn4WDh8Xjudku42KVcUyUiLbnns+MBLcyH+1nhqBcspRUsyPWx+fOseNpxYWJ7b+Ol5NYtImshXiXjREnZUlywqNYt+VykzLQKLWwYFkey/q1ge4+eUo3/I9LBqyIOUtIm6PEXYyVlOa2sqvR48wZ1rcnDHd+gVh/4ynU2NQmu+e0SB0sSv2MKbzi5JLqIi69eQUJtkeivfNNKQn/IzuDUKD8elRQs3LBVANk7B4c2YYjRm5fVJSAtPwcZhEtlepwWH5ijIeFrYY1ohvrY2RlEEh7T0u84a+P758McVxjksPIf8Hbn1fedFS6zwsjQ9hLQs9Trw31/yjfDL/8dTxHVZQmNpbDGalX1W0zLxUJLgM5j7LvEcq4OOOF6Aa0o5bV0EaSGIX18oRGxTl6N6JqLQ3nvEHDI8fowJxGta9M99tkelp+L48ePw7Gc/G573vOfBBz/4QTh8+DDccsstcN5559V1fbWGljwmz1EJNmRKNeKRlpjnPO2W6e5eYQKSQg9LFVLy9pwt77/518PTwxynkueE4+OWf+YTR/PQBd9pqmMHLTSlRSigh8nfEYCfSNkp7EwiqxpA2GJQXliGaD6IQTvKDlMJi3MJu/0MiXaPkhAfAODh+cRpbsMBACJanAXJh5TIV4mYiw3noIb/PJrOYNDtRKkoGhWQak64a5KOryGVJobMe2mxVhQO0aD3ky4EZ9aArrCGMZq58u9tAJgKc1G4okUuBHm6VAums4IvujAdi1J0lUYNOxdBaaKk2piyk7e1otEWRendU+ooKRWZrslE7rkIpQTr4pa6nVKsvj0J6WHMb+X+PlUbIiZZ3j/o2uOmalqkJhOODWwHj9anrdHUIkcAkqYlTgkFCOePHFruweZo6ooWoZkDkOa+ZW2ThfVVi1S7YEzTqxIxWq4J0/TCe8SKdQ+buhlX3O+QWFRQp7ZBtw3DiY8MssODE61/A/dDBqksioJtAHUjvzNvxcy/h9UURhgTXCNLy792U1S6Y3/9138dLrvsMnj7299u/+2KK67IflGnK3TrWf2mCO1z+RvOdSl5qpRU9QZ0CRU5Cc+hQaCsM44ipOSpW/L1S8PuNM0Jt9FKmywnTMPvTbUBlIWselEEMF9QibkVl0ix3XfNACLiWgfgUxwwRWt7PIWlXicJaak6p2XQbVsRqQnRFhOLIiczoLPQpES+SiTTw9B3jIu44WQGvXabLcgB0O+g0cMEKuCQoerRBC9GDyuKgv0daSLsTauvcA679jHuVZTWx60v5WeS71X8u9BNP3XYYq9TJiHaMNp2Czd2lOth0AEdiZKREM39kJu8TS2ScaLDcc5FdH/MN8okzQktMmNd+G30zLTbLTHBloYyJ+nx0PDFVqv8M50FI1ke26IuAWlZnYuzzZq1OZ7AQejpDZ1ElAKfA6AsXu4/uQ13H9u0f5ciBQnZHIcoRWqkUtzWd1i0pJoVcEL7VTunJU3TEiseqcV4iUJPWKSFa1ZI1uX0vUGOh9ZT3BTmjFZi+SM3uys0HprnRu0w/6qkmYmYS+2WqJQ1vPe974Vv+qZvgh/4gR+Aiy66CJ7+9KfD7/3e76nvGQ6HcOrUKe9/Z0skWc+KlnXmpjCaFv6GkzQtMWtb1z1te+/nnWvCxEilYjCJlEYP4xApFfkR5qhon3lik8f4gy8WLQq65CUKZhEShKzicEk82yHWXe74SAvnHkaLuvKccnfcxDaaNdDtOBqH2Qg41yl6/FS7R7Nxtlotb4NrteTNuTMXaUvnkRL5KiENEzPBd77bbqL8eMZSjEykFHfSIFF8XK5BABAX4uPzDhghvjkHfr90Dm7zd9cV6mwA/GdIoodpbl048TTFj+a+xU59Vr4jjf6Qiix1lWehKhLCinGFjjH+/FW49oEQX+LAS4V4ZM9xzlry2lVev3BPJ0zcxrMvqrqH9VOKIoO0zNcqkzSbfx+maFoU6lZ5vf4xjIPYnUfLouWgVrQkFF4adSoWvci6aGKnRUts3TWxNQq/Z4O0rA+n6DOG5+8LTqw4cFNnQNZfzmiFn/8WK4pIU4pZL/CzXGW4N1c8S8iseV6ruYdxRYvO7tktUSlruP322+Etb3kLPO5xj4O/+7u/g5/+6Z+Gl7/85XD11VeL77nyyivh4MGD9n+XXXbZwhedK7TkMTqdmDww0oI6VakVcf2FudE0KgPHqewoCQJnWenNLZDmNHCWyswGMhU6fR2l0uemxEtJV7QQVJKW8nP4nRN5kfAfj3IieZzX3u+6RM0UtZxweqdzWujGazZ/g45QrYV3/ATNzGTqEno8ORrznw8s9VgjAhPSsC987p2K8PHxq/jUt1ot+51sj6e+4xNxWkvpWNIunma6IBVF0uY/FgoqSs/ACVYVtygOSZAcu2Qhvvy8sZxthQ/PUQY1Uwq2yFGeHY4uIa130uv175MrovjPi39zzza4qhBf6NpzFvix6wcI7YAlNJPTWuHzpcw2GnQ7nsaMO37g6CcgVzgoCmKE5iZJ1pCWVD3INhlQaYqUu+dFC54sT8P83ppeQ5v1EotBwroF4NzDVqvSw+bf0azQO/ZbDFpkkRY0oFgrHjWkZTIrrKWybRoZZzNUBLMU20huZyLFuAf/mRvXIN2rmhVziqYwtj9xTanUYu1sj0pZw2w2g2/8xm+E173udfD0pz8dfuqnfgpe+tKXwlvf+lbxPa9+9avh5MmT9n/33HPPwhedKyQYHSBeKdvJ52ZivbCgxhLsVPewlLkrXMKv0clCcwBhk1U2cG7hms5Fzu0W3TTla+JsOiWx/8w+xPymzF2T11UPihYeydFog5qDEDsbBCeyQlIBAOKAPxx00zQbwxZBWlT3MGXD2UbXijcdPDfgPGVjxudJcYraSXCiSxxScoJtj73kMUjwKiRgZJDorHD3s5TgSYPETHj0KmVj42Yo2fcpmzOnS8B/xseVimzVfUuhJ1RN+rWioo854arwPSxydGRGu560ezqmOZGvR2qU+XtOT9gTOLdH7/hRpIUULcTpSto/Uswr8KwZ0xAJhPhSoZ+gddggHfxlNBsEADV0evLaGKMluc8wR1rmgv+7jm14f+ciBWnRqFOxSJ5xMgwtj1PCWyM0tIijh81/k83RVKeHJXyGEdNwYjWFCg1L+50590MOaeWaoeVr9fyRcw+UkFzNaCnVKRVAZ6LspqhUtFxyySXw5Cc/2fu3Jz3pSXD33XeL7xkMBnDgwAHvf2dLSIJFgPThj4FIK3EDiWlaqI2ptuFwQlzNvUKkrAhICJe0YFGXcWIyMbOFmn9eleKmdH5pUmHe3yZJmiY0GzNJYCyp4JAErZvLUpI4epj5rJx7WIJIkG6adFYLN9/DHj9Bq4EFuXhRxbSHg4Kehb6PnYGRUdMizmkRJl9j22Nc2FC3nJRBfLTbTwec4f8P+P9d/XceoXsQ34f0fuJmKNlzKJszl2TjP+N1zFl6Co0XhV7FJeU6vYrZmLmiYsKseZqbGXN8pwnR1kgOXa6KzPivN9fSahHKh9KYKooiKBYktE7SasYKcUd78tdHaknskHq+6aWaiEzMOTpxelhQFMXXRitin3f1V8nwXdfw2dkMq6IoRHqY+XcVaUlImBcpWlId0NYYy+OU4NY4LrasHXGItGyMJva/c58x5TvimjpmrfeGB7PrUPw+8k11ZLc+c6+3ybMcQ0JYzZxw/3GalthnGDI5XsqethuiUtbw7Gc/G77yla94/3bzzTfDV3/1V2e9qNMVEvcXoLqQKjadWERamONjRyCzEWj8br6oULqgQiIlFwl6ghMUOYKmRbU85sRmESQknKOiJFHM4iIt8NLxAXQKAee9zs0G0RC+2MLCbZrm/zctBSKlm5jAO+91vEQYFy3JSEviYL2qEevGSWJePBxNMyxIoYcZZI2uAfi6uMnqAD71iRb9+P1B4kY+t+bEliJ8x+/DFFF8/8nGFPPPwCKb4UTmFKTCSy4qrmGW0svR1Sq+fsjco44ynPZ9Smgjvhb8fGmUZPx7OE0ev1ZwVFt8/JimZTlAWoSiRZqTpXRyMXV1iUkyAWRNSwo9LBlpUZ55LeHHTRJTdFFt30FlbUwS4tsZJovMaYnpcuSJ9FrgPVFFWoymhXEP2xxObdHEaWqSkBamqcM1ylQalqJd4vSpnObEPmtCA1h6Fjh2jDygnNG0RPRjzrKdQ1r0gvZsj0pZwyte8Qq47rrr4HWvex3ceuut8Cd/8ifwu7/7u/CzP/uzdV1frcElyiZiQny6yUadHwR9By+sR5Dj/HVakjNmtDlax37MdB3pObzXc+5k6CENhj/Or4/m5KrlMVN49YROrhXiC51lVuirCPKkQpOzwlbFx0zRwiItTBFIrynGawdwCbjZmEOkhSta4l0mjo8MAPCo+YRpAIDD+4glGAmJWgIg00uqhB1yJn1PAg3EUFKwEF+zhlY1LQQx6nba1oDA/AYx9zCAiO6MOkCRRFhbw6pqWqT3SMMr3YRlOennaRka3St8PjU6KYvMsEjr/DMkctu5IkSjP4045EfQ8Jj3D+j3qbmTqfRWHmmprmkxz4xPdxTntATooUkGtaTfUdw4pGU2Cw1Tqhw/RFr8ho6OtMQ70bjAokiLiRR6mJ7wT71rrxKpSAtF1VKj1WolFV4sPWxeoIymMzi6PgIAgP1LYYGXYhZjfgfOHdIbHszRsCK5HQDRndnGcXh/2HWIUtUjZgLsHChjDBQgp2E+0hMaCvb6WaRFp5Ttlqh0xz7jGc+Av/7rv4Y//dM/hac+9anwmte8Bn7rt34LXvKSl9R1fbWGKoiOIC028aIiLYHKJNmFaoMWy+O3gvdTZx9Tw3h2wcoCHJuYTK9JE7EChEnXLIIucUkOl4RIvvy2KBI4/NyCrU+4pp2NeReH1Zy0vOPhGE7C7jLWUNjjC5RBALnbYs+BN835sQ3EboX4CoIgzabBIXXhHnvRPvvnx5y/Ir4fn0el3mSgh1XWtKCBdq7rurMEhrUkJomeRMXEm5U2fDBwUKJIi/JduuSCaxLwiSdXyHOcagCdKqnSMhQ6mW95Lncr+eGMcSSE28R5+pxMV+V+L87BUSpy3GcljSy16MJJlN/5DZDxSJEpNUSoOFp6xrgCECCN2mpNRLAQn0ky8fmrHN8gLcu9MkF23f040hJLBPG1dtot+/3SIiWNHiavK5vMYMbUSDYTUITw0XMkFEas5TH6PPfNZ9ocWA6RlhSHMtMM8+ZwmbWXo4d5hiDx7wgXztb9UBHiB7lUZB/nx06Y9/A5ZIdrSkc0M+ei5XFl/PG7v/u74bu/+7vruJbTHvqQP7moAMDwnk81opCjs+f1b+qOhoSgBc3caHiDm8wKMHmW517BdB01oTxFKhwSEt8Etbku0mdWkxDFPUw6vtRJ1Dj8vsWg1KmU6WFaYsTpKLgFWHJjwv8mz1IoF+t2y923ZmNIcchJGdBmjkNRiq897IqWxz1qH2iRIsTP4h4m0cOEwm3AIC1cwq/Z4dJz0HtqGx07RnUpz5HW6TfHB3CcZSlBLf8tTg/rk6nmFn1A98eErHX2MyiNHY2WwSJLmi4vkY7lNDBphbJGAdaEsroxQHh8kV4lJDpaIwvTYaTGgIS+xRJmm8gauiPjfAjg9ixxtpFqE+7WFpMMYvcwDlGi158i9F/ul681DR0z+2Tbnl/XtOA5Rdzxl9DvTC2ODyXMaVETfgUNikWqJTGnv0yNfrcNMIwgLUzh1e204byVHhzfHMMdj5SmBQcYpEVrttDrx/cIR2fk9J0a7dQe3+hGI3TP2MwiqQB26114/dIwbW7w9qwom8RU38u7McYRpt0QO88azoGQuL8A8eQxcPeKiMaDDV/RtOBN2g2XdNfoJRQMlQwfn7v+WSTpp0kFl2Tjql/SnNA8qirdQ0oqzN+pO5m2IfBzFPjvSJpL4V0Tk1ika1r4pMU7foLDj9lUzea2RelhbDIepz0Z97AlsqE99dEH4MJ9Azi43INvvuIC8f343Nxv4fQCYVKQGjuZ04LfN/SQFgalqGTfijcen6c/Yu5r+nfNTUum4BTe69gCWHXr4jdbiz54bnf886BRDXk3MPk3mzKbuDoXhaWHyQ0F7vXqcEluvVAptwzyI6Ca3Gctr1++Hu6Zkelh+vGl7uw2oYVK1rPyPR0v9LcRusnRw7ihpPb4imW2CbPOUhR6k8xp4Z55Mw+pKORmJdUTAoTIiqZpqUJ94q4xFrFk2QSdybOTc0gmKAA8PQwA4MI5rdh8v5x7mfmOtONze9yArL0AwjqUcB9p6xdPnZUaOkL+yLo3CvQwJof07Om59YhpXBgkd6oUa7shqiu9zqGQuL8AcXhPcvcKRN1TnsqUomnptJ0jkIRs4BuQFWopx6dJvzinhUlazMyS8bQIZ9PELI/VWTPxzsCs4JMoTTytdUJTLAbtNSmbAjswinR/ZshffidaKuy+Y2IZFS3cEE0c5jsyGzPnkCYVPfuXevDxX3weFEWcuqAl/VrRlhoxL39p1gOmEHBicRNVHGxwF4+KQTlrXgAnep/MCv47Ego797nLa9eQlj4pcLzjS0URuzHz66Q6R4X5/rsquuyQhJTXc59bcw+rIpQHkIocGamoUhTFjA2Sr1+guUhIbsxcYkiaFVF6mHDvqB1sZNduPj9XtPQ6raB7rBXhJraJls0MmaSaFpYS6lE2HZvBP36IglxycMl7zfmriqYlAQlZCAVJWLcAQgfKSueoomkh+8QF+/pwy0Pu79yA4pTPwFGgWU2Lar1ejfrrnmf3Pml8Qcz+m9MsSvQwl0OivAI9e+NpAdTPQGPH7KnhkudaSFUyQLwjTTepmPNDFU0LZ88pIRtTJMr3OI/K8SXNiURZk6gkHSFJkCfWyw+y5h4mFVEUCEnr7ocPvpRUaOJmbbgki7TMN1NcjOxES8XRE6wQfzSF0qjBnDvckLreYiclL3Iyv9TrJHGtteGPY6EoqhI71bQYjvvWWEdaUublcMUhvS5pTkv5b1qSyieGkqaFtc/WCkdBV8EhiZKbXmU3MGUjt+hDO3x9Kh1LczOrOrySs/XVZ1+Z7zOhKSLQT1Ukx4j3cRIloOnOOIUgLRFHI0uJmSf8XBKIzxcgOQn0k9hwSc1EJI025BcVK9ZZ0de0cAgD/jxSwrxNviOAsEi5aL9fxHifIcXgQ2i4pEQvoSgC2LkQH0BHTE1YepiAtJhgkZYEw4URU9hxewJLI4ugIP7x9SaHbS4FTn0xpo5CDwvongzSotDz8Xm7CUXRbos9XbTo9DA9aQmQlq6UwPNdNXVmCbOBe9PY0U2HixJ8CkmfAqAhIfxnljZBqVCTihZtMWI7p0KSMBN+N/PQT2aFfQ39DCmd1qnwefE1sRSOcZjs0+Qdf7d8IqsvdnSgIYCPtHj+8oorlnaORTZNdx55Y5PsiKtEdE6L8BkMXWR9ONGHcCrPjwnue6K0NU2/owvB+WujHTzbPOnKRZGq8RC42PgZlYw7tCS4yhwCAPdcYPMLbeO3tDhudkFiEdVXaCImcWCHP2pFFPN6+vtKmjyVDsfSSczxaVHEF8oxRyM620FEWsTjx5NNb7iktR8Phfg8+plAbSWNiGXiHqahGCl2vtasAL2fal849NqE1swBKC3tNU1iLFKs2gHC4m5n55CLR2niPS1aWE1LFZSbRVpwERzuySnaK9ZkhUOhBapnjAbIWrALRT+XQ2r0fHxdXUYysNuF+Hu6aMkhxLealrZ70LAlMVcl47+nTofH58Cb5gw5aeHFU9tgRZ2NRGeQricilA/dvfhOIjeXprw+Pily9Dn/c+HfMeBhR+Be7jfjNh9tMeIWMMqzxb+HZqksLaic1eMycg/TOOEAfiEcm6a7SNGibTx5LI/1jY3rxAE4283N0YT9Lk0kcc+ZDZFaPZuEUqPqVZmlFAyXVAtsOYmMWh4zQvyQt60UCcycADXpZ2zbNYor72iY8n0yx0+kMGpIgrun4/Qwt77wBWPqnBmpSOBEvgBxyrN9HowQX2g8iHqrBPqJN1yyqyAtnB4vgR5Gk3H8vJfnkrUcrVYrmvSba6Vo84uedgkAAHzvN1wqXhtAHKWYIPrwItStqBCf0eZUPgdjZ2+CE+IDAFxx4ar982q/w57f7DspmpMBt9fiosW8jkNMZjN2RhYAKuAjxY5ExXQNlHR6WIyujl8rNbHp8TE75lwZLrmnNS1SBxFA36C4JJsOW7TuXbaDSOFD+QaSO5vhpmAT+GCit7yBxC2JhYdGGFYWWB4L7mTScDD8Hfj0kFhRxCd05TFn3oLoOqFokfBeX9gHfMosEvYzKL8b192gbk/4flLntIiT0sNE2bmHzeymzXHCAQDac/ehqaClKM8hJw6poXVdtcQkNdzmzG+cku2znco8nNrfhOe3m+PzC/xs5iaUc9242JwW/G+67ocU/qSbqCE5OrLBX1eXKXSkAbl6YyQsQqTPO0O27RzFlW/szJ9RLqlQNnGuiOI0KlwTRbNK5Yoci/wK6HvqnCx8fP9e49cKeU6LjOzhfzfPAzesD1+feO8kuD4Num2bnGNNi2bXLn2f3vEJ0rKCkJYSxZCf+fIztWA0jVNnadHzy//HU+A5j7sQvvMpF4vXhj9DDEkH4IcDxyLFjhgAO5Qtcg75d5Bs85/66IP2zxcd4Gl0KfQzrmGkGTtwzUqj6+S0q7xlO4O0xFBokR4mX1eQ7zCaFnOO8XQqmDk1SMs5GTvVLnhJtqGHEWGUO4dJ+AWkRauSaSeLWfBMAUIbrdrxp/Y9wqZJbmqbeHWFz5CoaZES2Ymn8+DoIfzxQ064+xKC7qAC95bnmAV/5pCWvppIhfeTncA+9oXTXYKM0WuSNmYOBXFIy0TlhJvQnOXKa40fIxYDmxCmJXhVI7axxTQtG8OJWjw5bYee4NH3S0UF91mrTqzHfzf/Xer04dfqv0EcDXXrJN9E0ZGHsKiYzCiyiZ//dvBnNYln6aSJ9Kqu/Cxza4xmlaoJ/aWkPxTiy9dTiR4mupPJyBI+h0VaBAqmLXi7+r1JYzyd2e910O3YZ3MyK+wxtfXL/BYpc1QMfdY+76MpO82eRqyo2GboYQAAh/cP4Ae/+TGqCB8gYd1CCfdO1t8UkfwUNVzo50iJFJOSLQHResqlB+yfL9rPDyhOQYt4aq6PtEymM1sY95l1BUBGBTXLdi5XCIdL6gV8Fbp6TBetre98PqUXtGd77OmiZacJxYTplksWdJKmResa2SQh6MSF1yTZ82pUCee+lbZpikmL0NmsSg/jikDvMwjHp0VXu+0g02Cgm5JUlK+Pf6f43zR6GP7dKI1JSzLxv8c6cX6Hyc1pSUExYpxk2nHdSSz1HfoTHF8ogquE1AWm56Ddyn3ITUifZ6P/DpJ2SERCFHqYOsE9Qg/TqHYpjRdpfgxOhOO2nnIS7yEVAjURd/78IiFOl/LFqRoSMv+8+PlXXx+u2xoXnvs+Rc1czNhA1SAxyJWgOaHHjz73QtEiaVr6HeH6E1EEjIQbm3WH8i42sZ4iLVujiX9+EWnRUQTO8rhKxH4DLBznkPJYpNgFYyRiR2hOBe0SRVqWeh34hRc8Ab76ghX4j9/xePa9KbbNrKaFaKSkxpJGIzfh9lk034V1D5OomPr+wT2j3U649gK49a8a0s00jc4RpKWhhwGfQHaUHxi7O1ikBW3I+CaSp0lrXVBpUwsXPGdf7B9DoxlFLY8pPUxIWqTOoxX6C0iOJByl55A6p1Oh6CrfU0Kmgdc5A5d22i1ot8oBTfh30CyPtQ4K5wpkOn5W0yJQ7UxoPH4AfrHGQvwUu8xetw0wjCcXi9C3zPTjjTmXHIdGaUqNuHsY35DwhPgJSIuUvOBZAPhzUCG+6xzLVMBUy118HGfsIDde0ix9yWbLJCSOHkY76wn0LQbZKI85gz6Ez1IK0lpen0wP454drWnBGQlwjQtVc8K4xMmWx3xTpFORHiZ2ZiXKSrQh4lNupGdMnPGT6E4GUD4nWE6wPZ7CvkFX1dM5R7840mLdwxA9zJwfD+YNzhHVtPCDd1MjdSjuTvWEKUgLLlrqQlq0tfVnn/e18LPP+1rxvVVsob3mHdFIefpOz3WPz9XY6+eQTbw2SlRMhCJywdNVdTp8qgYZ/xtXFO12TcueRlpSNnxtAwRwN4XRCgDwXftFN3wAjM6492AhPg4NaZGHP/LvkTQ2kkWyubyg6BI2HW4uDT4ffsiKonBIC0evEkSCIo+cKwSFTiWA3kFxxQ7qvJMFXpsNhK8vqjdB53BFyyyp4IjRLHJoTowAdn0YFi1WnF5j0SIVRvuwEF8p8FLdX/qdtnfPUoqCVBzEziGhwDQpkWhe+N8q0c+YZ1oU4itJKnddOEnHjR/cGPIG5CZoZnh3L+3zMkURuYewZtHX2MgdZlbTYl/PN2mCRMc2ysLjc0V4bA5MQFmJ3dMkYZbMLrjBeAA63Q7AoSn9bvnMtNstez+bRFptJCQ4+oVIC0ZW3fPOUXPxeWXL48WQlljCv2jDKHb9AOh32CGakyKUzzFrJuX4XsOIIi3z17Ra/l4u5Wo4RpOwOOUow+IgV7PHSvsT404ojmCI6GZSjUo6yvqym2JvFy2a4FpNTt0G6CXZzHtkPmK8qyY+CAlFkcQfB8BCfKGQosJOYROUkgpLiROGS0qdR8kYAF8Pfj41LRLtkLvZLgJlYr644OGPmnsYPyAzLHaopkUzfwBI78ThTW0FzWlJKTg0WBlAn9OSGqY42OCKFsZZqmrEBKeWNkU1Lfa69O9K66rj89L30tkWEg0LoLpmo/x7xzt/Cj2ME5qLtrXMeyRreN1imONsu3ONmaKo1fKfzxR6mF8UafSt8PfqC88y/qtf5KQUaRhZEpIQsXMqP5c6Bz6tyRRzNKJOS5bqOPavX7x3os6H4YypJVu0mCJfo2zGO8V0+KNDWiZJKAln+e0df8JrWlJjp/Olko8fWRcBwnk8VUOa3G5iOnNF/45sm6toWtBnGBCkBRc2tEiN6To5dzJujgpHUwXgCxwcrDuhcH9LSIuGqqkjJHY5PWxPFy3S/BEAPbEzN608kT3sIkp8RBXaExIK/vjk+tG1SW5g9D0dAZ2J0kMSNSfSpmOLqIS5MfhcHabYlLqDMR65+c7xsE5++KO8YKdoWqQCMHb9JrhkeamP6WHxTS+K5mSwPF5VipYcQvxYR1FK+jFtTSvOXFddL+zod+SK1HkSZt3cwnNopg5SMUL53ilCfN6SWDg+g4bauUUBShkvEvAz1Gq1WPOOmDuhRg/jhjmy5iZMZ1Oak+OtMVwRpf5eYREVHF9yA1LczzRhcHh8vSCNPffmO5Ldw4SmWqIeD8+YcgMmCdKirL1pHX6DtLhE1sxq0QqOGBKiWSanxE7mcFWJlAGcC+tyEvWE+LU5j4//m2niAMialqp28wD888Y2pSXEOlJgc02XnTZ16eulERJSfrfbYk8XLRpVR9OEjEWqUbipSVQjXejPb+Ic33wqJPw4oU+1JJY6mzOhyJE6mxJSUVWYyn1HuACj1w8gdx9ixSM3/FF1lWO1QnOECf1ubiEtPeEXRVq4oYnecMkKSEuqIHcnsYQ+Nw1NnJ4aseGSUmK1yiAtWle3KoWO0sM4AbgJTdcmmRWEQnw5yVOHJ87474ej4JjXhrOm4s8C1fJwz7RL4uPrqb0mtlMpIwma5bHEIQfwG1PmmZ0VYSNIcw8L1yIdqUgdXtkX6FjibLDIc0+pSeZeTtW0xBBcPFjShEmcLZ1SszyOFF3Y0niJuIcBABzfHJXnV5EW/TtaNOGnmjcalN5WNVLsghexO045Bx4WupPPgX8DaY4K27wTNC3cNcQKYNU9jBk5ETYI9ONXWS9EYybhecP5njdC4hwR4u/tokVwfgCQRekACh+cSXSiMw6U49OblHPfkkXviIohbMrBe4TOqYS0mA09RHJM8p7WGZCoW9wwNK9oYS2J+QU1RtMzD75kv+xeL3eXueJrMO8EFQV41p6SpiWZHsZpWkbTpGnz3cjmn2NiveZiI7kPVTr+/N6YCQswJ4wGAFhlLI935B6WTA+TkzCHaqSvMZJ7GNt4SRB2y914tDELhTZHlzAxYpAQ//hMUSQl8RwVkymKNPcwXoivr3cAvHsYdw5W0yJ0vcXOaQJyxQvxyfEZlKt8fSrC2vHOFZqaSPtfGoqw5CEt8+dl7E+sV9HPSNFVfoa2Pb7pbZmiRUNaonNUFkZaYmvvgvSwFE2LLR4XRXP0+6jdkptzKccH0LQ/IUouaVp41C5yLzF7INc0lqmY+nfE07eEIkRo6oh0fsHYxOp4Gk3L7g3JGhIA00OYLmKFTtNUKIw07qw4vItx35pFknF8DfTvUieOvl5EWoRNyjwTFAmRNnHRTCCGtHC/W5enZIg2zGQBlrqs9vjKYjRhEki8qA4ns6h7WNTKl0leljE9zHTqlE5gP5ZcLNjtK88hF1+Ss1eV6NgFm990pGfIDJfcGk/tLAHucybTB8jxaedY+6za7yBrWvz7T6PaaWgRR5cC0J+5Kt3EiYTkKBTXKmj0iKG3pVgGe5bKUmdTQFvxd0XPwVoqC3sI5zLoX7/2zITXLw9/TG+UAYSFuJQAuwKKR95E9zCmSWDpYZTSswN6GNbemOO2Wi1Ymf/5+Ma4PL9ScMTQHOpOVjViCLGdkZVB0yJOe7do0eLnYI+/gAgfHx8gzgbw7iWKtCTQw2L3ku86xqDQkeZPTD/GGYNIuUvAvLG/g38O/H6uKGqQll0cUvGB/417aOwNJ1A3OCG+SJVSBN3Bg8BU+hJKgf8qCbskdCagSxg0h4rZhAezqo5HpoeEr4/Sw4QFVb4mf6HA3xUnO9FQCg7N8bpGk5mqQSivn6dk4GMA+BuC2UCns8JaDKchLfqCusicFg0xyqFpiXnOSwiHoYcBAJzYHLOvAYijUY57LiAtY1pUaEhIeuOCfq/mnqtMD2PoUvh83MYczl2af1aVvhVHWzn9C74WfQ6Me4/qNsYYIki/sSkaqDEAfq4DShazJ9iiLjA24buzmuNjjE7iDeu0BZqU5Oj3tC1ahNfH9FaiexhHDxMoPTvRIZgOe7vl/1bGfCMFaYmJzLcSdDFaxDrwORN+qTiVBmQmnyOim1nYAQ19hirW0NT0RruXNPo/AF/wsEwa4VnTjJAABGQ2QvdKMSrC11Qen0FaGk3L7g2JKwjg36D0prPFjiBM59y9YgJwHJJbD9eZlUTsrZYbtBgI5QVNi9QpkxJ+KXGcijbMAjIT09gwXVmaUNj3iDxy/julxSnuKvMT68NrMsHNX+i0nfh4OJmKVBt7/ERNC+ceBuC6iVoXbafUpyqhUQg0R63UcHbbvDueRP0cdNu2GLUcd9bymO96meAsN83xy/+eYOGqbP6SVTLtfpvj60J8ZtOsMPS2isbOHj+GRjOUz1AzI9MZOIphT3k9t/FLz7LU2cTvDYbXMoiaNEhwJzpHnh5Wvr4o/DXY7k/knpOSHBP0npZQAXHGT2JCjlEKk2imWB7HGglYb4LXbrM+HttI17TELI8XndMiJ/x56GEA8T1kUdtmES1a8DO00Z4ZpTCzqF28AJZQCnt8pnjk6LzicMkIWrSjYbSJaI48QsLka/x3ultiTxctmnsYvplCS0l+0eY45LK+Q+sK8okIV1RIBYJ2DplSJiAtFZOKOBUrsShi0ChJm0LPIWlaKFpEKRxSV5leE7epSb8bFl9G3cPMwjgrWL2GJBA034ftJiobUsyOMUfRotHcNK5xauDfn35NY0WX1Gq1LNpikxiVP69vmkFRROhhmlBemzthZ2F0hft1LlKVaFgA+r1qHcGEZxq/J+5mKCfZKc0aSZdT1QLYvJ4m8eUxwuuRkC4J+dUaQRy6gekYU24Nq0Df0obdlecP9xy6xsQSZjqbok8KcHcuAUWLILgc0kJtalNsyGM6B/o8GzG+a1IoRYtSiANkoIelUqsWdCfTzrGoA1qqpmWR/SOKCo7D5wHvs9iUgWtKxQp47jPQwb4ACitG0b/h9YAzEpH0cin0efx30TilQVp2b0g3HADlVQo3RQJ9ayoURj0lqZMSHX1aNVe0tLzX0PdQpKIjvD5mYSx1KqUCYUoS8pgw1bNfVT4vgMxVnQqoGn29hMjQz5CKtAD4HUtNOI1fCyAk/MK9YcT4rmiJdxNjdr4LDX9UaG456GH49w8TSPe5uM9gxPiPrJff1QqijNn3RRK8sbAxD9Bvjd+vdfs0DUagaSH3h2RdXP6b29QoGiU1O7hCRHrmtMI0pvtjNTOJlur4/dymT49fHiP8DBLSJTVpvOsnz477ncPj0+uxCL+A5EwZ9FCb0wJAi0yJfpbYvTZIi0QPE3RasdlGXBK5RJEWQ01VKNuyOxmPIIRIi6b3ixVei6EUqXbBO6WHdTsOSZYRKVOcLjggs4LDZdWIaX/sfYL2OfybDCczVR+1k8KLp87qDQiA8H7F78e5p3TvyWwd/vXS2ivld7st9nTRYmlYyk0NwBUt/E3B0bdETUuC53/4ICj0MK5oEZATiY4ldTbl1wt0r0gRAuB3wyUhPsfxlCye7XsEpMVcYvA7EOG+1AW1r9fEx0KHA1uHap1xfHwAfsEeCbNFzKyW43OdxrKKtMg0GnzenXb78PVxG5smkEwNnPAFm8IEbwpM0TLwv5vVPkcP0zc1biI7ALI8JnQXHglpea/xPoNAO6B8b8l+Hb+WQx6k4pz73aIFCOceJqHRzEZrnhsJjdbnwGB6GLonhM/rJf0RN0NuDpSELvOaE76IEp0M23jPIfQzhR4G4K/xEu05ih6SZNM8/5QiHaP+ic0QpsMfCPGT3MOqIi3lOUyTQlsbY3OyuAGZVSJqeXwaEv7tBc8RdVhbsPACSKcaenNasOnNeKZTDSP6DpZ+yhRrkn7Mc28V1gp8TAA5n5KaoTHUV0J/JM3Zbom9XbSYH5dJ+Dvtlu1YyJaPwqbA8bWF185YKgNfTHETnDXkocu8Hr8ntBjmHwKp8MKdQe71wQRXgc7gkBly/UyCoNHhADAnmX5mvqCg3YqJ8Drp9TikgodFWiJIEYCQ8AsLsUVaNuL0MJs4RrpYi1keKwm5gnCmho+08J2sdou/T1YJsoJnOZiICXKlWRUUaZGSd/xv/DBE/n30GUoZkFueg39G6WVxSZU0p0VL8CSqJLdxisJ0ZZPlkKiukMTjYWsc0iKtj+qcpgTKsFSEGPSdFkX4mab3BFf8YroaZ1EtuQ1JlGTzNdg5LcSuvfxzIc740TRIADGkZeZ9zp3Qw2JIy4MntwEA4MBSj30/gGtixVCKZabRkRJujtOU/e+mKMpBrYp9hp1T3CJrY056cYVzdFHOtj3RBy2nu3u592oNHfpZ/WeTb3rT42PkHTcJpkITRWrqSEhrg7Ts8igh+PLPUVE0uemiQkSmEldRh6Cy5osprjMroSAAiB4mCLXopmxtZFPdwIQ5CtLsGB8yRYWI0EngkJ8oPayipoXy2iU+u3u9vKnFaDQpQvxWq6Umg87Zy3+/ScQfWR8CgL4hccWvd46MQnzOWUpDH1ID37u0aNYKBQDfuAAgRF4AZJqhCac5IUULGaopuZjhf6syR6Xddpvh9ngqXkf5XlQAU7qkvc/1ogtAabyoDnHzzTyBHiY1CnQL47Bo9GdTuffgt3OWx6E7Fr9mA2g88vB62u0WcuxJQFoUPULMWpV3Y5O/T0o/82ec+HNa8PXgfVP6bUV3r7GvmQFwDlZ2ToumAYsdX0hSDy6XRcrasHRW3L8UNinoOWTLY74wSo0BeuY558McSEvMNt8Wdwu6h1XVFu3kHFGkBZ2j1Wo5y/nxTLX/j/3OrLsX87mlhk75b/z9anIf2lSTmhzSeiE1daT8MWZ5vltizxYtEq8Qh7yp8YmnxtfW5qjQB6eKO4ukTymvj+98SfQtKVGrMkfFOz4pEEo3i/LPnMNaWOSED6UrDPhbV1qMzGcIusWksxbTtDihPNddjlNuJgqdh3s9DU6ACABwcLnciB9aK4sWbcPgxNbeOTK7h0n8/EWO30ZdNUnTIiFF+5KQlvK9HBJanoP/HWknVR1wZn4HLelnviNLqRlPVWMHj55E6ZLC8+CuHyfBOj1BFeKLlschMiAajyjH75GkhRPY4vd7wyIFZFlbA6T1RdQhMo0mTdPCrY/4+PS5Zm1YkQMijq6355BCH10fndMCEGq0AEAxidDXFX+4pH+/uYZJ9URToiVdtH/J+/uBZRlpiQnlF7ULxgUbh7bkpFbFJtYvOiCzTqQlinQLhZH5+/Zk6kwTWCc6HVFzlFh3j3P3hpQLep8hNb9DzxNekyT6rJSvSfRWi7Q09LDdGbjalDqyMctKOtGbm4sgUR80oZZIH6hQFAG4yj20JC7/X3TSkuhkwuuD61coXNx73Ov917JuaRH3MAlWngjfKV2ANRts75pYehj/Xty91ug8JnaiBzGUB/P9qO5h1tBBR1oW2Tg5aomJsZLIV4mucH9zCS0OWqSwSIuiacP/Jloe0zktXeVZYApgDS1yRctMpKkB+Ek83TilZofVMUzCTVO6r9WigtLbmKI/hjyoSJTYfQzXjPIcYedUmliv2kiL91w8kZeGS2KUNSwqpH2E2XOk5klCo6yD0CFs127uB2lwXXltadQqf7hk2/tvKfQwafbFNoPkAABcdGDg/f1AEtISHr8oisWdt9B3hodh2n/LqGlJsYbe0fFjup+cuhxJfyXsgzzSojUf+D2QW784BEszc5KppHxTDT+veG+WmSj8+iiOdxD2y90We7doQTdeVftcWXxlbup4ko01M7LwSkI2MPVBLhA4agIAsjyWqAaBiF3+DPh6zbHNfsJdE1t4CVQVjf8eo4eJXucxTUtEc6JPAZfQHIS0CAmg93qlkyUVFAdJ91AV4ifaPebYdPDxTAxtgrfY8uM6R3zXWEKzsKal1eK7phq1qvw3vljA9LCiKMQNCl8fVzxqDmsmYdoaT92mKXyXeBPHIT0PdmAk6gLHZhxx96nY7W+Hnzm2nmpmJcFwTAadwesTh7RIa4XmyCjRw6Tvk6V7ML+t9OzLFLqwARGjhwHIz4zkVmf++1jZNzU6HwCfzGLU0LsOtjsuI0X+8XWkZb+maVES8vG0sFTDnTpvdTvOnp4Tyg8nfOFVJdwzLBQVCxZevUhRNFHWruRzxHSXwv2KqdjbFo2R53BJeyCHoHD5oNaEjFkSh4N9ETLONXUEJFpCiunyZRq23EDz3RR7tmjBi15c1M1vULFp0pIA1AQ3hwRAGbaodO0oCoKPH2paZux7pIRcom+xlsSoA8bqbJhzuGGX8euPaVrMZ6ALdmxOi/kMC1keC1AxptxIg/pwOO5sSB+QNnVatKTMaRFtNxUdRmpIRUuZyOtFRWpIw01jlsrYLWyl1xGGlLp/q2LbjOlhXldac0NSLX3Da1u2hchURBxM4ALHRFEUsv6KaHLw9UlNDmp6ASB3+7vMZ5Y0M1Insfw3/vvvMomzj7S4c0h0I82MQ1pT48Nr09DxWNNFogzz9DD/tfi3ps/+UHAlpMNS8X1Jh+/GEk1+uKQ/p0WzW9eQovIYfDIeIC3LCtJi2BLMZ9hGhfwiDR1HiZPpYYuZoOgogpbMp4Sxo5aoWxplKjVS0Rz6W2MUejjmXwMQp7hx6y8rxFfo3tL6YgcCM0grl4PFBpTLc/hoQ6ehh+3qwDcbN/kcQN5ApEShTxY8nEtxCXxfWOQl3Qb3EGhIi9RNMG9PHv5okJNgYr2p9PkEgbMM5RZUEf7k3MNiSMuclhRs+pKmhSwS42hRJHeZpGQHL3ZSF5R/vdxNjBct8qPNTfa1n2E6s9/xIhun575HFmBJyFv5HEJnN6ZpwXNZuBktALr7CwCIwx8xFdDTCXCaFiW5MJ1z7n3YJlayn3XX43eyAWRhenm+cL6O5Ebl7tMw+ZKG6nJrnoRuqu5qU/5Z46amuyaN33gR6a2Kbo6ztcfnkCzVU4Ty+JpEemuC7m+sJEV94TuVKD3UPlebC8TReXHwwyXLP1vLY0G7U55TRor8z+An4486QDQtCtKiGXDg3ySHUJ5FWhTxeGpo9GIATA9bFGmJUat23pRy09v5czikxf+ezNq4OZpEhkuGuQuOCbMHYgMbUxhoDTJxjorStLDPENr7xQHlQmEnUX9jOs3dEnu3aEnQFogbSKTrZRZtvDFwG5QEH7pN0389RzWQChD8b+LcFeGmpg+BJNx39LCwqADgCzVuNoJDcshrd4K0mLkrtBC0mhapU1nMj68vuBpvW1qMcLcyhgIA6F0myY744EoFpEVxQMPnXISiAKDD6fi/7zQkIXXsO8acduokhkObOxHTtIwmMy8p4TvHcufLJbZy0bI1ihfBxpp1G9HD8PclaVqGXjeRR0K0QXwx9AQnCxOhSJDcD/HxgzWYeY+01ksaCTWpED5zzNqeb9Iw6yOZGxV7D7dmS5bE+ProPS0huNQxSTt2bA4Eb3mcTg/TkCJ8DJqMH97nIy20wYNDc/TDDSOp0ZkStlAbc0hLBuetCIqwuOWxfvwUNkEsYtPbpfvE6BM3R1OVBmcazNK9atEQhh4GgJ4HwUQEQH4e3FohP0MePUxcv4Smi6ARjuk0d0vs2aKlSsdbhPci9pOSADR8Pb8BSnQsP+GfV+FsgcB3E2ySkEA/816fAE9iehi3ZnF82Jg7GU4qosMlI92HYNMn1zMWOpr29UqiJrkg+ZoWOWHhXk8jnR4WL8a5zxBDB6oEx63Gx1+E84zfHyRgivgdAOCCfX3755QEppqmxSUC69uT+WtaAgVNQ+3k+xAnejGnHit0RmgIrvGkApsV4ot6sPD6q0xxligWHJXMvUdaM0IkQWp0SBoJzfZcKpSl6+E6926N4QpZ/tkfC91W/veS0RCJkijdR25Yqlkf453lqCWxZ3lsEviZeh0AOlJUHp/vrPe7be8+PLzfL2K4z8A+8+b4C65bA+KYhiOHe1jdwx9j9OKU3CoW0nMGUD7PFgmhRcvcZGUjEWnhqK34vBw9DMB9h25tlJFHqQGhGRVxmjxxQLnkDivkd/j6d2Ps2aJFQktwSEOUpKnmlNOLiwUugZeg6GkFTYs+XJLvqEvIiUSHkSfchwnIDH1mtpDikhZJiM9MuJagUhMyJ5wv7qRCU9a0yB0a6b1Y05LC900pWmgnjtp4cja+JjgKDT1+u7UYJxnA2Zbi8+AFXCvcUoLy7U1IgxlNXIg6r+ev9tnX4PdXccfCv8vavGiRij8H7ytIBfMdLSOdSiwBMSYD2yP3HeFNTqKI4u9UHHZrncAK77k3/1Yen0c3WLerYD1VkBah+Od0MGnDbsNGUOpwSWw+IpoVcMevwIOXkBxK38I6Sq37S48vaSloE8jRFuX9JjYfJAVpkZAGCSnC7+UKHtycSNL71SSSBwgdBnHkNEGJIy07O0fs+ClsglhogxA1mp4xWdkYTtTPSbWsNDjaLTf42RVPHGoqICEJRQvHLhGbOonH94T+DdKy+0LiROOQOgpSt5zynfFGziXBUoIdn6OCkQ1gX4v/LbA8FpAcxzfn4cZwMGNY6UtOPfQ9aUL8kMNs560IXRypUyl9T/Q30zZ8gIj4OKEbmjKnxVkrMkJ8QSRPEQMNQdC0GjlmtJhgp6uj61+EYlEen+9YxhoSF6yiomVFLlo0frvE28ZTmU9ujcvrFJKklAI4FWmRkhysf6HHBgiLeNpZB1BQSmxWIHUThWGuviMgvxbr9uJS95Hb9PkigVtf8LG1pJ8TvnPX45Ls+PcJINtISxQR83vRJAqAp+dIaIi9j3ohSgHgHKcciqkcW3QPY5AWOqclYgKSgoRw733F8x8PAAAvfvqj2eO648trozZzqUpIzZby38zvsPNzSPNBTOSih1WZcVI1NNSOmylkwtDDNoZ6Q0f7nfG/4z3EtyT3kUGWSRNxJ+Tpp9z6wucVMfoZfT13/bsx5HbsOR4ahG4iNl2dCs1p59RDWpjnV1pcpDkqHHIiFTjl8fVKP0aVoq8PNmSmG2Kup90CNinlCjUZyUGdgdkMlqGjuqUByEWFlLi4ztr8N5vqSI5mlSjRw3xNi47kACi2p4pInopL9aJF3hBy0BNMsBOEBS3IToKbKZJyjgv3u0Ll0kPL4vG1AWdjIbkyU5k3R1M4tT1WryOFHsYlzsuoaIlx4Lk1bKok2dx8BGn+EF47x9OZlwRNhTWSez5jRZFEEeGunxuoG9PMlNcTfj+8jancCeU/g4ws85x2oekioUXk98XXpekopYF3lPpEZ1NozT7s5jebFUFTbMhMYqdzWmLuWepsI/ve8Npe8szHwGMP74Ovv+wge1wTWlI3FAq7qqHTw2T3tNTok0KWhkO86kJa4myCWGhIy3DezGu1wvvQ0MM2RzrSojkTlv/O3+f9bhtG01nQJFBR0wCFNmwGJj9S1hfZmTCtyVy+pwWjqfzb7YZokBalGxDTnKRTjXiHMvn4epLA8R1Zy+O2VBTx75G6WDFOOGd5XEUTEuualucgSEuEHkYdjWT3Hf871bqg3uuZh34iLC6V57QImwL+XWiyTGlOKQLzqt3KqsEVX7EZKjs5Pu1Yxs6B0ZWnXHpAPL7+PclND0PNO7E5L1oiXWNeyC4nh56tZ6TI5NAu/DzTdQm/vigKb9aMNqwwNclmZy8Jxb5WXEtugFxRoQ1z5AojTdPCvl6j2ymUXs3ymDZdYm5spsjExZo6HFOa0yIJ8Y17mKZpwUJfpqjYTkFaIutPymwjSQ/zrMdeoNJm8Xs5JP20IC0Z3MNiKII5706RFmxgQWmh+LyL0MOce5iOeNH1y/y+61GkRUccrAOlMEvF7AnaTBoOZQXQ2SLc2AxJZxs3cmKOH9E77YbYs0jLky45AO/7998qduwBFPqWsGHSxSI2CFFKgGMT6Lnhkjvx/E/VtMReX8Xdi05Yxp+Bvqc9p9rMCrc4SHZ+7pr4RFCefeN/Zs3ZA/87Z+spCZaxxaU5j9blojx1ExqX9zzkHsYlo/5n4GFlANmdbCfBOblpk96rBud0BcDzkXF0O234hRc8AR44uQ3f+ZSLxeNrTkLaxmwKxuObI+844XXIyYWEDgD49LAYnYS7lyQjDgD/vhpOZmSuSfh8dtstmMyK4DuKzUXiGi/yxGf/+9HmzHCWxNo63Ou0YTydChOouUZQeE/oSEvYOBonaGYkdD9Acc0zMO8q47WYpYcxwzfx+UQhPila2In1pMlE3cSHTId/CVlyF0WxED1smGHt0ppSuRo6zoZcQXMyWCrHLY93SA8jLlpLbf84lgK9gGbR0cg1NkD4HTn3sAlrsW1Ca4jMZkUysqntNZJphD5bz18vcJoRrC2C0ZI2BsM1EnmEaTfEni1aVgddeOqj06BiaQMJNCGkSJgqHTvv+EGRAOz7tMFDXBJfteiSPq+U8HNe51F3r274IEtFGkCZYI4mM1skxI4vLdiyAxpBWiJaJ62LJVrDomtKGdwo3ReaSB4XKUuRDU+zqh0qC33V4NzDpA7WToLTX5TnmG+ayjl+9nlfGz2+lsBoswhM0XLCFC1CEsVRAUxoibOhO2yMJvZ1Ij2MFYIrm1pg6+n+LiX9k9nUex5mShLPUQYlSqakkdBcGXmzEhnd5NDoWJFDj69pWjRhbRUhvmRWQn9f8122W/yewM2NAZCtdul6qiGMkkbInSNMljE9bIIMDQYdPqFO0pwsQG3VOvA57IgBwkITxyin5XEUadnZOTRaaPlvi9PDzHu5eSLa74yF+BqdT53BhXITuocEc4s0uqQtQPj1K8XoQxubITV1dKRYvzd2QyyeOZzDIWlOYpZyY3LDxWaKSEVF7PjlOcwNGh5f1kbwhU5sGJJsSZxWREnXpD7EhtsaICExpIVHi2JTvV3hIXT65klDUYQLqtQxxt1KbdM3IdHDYiL5n/jWKwAA4NX/+5PEY+Nzq3NgchQtTNGci2IBoLiHZUKLUoT43Dlc0WKE+ALSIgg1AXRE0SQJRugPIP9eTkid9rzhzzMcz3xhN9dNVJAcgFDTor2eMzUw18vNUUk+vrKJc00UScODr3EiFIHBlHjmGdAsj6WmS3LnN4YUC+YG0toSaGYUIxFJI2SCHS45v5dnRZlo0vPS0PQaOainfWFODkA+kxJ1uGQG3Yy2vk8RKrq0w+JOo4UC6A2d1Oi2w+eMnpNHWkzRouv9tEGoGlpJ8xfN9EVyKNMo9BLzA18zPX5q/gggG33sptizSEtKSMljTGRq3cMi+ouY6FIuKsKupuZOloqc9JguKD5HKMQPN0ANmvSuiek8cglauflOg4c4enyhUAssWM1DTISs4m+GedvTGXTm0DimrGi2pCn0q5imRXrvq174RHjx0x+t6jS04+N/y4K0MAlGDr6zCWnzH2XYNAFAHPRX/pu8WRle9fHNiBBfeN4AYpbHflEEoGlaOsE5tIKo1WrBoNu292pv6l6jdQY59BcgXGO4poX0bNI5KiahTBO+h9ejuWl5E6iVokKzVNboGBzyw9FnpA5wCopbXrt8bHw9NJGSaJu0MaA9v0YjNJ4WASWmKAo26cfrzKmtlKIlvnYtUlRo6GoO6lb5fl6I731HCwnx5e8ID7TcKT0M00K5tSvF5CgW2sR6rbG22sf0sBDZM+HsiOWiCyDcQ/pkPdW00bEGagqSq6O4prCjSE75/9pssEaIf45G9KaL6CM0XjqATNORu2oMPUx1iggLBHz8cAK9Oz7ubEoTVjltRKqQ3UtaFMpXjyQJMXqYiI4JhVqfoEUxHZLXiRYcmWRNy9TC/yo9TCpaIvSHXqcNT330waiVcN0bvz0P0/GrA8kJNC0JaFZKaAu8nQXDfI5lSg+LULfopqNpNgAcrQMXRVWK+FQzi+GcsmOCT8rDNSllDoz//PNFJv67ZKtO1z3u+GPlu+TcxlyRw6EJITIjzYzBnyGVfiYNNJWMGULNSQRpkRwrhUQzQHLsnBYdyZEcK+l7B902mJ/QuO112i1l/ZUbCSl6wVholvb5NC1+IWiPjz7TYpbHcjcdFy05ZsFohggLDZdEYn8anDbKhBPiT1SkRbIjLv+tPGerFV+/bIHGNkTCBgd+D78e+Tmh5wYoNY0pfVZZ37VG3G6JpmhRQhSyC2gC7dqldu2loohWyvYmxQmIRg+LUg146JNSn8yGJs1p8V6r6FOka5oJXUR8jea7jLmTRW2qhd9sZIsivUvf67TsJssVXuXnkDf+lI1vwCT7+HycpWeVSJkTUNuclozuYVLHMheao7l7aRQI0+07Yea0VBTia+JLANc5NEWRluCwRUJEa4e/V7yGaRbm/vMsXz+raYkguQDpwvcBk7AlDXPkmiiae5iHtMyU18tIThXLY1HTEgiDY+sXX1TEBnAakfsokpBKTSNpfTTIHgDAqS0dmQSQ92R8zixIi0IPW9QO3jqmES0eXsfqGi45ROuvROGucg5uD7H3oGLrHwtrecwVj1O58bcP0cNUpCVlbW+H7mSDjvC8McMlpSHOWlHRJ41gs7a0Wkw+KM1pMbo2DfltkJZzM8RBhRFnHLN4RqlMkZta1LTM8IYpUz1cp9tfWCTkxBfYhUhL6O4TPvgmYYlbHqehRbQTuuPvNKZpIZ1K6fh4k8Vdq4mSSGFBuhWiKxtz3EFoscdW6ubic2ad01KXe1hE07JoYaQlSJqmZZlYHkvfpSi6VpAKAFy0lMdfVmge3HcUe4ZwsRnrmnL8ee36uUJWsg2VJjib6+c2chbJ1YSprJlIvMjh57pUo89VcXyUigr6fUpDKN31SPQzvvByonFaFEnH14si7jOY+9nONUowKeH0IE7TsvO1ReP850da+KYUwGL0MM09LJfeT9PlWJ0Hk8inhoaEaLrIlYHv3AjAN3VU50ZlOCZ+PouiEHWs+Pok1JEfvu3ffxq1Vc4fy//nmSvy3r9boilalHBJv3/TST7b1S2PBSqTgJ6w9LCUDZBOuI8UXfSaRDqZ6YZgqkQECYnNjaBBN8Go0F9EWvhNmc510QbLuc8QdvhxtyPc+J22I2Xjk3U5i8PuAHIxDpDHNtQEa/eakR4mDZfMVtypQnyZgha4hwmftSeIojXxJYArUrYSJluzRULEIAQnJLHngSsS3PoSDphlNS3C84/nqCwy50QtKhi6hLZus3NgFBowd/1aIRhrlAWaFpvEzzUnBikWEkZ54J2EtPAcfpEeJjoaub8HRUvXN5bYydqI/y2L5XGdRQsZqGkCa2ZiFF8tdBTBFBT1Nb6co9bOz7HU99c4HBobwCAtMdRKszx2aCJTKKD7zzcp4QoQ/llImaNijYESqGT0M2gDx7VG3G6JpmhRoicmj3zST5OcHQvxBeSBpYcpThGS9aEk3pc6m5K4np8OrSdE3GKnFy0+BKolIOXr+QXbIkDSMD1SaErHx+/B3es0pGWaZnlsji90WxeB3QH0TlxWTQvTjYtx4quERA+L2Vanhrn32K6u0nE29DDze8lCfKnr7e4lDWlxf09I8pjnOT6gdaY6aeHXpiCz0vWkuJmlFl2aZo6dcM9oMLRCjW3UJCAt/OeVk6nQwVFHQpzlsb5GWHSc7jkCZa3KXAr/+v3j489DP4PpjjtkUr6f1aIiCz3MPJO+Yx1ARstjYd0yFsiLrr2S1g8gH3VWa3yNFaQiNcxk+62RXLTwmhZ/bWy1+PVXQxycxk5GN4bTma834c7BrI0Asec/Pd/h9HgAeuPY0cPCYm23RFO0KBG1lKPUhK6/Aca445XteZmHQKWHCd0Q9x7/9a1Wi+0uS0J587l8ESuwr7WfwXTfcWdWKbyo2Cx1DsyImAnEkBZDf7AzI5QFl05xLt/nfuuAB4sSi5RuYFVdTtWQNk18zjxC/PI8+F4aZto0AcLfzkSu70lLkBxiFJ5jmUzdFodLImqSZ3yhiC8BQjqYhrRobl0SWomLcivsjpqJ8M9C8HoW+UlAThgkRyuKOGMADdngLYnl7maqe5g210X7fvCzOZsVVuck6RCpe1hMcxIMvIvQz+hcihiSI83W4bRRpjt+LIJM4v9Wm3sYeq+oKaxJiJ9LM5O0bi1MMZatp7Up8alhzEw2RpPgv2k0wBWy9kqolUYPc0Yu+nqE7w/utRLFTcvZ6PBXm7ewx+eRFi1H6qGia7dGU7QoEbU8FkXdM/V19PhSJR7St1yRYJKcWUqXj1y/ZktszzF/cIvCDfyS+OncNGlZcxJasGpDOIPOQ4R+JupyhEKQJvApaAavaZG7+7Y7M54hIaSyMYtiXPPeBelhpxlpYYX4GYX+22TztzzgbEJ8bmPTNk4/6YgNfizPESbBANKcljb5u1K0MElwDK3Ez4T7LoXnzdCrEume7Jwm8/wrHVFurovmZpaqaeGSF8mpq7weha6mceA9Ib78HGuaP+4zBMPuYnS+CCUxRp+NdeolSoxGiTNd9WPr+jBWgAhKnCEhl55JgHxFhaQHyWWprK3vufV+PJrDo3ZVYsVaF4dIi31+mO+p0255TR1pbTSCeo4eNtaQFoxC46KFtUc3BTzJvxLoqm7Wn4LKCEi9RqGnIx52YzRFixKcnSeAjDyEmhaZxlAev1pRxLl7aTdo3D1M41T6hRd3PZrINFqocUhLQmdTK3AA/AU/hYJCN8HY9QMgcWpiIriEkJYUTUcMacklxJ/MCm96eflv8wV7QZQCn4eb05KVHlYT0jIQmgr431KKFjPwjAbuVqfSjQA4epimaQlRNfe8CcUUI8SPrmFMkp2KJKQgLalrjI7MaEVCWDRqQnyOTqY2gRjL5lTOuWZ7Sr/PWGNDpiTyhVpQFEWMRGIDirnkbt+SmWs0d8NLoIdpJiI53MMAwsQu1wwr0T3MDN9cwO4YQKaFA0DScOOU0IrHHHuIRg9z9xJ//NWBWw+l30pybgVwv7vWhMCalnYrNhOFfxZY4yGKtCgOtNKgWLceBW9RdZq7JZqiRQmJXiUhFbQISddfCMenmhamC6RDgRF4UoEPueFG9MFkEwTFCQxfk8exV900fDqDPX4kiQJwmwD+HPS6KFSvISbuPeGmo3WXLLqEhPjaxkd1NvYzRAq21OgLhR2ALiquGqzlsUKrqhpLPf+3MxF77lJDQiqLolA1LZSigDdRHJ6lL0YrI2hiULRULIBjui38TGgTn/G/VxfKh8hGMp0sgX6WSsfSJ9xz3dNwTdXWDK0o4jnzDFKECh4JKaaaE3FOS5vfc+x3Ghzf//5jDl3c9wmgO7JZethGAj1MSchzmHzgGTH0O8qnaeHXLfOZFkVyOMMeEw7xylS0TDnL4/n9vcD3ZAo3Togf26Nwk0hq6GjFr1aYY31q7LuUqJgakosbiuVrq61dAFizyCFF4fqy26IpWpSITayPDR6Kde2rwnueUJ4k8dw5pG6I6i4hmAkAyF241AJEuqakYWuJhWC73bLv2U7gwZvXzory4ddmKJjgkmXtujAyU0WIL3VDF4X28aYboBSZ6AP4GP5wSZ2+UiWkjmXdmhZcyLO2mwRpoUWMO374PAPowwoBdkYP4+hYoqYF3a/OCUhaw+Sigju+9vyrQvxEIwGOs50mfE+7Ht4iWU6i6ByY2OBQrQjkPkMw7C7SdLFJkdCdpUgI/b1iFtic5gf/nfuOTFGfVLQoe1rMJCA1JFfPXINxjZvkdoC05Dk+bpLRcEj3go0vVYgfb/ylHp+bWB+jrOL1VkRaNE2LUmBjPau93yprlsv/53Qq5jsLnmfutREnwJSm9G6MpmhRIjbzI9R4+FSMmF1oX1jgneiSFC1eZzZeGInTlRU0hD7MeMOUNDZY9B63eQ6/U80BjXYSY8MrAVznmZujEnYSXcI3RJBvdaRFXlzMwjmdFWjB1bqJ/KYjDZirGqUYtvzzkHTKNGpM1eBF4HrSUyVM8h5qWhbfNAF4vQaAf+9ynyOkh/FFRavVYjUAMVopFeJXntMScw9Dv1t0pktVpIW5t1PWsKpCdm5YpLrxY7qXprFjGk0pRRe3nrKzFxT6HEBJReGOH7iHRTQnMsIao4clIi1U6K84SpnO+NGNuKZFaiTiz7No0i9R3HJYKgMkIC01FV0AGd3DNHpYhuJRKn7Lf9PXx1W0/koNHSn3AtD1ikvIrlrT1pSfwawVtEEwv/4Upos6Y4ovvNSB43a9CD/3bommaFGC6jtMSIkz1QqkJvDSTBHaqWx70HV5bF1UryNF6vC0OV0F7z1BkTZPQIoiDc4E0IXBWmfWFoKRhAvALVS4aLEPsvCbAfg8VVXTwiWCSoG63A8Xzp1pWuaL5ILJOHaJq6swAkAOM4kJbdUw8x3ovINcn0FqWmAqF/cMHVzpeX+XkBYA/hl1z6e0Gba9wkizPOaohvHhkq75EktAuAQvRdPCzUXRBrT530+cjuUdX0ly2DkqyvE5elVKkUMt1QEER6BIERjMvSFrUeow0HD4I/8+iX4W17SQZ0ajh82fj7XtifeZuJBQaK9oWTQhF9ZGK5RfUHMiCfFjv11qqEYrmdCoum2VpeIXIG60gulhMtISNjdMaPorvDam2n8HVMkEIyQ6l467FnN8rHHG79GE+A097BwNydParPcSXQqgXES14gC/nj740kwRAEbsr/G7Bd5miiUeNRPgXo+FxJROFrUkTqSH0AIhJsQHCIsWPLmWvq/Tdt3u0i0pTo/iNp2Yrao0u4UL6b7IioJExP51CfFzmQkAyDSLFLQsJSR3P/xMcJvJoeW+9/dVpWjhBmSmFM4HllxhtMQUxfb4DCooGYnQa/LoYRFh9zCxqDDfKUYdU5AWyV48uHYFmalO94onFdHjKxpB3XjAvU7rLFP6llYA4usXNS0RCnDMfcohhzz9jLsuI8R3n6nasFT690WLFqnwskMNO4u6h0nzpfIUFLTQ9M+howOp4bQdctGyyD6VMiBTRFoGcaTFfH7O+lez9cZIS8xUpicgLTtZLzTnQ/x6AL2x2wjxz/EQhfgiPcx9ncMxdpfQaRiSkFgrRMxioQ6XZDbwonCe/6olnqEzzI/fajFCfPSwJut4OHqY8h6bQI3969GLFrOwmO/I/bfYLAiNe+2Or89podFqtQLKkFYUScWmcxLJkPBHBjNqc2pSo6qTU9XgrKcB8mtaZKSVf4YOEaSFQ9pMcJt/ynd0cNmdAxcwNLjp27NI8YvXpdi1cLN4NE0LRTbL18eRE9a+XOk+8vQz5vUMBTAlqUhFrqjDjzYZHkBCluJNHao5Ed3DhGRQ6ug6u3ZieSxSYngkR9M5UHc9iU4JIO/J+PiSVis1KDpmQpvEXiWsJpKsW7nsiDl3S3qORTUtXLPFRI4hyJr2QjN1APCbRNLaiIt3OkRUQ1AGXdcoS0U1A3mBOuJh/h7S0NFYMQBC00XJCfcM0vLLv/zL0Gq1vP898YlPrOvaznjI9C1+U6ZaAc2PG0C+gTTNiekuBxqPRHpYNIEnnTgN9el22pZjnVq0aPQQ7vPSBD7FkniZIC0eWqRoTlKSNPx6TjMjvW8f2pj7XX7gFf7vALKWIgfSInUsc2w4JrjiK8ZHrhJc8QgQ39RSIybEl4rHpV7Ho2xpSRiXYMSaHQB+0YL/HBxf0UiI9DDUKIjO/eDmtCR0+vB7JL0ZgI7WsUURw9nWnk034DOke3FoINfFVlFWooHx6GEVNTysM2FQtMSphfT4+BxBI67nP8MxSozUydUMTvbRoqUinRL/Pcd8KYk6lMukZCCsW7FnLfn4QjMHICM9jJm3ZiLHPiXN+yn/Td9r96NC5YCwNnLjI9zxTQEcfkfYhCf2LEhOfSn0sDFpQmjOqgC8+yGfE8rf624JeXUQ4ilPeQpcc8017gDdyofYNSEtwJI+otVqwaDbhu3xzENaok5awvG1Cc7OoleuqnmnHvdntdAxnMqIxXCv0/ZcsbQHBl8/ptxZNyCuoCALfIoQn9KGPF2O0n3whPgaPYxDWiIbzgramOkmHRxfKmYzbWoAcscyF0oBwH+OrJoWBkUAyIdIWUFronsgjvNW+nDk5DYAROhhTBKcUnQdSC5a3L1aFAW0Wi1VCArgJySxYaDcGqm7ablzliYQvTSL5ESnPo6zXdlSOel6Uj+v/3o8d4FrXKgaJxZpIcNxI4m1aUoFQnnhnqNIYIwSI00a1xyfKNKyoqyPkpA461BcAY3KR99y36l5Jsvj56Fucc+8CU1kXiWkxlpR5HFxk7RXANghjz/+JQeX7J+ltRHfJ+NpAZiRaH4HzpYfO1bGtDvm/RNSFKW4B9oRD8qz35k3yYuCd1dkcx2BPbCbonLF0e124eKLL67jWs666AswsSo07ZRFS6lp0ZOPmK6AR1r8TURL+DkqQCyBp10mC2UqGpXhxM0fiToTKcJg9vOaBX6emKYkvVTT4iEtkY1fE+1K11ReVwyydqui5vYEEC8ociT8jvZRTzexPIaSEGbQtGCkBW/OKUVFSohd44TfARemlBrIncM3dSj/X7t+fMwLVvvi67BoeDSdwaDbiR4fIy0x8wfuO3KFb/j6Vqu0JMczi1KE+Bw9LMWyHUB3ruKPHy9yUodjShpBmT4b7jkpc2mo+YuElHbtM8kn5CHS4hdF5jcTLY8ZjRCA3jGmTZx9KfQwQql2epN8DR3RTGDBdcWjkU9mdh2zSfCix2eeeRN1u4d57ngLaVpcwk8Lr1gOcMkhV7RcuI9fG/HnH01nsAz4O5KbEBbFQnNaZH2Xnt9pw7RNUa6tja1WC3rtNoymM6+4s+sjlxPuNXoYAMAtt9wCl156KXzN13wNvOQlL4G7775bff1wOIRTp055/9stIcHEunDUdU5jQ5A0z3np+FUsgLXhj9LxKWc7VoRQtCiGhGicbVVomojkADjL4y1S6Eifg5tyqy3qHOUmBlljBymNLgTgvqPprPBg36z0MEv7kCyP60Fz8iItvl21iVzFHUUdTdikVvkdcMJz3kq8qGDpRsr13/LQuv3zZeevyMcnCRJAvMDGdMmoQw7zLMwi696ArAEab5vrDFZFQrR1mHMC1NBW7tlP65wW3mvl7my1+4GavyS7hwUD7/jvFK/XZRc9rbscUKuUYiqghylIi0QPy5WMe+cQKW6LFi38ujXOdvzwmXfnyERxE2ybcfG/yB7CDdKmf5eOf8nBZftnaW3E97mECnLPm4+0RNZG8uyb0GQDlB4WM3My/84Zg6QYLe3GqHRXPfOZz4R3vOMd8Ld/+7fwlre8Be644w54znOeA2tra+J7rrzySjh48KD932WXXbbwRZ+uEOecKJ1EvKk5QRR/fIkeNlXgPbppWs2JtoEjsdkU3dz8e3x4P1YkuMLO35Sl9aqqkNV2NokQvxrSon9mTtOS4k7Gi6f5D44LFc0CFyDslIXnyIe0hJbHcaQp+RxqApmhaEGb8/Y4pA8taibAzfwASCuKnnH5+QAAcP5qXy2wNSG+Zgbxqhc6LeGjDy2Lr+t32k5nN/aRDbGx4BlTpCXB3MT3VLRVQx80i/RUpCWFfsabajDID9PpT5rTQjQnouZPQ66Uog5gjoxFEymeviV1dCmNJmZ5LNFPtPuIuofpdMrwfgNwa8yi0+oB4rTQHLRT+0zi+yib3iR85k3k0rRIFGY8JHeRwqjvFS3pRQUAwGXnufXwqY8+yL4G2/5X0Zzg2WBx0wv9WVOH7ya4hwEg7Q/63vWmN//87KaoRA974QtfaP/8dV/3dfDMZz4Tvvqrvxre9a53wU/8xE+w73n1q18NP//zP2//furUqV1TuOANmaefyJ27JKRFGCLoCoXwPbTDoW34PdKt6HdbPtKSwKlOF9aX16PNjfFe76E/8vVIAztThPiusDNJGrA8cg9pUVxu3DXNFy6UKMeSO9w9TEVaAMpNxzTqYx2mKhGzVc5BD2O75Anfb2p0O6WV9GRW1Iq0pNrD4vhP3/kEGPTa8F1PuUQ9h66Pko//bY8/DHe+/kXqsQGIzm6SRrHk5rSISSpT2GnuNfg9do1RUEoVeUgW7seLolQNCVtkzu8P3o3R0L38pk6soOPocPysBsdrH06nUQqT5B42EdBDv2s/jSIaMdpQCj1MQ1pkk5I8yTg+RkAPy4R0t1otWOp2YGs8ZQcUL/oZuGc+9zlECjO6rxYxc8HfsehEJ/wOFx1Ygiv/z6fBSr+jNnR6nRaMpsxIiwQN2fZ46qizMaSFDg+vgBTH9kuOymhOxw8P55+f3RQLqegPHToEj3/84+HWW28VXzMYDGAwGCxymjMWFHo3N2yKzXCSXahED0sYzuaQBxCvZUCuv99t+xPuVQ62v8lKXVk6jDLWJebF2XJSEQyXTEJC/KIiJpLH50ihR3F2wbHrwuhKDGmRkvFcrlgAStGSdbikjLTkKLwAStRrfTjxndwyoUWipi2h43rxwSX4tX/1tPg5OLpkQlFUJQbdzjyBoc9QPPEcRRIEI+zm6FupjQvt9dqwRU3ov1Mhe3k9cqKA3bRMI6uKpiUVufKemYider/jdIWaSxe+RtHdS6CHmWtKtVSuMoMkdA+TmzoSdUsbXlk1Ylq2HIXRoNcuixZMD8ukmQEIn3l7DmusseDaGKHptVs6hTsW+DuQ11/5+D/0zY+JnqPXbQOMpmLhxV3/Ep5hNdHvhy6zNgLodFXayI4jLWFhpBk5Sc/PboqFnr719XW47bbb4JJL9G7ibg0fogzpDxoSMsL0sIrDJbUblW6yGhToIS1UuB/txKW9XrQkFtYTPQnRi8DYa00Y+tbWKO09ng4pok0BwGYI6dA+3oi1Tdmeg+EMx3QzVUK2PJ5vajWdI5dI3oT5rTdHnLvUojSOEEUAyOywxt1LGWmAACEyqAnl8euHk2kC3Sh8nlPnwASaFpWOxRRFzOG5DrCGUKpIC6dpmScVRRHqVFLoarF7k6X0VigCY0YaRoNEu7/SOdrtlmcOYBENyU1O6MBrCXmn3fIKl50gLRpaVzXcZxA6/BnXRr/Zon+3Ozl+YLQy05HT1JByl5xokRPj86jaoo0vCXXQhuNipGUUedbMdzwRiq6U9cutRXph5NNJTeEo51N7RtPyyle+Ej760Y/CnXfeCddeey28+MUvhk6nAz/0Qz9U1/Wd0eCSfgAM7+mbYCz54JK6oijAMLhY9MQKd2kCwm8G5t8pR1K2JPYfgiobJn69eHzidgOg63IkephqeSw9+JHfoURa4l16PGDKRCyRxTaemqWnPQdLGzKLaQ4UhKcm5kzIua5O7oTcOA1tDCfBOfINl0ynD1QNKkrHx190SJ49B3EcTEVDh5MUW0+5qIhpZoZkTUqZ+B67ftxEoUl/DuE+Rt+HpBvKzoEh62nMUp1SegHiKIL3e0WKIkPZkS2Jw/fZNRjZvFahC8aOD+APZN2/lGJ5zK9bORBceU5LRqSFQfhyuYcBoKGyhB42ylRUxJD6rDS9gL6Vp3jciaZlgAZXO9RUKijM8YUGQUITJbZfcmJ/zR1S0mvtpqhED7v33nvhh37oh+Do0aNw+PBh+NZv/Va47rrr4PDhw3Vd3xkNk/RPZ4UviLY3dfgevBhNlYoXIOyqlTMU3M2XQpfSkBaA8sHcmk3tTSrNmDFBE00NVTLHB0BFThTJ8WHfpXZH7QzQpCVp+CNy+PA/Q6zwmiZpOrjueGwh3THSMg6TtaxCfAEaz7HpmO91OitgOiug025lFfoDOKrdBoO0LKrLkbpSKYVtavDDJfN1dAH8pBMgXVcxmsxswhyjA/mGEfr1S40O1U2norDeDI3rdlpJRdEwcQ6MRxmezAAGaXNajC4ydv9TAXK/20Z0QanIxEhxjH7G08PGMd3PMM2dTBbi6/vUow4swb3HtwCg1CRIIY8JyPdMykNlMz73GpKesygiSEu2OS0RelgOmh4nMgeIF/6pETel4Ohhbu826L5UwMeOr81RoU6PMYt0r6meMKdlNyMtlYqWP/uzP6vrOs7a6HXmRQvDOY/ZDKe66AA4zQwWyvPuEgR5KORrMde/NU5HHXq2UzZHQWwRktZpjfHx6Wde6nWsLifF3Sc27BJApqylIC0pizpXUMQ2HIyuLEc0Lf411bOpUW2UiVwbAj4HQLlIdtqdqL6oahhaiY+05EkuxE5cTnoYg3jFzCyqn8O/l2LXj9cYsw5I9xwrBFU6fQBhwqMK5c0mztFJFSE+QPn8dzttVQvG0Zli6LXRm6V0Q+n1pBaMAOX3szrAdsFxmrE2kwZA6f5qZggdt1YMI+ujSDtNLHYA9OG7UrKcq1EBgLRskmtgRst537UuT0EBoFkS602I5OP3eKTeUZjz7VGy/ioPWhRoZjRNC7KrXtsu95xYQyfcP+Smjrv3pvP36uuF+Q4MwloeX6GrngPuYXkyh3M4uM7RVEnk8WIxUzZXfGwAQEiI+++65TFxAhJ1M7ywK2phTC2PhTUuKFoiRRT3mdOE+OnDJSkSEkti8UY7tpuf/GhYS+XE7iyAPzDtYqWT6K5JFvvn2JgdhY5Ok8/XTfRc0GhXPcNnAABYmX+v66hoya5pEako+Qo7Th+VC2mhFt0x+pynaUkcLskZa6QO1VXntDBFXYrwHcA1XjQhO0fPS3XscWtSfP0qXx+nb3XaLbvWplJ0vbk6Mc2MwLNX0Si0ntrJ8xXdw2JDL3/gm74KAACeePF+9r/T44fOXjoaVSUk3aXpJy7iimWCQ0JyFRTl8Xn6lrWsXlA3I9P0zP2RA2kx96qfYOdCoiUnPY0tgu2q17bH5esier9Z4Z7h8vjl//NNGjNo1Ke2Sve11f0kaoQlo4zdFAu5h+2F0ISa3H3kdb1iXTUmgY9Pb/c75DGNB+18xbq4Eh0rdYJzjK5m3G5G0xk6R/nfWGSJdHRSutw0kTJfaYrFa8rGwSItkYX0sYf32T9ffoE8DNCeg6GgaVOlq4YsxM/JSUZUwESObtVYJjN58DkW17QYeL/UX5n7M0bXqRJVNRuLnGNI1oAUrV1M08Jdf0zTUmUWAU8Pk5+Dbtu3AAboqfccT8+Lr5Gbo2ka0oIL9/EsWtABlHvI9niGvh/9PW4uFUaKJaTFrNc8z577nc0ztoXEx9I8lJgVrtTA+1ff8GhY6XfgWY+9kP3v9PhGE2mfyYwGIpyWDd9/OZoVS9z6nlMrxzS9ANzvkg2lkJCWHPuH4N6YS78UHx4eHh/bVZtGmVTA4/vEMA3K40eomBCujVWQU00TeS4I8ZuiJRIcfSPFLQZTAaTkwzizjKcFSvrdf68yIT7KeQyQkzROcvT1ApKjFhVdv2hRfcsDjmf8+DQRsZqZGMd+mkYPo8MrARC9Qlhcnvbog/CL3/VEOLE5gmd+zQXise1nYAqjmJ1plTgd3PBWq1X+1hOUgGXWtLBJfyakArv4jGczGMw3nZyFFzf3oy73sKFxD4tQOP0iXr/nNEQwRdMyQx3squ5h3PFL16H2vOAqyOuZ4zOzslKn1ts1SUnIzcyM4WTmubFpv22vMy9azPoVKZKxxbsVygtFhRPu0mRTfi7Nere+PbG/lXR8832Gjph6UdFut+C7nhp3IeU0keX156NUckgLFjrXJcS39LAM7mG2KBrXRA+L0M9yFHY9CWnJtL7HrK0l3e/S3K56PUYPQ8+rL5SP07eMDjRZ08JprhVNy54R4u/F4DpH6sT6nks2Yzc/QHkTjafTYOK7fHwfVtZEV971JwrZ6YwTC5UmCju178a7piFTVKjfJ+Hjq98p7zgW1bSMp0n0MA56j9EyWq0W/PRzHyseMzyHPHQwRzeRS5YBkBA/V5d/nkCm2NvuJNiJ5pmQFmp5bqj2WTUtvXATiVmlVz6HcbtLFHd6QvxIksMhFdE5MGjjxJt5sntYrOgK7jk5kdLdw+JFHX69tr6URctMLaDsNZHuaXzNDpEQ2aJ6vl4L3WXuHAZpOTWnwwAoRUvNHXjq3mY+e6zQ3Mk5vKIFIy05hfjjULOYlX4mCOUXpoeJ2qU5/Syne1hN9FwJyYk1IMvvdmw1LTI9DCEtc9MOgGpGH+nuYe4zpIzB2M1IS57M4RwOWpl6lsQKJ3E0nUVvfoCwKIoNf6QdjtgGS919qohwAeJuYwH9LAUJCShrIL4nGC6ZIMSn74kOu0MJfEqnCGsEnK1qPQiCP78jIz2MSZbLc+TZEEyIFo6Zj8+6by3sLoOKlprcvU4L0kIL/0SK6GRW2OaFiDp0wuQrNgcGr3l4s9U0KlWGV/ZI0qlqWpj7p+pQ4KiFNGo0pdz/VW1Pl6w+osJcHbTP4HPwSEv5npNbqGipqGnJNRiXuqvRP+fR4oXda0y/yeseFn6GuoT+5TnyFHcSvTjnkE9uBglAPrRenNMSWR/N87A2NEgL/13i92MHNE1XTCUDMZTVDYt196f2LHMjJ3ZbNEVLJKQNCiAiWhzPojc/QEg/S9WcJFseS0J54ZcfEKQlPteFFkWgXo93TdO4mxG1hU4R4tPPrM3VAXCfeWs8dfSHBKQFABVGEdeeqsG7y2TsJjKuTOU58iXkADszUqgSHL0nF9KC5xylDkOtGtw8HlsAK2hipXPQwj+GDPTc/bUx1IuWHSEtjO6vfH0aEhJ1NOzwa3bynJZEW2LaOIqh1yU9LJ5whY0mPRFc7iNNSwRpsZoW1HApzyF/p+b4pmhpt+LdZcnyeNHnHg8dTB0IWjVcMst9Py1oZXgueXpYvvWdG14JkG/4ozhEdGL2j5xIC19gL/oZRCF+lB5mzF/K50EyHTD6XXoOjQ6P84fhdBpdq81ziCl0LocMX0/dDHdjNEVLJGgnF2+yWqU8SrjhuONXRUK0mTH+9SQm8BWRFmmDTRHKp3xmcz1FUT74KYP3JDQqVnhh29wUTQtAOAsmn3g6dJfJibSIwyUz6mYAfJEwQN6OKECIGGGNRA6ahdlE6kJCaAKMj58PtSN0JsXSE8C39TxlHXL09Wgyc89mFKmwDjkOjZZez7kUxZEWP3EeK88mTr5mwfXrhVqK+yGA//2n3DsS0lJN06JfC4BLpIqiUBEg8wybokWjFskGH/mSWY6Xn/OZ5NC9nCgIQIh+4nPkcQ/T6WELz7BCyTju2JvfIQc9rO45WVFNS6RxHKOHlf+tPMaEWb+49dfoQAEMPUy/77jPoOmQvaJol+pamqIlEkHSX0Q2We+GiycfItUgVaMSgQ/pg++cffjrkTQtlZGcmKYF0jq/PqpRrRBM1fGYbrdZhAD0oqXbdrakdSEILD0sI5ojTjTOjYSQjl92TQtqEgD4TYUcmhCWnpTTPYxBKmZKArmToE5FsQGw7XYLVubd9RObppsoNTl8OgNAQuOF0f1Jr9fcG2OujIGmJbK+BEVO4gDFFE0LgD9HRbt3Ane1CEphEtRS06J3obnPi9kDqqZlS3dLKv+bK0hx1LF2jZlnMq9JSdhIyKX1ozbkAHFdZJUQhfKTPEWF1LHPSnETPkMu3aU0/DG2/tJ8QfsuJftsAOV5RutXHGmRmQC88Yj7t92qa2mKlki4IXx+0gWgT3AfTmbqZmmPX1lzwicgYpET2P9WRHJSNTP29eW/q3NUKhQ6lOOZIsSv+hks0jLCRYt8/FarFWw62TtxisA856Y2ohtCRk4yQOi0VpumZZyWgFUN3pI4H4WOcyesDWkZ0+dBvo9W564DxzdHAKAhLX5TAaDaHJgY7YZ1cooOsCWOhoq2kEu+UjUt4fepf97tsZt7IyEh+PXDcdr36VkeR+g/vgUzU+grRYtDWjrBa+zxRaQlX6HPzZrI+0wySM7pWN/r0LSQ4cH2/sgkxAegupx8xaM1EBEGIC+MtEj23BEkh5o/YOYFDWybbyKaj2DNX1TT0p5fc3h87i2YsrZbHcSaoiUSmlA+5nYTo2F4xw8SeP71tDOr3aD68XX+Ne2Mx7qmtKtZ6TMr52i3Wx6dLEUnVFXIaj6D4e+n8JYpZzg70sJ04uximrFbKScXebv825O0hLBqhDM/3OfJOSCTLSpqQrxyo1GiMYVy+fvnRYub+ixsmp22/Z5T58DgJLvK4FcTsQS1yvpC56ik6OZsoZmMtDAW0irSQpsuOqVnGQ27jRUtxmYfX79f6IfvM5oWQxWUZrQAaK5S+ahPXLI5zrhucc9kzmQcgNecWGpfTZbKAHhOSx5qFQBf3OUYLslR6PA5Fr2X3JyWwvv3WGOU3v9LPfn30pCWFDZN3D1sXhTh9bGio+xui6ZoiYQ0bBFA8MFGC15s8/ZfXz6YyUjImCYI/E9JB2XFOt0SSiEPiqOvB/X6AcJOaDq6NIu+1n+9X1DENC2xBM0/B0Va6tnUPFemjJaYrJV3Zj0IAKJBzD9Hdk2L8nxmQaR6foKKz5G3q1ujpoVs/naNUe5Vg7SY0BIE5yDmIxtVkRb22IolsfQ8S7OsuPvB45Cj2VrS673rNw2Lqf594u8/pZsezpmKIS0uATbJi24k4u8huEu7qKbF7mdUoJ1TB6ZQBmuboZIRycHn2OYsjxdEQcrj89SqXEJ8+tzY49dCcaunsSbZ/8ZyDIqsaEhLl0NaImMkqkgMOKpkLIeUzDJ2SzRFSyQkpKLVkiyJXUKeAolLVCnRPlMUmaddf0xYT5GWeNeUf31sNg1ABUocQnOqCPGNQ05sw9k3T9BORKgwOEJEKvemxtAHMiazA5Jolsd3f85GDwtmhGTWtAioGoCMVlY6voa01NTVzY9GVZsrAgCwOvA3YnVuEdXMJNIrtsfxTZlz+EmeuzS/nnEMzZHmxsSSip1oWhK0EbLjHv8eTMG0mhaFfhZcP0peuHV7yWpadH0T/m+BO1mksKsSnPg4ZzOE3s8A+Wmtdk9jPkOOwovTzJTnmGtachRGzNpo3cNqNBPI5bImC/1jjV3/vMsqPSw8R4zyhZ+hGMrKWeZX1SHvtmiKlkiEc0jKf0+B3lKSD3p8d0Pzr++ThNzOjIm4e41JgSB2KXt8giN3NavpR8pzkE5lDC5FDkuaXSC9plkx9yOPPMQHlnsAUM35JEBaak40AfJSLLhNE9sm5ioq6GTmuue0YNFyDmvSnQjBqwTPn8+MtAhJsNZY2BcgLSlJNm28VEBaYnM/pngmUqyxQzQ8MSF7L7we9fUBuhejuGF6WALSIiAhcaQlrmnB1081OW2hERdqWuJICwCdHTG/rrqRlpqfyWxDd8lvAIB0kRk/Q6BpmeQrjHgUNN/xJbQol+W8hDjE2CXGpMRep0IP09y9YjnkMEHTwlrORzV/4d6/m6IpWiIROsWkcbBLT/4KmhbiTibzKd0GWIXKQOfAyIPK/KKoKjKTVLRQpMV85ohbB+5UpriT2fdEkpaD86LFRMqCG3zujJ1EAL7bl5OCxs43wUVL7mnsNWl/6OfIaQsNwCMhWd3DWKQlM4VO0MFpx6f0MK2bKDUuYpqW4XiWIKp333GqUF6iV8VsQwOkJSbET9XMMXtClSIwNjsJIy0pughKSY4ZfCz3fbQrxfIYgKIIOdcupsOf9ZmUG0a5DUo43UwWFITZPwAc6pjXgZKhuNVpJpB5eLA4YFm4l2hDR6OHsQV2BSQk1T7eoy9HdMuNEP8cj5BeVf57yoZmnWIS+OCUkx/ja9PBbFF6WGB5rBcI5hw2wamqgdmJED8ifBthnZDaqURFy3gaTdIOrvhFS8piKFFucnT6yuOHC3bOhF/rkuU6B4DfBcYi5+woQmJCWzW4OSHninuYdp9X2ZgDymqkWVNJ08IIfqu4k+HXi8MoPfMUnSqFrylVk4eLtHHCvUMTzljRxRUtKUVR6vXTgjXF4hUfv/wM+ZNl9pnMabWLUZDazDG4OS0ZC6/APSydTRALbg9xSOLix19iisecc7gkTUtME0IbOniuFQ2uQEh1Mx1PZ1GDCR51BPU9UrG2W6IpWiIRzBSpYDEc88znjh+jMslUBv4cdHpwqugdALw5CslISwXzgbBQ018/nEyj11Mex3cciyU5KxU2ZRMD8rlzd/hVMWhNrlX4e8pBrQLwE6pJwv1aNUSnuEyIF7U8x+fIq2lxx08x8KgSdE6LuY80tDIsWtLXsFT3LdzYiW3gAC7hihVdAb0q0iXn0GuJKgWgIDlRHSJCfVOE8sGazb/HPGObo2lSp5v+XjHK2oCujwoS0Gm37G9ZF+WRS7piaHqV4Gdk5Su6ynOEdr610MPQZ5jOXNMoJ32Lp9HVoy0aY3fIjAMyccSQ0/1LO18bAdy9lIa06M8md/zY/iENgN0t0RQtkTDwG7WfTKEypfBHwwS+/PcYPWw8LbybTqY++PBhrCjqIQvT7ck0XkRJTmAJQvzhZOZN04279aQJ8QH8oiLmsNbttL3kaCfuYSnd6yrBbpw1OLPUNVXanqcXJoQAdWhaaqKfCS5ruc5hfodZ4TaznPQzALcGbFOkpQI9LAlpMcePmIngRkfsWtrtlv1vqRTAQGNTwaEspegN94T0RlNK8ku/z9hzaSi960M0Z0qlcFWj8wVIS4S+pE+sz9jhZ6aM55wPwlG36tKZ4XNkoYexn8H9OYdDGecUN86qaQk/A95Dcg2XlDQtItLSr742jryiovz/lKLCFeN6bjRiCmzRLVUwINgt0RQtkQjnkJT/HkMehgme+QDhBpi6IQMAbKLub6plaErHyy8Syn+rOtdFdfdCnUqPQx4p1LAlaSxh9Lq5CZ95GYnrduIe5rpkmegDjMAuZ7eSEzjHuPM7Cfw9pegFqsZO7u8qoRV3Oea0DBC1IDWJrBp0k9qJpkXfmPm5JdLX4yMt8WupTCclHdpUigUurKsgxalzWrbHsySaUVCIR+5p89sYy3aANIevcBgo/x5atGj3Ar5+3+SjBnpYXeYYnLg5M4JLzzHLjYIwn8ErWnL8DhrilVOI76FR+fYQM3oBzzgBiK+P+5bS9X5cYRdFl9HzkzyIkimKomZRTdFyboZkzysl5eYG3hpN7Xu06cc71cwAAGzMO2sancdNZCVIi4KEWErPZJoANfpFl0NmxMOj97jjAyTQwzDSEqEvcd1ctWhBC89CSEtNOgSAvLMCOIFz7lkzAL7l8RQL/WsqKmpDWmpKkLjJ0rk1LdIwQe34+wY0UVU699QNMGJKwSMt8vF7ZA2Oa1r4Z1N6rj2hfIqRCCkqZpEi1hfixymeoTOh/tybhsvafPgjQJpFdeozs0zcklb7iUVLTTotzfI4p6ZlOisc+plRk1Oew1/fMe0pry4nRHIA8s764gqjLEL8+fG3CcXNxKLrL82N6DlEelglIX6oWYzmeIwxSBSV4dzJIpoWaiW9W6IpWiLhFuA0u1BbtIyn9kZNEkVOfU2IlJR32y07fwIXLdHjE6QoZc4JdveRXk8RhxRqyxJyBak0zA0XUZFFkTMs0L4nbGOYomlZIs4mtQ2XZBbsnHzk8hz1JPwAPk3P4yPnLlqou19mmh4nKs5B3+ow9KfcVEMqOE15HvYNnDlFF2nEuJAsj9M0LTtHWmJzFOiE+0oc8qxIC1qLEjQnIr1NKgKRxTtAOUNM/T5J0hJL+GkneYXQY6Tjc3bqWax2FXFzTnMMAKahk9sKnphXAOQRyfPuZK7DH6NXpwSXkI8z/s6DHtO4M9SnVpwiHguHQFNNi06voig0ndvC/Tef5q2vMZyZkzgzipm3FnUna4T453ZIwyVFqL7vNhBTVFTRtMScK1qtll2QDIdZE72Fc1rimzJGWqYR5CToalZEclIc0NgCJIK0YKvdFGEz7iamcIrt8WvSUvBC/PzdSgB37+XsVppYQr8DTh5zCf0tvTLQa+RZ2nj3sHrQHCqUz13YBUJ25TvCNuD7l7rq71V1VpNHGUy45+RhtOnICYDcXcbHrzQQmKypsqYFu4fFv3uKXMWKIoqExBJGcz2pSAsVHtPBo8HxOVepGlBi//j5NTMAoZlDdqSFrL0AuYX47riuiVpjQ6cGxIsf8rn470wRXBMxzQmmh/W77UpOqUVR2OOnsHViBhPcvLXUJk2jaTlHI9yg9BsCd6VOzTnGKb72qZbH+BwpSIvk7JOKtMTmtJjXTuZQuiu6xMOjRNYX4sc4mNvjqRumGVnYl7BuJmFeDv7daBKgHn9cT8LPzdYoIotplWi1WkHHJXfCD0BmctSA5FB+bm7BLEt1qVk3k2JmUSWo21LMrQ8A4KIDA/tnyuGmIc39iGnUZoUzB0hZwyhSJG/kvPlD1DxlHJ/phK8nFMrHi6hxQuIYFIGR9YsWFbFOPUVaYs0Q6iQXRVqUZybLnBb7zLvfNqflMUY/w+HBeZH0ck8r7PoVQ8nSj+8o2CZyWioDhCwU7xw1zbDK6RInWR7Hmka4oaPpWQBke3QArQlRPl+bozh9lpu3FqPQY7fB3RhN0RIJCr+luG/RmzFl0Bfla6cgIaYoquROFhFpAbhNfHs8TXACInNdIq8vj486rQnibLMA44cstrAPvA5/vMuHCxU68VY9PqUN5naXIZbKAPmoTyHNpQakBVt0Z9xwTGD+Obb0zI+CnA6kpSZNi7jGyM/oRftd0RJLgoMBtjH6FtLHmMaLWiRUnIuCk52UDjaPtCRQbhMbWZzFs255zCNvEqI+6Pp7jkZXAdA0Lfz7up22p2OJIS1uTwuprTmTTY6WVNcclamhVmVGWmaFafg5WlUOFBqjq+a7N/d2DvoZAARDogFccZdT6I+pczkROzoOwkTM+OKC1b79M9aRcUHXRp9Zwh/f5B9b40mUCisxdbTrP28+l+7E5ki99rM1mqIlEkFRkeJE1UuH6+mGnCaUL9+zvh1HWmg3YZaweWABnNuQ9dcC+J3NFCF+KmXInAMXLTE+K0ZaYpQ+AL9QSSpaCNKSU28CIFNuAPJ0scpzkGS5hqLCzWlxg/VyJeMAxFBgEp/7Ufn4xN0PIP8smLrts7FwuSiKJFQQdxNjgs1w0GqELoXNREamaElvvFSZQJ/S2fSNPqogIb4eIUXTMk54xoLnMnK/tVotj2cfQ4qpe1jK/XAA3Q/JmhZGT5FzxhRXFGVrGvXoPT1f37Md3983HUJRx/HL7ylFY1slKOIIgOlhGehbDI0pp4sbZ+gAEG8a4TwFLS9sSPo0AHkNMPnH5ihuDCI1vLT3nL9aNqSObegF19kaTdESCTqHJKmoCDjGO6Fvydfk3GIqIC2ky6ol/ZjSE6OT4UGOuAjR3L3wlPSUgVpmAd4cOUvPZMtjhOaoSAumh/X0TRnAzUYwSEvuhJzS7k6LXXAt9LCwAM7pTua7b02z0lAAwq40QP2alphmo/Lx599FQbu6yvHxxlzENmahgJfWyFarZe/vFIqrWT+DWVkxZGM8gxSLVGyGktKUEi2YRQ0PXotm3jHY6yEC5JRmAqZwxSgrVd3DAHwKWsw9jHMnmmRs6mhairr0GrmNVjDaMRyj8QgJesrqx/cpzD3FzbTSORjnqpThpqnBaU5yDuB0RZG/wMXmugH8f+2deZgU1dX/v9U9Mz07zCA7wyKICAJBUERRXFBQo7jGBMSYxGjeENckb+LPkLglkMUYY0wCEfMqr8YYFULcoiZiXBJccIn6KioqBkFQkNmnt/v7o6eqblUvdWu4p6tr5nyeJ0+Gsaf69ula7tm+Bzht2nAAwOkHDS/4Hvl6ooECLQay0+Lxed1OUVrh+P1Dnmnx3p31cfJPb1eL2gOFb0Rup8Wr/AywH0qtXQnP18Z6kMmRLwSV+vpYWQTxVNqVafF2iuRG/EIPM7uHR8q0KEoed0lSuwV7WqTooVqmxdUArrAR9IMcKYunaOWC/URc/b+HnVWjyOSURQwYRmZjLWdadEUscyohETmoqpkEv8iblEQqrVwGGI0YSKUFpjb1K/i6rFIaxRKrrmTaCrwU2sRn9bR4OBZyP5i8IffK5MYdr/eT+SlsT9lJUCljylceVsieslPhlWmJuZwKlZK4+kop0xLrSU+LvmvGlqq174m6SyqzvgPNTpEZ7Iun0uiUzgtdWZCy7jL1ZFpIzf66qwEKZNQ0PAdzSRJTlxkCaufS9046ALPGDsCpn1F0WlLOfQKQf09llYf5yLS41W0LHb8yR/N+mOBMiwf5MiGqUXtAbdBXllOkoL5lqocV2nyU98DpqpR7WhSi47Fcry8oeSxncrw3UKZD0SJNfPbT06KyCTSjDwBQX6WQafE5wM4v7kiZmckxjL2XerTeI5+UrNbyMDurRnF8OWqvKqHrh1zNpvqV4nLfYyjOpc5EWjka+uhlR+Ks6SNwxQkHFHxdT8rbYq6+vMJ9f3my3QrlYSob/gqf54/7+/JyRJySx973u3znQ6HvS860eA1/zK8elv87kMvDlOe05JhYr2U+SKGhhrqyk67SJ92N+PJ7xAnKw4D8QSldPS25+v2sLK6GjFHuMkP68jCvnhYAGFAbw+dmNHkqjbo/g0rFhFnp0R5Pel6bWcqKCnPv8jlrYYGdFg/8DpcEsh8ahQd9+ZOflI9vRilV6qP9RHFzbQJVX6+WabFvpio13qYT2Nxh12B6bRjlTEtaQRxgwpA662e5nj8f7uFguvsQzEgZ4LSrrkwOkEt2U3/5luw8Jjw053uKo5FaczSRelBervfQnWkpi0Yc5VhJxWjovgNr8dOzpqKpsbrg6/KtX6VE1GxkLZiNzjNcMr+TIDW+K5wPOTMtCiW97nt2PqciVwDFj3qYrYiX/zPICm+qikbuzWzhTItUHqaYaUnkciq09LTk6jPTmyXO6tMiyELLGUTd5WFA9qyWuObPYClX5Sjf0uF82f249kZc72Df7EwO4D1nyg92b1T3IFop4JIv8yv3tMQ9Mnzy3ksI4arIUHN0wgY75gPp9AAAWzxJREFULR7kndNS4HyWHxoRQ23Ql59p1VVZTot3VqPTpS6h4lTIyluqr1fZ0MmSxyoRMvMibjY3OFHvOR+5oqeFbkIjGqqsn1WcFrlXA9Bba2vinKStd6PsPj5AlWnJ3kDqjFYC0iZG7pHSXduesxmUZoOkcs35xYzEt8dTdtRYs42yz6NCjoLzHlY40+LcXCirhyX8D69U2cC7o6def5O7Eb9QIMtcv8ueipkWzzkqOeTUvY7fICkmDetflfd1QHb5GSCpPmnpdaAtGwKKc2+UzyPdpVuA8zoAIMlt0wV07HuLhvKwXBk7jff3XE4RQDMPLasUs8D+xVYPS1l/ly+jY95HzX5FR6Ylz1u4q2/CBjstHrhvXmmFB3K1j0GF+ZyiQlFK22nJbOKVSg3MB6DC8XNFKgtnWrLnIqg01svR98LlYWamxVt4wERWTVNJ9w6qq7R+3qc2lvd1JnkzLTozITnmTVBMq3erPlFIHgO2kILOzwA4HQuy4ZI5osbaGuWz6uf1O6jVMbuk1K7P17P+npS3WdnT7ntYRYHm4KwSCw/7yJncpC81MNX7Vx5lqTz2dEi896A8TCUgIjst/asr8r4OyF+yUuj4k4dn+poaayo8gzruRv90Wp4xpaGsJ2cvhd4ssfveSJGFNnvNZPUwvfd3Z5Rft2OUuzxMX++P7JyK7hNIp1hMvuGSOstz/Q4PB5yN+ObfmfeofMc338M8fsRA/h6+PGVxYYEb8T3IW/pQ4JqRU/We04n34qRuVZhxkC/TUuih6Xzoe9+snZkZ9UxLMi2sTb9KI76dafG+YZVJF6aKstew/lWYPqoB0YiBaSMbPI/v7mlJao5eA85Imbl0naVV2SUQ+h0vuVTSFFLQuRkHnNdQQrNzV4w5LXmHS2q0U43ZF9aZ8Jz47JcsUQqFa8EM7Hza3u20KCggqvYVyjLVftTAnFlZtXK1dNp7NpB5/0qmBTq6g0eFy9Xs9QshlM4H2WlpqFZzKrKdzPxrOmXqMEQjBiYMqS94bPf6ATvLAui5PxbMfmq7JnPLeOvsOZF7Kqx+E43lYfYAS+dn0N3TknO4pMaeEyEy329Z1NAaWJMDm0IIGIahfL2pkk+SuNB5akqKy+Xw+c4Lt9OiMt4h7JkWdlo8MC/8tMhEEVTUveQHiOd0Yre6hI+eGZXyMHn4XkKSzlXJtKg2TzuHp6mUn8kbWW/JU3ODY+vMe99MKswoTVIo1bVHIwbu/a/DPI9rItsIgKc0YU+Qs3xmVI6iPCEr06JZ3StiZK6fNgXhiJ4gZyp0157n7mnRW76Vb1Ous1TE7EMwG98BjVHpLLUr73uMuZ7d3bKbhT6re9aUV4Agt3qYmhOi4nDJ6lxtDhn23O8h94Ds6XbSVDLR7jUVspEcKOtf5ZVpcd5PVe5dZdEIFngoJZnE3AEdqfxGSyN+gWtSf8kjXaZFFpggLQ/LmtNCE2wBaCbWAxn7l0X1Ht8tBV8eNRxzV7T0tGQFpDL/r6I+KwfK8g2MjUYMS+VROUiTpywuLHB5mAcOT1Z6gBR6INdJ8pBeNyFr42iVb2V+r9KYbg6XLJw1cU2st5yK/Gvyq74j12CrTJ+XL0CVbJFbwtNXeVg6rVQi4hc505JOCzt6TdDETtUP4q6dT2hsljUxDMN2si0HVe9tR97EUA35pJzT4n4PiiGc5vnaJinwad+8pNxOl7fTYmVaFCSP3Q9+r9kFqbRAZ/e5XVjJzL4O1Hry7LW2OJzA3H9TLgkhmNeAijAA0F06pHA+OMvDPDIteZxM3T1adoTf3hzpkTzOLm/RLV5hq4c5JY8pGvHlXiq9Qa/cgg7aJY/lRnzzWashYySvU1WEww/uLEXm+PZn0aHSmR2Uzvzez34HKBz8lh0jlZEWuaoHwgQ7LR7IJ0tcsalb1sz3GuSUfVJ3P6BUlHcUshTyA7AzkVJS0so1XLJgCZr5kFLMtEQihvW5VR7ibjUcf+VhQqn51S/yg5li8CPgjFhSlAzl60XQ3Shvnk/mhllniQWQu6GVKgsCqA1o9UNW06/mmT+Z93AGOgA6eViVQEetq1m84LDFrFKdwvcwuf67Pe5dkhiT71+KWQfTIWvt8nZaAKdTATh7vdy45c5Vzgd5jopnT0sPZPz9kG/GCaDHUS6G5LH73qhTstnErAaIU5WHuWX5iQZYOnqLkvrsJJ8rqllWP7iDA4DaxPqevIfbKSqYacna7xgFX2/vIVNKlTq5nP4wwU6LB2XRiNVPIDc6qQ768ioPM0/qREp010dnfl94EKL6Jt4wbAfBoe6lNFxSLfIoRypVhAoAO1qpUjJUXeF84KvcsMwHQjKlNhvBL7Eczb6A3myOUwWJ4DO4I/wEdgKk7zru7WT3BKvxV/qudX0PueQhqXtadM/8kd+jlSTTkmdOS0GxEuc1rZJ5UFVykjd+rZaj7B0UcUwm97hvu0t0M+vJ/zdumeB8jbWAe/ZQSul8OHhMo/ReHuphefo0dWVA8234C8m8+iF3IEFvdjK/o0yVaSmCelgx5rRofE4ZhpGlFKdzSKk54BPIvrfoeg+7v05dha4sGnF8R54tBlKZt0r7Qq6yvjDBTosC8sWpor4lR9XkUrFCxwa6GzsV0nvuOTBeF1eltH7b6Srw+nI7i6BS412Zo6fF6/kXc0Xf/aRLVW66cjRBZTaCX8yHWlrYZRCA7o2mv4Zi/8cPJtOivaclaj+cdQ+BK8aclrzfg9ZyRqd4h64NJJC/3KiQfbI38d6ZX7t/rPDxoxF7s9Ou4ChXVWTeuyORUu5dqHQpOBqGevmW/Pf5yDX7qtD5MGafGpw7axSmjuiHaU0NBY+d1RysuTSp0iXMoLv0KWd5GFHpkztbpPMZYjrubfFkUcrD4prfw62gCegvQbO+66RTPUz399zpEhEB9DxD3Ep6qhUTVT4UaOUePpVKoLBnWrgRX4FYWRSdibTyA0R2VOSsSy7y9swo9LSYeN1IK8ujaO5MOtS9Ch1fvmGbF26hKJyzp0Ux02INl/MWE6juQU9LmRUhF9IDQd9mXC7vkPsE9JagZZeHaS1PyFfbrj0TYjotZqmOXqfI+hyptPYZJ7miUqrZRFWyFAoJRR1UggR+qXSrUSk0y7rLwwpd07I6IaAmGBEriyKRSqK1y1Tr8g4CdToyLR6bCpcT6HVdup2WWIHysMx/jwKdyUyWVfF8uGbBgQX/u3XsPFkE3U3snUQzTty9FEII/YEE12aTohHflI7e05GwSoJ0DpfMKg8zS7c0vUdNzHkNAPqdO/OcsXpaNAfvYuURtHRlPwOB/HNO/OAuoVN1WqorotjTrR5WKCsr//euRNq6NgoF1c3nTTKdqe7RVeZcLDjTokCuRl/VTIv7YZV1bFfPjEqjvNtp8doE2nMCFHtUcmVaFGWVVR8eZnamVSH6Xu5Kl6o8XMsd5WH6My3yeszP4BVt9UuuCApVJgegKw+zmpA7iXpapDI33d+127EDKDIteTaRBNLTrQo9ZH5xR1xVGsfd5WEqPS2dibSy6IV5zrUr9P2ZtumIp5R7F7IG/Hqcb+6SrUrPjYi98dd9PrilarU7FVmZFr0b/nwzsgC6kkcKZUXZaTG/Y12lW0CO61JzeZgZnJWdFt3ftXmu2j0tuhXQnDaSy/8pShlJMi3SM8qsVC8oeSzZzj2jJgyw06JAroh3oZNin1q7EdIr02IYhsMbV8lUZPW0KDoIXcmU4nBJ+/MqqYd1v74jbm/svG7ulS4FNK9NVLX00Fe56To08Ak2gXLdOUX0GnDeUClKhuwMGU1DrolbuYp0Tovuh2b3cUzJc0C/nfLNgqKY+aMSJOjpsd3qYX4a0wtd07JSnzzxWeWe1BY31cMK3E+lII0lC+shoFJZ4bx/eZ3TcjlcxFDLjgNmPxtVJoS6p8WZGdO20ZTOBznLAhAIcLhKEnU6+6bT0tyR0F66BWRnvFSziKqYe5vWrqQ1/DGheZ5Nlty55sG+hfqvdB4/2T3PSfXZ4WdAuSPIrLC/c1f3hA12WhTIKSlX4KQb0VBt/ayyefLbM+NWnvHMauRQAyvcWN+zTItcJuWVcrQ2sorN2TVSZNarHhxwZpcoGvHlddiyzXovJ0czrsYGRPfxzRsXRQkEIJ0fcfo5LSqS235wz8wAKJp+c9fPU0zHbiM4V037p9Iik9lUCBK4e1oKlazkun9lju99D1Pqmet+bTyVtjZ4qkIiKuqHgDN4VVke9YziVkkla7rPB7n0SR6mRzXjRHdJT6XUT5hICVemhcbxoshCmxvTjnjKdoooysNcGS9dNjIDD6m0QHs8E9A1Ywrae1rcmRbdWUFX1rFQT7Ef5L2KLIRUaH8HANXl9v2iUL+f/N8dz79ClSvSvS0RwmZ8dloUqMjRaF7opJYzIdMVpqvLkVaVRnlTkcLEa5NpN5vZkscqc1SU1cNc6lBexwey1Xe8oj9y5MHrIgZsCdA9HQmSKJm8DrNXQ3+mRXJmCXpa7EyOecOmUg9zN4Hr/R4ckse6S2lc5ZuA/kZ5OWhBN/PHVaJHIEoBAO2JlLVxKXQ91PgQ18hVKgUo3pMUsnvy/dq0j1d00/wbsxHf69r3G3Spkhx98yNr2/S7ZnfpDohYTiZRuaMcSMgMlNWfacmviKc/kNCZsL8DnaWz+cp/dT0Hq1wbcrmxW9e90bxPxV2N+NoDRgn3uUrjtJhBaS/7+CkPcwZ1Mr8rtD+NSEIlYcy0cCO+AjHXpgLwvmie/O+jsX7TTpw6zXuKsJzJUWmUd5/Eqg6CrEJV6Pi5e1oKbCpcjdaAt31i7p4WjwdadczfQ1+uFzZvEPrLnmhVsWLlOZxlAsnNrKnPxOVhVM5dPKk/q2ZKnqdFjvItgg0S1cwfymyXHESQs61RheGSJhUFyrEcD2Vpg6qiONjc7VSoOEWALAyilglpVXy9/HkrFYIuZvmZQ+RD02ZT7qeRxVm0Ra+lIBmgvznbOXss7WiY1j9rxilDrrXPzCyrTqSszSOJ5LErW6RrFoy5+U2kBOKpNCoc83iIMi3a+6OcJXRWpkXTuRqVbNSZtO9fXpkcR3mYYlBabl/wqnQpj0aQSKUscYYwwZkWBZwnReZ3XhuKpsZqLD50lNLGwzEcSEHy2J1p8J4pkJ1p8TunpeBE6R5kWmLujaxXI6vPTItVL9yZsKIousue3FOuqY7vUGWjmAOT1ZCr+3M4nVoypyWlJvnol6xmSs111Y7yUM3DzUysnhZLDEHfdxyJGNY9xjm80ofTEs0fiLDuX66ZSIUb/TPH+7S922kpcM8wDHv9ZuZEdU5Lq+K17y4P86LKpa4I6JQMNqyNvjwcV1+fgDvCr3ejKc8ec1cDaJPxtkroXCWbBDLkmRJAgvIw130rrtl5zLyH1HslBRR0l+mRBYxcohG6y8MA1/esGHyUe/789LSo7O/kY8ZTqYKvK0XYaVHAqR6mv7dAHg6kkoZ2n8SFpisDsvqOmicuXwQq9dS2Uo96psVdMuS1iZLVhrzkQgGgtnuTIISsmETU02KWlFA5LQQlHO7jAzQKOYB9frYSNeLLTbO6I3FAIXUvvVHdeDLt2JRTOKiW46j5WrDUtORMi4+5JYWuzVz3L68Nqnm/+LTD22kBstXAVBvlzUyOt3qY+iYEsNfvcFo0fWcZJ02yaUpvQESWwAdoSqvMLIXT6aIrraIoMZZVN0nKw/KouNFkc+zPoFNF0yqhI3Ie8z0DKbLczvL8wt/BwLqYtEbVmU7qTpG5V5FnzIUFdloUkG9gKo3yfskpqezDaXFLILvxO3xIdgo6EuZsDYVG/O5MS8SAZ8QrayPrQzLUSy7U/RprY0HUKE/VYO447whrqqmkSU3ckWWVTJkfKhyZFopoYu6MlHalIld9PoXksa1SpPc7cJdLeb2HW1XRnXmRqSz3v0G1My1xAN4BBXP9zR1qmRYz89vcoRZ0qZdmd6lkWtw9fwDN+dCVTCtJVPf02ICtKKVX+dBuoE4SbPjd6mEJgoBOlXX/TWnvNwHkodLmnBb9FQfy3iVhlRkSOHauTAiV4IIZM6KYYyXfv7xMNEhyWryD0vbxVdsXzPtte5wzLb0SOXJEWX7iUCdTlKwDsiWQ3TjmHCion8kbfrukx7sm3LwAVB6u5s3IUhvx3IT4K6+QS1bM9yhUN98T3BsL/UMZc5TpEQyvzJKq1f45XE3Xup0WqRFft1IR4FRbAmCXcJJkWjLH1j7zJ6ukVPO1UJG9yS60/OqKqOM8KOS0xGTJdp+SoWZ5mFfZjXv9Xhs7c72fdmScIq/valC9+iYEkIdXJqzf6bws7UyFuk1VkaPXQgg7+0kw3Jcu0+LczFJkcOWy7QSJeljuRvwKooCO7t4lwC6TNIOnCd1KdFmiEd0OvM4yQEnwRnUw8aD6SutneVh5zuOXZ98fvXpazEy3fH8JC+y0KBCL2ps7y5MlGFTYpZhpcW9A3JtCN445BwqSe+VRA+Z/VpEkdpdJqdxQ+lc5L0TPTYLkmNV6zL4xcWegyDItBAP75OM7pKp1nndFkPUEsjdpup2WXIIFJCprLolYCqUiqhI9d2BDdzbNvcku8yjfMgwDDdX2PcA9fFFGjrbGFcskq7olQ1WH9lmZFqtxX+2hv8d0ijxeP7jO3oQo9bRUOHtaMvdk2jp73U4LYD7TKGaQyJkW2rIngKjEzRxqKmVaSOa0dG/4KZr9HZmWlP5MTqWUjQJshUvdohFF6WnxUb4lZ1q8Zv05VEatoHfhNdlOC2daeiWy3jl1pkWl0d/9APYqD3M0aimkPw3DsKIDlnxpgavAXXqispkbOaDa8W+vjXJ/aYPjdRGbZDkt1HNaCMvDKB9qWcMliTa09vt6b9r8YDv9KRLHK1dQAdD3XcjXP0WmCMjlwBP1tChOiAec2VNZEtiNo1w1ribm4HaCvEoSzfW3KwyjBOxht82KmRk506KyaXTbU/tAVqmfwhKW0DyxHjDvXfpFRCodJc8U/X7OsiSK+4qcLdKt7AXkUEAjUSiTn1Gm86i/hM687hPWpl/vuZqlHkZQHtYRV++JHixlWtz9f25iUgBCVUzHDPzK5bxhgZ0WBXL1Fuj0xM3jx1NppTkqhmFg7MAa69+ePS2OOQeZi8Yrfehudi8458D1/ioX/ICamOPfXpuQnkQZK13RZapMiKXIRNaInyK5meZV+dG8QXJvSLWXh+XoCdPaiJ+jPBSgGS5JMY8HyI7u6z5XzUyOn0Grsv0K3cOc5apqs37cmSVVBR4Tr2vAvZFQHfCrcmz59S2KQiV+kUuTdGf3ZHWyLumZQ7JZTtBkWszzx4zwWxlcgs/gKA8jOj5AIybgLA+jKAN0ORVkohHujBpFX466+qzciO9FrnluXsvn8rBeTi5JVZ0D8nLVtHs1+o9stDMVZilBPhxzDsxBZR7Hd0cmCz3Q3OU/Kg8/95q9bhLyegyo3bCoo8sx4o1FLgEFvWVPrrptotKkbHlbIqclJamHEamsOTMtuqJ98vWvv6YayFUeRpR19JEZaJeUxgoFUeRNsFmu6jmM1t1HpShhbL3ew8lxO+Iq0eWj9x8IADhNYXaXrR6W2VToPh8qc2yYdV0zhmHklMKlaG6mmmFVJZVuASDJdFuOUTJtBY4oju/OFuns7ZTl2q3yM43Ht0ro4jSCCNnPQLWeEH/vYTteVqbFU6jIvh+NclWl5HutY6SFck8Ll4f1SmwlEf3ykPLx4z6GV8qDHL3UtCqlTIvq8d0PcZWeFpXXmpg15yZeD/3PHzLS+vnUacM8j595D9o6fndPC1l5GFFPi9xgLvdq6P4c7lId7T0tDgUbyvp5muGP5vHTwt5gUKl7mZCph/kYIHry1Mx1PHvcPgVfJ2+CzYest3qYv+xellPnOezWvz1/d+4M/OuKY3H8pCGerzWDOqaamW5Hv9JR8kyQCckhIqI30Cf15BCUbpnnczItkJCCIRSSx4D9DNF5bzTFKDqsnhba3h9bxU2njey9C6C/hNldbUDTu2SXASZ9PMevPmUSzjhoBE6aPLTg63JmWjycojCXh6k1B+Rh+fLluOKKK3DJJZfgF7/4haYllR45G50I5rTEU2qN+ADw7Hu7rJ/dZVBubGlbtWGRQK5MS/6bhNtpUnJafDYG18bK8N7ykzyPW+g9dCsmxVyyzWTDJSVlFq2b8ai9WTYfzpn30Ps53JkWKsnjrmTaullTPJjjxD0tgOQAa852VRNfC26nReUecPGx+2HisHrMGjvA87WV5RF0JFJWdsZTPcyno1zlyhZ72cddHqbyfZVFIxjSr9LzdZn1ZNa/R3HOjF/kshuKnhNZhpVCVSpXpkXrZlmqBOiQS+i0qkrZ76E61NQPWf0gxD0tqnsLP1RJWQQA2rN28nkE0PS0yJ/BvC5U1v/Fw0YrHb8nohphLg/rsdPy3HPPYcWKFZgyZYrO9ZQkVs9JMg1zy6Kzp6Uil1Pk4/jejfiyJ67WCOYr0+Iq9VK54N2bKN2bNIA+umwNyLSmjNM14pPIekobNTlKo3tD21hT4XpfvY34snNnPpC1BhUcw7vsAWq6SgjkDandCE5TvmWifxZP5nh+5L9rYmVY8BnvUqnM8aMAEspOkfv+4rXpd2dmPOe0uB1xBRljP5jfl+lQ6Hb0ndPY9QcrHHNgCAe+diboxDciRnf2M66u+uSHsmgE5VEDiZSw5v1QqZMJIUicFrlKhEKdrNLltOj+ruXeKED/4GDAqYBmHldvT7S9v1OtpLGdlvBlWnp0drW2tmLRokX43e9+h4aGBt1rKjlkp4Li5iVvitI9uGi8JDQrHal0tUYzd/ak0HoqohFH+YKfRlM/f+OXYmVaKG7W8vGdDoXGB450rC6ptl1nGQcAjB5Q49g0uvsN9pb+1Rmn6NO2BEmpCPWQz2jEsI5nDSrV7gBHID8ndTvYla5GfO09GOYAW4W5UUB2+alXeZU7c+I9XNKdPdR7TrsDLhWaj5+rZIVkICvBHBjAVd5G4BQZhmF9B23xlDRPTO+90XSWd3cPQVWRw1Y/tn2szkTaGi5JNXiXdpYNTfmWLVLkPL7Onha7xI2mUsdWD1Mfft7nelqWLFmCk046CXPnzvV8bVdXF5qbmx3/CxtOdR+CqE6uRnyPk3pfST3M6/yP5aqp9CkZWujzGoaBemnuSo8yLZo3/IDzwR/1mBvRE7IcO+09LfaDn8JZjkSMnHK+uj9HNGI4NoXu735vMTXtW7qS1pwNkvp8ubeIwKkAgHbFng2/yJswQP93bJWHdRKJUpj9YwpzowD/fVRuGXUv+/iVVPaLO+Ci+/jFUq7qIu4zkxUxtTvi5uyeDruERneZXo3UjC+/pw7kY3UkUiQ9LU65dv3fQ6W7xE2zupesDAnYg4MpMi2dRD3RlTmC3p6ZFqunJXzlYb6/+bvuugsbN27EsmXLlF6/bNky9OvXz/pfU1OT70UGTa6IN0lPS1KeWF/4b35/3sHWzwNqC8vjWRNZZUlVz4eyP0nPflX261VsUx6NOG4MurMggH+ZUb+4S0L0Sx7TRvgz7yE1sRP0zbjfB8jekO0ttbEy6+G5s6ULAN10bApJTMCOltnqWLROPN1wSZq5In5nIrkdY69Nv3tgrac6WVamhcaeVMeXZ3fRZCdpI/ByIIFiMw5ITou0saOSCrf+rdFpiUYM674oD7Ckc07pxArsRnyi8jAr06J/5k+unhOvTIgf7J5l9aB0XV8pD/vggw9wySWX4I477kBlpVpD4RVXXIE9e/ZY//vggw96tNAgqYhmbx611iRKKk6q6g+jBtTgH98+Go9dPkdh+JCcaVG7KN2RR6/yCmemRe20km/YukuSAOeDnmIT6KeErieY60+mhSXJqHszmKv0UfeGHIBDpNq94dvrYxuGZas0QRmH3NNmP3S0HR6AfX2ZPS26v2fAeb3pjkqbx7YkeomGV6pKKlf5VA+rqyx3/Nur3CsacWaudPdp+Z0z4xdZlYlkM5urUZ6oZJPC6QLs78DsNwH0B9fcwUGv8QV+sRTE4knLTjqV6GTn0Sw/o2jEt8UENGdaXAM4KYb7xizHUW0On18qJaU+1aC6ed61hbA8zNfu4YUXXsCOHTtw0EEHWb9LpVL4xz/+gV/96lfo6upCNOqKEMViiMXUB+WUIrEcGzutnriV6vaXyXFPlc+HXApgXzTqNdsRwztKVtWDrEZVedRq3KXItMgPet0PNCA706JdPUw6vl3LT1SCJmcRCGz14Z5O62d3aY0O3A9iivJNZwkdzXfdRqREB9BmWvxmQvxS7XKK/A5/rIgWPufqXK9XKdOpiZVZcrK6JYmpe2bk2V0UQ2Urc0gSU2wE5T5N7VkQl4JbeVR/iXF2RlB/b9SnSKAjLk2s1zmnxVI+pRkiKgs6APrVvdxzWmicihyZFgpJ/kRauRLAzCy3hLA8zJfTcuyxx+Lf//6343df+tKXMGHCBHznO9/Jclh6C3LdYyqdMZnWmsRcw4E03hzlC988rGrNI6B2I3X3j6gg37ApovtOcQD6TItux0tef3ucSFbZofJDVx4mM7x/lfZjuh+UNMMlUySROCA700LxHTiuN6KeFjPTpTtzWmk5LWqZlvrKMpRFDGuT4LenxT0wNxe1sSg+bs38rLt8yy3ZrL08TJrdRTunRc600GxmKXpmAPucpuiTM3FnnXWXzprHa48nSQRjHJmWlP6MWrbksV4xAdl5B0ATlJZ7WijnwCTVJY/l8jAhhHZnnBJfTktdXR0OPPBAx+9qamowYMCArN/3JuQ5KkkChSVbIYPKE7ePb34WP5FKFTlPOTKp8sAHnCUcFNF9eaNSUYRMi+6HWll3308yLegzLQkahbJcUNwg3dFDvfKqOTItur8HV6aFojxMLuHUnRnIlhcnKg+z5rQUXr9hGGioqbB6nLzEH9w9LaqZFhPdksexsqglh5v5N1FPS1zuOaGJ/lIEQ4qRaam0ysMonRa6nhb5eC2dcombxkZ8ScjFliPWvzfqcEsS6xouKZVWAbRzWpxCLvrLlxMpYWWkvIVEMvcuc6CxbmeZEtrdSS9BbnTqyRwVL3J54noHcdlRqbhiqt7htCg8MOWHtmqKWx7oRt38TVFukz37gu4zqKom9fT48ZQseRyeqItJVnkYgaRkl4+eML+4My0U5ZKy0+LVB+cX90OPqqfFmgOjYJ/Gans+UL+q8gKvzO5pUXJapKCL7j4twOkU6e5pMb8vuadFZzY6t3gFzTMtQTC8ErCfT2amRfd3AGSXAepUDwOys0WA7p4Wqd/PdB6JshSA/uGSsnMtH58kKO3oOdF2eEeQ2Ax6eTmm1RVRq+qmJWQDJvf6Trt+/XoNyyhtckVaaSamqtck+kE+qf164oDazbonmZZqR6aFoDxMcp4oHQoT3TKvQOah0BZPkU1Kr5AyLXaZiH5bzR63D556+2MsPnSU9mMDOcrDCJSQ4im6TIu7J4RCmELeuHtt4v1CPXfJ3GRbE+IV7hdy71S/6sKf1+3EVSrc8+Tj63YCgcyG9tP2zOelUidrlwYnUgXKaIZL2pkWiuMD0oa/uxFfd3YScJYBVkQj+p1913UD0KnEWWV6JMMl0xBCWM8o3XNazH0RdU8LRaZFPi9VM/WGkRlD0NKZRGtnEoPqtC2HHP132l6IrUWuXjPoh5hUHmZ6vxSa9jKqjVr5/t6N3N+hmmmRNzr1lfpPRdnZonAoiplpMSPMuqN9DlllouGSALD8jMn41+ZdOG2a2gR0v7jtQhU1pqh5BrLLn3SrewHAmAH2bCfdTkv2METaRn+/x6/1yIS4nQ6VjVcN4eyhzPGlDS1RpqUjTiRJ7Cjf0q8qJTtFuvsc3O/R0mk34utGPm9Ug31+cIsJGAZNmV48lUYiqb9MT87gOhQutUke2+tPpwVRT4t5LaRJ9o9yGbkfIZQ602kJmewxl4cp4My0dJeHENyAO4iGCJZHjSyJVq+LRp5arhJh6snNV15DU6OaEpofnOVhRci0EETi6J2WHJEygg3ziIZqnDl9BFnpmfsc1VoCIWWj0gSZUECaKK/YaN4TDhhab/2s3WlxS/RqvhbcToHf7K9Xj2BP7E1Zbge4emY0q0pZUrgJ+7rX6Sjnqk7QK0MuZVqorkmrtIpudpJcbaC7NAzInaHU2VMYI87UyxlPuX9J33BJ2+ZyJl3rSIsyOdNCU15snjt+KjJqQjqrhZ0WBZya8AQ9LdZJTSOpahhG1g3Ry+mSNyEqUcSGGrt+XPUBu6stbv08QPp7XcjZImoJWYAmEmfa0pZW1ftgc6j8pNSUlkoR94aiUuO8A8f1T5RpMe8BrYo1yT1BVsiqD1mmpSfDFq879UCMHViDH5w8UetaTEY02Cp47p4YHcj9DlSZq7auJIQ524ig16ErYQ8dpFBkihdhTssewkb8GunZStEMbT6797TT9OVYG/JkSvsMFSDz3Dafq5mgrt5Nv+wUORrlidRhu09Vst5UW7DH+zsw90etneFyWrg8TIFYrp4QiuFAiZR18lGoRJlNvirHlzcJ7gFYuWissR/aqvXXcp05haKU3IhLUW4zoDbmUPhRsZNfshXKdJ8XUpkIUb9GMXAOKjVoMi2Es2zMoXLNRMMZAacTT14eRqxOpnL8fQfW4m/fPErrOhzH36dWeq+aAq/sGXJ5mHZJ5W6HqFnasFD1OlCUb8mZnATB0ERA7mnpdloIgjmOTIvmbBpgb5g/7aDpjTKdovYuaUipxjkwQMYuiVTSEdTV5UCWdfcRpboHOFM8A+1GfKlSR/N+xypl7FKfe1cb0kwLOy0K9KTRyQ+ykkt1OvOz7k1R5qS2m/G8J0rLTov3zbSxxh4gOqhebZjoRceMw662OM45dKTS6/3SKGVvWgiiCdGIgaH9qrBlVzsAmmir+yFD3SsA0DycqWmQHNTq8qjeEohys6fNzrREND90siV9acsZdWda3Jkt7ecp8YR485jx7qCUCsceMAifP7gJIxqqSAIWtTH7O6JSlZI/L0WmxVHHT9Cg3eFoxKed00Ihmy834g+o1V9tUN0DAQs/WJPV40nbOdVcphcrj6KlK4mOOI3CpRnQzThFmc+g8/4uZwWpFDrN/Vprlxn08v4OzMx7GzstvQ/5YW8Nf9Nat5lDZ1v3he+zUVmObFaVK2RapE3jSMX+lCkj+uPe/zpM6bU9YWi/SuvnTTtaSN5Djli7p2rrwF1qp99pcfbMADQqOdTID3zdZRZmSZ7c00Y1h8Qs1aHowRrarwoTh9ajsjyiXfiiIhpBxLCHS1KXh1E4LctPn4yla1/Fr8+ZrvT68mgEy8+Yon0dJgPr7OBPfw/1M7/kukaoBrKa6NyoVctCAmmaZ6bpKHd2y+FSSx4P7ad/6K67EV/3Z7Ccli6pt4goCy1LBuvO2rXHU4SZFvtaoxpd4JaEV7HPadNG4KCRDZg+qlHrWqhhp0UBwzCsKJw5mZzCEwfs+kKaTIuN1zUjP9RMGcBCNEqbxhEN+pvqe4Ic2aMqeJJvPu6p2jpwO5tU0qfNsiRmCMvDZOdRt9OSa7q39ppkd88ZgYJbNGLg/otmwzD0l2MahoGqbnluoBjlYfpLaU4/aAROmza8ZKZDD5KclkbNPX+5hhjqjl4DmWvGfFbqPCccmZak/o0skKtnUf81OdDxHevP1FvlYUQ9LWYVRls8ac060R5YM/tm4nYJmt5zNVOF0pW0hVa09rRI9mglEnXImmOlYJ/jJg7WuoZiEb6QakDEuk8yM5JIIakKgKyvQN4UlUUMzwdzVXkUDd3RvZljvD1xuZG+qUScFgCY2tQfAHDK1GEkx9/dbosJHDi8n/bju3tadG/W3Ao5hhHO4ZKyWITuqdK2Qg5hT0sRRB2AjIoW1aZcDozol+h19XZprps3KRWHBQAG19uZYt1OS0VZxPGMKY/qPS9yDTTWuVGTr3dzOB7VnBYTCqdl0jBb0a9N6jnVhdW7RJVp6T6+EMCejsyzULfSnUPeWnNPCyAHpST1Vo3Xgiwm4CcT4gczK2gLCfTerT1nWhSJlUfQ0mX/W+fGLhIxECuLWKVhgP4bsF/5X8MwcPeFs/D8+7vxuRlNnq+vLI9i1RdnAPAe5FZMfrd4Ou5/ZRvOmD6C5PgJ6TujkKx0PwB0b9bsCI2tkFNKGzdV5A2G7pkZOdUDNWdCqCfKFwP5/NcfSXQ+qsJYwugXuZeQIntd1d0rANCVI3cmUtZGWedGTb7ezeGPus85t3Q/xTlnGAa+cMhI/On5D3DuLP2Dd01nP04kViBf881EsvyV0hw7iuHeZianK0E4PLhbTEB+zuqkyi3YE8LnhyrstCji3jxSlG85nBYiHe/MsdUumP0G12G/weqjUo89oPTSjYPqK/Hl2WPIjj+sfxU+3NNJdnz3/Af9Dx1nT0tYb3ZVhNKh5gYsmRZWeYL+69Pdcxa+74HyO3AfT3eZZCki33t1q70BGZu2+BhG5wfZ0TdjIDoFPiIRA5XlEXQm0lajPH15GM01+aPTDsQVJ05APYGQC3UvWDRiWAqaZjYnpj3gmkMsRmeli1T+SzGxPvMemWuthUjSvto1PJdixEOp0Hs/mWbcF7v+4UDEx5fWH8Yobqmy/IwpGFQXw9LP0syCqK9yOS1E6mFmiUUYlcMAp1OuIhzhB9nmphAHVSOlSRgfOrKDrbtErxiN+KXG8P5VWPP1w/D4t44iOb7sCOreRMklN2bPif6Bo87SJ6pGfBOK8jAgk22hcFgAoKrC/fygqwagGoBs7o1klSudPSdyVpCq/DcrOEjcsxzGoJcqnGlRxB3Zo9LZNqGQDTTpzSd0sRk3qBbPXjmX7PjuhxmZ09JJUyZSLGjLw2SnhUaS2H39h7H8qUEqC9XutBRB8rgUmTaygezYVY5yPpphd12JNMoj+ntaAFmSmCZb5FaDDGNApydDWf1SWR5Ba5ctDa37PUynqM3HnLmeHL+LUNI+a39H3H9FoT5ZKoTvKgyILKeFaCK2dXzdnjhnWkKJe55GTHMjvls9jGIWQTGQldt0Oy3mADLAfnDqvobccz7cAgxhoL8ke+6OUu8tdbEyyPsICvWwvobsCOrux5PVveIEwyWB7Bkkuo/vnrul2xEvBu57IYWzT51pMfdecnkYlTx3mqqnJWtINK1QSW8OTIfvyRgQ7gtRe/qwgja9V8mZllDizrRonzbcfV6YqnhhjCYCzvp/M1qmE/PB1k40/LHGVcahW4GnGMizRKo1b/AiEQO1ko36SqaFEnlDSzUpvTMhTUrXXh7mVEzSPVG+1iVhrzsYUgzczqjufhMgh8Klbqel+zM4ysN0Oi05JO0jxEFp6v6rsFZMqNB7P5lm3JsIyp4TgEDyWM60hDSa3hfJ6mnhCE1O5H6KjoR+6VDLabEyLXq/B/eMnzA2mvevkjItBFFpOevITsveI290dH9f1d19ZYmUsK4ZqtLWfP/eW2oqoo7snm5xiWJQjLJK995Id8DFvBe2dWXOI+3y3DnUw7Q7Fe6gtPbnuLsRP5zPcRX4zq9IVqM8cc2j/kZ/qX65F3vhvQ050xIxKKSwi9NsWkymE/QBmHaynRa9x88qDwvhprxBGo6ne4I74HTswtjzU2rIGx3tQ2vlOSpEA/XcmQ/dn8EwDEcwRHf2sBi410zhtNTGaN/D3Lu0dovF6B/sK4lGEAyvBLKfs9TDd3tzpoUb8RVxe7K6y2hkp0hl+KNfYtzTEkr6EUeXe1OD86OXHYknNu3EOYfqn3dg2qWtuxFfd6alxvXgj4VwgyQ7FYPqYwVe2TNkBz6MUe9So8ZRHqbXnhVlEUsK10R/T4u7D4wgu1dZbjld1bHwbZey7u8Ezr5bjlv3e7h7WvQf3yxllDItupXo3D0tmsu83aWMvTnTEr6rMCCyIhaEQ5oonArq4zM0yCUxurN7QO+SSvQ7V8gPdk9LJtOiv3wziopohGwIXDGYMaoRQCYCPqCGwGmRSiUp5pb0NeTsnntTpYOq8sxAPRP9pa30ylhypsXddxYGYmURa54NQCPw4RaLoVa4pGr070qmkCAYXgnkes5qLi92K92x08JQRyyc8pM0soQmvdkL723I0euU0N9gnj1ALXyb5WJgPuzbE2amRf81VFtZhl1tccf7hYmmxmo8cPFsxMoiJPaRs93stOw9stNCIfxQXVFmyRED9OVhFH1U8v03jOecYRgYWBfDB7s6AGRnp3Tgtot+yWPnjBOqTE5muGT38GCiOS0muj+DuydSdyVAKdF7P5lmZKelLGLoV5cgzoTID6UwKhP1VeQHvQGKTAutFGNvwepp6aKRPAacJWL1leGMJ00a1g/jBtFku2TCap9SQu5FqCUofXI7FbpLqouRaZGzCGF0WgBgn1o760nxPZM7LdZgRpoByGZZYVcibZUzah9U6u4dpS4PC3HFhBe8Q1GkmjgTIkdWKVJ78vEpSgEYeigyLdRSjL0F80HcTFSiAAC1sfBvkCg5fuJgABmHRbcgRV9EnkPi3vTooDpGe28xFcpMKDItDdLsobBek7LTQiHbnNXTors8rMycJUadaUlZPS2hKw9zj0boxfdHDlcpIkd1KDZ28uaRuqcljEOyGCCeTGs/ZiRioKIsYh27N9/s9gbzmtnTkSnfoug5kbMH7jpxBvjslKFIpQUOHtMY9FJ6BfJm1l1eogO3U6G7uTlLPYwgGCc/6wfUVhR4ZekysK64mRb9c1oyx4sTzfuxMi3SnBbdezzq8jD399qb+5Z5h6KI7LRUEJRXOcvPKLTU7WOGUZmoL3P+7DEAgCtOmEByfOp+qt6AeX2a5QMUmRZ5ExbWqC4lhmHg1GnDMbx/VdBL6RUMIt7MUpdUu7NDuodLAs4eELcseViQnVOKYIh7ALLuDbnb7lSN+J2JFJJEksfuTIv28rCYO+vYe5/j4bwKA0DeUFSQZFpoG+WHSQ96iqm4DB2XHz8eJ04ZimlN/UmOX1MRxZ6O7nphLg/LCfVMCMD5YOO+M4aa0QNqrJ8pnGS5R4siGCJvlg2D5t71jWPG4cUPduPI/QZqP3axGFBjZ4iaGqq1H98p6BDRXrrp7l+jbcQ3My20g1B1B6ajEQNV5VFrsHJvrqZhp0WRKinVrbsRDHCe1BRNVPvuYz+gzFkTTDiorijDQQQDE03qKsuBPZ0AeP5FPrJmQpBMluZgAlM8+lWX49B9G/Hm9hYce8Bg7cd3PDMJHApZAruyLKp9thkANNZUYM3XD9d+3GIiOxVD+1cSHJ82Q+zu19CfabHLw6iGS7ozIRTXQ3nUQHfssVc/x9lpUcSZaaF2WvQfX45+pPS3RjAhRi6zoGhm7Q0UYwgnRTM0wxTif750CBKpdNbGUAeOZybB9SKvOYwS4cXis1OG4olNOzH3gEEkGS/ZKaJwWqg3/Oa5Izfi6w4cN0jZrvKo/uHhgHOPR1EqWSrwU1IR+QZMocAh1yDqrnd0U0F8fCZcyE24vTmtvDe47UJRvrXk6HF46N/bceaMEdqPzTC5qCyPkgUqqon7NOWyod68SdtbKsujuOkL08iOX0vstBSrp6UrYTfi6y5xa5RU6Ciuhcxx7X2d7v6xUoKdFkXkqA7FgCb5weFWXdEN1UXDhBP5ocNOS27cgQqKyPHQflV4/ntzSaJwDFNs5OckRaBPfib35sbjUkfuLaLI5GTN+yHqN+lKppFM0WRa+lfbNqIa7t2bFcNk+EpXRI4gUNyA5c0idT3iYWMHkB6fCRfyw78318LuDVnlYURiFuywML0F+TlJcV+RM8Ssehgc8ndLsXEuj0YcTgSpepiVadH7OWqKEBhM9JG6f77SFZGdFv0j/pw1j1Qn9d++OQfLT5+Mz81oIjk+E07quKfFk2JkWhimNyFv1GhKqmk3y4w6p08bDsMAFs4cSXL8KsKeYrkRP5nObPx1Z1qolfQA4MbPT0NZxMB/z9+f5PilApeHKSKnn9u69KtvNcqNWkQborEDazF2YC3JsZnwUidtLuQ0NmNTVU6vHsYwvQlndQLtViPeR6LMpcr1n5uK7588Ef2raQZwVldE0dKZ2XeR9bQkU9YA1KjmEvoY8fBwADh83D547Zp5vV4un5+8ishlG2mhP9fSX7rBx5Mp7cdnmHz0kxwV2XlmbDjTwjD+oC6pBuws8XEEks2MOoZhkDksgNPp1Z2psNXD0kgQZVpkKI/d2x0WgJ0WX3z+4ExZ1X/P1z+ZXFarMKduM0wxGCdl39hpyQ07LQzjD9lpqSOS877na4fhsrnjcenc8STHZ0oDuRSQak6LEEBnottpIRyyzG2LeweXh/ngh6dNxiVz98PQflXeL94LKD1xhnFz8JhGnDh5CMqjEYwfVBf0ckoSdyNxX4hoMczeMLhfzPq5gSgYsv+QOuw/hO9ZvR3KOXm5lOcoFVZZvXXvYKfFB9GIQe6wAMABQ+vJ34NhTMqjEfx60fSgl1HSZM9p4QcPwxRiYG0s588M4xfKQaW5nCCKwPE1CyZh+UNv4LrTDtR+7L4EOy0lxB8vOBQPv7YdX5szNuilMAwj4W4k5vIwhimMYRi48fOfwYZ3d+Gs6axYyfQcOWhUo7k/yjAMxMoi6EraYg5RgvKwc2eNxqKZo1jpbi9hp6WEmLnvAMzcl2eoMEypUaw5LQzTm1jwmeFY8JnhQS+DCTny/VeeK6YLt9NSTlTCxQ7L3sNPXoZhGA/cjfg8hJNhGKY4yPffWgJRh5ir/Jedi9KFnRaGYRgP3DKbPISTYRimOMjZFQolOnePIoshlS7stDAMwzAMwzAliSyfTSHqIGdyIgYQYaelZGGnhWEYhmEYhilJuhL2wO0RDdXajy8LrbAkcWnD3w7DMIwC5x02GgBw5vQRwS6EYRimDzG1qT+ATK8JRT9hbUxyWggHSzJ7D6uHMQzDKPDdEyZg0rB6nDh5aNBLYRiG6TMcM2EQbl54EA4e3UBy/JqY7QhxP0tpw04LwzCMApXlUZw1g+dNMAzDFBPDMHDSFLpgUY2UaWGRldKGy8MYhmEYhmGYPklNBTstYYGdFoZhGIZhGKZPImda3PLHTGnB3w7DMAzDMAzTJ6mVelo401LasNPCMAzDMAzD9ElkyWPOtJQ2/O0wDMMwDMMwfZJabsQPDey0MAzDMAzDMH2SukrZaeFtcSnj69v5zW9+gylTpqC+vh719fWYNWsWHnroIaq1MQzDMAzDMAwZ/arKrZ8bqisCXAnjhS+nZcSIEVi+fDleeOEFPP/88zjmmGOwYMECvPbaa1TrYxiGYRiGYRgS6iWnpbGGnZZSxtdwyZNPPtnx7x/+8If4zW9+g3/961+YNGmS1oUxDMMwDMMwDCUDam1HRXZgmNLDl9Mik0ql8Kc//QltbW2YNWtW3td1dXWhq6vL+ndzc3NP35JhGIZhGIZhtDGkvhIzxzTi1a178NkpQ4NeDlMA307Lv//9b8yaNQudnZ2ora3FmjVrMHHixLyvX7ZsGa6++uq9WiTDMAzDMAzD6MYwDNz25UPQlUijXzVnWkoZQwgh/PxBPB7Hli1bsGfPHtxzzz245ZZb8MQTT+R1XHJlWpqamrBnzx7U19fv3eoZhmEYhmEYhgktzc3N6Nevn6dv4NtpcTN37lyMHTsWK1as0LowhmEYhmEYhmF6N6q+wV4LUqfTaUcmhWEYhmEYhmEYRie+elquuOIKnHDCCRg5ciRaWlpw5513Yv369fjrX/9KtT6GYRiGYRiGYfo4vpyWHTt24Nxzz8W2bdvQr18/TJkyBX/9619x3HHHUa2PYRiGYRiGYZg+ji+nZdWqVVTrYBiGYRiGYRiGycle97QwDMMwDMMwDMNQwk4LwzAMwzAMwzAlDTstDMMwDMMwDMOUNOy0MAzDMAzDMAxT0rDTwjAMwzAMwzBMScNOC8MwDMMwDMMwJQ07LQzDMAzDMAzDlDS+5rToQAgBAGhubi72WzMMwzAMwzAMU0KYPoHpI+Sj6E5LS0sLAKCpqanYb80wDMMwDMMwTAnS0tKCfv365f3vhvByazSTTqfx4Ycfoq6uDoZhFPOtA6W5uRlNTU344IMPUF9fH/Ry+gxs92BguwdDmO0e5rWHGbZ7MLDdg4HtHgxedhdCoKWlBcOGDUMkkr9zpeiZlkgkghEjRhT7bUuG+vp6vlACgO0eDGz3YAiz3cO89jDDdg8GtnswsN2DoZDdC2VYTLgRn2EYhmEYhmGYkoadFoZhGIZhGIZhShp2WopELBbDD37wA8RisaCX0qdguwcD2z0Ywmz3MK89zLDdg4HtHgxs92DQZfeiN+IzDMMwDMMwDMP4gTMtDMMwDMMwDMOUNOy0MAzDMAzDMAxT0rDTwjAMwzAMwzBMScNOC8MwDMMwDMMwJQ07LZp4+eWX0dzcHPQyGIZhGIZhGKZoFGsPzE7LXrJ161Z87nOfw7Rp07B69eqgl9NnaG1txZ49ewAALIBXXD788EPMnDkT119/fdBL6TPs2LED//jHP7B58+agl+IbvlaDga/TYAjztRpmduzYgTvvvBNPP/00du/eHfRy+gzF3gOz07IXXH755Rg5ciQ6OjrQ0NCAurq6oJfUJ7jqqqtw4IEHYs2aNQAAwzACXlHf4dJLL8Xo0aMxePBgLFq0KOjl9AmuvPJK7Lvvvvj+97+PKVOm4LrrrsP7778PAEin0wGvrjB8rQYDX6fBEOZrNcx897vfxbhx47BixQrMnz8fF198Md57772gl9XrCWIPzE5LD3j44YfRr18/PP7443j88cfxl7/8BTNmzMCDDz4Y9NJ6Nbt27cL555+Pv/zlLwCABx98EG+99RYAjuBS88Ybb2D48OF4+OGH8cwzz2DdunUYMmRI0Mvq9dx888147LHH8MADD+D+++/H9ddfjwcffBCXX345ACASKc1bOF+rwcDXaXCE9VoNM1u3bsX8+fPx+OOP4/7778ejjz6KX//613jppZfw6quvBr28XkuQe2C+inrA9u3bsWLFCrz44os48sgjEY/HMXr0aLS0tHBfCyHJZBJDhw7FNddcg1tvvRVPP/00/vrXvyKRSHAEl5g9e/agvr4eJ5xwAmbMmIGNGzfi6quvxu9//3u8+OKLQS+v1yGEQDKZxAMPPICDDjoIc+bMQW1tLS688EKMHz8ea9aswZ133gkASKVSAa82g+yM8LVaPGS783VaPEy7h/Fa7S0kEgmceOKJWLVqFY488khUVFTgjDPOgGEYGD9+fNDL67UEugcWjCfpdFoIIUQ8Hs/6b8lkUgghxNKlS8V+++3neD2zdyQSCYctE4mE+Oijj6x/n3feeeKwww4Tzz77bBDL69W4bd/Z2SlWrFghampqxCmnnCJGjRol5s6dK0aNGiX22Wcf8ZOf/CTA1fYO3Db/5JNPxLRp08TPf/5zx+suvfRSMWbMGDF06FDr/hM0XV1dorOz0/o3X6vFwW13vk6Lg9vuYbpWw4x5fzRtmUgkxK5du6z/vnv3bnHyySeL8ePHiy996Uvivvvu4/2YBkppD8yZFg9uuukmXHXVVQCA8vLyrP9upnyPOeYYbNu2DW+88QZHEjWwbNkynHbaaVi4cCHWrVuHtrY2lJWVYdCgQVZt8HXXXYetW7di7dq1+PTTTwFw6YkO3LZvbW1FLBbD0Ucfjfnz5+OTTz7Bvffei/vuuw/vvfceFi9ejDVr1lh9C4x/TJsvWrQI69atQ0tLCxobGzFjxgysWrUKt9xyCzo6OrB06VKsWbMGl19+OWpra60IbpBcddVVmD17NhYsWICVK1di165dfK0WAbfdP/nkE8RiMRx11FGYN28eX6dEuO3+8ccfW9fqLbfcUtLXapiR92LRaBQAUFZWhoaGBgDABx98gFGjRqG9vR3/7//9P7S1teHKK6/EFVdcEdSSewUltwcmc4dCzksvvSTmzZsnDMMQkydPFn/729+EEEKkUqmcr3/sscfE6NGjxaOPPlrMZfY6NmzYID7zmc+IAw88UNxwww1izpw5Ytq0aeKGG25wvM707q+99loxYcIE8dBDD1n/jSMrPSOf7a+//nohRMauTz31lHjuuedEOp22voMPPvhATJo0Sfz0pz8NcvmhJJ/Nf/aznwkhhOjo6BCnn366GDt2rGhoaBBjx44VzzzzjBBCiAkTJojf//73ga09kUiIxYsXi3HjxonbbrtNfOELXxCTJk0SJ510kuN1fK3qJZ/dTzzxRCGEfZ0+++yzfJ1qJJ/dTzjhBCFEaV+rYUZlL2beR1588UXH3y5dulRMmzZN7Nmzp2jr7S2U6h6YnZY8XH/99eKUU04Rt912mzjxxBPF4sWLRSKREELkftB2dHSImpoaceeddwoh8n+xTH527twpLrjgAvHVr35VtLS0WL8/++yzxQUXXOBITZrfQTqdFlOnThVf+cpXxObNm8XatWvFTTfdVPS1hx0v23d1dQkhhHUNmJjfw+DBg8WVV15ZvAX3Arxs3t7eLoQQoq2tTWzatEn885//tF7T1dUl9tlnH3HLLbcUfd0mmzdvFhMmTBDr1q2zfvfII4+IqqoqR5mMeS/ka1UPhexuBhjcpUh8ne49hexult21t7eLN998s+Su1TDjdy8m//4LX/iCmDNnjmhvb+cAiU9KdQ/M5WF5WLhwIb75zW/i3HPPxfHHH49NmzbhjjvuyPv6VCqF2bNn44knngDASiE9ZdiwYfja176G2tpaJBIJAEBTUxNeeuklR2rSMAykUikYhoErr7wS69atw1FHHYUzzzyTy056SCHbV1RUAMik42UMw8C6deswbNgwLFy4sOhrDjuFbF5VVQUAqK6uxn777YdDDz3U+rs//OEPGDNmDBYsWBDIuoFME+ybb76JqVOnWr877rjjsHTpUlxzzTXYsmULgMy9kK9VfRSy+7XXXostW7ZY5TMmfJ3uPYXs/sMf/hBbtmxBVVUVxo8fX3LXapjxuxcDMuf7xo0bsW3bNpx77rmoqqrisn2flOoemHfWeRgyZAiOPPJIAMAZZ5yBkSNH4k9/+hM++ugjGIaRpbleU1ODjz76CK2trejq6gpiyaFnn332wZVXXomDDjoIgL1B3rlzJw4//PCs10ejUbz//vv4+9//jo8//hjHHnssPvroI1x00UVFXXdvwK/tX331VTz33HO47LLL8OUvfxnz589ntRaf+LX5zp078be//Q2XXHIJLr74YpxyyilobGwMbOOfSqUwdepU/PGPf3T8fsmSJWhsbMSNN95ovY6vVX2o2l0IwdepRgrZfcCAAZbd0+l0yV2rYcbPXuzNN9/Ek08+iUsvvRRHH3009t9/f3zhC18IaumhplT3wH3WaVG9eaTTaYwYMQKnnXYadu3ahVWrVgFwepHJZBJAZsDRd77zHcRiMf0L7iUUsrsQAmVlZdZrzMjI22+/jWnTpuX8+xtvvBFr167Fhg0bcOutt6KxsZFo5eFHp+2ffvppLFmyBBs2bMADDzyAH/3oR1lZGEavzffs2YO1a9fihRdewCOPPILvfe97iEQiZBFEr3vkyJEjsf/++2PDhg3WILd0Oo36+nr813/9F+655x50dnZaUX++VtXQYfeOjg4YhsHXqQ90ne+RSKTo12qY0bkXe/XVV3H99dfjlVdewaOPPorf/va3VsaacRLaPTBJ0VmJs2vXLtHc3Gz9W669c9fsm/9ub28XF154oZgzZ454+eWXhRBCvPDCC0KI7PphJjd+7G7a9N133xV1dXXilVdesf7btm3brJ/lXgAmP7psv3XrViGEEM3NzdZ1wORGl80//PBD62927txJuWSLnTt3io8++shaV761/+EPfxBTpkwRP/7xjx1/v3LlSnHggQeK999/3/odX6ve6LL7u+++K4QQorW1la9TBXSf7+l0umjXaphRtbv871x7seeee04Iken/e+edd4qx9FCjy+5B7IH7XKbloosuwsEHH4yTTz4ZixcvxrZt2xweoxn5vO2226x/p9NpVFVV4eyzz0ZZWRl+9KMfWcO7tm3bllU/zGTj1+6mTR966CGMHTsWkydPxtatW3H22WfjlFNOwe7duwEAtbW1xf8wIUOn7U899VTs2rULdXV1mDJlSiCfJwzotPmCBQssGeF99tmHfO1LlizB5MmTcfzxx2PevHl4++23s9aeSqVwxx134POf/zwOO+wwrFmzBvfff7/1mo8//hj9+/fH8OHDrd/xtVoYnXZvamoCkCnZ4Ou0MBTnu2EYRblWw4yK3VX3Yocccgg+/PBDVFdXY9999w3qI4UCnXYPYg/cZ5yW1tZWnHzyyXjxxRdx6623YvHixdi8eTNOOukkvPbaa9brVq5ciSFDhuDuu+/Gjh07ANhpsEmTJmH79u24++67UVVVhXfffRdDhw4N5POEhZ7YfefOndbv33rrLcyZMwfLli3Dfvvth48//hhr1qyxtNmZ/FDZnst68hN2m3/rW9/CP//5T9x111345je/ia6uLpx++ul48sknHWsfNmwYbr/9diQSCVxyySWYOHEiTjvtNHz961/HRRddhB//+Mc4++yzEY1GuY5fAbZ7MLDdg0HV7n72YsOGDQvks4QJCrsXfQ9ctJxOwDz55JNi4sSJ4qWXXrJ+t3XrVlFeXi6++tWvio8++kjce++9Yvjw4WLVqlVZ6a5//vOforGxUUyYMEE89dRTxV5+aNkbu7e1tYnRo0cLwzDE+PHjxSOPPBLERwgtbPviE1abp9Np0dbWJg4++GBx1VVXWb9vb28X06ZNE4sWLRLvv/++WLNmjRg2bJhYtWpVVhnBz372M3HBBReIefPmWZr+TGHY7sHAdg+Gntid92J7T2+ye59xWu677z5RU1Pj+N1LL70kBg8eLMaMGSPuvvtuIUT+uuvW1laxevVq8nX2NvbG7p988olYvHixuOOOO4qy1t4G2774hNnm//nPf8SQIUOsORTmbJ67775bTJo0Sfz2t78VQmTuhTI8/2DvYLsHA9s9GHpqdxPei/WM3mL3XlketmzZMlx22WVYsWIF4vE4AGD48OEYPnw4vv/971uvW7lyJRYuXIjq6mqsXbsWQKYG2I0QAjU1NTjnnHOKsv6wotPuQgg0Njbi9ttv57kCCrDti0+YbX7fffehubnZ8f7Dhw/HmDFjcNdddwGwSwLOOussjBs3Dg8++CB27NiRtXZWRFKH7R4MbPdg0Gl38+95L+ZNr7Z7QM4SCW+88YaYOHGimDx5sjj77LNFQ0ODOPLII8WLL74oUqmUuPHGG4VhGOKwww4T9fX1Yty4caK5uVmsXr1aNDQ0BL380MJ2Dw62ffEJs80ff/xxsf/++wvDMMSKFSus35vR41WrVony8nKxadMmIURmyrEQmcnflZWV4j//+Y/j9YwabPdgYLsHA9s9GPqC3XuV03L99deLWbNmWbWn27ZtE1OnThVnnXWW2Lx5sxBCiPXr14ubb75Z3H///dbf3XzzzWL69Oni448/DmTdYYftHhxs++ITVpu//vrr4uyzzxZLliwRF1xwgRg5cqQlp2yyefNmMXv2bHHMMcc4fr9p0ybRr18/rt3vAWz3YGC7BwPbPRj6it17jdOSSCTEl7/8ZbFgwQKHl3j33XeLmTNniu9+97s5/y6ZTIqFCxeKL33pS8Vaaq+C7R4cbPviE2abb9++Xdxyyy3i9ddfF83NzWL48OHim9/8puM16XRaPPjggyIWi4mf/OQnYseOHUKIzByKGTNmOObOMGqw3YOB7R4MbPdg6Ct27zVOixBCLFq0SBx//PEimUw6lA+WLFkijjnmGLFx40brd5s2bRJvv/22uPDCC8XIkSPF3//+dyFEaafFShW2e3Cw7YtPmG0uDxG79dZbRSwWcyidmfzud78TgwcPFgcccIA488wzRSwWE9ddd51Ip9N8vvQAtnswsN2Dge0eDH3B7r3CaTE3Do8//riIRCLixRdfFELYkzzXr18vxo0bZyn3CCHEr3/9azF+/Hgxc+ZMx/RpRh22e3Cw7YtPb7G5/FCaOXOmOOWUU7LkXIUQ4umnnxa//OUvxaWXXprzwcf4g+0eDGz3YGC7B0Nvt3tonJb33ntPfPDBB0IIkaUfbX4hHR0dYs6cOWLu3LlCCOeXN3bsWHHNNddY//7kk0/Ec889R73s0MN2Dw62ffEJs81V1m5irvkf//iHiEQilgxmMpm0SgYYNdjuwcB2Dwa2ezCw3TOEwmlZu3atMAxDnHrqqY7fy19cMpkU27dvF+vXrxfl5eXiN7/5jZUq27Vrl5gyZYr41a9+VdR1hx22e3Cw7YtPmG2usvZEIiG2b9+e9beLFi0S06dPF4899piYN2+e+N73vifi8Tj5mnsDbPdgYLsHA9s9GNjuNqGY0/Lss89i5syZ2LJlC+69914AQCqVQjQaBQD88pe/RHV1NR5++GHMmTMHP/jBD/CDH/wAF154IZ588klce+21aGlpwbHHHhvkxwgdbPfgYNsXnzDbXGXttbW1eOihhyCEcPztkiVLsHHjRhx33HEAgMsvvxzl5eXF/QAhhe0eDGz3YGC7BwPbXSJQl8kDM4K5ZMkScdFFF4mvfOUr4ogjjrC8xE8//VQsWrRIDBs2TNx2222OMo1f/vKX4ogjjhCTJ08WU6dOFRs2bAjkM4QRtntwsO2LT5ht7mftt99+u2PtyWRS3HbbbaK8vFzMnDnTISDAFIbtHgxs92BguwcD2z2bknZahMjU5s2bN0/861//Evfff7+YOHGiuPHGG4UQmS/sueeec8i0yeoJqVTKmpvA+IPtHhxs++ITZpv7XbtJW1ub+MUvfuEYQsaow3YPBrZ7MLDdg4Ht7qQs6EyPyT333IP+/ftj0qRJGDp0KAA7/RWNRhGPx3HooYfi9NNPx6pVq7BhwwZMnjwZl19+OSoqKqzjRCIRx89jxowp+mcJE2z34GDbF58w21zX2k2qq6txySWXkK877LDdg4HtHgxs92BguysStNd0++23i0GDBolDDjlEDBw4UBx++OFizZo11n/ftWuXGDJkiOjq6hJCCHHZZZeJyspKUVVVJZ5//vmAVh1+2O7BwbYvPmG2eZjXHmbY7sHAdg8GtnswsN39EVgjfjKZxI033ohly5bhRz/6EZ588kmsXbsWY8eOxcqVK9HV1QUA6OjowJw5c3DfffdhypQpWL16NebOnYtRo0ZZDUepVCqojxE62O7BwbYvPmG2eZjXHmbY7sHAdg8GtnswsN17SFDe0qeffiquvPJKsXz5ckd9+PLly8Xhhx8uWlpahBBCbNmyRRiGIcrLy8WSJUvE7t27xWuvvSbmz58vZs+eHdTyQwvbPTjY9sUnzDYP89rDDNs9GNjuwcB2Dwa2e88oak/LW2+9hXHjxsEwDPTr1w9nnnkmJk+ejEgkgnQ6jUgkgqamJrS1tVk1ek1NTfjDH/6AMWPG4JBDDgEA9O/fH6eeeipaWlosT9MwjGJ+lFDBdg8Otn3xCbPNw7z2MMN2Dwa2ezCw3YOB7a6BYnhGf/zjH8Xo0aPF/vvvLw455BBxyy23OP677GUuXLhQnHfeeUIIkXMAjinp5p4IymTDdg8Otn3xCbPNw7z2MMN2Dwa2ezCw3YOB7a4PcqflkUceEaNHjxY333yzePjhh8Xll18uysvLxcqVK0VHR4cQIvMlpNNp0dHRIaZMmSJWr16ddZy++gX1FLZ7cLDti0+YbR7mtYcZtnswsN2Dge0eDGx3vZA5LaY3ePXVV4vp06c7PMavf/3rYsaMGeK+++5z/M3WrVvF6NGjxaZNm4QQQmzatElcdtllVEvslbDdg4NtX3zCbPMwrz3MsN2Dge0eDGz3YGC700CmHmbW173++usYO3YsysvLkUgkAADXXXcdKisr8ec//xnbt2+3/uaxxx5DU1MThg4diksuuQQTJ07E+++/j0QiYdXtMYVhuwcH2774hNnmYV57mGG7BwPbPRjY7sHAdidCl/fzyCOPiIsuukjccMMNYsOGDdbvV65cKerq6qzUlultrly5UowfP148/vjjQoiMV3rWWWeJhoYGMWDAADFp0iTx3HPP6Vper4XtHhxs++ITZpuHee1hhu0eDGz3YGC7BwPbvTjstdPy4Ycfis9+9rNi0KBBYtGiRWLy5MmiX79+1pf25ptviuHDh4ulS5cKIYQ1IEcIIYYMGSJuuOEGIYQQbW1t4rOf/awYMWKEuOuuu/Z2Wb0etntwsO2LT5htHua1hxm2ezCw3YOB7R4MbPfisldOS1tbm/jiF78ozj77bLF582br94cccoilftDc3Cyuu+46UVVVJbZs2SKEsGv95syZI84//3zr7/ridM+ewHYPDrZ98QmzzcO89jDDdg8GtnswsN2Dge1efPaqp6W6uhqxWAznnXcexowZg2QyCQA48cQT8X//938QQqCurg4LFy7EQQcdhM997nN4//33YRgGtmzZgh07duDUU0+1jjd9+vS9KnXrK7Ddg4NtX3zCbPMwrz3MsN2Dge0eDGz3YGC7Fx9DiL3r7kkkEigvLwcAazjOokWLUFNTg5UrV1qv27p1K4466igkk0nMmDEDzzzzDCZMmIA777wTgwcP3rtP0QdhuwcH2774hNnmYV57mGG7BwPbPRjY7sHAdi8ue+205GL27Nn46le/ii9+8YtIp9MAgEgkgrfffhsvvPACNmzYgKlTp+KLX/yi7rfu07Ddg4NtX3zCbPMwrz3MsN2Dge0eDGz3YGC706Hdadm8eTMOO+wwPPDAA1aqKx6Po6KiQufbMC7Y7sHBti8+YbZ5mNceZtjuwcB2Dwa2ezCw3WnRNqfF9H2eeuop1NbWWl/W1VdfjUsuuQQ7duzQ9VaMBNs9ONj2xSfMNg/z2sMM2z0Y2O7BwHYPBrZ7cSjTdSBzkM6zzz6LM844A48++iguuOACtLe3Y/Xq1Rg0aJCut2Ik2O7BwbYvPmG2eZjXHmbY7sHAdg8GtnswsN2LhE4pso6ODjFu3DhhGIaIxWJi+fLlOg/P5IHtHhxs++ITZpuHee1hhu0eDGz3YGC7BwPbnR7tPS3HHXcc9ttvP/z85z9HZWWlzkMzBWC7BwfbvviE2eZhXnuYYbsHA9s9GNjuwcB2p0W705JKpRCNRnUeklGA7R4cbPviE2abh3ntYYbtHgxs92BguwcD250WEsljhmEYhmEYhmEYXWhTD2MYhmEYhmEYhqGAnRaGYRiGYRiGYUoadloYhmEYhmEYhilp2GlhGIZhGIZhGKakYaeFYRiGYRiGYZiShp0WhmEYhmEYhmFKGnZaGIZhmCyOOuooXHrppX3uvRmGYZjShJ0WhmEYZq9Yv349DMPAp59+quXv7rvvPlx77bX6FsgwDMOEnrKgF8AwDMMwMo2NjUEvgWEYhikxONPCMAzTx2lra8O5556L2tpaDB06FNdff73jv69evRozZsxAXV0dhgwZgoULF2LHjh0AgPfeew9HH300AKChoQGGYeC8884DAKTTaSxbtgxjxoxBVVUVpk6dinvuucfz79zlYaNHj8Z1111nrXHUqFFYt24ddu7ciQULFqC2thZTpkzB888/71j3U089hSOOOAJVVVVoamrCxRdfjLa2Nt3mYxiGYYoAOy0MwzB9nG9/+9t44okn8Oc//xmPPPII1q9fj40bN1r/PZFI4Nprr8XLL7+MtWvX4r333rMcjKamJtx7770AgDfffBPbtm3DjTfeCABYtmwZbr/9dvz2t7/Fa6+9hssuuwznnHMOnnjiiYJ/l4sbbrgBhx9+OF588UWcdNJJWLx4Mc4991ycc8452LhxI8aOHYtzzz0XQggAwDvvvIP58+fjjDPOwCuvvII//vGPeOqpp/CNb3yDwoQMwzAMMYYw7/AMwzBMn6O1tRUDBgzA//7v/+Kss84CAOzatQsjRozABRdcgF/84hdZf/P888/j4IMPRktLC2pra7F+/XocffTR2L17N/r37w8A6OrqQmNjIx577DHMmjXL+tvzzz8f7e3tuPPOO3P+HZDJtHzmM5+x3nv06NE44ogjsHr1agDA9u3bMXToUCxduhTXXHMNAOBf//oXZs2ahW3btmHIkCE4//zzEY1GsWLFCuu4Tz31FObMmYO2tjZUVlZqtCLDMAxDDfe0MAzD9GHeeecdxONxzJw50/pdY2Mj9t9/f+vfL7zwAq666iq8/PLL2L17N9LpNABgy5YtmDhxYs7jvv3222hvb8dxxx3n+H08Hse0adN8r3PKlCnWz4MHDwYATJ48Oet3O3bswJAhQ/Dyyy/jlVdewR133GG9RgiBdDqNd999FwcccIDvNTAMwzDBwU4LwzAMk5e2tjbMmzcP8+bNwx133IGBAwdiy5YtmDdvHuLxeN6/a21tBQA88MADGD58uOO/xWIx3+soLy+3fjYMI+/vTIeqtbUVF154IS6++OKsY40cOdL3+zMMwzDBwk4LwzBMH2bs2LEoLy/Hhg0brM387t27sWnTJsyZMwdvvPEGPvnkEyxfvhxNTU0AkNXwXlFRAQBIpVLW7yZOnIhYLIYtW7Zgzpw5Od8719/p4qCDDsLrr7+OcePGaT82wzAMU3y4EZ9hGKYPU1tbi6985Sv49re/jb///e949dVXcd555yESyTweRo4ciYqKCtx0003YvHkz1q1blzVDZdSoUTAMA/fffz927tyJ1tZW1NXV4Vvf+hYuu+wy3HbbbXjnnXewceNG3HTTTbjtttvy/p0uvvOd7+CZZ57BN77xDbz00kt466238Oc//5kb8RmGYUIKOy0MwzB9nJ/+9Kc44ogjcPLJJ2Pu3LmYPXs2pk+fDgAYOHAg/ud//gd/+tOfMHHiRCxfvhw/+9nPHH8/fPhwXH311fjud7+LwYMHW47Btddei6VLl2LZsmU44IADMH/+fDzwwAMYM2ZMwb/TwZQpU/DEE09g06ZNOOKIIzBt2jR8//vfx7Bhw7S9B8MwDFM8WD2MYRiGYRiGYZiShjMtDMMwDMMwDMOUNOy0MAzDMAzDMAxT0rDTwjAMwzAMwzBMScNOC8MwDMMwDMMwJQ07LQzDMAzDMAzDlDTstDAMwzAMwzAMU9Kw08IwDMMwDMMwTEnDTgvDMAzDMAzDMCUNOy0MwzAMwzAMw5Q07LQwDMMwDMMwDFPSsNPCMAzDMAzDMExJw04LwzAMwzAMwzAlzf8H0/fYCoIkkBcAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "tol.plot(y='gage height ft', kind='line')" ] @@ -170,30 +119,9 @@ }, { "cell_type": "code", - "execution_count": 62, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 62, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAGwCAYAAABIC3rIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABiVklEQVR4nO3deVyU5f4//tewgzgDskqigiIuuRuKC65paqVHT6nfculo59TBLT+2PSpbrKxOWWaWp45LntLSjplHyyXcFXEDt6OkgoIp+w7Kev/+8MfEAHPPzD33zczNvJ6PB4/ivm4urptR5821vN8aQRAEEBERETkwJ1sPgIiIiMjWGBARERGRw2NARERERA6PARERERE5PAZERERE5PAYEBEREZHDY0BEREREDs/F1gNQg5qaGty6dQstW7aERqOx9XCIiIjIDIIgoLi4GCEhIXByEp8DYkBkhlu3biE0NNTWwyAiIiIJ0tPT0aZNG9F7GBCZoWXLlgDu/UC1Wq2NR0NERETmKCoqQmhoqP59XAwDIjPULpNptVoGRERERCpjznYXbqomIiIih8eAiIiIiBweAyIiIiJyeAyIiIiIyOExICIiIiKHx4CIiIiIHB4DIiIiInJ4DIiIiIjI4TEgIiIiIofHgIiIiIgcHkt3EBERNSMp2SW4kVeG9n4tEObfwtbDUQ0GRERERM1AQVkF5m9KwqEr2fprMREBWDmtN3RerjYcmTpwyYyIiKgZmL8pCUev5hhcO3o1B/M2JdpoROrCgIiIiEjlUrJLcOhKNqoFweB6tSDg0JVspOaU2mhk6sGAiIiISOVu5JWJtl/PZUBkCgMiIiIilWvXyku0vb0fN1ebwoCIiIhI5cIDvOFrZOO0r5crT5uZgQERERGRyqVklyC/rLLRtvyySu4hMgMDIiIiIpXjHiLrMSAiIiJSOe4hsh4DIiIiIpULD/BGTEQAnDUag+vOGg1iIgK4h8gMDIiIiIiagbcn3g+tp2EBCq2nC96ZeL+NRqQuDIiIiIiagVe3XUDRnSqDa0V3qvDKtgs2GpG6MCAiIiJSuabIVJ2SXYL9yVnN9sQai7sSERGpnDmnzKTuI2qKorEHk7OQdLMAfdr6YkhEgCx9WooBERERkcopecpMrGjshtlRkvsFgBu5pZi46qhBDiVfL1dsjx2MUD/xZ5Ibl8yIiIhUTqlTZkovxdUPhoB7iSQfXXXEqn6lYEBERETUDKyc1huDOvobXBvU0R8rp/WW3KeSCR8PJmeJZtc+XGeJrilwyYyIiKiJpWSX4EZeGdr7tZAtR5DOyxUbZkchNacU13NLZelbyaW4pJsFou1n0vKbdD8RAyIiIqIm0hQblMP85QuyTqbmibafup4n+Xv1auMj2t6nra+kfqXikhkREVETEdugbI/iU3NF249eyxFtFzM0MhC+RoJAXy/XJj9txoCIiIioCTRFriC5RYf5ibYP6uAv2m7K9tjBDYKi2lNmTY1LZkRERE1AyVxBSpkS1RavbLuAqhqhQZuLkwaP9Qu1qv9QPy8kLhmNw1eycSYt36Z5iDhDRERE1ATUWpF+e+wguDgZHud3cdJge+wg2b7HkIgALBjZyWbBEGBHAdF7770HjUaDhQsX6q/dvXsXsbGx8PPzg7e3NyZPnozMzEyDr0tLS8P48ePh5eWFwMBAPP/886iqMqzlcuDAAfTp0wfu7u7o2LEj1q9f3wRPRERE9Ae1VqTvep8OV98dh3/8uQcm9g7BP/7cA1ffHYeu9+lsPTRZ2UVAdPLkSfzzn/9Ejx49DK4/99xz+O9//4stW7bg4MGDuHXrFiZNmqRvr66uxvjx41FRUYFjx47h66+/xvr167FkyRL9PampqRg/fjyGDx+OpKQkLFy4EHPmzMHu3bub7PmIiIgAZXIF1XcwOQsr4n6TPY/PY/1C8cmU3lYvk9krjSAIDRcGm1BJSQn69OmDzz//HG+//TZ69eqFTz75BIWFhQgICMDGjRvx5z//GQBw+fJldOnSBfHx8RgwYAB++eUXPPzww7h16xaCgoIAAKtXr8aLL76I7OxsuLm54cUXX8TOnTtx4cIf1X6nTp2KgoIC7Nq1y6wxFhUVQafTobCwEFqtVv4fAhERORQ5cwXVsqcyGPbCkvdvm88QxcbGYvz48Rg1apTB9dOnT6OystLgeufOndG2bVvEx8cDAOLj49G9e3d9MAQAY8aMQVFRES5evKi/p37fY8aM0ffRmPLychQVFRl8EBERySXMvwWGRwbKukxmT2Uw1MimAdF3332HM2fOYNmyZQ3aMjIy4ObmBh8fH4PrQUFByMjI0N9TNxiqba9tE7unqKgId+7caXRcy5Ytg06n03+EhjbP6UEiImoe7K0MhhrZLCBKT0/HggUL8O2338LDw8NWw2jUyy+/jMLCQv1Henq6rYdERERklDllMEiczQKi06dPIysrC3369IGLiwtcXFxw8OBBfPrpp3BxcUFQUBAqKipQUFBg8HWZmZkIDg4GAAQHBzc4dVb7ual7tFotPD09Gx2bu7s7tFqtwQcREZG9srcyGGpks4Bo5MiROH/+PJKSkvQf/fr1wxNPPKH/f1dXV8TFxem/Jjk5GWlpaYiOjgYAREdH4/z588jKytLfs3fvXmi1WnTt2lV/T90+au+p7YOIiKippWSXYH9ylmzZqe2tDIYa2SxTdcuWLXH//fcbXGvRogX8/Pz012fPno1FixahVatW0Gq1mDdvHqKjozFgwAAAwOjRo9G1a1dMnz4dH3zwATIyMvDqq68iNjYW7u7uAIBnnnkGn332GV544QX85S9/wb59+7B582bs3LmzaR+YiIgcnpLFXb+ZHYUJq44ZZJV2cdLg29n9rerXUdj8lJmYjz/+GA8//DAmT56MmJgYBAcHY+vWrfp2Z2dn7NixA87OzoiOjsaTTz6JGTNm4K233tLfExYWhp07d2Lv3r3o2bMnPvroI/zrX//CmDFjbPFIRETkwJQs7vr+rt9QP5GOIADv7Uq2um9HYPM8RGrAPERERGStlOwSjPjooNH2/YuHST6Gr2TfaqaqPERERESOwJzirvbYt6NgtXsiIiIjDiZnIelmgSxV2JUs7qrWwrH2hAERERFRPWorg1FbOPbo1RxU19kJ46zRYFBHf4dcLrMUl8yIiIjqUaIMhtLLWk1ROLY54wwRERFRHeaUwZCyfKb0spbOyxUbZkcpUjjWEXCGiIiIqA6lymDULms5azQG1501GsREBMgWvChRONYRMCAiIiKqQ8kyGFzWsl9cMiMiIqqjtgxGY8tm1pbB4LKW/eIMERERUT3bYwc3qA1We8pMDlzWsj+cISIiIqon1M8LiUtG4/CVbJxJy5clDxHZNwZERERERgyJCGAg5CC4ZEZEREQOjwEREREROTwumRERETWxlOwS3Mgr4ykzO8KAiIiIqIkUlFVg/qYkHLqSrb8WExGAldN6Q1fvVBs1LS6ZERGRqqVkl2B/chZSc6yrBdYU/v7tGYNgCAAOXcnGs9+ettGIqBZniIiISJXUNtuSkl2CY9dyG207di0XqTmlXD6zIc4QERGRKs3flISjV3MMrh29moN5mxJtNCJxCamNB0P69hTxdlIWAyIiIlKdlOwSHLqSjWpBMLheLQg4dCXbTpfPNKKtgmgrKY0BERERqc6NvDLR9uu59hcQheg8RNvb+Ho20UioMQyIiIhIddq18hJtb+9nf3txaky0V9VwjsiWGBAREZHqhAd4IyYiAM4aw2UoZ40GMREBsm1OPpichRVxv+FwvZNhUqgxiHMkPGVGRESqtHJab8zblGhwymxQR3+snNbb6r5v5JZi4qqjyC+r1F+rrXYf6ice2BhTG8QdvZpjsPfJWaPBoI7+PGFmYxpBEDhHZ0JRURF0Oh0KCwuh1WptPRwiIqojNacU13NLZc363PPN3Si8U9Xgus7TBWdfHyO53ws3CzHx86MGy2MuThpsjx2ErvfpJPdLjbPk/ZtLZkREpGph/i0wPDJQ1mWyxoIhACi8U2XV8tn0tQkN9gpV1Qh4Yk2C5D5JHgyIiIiI6tifnCXaHncpU1K/B5OzDJbg6sovq5RlnxJJx4CIiIiojlYt3ETb/b3dJfWbdLNAtP1MWr6kfkkeDIiIiIjqeLhHiGj7eBPtxvRq4yPa3qetr6R+SR4MiIiISNXkLu4aHuCNqPatGm2Lat9K8l6loZGB8DVSY83XyxVDIgIk9Uvy4LF7IiJSJSWLu341o1+DI/21fVvjm9lRmLDqWINTZt/O7m9Vv2Q9zhAREZEqKVncVVCostj7u35D/WQ3ggC8tytZke9H5mNAREREqqN0cVclgi11FqR1HAyIiIhIdZQs7qpU4KLGgrSOhAERERGpjpJ1wZQKXFjLzL4xICIiItVRsrirUoFLUxWkJWkYEBERkSqtnNYbgzr6G1yTq7irUtQ4ZkfBY/dERKRKOi9XbJgdJXtx1x3nbom27zx3C3NHREjqW6kxk/UYEBERkaoJ9c+xWymvtEK0Paek3OrvEebPQMjeMCAiIqImkZJdght5ZbLNiiiVmLFLsFa0vVuITnLfZL8YEBERkaKUClzEcgVtmB0lud8aE0kZq2uUSdpItsVN1UREpCi1JTnMLhZfMsuWYcmM7A8DIiIiUowakxwGtHQTb/d2l9w32S8GREREpBilAhdTb14uThoTdxjXP8xPvD1cvJ3USdIeolu3buHIkSPIyspCTU2NQdv8+fNlGRgREamfUkkOa0y0V3GfD1nI4oBo/fr1+Nvf/gY3Nzf4+flBUyfjpkajYUBERER64QHeGNjBD8eu5TZoG9jBT/Jps4s3C0XbL90qwvDIQEl9mzOrxSPzzY/FAdFrr72GJUuW4OWXX4aTE1fciIhInLE0QdakD7qaUyLa/ltWseS+WXPMMVkc0ZSVlWHq1KkMhoiImqGU7BLsT86y6pRW/f7iUxrODgFAfEqu5O8TbWKfz6AO/qLtYlhzzDFZHNXMnj0bW7ZsUWIsRERkIwVlFZix5gRGfHQQT607ieEfHsCMNSdQWFZpVb9KbaqeEtXW6MZpFycNHusXKqnfWqw55ng0goU5z6urq/Hwww/jzp076N69O1xdDZNqLV++XNYB2oOioiLodDoUFhZCqxXPYEpEpEYz1pzA0as5BsfjnTUaDOrob1WSw5TsEoz46KDR9v2Lh0mecTl+NRdT/3W8wfXvnx6A/h3kOQnGmmPqZsn7t8V7iJYtW4bdu3cjMjISABpsqiYiInWpzRVUX91cQfYYDHx+8BqcNZoGQdyqA9dkC4hYc8xxWBwQffTRR1i7di1mzZqlwHCIiKipKXmqSqm+myqIO5ichaSbBejT1hdDIgKs7o/sl8UBkbu7OwYNGqTEWIiIyAaUPFWlVN9KH42/kVuKiauOIr/OHipfL1dsjx2MUD/xZyJ1snhT9YIFC7By5UolxkJERDag5KkqpfpW+mh8/WAIAPLLKvHoqiNW9Uv2y+IZohMnTmDfvn3YsWMHunXr1mBT9datW2UbHBERNY23J3bDhHpBgNbTBe9MvN/qvldO6415mxINlrjs+cTWweSsBsFQrfyyShy+ks3ls2bI4oDIx8cHkyZNUmIsRERkI69uu4iiO1UG14ruVOGVbResOmUGADovV2yYHSXria2E1DzR9uMpuZK/R9LNAtH2M2n5DIiaIYsDonXr1ikxDiIispGm2qAs54mt7OK7ou25JeWS++7Vxke0vU9bX8l9k/2yeA9Ramoqrly50uD6lStXcP36dTnGRERETUip5IlKCmjpIdru5+0uue+hkYHw9XJttM3Xy5WzQ82UxQHRrFmzcOzYsQbXExISeBSfiKgOuctgKKWpancdTM7CirjfcLiR2ShLhejEA6I2vp5W9b89dnCDoKj2lBk1TxYvmSUmJjZ67H7AgAGYO3euLIMiIlKzgrIKzN+UZLAMFRMRgJXTekNnZObBlmpPghnLVG3tMpcSR9hrTLRX1VhRORZAqJ8XEpeMxuEr2TiTls88RA7A4hkijUaD4uKGVYQLCwtRXV0ty6CIiNRs/qYkHL2aY3Dt6NUczNuUaKMRmaZk7a5HPzvS6BH2hz87LLlPU29exuqcWWpIRAAWjOzEYMgBWDxDFBMTg2XLlmHTpk1wdnYGcK++2bJlyzB4MKcSicixqbUMRu1JsEO/ZSMxXb4ZkYPJWSisd3qtVuGdKslH2G8V3hFt/z1fvJ2oPosDovfffx8xMTGIjIzEkCFDAACHDx9GUVER9u3bJ/sAiYjUROkMykpRaplvf3KWaHvcpUyJgZf4DJB1C2bkiCxeMuvatSvOnTuHxx9/HFlZWSguLsaMGTNw+fJl3H+/9Qm8iIiaktwbn5tqg7LclFrma9XCTbTdX+JpsP5hrUTbB4TLU9yVHIfZM0Rr167Fo48+Cn9/f4SEhODdd99VclxERIpSakZE6Q3KSlByma+niZw+PUPF240JD/BGdLgf4lNyG7RFh/vZ5c+Z7JvZM0TffPMN2rRpg4EDB+L999/H5cuXlRwXEZGilNz4rOQGZSUomYfoVqF4AsWbVuz1eX9yj0aPxn8wuYfkPslxmT1DtG/fPuTn52Pnzp3Yvn073nnnHQQFBeHRRx/FhAkTMHjwYDg5WbwCR0TNSEp2CW7klclSmkFJSm98VqJUhZKUPLGlZEbpV7ddUKzcCDkeizZV+/r64sknn8STTz6JiooK7Nu3D9u3b8cTTzyBO3fuYNy4cXj00UcxduxYtGhhv3/5iUheasu701Qbn+UsVVGX3IGnkie2AlqK7xGSuodIraf5yH5JntJxc3PDQw89hM8//xzp6enYtWsX2rdvj6VLl2L58uVyjpGI7Jza8u6odeNzQVkFZqw5gREfHcRT605i+IcHMGPNCRQaqcxuPuVObPUPE9/c3F/i5mc1lhsh+2b1GldVVRVKSkrQr18/vPXWWzh79ixeeuklOcZGRCpQ+5t63Q3EgOFv6vamduOzs8YwEHDWaBATEWC3MwtKBZ5KntgKD/AWbZf6s1ZrUEv2y+yA6L///S/Wr19vcO2dd96Bt7c3fHx8MHr0aOTn5wMAXF3tb4qciJSh1t/U1bbxWY2BJwB8fyJNtH3LqXRJ/ao1qCX7ZXZAtHz5cpSW/vEX7tixY1iyZAlee+01bN68Genp6Vi6dKlF3/yLL75Ajx49oNVqodVqER0djV9++UXffvfuXcTGxsLPzw/e3t6YPHkyMjMzDfpIS0vD+PHj4eXlhcDAQDz//POoqjLcZHfgwAH06dMH7u7u6NixY4PAjoikU+tv6rUbn/cvHoZ1Tz2A/YuHYcPsKLvc8wQoG3gq2ffeS5mi7XsuZkjuW21BLdk3szdVX7x40WBv0A8//IAHH3wQr7zyCgDAw8MDCxYssGj/UJs2bfDee+8hIiICgiDg66+/xoQJE5CYmIhu3brhueeew86dO7FlyxbodDrMnTsXkyZNwtGjRwHcKxkyfvx4BAcH49ixY7h9+zZmzJgBV1dXfZ6k1NRUjB8/Hs888wy+/fZbxMXFYc6cOWjdujXGjBlj9liJqHFqzLtTl1Ibn+WmZOCpZN9aD/EAU+spPQBV22k+sm9mzxAVFxfDz++PdeQjR45g5MiR+s+7deuGW7duWfTNH3nkEYwbNw4RERHo1KmTfgnu+PHjKCwsxJo1a7B8+XKMGDECffv2xbp163Ds2DEcP34cALBnzx7873//wzfffINevXph7NixWLp0KVatWoWKigoAwOrVqxEWFoaPPvoIXbp0wdy5c/HnP/8ZH3/8sUVjJSLj+Ju68sIDvDGwQ+N7eQZ2sC4RYXiANx5o79toW1R7X6v6fiCs8X717e3F9y+ZI8y/BYZHBjIYIquYHRDdd999uHTpEgCgpKQEZ8+excCBA/Xtubm58PIS/y1DTHV1Nb777juUlpYiOjoap0+fRmVlJUaNGqW/p3Pnzmjbti3i4+MBAPHx8ejevTuCgoL094wZMwZFRUW4ePGi/p66fdTeU9tHY8rLy1FUVGTwQUTGqW35Sa0EI8e9jF23xG+ZJY1eTzZy3VwhOk/R9vt8xduJmorZAdFjjz2GhQsX4t///jeefvppBAcHY8CAAfr2U6dOITIy0uIBnD9/Ht7e3nB3d8czzzyDH3/8EV27dkVGRgbc3Nzg4+NjcH9QUBAyMu6tOWdkZBgEQ7XttW1i9xQVFeHOncZzayxbtgw6nU7/ERoaavFzETki/qaunJTskkbLVABAfEquVZuq71Wkb/zofuGdShxuJN+PuWpMtFfVsAwr2QezA6IlS5bggQcewPz585GUlIRvvvkGzs7O+vZNmzbhkUcesXgAkZGRSEpKQkJCAp599lnMnDkT//vf/yzuR04vv/wyCgsL9R/p6dJOQRARyUXJjc9JNwtE28+k5Uvu+3CyeDB19EqOaDtRUzF7U7Wnpyc2bNhgtH3//v2SBuDm5oaOHTsCAPr27YuTJ09ixYoVmDJlCioqKlBQUGAwS5SZmYng4GAAQHBwME6cOGHQX+0ptLr31D+ZlpmZCa1WC0/Pxqdq3d3d4e4uLXsqESlDLWVB6pJzzEqW1+hlogBrn7bi+4DEXMoQ33Jw8Vah5L6J5GRR6Y6mUFNTg/LycvTt2xeurq6Ii4vD5MmTAQDJyclIS0tDdHQ0ACA6OhrvvPMOsrKyEBgYCADYu3cvtFotunbtqr/n559/Nvgee/fu1fdBRPZNbWVBAGXGrGSR1KGRgdB6uKDoblWDNq2HC4ZEBEjue1AHf8Sn5Bltt6ZvIjlZHBCFhYVBozH+m0hKSorZfb388ssYO3Ys2rZti+LiYmzcuBEHDhzA7t27odPpMHv2bCxatAitWrWCVqvFvHnzEB0drd+7NHr0aHTt2hXTp0/HBx98gIyMDLz66quIjY3Vz/A888wz+Oyzz/DCCy/gL3/5C/bt24fNmzdj586dlj46EdmAWHZmey3g+ew3Zxrs9zl0JRvPfHMam/46wMhXmSK+10b6/JCyxvVojQ/3/ma0fWz31k04GiLjLA6IFi5caPB5ZWUlEhMTsWvXLjz//PMW9ZWVlYUZM2bg9u3b0Ol06NGjB3bv3o0HH3wQAPDxxx/DyckJkydPRnl5OcaMGYPPP/9c//XOzs7YsWMHnn32WURHR6NFixaYOXMm3nrrLf09YWFh2LlzJ5577jmsWLECbdq0wb/+9S/mICJSATUW8DRn87OUMStVEwy4t6m6sdkhACi6W4XDV7Ilz+Q0VSFdImtZHBAtWLCg0eurVq3CqVOnLOprzZo1ou0eHh5YtWoVVq1aZfSedu3aNVgSq2/YsGFITLTPIpNEZJwa30wTUo0vDwHA8ZRcuxuzOZuqpQZEas1kTo7H6uKutcaOHYv//Oc/cnVHRKTKN9PsYvG9Prkl5ZL6VfKUWXBLD9F2U7mExLDmGKmFbAHRDz/8gFatrM84SkRUS41vpgEmggs/b2knWJUMDgN14mP2b2ndqVtmMic1sHjJrHfv3gabqgVBQEZGBrKzsw329xARyWHltN6YtynRYC+RPb+ZhpgILtpIzMysZM04pWfiWHOM1MDigGjixIkGnzs5OSEgIADDhg1D586d5RoXEREA9b2ZKpmZWW3BYX1qKaRLjsnigOj1119XYhxE1AwomTxRLW+mSiZQVCo4VOPmdSK52V1iRiJSHzUmT1RKU9Tukjs4VOPmdSK5ybapmogcl1jyREfTFMFFSnYJ9idnWVXQta7wAG/4Gglcfb1cOTtEDoEzRERkFTUmT6xL7mU+JTc/KzUTl5Jdgvyyxqvd55dV2v1rSCQHzhARkVWUzI+jpIKyCsxYcwIjPjqIp9adxPAPD2DGmhMoNBIYWEKpY+ZKzcSp9TUkkpPkGaKrV6/i2rVriImJgaenJwRBEK1xRkTNk1r3nyhZI6128/Oh37KRmJ6PPm19rS5iquRMnFpfQyI5WRwQ5ebmYsqUKdi3bx80Gg2uXLmC8PBwzJ49G76+vvjoo4+UGCcR2anwAG9Eh/s1Wr8rOtzPLpdalF7mU2JpS8mTYOkm+r6ZX2aXryORnCxeMnvuuefg4uKCtLQ0eHn98VvFlClTsGvXLlkHR0TqYGxy2F4njZVeInr2mzMNAq7aavdSKXmc35xaZkTNncUzRHv27MHu3bvRpk0bg+sRERG4ceOGbAMjInVIyS7BsWuNV3c/dk16dXclKblEpFS1eyWP8/dq4yPa3qetr+S+idTC4hmi0tJSg5mhWnl5eXB3t67eDRGpjxo35CpZI82cavdSXLxZKNp+6VaRpH4BINREgNjGV7ydqDmwOCAaMmQINmzYoP9co9GgpqYGH3zwAYYPHy7r4IjI/ql1Q65yBUfFZ2qkLmxdzSkRbf8tq1hiz0BCqniQliAxiCNSE4uXzD744AOMHDkSp06dQkVFBV544QVcvHgReXl5OHr0qBJjJCI7pmTeHSUpVQajf5ifeHu4eLsxHf29Rds7BbaU1C8AnEwV3yN08noepka1ldw/kRpYPEN0//3347fffsPgwYMxYcIElJaWYtKkSUhMTESHDh2UGCMR2TnlZluUF+bfAsMjA2UL3MIDvDGwQ+NBz8AO0k/ddWujE23vEqKV1C8AFN0Vz71UdMf63ExE9k5SHiKdTodXXnlF7rEQkUqprSK90r54om+DqvS1x+6lyiq8K9qeU1wuue8HuwTh10tZRttHdwuW3DeRWlgcEK1btw7e3t547LHHDK5v2bIFZWVlmDlzpmyDIyJ1UUtF+rrkLt0BKBMgXsoQ3yN08VYRHhO9w7gpUW3xyrYLjZ5Uc3HS4LF+oRJ7JlIPi5fMli1bBn9//wbXAwMD8e6778oyKCIipSlZuqNWWm4pzt0swM188ZN45tCY2KztbGXOp+2xgxrkMnJx0mB77CDrOiZSCYtniNLS0hAWFtbgert27ZCWlibLoIiIlKZk6Y4buaWYuOqoQcFUXy9XbI8djFA/aUfYOwWLb5qOCJK+qRoAut6nw9V3x2HLqXQcvZaDQR38OTNEDsXiGaLAwECcO3euwfWzZ8/Cz0/a6QkioqZUW7qj7qk4wLB0hzXqB0PAvarxj646IrlPJxMH9p2tyFRd12P9QvHJlN4MhsjhWBwQTZs2DfPnz8f+/ftRXV2N6upq7Nu3DwsWLMDUqVOVGCMRkayUTCZ5MDmrQTBUK7+sEocbqaFmjuMmcgXFG8kWTkTmsXjJbOnSpbh+/TpGjhwJF5d7X15TU4MZM2ZwDxGRSiixkVhNlEwmaU5dMCmV70vuVom2F5fzaDyRNSwOiNzc3PD9999j6dKlOHv2LDw9PdG9e3e0a9dOifERkYyUqMKuRkomk1SqLlj3NjrsFTka39PE9yUicRYvmdXq1KkTHnvsMTz88MMMhohUQmwjsaNRKpmkUnXBHu4RIto+3kQ7EYmzeIaouroa69evR1xcHLKyslBTY1iDed++fbINjojkU7uRuL66G4kdaflMqWSSO87dNtF+C/NGRFjcb3iAN6La++LE9YZlNqLa+zrUa0ekBIsDogULFmD9+vUYP3487r//fmg08pxsICJlmbOR2BHfVOVOJplXKp4xOq+kQnLfX814QPYM2ER0j8UB0XfffYfNmzdj3LhxSoyHiBSi1qr0tdSyEbxLsHhNsa5W1BxjiRQi5UjaVN2xY0clxkJEClJrVXq1bQTPLBavOZZZJN5uDjWWSCGydxZvqv6///s/rFixAoIgnkaeiOyPGqvSK70RPCW7BPuTs6xOxljLVD8p2SWyfB8ikpfFM0RHjhzB/v378csvv6Bbt25wdTX8DW3r1q2yDY6I5CWYqIdlb5TcCK7UzJOpfEGl5dWS+yYi5Vg8Q+Tj44M//elPGDp0KPz9/aHT6Qw+iMh+qe3YvZIZpZX6WZSUM4EikRpZPEO0bt06JcZBRApT47F7pTaCK/mz6BysRXxKntF2U5uuicg2JCdmJCJ1UXK2RSm1G8Gd66X3cNZoEBMRIDloUfJn0dlEVfrOrRkQEdkji2eIAOCHH37A5s2bkZaWhooKw5waZ86ckWVgRCQvtR67Xzmtd4PcO9ZuBDf1m6CLFZXjM0ycMrtVeEdy30SkHItniD799FM89dRTCAoKQmJiIqKiouDn54eUlBSMHTtWiTESkQyUmm1RWm3unf2Lh2HdUw9g/+Jh2DA7yqqNzzUm2qtqpG8+V6qWGREpy+KA6PPPP8eXX36JlStXws3NDS+88AL27t2L+fPno7CwUIkxEpFM1HjsvlaYfwsMjwyUJXBTcrZMqVpmRKQsi5fM0tLSMHDgQACAp6cniouLAQDTp0/HgAED8Nlnn8k7QiKSDTMd3xMe4A0XJ02jM0EuThqrfiYJqbni7Sm5DvkzJ7J3Fs8QBQcHIy/v3gmKtm3b4vjx4wCA1NRUJmskUgk5Z1uaipwJFA8mZxldFquqEXC4kRNo5hPff8R/JYnsk8UzRCNGjMD27dvRu3dvPPXUU3juuefwww8/4NSpU5g0aZISYyQiB6ZEAsX9yVmi7fsuZWFIRICkvvuHtRJtHxDuJ6lfIlKWxQHRl19+iZqae1sSY2Nj4efnh2PHjuHRRx/F3/72N9kHSESOTSyB4obZUZL6bNXCXbzd201Sv0SkXhYvmd28eRPOzs76z6dOnYpPP/0Uc+fORUZGhqyDIyLHVptAsbrecnzdBIpSPNyjtYn2EEn9AsCOc7dNtN+S3DcRKcfigCgsLAzZ2Q3X1/Py8hAWFibLoIiIAOUSKP5sImj55bx4u5jUHPHiranZ9pcAk4gkBESCIECjabhpsKSkBB4eHrIMioiUJXeFd6UolUBx65mbou0/nE6X1C8AhPl7i7cHqGcjO5EjMXsP0aJFiwAAGo0Gr732Gry8/silUV1djYSEBPTq1Uv2ARKRfJSq8K6UszcLxNvTCyRtfnZzFQ+13F2cRdvF9GwjXuS6V6iP5L6JSDlmB0SJifcqQAuCgPPnz8PN7Y9Nh25ubujZsycWL14s/wiJHFRKdglu5JXJmitIiQ3KSsorFa8Mn1NSIdpuzMBwf1zOML60VT95pSVMleb4PZ+lO4jskdkB0f79+wEATz31FFasWAGtlgUKiZSg1CxOU1S7lzuIGx4ZgPXHrhttH9klUFK/lzOKRNsv3ZaedT+7uFy0PadEvJ2IbMPiY/effPIJqqqqGlzPy8uDi4sLAyUiKyk1i2POBmWpQYxSQdzQyEBoPVxQdLfhvzlaDxfJuYIyCsULsN420U5EzY/Fm6qnTp2K7777rsH1zZs3Y+rUqbIMishRKXXMHFC2ftez35xpMPt06Eo2nvnmtOQ+a0UGtbToujl6mSiw2tuKAqwBLcUPl/h5i+dAIiLbsDggSkhIwPDhwxtcHzZsGBISEmQZFJGjUuqYOaBctfuU7BLEpzRevys+JdeqIC4luwQnb+Q32nbyRr7kvif0Es8zNLH3fZL6BZipmkitLA6IysvLG10yq6ysxJ073CxIZA0lZ3EAZardJ6TmibYfNxIsmUOpAPGAidIdBy6Lt4sJD/BGtJGgJzrcT1X144gcicUBUVRUFL788ssG11evXo2+ffvKMigiR6XULE6t2mr3G/7yAJ57MAL/nh2FDbOjrDxyL16uVFqmoHuUChAT0wtE28+kibebsvrJvoipt78pJiIAq5/kv5FE9sriTdVvv/02Ro0ahbNnz2LkyJEAgLi4OJw8eRJ79uyRfYBEjmbltN6YtynRYE+OtbM4tZTY/Nw/THwJqL8dLhH5m9jHE2BlLbPawDM1pxTXc0tlTZ1ARMqwOCAaNGgQ4uPj8Y9//AObN2+Gp6cnevTogTVr1iAiIkKJMRI5FCXfTJU4wRYe4I2BHfxw7FrDpbGBHaxbIkpIFV9uS0jJldT/g12C8Osl48tiD3YLtrjPxoT5MxAiUguLAyIA6NWrF7799lu5x0JEdcj9ZqpkHqIvnujbYFardubJGr9lFIu2X8kUbzcm00SuoIwiHrsncjQWB0RpaWmi7W3btpU8GCJSjpJ5iGpntQ79loXE9AL0aesrOUdQXekmsjqn50k7yMECrERUn8UBUfv27Rst7lqrurraqgERkTKUPMGmVGLGsvKGJ1rrKq0QbzfGx1N8j5CPHdZ1IyJlWRwQ1dY0q1VZWYnExEQsX74c77zzjmwDIyJ51Z5gO3o1xyDxo7NGg0Ed/a1anlMqu3aQTjzJYZBWvN2YTsHiFek7WZH0kYjUyeKAqGfPng2u9evXDyEhIfjHP/6BSZMmyTIwIpKfEifYlNybNCDMDz8m3jLaHt1B2gk2NZ6MIyJlSdpU3ZjIyEicPHlSru6ISAFKnGBTcm9SZrH45uZMbn4mIplYHBAVFRlWiRYEAbdv38Ybb7zBY/dEKiHnCTYl9yal5ogHWykSNz8rGcQRkTpZHBD5+Pg02FQtCAJCQ0MbLfpKRM1beIA3fL1ckV9W2aDN18vVqsCi5G7DPusqNbHp2hilS6QQkfpYHBDt37/f4HMnJycEBASgY8eOcHGRbQWOyOGlZJfgRl6Z3Wc5TskuaTQYAoD8skqr9hBlm8gXlGWi3RglN5gTkTpZHMEMHTpUiXEQ0f9PqSPsSlFy+SmgpXiJDf+W0ktsKFkihYjUx6yAaPv27WZ3+Oijj0oeDBEpd4RdKUouP4X6ivfdrpX0vgUTRWmJyLGYFRBNnDjR4HONRgOhzjRz3T1FTMxIJJ2SR9iVouTy07GUHNH2o1cb/qzMpbbAk4iU5WTOTTU1NfqPPXv2oFevXvjll19QUFCAgoIC/Pzzz+jTpw927dql9HiJmjVzlp/s0cppvTGoo7/BNTmWn0ruim+aLimX9gtYbeBZN4ADDANPInIsFu8hWrhwIVavXo3Bgwfrr40ZMwZeXl7461//ikuXLsk6QCJHotbTT0otP0WF+eFm4u9G2/uHtZLUL4/dE1F9Zs0Q1XXt2jX4+Pg0uK7T6XD9+nUZhkTkuGqXn5zrpbZw1mgQExFgt2/SYstP1pg7oqNoe+wIabnP1Bp4EpFyLA6IHnjgASxatAiZmZn6a5mZmXj++ecRFWXZuvuyZcvwwAMPoGXLlggMDMTEiRORnJxscM/du3cRGxsLPz8/eHt7Y/LkyQbfGwDS0tIwfvx4eHl5ITAwEM8//zyqqgyn2g8cOIA+ffrA3d0dHTt2xPr16y17cKImotTyk1LUuPyk1sCTiJRjcUC0du1a3L59G23btkXHjh3RsWNHtG3bFr///jvWrFljUV8HDx5EbGwsjh8/jr1796KyshKjR49Gaekf/4A+99xz+O9//4stW7bg4MGDuHXrlkG9tOrqaowfPx4VFRU4duwYvv76a6xfvx5LlizR35Oamorx48dj+PDhSEpKwsKFCzFnzhzs3r3b0scnUpzaTj8pue/ps31XTbRfkdy32gJPIlKWRhAEi//1FQQBe/fuxeXLlwEAXbp0wahRoxpksLZUdnY2AgMDcfDgQcTExKCwsBABAQHYuHEj/vznPwMALl++jC5duiA+Ph4DBgzAL7/8gocffhi3bt1CUFAQAGD16tV48cUXkZ2dDTc3N7z44ovYuXMnLly4oP9eU6dORUFBQaMbwcvLy1Fe/kfCt6KiIoSGhqKwsBBardaqZyQyZcaaE0ZPbNnj6aeDyVmYuc54HcN/z47CkIgASX1PXHUESemFRtt7h+rwY+xgo+3mkLOuGxHZl6KiIuh0OrPevy2eIQLuHbMfPXo05s+fj/nz5+PBBx+0OhgCgMLCe//wtWp1b6Pk6dOnUVlZiVGjRunv6dy5M9q2bYv4+HgAQHx8PLp3764PhoB7m7yLiopw8eJF/T11+6i9p7aP+pYtWwadTqf/CA0NtfrZiMzRVMtPB5OzsCLuNxxu5Ii/pW4VihdYvZl/R3LffUJ9Rdv7tpO2qbquMP8WGB4ZyGCIyMFJqrURFxeHuLg4ZGVloaamxqBt7dq1kgZSU1ODhQsXYtCgQbj//vsBABkZGXBzc2uwiTsoKAgZGRn6e+oGQ7XttW1i9xQVFeHOnTvw9PQ0aHv55ZexaNEi/ee1M0RESlP69NON3FJMXHXUoNSGr5crtscORqif+EZjY3Yk3RJt33nuFqZFtZXU95DIAKw9dt1o+6AIf6NtRESWsDggevPNN/HWW2+hX79+aN26tSwzQwAQGxuLCxcu4MiRI7L0Zw13d3e4u4uXDCBSgtKnn+oHQ8C9emOPrjqCxCWjJfV5I1981uqGFXuIskzMPuVIrGVGRFSfxQHR6tWrsX79ekyfPl22QcydOxc7duzAoUOH0KZNG/314OBgVFRUoKCgwGCWKDMzE8HBwfp7Tpw4YdBf7Sm0uvfUP5mWmZkJrVbbYHaIyJaUzPp8MDlLtAjr4SvZkvb6uDmJr7y7Oztb3GetSxlFou3/uyXeTkRkLov3EFVUVGDgwIGyfHNBEDB37lz8+OOP2LdvH8LCwgza+/btC1dXV8TFxemvJScnIy0tDdHR0QCA6OhonD9/HllZWfp79u7dC61Wi65du+rvqdtH7T21fRDZE6VOPyXdLBBtP5OWL6lfN1fxf0ZcXSRtVQQAtGohPlPbylt6cVcioros/pdqzpw52LhxoyzfPDY2Ft988w02btyIli1bIiMjAxkZGbhz594mTJ1Oh9mzZ2PRokXYv38/Tp8+jaeeegrR0dEYMGAAAGD06NHo2rUrpk+fjrNnz2L37t149dVXERsbq1/2euaZZ5CSkoIXXngBly9fxueff47Nmzfjueeek+U5iORUcKcC538vMLh2/vcCFN1pfHbHXL3a+Ii292krvoHZGFMFWENNLAOKebhHaxPtIZL7JiKqy+Ils7t37+LLL7/Er7/+ih49esDV1dWgffny5Wb39cUXXwAAhg0bZnB93bp1mDVrFgDg448/hpOTEyZPnozy8nKMGTMGn3/+uf5eZ2dn7NixA88++yyio6PRokULzJw5E2+99Zb+nrCwMOzcuRPPPfccVqxYgTZt2uBf//oXxowZY+HTEylPiX0+ADA0MhAuThpU1TTMtOHipJF8NH5El0DsvZRlvL1zoKR+gXtLiC3dnVHcSM2ylu7OPBlGRLKxOCA6d+4cevXqBQAGeX0AWLzB2pwUSB4eHli1ahVWrVpl9J527drh559/Fu1n2LBhSEy0rowAUWNSsktwI69Mljw2Su3zAe6Ns7FgCACqagSk5kg7wXYlo0S0/WqWeLuYlOySRoMhACgur5Y8ZiKi+iwOiPbv36/EOIhUp6CsAvM3JeFQnVw+MREBWDmtN3ReriJfaZw5+3ykBkRKHek/ky6+9+jUjTyL+6yVkJor3p6Sy4CIiGQhfbcjgJs3b+LmzZtyjYVIVZQoaKrUPh9AuSPsXq7ip8i83SSlO/v/ic86q6vICRHZM4sDopqaGrz11lvQ6XRo164d2rVrBx8fHyxdurRBkkYie5GSXYL9yVmyZXpWKqP00Ejx/TZSZ4cA4NdLmaLte/+XIanfIJ146opArYekfgGgf5h4JuoB4X6S+yYiqsviX91eeeUVrFmzBu+99x4GDRoEADhy5AjeeOMN3L17F++8847sgySSSollLUC55aeDycY3JwOwag9RSXmVVe1Gv+6u+Om3Uon9Avc2VUeH+yE+peHSWXS4H5fLiEg2Fs8Qff311/jXv/6FZ599Fj169ECPHj3w97//HV999RXWr1+vwBCJpFNiWQtQLqO0UrmCAGBir/tE2//Uu41ouzHZJpbasqzMJr36yb6IqRcExkQEYPWTfa3ql4ioLotniPLy8tC5c+cG1zt37oy8POmbJ4nkVrusVV/dZS2pMwzhAd4Y2MEPx641nLkY2EH6zIWSe4iCdeJLV6bajZGpeo9ROi9XbJgdxar0RKQoi2eIevbsic8++6zB9c8++ww9e/aUZVBEcjBnWcsaxrJGmJFNwihTSQzbmEiCKGabiSKsP575XVK/ft7i2aQDTLSbi1XpiUhJFs8QffDBBxg/fjx+/fVXfemL+Ph4pKenm8wFRNSUlCyUmpJd0ui+FgCIT8mVPPukZLX7syaW286mF0jqV+shvhdL62nNKTMioqZh8QzR0KFDkZycjD/96U8oKChAQUEBJk2ahOTkZAwZMkSJMRJJUlso1bnemo6zRoOYiACrZhqUmn1SMogrMrG5udDE5mhjTE2IGckFSURkVyT96nbffffxNBmpwsppvTFvU6LBXiI5CqUqFbgoearKv4UbckoqjLYHSlzaCvMX/1mEB3CJi4jsn8UB0bp16+Dt7Y3HHnvM4PqWLVtQVlaGmTNnyjY4ImsptSG3dvbp6NUcg1xEzhoNBnX0t+p7GNukbO3m5XE9QnB5729G28eaKKRqzMM9QrB87xWj7eNZgJWIVMDiJbNly5bB39+/wfXAwEC8++67sgyKSG7m1M2z1MppvTGoo+HfBWtnn1KySxo9uQYAx67lWpVY8oaJr03LFV8GNObnc7dF2385L95ORGQPLJ4hSktLQ1hYWIPr7dq1Q1pamiyDIsclZ6FUQLnEjIAys09Kbqq+eLtQtP387wWS+j16LUe0/fCVbPx9eEdJfRMRNRWLA6LAwECcO3cO7du3N7h+9uxZ+PkxjT5Jo1TgIpaYccPsKMn91hXmL19eHCU3Vbf19cJlkcr0Uvse1MEf8SnGc5BZU26EiKipWLxkNm3aNMyfPx/79+9HdXU1qqursW/fPixYsABTp05VYozkAJTIKK1UvTG1amHieLyXxCKs40zsPRrbXdreJCKipmRxQLR06VL0798fI0eOhKenJzw9PTF69GiMGDGCe4hIEqUCF6UTMypByTGbykN0TmIeIjX+nImI6rP4V0I3Nzd8//33ePvtt5GUlARPT090794d7dq1U2J85ACU2jej5PKTUpQcc3aJqZpjdyX1q8afMxFRfZJTyEZERCAiIkLOsZCD4hvqH8IDvKH1cEHR3YZJFLUeLlbtVXJ3cUJxebXRdjcXiyeMASibgoCIqKlI+xeQSEZKZZRW41JOSnZJo8EQABTdrbJq31NMJ/HNzcMiAyX3rUQKAiKipsQiQ2QXlMgorcaZpx3nxAuw7jx3C3NHSJuZ1UA8s6PGisyPrEhPRGrHgIjsAt9Q78krFa8nJlZ6w5TEdPFN1advGD86by45UxAQETUlLpmRXQnzb4HhkYGyvKmqccmsS3BL0fZuIVrJfQdrPUTbQ3SekvsmIlI7iwOidevWYcuWLQ2ub9myBV9//bUsgyKSgxqXzAJ14kGLf0tpBVgBoIW7+ISwqXYiouaMtcyo2QoP8MbADo1nTx/YwbrK8UpRMoi7liU+I3Yly3gWayKi5s7igIi1zEhNjNV0VaDWqyxOporv4zl1Xfo+H62n+AyQj6d1td2IiNTM4oCotpZZfaxlRvYmJbsE8SmNV46PT7GucrxS9l7KFG3ffTFDct/hAeKzS6baiYiaM9Yyo2ZLjZuqTR18r5+ryRKCid5r7HTWjIioKVi8i3Lp0qW4fv06Ro4cCReXe19eU1ODGTNmcA8R2RU1bqr2NlGA1ZqNzz4mlsx8vbhkRkSOS3Its6VLl+Ls2bOsZeaAUrJLcCOvzO5zBamxpERm4R3R9qwiafXGAOBmvnjfptqJiJozyb9udurUCZ06dZJzLGTnCsoqMH9TkkE26ZiIAKyc1hs6O51deHvi/Ziw6gjyy/5IeKj1dME7E++X7XvIGSCWVRqvNQYAJRWNl/Uwh6nirpkSi7sSETUHZgVEixYtwtKlS9GiRQssWrRI9N7ly5fLMjCyP/M3JeHo1RyDa0ev5mDepkRsmB0ly/eQe/bp1W0XUHTHMIgoulOFV7ZdsHrMSgSIFRXiAVFVVY2kfgFgVOcgJKUXGm0f3TVYct9ERGpnVkCUmJiIysp7v2GfOXPGaM0ja2ohkX1LyS4xeOOvVS0IOHQlG6k5pVYFMEoEF0qPWYkA8baJJbHfC6Qva80dGYEP9/5mtP3vwztK7puISO3MCohWrFgBrfZeyYADBw4oOR6yU+ac2LK34ELJMSsVbNWfzbK0XUxKtnjiRWsDRCIiNTPr2H3v3r2Rk3PvzSo8PBy5uY3ndqHmS8kTW7XBRXW9bIl1gwsplByzUkf6TZ18F6yYhFVjGgIioqZiVkDk4+OD1NRUAMD169dRUyN9HwOpU+2Jrfp5cJw1GsREBFg1s6DUG7WSY1Yq2Apo6SbaHmRFLTM1piEgImoqZgVEkydPxtChQxEWFgaNRoN+/fohPDy80Q9qvlZO641BHQ3r2A3q6I+V03pb1a+Sb9QvjOmE+lvbNBrgpYciJfcJ3Au2xEgNtp4YIJ6+wlS7GCUDRCIitTNrD9GXX36JSZMm4erVq5g/fz6efvpptGzZUumxkZ3Rebliw+wopOaU4npuqWwnwZTMFzR97QlU1UvBXFUj4Ik1CUhcMlpyv9+fEK/bt+VUOh7rF2pxv9dNLA+aajdl5bTemLcp0WD/kxxBLRGR2pmdh+ihhx4CAJw+fRoLFixgQOTAwvzlT8ioxBv1weQsg/xDdeWXVeLwlWwMiQiQ1LepmmN7LmZICohM7Ze6ZmJjtClKBbVERGpncWLGdevWKTEOcnBKvFEn3SwQbT+Tli85IAr1FV/mCzWxDGiMYGJXtVyJLZQIaomI1MysgGjSpElYv349tFotJk2aJHrv1q1bZRkYOSY536h7tfERbe/T1ldy39Oj22Hdsesi7e0l9RsW0AJJN40nT2zvL753iYiIpDErINLpdPqkizqdTtEBEcllaGQgfL1cG1028/VylTw7pKQb2eJLZmk8Gk9EpAizAqK6y2RcMiMli7vK3ff22MF4tF4tM18vV2yPHWxVv0olfUwxEfBctXIPERERNc7iPUSpqamoqqpCRESEwfUrV67A1dUV7du3l2tsZGeULO6qVN+hfl5IXDIah69k40xaPvq09ZVlZuiiyLIWAFy6VYThkYEW99ta54GCO8aDnvt8PC3uk4iITDMrD1Fds2bNwrFjxxpcT0hIwKxZs+QYE9kpsfIa9tw3AAyJCMCCkZ1kWya7miM+U/NbVrGkfmcMDBNtf1Li3iQiIhJncUCUmJiIQYMGNbg+YMAAJCUlyTEmskNKlddQum+lpJnY63MzV3xJzZgQnYdoextfzhARESnB4oBIo9GguLjhb7+FhYWorq6WZVBkf5Ssg6XGGltp+cqM+VaheLX7m/nSq90TEZFxFgdEMTExWLZsmUHwU11djWXLlmHwYOs2qpL9UrK8RlPU2DqYnIUVcb/hcCMV6qXQeojva/LxFK9JZpx4IiK58hAREZEhizdVv//++4iJiUFkZCSGDBkCADh8+DCKioqwb98+2QdI9kHJ8hrhAd7Qerig6G5Vgzath4t1hWNzSzFx1dFGT5mF+klLnggAvdr6IkVkWaxXWx9J/fYP8xNvDxdvJyIiaSyeIeratSvOnTuHxx9/HFlZWSguLsaMGTNw+fJl3H///UqMkeyEUsVdU7JLGg2GAKDobpVVe4jqB0PAvbIdj646IrlPAEg1cfw9ReLx+PAAb/h4Nj775OPpyuzSREQKsXiGCABCQkLw7rvvyj0WsnNK1cHace6WaPvOc7cwd0SE6D2NUbKWmamaYlezpAVEKdklKLjT+JgL7lQiNUdafiMiIhJn8QwRcG+J7Mknn8TAgQPx+++/AwD+/e9/48gR637rJnUI82+B4ZGBsr0xp+aIb1BOMXGiyxhzaplJdadK/ACBqXZj1LjBnIioObA4IPrPf/6DMWPGwNPTE2fOnEF5eTmAe6fMOGtEUoT5i+/lCQ+QFngFtxQ/wh6ik36E3dtNfHLVVLsxTbHBnIiIGrI4IHr77bexevVqfPXVV3B1/WOvw6BBg3DmzBlZB0eO4eEeIaLt4020GxNoIqePf0t3Sf0CQJfWWtH2biHSav7Vbl531hieJ3PWaBATEcDlMiIihVgcECUnJyMmJqbBdZ1Oh4KCAjnGRCQLc8prSJVfViHanlcq3i5Gqc3rRERknMXz+sHBwbh69WqDmmVHjhxBeHi4XOMiB6JUoVQl9xAVGzkVp28vb3xjtDmU2rxORETGWTxD9PTTT2PBggVISEiARqPBrVu38O2332Lx4sV49tlnlRgj2ZmU7BLsT86SraSGUvtmTCdPlF40tqtCS2Z1yb15nYiIjLN4huill15CTU0NRo4cibKyMsTExMDd3R2LFy/GvHnzlBgj2Qklq90rQzzrszW6tdFhz6Uso+1dQsQDJiIisi+Sapm98soryMvLw4ULF3D8+HFkZ2dj6dKlSoyP7IhSFemVOmqeYmIGy1QuITHOJopouDpJymhBREQ2IvlfbTc3N7Rs2RKtW7eGt7e3nGMiO6RkRXpTfwhdnKRV8NKYmCCypi7YtRxlEjMSEZFtWBwQVVVV4bXXXoNOp0P79u3Rvn176HQ6vPrqq6islL6RlOybkgkDa0y0V9VIW/oqNJLxuVbRHfGN0WJMbaouMdFORET2xeI9RPPmzcPWrVvxwQcfIDo6GgAQHx+PN954A7m5ufjiiy9kHyTZnpIJA5WaIcopKRdtzyq+K6lfAAj1Ff95hLaSnvSRiIiansUB0caNG/Hdd99h7Nix+ms9evRAaGgopk2bxoComVKy2r1SM0Sl5eLlM0y1W0O57dxERKQEi5fM3N3dG+QgAoCwsDC4ubnJMSayU0olDFRq9slUoGVN0FJwRzzxYoGRorJERGSfLJ4hmjt3LpYuXYp169bB3f1e6YPy8nK88847mDt3ruwDJPtRmzDw0G/ZSEzPR5+2vpKrxTcFN2dAbBLI1Vl63z6e4sG/j12mISAiImMsDogSExMRFxeHNm3aoGfPngCAs2fPoqKiAiNHjsSkSZP0927dulW+kZLNKZWHKCE1T7T9eEqupCU53xZuyCgyPpPj20L6jGanYPGTlZ2CWkrum4iImp7FAZGPjw8mT55scC00NFS2AZH9EstDtGF2lBU9iy9eST0eX2hi2cpUu5j+YX7i7eHi7UREZF8sDojWrVunxDjIztXmIaqvbh4iqRurnUyEPM4ST5ndrRIPtEy1iwkP8MbADn44di23QdvADn4st0FEpDIWb6q+c+cOysr+yElz48YNfPLJJ9izZ4+sAyP7omQeoksZxaLtFyVWpXc28afbVLspXzzRFzH19lDFRATgiyf6WtcxERE1OYtniCZMmIBJkybhmWeeQUFBAaKiouDm5oacnBwsX76cBV6bqaxC8Zw9OcXiOX/EFJk4sVVyV9rSll8LN2QWG+/b39tdUr+1WJWeiKj5sPh35DNnzmDIkCEAgB9++AHBwcG4ceMGNmzYgE8//dSivg4dOoRHHnkEISEh0Gg02LZtm0G7IAhYsmQJWrduDU9PT4waNQpXrlwxuCcvLw9PPPEEtFotfHx8MHv2bJSUGJZNOHfuHIYMGQIPDw+Ehobigw8+sPSxHV6GiSSGtwrvSO7b1MKVxDREKDKRqbqwTDwQMxer0hMRqZ/FAVFZWRlatrx3gmbPnj2YNGkSnJycMGDAANy4ccOivkpLS9GzZ0+sWrWq0fYPPvgAn376KVavXo2EhAS0aNECY8aMwd27f7w5P/HEE7h48SL27t2LHTt24NChQ/jrX/+qby8qKsLo0aPRrl07nD59Gv/4xz/wxhtv4Msvv7T00R1arzY+ou192vpK7lupI+zlJvYImWonIiLHYfGSWceOHbFt2zb86U9/wu7du/Hcc88BALKysqDVai3qa+zYsQYZr+sSBAGffPIJXn31VUyYMAEAsGHDBgQFBWHbtm2YOnUqLl26hF27duHkyZPo168fAGDlypUYN24cPvzwQ4SEhODbb79FRUUF1q5dCzc3N3Tr1g1JSUlYvny5QeBE4oZGBsLFCahqJNuhixOszEekzCkzT1cnlFYaT8/o6cqK9EREdI/F7whLlizB4sWL0b59e/Tv319fz2zPnj3o3du6jMV1paamIiMjA6NGjdJf0+l06N+/P+Lj4wHcq6Hm4+OjD4YAYNSoUXByckJCQoL+npiYGIMs2mPGjEFycjLy8/Mb/d7l5eUoKioy+HB0KdkljQZDwL0gyZpq98kmNlVfNtFuTCsTeYb8rNxDREREzYfFAdGf//xnpKWl4dSpU9i1a5f++siRI/Hxxx/LNrCMjAwAQFBQkMH1oKAgfVtGRgYCAwMN2l1cXNCqVSuDexrro+73qG/ZsmXQ6XT6D+ZZMi95olQpOSWi7deyxduNySgS3/d0u0j6viciImpeJK0ZBAcHo3fv3nBy+uPLo6Ki0LlzZ9kGZksvv/wyCgsL9R/p6em2HpLNZZvYVJ1rorK8mOI7VSbapZ0yqzZRzKxaudquRESkMna7iSI4OBgAkJmZaXA9MzNT3xYcHIysrCyD9qqqKuTl5Rnc01gfdb9Hfe7u7tBqtQYfapOSXYL9yVlWLWU1laoa8cjFVLsxHq7iu49MtRMRkeOw24AoLCwMwcHBiIuL018rKipCQkKCft9SdHQ0CgoKcPr0af09+/btQ01NDfr376+/59ChQ6is/GOWYe/evYiMjISvr/STUfaqoKwCM9acwIiPDuKpdScx/MMDmLHmhFVlKgAgoKWHaLs1+3EqTczUmGo3plOQeCDbOVgnrWMiImp2bBoQlZSUICkpCUlJSQDubaROSkpCWloaNBoNFi5ciLfffhvbt2/H+fPnMWPGDISEhGDixIkAgC5duuChhx7C008/jRMnTuDo0aOYO3cupk6dipCQEADA//t//w9ubm6YPXs2Ll68iO+//x4rVqzAokWLbPTUyhKrN2aNEJ14QNTG11Ny36bmaaTO44QHiBdgDQ9g3iAiIrrH4mP3cjp16hSGDx+u/7w2SJk5cybWr1+PF154AaWlpfjrX/+KgoICDB48GLt27YKHxx9vzt9++y3mzp2LkSNHwsnJCZMnTzZIEKnT6bBnzx7Exsaib9++8Pf3x5IlS5rlkXsl642ZSrz4e770DcpOTuL7fZwkhu1aT/H8Rd4e0vIbERFR82PTgGjYsGEQBOM5aDQaDd566y289dZbRu9p1aoVNm7cKPp9evTogcOHD0sep1qYU29MejZl8Xkaa1IcGjvOb267McMjA7D+2HWj7SO7BBptIyIix2K3e4jIcu1aeYm2t/eTvkSUa6JWWX6p9DIYpoIpqcHW0MhA6IzMEuk8Xa1MJklERM0JA6JmJDzAGzERAXDWGM7mOGs0iIkIsKrWVtLNAtH2xLTGk1za2o65g+Fbr/SHr5crdswdbKMRERGRPbLpkhnJb+W03pi3KdFgL9Ggjv5YOc26LOJaE/ttTO3XsZVQPy8kLhmNw1eycSYtH33a+nJmiIiIGmBA1MzovFyxYXYUUnNKcT23FO39WshShd3Y0lMtHzsNiGoNiQhgIEREREYxIGqmwvzlCYRqmVoSS0wrkNy3p4sT7ojsnPZ04couEREpiwFRM5WSXYIbeWWyzRClmKgndjVLWgFWAHBx0QAi1TtcGRAREZHCGBA1MwVlFZi/KclgD1FMRABWTusNnZf0Za0KE4W/TLWLqaoSP0dWKfXcPRERkZn4q3czo1Smah9P8dIcPl7WlO4QD3hMtRMREVmLAVEzUpupurpessu6maql8nJzFm33dpM+2ejmIp700VQ7ERGRtRgQNSPmZKqWKrPkrmh7RrH00h2tteJ10O7zEU84SUREZC0GRM2IkpmqKyrFl63KTbSLfq2JJbG7VdL3JxEREZmDAVEzomSmalPxjhXxECpruIeIiIhsiwFRM7NyWm8M6uhvcE2OTNVKus/EklkbLpkREZHCeOy+manNVH3ot2wkpqujVEXB3UrR9vwy8XYiIiJrMSBqZpTKQ6QkNxOJF92ZmJGIiBTGd5pmRqk8REp6amCYePtg8XYiIiJrMSBqRpTMQ6SkB8Jaibb3ay/eTkREZC0GRM2IknmIlKTWcRMRUfPBgKgZUTIPkZLUOm4iImo+GBCRzSmZP4mIiMgcDIiaETUvPakxfxIRETUfPHZvYynZJbiRV4b2fi2sngm5eLNQtP3SrSIMjwy06nsopTZ/UmpOKa7nlsry8yAiIjIXAyIbUSJf0NFruaLtR67k4O/DO0rqu6mE+TMQIiKipsclMxtRIl9QC3dn0XZvd8a/REREjWFAZANK5Qtq6yt+WqutH2uCERERNYYBkQ0otfl5z6UM0fbdF8XbiYiIHBUDIhtQKu9OXkm5aHtuyV1J/RIRETV3DIhsQKm8O5XVglXtREREjooBkY0okXenssa6diIiIkfFY0c2ora8O04AxOIpRtZERKRmDIhsTC15d3xbuCK3tNJou5+3WxOOhoiISF78xZ7M0imopVXtRERE9owzRDYmZ+kOJQXrPETbg7Ti7URERPaMAZGNKFG6Q0kTe92HHxNvGW3/U5/7mnA0RERE8uKSmY0oUbpDSUMjA6H1aDx+1nq4YEhEQBOPiIiISD4MiGxAqdIdSts5bwh8681e+Xq5Yue8ITYaERERkTy4ZGYD5pTusMf9RKF+XkhcMhqHr2TjTFo++rT15cwQERE1CwyIbECp0h1NZUhEAAMhIiJqVrhkRkRERA6PAZEN7Dhn/LQWAOw00U5ERETyYkBkA3mlFaLtOSaq1hMREZG8GBDZgBM0ou0uTnxZiIiImhLfeW3gTFq+aPvpG3lNNBIiIiICGBDZRHlVtXh7pVhdeSIiIpIbAyJbEEzfQkRERE2HAZENpOeLJ2ZMy7PPTNVERETNFQMiGyipEF8SM9VORERE8mJARERERA6PAVEzEu4nXhKkox3WRyMiIrIHDIiakaeHhou2z4kRbyciInJUDIiakf5hfuLt4eLtREREjooBUTMSHuCNgR0aD3oGdvBDGJfMiIiIGsWAqJn54om+iIkIMLgWExGAL57oa6MRERER2T8XWw+A5KXzcsWG2VFIzSnF9dxStPdrwZkhIiIiExgQNVNh/gyEiIiIzMUlMyIiInJ4DIiIiIjI4TEgIiIiIofHgIiIiIgcHgMiIiIicngMiIiIiMjhMSAiIiIih8eAiIiIiBweAyIiIiJyeAyIiIiIyOExILKB6++Nt6qdiIiI5MWAiIiIiBwei7vaSO0sUPuXdja4RkRERE2LAZGNMQgiIiKyPS6ZERERkcNzqIBo1apVaN++PTw8PNC/f3+cOHHC1kMiIiIiO+AwAdH333+PRYsW4fXXX8eZM2fQs2dPjBkzBllZWbYeGhEREdmYRhAEwdaDaAr9+/fHAw88gM8++wwAUFNTg9DQUMybNw8vvfSSwb3l5eUoLy/Xf15UVITQ0FAUFhZCq9U26biJiIhImqKiIuh0OrPevx1ihqiiogKnT5/GqFGj9NecnJwwatQoxMfHN7h/2bJl0Ol0+o/Q0NCmHC4RERE1MYcIiHJyclBdXY2goCCD60FBQcjIyGhw/8svv4zCwkL9R3p6elMNlYiIiGyAx+4b4e7uDnd3d1sPg4iIiJqIQ8wQ+fv7w9nZGZmZmQbXMzMzERwcbKNRERERkb1wiIDIzc0Nffv2RVxcnP5aTU0N4uLiEB0dbcORERERkT1wmCWzRYsWYebMmejXrx+ioqLwySefoLS0FE899ZSth0ZEREQ25jAB0ZQpU5CdnY0lS5YgIyMDvXr1wq5duxpstG5MbWaCoqIipYdJREREMql93zYnw5DD5CGyRkpKCjp06GDrYRAREZEE6enpaNOmjeg9DjNDZI1WrVoBANLS0qDT6Ww8GmXUJp9MT09vlskn+Xzq19yfsbk/H9D8n5HPZ38EQUBxcTFCQkJM3suAyAxOTvf2nut0OtX8IZBKq9U262fk86lfc3/G5v58QPN/Rj6ffTF3IsMhTpkRERERiWFARERERA6PAZEZ3N3d8frrrzfr7NXN/Rn5fOrX3J+xuT8f0Pyfkc+nbjxlRkRERA6PM0RERETk8BgQERERkcNjQEREREQOjwEREREROTyHDYhWrVqF9u3bw8PDA/3798eJEydE79+yZQs6d+4MDw8PdO/eHT///LNBuyAIWLJkCVq3bg1PT0+MGjUKV65cUfIRRFnyfF999RWGDBkCX19f+Pr6YtSoUQ3unzVrFjQajcHHQw89pPRjiLLkGdevX99g/B4eHgb3qPk1HDZsWIPn02g0GD9+vP4ee3oNDx06hEceeQQhISHQaDTYtm2bya85cOAA+vTpA3d3d3Ts2BHr169vcI+lf6+VYunzbd26FQ8++CACAgKg1WoRHR2N3bt3G9zzxhtvNHj9OnfurOBTiLP0GQ8cONDon9GMjAyD+9T6Gjb290uj0aBbt276e+zpNVy2bBkeeOABtGzZEoGBgZg4cSKSk5NNfp3a3gst4ZAB0ffff49Fixbh9ddfx5kzZ9CzZ0+MGTMGWVlZjd5/7NgxTJs2DbNnz0ZiYiImTpyIiRMn4sKFC/p7PvjgA3z66adYvXo1EhIS0KJFC4wZMwZ3795tqsfSs/T5Dhw4gGnTpmH//v2Ij49HaGgoRo8ejd9//93gvoceegi3b9/Wf2zatKkpHqdRlj4jcC+7at3x37hxw6Bdza/h1q1bDZ7twoULcHZ2xmOPPWZwn728hqWlpejZsydWrVpl1v2pqakYP348hg8fjqSkJCxcuBBz5swxCBqk/JlQiqXPd+jQITz44IP4+eefcfr0aQwfPhyPPPIIEhMTDe7r1q2bwet35MgRJYZvFkufsVZycrLBMwQGBurb1PwarlixwuC50tPT0apVqwZ/B+3lNTx48CBiY2Nx/Phx7N27F5WVlRg9ejRKS0uNfo3a3gstJjigqKgoITY2Vv95dXW1EBISIixbtqzR+x9//HFh/PjxBtf69+8v/O1vfxMEQRBqamqE4OBg4R//+Ie+vaCgQHB3dxc2bdqkwBOIs/T56quqqhJatmwpfP311/prM2fOFCZMmCD3UCWz9BnXrVsn6HQ6o/01t9fw448/Flq2bCmUlJTor9nba1gLgPDjjz+K3vPCCy8I3bp1M7g2ZcoUYcyYMfrPrf2ZKcWc52tM165dhTfffFP/+euvvy707NlTvoHJyJxn3L9/vwBAyM/PN3pPc3oNf/zxR0Gj0QjXr1/XX7Pn1zArK0sAIBw8eNDoPWp7L7SUw80QVVRU4PTp0xg1apT+mpOTE0aNGoX4+PhGvyY+Pt7gfgAYM2aM/v7U1FRkZGQY3KPT6dC/f3+jfSpFyvPVV1ZWhsrKSn1R21oHDhxAYGAgIiMj8eyzzyI3N1fWsZtL6jOWlJSgXbt2CA0NxYQJE3Dx4kV9W3N7DdesWYOpU6eiRYsWBtft5TW0lKm/g3L8zOxJTU0NiouLG/wdvHLlCkJCQhAeHo4nnngCaWlpNhqhdL169ULr1q3x4IMP4ujRo/rrze01XLNmDUaNGoV27doZXLfX17CwsBAAGvyZq0tN74VSOFxAlJOTg+rqagQFBRlcDwoKarCWXSsjI0P0/tr/WtKnUqQ8X30vvvgiQkJCDP5QP/TQQ9iwYQPi4uLw/vvv4+DBgxg7diyqq6tlHb85pDxjZGQk1q5di59++gnffPMNampqMHDgQNy8eRNA83oNT5w4gQsXLmDOnDkG1+3pNbSUsb+DRUVFuHPnjix/7u3Jhx9+iJKSEjz++OP6a/3798f69euxa9cufPHFF0hNTcWQIUNQXFxsw5Gar3Xr1li9ejX+85//4D//+Q9CQ0MxbNgwnDlzBoA8/3bZi1u3buGXX35p8HfQXl/DmpoaLFy4EIMGDcL9999v9D41vRdKwWr3ZOC9997Dd999hwMHDhhsOp46dar+/7t3744ePXqgQ4cOOHDgAEaOHGmLoVokOjoa0dHR+s8HDhyILl264J///CeWLl1qw5HJb82aNejevTuioqIMrqv9NXQUGzduxJtvvomffvrJYH/N2LFj9f/fo0cP9O/fH+3atcPmzZsxe/ZsWwzVIpGRkYiMjNR/PnDgQFy7dg0ff/wx/v3vf9twZPL7+uuv4ePjg4kTJxpct9fXMDY2FhcuXLDpnjR74HAzRP7+/nB2dkZmZqbB9czMTAQHBzf6NcHBwaL31/7Xkj6VIuX5an344Yd47733sGfPHvTo0UP03vDwcPj7++Pq1atWj9lS1jxjLVdXV/Tu3Vs//ubyGpaWluK7774z6x9XW76GljL2d1Cr1cLT01OWPxP24LvvvsOcOXOwefPmBksT9fn4+KBTp06qeP2MiYqK0o+/ubyGgiBg7dq1mD59Otzc3ETvtYfXcO7cudixYwf279+PNm3aiN6rpvdCKRwuIHJzc0Pfvn0RFxenv1ZTU4O4uDiDGYS6oqOjDe4HgL179+rvDwsLQ3BwsME9RUVFSEhIMNqnUqQ8H3DvZMDSpUuxa9cu9OvXz+T3uXnzJnJzc9G6dWtZxm0Jqc9YV3V1Nc6fP68ff3N4DYF7R2LLy8vx5JNPmvw+tnwNLWXq76AcfyZsbdOmTXjqqaewadMmg3QJxpSUlODatWuqeP2MSUpK0o+/ObyGwL3TW1evXjXrlxJbvoaCIGDu3Ln48ccfsW/fPoSFhZn8GjW9F0pi613dtvDdd98J7u7uwvr164X//e9/wl//+lfBx8dHyMjIEARBEKZPny689NJL+vuPHj0quLi4CB9++KFw6dIl4fXXXxdcXV2F8+fP6+957733BB8fH+Gnn34Szp07J0yYMEEICwsT7ty5Y/fP99577wlubm7CDz/8INy+fVv/UVxcLAiCIBQXFwuLFy8W4uPjhdTUVOHXX38V+vTpI0RERAh3795t8ueT8oxvvvmmsHv3buHatWvC6dOnhalTpwoeHh7CxYsX9feo+TWsNXjwYGHKlCkNrtvba1hcXCwkJiYKiYmJAgBh+fLlQmJionDjxg1BEAThpZdeEqZPn66/PyUlRfDy8hKef/554dKlS8KqVasEZ2dnYdeuXfp7TP3M7Pn5vv32W8HFxUVYtWqVwd/BgoIC/T3/93//Jxw4cEBITU0Vjh49KowaNUrw9/cXsrKymvz5BMHyZ/z444+Fbdu2CVeuXBHOnz8vLFiwQHBychJ+/fVX/T1qfg1rPfnkk0L//v0b7dOeXsNnn31W0Ol0woEDBwz+zJWVlenvUft7oaUcMiASBEFYuXKl0LZtW8HNzU2IiooSjh8/rm8bOnSoMHPmTIP7N2/eLHTq1Elwc3MTunXrJuzcudOgvaamRnjttdeEoKAgwd3dXRg5cqSQnJzcFI/SKEuer127dgKABh+vv/66IAiCUFZWJowePVoICAgQXF1dhXbt2glPP/20Tf6RqsuSZ1y4cKH+3qCgIGHcuHHCmTNnDPpT82soCIJw+fJlAYCwZ8+eBn3Z22tYewS7/kftM82cOVMYOnRog6/p1auX4ObmJoSHhwvr1q1r0K/Yz6wpWfp8Q4cOFb1fEO6lGWjdurXg5uYm3HfffcKUKVOEq1evNu2D1WHpM77//vtChw4dBA8PD6FVq1bCsGHDhH379jXoV62voSDcO2Lu6ekpfPnll432aU+vYWPPBsDg71VzeC+0hEYQBEGx6SciIiIiFXC4PURERERE9TEgIiIiIofHgIiIiIgcHgMiIiIicngMiIiIiMjhMSAiIiIih8eAiIiIiBweAyIiIiJyeAyIiEhVNBoNtm3bBgC4fv06NBoNkpKSzP76N954A7169VJkbESkXgyIiEi1QkNDcfv2bdx///1mf83ixYsNik/OmjULEydOVGB00gwbNgwLFy609TCIHI6LrQdARCSVs7MzgoODLfoab29veHt7KzQiIlIrzhARUZP64Ycf0L17d3h6esLPzw+jRo1CaWkpAODkyZN48MEH4e/vD51Oh6FDh+LMmTNG+6q/ZHbgwAFoNBrExcWhX79+8PLywsCBA5GcnKz/mrpLZm+88Qa+/vpr/PTTT9BoNNBoNDhw4ABGjBiBuXPnGnyv7OxsuLm5Gcwu1VXb7z//+U+EhobCy8sLjz/+OAoLC/X31M5GvfnmmwgICIBWq8UzzzyDiooKffvBgwexYsUK/XiuX79u6Y+YiCRgQERETeb27duYNm0a/vKXv+DSpUs4cOAAJk2ahNoa08XFxZg5cyaOHDmC48ePIyIiAuPGjUNxcbFF3+eVV17BRx99hFOnTsHFxQV/+ctfGr1v8eLFePzxx/HQQw/h9u3buH37NgYOHIg5c+Zg48aNKC8v19/7zTff4L777sOIESOMft+rV69i8+bN+O9//4tdu3YhMTERf//73w3uiYuL0z/7pk2bsHXrVrz55psAgBUrViA6OhpPP/20fjyhoaEWPTsRScMlMyJqMrdv30ZVVRUmTZqEdu3aAQC6d++ub68fbHz55Zfw8fHBwYMH8fDDD5v9fd555x0MHToUAPDSSy9h/PjxuHv3Ljw8PAzu8/b2hqenJ8rLyw2W3iZNmoS5c+fip59+wuOPPw4AWL9+PWbNmgWNRmP0+969excbNmzAfffdBwBYuXIlxo8fj48++kjfv5ubG9auXQsvLy9069YNb731Fp5//nksXboUOp0Obm5u8PLysngpkIiswxkiImoyPXv2xMiRI9G9e3c89thj+Oqrr5Cfn69vz8zMxNNPP42IiAjodDpotVqUlJQgLS3Nou/To0cP/f+3bt0aAJCVlWX213t4eGD69OlYu3YtAODMmTO4cOECZs2aJfp1bdu21QdDABAdHY2amhqDJbuePXvCy8vL4J6SkhKkp6ebPT4ikh8DIiJqMs7Ozti7dy9++eUXdO3aFStXrkRkZCRSU1MBADNnzkRSUhJWrFiBY8eOISkpCX5+fvo9NuZydXXV/3/tjE5NTY1FfcyZMwd79+7FzZs3sW7dOowYMUI/q0VEzQ8DIiJqUhqNBoMGDcKbb76JxMREuLm54ccffwQAHD16FPPnz8e4cePQrVs3uLu7IycnR9HxuLm5obq6usH17t27o1+/fvjqq6+wceNGo/uQ6kpLS8OtW7f0nx8/fhxOTk6IjIzUXzt79izu3LljcI+3t7d+r5Cx8RCRshgQEVGTSUhIwLvvvotTp04hLS0NW7duRXZ2Nrp06QIAiIiIwL///W9cunQJCQkJeOKJJ+Dp6anomNq3b49z584hOTkZOTk5qKys1LfNmTMH7733HgRBwJ/+9CeTfXl4eGDmzJk4e/YsDh8+jPnz5+Pxxx832A9UUVGB2bNn43//+x9+/vlnvP7665g7dy6cnJz040lISMD169eRk5Nj8cwWEUnDgIiImoxWq8WhQ4cwbtw4dOrUCa+++io++ugjjB07FgCwZs0a5Ofno0+fPpg+fTrmz5+PwMBARcf09NNPIzIyEv369UNAQACOHj2qb5s2bRpcXFwwbdq0BhuyG9OxY0dMmjQJ48aNw+jRo9GjRw98/vnnBveMHDkSERERiImJwZQpU/Doo4/ijTfe0LcvXrwYzs7O6Nq1KwICAizeP0VE0miE2vOuRERk4Pr16+jQoQNOnjyJPn36iN77xhtvYNu2baJlRGbNmoWCggJ96REish88dk9EVE9lZSVyc3Px6quvYsCAASaDISJSPy6ZERHVc/ToUbRu3RonT57E6tWrbT0cImoCXDIjIiIih8cZIiIiInJ4DIiIiIjI4TEgIiIiIofHgIiIiIgcHgMiIiIicngMiIiIiMjhMSAiIiIih8eAiIiIiBze/wfeebTfvUxkqgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# tol.plot(kind='scatter', y='specific conductance uS/cm', x='salinity ppt')\n", "tol.plot.scatter(y='specific conductance uS/cm', x='salinity ppt')" @@ -226,37 +154,9 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "slope: 2160.6322894868645 intercept: -19.685058556168173\n" - ] - }, - { - "data": { - "text/plain": [ - "[]" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAGwCAYAAABIC3rIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABz2klEQVR4nO3dd3xTVf8H8E+6W7qggzIKFChlyCggUJAlCAr4iKgID7IEfEAQEBH0JyJDBVRQZIoyRAQERFRQhkyBsssUKtCWFqF7Dzrv74/atLdtbnKT3CZpPu/Xqy/NOTcn5za0+fasr0oQBAFEREREVszG1B0gIiIiMjUGRERERGT1GBARERGR1WNARERERFaPARERERFZPQZEREREZPUYEBEREZHVszN1ByxBUVERHjx4ADc3N6hUKlN3h4iIiHQgCAIyMjJQt25d2NhIjwExINLBgwcP4O/vb+puEBERkR5iYmJQv359yWsYEOnAzc0NQPE31N3d3cS9ISIiIl2kp6fD399f/TkuhQGRDkqmydzd3RkQERERWRhdlrtwUTURERFZPQZEREREZPUYEBEREZHVY0BEREREVo8BEREREVk9BkRERERk9RgQERERkdVjQERERERWjwERERERWT0GRERERGT1GBARERGR1WNARERERFaPARERERGZVmYmkJdn0i4wICIiIiLTEASgZ0/AzQ1wdDRpV+xM+upERERknR48AOrVM3Uv1DhCRERERFVr3TpxMOTmBuTnm64/YEBEREREVaWoCGjQAPjf/0rLPv0USE8H7Ew7acUpMyIiIlLezZtAy5bisrt3gcaNTdOfcjhCRERERMqaN08cDLVpUzxaZCbBEMARIiIiIlJKbi7g5CQu27IFGDHCNP2RwICIiIiIjC80FOjaVVwWFwf4+pqmP1pwyoyIiIiMa/x4cTD07LPFZw6ZaTAEcISIiIiIjCU9HfDwEJcdOAD062ea/sjAESIiIiIy3N69FYOhjAyLCIYABkRERERkqL59i6fFSkyeXDxF5upquj7JxCkzIiIi0s/Dh0DduuKy8+eBjh1N0x8DcISIiIiI5NuwQRwMOTkVZ6y3wGAIYEBERERUrUQkZOJoeDwiE7OUeYGiIqBpU2DcuNKyRYuAnBzA3l6Z16wCnDIjIiKqBlKz8zB122WcuJ2gLusR6IMVw4Ph4WKkQOXvv4GgIHHZ7dvFAZKF4wgRERFRNTB122WcupMoKjt1JxFvbAszzgt89JE4GGrRonS0qBrgCBEREZGFi0jIFI0MlSgUBJy4nYDIxCwEeNfQr/G8PMDFBSgsLC3btAkYPVq/9swUR4iIiIgs3L3kbMn6qCQ91xOdOwc4OoqDodjYahcMAQyIiIiILF7DWi6S9Y289BgdmjQJ6Ny59PHTTxefLVS7tvy2LACnzIiIiKhURgbg7i4u27cPGDDANP2pIhwhIiIisnBGmzL7/feKwVB6erUPhgAGRERERBbPKFNmAwaIA5/XXiueInNzM7B3loFTZkRERBausY8regT64NSdRBQKgrrcVqVCt6be0jvM4uIAPz9x2Zkz4vVDVoAjRERERNXAiuHB6NbUW1TWrak3VgwP1vykb78VB0M2NkBurtUFQwADIiIiompBgKD9IvXFAtCyJTBmTGnZggXF2+sdHIzeN0vAgIiIiKga0Pmk6rt3i0eCbt4sLbt1C3j/fcn2Fc+RZmJcQ0RERGThdD6peskS4J13Si9o0qQ4P5mN5vGRqsiRdjw8Hpfvp6J9g5roHuhjlDblYkBERERk4bRtu78Xm4qA+l7F64NKfPONOGO9BlIjT5vHddKrv+p+JWVh8KpTSMnOV5fVdLHHL5OfgL+X9M45Y+OUGRERkYWT2nb/WOwd9GpdXxwMPXigUzBUMvJUducaIB55MkT5YAgAUrLz8Z9VJw1qVx8MiIiIiKqYsdfjlGy7t1WpROXz//gKe7+dXlrQp0/xguo6dXRqV7EcaSieJisfDJVIyc7Hn5VMASqJU2ZERERVRMn1OCuGB+ONbWE4cTsBLnk5+Ovzl8QX/PIL8OyzstpUJEfavy7fT5WsvxSdUqXriThCREREVEV03gmmBw8Xe2we1wlnOhRWDIZSU2UHQwBwPjJZsv5ClHS9lHb1PSXr2zeoqXfb+mBAREREVAWUXo8DABg8GH5Dnyt9PHZs8RSZh4dezYVGJknWn7qbKFkvpWeQL2pqGBWr6WJf5bvNGBARERFVASXX4yAhAVCpgJ9/Li07dQrYsEH/NgGEBHhJ1ndr4i1Zr80vk5+oEBSV7DKralxDREREVAUUW4+zdSswYoS47NEjwNFRv/bKeLlTA7y35zoKiiqegm1no8JLHf0Nat/fywVhc/vhz9sJuBSdYtJziDhCREREVAU07QSzVanQI9BHOgFrZQQBaNNGHAzNnVtcboRgqMQvk7vBzkbcZzsbFX6Z3M1or9E90AfT+jQzWTAEmFFAtHjxYqhUKkyfPl1d9ujRI0yePBleXl5wdXXFCy+8gLi4ONHzoqOjMXDgQLi4uMDX1xdvv/02CgoKRNccO3YM7du3h6OjI5o2bYpNmzZVwR0RERGJ6ZWAtTKRkcWnS1+7Vlr211/A/Pk4Hh6P5Yf/Ntq29Zb1PHDn4wH49MU2GBxcF5++2AZ3Ph6AlvX0W5dkrsxiyuz8+fP46quv0KZNG1H5m2++iX379mHnzp3w8PDAlClTMGTIEJw6dQoAUFhYiIEDB8LPzw+nT5/Gw4cPMWrUKNjb2+Pjjz8GAERGRmLgwIGYOHEivv/+exw+fBjjx49HnTp10L9//yq/VyIisl4lO8EiE7MQlZSFRl415I8MLVsGvPVW6WN/fyAyEvdSH2HwgoOKnfr8Ukd/g6fIzJlKEAQZ6XGNLzMzE+3bt8fq1avx4Ycfol27dvjiiy+QlpYGHx8fbN26FS+++CIA4NatW2jRogVCQ0PRpUsX/P777xg0aBAePHiA2rVrAwDWrl2L2bNnIyEhAQ4ODpg9ezb27duH69evq19z2LBhSE1Nxf79+3XqY3p6Ojw8PJCWlgZ3d3fjfxOIiIi0KSgAatUCMjJKy9asASZOBAAElwuGStR0sUfY3H5V1UuzIufz2+RTZpMnT8bAgQPRt29fUfnFixeRn58vKm/evDkaNGiA0NBQAEBoaChat26tDoYAoH///khPT8eNGzfU15Rvu3///uo2KpObm4v09HTRFxERkclcvgzY24uDofv31cGQuZ36bIlMGhBt374dly5dwqJFiyrUxcbGwsHBAZ6enqLy2rVrIzY2Vn1N2WCopL6kTuqa9PR05OTkVNqvRYsWwcPDQ/3l7199hwiJiMjMvfUWEFxmjVGPHkBREVCvnrpIl1OfSZrJAqKYmBhMmzYN33//PZycnEzVjUq9++67SEtLU3/FxMSYuktERGRtsrOLzxZatqy0bPdu4Pjx4vIyzO3UZ0tksoDo4sWLiI+PR/v27WFnZwc7OzscP34cX375Jezs7FC7dm3k5eUhNTVV9Ly4uDj4+fkBAPz8/CrsOit5rO0ad3d3ODs7V9o3R0dHuLu7i76IiIiMRWty1yNHgBrlFlsnJwPPP1/p5eZ26rMlMllA1KdPH1y7dg2XL19Wf3Xs2BEjRoxQ/7+9vT0OHz6sfk54eDiio6MREhICAAgJCcG1a9cQHx+vvubQoUNwd3dHy5Yt1deUbaPkmpI2iIiIqkpqdh5GrT+HJ5cex9iN59H7s2MYtf4c0squ/3nppeKs9CVGjiw+W6im9CjPlnGdKj0v6PtxnY15C9WWybbdu7m54bHHHhOV1ahRA15eXurycePGYcaMGahVqxbc3d3xxhtvICQkBF26dAEA9OvXDy1btsTIkSPxySefIDY2FnPmzMHkyZPh+O+hVBMnTsTKlSsxa9YsvPrqqzhy5Ah27NiBffv2Ve0NExGR1ZNK7rp5cBPAu1wqjBMngO7ddWp7yf6/UX7fuCAAi/eHY/O4ToZ02yqYfJeZlM8//xyDBg3CCy+8gB49esDPzw+7d+9W19va2mLv3r2wtbVFSEgIXnnlFYwaNQoLFixQXxMQEIB9+/bh0KFDaNu2LZYuXYpvvvmGZxAREVGVkkru6vbL7orBUE6OzsFQlSSOreZMfg6RJeA5REREZKij4fEYu/G8uFAQ8MvmN9Em9k5p2bvvAv8eLmxQ22VsHPs4egf5ymqzOpDz+W0WJ1UTERGZo+Ph8bh8P9UoSUfLJ3etlxaPU2tfFV907RpQbjmJPm2Xp3fiWCvCgIiIiKice0lZGLzqlGJpMMZc+AXzDq9TP06o4YnMu/cQUFu/WYiSxLGn7iSKps1sVSp0a+otPz2IFTLrNURERESmUD4YAopPfP7PqpN6t3kvORs2RYW49OV/RcHQ3L7/w+NTtiAq9ZHebQNGTBxrpThCREREVIYuaTD0mT5rGhuJiE+fE5V1nbQBD9yL1/YYOq1llMSxVowjRERERGUokgZj9mz49+qifnixbnM0mvUrHrj7wlalQo9AH6MFLwHeNdA7yJfBkEwcISIiIirDqGkwcnIAF/GaoxUTP8ZSjzbqx5zWMg8MiIiIiMooSYNR2bSZrDQYx48DvXqJy5KS8EatWhjEaS2zwykzIiKicn6Z/ESF3GAlu8x08t//ioOhl18uPja6Vi0AnNYyRxwhIiIiKsffywVhc/vhz9sJuBSdovs5RMnJgJeXuOzo0YojRWR2GBARERFp0D3QR/cpsh9/BF58UVyWnQ04Oxu/Y2R0nDIjIiIyhCAAXbuKg6GZM4vLGQxZDI4QERER6SsmBmjQQFx2+TLQtq1JukP64wgRERGRPlavFgdDXl5Afr5OwdDx8HgsP/w3/rydoGAHSQ6OEBERkUWLSMjEveTsqtvCXlgI+PsDDx+Wln3xBTBtmtanKp0jjfTHgIiIiCxSanYepm67jBNlRll6BPpgxfBgeJTbMm80N25UzEYfGQk0aqTT06VypIXN7WekTpI+OGVGREQWaeq2yzh1J1FUdupOIt7YFqbMC86ZIw6GOnQAiop0DoZ0yZFGpsOAiIiILE5EQiZO3E5AoSCIygsFASduJyAyMct4L/boEaBSAR99VFq2bRtw4UJxuY4UyZFGRsOAiIiILM695GzJ+qgkIwVEp05V3DqfkAAMGya7KT83J8n6uh7com9KDIiIiMjiNKwlvQC5kZcRFlePHg08USZVx5AhxWcLeXvr1Zyvh3RA5O3mqFe7ZBxcVE1ERBansY8regT64NSdRNG0ma1KhW5NvQ3bbZaaCtQUZ7T/78sfwu6pp7AiO1/vBdtVEsSR3jhCREREFmnF8GB0ayoerenW1Bsrhgfr3+jPP1cIhlq8uQunG7XDidsJmLjlot5NlwRxtuXWHdmqVOgR6MNErybGESIiIrJIHi722DyuEyITsxCVlGXYOUSCAPTuDRw/ri7a0OE/WND3NdFloRFJiEzM0vt1ZvUPwuC7iUCZteAqFfDO00F6tUfGw4CIiIgsWoC3gQcyPngA1KsnKho4+gvc8Gta6eVnIpL0fr2RG86ioEi8M66gSMCI9Wd5DpGJccqMiIis17p14mDIzQ0r91/XGAwBQFJmrl4vxXOIzBsDIiIisj4lByr+73+lZZ9+CqSnw6umq+RTvV312w3Gc4jMG6fMiIjIosnOZXbrFtCihbjs7l2gcWMAQOcAL8mnd24sXa9Ju/qekvXtG9SUrCdlMSAiIiKLpFcus3nzgPnzSx+3bg1cuSI6cbqxjyu6NvHC6btJFZ7etYmX3uuHegb5wtPZHqk5FafNPJ3t0T3QR692yTj0CogePHiAkydPIj4+HkVFRaK6qVOnGqVjREREUqRymW0e10l8cW4u4FTuYMTvvgNeeaXStteM6IA3toVVGmwZItDXFefvVZwaC/SVnqYj5ckOiDZt2oT//e9/cHBwgJeXF1RlomqVSsWAiIiIFFeSy6y8srnM1CM5Z84AISHiC+PiAF9fje0LEDTW6SsiIbPSYAgAzt9LMWg7PxlO9qLq999/H3PnzkVaWhqioqIQGRmp/oqIiFCij0RERCI65zKbMEEcDA0aVHzmkEQwBEiPPumryvKvkV5kjxBlZ2dj2LBhsLHhBjUiIjINbWkwAhwKK2ai378f6N9fa9uyRp9kYOoO8yY7qhk3bhx27typRF+IiIh0IpUGY2p2OBo1rit+QkaGTsEQoNxIDlN3mDfZI0SLFi3CoEGDsH//frRu3Rr29uKV/MuWLTNa54iIiDRZMTy4wsLnPb/MR+u/zpVeNHkysHKlrHa1jRTY2ai0XKFZZX02OP8aGYVeAdGBAwcQFFScd6X8omoiIqKqUDaX2YNbkejWvbX4gnPngMcfl93ug7Qcyfp/UqTrpRg1/xoZleyAaOnSpdiwYQPGjBmjQHeIiIjkcf3+W3SbPrm0wNGxeIrMXsNZRFokZORJ1+uZuqMsg/OvkdHJXkPk6OiIbt26KdEXIiKqxiISMnE0PB6RicbZTZWa+Qhxvv7wKRMM7RgyCWnJ+gdDxaS33HMupHqSPUI0bdo0rFixAl9++aUS/SEiompGrxOltfn7b3j+u3SjRM/X1uF+rXrYW9nBjERayA6Izp07hyNHjmDv3r1o1apVhUXVu3fvNlrniIjI8sk6UVoXH30EzJmjfni3Vn30Hb8agsoGMHBrfDHpMSDjH9lI5kB2QOTp6YkhQ4Yo0RciIqpmjHqmT14e4OICFBaqi2YOmI5drftWuDQqSf+AyMfNQbpez2z3ZN5kB0QbN25Uoh9ERFQN6XKmj06By7lzQOfOoqLHJ3+HBNfKM8QbsjVeqWz3ZN5kL6qOjIzE7du3K5Tfvn0bUVFRxugTERFVE0Y5nfn118XBUP/+OHorTmMwBAAFRZzYInlkB0RjxozB6dOnK5SfPXuWW/GJiEiksY8rujapfESlaxMv6dGhjIzi9Btr1pSW7d0L7N+PG/fTJF/35oN0fboLgDnHrJXsgCgsLKzSbfddunTB5cuXjdEnIiIyEWNvjQeKc6nKKQdQnHfM3V1clpYGDBwIALiTmCn5mn/HZ8jooRhzjlkn2QGRSqVCRkbFf2hpaWkoLLPQjYiILEdqdh5GrT+HJ5cex9iN59H7s2MYtf4c0rLzDWo3IiEToRFJldaFRiRVHngNGAA880zp49deK46eygRIIVrW+XRr4q1XfwHmHLNWsgOiHj16YNGiRaLgp7CwEIsWLcITTzxh1M4REVHVkNoabwhZ00/x8cVTZL//Xlp25gzw1VcVnvdypwYaF07b2ajwUkd/vfpbYsXwYHRrKg6qmHOsepO9y2zJkiXo0aMHgoKC0L17dwDAn3/+ifT0dBw5csToHSQiImUZdWt8OTonSt28GRg9urRCpQIePQIcNG+B3/JqZwz75kyF8u/Hda7kanmYc8z6yB4hatmyJa5evYqhQ4ciPj4eGRkZGDVqFG7duoXHHntMiT4SEZGClFxEXKSlvqCwCGjZUhwMLVgAFBVJBkMAsPr43UqntVYdu6tnbysSJBc6UXWi8wjRhg0b8J///Afe3t6oW7cuPv74YyX7RUREVUTJRcRSbTdIeYjeLfzEhbduAeVSclRGyVEtQKF0I2TWdB4h2rJlC+rXr4+uXbtiyZIluHXrlpL9IiKiKqLkImJNbU86+yNOrJtQ5sLGxSdQ6xAMAcpvjZ+05VKFgOvE7QRM3HLRoHbJfOkcEB05cgQPHz7E66+/josXL6JTp04IDAzEW2+9hRMnTqCoSNvAKBERmasPB7eCu7N40sDd2Q4fDTZ8KUTZBcp2hQW4ufQFzD5WJuvBunXA3buAje6rOHRem6QHvXbGkcWTtYaoZs2aeOWVV7Bjxw4kJiZixYoVyMnJwYgRI+Dr64tRo0Zh165dyMriPxYiIksyZ88NpOcUiMrScwrw3p7rBrddskD51FMeuPPZYDgX5JZWPngATJig+ckaaF2bZMBJ1WcjkyXrz2gIlsiyyV5UXcLBwQFPP/00Vq9ejZiYGOzfvx+NGjXCwoULsWzZMmP2kYiIFFSyHqew3ALisutxDDZ1Kur17V76uE+f4rOF6tTRq7n4tEeS9YkZuZL10qSDKf3Hnsicyd52X15BQQEePXqEjh07omPHjliwYAHy8w07yIuIiKqO0RKwViYrC3B1FZf98gvw7LP6tfev2AzpgOhBWo7ebTO5q3XSeYTo119/xaZNm0RlH330EVxdXeHp6Yl+/fohJSUFAGBvzxX4RERKpMFQgmK7zP74o0IwtGbPBfzZvIt+7ZXh5+YkWV/Xw1nvtg3Kv0YWS+eAaNmyZaK1QadPn8bcuXPx/vvvY8eOHYiJicHChQsV6SQRkSVRKg2GUhTZZTZ4MPDUU+qHe4L7odHsvVgSGouR688heMFBxCRJj0xJ8fWQDoi83Rz1bhsA1ozogB6BPqKyHoE+WDOig0HtkvlSCTqeOuXr64sDBw4gOLj42PIZM2bgr7/+wv79+wEAv/32G6ZNm4bbt28r11sTSU9Ph4eHB9LS0uBePtkgEVE5o9afw6k7iaI1ObYqFbo19cbmcZ1M2DPN0rLz8ca2MMPP3UlIAHx9RUWjXl2GEz7NKlzq4WyHKx/016u/x8PjMXrjeY31343rhO7lAhp98KRqyybn81vnNUQZGRnw8iodQjx58iReeukl9eNWrVrhwYMHenSXiKj6UPrAQKWU7AQ78XcCwmJS0L5BTfkBxdatwIgRoqITV6Nx4vurlV6ellOAP28n6BW4aFsj9E+K/muIygrwZiBkLXSeMqtXrx5u3rwJAMjMzMSVK1fQtWtXdX1SUhJcXKTnoYmIqjulDwxUSsk036gN5/D5odsYuf6c7tN8ggC0aycOht5/HxAEHIlMk3zq4ZtxevZYeq8XE26QXDoHRC+99BKmT5+O7777DhMmTICfnx+6dCldGHfhwgUE6XjCKBGRuTD2wmcl02AoSe9s95GRxQcqXrlSWnbjRnE+MgC1akjnI/N21W+tT+eAWpL1XbgTjGTSecps7ty5+OeffzB16lT4+flhy5YtsLW1Vddv27YNzxq4jZKIqKoolauqZIGypjVE5jj9ovc037JlwFtvlT729y8OkMp8NrSt7yn52m39pes1aezjipDGXpWeKB3SmDvBSD6dR4icnZ2xefNmpKSk4ObNm+jevbuo/ujRo5g9e7bRO0hEpAS9R0R0UDZVRYluTb2xYniwwW0rQfY0X0EB4OEhDobWrAGio0XBEAA80HKA4n0D1voseaENapYLXmu62OOTF9ro3SZZL4MPZiQiKhGRkIl7ydlmvyNH6YXPJQuULWWHkqy8YFeuFK8XKismBqhfv9LnJmg5QDEpU/8Tpefsua4x3Yi57uYj8yU7IAoICIBKpXkxW0REhEEdIiLLo9T0k1IUPZm5DKV2KBk78NR5x9ZbbxVPk5Xo3h04fhyQ+Ezw0XIekL5riCx1Nx+ZL9kB0fTp00WP8/PzERYWhv379+Ptt982Vr+IyIJITT+Z41/qlrrwWbnAU3rHls2jnIpBz+7dwPPPa21ZqTQYVRXUkvWQHRBNmzat0vJVq1bhwoULBneIiCyLJf6lbokLnwHlAs+6Eqc+h9y7gqE9B4kLk5OBmjX1fj1jsNSglsyX3tnuy3vmmWfw448/Gqs5IrIQlnrujqUtfFYyI32RhvKVexZj2/b3SgtGjCg+c0hGMLT3qvSBvfu01GuiSLoRsmpGC4h27dqFWrWkz4Uob82aNWjTpg3c3d3h7u6OkJAQ/P777+r6R48eYfLkyfDy8oKrqyteeOEFxMWJD/GKjo7GwIED4eLiAl9fX7z99tsoKBAvsjt27Bjat28PR0dHNG3atEKSWiLSn6X+pV6y8PnozF7YOPZxHJ3ZC5vHdTLLNU+AsoFn+ffQMycdUUsGYVD4ydLC48eBLVtkt60tUItI0L/flhbUknmTPWUWHBwsWlQtCAJiY2ORkJCA1atXy2qrfv36WLx4MQIDAyEIAr799ls899xzCAsLQ6tWrfDmm29i37592LlzJzw8PDBlyhQMGTIEp06dAgAUFhZi4MCB8PPzw+nTp/Hw4UOMGjUK9vb2+PjjjwEAkZGRGDhwICZOnIjvv/8ehw8fxvjx41GnTh30769fDh0iKmWp008lLCU1g5KBZ0l299N3kzDw5p9Y9csS8QU5OYCTdDJVTTydpQ9m9DQgALW03Xxk3nRO7lpi/vz5osc2Njbw8fFBr1690Lx5c4M7VKtWLXz66ad48cUX4ePjg61bt+LFF18EANy6dQstWrRAaGgounTpgt9//x2DBg3CgwcPULt2bQDA2rVrMXv2bCQkJMDBwQGzZ8/Gvn37cP36dfVrDBs2DKmpqerEtOXl5uYiN7d0K2h6ejr8/f2Z3JVIA6MlBiVJwQsOIqWSVBo1XewRNrefQW2/uPoU5nw4Fu0eliboXt3lRRwd9SZ2Tuoq8UxpXx7+G8sOaU76PbNfM0x5MlDv9omkKJLctcQHH3ygd8ekFBYWYufOncjKykJISAguXryI/Px89O3bV31N8+bN0aBBA3VAFBoaitatW6uDIQDo378/Jk2ahBs3biA4OBihoaGiNkquKb9brqxFixZVCPyISDP+pa68iITMSoMhAEjJzjdo8fq9sJvYNfkJUVm/V1fib59GwL0Ug9r2cZMeWfLSc9s9kbEZbQ2Rvq5duwZXV1c4Ojpi4sSJ+Omnn9CyZUvExsbCwcEBnp6eoutr166N2NhYAEBsbKwoGCqpL6mTuiY9PR05OZWfvfHuu+8iLS1N/RUTE2OMWyWq9gK8a6B3kC+DIQUotoboyy/RsH1L9cOEGp5o/PbPxcHQv85Ukh5DV7djMyTr78Zn6t02kTGZ/KTqoKAgXL58GWlpadi1axdGjx6N48ePm7RPjo6OcHTkXy1E5sRSTsEuy5h9lnWatC4KC4HatYGk0mBnbt//YXOHijkpZbYscjM2XbL+xoM0A1onMh6TB0QODg5o2rQpAKBDhw44f/48li9fjpdffhl5eXlITU0VjRLFxcXBz88PAODn54dz586J2ivZhVb2mvI70+Li4uDu7g5nZ2elbouIjMTSTsEGlOmzUXOCXbsGtBHn++o6aQMeuPtWerm+hycCQLcm3giNSNZY3z3QR++2iYzJ5FNm5RUVFSE3NxcdOnSAvb09Dh8+rK4LDw9HdHQ0QkJCAAAhISG4du0a4uPj1dccOnQI7u7uaNmypfqasm2UXFPSBhGZNyWTsCpl0pZLFQ6rPHE7ARO3XDSgVen9LzqP4rzzjjgY6twZKCpCvGftSi+3s1EZNLo1pY/0gunXezfVu20iY9I7ILpz5w4OHDigXocjc7MagOK1OidOnEBUVBSuXbuGd999F8eOHcOIESPg4eGBcePGYcaMGTh69CguXryIsWPHIiQkBF26dAEA9OvXDy1btsTIkSNx5coVHDhwAHPmzMHkyZPVU14TJ05EREQEZs2ahVu3bmH16tXYsWMH3nzzTX1vnYiqiJKHESolIiEToRrW3IRGJOndZ4NTYOT8m35jSZkt9Tt2AGfO4PjfCSgoqvx3eEGRgD8rOYlcVxEJ0muEzPE9JOskOyBKSkpC37590axZMwwYMAAPHz4EAIwbNw5vvfWWrLbi4+MxatQoBAUFoU+fPjh//jwOHDiAp556CgDw+eefY9CgQXjhhRfQo0cP+Pn5Yffu3ern29raYu/evbC1tUVISAheeeUVjBo1CgsWLFBfExAQgH379uHQoUNo27Ytli5dim+++YZnEBFZAEs8BftspObpIcCwBcp6O34ccCl3jlFSEvDSSwCAy/dTJZ9+KTpF75e2xPeQrJPsNURvvvkm7OzsEB0djRYtWqjLX375ZcyYMQNLly7Vua3169dL1js5OWHVqlVYtWqVxmsaNmyI3377TbKdXr16ISzMfIfXiahylngKdkKG9FqfpMxcyXpN9E5mOmIEsHVr6eOhQ4EffhBd4qdla3xdD/3XW1rie0jWSXZAdPDgQRw4cAD169cXlQcGBuLevXtG6xgRkSWegq3UuTuyA4uUFKB8OqUjR4DevSs811ciuSsAeLvpv+vWEt9Dsk6yp8yysrLgUn7oFUBycjK3qhOR0VlaviqpzPEAUL+mfqMtspKZ7t5dMRjKyqo0GAKUH8WxtPeQrJPsEaLu3btj8+bNWLhwIQBApVKhqKgIn3zyCXpr+GEjItKXpZ2CrSlzfAlNi5d1sWJ4cIUUKaLAQhCAbt2A0NDSJ82cCXz6qd6vaQyW9h6SdZIdEH3yySfo06cPLly4gLy8PMyaNQs3btxAcnKyOukqEVknJQ9PtJQkrEY/QLEMycDi/n3A31/8hMuXgbZttbar9/okmSzlPSTrJDsgeuyxx/D3339j5cqVcHNzQ2ZmJoYMGYLJkyejTp06SvSRiMycJR6eqBQlR4hKVDjmZPVqYPLk0sc1awLx8YCdbr/iufCZSM+Tqj08PPDee+8Zuy9EZKGkDk/cPK6TiXplGkoGF+UDT5uiQlxcNw4108p875ctA2Ses9bYxxU1XewrTR5b08WeozpkFWQvqt64cSN27txZoXznzp349ttvjdIpIrIclnh4YlkRCZk4Gh5vtH7KWvwsU9nAMzDhHiI+fU4cDEVGyg6GgOLvQWXBEACkZOeb/XtIZAyyA6JFixbB29u7Qrmvry8+/vhjo3SKiCyHpR68l5qdh1Hrz+HJpccxduN59P7sGEatP4c0DYGBHErsqiobeM448R0ObSidIrteuwki4zOARo30attS30MiY5IdEEVHRyMgIKBCecOGDREdHW2UThGR5bDU9SdK5kgTtOQd08e95Gw4FuQhaskgTA0tPVhx6rNvY9CY5YjSEtRIsdT3kMiYZAdEvr6+uHr1aoXyK1euwMtL/4zIRGSZStafVMZc158oPc2nRHLXZrevIHzpEFFZ8Bvf45eWPQEYFrTEaAmm7qfoH2wRWQrZAdHw4cMxdepUHD16FIWFhSgsLMSRI0cwbdo0DBs2TIk+EpEZs8T1J0pOESmS3HX0aNR7tp/64e/NuqLR7L1IcfHQt5siSuYyI7IUsneZLVy4EFFRUejTpw/s/t3SWVRUhFGjRnENEZEVqqozbIxJySkiXZK76vz9SEsDPD1FRSNe/hCnGrWrcOm+qw8w5clAHXsppmQuMyJLITsgcnBwwA8//ICFCxfiypUrcHZ2RuvWrdGwYUMl+kdEZs4S158om19Lev2Qzscy/vwzMHiwqKjFm7uQ41B58BKRoP+olpK5zIgshewpsxLNmjXDSy+9hEGDBjEYIrJiSm4zV5JS+bU6B0ivpezcWMtaS0EAevUSB0PTpmH+z9c0BkMANK7j0sWf4QmS9aduJ0rWE1UHskeICgsLsWnTJhw+fBjx8fEoKhKfy3rkyBGjdY6ILIPWHFtmSKn8Wo19XNG1iRdO3624jqhrEy/p13jwAKhXT1x28SLQvj2anZPexdu0tps+3QUA3IxNl6y/8SBN77aJLIXsgGjatGnYtGkTBg4ciMceewwqlf55eYioerDk5J1K5NdaM6JDhQCxJJWJRl9/Dbz2WunjGjWAlBTAvnjkp3NALQ1PLNZF28iThG5NvBEaoXntU/dAH73bJrIUsgOi7du3Y8eOHRgwYIAS/SEiC2aJyTuVSEgrK0AsKgIaNwbu3Sst++QT4O23RZed17JY+0JUst79n9InEJ8d+ltj/eu9m+rVLpEl0WtRddOm/OEgIstWFQlpo5OycPV+KuxsVJUHK7duAS1aiMvu3i0OkMo5dDNO8rUO3IjFSx39Ja+R8sOELnj56zOVlhNZA9kB0VtvvYXly5dj5cqVnC4jIoulZELae0lZGLzqlOh8ppou9vhl8hPw9/p3V968ecD8+aVPeuwx4OpVQMPvVf+a0rv5tO3206ZzEy9ELR6I1Ufv4M/bCege6MORIbIqsgOikydP4ujRo/j999/RqlUr2NuL/5LavXu30TpHRKSEkpOqyyt7UrUh02flgyGg+JDK/6w6ibDZPQGncrvFNm8GRo6UbLO5n/Si6eZ13PXqa3mv927KQIiskuyAyNPTE88//7wSfSEiqhJKHiZ5PDxe48ndjW5fA5z6iwvj4gBfX63tnoms/PTrEqF3kwyaMiOydrIDoo0bNyrRDyKqQkosJLYkSh4mqSkNxqLfv8TwqwdLCwYNAn79Ved2Mx8VSNZn5FYehBGRbmQHRERkuapiIbElUPKk6nb1PUWPXXOzcf2LoeKL9u8H+pcbKdKidX0PHLoZr7G+bbnXJSJ59DqpeteuXRg6dCi6dOmC9u3bi76IyHxJLSS2NkqdVB2b9kj9/73vnq8QDO0+flN2MAQAg9rUlawfqKWeiKTJDoi+/PJLjB07FrVr10ZYWBg6deoELy8vRERE4JlnnlGij0RkBCULicuOiADihcTWpOSsoKMze2Hj2MdxdGYvbB7XyeCRstB/1/ps/uF9bNxVuotsc/BANJq9Fyce5ujVbmMfV3RqVLPSuk6Nalrl1CeRMckOiFavXo1169ZhxYoVcHBwwKxZs3Do0CFMnToVaWk83p3IXOmykNgaBXjXQO8gX6MFFL3dCxG1ZBB6RJWOuv1n1DLM7TcJQPGp0Pr6etTj6FHu1OgegT74etTjerdJRMVkryGKjo5G165dAQDOzs7IyMgAAIwcORJdunTBypUrjdtDIjIKS8xKX5ZFLATfsAHPjRunfphra4dWb+5Cga1xlmtacooUInMn+6fUz88PycnJaNiwIRo0aIAzZ86gbdu2iIyMhFBuKJ6IzIeSC4mVpPRCcKMEWkVFQFAQcOeOuuiTHqOwOmRohUtP3U00eHu8JaZIITJ3sgOiJ598Er/88guCg4MxduxYvPnmm9i1axcuXLiAIUOGKNFHIjKSDwc/hudWnRSdk+PubIePBj9mwl5JU+pEaaMFWrdvA82aiYp6TfgKUbXqVXp5M1/9s9ITkXJkryFat24d3nvvPQDA5MmTsWHDBrRo0QILFizAmjVrjN5BIjKeOXuuIz1HfJ5Nek4B3ttz3UQ9kqbkQnCj7Lj76CNxMBQUhLe2XtQYDAHF90RE5kf2CNH9+/fh71863Dts2DAMGzYMgiAgJiYGDRo0MGoHicg4lE5XoQSlTpQ2+HuRlwe4uACFhaVlGzcCY8bg7qqTkq99hwERkVmSPUIUEBCAhISKv0iSk5MREBBglE4RkfFZ4i4zpRaCG/S9OH8ecHQUB0MPHwJjxgAA+javLdl2v5Z+unaTiKqQ7IBIEIRKs9xnZmbCqXzCQiIyG5a4y6xkIbhtud85tioVegT66D2ipff34vXXgU5l1i316wcIAuBXGuS0ru8h2ba2eiIyDZ2nzGbMmAEAUKlUeP/99+HiUvoLpbCwEGfPnkW7du2M3kEiMg5L3WW2Yngw3tgWJpriMsaJ0rJkZADu5bLJ790LDBxY4VJNucxKXIpOQfdyZwkRkenpHBCFhRUvNBQEAdeuXYODg4O6zsHBAW3btsXMmTON30MiMhqzCC5kUuLsHVlrk/bvB8qfwp+WVjFA+pefm/RIeV0PZ537SURVR+eA6OjRowCAsWPHYvny5XDX8MuAiMyXJR/sZ8yzd3SeMhs0CNi3r7Ri/Hjg668ln+vrIR0Qebs56tRHIqpasneZffHFFygoKKhQnpycDDs7OwZKRBbAEg/2M+ZJ1TFaRoji7txDgE8rceGZM0Dnzlrb1rYw086m4hpMIjI92Yuqhw0bhu3bt1co37FjB4YNG2aUThERlUjNzsOo9efw5NLjGLvxPHp/dgyj1p9DWpnDJeU6Gh6vsW7I9cPoElIuGMrN1SkYAoAiLfUFRTzRn8gcyQ6Izp49i969e1co79WrF86ePWuUThERlTDKAYrl1KpRybSVIODQN5OwbN/npWXz5hXvIiuzZlIbjhARWSbZAVFubm6lU2b5+fnIyckxSqeIiADlTqoe1KaO6HGDlIeI+uRZBCbFlBbeugV88IHstq/cT5OsvxyTKrtNIlKe7ICoU6dOWLduXYXytWvXokOHDkbpFBERoNxhkr9dfaj+//+d3YUT6yaoH0d71MbqP8KLk7XqITJR+iTqyATzOwCTiPRYVP3hhx+ib9++uHLlCvr06QMAOHz4MM6fP4+DBw8avYNEZHzGXKCsJKWmn3Zfug+7wgJc++JlOBfkqsvf6T8F29s9jcZh/+D1Ps0kWtAswNtVut7HfL/fRNZMdkDUrVs3hIaG4tNPP8WOHTvg7OyMNm3aYP369QgMDFSij0RkJEbL8F5Frmg55PBKTKpehxwGRN/CkZWvi8o6vf4t4t28AAD5hfovfK6tZVu9nztP9CcyR7IDIgBo164dvv/+e2P3hYjKUGIUR2qB8uZxnTQ8S3fG7nNylvROssTMPPmNTpuG9Su/VD883aAN/jvsI6BMepAGWs4pkhKb8Uiy/kEa11oSmSPZAVF0dLRkPbPdExlGqVEcJbPdK9Xn3kE+2HQ6SmN9nxa+ujeWlQW4iqezxg95H38EVtxO7+qo19+KAHhSNZGlkv1T36hRo0qTu5YoLJsBmohkU2oUR1a6CpkmbbmE0IgkUdmJ2wmYuOUitr3WRa82AaBnkC/sbICCSg73sbOB7tNlf/wBPPWUqKj19B+Q4Vj5/Wbk6n/GURGkp9sKeQ4RkVmSHRCV5DQrkZ+fj7CwMCxbtgwfffSR0TpGZI2UHMVRKtt9REJmhWCoRGhEkkF9jkjIrDQYAoqDJJ3aHjIE+Omn0sejR2PGM9OREfaPxqfUMWgUR3qhN8MhIvMkOyBq27ZthbKOHTuibt26+PTTTzFkyBCjdIzIGik5iqNUtvuzkcmS9WcikvRu26DvR2Ii4FNuBOnkSaBbN3j8ckOyXU9n/af5OgfUkqzv0thL77aJSDmyzyHSJCgoCOfPnzdWc0RWSalRnBIrhgejW1NvUZnh2e6lxzwMOZdZ7+/H1q0Vg6GcHKBbNwBAao70YuyUbD0Wa/+rsY8rQjQEPSGNvcz6mAMiayZ7hCg9PV30WBAEPHz4EPPmzeO2eyIDKTWKU6Ik2/2Jv+MRFpOK9g1q6rVtvazOAdIjHp2rckREEIDgYODKldKy998HFiwQXabSEqbZSKyT1MXaVzrgjW1hlS4yJyLzJDsg8vT0rLCoWhAE+Pv7V5r0lYjkWTE8uMKHqeGjOMWU2A3W2McVXZt44fTdiuuIujYxbETkbGTla5PU9WWn46KigIAA8QU3bgAtW1Z4nqBlVMvQdc8lgWdkYhaikrLM/gBMItIjIDp69KjosY2NDXx8fNC0aVPY2em/VZWIiin5YarUDrY1I5QaEdFxgfLnnwMzZpRW1KsH3LsH2NpqaFW6XQMHiNQCvBkIEVkK2RFMz549legHEZVj7A9TJXewKTEVBwC3YzMk6yMepgKebYC0MglVV68GJk2SfJ62ESKBW8GIrI5OAdEvv/yic4P/+c9/9O4MESlHyR1sSh3MeDoiUWNdi/gIvDd4kLgwJgaoX19ru57ODtL1ZpjGhIiUpVNANHjwYNFjlUoFocyfUGXXFPFgRiLzpOQONqWm4mq5VB64/N+R9XjtfJmzhbp1A/78U+e5rmZ+0glYm9V207mPRFQ96LTtvqioSP118OBBtGvXDr///jtSU1ORmpqK3377De3bt8f+/fuV7i8R6alkB5ttuaDBVqVCj0Afgw5PPHE7QbQrDhBPxenrfz2biB475T9C1JJB4mDoxx+LzxeSsfDHrHbGEZFZkH0O0fTp07F8+XL0798f7u7ucHd3R//+/bFs2TJMnTpViT4SkZEocQ6RLlNx+opNK02UGnLvCm4te1FUv+fw1eKTqImIDCR7UfXdu3fh6elZodzDwwNRUVFG6BIRKUWJHWxKTsUduhkHAFi5ZzEGhZ9Ul//UshfefHYm+sY8wmA92lVyPRURWSbZAdHjjz+OGTNm4LvvvkPt2rUBAHFxcXj77bfRqZP+awWIqOoYcwdbYx9X1HSxR0p2xYSoNV3sDXodm6QkRC0RL5we+t/FOOf/GADgUZ5+axaVPhGciCyP7CmzDRs24OHDh2jQoAGaNm2Kpk2bokGDBvjnn3+wfv16JfpIZJUiEjJxNDzeoDU4VSEiIbPSYAgAUrLz9e//jh1Y99YzoqKgGT+qgyEAyNIzIFJqPRURWS7ZI0RNmzbF1atXcejQIdy6dQsA0KJFC/Tt27fCCdZEJJ9SW9iVYvTpJ0EAOncGyuRGXN3lRXzSc0yFS73dpLfPS1HyRHAisjx6HS2tUqnQr18/9OvXz9j9IbJ6Sm1hV4pRp5+io4GGDUVF/V9diXCfRhpeW/+RHG2HMxKRddErIDp8+DAOHz6M+Ph4FBUVieo2bNhglI4RWSMlT5NWitES0q5YAZTdqerjgwHvbEd4fI7Gp5y6U/F7pStLCzyJSFmy1xDNnz8f/fr1w+HDh5GYmIiUlBTRFxHpT8kt7Er6cHAruDuL/75yd7bDR4Mf0/CMMgoLAV9fcTD05ZdAfDzS86RHcTJz9VtDpOTZSURkmWSPEK1duxabNm3CyJEjlegPkVWz1N1Pc/bcQHpOgagsPacA7+25Lj3acu0a0KaNuOzePaBBAwBApwAv3A/7R+PTOwfU0qu/3HZPROXJHiHKy8tD165djfLiixYtwuOPPw43Nzf4+vpi8ODBCA8PF13z6NEjTJ48GV5eXnB1dcULL7yAuLg40TXR0dEYOHAgXFxc4Ovri7fffhsFBeJfzseOHUP79u3h6OiIpk2bYtOmTUa5ByJjssTdT3qPtrzzjjgY6twZKCpSB0MA8Fy7upKv/VxwPb36bKmBJxEpR3ZANH78eGzdutUoL378+HFMnjwZZ86cwaFDh5Cfn49+/fohK6v0F+ibb76JX3/9FTt37sTx48fx4MEDDClzMm1hYSEGDhyIvLw8nD59Gt9++y02bdqEuXPnqq+JjIzEwIED0bt3b1y+fBnTp0/H+PHjceDAAaPcB5ExKXGatJJkT/Pl5BSn2ViypLTshx+AM2cqpN94UOak6srcT9G8vkiKJQaeRKQs2VNmjx49wrp16/DHH3+gTZs2sLcXbwNetmyZzm2Vz322adMm+Pr64uLFi+jRowfS0tKwfv16bN26FU8++SQAYOPGjWjRogXOnDmDLl264ODBg/jrr7/wxx9/oHbt2mjXrh0WLlyI2bNnY968eXBwcMDatWsREBCApUuXAig+JuDkyZP4/PPP0b9/f7nfAiJFWdruJ1mjLSdOAD17ii9ITAS8Ks8ddj4yWbLti1HJGN6pgeQ1mnDbPRGVJTsgunr1Ktq1awcAuH79uqjO0HOI0tLSAAC1ahWvC7h48SLy8/PRt29f9TXNmzdHgwYNEBoaii5duiA0NBStW7dWn5oNAP3798ekSZNw48YNBAcHIzQ0VNRGyTXTp0+vtB+5ubnIzc1VP05PTzfovojkqIrdTxEJmbiXnG2U1B06GzECKDu6PHRo8ciQhPRHlR/4WCI1R7peihJpTIjIcskOiI4ePapEP1BUVITp06ejW7dueOyx4p0psbGxcHBwqJA7rXbt2oiNjVVfUzYYKqkvqZO6Jj09HTk5OXB2dhbVLVq0CPPnzzfavRHpSult90oc+jjnp2uS9Yu2nMK6N8uNxB45AvTurbXtdvU98cfNeI317RvU1KmPUoyZxoSILJfsNURl3b9/H/fv3zdKRyZPnozr169j+/btRmnPEO+++y7S0tLUXzExMabuElkJpbfdT9pyqULAdeJ2AiZuuah3m+HxmRrr+oefrhgMZWXpFAwBQJGW+vILuYmI9CU7ICoqKsKCBQvg4eGBhg0bomHDhvD09MTChQsrHNKoqylTpmDv3r04evQo6tevry738/NDXl4eUlNTRdfHxcXBz89PfU35XWclj7Vd4+7uXmF0CAAcHR3h7u4u+iKqCkrufopIyERoRFKldaERSXqfvdPAs+LPEAQBO7fMwld7Pi4te+ut4rQcLtL3WFZkouZgCwAiE3heEBEZh+yA6L333sPKlSuxePFihIWFISwsDB9//DFWrFiB999/X1ZbgiBgypQp+Omnn3DkyBEEBASI6jt06AB7e3scPnxYXRYeHo7o6GiEhIQAAEJCQnDt2jXEx5cOqx86dAju7u5o2bKl+pqybZRcU9IGkblQcvfTWS0LlM9oCJa08XZzFD32S09E1CfP4vF//iotvHwZ+Owz2W0HeLtK1/twqouIjEN2QPTtt9/im2++waRJk9CmTRu0adMGr7/+Or7++mvZZ/tMnjwZW7ZswdatW+Hm5obY2FjExsYiJ6d4K62HhwfGjRuHGTNm4OjRo7h48SLGjh2LkJAQdOnSBQDQr18/tGzZEiNHjsSVK1dw4MABzJkzB5MnT4ajY/Ev6okTJyIiIgKzZs3CrVu3sHr1auzYsQNvvvmm3NsnUtys/kHld59DpQLeeTrIwJalp5f03RIRk1I6zffKpX04s2aM+nGaYw0M/OwPoG1bvdoe1KaOlnrpc4qIiHQlOyBKTk5G8+bNK5Q3b94cycnSf4GWt2bNGqSlpaFXr16oU6eO+uuHMjtPPv/8cwwaNAgvvPACevToAT8/P+zevVtdb2tri71798LW1hYhISF45ZVXMGrUKCxYsEB9TUBAAPbt24dDhw6hbdu2WLp0Kb755htuuSezNHLDWRQUiYOXgiIBI9afNajdzgGVb21X1zeWrtekZR0P2BQV4syqUfjw0Bp1+cInx6Pt9B/Qwl+/doHiETM3R9tK69wcbbkYmoiMRvYus7Zt22LlypX48ssvReUrV65EW5l/BQo6LIh0cnLCqlWrsGrVKo3XNGzYEL/99ptkO7169UJYWJis/hHpwphb2I+HxyMlu/Kt5CnZ+fjzdgK6B/oY9BrG1jQhGhGfPicqe2Lietz3KN7Z6enioHfbEQmZyNCQrywjt9Ask90SkWWSHRB98sknGDhwIP744w/1GpzQ0FDExMRoDUqIqhMltrBfvp8qWX8pOkXvgEiR/F3vv4/XP/xQ/fB67SYYNPoL0YnTF+7JGzku62yk9LqmsxFJDIiIyChkT5n17NkT4eHheP7555GamorU1FQMGTIE4eHh6N69uxJ9JDJLUgco6qtdfU/JekPO3YnXkgYjMSNXsl7k0aPioKdMMDT12bcxaMzyCuk3XB1k/91VhvTKJm66JyJj0es3Vb169fDRRx8Zuy9EijH2ycxKHaDYM8hXst6Q6bI/bsZJ1h/6KxYvdfTX3tCpU8ATT4iK2r/xPZJdPCq93MWAgEhbNvsueq57IiIqT/Zvqo0bN8LV1RUvvfSSqHznzp3Izs7G6NGjjdY5IkMpMa0FKDT9hOI1RFIMWUOUmVtgUD0AYOxYoOxu0sGDMfyZWUiO0DwtlpWnQ7saNPZxRUhjr0rPTwpp7MXpMiIyGtlTZosWLYK3t3eFcl9fX3z88ceVPIPIdJSY1gKUO0BRlzVE+hrcrp5k/fPB9TVXpqUVT4WVDYYOHQJ++kmH7fqGTWytfaUDepQLAnsE+mDtKx0MapeIqCzZI0TR0dEVDlAEind6RUdHG6VTRMagZF6wxj6u6NrEC6fvVhy56NpE/5ELJdcQ+Xk46Vf/88/A4MHissxMoEbJPWoLiQxL+swkrERUFWSPEPn6+uLq1asVyq9cuQIvL87nk/lQOi+YplMjDEmv5a9l5Kl+Td3TXpT31fG7kvVrj5WrF4TinGNlg6E33igur1EakAhVtLQ5wLsGegf5MhgiIkXIHiEaPnw4pk6dCjc3N/To0QMAcPz4cUybNg3Dhg0zegeJ9GXqvGD6fHArtTYJAO5qyQt2NyGj9MGDB0C9clNsFy8C7dtXeJ6ro/SvkRoaDlYkIjInskeIFi5ciM6dO6NPnz5wdnaGs7Mz+vXrhyeffJJriMisKJkXTKnRJyWDOAdb6R93e9t/A5evvxYHQy4uQF5epcEQoH3UypBRLSKiqiI7IHJwcMAPP/yA8PBwfP/999i9ezfu3r2LDRs2wMFB/xNpiZSwYngwujUVbwLo1tQbK4YHG9SuUoFLYx9X1NSw+62mi71BQZy2wKShpxPQqBHw2mulhUuWAFlZgL3mHXnN/KQTsDar7Sanm0REJqH3ASGBgYEIDAw0Zl+IjK5kQe6Jv+MRFpOK9g1qGiX1Rcno06k7iSgss2jIVqVCt6beegcuEQmZkqk7DFkILjW11TjpPrYsGSQuvHMHaNJEa7s2WhZN29oYtqiaiKgqyB4hIlJSREImjobHIzLRsAXPJVKz8zBq/TmM2nAenx+6jZHrz2HU+nNI0xB0yKHE6JOSC8ETNJxEPfXUNhz5ZmJpQatWQFGRTsEQAJzRkl4jtJKdeERE5saQM/WJjEapAxSlziHaPK6T3u0CymwHV3INUbmlVHAoyMffS58XF27eDIwcKbdlvftERGQuOEJEZkGJAxRLziEqLLcPvuw5RMZgKdvBnexLd3sF/3OrQjA06bN9egRDQBct6TVCmvA4DiIyfwyIyOSUClyUPodICUr2+VF+IQDg4/0r8NOWmeryI407otHsvYhzqjwXmTa+Wg589HZz1KtdIqKqxFxmZHJKnb2j5PSTUhSdMstIR1S5hdOjXpqPE42LU2Dk/BswyWWJ32ciovKYy4xMjh+opRr7uMLdqfK/U9yd7PSfltu3D7vfHSgqavnmTnUwBOiY3LUSSp73RERUVWQHRMxlRsam1AeqJU6ZRSRkIv1R5YFJ+qMC/aYP+/UDBpWODH0XPACNZu9FtoNzuQv1T8Gh1HlPRERVRfaUWUkus0aNGonKmcuMDLFieDDe2BYm2mVm6AeqJY487b36QLJ+39UHmPKkjud/xcYCdeqIiv4zahmu1mlW6eX9W9WptFwXTMBKRJaOuczILPADtVhylvT5SImZebo1tHEj8OqrpY/t7TFr4ylcvRav8SlpOYafzRTgbZ3vGxFZPtkB0cKFCxEVFYU+ffrAzq746UVFRRg1ahTXEJHBjPmBqmSiVKW08JNOc9Gqrrt0A0VFQPPmwO3bpWUffQT83//hxMd/SD71zzKjc0RE1kZ2QFSSy2zhwoW4cuUKnJ2d0bp1azRs2FCJ/hHpzRKnzAzawn77NtCs3HTY338D/6bYsbeVPkBRW/JXIqLqTO+Tqps1a4Zm5X/5EpmRxj6u6NrEC6crSR3RtYmX2Y0OAdp3Odhpygu2aBHwf/9X+jgwELh1C7DRPcgRDFhUTURk6XQKiGbMmIGFCxeiRo0amDFjhuS1y5YtM0rHiIxB0PAZr6nc1K7cT5Wuj0kVJ6fNywNcXYH8Mut/NmwAxo6t8NwaDtI/7lLJX4mIqjudfgOGhYUh/99fuJcuXYKqfFKkf2kqJzKFiIRMhEZUnlg0NCLJoMzxSolMlF73FJFQZtv9+fNAp3L52B4+BPz8Kn1u1ybeuBWXqbHtbk19NNYREVV3OgVEy5cvh7t78WLOY8eOKdkfIqOxxEXVmY+kd3pllRye+PrrwJo1pRV9+wKHDkk+N0XLLrLkLB13sBERVUM6LTAIDg5GYmJx4s3GjRsjKanyv7rJOkQkZOJoeLzRkqMqxRIXVcekSAdx8Q8Ti9PWlw2G9u7VGgwBQGSC5tEhAIgy8/eTiEhJOo0QeXp6IjIyEr6+voiKikJRUZHS/SIzlJqdh6nbLosOT+wR6IMVw4Ph4WJvwp5VrrGPK0Iae1U6bRbS2DwXVUtNOveMuIhvd34gLkxLA9y1bMUvaVvLjDYXVRORNdMpIHrhhRfQs2dP1KlTByqVCh07doStrW2l10ZERBi1g2Q+pm67jFN3EkVlp+4k4o1tYdg8rpOGZ5mWpiDAmMvdIhIycS852yiHSXZp7I2bsRVHctbvmo8+d8+XFowfD3z9tay22/l7IiwmTWN9+wY1ZbVHRFSd6BQQrVu3DkOGDMGdO3cwdepUTJgwAW5u0gfIUfUSkZApGhkqUSgIOHE7wWgLlI0ZXEQkZFa65R4ATt81fFG1EiNmZ++KA06vrFRcXPmK+KLQUKBLF9ltjwxphI2n72msfyWkkew2iYiqC5332T799NMAgIsXL2LatGkMiKyM0guUlQgulO6zEiNmZXeBPX/9CD7fJz7GovlbP+GWHsEQUDyF6OZoi4zcwgp1bo62ZjmFSERUVWQfTbtx40YGQ1ZI6QXKUsGFvpTsc8mIWWG5A43KjpjpQwAAQcCB9a+LgqHPu/0XjWbvRa6d/mu1IhIyKw2GACAjt9DsF8kTESlJpxGiIUOGYNOmTXB3d8eQIUMkr929e7dROkbmpbGPK3oE+uDUnURREGCrUqFbU2+DRheUmo5Tss9KjT61yIrDbyvHicr6jF+Du17+AIpHcvRliccQEBFVFZ1GiDw8PNSHLnp4eEh+UfW1YngwujX1FpV1a+qNFcODDWpXlw9qfc3q36zCAmqVCnjn6SC92wQUGn365BNRMHTf3RcBs35RB0MA0NTXVX67/7LEYwiIiKqKTiNEGzdurPT/ybp4uNhj87hOiEzMQlRSllEWPgPKflCP3HAOBUXiaa2CIgEj1p9F2Nx+erd7PjJZsv5CVLLu35v8fMDTE8guDQzf6T8F29s9XeHSAB/9AyIlR8yIiCyd7DVEkZGRuH37doXy27dvIyoqyhh9IjMX4F0DvYN8jfYBWvJBbVtuKMdWpUKPQB+9X+d4eDxSsis/nTklOx9/VjJNp6tDN+Mk6w/eiNWtoUuXAAcHUTDU6fVvKw2GACA27ZHOfayMUqN8RESWTnZANGbMGJw+fbpC+dmzZzFmzBhj9ImskBIf1Je1JEq9FJ2id9v+NaVHtfy1jHoBAKZNAzp0KH3cuzeeXnoU8W5eGp+SnJWraxcrVTLKd3RmL2wc+ziOzuyFzeM6meXBmkREVUl2euuwsDB069atQnmXLl0wZcoUo3SKrI8S03Ht6ntK1htyEOHIkIbYeDpKor6R5idnZRVnqC9rzx7guefg/+153IrXvGZKp0BLBwHexpnuJCKqLmQHRCqVChkZGRXK09LSUFhY+ZZeIl0Z84O6Z5AvarrYVzptVtPFHt0DTZDd/Y8/gKeeEpelpBSvIQKQlCE9ApScyQSsRERKkD1l1qNHDyxatEgU/BQWFmLRokV44oknjNo5Mk9KJnc1dtu/TH4CNctNB9V0sccvkw37t6rXzrghQ8TB0OjRgCCogyEAiNCyo+6OlgStRESkH9kjREuWLEGPHj0QFBSE7t27AwD+/PNPpKen48iRI0bvIJkPJZO7KtW2v5cLwub2w5+3E3ApOgXtG9Q0ysjQjfuac4IBwM0H6egd5Fv8IDER8Cn3midPApVMPdfxcEJqjuagp56ns+y+EhGRdrJHiFq2bImrV69i6NChiI+PR0ZGBkaNGoVbt27hscceU6KPZCaUOE26KtoGgO6BPpjWp5nRpsnuJEqP1Pwd/++08tatFYOhnJxKgyEAGNU1QLJd5hsjIlKG7BEiAKhbty4+/vhjY/eFzJiSyV2rKnGsMUUnSE9t3U/MAoKDgcuXSwvnzAEWLpR8Xl0PJ8n6+jU5QkREpATZI0RA8RTZK6+8gq5du+Kff/4BAHz33Xc4efKkUTtH5kPJ06SVbLuEsdcmRado7nP9tDjsmtJdHAzduKE1GAKAB1rOGbqfkqNrF4mISAbZAdGPP/6I/v37w9nZGZcuXUJubvGumLS0NI4aVWNKniatZNup2XkYtf4cnlx6HGM3nkfvz45h1PpzSNNwYKOu3J0qX9c07vwenFxbJhdZvXpAQQHQsqWOLQuStSrJWiIi0pfsgOjDDz/E2rVr8fXXX8PevvRDoVu3brh06ZJRO0fmQ6nTpJU2aculCtNxJ24nYOKWiwa162gv/tGxLSrE1S9exvtHviktXL0auH8fsNU9IWvnAM2HMgJA58bS9UREpB/ZAVF4eDh69OhRodzDwwOpqanG6BOZKaXSPuy9+kCyfp+Wek0iEjIRGpFUaV1oRJJB02f/lJm6ahEfgbufPgf33NL2npq+GZg0Se/2iYioasleVO3n54c7d+6gUaNGovKTJ0+icePGxuoXmSGlkrsmZ0lPXyXqeRjhWS0JWM9EJOndf1ub4pGy/zuyHq+d/0ldfr5eS7w0YkmFs490pct6KnMdjSMismSyA6IJEyZg2rRp2LBhA1QqFR48eIDQ0FDMnDkT77//vhJ9JDNj7LQPLfzcJOtb1XXXq92EDOkFykmZ+ucFcynIRdiS50Rl/xv8fzgQ1BVAacAkl5LrqYiISDPZAdE777yDoqIi9OnTB9nZ2ejRowccHR0xc+ZMvPHGG0r0kao5Xy1bzb3dHPVq18dNul0vV/3axZEjOPWhOBhqM2070p1K85MVFkkvjtakZK3WqTuJKBRK27BVqdCtqTdHh4iIFCJ7DZFKpcJ7772H5ORkXL9+HWfOnEFCQgIW6rClmKgySo2KaPvHbafPKM7QoUCfPuqHe1r2RKPZe0XBEAA42eu+kLo8pdZqERGRZnodzAgADg4OcHNzg5ubG1zLZ+4mMgM3Y9Ml6/96IF0vkpwMeIl3eA3972Kc86/8dHZnB/0DIqXWahERkWayR4gKCgrw/vvvw8PDA40aNUKjRo3g4eGBOXPmID/fsLNdyDIY+5BDpQ5mTM8pkK5/pOO/1x07KgRDo1cc1RgMAUBdD8NPlA7wroHeQb4MhoiIqoDsEaI33ngDu3fvxieffIKQkBAAQGhoKObNm4ekpCSsWbPG6J0k86BUAlZFprYAxGo59VlbPQQB6NwZOH++tGz2bGDxYgT8cgPH72sO1JrWll4oTkRE5kV2QLR161Zs374dzzzzjLqsTZs28Pf3x/DhwxkQVWNSCVg3j+ukd7tFWuoL9FygnJ0nPUIkWR8dDTRsKC67ehVo3RqAcjvjiIjINGRPmTk6OlY4gwgAAgIC4ODgYIw+kRkqScBaducTIE7Aqi+lRohctKzjqeGg4e+BFSvEwZCPT3H6jX+DIQC4pWV90q2HMtYnERGRyckOiKZMmYKFCxeqc5gBQG5uLj766CNMmTLFqJ0j86FkAlalRohikqUToVa4p8JCwNcXmDq1tGz5ciA+vkL6jVuxmZJt33yYIauvRERkWrKnzMLCwnD48GHUr18fbdu2BQBcuXIFeXl56NOnD4YMGaK+dvfu3cbrKZmUkgcGKjVClJwlffCiqP7aNaBNG/EFUVEVp83+VUfL2Ul1PaXriYjIvMgOiDw9PfHCCy+Iyvz9/Y3WITJPSh4YqNQI0aN86ZYf5f1b/+67wOLFpRWPPw6cPQuoNAdiHs7Si8jdtdQTEZF5kR0Qbdy4UYl+kAVYMTwYb2wLE+0yM8aBgUqNPmkLtBzycysGPT/8UHz4ohapOdL51VKzeQQFEZElkR0Q5eTkQBAEuLgUf4jdu3cPP/30E1q2bIl+/foZvYNkPkoODDzxdwLCYlLQvkFNdA/0MXW3NHKwBXILK6/rFHMdO7a+Iy5MTKxw3pAmns7SGwg8DTiGgIiIqp7sgOi5557DkCFDMHHiRKSmpqJTp05wcHBAYmIili1bhkmTJinRTzIDSp1DpFRWejsbW+QWVoyIvvj1Uwz+63hpwUsvFR++KEMzP+nT2ZvxHCIiIosie5fZpUuX0L17dwDArl274Ofnh3v37mHz5s348ssvjd5BMh9S5xAZRnqNkH5LqoFHBeJgyP1RJqKWDBIHQ0eOyA6GAKBzgPRIUufGuo00ERGReZAdEGVnZ8PNrfiv34MHD2LIkCGwsbFBly5dcO/ePaN3kMyDsucQSYc8tnruMiurf/hpXF0+TFT22Fu7gN699WqvsY8rujapPOjp2sSL6TaIiCyM7ICoadOm2LNnD2JiYnDgwAH1uqH4+Hi4u/N03upKyXOIbsZKn9lzQ04S1jKc7W0AQcDOLbPw1Z6P1eVfPz4YjWbvBVykF3Nrs2ZEB/Qot4aqR6AP1ozoYFC7RERU9WSvIZo7dy7++9//4s0330SfPn3U+cwOHjyI4GDDdhuR+YrXkvcrMUP6zB8p6Vp2bGXqmoS1nFop8bi+coyobMCYL/FX7cYAgPxCbfvQpDErPRFR9SF7hOjFF19EdHQ0Lly4gP3796vL+/Tpg88//1xWWydOnMCzzz6LunXrQqVSYc+ePaJ6QRAwd+5c1KlTB87Ozujbty9u374tuiY5ORkjRoyAu7s7PD09MW7cOGRmik8Rvnr1Krp37w4nJyf4+/vjk08+kXfThNgM6YDoQZr0qdBStJ0ypNcxRGvX4kSZYCjdsQaavP2zOhgCgHwNO9DkYlZ6IiLLJzsgAgA/Pz8EBwfDxqb06Z06dULz5s1ltZOVlYW2bdti1apVldZ/8skn+PLLL7F27VqcPXsWNWrUQP/+/fHoUemH84gRI3Djxg0cOnQIe/fuxYkTJ/Daa6+p69PT09GvXz80bNgQFy9exKeffop58+Zh3bp1Mu/aurWr7ylZ375BTb3bNuoW9sJCoH59oMxux4W9x6HN9B9QaCNOv+FoZ/jaJCIiqh5kT5kZ0zPPPINnnnmm0jpBEPDFF19gzpw5eO655wAAmzdvRu3atbFnzx4MGzYMN2/exP79+3H+/Hl07NgRALBixQoMGDAAn332GerWrYvvv/8eeXl52LBhAxwcHNCqVStcvnwZy5YtEwVOZeXm5opytaWnM1FnzyBf2KqAwkpGa2xVMOg8ovsp0uuT/knRcfTpr7+AVq1ERU/87xvc9/Sr9HJvN6bXICKiYnqNEFWFyMhIxMbGom/fvuoyDw8PdO7cGaGhoQCA0NBQeHp6qoMhAOjbty9sbGxw9uxZ9TU9evSAg0PpKET//v0RHh6OlJSUSl970aJF8PDwUH8xNUnxLrPKgiGgOEgyZJdZWEzl70OJi9HS9QCA998XB0Nt26LVnH0agyEASNGS64yIiKyH2QZEsbGxAIDatWuLymvXrq2ui42Nha+vr6jezs4OtWrVEl1TWRtlX6O8d999F2lpaeqvmJgYw2/Iwu29+lBL/QO9287KLdC//tGj4vQbH35YWvb998Dly8jOl158lJVn2KJqIiKqPkw6ZWauHB0d4ejoaOpuGCQiIRP3krONtvMpMjFTuj5B/xEiFwc75ORr3klWw8G28opTp4AnnhCXxccDPsXTdzYApNZNm+1fA0REVOXMNiDy8yue6oiLi0OdOnXU5XFxcWjXrp36mvj4eNHzCgoKkJycrH6+n58f4uLiRNeUPC65pjpRKr1GgLd0qooAH/2Drkd50tu9ciqrHzsW2LSp9PFzzwHldil6utojKVNzoFXTVXoxNxERWQ+z/SM5ICAAfn5+OHz4sLosPT0dZ8+eVZ99FBISgtTUVFy8eFF9zZEjR1BUVITOnTurrzlx4gTyy4xAHDp0CEFBQahZU/+dUeZKqfQabet7SNa38/fUu+2sfOmpK1F9WlrxFFnZYOjgwQrBEAD4e0ofvNigpmEHMxIRUfVh0oAoMzMTly9fxuXLlwEUL6S+fPkyoqOjoVKpMH36dHz44Yf45ZdfcO3aNYwaNQp169bF4MGDAQAtWrTA008/jQkTJuDcuXM4deoUpkyZgmHDhqFu3boAgP/+979wcHDAuHHjcOPGDfzwww9Yvnw5ZsyYYaK7Vo6S6TW0nTOk804wQ/zyC+DpKS7LzASeeqrSywN8pEe1GvHcICIi+pdJA6ILFy4gODhYfcL1jBkzEBwcjLlz5wIAZs2ahTfeeAOvvfYaHn/8cWRmZmL//v1wcirdLv3999+jefPm6NOnDwYMGIAnnnhCdMaQh4cHDh48iMjISHTo0AFvvfUW5s6dq3HLvSVTMr2GthSr+pydqDNBAJ58snharMQbbxSX19Ac1AxuV1ey2efb1zNWD4mIyMKZdA1Rr169IAiaP0pVKhUWLFiABQsWaLymVq1a2Lp1q+TrtGnTBn/++afe/bQUDWtJTwE18tJ/RCRJS2qOlCzp9Bv68s1IwrnVo8WFFy4AHbTnC+sZ5At3JzukP6q4S83dyc6gs5OIiKh6Mds1RCRfYx9X9Aj0ga1KPJpjq1KhR6CPQbvNLt9PlawP0+WsIJlevnJAHAw5OwN5eToFQyX2vdEdNcstJq/pYo99b3Q3VjeJiKgaMNtdZqSfFcOD8ca2MNEus25NvbFiuGGJd92dpHeouTvrv4OtPJVQhONfTUCDtDK7A5csAWbNkt2Wv5cLwub2w5+3E3ApOgXtG9TkyBAREVXAgKiaUSoDu4eWgMfTSAFR46T7OPLNRFFZj9e+xolZ4w1qt3ugDwMhIiLSiAFRNRXgbZxAqETo3UQt9Ul6t+1oq0JuoYCpp7Zhxsnv1eV/ezVAv3Gr4GjHmV0iIlIWA6JqytgnVd/Xsq0+WkuCVimOQj7ClwwWlc0Y+CZ2P9YHAGDLeIiIiBTGgKiaUeqk6oIi6dOkCwql6zU6exZXFw0WFXWYsgVJNTzVj/M1ZZUlIiIyEv7tXc0odVK1k7107OzsoEew9dprQJcu6odHGndEo9l7RcEQoPAZR0REROAIUbVSclJ1eWVPqtZ3+szN0Q6pOZqzzrs5yvinlJ4OeIhTgYx5cR6ONeloeNtERER64AhRNaLkSdXJWg5eTMqUPrhR7bffKgRDAxfu1RgMAYCXq6NubRMREemJAVE1ouRJ1bISsGry9NPAwIGljydNAgQBiSrprPOZuZoz1hMRERkD5yKqkZKTqk/dSRQleLVVqdCtqbdRt+HLEhsL1KkjLjt7FujUSccGpPOoERERGYojRNXMiuHB6NbUW1RmjJOq9bZxozgYsrUFcnNFwVANLWuEajgwbiciImXxk6aaKTmp+sTfCQiLMWGqiqIioEUL4O+/S8s+/BB4770Kl2o7BVtbPRERkaEYEFUzSp1DJMvt20CzZuKyv/8GAgMrvbyRdw2ExaRpbK6Rt/TaKCIiIkNxyqyaUeocIp0tWiQOhgIDgcJCjcEQAHQJ8JJsMqSJt2Q9ERGRoThCVI0oeQ6RNvaF+YCDA5BfZkfY+vXAq69qfa6vh5Nkvbcbt90TEZGyGBBVI7qcQ6REQNT64W38uvlNceGDBxV3lmmg5HEBREREuuCUWTWi7c20szH+9vUFB9eIg6G+fQFB0DkYAkqPC7BViftnq1KhR6CP6Y4LICIiq8GAqBrRdjRiQZHxsoK55OUgaskgjArbV1r466/AoUN6tWd2xwUQEZFV4ZSZiUUkZOJecjYaedUweCTkxn3NO7UA4OaDdPQO8jXoNQCgZ8RFfLvzA1HZY9N34PqgQXq3WXJcQGRiFqKSsozy/SAiItIVAyITUWJ7/Km7SZL1J28n4vXeTfVqu8Q3u+aj793z6sfb2vTDu89MNajNsgK8GQgREVHVY0BkIlLb4zeP0zWlhVgNR1vJelcDssZ7ZaXi4spXRGXPv/IZwuo117tNIiIic8GAyASU2h7v4aTlxGd9D2b87jtcXDlKVNTsrZ+QZ8cTpImIqHpgQGQCSm2PP/53vGT90Vtx8hoUBKB1a+DGDXXR593+i+VP/Fd234iIiMwZAyITUOrcnbTsfIPqRSIigCZNREV9xq/BXS9/fbpGRERk1rjt3gSUOnenUMuuem31ap9+Kg6GGjZEwKxfGAwREVG1xYDIRJQ4d0fbOUTa6pGfD7i6ArNmlZZ99RUQFQVBxX8qRERUfXHKzETM7tydS5eADh3EZffvA/XqAQDsbIACiYjKjvESERFZMH6MmViAdw30DvI1bTA0fbo4GOrVCygqUgdDAODnLp2Ata6HszJ9IyIiqgIcIbJmWVnFU2Rl/fQTMHhwhUv9a9XA/dRHGpuqX1N6oTgREZE54wiRiUUkZOJoeDwiE7Oq9oX/+KNiMJSSUmkwBADN/VwrLS/Roo6bkTpGRERU9ThCZCJKpO7Q2ZAhxSNBJUaNAr79VvIpI0MaYePpexrrXwlpZKTOERERVT2OEJmIVOoOpdTMTgNUKnEw9OefWoMhoPiogPb+HpXWtff3YP4xIiKyaAyITKAkdUehID4YqGzqDmP7z1/HEbZihLgwJwd44gmd29g4tjN6BPqIynoE+mDj2M7G6CIREZHJcMrMBJRK3VEpQcDeb6fjsbi7pWXvvQd8+KHspszuqAAiIiIjYUBkAtqG5exsVFqu0E39tDicXDtOXHj9OtCqlUHtBngzECIiouqFU2YmcOV+qnR9jHS9Ll49/7MoGIpzrYXGb/9scDBERERUHXGEyASSs/Ik6xMzc/Vu27aoEBdXjIDno0x12ZynJmFL+4F6t0lERFTdMSAyARtIT4nZ2eg3cNciPgK/b5wqKguZtBEP3X00PIOIiIgATpmZxKXoFMn6i/eS5Tc6c6YoGLpQrwUazfqVwRAREZEOOEJkArkFhdL1+Vrz0pfKzgZqiBc4Txz8LvYHddOna0RERFaJAZEpCNov0cnRo8CTT4qK2kzbjnQn6TQbREREJMaAyARuJ2RK1v8dn6G9kZdfBnbsKH08fDgaNRih+XoiIiLSiGuITKBAy4yYZH1ycnH6jbLB0LFjwNatxugaERGRVWJAZEl27gS8vMRl2dlAz56m6Q8REVE1wYDIEggC0KULMHRoadmsWcXlzs7qovqeTpLN+NeUriciIrJWDIjMXXQ0YGMDnD1bWnblCrBkSYVLP3q+tWRTHw9pY+zeERERVQsMiMzZihVAw4alj729gfx8oE3lgU3PIF8421belLMt0D2QZxIRERFVhgGRGbIpKgR8fYGpZU6dXr4cSEgA7KQ3Bh6c0Rs1XexFZTVd7HFwRm8lukpERFQtcNu9mWmWEIWDG6aIC6OixCNFEvy9XBA2tx/+vJ2AS9EpaN+gJkeGiIiItGBAZEZmHd+E18/sKi3o2BE4d654m71M3QN9GAgRERHpiAGRGXDMz0X4shfEhdu3Fx++SERERIrjGiITezzmeoVgqN3UrQyGiIiIqhADIhN69fzP2Ln1HfXjfUHd0Gj2XqQ6u5uwV0RERNaHAZEJ/VYmI/3wYR9h8uB3TdgbIiIi68U1RCYU6+6NYcM/xuU6zfDInqdIExERmQoDIhM704CnRxMREZkap8yIiIjI6jEgIiIiIqvHgIiIiIisHgMiIiIisnoMiEwgavFAg+qJiIjIuBgQERERkdXjtnsTKRkFavTOvgplREREVLUYEJkYgyAiIiLTs6ops1WrVqFRo0ZwcnJC586dce7cOVN3iYiIiMyA1QREP/zwA2bMmIEPPvgAly5dQtu2bdG/f3/Ex8ebumtERERkYlYTEC1btgwTJkzA2LFj0bJlS6xduxYuLi7YsGGDqbtGREREJmYVAVFeXh4uXryIvn37qstsbGzQt29fhIaGVrg+NzcX6enpoi8iIiKqvqwiIEpMTERhYSFq164tKq9duzZiY2MrXL9o0SJ4eHiov/z9/auqq0RERGQCVhEQyfXuu+8iLS1N/RUTE2PqLhEREZGCrGLbvbe3N2xtbREXFycqj4uLg5+fX4XrHR0d4ejoWFXdIyIiIhOzihEiBwcHdOjQAYcPH1aXFRUV4fDhwwgJCTFhz4iIiMgcWMUIEQDMmDEDo0ePRseOHdGpUyd88cUXyMrKwtixY03dNSIiIjIxqwmIXn75ZSQkJGDu3LmIjY1Fu3btsH///goLrYmIiMj6qARBEEzdCXOXlpYGT09PxMTEwN3d3dTdISIiIh2kp6fD398fqamp8PDwkLzWakaIDJGUlAQA3H5PRERkgTIyMhgQGUOtWrUAANHR0Vq/oZaqJIqurqNgvD/LV93vsbrfH1D975H3Z34EQUBGRgbq1q2r9VoGRDqwsSnejOfh4WEx/wj05e7uXq3vkfdn+ar7PVb3+wOq/z3y/syLrgMZVrHtnoiIiEgKAyIiIiKyegyIdODo6IgPPvigWp9eXd3vkfdn+ar7PVb3+wOq/z3y/iwbt90TERGR1eMIEREREVk9BkRERERk9RgQERERkdVjQERERERWz2oDolWrVqFRo0ZwcnJC586dce7cOcnrd+7ciebNm8PJyQmtW7fGb7/9JqoXBAFz585FnTp14OzsjL59++L27dtK3oIkOff39ddfo3v37qhZsyZq1qyJvn37Vrh+zJgxUKlUoq+nn35a6duQJOceN23aVKH/Tk5Oomss+T3s1atXhftTqVQYOHCg+hpzeg9PnDiBZ599FnXr1oVKpcKePXu0PufYsWNo3749HB0d0bRpU2zatKnCNXJ/rpUi9/52796Np556Cj4+PnB3d0dISAgOHDggumbevHkV3r/mzZsreBfS5N7jsWPHKv03GhsbK7rOUt/Dyn6+VCoVWrVqpb7GnN7DRYsW4fHHH4ebmxt8fX0xePBghIeHa32epX0WymGVAdEPP/yAGTNm4IMPPsClS5fQtm1b9O/fH/Hx8ZVef/r0aQwfPhzjxo1DWFgYBg8ejMGDB+P69evqaz755BN8+eWXWLt2Lc6ePYsaNWqgf//+ePToUVXdlprc+zt27BiGDx+Oo0ePIjQ0FP7+/ujXrx/++ecf0XVPP/00Hj58qP7atm1bVdxOpeTeI1B8umrZ/t+7d09Ub8nv4e7du0X3dv36ddja2uKll14SXWcu72FWVhbatm2LVatW6XR9ZGQkBg4ciN69e+Py5cuYPn06xo8fLwoa9Pk3oRS593fixAk89dRT+O2333Dx4kX07t0bzz77LMLCwkTXtWrVSvT+nTx5Uonu60TuPZYIDw8X3YOvr6+6zpLfw+XLl4vuKyYmBrVq1arwM2gu7+Hx48cxefJknDlzBocOHUJ+fj769euHrKwsjc+xtM9C2QQr1KlTJ2Hy5Mnqx4WFhULdunWFRYsWVXr90KFDhYEDB4rKOnfuLPzvf/8TBEEQioqKBD8/P+HTTz9V16empgqOjo7Ctm3bFLgDaXLvr7yCggLBzc1N+Pbbb9Vlo0ePFp577jljd1Vvcu9x48aNgoeHh8b2qtt7+Pnnnwtubm5CZmamuszc3sMSAISffvpJ8ppZs2YJrVq1EpW9/PLLQv/+/dWPDf2eKUWX+6tMy5Ythfnz56sff/DBB0Lbtm2N1zEj0uUejx49KgAQUlJSNF5Tnd7Dn376SVCpVEJUVJS6zJzfw/j4eAGAcPz4cY3XWNpnoVxWN0KUl5eHixcvom/fvuoyGxsb9O3bF6GhoZU+JzQ0VHQ9APTv3199fWRkJGJjY0XXeHh4oHPnzhrbVIo+91dednY28vPz1UltSxw7dgy+vr4ICgrCpEmTkJSUZNS+60rfe8zMzETDhg3h7++P5557Djdu3FDXVbf3cP369Rg2bBhq1KghKjeX91AubT+DxviemZOioiJkZGRU+Bm8ffs26tati8aNG2PEiBGIjo42UQ/1165dO9SpUwdPPfUUTp06pS6vbu/h+vXr0bdvXzRs2FBUbq7vYVpaGgBU+DdXliV9FurD6gKixMREFBYWonbt2qLy2rVrV5jLLhEbGyt5fcl/5bSpFH3ur7zZs2ejbt26on/UTz/9NDZv3ozDhw9jyZIlOH78OJ555hkUFhYatf+60Oceg4KCsGHDBvz888/YsmULioqK0LVrV9y/fx9A9XoPz507h+vXr2P8+PGicnN6D+XS9DOYnp6OnJwco/y7NyefffYZMjMzMXToUHVZ586dsWnTJuzfvx9r1qxBZGQkunfvjoyMDBP2VHd16tTB2rVr8eOPP+LHH3+Ev78/evXqhUuXLgEwzu8uc/HgwQP8/vvvFX4GzfU9LCoqwvTp09GtWzc89thjGq+zpM9CfTDbPYksXrwY27dvx7Fjx0SLjocNG6b+/9atW6NNmzZo0qQJjh07hj59+piiq7KEhIQgJCRE/bhr165o0aIFvvrqKyxcuNCEPTO+9evXo3Xr1ujUqZOo3NLfQ2uxdetWzJ8/Hz///LNofc0zzzyj/v82bdqgc+fOaNiwIXbs2IFx48aZoquyBAUFISgoSP24a9euuHv3Lj7//HN89913JuyZ8X377bfw9PTE4MGDReXm+h5OnjwZ169fN+maNHNgdSNE3t7esLW1RVxcnKg8Li4Ofn5+lT7Hz89P8vqS/8ppUyn63F+Jzz77DIsXL8bBgwfRpk0byWsbN24Mb29v3Llzx+A+y2XIPZawt7dHcHCwuv/V5T3MysrC9u3bdfrlasr3UC5NP4Pu7u5wdnY2yr8Jc7B9+3aMHz8eO3bsqDA1UZ6npyeaNWtmEe+fJp06dVL3v7q8h4IgYMOGDRg5ciQcHBwkrzWH93DKlCnYu3cvjh49ivr160tea0mfhfqwuoDIwcEBHTp0wOHDh9VlRUVFOHz4sGgEoayQkBDR9QBw6NAh9fUBAQHw8/MTXZOeno6zZ89qbFMp+twfULwzYOHChdi/fz86duyo9XXu37+PpKQk1KlTxyj9lkPfeyyrsLAQ165dU/e/OryHQPGW2NzcXLzyyitaX8eU76Fc2n4GjfFvwtS2bduGsWPHYtu2baLjEjTJzMzE3bt3LeL90+Ty5cvq/leH9xAo3r11584dnf4oMeV7KAgCpkyZgp9++glHjhxBQECA1udY0mehXky9qtsUtm/fLjg6OgqbNm0S/vrrL+G1114TPD09hdjYWEEQBGHkyJHCO++8o77+1KlTgp2dnfDZZ58JN2/eFD744APB3t5euHbtmvqaxYsXC56ensLPP/8sXL16VXjuueeEgIAAIScnx+zvb/HixYKDg4Owa9cu4eHDh+qvjIwMQRAEISMjQ5g5c6YQGhoqREZGCn/88YfQvn17ITAwUHj06FGV358+9zh//nzhwIEDwt27d4WLFy8Kw4YNE5ycnIQbN26or7Hk97DEE088Ibz88ssVys3tPczIyBDCwsKEsLAwAYCwbNkyISwsTLh3754gCILwzjvvCCNHjlRfHxERIbi4uAhvv/22cPPmTWHVqlWCra2tsH//fvU12r5n5nx/33//vWBnZyesWrVK9DOYmpqqvuatt94Sjh07JkRGRgqnTp0S+vbtK3h7ewvx8fFVfn+CIP8eP//8c2HPnj3C7du3hWvXrgnTpk0TbGxshD/++EN9jSW/hyVeeeUVoXPnzpW2aU7v4aRJkwQPDw/h2LFjon9z2dnZ6mss/bNQLqsMiARBEFasWCE0aNBAcHBwEDp16iScOXNGXdezZ09h9OjRout37NghNGvWTHBwcBBatWol7Nu3T1RfVFQkvP/++0Lt2rUFR0dHoU+fPkJ4eHhV3Eql5Nxfw4YNBQAVvj744ANBEAQhOztb6Nevn+Dj4yPY29sLDRs2FCZMmGCSX1JlybnH6dOnq6+tXbu2MGDAAOHSpUui9iz5PRQEQbh165YAQDh48GCFtsztPSzZgl3+q+SeRo8eLfTs2bPCc9q1ayc4ODgIjRs3FjZu3FihXanvWVWSe389e/aUvF4Qio8ZqFOnjuDg4CDUq1dPePnll4U7d+5U7Y2VIfcelyxZIjRp0kRwcnISatWqJfTq1Us4cuRIhXYt9T0UhOIt5s7OzsK6desqbdOc3sPK7g2A6OeqOnwWyqESBEFQbPiJiIiIyAJY3RoiIiIiovIYEBEREZHVY0BEREREVo8BEREREVk9BkRERERk9RgQERERkdVjQERERERWjwERERERWT0GRERkUVQqFfbs2QMAiIqKgkqlwuXLl3V+/rx589CuXTtF+kZElosBERFZLH9/fzx8+BCPPfaYzs+ZOXOmKPnkmDFjMHjwYAV6p59evXph+vTppu4GkdWxM3UHiIj0ZWtrCz8/P1nPcXV1haurq0I9IiJLxREiIqpSu3btQuvWreHs7AwvLy/07dsXWVlZAIDz58/jqaeegre3Nzw8PNCzZ09cunRJY1vlp8yOHTsGlUqFw4cPo2PHjnBxcUHXrl0RHh6ufk7ZKbN58+bh22+/xc8//wyVSgWVSoVjx47hySefxJQpU0SvlZCQAAcHB9HoUlkl7X711Vfw9/eHi4sLhg4dirS0NPU1JaNR8+fPh4+PD9zd3TFx4kTk5eWp648fP47ly5er+xMVFSX3W0xEemBARERV5uHDhxg+fDheffVV3Lx5E8eOHcOQIUNQkmM6IyMDo0ePxsmTJ3HmzBkEBgZiwIAByMjIkPU67733HpYuXYoLFy7Azs4Or776aqXXzZw5E0OHDsXTTz+Nhw8f4uHDh+jatSvGjx+PrVu3Ijc3V33tli1bUK9ePTz55JMaX/fOnTvYsWMHfv31V+zfvx9hYWF4/fXXRdccPnxYfe/btm3D7t27MX/+fADA8uXLERISggkTJqj74+/vL+veiUg/nDIjoirz8OFDFBQUYMiQIWjYsCEAoHXr1ur68sHGunXr4OnpiePHj2PQoEE6v85HH32Enj17AgDeeecdDBw4EI8ePYKTk5PoOldXVzg7OyM3N1c09TZkyBBMmTIFP//8M4YOHQoA2LRpE8aMGQOVSqXxdR89eoTNmzejXr16AIAVK1Zg4MCBWLp0qbp9BwcHbNiwAS4uLmjVqhUWLFiAt99+GwsXLoSHhwccHBzg4uIieyqQiAzDESIiqjJt27ZFnz590Lp1a7z00kv4+uuvkZKSoq6Pi4vDhAkTEBgYCA8PD7i7uyMzMxPR0dGyXqdNmzbq/69Tpw4AID4+XufnOzk5YeTIkdiwYQMA4NKlS7h+/TrGjBkj+bwGDRqogyEACAkJQVFRkWjKrm3btnBxcRFdk5mZiZiYGJ37R0TGx4CIiKqMra0tDh06hN9//x0tW7bEihUrEBQUhMjISADA6NGjcfnyZSxfvhynT5/G5cuX4eXlpV5joyt7e3v1/5eM6BQVFclqY/z48Th06BDu37+PjRs34sknn1SPahFR9cOAiIiqlEqlQrdu3TB//nyEhYXBwcEBP/30EwDg1KlTmDp1KgYMGIBWrVrB0dERiYmJivbHwcEBhYWFFcpbt26Njh074uuvv8bWrVs1rkMqKzo6Gg8ePFA/PnPmDGxsbBAUFKQuu3LlCnJyckTXuLq6qtcKaeoPESmLARERVZmzZ8/i448/xoULFxAdHY3du3cjISEBLVq0AAAEBgbiu+++w82bN3H27FmMGDECzs7OivapUaNGuHr1KsLDw5GYmIj8/Hx13fjx47F48WIIgoDnn39ea1tOTk4YPXo0rly5gj///BNTp07F0KFDReuB8vLyMG7cOPz111/47bff8MEHH2DKlCmwsbFR9+fs2bOIiopCYmKi7JEtItIPAyIiqjLu7u44ceIEBgwYgGbNmmHOnDlYunQpnnnmGQDA+vXrkZKSgvbt22PkyJGYOnUqfH19Fe3ThAkTEBQUhI4dO8LHxwenTp1S1w0fPhx2dnYYPnx4hQXZlWnatCmGDBmCAQMGoF+/fmjTpg1Wr14tuqZPnz4IDAxEjx498PLLL+M///kP5s2bp66fOXMmbG1t0bJlS/j4+MheP0VE+lEJJftdiYhIJCoqCk2aNMH58+fRvn17yWvnzZuHPXv2SKYRGTNmDFJTU9WpR4jIfHDbPRFROfn5+UhKSsKcOXPQpUsXrcEQEVk+TpkREZVz6tQp1KlTB+fPn8fatWtN3R0iqgKcMiMiIiKrxxEiIiIisnoMiIiIiMjqMSAiIiIiq8eAiIiIiKweAyIiIiKyegyIiIiIyOoxICIiIiKrx4CIiIiIrN7/A4W3g6UC9WBlAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# Scatter plot\n", "tol.plot(kind='scatter', y='specific conductance uS/cm', x='salinity ppt')\n", @@ -296,31 +196,9 @@ }, { "cell_type": "code", - "execution_count": 68, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "temperature C Axes(0.125,0.11;0.775x0.77)\n", - "dtype: object" - ] - }, - "execution_count": 68, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjEAAAGzCAYAAADe/0a6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABMsElEQVR4nO3deVxU9f4/8NewzLANq+wgIiruVuZuimkumcrVFu370+yqlUGG3Mjl2oJlFJbUza3StHLJ7Kbc6zVNETWvaLlQ0k0Fw3IBXFllUz6/P7xzLiPMPjhz4PV8PHjonHPe5/M5C595c+aceSuEEAJEREREMuNg6w4QERERmYNJDBEREckSkxgiIiKSJSYxREREJEtMYoiIiEiWmMQQERGRLDGJISIiIlliEkNERESyxCSGiIiIZIlJDBEREckSkxgimTp48CBef/11FBcX27ordmfDhg14//33bd0Nvfbu3Yvx48cjKCgISqUSAQEBGDNmDL755htbd41INpjEEMnUwYMHkZyczCSmEfaexLz22msYMmQIcnJy8Oyzz2LlypVISkpCeXk5JkyYgA0bNti6i0Sy4GTrDhARGXLjxg24ubnZuhtW6cfXX3+NhQsX4tFHH8WGDRvg7OwszUtKSsLOnTtRW1traVeJWgReiSGSoddffx1JSUkAgMjISCgUCigUCpw9e1ZaZt26dejZsydcXV3h6+uLiRMn4ty5c1rriYmJQdeuXfHzzz9j8ODBcHNzQ7t27fD1118DAPbt24c+ffrA1dUV0dHR2L17d4N+KBQKnDx5Eo8//jg8PT3h5+eHF198EVVVVQ36bUqfjh49ikGDBsHNzQ3z588HAKSnp2P06NEICQmBSqVCVFQU3njjDdy6dUsr/l//+hd+//13ab+0adMGALB27doG+wm4/dGOQqHA3r17jepHdXU1XnvtNbRr1w4qlQrh4eF4+eWXUV1dbeDIAa+88gp8fX3x6aefaiUwGiNGjMAjjzxicD1ExCsxRLI0fvx4nD59Ghs3bkRaWhpatWoFAPD39wcALFq0CK+88goef/xxTJ8+HZcvX8aHH36IQYMG4fjx4/D29pbWdf36dTzyyCOYOHEiHnvsMaxYsQITJ07E+vXrkZCQgOeeew5PPvkkFi9ejEcffRTnzp2DWq3W6s/jjz+ONm3aICUlBYcOHcLf/vY3XL9+HZ9//rm0jCl9unr1KkaNGoWJEyfi//2//4fAwEAAt5MQDw8PJCYmwsPDA3v27MGrr76K0tJSLF68GADw17/+FSUlJTh//jzS0tIAAB4eHmbt58b6UVdXh7Fjx+LAgQN45pln0KlTJ5w4cQJpaWk4ffo0tm7dqnN9ubm5OHnyJP785z832IdEZAZBRLK0ePFiAUDk5+drTT979qxwdHQUixYt0pp+4sQJ4eTkpDV98ODBAoDYsGGDNO3kyZMCgHBwcBCHDh2Spu/cuVMAEGvWrJGmvfbaawKAGDt2rFZbzz//vAAgfvrpJ7P7tHLlygbbfOPGjQbTnn32WeHm5iaqqqqkaaNHjxYRERENll2zZk2j+ywzM1MAEJmZmQb78cUXXwgHBwfx/fffa01fuXKlACD+/e9/N2hXIz09XQAQaWlpOpchIuPx4ySiZuabb75BXV0dHn/8cVy5ckX6CQoKQvv27ZGZmam1vIeHByZOnCi9jo6Ohre3Nzp16oQ+ffpI0zX//+233xq0GRcXp/X6hRdeAABs377drD6pVCo8/fTTDdpxdXWV/l9WVoYrV67ggQcewI0bN3Dy5Emj9o8pGuvH5s2b0alTJ3Ts2FFrWx588EEAaLAt9ZWWlgIAr8IQWQk/TiJqZnJzcyGEQPv27Rudf+d9GGFhYVAoFFrTvLy8EB4e3mAacPvjpzvd2VZUVBQcHByke09M7VNoaCiUSmWD5X755RcsWLAAe/bskRICjZKSkkbXbYnG+pGbm4tff/1V+ujuTpcuXdK5Pk9PTwC3EzAishyTGKJmpq6uDgqFAt9++y0cHR0bzL/z/pDGltE3XQhhsA93JkWm9qn+FReN4uJiDB48GJ6enli4cCGioqLg4uKCY8eOYc6cOairqzO5Xxr1bww21I+6ujp069YNS5YsaTTmzuSvvo4dOwIATpw4YairRGQEJjFEMqXrDTkqKgpCCERGRqJDhw53pS+5ubmIjIyUXufl5aGurk56Ksgafdq7dy+uXr2Kb775BoMGDZKm5+fnN1hW177x8fEBgAbfrfP7778b3Y+oqCj89NNPGDp0qM52dOnQoQOio6ORnp6ODz74wOwbjonoNt4TQyRT7u7uABq+IY8fPx6Ojo5ITk5ucNVECIGrV69avS/Lli3Tev3hhx8CAEaNGmW1Pmmu4NSPr6mpwfLlyxss6+7u3ujHS1FRUQCA/fv3S9Nu3bqFjz/+2GD7Go8//jguXLiATz75pMG8yspKVFRU6I1PTk7G1atXMX36dNy8ebPB/O+++w7btm0zuj9ELRmvxBDJVM+ePQHcfqR44sSJcHZ2xpgxYxAVFYU333wT8+bNw9mzZxEbGwu1Wo38/Hxs2bIFzzzzDF566SWr9iU/Px9jx47FyJEjkZWVhXXr1uHJJ59Ejx49AMAqferfvz98fHzw1FNPYdasWVAoFPjiiy8a/XirZ8+e2LRpExITE9GrVy94eHhgzJgx6NKlC/r27Yt58+bh2rVr8PX1xZdfftloMqHL5MmT8dVXX+G5555DZmYmBgwYgFu3buHkyZP46quvsHPnTtx///0645944gmcOHECixYtwvHjxzFp0iRERETg6tWr2LFjBzIyMviNvUTGstFTUURkBW+88YYIDQ0VDg4ODR4d/vvf/y4GDhwo3N3dhbu7u+jYsaOIi4sTp06dkpYZPHiw6NKlS4P1RkREiNGjRzeYDkDExcVJrzWPWP/nP/8Rjz76qFCr1cLHx0fEx8eLysrKBvGW9EkIIf7973+Lvn37CldXVxESEiJefvll6dHv+o9Hl5eXiyeffFJ4e3sLAFqPW585c0YMGzZMqFQqERgYKObPny927drV6CPWuvpRU1Mj3nnnHdGlSxehUqmEj4+P6Nmzp0hOThYlJSWNxtwpIyNDjBs3TgQEBAgnJyfh7+8vxowZI9LT042KJyIhFEIYcZceEVEjXn/9dSQnJ+Py5cvSF+4REd0tvCeGiIiIZIlJDBEREckSkxgiIiKSJd4TQ0RERLLEKzFEREQkS0xiiIiISJaazZfd1dXV4eLFi1Cr1SZ/FTgRERHZhhACZWVlCAkJgYODaddWmk0Sc/HiRb2F14iIiMh+nTt3DmFhYSbFNJskRq1WA7i9EzTl7omIiMi+lZaWIjw8XHofN0WzSWI0HyF5enoyiSEiIpIZc24F4Y29REREJEtMYoiIiEiWmMQQERGRLDGJISIiIlliEkNERESyxCSGiIiIZIlJDBEREckSkxgiIiKSJSYxREREJEtMYoiIiEiWTEpiUlJS0KtXL6jVagQEBCA2NhanTp3SWubjjz9GTEwMPD09oVAoUFxcbHC9r7/+OhQKhdZPx44dTdoQIiIiallMSmL27duHuLg4HDp0CLt27UJtbS2GDx+OiooKaZkbN25g5MiRmD9/vkkd6dKlCwoKCqSfAwcOmBRPRERELYtJBSB37Nih9Xrt2rUICAjA0aNHMWjQIABAQkICAGDv3r2mdcTJCUFBQUYvX11djerqaul1aWmpSe0REZF9q6y5hTOXy1FVewvnr1cizMcVLs6OiPL3gKvS0dbdIztgURXrkpISAICvr6/FHcnNzUVISAhcXFzQr18/pKSkoHXr1jqXT0lJQXJyssXtEhGRfTpzuRyPfNjwqvy2Fwaia6iXDXpE9kYhhBDmBNbV1WHs2LEoLi5u9KOfvXv3YsiQIbh+/Tq8vb31ruvbb79FeXk5oqOjUVBQgOTkZFy4cAE5OTlQq9WNxjR2JSY8PBwlJSXw9PQ0Z5OIiMiOaK7E5F0qR8KmbLz/xD1oF+DBKzHNTGlpKby8vMx6/zb7SkxcXBxycnKscu/KqFGjpP93794dffr0QUREBL766itMmzat0RiVSgWVSmVx20REZJ9clY5aV1zaBXjwCgxpMSuJiY+Px7Zt27B//36EhYVZu0/w9vZGhw4dkJeXZ/V1ExERUfNg0tNJQgjEx8djy5Yt2LNnDyIjI5ukU+Xl5Thz5gyCg4ObZP1EREQkfyYlMXFxcVi3bh02bNgAtVqNwsJCFBYWorKyUlqmsLAQ2dnZ0lWUEydOIDs7G9euXZOWGTp0KJYuXSq9fumll7Bv3z6cPXsWBw8exJ/+9Cc4Ojpi0qRJlm4fERERNVMmJTErVqxASUkJYmJiEBwcLP1s2rRJWmblypW49957MWPGDADAoEGDcO+99+If//iHtMyZM2dw5coV6fX58+cxadIkREdH4/HHH4efnx8OHToEf39/S7ePiIiImimzn06yN5bc3UxERPYr50IJHvnwAB+tbqYsef9m7SQiIiKSJSYxREREJEtMYoiIiEiWmMQQERGRLDGJISIiIlmyqAAkERGRLqxCTU2NSQwRETUJVqGmpsYkhoiImkSUvwe2vTCw0SrURNbAJIaIiJoEq1BTU+ONvURERCRLTGKIiIhIlpjEEBERkSwxiSEiIiJZYhJDREREssQkhoiIiGSJSQwREel04cIF+Pr6wtnZGb6+vrhw4YKtu0Qk4ffEEBFRo1QqFWpqaqTX169fR1hYGJRKJaqrq23YM6LbeCWGiIgaqJ/ABAcH4/PPP0dwcDAAoKamBiqVypbdIwLAJIaIiO5w4cIFKYG5evUqLl68iMmTJ+PixYu4evUqgNuJDD9aIlvjx0lERKSlW7duAG5fgfH19dWa5+vri6CgIBQWFqJbt264du1ak/Qh/0oFKqpvAgDyLpVr/QsA7ionRLZy17sOVtFu/pjEEBGRlrKyMgDAO++80+j8N998E9OnT5eWs7b8KxUY8u7eBtMTNmVrvc58KUZvIsMq2s0fkxgiItKiVqtx/fp1zJkzB5MnT24wf8GCBdJyTUFzBUZT9frOKymaqtia5XRhFe3mj0kMERFpOXHiBMLCwlBQUIBr165pfaR07do1FBYWSss1pfpVr+9vY3o8q2g3f7yxl4iItISGhkKpVAIA/Pz8EBwcjNWrVyM4OBh+fn4AAKVSidDQUFt2k4hXYoiIqKHq6mrpMevCwkJMnz5dmsfviSF7wSsxRETUqOrqapw/fx4+Pj5wcnKCj48Pzp8/zwSG7AavxBARkU6hoaFN9hg1kaV4JYaIiIhkiUkMERERyRKTGCIi0qmyshLx8fEYMWIE4uPjUVlZaesuEUmYxBARUaNiY2Ph5uaGZcuW4bvvvsOyZcvg5uaG2NhYW3eNCACTGCIiakRsbCzS09OhVCoxd+5c5OXlYe7cuVAqlUhPT2ciQ3aBTycREZGWyspKKYEpKyuTvvguJSUFycnJUKvVSE9PR2VlJVxdXW3cW2rJeCWGiIi0JCUlAQASExOlBEZDqVQiISFBazkiW2ESQ0REWnJzcwFA61t665s2bZrWckS2wiSGiIi0tG/fHgCwatWqRuevXr1aazkiW2ESQ0REWhYvXgwAWLJkCWpqarTm1dTU4P3339dajshWmMQQEZEWV1dXjBs3DjU1NVCr1ZgzZw5Onz6NOXPmQK1Wo6amBuPGjeNNvWRzTGKIiKiBrVu3SolMamoqoqOjkZqaKiUwW7dutXUXifiINRERNW7r1q2orKxEUlIScnNz0b59eyxevJhXYMhuMIkhIiKdXF1dsXTpUlt3g6hR/DiJiIiIZIlJDBEREckSkxgiIiKSJSYxREREJEtMYoiIiEiWmMQQERGRLPERayIialRlzS2cuVyOqtpbOH+9EmE+rnBxdkSUvwdclY56Y/OvVKCi+iYAIO9Suda/AOCuckJkK/em6zy1CExiiIioUWcul+ORDw80mL7thYHoGuqlMy7/SgWGvLu3wfSETdlarzNfimEiQxZhEkNERI2K8vfAthcGIu9SORI2ZeP9J+5BuwAPRPl76I3TXIHRLH/nlRzN+jTLEZmLSQwRETXKVemodcWlXYCH3iswd6q//P1trN07It7YS0RERDLFJIaIiIhkiUkMERERyRKTGCIiIpIlJjFEREQkS0xiiIiISJaYxBAREZEsMYkhIiIiWTIpiUlJSUGvXr2gVqsREBCA2NhYnDp1SmuZjz/+GDExMfD09IRCoUBxcbFR6162bBnatGkDFxcX9OnTBz/88IMpXSMiIqIWxqQkZt++fYiLi8OhQ4ewa9cu1NbWYvjw4aioqJCWuXHjBkaOHIn58+cbvd5NmzYhMTERr732Go4dO4YePXpgxIgRuHTpkindIyIiohbEpLIDO3bs0Hq9du1aBAQE4OjRoxg0aBAAICEhAQCwd+9eo9e7ZMkSzJgxA08//TQAYOXKlfjXv/6FTz/9FHPnzm00prq6GtXV1dLr0tJSE7aEiKj5s6QKta0pnEqRX3oKDi4N6zTll5ZD4dT0Y76c919LYVHtpJKSEgCAr6+v2euoqanB0aNHMW/ePGmag4MDhg0bhqysLJ1xKSkpSE5ONrtdIqLmztwq1PbA2fsw5v/wlp75QwE83KR9kPP+aynMTmLq6uqQkJCAAQMGoGvXrmZ34MqVK7h16xYCAwO1pgcGBuLkyZM64+bNm4fExETpdWlpKcLDw83uBxFRc2NuFWp7UFvcB++NfhJRAQ37euZSOWatP9PkfZDz/mspzE5i4uLikJOTgwMHGmapd4NKpYJKpbJJ20REcmBpFWpbEjc9EekZjc5+DftbV1UCcfNyk/dBzvuvpTAriYmPj8e2bduwf/9+hIWFWdSBVq1awdHREUVFRVrTi4qKEBQUZNG6iYiIqPky6ekkIQTi4+OxZcsW7NmzB5GRkRZ3QKlUomfPnsjIyJCm1dXVISMjA/369bN4/URERNQ8mZTExMXFYd26ddiwYQPUajUKCwtRWFiIyspKaZnCwkJkZ2cjLy8PAHDixAlkZ2fj2rVr0jJDhw7F0qVLpdeJiYn45JNP8Nlnn+HXX3/FzJkzUVFRIT2tRERERHQnkz5OWrFiBQAgJiZGa/qaNWswdepUALcfj67/1JDm0ev6y5w5cwZXrlyRlnniiSdw+fJlvPrqqygsLMQ999yDHTt2NLjZl4iIiEjDpCRGCGFwmddffx2vv/663mXOnj3bYFp8fDzi4+NN6Q4RERG1YKydRERERLLEJIaIiIhkiUkMERERyRKTGCIiIpIlJjFEREQkSxYVgCQiIrJH+VcqUFF9EwCQd6lc618AcFc5IbKVu036RtbDJIaIiJqV/CsVGPLu3gbTEzZla73OfCmGiYzMMYkhIqJmRXMFRlN1uqr2Fs5fr0SYjytcnB2lqtSa5Ui+mMQQEVGzVL/q9P1tbNsXahq8sZeIiIhkiUkMERERyRKTGCIiIpIlJjFEREQkS0xiiIiISJaYxBAREZEsMYkhIrJjly9fRmRkJDw8PBAZGYnLly/buktEdoPfE0NEZKe8vb1RUlIiva6oqEBAQAC8vLxQXFxsu44R2QleiSEiskP1E5guXbpg27Zt6NKlCwCgpKQE3t7eNuwdkX3glRgiIjtz+fJlKYEpKSmBp6cnAGD06NEoLS2Fl5cXSkpKcPnyZfj7+9uyq0Q2xSSGiMjO9O7dG8DtKzCaBEbD09MTnTp1wq+//orevXsjPz/fFl00SOFUivzSU3Bw8WgwL7+0HAqnUhv0ynisgi0PTGKIiOyM5ubdd955p9H5ixYtwvjx4+36Jl9n78OY/8NbeuYPBfDw3euQCVgFWz6YxBAR2Rl/f39UVFRgzpw5GD16dIP5f/3rX6Xl7FVtcR+8N/pJRAU0vBJz5lI5Zq0/Y4NeGYdVsOWDSQwRkZ354YcfEBAQgF9++QWlpaVaHymVlpbi119/lZazV+KmJyI9o9HZz6vBvLqqEoib9nsVSYNVsO0fn04iIrIz/v7+8PK6/ebp5eWFzp07Y8uWLejcubPWdHu+EkN0N/BKDBGRHSouLpYes/71118xfvx4aR6/J4boNl6JISKyU8XFxbh06RLatGkDd3d3tGnTBpcuXWICQ/RfvBJDRGTH/P397fYxaiJb45UYIiIikiUmMURERCRL/DiJiKgJ1dTUYPny5Thz5gyioqLw/PPPQ6lU2rpbRM0Ckxgioiby8ssvIy0tDTdv/u9L0ZKSkjB79mykpqbasGdEzQM/TiIiagIvv/wyFi9eDD8/P3zyyScoKCjAJ598Aj8/PyxevBgvv/yyrbtIJHtMYoiIrKympgZpaWkIDAzE+fPnMX36dAQFBWH69Ok4f/48AgMDkZaWhpqaGlt3lUjW+HESEZGVLV++HDdv3sSbb74JJyftYdbJyQkLFy7Es88+i+XLlyMhIUHneiprbuHM5fIGtXui/D3gqnRs0m2wZRXnytpbAICcCyUA0GjtIkPkXkWbjMMkhojIys6cuV3c8JFHHml0vma6Zjmd67lcjkc+PNBg+rYXBko1fZqCras4n/lvkjL3mxN6l3NX6X4Lk3MVbTIekxgiIiuLiooCAGzbtg3Tp09vMH/btm1ay+lcj78Htr0wUKqarKmqHOXf8OqCNdm6ivPwLkEAgKgAD7jWa0/TH8DwlSA5V9Em4zGJISKysueffx5JSUlYsGABpk6dqvWR0s2bN/Hqq6/CyckJzz//vN71uCodta641K+qfDfYqoqzr7sSE3u31tsfQ5pDFW0yjDf2EhFZmVKpxOzZs1FUVISwsDB8/PHHuHjxIj7++GOEhYWhqKgIs2fP5vfFEFmIV2KIiJqA5ntg0tLS8Oyzz0rTnZyckJSUxO+JIbICJjFERE0kNTUVb775Jr+xl6iJMIkhImpCSqVS72PURGQ+3hNDREREssQkhoiIiGSJSQwRERHJEpMYIiIikiUmMURERCRLTGKIiIhIlviINRFRE7FlFWqyjDWqYPP4Nz0mMURETcRWVajJctaogs3j3/SYxBARNRFbVaEmy1mjCjaPf9NjEkNE1ERsXYWazGeNKtg8/k2PN/YSERGRLDGJISIiIlliEkNERESyxCSGiIiIZIlJDBEREckSkxgiIiKSJSYxREREJEtMYoiIiEiWTEpiUlJS0KtXL6jVagQEBCA2NhanTp3SWqaqqgpxcXHw8/ODh4cHJkyYgKKiIr3rnTp1KhQKhdbPyJEjTd8aIiIiajFMSmL27duHuLg4HDp0CLt27UJtbS2GDx+OiooKaZnZs2fjn//8JzZv3ox9+/bh4sWLGD9+vMF1jxw5EgUFBdLPxo0bTd8aIiIiajFMKjuwY8cOrddr165FQEAAjh49ikGDBqGkpASrV6/Ghg0b8OCDDwIA1qxZg06dOuHQoUPo27evznWrVCoEBQUZ3Zfq6mpUV1dLr0tLDVcUJSJqKfKvVKCi+iYAIO9Suda/AOCuckJkK3ed8ZZUca6svQUAyLlQAgANqjjX74c+mirQd/bfUBVoa7Vva5ZWwbZ1/N1gUe2kkpLbJ4ivry8A4OjRo6itrcWwYcOkZTp27IjWrVsjKytLbxKzd+9eBAQEwMfHBw8++CDefPNN+Pn56Vw+JSUFycnJlnSfiKhZyr9SgSHv7m0wPWFTttbrzJdidCYyllRxPvPfJGHuNyf09tNdpf8t6M4q0Jr+G6oCba32bc3SKti2jr8bzD6CdXV1SEhIwIABA9C1a1cAQGFhIZRKJby9vbWWDQwMRGFhoc51jRw5EuPHj0dkZCTOnDmD+fPnY9SoUcjKyoKjY+PZ3rx585CYmCi9Li0tRXh4uLmbQ0TUbGiuwGiqJjd2JSJhU7a0XGMsqeI8vMvtq+pRAR5wrdeepj+A4StBwP+qQDd2JUAfa7Vva5ZWwbZ1/N1gdhITFxeHnJwcHDjQMEsz1cSJE6X/d+vWDd27d0dUVBT27t2LoUOHNhqjUqmgUqksbpuIqLmqXzX5/jamxVpSxdnXXYmJvVvr7Y8x6leBNqX/1mrf1iytgm3r+LvBrEes4+PjsW3bNmRmZiIsLEyaHhQUhJqaGhQXF2stX1RUZNL9Lm3btkWrVq2Ql5dnTveIiIioBTApiRFCID4+Hlu2bMGePXsQGRmpNb9nz55wdnZGRkaGNO3UqVP4448/0K9fP6PbOX/+PK5evYrg4GBTukdEREQtiElJTFxcHNatW4cNGzZArVajsLAQhYWFqKysBAB4eXlh2rRpSExMRGZmJo4ePYqnn34a/fr107qpt2PHjtiyZQsAoLy8HElJSTh06BDOnj2LjIwMjBs3Du3atcOIESOsuKlERETUnJh0T8yKFSsAADExMVrT16xZg6lTpwIA0tLS4ODggAkTJqC6uhojRozA8uXLtZY/deqU9GSTo6Mjfv75Z3z22WcoLi5GSEgIhg8fjjfeeIP3vBAREZFOJiUxQgiDy7i4uGDZsmVYtmyZUetxdXXFzp07TekGEREREWsnERERkTwxiSEiIiJZYhJDREREssQkhoiIiGSJSQwRERHJkn1Xv7JQ/pUKXC2vxvnrlQ3mhfm4ws9DZbB2hhyqeBIRWZOtq1A3B5ZWEW8O7sb7Z7NNYnRVcb2TviqugDyqeBIRWZOtq1DLnTWqiDcHd+P9s9kmMZoMOHVCdyidGn5qVnOzDi///We9VVwBeVTxJCKyJltXoZY7a1QRbw7uxvtns01iNDqHeDaa8WkukxoihyqeRETWZOsq1M2FJVXEm4O78f7JG3uJiIhIlpjEEBERkSwxiSEiIiJZYhJDREREssQkhoiIiGSJSQwRERHJEpMYIiIikiUmMURERCRLTGKIiIhIlpjEEBERkSw127IDlbW3oHAqxbenfsT+sw03s/aWgMKp1AY9IyK5sGUVe1ZBtpwtq2grnEqRX3oKDi4N6wTll5Y3+fuPpefP0fO/42JZEQDg3LUbcHC5gP1njyO/1A0AEKIORM+wiCZr31jNNok5c6kczt6H8fm5DJ3LOHsPhbtq7F3sFRHJia2q2LMKsnXYsoq2s/dhzP/hLT3zhwJ4uEnatvT8yb9SgUlfpkHl/7/3T/dIYEXe/5apvjwUO6cu0hl/t87fZpvEDO8ShLLaqXB3ewzFN2obzA/wdEGkTzAHACLSyVZV7FkF2TpsWUW7trgP3hv9JKICGrZ15lI5Zq0/02RtW3r+VFTfRG1xHyT0i0W4rxuqb9bhUmkVAjxdoHJywLlrN7A4t0BvvCXtm6LZJjG+7krMGHCPrbtBRDJm6yr2Lb0KsqVsWUVb3PREpGc0Ovs1PF/qqkogbl5u8j5Ycv6Im54Y1ObeRs/3nAslSL1Z0aTtG4s39hIREZEsMYkhIiIiWWISQ0RERLLUbO+JISIiItu4W4+YM4khIiIiq7pbj5gziSEiIiKruluPmDOJISIiIqu6W4+Y88ZeIiIikiUmMURERCRLTGKIiIhIlnhPjB7WqMJpyyq49tA+UUtl6yrU1njE1ZZVoG2psvYWgNtfrw+g0do/9s7WVbTvFiYxOlirCqetquDaS/tELZE9VKG2xiOutqwCbUtn/pukzP3mhN7l3FX2+xZqyyrad5P9HgEbs1YVTltVwbWX9olaInuoQm2NR1xtWQXaloZ3CQIARAV4wLXe8dIcT6Dpr6RZypZVtO8mJjEGWFqF09ZVcG3dPlFLZssq1NZ4xNWWVaBtydddiYm9WzeYLqfx0x6qaN8NvLGXiIiIZIlJDBEREckSkxgiIiKSJSYxREREJEtMYoiIiEiWmMQQERGRLDGJISIiIlliEkNERESyxCSGiIiIZIlJDBEREckSyw7oYWkVUFtXsSVW8Sb5smT8aQ5VmO2BLat42/L9Q07nD5MYPSypAmoPVWyJVbxJviwZf5pDFWZ7YKsq3rZ+/5DT+WP7HtgxS6qA2kMVW2IVb5IvS8af5lCF2R7Yqoq3rd8/5HT+MInRwxpVQG1ZxZZYxZvky5LxpzlUYbYHtq7ibav3DzmdP7yxl4iIiGSJSQwRERHJEpMYIiIikiUmMURERCRLTGKIiIhIlpjEEBERkSwxiSEiIiJZYhJDREREsmRSEpOSkoJevXpBrVYjICAAsbGxOHXqlNYyVVVViIuLg5+fHzw8PDBhwgQUFRXpXa8QAq+++iqCg4Ph6uqKYcOGITc31/StISIiohbDpCRm3759iIuLw6FDh7Br1y7U1tZi+PDhqKiokJaZPXs2/vnPf2Lz5s3Yt28fLl68iPHjx+tdb2pqKv72t79h5cqVOHz4MNzd3TFixAhUVVWZt1VERETU7JlUdmDHjh1ar9euXYuAgAAcPXoUgwYNQklJCVavXo0NGzbgwQcfBACsWbMGnTp1wqFDh9C3b98G6xRC4P3338eCBQswbtw4AMDnn3+OwMBAbN26FRMnTmy0L9XV1aiurpZel5bqryhtKnup4mnrKsy2bt/WuP0td/strSLMKtQtlzWOn5zPn7vZvkW1k0pKbnfQ19cXAHD06FHU1tZi2LBh0jIdO3ZE69atkZWV1WgSk5+fj8LCQq0YLy8v9OnTB1lZWTqTmJSUFCQnJ1vSfb3spYqnrasw27p9W+P2t8ztt0YVYVahbrmscfzkfP7czfbNXkNdXR0SEhIwYMAAdO3aFQBQWFgIpVIJb29vrWUDAwNRWFjY6Ho00wMDA42OAYB58+YhMTFRel1aWorw8HBzNqVR9lLF09ZVmG3dvq1x+1vm9lujijCrULdc1jh+cj5/7mb7ZicxcXFxyMnJwYEDDf9KuxtUKhVUKlWTrd9eqnjaugqzrdu3NW5/y95+S6oIswp1y2WN4yfn8+dutm/WI9bx8fHYtm0bMjMzERYWJk0PCgpCTU0NiouLtZYvKipCUFBQo+vSTL/zCSZ9MUREREQmJTFCCMTHx2PLli3Ys2cPIiMjteb37NkTzs7OyMjIkKadOnUKf/zxB/r169foOiMjIxEUFKQVU1paisOHD+uMISIiIjIpiYmLi8O6deuwYcMGqNVqFBYWorCwEJWVlQBu35A7bdo0JCYmIjMzE0ePHsXTTz+Nfv36ad3U27FjR2zZsgUAoFAokJCQgDfffBP/+Mc/cOLECUyZMgUhISGIjY213pYSERFRs2LSPTErVqwAAMTExGhNX7NmDaZOnQoASEtLg4ODAyZMmIDq6mqMGDECy5cv11r+1KlT0pNNAPDyyy+joqICzzzzDIqLizFw4EDs2LEDLi4uZmwSERERtQQmJTFCCIPLuLi4YNmyZVi2bJnR61EoFFi4cCEWLlxoSneIiIioBWPtJCIiIpIlJjFEREQkS0xiiIiISJaYxBAREZEsMYkhIiIiWWL1MAM0VXzvrGJrTBVfS6qQApZX0bU03hosrYJsyyrK1th/LbkKdEtm6yrCUj8sGL9I/iw9/nI4f5jEGHBnFV9NFVtjqvhaUoXU0iq61qjCaw2WVkG2VRVla+2/lloFuqWzdRVhqR8WjF8kf5YefzmcP0xiDNBU8W3sL2lDLKlCamkVXWtU4bUGS6sg26qKsrX2X0utAt3S2bqKsIYl4xfJn6XHXw7nD5MYA+pX8b2bVWw1LKmia414S1laBdnWVZQt3X+27j/Zhq2rCGtYMn6R/Fl6/OVw/vDGXiIiIpIlJjFEREQkS0xiiIiISJaYxBAREZEsMYkhIiIiWWISQ0RERLLEJIbIzlVWViI+Ph4jRoxAfHw8Kisrbd0lIiK7wO+JIWoi1ihbEBsbi/T0dOn1d999h2XLlmHcuHHYunWr9TtNRCQjTGKImoA1yhZoEhilUonExERMnz4dq1atwpIlS5Ceno7Y2FgmMkTUojGJIWoClpYtqKyslBKYsrIyKJVKAEBKSgqSk5OhVquRnp6OyspKuLq63rXtIiKyJ0xi7JilVbDJMpbuf4VTKRxdLsDBxQNuLkAHNQDcrmrs6KI/PikpCQCQmJgoJTAaSqUSCQkJSE1NRVJSEpYuXapzPZZU0W4OVbwtad8av38toYow6Wbu8bOXKuiWuhvnL5MYO2ZJFWyynKX735L43NxcAMD06dMbnT9t2jSkpqZKy+libhXt5lLF25L2rfH71xKqCJNu5h4/e6mCbqm7cf7a9x5o4Sypgk2Ws3T/WxLfvn17fPfdd1i1ahVSUlIazF+9erW0nD7mVtFuLlW8LWnfGr9/LaGKMOlm7vGzlyrolrob5y+TGDtmjSrYZD5L978l8YsXL8ayZcuwZMkSJCcna32kVFNTg/fff19aTh9Lq2jLvYq3Je1b4/evJVQRJt3MPX72UgXdUnfj/OX3xBDZIVdXV4wbNw41NTVQq9WYM2cOTp8+jTlz5kCtVqOmpgbjxo3jTb1E1KIxiSGyU1u3bpUSmdTUVERHRyM1NVVKYPh4NRG1dPw4iciObd26FZWVlUhKSkJubi7at2+PxYsX8woMERGYxBDZPVdXV72PUTcVPuJPRPaOSQwRNYqP+BORvWMSQ0SN4iP+RGTvmMQQUaP4iD8R2Ts+nURERESyxCSGiIiIZIlJDBEREckS74lpIvZQhdTSR2StUcXYlizpv6XHz1rH39ZVqG2tpW8/tWysYm4Yk5gmYg9VSC15RNZaVYxtxdL+W3r8rHX8bV2F2tZa+vZTy8Yq5oYxiWki9lCF1JJHZK1VxdhWLO2/pcfPWsff1lWoba2lbz+1bKxibhiTmCZiD1VIrfGIrKVVjG3N3P5bevysdfxtXYXa1lr69lPLxirmhvHGXiIiIpIlJjFEREQkS0xiiIiISJaYxBAREZEsMYkhIiIiWWISQ0RERLLEJIaIiIhkiUkMERERyRKTGCIiIpIlJjFEREQkSyw70MTMrUJqL1WULdEcqghbWkXWllVoLalibo3zx9Ljb2m8rbefiJoek5gmZm4VUnupomyu5lJF2NIqsrasQmtJFXNLzx9Lj781zh9bbj8R3R38DWxi5lYhtZcqyuZqLlWELa0ia8sqtJZUMbf0/LH0+Fvj/LHl9hPR3cEkpomZW4XUXqooW0ruVYQtrSJryyq0llQxt9b5Y+nxtyTeHrafiJoWb+wlIiIiWWISQ0RERLLEJIaIiIhkiffEkN1qDo9oExFR02ESQ3apuTyiTURETYdJDNml5vKINhERNR0mMWTX5P6INgBUVlYiKSkJubm5aN++PRYvXgxXV1dbd4uISPZ4Yy9RE4qNjYWbmxuWLVuG7777DsuWLYObmxtiY2Nt3TUiItkzOYnZv38/xowZg5CQECgUCmzdulVrflFREaZOnYqQkBC4ublh5MiRyM3N1bvOtWvXQqFQaP24uLiY2jUiuxIbG4v09HQolUrMnTsXeXl5mDt3LpRKJdLT05nIEBFZyOQkpqKiAj169MCyZcsazBNCIDY2Fr/99hvS09Nx/PhxREREYNiwYaioqNC7Xk9PTxQUFEg/v//+u6ldI7IblZWVUgJTVlaGlJQUREVFISUlBWVlZVIiU1lZaeuuEhHJlsn3xIwaNQqjRo1qdF5ubi4OHTqEnJwcdOnSBQCwYsUKBAUFYePGjZg+fbrO9SoUCgQFBRndj+rqalRXV0uvS0t1V6Ql81hSBdge2LL/SUlJAIDExEQolUqteUqlEgkJCUhNTUVSUhKWLl3a6DqOnv8dF8uKAADnrt2Ag8sF7D97HPmlbgCAEHUgeoZFNNk2AJZV4Zb7+QPYtgo5ERlm1Rt7NUlF/Y+CHBwcoFKpcODAAb1JTHl5OSIiIlBXV4f77rsPb731lpQINSYlJQXJycnW6zw1YEkVYHtgy/5rPkLVdc5PmzYNqampOj9qzb9SgUlfpkHlnyFNc48EVuT9b5nqy0Oxc+qiJn3E3JIq3HI/fwDbViEnIsOsmsR07NgRrVu3xrx58/DRRx/B3d0daWlpOH/+PAoKCnTGRUdH49NPP0X37t1RUlKCd999F/3798cvv/yCsLCwRmPmzZuHxMRE6XVpaSnCw8OtuTktniVVgO2BLfvfvn17fPfdd1i1ahVSUlIazF+9erW0XGMqqm+itrgPEvrFItzXDdU363CptAoBni5QOTng3LUbWJxb0OSPmFtShVvu5w9g2yrkRGSYVZMYZ2dnfPPNN5g2bRp8fX3h6OiIYcOGYdSoURBC6Izr168f+vXrJ73u378/OnXqhI8++ghvvPFGozEqlQoqlcqa3ac7WFIF2B7Ysv+LFy/GsmXLsGTJEiQnJ2t9pFRTU4P3339fWk4XcdMTg9rc2+hf/DkXSpB6U/99ZtZgSRVuuZ8/gG2rkBORYVZ/xLpnz57Izs5GcXExCgoKsGPHDly9ehVt27Y1eh3Ozs649957kZeXZ3hhIjvk6uqKcePGoaamBmq1GnPmzMHp06cxZ84cqNVq1NTUYNy4cfy+GCIiCzTZ98R4eXnB398fubm5OHLkCMaNG2d07K1bt3DixAkEBwc3VfeImtzWrVulRCY1NRXR0dFITU2VEpg7v56AiIhMY/LHSeXl5VpXSPLz85GdnQ1fX1+0bt0amzdvhr+/P1q3bo0TJ07gxRdfRGxsLIYPHy7FTJkyBaGhodK9AgsXLkTfvn3Rrl07FBcXY/Hixfj999/13ghMJAdbt27lN/YSETURk5OYI0eOYMiQIdJrzc21Tz31FNauXYuCggIkJiaiqKgIwcHBmDJlCl555RWtdfzxxx9wcPjfRaDr169jxowZKCwshI+PD3r27ImDBw+ic+fO5m4Xkd1wdXXV+Rg1ERGZz+QkJiYmRu9NurNmzcKsWbP0rmPv3r1ar9PS0pCWlmZqV4iIiKgFY+0kIiIikiUmMURERCRLTGKIiIhIlpjEEBERkSwxiSEiIiJZsmrZAbI+S6vomhtfWXsLwO2vtwfQoHaMZj32Su79t1Rz2H5LqmA3h+0nIsOYxNg5S6vomht/5r+D/NxvTuhdv7vKPk8hufffUs1h+y2pgt0ctp+IDONvsJ2ztIquufHDuwTdjg/wgOt//3JN2JSN95+4B+3+W5XYXeWEyFbulm1gE5F7/y3VHLbfkirYzWH7icgwJjF2ztIquubG+7orMbF36wbT2wV4GHUFyNbk3n9LNYftt6QKdnPYfiIyjDf2EhERkSwxiSEiIiJZYhJDREREssQkhoiIiGSJSQwRERHJEpMYIiIikiUmMURERCRLTGKIiIhIlpjEEBERkSwxiSEiIiJZYtkBajKWViFWOJViV95R5Jd6oPpmHS6VViHA0wUqJwecu3ZDb7zcWasKs6VV0M1laf/lvv1EdHcwiaEmY2kVYmfvw/j0bAZwVne8u2qs5R21Q9aqwmxpFXRzWdp/uW8/Ed0dTGKoyVhahbisdip8PCdKV17e3XUaLz3UAeG+bgCAEHVgs61CbK0qzJZWQbdV/+W+/UR0dzCJoSZjaRXiGQPukV7nXChBalUFBrW5t0X8BW2tKsyWVkE3l6X9l/v2E9HdwRt7iYiISJaYxBAREZEsMYkhIiIiWWISQ0RERLLEJIaIiIhkiUkMERERyRKTGCIiIpIlJjFEREQkS0xiiIiISJaYxBAREZEssewANQl7qULMKsa2xeNHRE2JSQw1CXupQswqxrbF40dETYlJDDUJe6lCzCrGtsXjR0RNiUkMNQl7qULMKsa2xeNHRE2JN/YSERGRLDGJISIiIlliEkNERESyxCSGiIiIZIlJDBEREckSkxgiIiKSJSYxREREJEtMYoiIiEiWmMQQERGRLDGJISIiIlli2QHSi1WIbYv7j4hIN4UQQti6E9ZQWloKLy8vlJSUwNPT09bdaTZyLpRoVRHWMLaKsKXxLR33HxE1d5a8fzOJIb00VwIaqyJsypUYc+NbOu4/ImrumMSASQwREZEcWfL+zRt7iYiISJaYxBAREZEsMYkhIiIiWWISQ0RERLLEJIaIiIhkiUkMERERyRKTGCIiIpIlJjFEREQkSyYnMfv378eYMWMQEhIChUKBrVu3as0vKirC1KlTERISAjc3N4wcORK5ubkG17t582Z07NgRLi4u6NatG7Zv325q14iIiKgFMTmJqaioQI8ePbBs2bIG84QQiI2NxW+//Yb09HQcP34cERERGDZsGCoqKnSu8+DBg5g0aRKmTZuG48ePIzY2FrGxscjJyTG1e0RERNRCWFR2QKFQYMuWLYiNjQUAnD59GtHR0cjJyUGXLl0AAHV1dQgKCsJbb72F6dOnN7qeJ554AhUVFdi2bZs0rW/fvrjnnnuwcuXKRmOqq6tRXV0tvS4tLUV4eDjLDhAREcmI3ZQd0CQVLi4u/2vAwQEqlQoHDjSsxKuRlZWFYcOGaU0bMWIEsrKydMakpKTAy8tL+gkPD7ew90RERCQnVk1iOnbsiNatW2PevHm4fv06ampq8M477+D8+fMoKCjQGVdYWIjAwECtaYGBgSgsLNQZM2/ePJSUlEg/586ds9p2EBERkf1zsubKnJ2d8c0332DatGnw9fWFo6Mjhg0bhlGjRsHaxbJVKhVUKpX0WrP+0tJSq7ZDRERETUfzvm1OnmDVJAYAevbsiezsbJSUlKCmpgb+/v7o06cP7r//fp0xQUFBKCoq0ppWVFSEoKAgo9stKysDAH6sREREJENlZWXw8vIyKcbqSYyGpiO5ubk4cuQI3njjDZ3L9uvXDxkZGUhISJCm7dq1C/369TO6vZCQEJw7dw5qtRoKhaLBfM2Nv+fOnTPrxl/GM57xjGc84xlv/XghBMrKyhASEmLyuk1OYsrLy5GXlye9zs/PR3Z2Nnx9fdG6dWts3rwZ/v7+aN26NU6cOIEXX3wRsbGxGD58uBQzZcoUhIaGIiUlBQDw4osvYvDgwXjvvfcwevRofPnllzhy5Ag+/vhjo/vl4OCAsLAwg8t5enpa9PQS4xnPeMYznvGMt268qVdgNExOYo4cOYIhQ4ZIrxMTEwEATz31FNauXYuCggIkJiaiqKgIwcHBmDJlCl555RWtdfzxxx9wcPjfPcX9+/fHhg0bsGDBAsyfPx/t27fH1q1b0bVrV7M2ioiIiJo/k5OYmJgYvTffzJo1C7NmzdK7jr179zaY9thjj+Gxxx4ztTtERETUQrWY2kkqlQqvvfaa1hNNjGc84xnPeMYz3r7j9bHoG3uJiIiIbKXFXIkhIiKi5oVJDBEREckSkxgiIiKSJSYxREREJEtMYoiIiEiWZJvEpKSkoFevXlCr1QgICEBsbCxOnTqltUxMTAwUCoXWz3PPPacV7+bmBmdnZzg5OaFVq1aYM2cObt68Ka0jKysLDz74INzd3eHp6YlBgwahsrJSivfw8ICLiwucnZ2hVqsxbdo0lJeXGx2vUqng7OwMR0dHqNXqBtupL75Hjx5SrKOjI8LDw/Haa6+hpqbG6PadnJykeH9/f0yePBkXL140Ol6z/8eOHYuOHTtCoVAgOzvb6HgHB4cGx+jtt982qX1vb2/4+PhApVLBx8cHsbGxRsVr+tvYz48//mhU++7u7lCpVFAqlfDw8MDAgQORmZlpdP/d3d2hVCrh7OwMb29vPPPMMygvL8fZs2d19m3z5s1a559KpYKjoyN8fX2RlJSEmzdvGh2vadvBwQEdO3aU+m1MfJcuXbTOv7Zt2+KDDz4wOv7ee++Vzj8HBwcEBQUhPj4epaWlRvdfc/49/PDDCAwMhEKhQHFxsdHxjc3/8ssvTWrf09MTXl5eUCqVCAgIQFxcnFHxkZGROpc5cuSIUe3XP388PT0xYsQI/PTTT0b3X9/4V1hYiMmTJyMoKAju7u6477778Pe//11r/NQ3/hkTr2/8MxRvaPwzpn19458x8frGP2Pi9Y1/xrava/wzFG9o/DOmfX3jn754jWPHjuGhhx6Ct7c3/Pz8pPHPJEKmRowYIdasWSNycnJEdna2ePjhh0Xr1q1FeXm5tMzgwYPFjBkzREFBgfRTUlIixScnJwsnJycxc+ZMMXjwYBEYGCg6dOgg/vKXvwghhDh48KDw9PQUKSkpIicnR5w8eVJs2rRJVFVVSe0PGDBAdOjQQfTv318EBgaKtm3bikmTJhkd/9xzz4m//OUvIjIyUigUCq3+G4pPTEwU48aNE8uXLxcxMTHC399f+Pv7m9T/l19+WXz++ediyJAhIjAwUPTu3Vv069fP6HjN/m/Tpo1wcXERAMTx48eNjg8ODhbPP/+8GDp0qAgNDRVnzpyR9oEx8WlpaUKtVouuXbuKkJAQ8eOPP4pNmzYZFf/JJ5+IvXv3it27d0vtP/XUUyIyMlLU1dUZ1X7r1q3FwIEDxQMPPCBCQkLEjBkzhJubmygoKDAYv2TJEuHp6SkeffRRMXjwYBEUFCT69OkjJkyYIG7evKl13hYUFIjk5GTh4eEhysrKxIgRI8Tq1atFu3btRJ8+fcTAgQOFv7+/8PPzE/PmzTMqfs2aNeLJJ58Uc+fOFaGhocLZ2Vna98bEP/300+L//u//xKpVq0RMTIzw8/MTLi4u4sMPPzQqfunSpWLBggVi/fr1YsiQISIgIEC0b99eTJo0yej+a86/wMBA6fy7fv260fEARHJystb5V1lZaXR8UlKS8Pf3F/fcc48ICQkRWVlZIj093aj4jz76qMH5N3ToUDF48GCj4lesWCE8PT3F2LFjxeDBg0VwcLAYN26cCAwMFJWVlQbjDY1/Dz30kOjVq5c4fPiwOHPmjHjjjTeEg4ODOHbsmFHjnzHx+sY/Q/GGxj9j2tc3/hkTr2/8MyZe3/hnTLy+8c9QvKHxz5j29Y1/+uKFEOLChQvCx8dHPPfcc+LkyZPihx9+EP379xcTJkwwKReQbRJzp0uXLgkAYt++fdK0wYMHixdffFFnzLx588T999+vFf/WW28JFxcXUVpaKvr06SMWLFigM/4///mPACB+/PFHKT41NVUoFApx4cIFg/H1ffDBBw36b0q8pv3nnntOREZGmh3/1ltvCYVCIWpqaoyO3759u2jXrp0AoPVLbEx8RESESEtLa/T4GYqvra0VoaGhYtWqVWbF16eJ9/LyEgsXLjQq/vLlywKA2L9/vxT/7bffCgBi165dBuM/+ugjERAQIG7duiXFf/rppwKAyM3NbbD8PffcI/785z9Lr7dv3y4cHBxEYWGhFJ+YmCg8PT1FdXW1wfj6XnrppQb7z5R4TfuxsbFiyJAhZse/8MILIiwszKT45cuXi379+knn3/Xr142OByC2bNnS6PljKP7atWvC1dVV7N6926z4+jTxjo6O4vPPPzcq/scffxQAxB9//GHW+WNo/HN3d2/QF19fX/HJJ58IIQyPf4bi62ts/DMlvrHxz5z4+uOfsfG6xj9j4vWNf4biDY1/5mx//fHPULyh8c9QfP3xT+Pnn3/Wef7qItuPk+5UUlICAPD19dWavn79erRq1Qpdu3bFvHnzcOPGDWledXU1XFxctOJbtWqFqqoq7N69G4cPH0ZAQAD69++PwMBADB48GAcOHJDis7Ky4O3tjfvvv1+Kf+ihh+Dg4ICdO3cajK+vsrJSq/+XLl0yKV7T/q1bt+Dr62t2/L59+9C/f39cv37dqPiioiLMmDEDqampWtNNaf/tt99G+/btAQDp6em4efOmUfHHjh3DhQsX4ODggMGDBwMA5s+fj5ycHLO3v7S0FE8//bRR8X5+foiOjsbnn3+OgoICAMDu3bsREBCA1q1bG4yvrq6GUqmEg4OD1H5gYCAANOjn0aNHkZ2djWnTpknTsrKy0K1bNwQGBmqdf6Wlpfjll18MxtdXXV0NoOHvj7HxmvZra2sbXYex8VlZWdKxNCb+P//5DxYuXKj1EaSp/Y+Li0OHDh0A3C6JIhr5/s/G4nft2oW6ujpcuHABffv2BQAsWrQI586dM6l94H/b7+rqikcffdSo+OjoaPj5+WH16tW4fPkyACAjIwOdOnVCmzZtDMbrG/+OHj2K/v37Y9OmTbh27Rrq6urw5ZdfoqqqCjExMQD0j3+HDx82GF/fneMfAJPi7xz/zI3XjH/Ozs5Gxesa/0xpv7Hxz5h4feOfuduvGf+Midc3/vXs2dNgfP3xT8PV1RVAw/FPL6PTHTt269YtMXr0aDFgwACt6R999JHYsWOH+Pnnn8W6detEaGio+NOf/iTN37lzp3BwcBDr1q0TDz/8sOjVq5d44IEHpEvMAISvr6/49NNPxbFjx0RCQoJQKpXi9OnTQgghFi1aJDp06NCgfX9/f5GUlGQwvn7/e/ToIRwdHaVpWVlZJsWPHj1a9OzZU3h6eoqPP/7YpPikpCTh4OAgAIi+ffuKK1euGBVfV1cnRo4cKZKTk8Xo0aPF/fffL/0lYmz77733nsjIyBAPPPCAiIqKEt7e3mL27NlGxW/cuFEAEOHh4eK+++4TPXr0EJMmTRJ+fn5ix44dJu8/Hx8fMWrUKJP2/7lz58R9990n/RUWHBwsjh07ZlR8Tk6OcHJyEm+//bYYNWqU9FES/vsXYX0zZ84UnTp10po2Y8YMMXz4cK3zr6KiQgAQ27dvNxhff/vbt28v3NzcGp1vTPzo0aNF9+7dhZOTk9i5c6dJ8U888YR0/o0ZM0ZUVlYaFV9VVSW6d+8uPvvsMzF69GjRtWtXnVdidLW/cOFCsX//fjFw4EAREREhVCqV+OCDD4yKT0lJEc7OzqJDhw6id+/eonv37mLo0KEiOjq6wZUwY/afq6urmDlzZqPL6Io/ceKEaNu2rXT+RUdHi7NnzxoVr2/827Bhg7h+/boYPny4ACCcnJyEp6en1rHVN/4tX77cYHz97b9z/BNCmBR/5/hnSnxj458x8frGP2Pb1zX+GROvb/y7evWqyfuv/vhnbP91jX/GxGvGv9TUVFFdXS2uXbumc/zTp1kkMc8995yIiIgQ586d07tcRkaGACDy8vKkae+9955wdnYWAISLi4tISUnRSmLmzZuntY5u3bqJuXPnCiH+90t8Z/uaz2UNxdfvv5+fn1Cr1dK0f//73ybFh4WFiYiICDFt2jST46dOnSpCQ0PF+vXrxYABA8TDDz8sDhw4YDD+gw8+EAMGDBDPPvusiIiIEAcPHpR+iU3tv2b/rV69Wjg5OYnMzEyD8evXrxcAxKBBg6T4qqoq0apVKymJNGX/KRQK8fXXXxu9/+rq6sTYsWNFeHi4CAoKEtu3bxczZ84UoaGhIj093aj2169fL1xdXQUA4ezsLF566SURGBgo3n77bWmZGzduCC8vL/Huu+9qrUuTxNTff40lMbri62+/l5eXzjdZY+JDQkKEj4+PeOONN0yOnzJliggJCRGrV68WnTt3bvBGrit+9uzZ4oknnpC2/6uvvmo0iTGm/5r998orrzT4OEtX/KJFiwQAMXr0aCn+0qVLwsHBQezYscOk9oOCggQAceTIkQbzdcXfuHFD9O7dW3To0EEEBweL9PR0MWHCBNGlSxdx48YNo9rXNf59+eWXIj4+XvTu3Vvs3r1bZGdni9dff114eXmJn3/+Wdp+XePf8uXLDcbX3/47xz8hhEnxd45/psQ3Nv7V1dUZjNc3/pna/zvHv6qqKoPx+sa/lStXmrz/6o9/xvRf3/h38eJFo9pfv369CAwMFI6OjkKpVDY6/hki+yQmLi5OhIWFid9++83gsuXl5QKA1gCjic/KyhI3btyQPufdsmWLACC++OILrXU8/vjj4sknnxRCCLF69WqhVCq12q+trRWOjo5ixYoVBuPrt5+amiq8vLyk6b/99pvR8cHBwaJNmzZi8uTJ0ueLpsTX7/+5c+cEAPH1118bjB83bpyUgTs4OAhHR0fpc/0//elPZrWfk5MjAIjdu3cbjN+zZ48AIAICArSOf+/evcXzzz9vUvuzZ88W/v7+oqamxuj9p+ljaGioVvvt2rWTkihj2z98+LAoKysT5eXlwsHBQXz11VfSMp9//rlwdnYWly5d0lrXK6+8Ivz8/LT2n6bfmr+G9MXXb3/WrFmiR48eDeYbEx8UFCT8/PzE/PnzzYqv3//vv/9eABAXL140GN+jRw+t80/z17Sjo6N49dVXzWp/27ZtAoCoqqoyGK+5/yQ4OFjr+AcEBEhXA4xt/7HHHhP33HOPSftv1apVwtXVVav/1dXVws3NTWzcuNGk9u8c/7755hsBQOTk5GgtP3ToUPHss88KIfSPf8uXLzcYX7/9O8e/vLw8o+MbG/9MiW9s/NMkxPrijRn/TG1fM/599913BuP1jX8zZ840qf07xz9j9p++8U9zj52h9jUKCwt1jn+GyPaeGCEE4uPjsWXLFuzZsweRkZEGYzSPvgUHBzeI79u3L1xdXbFx40aEh4fjkUceQUhISIPHtk+fPo2IiAgIIZCRkYGamhr87W9/k9rfs2cP6urqMGbMGIPx9dv39/fXWq5NmzZGxX/99ddQKpXo27cv1qxZI32+aGz8nfuvrq4OwO3Ppg3Fe3l5ISAgANu2bcNPP/2E7du3AwA2bdqEDz74wKz2s7Oz4eDggHvvvddg/MaNGwEAL774ohRfW1uLs2fPonv37ka3n5GRga1bt2LKlClwdnY2ev8tWbIEALBt2zat88/BwQFeXl4mbX/v3r3h4eGBTZs2wcXFBQ899JAUs3r1aowdO1brHBFC4Pjx47h69So2b94stb9r1y54enqic+fOBuPrt+/j4wNd9MVv3rwZNTU1+POf/4xFixaZHK/r/NPco6Mvvlu3blrn36pVqwAA33//PeLi4sxqPzs7W3pc1VB8RkYGAEiPSwPAtWvXcOXKFURERBjd/j//+U98++23Ou+X0RX/2Wefobq6GhkZGVL7mkd2NfvR2O2/c/yrv776HB0dUVdXZ3D809xjpC9e3/inuXfRULyu8c/YeF3nX1lZmcF4fePfzJkzzWpfM/65ubkZjNc3/mn2pzHtNzb+GbP/9I1/mt9fXfF3CgwM1Dn+GWR0umNnZs6cKby8vMTevXu1HiPUXEbNy8sTCxcuFEeOHBH5+fkiPT1dtG3bVgwaNEgr/tlnnxV79uwRe/fuFUlJScLJyUls2bJFCCFEWlqa8PT0FJs3bxa5ubliwYIFwsXFReTl5UnxvXv3Fl27dhXbt28X6enpIioqSnrE0Jj4TZs2iV27domXXnpJuLm5iaysLHH8+HFRVlZmMN7T01OEhoaKgQMHimPHjomffvpJ/Pbbb6KgoMCo9j08PMSsWbPErl27xA8//CA2b94s+vTpI6KiokRVVZVR/a+//3/44Qety6nGtB8XFyd2794tDh06JJYuXSpatWolpkyZYvT+mzBhgggKChIbN24U33//vXjqqadEQECAuHbtmtH91/zVtX//fq3L8Mbsf09PT/Hwww+L3bt3iwMHDogXX3xRODs7i+zsbKPanzVrlti5c6c4cOCA9GRI/XsycnNzhUKhEN9++22j539kZKQYPHiw2L17t9iwYYNo1aqV1kdYhuLXrVsndu3aJSZPnizatm0rnX+aezr0xavVaukY/PTTT9L5V/8vfn3x7u7uYs6cOSIzM1P88MMP4osvvhDR0dFa97YZ6n/98+/vf/97g4+TDLX/0ksviczMTHHw4EGRkpIiXF1dta7iGGpf84jxP/7xD5GZmSlGjRolOnfuLP1Fa0z/33vvPaFSqcTJkye1zj9j9r+zs7N46qmnxL59+8TevXvFxIkThZeXl3Qly1D7usa/mpoa0a5dO/HAAw+Iw4cPi7y8PPHuu+8KhUIh/vWvfxkc/4yN1zX+Xbt2zWC8vvHPmPb1jX9lZWVG9V/X+Gds+7rGP2P3n67xr6ioyOj+Nzb+GdO+vvHvxx9/1Buv8eGHH4qjR4+KU6dOiaVLlwpXV9dG70nTR7ZJDP57Ge/OnzVr1gghhPjjjz/EoEGDhK+vr1CpVNIlfs33xOiK19xUpZGSkiLCwsKEm5ub6Nevn/j+++/1xg8cOFCUlZWZHa/5yczMtCje3PZjYmLE+fPnLeq/JokxJ37ChAlal/JNje/cubPWJUxT4zXnj7nxbdu21bofxdT4GTNmaLU/b948ER4ervUYor74ESNGiNraWrPjNT/5+flmx0dERJjd/sMPP6yVhJjTviXxU6ZM0VrW1Pj77rtP/PHHH2bH33n+mRrfqVMnkZWVZXZ8/fHv9OnTYvz48SIgIEC4ubmJ7t27S4/M6oqvP/6ZE6/5yczMtCje3Pbrj3/mtq8Z/8yJrz/+mRNff/wzJ77++WdOfP3xT1+8xuTJk4Wvr69QKpWNzjeG4r8dIiIiIpIV2d4TQ0RERC0bkxgiIiKSJSYxREREJEtMYoiIiEiWmMQQERGRLDGJISIiIlliEkNERESyxCSGiIiIZIlJDBEREckSkxgiIiKSJSYxREREJEv/H1Ukl2AH7S1uAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "tol['dayofyear'] = tol.index.dayofyear\n", "\n", @@ -350,35 +228,14 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Just for fun, we can sort of graph the data used to generate a simplified boxplot using " + "Just for fun, we can sort of graph the data used to generate a simplified boxplot using a bunch of plots:" ] }, { "cell_type": "code", - "execution_count": 55, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 55, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0UAAAHACAYAAABtZcP3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD6iElEQVR4nOzdd3zT1frA8U/SpnuXtmmhCyiUvfcQASnIEIooiCCKG1AEvI7fFUS9cl33ugeogKOiMhyA7C2FQtmrtNDSAg0d0D3SJt/fH5Fqr6y2GR3P+/XKizT55pwno/T75JzzHJWiKApCCCGEEEII0UCpbR2AEEIIIYQQQtiSJEVCCCGEEEKIBk2SIiGEEEIIIUSDJkmREEIIIYQQokGTpEgIIYQQQgjRoElSJIQQQgghhGjQJCkSQgghhBBCNGiSFAkhhBBCCCEaNHtbB2AuRqORixcv4u7ujkqlsnU4QgghhBBCCBtRFIX8/HyCgoJQq28+DlRvkqKLFy8SHBxs6zCEEEIIIYQQtURaWhpNmjS56XH1Jilyd3cHTE/cw8PDxtEIIYQQQgghbCUvL4/g4OCKHOFm6k1SdHXKnIeHhyRFQgghhBBCiFteViOFFoQQQgghhBANmiRFQgghhBBCiAZNkiIhhBBCCCFEg1Zv1hQJIYQQQoiGTVEUysvLMRgMtg5FWJidnR329vZm24pHkiIhhBBCCFHn6fV60tPTKSoqsnUowkpcXFwIDAzEwcGhxm1JUiSEEEIIIeo0o9FIcnIydnZ2BAUF4eDgYLYRBFH7KIqCXq8nMzOT5ORkIiIibmmD1huRpEgIIYQQQtRper0eo9FIcHAwLi4utg5HWIGzszMajYZz586h1+txcnKqUXtSaEEIIYQQQtQLNR0tEHWLOd9v+eQIIYQQQgghGjRJioQQQgghhBANWpWSogULFtCtWzfc3d3x9/dn9OjRJCQkVDpm4cKFDBgwAA8PD1QqFTk5OTdt9+WXX0alUlW6REZGVumJCCGEEEIIIWqHAQMGMHPmTFuHccuqlBRt376dadOmsWfPHjZu3EhZWRlDhgyhsLCw4piioiKGDh3Kiy++WKVA2rRpQ3p6esVl165dVXq8EEIIIURDoivUEZceh65QZ+tQRAOxbdu2Wx70qGuqVH1u3bp1lX5esmQJ/v7+xMfH079/f4CKjHDbtm1VC8TeHq1WW6XHCCGEEEI0RCsTVzI/dj5GxYhapWZer3lER0TbOixRR6hUKpKTkwkLC7N1KLVGjdYU5ebmAuDj41PjQBITEwkKCqJp06ZMnDiR1NTUGx5fWlpKXl5epYsQQgghRH2nK9RVJEQARsXI/Nj5MmL0PxRFoUhfbvWLoihVinPdunX07dsXLy8vfH19GTFiBGfOnAGgd+/ePPfcc5WOz8zMRKPRsGPHDgDS09MZPnw4zs7OhIeHExMTQ1hYGO+++261Xrdz584xcuRIvL29cXV1pU2bNqxdu5aUlBRuv/12ALy9vVGpVEyZMgWAwsJCJk+ejJubG4GBgbzzzjt/a7e0tJQ5c+bQuHFjXF1d6dGjR8UgSl5eHs7Ozvz222+VHrNq1Src3d2tsiFvtfcpMhqNzJw5kz59+tC2bdsaBdGjRw+WLFlCy5YtSU9PZ/78+fTr149jx47h7u5+zccsWLCA+fPn16hfIYQQQoi6JjUvtSIhusqoGEnLT0PrKrNuriouM9B67nqr93vilShcHG79FLuwsJBZs2bRvn17CgoKmDt3LmPGjOHQoUNMnDiRN998k3//+98Vm9F+//33BAUF0a9fPwAmT55MVlYW27ZtQ6PRMGvWLDIyMqod/7Rp09Dr9ezYsQNXV1dOnDiBm5sbwcHBrFixgrFjx5KQkICHhwfOzs4APPvss2zfvp2ff/4Zf39/XnzxRQ4cOEDHjh0r2p0+fTonTpxg2bJlBAUFsWrVKoYOHcrRo0eJiIhgxIgRxMTEMGzYsIrHfPvtt4wePdoqe09VOymaNm0ax44dM8van78++fbt29OjRw9CQ0P54YcfmDp16jUf88ILLzBr1qyKn/Py8ggODq5xLEIIIYQQtVmIRwhqlbpSYqRWqQl2l/Ogumjs2LGVfv7yyy/x8/PjxIkT3HPPPcycOZNdu3ZVJEExMTFMmDABlUrFqVOn2LRpE/v27aNr164AfP7550RERFQ7ntTUVMaOHUu7du0AaNq0acV9V2eH+fv74+XlBUBBQQFffPEF33zzDYMGDQJg6dKlNGnSpFKbixcvJjU1laCgIADmzJnDunXrWLx4Ma+//joTJ05k0qRJFBUV4eLiQl5eHmvWrGHVqlXVfi5VUa2kaPr06axevZodO3ZUesLm4uXlRYsWLUhKSrruMY6Ojjg6Opq9byGEEEKI2kzrqmVer3l/W1Mko0SVOWvsOPFKlE36rYrExETmzp3L3r17ycrKwmg0Jbupqam0bduWIUOG8O2339KvXz+Sk5OJjY3ls88+AyAhIQF7e3s6d+5c0V7z5s3x9vau1MewYcPYuXNnpdvatGlTMfoUGhrK8ePHAXjqqad44okn2LBhA4MHD2bs2LG0b9/+uvGfOXMGvV5Pjx49Km7z8fGhZcuWFT8fPXoUg8FAixYtKj22tLQUX19fAO688040Gg2//PIL48ePZ8WKFXh4eDB48OBbeyFrqEpJkaIozJgxg1WrVrFt2zbCw8MtElRBQQFnzpxh0qRJFmlfCCGEEKIui46IpndQb9Ly0wh2D5aE6BpUKlWVprHZysiRIwkNDWXRokUEBQVhNBpp27Yter0egIkTJ/LUU0/xwQcfEBMTQ7t27SpGcW7V559/TnFxccXPERERrF27lsaNGwOg0Wgq7nv44YeJiopizZo1bNiwgQULFvDOO+8wY8aMaj/HgoIC7OzsiI+Px86uctLo5uYGgIODA3fffTcxMTGMHz+emJgY7r33XuztrfMeVqnQwrRp0/jmm2+IiYnB3d0dnU6HTqer9CLrdDoOHTpUMcpz9OhRDh06xOXLlyuOGTRoEB9++GHFz3PmzGH79u2kpKSwe/duxowZg52dHRMmTKjp8xNCCCGEqJe0rlq6abtJQlSHZWdnk5CQwD//+U8GDRpEq1atuHLlSqVj7rrrLkpKSli3bh0xMTFMnDix4r6WLVtSXl7OwYMHK25LSkr6WxuNGzemefPmFRcwjQ5d/Tk0NLTS8cHBwTz++OOsXLmS2bNns2jRIsCUuAAYDIaKY5s1a4ZGo2Hv3r0Vt125coXTp09X/NypUycMBgMZGRmV4mjevHml6tMTJ05k3bp1HD9+nC1btlR6rpZWpdTrk08+AUybMf3V4sWLK6pPfPrpp5UKIFwt1f3XY86cOUNWVlbFMefPn2fChAlkZ2fj5+dH37592bNnD35+flV9PkIIIYQQQtQJ3t7e+Pr6snDhQgIDA0lNTeX555+vdIyrqyujR4/mpZde4uTJk5UGDSIjIxk8eDCPPvoon3zyCRqNhtmzZ+Ps7FwxNa6qZs6cybBhw2jRogVXrlxh69attGrVCjAlUiqVitWrV3PnnXfi7OyMm5sbU6dO5dlnn8XX1xd/f3/+7//+D7X6z7GXFi1aMHHiRCZPnsw777xDp06dyMzMZPPmzbRv357hw4cDprxBq9UyceJEwsPDK03JszilnsjNzVUAJTc319ahCCGEEEIIKyouLlZOnDihFBcX2zqUKtu4caPSqlUrxdHRUWnfvr2ybds2BVBWrVpVcczatWsVQOnfv//fHn/x4kVl2LBhiqOjoxIaGqrExMQo/v7+yqeffnrdPgElOTn5mvdNnz5dadasmeLo6Kj4+fkpkyZNUrKysiruf+WVVxStVquoVCrlgQceUBRFUfLz85X7779fcXFxUQICApQ333xTue2225Snn3664nF6vV6ZO3euEhYWpmg0GiUwMFAZM2aMcuTIkUr9/+Mf/1AAZe7cuTd97W70vlc1N1ApShWLqddSeXl5eHp6kpubi4eHh63DEUIIIYQQVlJSUkJycjLh4eE4OTnZOhybOn/+PMHBwWzatKmiGlx9daP3vaq5Qe1ffSaEEEIIIYS4pi1btlBQUEC7du1IT0/nH//4B2FhYRVLWMStkaRICCGEEEKIOqqsrIwXX3yRs2fP4u7uTu/evfn2228rVZQTNydJkRBCCCGEEHVUVFQUUVHW34+pvqlSSW4hhBBCCCGEqG8kKRJCCCGEsABdoY649Dh0hTpbhyKEuAmZPieEEEIIYWYrE1cyP3Y+RsWIWqVmXq95REdE2zosIcR1yEiREEIIIYQZ6Qp1FQkRgFExMj92vowYCVGLSVIkhBBCCGFGqXmpFQnRVUbFSFp+mo0iEkLcjCRFQgghhBBmFOIRglpV+RRLrVIT7B5so4iEsL4BAwYwc+ZMW4dxyyQpEkIIIYQwI62rlnm95lUkRlfXFGldtTaOTIia2bZtGyqVipycHFuHYnZSaEEIIYQQwsyiI6LpHdSbtPw0gt2DJSEStYpKpSI5OZmwsDBbh1JryEiREEIIIYQFaF21dNN2k4RI3NC6devo27cvXl5e+Pr6MmLECM6cOQNA7969ee655yodn5mZiUajYceOHQCkp6czfPhwnJ2dCQ8PJyYmhrCwMN59991qxXPu3DlGjhyJt7c3rq6utGnThrVr15KSksLtt98OgLe3NyqViilTpgBQWFjI5MmTcXNzIzAwkHfeeedv7ZaWljJnzhwaN26Mq6srPXr0YNu2bQDk5eXh7OzMb7/9Vukxq1atwt3dnaKiomo9l6qQpEgIIYQQQtQ/igL6QutfFKVKYRYWFjJr1iz279/P5s2bUavVjBkzBqPRyMSJE1m2bBnKX9r8/vvvCQoKol+/fgBMnjyZixcvsm3bNlasWMHChQvJyMio9ss2bdo0SktL2bFjB0ePHuWNN97Azc2N4OBgVqxYAUBCQgLp6em89957ADz77LNs376dn3/+mQ0bNrBt2zYOHDhQqd3p06cTGxvLsmXLOHLkCOPGjWPo0KEkJibi4eHBiBEjiImJqfSYb7/9ltGjR+Pi4lLt53OrZPqcEEIIIYSof8qK4PUg6/f74kVwcL3lw8eOHVvp5y+//BI/Pz9OnDjBPffcw8yZM9m1a1dFEhQTE8OECRNQqVScOnWKTZs2sW/fPrp27QrA559/TkRERLXDT01NZezYsbRr1w6Apk2bVtzn4+MDgL+/P15eXgAUFBTwxRdf8M033zBo0CAAli5dSpMmTSq1uXjxYlJTUwkKMr0nc+bMYd26dSxevJjXX3+diRMnMmnSJIqKinBxcSEvL481a9awatWqaj+XqpCRIiGEEEIIIWwkMTGRCRMm0LRpUzw8PCrW+aSmpuLn58eQIUP49ttvAUhOTiY2NpaJEycCphEbe3t7OnfuXNFe8+bN8fb2rtTHsGHDcHNzq7gAtGnTpuLnNm3aVBz71FNP8dprr9GnTx/mzZvHkSNHbhj/mTNn0Ov19OjRo+I2Hx8fWrZsWfHz0aNHMRgMtGjRolIc27dvr5gqeOedd6LRaPjll18AWLFiBR4eHgwePLhKr2d1yUiREEIIIYSofzQuplEbW/RbBSNHjiQ0NJRFixYRFBSE0Wikbdu26PV6ACZOnMhTTz3FBx98QExMDO3atasYxblVn3/+OcXFxRU/R0REsHbtWho3bmwKWaOpuO/hhx8mKiqKNWvWsGHDBhYsWMA777zDjBkzqtTnXxUUFGBnZ0d8fDx2dnaV7ruapDk4OHD33XcTExPD+PHjiYmJ4d5778Xe3jrpiiRFQgghhBCi/lGpqjSNzRays7NJSEhg0aJFFdPjdu3aVemYu+66i0cffZR169YRExPD5MmTK+5r2bIl5eXlHDx4kC5dugCQlJTElStXKrVxNfn5q9DQ0OtWnwsODubxxx/n8ccf54UXXmDRokXMmDEDBwcHAAwGQ8WxzZo1Q6PRsHfvXkJCQgC4cuUKp0+f5rbbbgOgU6dOGAwGMjIyKp7ntUycOJE77riD48ePs2XLFl577bXrHmtukhQJIYQQQghhA97e3vj6+rJw4UICAwNJTU3l+eefr3SMq6sro0eP5qWXXuLkyZNMmDCh4r7IyEgGDx7Mo48+yieffIJGo2H27Nk4OzujUqmqFdPMmTMZNmwYLVq04MqVK2zdupVWrVoBpkRKpVKxevVq7rzzTpydnXFzc2Pq1Kk8++yz+Pr64u/vz//93/+hVv+5SqdFixZMnDiRyZMn884779CpUycyMzPZvHkz7du3Z/jw4QD0798frVbLxIkTCQ8PrzQlz9JkTZEQQgghGixdoY649Dh0hTpbh1KryOtiHWq1mmXLlhEfH0/btm155plneOutt/523MSJEzl8+DD9+vWrGI256quvviIgIID+/fszZswYHnnkEdzd3XFycqpWTAaDgWnTptGqVSuGDh1KixYt+PjjjwHTiNP8+fN5/vnnCQgIYPr06QC89dZb9OvXj5EjRzJ48GD69u1bMXJ11eLFi5k8eTKzZ8+mZcuWjB49mn379lV6PiqVigkTJnD48OGKdVPWolKUKtYNrKXy8vLw9PQkNzcXDw8PW4cjhBBCiFpuZeJK5sfOx6gYUavUzOs1j+iIaFuHZXN18XUpKSkhOTmZ8PDwaicD9cX58+cJDg5m06ZNFdXg6qsbve9VzQ1kpEgIIYQQDY6uUFdx4g9gVIzMj53f4EdG5HWpe7Zs2cIvv/xCcnIyu3fvZvz48YSFhdG/f39bh1anSFIkhBBCiAYnNS+14sT/KqNiJC0/zUYRVc35K0VM+mIv02IOUG4w3vwBt6iuvy4NUVlZGS+++CJt2rRhzJgx+Pn5sW3btkoV5cTNSaEFIYQQQjQ4IR4hqFXqSgmAWqUm2D3YhlHdmvhzl3ns63iyCkwlm3uG+zCpV5hZ2q7Lr0tDFRUVRVRUlK3DqPNkpEgIIYQQDY7WVcu8XvNQq0ynQlfXzmhdtTaO7MZWxJ9nwsK9ZBXo8XE1lUd+e8NpLhfqzdJ+XX1dhKgpGSkSQgghRIMUHRFN76DepOWnEeweXKtP/A1GhTfXn+Kz7WcBGNI6gLfv6cC9n+3hZHoeb61PYEF01Tb0vJ669LoIYS4yUiSEEEKIBkvrqqWbtlutPvEvKC3nsa/3VyRE025vxqf3d8HDScMrd7UBYNm+VI6ezzVbn3XhdRHCnCQpEkIIIYSopdIuFzH2491sOpmBg72ad+/tyLNRkajVpo05u4X5MLpjEIoC8345htFYL3ZaEcLqJCkSQgghhKiF9qVc5q6PfifhUj5+7o58/2hPRndq/LfjXrizFa4OdhxIzWHVwQs2iFSIuk+SIiGEEEKIWuaH/Wnct2gPlwv1tAny4OdpfegU4n3NYwM8nJgxKAKABb+dIq+kzJqhClEvSFIkhBBCCFFLGIwKr60+wT+WH6HMoDCsrZYfH+9FkJfzDR/3UJ9wmjZyJauglPc3JVopWiHqD0mKhBBCCCFqgfySMh5euo/PdyUD8NTA5nx0X2dcHG5eLNjBXs28UaaiC0t2p5CUkW/RWIWobyQpEkIIIYSwsdTsIqI/3s3WhEwc7dV8MKETs4a0rCiocCtua+HHHa0DKDcqvPzLCRRFii4IcaskKRJCCCGEsKE9Z7O566NdJGYU4O/uyA+P9WJkh6BqtfXS8NY42KvZlZTFumM6M0faMOgKdcSlx6ErtM7rN2DAAGbMmMHMmTPx9vYmICCARYsWUVhYyIMPPoi7uzvNmzfnt99+A8BgMDB16lTCw8NxdnamZcuWvPfeexXtlZSU0KZNGx599NGK286cOYO7uztffvmlVZ5TXSRJkRBCCCGEjXwXl8r9n+/lSlEZ7Rp78sv0vnQI9qp2eyG+LjzevykAr605SbHeYKZIG4aViSuJWhHF1A1TiVoRxcrElVbpd+nSpTRq1Ii4uDhmzJjBE088wbhx4+jduzcHDhxgyJAhTJo0iaKiIoxGI02aNOHHH3/kxIkTzJ07lxdffJEffvgBACcnJ7799luWLl3Kzz//jMFg4P777+eOO+7goYcessrzqYtUSj0ZW83Ly8PT05Pc3Fw8PDxsHY4QQgghxHWVG4z8a+1JFv+eAsDw9oG8fXcHnB3satx2sd7A4P9s50JOMU8NimDWHS1q3GZtV1JSQnJyMuHh4Tg5OVWrDV2hjqgVURgVY8VtapWa9WPXW3QT2wEDBmAwGNi5cydgGgny9PQkOjqar776yhSbTkdgYCCxsbH07Nnzb21Mnz4dnU7H8uXLK2576623ePPNNxk/fjwrVqzg6NGj+Pr6Wux52MKN3veq5gYyUiSEEEIIYUV5JWU8tHR/RUL0zOAWfDihk1kSIgBnBzv+ObwVAJ9uP0NqdpFZ2q3vUvNSKyVEAEbFSFp+msX7bt++fcV1Ozs7fH19adeuXcVtAQEBAGRkZADw0Ucf0aVLF/z8/HBzc2PhwoWkpqZWanP27Nm0aNGCDz/8kC+//LLeJUTmJkmREEIIIYSVpGQVMuaj39lxOhMnjZqP7uvM04MjUKluvaDCrRjaVkuf5r7oy428uuaEWduur0I8QlCrKp8aq1Vqgt2DLd63RqOp9LNKpap029XPh9FoZNmyZcyZM4epU6eyYcMGDh06xIMPPoher6/URkZGBqdPn8bOzo7ERCnTfjOSFAkhhBBCWMHupCzu+uh3zmQWovVw4sfHejO8faBF+lKpVLw8sg32ahUbT1xi++lMi/RTn2hdtczrNa8iMVKr1MzrNc+iU+eq4/fff6d37948+eSTdOrUiebNm3PmzJm/HffQQw/Rrl07li5dynPPPcfJkydtEG3dcfPC90IIIYQQoka+2XOOl385TrlRoUMTTxZN7oq/R/XWvtyqiAB3Hugdxhe7kpn/y3HWzeyPg718H34j0RHR9A7qTVp+GsHuwbUuIQKIiIjgq6++Yv369YSHh/P111+zb98+wsPDK4756KOPiI2N5ciRIwQHB7NmzRomTpzInj17cHBwsGH0tZf8ZgghhBBCWEi5wci8n4/xz5+OUW5UGNUhiO8f62XxhOiqpwdH0MjNkbNZhSz+PdkqfdZ1Wlct3bTdamVCBPDYY48RHR3NvffeS48ePcjOzubJJ5+suP/UqVM8++yzfPzxxwQHm6b+ffzxx2RlZfHSSy/ZKuxaT6rPCSGEEEJYQG5xGdNjDrAzMQuAZ6Na8uSAZmZfP3Qzy+PPM+fHw7g62LFlzgACrJSQWZM5qs+JukeqzwkhhBBC1GKKojBz2UF2JmbhrLHj0/u7MO325lZPiACiOzWmU4gXhXoDC9bKuhIhrkWSIiGEEEIIM/tiVzJbEzJxsFez7NGeDG1ru6lYarWKV0a1RaWCnw5dZF/KZZvFIkRtJUmREEIIIYQZHT2fyxvrTgHw0vBWdAj2sm1AQLsmnozvFgLAvJ+PYzDWi9UTQpiNJEVCCCGEEGZSUFrOjO8OUGZQiGoTwP09Q20dUoVno1ri6azhRHoeMXGpN3+AEA2IJEVCCCGEEGYy9+djpGQXEeTpxBtj29tkDdH1+Lg6MHtICwDeXp/A5UL9TR4hRMMhSZEQQgghhBmsOnielQcuoFbBu+M74eVS+/aDua97CJFad3KLy3h7Q4KtwxGi1pCkSAghhBCihpKzCvnnqmMAPDUogu7hPjaO6Nrs7dTMH9UGgO/iUjl2IdfGEQlRO0hSJIQQQghRA/pyI099d5BCvYHu4T7MGBhh65BuqEdTX+7qGISiwLxfjlNPtqwUokYkKRJCCCGEqIE3153i6IVcvFw0vDe+I3bq2rOO6HpeGNYKFwc74s9dYdXBC7YORwibk6RICCGEEKKatiZk8PmuZADeHNueQE9nG0d0a7SeThUjWq+vPUV+SZmNIxK3atu2bahUKnJycmwdSr0iSZEQQgghRDVk5JUw54fDADzQK5QhbWy3QWt1PNQ3jPBGrmQVlPL+5kRbhyNuUe/evUlPT8fT09PWodQrkhQJIYQQQlSR0agw64fDZBfqidS688KdrWwdUpU52tsxd2RrABb/nkJSRr6NIxK3wsHBAa1WW6vKvdcHkhQJIYQQQlTRpzvOsCspC2eNHR/e1wknjZ2tQ6qW21v6M7hVAOVGhZd/OSFFF4AynY7CPXsp0+ms0t+AAQOYMWMGM2fOxNvbm4CAABYtWkRhYSEPPvgg7u7uNG/enN9++w34+/S5JUuW4OXlxfr162nVqhVubm4MHTqU9PR0q8RfX0hSJIQQQghRBQdSr/DOhtMAvDyqNc393W0cUc3MHdEaB3s1u5KyWH/cOolAbZWzfDlJAweROmUKSQMHkbN8uVX6Xbp0KY0aNSIuLo4ZM2bwxBNPMG7cOHr37s2BAwcYMmQIkyZNoqio6JqPLyoq4u233+brr79mx44dpKamMmfOHKvEXl9IUiSEEEIIcYvySsp46ruDGIwKI9oHck/XYFuHVGMhvi481r8pAK+uPkmx3mDjiGyjTKcjfe48MBpNNxiNpM+dZ5URow4dOvDPf/6TiIgIXnjhBZycnGjUqBGPPPIIERERzJ07l+zsbI4cOXLt2MvK+PTTT+natSudO3dm+vTpbN682eJx1yeSFAkhhBBC3AJFUXhx5VHOXymmibczr0e3qzfrOp4c0JwgTycu5BTz6fYztg7HJvQp5/5MiK4yGtGfS7V43+3bt6+4bmdnh6+vL+3atau4LSAgAICMjIxrPt7FxYVmzZpV/BwYGHjdY8W1SVIkhBBCCHELftifxuoj6dipVbw/oRMeThpbh2Q2zg52/HOEqejCp9vPkHb52tO06jOHsFBQ/8+psVqNQ2iIxfvWaCp/llQqVaXbribfxv9N2m7weFkfVjWSFAkhhBBC3ERSRj7zfjkOwOwhLegc4m3jiMxvWFstvZv5Ulpu5NXVJ2wdjtVptFoCX5n/Z2KkVhP4ynw02rpVal1Uj72tAxBCCCGEqM1KygxMjzlISZmRvs0b8Xj/Zjd/UB2kUql4eVQbhr23kw0nLrHjdCb9W/jZOiyr8rr7blz79kV/LhWH0BBJiBoQGSkSQgghhLiBBWtPckqXj6+rA/+5pwNqdf1YR3QtLQLceaBXGAAv/3ocffm1p2vVZxqtFtce3SUhamCqlBQtWLCAbt264e7ujr+/P6NHjyYhIaHSMQsXLmTAgAF4eHhUqqF+Mx999BFhYWE4OTnRo0cP4uLiqhKaEEIIIYTZbTiuY2nsOQDevqcD/h5ONo7I8mbeEUEjNwfOZhby+tqTsjbFwrZt28a7775b6baUlBRmzpxZ6TZFURg9ejQDBgxAURS8vLwAmDJlyt/Ot0ePHi3vWxVVKSnavn0706ZNY8+ePWzcuJGysjKGDBlCYWFhxTFFRUUMHTqUF1988Zbb/f7775k1axbz5s3jwIEDdOjQgaioKKmaIYQQQgh0hTri0uPQFVp3D5303GL+scJUAvnhvuHc3tLfqv3bioeThvmj2gKwZHcK//7tlNlPsG31ngpxPSqlBp/yzMxM/P392b59O/37969037Zt27j99tu5cuVKRSZ7PT169KBbt258+OGHgKmyRnBwMDNmzOD555+/pVjy8vLw9PQkNzcXDw+Paj0fIYQQQtQuKxNXMj92PkbFiFqlZl6veURHRFu8X4NRYcKiPcQlX6ZdY09WPNEbB/uGterg273n+L9VxwCYMbA5s4e0NEu7lnhPS0pKSE5OJjw8HCen+j+aJ0xu9L5XNTeo0W93bm4uAD4+PtVuQ6/XEx8fz+DBg/8MSq1m8ODBxMbGXvdxpaWl5OXlVboIIYQQov7QFeoqTp4BjIqR+bHzrTK68MGWROKSL+PqYMcHEzo1uIQIYGKPUF4eaSrT/cGWJN7fnFjjNm35ngpxI9X+DTcajcycOZM+ffrQtm3bageQlZWFwWCo2JTqqoCAAHQ32EF4wYIFeHp6VlyCg+v+jtJCCCGE+FNqXmrFyfNVRsVIWn6aRfuNS75ckQC8NqYtYY1cLdpfdRTl6Vn1zgF+/eAwBgsWQ5jSJ5z/u7MVAP/ZeJpPttVsY1dbvadC3Ey1k6Jp06Zx7Ngxli1bZs54btkLL7xAbm5uxSUtTX6ZhBBCiPokxCMEtaryqYpapSbY3XJfhOYU6Zm57CBGBaI7N2ZMpyYW66u69CXlrPnoMBcTc0g9ns2hTakW7e+R/k15Nso0de6Ndaf4fOfZardli/dUiFtRraRo+vTprF69mq1bt9KkSc3+s2jUqBF2dnZcunSp0u2XLl1Ce4NSiI6Ojnh4eFS6CCGEEKL+0LpqmddrXsVJ9NX1J1pXy5RKVhSFfyw/wsXcEsIbufLKXdWfCWMphnIj6xYeI+NcPnZ/TOk7vDmNcr3Bov1Ou705MwdHAPDampN8FZtSrXas/Z4KcauqtHmroijMmDGDVatWsW3bNsLDw2scgIODA126dGHz5s2MHj0aME3N27x5M9OnT69x+0IIIYSou6Ijoukd1Ju0/DSC3YMtevL8zZ5zbDhxCY2divfHd8LNsXbtca8YFTYvPUnaicvYO6i565lOpB7LplWfIOwd7Cze/9ODIigzGPlo6xnm/nwce7Wa+3qEVLkda76nQtyqKv22T5s2jZiYGH7++Wfc3d0r1vx4enri7OwMgE6nQ6fTkZSUBMDRo0dxd3cnJCSkoiDDoEGDGDNmTEXSM2vWLB544AG6du1K9+7deffddyksLOTBBx802xMVQgghRN2kddVa/MT5ZHoer645CcBzQyNp18TTov1VR2lROVlp+ajVKoY+1g5tuCfacOvFqVKpmDOkJWUGhYU7zvLiqqPY26m4p2vVp75Z4z0VoiqqlBR98sknAAwYMKDS7YsXL2bKlCkAfPrpp8yfP7/ivquluv96zJkzZ8jKyqo45t577yUzM5O5c+ei0+no2LEj69at+1vxBSGEEEIIcyvWG5jx3UH05UZub+nH1L41nwljCU5uGqLndEGXnEtoG9+/3X/h9BX8wzzQWHDUSKVS8cKwSPTlRpbsTuG5FUfQ2Klq5dorIaqiRvsU1SayT5EQQgghquOFlUf4Li4Nf3dHfnu6H75ujrYOqZKCKyW4ed94753flydyaFMaXe8Mo8eophaPSVEU/vnTMb7dm4paBe9P6MSI9kEW7/d6ZJ+ihqnW7FMkhBBCCFGXrTmSzndxaahU8N97O9a6hOjcsWy+fimWYzsu3PA4bTPTNLoDG86Rc6nI4nGpVCpevast93RtglGBp5cdYt0x2WtI1F2SFAkhhBCiQbpSqOeFlUcAeOK2ZvRp3sjGEVWmS85l3cKjGMsV0pNyuNHknqYd/Qhp44uxXGH7dwk3PNZc1GoVC6LbE92pMQajwozvDrD55KWbP1CIWkiSIiGEEEI0SB9sSSKvpJxWgR48c0cLW4dTyRVdIWs+PEK53khwax8GTm6FSqW67vEqlYr+4yOws1dz/tQVkuIzrBKnnVrFW+M6MLJDEGUGhSe+OcD205lW6bu+WLduHX379sXLywtfX19GjBjBmTOmTXJ79+7Nc889V+n4zMxMNBoNO3bsACA9PZ3hw4fj7OxMeHg4MTExhIWF8e6771r7qdRpkhQJIYQQosFJu1zE13tSAHjxzkg0drXnlKgwp5Rf3z9MSWEZ/qHuDH20bcWeRDfi6edC56GhAOz6MRF9cbmlQwVMidF/7unAsLZa9AYjj361n9+Tsm7+QCspKzVc91JeZrj1Y/U3P7Y6CgsLmTVrFvv372fz5s2o1WrGjBmD0Whk4sSJLFu2rNLI3/fff09QUBD9+vUDYPLkyVy8eJFt27axYsUKFi5cSEaGdZLi+qR2FeAXQgghhLCCt9YnUGZQ6BfRiH4RfrYOp0JpURm/fnCI/MslePo7M2J6Bxycbv10rXNUCAl7deRlFhO3Opm+4yIsGO2fNHZq3hvfibJv49l0MoOpS/ex5MHu9Gz69yp51rbw6e3XvS+0rS8jpneo+PnLZ3dSrjde89igCC/GzO5c8fNX/7ebkoKySsdM+3RgleMbO3ZspZ+//PJL/Pz8OHHiBPfccw8zZ85k165dFUlQTEwMEyZMQKVScerUKTZt2sS+ffvo2rUrAJ9//jkREdZ53+uT2vO1iBBCCCGEFRw5n8Mvhy+iUsHzwyJtHU4lp+MukX2hEBcPB0Y91RFnd4cqPd5eY0f/8S1w9XRA29S6ey052Kv5aGJnbmvhR0mZkYeW7GN/ymWrxlAXJSYmMmHCBJo2bYqHhwdhYWEApKam4ufnx5AhQ/j2228BSE5OJjY2lokTJwKQkJCAvb09nTv/maw1b94cb29vqz+Puk5GioQQQgjRYCiKwutrTZu0junUmDZBtWuT1ra3Naa8zEhwK288GjlXq43QNr7c/2ov7C24X9H1ONrb8dmkLjy8dD+7krKYsngf3zzcg47BXlaP5apH37vtuvep/md44KG3+l3/2P9Z0jX5X71rElaFkSNHEhoayqJFiwgKCsJoNNK2bVv0ej0AEydO5KmnnuKDDz4gJiaGdu3a0a5dO7P0Lf4kI0VCCCGEaDC2JWSy5+xlHOzVzB7S0tbhAKZEzWAwTdlSqVR0uiOERk3ca9TmXxMixWjdLSmdNHYsmtyVnk19KCgtZ9IXezl2IdeqMfyVxtHuuhd7jd2tH+tw82OrKjs7m4SEBP75z38yaNAgWrVqxZUrVyodc9ddd1FSUsK6deuIiYmpGCUCaNmyJeXl5Rw8eLDitqSkpL+1IW5OkiIhhBBCNAgGo8K/fzsFwIO9w2jsVb2RGHPbtyaF1R8cRl9i3sIIiqJwak86370a97e1L5bm7GDHFw90o2uoN/kl5dz/xV5OpudZNYa6wNvbG19fXxYuXEhSUhJbtmxh1qxZlY5xdXVl9OjRvPTSS5w8eZIJEyZU3BcZGcngwYN59NFHiYuL4+DBgzz66KM4OzvfsFqh+DtJioQQQgjRIKw4cJ6ES/l4Omt4ckBzW4cDwLEdF9i3Opnzp65w7mi2Wds2GhUObkjlSnohsT+fMWvbt8LV0Z7FD3ajY7AXOUVlTPx8L6cv5Vs9jtpMrVazbNky4uPjadu2Lc888wxvvfXW346bOHEihw8fpl+/foSEhFS676uvviIgIID+/fszZswYHnnkEdzd3XFycrLW06gXZE2REEIIIeq9Yr2B/2w4DcCMgc3xdNHYOCI4ezCTHd8lAND1zjAiugWYtX07OzW3TWjJqncOcGLXRVr1CrR68QV3Jw1LH+rOxM/3cOxCHvct2sv3j/WkmZ+bVeOozQYPHsyJEycq3fa/m+8OGzbsuhvyBgYGsnbt2oqfz58/T0ZGBs2b147Ev66QkSIhhBBC1Htf/p6MLq+EJt7OTOoVautwuJh4hQ1fHEdRoHXfILqPDLdIP0ERXkT21IIC279LwGi4drlpS/J01vDN1B60CvQgq6CU+xbtISWr0Opx1Fdbtmzhl19+ITk5md27dzN+/HjCwsLo37+/rUOrUyQpEkIIIUS9ll1QyifbTNPH5gxpiaO99auyVYrnQgFrPj6KodxIWPtG3DahhUXXf/SKbo6jiz1ZaQUc23HBYv3ciJeLA99M7U6LADcu5ZkSo7TLRTaJpb4pKyvjxRdfpE2bNowZMwY/Pz+2bduGRmP70dC6RJIiIYQQQtRrH2xJoqC0nDZBHozqEGTTWIxGhfWLjqEvLiewuSdRD7dBbWfZ0zEXDwd63tUUgL0/n6Uwt9Si/V2Pr5sj3z7ck2Z+rlzMLeGBxXGU22Dkqr6Jiori2LFjFBUVcenSJVatWkVoqO1HQ+saSYqEEEIIUW+dyy7k273nAHjxzlao1batyKVWqxjycBuCW3lz5xPtrbaXUOt+jfEPdUdfYjB7QYeq8HN3JOaRnni7aDibWcjmUxk2i0WIv5KkSAghhBD11lvrEygzKNzWwo8+zRvZOhwAGjVxZ9TTnXBytd70JrVaxe2TIome05nWfW07Whbg4cT47qYKal/HnrNpLEJcJUmREEIIIeqlQ2k5rD6SjkoFzw+LtFkcBoORDV8c52JSjs1iAFMyFtjcy6YxXDWxRwhqFexKyiIpo8Bs7V6vQpuon8z5fktSJIQQQoh6R1EUFqw9CUB0pya0CvSwWRxbvz5F4r5L/PbJUbNv0FpduZnFnDlgu6lrTbxdGBhpKkH+zZ6ajxZdLSpQVCTFGxqSq++3OYpKyD5FQgghhKh3tpzKYG/yZRzs1cwe0sJmccSuOkPCHh0qtYpBU1rh4GT7U6/sCwX8+O/9qFTgF+qOh6+zTeKY3CuUTScvsSL+PM9GtcTVsfqvjZ2dHV5eXmRkmBI9FxcXi1b0E7alKApFRUVkZGTg5eWFnV3N1+bZ/jdTCCGEEHWarlBHal4qIR4haF21tg6HcoORf/92CoCH+oQT5GWbk/5j289zcEMqALffH0lYu9qxpsknyJWAMA8uJuaw64dE7nyivU3i6Nu8EeGNXEnOKmTVwQvc37NmFdO0WtNn72piJOo/Ly+vive9piQpEkIIIUS1rUxcyfzY+RgVI2qVmnm95hEdEW3TmFYcOE9iRgFeLhqeGNDMJjFcSslj5w+JAPS4qymtegfaJI5rUalU9J/Qgh9e20fy4SxSjmbZJGFTq1VM6hnKK6tP8HXsOSb2CKnR6I5KpSIwMBB/f3/KysrMGKmojTQajVlGiK6SpEgIIYQQ1aIr1FUkRABGxcj82Pn0DuptsxGjIn05/9l4GoAZAyPwdLb+BpYlhWWsX3QMo0GhaUc/ugytfXvG+Aa50WFQMAc3prLz+9M0aelttfLgfzW2SxPeWp9AwqV89iZfpmdT3xq3aWdnZ9aTZdEwSKEFIYQQQlRLal5qRUJ0lVExkpafZqOI4MtdyVzKK6WJtzP39wyxSQxqOxUBYR54NHJi4OTIWru2pevwMNy8HcnLKiF+nW1KY3s6axjdqTEg5bmFbUlSJIQQQohqCfEIQa2qfCqhVqkJdg+2STzZBaV8uv0sAM9GtcTR3jajBQ5O9gx5uA1j/9EVRxfrj1TdKgcne/reEwHAgQ3nyLlkm8ptk3uZRtLWH9dxKa/EJjEIIUmREEIIIapF66plXq95FYnR1TVFtpo698GWJApKy2nX2JOR7a2/QWnBldKKfVNUKhUuHg5Wj6Gqmnb0+2OKXxhuPo42iaFVoAfdwrwpNyrE7E21SQxCyJoiIYQQQlRbdEQ0vYN6k5afRrB7sM0SopSswor9bl64MxK12rpT1orz9Sx/Yz8B4R4MnNwKR+e6cYqlUqkY+lhbm0/xm9wrjH0pV4iJS2Xa7c1xsJfv7YV1ySdOCCGEEDWiddXSTdvNpuW431qfQLlR4faWfvRuZt1KaopRYdPiExTmlHL5YiG1dAnRdf01ITIajJTrDVaPIaqNFj93RzLzS1l/XGf1/oWQpEgIIYQQddrB1CusOZqOSgXPDYu0ev/x686ReuIy9ho1Qx9tWys2aK2OjHN5/Pjv/ez5+azV+3awVzOhu6kwhhRcELYgSZEQQggh6ixFUViw1rRR692dmxCp9bBq/+cTrhD3qymJ6D+hJb6N3azavzkVF5SRlVbAka3nyTpfYPX+7+segp1aRVzKZU7p8qzev2jYJCkSQgghRJ216WQGcSmXcbRXM2tIC6v2XZhbyoYvjqMoENk7sFZt0FodoW18adbZD8WosD0mAcWoWLV/racTUW0CAPhKRouElUlSJIQQQog6qdxg5I11plGiqX3DCfR0tmr/m5eepDhPj0+QK/3HWzchs5S+4yKwd7RDdzaXU3vSrd7/5F5hAKw6cIHc4jKr9y8aLkmKhBBCCFEn/Rh/nqSMArxdNDw+oJnV++92ZxjeWheGPtoWjYNt9kQyNzdvJ7oPDwdg94ozlBRYNzHpEe5DiwA3issMrIg/b9W+RcMmSZEQQggh6pwifTn/2XgagBkDI/Bwsv4mqYHNvZgwtwfeWler921J7Qc1wSfIlZLCMtYtOmrVanQqlYpJf4wWfbPnHEYrT+ETDZckRUIIIYSocz7fmUxmfikhPi7c3zPUav3mXy4h++KfRQhUVt4PyRrs7NQMntIajaMddvbWHwEb06kxbo72nM0q5PczWVbvXzRMkhQJIYQQDYCuUEdcehy6wrq/B0xWQSmfbT8DwLNRLa220afBYGTD58dYvmA/yUfq98m6X4g70c924c4n2mFv5amBbo72jO3cGJCCC8J6JCkSQggh6rmViSuJWhHF1A1TiVoRxcrElbYOqUbe35xIod5AhyaeDG9nvYpve1adQXc2D7W9Gp/A+jVl7loaNXHD7o+EU1EUkuIzrFaR7uoUus0nL3H+SpFV+hQNmyRFQgghRD2mK9QxP3Y+RsUIgFExMj92fp0dMTqbWUDM3lQAnh/WCrWVpq+dPZTJoU1pAAya3ApPP+tWursmxXrrbX5fnsT6RcfYsew0ihX6be7vRp/mvhgV+PaP91sIS5KkSAghhKjHUvNSKxKiq4yKkbT8NBtFVDNvrU+g3KgwMNKfXs18rdJnbmYxm5eeBKDDoGCadvKzSr83VHQZPuoBn/YDveVHUvxD3UEFx3ZcYPfKM1ZJjCb1DAPg+31plJRZr9iDaJgkKRJCCCHqsRCPENSqyn/u1So1we7BNoqo+uLPXeG3YzrUKnhuaKRV+jSUGVm/6Bj64nICwj3oNcb6pb//RlHglxmQlQC6I7DjTYt32aK7ltsnml7zQxtT2bcmxeJ9Dm7lT5CnE5cL9aw9av09k0TDIkmREEIIUY9pXbXM6zWvIjFSq9TM6zUPravWxpFVjaIoLFhrGq0Z1yWYllp3q/R7bMcFMlPzcXS1J+qRthVrbGwqfjGcWg1Xk93dH8Cl4xbvtnXfIPqOiwBg3+pkDm6w7LQ2ezs19/UIAaTggrA8e1sHIIQQQgjLio6IpndQb9Ly0wh2D65zCRHAxhOX2H/uCk4aNc/c0cJq/bYb0JjiAj3app64+zhZrd/ryjgJ614wXb/jVUiNNSVIv86Eh9aD2rJJW4dBwZTpDez9+Sy7VyahcVTT9rYmFutvfPcQ3t+cxKG0HI6cz6F9Ey+L9SUatlrwdYcQQgghLE3rqqWbtludTIjKDUb+ve4UAFP7hqP1tF5yorZT0/OuZoS1a2S1Pq+rrASWT4XyEmg2CHo+CcPeAAc3OB8H8V9aJYyuw8LoPDQUlQo0jpYt193IzZE725k+szJaJCxJkiIhhBBC1Grf70/jbGYhPq4OPHab5df0lOsN7P8tBUOZ8eYHW9PGlyDjOLj6wZhPTaNCnk1g4Eum+zfNh3zrVBXseVdTxr3QjZY9LV8S/Wp57l8PX+RKod7i/YmGSZIiIYQQQtRahaXl/HdjIgBPDWyOh5PG4n3u/P40e38+y28Lj1q8r1t2ai3ELTRdH/0puPn/eV/3RyCoM5TmwW/PWSUclUqFX8if67oKc0tJO3XZIn11DvGiTZAHpeVGfthfN6smitpPkiIhhBBC1FpvrU8gq6CUUF8X7usRavH+Tu1J58Tv6aAyrZ+pFfIuws/TTNd7TYeIwZXvV9vByPdAZQcnfoLT660aXlGenlXvHGDNh0c4b4HESKVSMbmX6b3/es85DFbaQFY0LJIUCSGEEKJWWnngPEt2pwAwb2RrHCxc+S37YgHbYxIA6D4inOBIH4v2d0uMBlj5KBRfBm17GDT32scFtoeeT5iur5kN+kKrhejoao9PoCuGciNrPjlK+plcs/cxqkNjPJ01nL9SzLaEDLO3L4QkRUIIIYSodY5dyOWFlabpa08NbM7AyACL9qcvKWf9wmOU640Et/Kmy7Awi/Z3y35/F1J2gsYV7l4M9o7XP/b2F8EzBHLTYOvrVgvRzk5N1MNtCW7tQ3mpgdUfHCIzNd+sfTg72HFPV1OVOym4ICxBkiIhhBBC1CqXC/U89nU8peVGbm/px8zBli3BrSgK22MSuKIrwtXTgcEPtkGtVlm0z1uStg+2/Mt0/c43oVHzGx/v4ArD3zFd3/MJpB+2bHx/YadRM+zxdgQ290RfYuCX9w6RfbHArH3c39NU8W776UxSsqw3EiYaBkmKhBBCCFFrlBuMTI85wIWcYsJ8XXh3fCeLJyj5l0tIOZqNSq1iyMNtcfFwsGh/t6QkF1ZMBcUAbcdCx4m39rgWQ6D1aNPjfn3aNP3OSjQOdoyY1gH/UHdKCsv45d1D5GQUma39UF9XbmvhB8A3e64/WqQr1BGXHoeu0DqV+ET9IEmREEIIIWqNN9adYveZbFwc7Fg4uSuezpavNufh68w9L3Zj0ORIgiK8LN7fTSmKaV1QzjnwCoER/wVVFRLDYW+AoydcPAhxiywX5zU4ONsz8qmO+DZ2ReNkh52Z14FdLbjww/40ivV/T/hWJq4kakUUUzdMJWpFFCsTV5q1f1F/SVIkhBBCiFrh50MXWLQzGYB3xnWgRYD7TR5hPp5+zlbZc+eWHF4GR380VZMb+wU4eVbt8e5aGDzPdH3Lq5B73vwx3oCTq4ZRT3dizOzOuPuYd6Pd21r4E+LjQl5JOT8fulDpPl2hjvmx8zEqpv2ljIqR+bHzZcRI3BJJioQQQghhcycu5vHciiMAPDmgGcPaWT5BObk7nbQTltlbp9qyz5hGiQBufwGCu1evnS4PQpPuoC+w2t5Ff+Xi4YCr559FIVKOZlFcUPONV+3UKu7vGQKYCi4oyp/luVPzUisSoquMipG0fNnbSNycJEVCCCGEsKkrhXoe+2Y/JWVG+rfwY/aQlhbvszC3lB3fn+aX9w9ZbNPRKivXw/KHoKwQwvpB31nVb0utNu1dpLaHU6vh5GrzxVlFifsvsfbjI/z6/mFKi8tr3N49XYNxtFdzIj2PA6lXKm4P8QhBrap8aqtWqQl2ryX7TYlaTZIiIYQQQthMucHIU8sOkna5mBAfF94f3xE7K1R+2/PTGcpLDQSEe9CkhbfF+7slW16F9EPg7A1jPjNtyloTAa2h91Om62ufhZK8GodYHY2auOHkpiEzNZ/VHxymrLRmxR+8XBwY1SEIqFyeW+uqZV6veRWJkVqlZl6veWhdtTXqTzQMkhQJIYQQwmbe2pDAzsQsnDV2LJzcBS8Xy1d+yziXx6lY0zqTvuMiUNWG8ttJm2H3+6broz4Ez8bmafe2f4B3GORfhK3/Mk+bVeStdWXkUx1xdLFHdzaXtZ8cobysZonRA73DAFh7NJ3M/NKK26Mjolk/dj1fRn3J+rHriY6IrlE/ouGQpEgIIYQQNrH6yEU+234WgLfGtSdS62HxPhVFYdcPiQC06B6AtmkVixhYQkEmrHrcdL3rVGg1wnxta5xN1esA9n4GF+LN13YV+AW7M2J6BzSOdpw/dYX1C49hKDfe/IHX0baxJ51CvCgzKCyLS610n9ZVSzdtNxkhElUiSZEQQgghrO6ULo9nfzQVVnjstqaMaB9klX6T4jNIP5OLvYOaXmOaWaXPGzIa4acnoDAD/FpBlAVGc5oNhHb3AIpp7yJDzdf1VIe2qSfDp7XHTqMm5Wg2W746WaP2rpbnjolLpdxQ/QRLCJCkSAghhBBWllOk59Gv4ikuM9AvohH/iIq0Sr/lZQZiV54BoHNUKG7e5i0XXS17P4WkjWDvBHd/aRrZsYSo18HJC3RHYe8nlunjFjRu4c2wx9uhtlOhGJUaTaO7s10gvq4OpOeWsOnkJTNGKRoiSYqEEEIIYTUGo8LTyw6RermIJt7OvD++k1UKKwDY2avpPbY5QRFedLwjxCp93lD6Ydj0x35CQ14zFUawFDc/GPKq6frW1+HKuRsfb0GhbXyZ/HpvhjzcFntN9YtJONrbcW83U2W5pbtt93xE/SBJkRBCCCGs5j8bE9h+OhMnjZrPJnXB29XyhRWuUqlUNO/iz5jZndE41LCyW03pC2H5VDDooeVw6Paw5fvsNAlC+0BZEaydA3/Z48fa/rqHUU1M7BmKWgWxZ7NJvJRvljZFwyRJkRBCCCGs4rej6Xy01TR97Y2x7WkTZL0iBzWtdmZ2vz0H2YngHgR3fQgqK4yWqVQw4l1QayBxA5z4yfJ93kRuZjF7fz1baRPWqmjs5czgVgEAfL1HRotE9UlSJIQQQgiLO30pn9k/Hgbg4b7h3NXRTCWnb8GllDy+enE3x3ZcsFqfN3RsJRz8GlBB9Gfg4mO9vv1aQL8/NoX97TkozrFe3/+jXG/gxwX72L8mheTDWdVuZ3KvMABWHrhAQaltikiIuq9KSdGCBQvo1q0b7u7u+Pv7M3r0aBISEiodU1JSwrRp0/D19cXNzY2xY8dy6dKNF79NmTIFlUpV6TJ06NCqPxshhBBC1Dq5xWU89nU8RXoDvZv58vww6xRWgD9LcBfnl6E7m2u1fq/ryjn4dabper/ZEN7f+jH0nQW+zaHgEmyeb/3+/2DvYEfb/qbkOO7XsyjG6o0W9WnuS1M/VwpKy1l14Lw5QxQNSJWSou3btzNt2jT27NnDxo0bKSsrY8iQIRQWFlYc88wzz/Drr7/y448/sn37di5evEh09M03zho6dCjp6ekVl++++67qz0YIIYQQtYrRqPDM94dIziqksZczH0zohL2d9SaqJO3PQHfWVIK75102LsFtKIeVj0BpLjTpBgOer1FzZTodhXv2UqbTVe2BGifTNDqA/V9CWlyN4qiJjneE4OBsT/aFQpIOZFSrDZVKxaSepvLcS2PPVXsq3q3SFeqIS49DV1jF193GbVuj/brMvioHr1u3rtLPS5Yswd/fn/j4ePr3709ubi5ffPEFMTExDBw4EIDFixfTqlUr9uzZQ8+ePa/btqOjI1qtbLIlhBBC1CfvbjrNllMZONqbCiv4uplngf2tKNMb2L0yCYAuQ0Nx87Ze39e0401I2wuOHjD2c7DTVLupnOXLSZ87z7TPkVpN4Cvz8br77ltvILwfdJwIh7417V302I4axVNdTq4aOg4OJu7XZOJ+TaZZJz/U1Uiax3ZpwlvrE0jKKCD2bDa9mzWyQLSwMnEl82PnY1SMqFVq5vWaR3TEzb/8t3Xb1mi/rqvRVzW5uaZhaB8f01zY+Ph4ysrKGDx4cMUxkZGRhISEEBsbe8O2tm3bhr+/Py1btuSJJ54gOzv7hseXlpaSl5dX6SKEEEKI2mP9cR3vbzElJQui29G2sfUKKwAc2phKwZVS3Hwc6TjYxiW4U36HHW+Zro/4L3iHVbupMp3uz4QIwGgkfe68qo8YDXkNXHwh4wTsfr/a8dRUh4HBOLlqyLlUxOm46u035OGkYUwn01S8r2MtU3BBV6irSCoAjIqR+bHzzTLqYsm2rdF+fVDtpMhoNDJz5kz69OlD27ZtAdDpdDg4OODl5VXp2ICAAHQ3+EUdOnQoX331FZs3b+aNN95g+/btDBs2DIPh+pViFixYgKenZ8UlODi4uk9FCCGEEGaWlJHP7B9MhRUe7BNGdOcmVu2/4EopB9abTo57RzfH3pYluIsum6bNKUbT6Ey7KozoXIM+5dyfCdFVRiP6c6lVa8jFx7SpK8D2N+Hy2RrFVV0OzvZ0ijIlrfvWJGMoN97kEdd2teDChhOXSM8tNld4FVLzUiuSiquMipG0/LRa3bY12q8Pqp0UTZs2jWPHjrFs2bIaBzF+/HhGjRpFu3btGD16NKtXr2bfvn1s27btuo954YUXyM3NrbikpcmbKoQQQtQGeSVlPPp1PAWl5fQI9+HFO1tZPYbUE9mUlxkJbOZJ8y7+Vu+/gqLAr09B3gXwaQbD3qxxkw5hoaD+n1M4tRqH0GqMhrW/F8Jvg/ISWD3LZnsXtRvQBK8AF1r20GKsZsGFllp3uof7YDAqfLe3igniLQjxCEGtqvy6q1Vqgt1r/sW8Jdu2Rvv1QbWSounTp7N69Wq2bt1KkyZ/fvOj1WrR6/Xk5ORUOv7SpUtVWi/UtGlTGjVqRFJS0nWPcXR0xMPDo9JFCCGEELZlNCrM+v4wZzMLCfR04qOJndFYsbDCVa37BDHu+a7cdl9LVNbYA+h64hfDyV9NewPd/QU4utW4SY1WS+Ar8/9MjP5YU6Spztpslco0nc/OEc5uhaM/1ji+6tA42DFhXg+6j2xao411J/cyFVyIiUtDX80Rp+vRumqZ12teRXJxdV2O1rXma+It2bY12q8PqlRoQVEUZsyYwapVq9i2bRvh4eGV7u/SpQsajYbNmzczduxYABISEkhNTaVXr1633M/58+fJzs4mMDCwKuEJIYQQwsY+2JLEppOXcLBX8+n9XWhkxcIK/8s/1MZfmGacgnUvmq4PngdBnczWtNfdd+Paty/6c6k4hIZULyG6yrcZ3PYsbHkN1r0AzQdbd++kP6jVNU9eo9po8Xd3JCO/lNVHLpp92mZ0RDS9g3qTlp9GsHuwWZMKS7Ztjfbruip9dTNt2jS++eYbYmJicHd3R6fTodPpKC42zdv09PRk6tSpzJo1i61btxIfH8+DDz5Ir169KlWei4yMZNWqVQAUFBTw7LPPsmfPHlJSUti8eTN33XUXzZs3JyoqyoxPVQghhBCWtPnkJf676TQA/xrdlg7BXlaP4cLpK+RcKrJ6v39Tkgff3w/lxdBsIPScZvYuNFotrj261ywhuqr30+AXCUVZsHFuzdurJkVRSDtxmTUfHaas9Ppry69HY6fmgd5hALyz4TQlZVVv42a0rlq6abtZJKmwZNvWaL8uq1JS9Mknn5Cbm8uAAQMIDAysuHz//fcVx/z3v/9lxIgRjB07lv79+6PValm5cmWldhISEioq19nZ2XHkyBFGjRpFixYtmDp1Kl26dGHnzp04Otq4dKYQQgghbsnZzAJmLjsEmKYwjetq/bUKZaUGNi0+wXev7CXt1GWr919BUeCnJyA7EdyDYMzCv68Bqm3sHf7cu+jg16ZqeTZgNCpsizlFytFsjm6r3kasD/UJJ8jTiQs5xXy+0zbFI0Tdo1IsvcOVleTl5eHp6Ulubq6sLxJCCCGsqKC0nNEf/U5SRgHdwrz59uGeONhbPwmIW53MvtXJuPs4cd/LPWxXcW7nf2DzfLBzgAd/gyZdbRNHdfz6NMQvgUYt4PFdYG/9L6hP7Uln85KTOLlqmPRaLxycq7TaA4CfD13g6WWHcHGwY+ucAQR4OFkgUlGbVTU3qOVfWwghhBCiNtOXG5m57BBJGQUEeDjy0cTONkmI8i+XcPBqCe6xNizBnbQZtrxqun7nW3UrIQIY/DK4+kPWadj1rk1CaNFdi7fWhZLCMg5vqV514VEdgugU4kWR3sBb6xPMHKGojyQpEkIIIUS15JeU8dCSfabCCnZqPrm/C/7utvlGPnbVGVMJ7uaeNOvsZ5MYuHIOVkw17UfUeTJ0mWKbOGrC2RuGLjBd3/k2ZFo/oVCrVXQbYSrmdWhjKiWFZVVuQ6VSMW9kGwCWx5/n6Plcs8Yo6h9JioQQQghRZRn5Jdz72R52JWXh4mDHoge60jnE2yax6M7mkrjvEqig3z0tbFOCu6zYVFih+Iqpytywt6wfg7m0HWuqQGfQw7d3Q95Fq4fQvLM/vo3d0JcYOLSxensOdQz2IrpTYwBeWX2cerJiRFiIJEVCCCGEqJKzmQVEf7ybE+l5NHJzYNmjPbmthW1GZxSjws4fEgFo1SsQvxB3GwShmDY+1R0BF1+452vQ1OE1LCoVjP4EfJpCTip8PQaKrFu4QqVW0X2kabTo8NbzFOfrq9XOs0Nb4qyxY1/KFdYe1ZkzRFHPSFIkhBBCiFt2MPUKYz/ZzfkrxYT6urDiid60b+Jls3iMikJ4h0a4eDrQ466mtgli/xdwOAZUarh7MXhZv/Ke2bn5w+SfTdXzMk/BN2OhNN+qIYR3aEREtwAG3h+Jk6umWm0Eejrz+G3NAHh97UmLlOgW9YNUn7MAXaGO1LxUQjxCzF4H3pJtCyGEEDey5dQlpn17kOIyA+2bePLllG423Zz1rwxlRuw0NviuN3UvLBkOxjK441Xo81TFXWU6HfqUcziEhZpnLyFbyEyAxcOgKBvC+sHE5XVuFKxYb2DgO9tIzy3h2aiWTLu9ua1Dqpdq2zlqVXMDSYrMbGXiSubHzseoGFGr1MzrNY/oiOha37YQQghxIz/sS+OFVUcxGBX6t/Djk4mdcXWseqnkeiX/EnzWHwp00Ho0jFtimnoG5CxfTvrceWA0glpN4Cvz8br7bpuGW20XD8KSkaDPh5Z3wj1fgV31Rm5qwmhUUKurt17sryW6t80ZgH8DK9GtLzfy27F0ftifhqJAtzAfejT1oVOwN85mqNRYG89RJSmyYVKkK9QRtSIKo2KsuE2tUrN+7PoaZ8yWbFsIIYS4HkVR+HBLEu9sPA1AdOfGvDG2PRo7287Az79cwvpFx+h5V1OaRPpYPwBDGSwdBam7wS8SHt4Mjm6AaYQoaeAgU0J0lVpN8y2b6+6IUcou0xS68hJofy+M/tRqG9IqisLRbRc4uPEcY2Z1xqORc7XaiP5kNwdTcxjXpQlvjetggUhrn6yCUmL2pvLNnnNk5Jf+7X6NnYr2TbzoHu5D93AfuoZ64+5UtYS3tp6jVjU3aOBf8ZhXal5qpQ8EgFExkpafVuMPhSXbFkIIIa7FYFSY+/Mxvt1rqv715IBmPBvV0jbV3f5H7MokLiXnsW9NCo1bels/pg0vmRIiRw+495uKhAhAn3KuckIEYDSiP5dad5OisL4wbil8PxGOfA9OnjDszYqRMUtSqVQkH86k4HIp+9emMHByq2q18dKI1kR/vJvlB84zuVcY7Zp4WiDa2uHYhVyW7E7hl0MX0RtMn0V/d0fu7xmKj6sDccmX2ZuczaW8UuLPXSH+3BU+2XYGtQraBHlWJEndwnzwcXW4YV/15RxVkiIzCvEIQa1S/y1TDnav+YJLS7YthBBC/K+SMgNPfXeQDScuoVLByyPb8EDvMFuHBUD6mVwS92eACvqOi7B+QnTkB9j7ien6mE+hUUSlux3CQk2jKP8zUuQQGmLFIC2g5VDTCNHKRyBuITh5wcD/s0rXPUY15fypeE7t0dE5KhSvAJcqt9E5xJvRHYP46dBFXl19gu8f61krEnxzKTcY2XjiEot/TyEu5c9qgR2CvXioTxjD2gZWbKx8f89QFEUh9XIRe5MvE/fHJfVyEUcv5HL0Qi5f7EoGoEWAGz3CfSsSpYD/mXpYX85RJSkyI62rlknNZ7Pk9NuoVErFnEpzZMlaVy3zes3723zNupSBCyGEqBtyivQ8vHQ/+89dwcFezbv3duTOdoG2DgswleDe9YNpKl/r3jYowa07Cr/8UUyh/7MQOfxvh2i0WgJfmf+3NUV1dpTor9qPg9JcWDMbdrwJzl7Qa5rFu9U29SSsnS8pR7OJW53MkKltqtXOc8MiWXdcR1zKZX47pqs1n+uayCnSs2xfGl/HnuNCTjEA9moVd7YL5ME+YXS6zv5hKpWKUF9XQn1duaerKYFJzy2uSJD2Jl8mKaOA05dMl6/3nAMgzNfljwTJlx7hPjTxDqgX56iypsjMTqbnMXnpBi7rL9LIsTFfTxlCiwDz/YetK9SRlp9GsHtwnfuwCSGEqP0u5BTzwJdxJGUU4O5kz+eTu9Kjqa+tw6pwak86m5ecRONkx/2v9MLF48ZTe8yq6DIsHAA550ybm973A6ivv0i9TKdDfy4Vh9CQ+pEQ/dWOt2HLq6broz6EzpMs3mVmaj4/vL4PVDD+n93xbex28wddw7ubTvPupkSaeDuzadZtOGlqXmjAFhIv5bN4dworD5ynpMw0SuPj6sDEHiFM7BGK1rPmxSSyCkrZn3K5YjTpRHoe/5s5BHk60T3ch8gmClrfAnoERxDoZvtkUwot1IKS3OevFPHAl3GcySzEw8meL6Z0o1uYDRaBCiGEEFVwSpfHA1/GcSmvFK2HE0sf6k5LrQ02Q70OfUk5387bQ1Gunl5jmtE5KtR6nRuNEHMPJG0Er1B4dBu4NOC/7YoCG1+C3R+Y9mcatwRa32XxbtctPMqZA5k07eTHsMfaVauNv5bo/sfQljw5oO6U6DYaFbYmZLBkdwo7E7Mqbm8V6MGDfcIY1SHIoklebnEZB85dYe8fa5KOns+l3Fg5lXhqYHNmDWlpsRhulRRaqAWaeLuw/PHePPzVfuLPXWHi53t5f3xHhra1fdYshBBCXMues9k88tV+8kvKifB3Y+lD3QnyqnqVL0s6HXeJolw9Ho2c6DDQyusVtv/blBDZO5kKKzTkhAhMBRbueBVKcuHAV7DiYXB0h2YDLdpt9xFNOXMwk7OHMsnNLMbTr+qfUWcHO54bGsnM7w/x0ZYk7u7cpNaX6M4vKWN5/HmW7k4hJbsIALUKhrTWMqVPGD3CfayyPsrTWcPtkf7cHukPQJG+nIOpOX+MJGVzMDWHjiFeFo/DEmSkyIJKygxMjznIppOmRaqvjGrDpF5htg5LCCGEqGTNkXSe+f4QeoORbmHeLJrcFS8XK05Lu0WKopAUn4GDsz2hbaw4pS/hN/huvOn6mIXQ4V7r9V3bGQ2w/CE48RNoXGDyzxDc3aJdHtqUSuMW3jVaT2Y0mkp0H0rL4Z6uTXjz7tpZojslq5Alu1NYHn+egtJyADyc7BnfPYRJPUMJ9ql6wQlLKi03oEJVUdDBlmT6XC1KisBUCeSln4/zXZypnOm025sxZ0jtKGcqhBBCLPk9mfmrT6AoENUmgPfGd6qzaywsIvuMaR1RaR50fwzufNPWEdU+5XpT0nhms6lU95S1oG1r66hu6kDqFaI/3o1KBb9O70vbxrWjRLeiKOxKymLJ7ylsScioWMPT3N+NKb3DiO7cGBcHmex1M5IU1bKkCEwf7vc3J/HfTaZqOeO6NOH16HY23/hOCCFEw6UoCm+sS+DT7WcAmNQzlJdHtcFOXfu+tMu5VISzhwOOzlY+ESwtgM8HQ+ZJCOkFk38B+9o3glYr6Avh62hI2wOu/vDQOvBtZvFuC3NLcfV0rPbjn152kJ8PXaR7uA/fP2r7Et2/J2Xx8i/HScwoqLhtYKQ/D/YJo2/zRjaPry6pam4gZ+UWcEVXyNpPjlBSWAaYSh4+PTiCf0e3Q62CH+PP88hX+ynSl9s4UiGEEA1RmcHI7B8OVyREc4a04JW7amdCpBgVNnxxnG/nxnIx8YoVO1bgl+mmhMhNayokIAnR9Tm4wn3fQ0A7KMyAr0ZD3kWLdrlreSJfvbib86cu3/zg63huaCROGjVxyZdZd0xnxuiqbnn8eR74Mo7EjAJcHeyY0juMrXMG8OWUbvSL8JOEyMIkKTIzRVHY+OUJkg9nsWPZ6Ur3je8ewsJJXXHSqNmWkMmEhXvILii1UaRCCCEaooLSch5aso+VBy9gp1bx5t3tmT7QBhug3qIDG86RmZqPocyIV4Cr9TqO/QiOrwK1PdzzFbjXs5LaluDsBZNWgk8zyE01JUaF2RbrzliuYDQo7P0lmepOfArycuax/qYRrdd/O0lJmcGcId4SRVH4cEsic348TLlR4a6OQcS+OIiXR7UhvJEVP/MNnCRFZqZSqegzpBEqFSTuu8SZgxmV7h/cOoCYR3ri7aLh8Plcxn6ym9Q/qogIIYRouHSFOuLS49AVWu7b6sz8UiYs3MPOxCycNXZ8PrlrxaaNtY2iKOxbk8yen84C0H1UU+vtSZS8AzbONV0f+m8I6WGdfmuRMp2Owj17KdNV8fPo5g+TfwKPxpCVAN+OhZI8i8TYZVgodho1urO5pJ6o/mjRY7c1RevhRNrlYhb/nmK+AG9BucHI//10jLc3mL5If2JAM/57T0c8nDRWjUNIUmR2OcuXkzd5BCEp6wHY+uURivP1lY7pHOLN8id609jLmZTsIqI/2c2xC7m2CFcIIUQtsDJxJVEropi6YSpRK6JYmbjS7H2kZBUy9pPdHL2Qi4+rA9892rOirG5toygKu1eeIe7XZAB6jAqn/e1NrNN57nn48UFQDNBhAnR72Dr91iI5y5eTNHAQqVOmkDRwEDnLl1etAa8QmPQTuPjCxYOw7D4oKzZ7nK6ejrQbYPpc7P35bLVHi1wc7HlumGlfnY+2JpGRX2K2GG+kSF/O49/EE7M31VSl+K42PDc0EnUtnMbaEEhSZEZlOh3pc+eB0Uh4ylpcCy5QWqZm6+LDf/tFbebnxqone9Mq0IOsglLu/SyWnYmZNopcCCGEregKdcyPnY9RMe1Ib1SMzI+db9YRo9OX8k0zEy4XEezjzIonetMx2Mts7ZuT0aiwLSaBQxtNVVv7joug653h1pneV1YC30+CoizQtoMR/zXtx9OA/PVcBgCjkfS586o+YuTXAu5fAQ7ukLLTlGgaysweb+chIWgc7chMzSf5cNbNH3Add3VoTIdgLwpKy/nPhtM3f0ANZReUMmHRXjadzMDRXs2n93dhsmzbYlOSFJmRPuVcxX8iaqWc1qe+QmU0kHwin6T9GX873t/DiR8e60mf5r4U6g08uHgfqw6et3bYQgghbCg1L7UiIbrKqBhJy08zS/tGo8LzK46QXainTZAHK57oXavXKSgGhfysYlDB7ZMi6TDIitP7fvsHXDwAzt6mDVo1tWvzWmv467lMBaMR/bnUqjcW1MlUfMHeCU7/Bj9P+3vbNeTs7kD7gX+MFv1yFsVYvdEitVrF3BGtAfh+f5pFZ/CcyzaN2h5Oy8HLRUPMIz2IaiNr1mxNkiIzcggLBfWfL6l7wXnCUk3T6E7Fpl/zMe5OGhZP6c6oDkGUGxWe+f4wn20/U+0hYCGEEHVLiEcIalXlP8dqlZpgd/MkA6sOXuBAag4uDnZ88UA3/N2dzNKupdhp1Ax7vD0jZ3SgdZ8g63UcvxQOLAVUMPYL8A6zXt+1yP+eywCgVuMQGlK9BsP6mApVqO3hyPemxNPM5zgdB4fg4GxPXnYJl9MLq91Ol1BvRnUIQlHg1dUnLHIudigth+iPd5OS/eeobZdQH7P3I6pOkiIz0mi1BD55N6j++CVSq+n5UE9uu68lw6e1v+7jHOzVvHtvRx7uGw7Agt9O8crqExir+W2HEEKIukPrqmVer3kViZFapWZer3loXWv+zXF+SRkLfjsFwPSBzdF61s6EqKzUwPGdFypOQjWOdoS09rVeAOfjYe0c0/WB/4Tmg6zXdy2j0WoJfGX+n4mRWk3gK/PRaGvweWwRBWM+A1SwbxFs/ZdZYr3KyVXD0EfbMvm1Xvg2dqtRW88Ni8TRXs3e5MusP27eoiebT14yVR4u1NO2sWnUtplfzeIV5iObt5qbolD2Vm/0yUk43PEYmujXqvTwRTvO8q+1JwEY3j6Q/9zTAUd72VlcCCHqO12hjrT8NILdg82SEAG8vvYkC3ecJbyRK+tm9quVf09Ki8pY/eERdGdz6XFXU7oOC7NuAAWZsPA2yLsAkSPgnq//PlLSAJXpdOjPpeIQGlKzhOiv9n0Ba2aZrg/5F/Sebp52zew/GxJ4f0sSwT7ObJp1m1l+b76LS+X/Vh3FqED/Fn58PLEzbo5W3oy4gZHNW21NpUIz/B+4BujRnP66UhlKQ5mRvb+epeDK9auaPNK/Ke+N74jGTsWaI+k88GUceSXmX5gohBCidtG6aumm7Wa2hCgpo4Avd5mqt80d0bpWJkTF+Xp++u9BdGdzcXSxp0mkt3UDMBphxVRTQuTbHEZ/IgnRHzRaLa49upsvIQLoNhUG/VHqfMP/wYGvzdf2X1xMzMFQXv21S4/d1owAD0ezlOhWFIX/bEjghZWmhGhclyZ88UBXSYhqIfnNt4RWo6BRCyjJgf1fVNy87dtT7F+TwtavT91wnupdHRuz5MHuuDnas+fsZe75NBZdrnXKQwohhKj7FEVh/q/HKTcqDIr0r5WltwuulLDqnQNkpRXg7K5h9KzOaMM9rRvE4RhI3g4aV7j3W3Cy4UyThqLvLOj9lOn66pmgO2rW5jcuPs6qdw5wcve113LfCldHe54bGgnAh1uSyMwvrVY7ZQYj/1h+hPe3JAHw1KAI3ry7PRo7Of2ujeRdsQS1nemXHmD3h6A3bc7aKSoUO3s1qScuc/L3G/+y9mneiO8f64mfuyOndKZSqkkZ+ZaOXAghRD2w4cQldiZm4WCn5qU/KmrVJrmZxax8+wBXdEW4eTsSPacLjZpYeW1F8ZU/N2i9/QXwj7Ru/w2VSgV3vGKaqmgsh5+egHL9zR93iwLCTIn1/rUplJcZqt3O6I6N6dDE01Sie2NClR9fWFrOw0v382P8eezUKhZEt2PWHS2sU1peVIskRZbS7m7wCjXtdXBgKQA+ga70uKspALuWJ5KXfeONzNoEebLyid40beTKhZxi7v40lvhz1d+xWQghRP1XUmbg1dUnAHi4Xzhhtaz8dlmpgZ/+c4D87BI8/ZwZM6czXgEu1g9ky2tQlA1+kdDjcev335CpVKY9oJx9TCNFO98xW9Nt+gbh5u1IYU4phzdXv6y9Wq1i7kjTFwrL9qVx/OKtl+jOyC/h3oWxbD+dibPGjkWTuzChezWr9wmrkaTIUuw00PcZ0/Xf34dy09Brh0HBBDbzpKzEwJavTt20nn6wjwvL/9hkL6eojPsW7WXjiUuWjl4IIUQdtXDHWc5fKUbr4cS025vbOpy/0Tja0W1EOL6NXRkzpzMevjbYC+jiQdOif4A73zb9zRbW5eYPw982Xd/5NqQfNkuzdho1Pf/4AnrfmhRyMoqq3VaXUB9GVrFE95nMAqI/3s2xC3n4ujqw7NGeDIwMqHYM5mQoN3LuWDaXUvJufnADJEmRJXW8D9yDIP8iHIoBTN88DJzcCnuNmgsJVzi248JNm/FxdSDmkR4MivSntNzIY1/v5/OdZ2UvIyGEEJWcv1LEx9tM6xdeHN4K11q0mPuvXwK27hPEuBe64erpaP1AjEZYMwdQoN04CO9n/RiESZto0zpsYzn89KTZptG16KGlSaQ3hjIj27698Trum3luaEsc7dXsOXuZ9cdv/KV0/LnLjP1kN+evFBPm68LKJ3vTIdir2n2bS25mEbGrklj6wu+s/vAwZw9lVtxnNBgxGMy7oW5dJUmRJdk7Qp8/FhPu+g8YTFXkvAJc6BXdDIB9a1Mo1998zquLgz2fTerC+G7BGBV4bc1JZv94mJIazJcVQghRvyxYe4qSMiPdw30Y2T7Q1uFUSD2RzY//3k9R3p8nvXb2NjoFOfQNXNgPDu5wx6u2iUGYqFQw/D/g4guXjsGOt8zUrIoBEyOxd1BzISGnRkUXmni78Gh/08jT62tPUlp+7fOudcd03LdoLzlFZXQM9mLFE70J9bXd1FWDwUhSfAY/v3uQb17aw4H1qRTnl+HgbE+zTn4Vx6Uev8zif+xiy1cnOXcsu0ZV++o6SYosrfMD4NIIclLh6PKKm9vd1oROd4Rw9z+6YO9wa2VS7e3ULIhux7yRrbFTq1h54AL3fiaV6YQQQsDupCzWHE1HrYKXR7apNQu6zx7MZM3HR8hMzefA+nO2DaboMmycZ7p++wvgUXsSxwbLzQ+G/7GmaOc7cPGQWZr19HOmx6imeDRywt23ZpsWP35bM/zdHUm9XMSSa5To/io2hSe+jae03MjgVv5890hPfN1sMAr6B0OZkW/+Gcv6Rcc4f+oKqCCktQ9DH2vLQ2/3xT/0zyqL545nU1pYzsnd6az+8DBfPruLTUtOkHIkC0NZw0qQZPNWa9j1X9j0sqlM95N7TNXpauj3pCymxRwgp6gMP3dHPr2/C11Ca76/g65QR2peKiEeIWbbK8Na6nLsQghRE2UGI8Pf38npSwVM7hXKK3e1tXVIACTs1bF56UkUo0KzTn7cMbWN7UaIAH6dCfGLwb81PLYD7DSmTUpTzuEQFmrePXlE1fzwAJz4yfTePLrNNNumhowGI4ZyBY1jzc+7lsefZ86Ph3FztGfrnAH4uTtiNCq8uT6BT7efAeC+HiG8MqoN9lYuuW0wGNGdyaVxiz/PA9ctPEp6Ui6tegfSum8QHo2uvXbPaDByMSmXMwcyOHsws9JorsbJjonze9pmmqsZVDU3kKTIGkry4N12pn2Lxi2BNmP+dsj5U5dx83aqUgWe1OwiHvlqPwmX8nGwU/PamLbc0zW42mGuTFzJ/Nj5GBUjapWaeb3mER0RXe32rKkuxy6EEDX15a5kXll9Am8XDVvnDMDLxcHWIXFs+3m2f3cagMheWm6/PxK1LfdnuRAPiwYBCkxZC2F9yFm+nPS580zrjNRqAl+Zj9fdd9suxoasMAs+6mGq2ttvDgx6yexdGI0KanX1RlCNRoXRH//OkfO5TOgewvxRbfjH8sP8dOgiAM9GteTJAc2sOkKbl1XMiV0XObk7naI8PRPn96w4jyzK0+Poao9dFX7njEYF3RlTgnTmYCYOzvbcN69Hxf2Ht6Th5uVISFtfNLc4y8mWJCmqjUkRwNYFsP3fENAWHt9lmkf7h2M7LrA9JoGAcA+in+1SpV/YwtJyZv9wmHXHdQBM6R3G/w1vVeWNwXSFOqJWRGFU/hwqVavUrB+7vtaPutTl2IUQoqayCkq5/e1t5JeU868xbZnYI9TWIXFgwzliV5q+PW93exP6jYtAVc2TUbMwGuDzQaaqc+3vheiFlOl0JA0cZEqIrlKrab5ls4wY2cqJn+GHyaCyg4c3QePOZmlWMSoc23GBI1vPc/dzXXB0qV61wf0pl7n701jUKmjfxItDaTnYq1W8MbY9Y7s0MUusN2MwGDl3JJvjuy6QeuIy/HEW7+yuYeDkVoS1a2SWfhSjQmGuHjdv0yhRmd7Al8/uorzUgL2DmtC2vjTr7E9oW18cnGpPQZe/qmpuIGuKrKXHY+DgZlpIeHpdpbtMHyg7LiXncWhjapWadXW05+OJnZl1RwsAluxOYfIXcVwurFoFl9S81EpJBYBRMZKWX/0a/9ZSl2MXQoiaemtdAvkl5bRt7MH4brbfC0VfUs7xPyqrdhkWSr97bJwQARz4ypQQOXpUFFfQp5yrnBABGI3oz1Xt77Awo9Z3QduxoBj+2NS11CzNGgxGjmw9T86lImJXnal2O13DfBjRPhCjAofScnB1sOPLKd2slhBlnS/gqxd389tnR0k9bkqIglt5E/VIWx5Y0MdsCRGASq2qSIjAtE6p3W2N8WjkRLneyJkDmWz4/DhfPruLtZ8cIfV4ttn6thVJiqzFxQe6PWy6vuNt+MsAnbuPE33viQBg769nyb5YUKWm1WoVTw2K4LNJXXB1sCP2bDajPtzFyfRbr0Mf4hGCWlX546BWqQl2r/50PGupy7ELIURNHE7L4Yd40xdAL49sg52tkw/Awcmeu2Z2ot+9Leh5l3WnE11TYTZsnm+6fvuL4G7aM8YhLBTU/3MapFbjEGr7xLJBG/YWuPpB5inYtsAsTdpr7BgwsSUAx3de5MLpK9Vu6/lhkfi4OhDg4cj3j/Wifwu/mz+omowGI7mZxRU/ewU4Yygz4uyuoXNUCPe/2pNRT3eieRd/i6/Vc3LV0Du6Ofe/2ot7XuxG56GhePqZ4kk+nEVmWr5F+7cGmT5nTQUZprVF5SUw6SdodnvFXYqisObjI5w7mo1fiDtjn+tSpXmgV52+lM8jX+3nXHYRzho7/nNPB4a1u7XqOnV5XU5djl0IIarDaFSI/mQ3h9JyGNOpMf+9t6NNY7mUnEdgM0+bxXBdvzwFB5aCf5s/iiv8OdVH1hTVUid/he/vB5Uapm6CJl3M0uzWb09xYudFPP2dGf9Sd+w11VsXk1tchouDXZWXKtyq/MslprVCv1/E3tFU7ODqlwtZ5/Px1rratmDJHxRFIftCIWcOZBDZKxBPPxtsxHwDsqaoNidFAL89B3s/hdC+8OCaSncV5pTy3St7KS0qp/vIcLoND69WFzlFemZ8d5CdiVkAPDWwOTMHt7iltUq6Qh1p+WkEuwfXufU4dTl2IYSoqh/3p/Hs8iO4Otixdc4A/D1qVna4ukoKytjy9UlSjmYz9NG2NO1ouW/Oq+z8fvh8MKDAg79BaO+/HVKm06E/l4pDaIisJapNVjwMR380Ve59bCdoav75Li0qI2b+Xopy9XQZGkrP0c3MEKh57f8thbhfzlZMKHJ213D3c12vWz1OXJ+sKartej8Fag2c2wXnYivd5erlSL97TWuD9q9JqTRkWhVeLg4sntKNh/uakqr3tyTx6Nfx5JeU3fSxWlct3bTd6mRSUZdjF0KIqsgrKeONdacAeGpQhM0SojMHMoiZv4fkw1moVKbF2bWG0QBrZgMKdJhwzYQIQKPV4tqjuyREtc2wN8HVH7JOw7bXzdKko4uG28abptEd3JBK1vnaNeXr8OY09v5sSogat/RmyMNteOD1PpIQWYkkRdbm2Rg6TTRd3/n23+5u0T2AVr0DGTSlFR6Nqv9Hzt5OzT9HtOadcR1wsFez6eQloj/eTUpWYbXbFEIIUTu8tymRrAI9TRu58mCf6s0qqImiPD3rFh5l3cJjFOeX4R3oSvScLjTr7G/1WK4rfgmkH/qjuMIrto5GVJWLD4x813R99weQts8szTbt5EfTTn4ogO7sra+9trRTe9LZ9WMiAD1GhTP6mU5EdA3ATiOn6tYi0+ds4XIyfNDFVF3lka1mKzl5PYfScnjs6/1cyivFw8meD+/rbNGFgUIIISwn8VI+w97bSblRYcmD3RjQ0rqJyJkDGWz7NoGSwjJUahVdhobSdVhY7Tp5K8wy/Z0tyTGNOPR4zNYRiepa+Sgc+R58I+DxnaCp+ahJYW4pRbl6/ELczRBgzSmKwm+fHiX5cBYdBgbTZ1xz2xcoqQdk+lxd4BMO7caZru9854aHlhSUcUVXs9GdjsFe/Dq9L51DvMgrKWfK4jgW7ThLPcmHhRCiwVAUhfm/nqDcqDC4VYDVEyIwlTcuKSzDt4kb457vSo9RTWtXQgSw6WVTQhTQDrpOtXU0oiaG/hvctJCdCFv/ZZYmXT0da01CBKBSqYh6tC0DJrakz92SENlKLftfrAHpNwtQwanVcOnENQ+5lJxHzCt7+e2zY5SXGWrUnb+HE9892pN7ujbBqMC/1p5k1g+HKalhu0IIIaxn/XEdu5KycLBXM3dEa6v0qSgKedl/rnGN6BrAHVNbM+6FrrXqxLJC2j44+LXp+vC3K1WbE3WQiw+MfM90ffeHkLrXrM1nXyjg9+WJNvmiuOBKaUW/dnZq2vRrbPs9vRowSYpsxa+laZMyuO5o0dXShlfSC4n7NbnGXTra2/HG2PbMH2Xay2LVwQvc81ks6bnVK+gghBDCekrKDLy6+iQAj/VvSoivi8X7zL9cwuoPDrP83/spKTAV61GpVLTopq3WthEWZzTAmlmm6x0nQkhP28YjzKPlUOhwH6CYNnXVF5ml2dLicla+Fc+hTWkk7NWZpc1blXOpiB9ej2P7d6cx1qYCJQ1YLfwfrQHpN9v07/GVkJX0t7ud3DQMuM9UJeXQxlR0Z3Nr3KVKpeKB3mF8PbU73i4ajpzPZeQHvxN/7nKN2xZCCGE5n24/w4WcYoI8nXhigGVLCStGhWM7LvDdK3tJPXEZfbEBXXLN/wZZ3P4vQXcEHD1h8HxbRyPMaegCcA+Ey2dgy2tmadLR2Z4uw8IA2PVjIkV5erO0ezMFV0r4+b2DFOeXkZGSR7leZu3UBpIU2VJge2gxFBQj7PrvNQ9p2tGPlj20KApsXnqSMjP94vRu1ohfpvclUutOVkEp4xfuYVlcqlnaFg2LrlBHXHocukLrfssmREOSdrmIT7adAeDF4a1wcbDclLDczGJ+fu8g22MSKCsxoG3qyb3/7EZYu0YW69MsCjJhy6um64NeAjcpKFSblel0FO7ZS5nuFv92OHvByPdN1/d8/LdtTaqrw+BgGgW7UVpYzq4fTpulzRspLtDzy3uHKLhcileACyOmd8DBSaZ41gaSFNlavzmmf48sg5xrJyV974nA1dOBnEtF7P35rNm6DvZxYcUTvRnWVkuZQeH5lUeZ+/MxygxGs/Uh6reViSuJWhHF1A1TiVoRxcrElbYOSYh66fW1JyktN9KrqS/D2wVapA9FUTiyNY1lr+7lQkIO9ho1fcdFMGZOZ7y1rhbp06w2vQwluaBtD10fsnU04gZyli8naeAgUqdMIWngIHKWL7+1B7YYAh3vBxT4+UmzTKOzs1Nz+/2RqFSQuD+DlCNZNW7zevQl5az+4DBXdEW4eTsy6umOuHg4WKw/UTWSFNlacDcIvw2M5fD7e9c8xMlVw+2TWgFweEsaF5NyzNa9q6M9H0/szOw7TJvGfhV7jke+2i+JkbgpXaGO+bHzMSqmz4pRMTI/dr6MGAlhZr8nZfHbMR12ahXzRrW2WGUqlUpFZloB5XojjVt4MX5udzoMCkZdFxZ+p+6FQ9+Yrg9/B9R2to1HXFeZTkf63Hlg/OM8w2gkfe68Wx8xivoXuAfB5bOw2Tz7T/mHetBhcAgA279LQF9SbpZ2/6q8zMDaT46ScS4fJ1cNI5/qiLuPbTZdFtcmSVFt0P9Z078Hvoa89GseEtrWl1Z9AonsqcU3yLzf2KlUKmYMimDR5K44a+zYlpDJCyuPSslucUOpeakVCdFVRsVIWn6ajSISov4pMxiZ98txACb1DCVSa959+IxGhZLCsoqf+97dnNsnRXLXzE54+lm+kINZGMph7R9rdDvdD8HdbRuPuCF9yrk/E6KrjEb0525xCr+zF4z6wHR976eQ8rtZ4uo+MhyPRk4UXCnl2PYLZmnzr3RncrmYmIPG0Y4RMzrgE1gHRl8bGEmKaoOwvhDcEwylEPvhdQ8bMDGSQQ+0xtFFY5Ew7mgdwEcTO6FWwfL487y7KdEi/Yj6IcQjBLWq8n8hapWaYPdgG0UkRP2zdHcKSRkF+Lg68MzgFmZtO/tiASvejGfjlycqvgRzdNHQuk9Q3SoLvP9L0B0FJy8prlAHOISFgvp/Tj/VahxCQ269kYjB0GkSf06jq9l+jgAaBzsG3B9Jn7ub0/GOKsRyi5pE+jDssbYMe6IdAWHm/XJDmIckRbWBSvXnaNH+L6Ew+5qH/XUKg9GokLBXZ/bRnIGRAbw2uh0A721O5Pt9UnxBXJvWVcu8XvMqEiO1Ss28XvPQumptHJkQ9UNmfinv/fHl1D+iWuJppi/EDAYj+9cm88O/9pGRkofubC55WXV0a4aCjD8rkQ2aC661vBiEQKPVEvjK/D8TI7WawFfmo9FW8W9H1L/AowlcSYFN5kmGgyN96Dg4xKxTRv86FS+8gx/BkT5ma1uYl5S7qC2aD4LAjpB+yFRVZdBL1z1UURQ2LT5B4r5LXL5YQK8xzc0ayn09QriYU8yHW5N4cdUxAjycbLJruqj9oiOi6R3Um7T8NILdgyUhEsKM3lx3ivzScto19mRcV/OMwGam5bPlq5NkpRUAENbOl9vui8TN29Es7VvdxnlQmmv6+9lliq2jEbfI6+67ce3bF/25VBxCQ6qeEAE4ecKo9+GbaIj7DFqNhPB+ZouxXG8g/WxujZKYA+vPcXzXRe56uiMejZzNFpuwDBkpqi1UKuj/RyW6uIVQnHODQ1UEtzL9kh5Yn8rhzeZfwzF7SAuiOzXGYFR48tsDHLtQB/anEDahddXSTdtNEiIhzOhg6hV+jD8PwPy7TBtu14TBYGTvL2dZvmA/WWkFOLrac8dDrbnzyfZ1NyE6FwuHYwAVDP+PFFeoYzRaLa49ulcvIbqq+aA/k+Gfp0FpgVliKy7Qs+y1OFZ/cJjsi9Vr8/jOC8SuOkNeZjHnjl17BpBVZZ+BLf+Cj3rAF1Fw6DsoK7F1VLWKJEW1Scvh4NcKSvMgbtEND23VO5Ceo5sCpg3HEvddMmsoKpWKf49tT5/mvhTpDTy4ZB9pl82zg7QQQojrMxoVXv6juMLYzk3oHOJd4zavpBdyfNdFjEaFZp39uG9eT1p011qskp3FGcph7R9fJHaeDE262DYeYTt3vAqewZBzDjbNM0uTTq4avLWuGA0KW78+hdFYtaUKSfEZbI9JAKBzVCjtBjQxS1xVVpwD+xfDF0Pgg86w403IPAVpe+Cnx+E/rWDjXLicbJv4ahlJimoTtfrP0aI9H9/0G4/OUaG0u930i7ZpyQnOn7ps1nAc7NV8cn8XIrXuZOaXMmVxHDlF1tntWQghGqrl8ec5fD4XN0d7nhvW0ixtNmrizn3zejB8WnuGPtqu7u+Nsm8RXDoGzt4wyDwnwqKOcvL4sxrdvs/h7PYaN6lSqbhtQgs0TnZcSs7j2Pbzt/zYtBOX2fjlcRQFWvcLqvgC22oM5XB6A/w4Bd5uAatnQtpeUKmh2SCIXgQDXzKtxyq+bNoO5v1O8O04OL0ejAbrxluLSFJU27QZAz5NTR/U+MU3PFSlUtFvXATNu/hjNCis/fQoman5Zg3Hw0nD4ge7EejpxJnMQh79Kp6Ssob7CyOEEJaUW1zGG+tOAfD0oAj83c23j4mTq4awdvWgEEG+Dra+bro+aB64+to2HmF7zW7/c8PeX6ZDac3Phdy8neg9phkAsT+dJf/yzaea6ZJzWfvZUYwGhWad/bltQkvrjcbqjsL6/zON/sSMg+OrTFWN/VrBHa/AMydg0kpof4/pC/inD8P470yJEgokboCYe+D9jrDrv1BouU1saytJimobtR30nWW6vvsDKLtxRSCVWsXgKa1p3NILo0GhMKfU7CEFejqz+MFuuDvaE5dymdk/Hq7yULIQQoibe3fTabIL9TTzc+WB3mE1bm/fmmSLVCq1qY1zTdPMgzqbps4JAaYTf88QyEk1fUbMoE2/xgQ296S81MC2bxNu+HukKAq//5hIeamB4NY+3PFQa8tvfFyQAbEfwSd94dO+pm1dCjPAxRd6PA6PbocnY6HP0+ARWPmxdvYQeacpUZpxAHpNN5W1z0mFTS+bkquVj0JaHNSn/z9uQKXUk/8p8/Ly8PT0JDc3Fw+POl7/vVxvmvuZmwZ3vg3dH7npQ0qLy7miK0Qb7mmxsHYnZfHA4jjKDAqP9Avn/4a3tlhfQgjR0Jy+lM+w93ZiMCp8PbU7/SL8atRe+plcVr4dDwrc/XzX+rE3SsrvsOROQAWPbIbGspZI/MXZ7fDVKNP1ST+ZRpBq6IqukGWvxWEsVxj8YGta9rh+YYiiPD17fzlL33ERaBwtVPijrAQS1sLhZZC0CZQ/Zu/YOUCLodBhAkTcAXbVKOGvL4LjK03r2tMP/Xm7th10exjajQOHurPpbFVzA0mKaqu4RaZFpJ7Bpgzevmrzv/Mvl+DoYo+Dk3mrrv908AIzvz8EwLyRrXmwT7hZ2xdCiIZIURTu/2IvvydlE9UmgM8mda1Re+V6A9//ax85l4qI7KVl0AP14EssQxl81h8yTkCXB2Hku7aOSNRGa2ab1hZ5BsMTu01rjmpo/9pk0s/kcdt9LfDwrVxa22gworaz8MQrRTGN2Bz+zpS0lPylInDjrtBxArSJBhcz7oF0IR72fQHHVkD5H1MHHT2h433QbSo0ijBfXxZS1dygSu/iggUL6NatG+7u7vj7+zN69GgSEhIqHVNSUsK0adPw9fXFzc2NsWPHcunSjSujKYrC3LlzCQwMxNnZmcGDB5OYmFiV0OqfTveDW4BptOjI91V6aNb5Apa/sZ/1C49hMBjNGtboTo35x1DTwt9XVp9g3bF0s7YvhBAN0aaTGfyelI2DvZp/mmEUfu+vyeRcKsLV04E+d9f+k5dbErfQlBA5+5g2ahXiWgbPB69Q0/nTb/8wS5Odh4YxYnr7vyVEpUVlLH8jnhO/XzRLP39z5Rxsf9M0e+jLIaa15iW5piIJ/WbDtH2mEdNuD5s3IQLTKOzoj2HWSRjyGniHm/YE2/sJfNgVlo6CE7+YCjvUE1VKirZv3860adPYs2cPGzdupKysjCFDhlBYWFhxzDPPPMOvv/7Kjz/+yPbt27l48SLR0dE3bPfNN9/k/fff59NPP2Xv3r24uroSFRVFSUkDrp+ucYbeM0zXd/2nSh+68jID+uJyUk9cZutXp1DMvP7niduacX/PEBQFnl52iPhzt1b1TleoIy49Dl2hzqzxWENdjr0uk9fdNuR1t64yg5EFa08CMLVvOME+LjVqT3c2l8ObUgEYcH8kTq7VmEZT2+Slw9YFpuuDXzb/CaCoPxzdYMynpmprh78zTTOrIbVaValggr64nDK9gTUfHyEzNZ+9P59FX2ym5KBcDwe/gSUj4L32sPVfcPksaFxNU+Mm/wIzj5q+GPBrYZ4+b8TFx3Q+OuMA3L8CWt5pem2Tt8MPk+DddrDtDVMBlDquRtPnMjMz8ff3Z/v27fTv35/c3Fz8/PyIiYnh7rvvBuDUqVO0atWK2NhYevbs+bc2FEUhKCiI2bNnM2eOqRx1bm4uAQEBLFmyhPHjx99SLPVu+hyYSnK/285UiS76c2g/7pYfmnI0i7WfHEUxKnQaEkLv6OZmDa3cYOTxb+LZdDIDLxcNK57oTTM/t+sevzJxJfNj52NUjKhVaub1mkd0xI2T5dqiLsdel8nrbhvyulvf0t0pzPvlOL6uDmx7dgDuTtVPYv46ba5lTy2Dp9SDaXMAKx6Goz+avr2eusm0hYUQN7LtDdj2uimZeHwn+DarcZOlxeX8/mMi5xOu4BPoyrlj2Tg42zNmdicaNXGvecxGIyybAKfX/XGDCsL7QYf7oNVIU8JXG+SkQvwSiF8KRX9UqVPbQ+QI06hVWF+oBXugWXT63P/KzTXNafTxMX1jEx8fT1lZGYMHD644JjIykpCQEGJjY6/ZRnJyMjqdrtJjPD096dGjx3UfA1BaWkpeXl6lS73j6AY9nzRd3/mO6ZflFoW1a8Tt90cCcHBDKoc3p5k1NHs7Ne9P6ESHJp7kFJUxZXEcmfnXrnynK9RVnGQBGBUj82Pnm+1baKNRYd2xdCZ/GcdXsSlmafMqS8curk1ed9uQ1936covLeHfTaQCeuaNFjRIigNQTl8m5VISLpwN9x9WDaXOKAoe+MyVEqGD4O5IQiVvTfw6E9oWyQlj+IJTXvDqvSgVppy6Tn13CuWPZ2GvUDJ/W3jwJEZg2Vz29DuydYOA/TSNCD/xqWjNUWxIiAK8Q00jVrBMw9gsI6QXGcjjxEywdYbZNdK2t2v+zGI1GZs6cSZ8+fWjbti0AOp0OBwcHvLy8Kh0bEBCATnftP6pXbw8ICLjlx4BpfZOnp2fFJTg4uLpPpXbr/gg4ekDmSUhYU6WHtuodWLFp2K4fEzm9z7wnNi4O9nwxpRshPi6kXS5m6tJ9FOn/PnycmpdacZJ1lVExkpZfs0TNYFT4+dAFhr63g8e/OcCO05nM/fk4G0/ceA1bVVgqdnFj8rrbhrzu1vfR1iSuFJUR4e/G+G41/zvWtKMfo5/pxOAHWtf9aXO55+G78fDT46afu02FoE62jUnUHWo7iF5oWoOWfhg2za9xkw5O9gyYaPrCWa1WEfVoW4Kae9W4XcC04eq2f5uuj/gv9H8WvGr5ua29I7S7Gx5aB4/vMhVA0bhCq1G2jqxaqp0UTZs2jWPHjrFsWc3nalbHCy+8QG5ubsUlLa2e/tF29oLuj5qu73iryrXiO0eF0u72JgAc2XLe7OuLGrk5svSh7ni7aDhyPpfpMQcp/5/iDiEeIahVlT9qapWaYPfq/bKXGYz8uD+Nwf/ZztPLDnH6UgHujvb0CDeNWM76/hDJWYU3aeXWmDt2cWvkdbcNed2tKzW7iCW/pwDw4vBW2JupglXjlt4Et67Da26MBti7ED7qYfrWXK2B256HqAW2jkzUNZ6NTcUCAPZ8BKfX17jJ0Da+3DWzI3c/39V8myFfPgsrHwYU6DrVVOGtrtG2M1WEnJNQZ0vlV+t/4OnTp7N69Wq2bt1KkyZNKm7XarXo9XpycnIqHX/p0iW02mvXdb96+/9WqLvRYwAcHR3x8PCodKm3ej4JGhfTNx1Jm6r0UJVKRb9xEfQc3ZRRT3dEZYGNxMIbufL5A91wtFez5VQGL/18vNIGZ1pXLfN6zas42bq6TkHrev3391pKyw3E7E3l9re38ezyIyRnFeLlomH2HS3Y9fxAvnm4B93CvMkvLefxr+OvOWpVVeaKXVSNvO62Ia+7db2x7hR6g5F+EY0Y0KJmexKd3H2R3Mwbb/ZdJ2SchC+j4LdnQV8AwT1M30Df/kKVt6YQAoCWw6DHE6brPz0BeTWvFNck0ge/EDNNmdMXwfeTTVXlmnSDof82T7u24uheK9YTVUeVCi0oisKMGTNYtWoV27ZtIyKi8nzlq4UWvvvuO8aOHQtAQkICkZGRNy20MGfOHGbPng2YFkb5+/tLoYW/Wv9/pp2Kg3vAQ+tr/IEr0xvQOJh3Y7F1x3Q88W08igLPRrVk2u2VizvoCnWk5acR7B5cpZOskjIDy+JS+WzHWdJzTRUJG7k58HC/ptzfMxQ3xz/3YsrIK2H4B7vIzC9lVIcg3hvfsVLFmOqqbuyiZlLzLnIqK5n2Ac3kdbci+bxb3v6Uy9z9aSxqFax9uh+R2ur/3bqUkseKN/Zjp1EzYV6Pv5UNrhPKS2HH27Drv2AsAwd3GDzP9K25rCESNVVeCp8PBt0RCOsHk382Ta+zNUWBVY+Ztl5x9YPHdoBHkK2jqjcsWmhh2rRpfPPNN8TExODu7o5Op0On01FcbPp2ytPTk6lTpzJr1iy2bt1KfHw8Dz74IL169aqUEEVGRrJq1SrANJIx8//bu++wps72gePfhL0REQEF3HvvvWfVaq3V2qq1aqfd8/V921rtsP11T22d1dpq3aPuvbe4B6AMkaAgeyUk5/fHUSwVlJEQxv25Li5jSJ7zJOeEnPs8z3Pfr73Gxx9/zNq1azlz5gzjxo3D39+fYcOGFaZ75VvHl8DGAaIOQ/i+IjejKAonNkew9OMjpCfrzdhBGNDElw+HNAbgi82XWHniWq7f+7r40ta3bYFPstKysvl1TxhdPt/Jh+vOE5OUSVV3Bz4Y3Ii97/Ti+e61cwVEAD7ujvz8ZCtstRrWnrrOggPhZnlthe27KL641CwmzgnhudmJfLUhFl1SBU7RX8LkeLcsRVH4+G81BffINgHFCoiMBhPbf7uAokDN5lXKZkAUcQBmdlYXmZsMasrfyYfVNbUSEAlzsHWAEfPV9S7he2Hv19bukerIbDUg0tjAYwskILKyQv21mTlzJklJSfTo0QM/P7+cn6VL7xYX/eabbxg8eDCPPvoo3bp1w9fXl5UrV+Zq59KlSzmZ6wDeeecdXn75ZZ599lnatm1LamoqmzZtwtHRsZgvrxxx94NWY9Xbe74ocjP6TCNn90STdCOD9T+eQp9p3qJbT3WqwbPd1OQO7yw/zf7QuEK3kZxp4KedoXT5fAefbrhIXGoW1Tyd+HhYE3a/3ZMJXWridJ9RrrY1vPjfoIYAfPL3BY6GF6yOkig9kjIMjJt7hJAbqSgKLDt+jR5f7uSrLZdIzSo/heJExbTudAzBUYk429vwRr/i1Rk5uuEqCTFpOLnZ0W1UCdQsMafMJFj3GswfCPEhasHyx36Dx/9Q14IIYU7eddTshaCm6o7IP8NxiYg8DJunqLf7TlfTWAurKladotKk3E+fAzUv/Pct1bSHT61Xc9cXpZnYdFZ8cZzMVAMBjbwY9GIzbGzNdzXOZFJ4ZclJ1p+Owc3Blr+e70hDvwfvk8R0PfP2h7Ng/1WSbwdrQZWdmdyjDo+0qoZdIRYhK4rCa0uDWRN8nSpuDvz9chd83CXILgvSsrIZM/cwJyMT8XZ1YNrDjZm//yrHIhIAderk633rMapNgNkWpgtRUjINRnp/tZvoxAze7FuPl3sXPW32jYhkln9+HMWkMOC5JtRu6WPGnlrYhXXw91uQejsraqtx6omhUyXr9kuUfyufVUdn3Kur9YusUQg4JRZ+6aYe/40fUUexyug6nNKsROsUiRLmGah+cQCsflG9ylaUZqo6M3hyc2zttUSdv8WOhRfMmpVOq9Xw1cjmtKvpRUpWNk/PP0pMUv4LgONSs/hs40U6f7aD77eHkJyZTR0fV74d1YLtb3RnZNuAQgVEoE7LnDG8KfWrunEzJYvJf5zAYCx4nSdhHZkGI88sPMbJyEQ8nOz4fVI7BjXzY9nzHZk1phU1KjsTl6rnf6vOMuC7vey4GEs5ua4jKoj5+8OJTszAz8ORSV1rFbkdY/btaXMmhTptfMpOQJQcA0uehKVj1BNCr9rqRb6Hf5CASJSMQV+BVy1IvgZrXy50Vt9iMxpg2Xj1+K/SAB7+UQKiUkKCorKmzzSoVAOSItWrbEVUtaY7A55tilar4fKRWA6uCjNfHwEHWxtmj21DHR9XdMmZjJ93lORMQ67HxCZn8tH683T5fAezdoeRpjfS0M+dn59sxZbXujGsZbVijQQ429sya2xr3BxsORqewKcbLhT3ZQkLMhhNTF58ggNh8bg62LJwQructRYajYYBTfzY8np3pg5phKezHaE3Upmw4BhPzjnM2eiiXSAQoiTFpWbx085QQE1Gc79pwA9ydnc0t66XoWlzJhMcmwc/tYOL60FrC13fhBf2F3nWgxBF4uAGI+apqd4vroejc0p2+1s/gMgDajKRUb+XrqKsFZxMnyuLoo7AvAGgGGH4HGj2WJGbungohu0L1GBh+Nut8avtYa5eAnAtIZ1Hfj7AzZQsOtaqzG8T2nEzNYtZu8JYeiwKfbY6etO8ugcv96pL74Y+ZskW909bz8fyzMJjAHz3eAuGtpC56qWN0aTw6u0pl452Wn57uh3ta1XO9/FJGQZ+3hnK/P3h6I0mNBp4pGU13upXH3/PMrjQXFQI760+w++HImlazYM1kzujLUaJBKPBxLGN4XhXd6V2q1I+SnTzMqx7VT0RBPBvpY4M+Taxbr9ExXbwJ9j8XzWJ1TM7SuZ4PLMcVkxUb49aDA0HW36bFVhhYwMJisqqXZ/Brhng4K7WcKgUVOSmTmyJwM7ehqY9qj/4wUVwNjqJUb8cJE1vpIGvG6E3Usm+PV2vTVAlXu5dl251vc0eDP3Tl5sv8ePOUJzsbFg1uVOxsj0J8zKZFP6z8jR/HbuGnY2GOU+1pXsBa7ZE3Urnyy2XWBOs1p1wsNUyqWtNnu9eGzdHO0t2W4hCCYlNof+3ezApsOTZDnS4T9BfbmTrYf+3anIgo17N/NXrPWj/XOlIhywqNkWBP0ZByGbwrgfP7gJ7F8ttL/acmhbckA5d3lBTzguLkqCoogRFxmw1Y8+1IxDYCcavL9VfMrsv32TCgqMYbwdDnWpX5uVedelQy8uiwdAdRpPC+PlH2BsSR43Kzqx5qQseTnLSbG2KojBt3XkWHAjHRqvhpydaMqCJX6HbORWVyCcbLnDkqpppsLKLPa/1rcfjRViPJoQlPD3/CDsv3aRfo6r8Oq5Nkdu5HpJA1Voe2JT24zrqqLpe4+btact1+sLgr9W1sUKUFmlxajr4VB20HAtDf7TMdjISYXZPuHUFavWEMStK9TlbeSGJFso5g05H2qHDGG7GwfBf1TmpkQfUgndmkJlqYN33wdyMTDFLe3d0r1eFmU+2YmSb6qx4oSN/PNOBjrUrl0hABGCj1fD94y2p5ulEeHw6b/4VjMmMySWKS5em40jMEXRpujLVdnF9teVyTi2pL0Y0K1JABNA8wJOlz3bg17GtqeXtQnyanvdXn2XAt3vYej7/ZAyl+b0R5cfekJvsvHQTW62GKQ81LHI7N6NSWPNNMMs/O0ZWRilNTZ+VAhvegbl91YDIubI6zfvJZcUKiHK++3TyWRVm5OINj84GNHBykTq9zdxMJlj1vBoQeQTAo3PvGxBZ+liXz1L+JCgqQxKXLye0V28ix48ntFdvEncch4du1yzaNQOijxd7GwdXhxF5/hbrfjxFclz+GeOKol9jX/5vRHNaB1kh/SVQycWeWWNaY2+rZduFG/y8K9Qq/fi3lSEr6b+iPxO3TKT/iv6sDFn54CeVgraL6+ddofx4e9H5R8OaMLxV8aZvajQa+jX2ZfPr3Zg+tDFeLvaE3UzjmYXHGD37EGeu5U7GUJrfG1F+GE0Kn9wu1Dq2YxA1vYs2PcdoNLFj4QVMJgV3byfsHUvhVeZLm+CnDnDkF0CB5qNh8lF13WsxLoDd89233AInrqLiqtkNut1OXLXuNbh11bzt7/sKLm9U1y6NXAgu+U+dtfSxLp+l+5Ppc2WEQacjtFdv9YrDHVotdbZvw27fFDi3Sk1t+tyeYmUyycrIZtWXJ4iPTsXDx4lH32mNk6u9GV5B6fHX0SjeWXEajQYWPN2uwOtXLEGXpqP/iv6YlLv7VavRsvnRzfi6+JbatovrtwPhTF17DoApAxvwXPfaZt9GcqaBmbvCmLvvak5Cj0daVuOt/vWxsUsqte+NKF+WHo3k3RVncHe0Zc87PfF0Ltrf06N/X+XIuqs4uNjyxNQOOLuXkr/LigIR++Hgz3Dpb/U+zyAY8i3U7lXs5vP97tuxHTtf+awKMzFmw4JBEHUIqrWGpzeBrRk+Y6Hb4PcRgKImF7lTViUPlj7WK+JnSabPlVP68IjcBzKAyYQ+MgoGfwPu1eBW2N3qyEXk4GTLkJeb4+blSNKNDP7+6TSGLGOx2ixtRrYNYHS7QBQFXl1ykqhb6VbrS2RyZK4TcwCTYiIqJapUt10cy45F5QREr/SqY5GACMDd0Y53BzRg51s9GN5SzTi46mQ0Pb/cxWfb9pXK90aUL2lZ2Xy55TIAr/SuW+SAKO5aKsc2hAPQbVS90hEQZaXC0bkws5N6Mnnpb9BoodPL8OJBswREcJ/vvohIs7QvBAA2tvDoHHD0VGfd7Pio+G0mRMCKSYACrZ66b0AElj/W5bP0YBIUlRH2NYJA+6/dpdViHxSoFrx75BdAAycWqpXCi8HF04EhrzTHwcWW2KvJbJlzFlM5K3z64cONaF7dg8R0Ay8sPk6mwTqBX6B7IFpN7v2q1WgJcAso1W0X1d+nY3h3xWkAJnSuyet9LV9fpZqnE1+PasG6l7rQoZYX+mwTa47qQck9ncfa740of37ZHcbNlCyCKjszrmONIrWRM23OqFCzuTd121Y1bycLKy4ENr4LXzeEv9+AG+fBzhlaj4cXDkC/j82aweu+331CmJNnwN1ECwe+V0d5isqQoRYozkhQU9DfWepwH5Y+1uWz9GASFJURdr6++E2fdveA1mrxmz7t7pBnza7Q+VX19tqX1arhxVDJ14VBLzbHxk5L+Jl4Dqw0b3FXa3OwteHnMa3xcrHnbHQy768+m+9ifEvydfFlasepOcGLVqNlasepZpnCZcm2i2LnxRu8uuQkJgUebxvA+4MblliiDYCm1T3485kOzH2qDbUq+ZMZMxzldmBk7fdGlD8xSRn8uvcKoE4Rtbct2tftyS2R3IxMwcHZlu5P1C/Rz0wOkxEuboCFw+DHNnB4FmQlq1O2+8+ANy7AkO/Ap+hJJPLzwO8+Icyp4RBoO0m9vep5SIktfBuKAn+/CbrTaqKRUYvA1uGBT7P0sS6fpQeTNUVljEGnQx8RiX1Q4L0HcrYe5vaBmFNQqweMWXXvVYFCunrqJvuXhzL4peZ4VnUuVlul0f7QOMbOPYxJgU8facoT7a1zxUSXpiMqJYoAtwCzn5hbsu2COhgWz/j5R8jKNvFwc3++GdUCm2IUriyubKOJP49E8uGGA2AXx4+P9WVgQ/Of0JVVN1IyScnMpnYVqbReVG/8FczKE9G0q+HF0uc6FDmYSdClsf23CzTtUZ367Uv485sWDycXwtF5kHRnio0G6g2AdpOgVq9if8cU1H2/+4QwJ0MGzO4NN84V7Vzq6Fx1FFWjhbGroVb3wm3ewsd6RfosSZ2ich4UPVBcCMzqCtkZ0P9T6Di52E0as03YFPEqZ1kwc1cYn2+6iL2Nlr+e70iLAE9rd6lcORmZwJg5h0nTG+nTsCozx7QqNbWD/rvqDH8cjqSxvztrX+pi1UCttFh36jrvrjhNVraJP5/pQLua1skWWZaduZbEkB/3AbBmcmeaF/NvismkoNFQcqNE0SfgyGw4uwKMWep9TpXUNRFtJkClGiXTDyGs5eYl+LWHWmi191To+kbBnnftGMwbACYD9JkGXV6zZC/FA0iihYrOuy4M+FS9ve1D0J0pdpP/DIgiz8dz9dTNYrdZmjzfvRb9G1dFbzTxwu/HiU/NsnaXyo3z15N5at4R0vRGOtepzI9PtCw1ARHAm33r4eZoy7nrySw/XrGTLBiMJqatO8fLf54kXW/EaFJ4e/kp0vWltB5OKaUoCh//fR6AYS38ixwQpSfrc25rtRrLB0SGTDi1BGb3UotMnvpDDYj8msPQn9Upcn2nS0AkKoYq9WHg5+rtHR9D1JEHPyf1JiwdqwZEDR++u6RBlBml5+xEmE/rp6H+Q2DUw4pn1KFgM9BdSeLvH0+zec45YsKSHvyEMkKj0fDlY82p5e1CTFImL/95kuxylljCGsJupjJ27mGSM7NpHVSJ2ePa4GhXumqrVHZ14NXedQH4YvMlUjINVu6RdcQmZzL610PM3x8OwLPdauHv4UhEfDr/t+mSdTtXxmw9H8vhq7dwsNXy9oAGRWrj1vU0Fv3vAPuXh2C09N+ixCjYNg2+aQSrnlMzb9nYQ7NRMHEbPLsbWj4Jdk6W7YcQpU3LsdDkUVCMsHwiZCTm/1hjNix/GlKug3c9GPZzsWpzCeuQoKg80mjUfPiuVdWK4lunmqVZnyA3Aht7YTSY+PvnU9yKSTNLu6WBm6Mdv4xtjbO9DQfC4nPS6IqiibqVzpg5h4lP09PY351549vibG9r7W7laVzHGtTydiEuVZ9TTLYiOXQlnkHf7+NYRAJuDrb8OrY1/32oIZ892gyABQfCORgWb+Velg36bBMzNl4EYFLXmlTzLHwgYTKa2L7wAtkGEwm6dLSWmNKpKBC2E5Y8Cd81g31fQ3q8Wtqh1/vw+nkY/isEtJUTO1FxaTRqyRPPIHVN3bpX1c9OXrZ/COF7wd4VRv0ODm4l2lVhHhIUlVcu3uqUB1Cri4dsLXaTWhst/SY1oWpNd7LSsln3QzBpieVnqlndqm783wj1RHDW7jA2nS1eBr+KKjY5kyfnHCYmKZM6Pq4snNAODyc7a3crX/a2Wv43SE2yMH9fOBHx5SfYvx9FUfh1TxhPzjlMXGoWDXzdWPtyF/o1VhfedqtXhdHt1MQj76w4RVqWTKN7kMWHI7gal4a3qz0v9KhTpDaCt0VxIzwZeydbejzZwLzT5jKT4fCv8FM7WDQMLq4HxQQ1u6kncq+ehm5vgav1CloLUao4esCI+aC1hfOr4cRv9z7m3Co48IN6e+hP6tQ7USZJUFSe1e0D7V9Qb69+UZ3vWkx2DjYMmtwMz6rOpN7KYt0Pp8jKKD8nS4Ob+TOpS00A3lp2mtAbqVbuUdlyK03PmDmHibyVTqCXM4sntaey64NTkeZFURQ2/XKGX1/bzY5FF4i9mmyxtOm9GvjQta43eqOJT/6+YJFtlCYpmQZeXHyCTzdcxGhSeKRlNVa92Jma3rnry/xvUEOqeToRdSuDz26PgIi8JaUb+G57CABv9K2Pq0PhR0YTdGkcWXcVgC6P1cG1UtE+O3kK2QZfN4KNb0PcZfWKdttn4MXD8NQ6NRWxTekczRXCqqq3ht4fqLc3vgs3/vEdceMirL6d0KrTK9B4WIl3T5iPBEXlXZ8PwacRpN2AtS/lP/RbCE6u9gx5uTnO7vbER6eyceZpjIbyswbnPwMb0L6mF6lZ2Tz/+3FS5Qp5gSRnGhg37zAhN1LxdXdk8aT2VHV3LHJ7Fw/qCDt5E0OmkQv7Y1j++TGWfnyU6EsJZuy1SqPR8P7gRthoNWw5H8uB0Dizb6O0uBybwtCf9rPxrA47Gw0fDWvC1yOb42R/73ovVwfbnNHTRYciyvX7Ulw/7AghMd1AvaqujGxTvdDPN5kUtv92AWO2icDGXjTo6Ge+ziWEw4oJoE9R1zs89KWaOGHQl+BTtHVPQlQoHV+G2r0hOxOWPa2u1c5MhqVPgiENanRVs9SJMk2CovLOzhEenQM2DnB5ExybZ5Zm3b2dGPxSc+wcbXDzdipXR5KtjZYfn2hFVXcHQm+k8u7y01Yp7FqWpOuzmTD/KGejk6nsYs/vk9oT4FX0ulbpyXr2L1evujfpXo167atiY6slPjoVe6e7V7MNWUaz7Zt6Vd148nadqunrzxc72YYuTceRmCPo0nTm6J5Z2l976jpDf9zPlZtp+Hk48tdzHRnbIei+U7Q61/FmTAf1fXl7+WmzXCSw9HtjSXn1PSI+jd8OhgPw34caYluEDItnd18j9moydo425p02l50Fy8ZDZhIGj1aktfoGQ+AQcDRv6QqDTkfaocMYdGVvn4ryx+zHo1YLj8wCFx91rfam/8DqFyA+VF2LN2K+jLRS9v8OlKNTWZGvqo3VESOAzf9T8++bQZVAN0ZOaUuvsQ2wKUVpls2hipsDPz/ZGjsbDX+fiWHO3qvW7lKplWkw8uzC4xyLSMDd0ZZFE9tTx6d4RT8Tb6SjtdHgHeBKl5F16ft0Y8Z/3pk+TzeiSuDdBax7ll7mz+lHOLU9iszU4meOe71PPTyc7LioS2HpsaKn6F4ZspL+K/ozcctE+q/oz8qQlcXuW3Ha12eb+HDtOV758yQZBiNd6niz/uUutAysVKDtTRnYkOqVnIhOzODTDcWbXmjp98aS8uv7ZxsvYjAqdKtXhR71fYrUtp2DLfaONnR6pDZuXkUfYb3H5v/B9ZMkRnkTOvsGkROeIbRXbxKXLzfbJhKXLye0V28ix483e9tCFJbFjkdXHxj+i3r7+AJ1TZ6NPYxcJOvwKB9/B6R4a0VhMsHiRyFsB/g2g0nbwdbezJtQiL6YQECj8lPsceHBcD5Ycw4brYbfJ7anY+3K1u5SqaLPNvHi4hNsuxCLs70Nv09qT6sCnmg/SGaqgcw0A55V8x5xMmab+G3KfjJS1GDIxlZLrZZVaNzVH/+6nkW+0j5//1WmrTuPl4s9O9/qUegkEbo0Hf1X9Mek3B1p0mq0bH50M74uxa8eXtj2dUmZTP7jBMcj1GmHk3vW5o2+9QtdqPZgWDyjZx8CYNHEdnStW/iTAEu/N5aUX9//r/1SnpsfhlYDG1/tRn3fomedSkvKwtnNHo25Ms6dXQHLJ2BI1xK6zi/39Gmtljo7the7or1BpyO0V2/1O8bMbQtRWCVyPG6dCvu/VW8P/hbaPG2edsuw0vp3QIq3irxptTBsJjh5ge407PzYrM0bjSY2/XKGtd8Hc+lw2Rw2zcvYDkEMb1kNo0nhpT9OsC9E1lTccSM5k9GzD7HtQiwOtlrmPNXGbAERgKOrXb4BEahB0JPTO9J9dD28A1wxZpsIORrL6q9P8seHh7lw4HqRtjumQxB1fFy5labnh9sL5wsjMjky14kzgEkxEZVinuKwhWn/YFg8g3/Yy/GIBNwcbZk9rg1v929Q6IAIoGPtyjzVMQiAd5efLlJNJ0u/N5aUX9+/2nEAgFFtA4sUEP3zuqSLh4P5AqK4EFj7CgD6mk/cu57UZEIfEVnszejDI3KfCJmxbSEKq0SOx17vqYVZB3wOrcebr90yrLz8HZCgqCJx84WhP6q3938PV/eYrWmtVoN7ZbUmx46FF4i6cMtsbVuTRqPhk0ea0sjPnfg0PWPmHubFxceJTjRPQdyy6nhEAoN/2Jdzsj3nqTZ0qu1d7HaP/n2VkKOxBV4n5OBkS5Pu1Rn537Y8NqUNjbr4Y+dgQ2Jseq508SaTgmIqWJt2Nlreu52ie8GBcK7cLFwGwkD3QLSa3H9atRotAW4BhWqnOO0risIvu8MYM/cwcal6Gvi6se6lLvRtVLVY2353YAMCvZy5npRZpCx9ln5vLCmvvmvQEhLtiIu9DW/0rVfoNjNTDSz/7BgRZ81cB0qfDn+NA30qBHXB/uEp6oWxf9JqsQ8KLPam7GsEWaxtIQqrRI5HGzvoOx06PC91vG4rL38HJCiqaBoMun1lQ4GVz0G6eYIXjUZD5xF1qNPGB5NRYeOsM9yMTDFL29bmZG/Dn892YHynGmg1sOGMjt5f7eKH7SFkGozW7l6JW3w4gsd/PciNlCzqVXVl3UtdijSV6t90V5M4sv4qW+aeK/Sxo9Fo8Alyp+eYBoz/vDM9xzSgYSf/nN9fDb7J7x8c5PimcNKSHlxbq0d9H3rWr0K2SSn0yb+viy9TO07NOYHWarRM7TjVbNPDHtR+SqaBF34/wYyNarrt4a3UdNs1/pVuuyic7W354nY2uiVHo9h16YZZ+16a5dV3+8SRKNkevNCjNlXcCp8+e/+KEG5EpHBgZSimYib2yGXD23DjvLoofMRc7KpVx2/6tLsnLVotftOnmWVai52vr8XaFqKw5Hi0jvLyvsuaoopInwa/dFOzpjQaCo/9ZrarHUaDiXU/BhN9KREnd3tGvNMad+/CV3Uvrc5fT+bDtec4Eq4Gk4Fezkwd0ojeDYt3Bb4syMo28uHac/x5RJ3q9FBTX74Y0RyXItRj+TdjtollM44SH51G/fa+9Hm6UbHb/KcNM09z9ZQ69VGr1VCjmTeNuvgT0MgLbT7TlcJuptL/mz1kmxQWTmhHt3qFC/x0aTqiUqIIcAuwyEl/Xu1fjk3h+UXHuRKXhr2Nlg+GNOLJ9oHmLQAKTFt3jvn7w/F1d2Tz692KtO7Kku+NJd3p+44zRmZuj8ffw5Edb/XA0e7elOb3E3XhFmu/CwYNPPp2a3xreZingyd/hzWTQaOFcWvUwqy3GXQ69BGR2AcFmv1kxZJtC1FYcjxaR2l73wsbG0hQVFFdPwlz+oApG4b+DC2fNFvTWRnZrPryBPHRqXj4OPHoO61xcjVvUgdrUhSFtaeu8+mGC8Qmq6MOPetX4YMhje8pflle6JIyef734wRHJaLRwDv9G/B891pmO9k+tiGcw2uv4OhqxxMftjf78WLIMhJ6/Abn911HdyUp535XLwd6jmlAYKO8E2hMX3eeefuvUtfHlY2vdi1SquWSsiY4mv+sOEOGwYi/hyM/j2lNiwBPi2wrQ29k4Hd7CI9P57HW1fniseYW2U5pdTMli55f7iI1K5tvRjXnkZaFq0tk0BtZMv0wyXGZNO1RnW6PF37qXZ50Z2HO7Voqvd6Dbm+bp10hhCiDJNGCKBj/ltDzf+rtje/ArStma9rByZYhLzfHzcuRtIQsbkWnma3tvGTrjdy6nkbkuXgyUvUW3RaoU7WGtqjG9jd78Fz3WtjZaNh56Sb9v9nDF5svkq4vX8Vej4bfYvAP+wiOSsTDyY4FT7fjhR61zRYQJcamc2xDOABdHqtrkQDazsGGhp38ePSd1jz+QTua9aqOnaMNqbey2LnoIqZ81hu92rsulZztCLmRyuLDpXPB6J10268uCb6bbvuVrhYLiECdUvrlY83RaGDZ8WvsuBhrsW2VRt9su0xqVjbNqnswtHm1Qj//6LqrJMdl4lrJgQ7DapmnU5nJsOwpNSCq0we6vGmedoUQooKQkaKKzGSE34ZAxH6o3hae3mTW4mMJujSyMrLxrVm8aSGKSSE1MYuU+AwyUgzUbnW3Dsi674OJPH93XZRnVWce+0+bXAU+LS3sZiofrj3H3tuZ6fw8HPnfoIYMaupn9mlLJUlRFH4/FMG0defJNik08HXjl7GtCapsvtEwxaSw+puTXA9JJLCRF4Nfbl5i75k+I5tDq8No1jsAT5/8s9wtOhTB+6vP4ulsx663euDpXHpGPWOSMpi8+AQnIhMBeKlnHV7vW69I2eWK4uP155mz7yo+bg5sfb07Hs6Fm0ZXFl2OTWHAt3swKfDXcx1pV7NwJQhuRqaw7LNjKCaFQS82o0az4icoQVFg+QQ4t1ItJPncXnCR8gFCiIqtsLGBlN+tyLQ28MgvMLMzXDsKe76AnlPM1nwl39wnz+nJepzc7B540nvpsA5dWBLJcRkkx2eSHJ+BKVuN3W1stdRqUSUnba2dozqP397RBkVRRx12LLpI/2cal9jJde0qriyc0I4t52P5aP15riVk8NIfJ1lcK5JpQxtTr2rR65ZYS6bByPurz7Ls+DUABjfz4/9GNMPZ3rx/Mq6HJnI9JBFbey3dn6hfokGkvZMt3UbXf+DjRrcN4PeDEVyKTeHbbSF8+HDjEujdgx0Ii+PlP04Sn6bHzdGWb0a2oE8xs8sV1lv967Pj4g2uxKUxbf05vh7ZokS3bw2f/H0BkwIDGvsWOiACCDtxA8WkUKe1j3kCIoCjc9SASGsLjy2QgEgIIYpARopEToE/NFp1tCiwvdk3cSMimfU/nqJu26pU8nVRA564TJLjMkhPyuKpzzrnnBBv+uUMYSdv5nq+VqvBtbIj7pUdGfhc05yRoNSELGzttTg42xJ7NZlVX57AZFLoOqoezXoWbp6/OWQajMzaHcbMXWFkZZuw0Wp4qmMNXutbF3fHsnEV/XpiBi/8fpxT15LQauA/AxvwTFfzrR/6t2sXb5GakEWDjn4Wab+g9JnZ2DvmHfTtC4ljzNzD2Gg1bHq1K3WtHOguOhTB1DVnMSnQ0M+dWWNamXUEz2RSMGQZcSjAiOvxiAQem3UAkwKzx7Updtrv0mz1yWheWxqMnY2Gra93L3JGvyvBN6la0x0Xj8JnrLtH9HGY2x9MBuj/KXScXPw2hRCiHJBECxIUFc3K5+D0EvAMguf3gaN538Pz+66z8/eL+f5+/Oedc04QLh/RcSsmDXdvp9s/jrh6OqAtwCL3U9uj2LcsBM+qzjz+fjtsbK2zbC7qVjof/32ezefUtRbervb8Z2BDhreslm+2s9Lg8JV4Jv9xgrhUPZ7Odvw4uhVd6prpanYplZGiZ8+Sy+iuJjFmWkds7PI+Zib9doxtF2LpVq8Kvz3d1ipTIxVF4YvNl/h5VxgAw1tV45NhTXGyL1zms/tJS8xi9TcnyUjV8+jbre8Z8c3LjA0X+GXPFaq4ObD19W6laoqhuSw6GM4Ha8+hKPBct1pMeaihtbsEGQlqJtHESGgwGEb9LnVThBDiNgmKJCgqmsxkmNUFEiOg8XB4dO69hbiK6eTWSC4d1uFWySFXwOPu7YSnrzM2ZsjspSgKwVujaNjZD0cX64/M7L58k2lrz3ElTk020TLQk+kPN6FpdTOl3zUTRVH47UA4H/99gWyTQiM/d34Z25oAr/zX2hRHTGgirl6OuHk5WqT9wjAaTCx6/yBpiVl0H12PJt3zHmG8GpdGv292YzAqzB/flp4NfPJ8nKXos038Z8VpVp6MBuCNvvV4uVcdswdn2+af59JhHQDVG1Ti4VdbPHAbmQYjg77fS9jNNIa18Ofbx1uatU/WpCgK32wL4fvtIQCM6RDItIebFGrdlqIonNgcQcNO/ji7mylgVBT4czRc3giVasCzu8HJ0zxtCyFEOSBBkQRFRRd5GBY8pKbp7vgS9P/E2j0qF/TZJubtv8r320NI1xvRaGB0u0De7lefSi7Wv6KeaTDy31VnWHlCPdke2sKfz4Y3M+vowz9lZWTz54eHyMo08vDLzfGr42mR7RTG6Z3X2Lv0Mq6VHBgzPf/Rok83XODXPVeoVcWFza91w66EUnTfKci6LzQOG62GGcObMrJNgEW2pc/MZtfvF7lyKg6jwUS/SY2p2+bBU+KCoxIZ/vN+TArMGtOaAU2sX6OiuIwmhffXnOWP25kHX+tTl1d71y10IHrxYAzbf7uAi6cDYz7qgG0haxrlaf93sPUDsHGAiVvAv0Xx2xRCiHJEUnKLogtsD0N/Um8f/BH2f2/d/hSToiic3RNN8DbrplK2t9XyfPfa7HizB0Nb+KMo8MfhSHp8uYtFhyIw5pMOuiREJ2YwYtYBVp6Ixkar4b1BDfl2VAuLBUQAh1aFkZakx8XdniqBpSMJRaMufjh72JOakMXFQzH5Pu6lXnWo7GLPlZtpLDwYUSJ9i03OZOQvh9gXGoezvQ1zn2pj9oDonynJ7R1t6TepCa0HBAGwb1kI+owHp5lvEeDJc91rA/De6jPcSrN8evy86NJ0HIk5gi5NV6x2Mg1GJi8+wR+HI9Fo4ONhTXitT71CB0TpyXr2LVdHmZr1rG6egCjiIGybpt4e+JkEREKUMINOR9qhwxh0xfs7I0oXCYpEbs0fh34fq7e3vg/Bf1q3P8Vw7VICu/+4xIGVYVwPSbB2d/D1cOS7x1uy9NkONPB1IynDwPurzzLkh30cC7/14AbM7EBYHEN+2MfZ6GS8XOxZNKEdkyyYUAHUaXNn96gjUj3GNMDWgsFXYdja2dCqnxoEHN8YgTHblOfj3B3teKu/mrHuu22XLX7iHxKbwvCfD3AhJhlvVweWPtuRHvXNO23PmG3i759Oc3xTeK77W/YLxMPHifQkPUfWXS1QW6/1qUu9qq7EpeqZuvacWftZECtDVtJ/RX8mbplI/xX9WRmyskjtJGcaGD//CJvO6bC30fLTE60Y0yGoSG3tWxZCVlo23gGuNO9jhmA29SYsfxoUIzQdCa2fLn6bQogCS1y+nNBevYkcP57QXr1JXL7c2l0SZiJBkbhXp5fVH4A1k+HyZuv2p4iq169EvfZVUUwKm+ecIz3ZOleu/619rcqsf7kL0x5ujLujLedjkhkx6yCDf9jLW8tOMWfvFfaFxBGXmmWR7SuKwtx9Vxk79wi30vQ0qebO2pc606mOZRMqGA2mnGQbDTv5Ub1+JYtur7Aad1XXe6TcyuTSofyv/o1sE0BDP3eSM7P5eusli/XnyNVbPDrzANGJGdTydmHVi53MvhbNZDSxdd45Is/Fc2xDOMnxGTm/s7Wzodvj9QBIuZWJUoARTQdbtairjVbDulPX2XAm/1E3c9Ol6Zh2cBomRQ1oTYqJaQenFXrE6EZKJo//cohDV27h6mDLgqfb8lDTomVGDD8TR8jRWDQa6DmmQfHXTZqMsHISpMSAd30Y/I0kVhCiBBl0OmI+mAqm2xfOTCZiPpgqI0blhNQpEnnrMx3S4uDUn/DXUzBujUVSdVuSRqOhxxMNuBmZSkJMGlvmnuPhV1uUiuxvtjZanupUg0HN/Phi0yX+Oh7F2ehkzkYn53qct6sDDXzd1B8/dxr4ulHHxxXHIk7BydAbmbLyNKuDrwMwvGU1Ph3etMjtFcbxTeEk6NJxcren06N1CvakHZ/AxfXg3xICO0JQJ/CqZZETQVt7G1r2C2T/8lDO7Y2mURf/PB9no9UwdUgjHv/1EH8cjmRMhyAa+Jp3HeOGMzG8tjQYfbaJVoGezHmqLV5mXn+mmBR2Lr5E2ImbaG01PPR8M9wrO+V6TGCjyoz4Txuq1ij462tW3ZMXutfmx52hvL/6LO1relHZ1Qyppx8gMjkyJyC6w6SYiEqJwtelYOubIuLTGDv3CJG30vF2tWfB0+1oUq1ogag+M5vdf6pBc/PeAfgEmeEY2fMFXNkFds4wciE4uBa/TSFEgenDI+4GRHeYTOgjIrHzLfvrKCs6SbQg8mc0wJInIGQLOHrChM3g08DavSq0WzFpLPvsGNlZRto8VIP2D9eydpfuEZ2YwZlriVyISeGSLoWLumQibqWT16fTRquhprcL9X3daOjrRn1fNViqXsnpvlPfom6l89yi45yPSc5ZPzS+U40SSS19KyaNpR8fwWRUCrxwn7gQ+LEt8K83wbXq3QApsCNUbawWIjYDg97IuT1qQJRfzaI7Xvj9OBvP6uhcpzK/T2xvtvdx3r6rfPT3eRQF+jWqyvejW5o9aFUUhX1/hXB65zU0Wg0DnmlCrZZVzNZ+VraRoT/u56IuhUFN/fjpyVZmazs/ujQd/Vf0zxUYaTVaNj+6uUBB0dnoJMbPP0Jcqp5AL2cWTmhX5DpEAIfXXuHYhnDcKjsy+oP22DkUcx+G7YRFjwAKPPIrNB9VvPaEEIVm0OkI7dU7d2Ck1VJnx3YJikohyT4nQZF56dNg4VC4dhTcq6lZjjxKvihqcV0+omPrvPMADH65OUGNS3/F93R9NpdjU7kYk8zF24HSRV0KiemGPB/v5mBLvTujSrdHlur7uuHuaMe+kDhe/vMECekGKrvY89OTrehQq+Teg2y9kWMbwkmITWfAs00KFkCsegFO/QFBnSGgnbq4/PoJMP5rGqSDOwS0h6COENgJqrUCW8uPTETdSqf317vRZ5v4dWxr+jUu3heiyaQwY+MFZu9V1++M6xjE1CGNC5X6uaDunLAD9BnfkPodHjw9LD1Zz9G/r9J+SC0cXR+c7v5sdBJDf9qP0aTw4xMtGdws75E3c1oZsjJnCp1Wo2Vqx6kMrzv8gc87EBrHs4uOk5qVTSM/dxZMaIuPW/HSxeszsjm0Oowazb0JbFTMz1rydZjVFdLjoNVT8HDZToIjRFmWuHz53Sl0Wi1+06fhOWKEtbsl8iBBkQRF5pd+C+YNgLhL4F1PHTFy9rJ2rwpt1x+XOL83ms6P1aV5L8ukM7Y0RVG4kZLFhZjk2yNK6k/ojRQMxrw/ytU8nYhJysCkQLPqHswa0xp/T6c8H2tpiqIULCBKiIDvW6qLySftgOqt1fsNGRB9AiIPqEFS1BHQp+R+ro0DVGt9N0gKaFekYsSKopCWqMe1Uv4B1v9tusjPu8IIquzMlte74WBbtNGArGwjby07zbpT6rTGdwc04Pnulkl6EXs1meWfHwOg2+P1aNqjYBc5Vn11gushiTTq4k/PMQUbMf5662W+3x5CJWc7trzenSpulg9WdWk6olKiCHALKNAI0YYzMby2JBi90USHWl78Oq4N7o7Wr3GWw2iA34ZA5EHwbQoTt4Gd9et7CVGRGXQ69BGR2AcFyghRKSZBkQRFlpF0Deb2g+RoqNYGnloL9kWfWmIN2QYjcVGp+NYqXYVTzcFgNHHlZlrOaNLF20HT9aTMnMeMaF2dj4c1KZH1Q3dkZWRj52BT+HVc69+AY3OhVg91PVt+jNkQe1Y9YYw4oP6bdjP3YzRaqNrk7nS7oE7gev8Mbgk6dQ2aPtPIkx+2R5vPAvnUrGx6frmLmylZTBnYICcldWEkZRh4duExDl+9hZ2Nhi9GNGdYy2qFbqcwzuy6hj4zm9YDahT4OddDE1n15QkAHn2ndYE+R/psE0N/2s+FmGT6N67KrDGtS2S6ZkEtOhTBB2vOoigwoLEv3z7eotifj7hrqVSu5mK+17n1A7UmkYM7PLsLKhf+GBNCiIpIgiIJiiznxkWYPwAyEqBOXxj9J9iUoiuqhWQymvI92S0vktINXIpNwc5GQ4sAzxI9IVUUhQ0zz5CelEXvpxrh5V/AIDpFB982A2MWPLUeanYtzEYhPuzuSFLkAUgIv/dxXrXVkaSgztDk0Xum2+kzs1n03kEyUw0PnF627FgUby8/jauDLTvf6lGo0ZDriRmMn3+Ey7GpuDrY8svY1nS2UBZAxaSgKeZUvO2/nefiQR3eAa489p82Bfr8nLuexNAf95NtUvju8RYMbWHZgK8gFEXh220hfLddrR/0RPtAPhrapNhTFRN0aSz5+Ah+tT146Plm2DsVM5fRxQ2wZLR6e+RCaDS0eO0JIUQFIsVbheX4NIAn/gJbJwjdCmteujcLSxmRoEvjr0+PcuXkzQc/uAzzcLajXU0vWgZWKvEr9GEnbhJ+Oo64a6ko/06WcD8HflADooAOUKNL4Taq0YB3HWg1Dh6ZCa+egjcuwIh50PYZdcQIDdwKg5O/w+oXYOUz9zRj72hLi9s1ZY5tjMhV3PTfHm1VnabVPEjNKlyK7ou6ZIb/fIDLsalUdXfgr+c6WiwgCj8dx8ovT5CZmvd6tILqNLwODs62xEWlcmZ3dIGe09jfg5d71QVg6tpz3EjJfMAzLMtoUnhv9dmcgOjV3nX5ZFjxAyLFpLBr8SVM2Qo2tlrsHIs5IpsQAaufV2+3f0ECIiGEsDAJikThBLSDkb+BxgZOL1ELvJZBFw/piI9OY/tv50m6mW7t7pQ7mWkG9i69DECr/kFU9i9g6uD0W3Bsvnq721vmSb3t7q+OBg36El7YD+9eVYP7Tq8AGji/BuJC73la0x7VcXCxJTE2nZCjsfk2r9Vq+GBIIwCWHI3i3PWkB3bpQFgcj808iC45k7o+rqx8sTON/C0zwn3tUgKbfj2L7koSp3ZEFastJzd7OgxTp28dXnuFtKSC1dJ6sWdtGvu7k5hu4H+rzmKtCQqZBiMv/XGCxYcj0Wjgo6GNeb1vPbNcMDi//zrXQxKxtdfSfXT94rWZnQXLnoLMJHW6ct/pxe6fEEKI+5OgSBRevf4w9Cf19sEfYX/Zy4TUbkhN/Gp7oM80sunXs2QbjNbuUrlycGUo6cl6Kvk602ZgjYI/8dBMMKSBX3Oo08cynXOqpB7D/T5S/wU4POueh6mjRYEAHNsQft/RorY1vBjczA9Fgenrzt/3pH9NcDRPzTtCSlY27Wp6sfz5TlSzUOIL3dUk/v75NMZsEzWbe9N2UI1it9moiz8+NdwxZBo5uv5qgZ5jZ6Plq5HNsbPRsPV8LKuDCzbKZE4pmQbGzz/CxrM67G20/Di6FWM71jBL22mJWRxYGQZAh6G1cfcu5v7c8h5cP6keq48tAFvz1qgSQghxLwmKRNG0GA19P1Jvb30fgv+0bn8KycZGS79JjXF0tSMuKpV9f4VYu0vlRvSlBM7vjwGgx5gG2NgV8M9MZjIc+UW93fVNixRovUeHF9R/g/+AjMR7ft2sR3UcnNXRotDj+Y8WAUx5qCEOtloOX73FprP3VjdXFIVfdofx6pJgDEaFQc38WDihHR7OllmXF3ctlfU/nCI7y0j1BpXoP6mJWdbQabUauo9Ws9Z1fKTgi/4b+Lrzau/b0+jWnOOiLrnERoxupGQy6pdDHLpyC1cHWxY83ZZBzR6chryg9iy9jD4jG58gN5r2LGbJgrMr4Miv6u3hs8GzbGbKFEKIskaCIlF0nV+Bji+pt9dMhsubrdufQnKt5EjfCY1AA+f2XufS4XtPZEXhZOuN7Fx8EYDGXf3xr+NZ8CcfnaNOF/KuDw2GWKaD/1azO/g0UkenTi6659f2TrY0762elF49FXffpqp5OvFcN7Uw8CcbLpD5j9FHo0lh2rrzzNiovjcTu9Tkh8fNX5T1jsTYdNZ+H0xWeja+tdx56IVmBQ9OC8AnyJ1uj9fDoZAB3fPda9O0mgfJmdkM+HYvzaZt4YnZh5ix4QLrT18nIj7N7IFSRHwaI2Ye5HxMMt6u9ix5tgOdzLh268rJm1w5eROtVkPPsQ0Ln2nxn+JCYe0r6u2ub0LdvubppBBCiAcqZmocUd4YdDr04RHY1wgqWO79vh9BWpy6vuivp9RU3QHtLN9RMwlsVJk2D9Xg2N/h7Fp8kSoBbgXPkibukZlmwMHZDmcPIx2H1yn4E/XpcPD2lMyub4BWPYEv9PFYWBoNtH8e1r0Ch39VF7Tb5P6z2KxXAN7VXanR7MEn0s/3qM1fx65xLSGDufuuMrlnHTINRl5bEsymc2rQ/d6ghkzqWsv8r+U2RVHYtuA8Gcl6vANcGfxSc+wcLJeGXVEUEnTpePk9+HNja6Plh9Et+c/K05yITCQlM5sDYfEcCIvPeYy7oy1Nq3vQpJoHzap50rSaBwFeTkVao3M2Oonx848Sl5pFoJczCye0o4a3eT/fLp4OePm7ULOZN97VC7h2Li+GDHUdkT4VgrpAj/+ar5NCCCEeSFJyixxFrtJsNMCfo9WMdI6eanFXn4IVdywNTCaFdd8Hk6030f+ZxrhWksKIxWEyKSTHZeDp41zwJx2aBZveBc8gePkE2NiWXNVwQwZ83QgybsHIRdDo4WI1t+rkNV5fegpnextWT+7Mf1ee4VhEAvY2Wr4e1ZzBzfzN1PH8Jcams2fpZfqMb4SzexHWoyhKgaYvZmVks3HWGWKvJDF6avtCraUxGE1cjk3hbHQSp68lcTY6iQsxKeiN92a09HCyo2k1D5pW91D/reZB9Ur3D5QOhMXx7MLjpGZl09DPnd8mtMXHzTKfbWO2CRSKNxq37jU4Ph9cqsDz+8BNCkIKIURxSJ0iCYqKxKDTEdqrd+4U21otdXZsL9gVen0aLBwK146CezWYuAU8ijm3vgRlphmwc7TBppzXLSqVsvXwfQu1MPDgb6DNhOIfj4W1fTrs/QoCO8GEjfk+TJ+ZTVpiFpV88x9tMJkUhs88QHBUIrZaDdkmBXdHW34d14YOtSqbv++3KYpinrTr2Xr44zGIvwKTtoFb1ftuc/XXJ7kekkiNZt4MerFZsTatz1YDpTPRSZyJvhMoJWMw3vs15elslxMg3QmYqnmqgdKGMzG8tiQYvdFE+5pezH6qDe6O5l27ZTIpxZsq909nV8DyCYAGxq6C2j3N064QQlRghY0NZPqcAEAfHnFvzSGTCX1EZMFOQu1d1DTH8wZA3CVY9Ig6YuTsZZkOm5mjS+4TppRbmbh5yYhRQZ3eeY3UhEzaDq6JnX0hp2qd+lMNiNz8oMWTgBmOx8JqOwn2f6cWe70eDP4t7nnI9ZBENs46g4unPaP+1y7fQqharYapQxrxyM8HyDYp+Hs4smBCO+pVdTN/v2/TZ2azYeYZWvYNJKhJMQOvHdPhyi719s5P4OH8s0tqNBq6j67P0o+PEH46jqunblKzeZUib9reVkuTaurUudslS3MCpdPXkm4HS4lc0qWQmG5gb0gce0PurvWq5GxHfV83Dl+9haLAgMa+fPt4C7Ov3co2GFn++XHqtPahZb/A4l1MiQ+Dta+qt7u9JQGREEJYiVwWFwDY1wjKWceRQ6vFPiiw4I04e8HYlepIUdxlWPyYOoJUhpiMJvYvD2Hx1EPcjEyxdnfKhOT4DA6uDuPklkjCjt8o3JON2bDvG/V2p5fB1gEw0/FYGO7+0GiYejuP9NwAXv4uGI0m4qPTuHLq/kV/WwZW4n8PNWRQUz9WvtjZogFRtsHIhplniL6UwPaFFzBkFSO9/OXNavHcO04ugtjz932Kl78LLfqqySj2Lg3BoDdvevs7gdIT7QOZMbwp61/uytlp/Vn7Umc+eaQJj7cNoLG/O7ZaDQnpBg5dUQOi0e0C+enJVhZJZnF8YwTx11I5s/MahsxivN7sLFj+NOhT1FHK7v8xXyeFEEIUigRFAgA7X1/8pk+7eyJ6ew1Hoa/Ke1SHMSvVtUXRx9TkC0aD2ftrKRqNhsTYdIwGE5t+PUNWetnpuzUoisLuPy6TnWXEr44H9dsX8ng5twoSroJzZWg9Pudusx2PhdHhRfXfsysg5d70244udjS7nW756N/hKPepWwTwTLda/PRkK3w9LDfiaDSa2Dz7HNGXErBzsGHQC82KnlQhKRpWPafebv8CNBwCiqlABZrbPFQT10oOpNzK5PjG8KJtvxAcbG1oVt2TJ9sH8dmjzfj7FTVQWjO5Mx8Na8I3o5rz6SNNsDHX9LZ/iI9O5cSmCAC6jqp3zyhzoWz9AGJOgZMXPDrnniQfQgghSo4ERSKH54gR1NmxncDffqPOju1FX9Tu0wCeXAa2TmryhTUv3TsVqpTSaDX0Ht8INy9HkuMy2f7bhRKrpVLWGI0m9i65TOS5eLS2GnqOaZDvlLI8mUzqOh5Q6wXZ516nY7bjsaCqt4bq7cCoh2Pz8nxIi96B2DnYEH8tlaun75+i29IUk8L2BRcIPx2Hja2WQS82o2rNIq6nNGbDiomQkQB+LaDvNOgzDbS2ELoNQrff9+l2DjZ0HVkPgJNbIknQlfwIsaOdDc0DPBnbIYhHWlY3z/qqfzGZFHb+fhGTSaFmc29qtyr6VEEurL87KvnIL+BRzTydFEIIUSQSFIlc7Hx9cWnfrvhX5APawcjfQGOjpuve9oF5OlgCHF3s6P9sE7S2Gq6eiuPU9ihrd6nUyUjRs+67YM7sjgagy4i6900+kKdLG+DmBXBwh7bP5PkQsx2PBdXhefXfY3PVqU3/4uhql1Oc8+jfV60WMCuKwu4llwk5GotWq2HAs02oVr9S0Rvc9SlEHlT3xWPz1WmMlWvf3S9b3gfT/aeJ1WzhTVCTynj4OBdvCl8pZTSa2P3nJWKvJmPvaEO3x+sXPfBKiIA1t0cmO70C9fqZr6NCCCGKRIIiYTn1+sPQH9XbB36A/fkv2C5tqtZwp8uIugAcXBlGTFiSlXtUeiiKwsZZZ4i+nIidgw0Dn29K0x6FzDSoKLD3S/V2u2fAydPs/SyShg+ra+LSbqrT6PLQok8Atg42xEWlEn4mPs/HWNqV4Juc2xMNGujzdKMC1VDKV+h22Pu1envId+D1jxpK3d8BRw+4cQ6CF9+3GY1GQ+/xDRn1v7b4BJW/DKBb5pzj/N7roIFuj9fDtZJD0RoyGtRMc5lJUL0t9C47F4yEEKI8k6BIWFaLJ6DvdPX21vch+E/r9qcQmnSvRp3WPphMClvmnC2XV7+LQqPR0HlEXbz8XXj03dbUalGEKURh2+H6SbBzvruWpzSwsVMz0QEc+lkN3v7FydWeZj2qgQZuRCSXcAdVtZpXoVbLKvQa25C6bfNPmf1AKTpY+SygQJsJ0GR47t87e0G3t9XbOz6BrNT7Nufkao+Nbfn8WmnQ0Q87Rxseer4p9Tv4Fb2h7dPV9ZaOHvDoXPWYE0IIYXVSp0hYnqLAlvfg4O1RI+966tqNgNs/3vXvzTRWSugzs1nzzUla9A2kbptinHyWcYpJIf56Kt7V3XLdV6g1RP80b6Ca/rrDizBghpl6aSbpt9RirtkZMH4D1Oh8z0MyUw2kJ+vx8i/klMFiCD1+g6AmlXMSKRS7LpHJqNYWC98LVZvApO1gl0dSiOws+KkdJISr2dF6Tnlg08ZsE8HbItFnGuk4rHbR+2hl2QYjtv/IXpeZZiheYoXLW9QaUACjFkPDwcXsoRBCiPwUNjYonWeionzRaKDvR+qVaFDTdQf/DutegZ87wOc1YNFw2PUZhO2ATOtcfc+LvaMtI95tkysgMhrLRtIIc9FnZLNh1hmWf34818hIkQOiiANqQGRjr6bhLm2cvaD54+rtQz/n+RBHV7sSC4iy9UZ2LLzA5tln2f3HpZx1TMVOJLDnSzUgsnOBxxbkHRCBur6oz4fq7QPfQ3LMA5vWhSVxaPUVTm6O4GZU2Uxtf+mwjsUfHCI5LiPnvmIFRLmy+z0vAZEQQpQyEhSJkqHVwuBv4O0rMHopdHkDanRVp09lJanTqXbNUIu+fhYIP3eCda9C8B8QF5rnNKaS8s+T/8Qb6Sx+/xBXgu9fp6a8SIxNZ/nnxwg/HQcKJMdlFr/RPbfXErV4Qq0PVBq1v51w4eLf6gjJfSTdTLfYib/6/h/nwoEYNBrwrOpknoav7oXdn6m3h3wL3nXv//hGw9TRXUM67Pz4gc1Xq1+JOq19UBTY8+elB6YvL00UReHw2itsm3+e1ISsnGQixWLMhhWTIOMW+DW/O6VYCCFEqSHT54R1GbMh9ixcOwpRhyHqCCRG3Ps4Jy91ql31thDQHqq1uieFc0nYsegCF/arV8qb9qxO5+F1sLErn9cWIs/Fs2XuObLSs3HxdGDg802pWqOYn63oEzC7p5qV8OXj4FXTPJ21hEWPqCOXHV+C/p/k+ZCQo7FsnX8enyA3Hn2ntVnTQIcev8GORRcwZBpxcrOj38TGVG/gVfyGU2/CrC6QqoOWY2DoTwV7XtQRmNsX0MDze8G36f03k5DFHx8ewpBlpOfYBjTqXEoD4H/I1hvZvvACocfUIsSt+gfSYWjtoo+K3rHjY9jzBdi7wXO71cx+QgghLMri0+f27NnDkCFD8Pf3R6PRsHr16ly/j42NZfz48fj7++Ps7MyAAQMICQm5b5sLFixAo9Hk+nF0tFzBQ1GK2NiCfws1A9mjc+C10/DmZRj1u5qqNqAD2DioV1gvb4IdH8Fvg2FGAMzqCn+/Baf/Uq/ml0B83310fVr0CQDgzM5rLP+/YyTGplt8uyVJURRObolk/Y+nyErPxreWO49NaVP8gAju1iVqOqJ0B0SgFjAFOLEQsvIeCfKv54nWRkPs1WSiLtwyy2aN2Sb2/nWZzbPPYshUi+KO+l878wREJhOselYNiKo0gIH/V/DnBrSDxo8At9cIPuDz5lrJgXZD1H18cGUYmamluxByerKe1d+cJPTYDbRaDT3HNqDjI3WKHxCF7bw7OjrkWwmIhBCilCp0UJSWlkbz5s356ad7ry4qisKwYcO4cuUKa9as4eTJkwQFBdGnTx/S0u5fzM/d3Z2YmJicn4iIPEYLRMXgVhUaDoF+H8HEzTDlmroIvP8MdRqPezVQjKA7DUdnw8pn4Lvm8GU9ODLbol2zsdXSeURdBk1uhqOLHXFRqfz16VEuHdZZdLslKfT4DQ6sDEVRoGFnP4a93goXjyKmH/6nGxfg4npAo06fLAUMOh1phw5j0OWx/+r0gcp1ICs536yJLh4ONOmqFt08uj7cLHWLMtMMhByNBdSRimGvt8TF0wzvP8D+b9XRL1sndR1RPqOt+b4vvaeqa8Gu7FKLuj5A057VqVzNhcw0AwdXhxW7+5aSdDOd5Z8dI/ZqMg7Otjz8agvzjGylxN7N7td6vHox4D7uezwKIYSwKNvCPmHgwIEMHDgwz9+FhIRw6NAhzp49S+PGjQGYOXMmvr6+/Pnnn0yaNCnfdjUaDb4lVaBRlC229lC9jfrT8Xb65qRr6nSeO9PuYk5D2g3Y8LZaZ6VOb4t2qUZTb0a9146t885xPSSRbfPPo7XRlIsMdbVb+VCzeSzVG3jRtEc1800Ju1MLp+EQ8GlgnjaLIXH5cmI+mKqOnmi1+E2fhueIf5y0arXq2qINb8HhmWqq7jyyJLbsH8jZPdHoriRx7WICAQ2LN6Lj4uFAv4mNMWQZqdm8COnO8xN5SJ3GBfDQF+DTMM+H3fd98aoJ7Z5VM0lueQ9q9VRHe/NhY6Ol2+j6rPryBJcO6Wg3uKb5AjwzcvZwwMnNDq2NhsEvNcezqnPxGzUZ1Qs2aTfApzEM+Oy+D3/g8SiEEMKizLoYIitLrQD/z6lvWq0WBwcH9u3bd9/npqamEhQUREBAAEOHDuXcuXMP3FZycnKuH1GBeFRXa6oMmAHP7IApUdBqHKCoGZ5SYi3eBddKDgx9vSVtB9XAt5Z70er1lBI3IpLJNqh1mLRaDQOfb0qzntXNFxDdugJnl6u3u71lnjaLwaDT3T0BBTCZiPlg6r1X6JuPBgcPtf8hW/Jsy8XDgUZd1VGFo39fLfRokcmkLuwPO3Ej577qDbzMGxCl31ILhipGaDZKXUuUhwK9L93eAqdKcPMinFz4wE371/Gky2N1GfVe21IXEN3ZV3b2Njz0YjNGvNvGPAERqBcBru5Wk8k8tgDs8k+SUeDjUQghhMWYNShq0KABgYGBTJkyhYSEBPR6PZ9//jnXrl0jJib/NK7169dn3rx5rFmzht9//x2TyUSnTp24du1avs+ZMWMGHh4eOT8BAQHmfCmirLFzUtdH+DSGtJvqFVqT5YutarUa2g2pxSNvtsopWmk0mgg5FmuWqVQl4fy+66z4v+PmTff8b/u+BcUEdfqq2besTB8ecfcE9A6TCX1EZO77HFyh9Tj19uGZ+bbXql8QWlsNMaFJRF9OLHA/0pP1rPs+mGMbwtmx8AIZKfoCP7fAFAVWvwDJ0ep0wEFfqWny81Cg98WpEnR/V72989N811v9U/PeAVTyLfnEKPkxGU3s+fMSR9dfzbnPxcMBR1czFVIN3w+7PlVvD/oaqtS778MLfDwKIYSwGLMGRXZ2dqxcuZLLly/j5eWFs7MzO3fuZODAgWjvU5yzY8eOjBs3jhYtWtC9e3dWrlxJlSpV+OWXX/J9zpQpU0hKSsr5iYqKMudLEWWR3e11EnbO6hXafV+X2Ka1NneP7yNrr7Blzjk2/3qWrPTSu7jcePvEcOfvFzEZFQxZRkxGCwRySdFqanUoFaNEAPY1gu6dCqfVYh8UeO+D2z0LGq26jib2fJ7tuVZyoHFnf+ydbElNKFja8uuhifz1yRGuXUzA1l5L9yfq4+RmX8hXUgAHf1KTlNg4qJ8PB7d8H1rg96XNRHWaatpNNeAthBsRyaQlZRXqOeakz8jm759Pc2Z3NEc3hHMr5v7rXQstLQ5WTFQvAjR/AlqMfuBTCnU8CiGEsAiz5xJu3bo1wcHBJCYmEhMTw6ZNm4iPj6dWrVoFbsPOzo6WLVsSGhqa72McHBxwd3fP9SMEVerBQ7czPe38VC0UWsKc3R3Q2mgIO3mTpR8fRXclqcT78CAZKXrWfRecU4Ol/cO16P9Mk5zRLrM68AOYDBDUBQI7mL/9IrDz9cVv+rS7J6K313DY5bWu0TMQGtwutHl4Vr5tthtSi3GfdKRBB7/7bltRFE5siWD11ydJS9JTydeZx/7TlnrtLLCm8tpx2DZVvT1gxgPTaBf4fbG1v1tr5+CP6hq/AgjeFsmyz46xf3n+f9stKTkugxVfHCfy3C1s7bQMeLYJXn5mHMEymWDV85ASA9711LVbBVCo41EIIYRFFDrRQkF5eHgAavKFY8eO8dFHHxX4uUajkTNnzvDQQw9ZqnuiPGvxBFzdA6eXqAUTn98HzmZIZ1xAzXsH4Fvbgy1zzpIcl8mqL0/QfmgtWvYNLH56XzOIu5bChp/PkHIrEztHG/o+3ci861f+KfUmHF+g3u72pmW2UUSeI0bg0qUL+ohI7IMC738C2uFFuLAWTi9VM7C5VL7nIQWZemUymtj061munooDoF67qnR/oj72jhb4U5yRCMvHgylbzdrYZkKBnlbg96XBYAjsBJEH1AQOj+QfMN7hX9cTUOs7efm7ENS4MpWrueQaabUU3ZUkNsw8TUaKAWcPewa92AyfIDNfTDv4A4RuBVvH26NyrgV+aqGORyGEEGZX6G/i1NTUXCM4V69eJTg4GC8vLwIDA1m2bBlVqlQhMDCQM2fO8OqrrzJs2DD69euX85xx48ZRrVo1ZsyYAcD06dPp0KEDderUITExkS+++IKIiIj7ZqsTIl8ajbpuIvoYxIeq6ylGL8l3HYUlVK3hzsj/tWPX4ouEHrvBwVVhRF9KoPf4Rji7W2CKVAEZDSb+/uk0qQlZeFRx4qEXmuHlb8G1Hod+huwM8G+lZiorZex8fQt28hnYQV0LFXMKjs+/7zRARVGIunALJ1d7qgTmnqqmtdHiVtkRra2GriPr0birv/nXb6mdgLUvQWIkVKoBD39fqOO/QO+LRgP9P4bZveDUn2qmPv8W932KT5A7TbtV48zuaA6vucLhNVewtddStaY7zXoGWCxZScixWLYvuIAx24R3gCuDXmyGayUz18KLOgLbb4+eDfwcqjYudBMFPh6FEEKYXaEvzx07doyWLVvSsmVLAN544w1atmzJBx98AEBMTAxjx46lQYMGvPLKK4wdO5Y//8xd4yMyMjJX4oWEhASeeeYZGjZsyEMPPURycjIHDhygUaNGxXltoiJzcIUR89V1FJc3qSfnJd0FJ1v6TWxMzzENsLXTcj0sCX1Gdon3459s7LT0HNuAoCaVGfGfNpYNiDIS4egc9Xa3t0o0KDU7jUYdLQL1NRnzXyt2YnME674/xYGV6sUjRVHXa93RaXgdRk5pS5NuZkx3/m9H58CFdaC1Uz8Hjh6W2U611tD0MfV2AQq6AnQeUZdOw+sQ2LgyDs62ZOtNRF9KJCv97mcj7loqOxZe4Pz+69yKSUMxFW+tm9FgwphtokYzbx55s5X5A6KMBDW7nykbmjwKrZ4yb/tCCCEsTqOUlRRZD5CcnIyHhwdJSUmyvkjcdWS2WmdGawcTt0C1VlbpRvz1VJJvZuSapqYoiuVOiv+xjZT4TDJSDFSt6Z7rfktvm91fwM6PwacRPL8/zxo/ZUp2FnzTRK078+jcfAtxJsdnsPj9Q5hMCkNeac6lwzpS4jMZ9nrLEpkmxvVgmNsXjHq1Nk6HFyy7vcRI+KENGLPUEdn6edexy4tiUkjQpaO7kkRgY6+cYOXU9ij2LQvJeZyDsy2+tTzUn9oeVK3pjp29TaG6GXE2noBGXmjNPYVVUWDpGLUwcaWa8NwecJTvICGEsLbCxgYSFInyTVHgr3HqepBKNW6fsFjoqnkhRF9K4Mj6q/R5uhFuXua5aq27koTuShLJcZkkx2eQHJdJSnwG2XoTDs625q3B8iBZqfBtU8i4dd8AoszZ9bmaarlaG3hme74P27noAuf3x4AGUECj1TD0tRZUq1fJsv3LTIZfu6t1leoPgscXl8wI3dapsP9bqFwXXjwINsVLbX0jIpmwkzfRhSVxIzyZbEPudNWPvNkS/7rqe5lyKxNFUXDzcswJ9DNS9Oz9K4Quj9W1/HTVQ7Ng07tgYw8Ttz5wCqEQQoiSUdjYwGKJFoQoFTQaePgH9ep5Qjise1WdTmTFqVyKSWH3n5dI0KWz9JMj9B7X8L6JDrINRlLiM0mOzyQlLiNX0PPwKy1yFviHHI3l9M48soBp1JTR/5zCZXHH56sBkVctaPxIyW3X0tpMgL1fquvVoo5CQNs8H9Z6YA0uHtRhMik4e9jTf1KTnCQDFqMosP41NSDyCIChP5bccd71DTi5COJD1MQa7Z4pVnM+Qe45SRCMRhPx11KJCVOD/hvhyVT5R4KE4K2RnN55DRcPe3xre+AT5M65vdEkx2WSlZ7NkJctWBcr+oQ6bRCg3ycSEAkhRBkmQZEo/5w8YcQ8mD8Azq2Cmt2hzdNW645Gq2HQ5GZsmXOOGxEpbJh5hmY9q1OrRRWS4zOo3conJxvZodVhHN8UkW9byfEZOUGRb20P0pP1uHs74lbZCXdvR9wrO+Hm5YiNXQlOXTNkqmm4Abq8DtrCTXMq1VyrqGtogher69QC5uf5MHdvJ3qObcCN8GTaDKpZMsk1TvwGZ1eA1lY93ksw4yKOHtBjijpVddcMaDbSbCOyNjbanCCpea97i3TrM7LRajWkJekJO3GTsBM3AXD3dqTLY3XM0oc8ZSbB8qfVdPMNBhc7EBRCCGFdMn1OVBz7v4OtH6jpcp/ZUaTsUOZkzDZxcHUYp7blLjz82JQ2OVfJg7dFsn95KLYONrhXdsTd+26w4+7tiH9dTxycizdVyeyOzoG/3wT36vDKSbWmTXkScxp+6QoaG3jtDHhUs3aPIPacmgUuO1OtH9T51ZLvg9EAP3dUR4s6vwZ9p5XYpg16Izcjkm+PJiXj5GZHx0dq4+RqoWNPUdSA6Nwq8AiE5/eAk4WnRgohhCgUWVMkQVGpZdDp0IdHYF8jyCJpZx/YvskEf4xU64h414Nnd4G9BbOvFVD4mTgOrAjFZFRw93ak4yN1clI5Z6UbMBkVHF3tLJ8YwRyMBvi+FSRFwsD/g/bPWbtHljF/EETsU0fC+nxo3b5kpcLsnhB3Ger0hSf+sl5Si4sbYMloNevjy8fUwrfl0bF5sP51dVRuwmao3sbaPRJCCPEvhY0Nyng6KFFWJC5fTmiv3kSOH09or94kLl9e8u1rtWqBSTc/9QRywztm7UNR1WjqzRMfdmDMRx15+NWWuWrbODjb4eRmXzYCIoAzy9SAyKUKtBpn7d5Yzp2MbscXgD7dql1hw9vq8ezmB4/8Yt0sf/UHQo2uaia6OzV7yhvdWdj4H/V2nw8lIBJCiHJCgiJhcQadjpgPpqojNQAmEzEfTMWg05V8+y7eMHw2aLQQ/Duc/sssfRCAyQh7v1Zvd5wMdk7W7Y8l1R8InkFqfZrTS63Xj+A/4NQf6vH86FxwqWy9voCa2KHfx+rtM8vg2nHr9sfcslJg2Xg16KvbHzpMtnaPhBBCmIkERcLi9OERdwOWO0wm9BGR1mm/ZlfodnuUaP3rEBdqln5UeBfWqutJHD2gzURr98aytDZ3pwYenlWgoqVmd/OSunYLoMd/oUbnku9DXvxbQLPH1dsFLOhaJsSHwdz+6jHu5g/DZpb92ltCCCFyyF90YXH2NYLuPXnQarEPMs96gyK13/0ddZqPPhWWj1czpomiUxTY85V6u/3zFaN4ZcsxYO8KNy/ClZ0lu+3MZHXEwpAOtXqoKbFLk97vqwlNIg+oRU3Lukub4NeecOMcuPjA479bf1ROCCGEWUlQJCzOztcXv+nT7gYuWi1+06eZLdlCkdrX2qjT6Jwrg+4MbH3fLH2psEK2QOwZNUho/7y1e1MyHD2gxZPq7UMzS267lzerWd5unFdP0IfPLn1pzz2qQ8eX1NtbP4BsvXX7U1QmE+z8FP4cBVlJUL2dWgC6Wmtr90wIIYSZSfY5UWIMOh36iEjsgwItl32usO2HbIXFI9Tbo36HhkPM3q9yT1Fgbj+4dgQ6vQL9PrJ2j0pOfBj80BpQ4KXj4G3BujipN2HTu2otIlDXNI2YD9VL6Ql6Vgp83xLSbsKAz6FDGQuW02/BymfVbJUAbZ+B/p+WvxTzQghRTkn2OVFq2fn64tK+nUUCoiK3X7eveiIPsGYyJORfKFXkI3yvGhDZONwdHagoKteGegPU24dnWWYbiqImVPiprRoQabTqMfviodIbEAE4uEHP/6q3d3+mJqUoK2JOw6891IDI1lHN6jfoSwmIhBCiHJOgSIjeH0C1NmqF+hUT1Vo7ouD2fKn+22ocuFW1bl+s4c4ISPAfkJFo3rZvXYVFw2D1C2pQ4dtULTzc7yOwdzbvtiyh5Tio0kDt+53jpLQL/hPm9oXECHU0buJWaP64tXslhBDCwiQoEsLGDkbMAwcPuHYUdnxs7R6VHcF/wNXdahHLzq9auzfWUbM7+DQCQxqcXGSeNo3ZsP97de3QlV3qaEWfafDMTvBvaZ5tlAQbW+h7ezrlkV/VIK+0ytar2fxWPw/ZmWoh3Gd3gV8za/dMCCFECZCgSAiASkEw9Af19v5vIWSbVbtT6pmMsHWqOoIB0HYSeAZYt0/WotHcTS5x+Fc1oCmOmFMwp5ea/CM7Q82S+MIB6PKaGsCXNXX7qhnyjHrYPs3avclb8nVYMAiOzlH/3/1deOIvcPaybr+EEEKUGAmKhLij0VD15B5g1XOQHGPd/pRWWSmw5Ek1eATo+ib0n2HVLllds5Hg5AVJkXBpQ9HaMGSogeavPdXAyNEDHv4Rnlqnrl0qq3IKumrg3CqIOmLtHuUWvh9+6a6ui3PwgNFL1bVQUoNICCEqFPmrL8Q/9fsEqjaF9DhY+Yw6IiLuunUV5vSFyxvVxArD56hrsir6CaSdE7SZoN4uSnruq3tgZic10FSM0GgYTD4KrcaqQUVZ59v0bvryzf8rHQVdFQUO/gy/DYG0G+DTGJ7dCfUHWLtnQgghrKCCn8kI8S92jvDYfLBzUbOqlZXF4SUhfB/M7gU3L4CrLzy9EZo9Zu1elR5tJ6lrqyIPwPXggj0nIwHWvKSemN+6Am7+8PgfMPK38pe0otd7YOesjsicX23dvujT1KQqm6eoQWjTx2DS1rI9IieEEKJYJCgS4t+868Lgr9Xbuz9Tg4GK7th8WDgUMm6pC/2f3Vm600Fbg7sfNH5Evf2g9NyKAudWw4/t7iZnaDsJJh+GBoMs2k2rcfe7m/5+24eQnWWdfsSHwZw+anpzra1aQ2n4bLB3sU5/hBBClAoSFAmRl+aPQ/MnQDHBikmQFmftHlmHMRs2vAPrXwNTNjQeDuM3gLu/tXtWOrW/nXjizHJIic37MUnRsOQJWPaUOm3Lux48vQkGfQWOBS88bdDpSDt0GINOZ4aOl5BOL4NrVUgIh0WPwP7vIPpEyU1TvbRRrT9047zaj6fWqynVCzFFsUy+70IIIR5IoyilYXJ38RW2aq0QD5SVCrN7QtxlqNtPXYBdkdbOZCTAsqfhyk71/z3fg25vlY81LpY0p686Raz7f6DnlLv3m0xwfB5s/RD0KaC1g65vqIkqbB0KtYnE5cuJ+WCq2qZWi9/0aXiOGGHe12Epp5ep6/X4x1ePgzsEdYIaXdRse75NQWtjvm2ajLBrBuz5Qv1/QIfbUxQLV0i6TL/vQghRwRQ2NpCgSIj70Z1V19EYs9QMWp1etnaPSkZcCPz5OMSHqutAHvkFGj1s7V6VDWdXwvKnwaUKvHZWXad28xKsfQWiDqmPqd4WhnwPVRsVunmDTkdor97qifkdWi11dmzHzrdwJ/lWc+MChO2Aq3sh4gBkJeX+vaMHBHW+GyRVbVL0CxLpt9TR3rDt6v/bPad+lm3tC9VMuXjfhRCiAilsbGBbAn0SouzybQIDZsDfb6jrIDyDyn9wELpdHSHKSgL36jD6TylgWRgNh4B7NUiOhlN/QtpNdYTCqAd7V+g9FdpOLPJIiD48IveJOYDJhD4isuycnPs0VH86TlZHcXSn1bV7d4KkzCQ1tfmd9OaOnrcDpNtBkk+jggVJMadg6RhIjARbJxjyHTQfVaQul4v3XQghRL5kpEiIB1EUdbrPmWWABgZ+Du2fs3avzE9R1AQBm/+rrqUKaA+jfgdXH2v3rOzZ940aRP9T3X4w6OtiF7kt9yMWxmzQnbobJEUeBH1q7sc4eUGNzmqAVKMLVGl4b5AU/Aesfx2yM6FSDfVY9m1a5G6V+/ddCCHKGZk+J0GRsARjNmx8G47NU//f6WXoM738rDHK1sOGN+HEQvX/LZ6Ewd8Ueq2LuC39FnzdCLIzwNlbDaSbPGq29VgVam2LMRtigtUU+eH7IOIgGNJyP8a5sjrdrmY3COyofk6PzVV/V7cfDP8VnCoVuysV6n0XQogyToIiCYqEpSiKOgKwfZr6/8bDYdhMdc1IWZYWD3+NhYj9oNFC3+nQ8SVJqFBclzbB9ZPqqKKzl9mbN+h06CMisQ8KrFgjFUaDWgcqfI8aJEUeAkN6Hg/UQI//QLd3zHrxosK+70IIUcZIUCRBkbC0U0thzWQwGdSr048vNstVaKuIPacmVEiMVDOAPToX6vWzdq+EKLhsvRp85gRJh8HBFYb+BPX6W7t3QgghrESCIgmKREm4sguWjoWsZPCuD2OWg2egtXtVOBc3qGul9KlQqSaMXgI+DazdKyGKx2hQi7LKSKcQQlRohY0NysmCCCFKWK0e8PRGcPOHuEswp4+a6aosUBTY+7VaQFSfqi5Wf2aHBESifLCxk4BICCFEoUlQJERR+TaBSdvU9MCpsTD/IQjdZu1e3Z8hE1Y+e3tdlAJtJsLYVRZZ8yKEEEIIUVZIUCREcXhUgwmb1NEWfSosHgknf7d2r/KWooMFg+DMX6CxgYe+hMFfq1fWhRBCCCEqMAmKhCguRw8YsxKajgTFqCZh2PW5Ok2ttLh+En7tCdHH1EKYY1dBu2es3SshhBBCiFJBgiIhzMHWXq2F0uUN9f+7PoW1L6uLvq3JkAFHZsO8gZByHbzrqeuHanW3br+EEEIIIUoRW2t3QIhyQ6OBPlPVKXUb3oaTiyAlBh77TU0RXJKSr6vB0PEFkHFLva9OXxgxVx3ZEkIIIYQQOSQoEsLc2k5Ss9Itn6AmXljwEDyxDNyqWn7b147DoZ/h/GowZQNgsA1AX+1h7HtNxs4CAZFBp0MfHoF9jSApZikKxJLHjByPQgghikLqFAlhKdeOwx8jIT0OPALVWkZV6pt/O0YDXFgLh2bCtaN37w/qTGJqa2JmrgSTCbRa/KZPw3PECLNtOnH5cmI+mGqx9kX5Y8ljRo5HIYQQd0jxVgmKRGkSHwaLR8CtK2qCg9F/QlAn87SdfgtO/KZOk0uOVu+zsYcmI6DD8xg0VQnt1Vs9QbxDq6XOju1muYJu0Oks2r4ofyx5zMjxKIQQ4p+keKsQpUnl2jBxK1RvC5mJsHAYnFtVvDZvXIR1r8HXjWDbh2pA5FIFuv8HXjsLj8wEv+bowyNynyACmEzoIyKLt/3bLN2+KH8seczI8SiEEKI4ZE2REJbm4g3j1sKKSXDpb1j2tJoIoePkgrdhMkHYdnWKXNj2u/f7NoUOL0KTR8HWIddT7GsEgVZ7z5Vz+6DAYr6gkmlflD+WPGbkeBRCCFEcMlIkREmwd4ZRi9QkDCiw+b+wacq9V7b/TZ8GR+fAT+3UaXhh2wENNBgM4zfAc3uhxRP3BEQAdr6++E2fpp4oQs4aC3NNJbJ0+6L8seQxI8ejEEKI4pA1RUKUJEWB/d/Btqnq/xs+rNY3snPK/bjEKDjyq7pmKDNJvc/BHVqOVYuuetUs8CYNOh36iEjsgwItcoJo6fZF+WPJY0aORyGEECCJFiQoEmXDmeWw6nkwGSCgg5qAwakSRB1WU2pfWA+KUX1spZrQ4QV1RMjBzbr9FkIIIYQoAwobG8iaIiGsoekIcPWBJWMg6hDM7asGPNdP3n1Mze7qeqG6/e5OCRJCCCGEEGYnQZEQ1lKzG0zYBIsfg/hQ9T4bB2g2Uh0ZqtrYuv0TQgghhKggJCgSwpqqNoJJW2H7R1C5FrR+Ws1WJ4QQQgghSowERUJYm7u/WltICCGEEEJYhSxUEEIIIYQQQlRoEhQJIYQQQgghKjQJioQoAINOR9qhwxh0ujLZvih5sk+FEEKIskOCIiEeIHH5ckJ79SZy/HhCe/UmcfnyMtW+KHmyT4UQQoiyRYq3CnEfBp2O0F69wWS6e6dWS50d27Hz9S317YuSJ/tUCCGEsL7CxgYyUiTEfejDI3Kf3AKYTOgjIstE+6LkyT4VQgghyh4JioS4D/saQaD918dEq8U+KLBMtC9KnuxTIYQQouyRoEiI+7Dz9cVv+rS7J7laLX7Tp5ltGpSl2xclT/apEEIIUfbImiIhCsCg06GPiMQ+KNAiJ7eWbl+UPNmnQgghhPUUNjawLYE+CVHm2fn6WvTE1tLti5In+1QIIYQoO2T6nBBCCCGEEKJCk6BICCGEEEIIUaFJUCSEEEIIIYSo0CQoEkIIIYQQQlRoEhQJIYQQQgghKjQJioQQQgghhBAVWqGDoj179jBkyBD8/f3RaDSsXr061+9jY2MZP348/v7+ODs7M2DAAEJCQh7Y7rJly2jQoAGOjo40bdqUDRs2FLZrQgghhBBCCFFohQ6K0tLSaN68OT/99NM9v1MUhWHDhnHlyhXWrFnDyZMnCQoKok+fPqSlpeXb5oEDBxg9ejQTJ07k5MmTDBs2jGHDhnH27NnCdk8IIYQQQgghCkWjKIpS5CdrNKxatYphw4YBcPnyZerXr8/Zs2dp3LgxACaTCV9fXz799FMmTZqUZzujRo0iLS2N9evX59zXoUMHWrRowaxZswrUl8JWrRVCCCGEEEKUT4WNDcy6pigrKwsAR0fHuxvQanFwcGDfvn35Pu/gwYP06dMn1339+/fn4MGD991WcnJyrh8hhBBCCCGEKCyzBkUNGjQgMDCQKVOmkJCQgF6v5/PPP+fatWvExMTk+zydTkfVqlVz3Ve1alV0Ol2+z5kxYwYeHh45PwEBAWZ7HUIIIYQQQoiKw6xBkZ2dHStXruTy5ct4eXnh7OzMzp07GThwIFqteRPdTZkyhaSkpJyfqKgos7YvhBBCCCGEqBhszd1g69atCQ4OJikpCb1eT5UqVWjfvj1t2rTJ9zm+vr7Exsbmui82NhZfX998n+Pg4ICDg0PO/+8sjZJpdEIIIYQQQlRsd2KCgqZPMHtQdIeHhwcAISEhHDt2jI8++ijfx3bs2JHt27fz2muv5dy3detWOnbsWODtpaSkAMg0OiGEEEIIIQSgxgh34pL7KXRQlJqaSmhoaM7/r169SnBwMF5eXgQGBrJs2TKqVKlCYGAgZ86c4dVXX2XYsGH069cv5znjxo2jWrVqzJgxA4BXX32V7t2789VXXzFo0CCWLFnCsWPH+PXXXwvcL39/f6KionBzc0Oj0RT2ZZUZycnJBAQEEBUVJVn2yhHZr+WP7NPySfZr+SP7tPyRfVo+FXa/KopCSkoK/v7+BWq/0EHRsWPH6NmzZ87/33jjDQCeeuopFixYQExMDG+88QaxsbH4+fkxbtw43n///VxtREZG5lpj1KlTJ/744w/ee+89/vvf/1K3bl1Wr15NkyZNCtwvrVZL9erVC/tyyix3d3f5oJdDsl/LH9mn5ZPs1/JH9mn5I/u0fCrMfi3ICNEdxapTJEqe1GMqn2S/lj+yT8sn2a/lj+zT8kf2aflk6f1q3pRwQgghhBBCCFHGSFBUxjg4ODB16tRcmfdE2Sf7tfyRfVo+yX4tf2Sflj+yT8snS+9XmT4nhBBCCCGEqNBkpEgIIYQQQghRoUlQJIQQQgghhKjQJCgSQgghhBBCVGgSFAkhhBBCCCEqNAmKSoEZM2bQtm1b3Nzc8PHxYdiwYVy6dOmexx08eJBevXrh4uKCu7s73bp1IyMjI+f3t27d4sknn8Td3R1PT08mTpxIampqSb4U8Q/m2q81atRAo9Hk+vnss89K8qWI2x60T8PDw+/ZV3d+li1blvO4yMhIBg0ahLOzMz4+Prz99ttkZ2db4yVVeObap3n9fsmSJdZ4SYKC/f3V6XSMHTsWX19fXFxcaNWqFStWrMj1GPleLT3MtU/lO7V0Kch+DQsL45FHHqFKlSq4u7szcuRIYmNjcz3GHJ9VCYpKgd27dzN58mQOHTrE1q1bMRgM9OvXj7S0tJzHHDx4kAEDBtCvXz+OHDnC0aNHeemll9Bq7+7CJ598knPnzrF161bWr1/Pnj17ePbZZ63xkgTm268A06dPJyYmJufn5ZdfLumXI3jwPg0ICMi1n2JiYpg2bRqurq4MHDgQAKPRyKBBg9Dr9Rw4cIDffvuNBQsW8MEHH1jzpVVY5tind8yfPz/X44YNG2aFVySgYH9/x40bx6VLl1i7di1nzpxh+PDhjBw5kpMnT+Y8Rr5XSw9z7VOQ79TS5EH7NS0tjX79+qHRaNixYwf79+9Hr9czZMgQTCZTTjtm+awqotS5ceOGAii7d+/Oua99+/bKe++9l+9zzp8/rwDK0aNHc+7buHGjotFolOjoaIv2VxRMUfaroihKUFCQ8s0331i4d6Io8tqn/9aiRQtlwoQJOf/fsGGDotVqFZ1Ol3PfzJkzFXd3dyUrK8ui/RUPVpR9qiiKAiirVq2ycO9EUeW1X11cXJSFCxfmepyXl5cye/ZsRVHke7W0K8o+VRT5Ti3t/r1fN2/erGi1WiUpKSnnMYmJiYpGo1G2bt2qKIr5PqsyUlQKJSUlAeDl5QXAjRs3OHz4MD4+PnTq1ImqVavSvXt39u3bl/OcgwcP4unpSZs2bXLu69OnD1qtlsOHD5fsCxB5Ksp+veOzzz6jcuXKtGzZki+++EKmWpUS/96n/3b8+HGCg4OZOHFizn0HDx6kadOmVK1aNee+/v37k5yczLlz5yzbYfFARdmnd0yePBlvb2/atWvHvHnzUKQMYKmR137t1KkTS5cu5datW5hMJpYsWUJmZiY9evQA5Hu1tCvKPr1DvlNLr3/v16ysLDQaTa6CrY6Ojmi12pzzJXN9Vm3N8QKE+ZhMJl577TU6d+5MkyZNALhy5QoAH374IV9++SUtWrRg4cKF9O7dm7Nnz1K3bl10Oh0+Pj652rK1tcXLywudTlfir0PkVtT9CvDKK6/QqlUrvLy8OHDgAFOmTCEmJoavv/7aaq9H5L1P/23u3Lk0bNiQTp065dyn0+lyBURAzv/ls2pdRd2noE7H6dWrF87OzmzZsoUXX3yR1NRUXnnllZLouriP/PbrX3/9xahRo6hcuTK2trY4OzuzatUq6tSpAyDfq6VYUfcpyHdqaZbXfu3QoQMuLi68++67fPrppyiKwn/+8x+MRiMxMTGA+T6rEhSVMpMnT+bs2bO5RgvuzJl87rnnePrppwFo2bIl27dvZ968ecyYMcMqfRUFV5z9+sYbb+Q8p1mzZtjb2/Pcc88xY8aMXFdORMnKa5/+U0ZGBn/88Qfvv/9+CfdMFFVx9uk/72vZsiVpaWl88cUXEhSVAvnt1/fff5/ExES2bduGt7c3q1evZuTIkezdu5emTZtaqbeiIIqzT+U7tfTKa79WqVKFZcuW8cILL/D999+j1WoZPXo0rVq1umf9dXFJUFSKvPTSSzmLw6pXr55zv5+fHwCNGjXK9fiGDRsSGRkJgK+vLzdu3Mj1++zsbG7duoWvr6+Fey7upzj7NS/t27cnOzub8PBw6tevb5lOi/vKb5/+0/Lly0lPT2fcuHG57vf19eXIkSO57ruTRUc+q9ZTnH2al/bt2/PRRx+RlZUlJ1pWlN9+DQsL48cff+Ts2bM0btwYgObNm7N3715++uknZs2aJd+rpVRx9mle5Du1dLjf3+B+/foRFhZGXFwctra2eHp64uvrS61atQDznQPLmqJSQFEUXnrpJVatWsWOHTuoWbNmrt/XqFEDf3//e1IUXr58maCgIAA6duxIYmIix48fz/n9jh07MJlMtG/f3vIvQtzDHPs1L8HBwWi12nuGioXlPWif/tPcuXN5+OGHqVKlSq77O3bsyJkzZ3L9Ad+6dSvu7u73BMjC8syxT/MSHBxMpUqVJCCykgft1/T0dIB7rjTb2NjkjOLL92rpYo59mhf5TrWuwvwN9vb2xtPTkx07dnDjxg0efvhhwIyf1eLliBDm8MILLygeHh7Krl27lJiYmJyf9PT0nMd88803iru7u7Js2TIlJCREee+99xRHR0clNDQ05zEDBgxQWrZsqRw+fFjZt2+fUrduXWX06NHWeElCMc9+PXDggPLNN98owcHBSlhYmPL7778rVapUUcaNG2etl1WhFWSfKoqihISEKBqNRtm4ceM9bWRnZytNmjRR+vXrpwQHByubNm1SqlSpokyZMqWkXob4B3Ps07Vr1yqzZ89Wzpw5o4SEhCg///yz4uzsrHzwwQcl9TLEvzxov+r1eqVOnTpK165dlcOHDyuhoaHKl19+qWg0GuXvv//OaUe+V0sPc+xT+U4tfQryN3jevHnKwYMHldDQUGXRokWKl5eX8sYbb+RqxxyfVQmKSgEgz5/58+fnetyMGTOU6tWrK87OzkrHjh2VvXv35vp9fHy8Mnr0aMXV1VVxd3dXnn76aSUlJaUEX4n4J3Ps1+PHjyvt27dXPDw8FEdHR6Vhw4bKp59+qmRmZpbwqxGKUvB9OmXKFCUgIEAxGo15thMeHq4MHDhQcXJyUry9vZU333xTMRgMJfAKxL+ZY59u3LhRadGiheLq6qq4uLgozZs3V2bNmpXv/heWV5D9evnyZWX48OGKj4+P4uzsrDRr1uyedM7yvVp6mGOfyndq6VOQ/fruu+8qVatWVezs7JS6desqX331lWIymXK1Y47PquZ2h4QQQgghhBCiQpI1RUIIIYQQQogKTYIiIYQQQgghRIUmQZEQQgghhBCiQpOgSAghhBBCCFGhSVAkhBBCCCGEqNAkKBJCCCGEEEJUaBIUCSGEEEIIISo0CYqEEEJYVI8ePXjttddKdJu//vorAQEBaLVavv322xLdthBCiLLH1todEEIIIcwpOTmZl156ia+//ppHH30UDw8Pa3dJCCFEKSdBkRBCiHIlMjISg8HAoEGD8PPzs1o/jEYjGo0GrVYmZQghRGknf6mFEEKYTVpaGuPGjcPV1RU/Pz+++uqrXL9ftGgRbdq0wc3NDV9fX5544glu3LgBgKIo1KlThy+//DLXc4KDg9FoNISGhgJq0DN06FBcXV1xd3dn5MiRxMbGArBgwQKaNm0KQK1atdBoNEyfPp3KlSuTlZWVq91hw4YxduzYnP+vWbOGVq1a4ejoSK1atZg2bRrZ2dk5v//6669p2rQpLi4uBAQE8OKLL5Kamprz+wULFuDp6cnatWtp1KgRDg4OREZGFvctFUIIUQIkKBJCCGE2b7/9Nrt372bNmjVs2bKFXbt2ceLEiZzfGwwGPvroI06dOsXq1asJDw9n/PjxAGg0GiZMmMD8+fNztTl//ny6detGnTp1MJlMDB06lFu3brF79262bt3KlStXGDVqFACjRo1i27ZtABw5coSYmBjefPNNjEYja9euzWnzxo0b/P3330yYMAGAvXv3Mm7cOF599VXOnz/PL7/8woIFC/jkk09ynqPVavn+++85d+4cv/32Gzt27OCdd97J1df09HQ+//xz5syZw7lz5/Dx8THfmyuEEMJyFCGEEMIMUlJSFHt7e+Wvv/7KuS8+Pl5xcnJSXn311Tyfc/ToUQVQUlJSFEVRlOjoaMXGxkY5fPiwoiiKotfrFW9vb2XBggWKoijKli1bFBsbGyUyMjKnjXPnzimAcuTIEUVRFOXkyZMKoFy9ejXnMS+88IIycODAnP9/9dVXSq1atRSTyaQoiqL07t1b+fTTT3P1bdGiRYqfn1++r3fZsmVK5cqVc/4/f/58BVCCg4PzfY4QQojSSUaKhBBCmEVYWBh6vZ727dvn3Ofl5UX9+vVz/n/8+HGGDBlCYGAgbm5udO/eHSBnmpm/vz+DBg1i3rx5AKxbt46srCwee+wxAC5cuEBAQAABAQE5bTZq1AhPT08uXLiQb9+eeeYZtmzZQnR0NKBOdRs/fjwajQaAU6dOMX36dFxdXXN+nnnmGWJiYkhPTwdg27Zt9O7dm2rVquHm5sbYsWOJj4/P+T2Avb09zZo1K/qbKIQQwiokKBJCCFEi0tLS6N+/P+7u7ixevJijR4+yatUqAPR6fc7jJk2axJIlS8jIyGD+/PmMGjUKZ2fnYm27ZcuWNG/enIULF3L8+HHOnTuXM20PIDU1lWnTphEcHJzzc+bMGUJCQnB0dCQ8PJzBgwfTrFkzVqxYwfHjx/npp5/u6buTk1NOoCWEEKLskOxzQgghzKJ27drY2dlx+PBhAgMDAUhISODy5ct0796dixcvEh8fz2effZYz0nPs2LF72nnooYdwcXFh5syZbNq0iT179uT8rmHDhkRFRREVFZXTxvnz50lMTKRRo0b37d+kSZP49ttviY6Opk+fPrlGm1q1asWlS5eoU6dOns89fvw4JpOJr776Kieb3F9//VWId0cIIURpJiNFQgghzMLV1ZWJEyfy9ttvs2PHDs6ePcv48eNzgojAwEDs7e354YcfuHLlCmvXruWjjz66px0bGxvGjx/PlClTqFu3Lh07dsz5XZ8+fWjatClPPvkkJ06c4MiRI4wbN47u3bvTpk2b+/bviSee4Nq1a8yePTsnwcIdH3zwAQsXLmTatGmcO3eOCxcusGTJEt577z0A6tSpg8FgyOn7okWLmDVrVnHfMiGEEKWEBEVCCCHM5osvvqBr164MGTKEPn360KVLF1q3bg1AlSpVWLBgAcuWLaNRo0Z89tln96TfvmPixIno9XqefvrpXPdrNBrWrFlDpUqV6NatG3369KFWrVosXbr0gX3z8PDg0UcfxdXVlWHDhuX6Xf/+/Vm/fj1btmyhbdu2dOjQgW+++YagoCAAmjdvztdff83nn39OkyZNWLx4MTNmzCjCOySEEKI00iiKoli7E0IIIcQ/7d27l969exMVFUXVqlXN1m7v3r1p3Lgx33//vdnaFEIIUfZJUCSEEKLUyMrK4ubNmzz11FP4+vqyePFis7SbkJDArl27GDFiBOfPn8+VEU8IIYSQRAtCCCFKjT///JOJEyfSokULFi5caLZ2W7ZsSUJCAp9//rkEREIIIe4hI0VCCCGEEEKICk0SLQghhBBCCCEqNAmKhBBCCCGEEBWaBEVCCCGEEEKICk2CIiGEEEIIIUSFJkGREEIIIYQQokKToEgIIYQQQghRoUlQJIQQQgghhKjQJCgSQgghhBBCVGgSFAkhhBBCCCEqtP8HstZTcdfJjvoAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "min_max_field = 'temperature C'\n", "gate_max = tol.groupby('dayofyear')[min_max_field].apply(np.max)\n", @@ -404,30 +261,9 @@ }, { "cell_type": "code", - "execution_count": 82, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 82, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGdCAYAAAD0e7I1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAmT0lEQVR4nO3df3BU5b3H8c+GZAOB7IYAScglCXhFMPLDa6ywVW+rpASIDghOoUUNNqOVBgtEbeVeCrfq3ABWVCyIOkpgrKKZolYsWAwQbktECVEBNaKigSabUDDZBJofJOf+YbPjCghsdrObh/drZmc85zz77Pc8Hs1nnn32HJtlWZYAAAAMFRHqAgAAAIKJsAMAAIxG2AEAAEYj7AAAAKMRdgAAgNEIOwAAwGiEHQAAYDTCDgAAMFpkqAsIB+3t7aqqqlJsbKxsNluoywEAAOfAsiw1NDQoOTlZERFnnr8h7EiqqqpSSkpKqMsAAAB+OHTokAYNGnTG44QdSbGxsZK+HiyHwxHiagAAwLnweDxKSUnx/h0/E8KO5P3qyuFwEHYAAOhmzrYEhQXKAADAaIQdAABgNMIOAAAwGmEHAAAYjbADAACMRtgBAABGI+wAAACjEXYAAIDRCDsAAMBohB0AAGA0wg4AADAaYQcAABiNsAMAAIxG2AEAAEaLDHUBQCAMvv+NoPX9xZLsoPUNAAg+ZnYAAIDRCDsAAMBohB0AAGA0wg4AADAaYQcAABiNsAMAAIxG2AEAAEYj7AAAAKMRdgAAgNEIOwAAwGiEHQAAYDTCDgAAMBphBwAAGI2wAwAAjEbYAQAARiPsAAAAoxF2AACA0Qg7AADAaIQdAABgNMIOAAAwWtiEnSVLlshms2nevHnefU1NTcrLy1O/fv3Up08fTZs2TTU1NT7vq6ysVHZ2tmJiYpSQkKD77rtPJ0+e7OLqAQBAuAqLsPPuu+/qqaee0qhRo3z2z58/X6+//rqKiopUUlKiqqoqTZ061Xu8ra1N2dnZamlp0c6dO7V27VoVFhZq0aJFXX0KAAAgTIU87DQ2NmrmzJl65pln1LdvX+/++vp6Pfvss1q+fLmuv/56ZWRkaM2aNdq5c6fefvttSdJf/vIXffjhh3r++ed1+eWXa+LEiXrwwQe1cuVKtbS0hOqUAABAGAl52MnLy1N2drYyMzN99peVlam1tdVn//Dhw5WamqrS0lJJUmlpqUaOHKnExERvm6ysLHk8Hu3fv79rTgAAAIS1yFB++Pr167Vnzx69++67pxxzu92y2+2Ki4vz2Z+YmCi32+1t882g03G849iZNDc3q7m52bvt8Xj8PQUAABDmQjazc+jQIc2dO1d/+MMf1LNnzy797IKCAjmdTu8rJSWlSz8fAAB0nZCFnbKyMtXW1uqKK65QZGSkIiMjVVJSohUrVigyMlKJiYlqaWlRXV2dz/tqamqUlJQkSUpKSjrl11kd2x1tTmfBggWqr6/3vg4dOhTYkwMAAGEjZGFn3Lhx2rt3r9577z3v68orr9TMmTO9/xwVFaXi4mLveyoqKlRZWSmXyyVJcrlc2rt3r2pra71ttmzZIofDofT09DN+dnR0tBwOh88LAACYKWRrdmJjYzVixAiffb1791a/fv28+3Nzc5Wfn6/4+Hg5HA7dfffdcrlcGjt2rCRp/PjxSk9P16233qply5bJ7XZr4cKFysvLU3R0dJefEwAACD8hXaB8No8++qgiIiI0bdo0NTc3KysrS6tWrfIe79GjhzZu3KjZs2fL5XKpd+/eysnJ0QMPPBDCqgEAQDixWZZlhbqIUPN4PHI6naqvr+crrW5q8P1vBK3vL5ZkB61vAID/zvXvd8jvswMAABBMhB0AAGA0wg4AADAaYQcAABiNsAMAAIxG2AEAAEYj7AAAAKMRdgAAgNEIOwAAwGiEHQAAYDTCDgAAMBphBwAAGI2wAwAAjEbYAQAARiPsAAAAoxF2AACA0Qg7AADAaIQdAABgNMIOAAAwGmEHAAAYjbADAACMRtgBAABGI+wAAACjEXYAAIDRCDsAAMBohB0AAGA0wg4AADAaYQcAABiNsAMAAIxG2AEAAEYj7AAAAKMRdgAAgNEIOwAAwGiEHQAAYDTCDgAAMBphBwAAGI2wAwAAjEbYAQAARiPsAAAAoxF2AACA0Qg7AADAaIQdAABgNMIOAAAwGmEHAAAYjbADAACMRtgBAABGI+wAAACjEXYAAIDRCDsAAMBohB0AAGA0wg4AADAaYQcAABiNsAMAAIxG2AEAAEYj7AAAAKMRdgAAgNEIOwAAwGiEHQAAYDTCDgAAMFpkqAsAgGAbfP8bQen3iyXZQekXQGAxswMAAIxG2AEAAEYj7AAAAKMRdgAAgNEIOwAAwGiEHQAAYDTCDgAAMBphBwAAGI2wAwAAjEbYAQAARiPsAAAAo4U07Dz55JMaNWqUHA6HHA6HXC6XNm3a5D3e1NSkvLw89evXT3369NG0adNUU1Pj00dlZaWys7MVExOjhIQE3XfffTp58mRXnwoAAAhTIQ07gwYN0pIlS1RWVqbdu3fr+uuv1+TJk7V//35J0vz58/X666+rqKhIJSUlqqqq0tSpU73vb2trU3Z2tlpaWrRz506tXbtWhYWFWrRoUahOCQAAhBmbZVlWqIv4pvj4eD388MO6+eabNWDAAL3wwgu6+eabJUkff/yxLr30UpWWlmrs2LHatGmTbrjhBlVVVSkxMVGStHr1av3617/WkSNHZLfbz+kzPR6PnE6n6uvr5XA4gnZuCJ5gPdVa4snWJuCp54CZzvXvd9is2Wlra9P69et1/PhxuVwulZWVqbW1VZmZmd42w4cPV2pqqkpLSyVJpaWlGjlypDfoSFJWVpY8Ho93duh0mpub5fF4fF4AAMBMIQ87e/fuVZ8+fRQdHa277rpLr7zyitLT0+V2u2W32xUXF+fTPjExUW63W5Lkdrt9gk7H8Y5jZ1JQUCCn0+l9paSkBPakAABA2Ah52Bk2bJjee+897dq1S7Nnz1ZOTo4+/PDDoH7mggULVF9f730dOnQoqJ8HAABCJzLUBdjtdl188cWSpIyMDL377rt6/PHHNX36dLW0tKiurs5ndqempkZJSUmSpKSkJL3zzjs+/XX8WqujzelER0crOjo6wGcCAADCUchndr6tvb1dzc3NysjIUFRUlIqLi73HKioqVFlZKZfLJUlyuVzau3evamtrvW22bNkih8Oh9PT0Lq8dAACEn5DO7CxYsEATJ05UamqqGhoa9MILL2j79u1688035XQ6lZubq/z8fMXHx8vhcOjuu++Wy+XS2LFjJUnjx49Xenq6br31Vi1btkxut1sLFy5UXl4eMzcAAEBSiMNObW2tbrvtNlVXV8vpdGrUqFF688039aMf/UiS9OijjyoiIkLTpk1Tc3OzsrKytGrVKu/7e/TooY0bN2r27NlyuVzq3bu3cnJy9MADD4TqlAAAQJgJu/vshAL32en+uM8Ovgv32QHM1O3uswMAABAMhB0AAGA0wg4AADAaYQcAABiNsAMAAIxG2AEAAEYj7AAAAKMRdgAAgNEIOwAAwGiEHQAAYDTCDgAAMFpIHwQKXMh4nhcAdA1mdgAAgNEIOwAAwGiEHQAAYDTCDgAAMBphBwAAGI2wAwAAjEbYAQAARiPsAAAAoxF2AACA0fwKO59//nmg6wAAAAgKv8LOxRdfrOuuu07PP/+8mpqaAl0TAABAwPgVdvbs2aNRo0YpPz9fSUlJ+vnPf6533nkn0LUBAAB0ml9h5/LLL9fjjz+uqqoqPffcc6qurtY111yjESNGaPny5Tpy5Eig6wQAAPBLpxYoR0ZGaurUqSoqKtLSpUv16aef6t5771VKSopuu+02VVdXB6pOAAAAv3Qq7OzevVu/+MUvNHDgQC1fvlz33nuvPvvsM23ZskVVVVWaPHlyoOoEAADwS6Q/b1q+fLnWrFmjiooKTZo0SevWrdOkSZMUEfF1dhoyZIgKCws1ePDgQNYKAABw3vwKO08++aR+9rOfadasWRo4cOBp2yQkJOjZZ5/tVHEAAACd5VfYOXDgwFnb2O125eTk+NM9AABAwPi1ZmfNmjUqKio6ZX9RUZHWrl3b6aIAAAACxa+wU1BQoP79+5+yPyEhQf/7v//b6aIAAAACxa+wU1lZqSFDhpyyPy0tTZWVlZ0uCgAAIFD8CjsJCQn64IMPTtn//vvvq1+/fp0uCgAAIFD8Cjs/+clP9Mtf/lLbtm1TW1ub2tratHXrVs2dO1czZswIdI0AAAB+8+vXWA8++KC++OILjRs3TpGRX3fR3t6u2267jTU7AAAgrPgVdux2u1566SU9+OCDev/999WrVy+NHDlSaWlpga4PAACgU/wKOx0uueQSXXLJJYGqBQAAIOD8CjttbW0qLCxUcXGxamtr1d7e7nN869atASkOAACgs/wKO3PnzlVhYaGys7M1YsQI2Wy2QNcFAAAQEH6FnfXr1+vll1/WpEmTAl0PEHYG3/9GqEsAAHSCXz89t9vtuvjiiwNdCwAAQMD5FXbuuecePf7447IsK9D1AAAABJRfX2P99a9/1bZt27Rp0yZddtllioqK8jm+YcOGgBQHAADQWX6Fnbi4ON10002BrgUAACDg/Ao7a9asCXQdAAAAQeHXmh1JOnnypN566y099dRTamhokCRVVVWpsbExYMUBAAB0ll8zO19++aUmTJigyspKNTc360c/+pFiY2O1dOlSNTc3a/Xq1YGuEwAAwC9+zezMnTtXV155pb766iv16tXLu/+mm25ScXFxwIoDAADoLL9mdv7v//5PO3fulN1u99k/ePBg/f3vfw9IYQAAAIHgV9hpb29XW1vbKfsPHz6s2NjYThcFoHOCedfnL5ZkB61vAAgGv77GGj9+vB577DHvts1mU2NjoxYvXswjJAAAQFjxa2bnkUceUVZWltLT09XU1KSf/vSnOnDggPr3768XX3wx0DUCAAD4za+wM2jQIL3//vtav369PvjgAzU2Nio3N1czZ870WbAMAAAQan6FHUmKjIzULbfcEshaAAAAAs6vsLNu3brvPH7bbbf5VQwAAECg+RV25s6d67Pd2tqqEydOyG63KyYmhrADAADChl+/xvrqq698Xo2NjaqoqNA111zDAmUAABBW/H421rcNHTpUS5YsOWXWBwAAIJQCFnakrxctV1VVBbJLAACATvFrzc6f/vQnn23LslRdXa3f//73uvrqqwNSGAAAQCD4FXamTJnis22z2TRgwABdf/31euSRRwJRFwAAQED4/WwsAACA7iCga3YAAADCjV8zO/n5+efcdvny5f58BAAAQED4FXbKy8tVXl6u1tZWDRs2TJL0ySefqEePHrriiiu87Ww2W2CqBAAA8JNfYefGG29UbGys1q5dq759+0r6+kaDt99+u6699lrdc889AS0SAADAX36t2XnkkUdUUFDgDTqS1LdvXz300EP8GgsAAIQVv8KOx+PRkSNHTtl/5MgRNTQ0dLooAACAQPEr7Nx00026/fbbtWHDBh0+fFiHDx/WH//4R+Xm5mrq1KmBrhEAAMBvfq3ZWb16te6991799Kc/VWtr69cdRUYqNzdXDz/8cEALBAAA6Ay/ZnZiYmK0atUqHT161PvLrGPHjmnVqlXq3bv3OfdTUFCg733ve4qNjVVCQoKmTJmiiooKnzZNTU3Ky8tTv3791KdPH02bNk01NTU+bSorK5Wdna2YmBglJCTovvvu08mTJ/05NQAAYJhO3VSwurpa1dXVGjp0qHr37i3Lss7r/SUlJcrLy9Pbb7+tLVu2qLW1VePHj9fx48e9bebPn6/XX39dRUVFKikpUVVVlc9XZW1tbcrOzlZLS4t27typtWvXqrCwUIsWLerMqQEAAEPYrPNNKJKOHj2qH//4x9q2bZtsNpsOHDigiy66SD/72c/Ut29fv3+RdeTIESUkJKikpET/+Z//qfr6eg0YMEAvvPCCbr75ZknSxx9/rEsvvVSlpaUaO3asNm3apBtuuEFVVVVKTEyU9PXXbL/+9a915MgR2e32s36ux+OR0+lUfX29HA6HX7UjtAbf/0aoS7hgfLEkO9QlnLdgXR/dcSwAk5zr32+/Znbmz5+vqKgoVVZWKiYmxrt/+vTp2rx5sz9dSpLq6+slSfHx8ZKksrIytba2KjMz09tm+PDhSk1NVWlpqSSptLRUI0eO9AYdScrKypLH49H+/ftP+znNzc3yeDw+LwAAYCa/ws5f/vIXLV26VIMGDfLZP3ToUH355Zd+FdLe3q558+bp6quv1ogRIyRJbrdbdrtdcXFxPm0TExPldru9bb4ZdDqOdxw7nYKCAjmdTu8rJSXFr5oBAED48yvsHD9+3GdGp8OxY8cUHR3tVyF5eXnat2+f1q9f79f7z8eCBQtUX1/vfR06dCjonwkAAELDr7Bz7bXXat26dd5tm82m9vZ2LVu2TNddd9159zdnzhxt3LhR27Zt85ktSkpKUktLi+rq6nza19TUKCkpydvm27/O6tjuaPNt0dHRcjgcPi8AAGAmv8LOsmXL9PTTT2vixIlqaWnRr371K40YMUI7duzQ0qVLz7kfy7I0Z84cvfLKK9q6dauGDBniczwjI0NRUVEqLi727quoqFBlZaVcLpckyeVyae/evaqtrfW22bJlixwOh9LT0/05PQAAYBC/bio4YsQIffLJJ/r973+v2NhYNTY2aurUqcrLy9PAgQPPuZ+8vDy98MILeu211xQbG+tdY+N0OtWrVy85nU7l5uYqPz9f8fHxcjgcuvvuu+VyuTR27FhJ0vjx45Wenq5bb71Vy5Ytk9vt1sKFC5WXl+f3V2oAAMAc5x12WltbNWHCBK1evVr//d//3akPf/LJJyVJP/zhD332r1mzRrNmzZIkPfroo4qIiNC0adPU3NysrKwsrVq1ytu2R48e2rhxo2bPni2Xy6XevXsrJydHDzzwQKdqAwAAZjjvsBMVFaUPPvggIB9+Lrf46dmzp1auXKmVK1eesU1aWpr+/Oc/B6QmAABgFr/W7Nxyyy169tlnA10LAABAwPm1ZufkyZN67rnn9NZbbykjI+OU52EtX748IMUBCD/cjRhAd3NeYefzzz/X4MGDtW/fPl1xxRWSpE8++cSnjc1mC1x1AAAAnXReYWfo0KGqrq7Wtm3bJH39eIgVK1accgdjAACAcHFea3a+vaB406ZNPk8oBwAACDd+LVDu4McD0wEAALrUeYUdm812ypoc1ugAAIBwdl5rdizL0qxZs7x3Jm5qatJdd911yq+xNmzYELgKAQAAOuG8wk5OTo7P9i233BLQYgAAAALtvMLOmjVrglUHAABAUHRqgTIAAEC4I+wAAACjEXYAAIDRCDsAAMBohB0AAGA0wg4AADDaef30HBeGwfe/EbS+v1iSHbS+AQA4HWZ2AACA0Qg7AADAaIQdAABgNMIOAAAwGmEHAAAYjbADAACMxk/P0aWC+bN2AABOh5kdAABgNMIOAAAwGmEHAAAYjbADAACMRtgBAABGI+wAAACjEXYAAIDRCDsAAMBo3FSwG+MGfQAAnB0zOwAAwGiEHQAAYDTCDgAAMBphBwAAGI2wAwAAjEbYAQAARiPsAAAAoxF2AACA0Qg7AADAaIQdAABgNMIOAAAwGmEHAAAYjbADAACMRtgBAABGiwx1AQAgSYPvfyPUJQAwFDM7AADAaIQdAABgNMIOAAAwGmEHAAAYjbADAACMRtgBAABGI+wAAACjEXYAAIDRCDsAAMBohB0AAGA0wg4AADAaYQcAABiNsAMAAIxG2AEAAEYj7AAAAKMRdgAAgNEIOwAAwGiEHQAAYDTCDgAAMBphBwAAGI2wAwAAjEbYAQAARgtp2NmxY4duvPFGJScny2az6dVXX/U5blmWFi1apIEDB6pXr17KzMzUgQMHfNocO3ZMM2fOlMPhUFxcnHJzc9XY2NiFZwEAAMJZSMPO8ePHNXr0aK1cufK0x5ctW6YVK1Zo9erV2rVrl3r37q2srCw1NTV528ycOVP79+/Xli1btHHjRu3YsUN33nlnV50CAAAIc5Gh/PCJEydq4sSJpz1mWZYee+wxLVy4UJMnT5YkrVu3TomJiXr11Vc1Y8YMffTRR9q8ebPeffddXXnllZKkJ554QpMmTdLvfvc7JScnd9m5AACA8BS2a3YOHjwot9utzMxM7z6n06kxY8aotLRUklRaWqq4uDhv0JGkzMxMRUREaNeuXV1eMwAACD8hndn5Lm63W5KUmJjosz8xMdF7zO12KyEhwed4ZGSk4uPjvW1Op7m5Wc3Nzd5tj8cTqLIBAECYCduZnWAqKCiQ0+n0vlJSUkJdEgAACJKwndlJSkqSJNXU1GjgwIHe/TU1Nbr88su9bWpra33ed/LkSR07dsz7/tNZsGCB8vPzvdsejydogWfw/W8EpV8AZgvW/zu+WJIdlH6BcBa2MztDhgxRUlKSiouLvfs8Ho927doll8slSXK5XKqrq1NZWZm3zdatW9Xe3q4xY8acse/o6Gg5HA6fFwAAMFNIZ3YaGxv16aefercPHjyo9957T/Hx8UpNTdW8efP00EMPaejQoRoyZIh+85vfKDk5WVOmTJEkXXrppZowYYLuuOMOrV69Wq2trZozZ45mzJjBL7EAAICkEIed3bt367rrrvNud3y1lJOTo8LCQv3qV7/S8ePHdeedd6qurk7XXHONNm/erJ49e3rf84c//EFz5szRuHHjFBERoWnTpmnFihVdfi4AACA82SzLskJdRKh5PB45nU7V19cH/Cst1uwA5grm+hfW7ABnd65/v8N2zQ4AAEAgEHYAAIDRCDsAAMBohB0AAGA0wg4AADAaYQcAABgtbB8XAQCAFNxbePBT/AsDMzsAAMBohB0AAGA0wg4AADAaa3YAwE88DgboHpjZAQAARiPsAAAAoxF2AACA0Qg7AADAaIQdAABgNMIOAAAwGmEHAAAYjbADAACMRtgBAABGI+wAAACjEXYAAIDRCDsAAMBohB0AAGA0wg4AADAaYQcAABiNsAMAAIxG2AEAAEYj7AAAAKMRdgAAgNEIOwAAwGiEHQAAYDTCDgAAMBphBwAAGC0y1AUAAMww+P43Ql0CcFrM7AAAAKMRdgAAgNEIOwAAwGiEHQAAYDTCDgAAMBphBwAAGI2wAwAAjEbYAQAARiPsAAAAoxF2AACA0XhcBABcQHikAy5EzOwAAACjEXYAAIDR+BoLAIBuJJhfRX6xJDtofYcSMzsAAMBohB0AAGA0wg4AADAaYQcAABiNBcoAAEBS8BY/h3rhMzM7AADAaIQdAABgNL7GAgBcsEz92ga+mNkBAABGI+wAAACjEXYAAIDRCDsAAMBoLFAGACDAgvmwTpw/ZnYAAIDRCDsAAMBohB0AAGA0wg4AADAaYQcAABiNsAMAAIxG2AEAAEYj7AAAAKMRdgAAgNGMCTsrV67U4MGD1bNnT40ZM0bvvPNOqEsCAABhwIiw89JLLyk/P1+LFy/Wnj17NHr0aGVlZam2tjbUpQEAgBAzIuwsX75cd9xxh26//Xalp6dr9erViomJ0XPPPRfq0gAAQIh1+weBtrS0qKysTAsWLPDui4iIUGZmpkpLS0/7nubmZjU3N3u36+vrJUkejyfg9bU3nwh4nwAAdCfB+Pv6zX4ty/rOdt0+7PzjH/9QW1ubEhMTffYnJibq448/Pu17CgoK9Nvf/vaU/SkpKUGpEQCAC5nzseD239DQIKfTecbj3T7s+GPBggXKz8/3bre3t+vYsWPq16+fGhoalJKSokOHDsnhcISwyguLx+Nh3EOAcQ8Nxj00GPfQCOa4W5alhoYGJScnf2e7bh92+vfvrx49eqimpsZnf01NjZKSkk77nujoaEVHR/vsi4uLkyTZbDZJksPh4D+GEGDcQ4NxDw3GPTQY99AI1rh/14xOh26/QNlutysjI0PFxcXefe3t7SouLpbL5QphZQAAIBx0+5kdScrPz1dOTo6uvPJKXXXVVXrsscd0/Phx3X777aEuDQAAhJgRYWf69Ok6cuSIFi1aJLfbrcsvv1ybN28+ZdHyuYiOjtbixYtP+ZoLwcW4hwbjHhqMe2gw7qERDuNus872ey0AAIBurNuv2QEAAPguhB0AAGA0wg4AADAaYQcAABjN+LCzY8cO3XjjjUpOTpbNZtOrr77qc7ympkazZs1ScnKyYmJiNGHCBB04cOCs/RYVFWn48OHq2bOnRo4cqT//+c9BOoPuJxhjXlhYKJvN5vPq2bNnEM+i+ykoKND3vvc9xcbGKiEhQVOmTFFFRYVPm6amJuXl5alfv37q06ePpk2bdsoNOb/NsiwtWrRIAwcOVK9evZSZmXlO/41cKII17rNmzTrlmp8wYUIwT6VbOZdxf/rpp/XDH/5QDodDNptNdXV159T3ypUrNXjwYPXs2VNjxozRO++8E4Qz6J6CNe7/8z//c8r1Pnz48IDVbXzYOX78uEaPHq2VK1eecsyyLE2ZMkWff/65XnvtNZWXlystLU2ZmZk6fvz4GfvcuXOnfvKTnyg3N1fl5eWaMmWKpkyZon379gXzVLqNYIy59PXdN6urq72vL7/8Mlin0C2VlJQoLy9Pb7/9trZs2aLW1laNHz/eZ1znz5+v119/XUVFRSopKVFVVZWmTp36nf0uW7ZMK1as0OrVq7Vr1y717t1bWVlZampqCvYpdQvBGndJmjBhgs81/+KLLwbzVLqVcxn3EydOaMKECfqv//qvc+73pZdeUn5+vhYvXqw9e/Zo9OjRysrKUm1tbTBOo9sJ1rhL0mWXXeZzvf/1r38NXOHWBUSS9corr3i3KyoqLEnWvn37vPva2tqsAQMGWM8888wZ+/nxj39sZWdn++wbM2aM9fOf/zzgNXd3gRrzNWvWWE6nM4iVmqe2ttaSZJWUlFiWZVl1dXVWVFSUVVRU5G3z0UcfWZKs0tLS0/bR3t5uJSUlWQ8//LB3X11dnRUdHW29+OKLwT2BbioQ425ZlpWTk2NNnjw52OUa49vj/k3btm2zJFlfffXVWfu56qqrrLy8PO92W1ublZycbBUUFASyXGMEatwXL15sjR49OvAF/ovxMzvfpbm5WZJ8vg6JiIhQdHT0dybK0tJSZWZm+uzLyspSaWlpcAo1iL9jLkmNjY1KS0tTSkqKJk+erP379we11u6uvr5ekhQfHy9JKisrU2trq8+1O3z4cKWmpp7x2j148KDcbrfPe5xOp8aMGcP1fgaBGPcO27dvV0JCgoYNG6bZs2fr6NGjwSu8m/v2uPujpaVFZWVlPv+uIiIilJmZyfV+BoEY9w4HDhxQcnKyLrroIs2cOVOVlZWd7rPDBR12Ov6Hs2DBAn311VdqaWnR0qVLdfjwYVVXV5/xfW63+5S7MycmJsrtdge75G7P3zEfNmyYnnvuOb322mt6/vnn1d7eru9///s6fPhwF1bffbS3t2vevHm6+uqrNWLECElfX7d2u9370NsO33Xtduznej83gRp36euvsNatW6fi4mItXbpUJSUlmjhxotra2oJ5Ct3S6cbdH//4xz/U1tbG9X6OAjXukjRmzBgVFhZq8+bNevLJJ3Xw4EFde+21amhoCEitRjwuwl9RUVHasGGDcnNzFR8frx49eigzM1MTJ06UxY2lg8LfMXe5XD4Pdv3+97+vSy+9VE899ZQefPDBrii9W8nLy9O+ffsC+503ziqQ4z5jxgzvP48cOVKjRo3Sv//7v2v79u0aN25cp/s3Cdd7aARy3CdOnOj951GjRmnMmDFKS0vTyy+/rNzc3E73f0HP7EhSRkaG3nvvPdXV1am6ulqbN2/W0aNHddFFF53xPUlJSaf8kqKmpkZJSUnBLtcI/oz5t0VFRek//uM/9Omnnwax0u5pzpw52rhxo7Zt26ZBgwZ59yclJamlpeWUX0Z817XbsZ/r/ewCOe6nc9FFF6l///5c899ypnH3R//+/dWjRw+u93MQyHE/nbi4OF1yySUBu94v+LDTwel0asCAATpw4IB2796tyZMnn7Gty+VScXGxz74tW7b4zDzg7M5nzL+tra1Ne/fu1cCBA4NYYfdiWZbmzJmjV155RVu3btWQIUN8jmdkZCgqKsrn2q2oqFBlZeUZr90hQ4YoKSnJ5z0ej0e7du3iev+XYIz76Rw+fFhHjx7lmv+Xs427P+x2uzIyMnz+XbW3t6u4uJjr/V+CMe6n09jYqM8++yxw13vQlj6HiYaGBqu8vNwqLy+3JFnLly+3ysvLrS+//NKyLMt6+eWXrW3btlmfffaZ9eqrr1ppaWnW1KlTffq49dZbrfvvv9+7/be//c2KjIy0fve731kfffSRtXjxYisqKsrau3dvl55buArGmP/2t7+13nzzTeuzzz6zysrKrBkzZlg9e/a09u/f36XnFs5mz55tOZ1Oa/v27VZ1dbX3deLECW+bu+66y0pNTbW2bt1q7d6923K5XJbL5fLpZ9iwYdaGDRu820uWLLHi4uKs1157zfrggw+syZMnW0OGDLH++c9/dtm5hbNgjHtDQ4N17733WqWlpdbBgwett956y7riiiusoUOHWk1NTV16fuHqXMa9urraKi8vt5555hlLkrVjxw6rvLzcOnr0qLfN9ddfbz3xxBPe7fXr11vR0dFWYWGh9eGHH1p33nmnFRcXZ7nd7i49v3AVrHG/5557rO3bt1sHDx60/va3v1mZmZlW//79rdra2oDUbXzY6fjp27dfOTk5lmVZ1uOPP24NGjTIioqKslJTU62FCxdazc3NPn384Ac/8Lbv8PLLL1uXXHKJZbfbrcsuu8x64403uuiMwl8wxnzevHlWamqqZbfbrcTERGvSpEnWnj17uvCswt/pxlyStWbNGm+bf/7zn9YvfvELq2/fvlZMTIx10003WdXV1af08833tLe3W7/5zW+sxMREKzo62ho3bpxVUVHRRWcV/oIx7idOnLDGjx9vDRgwwIqKirLS0tKsO+64gz+433Au47548eKztklLS7MWL17s0/cTTzzh/f/NVVddZb399ttdc1LdQLDGffr06dbAgQMtu91u/du//Zs1ffp069NPPw1Y3bZ/FQ8AAGAk1uwAAACjEXYAAIDRCDsAAMBohB0AAGA0wg4AADAaYQcAABiNsAMAAIxG2AEAAEYj7AAAAKMRdgAAgNEIOwAAwGiEHQAAYLT/B1Qu8Ue5vqrOAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# histogram\n", "tol['temperature C'].plot.hist(bins=20)\n", @@ -447,43 +283,18 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAHCCAYAAAAASKhtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD8h0lEQVR4nOydd3wUdfrHP5vdzaYnpFFDGgEEpBfpRYoK51nghONQsZ1HQLFwgnpiBT1OPUFBUYSf2ABPLASVFnrvPaQXAqT3ZLNlfn9sZjMzu/Od7yabZDf5vl+vvCAz3535zuzmu888z+d5HhXHcRwYDAaDwWAw2ggeLT0BBoPBYDAYjOaEGT8MBoPBYDDaFMz4YTAYDAaD0aZgxg+DwWAwGIw2BTN+GAwGg8FgtCmY8cNgMBgMBqNNwYwfBoPBYDAYbQpm/DAYDAaDwWhTMOOHwWAwGAxGm4IZPwyns3fvXqhUKuzdu7elp8JgMNwEtm4wmhNm/DCo2bBhA1QqlfXHy8sL3bt3x/z583Hr1i2nnGP79u14/fXXiWNeeOEF9OrVyynnc4R169bhtttug5eXF+Li4rBq1SqHXn/lyhXcdddd8PPzQ3BwMObMmYP8/Pwmmi2D4RqwdaPh68bx48cxb948DBo0CFqtFiqVqgln2rZgxg/DYd58801s3LgRH3/8MUaMGIE1a9Zg+PDhqKqqavSxt2/fjjfeeIM4JiEhAVOnTm30uRzhs88+wxNPPIHevXtj1apVGD58OJ555hm89957VK/PycnBmDFjkJKSgmXLluHFF19EQkICJk2ahNra2iaePYPR8rB1w/F1Y/v27fjiiy+gUqkQExPTxLNtY3AMBiXr16/nAHAnTpwQbX/++ec5ANy3337LcRzHJSYmcgC4xMREh88RHx/PkT6WqampDT52Q6mqquJCQkK4qVOnirbPnj2b8/X15YqKihSP8Y9//IPz9vbmMjMzrdt27tzJAeA+++wzp8+ZwXAV2LrR8HXj5s2bXFVVFcdxytfIcAzm+WE0mgkTJgAA0tPTieO2bNmCQYMGwdvbG6Ghofjb3/6G69evW/c/+uij+OSTTwBA5CYXkpCQgMDAQIwaNQoAkJmZiXnz5qFHjx7w9vZGSEgIZsyYgYyMDOtrOI7D+PHjERYWhry8POv22tpa3H777YiNjUVlZaXsvBMTE1FYWIh58+aJtsfHx6OyshIJCQnE6waA//3vf5g2bRq6du1q3TZx4kR0794dmzdvVnw9g9HaYOuG8rrRvn17eHt7K45jOA4zfhiNJjU1FQAQEhIiO2bDhg34y1/+ArVajeXLl+PJJ5/Ejz/+iFGjRqGkpAQA8Pe//x2TJk0CAGzcuNH6I2T79u2YNGkSNBoNAODEiRM4fPgwZs6ciZUrV+Lpp5/G7t27MW7cOKs7XaVS4csvv0RNTQ2efvpp67GWLl2KS5cuYf369fD19ZWd+5kzZwAAgwcPFm0fNGgQPDw8rPvluH79OvLy8mxeDwBDhw5VfD2D0Rph6wb7u29RWtr1xHAfePf1rl27uPz8fC47O5v7/vvvuZCQEM7b25vLycnhOM7WfV1bW8uFh4dzffr04aqrq63H27ZtGweAe+2116zbSK7dyspKzsvLi1u/fr11G+8SFnLkyBEOAPfVV1+Jtn/22WccAO7rr7/mjh49yqnVam7hwoWK1x0fH8+p1Wq7+8LCwriZM2cSX3/ixAm78+E4jlu0aBEHgKupqVGcB4PhjrB1wxaadcPe8dhXtvNgnh+Gw0ycOBFhYWGIiIjAzJkz4efnh61bt6Jz5852x588eRJ5eXmYN28evLy8rNunTp2Knj17Url/AWDPnj3Q6/W4++67rduELmGDwYDCwkJ069YNQUFBOH36tOj1Tz31FKZMmYIFCxZgzpw5iI2NxbJlyxTPW11dDU9PT7v7vLy8UF1drfh6ANDpdHZfLxzDYLRW2LpRD826wWhaNC09AYb78cknn6B79+7QaDRo3749evToAQ8PeTs6MzMTANCjRw+bfT179sTBgwepzpuQkIDBgwejffv21m3V1dVYvnw51q9fj+vXr4PjOOu+0tJSm2OsW7cOsbGxSE5OxuHDh6ni6d7e3rIZWTU1NdZjVFRUoKKiwrpPrVYjLCzMul+v19t9PX8OBqM1w9aNemjWDUbTwowfhsMMHTrUrn6lqdm+fTvmzp0r2rZgwQKsX78eCxcuxPDhwxEYGAiVSoWZM2fCbDbbHGPv3r1WI+TChQsYPny44nk7duwIk8mEvLw8hIeHW7fX1taisLAQnTp1AgD85z//EaXbRkZGIiMjAx07dgQA3Lhxw+bYN27cQHBwsF2vEIPRmmDrhgXadYPRtDDjh9HkREZGAgCSkpKsGR48SUlJ1v0AZIt4Xbx4EVlZWTZ1On744Qc88sgjeP/9963bampqrGJIITdu3MCCBQswefJkeHp64sUXX8SUKVNE57dH//79AVjc8Pfcc491+8mTJ2E2m637H374YWs2CVDvzencuTPCwsJw8uRJm2MfP37c+noGg1FPW183GE0L0/wwmpzBgwcjPDwcn376qSj089tvv+HKlSuihYnPnpAuQtu3b0f79u1tnhzVarXIZQ0Aq1atgslkspnHk08+CbPZjHXr1mHt2rXQaDR4/PHHbV4vZcKECQgODsaaNWtE29esWQMfHx/r/GNiYjBx4kTrz8iRI61jH3zwQWzbtg3Z2dnWbbt378a1a9cwY8YM4vkZjLYIWzcYTQnz/DCaHK1Wi/feew9z587F2LFjMWvWLNy6dQsfffQRoqKi8Nxzz1nHDho0CADwzDPPYMqUKVCr1Zg5cyYSEhJw99132zzhTZs2DRs3bkRgYCB69eqFI0eOYNeuXTbps+vXr0dCQgI2bNiALl26ALAsdn/729+wZs0am1ocQry9vfHWW28hPj4eM2bMwJQpU3DgwAF8/fXXeOeddxAcHKx4D15++WVs2bIF48ePx7PPPouKigqsWLECt99+u41LnsFgsHUDsOie+LR93nP89ttvA7B4xubMmaN4DIYMLZlqxnAv5Cq1SpGr1Lpp0yZuwIABnE6n44KDg7nZs2db01x5jEYjt2DBAi4sLIxTqVQcAK6kpITTaDTc5s2bbc5VXFzMzZ07lwsNDeX8/Py4KVOmcFevXuUiIyO5Rx55hOM4jsvOzuYCAwO5P/3pTzavv//++zlfX18uLS1N8frXrl3L9ejRg/P09ORiY2O5Dz/8kDObzYqv47l48SI3efJkzsfHhwsKCuJmz57N3bx5k/r1DIY7wtaNhq8b/D2x9zN27FiqYzDso+I4Bd8dg9HCbN68GbNnz0ZBQQECAwNbejoMBsMNYOsGgwTT/DBcnqCgIKxcuZItYAwGgxq2bjBIMM8Pg8FgMBiMNgXz/DAYDAaDwWhTMOOHwWAwGAxGm4IZPwwGg8FgMNoUzPhhMBgMBoPRpmBFDiWYzWbk5ubC399ftmQ6g8FoWjiOQ3l5OTp16kRsfulKsLWDwWhZHFk3mPEjITc3FxERES09DQaDASA7O9taWdfVYWsHg+Ea0KwbzPiR4O/vD8By8wICAlp4NgxG26SsrAwRERHWv0d3gK0dDFcgvaAC2cXV6Brsg6gQX7tjPtubimPphRgeG4Inx8Q28wybDkfWDWb8SODd1QEBAWwBYzBaGHcKH7G1g9GSlFTV4pnvzmJ/cr5125i4MKyaNQCBPloAwOGUfPz1i+PW/Sdv5GLVwVxsevIODIsNsTmmu0KzbrhHMJ3BYGDt/lRELU7AbxdutPRUGAyGi/HMd2dxKKVAtO1QSgEWfHfG+rvQ8BHy0OdHm3RurggzfhgMN2HZ9qsAgH98cxqZhZUtPBsGg+EqpOVXYH9yPkyShg0mjsP+5HykF1Ti493JxGOsTkyx/n9fUh4+2n0NBwReJCkvbDqLUe/txqIt5xo3+RaChb0YDDfkekk1ImXi+QwGo22RWVRF3J9RWIlDqQXEMQeS8zG1b0fc98khFFcZrNvb+WjxS/woRIT4AAC2nsrGc1vOW/dvOZWDLadysPKh/rh3QOdGXEXzwjw/DIYb4uFGWhgGg9G0RAb7EPdHhfhiZGwocczouDAbwwcAiqsMuPeTg9bfhYaPkGc2naWbrIvAjB8Gw4WY+ME+RC1OQNTiBJjN9S5sk1nszmbGD4PBcISvj2YQ93+xP9XG8OEprjLgQHI+XlAwcNwpBMaMHwbDRbhRWo2UvArr74lJedb/55frRWOlxhCDwXBd0vIrkJiUh/QCea3ex7uTMWvtEZH2hhaasNet8lrimKJqI3H/6axiHMsoJI45kkYOrbkSTPPDYLgIUnumrKb+KazaYBLtqzWZm2NKDAajETQk/fxIWhH+/UeSQ+nnNGGv9v6euEkwgIK9NUQDaGDXdsgqqEJO8XXZMcNjyKE1V4J5fhiMZobjOCTdLEd1rclmuxCDsf536Vi9xBgCgMzCShiYUcRguAzNlX4eE+ZH3B8d6oujr0wijjm9dApx/+i4MLz/UH/imBUz+hH3uxLM+GEwmplPElMw5b/7cd8nh0TbDSax8cOh/vdLuaWifddulYt+33Y+F2NX7MW8b047ebYMBoOEXEjL2ennJJ76vxPE/U9vPAkAeGiw/WyshwZ3xgMfH7S7j2f66kO4452dxDEjlu0i7nclWNiLwWhmDiRbngSTJAaMUeK16dKu3pVtlMTEfDzFf7rfH88GAOy8fMtp82QwGPIohbSclX4+b3w3xbmcyi4m7j+RWQQAeG96f7w3vT9GLNuFG2V6dAzQ4fDLEwEAt/3rN+IxLt0oQ42B7Fm+UaYn7nclmOeHwWhmzIInQWFGl1THI/xdGs4ymsW/C71EDAaj6VEKaTkr/ZyGQRHtiPuHRAaLfj/88kSkvzvVavgAwG3tyf2wencMQHt/T+KYjgE6hZm6Dsz4YTCamas36j0+YgNHqvmp31drFBs70rEnMshPfgwGw3nQhLS+PpJJPMY3RzMR5k82FpT289x5W/tG7QeAZyd1V9z/3KQexDHPTSbvdyWY8cNgNDM6bf2fnd4o790RGjg2XiGj/O+FFe7jemYw3BGakNZhhbTvgyn5OJJOTh2XhsXk9EWOHueBjw/itn/9humr63WHZ3NKiMc4nVXs8HlcGab5YTCaGV+dBgUVlpRTAyG0VWuqz+gSZn7ZGxvgpUFZjSVNtbzGiBA/93E/MxjuBk1Ia0RMKK7erJAdM6pbGOLC/fDTmVzZMXxYTElfNDw6hOo4H+1Mwoe760XUJ7NKELU4AYsmd0f/LkHEaxrYtR06+HtRnccdYJ4fBqOZMQo9OkZS2IsT7JN6heT1QawGEIPRtMSE+UHjYb/KusZDhehQX7x2b2/iMV6d1gsPDe1KPM6MwREAlPVFDw3tSjwXfxyh4SNkxY5rGNsjnHiM0XFh1OdxB9zK+Fm+fDmGDBkCf39/hIeH47777kNSUpJozNq1azFu3DgEBARApVKhpKSkZSbLYMggNFxExo80lGUyo7BCjykf7sfHkpRXoaHEcZwofKZXyMhgMBiNY19Snk0GJo/RzOFAcj72CSq024PvmP5L/EgbA0jjocIv8SMB0OmL0vLlPUwAkF5QqZjKPva9PcT9W05m481fLhHHvL3tMnG/K+FWYa99+/YhPj4eQ4YMgdFoxMsvv4zJkyfj8uXL8PW1dLiuqqrCXXfdhbvuugtLlixp4RkzGLbIhbrseXdOZRbbpMQDYu+O0cxBuC4Kw2UMhjuRll+BzKIqRIX4IjrU1+6Y2WuP4HxuKfp3CcLGJ+6wO2bT8SwcSS/EyNjQJvFG0OhjlDidVYzRcWHo1TkQKcvuwZaT2TiUWmAzZxp9kRIZhZW4YmcdEZJdUk3cfyi1AFdvlBHHHEzJF/2+LykPZ3NKMLBrO+rMtebCrYyf33//XfT7hg0bEB4ejlOnTmHMmDEAgIULFwIA9u7d28yzYzDoEHptRIJnyZNkrdEs2g8AOo0H9EazyEskHcM8Pwx3g6YNxNp9KVj2W72n/0BKIaIWJ+C1qbfhsdExAIALOSW4f/Vhq1fmpzO5WPLjBfwSPxK9Ogc6bb40+hizQv+9gV3F6ekzBkfYNdRo9EXS6vD2xtzW3h+nc0plx0QEeSOzWN4AGhkbimBvT0UdE2CpNi/tEN/OR4tf4kchIoR8Pc2FW4W9pJSWWt7I4OBghZEMRvNiMJlxOKUAmXaeyqT6HI7jcCar2KZ5aVWtyWabr87yvCJ0uUtbXUiNIaPJjMOpBTZVoRkMV4GmDYTQ8BHyZsIV6/+Fhg+P0czhXkk19cZCo4+hGUNDTJgf2tUZgFLa+WgRHepLNebH+aOI59n30gTi/hmDI6h0TABsDB/A0hn+3k/IobfmxK08P0LMZjMWLlyIkSNHok+fPg0+jl6vh15f/wVTVkZ26zEYNHy6NxXv77wGlQo4t3QyArwsCxPHcaLwVnZRFW6W1thtS3E+pwSJSWI3so+nGkWVYgNK6ha/dqsc43vWL7zrDqZj+W9XAQAH/jkeEQpPkgw62NrhHHhNixShpuXVH88TjzHni6OY1rcTUYez5WS200JgNHqeXIIXBQD1fNLyK2wMCZ7iKgPSCyrBcZzimBe+P2N3P0/ckgTi/rHv7cHgKLKjYdGWc5jWtyNxLgeS810iBOa2np/4+HhcvHgR33//faOOs3z5cgQGBlp/IiLcR63OcF2yiy0GCccBhRX1nZRNEn2Oh0qFPVftL6TtA7xstvnWtbUQhr3KqsULjY+nWvR7RmG9cZSjsCAz6GFrh3Og0bScz5UP1wAWDU5z1qBpzpo4NPeHZoyS5segUCQ+u6QaxzLI13QkrcApeqjmwC2Nn/nz52Pbtm1ITExEly5dGnWsJUuWoLS01PqTnZ3tpFky2jJCXY/JTEhnN5khF66XFjIEAB+d2vo6uXG1knPUCMJirOu782Brh3Og0bT07UTW6/TvEoTh0SHEMc6sQUOj+XHWfGjuD80YpfYVWvsZ91YigrwxLIp8TcNjQqnujSvgVsYPx3GYP38+tm7dij179iA6OrrRx9TpdAgICBD9MBiNRZqNZW87YDFG5LI1pNodAPCr0/zIiab5Ywo5lVksu4/RcNja4RyyFbwWOcVVeGpsLHHMU2NjqWvmOIObpTWK+4dEk0NESiEknpgwP4yJC4NaJb42tUqFMXFhiA71xYubzhKPsWjzWUSH+RHHhCj07bqtE93nWymsLmzY3JK4lfETHx+Pr7/+Gt9++y38/f1x8+ZN3Lx5E9XV9a78mzdv4uzZs0hJsdRFuXDhAs6ePYuioqKWmjajDSIMSwmLGko7t9cazbJCRXvGT6dAb8vrCJ4fab0gYRiMGT8MV4MmTEIbSlGqmeMsaEJajqao3/HOTkQvTsCIZbtsxq6aNQAju4k9RSO7hWLVrAEAoBjSunSjTDFkdauslrj/RGYRVdjLGan5zYFbGT9r1qxBaWkpxo0bh44dO1p/Nm3aZB3z6aefYsCAAXjyyScBAGPGjMGAAQPwyy+/tNS0GW0QobfHJPi/NOxVa+Lg4ynOO/CtM1b0xvpw1dNjY7F69kCM7xlWdxz5VHepd0kYVrNnUDEYLQlNmIQ2lJJ0s8xutldKHrkIoKPQhLRoQlEA8ML3pxG1OAE3y2vBAcgt0yNqcQJe+uGsdWxWUSUOSzRCh1MLcL1OW0jTkV0pZNU+gOz5GRIZTBX2or3ulsatjB+O4+z+PProo9Yxr7/+uuIYBsNZGOtS1aUYZMJe9goZmiSLtZ+XxRiqrq03fp4aE4N7bu8InUZdd17La8xmDlW1RtHreeOH4zgYTWZUCvZLjS8Go6VxZtr4c1vsZ4U9oxAWchSaNg8xCmEmvojj/87esLt/08nr1v8rpfArpbH/MG8k3n+oP3HM0ZcnEfd/Omew4jFWzOhHlXbvCrhtqjuD0dIcTinA4/93EoOj2uGrx4ZCJYjJC0NRJoLmp9Zoa/xYavnocVKg1dGqVXX/Wp5XDCYziitrcfdHB3CzTKw/4HuCPf5/J20yyVjYi+Fq0LRMUCoY+Pa2yyiuJIdtFm05hxUz+jk8P3vQtJNIOCffABQAViem4KvD6cQxI5btwrMTuyum8A+KJIuI+XR4EptOZBH3H0jOx4d/2K+1xDN99SH8e0Y/xbR7VzCAmPHDYDSQHZdvodpgwoHkAhhMHDw19caP2PNDbmEhXdgGRLRDWr44Lu6psRg9vBFUazLjUm6ZjeHDH5PjOLsp9Mz4Ybgah9PIKd/SlglyYyr0RuKYIwrnsYdcewYaXYtSKvuB5HzcKicbbDfK9FT6olB/neJ8lDiSRj7P6axiKm0Rzb1hxg+D4cYIn6QMJrPVQLH8LqP5MUo1P2ZRKjwARAR7o32ADrfK6gvoaT3qjB9NvedH2sNLq1bBYOJQazTLdna3lz7PYLQkI2JCFVsmmM2c4pjiylrkFF+XHTM8hj7VXak9A42uZWRsKI6kySfajI4LQ3p+BW4SDKCOAToMjw7BT2fkvUi0+iIlz8/wGPJ5BnZtp9gio3fHAKb5YTBaC2ezS5Cq4Oa259HhMZo5lFYbkJiUhxqj2GCpNdp6frRqD/h71cfMNR4qeNRlsHjWhb2yi6ptenjVp8GbZY0cOaOIwWgpaFom0Iyh0aPQotSegUbXMv/OOOI55o3vhqOvkHU2h1+e6DR9kVLK/ENDyOcZHRdGpS1imh8GoxVwq6wG99WJCjPenSraZ+LktTxC48dk4vDXz4/iUm4Z7uwZbjNOqvnhOE4kdtao6xcrL2192np5jdjN7+elQXGVAbUms6ywWep5YjBocFZ3bntd22n0M1kKYZsDyfmKuiBpWwW5a9qXlKfYnqFzkLeirmXj4QzifN7edhlx4WSjZcvJbNxSqCm0OjEFIb7kTC2+lcaqWQOw4LszonYifMr8puNkzc+Wk9lYfyCNOGbaR/ux8q8DmeaHwXB3UgkpssL6PbaVmwW1fcwcLuVa+j7tlgqQjZyN8dMpyBvXS+prVwl3x4bVLxr5FeKmp346LYBqoueHaX4YjuCs7tykru1U7S2c0DLhdFYxRseFKV4TTU0hOQGycM40WqaCSj1xzKHUAkXj50ByPtoH2rbCkR5nxuAIcJCfN422KKWAbIRey6twG80PC3sxGATk6vUAYm+PtLCgyPNDWChr7Xh+IoJ9MLBrkN3Xq1QqeNd5f6Q9vfzrwl61Rhb2YjgHZ3XnJnVtp9GIOLMWkNI10RyHZs4jFDRGo7qFUdULUmqDMTqO7jgA+X2gOUY3BaOle7gf0/wwGK2BTIG73VbXQ67fw2M0yxscB5LzbZ4ivbVqkXhaahx51xVB/E7ipubrAyUm5eOiTCPIY5KMjrzyGkQtTsDi/5G7ZjPaHjThHxr4ru0mieCW79r+4uazxNe/9tMFrN2XShyzdl8qVcsJmmv65Sw5Rf2Xs7k4kU7uGHAyowg5xcptO2goUkjhL6qsRX452YOUX65XfB8+TkwmHmPtvlRcvkUOUV68UY5P9qQQx6xOJO9vLljYi8EgkCtYUA0ms0hzI/T22Kvfw0Py/Ph7aW32dwj0wtCoYByVyRThF8Myieana90TVzsfrawxwxdJ5Bn6zm4AwPcnsvHug31l58lwT576vxM4lV2MIZHB+HTOYLtjBr+1AwWVBoT7anH8X5Ot22nCPzT6H6UwyJWb5PRppXnwY0IU0r0PpRYohltOZxVTtXAwEB5o+HOdyiaH4k5kFsHLU00ccyi1AFdvlBHHHEzJRzsfsubnQHK+Ym+u6yVk4zGdsi0Fzf0TYk8H1hwwzw+DQUCYGWGvI7vcPqE3x2jmEBHsLdofVaeXMJrFYS+NhwqhfjrMnyCfKdI/Ikj0+6IpPfDD08Pxtzss2RpmTmwYfTZnEFZM72s9H6P18/WRdEQtTsCOK3korDDg90u3ELU4Ad8fy7SOWfD1SUQtTkBBpcUTkldpQNTiBDz3/WkAdOEfGpTCILd1ILdm6N8lyGld3WmuiaaFA825BkWQ78+QyGCq49CEz2hCY0rvQ+cgsm4omjJcRXP/AIsO7OF1xzHh/X2Yu/4Exv9nLx5edxylMp45Z8OMHwaDgImTD22JND+ksJeJs6ao8/Cdj7OLqkXF2Xp3tizywrCXlC7txIbUwK7tMDgq2OrVkep9pvTugA51gsiqWnGqfWMwmszILalWrB/CaH5e/fmy3e2Lt160/v/Xi7fsjtla126BtqWEEjFhfsRu6z/Gk9OnNz5xB755arjiGJqUcJprokmZpznX2keGEMd8OmcwVSd6mjR/mrR6pRT0Ay/dSTzGzhfG2WS8Ssl4dyp1yQGS/qg5YMYPg0FAFNoiiJqF4ziOE3mC1u5PhYektkaAd/0ilCUIC/CiZRLeWrGr3Etr+TPmDSa90dbA4cN1VwkhhvWHyKX2hXAchwfWHMaId/cg/tvT1K9jND1P/d8J4v6nN57E4Ld2EMcMfWsHZq89Qhwz54ujVPPZl5RHbM+w+SQ5xTq9LsPotam32d3Pb9+XZFvRXMiB5HynjaFJzweAd+/vY3e/cLtSJ/qPd5O1OKsTU6jS1NPyK4h6p4/3kM+z5WQ27nhnJ3HMiGW70Hfp78Qx/Zb+rqg/SlfIKnMGTPPDYBAwEL079uv8SENg/l5aVBvEBkmsnaJkoX6eeOu++kXxvv6d8NPZXCya0kM0TiqADK6r8aGrM37MHNC3SyDO55Qi1M+yL7DO2PKRaAzGdg/DvmsW4eqZrBLMHWkzLbsYTBzO11V6TbxKJ3xlNA80WpPCSnJoIa/SgGoZ0TyPVIvz8e5kHEotwOi4MMwb3012nJTDqWSNCJ8a/djoGDw2OgbDl+3CzTI9OgbocPjlidTnoU2HpxlDk+oeHeqLmcMiMXNYJJ7eeBInMovsaq96dQ5EyrJ7sOVkNg6lFmBkbChmDI6w7qdpk0GT6q7UAkPqhbF3DJp2HEp+4FK9ySXS4Znxw2AQqCXW8rFv8EiNpGqDCUbJNh9PNby1aqtRFOLriZOviqu9/nfmAPx35gCbOQ2KaieqFxRQVw1aGCrjjZ3nJnUXjZHOzd+rfgmw5zGSQ2rMMVyHQRHtsOOKvPdiSGQwTmYUWbU+9gj31SKuvT8OEdoz8PqZwyn5+OsXx63bj6QV4d9/JGHTk3dgWGyIos5mRCy5rQKfGr3j4g089XW9lzG3TI+oxQlY9/Bg3NmrPZWeR6kQIu2YzkHexDHSdG45sbmQGYMjREYPD02bjBBfz0a3wBjZjXyekbGhOJpSoNiOo0JvRJlefn0I1KldIh2ehb0ayLnsEiz58TyiFicganFCS0+H0USQPD/CMJhwnzQ8lpJXgYxC8ZOOTuNh44WhRRr24o0eoa6I1xHxXeD5hqgGEweO43AgOR8f70nGtvM3ZOdNolBQYJE3hPLKajB8+W7866eLyC6qwqf7UnEqs34x/f3iTZzKVH6yZjQOGq3JSUFWlz2O/2sylc4GgMjwEfLQ55aw2Nge4URdy18Gk/UzvAdAaPgIefyrk9bzkDQto+PCqMeQGB0XRtVOwlnQ6HloW2CQrp2UZMEfg6Ydx/k37iKOOffGXS7RAoN5fhrI7qt5+O54tvX3wgo9QvzIbkWG+yEyagiiZuH/zyiEHQCLJ2Z0XCh+qqspEuJHTlUVEiRZNPhwl0Zg/FwvtlSI5g0ircArVFJlwNz1J2xc93oHjJ8n675weG6W1uCO5Za0+Y1HM7HxaH1WUca7U5GSV46nvz5l/Z3RePiHLhWAdME9ffOXS8TXvb3tMq4ohLTmfHEUpxUM1T7/+g1Pj+tGHLM6MQV39elA1PzM/pysLXp640l0CiR7Wt7edhmvTuuFX+JH4d5PDtqt3syjNIZGY1OgUFeHnw/PpuNZOJJeaBPSEiKX8k0zn21n5Ru6AnRtJ5Q+N6sTU/D5fnK9pYFv/IGiaiNxTNTiBOx5YWyLt8Bgxk8DKakSu/6KKmuZ8dMKkRM1W/YJND+CfRUEl++soV0R7KvFlD4dMLJbKM7llCLQW4t/TbMv5rTHlN4dAJyz/q5R2zpwS+uqP/OeH6FXqLBSb/fLyBHjJzVfLEgkFWIzmswiUbfRZLY7ZwYdY97dhayS+i9fDpYvlNgQb+xeNIGqrYKwfYo9zuaUoNJA/jxUGMxUehSl+jLnr5MNsROZRQhTWFsPplh0Z/7eGtzeOUjURuP2zkGiBIN9127ZrfB8KCUfM0Miqa6puIqsfeHncyGnBPevPmz9e/vpTC6W/HgBv8SPRK+6zE5S649AHy3VfJzRdkLpc3MgOR/FCoaNkuHD4wqaH7YCNZAJkgaVLNm3dVJrdFzzU1OXTj6hZzhu61i/8A+JaoflD9yORVN6wk+nQYdALyS+OA4/xY/EoMhg6jn5eMo/s/CNEnlDhg93aUUhMfvGmSNhL5vXEtpmSI2qmkachwGR4SMktdBi0NDUhaGpm+OrJX89+Gk9nFJfpm9n8lyGRAZTXRNAlz6tVAaA5ppo5yM0fHiMZg731jVLppkzzXyc0XZC6ZpGx4WhnTfZXxKssJ+HaX7cGKnuYvKH+1m9EzeF4zi8uOUc3v3tqs0+kubnhqD68/Lfrlj/f7muIqu3Vg1vwReIl7ZhGh9H8JboiPhwl9pDBV52UVFj/+nsgp0n8Nd+voiJH+zDt8csqbSfJKbY1biV18iLZ/PK9XhsQ32YLFfB68CQR0lfGL04wer1k6O02oBUhVTt1LwKKs8PDdkKT/nXFCo8X8kto2oVQZM+TVMGYM8V+/WPePZcuUV1jzcdzyKG+/j0c6U5bz9PbrehtJ8nJswPY+LCRIVbAUsh1zFxYRjbg1y36fYugXh8VAxxzBNjYjH5NrJm6q7e7RXn0hyaH2b8NJAoO29OlsIfOcM1Sc6rwA+ncvDpvlSbTI9amRYW0pYU5TVG61hdncFzvaQaeQJtgLQdhTPgPTs80i8aYbiL9/4IiyoKCfASP7WV1xjw1ZFMpORV4IuDaQCAFX8k2X3tiQx5fYi0bsoVhXL9jIbDga69AE3KMg00IRmlFPR8hbT77JJqqvR9mlAKzXGu3CIbY5dulFHdY5ou6TRzpglp0YwBgFWzBmBkN7GHZ2S3UKyaNYCqVADN+01zj5Xm0hww46eBtA/wwuHFE7BgQr3gzxHNBMN1EBo40vdQzvNjL9W7pi5V3FAXKhsWE4wHB3ax7v/bMHJGhiNcfesurHtkMM4tFWftDI8Vl5YXhrs8JcZP+wAdtjw9HD88bcnqkT6kVguqQdvrTza2exh61+k5pBo4IaUSHYCe0mPAcBwV6NoLtPcnC+w7BtDpF2lCMkop6GG+9rN+eCKCvKlaRdCEUmiOc1t7cruN3h0DnNYCg2bONCEtmjEAsOFQmkhbBAD7k/Px9dEMqlIBNO83zT0GgEAfLb56fCgSXxyH9XOHIPHFcfjq8aEIlMkCczbM+GkEnYK8cc/tHa2/m8wcDCYz9l3LR2ZhJUxmDtdulSvWjaChoELfKE0GQx6hx1lq1AgNHj6DCrCkr/PwntuUvApcu1WOWpPlGF4ataiOjr+X8/ILvLRq3Hlbexv9D1/Ph0foGeJDYBV1IapAby2GRAWjU13NEqluR3gvDEazjQE0uXd7+NadnxQGkIbErik8WTPkUcqUS6dsL0CTskzTyoAmDVspvfyEQtr9vpcmUKXv06Sf0xznx/nkdhs/zBvptBYYNHPe/txY4phtz46hGgMAH+6231F9xY5rVCn+NO83zT0WEh3qi/E9wpu1qSnAsr0ajVD7YzJz+NsXx3As3eLWGxodjOPpRZg7MgpL/0Tuz0Iio6AS4/6zFz07+OP3hWMaPWeGmMs36rUu+eV6a8VkQFzkcPlvVzG1b0d0aeeDdQfrW0F4a9WoqjXhgdWHAQChdZkpOq2HyDjxJgiVnYWN5kcU9rIYQltO5Yj28f8aTGZwHAdVnTUnDGXVmsy4WSbu+uyn01hrDP1cl7KvVatshOHCWkIA8NvFm6I0YAY993y4j7h/2kf7cVefjsQxqxNTrB47OQ4k5+On0+T06UVbzil6LlYnpmDe+G7E9HKa1PzTGfLF9wBg+upDqJIJ5/JM+2g/tj07Bu/e30fU44yHbzlB097i5f+dJ44Z+94exaKhI5btwrMTuxPHbDmZjfUH0ohjpn20HwUV5DDliGW70CGAXAV6+LJdxP20n5tPE+0bWDxzvjhqrRHVkjDPTyOJDKn/4zdznNXwAYDjdf9ffyijUedIuGD58iD1ZWI0HKGBI9XDSEXOaXUp3uGCUvHSZqH8QqTTqDG2Rxj6dQnE0OhgDIqk64LdGKb17ST6XVj1mTdyeE8X78nxFGwXencqBfdCbzTjZqnY+JnSuwPKJF6d6FBfjIgNQU9Bp+6SaktILMxfh9gwX0ztS/5yZshDo+1whg7ndFYxla6F5lwAcOVGqd308mu3yqlS82l0OLS6F+HDjZAwf4txQHNvrkv+FqRkl1RT6apodEE010VzLqV7eFNB50X7uTnvYFuUloIZP41EpVJZ3XVNpfmxp7dgOA+9ILxDal4KADV1Y7u3t7ir7+wZjttlUnU9NR7oHOSNn+ePwua/D4cfRdPSxjIosh1iwurdx/Y0P5W1FqPmvgGdLWM09aExoddG+ORaazRb7023cD9kvDsVXlo1xnUXZ4jc1bsDvn3yDvy+cAyeHhsLAKip0/hM6BGO3S+Mw8v30Nc0Yoih0XY4Q4czsGs7Kl0LzbkAcnVmmrRxGh0Ore5FqVI0zb3prNBLKyLIm0pXRaMLorkumnMp3cMOCjov2s8NTRkFV4AZP06Ar7BbqOB6/N+pHLzx6yWcoWiex2M0mfHBzmuNmp+jfHkwHXGvbMcXCu7W1kKa4MlK+oWfWdeWgu+2/tTGU4hanGBt6qlRq6xd1aXoNC3z5+WlqQ99iTQ/vPFT59HxlIS9AEt4a29SHl7/5ZK14SlgMQI3Hs0AIC5oqJOk7wt/l94XnULdGIYyitlBBZUIU2hgqbSfR0mDQavRUAprncsuIe4P9vVU1M88NLQrPv7bIOKYVbMHUYXY1u4jVzFeuy8VQxWMlqExIShXyO4sq0uHJ7HpeBbukXhzpdzTt5Ni6n1JVS1O55A9MkoZfh/8kUTVHoS2LUpL41ar0fLlyzFkyBD4+/sjPDwc9913H5KSxKm3NTU1iI+PR0hICPz8/PDggw/i1i1y3YbGwgtDSY3lsouq8MKWc1h/KANLFf4AhXy2v/kNkDe3XYbBxOHthCvKg1sBwkVK6Pnhq7QCtlqab+rq3lTojbIev2Af+pYVzkTYvdlfV79Q8R4ea98vvi2Gh9DzY8aj609gw+EMHEqpd8mbOWD7hZsAxMaPh6ROh9Dgs2nwWkvWQLQVNh3PwsJNZ7DlZLbsmLT8CiQm5SFdEvKgqb1DE0pxVlozzRilsNblm+TSBweS852WNk4TYqMJ29CEBGneK5pwHs09rjaSowNVCvtp4FfJX+JH2RhA0hYir021792V294SuJXxs2/fPsTHx+Po0aPYuXMnDAYDJk+ejMrK+gXiueeew6+//ootW7Zg3759yM3NxQMPPNCk8+L1HyTrO0eQKaRUGl3IYYUPPqPxCL0jQkOmRKBRGBFr/0kvMsQXI+y4/l+depti0bCmYumfeuHZO+Pw+cODRWmjvIeHD0Pp6n5XqVRWL5CjodthMeLK1OMEGSMR7cRi2B4dyG731s6FnBJ0e3k7XvrxAn46k4tFP5xHt5e347KguGRJVS0eXnccE97fh7nrT2D8f/bi4XXHUVr3WaSpukwTSnFWWrMzqiH36kAW0Y6OC3Na2rizql/ThARp3iuacB7NPfbWqIhjfBT208AH7SNCfHDmtcnY+PhQPDcpDhsfH4ozr01GhED/+tjoGGS8OxWju4XA30uN0d1CkPHuVDw2mlwksTlxK+Pn999/x6OPPorevXujX79+2LBhA7KysnDqlKVhYmlpKdatW4cPPvgAEyZMwKBBg7B+/XocPnwYR48ebbJ59a77YyH1NxIaPI48AUtbEbAq0s5HVMjQzv8n3haOOJlFKjLYRyTu5Xl8VLQonNScxIb54blJ3TGpV3vRdul8xGJoy+JYpuA+lyL1bgUKeihJe93xKfVtFWe0Orj01t3Ec1x8626qFGtnpTXTjHntXnKm6//iRyoew1lp40pzeXVaL6qwDU2qO817RZNWT3OPr7x9D3HM5bfvoSpdQCJFsn90XBievbO7Vddlj41P3IELr9/lMqEuIW6d6l5aanliCg62PH2eOnUKBoMBEydOtI7p2bMnunbtiiNHjuCOO2zfAL1eD71eUIW3zPHqs3zbgiSCC1NYF6agohY/ns7B+zuu4Z939cCf+3fGlpPZ+DgxBf+Z0Q+B3lrEf3MaCyd2F2XcABZNhk6g6Vjw3Rn8ei4XL0zqjgUKfySNwWTmMPuLoziaVgRvrRp3xARj3SND4OHR+CcKe7z0w3lsOpmNl+7qiX+Mi22Sc/AIvR0vbDmHF7ZYmobyBoFOo5ZtTeGp8bC7T6VqmvvSGDxJxo/GA6g1KabMSpGGA4W6HmkLGOnv7o4jawdNq4NBke1sCtAB4lYH8RtP2jlCPdM+2q/4cDXp/b3oq+D5WbTlHP64eIM4pt/S3/HyVHLJgi0ns/H+H7ZtY4REK7TsmPT+XmL7FMCSyi1XuZyn39Lf0VnBAKctFUDT1b2Y8DAMWO7xrss3iWMGvvEHTi+dgk1P3oGHPrd9gN/0pOU7bfbaI8TjzPniKA6kkEN1Sq1TXCVF3Vm4ledHiNlsxsKFCzFy5Ej06WOpz3Dz5k14enoiKChINLZ9+/a4edP+h2z58uUIDAy0/kRERDg8F2F2jRxSr9Dzm8/hekk1Fv1gqRex6IfzyCyswrLtV/D85rNIzqtA/LenMVny9C70THAch1/PWXRG7zexKDqrqApH0yyp+9UGExKT8nGrnJzu2Rg21ekh3vudvHA6A7nikXzmk07jgfYymRA6jRo9O/jbtJlwRfpIstK0dlpfSNPZ7TFYkLIvTRsWan58dGJjJ8SvZTRQTYUja0dztjrIVOiDlV5YSaVZKZNpgMtTqjdRXZdSGraSLzu9sJIqlZtmvs4qFUCjHaK5x7Rd0ofFWsJGg7sGwVvrgcFdg5Dx7lQMqwvHN0d6uaukqDsLtzV+4uPjcfHiRXz//feNOs6SJUtQWlpq/cnOlhchyvHn/mI1/ucPD8a51yZj+zOjrV2982WeqKVfvNeLq0XaoXaSsIIwFVlaTK4psfc02VoErEqVsz01HhgSZb/ruqfGA1GhvjipUDHXFXjprh6iQmdCzw/vFaLpP/bDP0ZY/69Ve2CsIN1d6F1qLymq1lVBk+FuOLJ2NGerg8h25ONEh/hSaVYCdGRPXaBOTXVdSmnYSo8N0SG+VKncNPN1VqkAGu0QzT2m7ZK+4+INRC1OwMmsElQbzDiZVYKoxQnYfdmSzNMc6eWukqLuLNzS+Jk/fz62bduGxMREdOlS3zupQ4cOqK2tRUlJiWj8rVu30KFDB7vH0ul0CAgIEP04iqfaA8Loj4+nGoE+WvTqFGBtFpmh8MTBU1hZa+0NBdi2HBB+USsZH0WVtdhz9ZbdUEaF3oiNRzKowhxZhVXYfsHWBZ5f5/otrNAjMSkPx9OLsOVkdoN0SZmFlQ6HXJzFmbpGfHKp6aSUdX5fc/WjaQwqlQpdBaJETzvVn/dfsw27KOEjCH0Jw33SMFdzdLVvThxZO5qz1cHuReOJY3a+MI5Ks3L+jbuIY869cRfVdSm10khX0JrsfGEcVTsOmvnS3D9n6JhendaL6h6fWTqFOOZ03X6l2kQ0OqXGan5aU8gLcDPND8dxWLBgAbZu3Yq9e/ciOjpatH/QoEHQarXYvXs3HnzwQQBAUlISsrKyMHw4+cPRGFQqFXx1GmvKtFAH4VtXH+ZSrrweQBhqMJk5URsBvqIwT0GFHh3qCmydk7ghjSYzNIIvtJlrj+DarQpEhvhgn2RBnPj+Ptwsq8G/fr4k+tBLDZeUvApM/MB+Sf2H1h5FxrtTMePTI6JaOWeyS7Ds/ttlr1dKQYUeY1fsBWD5A7xeUk1+gRMpqzFYs58CvbWiLuw810tqoJbRNgnTxLu080ZOcbVom6txXFCBXFiHhw977bNj/HhpPaz3yB5BMin9PlI9UAvVPXIFnvq/E8T9T288ae2TJseiLeewYkY/LBgfi1WJtrVoFoy3aONe2HRW8ThK/QYXbTmHA9fIbR5GLNuF4QpeEhpdi5LWpM+/fkN3hayo6asP4axCvaC4JQk2GjUp/Zb+rjiGti3FjMERWPlQfzxj5/1YWWcYPfDxQeJxpq8+pKjPenvbZbw6rRdem3ob3rRTnoRPL79zRSLxOErvw9C3duC4oA9bWn4FMouqEBXi2+x9uZyBWxk/8fHx+Pbbb/Hzzz/D39/fquMJDAyEt7c3AgMD8fjjj+P5559HcHAwAgICsGDBAgwfPtyu2NmZLJzYHb+cy0V0iA/6CrQVFRRhhEuSeO2Y7mHWJ3Cj2Yx+EUHWQmDCZpMlksycyloTAr3rv2Cu3bKIrPlCfUKkfZp4pGviH5fICxcgLhIIAN8ey3LI+LkmaduRraB9cCZZgnszb1wsfjidg4vXxYbqxeulCPXT4R/jYrFmr/hLJ0rwR79h7hD8+/ckPNOEwnNnItQASTPB/L00GBEbgjl3RKFCb8Rn+1ORWViFFybbLvqPj4pGTnGVKM0dsPX0uKIIvLk4lU0ubHois0hREH6kTmcSI/NFExduMRBotCZKHElT1urcKNM7RdeiBG09HKVSNgYOMFDogpS0Q7RtKWYMjsC9Azrj3gGdsWjLORxJK8DwmFCsmNHPOo7muipqyfePr0f22OgYPDY6BnO+OIqzOSXo3yVI5K1R0oIpkVdp+b4pqarFM9+dFYnzx8SFYdWsAW7hAedxK+NnzZo1AIBx48aJtq9fvx6PPvooAODDDz+Eh4cHHnzwQej1ekyZMgWrV69u8rk9Pioaj4+Kttk+IDIIxwVN+Sb3ao8dl8VFF6ViaJO5/il7+qAuGB0Xhikf7kfSrXLZtGxAXFRO6sERNqwkYTSLjyltrTGhZzj2XCU/ETqKcF4Gk9mms7rZzDVZVplZcJ9GxYXi0ZHR6PXa76J+XbyR8NJdPZFVVIUEQaNOoYi3W7g/1j4s7ljsyogEzxKvzIMDu+B1gWv/rj72w8aApd3FxseH2d33wIDO+PEMuUFmW2BQRDvsuCL/dzMkMhi+nhrkFMvfq+F1OpPntthvqvnMprO4d0BnDIsKUTyO2cwpjjlwLQ83CQZQxwAd1bl2Xb7ZKAPIT+uB7u39iRWKe3cMwNnsEqIBpFVZvPIk4yZQp4a3p1rxuodHhxCL2kp1Q0KDR8htFNfVt0sQrt6skB0zqps41VwuPBXZzgepdh6EaQn3tRg2pHIMXz0+tMHHb27cyg/NcZzdH97wAQAvLy988sknKCoqQmVlJX788UdZvU9zIH2aC/C2tYylnhNhZd23t11B/LencS3P8oQgNHikFXSFv0sLLgqNGJLLW2rsKLXWyJPJ+JLOTY69SXmY/UV9CmdqfgWOpomfqiZ+uA9XFarAKnGztAaL/3ceUYsT8Povl/DruVws+fE8ckvq56/2sPw5qCVGojA8ZJRcV2tJ35Yay55tOETVFEg/01KOpBTgJwUjceupHKqQVvyEbsQx88Z3w739yS0T7u3fiWgAAEBumR7/U5jzD6dyFFPQlRjVPYyqvcU7Ct7mZQ/2RTcFXVVce3+M7CZftwYARsaFYUi0/QQInsEyCRJSaK5LqVgqbTHVp8aSS4YoFWUELKGu/cn5MEnWC2E5BneBrXBNjNSLYS/d9wLB8k+6VY6E8zesnbilvaeECIXSB5LFlrkwM+wiIS1SqYnqyG6heKCuISYAbDmZY3fcsbQiu9ulvLD5nCjU9vPZXJzJKhGNScuvxEs/2H/apWXLyWx8f8KSjbPhcAYWfHcG3x3PFvUv49+b6YO7iF4r9HpM6Fkf2lGpWo/xc17yGZRqzRoKvzC3lvvUUGjSsJVyJ42gC2nRpMzTtLdwBhwAhS4PipzILKIKM9GMoQkzOese0+CsViTOOJdSO468SoPTrtsVcKuwlzvCx+F5RsaG4rN94n5dZorsKA+VRY+jJ4S9ak31y6fU6Ko1mq1CPpIOiWT8vHN/H0wf1AVGE2cNZQgztP4+Jsbai4z2aa9QEvKrMZisqa/+XvUi8nMKTfmUKJMpknZDIDYP8LJ45Rbf3RMdArzw3fEs3HN7R0wTNBacMSgCwb46lFUb0KODv0hg7g4cf+VOvLv9Khbf01O03VurFn1mhEZ2Y7i3Xyf4empsagy1NQJ0yuGWCgUDSANQhZloUuaVPrUDu7ZTGEGHCoDGo3EG0JDIYKowk9nMKY7Jyq9UDDNFhvg65R7TQHNd4QqNaGnfK6Vz+Wo9iAZQuK/WadftCrjXyu2GBErCXNK6PYC8+FiIf90Xs95otob7bNPghTWApIaR2e7/AXEYTK52UKifJ2YPi4ROo4avTmPVN/HhNY2HCkvuuQ3DY0Lq5mm7jJvNnOhc9gyt6lqT1cC7tx/ZNc8jDNlIz8GHqaTGIA9/L4QtKnQaNf4+NhZ7F43HP+8SGwkeHipM6tUeDw7q4pZf6OH+Xvjgof4I9xfX4JE2KnRWFxWVSoWJvdpbMxTbKjRp2KkU7QVo0qdpUuZp2lvQpEYrjUl/dyqSlzUuxfrTOYPx0NCuslmUGg8VZgyOoBpD006C9h6PiQuzCZGrVSqMiQujzn6imTNNJ3Xac5FQasdx/F+TnXbdrgAzfpoYqbvf38vW2UYTYuBft+5AOqKXbEf0ku02rS+EBg9JDG3rMbL8nnSzHEPe2WX3/NLu3fx1/Xja8oTEa0T49gbSc1TVGjHh/b0Y/u5uFFbokVVYhdte+93mPNvO37C+Vmo47pIIxQHgk8QUDHhrJy7nlqFSb8S4/+zFiHf3oLiyFs9vOoter/2BbedzRToqIXytoraucZHG8H0VCsYxHIMm1V0p1ThqcQLu+dB+2QmeaR/tpzoXjXZIKTV60vt70Xep7d+wkH5Lf8dtr24njolbQr7uLXXV3n+JH2ljKGg8VPhF0BuMZswiOxmL0u0rZQwg4fZVswZgZDexsHlkt1CsmjVA/mLsQHddyp3UlXjzl0vE/WPe20Pc/3RdaxVnXXdLw8JeTcxtHcVhr1B/HcZ0D8OpjCJ0CPRCKqW2gs8IE/YPO5Yu1tVQGz92vEJeWjXW7E2RPb+0/o20ZgtvHMl1B0/Jq0BGXabBxdwyFFfW2q2s3DnI2+o1kta3eOKrkzZPiSv+SAJgMYKeGB2NrLqY9KXcMmto7ttjWegc5E0U49EWoWytrJo1EH/5rL4/UPx4smiW4Rg0qe400LRnuKHQdoY2rV6p1Ul6YSUUiqOjVEHrBFhS0EnwaeO9OgciZdk92HIyG4dSCzAyNhQzBotbitCMiZ8Qh/gJcZi++hAu3ShD744B+GGeuLmqUoo6YCls+tXjQ5FeUImMwsoG17uhmTPfSf1Acj5OZxVjYNd21B4fHqWWHDkK9dX4zyh/3W/+egmHUwswqlsYXp1G7vHmijDjp4kJ8dPBT6examB8PdX4v7lDUGsy49WtF0XGz/CYEByRyQoZ2z0Mv10U19yRZh6RMsFo9pF0OtMHiUXAI7qF4P2d9b+//xfLwqCrW1Slho2wGnWt0Wyz/5snhmH2F8dQbTCBq+v2Ex6gQ8o7d6PbK7/JzounrMYgCm0J/2/mOBjrwnn+Og3K7VyntEZNW2NodDBSl91jDSG6m5bJ1aFJdf/9kq1nU0q3UF9cviWf9tw93A+dgrydklZ/OqOImBodHeKLW2U1ilqmWpMZ1YQcdK2KbABJ08ZnDI6wMQ6k0IyRGjz2kEtRFxId6pwifzRzHh0X5rDRwzMiJpSYMt8lyBtZxfIG0JBISwbb4ZR8/PWL49btV29W4IuD6dj05B3WXmPuAFvhmgGNoOmlSqWCSqWCTqO2CbVEBMt3HJaGgABbb0wtRWjL7r6630l1gJRaFfDVfHnPj7AAY2mVAesOpovOp5cYYLwWKquoCtlF1dZj2fsSPpxSgP/8kYRt58XivUrBInxckNngoVJZW1iEyogH23o2EgCoPVTQyNxzRuNY+8gQ4v5P5wym0tjQtGegOReNroWmTQaNlunK2/cQxyQvJ1+3kkHAoEOpJcf+lyYQ9386x1LDTGj4CLHXdd6VYZ6fZqBDgBdKqmyzjaS2hj0xNI89rdANiVtaKFaWGhfCfVLjJyWvAp2CvImdyaXn5zOjePzq2njw15SSVx+eW/rLRVFhR73RBL3AM9POR2v3+vjWIOK5luOvXxyzO8dkwTk/P1BvbBlMZuv1yxk59s7PYDiLj3cnE/evTkzBv+tCuHJELU6AkonebXEC1AqDer6SgF4dyWL96asPYYFCpfIDyfl4+X/kEhRj39uDTII3AVBuqzDni6Otrq9US6CkF5v0/l7i/vSCSiSck88WAyyf43luEjJnj3jNwOv39sZdvTtgpUQQFhksdpWO7ykfeunZQbnhqjCcZZC4mcWaH/E+vpqxME1x+zOjsWb2QACWqtQzh4gzBSIkKY+8PofXzQo9VT+dFf/B1BrNIk/Umr8NQkSwD56VLLZRdU04HxzYpe6c3qKihEJUKpWoUaeQCoFH6M/9O+G+/p3wjKQQ3F+HkTMhGIzGcCiVrLc4IGgVQIKmFpCSzKbGRNdWgaa+zHUFXVC2E/r0Kc2DQYeSXixdoUZPRmGl0z7HrgAzfpqBO2JC8OmcQTap2z0lYuhgX0/cV1d5tXenemPH11Mt6sYth6j1hckkv0/i+amp88Lw258eG4tenQJw9+0dkfHuVKx9eLDi+fnGn7zAm9RxXm80Q19XT+Jvd3TFHXXp8c9NEmdh8GG4WUMtbm+1SiWbsq4SXIcUoTYqItgH/505AM9P7oEegmaJSunBDEZjkOpWpNDqOJQ8PxoASol6XmpLWwUSvTsGoL9CQ82BXduhs0IJg4gg+VA+LUrzYNDRTUGXFK1QoycqxNdpn2NXgBk/LYg0BOOtVVu9MMG+9SEwnVZN1KTw+4TVNQ+nioXTf994yvp/aV+WhZvOImpxAr6o0+U0Ju2b1wL9ev4GOI7DC5vP2YxZ+sslnKjrd+ap5KMXHDOjsEq2mqlKZZv9xiPs0yVM2W/DfTYZzcx8hRDSvPHdFNsL+Gk9qDw/NOSWkj0yuSXV+Eihtc1HO6/h/2R6uvFseHwY3nuA3HZi0eQexP1v3kffJJkhj5JebOcL41pNDR8amPHTgoRJxLfBvp5Wz4afQO/iqfYgFonjXyMs1cILkHmEmVz2UsyFXL3R8D5avCHmpfFAcl4F/nfafvsL3lNUobdfefmOmPreOMIQWr5E5M3j76WVFWxXCroi9+lc71F7rK5Q458V+hwxGM5g05P2dSv8dqX2AhWUZZJpwl40HdtpQmM07Q6U2irwXclJx2A4hwXj7ff34rcr1fBpqbBXWn4FEpPynNo7jKk8W5Au7cShJF+dBgsnxuGhIRHw0qitqe06rQdC/XT46rGhePhLW6V9n84BuHi9TNK8VP68fOf2p8bEYO3+NJv9AyPpyqUf+Od4fLovVRSuGlLX0M/EcTap88IWCnyIig958Rx7+U78dOY6Hh0ZZd0m7IdWJbOye6o9bFL/7b1GeM8fHNgFUSG+ohAjg9FU9OjojzFxYdgv+IIYExeGnh0tnz+l9gJ+Wg8qA0inJhtAXmogyMdTsXN5hwAv5VYQFO0OlNoqjOoWhiOEXoDu1DLB1XlhSk+8MKUnpn20H9fyKtA93A/bnh1j3a9Uu2hkbCjxvXJ22KukqhbPfHfW5m9m1awBCJSpek0L8/y0IGpBVU/+/4MigzGtbyfEta/XoPBCXqk3h6dDgCWuXlChx9G0QmQWVhJ7M+XX9eMaIVOTgTbtOyLYB+/cfztC/eo9WHwH9BqD2Ub3Mzqu/omCFy77S7LG2gd44e9jY6HT1M/BS/D/kmrLgt1ZoiWo1Butxpa0Wjwvro4JEy+iag8VhkYH280qYzCczTPfnbUJOR9KKcCC784AUG4vcPGtu6nS4ZPeIY+5+s5UHH1lEnHM4ZcnUrWCoGl3oNTCIX5CtzYVbnEFtj07BtfeuUdk+AiJDvXF+B7hNveeJnzrTJT+ZhoDM35cBGnFZKEBwmtwpn96BPbgw0Lfn8jGzLVHMXbFXruVozmOw6XcUmsdHR9P+1/6XgraAxJCvdBHgvRef51GVGPnel0WCM25PDxU1nEpeZYiXdK6R79fumntTC5XMkAuG4zBaGrS8iuwPznfpo2IieOwPzkf6QWV2JckX5gQsIQUaFpg0LSuiFY4TgzlcQC6dgdKLRxaS8uE1s4DHx8k7p+++pDTzkXzN9MY2CNvC/PI8EhsPpmDf4wVx2JD/XQY1S0UpzKLrV3FY0J9kVNSbaPZIdWomdq3IxLO3wBg8cZcELix5cI9f+7fuUHXAkDksTkuECC/+2Bf9Ojgj2+PZYnGS1tYyFFT5+4vqLB4fv7UrxMuy2iTHhsVjc/2pSLAW4scQY0ROc8Zg9HU0GhjzlOkltNwLIOssTmSVgClvrVmyuMAdG0elFo4OKtVBKNpodGBOQuav5nGfEbYo3AL88af++DKW3fZFBTz8FDh6yeG4cpbd+Ef4yyG0Z4Xx+Ha23fjlXtuE40d0DVI9vjC2jnVBpNVczOtb0f46jT45on6bI37+ndCxrtTbao3O4K9TLH7B3TG1L4d0S3cT/QkFxfuZ7dytT2GS7RBEcHeyHh3KtY9Mthm7KMjonD+9Sk4+NIEjOleH4P++1j7Yj8Go6mh0cbQpJbTMCyK3GJgeEwolBIdPSiPI0QuVCJkxuAI/PehAbJVm2mOwWg5aEokOAuav5nGwIwfN0QnCBV5qj1E2iEp3tr6Nhoj3t2NPVfzrNsBsbHi7QTPiL25CI0pYTjPkfNJxwo9TOTzCa6PtbBgtBAxYX42Xbl52vloER3qi7EK/eVGx4VRaX5oWlekKxwnjfI4jLYFjQ7MWdDoyRoDC3u5IcIQqKfGw0Y0LMRPp7E2q6wxmHEguc5VXedxEWqNmkoTUyVINQ8SfAHQen0A4HKu2J0aUBfqC/e3LQEgNMCCvOv1P0GNzA5gMBpKWn4Fiu20uAGA4ioD0gsq8cAnZD3FwDf+gNFMDlj1W/o7AhT+rsa+twchvvKtdACLdqO4kpwOP+n9vdj5wjjr72n5FcgsqmIhq1bOosndsWKHbQ2oRZO72xndOFbNGoAF350RZXs5SwvGjB83RJgJptN4yGZtAUA7X0/EhfuL9DGPjYzG3LoaN0LPz4OSzu0N5cOH+uG5TfXFDSME6eUDu7bDoik9cKO02qZlBoniKvFCPLgupV5Yt8ce/xgXC29PNdoHeOH2zuR+RgxGU0GjXyiuJpcoLFLYDwClehPKCdXVAUvLibwK+/WyeC7dKBO1xLEH3w6hKdORGa5H/IQ4xE+Iw/TVh3DpRhl6dwxwqsdHSFNqwZjx44YIU8s9NR7Qqj3gqfGQLV44uXd7kfHz2p962R3nrA/V/QO6iIwfYYFGDw8V4huQDhkZ4oNrtyqsv/PeHZVKhSm92+OPS5bGqcLiiAAQFeqL1xW6GTMYTQ2NfqGdt4ZoAAV7a2A0cygjFPEJ1KkR4K1FtkwPPMDSciLE11Oxhk9xZS1SC+WNNr4dAikd+avHh8q+nuHeNJXBY4/oUOd7E5nmxw0Rald4N7gXoSUFSesiLIbYGKFzU6PxoLs+puthuCLZCp6fnOIqa4FQOYbGhOCVqfYfXHhe/VNvlFbbD6/xlFTV4tlJ5BDFs5O6Y/ei8cQxO18Y1+TpyAxGU8GMHzdE6Pnh2z2U1cg/MXYLrw+TvfVnsRckUtCwVNtEmp+x3Rtf9XO+oAv71L4dRfuE1xfLGpQyXBCaDumnssmp7CcyixRbRRxKLSB6hgBLaIxmPgDw5Kgou/v57TThPAbDFWFhLzdEmPkUU+cKjArxQYbERc13kb/ztvb47dnRKKs2YJgkZdxXp8HJVyc2qpmpEhEKLn8a7rm9I3a/MBZVehN6dBCnW84b1w1juofBZOao6wYxGM0JTRr7pZxS7LgiX+hwSGSwYquIkbGh2HP5lmJojDat/pVpvfHKtN6Y9P5epBdWIjrEVyRybup0ZAajqWDGj5vDGy3edqo1CzvD30aovyD0JLkycl4dDw8VM3oYLs3YHuFo56O1m/HVzkeL0XFhGB0XRqzg/OkcS02rV366aDfrS+OhwozBEZgxOIJ4nHNv3GUdL3ccaY8mocEjhE/hl7sulvXFcFXcKuy1f/9+/OlPf0KnTp2gUqnw008/ifbfunULjz76KDp16gQfHx/cddddSE5Otn+wVgLf9FPaIR4AQv3I6awMBqP5+CV+lE2tn3Y+WvwSX1875d37+9h9rXC7UqsIAJh8m/1QM789Lb9CNm3eaOaotTo0KfwMhiviVp6fyspK9OvXD4899hgeeOAB0T6O43DfffdBq9Xi559/RkBAAD744ANMnDgRly9fhq9v63oC+WzOIKzdn4bl9/cFACycGIe8shpMH9QFbydcAQDMHhbZYvN7bGQ0vjyUjvdZITQGAwAQEeKDM69NxoHkfJzOKsbAru1sPCwzh0Vi5rBIPL3xJE5kFmFIZLDV48Oj1CoCANY+Ysmy6rf0d5TqTQjUqa0eH8B5rQOaugUBg9FUqDiOU2rz4pKoVCps3boV9913HwDg2rVr6NGjBy5evIjevS2iXrPZjA4dOmDZsmV44oknqI5bVlaGwMBAlJaWIiDAeaW6GQwGPe74d+hOc07Lr8CE9/fJ7k98cRyV0eKs4zAYzsCRv0G3CnuR0OstWU9eXsKaMh7Q6XQ4eFC+cqper0dZWZnoh9Fw9u7dC5VKhb1797b0VBiMJsWd1w5ntQ5wZgsCtnYwmhO3CnuR6NmzJ7p27YolS5bgs88+g6+vLz788EPk5OTgxo0bsq9bvnw53njjDZvt7rSQNQfffPMN5s2bZ/1dp9OhS5cumDBhAv75z38iPNzSl6iystL6r6P3cMeOHTh16hSWLFkiO+aVV17Bzp07cfz48QZcRcP44osvsH//fpw6dQo5OTn461//ijVr1jh0jNzcXCxZsgSJiYkwm80YPXo0li1bhujo6CaatXvDf3Zc2THt7mvHO1NjseiHChxOrU+fvyM2BO9MjXXoGpSOw9aOhq8dycnJ+PLLL3Hy5EmcO3cOer0e58+fR2Rky0kaXBlH1o1WE/YCgFOnTuHxxx/HuXPnoFarMXHiRHh4eIDjOPz22292j6PX661eIwC4fv06evUiFxJjMBjNQ3Z2Nrp0cU7bFWfD1g4GwzWhWTdajecHAAYNGoSzZ8+itLQUtbW1CAsLw7BhwzB48GDZ1+h0Ouh09ZlSfn5+yM7Ohr+/P1Qq+W7pNJSVlSEiIgLZ2dlNrgFo6nPxT2+JiYno1q2b9VzvvfcePv74Y6xbtw7Tp0/HgQMHMG3aNGzbtg2jR4926BwvvvgiPv/8c5SWisvu89d28OBBjBo1iurYzrwfWVlZiIiIgEqlQqdOnfDnP//Z5umNdL7//ve/WLp0Kfbs2YNBgwYBsGjU7rjjDjz77LNYunSpQ/NpTZ8rufNlZWVZ77erYm/tuHz5Mnr16tVs98sdEK4dAwcOtG5/5ZVXGrR22PtMyq0dPOnp6ejfv3+D1qXGQLN2kCgqKoJWq4W/vz9WrlyJf/3rX83i+Wnuv3tnwXEcysvL6dYNzk0BwG3dupU45tq1a5yHhwf3xx9/NM+kJJSWlnIAuNLSUrc/1/r16zkA3IkTJ0Tn2rZtGweAe+eddziO47jExEQOAJeYmCh6/ebNm7mBAwdyXl5eXEhICDd79mwuJyfHuv+RRx7hANj8CK/t3//+NxcYGMgZDAaO4zguIyOD+8c//sF1796d8/Ly4oKDg7np06dz6enp1teUlJRw48aN40JDQ7lbt25Zz6fX67k+ffpwMTExXEVFBfV98PX15R555BGb7aT7P2TIEG7IkCE22ydPnszFxsZSn5vmXM6mOc/VEudzNu4+/6ZAuHYIaeja8Ze//EV0j0lrB8/KlSup1w4es9ncLGsHLStWrOAAiObYVLSFz7FbeX4qKiqQkpJi/T09PR1nz55FcHAwunbtii1btiAsLAxdu3bFhQsX8Oyzz+K+++7D5MmTW3DWrZvU1FQAQEiIfGf5DRs2YO7cuRgyZAiWL1+OW7du4aOPPsKhQ4dw5swZBAUF4e9//ztyc3Oxc+dObNy40e5xduzYgUmTJkGjsXxsT5w4gcOHD2PmzJno0qULMjIysGbNGowbNw5Hjx4FYAmPfvnll+jbty+efvpp/PjjjwCApUuX4tKlS9i7d2+TlkEwm804f/48HnvsMZt9Q4cOxY4dO1BeXg5/f387r2YwWi+NWTsAoKSkBAEBAVRrx/bt26nXjsuXL8PHx6fF1w5GE9PS1pcj8E8G0h/emv7oo4+4Ll26cFqtluvatSv36quvcnq9vsXm25qe0Pmnt127dnFpaWkcAO7LL7/kQkJCOG9vb6sXR/r0Vltby4WHh3N9+vThqqurrcfjn/pee+0167b4+HibJzbhtXl5eXHr16+3bq+qqrIZe+TIEQ4A99lnn4nuB//7119/zR09epRTq9XcwoULHb4Pjnp+8vPzOQDcm2++afOaTz75hAPAXb161aE5tKbPVUufz9m4+/ybAuHakZ+fz2VnZ3Pff/99g9eOzZs3cwC4l156ybpNbu3gOI6rrKx0aO346quvRNubeu2ghXl+nItbpbqPGzcOHMfZ/GzYsAEA8MwzzyA7Oxu1tbXIzMzEW2+9BU/PlqtyrNPpsHTpUpEuwN3PNXHiRMTExAAAHnvsMfj5+WHr1q3o3Lmz3fEnT55EXl4e5s2bJypDMHXqVPTs2RMJCfJl+Hl0Oh1mzZoFvV6Pu+++27rd29vb+n+DwYDCwkJ069YNQUFBuHjxouh+PPXUU5gyZQoWLFiAOXPmIDY2FsuWLWvQPZCbo737X11dbd0vhb8f/JjGnqspaM5ztcT5nI27z78pmThxIsLCwhAREYGZM2c2eO249957ERoaip07d1Kdd8+ePQ6tHadPnxa9vqnXDlekLXyO3Srs5W7odDq8/vrrrepcn3zyCbp37w6NRoP27dujR48e8PCQt6EzMzMBAD169LDZ17NnT2INJh6dTofAwEAMHjwY7du3t26vrq7G8uXLsX79ely/fl2U3lhRUYGVK1eKjrNu3TrExsYiOTkZhw8fFi2AjcVsNuPpp59GcXF9Z+4OHTpYzyHMCuKpqakBAIfn0Ro/Vy11Pmfj7vNvSpy1duh0OowaNYpq7QCAhIQEh9YOe6Lpplw7qqurbc7ZoUMHpx2/IbSFzzEzfhgOMXToUGL2XFOxfft2zJ07V7RtwYIFWL9+PRYuXIjhw4cjMDAQKpUKM2fOhNlstjnG3r17rUbIhQsXMHz4cKfNb9OmTTbz4zgOwcHB0Ol0dmtN8dtcOaOJwXAWbO2wj9zawWhamPHDaFL4lMykpCRMmDBBtC8pKUmUsilXWuDixYvIysrC1KlTRdt/+OEHPPLII3j//fet22pqalBSUmJzjBs3bmDBggWYPHkyPD098eKLL2LKlClOSxmdMmWKXTe8h4cHbr/9dpw8edJm37FjxxATE8PEzgyGHdr62sFoWtxK88NwPwYPHozw8HB8+umnotDPb7/9hitXrogWJT5zQroAbd++He3bt7d5alSr1TZPSKtWrYLJZLKZx5NPPgmz2Yx169Zh7dq10Gg0ePzxx532hNWxY0dMnDhR9MMzffp0nDhxQmQAJSUlYc+ePZgxY4ZTzs9gtDbY2sFoSpjnh9GkaLVavPfee5g7dy7Gjh2LWbNmWdNVo6Ki8Nxzz1nH8gUAn3nmGUyZMgVqtRozZ85EQkIC7r77bpunu2nTpmHjxo0IDAxEr169cOTIEezatcsmdXb9+vVISEjAhg0brFU/V61ahb/97W9Ys2aNqPS+PX799VecO3cOgEUcef78ebz99tsALOLLvn37El8/b948fP7555g6dSpefPFFaLVafPDBB2jfvj1eeOEFirvIYLQ92Nph0R+tWrUKAHDo0CEAwMcff4ygoCAEBQVh/vz5xNczCLRIjhnD7ZArVCZFrlDZpk2buAEDBnA6nY4LDg62KXLIcRxnNBq5BQsWcGFhYZxKpbIWKdRoNNzmzZttzlVcXMzNnTuXCw0N5fz8/LgpU6ZwV69e5SIjI60ppdnZ2VxgYCD3pz/9yeb1999/P+fr68ulpaURr0muiBoAUfosiezsbG769OlcQEAA5+fnx02bNo1LTk6mei2D4c6wtaPha0d6errs6yMjIxVfz5DHbXt7MdoGmzdvxuzZs1FQUIDAwMCWng6DwXAT2NrBIME0PwyXJigoCCtXrmSLF4PBcAi2djBIMM8Pg8FgMBiMNgXz/DAYDAaDwWhTMOOHwWAwGAxGm4IZPwwGg8FgMNoUrM6PBLPZjNzcXPj7+8tWDWUwGE0Lx3EoLy9Hp06diP2fXAm2djAYLYsj6wYzfiTk5uYiIiKipafBYDAAZGdnW4vLuTps7WAwXAOadYMZPxL4PkvZ2dkICAho4dkwGG2TsrIyREREuFXfM7Z2MBrDweR8XLhein4RQRgRG9rS03FLHFk3mPEjgXdXBwQEsAWMwWhh3Cl8xNYORkPILKzEfZ8cQnGVoW7LDbTz0eKX+FGICPFp0bm5KzTrhnsE0xkMBhGO4/DruVxU6o0tPRUGg+EAYsPHQnGVAfd+crCFZtQ2YJ4fBqMVMOvzoziaVgQAyHh3qsJoBoPhCuxLyrMxfHiKqww4kJyP0XFhzTyrtkGr8/wsX74cQ4YMgb+/P8LDw3HfffchKSmppafFYDQpvOHDYDBcj7T8CiQm5SG9oFK0/WxOCfF1p7OKm3U+bYlW5/nZt28f4uPjMWTIEBiNRrz88suYPHkyLl++DF9f35aeHoPBYDDaCCVVtXjmu7PYn5xv3TYmLgyrZg1AoI8W/bsEEV8/sGu7Zp1PW6LVeX5+//13PProo+jduzf69euHDRs2ICsrC6dOnWrpqTEYDAajDfHMd2dxKKVAtO1QSgEWfHcGADC2Rzjx9c4OeSnNpy3R6owfKaWlpQCA4OBgu/v1ej3KyspEPwyGK7L9wg3c/dEBpOZXtPRUGGBrB4NMWn4F9ifnwyTpHW7iOOxPzkd6QSX2JeURj3FA4KFpjvm0JVq18WM2m7Fw4UKMHDkSffr0sTtm+fLlCAwMtP6wImUMV2XeN6dx5UYZXth8rqWnwgBbOxhkMouqiPszCiubVfNDM5+2RKs2fuLj43Hx4kV8//33smOWLFmC0tJS6092dnYzzpDBcJyyGtvskOhQpmdrbtjawSARGUyu0RMV4tusmh+a+bQlWp3gmWf+/PnYtm0b9u/fTyxzrdPpoNPpmnFmDIbzMUtc2Yymh60dDBIxYX5o56O1m8rezkeL6FBfxYcWZ2p+YsL8iPvb2gNUq/P8cByH+fPnY+vWrdizZw+io6NbekoMhlO5Xlxts81kZsYPg+FKpOVXEGv4NLfmZ9PxLOL+LSfbluey1Rk/8fHx+Prrr/Htt9/C398fN2/exM2bN1FdbfuFwWC4I3qj2WYbc/wwGK6Fq2l+jqQXEvcfSi0g7m9ttDrjZ82aNSgtLcW4cePQsWNH68+mTZtaemoMRpPBwl6MtsK+pDx8tPsa0StCM6apcTXNz/DoEOL+kW2smWqr0/xw7EuA0QZhxg+jtWPbABQ2DUBpxjQXMWF+GBLVDicybL03Q6PaWTU/Qd5alFTbhseCvLVO1fw8NLQrXt56ASY7S4VaBcwY3LayFVud54fBaIsoSX7SCypZ01OGW0PTANTVmoReu2W/JleSYHtcuH0hstz2xuDjad/fIbe9NcOMHwajFUDyeO66fAvj/7MXvZf+wTyjDLeEpgEozZjmZF9SHkrteHQAoLTaMp+0/AqcyLSv6zmRWezUwoP7kvJQLvMAVK43tmiIsCVgxg+D0cp5YUt9UUSDPZ83o02z6XgWFm46Q8z2+Xh3MmatPYLViSnNOLN6aITBLdUkVA6a+TRn4UFXuz8tTdvzdTEYrRKV7B6jqT47jGmDGDwXckpw/+rDMNbFTH86k4slP17AL/Ej0atzIADgcEo+/vrFcetrjqQV4d9/JGHTk3dgWCxZQOtMaITBZoXYr7ObhCpBM+fOQd7EMc4sPNjcTVRdHeb5YTBaOQbBl4KR1QNi1CE0fHiMZg73fnLI+rvQ8BHy0OdHm3RuUmgagI7tEQ6Nh/2HAI2HyulNQpWgmXNMmB/GxIVBrRLPW61SYUxcmFMLDzZ3E1VXhxk/DEYrQCXv+EGtoC6QtBgix3FY8uMFzF1/3GFBdHZRFR7+8nib0wq0BjYdz5I1hI1mDltOZuPj3cnEYzRnCIymQF9afgXxmpq7cSdtAcNVswZgZDdxmvnIbqFYNWtAi8ynrcDCXgxGK4Bg+2BUt1AcTLEUMJOGBvIr9Piu7ovlVGYxxnSnf/p7Ycs5HE8vwv5r+ch4d6rDc2a0HDQF726V1hDHHEjOx7zx3Zw5LVlo5hvqT241klFY2awtHGg0NqPjwhDoo8VXjw9FekElMgorERWi3PaiKefTVmCeHwajFSD0/EgNnIFdg6z/lz4Z6w1mwT7bytEk7LXZYLgWcmJmmoJ3SkXvmvOLkma+rta401GNTXSoL8b3CG8yA41pfsQw44fBaAWoBL4fk0TULLR3pIJng0AMbXQwE4z1E3NdLuSUoNvL2/HSjxfw05lcLPrhPLq9vB2Xr5cCsBS8U8us/moPS8G7+XfGEc/RXF4foG6+Mu5NvkBfc+pnaBjbIxztfLR297XzcW4BQ9r5+Hnaf9P9PD3alNcHYMYPg9EqEK73UqNEaPBI9wlT3x3NBLtZRg6LMFoOGjGzj1Zt97Vy21samgJ9zaWfoeWX+FE2BhBfcbolqKi1792V296aYZofBqMVIHzWtTV+5PcJxdAsE6x1QCNmDvfXoVxvsjumXG/CgeR8nMsqIZ5ndWJKs3l/aAr0Nad+hpaIEB+ceW0yDiTn43RWMQZ2bddiHhYaAXtzevNaGub5YTDcEGmlZpXA9SP94uMInp9ak3wmGMO1kWveSSMOphG/KnX5borsIDmNkqMF+mj0M2n5FUhMyiNmgTlrTOcgb/TtEoQu7Zq3v5iQlng/XRnm+WEw3BCTmYNGRgQhFTwLjRqpHsjAjB+3Q6l55/DoEPx0Jlf29SNjQxGukBk1sGs7qKHCkbQi2THO9GAoFVx0pli3pKoWz3x3FvsFX/Zj4sKwatYABNaFqJpzTHMxMja02d5Pd4B5fhgMN4QUopLuow17yRk/NQb74RElSqpqRYaY3tiw4zDEKDXvfGhoV+LrZwyOoCp415yCZyWNkjML9D3z3VkcShF7QQ6lFGDBd2daZExz4UoCdleAGT8MhhsiFSeTRM1kwTPZ+PkkMQW3v/6Hwy7xj3Ylo/+bOxHz8nYAwMYjGejx6u9IvEoutMYgQ9vgk4QzxzgDGo0STZFDGtLyK7A/Od/GA2riOOxPzkd6QWWzjmlOWJFDMcz4YTDcEKmhIvxdahiRND9GQkgMAFb8kQSDicN//khyaH4f7rom+v1fP18CADzTAk+8rQlnNfh0pUahNBolmjE00DQSbc4xzYmz308arZMrwzQ/DIYbIBU4kzK6bL1C8q/jCPuEVDjY+kIOD5neSww6nNXg01ljnAGNRsls5hTH0EBTCFH6t9aUY5oTZ+mmXEnH1BiY54fBcAOk30Ok0JZ0zRWFvRzwCgnReDR8qRCeQ67xJIMOZzX4pB3THEX6aDRKNGNoiAnzI153dKgvYsL8iMfgxygVVHTFoovOaPzqSjqmxsCMHwbDhTiXXYLnN53FTUlfJWnrCdsqzvJhL5Lnh7RPiLoRRovwsI05DoOuVgtNg0/aJqDNUaSP5pqcpfnZl5RHvO4DyfnU56IpqOhKRRed0fjV1XRMjYGFvRgMF+LPddkteeV6fP3EMOt2adstsuZHPJbk3eFA5/lpTBK88Pw6LXveagw0tVpu6xRAHEOjNeGbgDZHkT6aa2of6KV4DBrvD43uRekLnD8XTUFFVyq6SKNBUpqbM47hKrCViMFwQVLyKkS/23h+CNodUiaYVMch8vwQNAohvp7E+Urp3r4+dCA8R59OgQ4dhyGGptkoja7F0Sag57JKcDS1EBdySmVf01ABLM010TQ2pYFG9+LouWgKKjZ101Ihcu+DI++5M47h6jDPD4PhBtiEqwieIKnQUvhSYvVnQmNTR/t+Oeu1DDHz74zDf3Zek93P12oZERuCw6m2GVIjYkOsX8DDY0JwJM12zPCY+jGHU/Lx1y+OW/cdSSvCv/9IwqYn78CwWIuR0FgBLO01vfLTRbthG42HilrzM7ZHOIK8tSipti0XEORdr2N6eesF2Ptz4JuouiJK70NMmJ/i54LmGEOi2uFEhm1m2NCodm7j9QGY54fhIDUGE3ZcuomSqtqWnkqrplpSWNA2RV1eAyT9fiALnu0fQwqN/VJSVYs9V2+h1mgWzUHYQkPFJD+Npl8X+94z4Xa590u4Xe69EG4XGj5CHvr8qPX/zhDAkrqN8/wSP9JGsKvxUOGX+JHU5wGAuHD7gmbh9n4RQXbHyG13BWjeB6XPBc0xrt0Se6V5kmS2uyrM88NwiJW7k7F6byom3tYeXzwyuKWn02oplTyZkrK7AAVdj9DAMckfh6T5ofHeLPrhPHZevoWX7+kpGi+sIs1oHGn5FTgnE3o6l1OK9IJKcBxn16MDAEfSCq1j7HkAAOBwqmVMwjn51HLAIkS+q08HkZeARyiAVfIG7EvKI3Yb55uW9uociJRl92DLyWwcSi3AyNhQh70wafkVOJFpv57Nicxi6705LdPU9XRWCdU1NTe8EFmK8H1Q+lzsv5aneIyswkqbtYmntNpgfa/cAWb8MBzi27pMiF1XbrXwTFo30idcqbvfRAh7Eas/kzw/jRQ877xs+Ux8fyJbdFxm/DgPZxTOox3jLHG1kqFAI0IWfqEOimyHUH9dg/Qlzrp/wmtKy69AZlEVUcy8LykPZ3NKmqyruzOu60x2ieIxzjv4XrkyzPhhOARJF8JwHrbGDjnsJdxtW+dHuK9hnh9H0r00HirUGOrnZ5BaaowG05xF+mgaYTpDAEtbfM8ZxfWcdf9o56PUhNZZOOO6BiiE9KJCfBV1Ms4qfNkcMM1PK4f0gVf6Y7AHqaFmQ4/JUIYkeLbN4CIZOOLj0nt+yO+rcA5qDw/ROVnneOdBW6SPpgAfqYBhdKgvVSNMmvkoQdu01BnaIprrpr0mmvkoNaF1FrSfC9K1j+lOLoIYHerr1AazLQ0zfloxW8/kYMg7u3HWjjvzg53XMPLdPcgrr7F9IQGpEFd6vugl2zF2RaKjU2UoYOMJoixqCEj0QNKwl8CoIWWC2XiTCD3CrtwoQ05xtfV3PUXneAYdNEX6AOXiemn5FcQGqekFlXhh01niXBZtOUc9HxI0RQWdVVyP5rpprolmPjRNaJ0F7ZxJ81FqMOtIAUh3gBk/rZjnNp1DQYUe874+ZbNv5e5k5JbWYHViqlPPBwCZheT4M8NxpAaOSeD6IVV7toylq/NDfJ1kn0ESdpOG4XSa+qXFIAiVGljYtFHQNqfki+u99+DtuG9AJ6yY3hdfPT60PhxDoRE5lkFuJnokrcDhZpn7kvLw0e5roi9+mqalzmoSSnMcmmty1nGchTPmrPQ+nM4qdlqDWVeAaX7aALWEL5xapsdwKTQeKrtPX7aGSf3/pV4ZUp0fUtaY9LzC36UzInWHl86plnl+nAatPkaqNfnpTC6Wbb9i1ZrQaESGRYUgp/i67JjhMaENng9Qr32haWzqrOJ6NMeh0bV0DvJ2ynGcBc37oDRnpfdhYNd26ODv5ZQGs64A8/y0AUg6HKXOzQzXQFrUUOhpIfXrAhTCXkLPD8Ewkh5T6sExSn43yWh+mPi5cdBqLpS0JjQakfcf6k8814oZ/aibZZLmQ9O0lEarQwPNcWiuiUZX1VyNYQG6pqVKc35oaFfFYzirwawrwIyfNgDJvHGnRnRtAbnCcza6HoENYRP2IoW2CLoeYoZZ3bjsoios234FOcViF7rUqBG+lnl+nMe+pDzi/gPJ+VRaExqNyJu/XCKe6+1tl6maZSrN561t5PPwmh8lrQ4NNMehbQBK07S0ORrDAvRNS0lzpm2IS8Kdvk9aXdhr//79WLFiBU6dOoUbN25g69atuO+++1p6Wi1KeY18wbwagoCZ0fyooII9c1XqvBMaPJzEmeJIhWdiSEwYWqv7d866Y8gorMLPZ8XhENLnaMflm9b/G5jx0yicoSOhHXM4jazfOJiSj5Fx5DAHTW0YacaUzf7UAoT66xTPQ+P9cWadH5qmpc3RGBagbzhKmvPpbPLnoiE1kFyZVmf8VFZWol+/fnjsscfwwAMPtPR0XAJprFcYMoly4gdVrucLwwGoPT8kg4Ze8EyqDC0ysOr+m1EnZr9VpheNFWYB+nqqUVlb/7tQAG+Sxu8YDkGj7VAKZdOOKa004OpN+Sf9Ud3o6vwohRdGdgslnqe5NT+0dX54aMp7dA7yhtHMoUs759X2EeLo/YkOtTXUmuLeuDKtzvi5++67cffdd7f0NFwKT414+RFn8TTdeRiOI9f6ypFMLOnvQj0OSR9E6hyvFK4SFjUM8NaKjB9hSEyqDWI4xtge4fDSADVG231emnqNTYCXBmV2BgV4aajHjI4Lw5eHM2Tn8uq0XgCUG6RGh/qinY/WbripnY8W/5rWG/93OAP2CoFrPOp1JM5oqEnT3JPmmgC6IofOKMxIe11j4sJwKKVA9NCiVqkwslso1f1x5r1xB9i3lZtTYzDhcm4Z0SL3kAhJSB3AAUuPlsOpBawtQQvDEQTHojo/CoJnkTiaEBKTGibiTDDyZ0EY9pIaSsJsQ6UimQxl7Bk+lu3Ceyt3n51//2kapCppX/p2DrJ7DOF2ZzXUdFbTV5oih84ozEgLjQZJCWfdG3eg1Xl+HEWv10Ovr3fhl5WVteBsHOfFLeew7fwNrJ0zCJN7d6B6jT0th5DZXxzFxetl+Ouwrlh2/+3Uc1EJ/BZmMwcPmcwBhjzCBcRo5qBVWzbYpK8TvHc2nh9C2EuITdjLTG+0CI0fafkEreBzYGxF2V4tsXbMXnuEuH/OF0fxxOgYlNXY12CV1ZhwIDkfZjNn1+tjGWPEgeR85AoKVdpjy8lsDIpsp9ggNTrUl6h9ScuvwGmZvlKns0uc2lAzLb/CKU1fubpihlKkjUQb2/TVEWg0SCScdW/cxfvT5j0/y5cvR2BgoPUnIsJ9UvUAYNv5GwCAjUczRduFX3LtfDxF+8RaDtsvtYvXLYv4vqSGVyBlT/iNR+iJIXl+bNPX5Y0Y6VgjwcBpaNhL6jHsLWh+2Zo+Fy2xdpzPtd/RnedsTgmVKJpmTFMUH+wc5I2+XYJE2pfmLBhIc67mHNMUNLTFkCtfU1PQ5j0/S5YswfPPP2/9vayszO0MIID8tC91RzrypUaC4zioBAcXey3M8GS2tcMIvWcGsxneUANwsGqztCYQQfND+iyIPD8KWh2h50ea+dVa21u0xNrRt1MgDhGajfbvEuQ0UTRNQTtaoS1J++KswoM0NGdj2OYWBzdWX9TWBM9t/ttJp9MhICBA9NMaIGk0SDoPx84h/9rW9ITfnAgNSJPI8yOvx1ESPJMMJaOo9YRE8NxAzY/0rRcaP62pvUVLrB3fPDWcuH/jE3dQFUKkGUNbfLCxTUBpjuGshpq0TV9pxjijwawzaay+iLbpa3NeU1PS6oyfiooKnD17FmfPngUApKen4+zZs8jKIjdkc2V+u3ADd390ACl58sK+4+nip0Hhl8xRSRzXES2HEKnVTzKcWFZPwxDeYmH/LJs6P8IihwqCZ4OdPmBbTmZj6soDyC4WpqFb9v16LhfjViRi5+Vb1n1K7yep4a3eKBRDtx7NT0vw1P+dIO5/euNJquaTNMUSaQraOaMJ6KYTzdtQk0YYrDTGWQ1mnYUzGr/SFpJsrmtqalpd2OvkyZMYP3689XfeLf3II49gw4YNLTSrxvGPb04DAJ7ffBa/zLdfGVRaP0IoLI0L9xftExs/9F9G0j92YVgGcCw7iGEfuTAUqc6PjR6IEL7iX7foh/MAgEu59SJd/v19YfM51JrMePe3qzb75BBqfqToDSzV3VmcUihEdyKzCF6eauKYQ6kFik/op7OKFd9zmgKGNMeRE9kKj6H05X0otYC6tQKNMFhpDI0GaXRcWKNFyLTQFjl0xjH4a5q99ijO55agf5cgfPX4UIfn3NK0OuNn3LhxDRZ8uTrSbAfhdfrqxAse6YuTpOUg3TubL1VCfyf2JdcwhEYjreDZVu8l6bgu1PxQvL/2mt0qZWmRKjwLw14sHNo4BkW0w44r8l6bIZHBVI1CwxUqJjuzeadiQ82Ylmmoaa/QH+0Y2oaujpyrMTijCCTtMb4+ko5Xf75s3X4gpRBRixPw7v19MHNYJMVsXYNWF/ZqzdiGPgSiZkl5PAMhtCXWcsgLpaVINSGGRhTFY9hiNnOSooN0BiypqKF0LMmGaYyGi2z81O9jHsHGsfaRIcT9n84ZTKXVodHQxIT5EcfQNu9U0sc8NIQ8X1dsqOksDZKzoNVeOeMYQsNHyOKtFyln6xow46eRnM4qxru/XSXqcZwFKaNLipHQSdss8vzIewlIWWL2fhfOh3Xvlqe02oCVu5NxIkOs07JJQxfcQ1LHddv3QXzvb5bV2H2dFJJ3p3HGD/P8OAvaZqMk0gsq8fHuZOKY1YkpuHNFInHMpPf3AlAuYKikj3nrV/tfpjx8Y1MSzd1Qk0Yz1ZzQapAaewwazZm70OrCXs3N3PUnUFptwKnMImx5ekSTnkv6BUgyMAyk9GaC50fqzZE7JmDrYRBVEmZfcrKsO5CGlXtSoEv0QNLb9a1YSMYkSdcjtWdIGVWk94VkmJjMHPG1tJofjrMcS80KYDYIZzUbPZRKPs6B5HxkFpM1IOl1NV2Umncq6WMOpZK/mJ3Z2NRZ0Gp+mgtnzIfmGDSaM3eBeX4aCa/DuXKjvMnP1adzoOh3kpdGaIhIvwxJmh9iBpfEMJIaX+K0aWb8yJF0y/JZ0UuKAdqEIBtYn4fkMSIbPw3X9dQY6cJeNOdhyDMihmzY0DYbVdLIjI4LQ6RCE85oiY7EXgFDQFkfMzKW/KXckMamL2w6i1Hv7caiLedkX7MvKQ8f7b7WIC+No5qftPwKJCblNZmHytH5NPQYgyLIxxkSGax4HleBeX6cRHM8x2rVYlvVQPC0iMTHBG2OjTjWLP/FSdKSKB2XUY+cw056P0nvL6nOD6lqMznsxREF7yTjp7qWYBgZbI1kHVt5GsRr9/amajY6NKodjtttAhqM6FBfzL8zDv/ZeU32OPPGd8O88d0QtThBdszOF8YBUC6ux+uCZBub/qkX1h9Kh70/Cw/U63mUrgkAtp7KxnNbzlv3bTmVgy2ncrDyof64d0BnAEBmYSXu++SQaD58mC4ihK7r+tge4fD30qBcoXlsczU2HdsjHH46NSr0tn+H/jo1lRdqbI9wqma3pM/Ep3MGOzbxFoR5fpyFHeuH4zhcvUluOqqE8LUcCAaOTQhKfh+pzo/Ie6MghiZ6lFjYSxa5WjdE746N4Ln+/3LGT63RLKrjwx9T7vNoNHNEj10NodEteZ/U88M+G00N71203V5f2kAt88Qmt10OmuJ6SrogmmaZNNckNHxEc9x01vp/qeEDWOrY3PvJQfuTkIHmNjVnY1N7hg8AlMtsb+uw5y8nYe8PYeyKvcgqqoK/ToMLb0xp0HGFX0bS7yySd0cY+pDuu1WmF4xzJNQi70GynEfe4GLUcyzdflycFFaU3nux4FlynLoNs784ihOSJ2Uzx8mLGk1moseO6N0h7CuRfNG0puamzc0DH5O/oKevPoQFd8ahtNp+09LS6vqmpXJ/oibOIjL+6XQO8VxzvjiKN/7ch6p5J0kXtOl4luJcwv11itf00+nrxPku2nIO0/p2JBbyo22Qui8pT7ExbOcg72ZrbEojYJ83vhtxDM01JRLKLAAWwT3vfXR1mOfHSajsPLpk1RWNKtfb/0DRYCRU+RWGRUheGakhIu3BJXdMm9R2yXFIqe4s7CWP3IJH1vXIj5V6fvj3SWr48K+TM0yNJgXPTwM1P/bmwGgYV2S8HzyXbpQ5rWkpTRNVRxtdjo4Lw7N3dhcZGDRzobmmYxnk4xxJozuOEDmtDs1xmrMJKI2AXQmaa6IR3LsLzPPTCJqjmCI5nZ0+tCVsQkr9Ogc0PoDYWGKeH3mkYmU+84nshZM3NG20WQTD02SWz+gzmM1Er4xUuCyEZBjZnod9NhrKbe39cTpH3ijp3TGASrhKUzQwv7RGsYmqM4rrOasoY1ZBFXKK5b0/w2NCqYXBSlodmuPQFIl0FiNjQ3GE8F7ReLNorqm00oCrN+XLDozq1rz1jRoD8/w0AlGRwSZSPAu/AKWaHwMhtEXrlbH1GMmLbG09QazIYUMQempI99tI8PyIBc/ifSSD2czJe35MZvmQGEBOZyf19rI5DzOMG8yPMu1teH6YNxJje4QTi9XRFg2kaaLqjOJ6zirK+P5D/YljVszoR1WUEVDW6tDc4+ZsAjr/zjjifqWQF0B3Ta/d25t4DHcJeQHM+GkUwhBBY22fXZdv4ZEvjyNPUJAOEOsj9lwVx1tJGhuSAFocEiOkq9tkgjlyDhb2kuParfonJ1JmlpGg+SGJoUleN0vYS8bzY+JQSxIuEwyc7KJq2X0252Eh0QYze+0R4v45XxxFWn4FsVgd35CUxIHkfCodibOK6ynNxVnzBZTF1zRNQmnuMdB8TUBpPhdK0FwTTZFNd4GFvRqBcBG3p/lxhCe+slTGfP3XS1g9e5DgHPUfxnB/L9FrSFWcpV9wBpMZXlq17esIIROOs4RUPGTCMo7UnmHUE+ittdaHEtXkIaSskwpV2ra3MMvef5OZs9u7i0dae0iII94dEuyz0XCcpcOhaUh6NJWsoTmQnK9oyDqruJ4StPOdN76bYlFGZ2h1pE1Am7qxKc3nQgma62aaHwYAwED4ogCALu28kVNM/0QMADdL5T0/Uo0RqYqz1KiRS0O3DW3Zipp1HnVGk1KRQ7O8UcWwD0mYTgpPirq623nv5TxvBpOZ6BkiipoJYS9HaOtewRc2ncWxjEIMjwnFihn97I556v9O4FR2MYZEBotqp/TtFOgUHQ5NQ1I1VIo6kt6dAhSPI2RfUh7O5pSIDA4arYn0M97Q+Up/t2eY0dw/Jb2nVM9Dow+dvfYIzueWon+XIGx84g7F8UJoPhdK56K57hExoa1G88OMn0ZAMiKAhumASFlbJC+NrbEjn6lllOhMhGJoe8US+YJ0Ng1SSYUV2/gXHAm5MgQkQ9S2sSkE+8THN5nkjR+jmSOnsxONH+b5aQw0BfikHbN/v3RL1DH7m6eGE4vM8V9kA7oG4UxWic3+gV2DrB3G/XVquzVg+KJ4o+PCFAshAiAWMOSNC1JhQaUiiPwxnDVfJXitzqGUApGHVa1SYWS3UKvnZmBEIE5n23pcBkYEWcfQFDlcuy8Fy35Lsu7nu6S/NvU2PDY6hmrOtJ8LpXNFBnsj004IOyrEB9GhvtRFNt0BpvlpBEJ9hKMLelFlLTYcSscFSeZGYUUtKvVGfHMsE4lJeeKn/7ovtN8u3MDl3DKisWHTh4vgRSBpdUi6IqHBxUnqx9iLHS/8/gweXHPY7lPQ0bRC7Ll6y2Y7ACRezcM3xzJR2YiSAc1NjcGE749n4Wx2ic0+g8w9JVfilnh+6u7hweQCfH00U3J8ee+OwWQmprOTKzU7x/hpq61PaArwOatj9nk7nzsAOCfYXiXzfsptl0NJQwMoFxakOQbNfDc9ad9jIrddDhqtzvnr9kNN56+XWP9PU+RQaIwIeTPhikNzlnvWFm5XOpc9wwcAMgrrQ2K+nmq7Y+S2uyrM89MI8srriwUqufKF2hkAWPFHEr47ngWtWoXkd+6xbr9eUo3vT2TjrTrh2JeP1ru8jSYOpzKL8I9vTiPIR4t/P9i3/vgK+hxS3y2jiUOdHMjO62yNL3u/22QcSY5z8XopfjprSWf9+lgW5twRad1XYzBh5lqLIO/w4gnoJEgRvVVWg7kbLJ2E9QYzHhsVDXdg04lsLK0TB2a8O1W0T06rRerRJc2QMpk5lFYZ8Ld1x2zObTRxsloMo0k+2wtQCnsxz09DeUFg4Nhj0ZZzKK2qJY55euNJlFfbL9DHM+eLo5jWt5Ni0UCzmSO0WbGMuZJbZn9AHXxBOyUNzb6kPKrCgqRjbDqepTjfGYMjMCw2BBnvTsXqxBTrcWk9PkKUtDqbjmdBTvVgrJvPoMh2ikUOX/3RvkHMM+eLo1QhsE3HsyD3V8WBrmhln3/9RtzPF9CslHlAqqw1UReJdAWY56cRiFPNyQu69MsoLb+i7hji1w3sGoTCinqjqqC8fkE0mM24XLcglVQZiB4c255dBC+R2X4YxvaY9OeTht2SbtYXZ/vtwg3RvrKa+oWxqFL8BVAguBeFlXq4C5mCJyWpPkd4G2nvr73Mk1KZL0KjkuenwWEv54Qy22JIlKYAH03HbBphK03RQJoxjopbNx7OwFdHMvCNxBPpiKBZrjkqzXyFKGmEALrGpnJaHZr5UAnPHRQqyxVddEbRygqFv2/aApruAvP8NALhk7BUOyPFIGnmKPyTEv6BadUeIqNK+GVkE3ayIzj2rLNnSR4cG32QqWEGDqkVhtSoE2YYqSW1JPSCPzppIT1h9hEpDdvVENXyEYjGpYYH2fMjf3/NhKwtA0HzYyBUeAYc9/yoPVQOe3LaYm+vYVEhigX4SqtqsYPQPmBIZDDKqw2KwlaaooFmM6c4Jtjbk0rcqqRTohE0K2ljaK4JAA6n5OOvXxy3bj+SVoR//5GETU/egWGxIQDoGps6Yz40AmJaobIz5qNUtNJP60E0gGgLaLoLzPPTCKRpwdJFXfjQYPO0K9gn/BJTqcSGg8j4kRxfen5DXVfuWqNtjyZSbR+R54cY9rIvqq6uNaFM0ndH+oUo/OKUGohCg0fqXRC+zp20IkaZe0oKR8oZntW1JhvDz0TI6LLss3+vjCZyFWei5sdOhWcvjeNLSFtsfUJTgG/tI0OIYz6dM5iq8CBN0UCaMbQF7ZR0SjQFCpW0MTTzBSAyfIQ89Hl9nRuaxqbOmE9MmB9xTHSoL9X76az5KJ3r4lt3E/fzBTRJuEvIC2Cen0ZhY/wItDMARGnupNoqwi98FVRiz4/ky0hYIO+w5I/BZObw3Kaz+O3iTcyS/DGQavAIfyf187KXiZZTXIUpH+63iQNLPRzCeUuriN4srQ9n7U/OFwkNhYJw0j10NXYLnuBJbT+EhoBNmwqTGdlFVbjrv7b318TZFiT08VSjqtYEg8mMj2QKvhlNHNbsS5Wd9w8EXcB3x7Nttnlp1bIaADnaYuuTp/7vBHH/0xtPok+nQOKY1Ykp2HaW3Lxz2kf7RZo5uXP5epKXfloNklJ4iea63t52WVEbo5Qqnl5QiYRz8p4PwHL/encKUNQf0TQkpZnPRkJWFGC57tFxocQxtPM5nkYOe205mY31B9KIY/ou/Z24n28MqzRfdzGAmPHTCKR1fgxmM7xRb/14ajysX1Akr0VVrdhrIvxykIYaggQZEdIvHaPJbBUVf3PMNgPI+n8HvA+kjCOTmcPl3DK7X35Sge5tHf2t/5/Uq71oX61J/stT6CRSqqvkSnQN9sGNuppN4nIF9Mal0czhkuT+atUqGEycXc+Pt9Zi/BhNHH6V+SIwmM04kCyv5bh4XV7kai+85aV1PMOjLYa9aPQ8choungPJ+UgpIBfYu5ZXgRvlNcQxJzKL4K3wvh1JK1AsankiUz6EIhyjdF1KhfFoiwrSNPekKcqo9PmknQ+NZsrfm/wVTDsfGs2P0menzE4ZASFH0grQJZhsWEuLWtqr6+QqsLBXIyBpNDiOkzzxS8IWgieHSr0wJARZzQ8AVAjSvaVGk4Hg3SGlVJPmSdxnNqNGxiCxqUkkOL+0143Q82Wra5L3SrkyclopR5qXGs224UsvTZ12yGS28YT56OwXoxQidw891Q1bCnQNCnu1PeNnUARZCzEkMtiqW5FjdFwYuilUB+4e7kd1rmFRIcQxw2NCqY7jjOtSKowXFeJLpZ+huX80mhWac9EWBCQxqpvz5jM8mvx+jowNVfzsBOjIBrEjjWEzCysx4M0deGT9CXy4Mxlz1h3HgDd3ILuQLAJvTpjx0whIvZgsndTr95GaggpDWxwnNhykYa+KmnqDp1JiqQu9LTap5wTPD8m7o9Q/TC/zdEgyoqRPX0LND+k+uVPYSy7UZXN9pPpLdnptedXV0qg12tbr8dFq7B5Hekx7+CosfHLoGuL5caP30VnQ6HlomlNuf24sccy2Z8dQnctZGiRnXJdSYbzoUF8q/QzN/aPRrMSE+RGbn/LzUWroSqOZop0PiehQXyrNj9Jn5/wbdxH3841hSfDeHRpdVUvDwl6NwF5a+E9nruPXc7l4QlKZ02DisOKPq7h2qwIv3dUT5wValnJBqrfRbBaFd6SFvU4JUgmlnp+SavkYvdHE4XBqATafyEaR5EMp/BJNyxe7Rk1mM1LyyvHe70nYeVlchDDpVjmqZPQevEH1/o4klFQZEOavE80FADYcSsfVm+Vo5+spmIvl2id+sA8peRV4emysdd/JDNdKo8wqrMKy7VfQo4M/npvUXbRPaLSQSiLkl+mRX67HG79esrn3RjOHNXvF+hw+XFFr4rD5hFiDwxtGJE2NXPjVV6eR1UKQ8NIyzw8NNHV+LimkEU/7aD/u6kPWXKxOTMHn++U1XQAw8I0/bNovSJm++hByislP6SOW7VKcz9vbLiPI274hwdNbob7MiGW7FI8x7aP9WHRXT+KYA8n5yFVoN8TX5yHpgtILKpFVWKnY0HXR5rPEc41YtgsdAryIY6avPoRrt8qJY/ot/R19OpN1VXO+OIoMhbAXqUI0YPnc3NYxQPE8T4yOoarr1NIw46cR2POELKxb5G5IenRlF1Xhk0TLohQT5gt/Lw3K67w4OSVCYbQ4XFYjMS50mvonbannR9r1XTQ3sxkLvjtnN/4u9PxI09ANJg6bT+bYGD6A5YuYkymtZTBxyCuvwao9lk7Kd/YMF+wzg+M4vP6rJUtE+AdlMHHILalGSp5FIP3DqXoBbohfvQHlCmw9cx2/X7qJ3y/dxKMjokRGnLhqtnymXVWtET+fvY5t58W1jwCLRyw5T5xqzBs/BqMZR66L4/yRwT44l11iN7TF95mTC4kpaUDk8NI0xPPT9owfmjo/eWXkOlbX8irgT6FrKa4mV0IvqjaiWuEL9dKNMsW6TjfK9FS6lnY+nsQxlRTnKagki6+v5VVQ1aCR1seRcii1AKH+5HWGtjHsrXLynG+U6VGsoIe6dKMM1Qr3p1RvoqoXJP2+cJSiaiPVeWjeB1cwfljYqxHYNhOt/5BmS56aigWZE1V6kygkJswaM5rM4rCXxPMjDBFJPT8kYaHRJF8UT9yd3vZ1FTJtJVQQp/MLMZnNqBL8sZVUC71b4lYYQs+XwWQWXbOwyGEDWqU1KcL7L00DF4X5TPIhR5VKJes9s/flw3t3hMdcNKUHNswdgr/UpfsazZy14eS8cbFYNWuAtSy/0cRhcKQlLv/yPT3xzIRu+GPhGGjqND+hfrZfVFq1/J1viOdHqm1qC9BobGj0PDS6lnYKItpgbw1ua+9PHNO7YwDa+5ONlo4BOipdi9KcfRU+Qx0DdFT3hkaPQqONodHY0JyL5v7RvA9KWpxAnRp9FTLq+ncJQudAspdJiWBvDdV53KUWEDN+GoE9jQaPVKshNDxqDCZRFleVwLgwmMRhL6nxI+xvJc2yIvW+otWBSOdtNJtFRQiF1JrMskXxDGZOZNQJtUoGo1lSv0deECw9nyshvAab+yaTxWVPbC5XJNDevfWu+6IwmMzWc069vSPG9QiHTssXuDRbjdJhMSH4U79OCK9zr9eazFYDN6KdD56f3AM9OvhbDRz+PQsReLH8vcQhB+E+abaX0HMo1UTwomp3qtfkLGg0NjR6Hhpdy5mlU4hjTi+dgh/njyKO+WHeSBx9ZRJxzOGXJ1LpWpTmfEmhvszhlydS3ZuxPcIRKGP4BXprMDouDA8N7Qo5W16tqq/PEymT1cQ3+BzbIxz+MkYJ32iV5v7RvA9KWpxzb9xFVS/owOI7iWOkbXiknF46heo8Y3uEw0/23mhcwusDMOOnUdh2ThdWKhbvK6yo9/xkFlaJvhCFXpGsoirkltaHwcok3ppbAte49AtXGmoTIuddACxfyMfTi/DDqRyclnSCNpo4XJQ08OMzfAwms6iNgxCTicP1kvp9SQI3u9QwKhcYRiQDhw+XHUwuwJ6rt2Ayc0i+VY7fLtywayjkllRjxR9XbapGO4LBZMaOSzdt7gFA7u1WaxJ786pqjUg4f8MazuPRG82yHjnpZwioNzayiqqs59DWvR+84ZFdXG01qLR12/h/LQUwOdF4oN5Q4c/pKyhHLhVDC/dJjR9h1pinJBOMN7DaYm+vtg5N001n0KO9fU2KcHu/iCC7Y4TbaRp80jRafWhwZ7tjhNujQux7muS2uwMVMiG2chdqTs00P41A+gS7m1Ca/rP99QWmjmeI62MIRa01BjOuC0R5qfnKNSV4SPVbpHV/hFy7WW7V30ipMphEhgtQ/wVZa+RwJNW+lsFgNuMdma7ERpMZqQIjQGiYGU1mZMn0xDEYzTidVWJt5rly1gC8sPksDCYOi6b0QLykgeGId/cAADafzMGJVybaPaYSP57OwUv/uwAAuPD6ZJEXJDW//hpqjfKZf7UmMz7ceQ2fH0i3vSaTWdT3TIg9g86nLuxVXGWwenB4g4MvIWAyc1YPE2/gCLOyeGNToxYaPx5112F5XaBAYBrorUU26j+TwjCYhyROqlWrwNtynhoP0XvrqfFAZa2pTQqeaYoc7rKjqxMStyQB3gqds/st/R2xCtlB01cfwq0yci2gse/tkc1m4pn0/l7468hfIdNXH8KMwRHEpptKxfVohdV/HdbVZm3lOZ5RZC1OKH3A4zmdVYL0gkq88P0Z4rn4a6JptPre9P54b3p/jFi2CzfK9OgYoMPhl+vXorT8CpFBJSSjsArpBZWI33iSOJ9pH+0XrUX26PXqdmtoWw4lwfO0j/Yr1mwa+94ea7VtOVYnpjSo2ayzYZ6fRiB9gs0sojdU5NCqVaLMKKUFSAhpbBahvkKWzFMOALtVXvnT1JrMCLGjEQHIT/dGM4fKWvtPAAYTRwyz5QrE4Sm3yq0G6PUS+WvIL294Q9TrJfVfEsWV4j/8EN/690nqsRKLnDkk3bK/OBlMZgTL3EOh56dnB388MKAzHh4eBcCiteFDW7zx07Eupq9S1YfaeANHaMzwzWPVHvV//hpJLODu2zvggYGd8eToaNzWQfw0HSHQRHQIFItDhUaWVi31/NSH5doaNEUOjQo2oYFTLkRXqjfhCoWY+TrBSwwA2SXVyFTI9kovrKQ6l1IBPqVrohVW0zQSpRnjjGuSFlzMLdODq/tXCM18aApbVit8eKqMnOJ9VuJaXgXV54am2KQQmgazcg1dGwPz/DQC6RMsSXNDi8HEiT0hDjwl2xvrobLU/JETLQPkedtzX/bpHIjzOaUwGM12QzNAXQ0guQKIJnkdkcFklg1T1UrOVyYIl0krSjsL4Vxsm67S1SciFx2UN/b4Gkqeag/8vnAMAFiNP6EYWqsRe3c4rt5rJDRw/HQaVOiN1vdbKwx7SQyVUD8d5o2zPJ29vPWCaF9XgfET7Cs2fkRhL8kx+TBYW/T8DIpop9i0dNflW0QDSKsCvD3VxC+xQJ0asWF+OJ1jG6bl6d0xALfKapBdIv9FFhHkDY2HCqmEh6boEF/46zSK51JquhmgI18TL6xWarJKI1RWaksRFeKL29r7N/qaeJH3ba8koFpyaVGLE+CnBS6+NZVqzt1CfXFZ5uEJsIi9U/PJBpCPRgWN2qNRBlD3cD+UVhsUPzcjY0NxhNBAldf8OKPBbGNgnp8GIq3gDJANDEcoq3G83oocPnU9fOQMEYA87wq97Vz8vSzHJAmeLfvkDRy50vlKxxS+rkTglaoxmmA2c6IfIcY6YbF0jNKP0DCpqhWfQ3h9eoNZtE9UnNFoll109QaTrLHHH1+ozbHXToI3MoTVlvm0Vo3otZb9/GdBeFytxGuoIQiXhZofqbBROAdp9ed6wXPb8/zQFANMWU4WnCYvn0olfqUR0SqJX/e9NAG7F40njtn5wjiqcykV4FO6JlphNU0xQJoxzrgmPvQjNXx4KuqWVZr50Ii9r7x9D3HM5bfvUbzPSoLnbc+Oofrc0IjyAec0mG0MKk7JFG5jlJWVITAwEKWlpQgIkC/otOFQuqxOxpUI89c1Kuxjj4m3tceuK2R9AqPh6DQeImPVX6fBhTcsGTyVeiN6L/3Duk+lAtKW3QOVSgWO4xC9ZLvoWL89O9paR2nku3tE4cH//WM4BkUGAwCe+uokdgg0Jx/N7I8/97eIMt/89TK+PFSvV3pxcnf8Z8c1AMDHfx2A+d/WL0Q9O/jjap2GSfh/6e9KCy3t36ErQZrzgDf+INbfCfbWoEihPg+D0Vr4v7lD8Mh6eR3cxseHonOQNya8v092TOKL4xAtKYHgyLrRaj0/n3zyCaKiouDl5YVhw4bh+PHjTXIerVqFmLD6N0D4NK32UOHefp1ktTieGg+bujr20Gk8bDIU+BCCn06DqbfbFwO289Hi4TsirecQClUDvDSYOcS+MM1Pp7HpCj+me3164uK7eyLAq/7pv3t7PwzoGgSVCvjrsK5WUS5gCZ8IU6MbQkP6R7k6/SOC7PbT8lABc0dGw1dwD4fF1Ncm8fFUo7/gs3BHdAhUdW+wSqXCiNj6sR0DvRApyBgR7gv18xQJY+8QnMNPpxFVjB0c1c76GfbXaTCldwd0DfZBt3A/DI8JsdYGCvDSYPYdkdCqVdCqVfjbHZFWQWygtxazh3WFxkOF6YO6UN6l1gNN4UEGo61AUwiRRg/VGFql52fTpk14+OGH8emnn2LYsGH473//iy1btiApKQnh4eTeJLSWY43BhOpaE3RaD/h4alBabYDZzMFT4wEfTzVKqgzw1HjAV6dBpd6IWqMZGrUK3lo1ymuM8FCpEOijRYXeCIPRDLVaBX+dBiV1bsAAby1qDCbUGs3w0qrh7alGaZUBZo5DkI8WNQZLeMjbUw0vrdp6fl+dBhw4VOlN8NVp4KnxQHmNAUYTBy+tGp4aD5RVG+CjU0OnUaOsxgCTiYNarUKAlxalVQbotB7w0qqtr1OpLF9ehrr/a9Ue0BtN1iKGAd5aqABU1hrh76W13hvAEiLjYKnz46vTwGTmrGEtjVoFrdoD1bWW61CpYD0mL8A1mjh4e6qhVXtY0/61Gg94qCyhJpXKEgqS9kDjUaksrlSO4xDk49mg1FovrRq1RjPMdv5UfHUaVBtMNmE2/r5U1hqteiRvT8s8PTxUCPTWoqrWaA2r+egs+zRqD/jpNKJ7GOSjtRo4AGA21xeslO7jOM76GfLz0tiIjkuqasFxsH42hPDvN/+ZEsJ/hvnPjdFkhkqlgtpDhVqjGZV6o3UfX/zRx1Nj/Zzw+3i9ka9ClhDz/DAYrRdX8Py0SuNn2LBhGDJkCD7++GMAgNlsRkREBBYsWIDFixcTX+uOi64rsXfvXowfPx6JiYkYN25cS0+H4aa449+h0pxJqcR8GLCtjolanICarPO49d3LaD9rGby69nXp+bbWMc05lwFv7rDbA6ydjxZnXpsMAHh43XEcSimASWCmqFUqjOwWiq8eH2rzWkfWjVaX7VVbW4tTp05hyZIl1m0eHh6YOHEijhw5YjNer9dDr6/XxJSWWlT+ZWVlTT9ZN+Kbb77BvHnzrL/rdDp06dIFEyZMwD//+U+rR62ystL6r6P3cMeOHTbvnZRXXnkFO3fubLIwppScnBx8/fXX+OOPP5Camgq1Wo1evXrhxRdfxPjxZEGokNzcXCxZsgSJiYkwm80YPXo0li1bhujo6CacvfvCf3Zc+dnM0bVjUqwv/rhsm847pVeY9TVmvbyr313HfPPNN8h8r37tgFoLjX8ovCL7ImDogygrK4OnoQpVtZZ7aa7VW4/p5VF/nlCNHnmVth7ecF81fvjhB5w6dQqcfqDdmkIqAAsWLMDOnTvh8+e3UGGn7ZafZ/25fFEFe1JJf139mABVNUpqbM8W5KVCWVkZcnJyUHng/1CWehqGkptQqTygDYlAwLAHEBLb13ocT0MVauzkAHh5AKdOncKXX36Jol92o/xGGmAyoOPcj6EJtKy3XYN01uNo9FWw103ME/TvVXN+br55uC9mrj2CEoHHM8hbg28eHmQd887UWCz6oQKHBfXk7ogNwTtTY+3+nTm0bnCtjOvXr3MAuMOHD4u2L1q0iBs6dKjN+KVLl3Kw1NpiP+yH/bjYT3Z2dnMtHQ7D1g72w35c84dm3Wh1Ya/c3Fx07twZhw8fxvDh9X1I/vnPf2Lfvn04duyYaLz06c1sNqOoqAghISEiLUVDKCsrQ0REBLKzs5vcdd/U5+I9P4mJiejWrZv1XO+99x4+/vhjrFu3DtOnT8eBAwcwbdo0bNu2DaNHj3boHC+++CI+//xz6xM0D39tBw8exKhRo6iO7az7ceXKFYSHhyMkpF4QrNfrMWrUKFRWVuLy5cuK5/vvf/+LpUuXYs+ePRg0aBAA4Nq1a7jjjjvw7LPPYunSpQ7NqTV9ruTOl5WVBZVKhU6dOsHDwzUF7/bWjszMTPTv37/Z7pc7IFw7Bg4caN3+yiuvNGjtsPeZlFs7eNLT09G/f/8GrUsNhXbtIFFUVAStVgt/f3+sXLkS//rXv3D+/HlERkY25dSb/e/eWXAch/Lycrp1o6mfjpobvV7PqdVqbuvWraLtDz/8MHfvvfc261xKS0s5AFxpaanbn2v9+vUcAO7EiROic23bto0DwL3zzjscx3FcYmIiB4BLTEwUvX7z5s3cwIEDOS8vLy4kJISbPXs2l5OTY93/yCOP2LXghdf273//mwsMDOQMBgPHcRyXkZHB/eMf/+C6d+/OeXl5ccHBwdz06dO59PR062tKSkq4cePGcaGhodytW7es59Pr9VyfPn24mJgYrqKiwuH78fzzz3MAuLKyMtEc7d3/IUOGcEOGDLHZPnnyZC42Ntbhc7emz1VLn8/ZuPv8mwLh2iGkoWvHX/7yF9E9Jq0dPCtXrqReO3jMZnOzrB20rFixggMgmmNT0RY+x675SNUIPD09MWjQIOzevdu6zWw2Y/fu3SJPEMM5pKZa+pIJn26kbNiwAX/5y1+gVquxfPlyPPnkk/jxxx8xatQolJSUAAD+/ve/Y9IkSxfkjRs3Wn+E7NixA5MmTYJGY5GqnThxAocPH8bMmTOxcuVKPP3009i9ezfGjRuHqipLzFmlUuHLL79ETU0Nnn76aeuxli5dikuXLmH9+vXw9RVnDNBw8+ZN+Pj4wMeHXKHVbDbj/PnzGDx4sM2+oUOHIjU1FeXl5HL6DEZrpKFrx6+//goADq0d27dvd7u1g9HEtLT11RR8//33nE6n4zZs2MBdvnyZe+qpp7igoCDu5s2bzTqP1vSEzj+97dq1i0tLS+MAcF9++SUXEhLCeXt7W7040qe32tpaLjw8nOvTpw9XXV1tPR7/1Pfaa69Zt8XHx9s8sQmvzcvLi1u/fr11e1VVlc3YI0eOcAC4zz77THQ/+N+//vpr7ujRo5xareYWLlzYoHuRnJzMeXl5cXPmzLGZo/T+5+fncwC4N9980+Y4n3zyCQeAu3r1qkPnb02fq5Y+n7Nx9/k3BcK1Iz8/n8vOzua+//77Bq8dmzdv5gBwL730knWb3NrBcRxXWVnp0Nrx1VdfibY39dpBC/P8OJdWafxwHMetWrWK69q1K+fp6ckNHTqUO3r0aLPPoaamhlu6dClXU1Pj9ufiFzDpT2RkJPf7779bx0kXsMOHD3MAuNWrV9scs2fPntygQYOsv8stYDU1NdysWbM4lUola8DW1tZyBQUFXH5+PhcUFMQtWLDA5n5MmTKFa9euHRcXF8d1797d7gKoRGVlJde/f3+uXbt23PXr10VztHf/s7KyOADce++9Z3OsdevWcQC4M2fOODSH1vS5aunzORt3n39T4Oy1o6amhgsNDeUGDhxo3UYyfn799VeH1g57hk1Trh20NKfx0xY+x60u1Z1n/vz5mD9/fovOQafT4fXXX29V5/rkk0/QvXt3aDQatG/fHj169CAKyzIzMwEAPXr0sNnXs2dPHDx40Ga7FJ1Oh8DAQAwePBjt27e3bq+ursby5cuxfv16XL9+XZTeWFFRgZUrV4qOs27dOsTGxiI5ORmHDx+Gt7e34rmFmEwmzJw5E5cvX8Zvv/2GTp06WfeZzWY8/fTTKC4utm7r0KGD9RxCYSxPTY2lQaCj82iNn6uWOp+zcff5NyXOWjt0Oh1GjRpFtXYAQEJCgkNrhz3RdFOuHdXV1Tbn7NChg0PHdzZt4XPcao0fRtMwdOhQu/qVpmb79u2YO3euaNuCBQuwfv16LFy4EMOHD0dgYCBUKhVmzpwJs51O6nv37rUaIRcuXHBYA/bkk09i27Zt+OabbzBhwgTRvk2bNtnMj+M4BAcHQ6fT4caNGzbH47cJF0IGo7XC1g7H1g5G08KMH0aTwqdkJiUl2fzRJyUliVI25UoLXLx4EVlZWZg6VdwM84cffsAjjzyC999/37qtpqbGKoQUcuPGDSxYsACTJ0+Gp6cnXnzxRUyZMoU6ZXTRokVYv349/vvf/2LWrFk2+6dMmYKdO3fabPfw8MDtt9+OkydP2uw7duwYYmJi4O/vTzUHBqMt0dbXDkbT0uqyvRiuxeDBgxEeHo5PP/1UFPr57bffcOXKFdGixGdOSBeg7du3o3379jZPjWq12uYJadWqVTCZbKvAPvnkkzCbzVi3bh3Wrl0LjUaDxx9/nOoJa8WKFfjPf/6Dl19+Gc8++6zdMR07dsTEiRNFPzzTp0/HiRMnRAZQUlIS9uzZgxkzZiien8Foi7C1g9GUMM8Po0nRarV47733MHfuXIwdOxazZs3CrVu38NFHHyEqKgrPPfecdSxfAPCZZ57BlClToFarMXPmTCQkJODuu++2ebqbNm0aNm7ciMDAQPTq1QtHjhzBrl27bFJn169fj4SEBGzYsAFdulg6iq9atQp/+9vfsGbNGlHbDilbt27FP//5T8TFxeG2227D119/Ldo/adIkkZbAHvPmzcPnn3+OqVOn4sUXX4RWq8UHH3yA9u3b44UXXlC+iQxGG4StHRb90apVqwAAhw4dAgB8/PHHCAoKQlBQUIvrWt2altNaM9wJuUJlUuQKlW3atIkbMGAAp9PpuODgYJsihxzHcUajkVuwYAEXFhbGqVQqa5FCjUbDbd682eZcxcXF3Ny5c7nQ0FDOz8+PmzJlCnf16lUuMjKSe+SRRziO47js7GwuMDCQ+9Of/mTz+vvvv5/z9fXl0tLSZK9HqYWB9DrlyM7O5qZPn84FBARwfn5+3LRp07jk5GSq1zIY7gxbOxq+dqSnp8u+PjIyUvH1DHlaXXsLRuti8+bNmD17NgoKChAYGNjS02EwGG4CWzsYJJjmh+HSBAUFYeXKlWzxYjAYDsHWDgYJ5vlhMBgMBoPRpmCeHwaDwWAwGG0KZvwwGAwGg8FoUzDjh8FgMBgMRpuCGT8MBoPBYDDaFKzIoQSz2Yzc3Fz4+/vLlkxnMBhNC8dxKC8vR6dOnYjNL10JtnYwGC2LI+sGM34k5ObmIiIioqWnwWAwAGRnZ1sr67o6bO1gMFwDmnWDGT8S+CaT2dnZCAgIaOHZMBhtk7KyMkRERLhV09fmWjtKqmrxzx/O43BqoXXbiNgQrJjeD4E+2iY7L4Ph6jiybjDjRwLvrg4ICGDGD4MBwGgyw0OlgodH84dy3Cl81Fxrx/wtx3Hieg08dD7WbSeu1+CVhFR89fjQJjsvg+Eu0Kwb7hFMZzAYLYLBZMbYFXvx4KeHW3oqDABp+RXYn5wPk6Q2rYnjsD85H+kFlS00MwbDvWDGD4PBkOXqjXJcL6nGmaySlp4KA0BmURVxf0YhM34YDBqY8cNgMGThwLrfuBKRwT7E/VEhvs00EwbDvWHGD4PBYLgJMWF+GBMXBrVE06BWqTAmLgzRocz4YTBoYMYPg8FguBGrZg3AyG6hom0ju4Vi1awBLTQjBsP9YNleDAZDFo5FvVyOQB8tvnp8KNILKpFRWImoEF/m8WEwHIQZPwwGg+GGRIcyo4fBaCgs7MVgMBgMBqNNwYwfBoMhC4t6MRiM1ggzfhgMBoPBYLQpmPHDYDAYDAajTcGMHwaDIQvH0r0YDEYrhGV7MRgMRgPQ6/XQ6/XW38vKylpwNgwGwxGY54fBYDAawPLlyxEYGGj9iYiIaOkpMRgMSpjxw2AwZBEGvVgITMySJUtQWlpq/cnOzm7pKTEYDEpY2IvBYDAagE6ng06na7Hzp+VXILOoilV4ZjAaADN+GAwGw40oqarFM9+dxf7kfOu2MXFhWDVrAAJ9tC04MwbDfWBhLwaDIYsw0sWiXq7BM9+dxaGUAtG2QykFWPDdmRaaEYPhfjDjh8FgMNyEtPwK7E/Oh0liiZo4DvuT85FeUNlCM2Mw3Atm/DAYDIabkFlURdyfUciMHwaDBmb8OJlaoxlns0tgNrMYAaM1wNn5H6OliAz2Ie6PCmHCZ4YyafkVSEzKa9OeQiZ4djILvjuNPy7dwouTu2P+hLiWng6DwWhFxIT5YUxcGA6lFIhCX2qVCiO7hbKsLwYRJpavh3l+nMwfl24BAL44mN7CM2G4G6XVBlTojS09DYaLs2rWAIzsFiraNrJbKFbNGtBCM2K4C84Uy7u794h5fpoIlhnDcITqWhP6vbEDAJC+/B6oVKoWnpEFcbYXB8A15tWWCfTR4qvHhyK9oBIZhZWszg+DCl4sL0Uolqf5HLUW7xHz/DCouFFajVOZxY0+jtnM4VBKAUqrDU6YVeshS0HIymBIaY0Vt93dm+DKOEss31pKLTDPTxPR2ham4cv3AAC2LRiFPp0DG3ycr49l4rWfL6FbuB92PT/WWdNze0wCgTzHAS7i+GG4IK3lyVtIa7ymlkKu8rczxPLO8h65Aszz40RqDCbr/42tNNvrdFbjvD8/n80FAKTkVThjOq0GM+eaWVWczP8ZLUdrefIW0hqvqbkpqarFw+uOY8L7+zB3/QmM/89ePLzuOEqrLF52XiyvljxZqVUqjIkLozJaWlOpBWb8OJGSqvpQTlWtiTDSfWllDi2XQW80t/QUGG5Aayxy2BqvqSWgMSAbK5ZvTaUWWNiLwXAB/rh00/p/qbD4yo0yfH00E89OjEO4v1cLzI6fV4udmlEHzZO3u4QdeFrjNTU3tOEoXiy//1o+zmQXY2DXdhgdF2b3ePZCZzFhfhgRG4LDqYU2rxkRG+JW7xMzfhgMF+C2jv7W/98orUGE4Anr7o8OAACyi6vx1WNDm3VezOBxLVrTkzdPa7ym5obWgFTSVtFor+TWBHdbK1jYi8FwAQK86kWdv1+8aXfM5dyy5poOw0Vxhm7D1WiN19Tc0BqQSqGxf3x92saDtD85H09/fQqAxSN0JM3W6wMAR9IK3SpEyYwfhiJGE9OjNDXCpyb5TK+WfbTimOTZJWiNRQ5b4zU1JzQGpJK2av+1PEXDpjUJnlnYi6FISn59ZlZrS+F3RVylwCHA3m9XpDUWOWSGdeNZNWsAFnx3RuS5ERqQSobLnqu2miEhR9MKMSw6mDjGnUKUzPhhKKISiG9baQZ/i1BWY8CBawW487Zw0XY504fZIQwh0aHub/TwkMIxXz3evDo3d0XJKFYKjYX4kespqdC6esu1urDX8uXLMWTIEPj7+yM8PBz33XcfkpKSWnpaLU6t0dzg8JXQEWFm38BO46mvTiL+29NY+vMl0XYXcvyIYG89oylgqe7OJTrUF+N7hNsYIkqhsam3dyIed1hMCADHQpSuXLG71Xl+9u3bh/j4eAwZMgRGoxEvv/wyJk+ejMuXL8PX132sUmdiNJkxbNku+HhqcPCl8Y0Kq5iY68dpHE0rAgD8cDoHE3u1t26X9fw0w5xc4ZyMtgVLdW8+SKGxQB8tVRo7TdjVHSp2tzrj5/fffxf9vmHDBoSHh+PUqVMYM2ZMC82qZbleUo3iKgOKqwyoNZmh06gder3wy9jVbB+TmUNyXjl6tPd3Ka1MU1BUWdvSU2AwnA5LdXcucjV6AGXD5d0HbsefPzmEYkHB3nY+Wrz3QF+b85DCru4Qxmx1xo+U0tJSAEBwsH2hll6vh16vt/5eVta604kbG7pwtbDXS/87jx9O5WDRlB6IH9+tpafTIJiomNEQSF9y7kRr0pG0JI54W+QMl1d/uoSyaqNoW1m1Ea/8dJHaaHGX/l+tTvMjxGw2Y+HChRg5ciT69Oljd8zy5csRGBho/YmIiGjmWTY9KtlACuXrBS93tbDXD6dyAACr9iS38ExaJ8wucz2Ueji5IyzVvfEo1ehRwlnaK3dJh2/Vnp/4+HhcvHgRBw8elB2zZMkSPP/889bfy8rKWp0BVGUwKg+ixNWMn9YC56KNTRmuhzuEFBylNabvNyc0xQeV7qeztFfuEsZstcbP/PnzsW3bNuzfvx9dunSRHafT6aDT6ZpxZs3Pqt0pjTxCveunsSEaZ4Z4SqpahwZGekdc1dviqvNqS7hLSKGhtKb0/ebkWHoRcf/RtELF++oso8VdwpitLuzFcRzmz5+PrVu3Ys+ePYiOjm7pKbU4qYIihQ2j/gMsdYm2JHuTyEW5XBE542/3lbwGH/N6STUKK/R293Ec1yiDszHF5ziOw+XcMhhaaYVwvV6PsrIy0U9T4y4hBUZzQ/47pRE+OLPNiDuEMVud5yc+Ph7ffvstfv75Z/j7++PmTUufpMDAQHh7e7fw7FoGjbpxmh9hpKux32POzMgSHsoVbLL91/KhUaswIjbU7v7iylpMW3UQ99zeAa9M7WXdznHAppPZ9b87cM7SKgNGvrsHAJC+/B5kFVWha7APVCoVOI7Dw18eR6XeiB+eHgEPj8bde0cNoc8PpGHZ9quYPqgL/jOjX6PO7YosX74cb7zxRrOe011CCozmZVh0CHl/DHk/j1KVaCGNySpzBVqd52fNmjUoLS3FuHHj0LFjR+vPpk2bWnpqDeZgcgFe/ekCqmtNDXq9xqNxb7PQsGhstldTZTa1tO1TWm3Aw18ex18/P4Zao30LcePRTFwvqcbnB9KJx8oprsJLP5xH8q1yxfMKW498ui8NY1fsxSeJljBntcGEA8kFOJ1Vgusl1Q5cjXP4eI9lHrwovbWxZMkSlJaWWn+ys7OVX9RIYsL80E6mTko7H63LfcE4SnMWxWtN54oJ88OIWPsGjrBGj9J8eKMl8cVxWD93CBJfHIevHh8qyhZzRHAvV3DRFWh1np/mTBs2mMz4YOc1jI4LlX3adwZ/W3cMABDsq8Pzk7o7/PrenQJwNrsEQMM8JEKDx8wEz3Ypq67/wzeYzPDU2BqctPd+/aEMAEDChRu4+MYU0T6jyQyNuv7Ywvfmvd+vAgD+s+Ma5k+IQ6W+3lhusPdPYc7XS6qRXVSFO+w8Weq0aqDGeWJ7V6Ml9IJp+RWiGixCiqsMbqv5cSRNu7Ep/s4uwEeaT3MW+6Op0UM7H5L26qmvTuJ4RrFo2/7kfDz51Ulsfnq4sy6nyWl1np/m5NtjWVizNxV//fxYo47DcRxOZRahQk/+osgpJsf75Qjzr1+gG6LhEH7BNlbz49ywV/MXNUzJq0C2gu4i/tvTWPHHVZvtjk7X3ufBYBLf/98u3JR9fa0gRllY0XhxuL23fuS7ezBz7VGcyiy22adpZJiNYUtr1fyQMth4nJXi70hKOMljQzMfmutyFi/974KNYVxcZcA//3feafNJy6+wMXx4jmcUuWQbCzmY8dMIMgsbZoxI+d/p63hwzRHc98kh4riG1utpdGFDQRTHT9c4Z6E7F/QrrTZg4gf7MPrfiTbXITRs9ibl45PEVJvXX71ZL4hdtbthdYmkYccvD8mH0ITht9V7G5vxR+bH060ztOVqNIXmp6X7L9HWl3Hki1vummhSwgE6w+apr07aNaKe/OqkQ9flDGiuy5H5yN2/bedzifNIUNjvSrS6sFdz4izHw09nrgOweBWaAuFH3VHb40ZpNf70cX2dpH5dgpwyJ2cguv3NYFPdKK3XzZg5QBhJInmhOI5DVlEVygUhoPd3XqM656C3dop+d8TzJjR+iiprcb2kGmF+OrshOTloz/bNsSy8c//tom2uVg28NeDMNOLmDDWRoPFmcXVf0FKkKf5K10SbEv6Pr0/bGBO8d+i7p+6g8oA4WjenMfeY5ro6BHopzqedj5Z4/5QMtjRJZrErVyFnxo8b0WBjqxEF9FZKPBT2Xp9TXIVVu1Pw+OhodG/vTzxeU2V7NTdGsxlqj/oeaaSpfHc8Gy9vvdCg8xRK+nk5ornKL69Pf796sxwj392DPp0DsG3BaKrXl1YbMPuL+pAuzZl/OJWD5LxyLL6rp8v1gWstOJKRQ4KmWGJzaFaUTHGNh4rakFC+JuWUcBovCo0H5J7bOxLH8F46Z9zj/PIa4v7CCj2GRdtv8SScj9L9u1VKPk9emWXNcYfGpizs1QjcRdHQmO8g6cO7vbDVvG9OY9PJbNz7sXwlbdLrG0pj23Y4inDq0krXpKtqqOFjj4zCKkQtTsCv58iLr9nMWYXyAFBVlyl48Xp96K3WaMZrP1/EgeR81BhMMErqGHx9NJN6Xj3qjN4Xt5zDZ/vSEL1ku8j4AiwLYkZBJYpZg9ZGwWfkfPXYUDw3KQ4bHx9qk5GjRFOEmhpKrsIXak5xNZWBRHNNNCnhNF4UpSbDBTJ1t+zhjHss1HXaI9RPWZifXVSpeP+yFIxQ3kh9UjYkeEJxHs0F8/y0AAaTGVp1y9idjhofUu+KvVdfyrV8odYYzC12bY0pxifFYDJD46EieqmkwmN7HpnNJ7JlnyAbCq8LW/DdGdwkfGnUUhRkeuPXS/jmWBa+OpIJP50GnYK8sOO5sfXHkKTsJ90sw6BI+0+P7XyVv3g3n8zGsu1X8cCAzvjgof6K4xn2ccZTtTNDTTw0IY59SXk4m1OCgV3bYXRcGAA6r4VSyMZo5qiuaXyPcIyIDcHhVNu/Sz4l/GhagZ1X16MCML5HODYcln84uPO29tTeIWdU7O4USK5h17mdt+L9OVOXESyHRUyv/MCZll+BE7IhwWKXyUhknp9G0JCwS2ZhJfq+vgPvJFx2/oQocNREkBoAx+08FQm9ILe//gc+22cr9m0Krtyo92Io2XQpeRX44kAaagzkWkllNQYMX74H8745DcBybRdySmE0mWEUGDxp+RWipz97+pZ//u88ttbpuZqCd7Zfkd0n/Wzaq7L8zbEs6/8r9EZcu1VB7DF25UZ93SGpsWc0KX+yagyWOei0aoWRDBLOEP46K9QE0ImDMwsrMeDNHXhk/Ql8uDMZc9Ydx4A3dyC7sApKX6gc5XxpxeBrZg/CmDrDi2dMXBjWzB4EgK5g4Nge4Qj8//bOOzyKav3j391sSe+FJKRBaIGEFhIRMPQgoIKK/OgqCioognjFgsCFK1wFC4gXEZRysXCVosD1UgSUIiBVaYFACCUhIaT33X1/f4Rdts6Z3exu2vk8j4/s7My855zMzrzzVjfztgMfNxl6tQrC1TvC63clV1xckBhYrzoqDTHXMNRbWMGMDvBAoKdCcJ8gT2WDCYrmyo+TWfbLZZRXq5mF7sxhDycPEXDqegG2n8mySebqA8LjrqjWYOF/TdO8HcGne8VnMPX/cD8WbD+vKwBoiR1nsnCnpBL//asmhXzxzot45NMDiH37vyiruh+wPPyzQ+gyfxcu59QoBLeLxJu5nYGpu1LcceX6yqHRQdrU9ehZ29HirR04mXn/7U6lYbfRqFTVnFtpRcA1xxCx7iqWQmIvVxMgThkbZlR/BqhJw350+QFk3BFO9Lh2p1TUw71FkCd83Mxbvnzc7heAZBXyE1swcNvUXiYFJ/3c5dg2tSamrqRCOAW/tFJldfbep3suYdTKw/jM6D4m5jysNQzydrVYnkImlSAm0AOV1cJnqahWiwiKrh/p8PwuVAtsCd7Vt5Jo/cIHLgubWe/Ls1ocANMH37DlBzHl6xP462ahTTJ7f7BXl6pdyqhN5CxUGsKvaYbm48s5Jdh97rbBthOZpubYKpUGW0/dRE5xhYm76F/77luxvj6aaXwo+n/4K9RG8TX1AVvrvZRUqJBxpxQ9//kLlv5ieIM1bo8x/LNDun9XVKuhYkQ4a+OOXLnlx2bEWgpe2mC+ls2LG7S1bNiBv2IUDjHK2P6LOYKFGU8z3C3puaXIYShrd4orcSW3BIXl5uUUllebPJSFqg+zrEMA4OUmQ3y4r8E+8eG+8L6ngOUWC8cF5RRXokWQJxKj/Mx+3y3KTze2Q5dzET1rOxbvSsPhK3fx/v8uInrWdhwx476zBEtByimssPgbVmkIv13KRXGVsEJXXKlCCaOwKauenbPgyk8tYOkie87fNtmmr/y8bcdAWCEM4mH0/immTpHUjPaTkVeGJbvScP1uGWZsPGWHEdqH8V8e1f3717Rc9P9wP55b9weOZZi66korVTpLxef70zHt21N47NODBu6cYqM3t62nzJtrn11zzGJLC3vTtplwNp2WiWv+sOn8JZUq9F68DzfyTdthBDGCJoUamEbP2q6rXH32Flvp5phHzBv+ldwSszEtAHAovSZbSUyMiL1cY6duFAjuU1ol/DCUgJDNiAu6VVguKlBZH6H6RmJiCFkKprtCeAXdFTUvAWkW2thc1Ns+etVRs/uM/OJ3APdbyVji01/YdcXO69UhM8eJzHwEegjfA4I8lUzlhqUcOQse8FwLjLVk4x/MxLV/IGPREINt+m9I+jEUYrBHdpP+GMX8wIUk9np/b63H4yj0FSF9C5cEEly9U4o+i/dhSEIolo/uoqu5k1VYYZCePXaVOGvO/jTTgMW6RqiX17GMu1iw3Xy8UJHAjUlDJKjkVavE+dZ+uyTO0smxjSNXha0BR67kIadY2E176noBM77jZn45kkSkT7OUqBaBXsgusjzm6EBPuDDufXKpFGI7m4sJGBdT54elYD7QMgCHrlhWyLq3DMD+izkWf3NFFSr8dikXpzMLBOf12d7LOJcl/EJx7lYh87o4ykjOOH+riJlVFuSlRE6RsKJayYi7dBbc8lML9ONfLMU77PjTMLZG/w/fLlTcW3xtqU12eW3q8qz67Qqmfn3CJC3c2ejPXyIB1tyrirz9TJZJxtSfeopSfchIMEbIuiKWESsOW3Q1CFWerlZrkFdq+aFZqa4fN7XGjBjFRkwA8VVGnM3V3FL8ZMHSqWXb6VvMVi838suQ0iZYcJ/JKS0Evx/eJRynGdajU9fzRVmzAHaMkpg6P2L+DkMTwgT3GZIQhr0XcwT3+eV8Dg6mC78s/HYpF24yYVeyu1wG1nVhztqrz6nrBczXZTURcgXuEQCQY0UZAEfCLT924k5JlVkl46UNJ3B2Xio87rWFCPK6H1H/v7OmbjEhbI750f+3lXpIbQoJaq0Lj3UKx+H0PIR4O7cJpBbjTCz9uJ4/jeKe9LOztDEq9YlKB7vX9lywfDOuUpPFrK4L2cVI+sceUTJYxdY4QrAVmzyGVSe/tAq+bsJWHV93OXafs9w3DgDO3CjAekYtqPWHrjELc95muLSa+7kjnVH9Pj1HXFC0NkbJGP0YJTHus2NXzadya/kj4y7+LykSXkoXFFea3ke8lC6ICfRgxuwcvZKHtqHegvs093PHpRxhL4IGwKVs4X1YL6lyFynTOnTsSp5JbKAxrEBwZ8EtP04gv+x+4JvCqLt2nhO0YH2J1ipCtrra9H9Iu85l48uDV63OAqtUqfHW5j9NgpZrg0QiMchYKLIQIAkAO+0o1144WvkR4nZhBSZ8ZT72wBpmD42zw2iaJizF8YEWAdhzQfi63XUu22JgsBah34U+p8wkEOhzIvMutjAsSMv2CMerLP/lErN+kbebDGdvCLt+zt8qEhWjlMZQEi7fLkYR4wFeUF6NK7klZhUfACiurMmKulEobG25XlCGyEDhOK/m/m6QMO7lEhB2MpRZVsJCXKg3iizMR0thpRpSF+FnhovR93XVW45bfuxERl4pRqw4bPY7lZpwIjMfHgqZYSoxrLMu2MPyo6+IicHWIn369XQ2/nG/6aU1LrBvjmTi63v/mcROWXEeYyWvUs/yUyDyJl9fqEt/uVBdIWuIYATtcizTIsgT7nIJyqpNr393eU06cmGZcEBpUblKRIxIEQK9lCiqtKwsBHu7Ipvx8K6oVpskDhiTw7D8HLmah0g/4WvGUyljuocOXM7FoA7NBPeJDvDAJ5nCffdOZhagghGknV0gLgBbxXiZqVZpkMmoF3TjbjkCWRWevZS4yFDqKhm1uowrtlvCV6lAXonlv7nW6ljXLTC45cdOaCP3zZFdVIHHPzuE1I9/NVF2Jq51fLlv/Yf/DpH1fbToFxK0BktvlqfNvJ39dbMQH+68iHKjtcnWq51zKP0ONBrChewidJ2/C0t2XhQ9Fv3AbgkMKxeX1ZO0S7FU1KHlx14I/VY4NQh1JTen+ABAWTXh6p1SKGTCb0lKmRSujBgRpVzKbIArd5Ho3PmW8HKVI8JPOBZHyrAuq9SELEYQ7c2CcmYB04oqDY4xFJI/Mu4KVk4HajLLxIxHTOVq1juchiAq5odVcqSsUl3rXnt/3Spg+gEkAO6WCStJWm+HM1qnCMEtP3bCz92yD/2D/91/UG8zUj7Sbjumk7s++g//YCvjbsJ93QQzhyxRYKGuhzmGLqvpCVatIbwxqK1uu76la/QXR/B6ahvdWn6mV39HH42GTHzO+srfofQ7eLBloO6z2O7q9QVnpdQ7CrmLpM5au9QXhNpAsN6GFzKsb4t2nIcbQ7lUyqWoZFicq1UalDJSkssq1fDzUOC2QD0bX3cFM5BWpWFYP9QauJHwnCSQiHLjrzkkXKT1qwNXQSwfEoBm3q7IL7d8764JvmbHZ7Es2GoNMUMjxIROXM4tQe26PAJVasBFAggZiFwk7NIFZVUqUbFXjk44adp3ITsiVLjt+DVhv7g+9mj8qdEQ0nPvtyrQP6WYBnf6fD6uK3snM1jrXgMM16m8So11hzIMvtdXIi3R6e87ccYoM0R/RavVNdajxoIn4827vuHWhAscimkDwXobNq5VY8zh9DvMNXZXyJDOKIJ5ObcEBQx3VX55FfwFXvoAwN9DzqwfwygajPIqNUqrhR+opVUqZjxcRbUaxQwLSXFlteCLLAD4uyvQLsxHcJ92Yd4Qk3pvro6aPlKJhBlALJVKmK7F4gqVXV46PBiKtbvCBd6uwi4rL1e53dp61Aau/NQzWry1A4stPuTFBf3M++ks+i3Zb9Y6Yq1u1SFc+EduCVbXYwB4c9MZfH/8fjyQft+wdu/+jFIbsq2KKlR49NODBtuM51zfWlEAQKCnAk8/GG32O6GHmSOrpQ5qLxwfYQvuioalrNkTMSnWrGrJZYyA09IqNa7kMjKjckuYGVhqDZm4oY0pq1IzEyIkEgnTgsRCIZOinDHvskoVfBlxIn4eCngxrj9vpRzuMuF93BQuOJguXNvrwOVc5JcylMfSKvh5MBQtTwXzBcdLKWNahKtUaqZFkIUU7FIb1RpCmxDhEi7tQr2tbuvhCLjyYyesjUW21EOFCJBZiJYXG/C89nBN+qnWUiLUrNJe7J3Z2+CzGOXnm6PXMfM/px00ovtcrKWlh/HiZReOvd0fYb7mGwvuf703YoM9zX4Xb4NyKibmJjrAHe+PSLD63PaQ3RgRo9iIeRtmvQ6oCRZbSWjJL61CM2/hOJxmPm5geVhVGuDaXeE39Gt5pUzLBQul3EWUe0hMPEol4+FdrtKgTMV22xQxgsoLy1UoKBe+B+aXVUHOiM+Su0gt9ivT4u2mEGVBqm3pDgJQyShkWlmtQR7D6n+npFJ0/zRHwpUfByJ0PQoFEyoZwYjWyrd03xCrCPVvZ7lIWbtQb6QteNjkYs0TofyY40Z+GaJnbbfpWEuwUm1ZTLBgkQEAhYApeebA1gafv530gMV9JRIJZFLz51LKXHDZQp0TSzcQIcTcBN8a3E5wbizGPRBldntT7eguRrER079KDKysnSo1IcJfWPlhvZlryWf8zu+WVDEtAaJkMDQbiRTIZKzxtbulJr37jKlWa5hp41JI4O0ubI3xcZPBl6G0+Lkr2K0gKqvhw3Aj+bnJmc2CXWVSk3pn1kJg93vTgG0I0FoLLQ3HDpEfouDKj50wp+gI/RGFHkCu8vt/ltrEAGkPre3FtHJcIo693d/sdzKpRKfIHXijj2672LRIYyatO87eyYn4eygEzf8THjT/kJ/aJxbPP2RYufaBFgH49fU+ZvcHDIsx9m17X+EUejtk1Wv5v24Rgt9bQil3gavcBfOHdUCoj6lFauwDkYLHzx/WAWfnpZpstzV7sKEjpk/W74yqwYetaGLJgqUAs4JWtTDdIGoN2jD60bEelkTEbIbrKnOBl6uwQuKplDFdSJ5KFygZ1km5XIrYQOE5xQZ7oTVj3q1CvBDmbd7aqyXMxw2urAB2hRSVKkamm0pdq5cZLWKsa+GMsgTN/dxFVdF2NFz5sRP26LsFAD9N7YkhCaG6z/pxL7Zm+ug/VG1RpqRSicWeLi56Ju3mehf99jO2WVvO1bOHo5erzGLA+qD2zdAl0nxHZjWR2ZtNZIA73hsej6l9Yk2+0/876dcjMXce7d/jia7NLY7dQ+Ficwd113sK7bgHotDdyLr02ZguWDAs3mI36sUjOtbIV8oMsveaMrcYVp0b+eW4wLj2xSqObgxXiqtMghv5wlaSm/nlzIeDFIA7Q5nwcJXjFKM3FQtPpYzpLnVTyDAkXridxCMdwxHACGYO9FTCg/Gb8VLKkMdM565CcoywVTa5RQCUjPgipczF7MuHPmE+bmCV/6pWAwXltYu9cpGwvQViKoznlVTygOfGxiMdDX980/sbuj0WPR6v+7el7tzxzX0QrNcCQ19ZsYd6ZVjh+f6nPedvY/QXv+NDK+rnAJZjl4QaZNaWhOa2BWELMSQ+1Ox2F4kEYb7mXQRerjLILLxN+bsrLPZFG50ciZmpbdDM6K1P/yU6pXUQvnqmGzY8l2xWxr6ZvfHr633QLdpyxd/SKjX+L8my5effE5MtfqfvnhrcwXBttCb2p3tEmxy3ekIintRTyF7s3RJXFw62KKfpwM78uclICb/JUFi0+DAe8D7uCmbWU1FFtSgXRyjDchHq7Yp0RgA264GaX64S5aIPYBT68/NQiIpHEbOPvYInCxlxQYXlVShm3EuLK1TMeFCJCMWFBcObquNWEeM6LizjAc+NCgmw5N4br5Zwo+JeD+s9RBYb7WsJ/euNFdRm8RwGlh/z+2QXVeBQeh7OZxdDpdZg3eEMrDl4lWnWdjFSfiwpdbby9uB2JtYDVp8fW7D0MLhypxQv9W5p9rsKlcYk1ukfwztgYFwIxnU37w7TR2tR0boN9d2dId6u6NMmGD1iA80e66GUITKAHZfRtpnlvkCtQswHUQOGGWZdjCw8WtfBkPhQ7Hill8F3/dqFmJxLXwkcmWibG64+UllZiaKiIoP/LPEHoxfU8Wv5KGG4oljfa2H9ZlVqDaoZgatVjO+1sFPHVRZbPIiFAKgY46lWa0QVFSxgxCgVlFUzs9NKK9UI8BBWtAI8FVh/mNH37HAGWlpIZNASG+xl0n/QmNM3CpjKj72SNsS4vRRSYcuZwsUFLYI88VCrILgYDdxFIsFDrYJ4wHNDQyGTYt6j7XWfjQPefNzl2DX9Ifz2tz5ozqh6qsW4I7kt6N82LGVX6QehqTSEd7eexdyfzjFrZxibJy8wSqiLpUukL64uHIznH2qB8UaKBKuqrLVE+LsJxs546sUSzBhw35pXXqWGn1F67ZjkKKwcnyjK3TTnkTi80jcW/3v1IQDQWXGMLUKOwk3hgn8M72D2uwDP+9YDfaUMADpF+gKoUWriwrzx3vAai6aQJUnLsz1jbBxt/WPhwoXw8fHR/RcRYVmxY/Xb2n0uW1S1XzFUMJSk8mqNKKuOONg3pdpaHCSoybASoqZSO7uoIOsmSgCIMSUC4KZkxCDJXXCdYam7frcM8QwrdnxzH4MitZZGJObRwIiJFgWrOXWItxJyRm8v7ffLRnU2ebnrERuIZaM6126QIuHKj53Q/qbGJEdi9YREnJw9AG1DTa0grUK8EOHvDi9GBL8Oeyg/euewlF1w/9xkYGFipZiyauY80MK2Dt4zB7bRWQyM/f3P92qBMck1AbePdw43+G6lQFHGD540n7rtoZBhtIB7SD9IUt8KlFNcwUxD1QYud4rwNfnO112BGQPb6N5yOoT7YMNzyfhGICvMHMbuVrG4y10wJjkK21/piWGdDM+hX+jNOPvQ+PPo5EhkLBqCnq3MW6mAmnT97yY9wAx+bUi8+eabKCws1P13/fp1i/tWMir52bNtSSlDli31syzhxVACvJWyWj9kAjzkkDOe3Aq5FBmMINlrd0rRgmFRaBnkiWpWvy21Bp2a+wru0yXSj9mPLCrAA38ymrGeuVGIloEM61CQl8VMUS0yKauJiDjExENVMyp2V93zn/m4y7FuYhL2zuyNr57phr0ze2PdxCSzfb0c0fy06VYcszPaC0vmItWZ/oUKWBm7iyxhqPXb6PYS8e6lPTOR4dj0i6FpW12MSY7EhiOZZs/zzpB2WLD9fgn+Z3vE4Pcrwv10zKFvbTGOnXm6RzRkUgle7d8ae87fxqaTN3XfCd0k24WadwFdyC7Gk10jUFyhwv60XEzsGYOnv7rfcy0qwAMzBrSGr7vcIP7mzI1CizE/WpaP7oKd57LxUKsgwf20WHJzCaFvIn6kYxh+Oi0u2Fw79vZhPlg8oqNBSQD9a0DstSpEVIAHopzgx3cmSqUSSqW4iumMZ5PNLm1b8VRIUVJl+SHF+l4Ly0qigTVWJPMEebkiws8NO8/nWNwnMcofV+6wijuWIobRIT3Ux9WkQrwxZZUq5pzURMhnxPPcLa1ixkOl5xQjJkhY+XFXyBAd4I7zAq2SYgI9cN4OVvmcUuGX3dvFFcwK49VqQ+U7JtC0zYsWRzY/5ZYfJ9H5nqvAWvStNrY+g8SYy7U3XzKSo1+U7YcXH8R7w+PxzpA4i+cxTjfVd59Yivd4KrG5gbsQgGApdrmLFBJJTQaacQE1T6UML6TUWGeMsySEqlW7SCV4rlcLrJ+YbNZK80q/VhjfPdri8ZZwU7jgsU7hzEquLDY8Z9mlNDCuRtn291DYbDLWV+KM3Vyc2lPBUCRYrip748u4Hv0YMS1a4iy8UGhpH+Zd64dMaaUKHgxLubtCxvSvSQBkFQo/vG8VVIh6xfyToSD9eaMAxzKEX/qOZdwVVWySWQpARC8yCWrvfnSBcF0z3PueVWeKVShRH0c2P+V3OTthKbNH972ZbWLaBxjYfezg9rKIRLsvQSKR6BQgfctPMx9XjE6ONCiTHm6UCbXjz2yDz77uCnw+ris+H9fVbIDt2XmpeP/JjhiRaJiyzeqvo6VfW8MCjIlRfpj1cFtcXTgYu2ekmOw/OL5mzX948UGL52T9LbV0b1ETsHzlvcHY9nJPXP7Hw6KOs4UesYG6IonvG7nvOoT7YPeMFOx/vTeAGusbcN8FuHJcV/RtG4y5j1hWWvWRs8wUHKuxX4yNfWA/L8U9oFowXDItgjyhlNfOqnW3tBLZhcIZRLeLKlDEqHlVWF7NThv3dUWgp/A+QV6uBpZpc3gqZcxaZ7nFFXisk7DLeljncGZcUMfmvshnzD2vrKrWMT/RgR4IZmTUBXu5QskotcAqyKhFTFX02sDvcnaC9fM2FzuzYlxX/Dl3oOBx+pla9sj2soTO7XXv/1pXhyWr0cLH49E50hc7phlm+yTFGMb4uCtckNq+GVLbNzPopg7UuIS0wcvGPZ+aGd2kpvSpseYYp6QbK0laxUUikZgNjP5sTFdc+sfD6GqhRg1Q47fW0iHc9M32wBt98Eq/Vlh6z8oilUrQIdyH6QKrLQ+0CEDGoiF4yowFLTbYUxdH9lyvFrj0j4cx8J5yPbB9M3z5dDfBStX6mLvMDs3qCwBYMbaLbYNv4riKqMArBg+GVc5DLgUj3hQuEuBGAavuUIWoOj/f/mHe/a3lm6OZqKqunc1B7sKOVyEQchjZXreLyuHjxqrMLNcF9Fuic6QvhnUKF9xneJfmTAtHhYqw+zwrEP42OjLiizpG+MKfEXsY6KFgtithoZRJ4MroPqCUS0XEKAl/r8XRtYC48uMkLKU0GptGjZUk/U97zudg9Be/41aB8FuQWOb8eFb3b63SoNWTtJ+NtW4to5IisfmlHiYBv6OSDCv/usvv32yMq6sKBcgaM7VPK3w+riv+aWT1sKVvkNalpi1N8Epfw4KD+uc090Nt7ueOGQNaWyz8WB8w5zZkWbS0b2SdzRRuDPN1Q8aiIRjUwXw9JI4w0YyyBKxAXC1ShoLt4iJlxxdJxRWrE1M7hlVhvLC8mtmPjEUzHzeEMCw2zbzdmIG21RpiZqNeyC5GNONvERXogQhGnZrmjGBnLayYn0s5xUyroEpD0DD+Vpbu49bg56FAVpGwgplVWMHMxnVnBMlrcXQtIK782IlT1wvMbt/00oP4v24RFuNkjK9J42tY//ubBeU4lJ6H2Vv+smpslq77Ar0GiCaWn3t3Plb3Z2OMY370zcPGXYW9GaZjfdzuWZDMlaefnFLTRsJcxeHebWoCjc1lZT3RtTn+eKc/pg9obfLd5pcexKikCMweKs5V1BjY9NKDeCqxORY9Ec/emWMV4YwbeajI0heVjNigiio1JIwoZLHV6MVYq1h9p3zd5GCFkLEeQo90DIOfG6P7uYcCbnLGQ1fuggpGKeSyKhWCvIRlBXkqsY1RwV5shXtWkchwXzdRPd/8GWEC/rWMOQSA7i0DUchomltYVs12mLKi5O/h6FpAXPmxE+9YUEi6RPph0RMJFi8+Y93C2JJhLlPrjplCXVO+PoH/W3nYbANMMQ3ttNeX1kW2fmISvn+hu9XWDWOLg36mkIeRxm9sidAG2rL88sa8+XA7/Pa3PvhucneT73rGBqJbtB/eGmy+zUKgp9KsRaRzpB8WPp6AAM/6a92xhdfuKXrmGo+2D/PB+092RKiPuAcxRzwDzBR/1CdVRPwfwC49odYQM2DdVSYFIywDMgng78l4oHoqBRs0AzWB9CyrjXExWGNe6hOLTEbNnIy8UsQwLAExgR5mkxn06RLpJ6otxV1GscQ7JZVgGTiULkAQY20CvJTMLK2zt4pMQgqM6RErLttUiCEJYQj1ZcVMuTEr8CdEiK/Q78haQDzV3U7Ymg7MVExEGl5OXsvHrcIKs004RcU7Gw0/UaBtgq2w/MXfTuqOj3al4e17AbvWYMkM/VyvFniuVwuz3zVFpvSJRd92wbXutM2xjm4xwr8nsb83hUyKcoHgDYVMyrwXuUgl8HWX406p5bd4Pw+FgWXYHIVlVQhkvBxJwO71dKe4Agnh3jhz07RCdsK9mDvWOfJL2GMJ8nJF7zbB+OqQ5crLvY0SKCxRzOiTVVqpxtCEcPygV4bDmEc7NWe6dloHe5l9odWnpEL47wQAOcWVkEI4sF4qqSkZcNRMllpStD9iAj3QOcIPV+5YVkS7RPlhaEIYPtx1yeI+QxLE1yXT1gK6eqcUGXmliA6wnBZvLdzyYyeMTXNiuXRbWKs3p7iYk6T16ZobhijLj16FZ0fBis/pFOGLtc8moTV/MDsMqVSC9mGOD87mGHLkqnDa8+8WOlybwEjTkkjIpAilMUq5C1oxfmOtQ7xQwmhLIbZtBSvwt1JFZhUfADhzswhX75QyPSVqELPx67msIuy7mCu4z94LOaL+VrcY2Wc38suQyFB4u0T5iepH5s0I0vZ0lcHfgxHw7KmAJ8MU5alwwRfjE01qkj3UKghfjE8EAKQzaildyilGiyBPJEWbTyhJivazSXmJCfRAnzbBdm17we+AdsKWwFsAWLwzTfB7scqItp2P2bc+EefQub3s0LHv6sLBWDaqM35/s5/Jd9+/UOOamj/MfFsFDqcxIqbvlBhXlIpRQ6VaTUy3cbiPG9O1GerjKqqPUxWjj1iVWgOWns16b8zIK0WXCMvZmUCNxYIZfF1WhVPXhXusnczMh5gmtD0YbqZerYJEnUfMPn3aCFuj+rULwVCGNWVIQhhaMrKsWgV7Masus0obaBNEvhjfzYIS1U3weGfC3V52wlEv0mKVEa11x5zyY+kM5gpW2cPyI5FILLZcSIz2R8aiIbUXwuE0IIK8GLEdnkr4eshxp0TYFVVWqRLMalK4SOGqYFh+FFLmfUVDhDYhnoJVg9s187rX6duyYueplCHAQ4lsAbeVn4cCd0osx9BEB3gAbYAvD2VY3KdHq0BsO31L0BrlrpQxY/iCPF1FxfzEBHpg8S7LL64v9YnFFUYmV3KLAGYZEq0sHzcZCs242nzcZPcUrRqrytEMU+VOa23pGOmLkwLtNBL04qEsVV2e2jfWoKK+MVP6tqoZlwPdVfaCW37sxF8WzLa1xdxvQ8i1JdUrUHj/HOZ/YHvvFcWrOafj3V4cTlMlmeECeaBFgIhYHcBPRBCyuYxIfbyUcmbGl1QiwazBwrF3s4a0Q1yYsPusfZg3HowVViZ6tw5iZvWISXtmFjD0cTUb6K/PuAeFv9fnu+fN9+DTbm8R5IkHW5qf+4Mta5QaMfsAwLapvUyaKPu5y7Ft6v06ayxrS7tmwtW448KEvwdq5pTQ3Px+Cc29TRQcR7ir7AVXfhoJ2iwQqcQ0rXtYZ/MFufRTze+nunPth8OxNy2CPHUVwY3pfu/tPpTR6iDMx539AAv1ZlYf9lDKRFh+2FWnVRoSFcg99Z41wBJT+rZiZvWISXtmxc8EeroipU2wxWasXkoX9GoVJLq4XnLLmqKjf0ttg+4t/PG31DbIWDQEyXrKzL/GdDWrkPxrTFer9okIcMfJdwdi/cQkTB/QCusnJuHkuwMRoVc/iuWyCmYoh6yAcS3rn33A7HjXP2tdQ+a6hru96hEdzaRhmrtFpbQ2TVvU1uNxkUpMKkH3EtFUU3sIK5WWw+HYxoqxXfHyNyfNNmkEasornBJwS3SO9IWPuwK7BBp8dmjuw7TexgR54G6JcPaUn7tclLWF9fYc7udWYy0QyObSWgVYbpJlozqbrJ++gpTQ3Ae7BdZGm2K945WH8OjyA8jXy2bzc5fjxyk9AVhfXO+lPrF4qU+s2X3FuH+scRH1ahXEvJ9bclnZq2hgQ3BpiaHRKj/Lly/HBx98gOzsbHTs2BHLli1DUlKS3c5vbfE/Mbw71NTMrHVZKWVSHJrVF+XVanibKdjn76mAa6UaMhepSfC1mDT8iuqa97xjZnzGHA6n9rAeGq2bCbuQYkO8kJYt7F4vKK1i9sVzkUhwI184W+l6frnO2nLw8h2DCsEuEgl6xAYiJtCDmaWmlbN+4gOCip8WoQ7frPUTm2KttaL8dikXJzLz0SXSz0ChEDNvaxGalzX71AZ7z8vR43U0jdLt9d1332HGjBmYM2cOTpw4gY4dOyI1NRU5OZbfCqylpMow+CzMysJ8Wtrr+VnNFdvTf4sL8FSiuZ87vM1UVf3tb31xfPYAhPu6YZJAXZvnesbo/q3fT+uYXnont/5wOI7DUhyEmLigAkZ9mfyyapxidBw/kZmP64yigdfv1rh22EXmxGQ0sV0y1mBp/WpSrM2vobZOjT69WgVhWr/WZi0pjiyuV5c01nnZQqO0/Hz44Yd4/vnn8cwzzwAAVqxYge3bt+PLL7/ErFmz7CLDOOV03UTbrEpfjE9Er/f3IshTadBQ0xhryggNSQjF+t+voWXQ/R/7F+MT8d+/svDawDZ4uW8rSKSGFqHRyZH47o/rAIDSKpVZBYvD4TgObVzQYTPWFG1cUEwgo0dYkAfyGC6tKP+aF6gL2ZazkdqH1biIWNYWMZlR+jjaWvDF+ERRFiYWjcW1Y0xjnZctSEhMy+8GRFVVFdzd3fH9999j2LBhuu0TJkxAQUEBtm7dKnh8UVERfHx8UFhYCG9v4eBCIoJKQ5AADisaV16lxtGMu5BKxMXu1IZd527DUylD1yg/Ztl6DseRWPM7rC/YY8yFZdUWH94+7nJcyS1B3yX7LR6/d2ZvEJFd9hH7UBz9xe84lG6qsD3YMgBfW8iIcjT84d40seY32OgsP3fu3IFarUZIiGEvnZCQEFy4cMFk/8rKSlRW3n9TKioSn7IukUggd7GtuKFY3BQuZgOcHcGAOOH+QxwOx7Gw3sy1rh2hFgQA0CXCByeumwZPd4nw0e3TsbkPTpsJsO7Y3McqheFfY4QDueuChh6PwnE8Tf71fuHChfDx8dH9FxERUddD4nA4TRyh+iisFgQA8NUzyWb3+eqZZN3ndc+a32fds8mwBnvG83A4zqLJu72MLT+FhYWIjIzE9evXG4y5ncNpbBQVFSEiIgIFBQXw8RHfBbouKSwshK+vr9PuHRl5pci8W4ZIf3eLacr22ofDaQhYc99odG4vhUKBrl27Ys+ePTrlR6PRYM+ePZg6darJ/kqlEkrl/eJOWrcXtwBxOHVPcXFxg1F+iotrmhTzeweHU7eIuW80OuUHAGbMmIEJEyYgMTERSUlJ+Pjjj1FaWqrL/hIiLCwM169fh5eXl9nUczFotU9nvQE6U15DmRtfk4YnS19eZmYmJBIJwsKEGzbWJ8LCwnDu3DnExcVxy7EDcfY12RRpqGtMRCguLhZ132iUys/IkSORm5uLd999F9nZ2ejUqRN+/vlnkyBoc0ilUjRv3twu4/D29nbqheNMeQ1lbnxNGp4sAPDx8WlQN12g5t4RHl7TSsbZ69UU4WvseBriGou1FDdK5QcApk6datbNxeFwOBwOp2nT5LO9OBwOh8PhNC248uMAlEol5syZYxBI3VjkNZS58TVpeLLqQp69aejjbwjwNXY8TWGNG12qO4fD4XA4HI4Q3PLD4XA4HA6nScGVHw6Hw+FwOE0KrvxwOBwOh8NpUnDlh8PhcKxg+fLliI6OhqurK5KTk3H06FHB/f/zn/+gbdu2cHV1RXx8PHbs2OGkkTZcrFnjs2fP4oknnkB0dDQkEgk+/vhj5w20AWPNGn/xxRfo1asX/Pz84Ofnh/79+zOv+/oOV35s5PTp01Z1gOdwOA3/d/Pdd99hxowZmDNnDk6cOIGOHTsiNTUVOTk5Zvc/dOgQRo0ahYkTJ+LkyZMYNmwYhg0bhr/++svJI284WLvGZWVlaNGiBRYtWoRmzZo5ebQNE2vXeN++fRg1ahT27t2Lw4cPIyIiAgMHDsTNmzedPHI7QhyruHHjBo0YMYIkEgl9+umnDpVVXFxMBQUFRESk0WgcKouI6ObNm5SUlESLFy92uKzbt2/T/v37KT093arjnLkmzlwPItvXxFZZGzZsoAMHDtDdu3cdLs+ZvxtHkpSURFOmTNF9VqvVFBYWRgsXLjS7/1NPPUVDhgwx2JacnEyTJ0926DgbMtausT5RUVH00UcfOXB0jYParDERkUqlIi8vL1q7dq2jhuhwuOXHCmbMmIHIyEiUl5fDz88PXl5eDpM1d+5cdOjQAZs3bwYAm/uMieXVV19FdHQ0QkJCMGbMGIfKevvtt9GiRQu8++67SEhIwIIFC3Dt2jUANU1oLeHMNXHmegC2r4ktzJo1C7Gxsfj8888xaNAgvPLKK8jIyLCrDH2c+btxJFVVVTh+/Dj69++v2yaVStG/f38cPnzY7DGHDx822B8AUlNTLe7f1LFljTnWYY81LisrQ3V1Nfz9/R01TIfDlR8R/Pzzz/Dx8cHevXuxd+9e/PTTT0hMTHSI7/7u3bt47rnn8NNPPwEAduzYgUuXLgGoadpmby5cuIDw8HD8/PPPOHToEH788UeHmo6XL1+O3bt3Y/v27di2bRuWLFmCHTt2YMaMGQBqfoTGOHNNnL0egG1rYgs3b97EoEGDsHfvXmzbtg27du3CZ599hlOnTjnEDePM340zuHPnDtRqtUmPwJCQEGRnZ5s9Jjs726r9mzq2rDHHOuyxxm+88QbCwsJMFPuGBFd+RJCdnY3PP/8cJ0+exEMPPYSqqipER0ejuLjY7vELKpUKoaGh+Pvf/44vv/wSBw8exP/+9z9UV1c7xNJRWFgIb29vPPzww0hMTMSJEycwb948fPXVVzh58qTd5BARVCoVtm/fji5duiAlJQWenp6YPHkyWrdujc2bN+Prr78GAKjVagOlxtFroi/LGeuhlWftmtSW6upqDB48GKtXr8ZDDz0EhUKBJ554AhKJBK1bt671+Y1x5u+Gw+E4h0WLFuHbb7/F5s2b4erqWtfDsZlG29i0NhARJBIJqqurIZfL8fTTT+u+U6vVUCgUCAkJwd69e+Ht7a3b3xZUKhVcXFx0x/v7++Pll19GcHAwAGDgwIH45ptvkJycjG7dutV6bsbyOnXqhOnTp2PGjBm4cuUKTp8+jVatWuHSpUsoLS3F3/72N7z++uu1liWRSFBUVITs7GwMGDDAYD8/Pz9ER0dj5syZGDlyJNRqNVQqla60uiPXpKqqCkSkk+XI9TCWZ82auLi4WC1Le12q1Wq4uLigefPmGDduHPz8/AAABQUFGD9+PCorK7Fo0SI88sgjGDZsmM3XsjN/N3VBYGAgXFxccPv2bYPtt2/ftmgdbNasmVX7N3VsWWOOddRmjRcvXoxFixZh9+7dSEhIcOQwHQ63/BixbNkyzJ07FwAgl8tNvte6IPr27YusrCxcuHDB5hv4woULMXz4cIwePRo//vgjSktLIZPJEBwcrIvzWLBgAW7evIktW7agoKAAgO2uHmN5JSUlUCqV6NOnDwYNGoS8vDz88MMP2LRpEzIyMjBu3Dhs3rxZF2Nji6wxY8bgxx9/RHFxMfz9/ZGYmIjVq1dj1apVKC8vx+zZs7F582bMmDEDnp6eePLJJ9GzZ0889thjWLlyJe7eveuwNZk7d66BrLy8PCiVSvTu3Rupqal2XQ9z8u7cuaNbk1WrVllcE631xxr0r2Ot4iSTyXSKz/Xr1xEVFYWysjK89dZbKC0txdtvv40333zTprk583dTVygUCnTt2hV79uzRbdNoNNizZw+6d+9u9pju3bsb7A8Au3btsrh/U8eWNeZYh61r/P7772P+/Pn4+eefkZiY6IyhOhbnx1jXT06dOkWpqakkkUgoPj6e9uzZQ0Q1UfDm2L17N0VHR9OuXbuslnXkyBHq1KkTdejQgT766CNKSUmhzp07m2QpqFQqIiKaP38+tW3blv773//qvrMm08mSvCVLlujOdeDAATp27BhpNBqd3OvXr1P79u3pgw8+qLUsbcZUeXk5Pf7449SyZUvy8/Ojli1b0qFDh6i6upq8vb0pODiY1q5dS6NGjaL27dubZMrYY02qq6tp3LhxFBsbayBr8ODBButx9OjRWq+HkLyHH35YcE2IiNq2bUtfffWVaFlirmPtOp08edLg2NmzZ1Pnzp2psLDQrvL0qc3vpj7w7bffklKppDVr1tC5c+do0qRJ5OvrS9nZ2URENG7cOJo1a5Zu/4MHD5JMJqPFixfT+fPnac6cOSSXy+nPP/+sqynUe6xd48rKSjp58iSdPHmSQkNDaebMmXTy5Em6dOlSXU2h3mPtGi9atIgUCgV9//33lJWVpfuvuLi4rqZQa7jyc48lS5bQo48+SmvXrqXBgwfTuHHjqLq6mojMP1TLy8vJw8ODvv76ayKyfLM3Jjc3lyZNmkTPP/+8wYUzcuRImjRpElVVVem2aeVqNBrq2LEjTZw4ka5cuUJbtmyhZcuW2UVeZWUlEZFursayQ0JC6O2337aLrLKyMiIiKi0tpbS0NDp8+LBunwsXLpCLiwtNnTpVt23nzp3k5uZGH374oW6bdp1rsyZXrlyhtm3b0o8//mgiS6sQahWe2qyHGHnvv/8+ERGVlZXRxYsXDdaksrKSAgMDadWqVaJlWXsd628fNWoUpaSkUFlZmWhF0lm/m/rEsmXLKDIykhQKBSUlJdHvv/+u+y4lJYUmTJhgsP/GjRupdevWpFAoqH379rR9+3Ynj7jhYc0aX716lQCY/JeSkuL8gTcgrFnjqKgos2s8Z84c5w/cTnDl5x5ZWVm0f/9+IiL6+OOPKTk5mdasWUNE5m/iJSUllJqaanW9jtzcXJo7dy4dP36ciEin7MycOZOSkpJM9tc+hDdu3EhBQUEUGRlJMpmMli5d6hB5+mzdupU6d+5MZ8+edbisRYsWEQATa8R7771Hvr6+dO3aNd222q7JxYsXSSKRGJzTkix9rF0PMfJ8fHwsyluzZg1169aNcnNzRcuy9jrWcvz4cerduzetXr1atCxb5Nn6u+FwOBx7wpUfM1y/fp1GjBhBQ4YM0ZkBzb2hdurUicaMGUMVFRVWnV/fyqJ9QEyYMIGmT59udv+MjAx64YUXSCKR0DPPPEN5eXkOk/fnn3/S0aNH6dVXX6WAgAB68803TaxC9pKVk5NDu3fvpldeeYU8PDyoWbNm9M9//tPgoVlYWEgtWrSgGTNmENF9xac2a3Lu3Dnq1KmTzupiSZZGo6n1elgjT61WG6yJt7c3zZ8/n9RqtU0FHVnX8YULF+jXX3+ladOmkbe3N02ePFlnnbMFR/9uOBwOx140mYBnEhkQq9Fo0Lx5cwwfPhx3797F6tWrARjWWlGpVABqisW98cYbukwhMbKICDKZTLePNujz8uXL6Ny5s9njP/nkE2zZsgVHjhzBl19+aVJYyp7yDh48iClTpuDIkSPYvn073nvvPchkMoPz2SKrU6dOJscXFhZiy5YtOH78OLZt24aUlBQcPXrUoLift7c3XnzxRXz//feoqKjQBe8KrQnrbx0ZGYk2bdrgyJEjuuJ+xrLKy8shkUiY62EveRUVFZBKpQZrsnPnTrzzzjuQSqW6tbTndfzXX39hyZIlOHPmDHbt2oUVK1bAzc3NqrlZI4/1u+FwOByn4XR1qw64e/cuFRUV6T7rv40av8VrP5eVldHkyZMpJSWFTp8+TUSkc+cYx4PYKkt7nqtXr5KXlxedOXNG911WVpbu30JBZfaSd/PmTSIiKioq0s3XXrI8PDxo7969um03btzQHaM/z2+++YYSEhLon//8p8G5Vq5cSR06dDBwD1lak9zcXLp9+7ZOlqUxsmRdvXqViGrcNJbWw57ytHPTaDQW3VxiZel/NncdHzt2jIhqYq+EWmnYS56Y3w2Hw+E4k0av/EydOpVatmxJKSkpNHbsWLp165bJPhqNRhenQHT/Jv/LL79Qv379aOTIkTRo0CCSSCRmj6+NLCKizz77jDp16kRENYrBU089Rd26dWP2XLK3PCHXka2yHnroIZLJZNSxY0fq2bMnPfzwwyayVCoV/fvf/yYiohdeeIEeeOAB+umnn3Tfv/fee9SzZ0/mw/Oll16iZs2aUceOHalfv35msz3sJcvZ8sTIsuY61iq7zpIn9LvhcDgcZ9NolZ/i4mIaOnQo9ejRg/bv30+rVq2iBx98kDp37kx//fWXbr/PP/+cgoODafDgwXT79m2Dc9y+fZvat29PEomEhg8fThkZGXaTlZOTo9s+ffp0mjZtGr333nvk5uZGffv21VlH6lpebWS99tprFBwcTE888QSNGDGCpFIpeXh40A8//GBy3MCBA6mqqorOnz9Pzz77LMlkMnrxxRdp6tSp5OPjo8vkshT78tprr1Hnzp1p3759tG7dOurZsyfFx8fTr7/+andZzpZnjazaXMd1JY/D4XCcTaNVfn777TeKi4ujU6dO6bbdvHmT5HI5Pf/883T79m364YcfKDw8nFavXm3y5n348GHy9/entm3b0oEDBxwmq7S0lKKjo0kikVDr1q1p586dDp2btfJskaXRaKi0tJS6du1Kvr6+Olk//fQTde7cmcaMGUPXrl2jzZs3U1hYGK1evdrEjbJ48WKaNGkSpaam6mrHmEMrq1u3bjR37lzd9rKyMrvLcrY8W2TV5jp2tjwOh8OpKxqt8rNp0yby8PAw2Hbq1CkKCQmhmJgY2rhxIxFZjh0pKSmh9evXO1xWXl4ejRs3jjZs2CBKlrPl2Srrxo0bFBISQr1796YNGzbo6glt3LiR2rdvTytWrCCimnXWx5asphs3blCzZs10dXQcKcvZ8myVpcWa67gu5HE4HE5d0CiyvRYuXIjp06fj888/R1VVFQAgPDwc4eHhePfdd3X7rVy5EqNHj4a7uzu2bNkCAPDw8DA5HxHBw8MDY8eOdagsIoK/vz/WrVuH0aNHO3xuLHm2ytq0aZNB400iQlhYGFq0aIGwsDCMHj1al/UzYsQIxMbGYseOHcjJyTEZI6vlwaZNmwyaYhIRwsPDERMTg2+//RYA7CbL2fLsKUt7vKXruC7kcTgcTr2hrrQue3DhwgWKi4uj+Ph4GjlyJPn5+dFDDz1EJ0+eJLVaTZ988glJJBJ68MEHydvbm2JjY6moqIjWr19Pfn5+9VZWQ5nbW2+9RVKplCQSCX3++ee682ktHKtXrya5XE5paWlEVFPdl6imurGrq6suzkiMRWTv3r3Upk0bp8hytrzGPDcOxxoA0ObNm+t6GJwmQINWfpYsWULdu3fXxVRkZWVRx44dacSIEXTlyhUiItq3bx8tX76ctm3bpjtu+fLl1LVrV7pz5069lNUQ5nbu3Dnq2rUrBQUF0fjx4ykyMtIko+fKlSvUs2dP6tu3r8H2tLQ08vHxYcbXaDl37hyNHDmSpkyZQpMmTXKoLGfLa8xz43CsJSsrS1f8Utu2wrjqu63s3buXAFB+fr5dzudI1qxZQz169CCimlYT06ZNq9sBNUIarPJTXV1Nzz77LD322GMGb6AbN26k5ORkg6Zs+qhUKho9ejQ988wz9VKWs+XZKuvmzZuUnJxMw4cPp6KiIgoPD6fXXnvNYB+NRkM7duwgpVJJ77//vi4LbOXKlZSYmGhQM0iI7OxsWrVqFZ07d87hspwtrzHPjcOpDWKVH21cGouGpPwMHz5cVxOMKz+OocEqP0REY8aMoYEDB5JKpTLIOpkyZQr17duXTpw4oduWlpZGly9fpsmTJ1NkZCT98ssvRCTedO9MWQ1lbhERETpZq1evJqVSaZAVpuWLL76gkJAQateuHT355JOkVCppwYIFpNFoRI9Rv8Del19+6VBZzpbXmOfG4WhJSUmhl19+mV5//XXy8/OjkJAQk8aY+m4vWGhUOmHCBHrsscdowYIFFBoaStHR0UREtG7dOuratSt5enpSSEgIjRo1SleGwVzzU23jTrVaTe+99x5FR0eTq6srJSQk0H/+8x/BuURFRdH8+fNp3Lhx5OHhQZGRkbR161bKycmhRx99lDw8PCg+Pl5XUFTLypUrqXnz5uTm5kbDhg2jJUuWkI+Pj8E+2ua/58+f160bV37sT4NUfrQP6L1795JUKtW9GWjdNvv27aPY2FhdJhJRTWG/1q1bU3JyskFl4/okqyHOTf8hmJycTI8++qjZ3lcHDx6kpUuX0quvvmr2QSsGZ8pytrzGPDcOh6jmIe7t7U1z586ltLQ0Wrt2LUkkEoNyG/rKz9GjRwkA7d69m7KysnSFUSdMmECenp40btw4+uuvv3T1xlavXk07duyg9PR0Onz4MHXv3p0efvhhIqq51/3www8EgC5evEhZWVlUUFBAREQLFiygtm3b0s8//0zp6en01VdfkVKppH379lmcS1RUFPn7+9OKFSsoLS2NXnzxRfL29qZBgwbRxo0b6eLFizRs2DBq166d7rd24MABkkql9MEHH9DFixdp+fLl5O/vb6L8bNu2jVq3bm2wblz5sT/1VvnJyMig69evE5FpWXztTbq8vJxSUlKof//+RGR4Q2/ZsiX9/e9/133Oy8sz0cLrQlZDmZv2uJYtWxrUfMnLy6PDhw8bnEc7tl9//ZWkUqkuTVqlUhkUV6zNethLlrPlNea5cTjWkJKSQj179jTY1q1bN3rjjTd0n/WVH0turwkTJlBISAjT3XXs2DECoCvDYc7tVVFRQe7u7nTo0CGDYydOnEijRo2yeO6oqCgaO3as7nNWVhYBoNmzZ+u2HT58mADoWviMHDmShgwZYnCeMWPGmCg/zz//PM2cOVP3mSs/jqFeprpv3boVMTExePnllwFA18xSm04tk8mgVqtRWFiIefPmYf/+/VixYoWuCWN+fj48PDwMml36+/sjMTGxTmU1lLlt2bIFMTExeOGFF+Dh4YHAwEDdcf7+/njggQegUqlw+/ZtAPdTuHv16oVRo0Zh3rx52LNnD4YMGYKlS5eiurra7FqIHaO9ZDlbXmOeG4djCwkJCQafQ0NDkZOTY/V54uPjoVAoDLYdP34cjzzyCCIjI+Hl5YWUlBQAQGZmpsXzXL58GWVlZRgwYAA8PT11/61btw7p6emi5xISEqIbl/E27fwuXryIpKQkg3MYfyYi/PTTT3j00UcFZXNqT71Ufo4ePYrk5GRkZmbihx9+AFBzA9fezJcuXQp3d3f8/PPPSElJwZw5czBnzhxMnjwZv/32G+bPn4/i4mL069evXslqKHObN28e4uLicOzYMWRnZ6Nfv34mx3l6euK///2vSdfvKVOm4MSJExgwYAAAYMaMGZDL5bUao71kOVteY54bh2MLxteURCKBRqOx+jzGdaZKS0uRmpoKb29vbNiwAceOHcPmzZsBQFezzBwlJSUAgO3bt+PUqVO6/86dO4fvv/9e9Fy0LxLmtlkzv6NHj0KlUuHBBx8UfQzHRurM5mQGbSDmlClT6OWXX6aJEydSr169qKqqioiICgoKaMyYMRQWFkZr1641cAUtXbqUevXqRfHx8dSxY0c6cuRIvZHVUOamVqtp6dKlFBoaSgEBAeTv70+dOnUye9y6desMxqhSqWjt2rUkl8spOTnZIEi6tmOsrSxny2vMc+NwbMWc++axxx7TBR4TGbq9bt68SQDojz/+MDhGG/Cszx9//EEAKDMzU7dt/fr1Bm6zgwcPEgCDMiBFRUWkVCpp3bp1Vs0lKiqKPvroI4NtMKpRZOy2GzlyJA0dOtTgmLFjxxq4vd58802D9SDibi9HUa+UH6KaOITU1FT6/fffadu2bRQXF0effPIJEdXcxI8dO2aQaqufuaJWq3V1aeqbrIYyN41GQwMHDqRNmzaJOk5LaWkpffzxxwZF8+w9xtrIcra8xjw3DscWrFV+qquryc3NjRYsWEDZ2dm6AGVzyk9OTg4pFAp6/fXXKT09nbZu3UqtW7c2UD5u3LhBEomE1qxZQzk5ObpYoLfffpsCAgJozZo1dPnyZTp+/DgtXbqU1qxZY3Eutig/2oDnJUuWUFpaGq1YsYICAgLI19dXd0z79u0NGj9r12306NF08uRJg/+ys7Mtjo/DRlZHBid8//338PX1Rfv27REaGgrgvonexcUFVVVVeOCBB/D4449j9erVOHLkCOLj4zFjxgwDX6+2/L723zExMXUqq6HMLTo6GgUFBbrjpFKp7jiZTIbAwEDExcUxx6jF3d0d06ZNc+h6iJHlbHmNeW4cTl0ik8mwdOlS/P3vf8e7776LXr16Yd++fWb3DQoKwpo1a/DWW29h6dKl6NKlCxYvXmwQOxMeHo558+Zh1qxZeOaZZzB+/HisWbMG8+fPR1BQEBYuXIgrV67A19cXXbp0wVtvvWXX+fTo0QMrVqzAvHnz8M477yA1NRXTp0/Hp59+CgBIT0/H5cuXkZqaanLs119/ja+//tpg2/z58/HOO+/YdYxNCmdrW+vWraPg4GBKSkqioKAg6tGjh4G2fPfuXWrWrJkukn/69Onk6upKbm5uJubP+iSrocxNLpeTv79/vR5jY17/hjA3DofjHJ577jldBtySJUt0qfkcx+M05ae6upo+/vhjateuHa1atYoqKyvp4MGDNH78eHr44Yd1Jc1v3rxJI0eOpG+++Ybi4+MpMDCQhg4dSm3bttWlcxun8NalrIYyt4CAAIqLiyOFQkHvvPMOVVZW0q+//lqvxtiY178hzI3D4TiWDz74gE6dOkWXLl2ipUuXklwupy+++IKIiL777jv69ddf63iETQenKT8FBQX09ttv06JFiwxiWRYtWkQ9evTQ+V8zMzNJIpGQXC6nKVOmUH5+Pp09e5YGDRpkUiOiPshqKHPLyMigSZMmUevWrXU9Y+rbGBvz+jeEuXE4HMcyYsQICgoKIldXV4qLi6N//etfdT2kJotDY34uXbqE2NhYSCQS+Pj44Mknn0R8fDykUik0Gg2kUikiIiJQWlqqi0eIiIjAN998g5iYGF0NBF9fXwwbNgzFxcW6FF1tGmFdyGooc/vwww/RvXt3JCcnAwBefPFFdOrUCaWlpVCr1fVijI15/RvC3DgcjvPYuHFjXQ+Bo8URGtV3331H0dHR1KZNG0pKSqJVq1YZfK//Bjt69Gh6+umniYh0qbn6aNNyLZnsnSmrocxtw4YNJsfpy6oPY2zM698Q5sbhcDhNGbsrPzt37qTo6Ghavnw5/fzzzzRjxgySy+W0cuVKKi8vJyLSNUYsLy+nhIQEWr9+vcl5xNy0nSmroczN+LhXX3213o3RFlnOlteY58bhcDhNHbspP9o3zXnz5lHXrl0N3kZfeuklSkxMpE2bNhkcc/PmTYqOjqa0tDQiqukYPn369Holq6HMLSoqitLS0mjevHnUoUMHeuWVV+rdGBvz+jeEuXE4HA6nBru1t9DGEpw7dw4tW7aEXC7X9QZasGABXF1dsXXrVmRnZ+uO2b17NyIiIhAaGopp06YhLi4O165dQ3V1tUn5/bqS1VDmFhkZidDQUPz73//G2bNncePGDZSVlYGI6s0YG/P6N4S5cTgcDucetmpNO3fupJdffpk++ugjg3YLK1euJC8vL535Xfsmu3LlSmrdujXt3buXiGreeEeMGEF+fn4UEBBA7du3t9iZ3JmyGsrcPvjgA3r55Zfpww8/pH79+ulkhYaGkoeHR70YY2Ne/4YwNw6Hw+GYx2rl59atWzR06FAKDg6mMWPGUHx8PPn4+Ohu5BcvXqTw8HCaPXs2EZGu6BoRUbNmzXQlwUtLS2no0KHUvHlz+vbbb+tcVkOZ261bt0ipVJKnpyeNGTOG2rdvTzKZjIKDg+nbb7+tF2NszOvfEObG4XA4HGGsUn5KS0tpwoQJNHLkSIM+U0lJSbrMk6KiIlqwYAG5ubnpmsxp4xpSUlLoueee0x0nVHnWmbIaytxKSkpowoQJFBQURCNHjtQd1759+3ozxsa8/g1hbhwOh8NhY1XMj7u7O5RKJZ5++mnExMRApVIBAAYPHozz58+DiODl5YXRo0ejS5cueOqpp3Dt2jVIJBJkZmYiJycHw4YN052va9eu9UJWQ5mbh4cHqqur4erqinHjxumOGzFiRL0ZY2Ne/4YwNw6Hw+GIwFptST8bRVt3ZPTo0fT8888b7Hfjxg2KjY2l6OhoevLJJyksLIz69u1rVSdaZ8pqKHMLDQ3VyaqvY2zM698Q5sbhcDgcYSREtU8P6dmzJ55//nlMmDABGo0GQE0X8suXL+P48eM4cuQIOnbsiAkTJtRaWXOmLGfLs1VWQxhjQ5DXmOfG4XA4HD1qqz2lp6dTSEiIQRyCfrCmPXGmLGfLs1VWQxhjQ5DXmOfG4XA4HENsrvND9wxGBw4cgKenpy4OYd68eZg2bRpycnLso505WZaz5dkqqyGMsSHIa8xz43A4HI55bG5sqi3OdvToUTzxxBPYtWsXJk2ahLKyMqxfvx7BwcF2G6QzZTlbnq2yGsIYG4K8xjw3DofD4VigNmaj8vJyio2NJYlEQkqlkhYtWlRLQ1T9kOVsebbKaghjbAjyGvPcOBwOh2NKrQOeBwwYgFatWuHDDz+Eq6urvXSyOpflbHm2ymoIY2wI8hrz3DgcDodjSK2VH7VaDRcXF3uNp97IcrY8W2U1hDE2BHmNeW4cDofDMcQuqe4cDofD4XA4DQW7dXXncDgcDofDaQhw5YfD4XA4HE6Tgis/HA6Hw+FwmhRc+eFwOBwOh9Ok4MoPh8PhcDicJgVXfjgcDofD4TQpuPLDcTq9e/fGq6++2uRkczgcDqd+wJUfTr1m3759kEgkKCgosMtxmzZtwvz58+03QA6Hw+E0OGxubMrhNET8/f3reggcDofDqWO45YfjUEpLSzF+/Hh4enoiNDQUS5YsMfh+/fr1SExMhJeXF5o1a4bRo0cjJycHAJCRkYE+ffoAAPz8/CCRSPD0008DADQaDRYuXIiYmBi4ubmhY8eO+P7775nHGbu9oqOjsWDBAt0Yo6Ki8OOPPyI3NxePPfYYPD09kZCQgD/++MNg3AcOHECvXr3g5uaGiIgIvPLKKygtLbX38nE4HA7HAXDlh+NQXn/9dezfvx9bt27Fzp07sW/fPpw4cUL3fXV1NebPn4/Tp09jy5YtyMjI0CkqERER+OGHHwAAFy9eRFZWFj755BMAwMKFC7Fu3TqsWLECZ8+exfTp0zF27Fjs379f8DhzfPTRR+jRowdOnjyJIUOGYNy4cRg/fjzGjh2LEydOoGXLlhg/fjy0nWDS09MxaNAgPPHEEzhz5gy+++47HDhwAFOnTnXEEnI4HA7H3tRhR3lOI6e4uJgUCgVt3LhRty0vL4/c3Nxo2rRpZo85duwYAaDi4mIiItq7dy8BoPz8fN0+FRUV5O7uTocOHTI4duLEiTRq1CiLxxERpaSkGMiOioqisWPH6j5nZWURAJo9e7Zu2+HDhwkAZWVl6eRMmjTJ4Ly//fYbSaVSKi8vF14UDofD4dQ5POaH4zDS09NRVVWF5ORk3TZ/f3+0adNG9/n48eOYO3cuTp8+jfz8fGg0GgBAZmYm4uLizJ738uXLKCsrw4ABAwy2V1VVoXPnzlaPMyEhQffvkJAQAEB8fLzJtpycHDRr1gynT5/GmTNnsGHDBt0+RASNRoOrV6+iXbt2Vo+Bw+FwOM6DKz+cOqO0tBSpqalITU3Fhg0bEBQUhMzMTKSmpqKqqsricSUlJQCA7du3Izw83OA7pVJp9Tjkcrnu3xKJxOI2rWJWUlKCyZMn45VXXjE5V2RkpNXyORwOh+NcuPLDcRgtW7aEXC7HkSNHdEpBfn4+0tLSkJKSggsXLiAvLw+LFi1CREQEAJgEFisUCgCAWq3WbYuLi4NSqURmZiZSUlLMyjZ3nL3o0qULzp07h9jYWLufm8PhcDiOhwc8cxyGp6cnJk6ciNdffx2//PIL/vrrLzz99NOQSmsuu8jISCgUCixbtgxXrlzBjz/+aFKDJyoqChKJBNu2bUNubi5KSkrg5eWFmTNnYvr06Vi7di3S09Nx4sQJLFu2DGvXrrV4nL144403cOjQIUydOhWnTp3CpUuXsHXrVh7wzOFwOA0ErvxwHMoHH3yAXr164ZFHHkH//v3Rs2dPdO3aFQAQFBSENWvW4D//+Q/i4uKwaNEiLF682OD48PBwzJs3D7NmzUJISIhOwZg/fz5mz56NhQsXol27dhg0aBC2b9+OmJgYwePsQUJCAvbv34+0tDT06tULnTt3xrvvvouwsDC7yeBwOByO45AQ3cvf5XA4HA6Hw2kCcMsPh8PhcDicJgVXfjgcDofD4TQpuPLD4XA4HA6nScGVHw6Hw+FwOE0KrvxwOBwOh8NpUnDlh8PhcDgcTpOCKz8cDofD4XCaFFz54XA4HA6H06Tgyg+Hw+FwOJwmBVd+OBwOh8PhNCm48sPhcDgcDqdJwZUfDofD4XA4TYr/B580ZZJKd9xzAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ - "# fig, axs = plt.subplots(3)\n", - "# tol['temperature C'].plot(ax=axs[0])\n", - "# tol['salinity ppt'].plot(ax=axs[1])\n", - "# tol['fchl mg/L'].plot(ax=axs[2])\n", - "\n", - "# for n, ax in enumerate(axs):\n", - "# ax.set_title(f'Plot/ax {n}')\n", - "# ax.label_outer()\n", - "\n", - "fig, axs = plt.subplots(3, 2)\n", - "tol['temperature C'].plot(ax=axs[0][0])\n", - "tol['salinity ppt'].plot(ax=axs[1][0])\n", - "tol['fchl mg/L'].plot(ax=axs[2][0])\n", - "compare_col = 'nitrate mg/L'\n", - "tol.plot.scatter(x=compare_col, y='temperature C', ax=axs[0][1])\n", - "tol.plot.scatter(x=compare_col, y='salinity ppt', ax=axs[1][1])\n", - "tol.plot.scatter(x=compare_col, y='fchl mg/L', ax=axs[2][1])\n", - "\n", - "for row_num, ax_row in enumerate(axs):\n", - " for col_num, ax in enumerate(ax_row):\n", - " ax.set_title(f'Plot/ax {row_num}-{col_num}')\n", - " ax.label_outer()" + "fig, axs = plt.subplots(3)\n", + "tol['temperature C'].plot(ax=axs[0])\n", + "tol['salinity ppt'].plot(ax=axs[1])\n", + "tol['fchl mg/L'].plot(ax=axs[2])\n", + "\n", + "for n, ax in enumerate(axs):\n", + " ax.set_title(f'Plot/ax {n}')\n", + " ax.label_outer()" ] }, { @@ -504,10 +315,26 @@ "Go ahead and re-run the cell now and you should have three plots on the left and three empty boxes on the right side. \n", "* Add three more scatter plots with axis locations `[0][1]`, `[1][1]`, and `[2][1]`. Each should have `x='gage height ft'` and `y=...` matching either temperature, salinity, or fchl.\n", "\n", - "Wow, no correlation at all. Maybe there's something we can do to visually see which parameters might correliate... \n", + "Wow, no correlation at all. Maybe there's something we can do to visually see which parameters might correliate... \n", + " \n", + "Finally, let's resize the subplots a bit. We can pass arguments to the subplots command set the overall plot size with figsize, and use gridspec_kw to set the horizontal width ratios for the columns of subplots:\n", + "* `figsize=(8, 8), gridspec_kw={'width_ratios': [2, 1]}`\n", "\n", "#### *Exercise*:\n", - "If you want a fun little challenge, try making an nxn matrix of scatter plots with regression lines comparing n different parameters.\n" + "If you one more fun challenge, try making an n*n matrix of scatter plots with regression lines comparing n different parameters. This is vaguely templated below. Figure out how to put set appropriate axis labels, etc!\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "params = ['col1', 'col2', ...]\n", + "# ... generate subplots and whatnot\n", + "for c in range(len(params)):\n", + " for r in range(len(params)):\n", + " # do stuff with each axis" ] }, { @@ -525,7 +352,7 @@ ], "metadata": { "kernelspec": { - "display_name": ".venv", + "display_name": "venv", "language": "python", "name": "python3" }, @@ -539,7 +366,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.12" + "version": "3.12.3" } }, "nbformat": 4, From 67106da0652133a440f21fb865d5f6fa29c4948e Mon Sep 17 00:00:00 2001 From: Dan Norris Date: Wed, 23 Oct 2024 15:09:57 -0700 Subject: [PATCH 49/94] Update finished notebooks . --- README.md | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/README.md b/README.md index 496c188..a55d279 100644 --- a/README.md +++ b/README.md @@ -45,11 +45,12 @@ We have a series of python notebooks ready to work through to learn from. They * C-Functions_and_Module_Imports.ipynb - Introducing functions and modules in Python. * D0-Pandas_Example.ipynb - An example of importing data and doing some anaylsis and graphing to get a feel for how pandas works. * D1-Pandas_Intro_and_Data_selection.ipynb - Some pandas basics including imoprting data, manipulating columns of data, learning ways to select rows and columns of data, and exporting data to file. +* D3-Pandas_Graphing.ipynb - Goes over a bunch of plot types multi-axis plots, and graphs with multiple plots using pd.plot (wrapper for matplotlib pyplot) * N-Numpy - Basics using numpy. Need to add some vectorization problems where we convert python code to numpy code... **In Development** * D2-Data_Cleaning.ipynb - Setting column data types, removing missing or invalid data, interpolation, etc tools for preparing data for analysis. -* D3-Pandas_Graphing.ipynb - Goes over a bunch of plot types multi-axis plots, and graphs with multiple plots. + * D4-Advanced_Pandas.ipynb - Pivot, stack, unstack, join, concatenate, etc. * D5-Machine_Learning.ipynb - Methods to use machine learning to model data using pandas and common ML libraries. Building on pandas skills with more advanced data manipulation and introduction to data visualization using pandas and matplotlib for generating graphs. * E-Writing_Scripts.ipynb - Installing python locally, environment, structure of a script, and argparse From b8556bbdc0d87c1b1bcfc1ac913b131048002d5e Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Wed, 23 Oct 2024 16:36:51 -0700 Subject: [PATCH 50/94] removed clearscreen cmd from colab turtle example --- A-Getting_Started.ipynb | 1 - 1 file changed, 1 deletion(-) diff --git a/A-Getting_Started.ipynb b/A-Getting_Started.ipynb index d71377e..ebaf0bf 100644 --- a/A-Getting_Started.ipynb +++ b/A-Getting_Started.ipynb @@ -883,7 +883,6 @@ "initializeTurtle()\n", "home()\n", "pos()\n", - "clearscreen()\n", "color('red')\n", "forward(200)\n", "right(90)\n", From d04e629fb8fc621061b844695b5a348235072d7f Mon Sep 17 00:00:00 2001 From: Dan Date: Fri, 25 Oct 2024 11:32:18 -0700 Subject: [PATCH 51/94] Update README.md --- README.md | 11 ++++++++++- 1 file changed, 10 insertions(+), 1 deletion(-) diff --git a/README.md b/README.md index a55d279..09c8c02 100644 --- a/README.md +++ b/README.md @@ -11,7 +11,16 @@ We have a bunch of coureswork ready to use, including: See the Notebooks list below for a more detailed list. ## Current Schedule: -As of October, we're continuing to meet each wednesday from 4-5PM. +We were meeting on wednesdays during October, but due to a scheduling conflict, we'll bo moving to Thursdays. +* Wednesday Oct 23 4PM-5PM +* Wednesday Oct 30 4PM-5PM +* Thursday Nov 7 4:30PM to 5:30PM +* Thursday Nov 14 - NO MEETING? +* Thursday Nov 21 4:30PM to 5:30PM +* Thursday Nov 28 - NO MEETING Thanksgiving +* Thursday Dec 5 - 4:30PM to 5:30PM +* Thursday Dec 12 - 4:30PM to 5:30PM +* Thursday Dec 19 - NO MEETING? Please check the library calendar here to confirm dates/times: **https://engagedpatrons.org/EventsCalendar.cfm?SiteID=7839** * Set "limit by location" to "Cameron Park Library". From 9b862da112ead29ec98e2e8697939b6661444145 Mon Sep 17 00:00:00 2001 From: Dan Date: Fri, 25 Oct 2024 12:34:53 -0700 Subject: [PATCH 52/94] Update README.md --- README.md | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/README.md b/README.md index 09c8c02..86774cc 100644 --- a/README.md +++ b/README.md @@ -15,12 +15,12 @@ We were meeting on wednesdays during October, but due to a scheduling conflict, * Wednesday Oct 23 4PM-5PM * Wednesday Oct 30 4PM-5PM * Thursday Nov 7 4:30PM to 5:30PM -* Thursday Nov 14 - NO MEETING? +* Thursday Nov 14 - 4:30 to 5:30PM (in the quiet room) * Thursday Nov 21 4:30PM to 5:30PM * Thursday Nov 28 - NO MEETING Thanksgiving * Thursday Dec 5 - 4:30PM to 5:30PM * Thursday Dec 12 - 4:30PM to 5:30PM -* Thursday Dec 19 - NO MEETING? +* Thursday Dec 19 - 4:30P to 5:30PM (in the quiet room) Please check the library calendar here to confirm dates/times: **https://engagedpatrons.org/EventsCalendar.cfm?SiteID=7839** * Set "limit by location" to "Cameron Park Library". From 644f2a3673077ef011d4c8d7b9eea4c7f1766b2d Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Thu, 7 Nov 2024 14:59:02 -0800 Subject: [PATCH 53/94] add new problum --- P-Project-Sudoku_Solver.ipynb | 421 ++++++++++++++++++++++++++++++++++ 1 file changed, 421 insertions(+) create mode 100644 P-Project-Sudoku_Solver.ipynb diff --git a/P-Project-Sudoku_Solver.ipynb b/P-Project-Sudoku_Solver.ipynb new file mode 100644 index 0000000..60ce588 --- /dev/null +++ b/P-Project-Sudoku_Solver.ipynb @@ -0,0 +1,421 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Project: Sudoku Solver\n", + "\n", + "Feedback: https://forms.gle/Le3RAsMEcYqEyswEA\n", + "\n", + "Write a program to solve a suduku puzzle. It should accept a list of 81 values, with '.' representing unknown numbers, and return a completed puzzle. Print an error message of a solution cannot be found. \n", + "\n", + "## Sudoku Rules\n", + "The objective is to fill a 9x9 grid so that each cell contains a digit from 1 to 9, following these rules:\n", + "* Unique in Row: Each row must contain the digits 1 to 9 without any repetition.\n", + "* Unique in Column: Each column must also contain the digits 1 to 9 without repetition.\n", + "* Unique in 3x3 Sub-grid: The grid is divided into nine 3x3 sub-grids (also known as \"boxes\" or \"regions\"). Each sub-grid must contain the digits 1 to 9, with no repeats.\n", + "\n", + "In every Sudoku puzzle:\n", + "* Some cells are pre-filled with numbers to give clues and create a unique solution.\n", + "* The player can only place numbers in empty cells.\n", + "* The puzzle is solved when every cell is filled and all the rules are satisfied.\n", + "\n", + "Additional Points:\n", + "* A valid Sudoku puzzle will have only one solution.\n", + "* The puzzle’s difficulty depends on the number and placement of given numbers, which influences the logical techniques needed to solve it.\n", + "\n", + "## Strategy\n", + "This is a search problem, but we need to use optimizations to reduce the search space so it doesn't take too long to solve each problem!\n", + "\n", + "**Search** - starting at one corner and stepping through cell by cell, place a number, and then check that it is valid. E.g. if you place a 3, check that there are no threes in the same row, column, and square. If a conflict is found, try another number. If none of 1-9 are without conflicts, step back to the previous cell you placed a number in and increment it. This strategy can take a long time to complete as there are many combinations of numbers to try, but is a path to solving every possible puzzle. We may need to introduce optimizations to reduce time required to find a solution. \n", + "\n", + "**Checking cells with fewest number of possibilities first** - compute a list of possible values for all unknown cells and start checking values of cells with the fewest possible values first. \n", + "\n", + "**Look for naked singles and hidden singles** - A naked single is a cell that only has one possible solution based on the values of cells in it's row, column, and square. A hidden single is a cell that has multiple possibilities, but one of it's possibilities is not possible for any other cell in its row, column, or square, so it must belong to this cell.\n", + "\n", + "**Set theory optimizations** - E.g. the Phistomefel Ring can be used in addition to the rows, columns, squares checks to ruduce numbers of possibilities for cells. \n", + "\n", + "### Search Strategies\n", + "There are a number of strategies for searching potential solution space for a problem. \n", + "\n", + "* Uninformed Search - when we are searching blindly for the goal.\n", + " * Bredth First\n", + " * Depth First\n", + " * Uniform Cost Search\n", + "* Informed Search - when we have a heuristic to tell is how close a state/node is to the goal.\n", + " * Greedy/Best-First Search\n", + " * A* Search\n", + " * Graph Search\n", + "\n", + "**Bredth First** explores all nodes at the present depth before exploring deeper and is helpful when you're trying to find the shortest path to something, but can be memory intensive.\n", + "* A\n", + "* B\n", + "* C\n", + "* D\n", + "\n", + "For this sudoku problem, a bredth first search would be akin to making copies of the puzzle for each possibility for a cell, and then making copies of each of those copies for each possibility for the next cell. This would result in us having as many as 9^(81-17) copies of the puzzle in memory:\n", + "* 81 being the total number of cells\n", + "* 17 being the minimum number of cells required to create a valid sudoku puzzle\n", + "* 9 being the number of possibilities for each cell\n", + "\n", + "**Depth First** is helpful when we need depth to test/eliminate possibilities and minimizes memory use. It may not work if the search space is very deep. \n", + "* A\n", + " * AA\n", + " * AAA\n", + " * AAB\n", + "\n", + "A depth first approach would result in having a maximum of only 81-17 copies of the puzzle in memory and works better for sudoku.\n", + "\n", + "**Greedy Search** could be used to explore nodes that are the most constrained first in order to reduce the search space.\n", + "\n", + "**Heuristics for Informed Search**\n", + "* Minimum Remaining Values (MRV) Heuristic - solve cells that have the fewest possibilities first\n", + "* Degree Heuristic - work on cells that have the most impact on empty cells in the same row/column/sub-grid\n", + "* Least Constraining Value (LCV) Heuristic - try values for cells that impose the least restriction on other cells to avoid conflicts.\n", + "\n", + "**Constraint propagation** - whenever a cell is solved, it removes that number as a possibility from all cells in the same row, column, and sub-grid. Constraint propagation is often used in tandem with backtracking, as it can simplify the puzzle and reduce the search space\n", + "\n", + "\n", + "## Sample Problems\n", + "There's a big dataset of sample problems here: https://www.kaggle.com/datasets/radcliffe/3-million-sudoku-puzzles-with-ratings\n", + "\n", + "A sample problem is a list of numbers and '.', with '.' being any value that we need to find. For example:\n", + "\n", + " ...81.....2........1.9..7...7..25.934.2............5...975.....563.....4......68.\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "...81.....2........1.9..7...7..25.934.2............5...975.....563.....4......68.\n", + "['.', '.', '.', '8', '1', '.', '.', '.', '.']\n", + "['.', '2', '.', '.', '.', '.', '.', '.', '.']\n", + "['.', '1', '.', '9', '.', '.', '7', '.', '.']\n", + "['.', '7', '.', '.', '2', '5', '.', '9', '3']\n", + "['4', '.', '2', '.', '.', '.', '.', '.', '.']\n", + "['.', '.', '.', '.', '.', '.', '5', '.', '.']\n", + "['.', '9', '7', '5', '.', '.', '.', '.', '.']\n", + "['5', '6', '3', '.', '.', '.', '.', '.', '4']\n", + "['.', '.', '.', '.', '.', '.', '6', '8', '.']\n", + "\n", + "1..5.37..6.3..8.9......98...1.......8761..........6...........7.8.9.76.47...6.312\n", + "['1', '.', '.', '5', '.', '3', '7', '.', '.']\n", + "['6', '.', '3', '.', '.', '8', '.', '9', '.']\n", + "['.', '.', '.', '.', '.', '9', '8', '.', '.']\n", + "['.', '1', '.', '.', '.', '.', '.', '.', '.']\n", + "['8', '7', '6', '1', '.', '.', '.', '.', '.']\n", + "['.', '.', '.', '.', '.', '6', '.', '.', '.']\n", + "['.', '.', '.', '.', '.', '.', '.', '.', '7']\n", + "['.', '8', '.', '9', '.', '7', '6', '.', '4']\n", + "['7', '.', '.', '.', '6', '.', '3', '1', '2']\n", + "\n", + "..5...74.3..6...19.....1..5...7...2.9....58..7..84......3.9...2.9.4.....8.....1.3\n", + "['.', '.', '5', '.', '.', '.', '7', '4', '.']\n", + "['3', '.', '.', '6', '.', '.', '.', '1', '9']\n", + "['.', '.', '.', '.', '.', '1', '.', '.', '5']\n", + "['.', '.', '.', '7', '.', '.', '.', '2', '.']\n", + "['9', '.', '.', '.', '.', '5', '8', '.', '.']\n", + "['7', '.', '.', '8', '4', '.', '.', '.', '.']\n", + "['.', '.', '3', '.', '9', '.', '.', '.', '2']\n", + "['.', '9', '.', '4', '.', '.', '.', '.', '.']\n", + "['8', '.', '.', '.', '.', '.', '1', '.', '3']\n", + "\n", + "........5.2...9....9..2...373..481.....36....58....4...1...358...42.......978...2\n", + "['.', '.', '.', '.', '.', '.', '.', '.', '5']\n", + "['.', '2', '.', '.', '.', '9', '.', '.', '.']\n", + "['.', '9', '.', '.', '2', '.', '.', '.', '3']\n", + "['7', '3', '.', '.', '4', '8', '1', '.', '.']\n", + "['.', '.', '.', '3', '6', '.', '.', '.', '.']\n", + "['5', '8', '.', '.', '.', '.', '4', '.', '.']\n", + "['.', '1', '.', '.', '.', '3', '5', '8', '.']\n", + "['.', '.', '4', '2', '.', '.', '.', '.', '.']\n", + "['.', '.', '9', '7', '8', '.', '.', '.', '2']\n", + "\n" + ] + } + ], + "source": [ + "samples = [\n", + " '...81.....2........1.9..7...7..25.934.2............5...975.....563.....4......68.',\n", + " '1..5.37..6.3..8.9......98...1.......8761..........6...........7.8.9.76.47...6.312',\n", + " '..5...74.3..6...19.....1..5...7...2.9....58..7..84......3.9...2.9.4.....8.....1.3',\n", + " '........5.2...9....9..2...373..481.....36....58....4...1...358...42.......978...2',\n", + "]\n", + "for sample in samples:\n", + " print(sample)\n", + " sample = list(sample)\n", + " # Convert it to a 2D list\n", + " puzzle = [sample[i:i+9] for i in range(0, 81, 9)]\n", + " for row in puzzle:\n", + " print(row)\n", + " print()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example code using plain python\n", + "Using plain python loops and lists, we can step through rows and columns using for loops pretty easily, but things quickly get complex when looking at columns and the squares:" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cell 0 0 {'5', '.'} {'7', '5', '.'} {'2', '9', '.'}\n", + "cell 0 1 {'5', '.'} {'.', '9', '8', '1', '3', '2'} {'2', '9', '.'}\n", + "cell 0 2 {'5', '.'} {'9', '4', '.'} {'2', '9', '.'}\n", + "cell 0 3 {'5', '.'} {'7', '2', '.', '3'} {'9', '2', '.'}\n", + "cell 0 4 {'5', '.'} {'6', '.', '8', '4', '2'} {'9', '2', '.'}\n", + "cell 0 5 {'5', '.'} {'9', '.', '3', '8'} {'9', '2', '.'}\n", + "cell 0 6 {'5', '.'} {'1', '4', '.', '5'} {'5', '.', '3'}\n", + "cell 0 7 {'5', '.'} {'.', '8'} {'5', '.', '3'}\n", + "cell 1 0 {'2', '9', '.'} {'7', '5', '.'} {'2', '9', '.'}\n", + "cell 1 2 {'2', '9', '.'} {'9', '4', '.'} {'2', '9', '.'}\n", + "cell 1 3 {'2', '9', '.'} {'7', '2', '.', '3'} {'9', '2', '.'}\n", + "cell 1 4 {'2', '9', '.'} {'6', '.', '8', '4', '2'} {'9', '2', '.'}\n", + "cell 1 6 {'2', '9', '.'} {'1', '4', '.', '5'} {'5', '.', '3'}\n", + "cell 1 7 {'2', '9', '.'} {'.', '8'} {'5', '.', '3'}\n", + "cell 1 8 {'2', '9', '.'} {'2', '.', '5', '3'} {'5', '.', '3'}\n", + "cell 2 0 {'9', '2', '.', '3'} {'7', '5', '.'} {'2', '9', '.'}\n", + "cell 2 2 {'9', '2', '.', '3'} {'9', '4', '.'} {'2', '9', '.'}\n", + "cell 2 3 {'9', '2', '.', '3'} {'7', '2', '.', '3'} {'9', '2', '.'}\n", + "cell 2 5 {'9', '2', '.', '3'} {'9', '.', '3', '8'} {'9', '2', '.'}\n", + "cell 2 6 {'9', '2', '.', '3'} {'1', '4', '.', '5'} {'5', '.', '3'}\n", + "cell 2 7 {'9', '2', '.', '3'} {'.', '8'} {'5', '.', '3'}\n", + "cell 3 2 {'8', '1', '4', '3', '7', '.'} {'9', '4', '.'} {'.', '8', '3', '7', '5'}\n", + "cell 3 3 {'8', '1', '4', '3', '7', '.'} {'7', '2', '.', '3'} {'6', '8', '4', '3', '.'}\n", + "cell 3 7 {'8', '1', '4', '3', '7', '.'} {'.', '8'} {'1', '4', '.'}\n", + "cell 3 8 {'8', '1', '4', '3', '7', '.'} {'2', '.', '5', '3'} {'1', '4', '.'}\n", + "cell 4 0 {'6', '.', '3'} {'7', '5', '.'} {'.', '8', '3', '7', '5'}\n", + "cell 4 1 {'6', '.', '3'} {'.', '9', '8', '1', '3', '2'} {'.', '8', '3', '7', '5'}\n", + "cell 4 2 {'6', '.', '3'} {'9', '4', '.'} {'.', '8', '3', '7', '5'}\n", + "cell 4 5 {'6', '.', '3'} {'9', '.', '3', '8'} {'6', '8', '4', '3', '.'}\n", + "cell 4 6 {'6', '.', '3'} {'1', '4', '.', '5'} {'1', '4', '.'}\n", + "cell 4 7 {'6', '.', '3'} {'.', '8'} {'1', '4', '.'}\n", + "cell 4 8 {'6', '.', '3'} {'2', '.', '5', '3'} {'1', '4', '.'}\n", + "cell 5 2 {'4', '.', '5', '8'} {'9', '4', '.'} {'.', '8', '3', '7', '5'}\n", + "cell 5 3 {'4', '.', '5', '8'} {'7', '2', '.', '3'} {'6', '8', '4', '3', '.'}\n", + "cell 5 4 {'4', '.', '5', '8'} {'6', '.', '8', '4', '2'} {'6', '8', '4', '3', '.'}\n", + "cell 5 5 {'4', '.', '5', '8'} {'9', '.', '3', '8'} {'6', '8', '4', '3', '.'}\n", + "cell 5 7 {'4', '.', '5', '8'} {'.', '8'} {'1', '4', '.'}\n", + "cell 5 8 {'4', '.', '5', '8'} {'2', '.', '5', '3'} {'1', '4', '.'}\n", + "cell 6 0 {'.', '8', '1', '3', '5'} {'7', '5', '.'} {'1', '4', '.', '9'}\n", + "cell 6 2 {'.', '8', '1', '3', '5'} {'9', '4', '.'} {'1', '4', '.', '9'}\n", + "cell 6 3 {'.', '8', '1', '3', '5'} {'7', '2', '.', '3'} {'.', '8', '3', '7', '2'}\n", + "cell 6 4 {'.', '8', '1', '3', '5'} {'6', '.', '8', '4', '2'} {'.', '8', '3', '7', '2'}\n", + "cell 6 8 {'.', '8', '1', '3', '5'} {'2', '.', '5', '3'} {'2', '.', '5', '8'}\n", + "cell 7 0 {'2', '4', '.'} {'7', '5', '.'} {'1', '4', '.', '9'}\n", + "cell 7 1 {'2', '4', '.'} {'.', '9', '8', '1', '3', '2'} {'1', '4', '.', '9'}\n", + "cell 7 4 {'2', '4', '.'} {'6', '.', '8', '4', '2'} {'.', '8', '3', '7', '2'}\n", + "cell 7 5 {'2', '4', '.'} {'9', '.', '3', '8'} {'.', '8', '3', '7', '2'}\n", + "cell 7 6 {'2', '4', '.'} {'1', '4', '.', '5'} {'2', '.', '5', '8'}\n", + "cell 7 7 {'2', '4', '.'} {'.', '8'} {'2', '.', '5', '8'}\n", + "cell 7 8 {'2', '4', '.'} {'2', '.', '5', '3'} {'2', '.', '5', '8'}\n", + "cell 8 0 {'.', '9', '8', '7', '2'} {'7', '5', '.'} {'1', '4', '.', '9'}\n", + "cell 8 1 {'.', '9', '8', '7', '2'} {'.', '9', '8', '1', '3', '2'} {'1', '4', '.', '9'}\n", + "cell 8 5 {'.', '9', '8', '7', '2'} {'9', '.', '3', '8'} {'.', '8', '3', '7', '2'}\n", + "cell 8 6 {'.', '9', '8', '7', '2'} {'1', '4', '.', '5'} {'2', '.', '5', '8'}\n", + "cell 8 7 {'.', '9', '8', '7', '2'} {'.', '8'} {'2', '.', '5', '8'}\n" + ] + } + ], + "source": [ + "# Example in plain python using loops and lists\n", + "for row_num, row in enumerate(puzzle):\n", + " for col_num, cell in enumerate(row):\n", + " if cell != '.':\n", + " continue\n", + " row_set = set(row)\n", + " col_set = set([puzzle[i][col_num] for i in range(9)])\n", + " row_lower, row_upper = row_num//3*3, row_num//3*3+3\n", + " col_lower, col_upper = col_num//3*3, col_num//3*3+3\n", + " square_set = set([puzzle[i][j] for i in range(row_lower, row_upper) for j in range(col_lower, col_upper)])\n", + "\n", + " print('cell', row_num, col_num, row_set, col_set, square_set)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example code using Numpy\n", + "For problems like this, numpy has a lot of advantages over regular python. We can still use loops to step through cells in the puzzle if we want, but many opereations can be vectorized to reduce the need for loops, and numpy array slicing makes it easier to select a row, column, or a square from the array than using plain python lists. " + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cell 0 0 [0 5] [0 5 7] [0 2 9]\n", + "cell 0 1 [0 5] [0 1 2 3 8 9] [0 2 9]\n", + "cell 0 2 [0 5] [0 4 9] [0 2 9]\n", + "cell 0 3 [0 5] [0 2 3 7] [0 2 9]\n", + "cell 0 4 [0 5] [0 2 4 6 8] [0 2 9]\n", + "cell 0 5 [0 5] [0 3 8 9] [0 2 9]\n", + "cell 0 6 [0 5] [0 1 4 5] [0 3 5]\n", + "cell 0 7 [0 5] [0 8] [0 3 5]\n", + "cell 1 0 [0 2 9] [0 5 7] [0 2 9]\n", + "cell 1 2 [0 2 9] [0 4 9] [0 2 9]\n", + "cell 1 3 [0 2 9] [0 2 3 7] [0 2 9]\n", + "cell 1 4 [0 2 9] [0 2 4 6 8] [0 2 9]\n", + "cell 1 6 [0 2 9] [0 1 4 5] [0 3 5]\n", + "cell 1 7 [0 2 9] [0 8] [0 3 5]\n", + "cell 1 8 [0 2 9] [0 2 3 5] [0 3 5]\n", + "cell 2 0 [0 2 3 9] [0 5 7] [0 2 9]\n", + "cell 2 2 [0 2 3 9] [0 4 9] [0 2 9]\n", + "cell 2 3 [0 2 3 9] [0 2 3 7] [0 2 9]\n", + "cell 2 5 [0 2 3 9] [0 3 8 9] [0 2 9]\n", + "cell 2 6 [0 2 3 9] [0 1 4 5] [0 3 5]\n", + "cell 2 7 [0 2 3 9] [0 8] [0 3 5]\n", + "cell 3 2 [0 1 3 4 7 8] [0 4 9] [0 3 5 7 8]\n", + "cell 3 3 [0 1 3 4 7 8] [0 2 3 7] [0 3 4 6 8]\n", + "cell 3 7 [0 1 3 4 7 8] [0 8] [0 1 4]\n", + "cell 3 8 [0 1 3 4 7 8] [0 2 3 5] [0 1 4]\n", + "cell 4 0 [0 3 6] [0 5 7] [0 3 5 7 8]\n", + "cell 4 1 [0 3 6] [0 1 2 3 8 9] [0 3 5 7 8]\n", + "cell 4 2 [0 3 6] [0 4 9] [0 3 5 7 8]\n", + "cell 4 5 [0 3 6] [0 3 8 9] [0 3 4 6 8]\n", + "cell 4 6 [0 3 6] [0 1 4 5] [0 1 4]\n", + "cell 4 7 [0 3 6] [0 8] [0 1 4]\n", + "cell 4 8 [0 3 6] [0 2 3 5] [0 1 4]\n", + "cell 5 2 [0 4 5 8] [0 4 9] [0 3 5 7 8]\n", + "cell 5 3 [0 4 5 8] [0 2 3 7] [0 3 4 6 8]\n", + "cell 5 4 [0 4 5 8] [0 2 4 6 8] [0 3 4 6 8]\n", + "cell 5 5 [0 4 5 8] [0 3 8 9] [0 3 4 6 8]\n", + "cell 5 7 [0 4 5 8] [0 8] [0 1 4]\n", + "cell 5 8 [0 4 5 8] [0 2 3 5] [0 1 4]\n", + "cell 6 0 [0 1 3 5 8] [0 5 7] [0 1 4 9]\n", + "cell 6 2 [0 1 3 5 8] [0 4 9] [0 1 4 9]\n", + "cell 6 3 [0 1 3 5 8] [0 2 3 7] [0 2 3 7 8]\n", + "cell 6 4 [0 1 3 5 8] [0 2 4 6 8] [0 2 3 7 8]\n", + "cell 6 8 [0 1 3 5 8] [0 2 3 5] [0 2 5 8]\n", + "cell 7 0 [0 2 4] [0 5 7] [0 1 4 9]\n", + "cell 7 1 [0 2 4] [0 1 2 3 8 9] [0 1 4 9]\n", + "cell 7 4 [0 2 4] [0 2 4 6 8] [0 2 3 7 8]\n", + "cell 7 5 [0 2 4] [0 3 8 9] [0 2 3 7 8]\n", + "cell 7 6 [0 2 4] [0 1 4 5] [0 2 5 8]\n", + "cell 7 7 [0 2 4] [0 8] [0 2 5 8]\n", + "cell 7 8 [0 2 4] [0 2 3 5] [0 2 5 8]\n", + "cell 8 0 [0 2 7 8 9] [0 5 7] [0 1 4 9]\n", + "cell 8 1 [0 2 7 8 9] [0 1 2 3 8 9] [0 1 4 9]\n", + "cell 8 5 [0 2 7 8 9] [0 3 8 9] [0 2 3 7 8]\n", + "cell 8 6 [0 2 7 8 9] [0 1 4 5] [0 2 5 8]\n", + "cell 8 7 [0 2 7 8 9] [0 8] [0 2 5 8]\n" + ] + } + ], + "source": [ + "# Example in numpy using numpy arrays and broadcasting/vectorization\n", + "import numpy as np\n", + "puzzle = '........5.2...9....9..2...373..481.....36....58....4...1...358...42.......978...2'\n", + "puzzle = puzzle.replace('.', '0')\n", + "puzzle = np.array(list(puzzle)).astype(np.int8).reshape(9, 9)\n", + "\n", + "for row_num in range(9):\n", + " for col_num in range(9):\n", + " cell = puzzle[row_num, col_num]\n", + " if cell != 0:\n", + " continue\n", + " row_set = np.unique(puzzle[row_num])\n", + " col_set = np.unique(puzzle[:, col_num])\n", + " row_lower, row_upper = row_num//3*3, row_num//3*3+3\n", + " col_lower, col_upper = col_num//3*3, col_num//3*3+3\n", + " square_set = np.unique(puzzle[row_lower:row_upper, col_lower:col_upper])\n", + "\n", + " print('cell', row_num, col_num, row_set, col_set, square_set)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# And if we wanted to get a little more weird with numpy, we could make a 3d array\n", + "# having boolean values for possible values of each cell, and a shape of (9, 9, 9):\n", + "import numpy as np\n", + "puzzle = '........5.2...9....9..2...373..481.....36....58....4...1...358...42.......978...2'\n", + "puzzle = puzzle.replace('.', '0')\n", + "puzzle = np.array(list(puzzle)).astype(np.int8).reshape(9, 9)\n", + "possible_values = np.ones((9, 9, 9), dtype=bool)\n", + "\n", + "for row_num in range(9):\n", + " pass" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Recursion\n", + "A side effect of using search, or optimized search, to solve a sudoku puzzle is that we require\n", + "recursion to evaluate a changing board while tracking our progress and what has been tried so far. \n", + "\n", + "### Stack based approach \n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Recursive function approach" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.3" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From 7a0b38a5085f6fb461469a14d0ab1681a3de2f90 Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Thu, 7 Nov 2024 15:01:33 -0800 Subject: [PATCH 54/94] update schedule --- README.md | 14 ++++++-------- 1 file changed, 6 insertions(+), 8 deletions(-) diff --git a/README.md b/README.md index 86774cc..428befa 100644 --- a/README.md +++ b/README.md @@ -12,15 +12,13 @@ See the Notebooks list below for a more detailed list. ## Current Schedule: We were meeting on wednesdays during October, but due to a scheduling conflict, we'll bo moving to Thursdays. -* Wednesday Oct 23 4PM-5PM -* Wednesday Oct 30 4PM-5PM -* Thursday Nov 7 4:30PM to 5:30PM -* Thursday Nov 14 - 4:30 to 5:30PM (in the quiet room) -* Thursday Nov 21 4:30PM to 5:30PM +* Thursday Nov 07 - 4:30PM to 5:30PM +* Thursday Nov 14 - 4:30PM to 5:30PM (in the quiet room) +* Thursday Nov 21 - 4:30PM to 5:30PM * Thursday Nov 28 - NO MEETING Thanksgiving -* Thursday Dec 5 - 4:30PM to 5:30PM -* Thursday Dec 12 - 4:30PM to 5:30PM -* Thursday Dec 19 - 4:30P to 5:30PM (in the quiet room) +* Thursday Dec 05 - 4:30PM to 5:30PM +* Thursday Dec 12 - 4:30PM to 5:30PM +* Thursday Dec 19 - NO MEETING Library Winter Wonderland Event Please check the library calendar here to confirm dates/times: **https://engagedpatrons.org/EventsCalendar.cfm?SiteID=7839** * Set "limit by location" to "Cameron Park Library". From 86e00c5fbd4e48a0369ef39e64afe44095a6b9a6 Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Thu, 7 Nov 2024 21:04:53 -0800 Subject: [PATCH 55/94] add a problem --- B-Dictionaries_and_Loops.ipynb | 45 +++++++++++++++++++++++++++++++++- 1 file changed, 44 insertions(+), 1 deletion(-) diff --git a/B-Dictionaries_and_Loops.ipynb b/B-Dictionaries_and_Loops.ipynb index fee1141..5014190 100644 --- a/B-Dictionaries_and_Loops.ipynb +++ b/B-Dictionaries_and_Loops.ipynb @@ -116,6 +116,49 @@ "print('Colors now:', colors.items())" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### *Exercise*:\n", + "In the first cell below, we initialize an empty dictionary. In the cell afterward:\n", + "* Let's prompt the user for a color and for a thing.\n", + "* Then put the color and thing into the dictionary as a key value pair.\n", + "* Finally print out the dictionary. \n", + "\n", + "Each time you run the cell, it should add another thing into the dictionary." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Initializing an empty dictionary:\n", + "things_by_color = {}" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Your code here:\n", + "# Prompt the user for a color:\n", + "color = input('Enter the color of a thing: ')\n", + "\n", + "# Prompt the user for a thing:\n", + "thing = input...\n", + "\n", + "# Store the thing in the dictionary using the color as the key:\n", + "...\n", + "\n", + "# Print the dictionary:\n", + "..." + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -176,7 +219,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Let's play with all of this!\n", + "#### *Exercise*:\n", "\n" ] }, From aedfbbf4c7db0aed25752a0e333eb811a9f24556 Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Thu, 7 Nov 2024 21:05:13 -0800 Subject: [PATCH 56/94] add project sollution --- P-Project_Solutions/P-Sudoku_Solver.ipynb | 262 ++++++++++++++++++++++ 1 file changed, 262 insertions(+) create mode 100644 P-Project_Solutions/P-Sudoku_Solver.ipynb diff --git a/P-Project_Solutions/P-Sudoku_Solver.ipynb b/P-Project_Solutions/P-Sudoku_Solver.ipynb new file mode 100644 index 0000000..b4c9aab --- /dev/null +++ b/P-Project_Solutions/P-Sudoku_Solver.ipynb @@ -0,0 +1,262 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "import copy\n", + "\n", + "SAMPLES = [\n", + " '...81.....2........1.9..7...7..25.934.2............5...975.....563.....4......68.',\n", + " '1..5.37..6.3..8.9......98...1.......8761..........6...........7.8.9.76.47...6.312',\n", + " '..5...74.3..6...19.....1..5...7...2.9....58..7..84......3.9...2.9.4.....8.....1.3',\n", + " '........5.2...9....9..2...373..481.....36....58....4...1...358...42.......978...2',\n", + "]\n", + "NUMBERS = '123456789'" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "def checkIfValid(puzzle):\n", + " '''Check rows for duplicates,\n", + " Check cols for duplicates,\n", + " Check boxes for duplicates'''\n", + " # Check rows\n", + " for n in range(9):\n", + " row = puzzle[n]\n", + " if len(row) != len(set(row)):\n", + " return False\n", + " # Check cols\n", + " for n in range(9):\n", + " col = [puzzle[i][n] for i in range(9)]\n", + " if len(col) != len(set(col)):\n", + " return False\n", + " # Check boxes\n", + " for i in range(0, 9, 3):\n", + " for j in range(0, 9, 3):\n", + " box = [puzzle[i + x][j + y] for x in range(3) for y in range(3)]\n", + " if len(box) != len(set(box)):\n", + " return False\n", + " return True" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def mostBasicDepthSearch(parent_puzzle, depth=0):\n", + " '''Solve the puzzle'''\n", + " # Make a unique copy of the puzzle so we don't modify paren't version\n", + " puzzle = copy.deepcopy(parent_puzzle)\n", + "\n", + " # Find the first cell that is empty\n", + " for row_num, row in enumerate(parent_puzzle):\n", + " for col_num, cell in enumerate(row):\n", + " # Skip known cells\n", + " if cell != 0:\n", + " continue\n", + " \n", + " row_set = set(row)\n", + " col_set = set([puzzle[i][col_num] for i in range(9)])\n", + " row_lower, row_upper = row_num//3*3, row_num//3*3+3\n", + " col_lower, col_upper = col_num//3*3, col_num//3*3+3\n", + " square_set = set([puzzle[i][j] for i in range(row_lower, row_upper) for j in range(col_lower, col_upper)])\n", + "\n", + " # Check for missing numbers\n", + " combined_set = row_set.union(col_set).union(square_set)\n", + " missing_set = set(NUMBERS).difference(combined_set)\n", + "\n", + " # Try each valid number\n", + " for number in missing_set:\n", + " puzzle[row_num][col_num] = number\n", + " child_puzzle = mostBasicDepthSearch(puzzle, depth+1)\n", + " if child_puzzle:\n", + " return child_puzzle\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def doTheThing(parent_puzzle, depth=0):\n", + " '''Solve the puzzle'''\n", + " # Make a unique copy of the puzzle so we don't modify paren't version\n", + " puzzle = copy.deepcopy(parent_puzzle)\n", + "\n", + " # Compute the set of all possible numbers for each cell\n", + " possible_numbers = [[set() for _ in range(9)] for _ in range(9)]\n", + " for row_num, row in enumerate(parent_puzzle):\n", + " for col_num, cell in enumerate(row):\n", + " # Skip known cells\n", + " if cell != 0:\n", + " continue\n", + " \n", + " row_set = set(row)\n", + " col_set = set([puzzle[i][col_num] for i in range(9)])\n", + " row_lower, row_upper = row_num//3*3, row_num//3*3+3\n", + " col_lower, col_upper = col_num//3*3, col_num//3*3+3\n", + " square_set = set([puzzle[i][j] for i in range(row_lower, row_upper) \n", + " for j in range(col_lower, col_upper)])\n", + "\n", + " # Check for missing numbers\n", + " combined_set = row_set.union(col_set).union(square_set)\n", + " missing_set = set(NUMBERS).difference(combined_set)\n", + " possible_numbers[row_num][col_num] = missing_set\n", + " \n", + " # Check for naked singles\n", + " for row_num, row in enumerate(possible_numbers):\n", + " for col_num, possible in enumerate(row):\n", + " if len(possible) == 1:\n", + " # We found a naked single\n", + " puzzle[row_num][col_num] = possible.pop()\n", + "\n", + " # Check for hidden singles\n", + " for row_num, row in enumerate(possible_numbers):\n", + " for col_num, possible in enumerate(row):\n", + " # Check each number to see if it is not possible for each of...\n", + " for number in possible:\n", + " # Check the row\n", + " row_set = set.union(*[possible_numbers[row_num][i] \n", + " for i in range(9) if i != col_num])\n", + " if number not in row_set:\n", + " puzzle[row_num][col_num] = number\n", + " break\n", + " # Check the col\n", + " col_set = set.union(*[possible_numbers[i][col_num] \n", + " for i in range(9) if i != row_num])\n", + " if number not in col_set:\n", + " puzzle[row_num][col_num] = number\n", + " break\n", + " # Check the square\n", + " row_lower, row_upper = row_num//3*3, row_num//3*3+3\n", + " col_lower, col_upper = col_num//3*3, col_num//3*3+3\n", + " square_set = set.union(*[possible_numbers[i][j] \n", + " for i in range(row_lower, row_upper) \n", + " for j in range(col_lower, col_upper) \n", + " if i != row_num and j != col_num])\n", + " if number not in square_set:\n", + " puzzle[row_num][col_num] = number\n", + " break\n", + "\n", + " # Make a guess for a cell with the fewest possible numbers\n", + " min_possible = 10\n", + " min_loc = None\n", + " for row_num, row in enumerate(possible_numbers):\n", + " for col_num, possible in enumerate(row):\n", + " if len(possible) == 0:\n", + " continue\n", + " if len(possible) < min_possible:\n", + " min_possible = len(possible)\n", + " min_loc = (row_num, col_num)\n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "...81.....2........1.9..7...7..25.934.2............5...975.....563.....4......68.\n", + "[0, 0, 0, 8, 1, 0, 0, 0, 0]\n", + "[0, 2, 0, 0, 0, 0, 0, 0, 0]\n", + "[0, 1, 0, 9, 0, 0, 7, 0, 0]\n", + "[0, 7, 0, 0, 2, 5, 0, 9, 3]\n", + "[4, 0, 2, 0, 0, 0, 0, 0, 0]\n", + "[0, 0, 0, 0, 0, 0, 5, 0, 0]\n", + "[0, 9, 7, 5, 0, 0, 0, 0, 0]\n", + "[5, 6, 3, 0, 0, 0, 0, 0, 4]\n", + "[0, 0, 0, 0, 0, 0, 6, 8, 0]\n", + "\n" + ] + }, + { + "ename": "KeyboardInterrupt", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[15], line 10\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[38;5;28mprint\u001b[39m(row)\n\u001b[1;32m 9\u001b[0m \u001b[38;5;28mprint\u001b[39m()\n\u001b[0;32m---> 10\u001b[0m solution \u001b[38;5;241m=\u001b[39m \u001b[43mmostBasicDepthSearch\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpuzzle\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 11\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m row \u001b[38;5;129;01min\u001b[39;00m solution:\n\u001b[1;32m 12\u001b[0m \u001b[38;5;28mprint\u001b[39m(row)\n", + "Cell \u001b[0;32mIn[14], line 26\u001b[0m, in \u001b[0;36mmostBasicDepthSearch\u001b[0;34m(parent_puzzle, depth)\u001b[0m\n\u001b[1;32m 24\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m number \u001b[38;5;129;01min\u001b[39;00m missing_set:\n\u001b[1;32m 25\u001b[0m puzzle[row_num][col_num] \u001b[38;5;241m=\u001b[39m number\n\u001b[0;32m---> 26\u001b[0m child_puzzle \u001b[38;5;241m=\u001b[39m \u001b[43mmostBasicDepthSearch\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpuzzle\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdepth\u001b[49m\u001b[38;5;241;43m+\u001b[39;49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 27\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m child_puzzle:\n\u001b[1;32m 28\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m child_puzzle\n", + "Cell \u001b[0;32mIn[14], line 26\u001b[0m, in \u001b[0;36mmostBasicDepthSearch\u001b[0;34m(parent_puzzle, depth)\u001b[0m\n\u001b[1;32m 24\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m number \u001b[38;5;129;01min\u001b[39;00m missing_set:\n\u001b[1;32m 25\u001b[0m puzzle[row_num][col_num] \u001b[38;5;241m=\u001b[39m number\n\u001b[0;32m---> 26\u001b[0m child_puzzle \u001b[38;5;241m=\u001b[39m \u001b[43mmostBasicDepthSearch\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpuzzle\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdepth\u001b[49m\u001b[38;5;241;43m+\u001b[39;49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 27\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m child_puzzle:\n\u001b[1;32m 28\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m child_puzzle\n", + " \u001b[0;31m[... skipping similar frames: mostBasicDepthSearch at line 26 (48 times)]\u001b[0m\n", + "Cell \u001b[0;32mIn[14], line 26\u001b[0m, in \u001b[0;36mmostBasicDepthSearch\u001b[0;34m(parent_puzzle, depth)\u001b[0m\n\u001b[1;32m 24\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m number \u001b[38;5;129;01min\u001b[39;00m missing_set:\n\u001b[1;32m 25\u001b[0m puzzle[row_num][col_num] \u001b[38;5;241m=\u001b[39m number\n\u001b[0;32m---> 26\u001b[0m child_puzzle \u001b[38;5;241m=\u001b[39m \u001b[43mmostBasicDepthSearch\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpuzzle\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdepth\u001b[49m\u001b[38;5;241;43m+\u001b[39;49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 27\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m child_puzzle:\n\u001b[1;32m 28\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m child_puzzle\n", + "Cell \u001b[0;32mIn[14], line 4\u001b[0m, in \u001b[0;36mmostBasicDepthSearch\u001b[0;34m(parent_puzzle, depth)\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m'''Solve the puzzle'''\u001b[39;00m\n\u001b[1;32m 3\u001b[0m \u001b[38;5;66;03m# Make a unique copy of the puzzle so we don't modify paren't version\u001b[39;00m\n\u001b[0;32m----> 4\u001b[0m puzzle \u001b[38;5;241m=\u001b[39m \u001b[43mcopy\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdeepcopy\u001b[49m\u001b[43m(\u001b[49m\u001b[43mparent_puzzle\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 6\u001b[0m \u001b[38;5;66;03m# Find the first cell that is empty\u001b[39;00m\n\u001b[1;32m 7\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m row_num, row \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28menumerate\u001b[39m(parent_puzzle):\n", + "File \u001b[0;32m/usr/lib/python3.12/copy.py:136\u001b[0m, in \u001b[0;36mdeepcopy\u001b[0;34m(x, memo, _nil)\u001b[0m\n\u001b[1;32m 134\u001b[0m copier \u001b[38;5;241m=\u001b[39m _deepcopy_dispatch\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;28mcls\u001b[39m)\n\u001b[1;32m 135\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m copier \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m--> 136\u001b[0m y \u001b[38;5;241m=\u001b[39m \u001b[43mcopier\u001b[49m\u001b[43m(\u001b[49m\u001b[43mx\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmemo\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 137\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 138\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28missubclass\u001b[39m(\u001b[38;5;28mcls\u001b[39m, \u001b[38;5;28mtype\u001b[39m):\n", + "File \u001b[0;32m/usr/lib/python3.12/copy.py:196\u001b[0m, in \u001b[0;36m_deepcopy_list\u001b[0;34m(x, memo, deepcopy)\u001b[0m\n\u001b[1;32m 194\u001b[0m append \u001b[38;5;241m=\u001b[39m y\u001b[38;5;241m.\u001b[39mappend\n\u001b[1;32m 195\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m a \u001b[38;5;129;01min\u001b[39;00m x:\n\u001b[0;32m--> 196\u001b[0m append(\u001b[43mdeepcopy\u001b[49m\u001b[43m(\u001b[49m\u001b[43ma\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmemo\u001b[49m\u001b[43m)\u001b[49m)\n\u001b[1;32m 197\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m y\n", + "File \u001b[0;32m/usr/lib/python3.12/copy.py:136\u001b[0m, in \u001b[0;36mdeepcopy\u001b[0;34m(x, memo, _nil)\u001b[0m\n\u001b[1;32m 134\u001b[0m copier \u001b[38;5;241m=\u001b[39m _deepcopy_dispatch\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;28mcls\u001b[39m)\n\u001b[1;32m 135\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m copier \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m--> 136\u001b[0m y \u001b[38;5;241m=\u001b[39m \u001b[43mcopier\u001b[49m\u001b[43m(\u001b[49m\u001b[43mx\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmemo\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 137\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 138\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28missubclass\u001b[39m(\u001b[38;5;28mcls\u001b[39m, \u001b[38;5;28mtype\u001b[39m):\n", + "File \u001b[0;32m/usr/lib/python3.12/copy.py:196\u001b[0m, in \u001b[0;36m_deepcopy_list\u001b[0;34m(x, memo, deepcopy)\u001b[0m\n\u001b[1;32m 194\u001b[0m append \u001b[38;5;241m=\u001b[39m y\u001b[38;5;241m.\u001b[39mappend\n\u001b[1;32m 195\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m a \u001b[38;5;129;01min\u001b[39;00m x:\n\u001b[0;32m--> 196\u001b[0m \u001b[43mappend\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdeepcopy\u001b[49m\u001b[43m(\u001b[49m\u001b[43ma\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmemo\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 197\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m y\n", + "\u001b[0;31mKeyboardInterrupt\u001b[0m: " + ] + } + ], + "source": [ + "# test_function = mostBasicDepthSearch\n", + "test_function = doTheThing\n", + "\n", + "for sample in SAMPLES:\n", + " print(sample)\n", + " sample = list(sample)\n", + " sample = [int(n) if n in NUMBERS else 0 for n in sample]\n", + " # Convert it to a 2D list\n", + " puzzle = [sample[i:i+9] for i in range(0, 81, 9)]\n", + " for row in puzzle:\n", + " print(row)\n", + " print()\n", + " solution = test_function(puzzle)\n", + " for row in solution:\n", + " print(row)\n", + " is_valid = checkIfValid(solution)\n", + " print('Valid:', is_valid)\n", + " print()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.3" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From bb79b518993633b1c0b66b9743e5f24d0013b166 Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Sun, 17 Nov 2024 12:20:27 -0800 Subject: [PATCH 57/94] new content! --- ... => A-Getting_Started_and_Data_Types.ipynb | 21 +- A1-Built_in_Operations.ipynb | 219 ++++++++++++++++ D6-Plotly_Express_and_Dash.ipynb | 233 ++++++++++++++++++ P-Project-Sudoku_Solver.ipynb | 2 +- P-Project_Solutions/P-Sudoku_Solver.ipynb | 2 +- 5 files changed, 473 insertions(+), 4 deletions(-) rename A-Getting_Started.ipynb => A-Getting_Started_and_Data_Types.ipynb (98%) create mode 100644 A1-Built_in_Operations.ipynb create mode 100644 D6-Plotly_Express_and_Dash.ipynb diff --git a/A-Getting_Started.ipynb b/A-Getting_Started_and_Data_Types.ipynb similarity index 98% rename from A-Getting_Started.ipynb rename to A-Getting_Started_and_Data_Types.ipynb index ebaf0bf..2f9a09d 100644 --- a/A-Getting_Started.ipynb +++ b/A-Getting_Started_and_Data_Types.ipynb @@ -710,7 +710,7 @@ "metadata": {}, "source": [ "# Tuples\n", - "Tuples are another type of collection, like lists, but cannot be changed once defined - they are immutable. When you see a tuple, it implies finality. Tuple objects only have a couple of built in functions:\n", + "Tuples are another type of collection, like lists, but cannot be changed once defined - they are **immutable**. When you see a tuple, it implies finality. Tuple objects only have a couple of built in functions:\n", "\n", " >>> all_colors = ('red', 'orange', 'yellow', 'green', 'blue', 'indigo', 'violet')\n", " >>> all_colors.\n", @@ -743,6 +743,23 @@ "all_colors = ('red', 'orange', 'yellow', 'green', 'blue', 'indigo', 'violet')" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Where did the word *tuple* come from? Tuples are sequences of numbers (although in python the can contain any objects). \n", + "\n", + "1-tuple, 2-tuple, 3-tuple, n-tuple:\n", + "* single\n", + "* double\n", + "* tripple\n", + "* quadruple\n", + "* pentuple\n", + "* ...\n", + "* n-tuple!\n", + "https://en.wikipedia.org/wiki/Tuple" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -864,7 +881,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Week 1 Turtle Challenge!\n", + "# First Turtle Challenge!\n", "Turtle is a simple python graphics library. You tell the turtle which directon to walk, how far to walk, and what color to draw, and the turtle draws lines for you!\n", "\n", "This week, we'll get turtle working, and make some simple patterns. \n", diff --git a/A1-Built_in_Operations.ipynb b/A1-Built_in_Operations.ipynb new file mode 100644 index 0000000..ff74a6b --- /dev/null +++ b/A1-Built_in_Operations.ipynb @@ -0,0 +1,219 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Section A1 - Built-in Operations\n", + "\n", + "Feedback: https://forms.gle/Le3RAsMEcYqEyswEA\n", + "\n", + "**Topics**: Python built-in functions for:\n", + "* Collections\n", + "* Math\n", + "* ...\n", + "\n", + "There's a list of built-in functions here: https://docs.python.org/3/library/functions.html. It's just an alphabetical list, and there's a lot there, so we'll try to break things into some useful categories here!\n", + "\n", + "## Collection Interaction Functions\n", + "These groups are for creating and working with collections of things, including lists, sets, dictionaries, tuples, etc!\n", + "\n", + "### Collection Creation and Conversion\n", + "We looked at the top few of these in the datatypes sections in the last notebook. The bottom ones are more obscure...\n", + "\n", + "* `list()`: Creates or converts an iterable to a list.\n", + "* `tuple()`: Creates or converts an iterable to a tuple.\n", + "* `set()`: Creates or converts an iterable to a set.\n", + "* `dict()`: Creates a dictionary.\n", + "* `frozenset()`: Converts an iterable to an immutable set.\n", + "* `bytes()`: Converts to bytes, often from a collection of integers.\n", + "* `bytearray()`: Creates a mutable byte array from a collection.\n", + "\n", + "### Element Access and Inspection\n", + "Most of these do exactly what you'd expect. Max, min, and sum require your iterator to contain numeric types. Sorted and reverse sort and reverse the order of your collection. Enumerate and zip are a little more complicated. There are examples for them below the following exercise.\n", + "\n", + "* `len()`: Returns the number of items in a collection.\n", + "* `max()` and `min()`: Return the maximum and minimum values in a collection.\n", + "* `sum()`: Adds all items in a collection of numbers.\n", + "* `sorted()`: Returns a sorted list from the items in a collection.\n", + "* `reversed()`: Returns a reversed iterator for a collection. Fwiw, reversed(x) is equivelant to x[::-1] in many cases.\n", + "\n", + "#### *Exercise*:\n", + "* Try each of len, max, min, sum, sorted, reversed on the following 'some_numbers' list. \n", + "* Compute the average of some_numbers using len and sum:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "some_numbers = [1, 5, 9, 2, 4, 8]\n", + "print('some_numbers:', some_numbers)\n", + "print('len of some_numbers:', ...)\n", + "...\n", + "print('average of some_numbers:', ...)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "These two are a little more complicated, but reasonably fall into the same category with sorted() and reversed(). \n", + "\n", + "* `enumerate()`: Adds an index to each item in a collection, useful for loops.\n", + "* `zip()`: Aggregates elements from multiple collections into tuples.\n", + "\n", + "**Enumerate** pairs each item in a a collection with a number indicating it's position in the collection and is very useful for for loops where you need to know the position of items that you iterate over. \n", + "\n", + "**Zip** takes two collections and pairs their elements into a new collection and is useful for, among other things, creating dictionaries. \n", + "\n", + "An Example using both of these:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Enumerate:\n", + "some_stuff = ['apple', 'berry', 'car', 'cat']\n", + "print('some_stuff:', some_stuff)\n", + "print('some_stuff enumerated:', list(enumerate(some_stuff)))\n", + "for n, thing in enumerate(some_stuff):\n", + " print(f'The position of {thing} in some_stuff is: {n}')\n", + "\n", + "# Zip:\n", + "colors = ['red', 'green', 'blue', 'black']\n", + "print('stuff zipped with colors:', list(zip(some_stuff, colors)))\n", + "stuff_colors = dict(zip(some_stuff, colors))\n", + "print('and as a dictoinary:', stuff_colors)\n", + "print('The color of the cat is:', stuff_colors['cat'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Filtering and Transformation\n", + "These are \n", + "\n", + "filter(): Filters items in a collection based on a function.\n", + "map(): Applies a function to each item in a collection, returning an iterator." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "Iteration and Access Control:\n", + "\n", + "all(): Checks if all elements in a collection are True.\n", + "any(): Checks if any element in a collection is True.\n", + "iter(): Returns an iterator for a collection.\n", + "next(): Retrieves the next item from an iterator.\n", + "range(): Generates a sequence of numbers, useful for collection indices.\n", + "slice(): Defines a slice, often used to access parts of collections.\n", + "\n", + "\n", + "\n", + "## Iterator and Collection Operations\n", + "Functions to create and work with iterators and iterable objects.\n", + "\n", + "iter(): Returns an iterator object.\n", + "next(): Retrieves the next item from an iterator.\n", + "enumerate(): Adds a counter to an iterable.\n", + "zip(): Aggregates elements from multiple iterables.\n", + "filter(): Filters elements in an iterable based on a function.\n", + "map(): Applies a function to all items in an iterable.\n", + "aiter() and anext(): Used for asynchronous iteration (for async generators).\n", + "\n", + "\n", + "## Mathematical Operations\n", + "* `pow()`: Returns a number raised to a power.\n", + "* `round()`: Rounds a number to a specified precision.\n", + "* `sum()`: Adds all items in an iterable.\n", + "* `min()` and `max()`: Return the minimum and maximum values in an iterable.\n", + "* `divmod()`: Returns the quotient and remainder of a division.\n", + "\n", + "There is no built in square root, but recall from math class that sqrt(x) is the same as pow(x, 0.5), x to the 1/2 power.\n", + "A few examples:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### *Exercise*:\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# \n", + "some_numbers = [2, 5, 13, 4, 7, 22]\n", + "sum_of_some_numbers = ...\n", + "average_of_some_numbers = ...\n", + "\n", + "# Calculate the length of the hypotenuse of a right triangle:\n", + "side_a_len = 3\n", + "side_b_len = 4\n", + "hypotenuse_len = ..." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## What else?" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.3" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/D6-Plotly_Express_and_Dash.ipynb b/D6-Plotly_Express_and_Dash.ipynb new file mode 100644 index 0000000..4136d8c --- /dev/null +++ b/D6-Plotly_Express_and_Dash.ipynb @@ -0,0 +1,233 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Section D6 - Plotly Express and Dash\n", + "\n", + "Feedback: https://forms.gle/Le3RAsMEcYqEyswEA\n", + "\n", + "Plotly is a graphing library, and Plotly Express is a wrapper for it that provides a consistent experience for making a wide variety of plots. It's the recommended starting point for plotly. If you run into a configuration that is'nt supported in express, then you can try using plotly directly..\n", + "\n", + "And Dash is a framework for making interactive visualizations using Plotly (Express). It can pop up an interactive window, a browser tab, or inline graph inside your notebook with interactive elements. Dash is also designed to build elements of larger web pages/dashboards for business/whatever. \n", + "\n", + "**Our Plan**:\n", + "* We'll dive into Plotly Express to learn about how to make and customize plots\n", + "* We'll look at a simple Dash app\n", + "* And we'll make a more complex Dash app\n", + "\n", + "**References**: \n", + "* [Dash in Jupyter](https://dash.plotly.com/dash-in-jupyter)\n", + "* [Plotly Tutorial](https://dash.plotly.com/tutorial)\n", + "* [Python Decorators](https://peps.python.org/pep-0318/)\n", + "* [Plotly Express](https://plotly.com/python/plotly-express/)\n", + "\n", + "## Anatomy of a simple Dash App:\n", + "Let's go through tke example code from the https://dash.plotly.com/minimal-app. The code is in the next cell. Here's a sumarry:\n", + "\n", + "* import statements\n", + "* read in a file as a pandas dataframe\n", + "* initialize the app\n", + "* define the **layout** - this is a list of elements to be shown - The **id** of these is used further down\n", + " * A heading\n", + " * A droptown menue with unique countries from our dataframe, including a default selection\n", + " * The graph we want to show\n", + "* The **update_graph** function\n", + " * The **@callback** stuff above it is a *decorator* that lets us specify the inputs and outputs our function has. \n", + " * These need to use the **id** from each item in our layout. \n", + " * Each **Input** each generate an argument to be passed to our update_graph function. \n", + " * The sequence of the arguments to update_graph matches the seqence that Inputs are listed in the decorator\n", + " * The code inside of the **update_graph** function handles any inputs (like drop down menus) and generates a graph.\n", + "* app.run starts the app. It calls update_graph once automaticaly, and ensures that update_graph gets called again when any of our inputs are interacted with. E.g. if we change the country drop down selction, it gets called. The if __name__ line is a convention in scripts, but behaves the same in a notebook." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from dash import Dash, html, dcc, callback, Output, Input\n", + "import plotly.express as px\n", + "import pandas as pd\n", + "\n", + "df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/gapminder_unfiltered.csv')\n", + "\n", + "app = Dash()\n", + "\n", + "app.layout = [\n", + " html.H1(children='Title of Dash App', style={'textAlign':'center'}),\n", + " dcc.Dropdown(df.country.unique(), 'Canada', id='dropdown-selection'),\n", + " dcc.Graph(id='graph-content')\n", + "]\n", + "\n", + "@callback(\n", + " Output('graph-content', 'figure'),\n", + " Input('dropdown-selection', 'value')\n", + ")\n", + "def update_graph(value):\n", + " dff = df[df.country==value]\n", + " return px.line(dff, x='year', y='pop')\n", + "\n", + "if __name__ == '__main__':\n", + " app.run(debug=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Plotly Express" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# %pip install dash\n", + "\n", + "from dash import Dash, html, dcc, callback, Output, Input\n", + "app = Dash(__name__)\n", + "import plotly.express as px\n", + "import pandas as pd" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can set the display mode for the plots to one of:\n", + "* \"external\" to pop up a window with the plot\n", + "* \"tab\" to open a separate browser tab\n", + "* \"jupyterlab\" to open the plot in line below the cell in the notebook" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "app.run(jupyter_mode=\"jupyterlab\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's import the same data we used n the Pandas_Graphing notebook to play with here:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " gage height ft temperature C \\\n", + "datetime \n", + "2024-09-15 20:00:00 5.37 20.4 \n", + "2024-09-15 20:15:00 5.58 20.4 \n", + "2024-09-15 20:30:00 5.75 20.3 \n", + "2024-09-15 20:45:00 5.99 20.3 \n", + "2024-09-15 21:00:00 6.21 20.3 \n", + "\n", + " specific conductance uS/cm dissolved oxygen mg/L pH \\\n", + "datetime \n", + "2024-09-15 20:00:00 159.0 8.6 7.8 \n", + "2024-09-15 20:15:00 165.0 8.6 7.8 \n", + "2024-09-15 20:30:00 165.0 8.6 7.8 \n", + "2024-09-15 20:45:00 166.0 8.6 7.8 \n", + "2024-09-15 21:00:00 166.0 8.6 7.9 \n", + "\n", + " dom ug/L salinity ppt fchl mg/L nitrate mg/L \n", + "datetime \n", + "2024-09-15 20:00:00 14.7 0.1 NaN NaN \n", + "2024-09-15 20:15:00 16.6 0.1 NaN NaN \n", + "2024-09-15 20:30:00 16.5 0.1 NaN NaN \n", + "2024-09-15 20:45:00 16.7 0.1 NaN NaN \n", + "2024-09-15 21:00:00 16.7 0.1 NaN NaN \n" + ] + } + ], + "source": [ + "data_url = 'https://waterservices.usgs.gov/nwis/iv/?sites=11455485&startDT=2024-09-15T20:55:29.967-07:00&endDT=2024-10-15T20:55:29.967-07:00&format=rdb'\n", + "tol_all= pd.read_csv(data_url, sep='\\t', comment='#', header=0)\n", + "tol_all = tol_all.drop(tol_all.index[0])\n", + "\n", + "cols = {'datetime': 'datetime',\n", + " '288768_00065': 'gage height ft',\n", + " '288432_00010': 'temperature C',\n", + " '288434_00095': 'specific conductance uS/cm',\n", + " '291459_00300': 'dissolved oxygen mg/L',\n", + " '291463_00400': 'pH',\n", + " '304254_32295': 'dom ug/L',\n", + " '305297_90860': 'salinity ppt',\n", + " '291460_32316': 'fchl mg/L', # chlorophyll\n", + " '313341_99133': 'nitrate mg/L'\n", + " } \n", + "tol = tol_all[cols.keys()].rename(columns=cols)\n", + "tol['datetime'] = pd.to_datetime(tol['datetime'])\n", + "tol = tol.set_index('datetime')\n", + "tol = tol.apply(pd.to_numeric, errors='coerce')\n", + "print(tol.head())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.3" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/P-Project-Sudoku_Solver.ipynb b/P-Project-Sudoku_Solver.ipynb index 60ce588..417f00b 100644 --- a/P-Project-Sudoku_Solver.ipynb +++ b/P-Project-Sudoku_Solver.ipynb @@ -413,7 +413,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.3" + "version": "3.11.6" } }, "nbformat": 4, diff --git a/P-Project_Solutions/P-Sudoku_Solver.ipynb b/P-Project_Solutions/P-Sudoku_Solver.ipynb index b4c9aab..3434e3a 100644 --- a/P-Project_Solutions/P-Sudoku_Solver.ipynb +++ b/P-Project_Solutions/P-Sudoku_Solver.ipynb @@ -254,7 +254,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.3" + "version": "3.11.6" } }, "nbformat": 4, From 0c26cfe091744b212dba1c8bed80735c02f3a835 Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Tue, 19 Nov 2024 17:32:56 -0800 Subject: [PATCH 58/94] updates --- A1-Built_in_Operations.ipynb | 157 +++++++++++++--------- D3-Pandas_Graphing.ipynb | 2 +- D6-Plotly_Express_and_Dash.ipynb | 9 +- P-Project_Solutions/P-Sudoku_Solver.ipynb | 4 - 4 files changed, 100 insertions(+), 72 deletions(-) diff --git a/A1-Built_in_Operations.ipynb b/A1-Built_in_Operations.ipynb index ff74a6b..ff44bd4 100644 --- a/A1-Built_in_Operations.ipynb +++ b/A1-Built_in_Operations.ipynb @@ -9,18 +9,60 @@ "Feedback: https://forms.gle/Le3RAsMEcYqEyswEA\n", "\n", "**Topics**: Python built-in functions for:\n", - "* Collections\n", - "* Math\n", - "* ...\n", + "* Mathematical Operations\n", + "* Collection Functions\n", + " * Creation and manipulation\n", + " * \n", "\n", "There's a list of built-in functions here: https://docs.python.org/3/library/functions.html. It's just an alphabetical list, and there's a lot there, so we'll try to break things into some useful categories here!\n", "\n", + "## Mathematical Operations\n", + "These are the basic mathematical functoins that are included in python without importing any libraries.\n", + "\n", + "* `pow()`: Returns a number raised to a power.\n", + "* `round()`: Rounds a number to a specified precision.\n", + "* `sum()`: Adds all items in an iterable.\n", + "* `min()` and `max()`: Return the minimum and maximum values in an iterable.\n", + "* `divmod()`: Returns the quotient and remainder of a division.\n", + "\n", + "There is no built in square root, but recall from math class that `sqrt(x)` is the same as `pow(x, 0.5)`, x to the 1/2 power.\n", + "\n", + "#### *Exercise*:\n", + "Replace the ... in the following code cell using the above functions to perform the needed calculations. Recall that the formula to calculate the hypotenuse length of a right triangle is the square root of (a squared plus b squared)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# \n", + "some_numbers = [2, 5, 13, 4, 7, 22]\n", + "sum_of_some_numbers = ...\n", + "average_of_some_numbers = ...\n", + "print(f'The sum and average of {some_numbers} are {sum_of_some_numbers} and {average_of_some_numbers}, respectively.')\n", + "smallest_number = ...\n", + "print(f'And the smallest number in the list is {smallest_number}.')\n", + "\n", + "# Calculate the length of the hypotenuse of a right triangle:\n", + "side_a_len = 3\n", + "side_b_len = 4\n", + "hypotenuse_len = ...\n", + "print(f'The hypotenuse of a right triangle with side lengths of {side_a_len} and {side_b_len} is {hypotenuse_len}.')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ "## Collection Interaction Functions\n", "These groups are for creating and working with collections of things, including lists, sets, dictionaries, tuples, etc!\n", "\n", "### Collection Creation and Conversion\n", - "We looked at the top few of these in the datatypes sections in the last notebook. The bottom ones are more obscure...\n", + "We've seen many of these already. Aside from range(), everythong on this list can initialize a collection of some type and/or type-cast an object to the given type:\n", "\n", + "* `range()`: Generates a range of numbers. \n", "* `list()`: Creates or converts an iterable to a list.\n", "* `tuple()`: Creates or converts an iterable to a tuple.\n", "* `set()`: Creates or converts an iterable to a set.\n", @@ -29,14 +71,23 @@ "* `bytes()`: Converts to bytes, often from a collection of integers.\n", "* `bytearray()`: Creates a mutable byte array from a collection.\n", "\n", - "### Element Access and Inspection\n", - "Most of these do exactly what you'd expect. Max, min, and sum require your iterator to contain numeric types. Sorted and reverse sort and reverse the order of your collection. Enumerate and zip are a little more complicated. There are examples for them below the following exercise.\n", + "### Inspection and Ordering\n", + "Some of these do exactly what you'd expect:\n", + "* Max, min, and sum require your iterator to contain numeric types. \n", + "* Sorted and reverse sort and reverse the order of your collection. \n", + "* Any and all are especially interested when combined with list comprehinsions. Examples below. \n", + "* Enumerate and zip have examples below as well.\n", "\n", + "And the functions:\n", "* `len()`: Returns the number of items in a collection.\n", "* `max()` and `min()`: Return the maximum and minimum values in a collection.\n", "* `sum()`: Adds all items in a collection of numbers.\n", + "* `all()`: Checks if all elements in a collection are True.\n", + "* `any()`: Checks if any element in a collection is True.\n", "* `sorted()`: Returns a sorted list from the items in a collection.\n", "* `reversed()`: Returns a reversed iterator for a collection. Fwiw, reversed(x) is equivelant to x[::-1] in many cases.\n", + "* `enumerate()`: Adds an index to each item in a collection, useful for loops.\n", + "* `zip()`: Aggregates elements from multiple collections into tuples, useful for creating dictoinaries.\n", "\n", "#### *Exercise*:\n", "* Try each of len, max, min, sum, sorted, reversed on the following 'some_numbers' list. \n", @@ -56,20 +107,35 @@ "print('average of some_numbers:', ...)" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Example with any and all**:\n", + "These both evaluate truthiness of items in the given collection, which can be useful for checking if any/all items in a collection are empty, zero, etc. They can be even more useful when combined with list comprehensions to perform a specific evaluation on each element of a collection. See below:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "markdown", "metadata": {}, "source": [ "These two are a little more complicated, but reasonably fall into the same category with sorted() and reversed(). \n", "\n", - "* `enumerate()`: Adds an index to each item in a collection, useful for loops.\n", - "* `zip()`: Aggregates elements from multiple collections into tuples.\n", "\n", "**Enumerate** pairs each item in a a collection with a number indicating it's position in the collection and is very useful for for loops where you need to know the position of items that you iterate over. \n", "\n", "**Zip** takes two collections and pairs their elements into a new collection and is useful for, among other things, creating dictionaries. \n", "\n", - "An Example using both of these:" + "An Example using both of these with some print statements to show the results of enumerate and zip, as well as how they're often used. \n", + "\n", + "*Note that when we print the output of stuff like zip and enumerate, we wrap them in list() because they return a lazy-evaluating-iterator thing that doesn't print well otherwise. It's a python performance optimization thing. Try removing the list() and see what you get.*" ] }, { @@ -97,51 +163,35 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Filtering and Transformation\n", - "These are \n", + "## Iteration and Access Control:\n", "\n", - "filter(): Filters items in a collection based on a function.\n", - "map(): Applies a function to each item in a collection, returning an iterator." + "iter(): Returns an iterator for a collection.\n", + "next(): Retrieves the next item from an iterator.\n", + "slice(): Defines a slice, often used to access parts of collections.\n", + "aiter() and anext(): Used for asynchronous iteration (for async generators)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ + "## Filtering and Transformation (Functional stuff)\n", + "These functions are pretty special ...\n", "\n", + "* `filter()`: Filters items in a collection based on a function.\n", + "* `map()`: Applies a function to each item in a collection, returning an iterator.\n", + "* `lambda`: " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ "\n", - "Iteration and Access Control:\n", - "\n", - "all(): Checks if all elements in a collection are True.\n", - "any(): Checks if any element in a collection is True.\n", - "iter(): Returns an iterator for a collection.\n", - "next(): Retrieves the next item from an iterator.\n", - "range(): Generates a sequence of numbers, useful for collection indices.\n", - "slice(): Defines a slice, often used to access parts of collections.\n", - "\n", - "\n", - "\n", - "## Iterator and Collection Operations\n", - "Functions to create and work with iterators and iterable objects.\n", "\n", - "iter(): Returns an iterator object.\n", - "next(): Retrieves the next item from an iterator.\n", - "enumerate(): Adds a counter to an iterable.\n", - "zip(): Aggregates elements from multiple iterables.\n", - "filter(): Filters elements in an iterable based on a function.\n", - "map(): Applies a function to all items in an iterable.\n", - "aiter() and anext(): Used for asynchronous iteration (for async generators).\n", "\n", "\n", - "## Mathematical Operations\n", - "* `pow()`: Returns a number raised to a power.\n", - "* `round()`: Rounds a number to a specified precision.\n", - "* `sum()`: Adds all items in an iterable.\n", - "* `min()` and `max()`: Return the minimum and maximum values in an iterable.\n", - "* `divmod()`: Returns the quotient and remainder of a division.\n", - "\n", - "There is no built in square root, but recall from math class that sqrt(x) is the same as pow(x, 0.5), x to the 1/2 power.\n", - "A few examples:" + "\n" ] }, { @@ -166,26 +216,7 @@ { "cell_type": "markdown", "metadata": {}, - "source": [ - "#### *Exercise*:\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# \n", - "some_numbers = [2, 5, 13, 4, 7, 22]\n", - "sum_of_some_numbers = ...\n", - "average_of_some_numbers = ...\n", - "\n", - "# Calculate the length of the hypotenuse of a right triangle:\n", - "side_a_len = 3\n", - "side_b_len = 4\n", - "hypotenuse_len = ..." - ] + "source": [] }, { "cell_type": "markdown", @@ -211,7 +242,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.3" + "version": "3.11.6" } }, "nbformat": 4, diff --git a/D3-Pandas_Graphing.ipynb b/D3-Pandas_Graphing.ipynb index b227198..5ef586b 100644 --- a/D3-Pandas_Graphing.ipynb +++ b/D3-Pandas_Graphing.ipynb @@ -366,7 +366,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.3" + "version": "3.11.6" } }, "nbformat": 4, diff --git a/D6-Plotly_Express_and_Dash.ipynb b/D6-Plotly_Express_and_Dash.ipynb index 4136d8c..2340178 100644 --- a/D6-Plotly_Express_and_Dash.ipynb +++ b/D6-Plotly_Express_and_Dash.ipynb @@ -8,9 +8,9 @@ "\n", "Feedback: https://forms.gle/Le3RAsMEcYqEyswEA\n", "\n", - "Plotly is a graphing library, and Plotly Express is a wrapper for it that provides a consistent experience for making a wide variety of plots. It's the recommended starting point for plotly. If you run into a configuration that is'nt supported in express, then you can try using plotly directly..\n", + "Plotly is a graphing library, and Plotly Express is a wrapper for it that provides a consistent experience for making a wide variety of plots. It's the recommended starting point for plotly. If you run into a configuration that is'nt supported in express, then you can try using plotly directly.\n", "\n", - "And Dash is a framework for making interactive visualizations using Plotly (Express). It can pop up an interactive window, a browser tab, or inline graph inside your notebook with interactive elements. Dash is also designed to build elements of larger web pages/dashboards for business/whatever. \n", + "And Dash is a framework for making interactive visualizations using Plotly (Express). It can pop up an interactive window, a browser tab, or inline graph inside your notebook with interactive elements. Dash is also designed to build elements of larger web pages/dashboards for business/whatever.\n", "\n", "**Our Plan**:\n", "* We'll dive into Plotly Express to learn about how to make and customize plots\n", @@ -44,7 +44,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -62,7 +62,7 @@ " " ], "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -81,6 +81,7 @@ "app.layout = [\n", " html.H1(children='Title of Dash App', style={'textAlign':'center'}),\n", " dcc.Dropdown(df.country.unique(), 'Canada', id='dropdown-selection'),\n", + " \n", " dcc.Graph(id='graph-content')\n", "]\n", "\n", diff --git a/P-Project_Solutions/P-Sudoku_Solver.ipynb b/P-Project_Solutions/P-Sudoku_Solver.ipynb index 3434e3a..d9ece76 100644 --- a/P-Project_Solutions/P-Sudoku_Solver.ipynb +++ b/P-Project_Solutions/P-Sudoku_Solver.ipynb @@ -158,10 +158,6 @@ " if len(possible) < min_possible:\n", " min_possible = len(possible)\n", " min_loc = (row_num, col_num)\n", - " \n", - "\n", - " \n", - " \n", "\n", " \n" ] From 641d148013c954300a355de3556d8a2d6d8936f2 Mon Sep 17 00:00:00 2001 From: Dan Date: Thu, 21 Nov 2024 17:12:52 -0800 Subject: [PATCH 59/94] Update README.md --- README.md | 2 -- 1 file changed, 2 deletions(-) diff --git a/README.md b/README.md index 428befa..1bcb3ed 100644 --- a/README.md +++ b/README.md @@ -12,8 +12,6 @@ See the Notebooks list below for a more detailed list. ## Current Schedule: We were meeting on wednesdays during October, but due to a scheduling conflict, we'll bo moving to Thursdays. -* Thursday Nov 07 - 4:30PM to 5:30PM -* Thursday Nov 14 - 4:30PM to 5:30PM (in the quiet room) * Thursday Nov 21 - 4:30PM to 5:30PM * Thursday Nov 28 - NO MEETING Thanksgiving * Thursday Dec 05 - 4:30PM to 5:30PM From 096c591d82515815f1a510d2c3b329aac274c162 Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Thu, 5 Dec 2024 16:26:03 -0800 Subject: [PATCH 60/94] updates --- A1-Built_in_Operations.ipynb | 66 +++++++++++++++++++++++++++++++--- B-Dictionaries_and_Loops.ipynb | 4 +-- 2 files changed, 63 insertions(+), 7 deletions(-) diff --git a/A1-Built_in_Operations.ipynb b/A1-Built_in_Operations.ipynb index ff44bd4..503d3cf 100644 --- a/A1-Built_in_Operations.ipynb +++ b/A1-Built_in_Operations.ipynb @@ -82,8 +82,8 @@ "* `len()`: Returns the number of items in a collection.\n", "* `max()` and `min()`: Return the maximum and minimum values in a collection.\n", "* `sum()`: Adds all items in a collection of numbers.\n", - "* `all()`: Checks if all elements in a collection are True.\n", - "* `any()`: Checks if any element in a collection is True.\n", + "* `all()`: Checks if all elements in a collection evaluate as True.\n", + "* `any()`: Checks if any element in a collection is evaluate as True.\n", "* `sorted()`: Returns a sorted list from the items in a collection.\n", "* `reversed()`: Returns a reversed iterator for a collection. Fwiw, reversed(x) is equivelant to x[::-1] in many cases.\n", "* `enumerate()`: Adds an index to each item in a collection, useful for loops.\n", @@ -112,7 +112,54 @@ "metadata": {}, "source": [ "**Example with any and all**:\n", - "These both evaluate truthiness of items in the given collection, which can be useful for checking if any/all items in a collection are empty, zero, etc. They can be even more useful when combined with list comprehensions to perform a specific evaluation on each element of a collection. See below:" + "These both evaluate truthiness of items in the given collection, which can be useful for checking if any/all items in a collection are empty, zero, etc. They can be even more useful when combined with generator expressions (like list comprehensions) to perform a specific evaluation on each element of a collection. See below:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "all nonzero? False True\n", + "any even? True False\n", + "all odd? False True\n" + ] + } + ], + "source": [ + "numbers = [0, 2, 3, 4, 5]\n", + "numbers2 = [1, 3, 5, 7]\n", + "\n", + "# Check if all numbers are non-zero\n", + "all_nonzero = all(numbers)\n", + "all_nonzero2 = all(numbers2)\n", + "print('all nonzero?', all_nonzero, all_nonzero2)\n", + "\n", + "# Check if any numbers are even\n", + "any_even = any(x % 2 == 0 for x in numbers)\n", + "any_even2 = any(x % 2 == 0 for x in numbers2)\n", + "print('any even?', any_even, any_even2)\n", + "\n", + "# Check if all numbers are odd\n", + "all_odd = all(x % 2 == 1 for x in numbers)\n", + "all_odd2 = all(x % 2 == 1 for x in numbers2)\n", + "print('all odd?', all_odd, all_odd2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### *Exercise*:\n", + "We'll try a variation of the above using strings instead of numbers. Using the list provided below, check the following conditions:\n", + "* Are all items lower case? Any items?\n", + "* Are any items UPPER case?\n", + "* Do all items have two words?\n", + "* Are any items zero length? Are all items non-zero length? Try these with and without generator expressions.\n" ] }, { @@ -120,7 +167,16 @@ "execution_count": null, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "fruit = ['red apple', 'green bananna', 'CHERRY', 'orange orange', '']\n", + "all_lower = ...\n", + "any_upper = ...\n", + "all_two_words = ...\n", + "any_zero_len = ...\n", + "...\n", + "\n", + "\n" + ] }, { "cell_type": "markdown", @@ -242,7 +298,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.6" + "version": "3.12.3" } }, "nbformat": 4, diff --git a/B-Dictionaries_and_Loops.ipynb b/B-Dictionaries_and_Loops.ipynb index 5014190..a390719 100644 --- a/B-Dictionaries_and_Loops.ipynb +++ b/B-Dictionaries_and_Loops.ipynb @@ -220,7 +220,7 @@ "metadata": {}, "source": [ "#### *Exercise*:\n", - "\n" + "# TODO \n" ] }, { @@ -934,7 +934,7 @@ "\n", "Let's make a journaling tool that we can use to record things we've learned each day in class. We'll use two cells for this.\n", "\n", - "In the first cell, we can create new jornal entries. Use open(journam_file, 'w+') with a **w+** to append to the file so that if you are making multiple entries on the same date, you don't overwrite one. An entry is a single line of text from the input function.\n", + "In the first cell, we can create new jornal entries. Use `open(journam_file, 'a')` with an **a** to append to the file so that if you are making multiple entries on the same date, you don't overwrite one. An entry is a single line of text from the input function.\n", "\n", "In the second cell, get a list of journal files using os.listdir and open them one at a time to print out the journal entries. \n", "\n", From 661616216f04e3e22162898489a86fa6fcb5bb6e Mon Sep 17 00:00:00 2001 From: Dan Date: Thu, 12 Dec 2024 16:21:38 -0800 Subject: [PATCH 61/94] Update README.md --- README.md | 7 ++++--- 1 file changed, 4 insertions(+), 3 deletions(-) diff --git a/README.md b/README.md index 1bcb3ed..0fb43d7 100644 --- a/README.md +++ b/README.md @@ -12,11 +12,12 @@ See the Notebooks list below for a more detailed list. ## Current Schedule: We were meeting on wednesdays during October, but due to a scheduling conflict, we'll bo moving to Thursdays. -* Thursday Nov 21 - 4:30PM to 5:30PM -* Thursday Nov 28 - NO MEETING Thanksgiving -* Thursday Dec 05 - 4:30PM to 5:30PM * Thursday Dec 12 - 4:30PM to 5:30PM * Thursday Dec 19 - NO MEETING Library Winter Wonderland Event +* Thursday Dec 26 - 4:30PM to 5:30PM +* Thursday Jan 02 - NO MEETING Vacation +* Thursday Jan 09 - 4:30PM to 5:30PM +* Thursdays ongoing. Please check the library calendar here to confirm dates/times: **https://engagedpatrons.org/EventsCalendar.cfm?SiteID=7839** * Set "limit by location" to "Cameron Park Library". From 82ff7b5583cf7f349f375e1a27bc7f1da9564bbd Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Thu, 12 Dec 2024 16:22:57 -0800 Subject: [PATCH 62/94] updates --- A1-Built_in_Operations.ipynb | 11 ++++++++--- 1 file changed, 8 insertions(+), 3 deletions(-) diff --git a/A1-Built_in_Operations.ipynb b/A1-Built_in_Operations.ipynb index 503d3cf..583616f 100644 --- a/A1-Built_in_Operations.ipynb +++ b/A1-Built_in_Operations.ipynb @@ -173,8 +173,13 @@ "any_upper = ...\n", "all_two_words = ...\n", "any_zero_len = ...\n", - "...\n", - "\n", + "#...\n", + "print(\"The Fruit list values are:\")\n", + "for description, value in (('all_lower', all_lower), \n", + " ('any_upper', any_upper), \n", + " ('all_two_words', all_two_words), \n", + " ('any_zero_len', any_zero_len)):\n", + " print(f'{description}: {value}')\n", "\n" ] }, @@ -298,7 +303,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.3" + "version": "3.11.6" } }, "nbformat": 4, From 2a89497923b4eafe8419e1402cb90acc4308a45c Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Sat, 18 Jan 2025 18:59:29 -0800 Subject: [PATCH 63/94] Updates! --- A1-Built_in_Operations.ipynb | 35 +++++++- F-Microcontrollers_and_Circuitpython.ipynb | 93 +++++++++++++++++++++- 2 files changed, 125 insertions(+), 3 deletions(-) diff --git a/A1-Built_in_Operations.ipynb b/A1-Built_in_Operations.ipynb index 583616f..7f4d0fd 100644 --- a/A1-Built_in_Operations.ipynb +++ b/A1-Built_in_Operations.ipynb @@ -196,7 +196,7 @@ "\n", "An Example using both of these with some print statements to show the results of enumerate and zip, as well as how they're often used. \n", "\n", - "*Note that when we print the output of stuff like zip and enumerate, we wrap them in list() because they return a lazy-evaluating-iterator thing that doesn't print well otherwise. It's a python performance optimization thing. Try removing the list() and see what you get.*" + "*Note that when we **print** the output of stuff like zip and enumerate, we wrap them in list() because they return a lazy-evaluating-iterator thing that doesn't print well otherwise. It's a python performance optimization thing. Try removing the list() and see what you get.*" ] }, { @@ -229,9 +229,18 @@ "iter(): Returns an iterator for a collection.\n", "next(): Retrieves the next item from an iterator.\n", "slice(): Defines a slice, often used to access parts of collections.\n", - "aiter() and anext(): Used for asynchronous iteration (for async generators)\n" + "aiter() and anext(): Used for asynchronous iteration (for async generators)\n", + "\n", + "These are probably out of scope for us... a good example will be added here some day." ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "markdown", "metadata": {}, @@ -244,6 +253,28 @@ "* `lambda`: " ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + ">>> rands = [random.random() for x in range(5)]\n", + ">>> sorted(rands)\n", + "[0.09589797654338261, 0.26042754570361837, 0.5768146165592276, 0.683793382265455, 0.9427230358114427]\n", + ">>> sorted(rands,)\n", + "\n", + ">>> sorted(rands, key=lambda x: str(x)[3])\n", + "[0.9427230358114427, 0.26042754570361837, 0.5768146165592276, 0.683793382265455, 0.09589797654338261]\n", + ">>> def third(x):\n", + "... return str(x)[3]\n", + "... \n", + ">>> sorted(rands, key=third)\n", + "[0.9427230358114427, 0.26042754570361837, 0.5768146165592276, 0.683793382265455, 0.09589797654338261]\n", + ">>> \n", + "\n" + ] + }, { "cell_type": "markdown", "metadata": {}, diff --git a/F-Microcontrollers_and_Circuitpython.ipynb b/F-Microcontrollers_and_Circuitpython.ipynb index 54e99cb..d24d51c 100644 --- a/F-Microcontrollers_and_Circuitpython.ipynb +++ b/F-Microcontrollers_and_Circuitpython.ipynb @@ -8,7 +8,60 @@ "\n", "Feedback: https://forms.gle/Le3RAsMEcYqEyswEA\n", "\n", - "**Topics:** Programming microcontrollers with CircuitPython" + "**Topics:** Programming microcontrollers with CircuitPython\n", + "\n", + "We'll look at circuitpython here - circuitpython is a version of micropython customized by Adafruit. They have a ton of guides, libraries, etc available and circuitpython is the best place to start. \n", + "\n", + "## Circuitpython vs. Micropython vs. Standard Python\n", + "Regular/standard pything runs as software on windows, mac, linux, etc. It interprets code and runs it, and includes libraries like sys, os, fsutil to interact with the operating system of the computer it's running on. \n", + "\n", + "Circuitpython and Micropython are firmware (the os) that you can load onto a microcontroller like a Pi Pico or a number of newer Arduino and other boards. These microcontroller boards have a small amount of storage for .py files and compiled libraries.\n", + "\n", + "Micropython offers some advanced features like multi-threading and has better/earlier hardware support for wifi, bluetooth, etc than Circuitpython, but it doesn't usually present a storage drive to drop code into directly. \n", + "\n", + "Circuitpython has more user friendly documentation and libraries, always presents the micocontroller as a storage device, has better usb hid (keyboard, mouse, gamepad) support, and is generally easier to start with. \n", + "\n", + "Both micropython and circuitpython present a serial console when you plug them into a computer that can be used to interact with the python prompt and see the text output from running code.\n", + "\n", + "Micropython runs \"main.py\" when it starts, and circuitpython runs \"code.py\" when it starts.\n", + "\n", + "## Hardware test setup\n", + "We'll practice on a pi pico microcontroller with a button, display, and accelerometer. The pi pico has a built in LED we can blink.\n", + "* Pi Pico: \n", + "* SSD1306 OLED Display:\n", + "* ADXL345 Accelerometer:\n", + "\n", + "## Getting Started\n", + "Download and install the \"Mu\" editor. There are other options, but mu just works - it knows where to look for code on the circuitpython microcontroller and has a button to open a serial terminal. https://codewith.mu/\n", + "\n", + "Flash micropython onto your microcontroller board. If you have a new board, it will present a storage device called UF2 something when you plug it into the computer. If it doesn't, then hold the boot button on the board while you plug it into the computer and it should go into uf2 flash mode.\n", + "\n", + "**Download a uf2 file from circuitpython for your board**\n", + "https://circuitpython.org/board/raspberry_pi_pico/\n", + "https://circuitpython.org/board/raspberry_pi_pico_w/\n", + "And **drag the file to the UF2 storage device presented by the board**. It'll automatically flash and reboot when you drop the file on it and present a CIRCUITPY storage device where you can modify the code.py.\n", + "\n", + "**Open Mu, click the Load button, and find code.py on the CIRCUITPY drive**. Now you can modify it and each time you save a change, the board will reboot and run the code. \n", + "\n", + "**Click the Serial button to see the serial console** for any print output, error messages, and for an interactive python prompt\n", + "* You can always press + in the serial terminal to quit the running code and get an interactive prompt \">>>\"\n", + "* You can press + at the prompt to reboot teh board and run code.py.\n", + "\n", + "## Basics\n", + "\n", + "### Built in modules\n", + "https://docs.circuitpython.org/en/latest/shared-bindings/index.html\n", + "\n", + "There are a lot of built in modules... here are a few that \n", + "* alarm\n", + "* analogio\n", + "* board - Analog and Digital Pins, Stemma I2C\n", + "* busio - I2C, SPI, UART (serial)\n", + "* digitalio\n", + "* gc - Garbage Collection & memory management. gc.collect(), gc.mem_free, ...\n", + "* time\n", + "\n", + "###" ] }, { @@ -17,6 +70,44 @@ "metadata": {}, "outputs": [], "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## I2C Devices\n", + "https://learn.adafruit.com/circuitpython-essentials/circuitpython-i2c\n", + "\n", + "\n", + "The first thing we want to do is initialize i2c and scan for devices to ensure that our hadware is connected to and communicating on the bus:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import board\n", + "import busio\n", + "\n", + "i2c = busio.I2C(board.GP27, board.GP26)\n", + "i2c.try_lock()\n", + "print(i2c.scan())\n", + "print([hex(addr) for addr in i2c.scan()])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You should see something like this: \n", + " [60, 83]\n", + " ['0x3c', '0x53']\n", + "* 60 is the display - this is hex value 0x3c\n", + "* 83 is the adxl345 - this is hex value 0x53\n", + "\n" + ] } ], "metadata": { From b3185f63412054d81e1339cab691b6837074cf2d Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Sun, 19 Jan 2025 08:11:25 -0800 Subject: [PATCH 64/94] content --- F-Microcontrollers_and_Circuitpython.ipynb | 56 ++++++++++++++++++++-- 1 file changed, 51 insertions(+), 5 deletions(-) diff --git a/F-Microcontrollers_and_Circuitpython.ipynb b/F-Microcontrollers_and_Circuitpython.ipynb index d24d51c..a4f9a7a 100644 --- a/F-Microcontrollers_and_Circuitpython.ipynb +++ b/F-Microcontrollers_and_Circuitpython.ipynb @@ -15,7 +15,7 @@ "## Circuitpython vs. Micropython vs. Standard Python\n", "Regular/standard pything runs as software on windows, mac, linux, etc. It interprets code and runs it, and includes libraries like sys, os, fsutil to interact with the operating system of the computer it's running on. \n", "\n", - "Circuitpython and Micropython are firmware (the os) that you can load onto a microcontroller like a Pi Pico or a number of newer Arduino and other boards. These microcontroller boards have a small amount of storage for .py files and compiled libraries.\n", + "Circuitpython and Micropython are firmware (the os) that you can load onto a microcontroller like a Pi Pico or a number of newer Arduino, Esp32, and other boards. These microcontroller boards have a small amount of storage for .py files and compiled libraries.\n", "\n", "Micropython offers some advanced features like multi-threading and has better/earlier hardware support for wifi, bluetooth, etc than Circuitpython, but it doesn't usually present a storage drive to drop code into directly. \n", "\n", @@ -44,10 +44,10 @@ "**Open Mu, click the Load button, and find code.py on the CIRCUITPY drive**. Now you can modify it and each time you save a change, the board will reboot and run the code. \n", "\n", "**Click the Serial button to see the serial console** for any print output, error messages, and for an interactive python prompt\n", - "* You can always press + in the serial terminal to quit the running code and get an interactive prompt \">>>\"\n", - "* You can press + at the prompt to reboot teh board and run code.py.\n", + "* You can always press ` + ` in the serial terminal to quit the running code and get an interactive prompt \">>>\"\n", + "* You can press ` + ` at the prompt to reboot teh board and run code.py.\n", "\n", - "## Basics\n", + "## Modules and Libraries\n", "\n", "### Built in modules\n", "https://docs.circuitpython.org/en/latest/shared-bindings/index.html\n", @@ -60,8 +60,54 @@ "* digitalio\n", "* gc - Garbage Collection & memory management. gc.collect(), gc.mem_free, ...\n", "* time\n", + "* math - sin, ..., log, pow, ... https://docs.circuitpython.org/en/latest/shared-bindings/math/index.html\n", + "* ... many more... audio, camera, etc. \n", + "\n", + "Just **import** these to use them. \n", + "\n", + "### Installing Libraries\n", + "There is no pip install for circuitpython libraries. But many libraries are provided as .mpy files (micropython bytecode) in a bundle you can download here: https://circuitpython.org/libraries\n", + "\n", + "You can check the version of circuitpython on your device by restarting the board and checking output ` + `, ` + `, ` + `, or looking at the boot_out.txt on the CIRCUITPY drive. \n", + "\n", + "We're interested in the ssd1306 and adxl345 libraries - you'll find them in the library bundle inside the lib directory:\n", + "* adafruit_adxl34x.mpy\n", + "* adafruit_ssd1306.mpy\n", + "\n", + "Copy them into your CIRCUITPY/lib directory. When you import and start using them, they may complain about additional libraries you need to copy from the bundle.\n", + "\n", + "## Basics\n", + "\n", + "For most things here, we'll use the board library to refer to the GPIO pins and LED on our board. E.g:\n", + "\n", + " >>> import board\n", + " >>> dir(board)\n", + " ['__class__', '__name__', 'A0', 'A1', 'A2', 'A3', 'GP0', 'GP1', 'GP10', 'GP11', 'GP12', 'GP13', 'GP14', 'GP15', 'GP16', 'GP17', 'GP18', 'GP19', 'GP2', 'GP20', 'GP21', 'GP22', 'GP26', 'GP26_A0', 'GP27', 'GP27_A1', 'GP28', 'GP28_A2', 'GP3', 'GP4', 'GP5', 'GP6', 'GP7', 'GP8', 'GP9', 'LED', 'SMPS_MODE', 'STEMMA_I2C', 'VBUS_SENSE', 'VOLTAGE_MONITOR', '__dict__', 'board_id']\n", + "\n", + "It's also helpful to use the time library to measure elapsed time or to \"sleep\", or wait for some period of time. We can use:\n", + "* time.monotonic() to get the number of seconds since the board was powered up\n", + "* time.monotonic_ns() to get the number of nanoseconds since the board was powered up\n", + "* time.sleep(seconds) to sleep for some number of seconds. \n", + "\n", + " >>> import time\n", + " >>> time.sleep(2)\n", + " >>> time.monotonic()\n", + " 47255.3\n", + " >>> time.monotonic_ns()\n", + " 47260617889414\n", + "\n", + "### Digital pins\n", + "Digital pins can either be inputs or outputs. An LED would be an output, or if you needed to drive a pin low/high on another device, you would use an output to do that. An input could be a button.\n", + "\n", + " import board\n", + " import digitalio\n", + "\n", "\n", - "###" + "#### *Exercise:*\n", + "* Make the LED blink once every second.\n", + "* Check the button and print a message when it's pressed. \n", + "* Check the button and print a message whenever its states changes between pressed and unpressed. \n", + "* Check the button and turn the LED on if the button is pressed, and turn it off when the button is released. Print a message when changing the states of the LED." ] }, { From c4d7d37d259a04e8f26d15340c04167a8ddfd478 Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Mon, 20 Jan 2025 19:27:59 -0800 Subject: [PATCH 65/94] content --- F-Microcontrollers_and_Circuitpython.ipynb | 5 +++++ images/picow_ssd1306_adxl345.jpg | Bin 0 -> 116299 bytes 2 files changed, 5 insertions(+) create mode 100644 images/picow_ssd1306_adxl345.jpg diff --git a/F-Microcontrollers_and_Circuitpython.ipynb b/F-Microcontrollers_and_Circuitpython.ipynb index a4f9a7a..7b43f4e 100644 --- a/F-Microcontrollers_and_Circuitpython.ipynb +++ b/F-Microcontrollers_and_Circuitpython.ipynb @@ -47,6 +47,11 @@ "* You can always press ` + ` in the serial terminal to quit the running code and get an interactive prompt \">>>\"\n", "* You can press ` + ` at the prompt to reboot teh board and run code.py.\n", "\n", + "#### *Exercise:*\n", + "* Per above, ensure you have circuitpython flashed to your board and the CIRCUITPY drive shows up when you plug it into the computer.\n", + "* Open Mu and click the Serial button at the top to open the serial terminal. \n", + "* A pretty fool-proof way to Press ` + ` and then ` + ` to\n", + "\n", "## Modules and Libraries\n", "\n", "### Built in modules\n", diff --git a/images/picow_ssd1306_adxl345.jpg b/images/picow_ssd1306_adxl345.jpg new file mode 100644 index 0000000000000000000000000000000000000000..c28374146f089fb0c331a80ff6e90f5d4827795c GIT binary patch literal 116299 zcmcG#1ymft(l0(MxVw`D7I$~|;I2uq#oY-KAh-ngKyV4}5-hlT(BL6~00|@nNg%vU z?)|=d@BjSYdFP$;z237kzp1XOuCD3ssp{FiU%lS}@EgdSM+zV z1prl5HUJ#}05HG{0t0AB#Dx4hL_`0u0bI!MpQ7yMX6KCf!v!Rx0Z=4`hmVg3k_-lj zky!l?3$pO>@Cl0X@QU&A!g%<_`1r+mM1lKLKt$W#&D+h(-pw7x&&30X$f;^T|ENHg zznJka#9yLGSW5z$phuw?*(cX>A@{owBYSUecQI~mS1&G08#gNim$jP7$1^*htbF32N|YxXUB#9aNrrBJ`eW>RUf`vKF1|wxVs>{En)sH&aPf!{*v^6m5U+qA2K&R>@SPAlO(;dhBi#z%@Y9=^`q?djm|?cnAL`=im)%FV}Hk{;ReUz6nBkOB^_2+#jkj`V=t-+S=a1@3FI^g4{%3F((59;+5c;qFAjjn&_}>Fu3I>DyYmy*bku$>&IR)%>WiT{}5QO zCAaFo8Pxg9{roWTTomWOxc)b1d>iDHK(0;-$oc>)WaCKOkHo}Q`nvK+yaWK~*fuUU zHUNOJgQUmU{pG>5|HEVVZ#>REE)D>I8T5zlg0S>L;$$R-TRFLVBXP?gy5~P+$Nu7f zll4YeBlTgvN7Augku0AWBJkO35dhkzEK510Ut0c*e>Z~;64KOhJQ1EPR< zAQ{L2a)DPsDNqH}0Zl+V&<(r=Mu16R4tNJ_06V||a15LQm%uL&2!sa00TF>HKo3BS zAa)QRNCYGWQUs}kbU`K{3y>Yi732d70zC)CgHl1cpdwHes1ei&dJ7r{&4boJyPzY` zH_%To1dI(P2Gf9&tPg$!wgY>BpMoR6FTmO0VsH((4g3~734RCO0Uv{Z zKmZ69gcL#t;e?1l0$S7nHvI9AR+(1#GL{J!%6Dkf> zff_)qp&rl>XaY1BS_y4~4nY^8yU;V}ZxkF9Y7}-9F%(r4V-!0SKa?nxOq6nzR+M3s zcPIxam#Cw9qWkywRf2 za?onf`p_284$!XAvCto&^PwxDo1(j-hofhrzeevxUqJta{tE*igAqdvLkq(OBLE`_ zqZFeHV;188;}<3YCNriaraq=4W*BBRW*z1*=6lTVSXfx}SfW@uSPodBSlL(&SYueb zSU1>&*lgJH*yh+i*e|dvu=}ysu)pKr;4tCH;F#igO9%%E_lY1x3`Fuo)O!t(isLA&fpK=8t@=^HGG{B zgHeRho-vDYl<|s*naPMLnyH=XkeQrWmH8=iHS>EG92RL750+w0Z2AdfRoDbEHkA@4)paNaK7Z+vWg)_i$fyG3urgv7kXn#8_} zbBa5OzZO4~V3t5gluGPN(o0%O7D?_%!K5st3Z-_W>7*^Ci>3Eu7-Vc@%4I&uvdTKj z*2sR5DD>^0D*do+o%u zET1%6pja4LytcTt)UqtL{9&bP_0sChTHZR#`q)OsCf();A&E#ue6p3aO|?C=le9~- zJF=Iy&$K^rkax&+ICoTWeC2rMq~%oMbnk5BTPRXspeVk1@e02)!|Kye85cku=qs!?D|Ui=J{Ux8TvK*6ZpIOPX(|A#0GqN zs`Ruh5E^J5I1oe^6c)4_EE`-D0t>8F0oSNS&i3k5O-b+2e%#lQMl=uo&?q+HZi%v79Nf?DER z^0CygbhJ#Qtg4){Jih#{!nIlUy?X2CteW$~uW4`lY=RlWuSL++D zHx=D<-FZDEJxRToy%D|leNX#-^t<<;ytR9~Kk#H=W6*eTX-H>iW>{@_Y(!~fa8!1* zZ%lHmdt7Y1b3$aIeNt$$ZAx&eby{$`bw+5WZB}@;V@`CgYhGf$cR_mL?V`fs$dc;P zXhL0-A*OfOSH={p|et!DpcZ+tLeaCv& z^;_-t`+JxB`+ti~xR7B9>|b$-0>akP$Jrb9Ct#6xb4EtsFg;{ag@AFw{sb}q2q6B) zj{k~Nta1RLJrV%O*Z)OBHlzKIrv4GP{l)(lU;c*~;D52@I<&GyK3lw@I$5s$o{+9IQ&h?99;iIZ~t=Bf3*BR zaPcoY{}nTPBm9wZCDKke_W(}^J9}@Ks;f7`)7A2iMV8Kg?~dmm8@=2-y&Zg9IADA{ z$ov}cvgPOdYZ3@s0U73P-`{^nX7Fg~0C1OdfB&oK{{9Z>3&;il^!wcJ0mzJ23DD30 z*pM>l0HguQibPNzULKwX(BI7dkH^6c|JVzFA@M)7Ly!nmi-J7WiBk*IBR)mallLg;u(z#`UUGH?$JDZY+vE~>a3 z=l^IZi4Mn?g@)tdD@8cX{4n+P%i9TGw^-jRw|SZK#97ZEJ>l0nVUV6);SX}Hi#*-J zAI6p~8k{9R$eUaqCX#ZT;xeqaxNyGkm5ioRq$Ks!gT#NYY;hRPZaO*fAcegn47YoN zTQr>e;)5Hm6-ew`%`eRvQNg}>Y3#=hl|B9yQoXJ40N$rUpKi=lXu1x z*FWs#noo7iwl#aFXP(R3izk!&?#SIH?E}NG^(TFoatFPR__38*`+))6^f6>s1kTe2 zeb?rR>&k_$9WfN*ae^&P4lyNgAcfT0Of25SqgJl0DVBLUilOfrJLW=76u~5xiYbJ| zHF%`Atf8VT0KaD;0GSCz*)Q%FJOUj~^WYwr0r28vOafhU-Ih?vNM2-y1r}-nO0+=) z4zXw+D&)x|?DXtUWeBrrO;K?G|6C}Uq+%#s4=|`4zW_9W{%~^-nq5^b_K7VQloe&l^T`S5W?`1Rrkgw)4| z4vO%B~4V7lwjyeJ@=)l!_eCDy$8xrOjlaIcXi$aB3%kTf`-E5 zucXwN|k|C+=78W78KSeh7v1fD{5uYg#BA zVx!_rfrpB%5Hv}^AM2@}9JKY1apS`3+p(r4{f61S*lCHp3a$oxMHrN6Oi|+U1Z7rJ zJ}pzTev5(ch@V>rqYJ@)CM_3{*}q&7@btYoQArsb>4Z!@XW5Z#6MY&eAx5MUr7D%s z7vf7lnV4v9?uQd%_-2*r)^WAVoE$MJm_O1VF(}6&nKZR*!lmJn1&tC%t+-a|mCGR1 zr8}nri~nLjBY}^0AYwP|lZa_gr7?4@w*>D2ZF-5?BP}nS5$W|8#{_(e6hdP*)U8u8 zyGPf{37)Ovc^sXk4tMFUb^gV^WLCvj*N=<08DG0OkhNTjs+P*$at(e`|7sDkG`Y3o z>NIw2IThrlU8g}bsq)oja#eDKQlzu;&C|Au-GTZ#Ji#=kqqc|Z%`8iaxJDrD*0O3P zfumKGlE&A&l!zR=PAo|6V{76qK%C0n1Z8Wu320UB?K(Z6A; z%SN)(&?3rVq1p`d(hTZ$3BDJFAV(G16;lhsB_LY>T}Z}X8>CkTL8X&1R&qp-0&k@Q z4v7F!SD{RkHb}=FmBla=g)odZof4JFG>rC3y-XN33uHu7A9U;_gGQtW2=wq^9?gW} zrs_5}59agIGKCVCgLOFpuw*5^-*SY4mL$M5p@nImOe%5ML}$~-rEiRD<;Ve=R=0bu z9YL(k!wNVp$b@=4GqnlFVMRYD#

U&IV}H(c1$zmE?IN{&7$mn{w=LwMRJUX|94< ztbKrupoDXj&sY=Xf;Ijymaa{T`c_X9f$Fy!ibwezgzHlb&hlJzHr^=Tz(ZJhEbm^t z@^%b*jc-miW58~!*M6SKMnMs3v9~G1zBp5xpx#M=5%VQihh3I)z=qTvrOr6dM(q8M zs(D%Nh%NUR0?Xt`QZmcI*}+=bq0|htM`y>7dtgfXV)0_oKh2H%Zu0Nd!fGsQl=w*B zrs@~AXLNESxORnG!+LiK5l<^`6RA+TBi64a1e*M6no+S*`#EDerDFx14M@f}nsqlH zZN|X4qrOtYjrY?Z7Ma-eBsCcm3sb1V&O1me9&2Z6vMhK!Q(8_V;%L{QPRb^_tqSI> zD_v?^TZ$@DVx=P8_kDy)IIQH?-V#7toEmGW{^enchv9Nf31`7$DFd3)c6Sa%mAYBd zZ>6NDG7jhhwxvuICFQVT?^4jxRyJT5&VuR~lZ0u(S`do;N)`( zaNQ?~up%>U7(+S8cn$>72AZ5aWFRsqnUnzM#YLe$h2k(UD6S1_0pv%*(Bx(Mzp?;p ziC`iD0&KJFLLikZoeT9K=6)6i3<@N-ipbzXt#4iNOCxw^~=OeslUOzo_`z$5M8B?-kV@q{- z9!W{k`_j#AAalOzh4hu*K=9zvQ!~|0?2kXiEbC9qp9vNI1pU-c*X~hbe=y&UHLcaL zWdFDX?;dy~g#Em%=k};naXJ<2!sKnr?Gv`lCCTYDD(;3U0iH>ccr>8s(gbdn!DhG{ zdFo@iV)|m?p@zGN#swhblqzo_+3e<}wh87CbdK=S@mkEH?WCYu9wM1;^ACd>y@~F@yKo(5otUJB15&;5EPk|EuEoWcf(KfF5c`Oh`n2nQ-25k_|k#w z#nSp{2EZ{c12v7u?{<+v^)3gc>(N8X(?e0pVJA|=HL{P{<75IzbMb|WLY;IQK*g69morQQPr2r={ou`ecF`Jjz%egG1=kCBQ&U8#Y-6DI~S*UuYas<2EJ9&gYu(-`XxW98W!L)^O{FdG;QM zx(sbc){aDzUK4x5C!(fK$*^KOqqO(4cLs0LucHT=I|N)_*r$p-DvUT({xndW!m1&t ztm5m|L`3r3nRwtF`LymI3*`Ros46;=trbM5YolcCJ znN}s-QZnLlK9IZevg6Q}rwnAJ3_EiA&D2uDev{vwZSPLY+wFmW$MWi%;>QW7@-GNcRLUC%@cRkZX1{n^BGozhRH(pVXM4?~TAb zovT>vjc-_T^n`DP``DZv9dg%e?*Rs#lZy?PiZg`X4z6Gb2JcEFo7l}17RWVXBUJ>D1u9dv=t8OA2{CtGubZq*tP z^7kpY?6?{yJGLez?Y}zp@%xhvmW-)~621sb60dFbB)DjP?Q#{BYwZdv;p%e4AmPcv z9SicaC>&GwVl^Lno%}Z3{Gd0|m2`V}r0A$Pr1`ZF2O;pfeTVNBrH`$VIPnwIU8t=O z6Odk+#SgxFs?FQA9~2}?^mX@ImqM^nDCdPj2#iN)w{UqoLx5|lIw%l#=*=4@MyA25 zCRJ=V1|obv?hNbHJ^no)<^+Rm`A7cSZIsUr3?}axUs|cYU_C;*BRwg zy!Mw$vm+APHM-SQFK;@2P`C^gkY2^HO*GqO3Z*LXZ=fxtQM`CkeQgmF7(DL0a6>8< z`Ax5$-?3m}>>xdhN$A>wNOHNql73$}?v^a}(x+izuSOxzIzbApnBM!YP z4fBQFPqjUs1fJ|QiiQ*Pa8-?8ot!?2d3q^h6Q#eP@rOYI8Uc!{zdn5S*jPxG8anGu zD(VAENV2DKx=88F89Tf8bdTOm{>pKDFhqE!;qbLccH{Lk59ZrR?ca=v1b;jnv{zbLMNzOS!rUbGwv^p}FEQP?x9$&SvBJ&Q$t%I8U`fWj;*vXNKQ48o--S*>Bh!5UJE5jt6D^J3Be>+<+80BUlfT7! z9ogTKi%N6wo-$C}10z;99zzpocYbx=<=s>zWZ$@-pSF`wVP7ZMs)c^!FfaRdE=0(y z>rzP(D(S;i^f{+zI*TZLeKkRWpeYJRd^A>O&Dmy9Wkk_@sNTPDL`BH@ z>010^77l}yBD|KbPTY0f?n(XLv!AaDYkQ-lpJPo+r#!iP<03m~Z-sXIFho5fsM4SJ zmR_n(E5$e@IZ*E&NE&)}D}4{N>KI#|Y1qCR4?6K{tu2Wg8OF|&$7g7Mv+)L6<7ggs z8Ki|v<5;s=M82+=JkIn>5a;-(vcMbBEYyy%M)nv5!se^E^HlFPxz0(Tkh;ssYoKWm ztlMdzB$IBj#h3h~ofPAm@@y(SlgjdYLN>smbf0WUgPmA9B z70PyixW73z`AdQNIFS;xUqYPUV&K_yoE9iC=RhH9C#k6aJ1o*qPQ{~nZg@??O?_qh zdb81kJfi|HD6s6pJ6=A9?UoNsl2Ta5aeNec zUuY*e56ayHZu5rfQi;7hI(s=%PPJNYZB%1}xagfm1$2f|2eE{dBN=UjQW9mw+)4K^ zDw2pFSY~nT^^^y$`?(XlrkxP6LzpVgOP zaBXhZ){t2tv^mCg9?a;wOv?gK-!~JC&5X{PEIK zvnB97@*enoH{12PfZ9V~e_TjvtxqGt;FMw1a%eQtP->S+h|k~q%ClyM=XP4WRP$82 zoch!6X(>_*;s>;(_GXV^9H|MzT7p7C3qK7~Mqg;g9f%eagyaM&f7yNZQ&XD4?Yy>e z{_TyeiQ_l!@OK^C4^N!0UkdOsQNx=eJYVmI3X44&>&@Jq$#kKnL*ovwdAc^?$o1mQ zz_btA+^tho&U+kKc?5~0JT`3@U{7vT2<}9N#d;t?)KJ`78PuL5K)1&sR8as3S^|+y zT5FRd+=2l}{LeXt344%42)S6s2gO7=$9F{W6?S~5!S92_ubhn&h85pZOQtPM3D(n9 z4jzqNba=WcKJ#zzybAN#!MNCwGH}KAjZD=aaJ&5SVmIa1Lp_?#g_c4tOBo8tV0V2J zi>G>*oX|L}O7Y!gJh9xP{9>O}o)GKf#PAOZS<)Xn?><{}7nm|CJ8v^(;q2W&ej0{P zvh0%-3@leRnh3uMv|K(n|ByK`IhJ?m(vL5*xTmKNuQzx(6Klu$JJe44+34 z#y%$3=n%*}<;@80BVO=L$xB>+l~ zzO0HPMM69&^n8il2cHyiXpK2_tP8K5SvngILZm6r6e3*SAj-44&DZ zl8q%+SJGeD`-vlRzVM!%`b_qXeQ`jOa>VqpJI}Wm@tgM@&rULA&OMg$90o3X0;Wyl z3s$+3l#BG%dfj?s@A7+Nx6ltFYA;Z)px-(_JH3+NVw-6(MO3?7p@-$NZ>xb<;LoiD zKllh@tF{rT(m*#Dv??kL$i_PN7*U_lwpxG#4s@+~RkNu=GhIAXO(C1PWu5qMPZWg(LGYuET> zSzj-Nh({Nveq>#j!g-DGeRPuEl2ZjwP|O~VCTB4Yt_PQwKWc<+`(``AJ%G`10q(l? z+_vME5<9?7SrJOu_SwcXdrqJf`ek^HtZJ$}>H(^PwVZ9eund%Lb zINN$ShcltTJ~l}#KhM-_%w$^ zd3HV%sg|IhDg^(|@-}=VlYz^8rL$-H=aG4D<%dP5V(p)%aSj3WO65 ztmDeL+~jDj_Ehlbp!3AO)OUKFXrEVO7lT;Z8tU{`n<_~4L8M|J-A!uGH-aRhC|*BL zcC_{ufLXAHOO@1olgsH9t4S{_+&0k6ewaAY3l)~KyAu7#v9ZYi{NZ|4PhXIzzFu)~ z+6F&Oh=lS?S8mYCpy&}{(>9p!KwQQ^nxAfr+sO&yxP0PJO>7J^9%@fZQ6F*azpSs7Hm zKmhkS_d}@g`t@9B<3j(d(7s)rv{FrG>C43Ra4V=4r(8qO2h$Jc0Gfu|S-te@@y}u^ zCp(n^@GG+xXDUCJ81ppwd@nOTmBc-5nNB>atakcZSGl6FpRU`AIX%Zw+P%qljq)5; zA~hN_dQP@ZB;faQFKm}vUGD*t*M}c%#u|n<4qi&O<15F>{stY?+4lCn%JB8L@F+Yb z#OTtX%g{%)F|-gMdt7|ko0Rve>0N*odrxujgY#^4k>MB{XTAeG7CA$S-!r~IB(^t7 zZEaUvym|)3mqAZ*hmh!sSM{}YS(1xSE-RDnc5YpCQdoMmimCKkTh{_bJ#Zt#Y+}rw z5NFX}?iLDanAlu@7`lo+;>Tq;-Oql@VM9dqWTd?(OT(r9Sl8W~AXTWhUn-Z^`kdFI zfImP2i!t%L@%qj;q5Y@ndWyRBXeut#Z-^OA$ys)|lq&W$y69^n?tyh7;wPtRnqt3y zF8LK}@QpY6ws>;cZ$7!v`0RJ4!2mveb(9pf*3tg9+x1&hF$juw|;JGupG^QEpB7tUQ+W5|FjLK8cPe+V*X`a+c{@V z|AtxBXEB4=J~#4|nH&kqBp@d##Yoe!H zG-e5`Wd0uI?gtb7tJW(#lI8_j0eCfa!j7$?_239s*P-EMUvHMBzKnC_3~Us{*2XmD z%%Sy4ZSfGXjo?x-L+Z`;WK=) zi@rh-DKs7^5KBS#4R6o&i_GPo+#yat!kPQb#!*3uYA)a6aFEA6pj5R^X6G+m&0mOc z?*(g2@=`iD#nZTo80MRMa2UQ3u<-IK7uw{UO(G5F=vT!s+V`CIf1W`}C`-SeMfu@y zuS`tvb6Fe9nvl@Aaf!;puD0=$B*JGzk4Fe}R2gP9HfYH|D}dnwpikk+w27P#`$^-H zF|K^rfB{UIzzzmeIg6M|`T#|UMAd=Jf`nC}47oi}8(pXryis>?X9i-Wl<2d0+3NI> zVID#m@smS&it}obMEaYYa`}_xAKQy!L+(CmHxc&h1-WKAlUGlNg~#jIQnJ2oy|c~f zt|2p9f3NaG>XDd%Vws_~&#}5v(wgrXNu0`>;v6AWes+OW^nuJ|CYEz?pa;h!EQNwU zeL-amn?e>=8pgOIk6?4j-B+S&=0fz}1I^P5A}2N?2tKWT;0fcd&nO4 z+7Gf|zu)F-e#!EtBA$7*bN0&nk<*lh`_tpgG~;ftI6jT5dI*!X*Dfp>kJp8Bq*{T) zl!Jf_`bm#-G;U=I1A5f&P?5pZ9owvQ^4*%Ek$0rI{DI(?FZ#BmzsJ?8vA+o!P`XbK zt z)83}~@?fpP&N#6oUY&~^JjG9y2S`0Vs<^0KYpQXa>fq_@655*XjTJdM7fIkSPB#uy z7`oCcG6XL`nU-yJ6_>yUF&#&f&Yz#)Nf&bT{@+GpdyaPsbto6Je6;^iT{q7?d998o#&^tkAKdc zzrALlz7cO@jogT<-{Q4O@(Ff5PxHE!Tkh>{Au)?n3wLzYN)y|b-0iON#E|u62%C11 zmJSv<^X9F?*i7sW4clWoc7B0Dc8FKOJ)0k!OHh2uwd|1;E#kn$9qn1mMZ0ZvAb>r; zwbD*qin^!RU%V!bs?{Rw!60pCC0R5v@M&;18dsuYP9|YB&&7-^TCri0?UV5SUIRoc z;7T_b`=@BDxG0qwf*S6ezsoxT!7s`s#U|rD3zwCe2k$ttk-y8dF&Gr(Zw(&EvL@us zR#I7wBt&4hJFU;OKOyNBausyYWuZ!1H^;YbXxfb^ER9oLjNL0T(1jwGX<0&r z=*@x?)MXMy((_rIP>0NnK(OuIoXWN3As$YtB^lRCF?E^?KOeZN?KFHRsPMnk4lded z&>5U~?K-Jjrp$OJe!j;0HvKx^NUO`*YO=n=AO#^R!j~X4k4tJi-t7KCmRj~Z&W-+9 zKB!}}ZwD8PEMncCm6?CnCKeu>ZZl*YQ)V#)bQRfYpHjTo6ZLu-wWloQg7a>WBkr8g z#Y%RGXy*Otu@3a9^-O+Zs@ZFP|LAkE$O~Pr;E(qJ=4)ks?Hi@HZ}LuK2Bqw6CcIG3 zu_rzHS683AI?C=InDFhqFwn)O?9P7lHW&0$dG95cw{nU`tesUv0C$Tdf8g;e?((<2 zYpc=A=pLY8|GTT^spL;cjdK zXUyLYr96xEQ})xm@r?^?T3pLcyhEAy(yuL#bSxOQEqj3rMv zwy3Ko*21hX=2nl(l=>^aR@h$GFu~qRIKSX5`bch0b+#1nTYohk_rUeLB5}``$T5sy zZ)mdjvAh4bB0{)b<}9&IxN%yAO#Air!*>^&%lm{ z7q_O`mvLN{5$KT3)7~|`(%8H1;VB32Kq=3Zd;PF>vMm%+*Z_F7R?pb%7DQorHjAA; zd0IX+!I+=FN@1=0Wp>vDC%ie;ncL0%=us_-UP*M_NwZtthTo+_`#n(eEY=|eEx*UH zM|qomT6%+sH%M+&f{_0~OSs(1@{p7nt}lc$`c-xvDZ-;T7p5J{hI{I|RJv8_sdDJ&0YB;-aa6H!puHCLnOyomm#W@^3({?EEh3G0I zTH36Di*|0#c{$$h^g1V_R9zQ?vufIZ(xmg)XYorxagR6Y+Ayt{>pqjUS!8dsWr1(B z>}H9$>Bq?}pfFL!;?y0zC;Fja+ydA9<#f{FkM$W&_p;smU87u8ayoWjc>Iq87m@e? zBaDfBnz3O4ht0IF30$W%U*m_TV=}Faf*MJ*jn5}!4at^Lwai>1JDxnxXVa}`ruY5P zJw1Ut?c-ybN_&R+-+bkSXgoK9vxQqh$x7QiGo-;QQ?mT1G#mBjGzWI>L%I5-r;F&V?Al@xSj zjN)AgMlA=l`?bSVz~L-F-CllZfg|}aI87Cuud)h+rw!B#0}Kp~btl z%MYSIlPXwhuWugfOb4p@ZYiefH^boP6rsN#!$AvoPUQ%-@Hfvl)L-I^3W_E9X?awo zDhvge@+=GmUKHl1{4xr86b2liReaq(kckPNThHI3XO@7*X_bxMECyppX(AD>FhtaN z8~|mRRTnKikSb_>80*|5>TBZn>Bu)v%WjXyzvG)KT%BO~z-#pYPUJ#4ny9L{8Tp#$ zZs25dUAo3E3{!*!@BE;d%IpztfsZwU{kiwa{t;e_koCl>?_fjD!!9ceA{g|!kNKEE z3zP@$V|ef=h%o+!lliEpHTIp5lly+yBkA9Q)Tvt&A$OOvvFj-6N0D;e)=?1yc-(|J z@Xqhhr~2$4GIG9bpWFk-8n3$1Z{*%@XPi#XCaQ`t7z&(xdTL}_GjCQJY@di=kMy7O=Lh(XFn0GKqi_c5SFV=vl%{Dj)AIrm6h;)5Z3MQPf&d zpjk{%jXdsC9$_4hV@D4cK5Dh*0%5zSw4C~znq?TGK1X%Yv*)$gWn{OwzvbR*>P-o~ zg7p8sC>2uS+KztV@ddU3RoJ^c^!g2&xOL=kUI>&P$YC&=M3}8Ub-!`?TKTf(%ZEp8 zLT~d3Z(wq#Q)dP=svp>e)Eh_Y6dH~ya+U~u*YZR6vsWc(^FK{o)@VIKnPt{}pgi$g z`s(sQ#rzd{otmGrFc@xTZv6D@?jrh}I@nYA!hG}0#|Y8Etd2{gMQkWP_2|*tm4fc$ z64LToDq?d&t){p1k`JS;_|Ohn3LC;6m&iBVE&32^pD2D`EE0m2jdE{yB^EbKOdp&V zhY!5zSYB$2+9gVS_D0SA3i9LQk<#3I^bujLd}4Nz!M)Wyvrn4O-EZVCc0Xy^8@G|S z%d7ZW_Nk6@UF$jFlRphVx^_bTWK^xigV|;E{lZuTQ1YhlJFy$V6#`OL-I#O-_vE_= zDyRCq+dBqESaH(ZB97C4M}L2v1E1CdwZ)O7G9h5xRA$2B@y4~&!`J#4sex?Q z0gwz3Kbyab8Q>DEG1Ha!R1YlfxChARgkn`$ac~~g%YI$XCuj=m?08kXSDFFwbC>%9 zkl9W;ttp$Y><=z#h)~A2A!c5ds4V{C+fp2~&Xil$+_R-_5%x0J52PN-^88?pDsGezTZtHGm?!T z{UBz?x@B(+b_vGg4MsUGDeP!}hQ{zjSC!t#!MW{~pL_7?^rkgM8GD@qH`_;7YeQ;j z%w}=3Rg1@~*`&WM$S3NF=nN8@{a0AfSUv_EOj}@d)FEhWr;f>bTx*E=(%exWxoW<2 za8`J%#F(&c^%_h;HB zdevv$FVEs_PfK=J@S^2ZC}L+BGgNOjCTky6`6+m}j~CvNwtbv5hdRX#3%F%})K?4y z4}GRoa7u9nR$h%`xb9rwzx4g4dFj(qEFK`9$%sqyEtSKBZ$#Fj9U|E5(Vnw#7sLHQ z??z?~&xNI)Hq0wEfhNdH!YlCw+g;SkbVN$5R4}F_l@AqjpbJI?wQ}c2tTy z;u8r<5x-QXY^~}akQmVikmRnknUS#Ja0Q`#&=u-iink1eov-wLD#a|LKhb^`4fzF7aM^5cI&p3Za#5Rdcjb>Dsh7@_<4*puGg5 z$V~<>0qioEwUxj(0?q!xUuK*B)-0cwIXS;kIRp)leX`Ox?SI_;@eQ>Rdvkkf+TrU{ z+`-;fI3eUxlbVd0!GC&{%F70UKub*QppqnPnfsxcA9*_HV==g!@@8rnLyIPIt^~EG zr8TtYwpz*Ad-2hl0^j>bKa^)^UWFrKOVx*)i9!A>?L;dYD90V{Mj!Nvd`)`tpP6#l zx1T&Kxn#1z?F57`W6`uYDhe{pCW()-I6M(rA#WIlEhcjGNdgaSL?egma6_NhWs!=# zOUcbrU?ig*lgw)RGEk~C-R|%uTndxI1|?P(^qUb#=1`{lq|X{y+2>Nt&$+tkoAb@w zei{B-8gp(`5}yZ9v*kZukdEKDss!TcLE(2|*`N*%GsBGT15=g7ym-x#ggUyLu1!iK`5kbXsq* zz3)l}k?vao?Ym{n`05KIn}aUKfmxz(4XgCf$Mny_qH^}Fhn`H~J3DrHAhPVI+RBf6 zDbl*x)5lZdjt5`$`0VPvq0@IXo}SEk6SE(3KuLWr)LE*;{21JSJmx`y@=cr%Lx>gF zh)eBlgBy(1BxKTy#Bs>ScyK!DSTp$rVt%C$3xOSSTLx=%N6N-Fcfa9SvqJllv2T>h zK^^lAAbB@IksM`)>aN0GHnupyT|(?Ios0Y7%UqJ}*qMC=3EvxT>Tr|d7bk-45gxzZ z9sCgH`1R!NG4dA~Z@Z*9>Jztz;ni^wyouIe?ebfUPDIaXmhSRmWz{U@n)(~+gWmZ% zmu~)EDgl#bJIsflm7H!I0zF8^25A;cDhkXj5x?BqteG(3$;2sM=0x?eYmv8O!u5za zL1@m$CUIZ!fro%-;*7P^lW01_4AeZ<$8dsAGT1}aOSksGHxf1zm@r(&<%ubp)t8+ry6Isdx^ClF=SzTZQ+R^c z%R!xr2ma*|WGJzVCaj^qF%o0(28zXb@k({Ltd`}fdnZ#^mjR}9hQ z3>PIcb9^5?>#?{^Y;%e-J|~nniQ=#GHn kU{I#?_Z0PG!4%FA6}*_@@`~A4Ps=f zmdT{p$}!j)X4ihBj^BNQI$^qwqv5H4awOqEdROuWm4#<_ZjXQf+e#dDGFEc`4GBda zM?@j#NxXZf;QY`#lksV?j=Yo6HjgGVB636l21!OST(Drd1DYIij3Wq%Y%MUZV*jR$ z3@Z%YrtS+b+6mb@v!ix4g}aOt)E^I>8yPEo-^D zbu>_*qN~6@nd;w+W!ALKJ&a|169o^PNjP6U?4mkymHM?%sD8XP{7Z3lHHgFVGH900 z^=!Ogiesn}Doy9&&5&4a!=vU>BJo}6aIS6JbwfxUmmlx>z*wr4ex@3!tp$jKe48J; z9iYlwnJH}?7f0yjdX!p;=QP4xuf!VhqHtkeS%wxM%V0`zb3%dMjK_7Fyc(p3@5alG z+E6D3YMPZ6yIrYk(1{xY;)8QPq_p3W@;q8zR?NKlT}zK5(Ud(l z{p_qr$F;Sd`DYLXtmk4%{7Cf8!#p)IO0z+B<0K*5o5$}I-OaqGnk`RPA`V=P_8s+A z`KEt27g4($Ka6$7h~0XElX{{hV_(=bymt9EusecqigPgh9?*LvDM04@$zoD`J0JA~<75oKxW7G66BvbyRu-T^1Jr=@;`EpWM4JsP<0>$?EES57PGmSGB2g~l*aOGV2X#GxG9Db`De$^6FVSOWK zhcJy~RW>ZD;>S%c3Xl!B8(zksv@Snvi9f4F_Y#}hCu`WOSRvB!kV6MIVy8ovzy<5T z@U571`(4S~Il2Cz@_S;b9P_=q9LD|Plij(vBI3uGBZY4vizekoyRo=K_o`J`kTTzh zB;~&Y%z;#7H{v>TclUijRbm4!j6BAMvDcHJofaLd*>qT_X7K>=L|s&Y<0ATN@;-Ga z{FTjF#a***6c{{YDTi#)%K}PHqsIQykZo+IOL=hScE#E`^Hj|z1Az~-p%&A{_?>Gj zbt8Ngz|41VV)rvh8$jv`pD=XSuTffDtrXP^`$)lq1L{Z?X20Gn6nm~{OpMnAdT#km zog?dKB{+H>Jr2J6c~q~Gy7t)_y_=mPE)0>Qn{cybat~SkP&T20^s|>2GpFYgrfN)yD8ZQ&nEx?*7|}; z1Lsnc6cKda3=D1~kJ|BuV%$!EANp9WAo=CNUNniDK&-033s8@~KRuA7@UK z4vtLvkk2e4vnbNMRNxx(Atj!)#VIwNBWf_zk z2DQzz4-mg1D7r1!Y54BKn*#WGRqvkc#1Cf5t(4yCZ<^LTMN_)_GwN5SlldpMhWpPO zv#f``nL?cu+zSEWDpUmuEnqEeDoc}*zPdH9qvvgL;9-*uiyh`3azudUwpY~I)G>|K z{Al(foKH=MHU-L({mHGv?VAaQk&k->vB(NKi4a?wx-ldxp%)hxBI8SfG2_RV z9QP=eXU~fyX-y+p*ch1c5iHTLD+ZZ z*8Hl=A|$)EH5XR6(1rvbeFR9XPVL)Mr9@*m@JnJYNxp*G5$iz2KhYfcdYVlD358L8 zb7{ha0%K(h--Q4z94HUo7UieuOhPHL#~uQh2a68AAW7k+xL$%HE3-AE0mc`QV0lnG z2mKN_@TEdbTMZu&4K#qrdsmwBs6WCiemAH~vS}P;zqp{dshIE)#y#Yle5=2tb&TQb z734GRv#=eN=Ey?mdRQ9(edeK-AJiD9{Usk0g9nO_-=$FH+9D`)yD2(=K;v$F`HHJD z-3Jm_y|YpxaGU9i#9|{3$U`tJz1Yff__Gmma{+J&APb!1+93U%M0j68sQv!_6!!~hV_lq?Rc)saa@zOvHL5y>l^LEDb_+zSY`KMw zjEq#N95ovJ#~QXd9Gw-;6o|~SBN;IHns)F4_mP_R2Se=>=fg_XpAwWgGh)c&E(X8o zyj)m?GeoGtv$f*N-EJ;4JoMpQ=tFl1+dQ?)IxFbuu_ha3Cd38}J{oBNAd4X}Wgrkd zHavj6S(ZC-(j$&rr);Tq(b)bje0C~s;!KiFAx06lR!~l(!>G2m9cYA9mtvfneHlL4 z>_-y1v@N&ZW~NdrZK^fcl=#gk~>`hI!>=0gdDVR17+(8#uoQskO9Bz7k zRhk;SbxqODpVRXAZ>!D>8f**TyWyKdeZSBNaX~Y{KA+`@LvM8aKY| zx$bm(MrQv2wlt~=obK(BL14PJgbSNkpM^R?^%+I&hI~N9yg01A<`JGFme=tFaduKe z0=XSXDjX?GI6ncZ+*kSmcOCs;_NxmO2n^?18VZ$66AgbG`+j-w8gd_%V|tmL}rl5JAx2 zP8@Acyp_4SpxbwNu~MWl$P*?LyOC_B=Hn`s*2EAAYj&;h4mo z^l_C%0D!{G*I{yW40OJOnCAwI6y4bwvbVz#1}_mS#+~H;+G-csPzvhW6&K=l=|54ZUwGKAx@01Sd*$V97kuR+F1vLyS#x9AnwhS zTTcifc?~q6%lMvoDmzDGyb>m0Me|sW2E&K14?kLH-HK{_qF)b-emTiDAH;urshW#6 z?(cM-I9ZvHD#(b&{yUiN3Axn>&>LywDlR88RnjG}I2}v2tbPD=6&7=7QxT3;(6Ao* zsj_J?DE5kLV!H7fYfUm#!z^mfNVT$#09($jZ-TyT?f%2Jt0v9E3;QBP^t6wqQkm)S ztAb^^UHC#S=Juk^J6TWKovVP>K>T{;ADvd@Pi+=$k-je^cOy<$1M#)~bzex~*5oOsAd4lbj8Vxv z>4|`=mxTfsm5U4C%9tKS%Sa3td^Yfx5h=a$uu<+Gt?H?ETDmzev`By2W*qWDehydD zO6=j4V@D@6Zy~Vu!P<_`pJZV$7+_Ns{?2hy7(`)$AafC5PHdQkM$89}+=gIjQ}D?+ zc{$Ea&Qo$-c=Yx1qR{Bu{){+{mxMTxj{(c%5n2|K+AwPzq^VLAkk+_5Y7J34@JS;r zY!`O!xA2(@To2(U{09O7;mgjuxMguUnWIdS-W`?{f+ztCmyEh+G_|{2w zZ-+(y0C%?eI4E$U_WIoOwfGk)6lr1PnZ4|524A?>4u^^_Yu?20AE(dL(y6l1AFP5- zm(YuH7b-3J>C%QIIF?-iwe8E0;dAe>8t|krFv>mmKb5~a00SOd>HJ>%5q^BXN@$3i zX?rglwY>))bzP0ril(g=f1_?9Cfe8_^4ZHd5#+ePcP)V@qKn*f^sbIsHwrN0ic&YN zxh@}SNsQU^WL$0?=3F$Q$|X=*(UYLfVlRFic^aZOi6`KbODl1GkX^cO+?zLPVCIMh zb-^SItaQqBAlPy$5BbputdVK_j#Ak>UjhyE-NhdO!==+kCPGDz-2p)t^Qo;AUy?G_ zwcrEv&&8YH3lRrf7dG<#4qlaK;8XHf_~-B%52j8e9WaoNmTOpPeMEfE`BZ-aUP*p6 zzR{?5Ion=4X~;*_(kLUjnqtI&c_R20?a!5g<)!mx!m%p8O&D`Lo;V{n^XVCZTwX>7 zL4rqkh#7>Kw(w;ffJMKE>2t@!Pad9oe^NPh5Zzw}XO8WCG0rr4Puu=fRfFfD?P%&8L>p)ORBd1^yMX87x zV$3Xgij0+^qnkIga^DDa4c+G|FQ~C3p$F5#e8qWPMi&NpEk0#6Mp?f*OAsWEC_%gU ziM7cWu(z2#D(yA}HOXG1F4mGQ`$J*P4jmoU#q6%G2qBNMz>qX<1bL4-Q^N7P4^c`r z`5buwvY-4<%#V$Fg~~_IC&PcKXxN)XBY5wW$&?*P7QK|70`??wrO_VQA+$R*U#~R3 zSb?LKR&{XdK);A*3Vb%bj%#o_>rpyU$-#8&_hX1*#bKUE7D=Hw7)Y55E2e?3mw?Tb z*pYiwha8-!Il%7Yau|zUZTw4`=+ALhOil{fWZ4U7;~E2ze*sfG{zb_t3u#D!nD(!< z{?-V`_}={QY@_q0j;@kE+anc#9BgfFcm9=PIz@|eaQAj&$rj#sX4lTD-3gFZnrZ-(&0;(FW9th4#WEbp%oQnkXU;l9IOEAqig4S^?GL96K4xF zR3}TK(S_Y4U~g*EMJ_@(oy>{2sMDP~Lfk#T?2&H?uoRfAQLr@{0Vp6A zOa$=TGUrYl=>TTHo)k1OJTA*7{#u!_o~rzBX;fv0kgKG?uusfL9W;I;%#C$ft{!V!j?kr~!`)15scO8X$fGnj$>I;ru|3x6{;9 zKv_2C&5!*X-vk}%?H=gKb8{KN2}ERG-qs>t~yGJ)!?Ma)bWq(DjpNhyO#>oqJ z3nPY%STk#7%1dRruwn)5YBJVsZBZqrO($i4>3j5i!t8uT7A!2yGR**$vz08Sd_w*p39RwTr^+-aZQ#zgM-ekj zTnjsWt}u50L&}-x{E_OA#ls*3(@8;s&uop>TVLhnO%P$Ez!u1h?KRg*1AIh(%Jw@)e8ZKhkHp5S!Dr#!*_79pz*EP zXj?)G+l@*Y_er9hn0Bizdx7+G#AA_~IWXxWh)-}?*s40H?U(g;~J_n*)@Z ze~L(#;T($hYJH31wrq}*fK^<^9etAPY`|)GTpm{hXe(w6%OQ(4Cyo9=@O``DBH7CXvX#}bD-tQGt((gb1aT#p|uqgyNn=Nk9FNO!Z49crbQ{4Okn2% z&!ZKwvDU4=XwKIb2EiX|0PBc{{{ZGC85gzwgU9zT)cVP~m~bG3bd5*ISCoC8u89c{ z`>6vHk!T_#l7I@-60nw_VM>!h79f?qjt3(DHS31GY2G)2`hU50XlQm zy#BK*mlSsNuu=CmDY{$ngS<_Mk1Ws@?xj!|GPoB>7UIQSRne@(9K%c1I&9vTXqKZI zpDB%dS?wY`L|xow>6kM!SPu=z=51rdn^uh3-daf%!y1BZvxB2iWB&k%Ez-rB+VLXQ z=pwjC@YAO!`jTJeF5RB>BrYyD#*!ATuO53+&mS2(PJ$;HO~bC z=Kc^oBK9 zB5r(8-)`f6vx=H^Or7x#RB#SJ4Qm0#h5hsuN?t^9J0*s;H4sxoPBQ@GQVqX+s%VmB z_psf=`t~VcEKs%buoq!q#=_(Qds>vZMX*-R-R%DWX$09Am^0@c$&9i7JhLf{^*6aF zt$sK7S3f6A>Em4#gf)oT*?iwk+`?m_!9j{_vHfU=>#fw*sZw-~27G%GWz=k=%= zY|8hi1fv=eO@Ku=a(UgjpD&GAmj`1@#7UQlPKDF~<;Ry^lpD$I%)^k<9wAWyBZjSE z?>VY0Dbx)+wFl?ix!3X_i%VLfQo~3&y1X01*RIVP1Px zAO8T+{gLm!ohs3%;Wz&P^p4&h&Su3a`p|TiHprort07aUv9_7G-;cVqJdlJ<5rpL< zSl!*rOj@=WzF9J>MSFPKHdZJvre{FeeCvmcZvIZTc{sw$RvQMW3Mt9~)DdRAt*!a! z2fDq6DpBL3%uY?qli$kZeidU74KMh?q#-HHuwkKl9`3TLn(IW>^Pt+B3IsywePzCI7Tl8<1{{SNft~QeV z%gW#Tqnn-$TF=plwcv#lqJB_2y~>tUeqP2s-Jf zKzugz;C?j`g@Oy}ZfpjFQ**7nxN3Q6)}#TRFhBqhZO4bG^Cp!HTL&0bVsCIwl<@UF zLi!8pc+(;T7}Fc9n)oi`TN2tmzcbJpb!1HA515CYv|E-ed9gRJ_}kQq=s&iMsna`e zcfOK%G{ZEjvs1c}5?3AaGZFoqPa-rVk)C46p_};bK~Y?{kD59QDyyTIyFBecVDXa6 zBwtt)W>E;x85&SyV79T!O9fk7#ceA_UXmz-HD9DZYUJVJh+)^qpu1uKG_Vh=@R{w{UTl((znUsf^z)p8}7FLm-I|cDEy~hfsUD2gF zMHhejXOn0GmX0`Byi-T^N`_a)oh|L+nBOw>L4{kRASRZk?^{*wZ-M^FQI!buee{zNN zpMe>0=T7%CuMJFPZf<;>Ew9x1-*3}yH!w!D$fH_&3bG*y zGQYKUQpuV;x{HBtElpTjvNR6jZtKG#F*78ETPvdw*2;ARSn%czQ3YnHTR@;4?>Dv}DNQhw$8Mrpv#MX6ljCU5syI;;>0P<2;WfxsRi0HMy|hH9A_lFowmn zxn=b|?H6$(gY10j!KNQNAK)~RAvTRgh#V?ZIuG@+_eiLUgx(}PRQl53Vpv#_Gg>?5 z=4nu@K6Lwpd%rrD0_-8fMtNG0!bt>UP`dew05ZI1Qno%rN(j&(#znG$e=TZb5&Dc{ zmFNIp4;LG2)0G5FE9nQel;lMgBU59>sh?%I)fg7WMQP#(gGd+NbRRQOEM|Y(ZUjjl zF>?#3!Zurr$6+2+UxB?Ex1PFhU89 z#f`~fJtq5HqM^vUi1!rid!3``SB)59b}c296_P-|}pJ`h0ZR^g_F zlZI#bjks|5HIY{5>y8gDF!4GcLC1|}$o<8!`)rPnw_8|!T}c`nKBs}b@?4Q_1Y68d zD;7Puk-{U#o9pHLKc5;XLzw$~%AtFcspFgjz+YUZ{{SvjiKZ4_-jDYj8shEB*4M%{ z^uHQFIG?wLAMP860#y2uW3BmKm@-pf_M!E;mK2GEk_Q7-%W)gKF#z(74eipbk1UI1 zcJu8x{;C0KRpS{%V%^h&Cwbm8Uoc=aBHzNi1?uTpN=WFvle(CxwnQ-uCN4=ksH2TU z3*E+|#L3zY9xK*~Tm ziT=p;9zI=_mMktNM3OmDERq$4)=3K%bk#1bWg&nJ*8?yb(sj6+x}!bBY<7ZIf>bFy zb`mM#E>4Hj_r|+gcfrNfCYYcV&@l?yfeUQ?UOr!I7Qg((s&f6W^d*b$U#dQ|?kZak z5a_=G#(d$!Ev>b{v32RvV~oyCgp16xKU zFkYYnG(66rj-tCr^He;;;}mLcVvyOoqn;r76R4!sl230aE)E<{5t*=(l~%RDu>^9u zxFFabHod*olO_nyi6ggzUA1>WJ{o!7yu>+n;d5;VKn8={Dlo*M#8Fc zgXv2F)-&2Z_UPzTnrbWtm0#AsLGaH_oUZEK6M`_D< zB|;&sNLFZ_mSD-90^A$ix7`C%Z#^`qvYfNq8)sW@hW#8;LW~XJ%rllJFe;!7x&^jU zbmMx?%o#KKi6b1@o6^d07*@kV>Q+*+v}3&n*37cz2khK}0KX1`uS&@&RA|n(`($Rs zgf=AiK#rt^><=i|*9b%GHD;(a#8xU+SV`Fei z_<&$8FKgPYXAW4U9$5{tb~Mw0jKq<{kiS~R`1mgj?|%c!e{v)w`ZnW1yGa2$aAU*XDj&pg{4!s_^8BLVx_jd` z&PKut%lSa{{VPj z`?_|+Y7PGYycquP_wS;^Z33T2Rp%e?-fBFBAj9blpWW2AGCM#&NSOZsx<9{_J>jqv z`bS~MwHsT?)G3kKMpxQ4{KJZnvRy|24ZklsQslNgBRWx%SlZXiA{%woQlK)9+A;91 zClZeycajLZr~c@PCnWMZ>B9UgTo<&(H&P|LQr)1tES9-wju1zF7c7yt9zF&m{Hly^ z-d~Y>1MWuat8AGA+$-Vn5?or@fOcEomC#<4uXsf*gn!YWcFRXJfRI{bkHc$#5g(X8 ze~*<h4xnDT-XciU8vU8`W$&Tx&EVVov|=6 zMFg^U?j>N)-M5IwS=ERHk#sq9=0jIHSGlBgVxzG)*e!b#7HfBk zVLjOl2MoZ57uLthwrTsL7Nt_Pt;XU0#fv=HGV5Sz+->zU-ZX3b>qsLEAWTL!6F28R2`xs%FZB0MUr zPo0oWb0H-OQhT*IY_{j^9+d2KJl;*td_=fo9vck^jzZER&6r9Hqh+x{qNT*RsE>*|j*Sm!ax{O5RDnbxPk}#3n76c3B@f#c0DfVsfbI#=L>`WM$@exQ? zREdO-bD4~e1+EA;F1gK({3n%b%Nt0i8>ZQ#_OaRn<2H5}ERxE~T;lUHGOW6Yl|z5s zc)TXs>#ai+Y4S@Xts!p4`%?Ov#fQc_cU{PM?DA(o=HfWfd>7W&BZFG zO-KZ!6cJ;0j`RpFTWLTAEkM|2eJCO`n@VFxl1uTTz&Mm2Dqt+MfFOEcd4&K407IWD zV0*l^0u5kzP#^%dp9%(e$|((UW8JrGI1)ba46;0k+Hhhl7~7YE_aj5+Tup2smH9fl zNlNI>)36balMOa&!S;zM8kpQ=b-3gtT)|t0WFv_et4QO@WxAC3WanzTg@nOje$2Aj z)UIX*@h;TSC>C?o_j5v=GEAqALs}|BcJl)CH%MlkD zj!;|+O&0+o{q+{H<$Vo}xL&RjW4(`XLW{I)Z5wkJ;D^j`_;sYw2`__t?91roCORW3 z%8}(_mXi9A0V7M1Z#vB>QMV3><&BJY->^xra){bU+&bn`gptO?8-PI?b)=n*=p`0a z_K#-{6y{*J;d}mqq@593DHndvevK1j6v-U$fVokF6L4%b&~W3%-zsvEV$jL?A^TM9 zD;2XswAmgvIYg1Qz->rY97Vt+a?;#tF=kBqSz_h%Wcx_?m(jlpxf$X`;&8>Ct=9Ew zd;=git7V*qJF?~ht*8V7J=C8l-=~i@QrB<^C0*36T^n5(-^-Ex=~1Jq1bvyCq0WZ( zy|@A7d7mnD2CLZ??qL#HR}qL@I5DwFN;{}vq=hRQvl7P3!`>=8OxdBm5)*B_iyH~y zY~t*oK4^~{HkR_Z_*51s(jkL--j|c#M0-|&$_$zWLKjTft0ioq2R z0(hebDRl=mfF2e$xU*Gq)6{L96`je^Fxz0Z97=Qpx-xO_qp~X!c>$OLc^cwIJEchK z%2gX?G1?x~jqy@EAK8$+1%_auTG!*iYtFq^nK;2FdHm8+m7=jG(0-M!%)$q0KSN5w zgwED}hLw(jzSVw)or`Ewwp-4Xg#T-d~JO=(dx(Km*J=IW__>rEsUEI(k>cO zz1~p4c#$Kp8XjTE;ahO#$F`d}x%Am?)Lj|w)7?CAia4=9SXhy-kebNT()e1?^d-Ago)nOSa(<1s22jZJ|h z_07h{w?+!6=T1)S&T(4<6%s~mJaEWdz*{gz3f6Ayoeh}yvhz3RT<4FIf2l~m#p+|gq{SDTH@9xOI%ydx|s0NIk__K86BFUc(U9FEF4_e>3ebJK)+ooxnf(1M=RUG z4UG1hnp!LFL3aK_rmCS`;GSxy^5lg;g@h8Xnb>cpb#$CAdO`u;LQ89Rx!I1792}3n>w7=bzlJ;^-wMaxl|Mpdzl;D z-=`$F{ z?-RYlhB+3}2GoTXP+Hdj-op2`zO|`K$}y-l#EA`ou%2ip#4mN-!IVs1R990bVIOxH zb$JUEYvfkTrR{o>%gqVm;jyL;PiEhJIrGlFO}N#w`%2@(N7W6*#})2_9x4I%*N~TI zs)OLuCKVx#BwO;JLua5}3Gw$(05VV%3Yq|KG<5755qL#3Aypbs2Y}b|sDN1#qyVky zfFMu=K~X>gR)7+cD{!Dz3ejT_+JfqN8-7Pxg!&~D=l8#? zSZFJn^n3Yihw*Poxa}6%9lhcrxrJFSJV9o)`Had}Dc6A_c{WqjOgG*7J`= z!*=AuG^6VaArXwlq5jcSgQ&P5uU!b!$kgIEC47_HCv5DraOw5D!NZY~GOQHcSONy5 zfDO8xHKEAY6$H(HvCi8gMVc`a=9YGnBm?i}jO7od>YCYLB*=R!P_b zO8`QDg#o>Q>(Ad+Hqoky>`buCr6!6uM$m$zk{1mASmnx|CU`2=}#~uU~vHt)%nlS3t=rnQW(>^5r zSNuPvX@^Ifh=$Jo)%3WwqU2n72^SiUV3DY+A46S`+rr^lK_u8^7bTbi{BCYdl=0$q zr4y^B>5YQ}9r=8SL}bMha)REY(P4n@zFzP&y)>?m%la&M)NI(9;f z?`Av5VDHxFEYL`d2Me+kRwK(cr;w^;(!?{jT?zONDk#4X5e)DWcxWm{gih`T zJ`6T43Goqk@FalC73^L+5XuSC`rKx)Bmhd^Fm^^!O%c7X!G{}57%+;-glQH`GQESW za>ES8SSesK$s?lpo4~87HDYHAGI4YP3vFwYF2helG$ZZeR`%~?qX);a<> z3g&Ax{;E=s+`2kHP1dY3c<1)Nj|}Q_+MdjjZkU9OF!mkwP(`c@DzWKvt#LBXQCl2; zW7lGqp48Nc-I2c7C?sYWj5LutG;%{Df|4VySBHz26;@9Cz)_xIs(nWpDMRtzQO;Zbr z#S0Off{IOu2UBYUW6q%GHdwJ@kLEPQc7-6faf8D`Eo;4tU#^48_j;0xeX#W+x=2Ag zN7@?O5RqxZD24qqGSl?a55!kRXA!k=tWEJ!TV8|r!k?syUZbARX2fL-aWiUu`5N#i zOH=faekq3=R}_+WYmOnpmkQ6Rwqc+rQ{g;5b*>ss%F&)$^%u+J(Kbf(ZKx9uDUES4 zOoB+h&%6$r4RV8Hb89t^LDN1>B;(Pi9=9C3qfcJbwl>yCa64uhwq(#3?x%@BRWfA^ zA2d$ENmVv%$hP9TnppE?#_6|TzwSdmpB&csB-`=l`#y{#=^gZJpJg~`88J9HhG?;| z5K+ah6|%F0YySX=ffgY2^crnkay^Oj{{SbM)acw}>Qk<{?SJo+OzkVPU89KEdnXBj zM4APOB$vC&q|OEI#h$=7c*LD^9%9xu;>whpmu4B`ZYnFH3xD@p6^GahhuRUMNft6R z!mE{LjR_^fGLxYJf#Kn|8w$G=qddHHQ<^R~>73^zR=7Mt;y8bmb*$zL-2JQ{%zuA6 zqJ5)Gd4nt1uW7%TzY|y`+0w@9D35)br(0E9OE(>XyB|h~wuZyN{aLX1d`EiCG_G8C z$_pk&vamT=D-ATZoNA`jX44XFqKn#3(FYNP!Ow~M))}LOD3UnkY|;RIyrn=kC)p=8 zP1ER6ZFY0BY;~ouw#~=rrP(mW%Z_;7Naw?0L&1|Ro>%W|t{UKvvj7b}z9Q9B=~az3 z?ujJ&IBmF{F%V#cdF_^KI|P-2$j zV(iDYU8{}7BpB=tSREKh?+btwt-vLe0ho0n{_$C4l2*GlE?LICrf$D=jm1X_=7}*9 zDiCf0tB@>tfCYi_u7o1mOvLh}ns4N~b}`u^Z7g)X^W?)oBYA)Xyt#o15&@{qkmg}> z7eT86BcI#IX}MHwoviI$le3cu=Vc_l`m=?}-L;o0|HD_j291%+r5FU9&miDX4(0!Y=q>C|#vWHNzs5TNM?iIYRue+v|WL+{7R*B7v zyPfp#2*zP7(IH+MJcy0yp*r#ve7H@S6HTPeGwB7pvElL4MGRsjLl#6{0F^^=eyyz- zWaWz49O*|TBfU00FToMuav}K&^Hbro(Zi%`n==?40qQ9yWat^HLK`@s1PGuHP%$3z zf+AA20uz>TVNyU9F%-a5w>pRl0dY(OyQ*LTUVd}|5=SHMGyrla1J0d36ank`PyWF~&5pFkD104r63y9u_?VTGz1QdbSf%>6r6r z=Zo)65&K&MYp@qn{i1dM01zEVQLSi3RU&t@4eCrZpwHekERKrk1G1wlDHd)yOJ2bI zZYkM*Hk0JL?ER&()o}J{?+Y^-zOF%%JE;o5F(Fly>&H_~)f!WZCi^hj%PuLUUuE$H z*5C^(IV*5DXh1zHB$3k7yG-ku7}(p7D$dcp1B0CN<49IPcGG|oV97jUb#dvcu=lAW z;Zj|LXFTkfY_q7gsy;Wh?OJPt2BrH<8)>hJKb5}<=136Bo%$f+7ZN%MYktcO%@<$Oet2(5nGRUOFtV2GmE)!b@ z(9|W-PF{m-=m;_^9K}chhw&~|u|9Ut+n6;3TaThw48u{F3-dSm(=Q=+mk<`{PnWKj z_z_b?B%&^%X*Glw;yb&WGGjryd&`u|>4D4hiy?&Gmn=a8DLUU0UIer~RVD^dj{4 zHQGm`#*~*1i!RW_?v65RFvo1Rumn6;iu!c=!5(Z#UrK6G_zB{^Sl7u5zeD@FdKACjlHyD!DVGhyVzOeI8F3gjp3-NZ`Zi>Xs1 z2=1he+Eit6?6wi#_Jfb?e`p{K_&L>B*;$Z)O|M{2m*9FDi<+d#EN!@xy&PDah)!7<9!JD zistHcj|{g*hw^$Y9TXCa?40>PHM$ACe@TOqwuHlr=g3Mt7_WpA|~qMW#0pFSw<6l8^Sv?U!o?LiuuN|wE>8A&XB%?m1% zsv5-M%V#kJtEiQm@6hjQ&Xa8f!$Bm|NrX`zO8|}xp&8kkQAT$L?Zhi_wW_RX0P;OIJxnQ^=U>PNI+@lVfI1`on!-2Nn0*k5J4kA)UwSu z`-<`7ai6s8t@FUiFcM#9?I&Ez8Zlub0t1#n>6LR@-qrfsjbV#RqoFT%N6sy`AUKJd zL=leh&vKWt-H(7BbYDAZ(zTh zfgM=}RXLW*6+s5V;egBt14CQ%_37|(^%8!kCvV_E$rx@q0O{xX+Pv;xxt^aN+KXQ3 z?S}*>B6xn4O5>u}(W1!uYgQ2(NN54OngkX;m4I&K%XDkz z8DuxH{v~B{S5aau#=OR_1B2b*^g3+HX(Jfzb8O-x5u^dL$(w+=A##fWW3AX#T5NmU zEYxJ$xCdu!nfsT68ja&y6qG5rZerK7DIteC*Cg@E*9Ivl<%5j5F>Q@G3uZTDW{i`} zqZGfs*Z0?;PlV5&&25uk4vF2(-Wc$hh}uLlKO&V#7*AA>K)6k`SfAYlJFCvKPWY01|EmE)8m2iS}{4Xwyk546*%Z!Zff_*}%4d z00`5U4pl_BI(lWpJ9iC=1wrzx=BpG(q{c^Y+`!>wQ_WAxgeG%V0koF&#@7UBeidWrkwV!RVDru+J`*V@ z0VD;p5Tf@c-pIZ516mQ<#rC2~cuFzMGLmdZQ^%c1(?hH)ShBsex5q>H8U_qw#J4^X zn#ahVU~A<-#2DObdxC#{@%T_hmhHpZ#yIh1!(=en=n5M$kc>*Pk2x7bsZyrLUKJS? zPofvI-LKxHk}blSq{<1o3&a9=n+pq(Q0TWGLiX?rL;RvI`T4d8J+~NeZji zpa<}xilq1_w`&T?C|6RX2D-2yi>_gzvD6Sj<_J8+EQ^DOH*KK}@7t=RhqzD;t^7n= zhYOuR_wuUZk)sYjBp%O_NkX|t0w6*E00_7@y67*=emc`Qd6 z`o1yYI%O!+AzNSB%OFvE*y&<4>s41aSf%n-x1)Bpt|DccZKW*IAPTPXIAEaW3*oRT z8^vb6y=h5bWs%C`(PJBTY!nf;(U&0CFL=ZQYZ3t@0!KhO)jpd3#lMJmd|%4!i^gu| zB46$Cb3goN^0%cus9vjmiD5fA!>+8RL;f;P<9bv-P@jqgQDj9?jE2;@g2=thKji`BXDERblcO_|}ynb2QG{l69? z{fiR>Sgft~X)^@?s4T7-uWz%?hQm-4Sl61w-Z`|7S*onK)R{T-wcZ87sM)xD9C%zj zr6+kKRaBU%QWXM=cwH2^Ci*U#*KbE1-uXUHGpn5~iEwiI;|Q~JQVQRykXPV9uDvFX zRnt1#w9eWa4}d2Tf)Hc&t`J5f45XA$(Uy>VN!`aLWk&$9a5S;E9yrsVd?t1BP3(U( zWuHtlmLiW8ik26}foPzSf{22hB*?^fk{uaI%oh4s-l^2NG@_RUT6DKJe3O4ko!5gA z6!V>`#0_G?Sa)Uas~QZgsV;S9Qhox_z}@Yl?8=tw{>LH5y3*_69=8_#`>SrlC$AK0 zKS%D%G5DNOOf>%hR2c(LIB}#v*Z`vW*s<`b01J{x;AqU0V{$LWkxkT2&EEab$47-s zHqCgNQUc42#NqQK|0aa9THnG8qw_E7fmv-8ZX8~_c0wlyvlgQs#SzJtW z7W-VsIn9)YyAo~*z3a6djdpQdvaXS{{Sh~!2yqyw1|Cdu;^9K0?HKUY12`fyJcGgWb-=HgaO3#0{*DOu}4&MrHxCjdLAO0&Qzv zsr99`#=Hljw<%wfD*8+BWLT_rCRlYv5uk2PPz5YG+Ty_ZUbcE=Va1Sr5Le;FhTlqSFn@XRiKE6?ikyq?sZ9i1#A4|8a1yIbRfDxX-7?O~9~ z1nZRBGL&>+btwJ@7B^RoO=r{2SfzAm&Xz^PMq%2f_(B><49S?2-KlHb>y#TCfqM;j zR_Mj$ms}j&*`bCUzD{)5vw{dZIA$(9*xa8=?IlR?^KMPD<+)p4II#$30LPY0*S9#> z3tS#2Pk+UtcwZpn_SVZ0hLZ(~Me$gPRIX4Bz$V@xd1`gzQnPAn;DPM0hQrRum@7`k zFx)~PU=zTQpaX7qteIKa)2}$11=YbX4(x-vc@yxnk-UaH7#qAngn_Vq?ija|% zcD33d%aIQ|Xn2#S!&(yL8Jyvi+3a|!2jN$xMjY>h729$6qx5gWuZiZN*vDf^!h5Cj z0d=ssx`iU#M-lR?JQH1+#@OD4!{ad~Mr3m)V|6OQ&E0`p3lduPAaS7`ygzDTwufk# zc@A?hYuH$Z1aZEEe@bZ3Cx+i#J@k}v*HAtrdQbzG-+U<+SpXwbbH?X@{U{iR`r(Jr ziC2}4$G+qBphdTGHjmbm8HdBVGs}gPX3Rp10^pki%|=tm+lI9n6->l1JL`$V{{Uj- zM%Fec3fzw{bv{H;ix8}RrOrX|Ezdlo{Hj0(3$!`2rKGV82p|A&eKk>jJw9{+(>rcr zafz6*CI~YY7B~8`^66_^%Ar5B8i4t874rpjzeD9!MAwCu zDR=(>58Sjd&Y5^3fK;|?X3cO7*5q91ZO)w?8&qo>k-w6CQUix!-V8(L98V1{IjJJw z3XAwJi#NO`>`jb~F$)<2MJF%ZHzn80?F%1$RkF*s3^5&=Vh8)S_)^##hSPR$i2m)q z6rMIqdJ`R(;y=4T3N|p@y9p;|7=gw%_*8Z=`iMw&Z9fj}z6O@S+$S$)vyL&hz|pXt zF6B%2 z8{tKK0%&20-B|||Bi%}exe$1aAqK{xF_hSDbOjN6ZGOwoIUgbV)S^L@ZTo`QsK_L@ zbD$T#jBa%4abAN${ig?9xkpd#9vcxZ4`54!$ut;8KV5-kjv~^iAz8b|MPh}Wtj6V; zdV^A%N>We11rSecS|Gb&$4=W9XpC%@X?Bvyf{mm}T@$`W?(V0b$S6Q`BC%U6>Ouy^-v}Ebks-f=J;V=r&~gbX@A!8Aulw zCcMnmWPhpZ6t5Ef4e#lXy%<;^U7H(8iI6%=9MY9CLkhE7J1ASciVA3=>*6*w)6v1V zzrn-R$yVPdC*d)98Yvl0K_FmAIbXVTE)<&v%XJI^(=Z0tuCwJdj%sw%XI^%t*jsIx zS7_m}xNhUQkGqaS_s|^5GOH?s#GW^}wu0PP&(qOsvM?_?Pl|v$ z$jftR%wag4Y+k@$Q{DQ-18L2M#J(~}uu?h~ zXwPvV@hc#W6z3!a*5=phZwsBPEpdxSD8Y*?g>yQUj`}lMm@u}N(?Ut=MOviF{W$y^ zPtkL7f(3MSVx+u=L1th>cWaXE(=e!H$+dIjQN*0BaBP@AqW(R~Gi|jo z=S6<%Ndx6;U%T;Hm;-HWE_vHpcdvs^*?gR-+IH&>W^RU0?Zn{J5lSlEP#6xfU~NFDzAnNFTVGP8BC(AucTxU$H0bSCNS{7x4Uvv3h& zP#iQ<;&zY@86?a_+U%jPB(B+R1=U#TU<_r-a{YxDQrf?{#C@gXmTZ18;;~6FGL*

d4Y)ANhW`LXVScR|$&E}z+eHek$z>8dz4#9CvVp*OR0|5KO>*yoN-u<$eVjMi zUcm{D#l;eqRK&`t5EinBAOVyf94ka*sTDkJbc<)vhjh|yt%q6H!x)lak^%!s7zQv^ zhNC&nW5+E=ERv1bLmP7C9Yeb_;xM1>O@m1GhCgYTn=)9eDoTY#{ty*Qooswe-&_)UW z0Cu+YwZQmS27R-=548`rWY#07HA6+n*RU9@=now^RFE^$LsAff(*dDAbbwMhcQJf3t<7Z04SfaNMep^NI(hz_IhANmh_+kt5fWX4c+sii3B85A~nX14Z0eH z`W>GxH>Ln5#C7lHzyAPL`hS%WN{$9;H8wOEY?mlQDLOWwgJK+LK|EKD#rRs4A{*uM z8f}*o0y2vpI^L4tjGJUE&@wO|#65@m>-QU}>3@$3zU+Zy?CTu^Vxd{wtYyIQudvo4 z&6hDLpDDi_ytqr-N5b6aQQdbW0bpY#vkRuWi{Fs$klk4OX}~qK<-m@$Qc3n{k`s@% zj8C#sOY;Qj@u#q@v}`?q?i8CsLp~tohCW(fHzDh#^cq!>;H|4Qp4&G{DC3GqBUB0< zWXd%vK*~>F7M}kATC(iLsD(z(HQVc~fAJ4HTGeb%H6F_7+D{asNc43euS?ikt}IgI z$@^yBN%6Re=btM}BdKDeFS3F$Z*UjALzB6W?H}N`I|jJiDDM=)@Dnb+%z;hSj<&tU zugo7RO_~x`GQ{q@BWFzNRLGdzsjrB|pCBWFv0Z${&Xkm$hZIUx6}BJglWe1_|oWv>r6Nle@ zo)|2cX|WN4No8WU;iw~qm0iohdWJRk8eTi-&4k-Xn4N=(J@j#rE(aFDWJL!tDC!Ao zwU)#i+-fVOqts3f#iNa_)5c48?f(Gpl>Y$1jqhJ#dtYZGyphWkIr6l)c}v6ITrG)+ z*gfpFbyfsefokn6(U)f-;AwCl5%hf8n4O<4)s{eTm~csH=3?f+h7lnK>@Ah9ROTRf zyjg9Ic&A9ulTRkCn3mT?RVMmdkGrR>Z{Cs5*xNLI$}lYQ;2EwXnmMretv`dj#FTA6 z!q70*_fuYXEYit;ndvb{`CR-G+t=A_SQ%POb|AhUJVa5vFwBQ&;v#&(q{Aft0Axf+ zs!5g6Ky()u@b+Vu+eqTi7Uyh*?GtIohZuCg?FjMvJj*637$l6Om{*OJ3S%IZb3-Jo zTI&>z79k_=Mv_NWM=O1e;YlhW`#Rkmb~K-=M>lbDBxQ3PZPiIEs>ebtVn;fRvq62# zzaA;IQ9>P~_G65}FgTc5RrFa42^92P>dk8o3fWH`Dly3!eXN|JDE-AQX-$A6*j~c= z4Av&YmFx-YRuM1TgSi-tTB^YdN)!Qp2(6{=%tC|0`rn0I^1~cf=44o>IlZWLzulQ* zFtL}CDI-Dvl&QK94u#BQsQ{bVxEmU!=Y;xZm5NaNk)9-U5-k0kZ46+U;lVSBaZ#9D zMlMW8+9&RX3{G)kx6s^*gq&A098+(C^R{;zX{*YNr-0B40idb1L_yfeDU}2n`_g{TyS{ta zoigjd5>EgxdsG`smNjpLYdHST_L8KNGGcD(M3Uwun&1+zm5UHm4GxwbRW+XzTT?_9 z8K=3XQa4j_u{fC)JS<|HEZrvP?O?$ObCE{=7ykfl{{Zx5n_IR~86q); z!e06=Rc(6nJb3e|#u*=0TP(O&6p;X%`japscwRtneKP~(O^&0XtLq}}%yO0~d>37X zidnHKHY4kJnIeiog~LN4s2HLwk`m_Z3THry9i84V6|O#MR)XXyrc8F_Rgw zA6d`!jP2fs)x%$b<)F|G01H>B#@57rU4{s zU!Rt|y;0`UDv#cx0Aetr)Wso_{M~g9QSQ`t1 z7+Z)S*PF|#%Ld|(#y_Xv$dshHD;w$AuFk`*c@>mi!p_?JsyMY-rs*-{`gWQ=Kgm?Z z_I-zy8cY+&j;ctGLv(u!mEc$sJ(GK8wZ~1^^)pVUb2VR1gNt~(MN&MoMlZ~J)xRPQ zb`j)X1OCqN5y^;+Ct$y7s92jT1MKGMeE~joYUH~bR*e&T-x-!nESonE^?w#&-R4}X z4V`E2JGMD)%D`Uyfv7jZ(~rT7_BYzhxG{*s!6^yeW>d#9-!DEk7T2Bp>olTtaLTwO z_O|}bD;F*=d+I-Y>Ix{nQfy+o%Ors>} zoMlF#yPdeni%B4yj}RFM0>Iw->wZ+CtA=LPOLR>43`0g=xH)tyn@_v} zweBuybE8~gxUEg}bHt?`ejasX&eHlX zW6~GILj;q-3=2LYL;!tU5%z)Am^*i8+Gy3R4b6hF0?MqTCOJgOvAc@bzjS?VdcS#( z)n6t50CKlsW5UUGv3&e^fEM4@laY>jH%%ifU7ig}&WKU5z~xTIW`WrRKuY=n_J5!6 z(1qV}4s@SLZIr9kEFAhwPQS$@hS%_FJs-+tsAW6s_}v40SUgwIyKn>M>er?c+B=Wrji?wM=PpzLqP@6$C;+kp&zA}SIc+EauNb%COax>$){xLF zdT^i$r)XPax`IZ%thVLOKw|>zXl?Qn(&V$)qc(J~o`oVT~VTP9_ zdkeDUocEKQ#G8x%0A{?c8ed=LZhRW*^4;`{#qtHeF2nk2RD6Yi^{Z*qbY1y}E$7zXnb~RDe(ZFkK zb|B{mldIaz%S#$o;O!D=O;b51Z|v8KSz&Jz#VnAY@icDH^XgaUUD&%;avG;cW9?n8 zyCVUG!$hH_WCHrF@+$X^a_g*&KU(6+ypnC5SfvD!6SzIIyt4gM6C6f4!CM9JpW-2} za&9hePb!5t@`t%T8admwJ=R<%I~9jd?BkG_@BQ0>A`fz~Uw1m~VxH(Ga`H!PnmRMH z2xHk>B0O5AY)&%H#EToX%u#}G;7IJu2AQ*)Yo{+Xo=LxibTG$kZ{$aJyM2_-qGXIm zDG1iTF_Z?(N|0}3pyO1y@xgW5w!lI7^^SpAkR6 z1elpzf^~ES5ss~GNcU7>hIyS!lIiL(;El$SiAmdlnn_G(&1EFZGZ&HFua@`H#jeKY z_6LRZ=&c%pIS=YCZ;$eJj>hbR3^ryj7d(LIVZvKL8ImI;i;#@Y!I~xh6anrH?lt4Y zs*ZMTMn@x;{*k+gf-^L)hlXfLj71mPwB)2xM2gXt8I@eCvl{{k;xyNeJ08;xS?~88 z^RxCFEdALT`?d=!A@HMEu~PQ1H&#)urCQguTQrK(H@~AU^2;_SCFLOr$s#i=Ksm9I zY;LGBp$rISQ_8vWf>N|^^&FwKnlI9aaWHR$INUO-zI?1yk|hm$l1U`6H@PQWYhEnP zIxywJs?Ga$Hl}<$1P(Bv^|%N3YR5OrFNZ_?Lg)`ljTWNMxjRDA4vnYjQNBrdG)YpX zA)Jv42#F9r6b%UzY5*x~&@O~=59RNmLrI&&DnK|z6qpMJ<;s``5z_#wDGJDr?wAG% zr8FiXlnRi>TT^HSu{8(4$QgI3NAVBVmf@(`o%W4|!@9J9T4pKYQ==6lRva!C;`ZTO zJ$i=Q@^&lbMCE~dFag>GJG@UX;^zLJgm0il)Dx9t+;Wn<~|~< z@LHOA9elD=aCcpCIFS=x%`Yw_1!l0}sRF}Zb)YfE%_DmEUM0fkTsF~>9hxSA<&bw_ z7crA6E%o4_>C%+Z(t~sVa?g-ut(Y{yf;in zAyk~JJfLcLca3gmm4$O3XIecLz0caLaG11N9yNSCi6xnVA+&F0hHI_Gjlt<%EGad~ z&D3*fPqZJSjshKy`%4dso=H%~jT;0g9i3F?1fv9K$;!wWhbf~B;^J>7?~SErLM?q zc>`7_!PZ#cLmi9sR(V=*8byX! zNih}#BN3)j%iR_(opQ;ayOl=1H6>UAINgSXX|3y* zw(@N{+p0Epr)T?!aEkuO?*wBa{{Rj^;9T&z4P$PV>9qL0G>z`BY+grqM2oHgh`Rk zf`S)%Ke9i~`CIg<#I9tH>pIBO?ALIOiAb?nMlF1(ti4>5z!OI|H{4IN5pM>ad)KJwIDcNxPP3?kqFmwH{*6@(4SQaqJ4mH^? zYvmK+gK;)4cxJ75`Hh_X+)whOj4={2Fe5`AQaqUmVesg;28&k7G`bTZl!C^4Ccw|gO4~KZ-WN>??h99b`Wm|#WBf`pVb2ChD zsRBBDZ*`K?G3G7vQxug8UQw(V{#=(lmSL}UJq5kZcE zc%)&6jbxHY5p1I{7RYmEC5W~{E^nfe@QB3ZUfFl8aajCR(VN6wQZv;fjUvr) z#5*fE@?l+EP}>BI8D+X{ok!UA1`VyVFt~XcgTTn6Aw?!dM~zX7=%P%@!HvDz*DoX- zWX_Rp}e_`Fmv zB!{|&AsR;*`$?IkcPE*(iZ3r`&a-|k<4!RB&YnF2$xkQjP43>rnS$Zr0}UFfD-3O$ z5>)XlNy`u<>Ti3V6^f@fx?G(pOCBiF=>xo-mTh>QaM9qO58fibd>tP&Y)J1Uon&ES zV%Y&!xA5y)@!?<8a`Njf)Jm7q&Qyjx7SBe^@s9dY%y>JLE&eC_R@YlN2@HW?|S@Wf;w&h>{#UWT643n1UmPS2vB{*%}ki<5g;NM;hn9gGQ52EROtt?vB02 zZA6o}*~`Jg1UHPN||*Gn3XIQxSuTTZ*|k|mc3hVTL4kH@Xb~QEDT57}BN>)q_ zk%+M!L8{p#Y?w(yBCzHGt4N4Uln7%g`{)Y*8e?L4X%P}}KnTYbjm1m_&&HAfN%&I% zL}~ydF0=`e2-FBZT4+ODTiTfD#d}rX7f%A6KYsenH_4_E@?*H|@{?U}S>?%cq-TxW z#DEoe^A#ip4n^#24xrX~XuVEs&i<&ey4pV3UA{_}?&4qwA%}Zl%6Tx$VmR>zs(()Z z0OUX8U;IDG0lgipVx>~CLkvnm%s7`Ci)a)LKVr3E(Z&zl?8B-0w6ZFSNX>R;EG~tL zMA~M`Si>fo6}TjO`fJAhMvez!xEy0C46Idy#&ank-%v;(f;_F(nPhnAakcl?7Rbcn zu^!8x?WD2F2pR_*J~ZsU6K$OCW@b8)bh{F6PpLYed8pCRCb1o%;~fNRIarl)1qzqS z1+AMdZXe>Pq>*o_Dyu5-?0a*m*Nk-bv*Er)16((O6+bg0A`06~{hPK29_ zo{hlpwPu>!dR!8v$jUFJBt+e!dy{rLaW^FKy=MG0j*8D7iw@@Y@AZiq2vCCR*15IC zi9AiN1@zaRm3%Qclx4`DM*TM0GVB~e+CWqzFu2Ipk~=Z;3#bQ)0<_-;BR?=^1B2S} zMTNzjpv*B4xNO!UJclqBKjM3Ivd5 z&zXZ?P;F|lM}vEpAa;B7jDM_3_>&%4F#X68*xJq>GISTpO9Fqz>1N=(3N!gNUfa7( zj}?H~d0b3k#LA{T*C2OHnuB{-s)46JI*PKLRFi_QlPC=wfT4*lK`Ke(>7uQ4#478(WP44t;e3fD0@j8;S+w^FIUeppb6& znAg{z`A`%tMaBAY^PpinyN|+w5F6#bu;8I-@eP$%*#lR0wu*z9Joy2swW<=Din7dj z+}$IJx9@+kyLT1cLKsFpn9!Vvya{FlC_jEy;d>51<99Z8VxfjKPwmaaivo)fvrCj` zU_2_vQmN!P7Ct7ny(&%{Oj69}`V|SDpMnE&Y9xq_;2&gvoAMPTMnwa(cot(9_+gJ; zVfB3vRk#M@Ok{m(r0a4C3KWL6L$ia<>2F9dEqWgv492P$X zE)N#cD%`#c5G-05O0vdf0{2jKaJ)-#0Fo_^MHJH|>3WS(&Ku>~W+MxUmkU0V#=tn@ zr!uUH%D~x`k(Gg4j$DmivL=jj#^ULZ_GSYXic&X`Q<{e%b>pS%Jnd`MdyzH56q9pi zYi4VO_HJ_leNBNj7a$XEHmxw6VpBNEM3xtI@eVSXTP>_bfEMY({{TAE_=IO#W!Z1t zEvJmb4(>ctB3}7#a5cTaA*_1kwd*|P33xQcN+>S&?fs#NLmarLk{g4N*ePHL1(iU} zYn-{SW2n}|JbPo&3GQVx{ZMYd5yG_kh|jf_jmp{>yfI-8AjA(4JWAHJiB?t@wwD6- z=UK8!67XM-a($D#$-cW%Sl%YZlN^hc)CE$?bSlh|qgagyzO`OA6zsNpnlqK$_q~OW z&+x6Dv{98~lXQ(YvwhCQVGn%xkE*E_u+`jh0SGE?cwdEbbvn#)RUXdnkLmdnyqqtC zQrdgTJ1BXjICy~3rLmqtZ}(7vVSP0rZF=V1r@`8A#fOxVGp)1Q1d0k^WA3wDHX>u6 z5aZWXKzbMU(n_slda~$5#&0;LWOA&7>>OW4Z zjyCLD$rZ~f%Nh7SiEb9sWx&9z;bleC9(h-WoB`9_ zS!K&@8e!1(JD(9ZJm^KBtb;eN<56Qqlet*j$(H`l;X+{1J1W%3(9za{A_hK`5@ATS zG(<(kjWht1=|BJ)gaF%+rUF7gl>!!80EI2?rh$saw8)X$YHKOoNV7t%{RI##shJ&!!7WP zN`eCdfY|aUFukpDey6QV@pzy0BR}x$>$tJL&@#epJTgQLfMyq4o*p1b`PHz=3H_|c zn@y7!+?dB|V8Y%&2D(VRoE1*+|$sdo(q{{~TN7+BiFa0Kw zICf*WYz$2dj97`3s7S)xIMV)ym%D-CLDocEn@o)aX5DrCg*qifmd=fy-U|zHH~hsq z6%xBP86uE6TQcea7aERYqR=Hqk-2;N>jPn?g(g-dl&bjEn%6e>4jTMvY_hzn(Jcl! zJH+magZyZqhejX5;OIjyh-sxGk2OS&+rkCBi>2+Ic^~l(gdTLF{1AxWXA4RS{{S7s zFCxQG*5z?)`GeMp^j`(;HvY>uCLDGuPxO`wB7?hBM;Bh~jHQ9O)rc29Rgs>H8gxSM z4`MquEJX2rP8JbOA_lVyg<=$&FxM_y`PNBgl67ZB5Q|pJw`aY8?3cpg+~AN*n0cNV z5=KcQkygmc%uVdpIZlnv^`aAPa%al~x)j@6qqT5*HR8o!Sz>rY_r2of2&Dm%%Ir>3 z%1XBaz}mD*&K_AyYgNI`+ka(uvCg3bxhSi94-@4Jsq?X`S4Te!sSbCy=rfJM?D_H7 z){6@8$pXWLbZ0ohF#|Lc##%7SnV-9LC9)q9UZ$O$mg!qEZJXI^t4A#3EM?RkK_N-C z>^$i5QR*phjduyL@au@$aiqD1&sKO`CBCzisIUaw5LmB=FePumijUfIFBMSFyV_TaJ|~ARl2yBk+S|Vl!L}> z>eb0ZR6Q7x%?0|8(B7R0Z6m857Cl2){HjP8qT#^ho6U(eBDzCUgdBDB<@i)uB@|dN zTdYclby%Y$4DuFGe1JTErDdK~9ud*Srj+|F8y5tqg`h=1G;CDn$*1>fZe02fHrJ*( zN>kwK{ zo1fppx5f%62Tmz zC(r)q&pTB5LEW68`|-oAP9s z&8?k_NtxK6y>IwH3t*#w0=iLxillI-l2dlrmMeIXK_ysN8vsVWTGMP%j^k78=dx3d ziDg-qFhKCKmLmOZMMf_9Avo=HULpD{I`PFJC!co1PG7}R&7o-kCA{bcL>WA<=~5&F6NAF!^Bn#Z5hM2Kx*oQu%b-Up_KOXqYw^8f zmuBenXV{ZfG)^Su>up~Tc1gH84n1vw;lQM#H!;@>e)$;U$!k!@P{#IkO)STHhueOka~Z#^V*CW?e>~h|u&r zstHp$sZ%52dq}6r{{R6}k)kh?SnR*Hh@+a=sRUs6VG9s5D(j`l*7{aSDm^Y4rm2${ z{rZAwWtYB>?PPcMh3v;o2bHf_Wfy%ND72LpE#B=j4-`|zUM4RDvE;qY%H13QdXcYM z(~WUVqcc=#yUE&X;&*mfX1tj|XkBfYELbwgNxn>^=%AZ)u&uA8jy8UA%k((2YvTfU zz?&8kx(~co!o$ws4}~?^#>dgHcF~2LVWIDgs~ciaC}ufJpgI-IM~5}WnqN*ew=#-e z(?gWD`;5D9Y|%7N88*6`c^he1mu5)hrcyU|a@q!q5M+Fs95&Jz2=~#r2`Tqb~34nC- z9K5LrK3n;IyuH`bfrf=om-XrKpaaHz;+q1S+NWz+eV-XFLrrU>ApZd7axax_?>wrB zv z@@|P#mZTvAKoOg0eVhLPF#HV>?2L@-86LHvGLeoZ8krHJ!SSF(hQ-@W83Zv_LK-(5 zRe=YVwmf`}wN&A_(~B#Ev!ZrJJ7?|ivE$}k4%GlGc*X!him` zYQN+6GT_G+(-t+ z_2FyQDP@$-q%`>P_C)P%=S=z9*r`VbVU`HU`;l7BZbiN(r3?-BSC>^7@e;SSHq?@~ zX&ABOI4b!nj|le)+YD+w9ITn8KG@7vkAk$DEqe#EiRBrru}A&n%p*$}Nosf~18HXH1)$~ak_KzTTD76+L;h-sU4#g|;8?O))^Hon_=PPPg-B8;d#0Q^nO zbmNUg;pEROkCGB->eDkrR!WgsAGGip##5%eeqWteE(@`~PL%pEGIL;}q+gL6z`<*$D_LlxN=f(YsjKxV&!#O6SHkKfLw zMX@#%#bZ_j-%Kn>iim(@paj@_sz4MmrT|F*z3+MmiUB|hF`z|!EviJ1IUs}2kspDe zV_m6>@DpKcSo`V{V@Ty5(=nHot0QKpnf4{>46@56?d;fsi41^~%HvO;TI1?xCibLs zbnr=TveC8|2aCfPXBlRVgqU1Husz&>Wnk-Y8aY$K!uk-bHBoMKB|K8xlQv{fnx@g6 zZ3rR4c;=ogz+DqIta%-E<>}{LXi8a~By#f49tCoj=wQzJ2mDrZk%Ubl1 zj?|Iia!-7mzF4Ear}?7%DpVl`8jt>O=6@`fWX;TMdvFAxHokViXcJ=BeO zrtGTV8a4I_$O#Boc#7QEwYiaRjZEowJ(m!tgK_fx=|Gs`ZKjsvYYPAur78;>?3_Y( z$Yj1u>zFQ$mipVy)Y1cN?H6Wju-J36F*v^P#0;s4?%4#EQWhtPkB8b)vjEyHx>Q=G zbM+O~lsrx&OM#a?`@|m3b>_V|f=Bt#U>>;&QJ8?H;Geomix#&4eEL#k;`v1{w=sut z7=~3c#x)DV)*2gg2U?;D-zRp}Dl&++lZ_3}yw$r&DKc+%HYZh5RhAd8BZChXI=(Ek7tv{5V_)iYk% zm<#$})KW(_7~AC<#sjxVcEp5WV*Q2T#Jik~^DtP0F0M42}U)ac%_Hk32S8{^w#?rr!vm z?yd$H=gJf&9i?NG3y9I!vC29wY{5rM3gOElmQCI)?kF`1^G8o%He7L{tYr#i1z89o z!Tu|ad{!jiP;XwhPU7IUo>M06&v#-tg|Q<{rnD7|+*sSM4xBhrA|oVR?aPN6WQ3C7 z+TI>RpX)*xyMj4sYx}wUC=lUsJWhaEmL}HInZE(&NNHJx_Osa#Ut|E0XX>Z*>*v2;lvb=8Do9h^Y(cyDlrEOY6dmNYc-rvP;?QPD$ zRao)4`aw6uLOGlasbgHLX%B zWFGOL?wIrxo8XjALEjhqM)ft7n&MR@G!qbGK#1+6FB|%=;Ax^I3mYD_Vj#xp73x+h z7)=dWL5<~#zonIGgWde@o4yvzNFGnA{=Ju$Y@42^JzY zv0v~7GD z9?2DF;%#t7ItHJ(J_~B3f7n2gi)lV6Ys*zdyA#ZC9+jF>l>D2PIAZWdY28J9<^Hz~3y*msFPshuXVlNsZ)k-4}u{lAyAWaKD+YvBsivCz@02 zk7zH-rrJeYT!(RNUm4&sQD8Nzv{(CB4s;gMHUkaMZDau_P z7-Pqeka4?ZOJak z)-}Y9^7laO{3a~i5ujiWm9XWRuhLb*L5H7@b%^EBmgnY`pDb+~^v;=g?89nz*f?Bp zu>;5kAbhD~x}v>D-pedP=hCf4ae44x#73N|LIOE2V`@Mh7R~EX8Z@oR$K6WwriRfu zG*;(RATpJGDnb&CDNr6|=SqN1cDAK#^A7 zX^JW1VhzW~U)HOUVmVWMro4^oSj*s3vB{+-Sj=M_#23_$8*nG7{rjtADXxz%sGOAA zwmDnb2`W^arqUeX+WM{aQ^NgdabE^~^Z9?c<@S7L;MnPJ5xE}|Nh*8^%1^Qn7lO-~ zPPs;8Zlms>%CAhVAxAuanm@z!r(*)zkN$7(_tugN5XMMyW>InxBm<~XbH~tw@21gg z9Ww^r4eXtrq|6jM6J$^oe1Nz4@u3}rMjhyz@1KDEDU4M&rx9;#+t7dMpau4J_F@C0 zD_w&E0Z>7)y@>ID}~7}^p0cSZr(AQMUEc|j#Z77A`N58#8@-+Hz9f03dbyxo8an04m?WV?#&~z zPoi)PxQ(QH$t`h)2f{q0b!?<{L>WoZi*T(F!{$aT`nLVB{mzL7W;($s$q4<{g+FZ zG|Z4E8@p?7Kz|yhS(5104J@DC!7s7)9vBhbM);;0=O+NtKrO$!h+C^RRp-Q9)@fvv zjkxhb0-Hm96$grZpy}OV65iuG_?PM!&BL+r_D3mLPWox{WSl-Vw z>t^NvQC2Km6unbYCE~8;y(&f%3B>b9FrJ5l=jT!AYMj6c@H0EAah@)dsH3B(FGWC z!yTrGZyJ|>?`E?Rf4La@H9DIUn2K@3@8OsF#ktMmyc;{YV6URYs746LFU_9##{^O+& zu+r3y50m^m+T%770j()5@j)490YNH4*Ks=K0Z zqePV|hrXaTz04uE_2uwwY;Ynnr@RPFQw^Xt*`Pjz-|uA#S&3u z1dS~0y4Y$sin;1@L$+1?J54^9`7!;gv&3@ZA_bXaE{a&(*c~4IYoPaGuoI_-OE1l4ohMHQ|yw zs0s*gw9TnogUa9^T7#D*u)va1Igf1Y$Rn0D7`Wz1TJlJU$RQU|;#MAH=yVHKqjXC@ zW_SoA+EGV%G4P8vs=_C@Ya^*7f(W_SnDnU0)NHybH%61&4muad;F>HB7YeaPbFLf^ zCOzQ()Sh5nMXjSZ8w#%z-4?}~l#(=_(>qCL!Qt>R;V_tZ8y1qYLl@g-MYtX7c-3#I zwToPWNMZ~jHzrZ6f{ZB{#@znWBh91)o}?8Vt;*GUd>j;wBe8DNu^1_F2M*DxGe*{t z74-|D*M|Z9DydD!qqn2Pq@9>P_itV!8@5{!B!%ahq|V3qkBG1q&x~vO5p7 zSni;4CpC)OjkUE>qTfeB=&SB#tGiu+PqXF1x?vL>SWKooWCBH;Fab@MyzYcRp$=1B zZgtYwrn^K|6&{PP(d)77UItugn+@FzMn*)8J0d7~Pj(B8_E6vq*CjyI@hK;Kmtw@B zZ{*nH*picFhC|Bb7!P@16no7#b-|lE~IoXG;Q7un|bn)na-Ph;;07facJ6PH{ z^OFaLlndx&yo?UIlt3U`b#4_->Cb~^+&Go+iEY{XDB>q!Ceg$d=aEQf*Ihh4(r~t! z?d4jbiTN;P)~=$CgWV0q!(h-R9u<%8J+CYBIoyoL(?R80qZGP1bIB~7vTU}xY32G_ zq*g5|-;Rg=t9A3B0>bgz!oK01y8FaH7c3O~ps8Sz@alV0T_e*4bC@H-vmms;Om2 z(G5JM`VO0B;bT5I8h8Hg5pjPu;6625$tiScSYZzN9-Z%K*3qPRRXsk|cDD^ILi^9Y zqp`l(XR8=0iB`nztj=30bFbQBJZsg^XHRZ*-q112R zcu{-8It$y(o&(-RIXmc^R&a%z3I<4M_gkaf3r{{Zt8eswIJ1`cM1{{TlgKiI~k4ChbyRQ`Vo zrx!+zU);Y#QpHDZ2SZv6C^i+;>G7aUN_cE^I#Odow&QAu4mMUM$IMb_l4iStpE4_6 z_XFcrN1_b{ayZn)Gj*T@m{0%$cwdD8BP4Xu5fz9ICYXl{EktLgPGY1Y72cy{z>T?7 zghuVpWP{T8sI)Vcds36_4Z7Ah*|IN$XBdX6%WQwUGQMI5vTd8DhU4BVpQ=g6lU|w0 zGE25j&Lza*W11jdJUpP{0^F2|*C?2QsZ@I_TiFZ=ump@cSt!n*lWw6m6wy@OO_!CG zW8f`w%EMdyD`sY>#g6Q)L%4~E#p4=Tdx#Q7&n>fM3_u3QOqa^RSg8aZRn*v(xv(JKv{fAW!k+{t^=wANVqXr-7{w%t zSZEE^TyfWfSoz@Sh*E*ReZ53Neb<%&;& z78$NH5(~x(%Nu)4yfXuBNEXzd1K&uamMw|ID`Y8imiY#jWG2k3(ZDB8Hxw>A334=4 zBPornz_CMn1{~K;4i6FQLt!2Udq1=+UM2^?S}y7dd(grwViv@mB@LS`$pmHLQKZg; zl|e58cy0E?V{oktyh^wX*)0x9r4AW#$sl8$Y;R^!u3nd@(y()+lPZrC7?^&tm`prB zSJGHeHRdBJGB&o$bs&HZvz<*$wdAId>t=6^czkXj9}Wf>)H1KtRI^7WkEsp`2T^+q z9HXhINm`=l&0htdwyx425bT*_7SO6eC zMTM&RRYh{jqb|ej{>*WBsb-nSi#B&L*p_DCQ5V`@4z}O{r6sZF(Ul=&=z!B$zj7Cs$E$&qYLGQMtc@ll~Y+{Vk z$k^Wz9&aEx3Y`#c#*;*OQ`|#iVPwE$voQ)S&&sQm%i)B7gjpDUn%NKg$qq#I7uCHK z8ilrKs7J9aq+yQT=6pl(7bYluEvvY_?{c8@)|SH0Q8mFUhR64cH5n`{iZY<`%DipD z?Q>cq6Q4P|7O(?Pm03j=BixY7Dl;UgZjPqJ5yM;6Q^usI)r&l!_-99M&uKV)y%JzH zsZ2i7M9YNQJQh+8kx8wivDBg^^gAmYtMrT z-(AX|1&EUkh(eOaY)2*sQ0RCvF!3u52=uO&JgREZ%E^mk{D@^*w#tJ9qQE#xKqwM~ z0OY0zySj)4#9^*4(u*4+ri!Iv9d0aV>)3Swp74~g=1R4`b(cR@bhLkZMU!)Op~CG8 zoeIv%-i43rRzsxBS=CNU^Jhr*&58$R;(x@k+utO1{A$_r61_U9pxuVy%Hf#bOu&KA zWKYc1I67vnXAORamh*-hR)d~5%a(x$#NUU<%99x3ECBh`M8S-Bs2Vh_%*WRhJiX;h3`qKgz zZ%S29JA6e%aYrQY{v$N6(&t~ovCFe$N>(J*Y_NsF_Tk;BjN!+CvgQx%Se;LYPmNP8 z6Uoh)-_=$xZqjFBeIX=5N=8>OAb}?pJVCnKUoliar+#F=jmQ0Nh48Rm_uw- zSA)+y(#t0PM|%%{aacUqS+MIOfT!yCls*F5XO80IRUj49Lt|EiX5#rO8}W>iOkA=| zo!qZ07DImzfj}DTY@tZMD^+b2P1|I@X1k;@4+t#CrLwbFG5}77*3EDSBkro@DkYB> zsOYwA{{W+=3mb~=<(nY8t4OhvV1caJ0lB#YrSEI?t{Ge59W|zKk7ZwcyDh|EVTZrM zh@zPo!7gPkeL6moZqbTtbGm)5)n%40EKsM=3**6U$^J5buA3rweN?aF*cHby7x*SopCwonC!A3J*0eH$aFQH6Oga%}aEIb}kM z*l3#&s`~eWBBi4Pn=+GNbSFb=-lU~wSSOM8TsIg-yF6pehy=?rcWQE&ox8&+?L3^NIg#-HN9JASi5#*yHk7Q`qz7WxinIvD7a>0 zUOF7R8eUuFlN+Ji zRuH&%!MQ*{MOIlrQNrbd<~GosEpWSOy>lu_EHDqe_280&O33EC9b9^8S0x`Azl8q)WfLBZ{uTIf zI&`Y{7pzf_V>1-<3%ivE_)ryJc{-m#dN#HXBxAxA*_)`KK5a;`()!$ysU){5nu;C6$lkh_+^OS*^vjw*jXi z=l~ULQZvc2BYE~`c^T@rBhc~vebp%-g!!T?aWOXq4YLjx;%)5@&(fS&@*>)iREkeD zbO6^Eg3oP8Wg(S^5J%3boD{e;;>z*6MbmkET$ddLIBZmC*o-QLOh5!nEI?Q*8=T_W z>up6~#}7(;baisgX2;h(l@vU)~Wt06aJ)Sm(%qh z?0?{EjgEMAo(UpfzD3k}mA$?7WHQEYhGEO2$%$N(MU!@S)+mJWJ4k|PhFPKZ(4j6m z9IR{@4kMnrX-tkORiayFc87+=M-+JGb(0RCV~9@?A+nH?t&0^7FV~KslTDhFQe5~c zouY3FVllGJm&o#XZ>Eb9A<*hBRPpuaP%};3ik9$iM3`JWa>7WIISH4VWqkG zR2*#8rIkpkY;M!G)^%huknBKYhT(~}WdteL#5BG9UkGf9=;}O;qoFa|I~9-F%+t(~ zou7x3!ph9XMEn)4zic*qf-+D?WinmgY@b_%|*{{FfHy zE-&f&`OpFI_%&;IZ-3t^0CO$~fJUkffzawW)Q}9YxIuG}5-xcXe7IhMBGch4bW%9n z5JjmDg8f%p<`*NG(t%KmVU6_!n|!+ZQ9>rSKW4O(Dgfr-`xm`{^11zrPoj+9X`o=Y zK)jz#fVR04GcxB4kh+x?Wb7Y!aMMrh?=tUx0q zhT|jg3Q1BHi`o;O>?qZsr_5Rw^{uB?s# zxUsPZT9TFYCkGcz9R<5s2{!&C9g4&3#e7i1!90zGkVOn~L;}x=Y&?JlY(#OD?qJFU zj9Ei79Mauy^D$+|FX`y$PoSnPn-Po7%-L|!DrREAP)N;@a}pJ9*9x{>PJ;TROHALB zt|fx}{O$WSBX~g>;qM2B#()WvQKzr33;XB*rY|jgzEl!OO(NoXjv&w!AvQS^+I3OS zGbjV%M+$?IB%vqZuH*Ye!KK4uqib?T&TZ(I;ZS)ZyJgEwk@SjQ^nE5UFdV))7y-Z{ z-%T}VzN5?Xs$Qlmqf~TL@@3m&>9KNF3^?-RBVPVRSMm4Kd7X46@3jCH*WwE2v-?dL4OrRpwT!gUuZTP*9Z?GBasl zNg6J~bt|3dXgl z=Z6VF78oT04c*X85gkUrux?BNw+>))!D78UA_#MCZlqGIXdEPloo74ok*Gg03XuAmYzFeLsyf2 zOaB1f4UB9J*MY4@Ak!_l@iYfwm^>zJIh_S06cg&b+gjS5CYV^|;5PN;QD_BrULwSK z8i^!pcpOe-4dgFYE{HKX7g}US(ncwOiyC7KG(6}c6+oatuT20;QvwZ^{5aG}iLtjT zbOdhRj_ZAIQI|tUEB2X(%I5rTZ&?|tCUZHcGU97?Hr0Vb#B1T`Zgm#78|n|8b2T`x z+;7w5{+2TBcY5T*z@|TLNiqY|Ld4tMVe45m*wp7=1^S$uW5HeA-L*D?e;U8EvH;h= zB0Tz6N^wzF69RkI*>o`M$9EDeW+ou9%QR)z4HV6mHzlsBNx1OFNdS>^ZAI&~iMc^P z$nn`REO{jr;qYmYrqCn|R?fm0aFtqS~$pM#z^s|ONdCKzLy zDCIdpB%GRSn1PrBaeg+jH{xMNDWadfn;X82DwZqW2LWw#BH)95T*0SB*k`rap33?_ z<2G;@SciDAxpXcHm1oMtWdMS70`*IUyE>4cw4UE?)NxZp8hqkuz*YcdO9PlMhuW|| z#d2@0Ss0n2%=jvMD{Z=h5R|yrL9fIeeE8LrYzT*l>qP-z*o~GqwX+Kz7dGc>>C5q; zXmFckvXUD=3!`x$^sweH!-XM&Ga?sSJ0sHj!yEGk1%WmL*1j zbkKXR#Lx()lVg1?#CmI?*Nwd@L;^YRCpH%yR&EFuk-Ef`UZ#8EsIm!`-=OE|8>?WLK7B z7%asj@jZaC%A<|0PfBeV5n-PZ1F}3YlmQm(#9fINJPEqn?+f0lY;H@zUfwPFFiNr_ zMA0Kz`{Y*_doEBv?{d>;iW%;uPc=+GLHhJ=-xrmdY)b*C$YP*42|HM}E_zha5kwh{Sy~W&Rj(3~V*B z08cw*Qb09Jo==o*SoG_(H=F5ojd9__;yLS<{{Vtg-;?B;hMoTaNWxE~KGu+Zo*NWz zt-jLV`9=6})KK@oEOmlD5X%|7yTgd~aF~_9Ui$X`0F8k6+LDC+SiNj3q=ew?S9mcV z+V^1dk-$2hVVIvj6*Y;nzs5myS$0p*=N|X^#yJT48@(deg0DkRX;6141^O_iKp z_@sHleWNvnh4~Urqv2KWG)E7XMoWpBe{1ZM?yt1mwI@J5=hBaJC+&!?&e&l%aXd)k zeO&AAP@~qbQ8Q01j)ohM{r!xd5$ix9%uA#C8fb)s(J7E2 z_p@Z@Oy6@`^8njX=xlv2P?|L0bt)Y0#Dt&(TiVKPU~FvQe=87wmDZdYEYar4XNs(| zIFVWy39?i`Yl6j$EbA^z(K*X9av+{zsx@xkCHM+ zO!kMni-_6hPZ}sA-N)oFSG8!NI%gPd+$ELAKz<^#wZX10lS1u2^K9*%IUEqi#G8_G zsJS|wd%ks#2exe;O@wq=5*^V_7j&4~wO}0415(bU=%|@5I|5&Tfd+Powh8ep{Prtqm(;L#pac{>sck)svQ~TAXE!U?cUgFVIg%S za8P)9>&m%#=P$J#3=ofYTjGxgJQ6{QLz}|zN`z*HWxiLnz;z*tI-V-tmcfcr$16s> ziZhKiXPCW@4j%GNJa%1ITV^AH@mr6+)zed!UJ^NTaKg7rOY$?V&fWFIONhkcnn4<7 zmQL=)$Yu(mEo1jaYY+nKZZ+tk6&R?VEzRVdro^|CWC7i}OElOiE`XBRpnH%*E$w?) zgP?DbZBZL+jNe^?F!-m17_o~lbt4SD=ww#NMxYQ{z@8$;+R zkv{NTi|KA$zbcueUkw?!9DjeYK*!r5j$lTdK?jCg8{gb0B#RCPIGDVst@d_0Uny=L z9SE_pHvMX{R0-Zstautb3tSW@H=*)ARBfQKo<9-xe`GS{(m=!QG`Aju`c#C-Xr=(( zz+7_|zq^Owtw^kAB-bOS04WZQ53s%Fiw}%RX2rG%5l{O<#M2aOuDKRS*o9lZjt+u> zNJ|&C3p9u8q4PVwV-2(2i4H+hMr-EES*?3!JWNhQwD}srv~K94~PY0m6-4Vj(n|qel-Wtt`g-P0=ukdibPgY(XV(o zc!F5zuQBebBKbPff}D6OJ40cVkyr*1u(j=b5;fDyPMqsSoY^WnGw5Hjcz) zR9Hh0w+lxY{{Zc$u?4r}6u?F}BJt#k2=uVlibA#>v>IDNFQDPqhbnXe@Zt{-KDtt2 zLJa{1;9PUpT4M#9hMrf`Utf)>P>(VWn)(mMm;w|L<~mat62+zU6agEypTOF3Adht+ z9D&*<+ln`A@&T#Si9X@O-)h4qbn)Yqk(TWq&xPsQtt{ zY{}<7Hz9ARL#Ls8f6@(2az9cq=(29^!Hr7*qr$iM-<|b7`jS*;mR7;WC0J0{kdCH` z&t;(vhn5ZsIB_Sb{RawS3*6d}1u=8;AEf{(99lP_rkNHdk?B@ZSmHPbF`*VC$mvmN znsin0d&byuaPorD2G1D)U2mpgdt5TvTwH3P@~XbpY-@V5XzfhE_h@7axtQE2Pkx-u*|)sFJP? zQTZQk?#XOc$q`1Sq>mJes5#%merDb#Cx8GGT-#B}Z0<@ACIu8)wxmh2a2?9X8fmO$ zw*xT;hXO=trTH2n-bvXh)}I#NEY*7}+ui;S7Y5}9Am$;Yqp7NG+d%^B292wB9)U z8J2ncj(^eUbSr;5+>hUtB^v02vPt%PW$nputU@^f)T)vJ7GYwH2q1&U=T;(7kf!W! z_9qO*;$W`2OB*Vbk$RP2RPy0cO`>saa)x`;ye){8=a80Jh+q;12mb(VCR~bk_~I`l0L+dH9W85V)F>S- zdJ($-lu-~^DFkXjK1cAk<5M*USq*{YcvBfIvWh4L!EE5v9?A)PZ}Ep$5nC zphR}mQ+$U|gG0frY(@RmAyCeDP)h4>m9NLvftokb(I5RK2#XaC4qV<0MkX%u6gLEC zOsoht97Vjv=6;zg!>R zL+^pVPL&cNmuN2z`VV{#KOH_)!~n)G4*CyX<*l!$I$VuWPm6KTu~R%<*kVD-<1sdF znp=mE){8cJoE9uz!U=RRM7Ps2r?k9o8s^}OaO+JZ${tpP7k9`Rk)Auq)3_;Lr! zq0@y8BG~GrJiuWj%a-yoj~TVe89@b_z}Y}LlVAbX)e0^3&cXTyvkX=yGQ@?#-ZeUf zysBQ>Ut1~nR7>#W-)CgV-@nGDX&Z$${{SOMk_+B+pkW>{#`pLBR0!}tAD5LBGt&Y^ z!53Xf;BBS-x3`paVV_l>}Jw*N^N{0yAsvsGu38ks}triG|4W7rFRU zT#_x0DNCeeTle&>!NGNjOwZ;@CH#epoq8|6sFr2m*$o^1qX*wU*0!e7ylBr9XZRyr zq_6UzGMy|*ETX7$l#PoXJY_+9GiCnSb2lR?;r{^2M%Vr~zm-Q|JjrxO!>}V;X_$@| z&<{lxQSiT+si>r9mPa5lQtN9SZ>Zoc`_iUV2Ez8A%@5)~S{fq8*rcFD*6eOnxPV*~ zh6Mi86FYZsN9yO=Zis=Jwe`6G_E>4 znE}1PBCn1zhmfM|uG+CchbA^uA&N4UR{)ElAlzJBX|KYp^wD3a%VzBM_Z#VmkGmy} zoi&UCNdbc#!oy38^5IZ;tD?o4`!slV#6$ulLJf#Hm-9c3RkfCHL#4&WL;a#~Rv;1Vup;36bsb0HQIss4 za&0S{J93{@k^anqaE?ZQfdqA`lnY)&#~U*pirF%*H)qKp?v2?qW*`w}BKIu0eWhS@ z)Nrb@VNx%{soBHjc~7F}wKvW!q5j(#RB1>P#=I6=YDR-b8~iMV!S9Z3m(NAwh!6|L*-69IxB?HJe*Q&ux6tfkvVNGG z5yn%E3PAoOkYARBAzwXD3b7(RnqKPfwig(M@YBaS4ml2^)Eg1+6f`O)GSC4sd#FMP z)gTbgdC&qX3HN^eXaX6Yf=n($K#0w|8OYw0n&6SjJ)+^P?dpGj<;9M-eByNLSFuzbw9tO5YRgrNtbMpNw6qEFyKc6BS zkFnDbTfZ4nAk8>DR3Wng=bJ%pyz8wFRi10oag|7v#&)e7Z1BT^!>mjPb>A;|>^Kn4 zPK1sgBW|^7kv7sJH;-mvro;Vj2nH5JWsetyY|S2^<(&&34~S%C0^T5WvAl}pyrPYF z`_La-AID#vBD8zGerFHxA09Ol#8S8SHQ^-0Kz;}SJUHlYVbf2-nm6D9SXdG5epcuE z{Hnu9Y~YdcBd728dQX9(XJcXzi<^@Vh%XG+(2jmrrDTa5W+E8_O1e7nPF}n?YppIu z*%gM{UE``sGbuSh8WF$SK2UTj|nTW$`c)wVMx;5?t6<14Nv(3Xjgb}iyZSITmrC` zL6#|tMyES?QIxXe2H^-c%WG*=+c{HI$Z2-a0LICci6Dzz3Xlk334(}n+}ZK*Lr38v5!`M>$zEkme7SIO5WaF=uD_r5wm5D6EMvk{>`tdu@_`3 zeAeiBRClW`SldLuXZ@Mt@zQs2Dwg}C@by2SqnFX58g}_-RrYiA4%-pOGqxfu8F(Hh zyOL#!MYOT7M0-Zdqh_%^In$@$)%bW`F{C+6=`7Ik5C5#^Zhu|d=pV(6R_iOzVYwlQQW>u zJvn>`Nr_IYemByg>c`}o)6MjRWyL4}fX7XIEo*hZ3a#oOyDyH5Bk)1(j?kcllOw9z zj(HJ37ANIZJyd)bucu`4(lZ_6`cPq16^)ig96P0XH5~}br{ij_TA4nPrD!1@TQmKs z+wRcB-7xV@Vl84UN%B~gq~qtxqOwj)k@|RH;eTrSha9!*@IMxBS)ap9vW z3`r7N-T|r7-XrZ3=1uDL6%|Owxyka*UEi`h#dneMLueYGCvbQn3ljFXy5o} z@mgXneVg`rakCKD5JW+luVQ*eyz@UYJ(aoRYsxCf&U;aneKh-D4(qdER7@TWt4yHKJn!>C}f9@qTG^`z1olOy)lBfz0^hXj^<$5pTZ1q1?Ov^3#xa!!pAY}WfD-;Uy9vcn?5iDkKVQp`wJ zU;>>yWs2*25poS+%M0ZlO+IG5tS8bFaq)2CB!U>GWD2vxGRowvETx$lP?b4N!8h=# zt;VF)kbfp@tDX!#P2-O@isSGb8HHw`s8JS49;J|~fhg#7|neC%;`Z)Hk#oxXq zxQT}h=_6dZ00q(Y@PTXBKT(RgM|(r4wX#LiY;I)H;$AqhG9+cyp_V}-#Nm`Nh=`V1 zGpVwu3E}|Vfzq~P$r(jA+0M;|amdteycJF2gKO%!F(}Q%uDUmLq$=FRws`ocG91Jc zp}n;RVw03#B<95J>k|y`J~s&S;ehTM5IcyVc8*0`GFn+=x``LPoMmNe<{3~%q8BD~ zcIt1o#o7@=77q=zA;m!;Y1b3oNU}i?XthWH`QNfKtFOh2V%PgP4W}oR` zv*0lhVzyQuOmnCaZ3dSS-l~iHQOsm7Du!T^clHWV3`Jo~+S^RRt~{4-p(a1;_zk0m z%&RDY4juQQc!H=F4nwE-bR^vg`EC0Z2cpJV9bCwL z>H1skM~$OwN?q=)-NvXu(&I2B-rQ|m+}N?h?Kk4dDRyF}caWE6zcS2to7+qAKb25k z#iGQo07U|_)7kH77@ePpOimg?j=V<{b>^(R7!mu@l`kNhI(uOKI#anP*@nF+06F>7LS=Q6-R3`bq)ncQkFT8q8SOu0>8PQyNaaq}aaWbO zTCq>FPBS%{sx%>8g)0W|^W&w(yz3rnu1z?u_$51A+<9?$MR-(|hE#cilYZ=inX-$L z5sH@6!ZqLxbF|Y@pFT~xh&e-opSt@bD=NkhE1ge4d-_*TBUE6=*q+CQUQMM8P98~9 zJZl-vcSc8K)2)~gFVec0FJecQ)>F$Wenc_rgO%WwaoBi~7BM6e#KH5RIrv{TVh)}f z(-dQAH`uPy#6;0;DdQ20G?^lb>QFN?p#WRVGXZm9Znmi~eKRVu6T=RF<3FIiM$GK< zK%^V49^cMa^0h^lMkOz_90HEug@}0g#@UY%<>#jnr=>WXaD_z|7Ugh%%B?jE$85); z{ApMreU3sf2c5wm5pF(|i4)r!X2lywbfsY?yvul)#jWr&1FVM|ot}|paVV!T4 zfGjR;Vl^Mqpr0WZ$t{51%uXRN@yu=@FD1z&yE=u0zPPvo=)@%`bEQlKVFW2XQ9LhI!paX=i(k+zUnuk~P-KR1GUEu})6YJ*JN~ z7{MoZ=dOQp&$|BrN!X#0Wy9>miq0H7Z>7bxCf49MTl&s0oP3=rWWgo&@%@cket-Nz zCX~h^!k~y{GQ`q+uS)1@w^zpmgM{O?9HthE)voP?h5I_;JBQAhuk=UD#B!P45S+Y6LilcT1 zix(}}*e>!(aOf!ZYA&?cN2LZ+s1?(2wv%Y?R8c^olR*-e-Mi6 z{s*7?z2l|-0JQB1Tw8#iLOu(Wd<{uy{z|3w6#6ALf6+S#HF+JIj{tA#WX@{Er!vc4 z-$=S_F2weHTrlCt{_x-AEWY9`S4RX_Xv-~DNqH_fJQQ);yGYP~fdc;k(g(i$>g5!S zj!lo*$v3{Ih&(?|btFVZ$-b8wU#FM8ySXn%w9E;76!nyYVup36?6XpDWr!&8#)Hbx>J6+f@A==aDr7=p8swXD{06lKNepqyEpArS zU-7EsSc-N&EU)L4we;ukta3F(M|QT8E+P|{?1ovN8DMbMQ=A50_I(Bk%Q z)){7LA;RLYa{XR*f?Siw7+DxcW|kn2fvd6iYS?#WkYaFDeo18g$N?;6DeG;7;#QIN|$Er@^9VY@X^bC zvqO#ATX8Ux&w<&-V~LyVxO8aXR7f#6wrPV-33qHEj4R5yWtb98>~Fp~Fi9M(ySw3w zWy8jgB$C65IGCW0Ia*^TMU>3a#t9=1(PvoORV^!@2{jt{1kKm8d^XUR3pO%5RI851 zw5-^R{j8!}tiB;(_Oa&GK+(B!qEy`)V7;e5ZEPkZ4|FC-$YNL#l$N=*;6B9DPh1R#rwP zy1R~c!FVyge(_6jH4)#|%Vu^Yw_sa&eT;QJZ9EFaZ}Kzd z#p)xhK7+XFBcC0Fe84D;!V}?F4I;IH;g|q(8A8NWHr?l%FbuiNxfd(H`h4LbYQHkCyI8ivvb;wt zslI>WzZ;Xp-<|l^OY}VQle;XkZ^i~mSmJPC%6v@lkc!NCvXNj(<8MADrytDQ87k!! z?d{*TnN}ohG+1OeNO;-4^NFz)tG+)>3?+v3_c_2 z6Al?f2M8nz!SiH5Za@Thxpd{iqqfeL6tijC z``4{W2$Ow~z}r5da}S<}T`glpfXf+@xn?wPD;x5)aIrE~xUG@PbRNKTZ4>88z`SATISt7^S#vL0O5O}AZZd6BxY_k#> zP1Jx$&>v@AMH1+PEL(YS#}O){;^SWSK#MUs&;~XV9H?%iMkP~$y{fmzM>gGEPu5ku`w2E8ipKP(iTIlRJt@k;{i?=u@#TwSt{T9WkscVpe_i$kw$%!%+0gEVOk(-WQ9_#U`E)KkSM7H8@tk`3g z?9sQh0oUD|Pv4ylS)w@{ONQca)Nsorn21_*Wo(I@Eu=aE+Ka03AawJkz?8YOxqgKm zx=D$V@C9uWMI_OJF3D#=6gB;l7@H7mN1aJE(PEN)9cpAJO+9JS7=({)5A^jK(2$0N z5q@5NybU3VG{>#{>_2~n03Ims(@tN%$k0eg#bffI0Y)73AnEDSfE6;1BV8;<;qUxt z0V4O%8+AXwJ5V56O*m>e+u(nE>7fkv!u^|#L9xD^DKbdpt@lev!;Zg(m6BbXVpN>f zc1&f86u?V$Vh0kccr}6kT*ChVDruFzjn}j-`Hm=Lb#P8n6a&uI<*?WCk`!bHhg|qj0g}K~iQZ2*Z zN-y4q{?=qMpOtki!qBvG)QB`4CD&1>Pe0wNER_i2+m3*B*8czsizJZG53`b4e0Rzs zn44&9BW3`9$}1*SNV)|#W?@v#2vSaY5ZI4n$L!quM<@p10B>tm52Ez2J+zuLL zBF%<>vXof(l=w-p(AxI5?B{}~X3URrqYwI6U?Gnley)5HqRIxI5Wo-zF|KQ0mAY1^ zU84^xhGST^xKKa@Dbx!S%x3G;$Wjs8c;4Cs)5nOwVT=oiSeh&x0JA6vkStMK+6t(- zh*5St6dP78tx26Y$vC0|>7~4vd>S-u4kcjAIyv#LiKH2_lDWx{>a29XGp5_MMhS3o z?hATn!yMRYr^CorMQLH0NZFD=5tQU*Az3pcfP8Ai8;vL+bx&a(pcab;(mYEVoQQ}! zzU`Lll!Cf)U_&b3i^vA>A2qh>x%;gKH7jE!oRnVNofLlwOTZK5jXog7e za&|4mYRi1ZlnDnRt@463By%8*bk|zF84FKk7???Nkri+hf@ER^uXAlQ*IqhlQITvY z-aA~`$u{EfDYKm7Ozqv~Y1}&`G1()GBoT3`Oi;#60+pJ>?#>sfNkgH|+3>>E9l9a%+>_<#g{ zmCb#dkX_)}koQ7De%|FWfue=5%ufw(%<>*|45@4)#y}NAF&44mZa*zeG9>2iODA|! zDIsoj95120wDarmpk?c`{jy`l#UM7xBDMbSiC6GzdD8GD+28$wV8ZQuVYiA*EKW}= zi5W@LnbM}`x(R#=F{!q6gw;WKT!8VWh|of`0bdL}=@x}>eSaT#rbUq(!x1P*9ICkz ziOJjj5zc*0WtV2CbWt&t23%)&-O9u{k(L)_F4iCeerKPZPCAG~i8F_vMVfNBt_bDb zY*4lElU#5hTk$rjek&jQk&);#f3=9?-bl5Y8Dbq>PG5)?_>ohNNYAE>xwN@4E0SfC zarR_0%iX(AW?O@YkGvz0Bv|QM60(d?+~~MsK8!Dt>x@$;DQy@0e|8rr%TWw>${e8Ztqyh zzN1eOI^XXLPy|9jnX;|4*T@bu-vnrPJQ9Q|ZIzsG9wJq&HQ~zs`b3EQcF{f{G`?H& zJ{>H4@5X>V7S?jhdklv{cznIoP+4s3igjFUCP}1)Zb_3226fb1E^RoA+~1cPY>0l) zcG+f}E-cKiIb8Ua%0hRC?Hb2WRDGaQG$z*-S%JTCAKBMvGs+~xPvgUea}uJF8UK7+VZw&7CR~>^D8UdofwqJM*t1_h>jVhE=>Ob z0lJegxQyG+LGz^AI$orHNiChalQ**yJ+!(hVbh2QomS@++bxQe`HHexcNTMCB5-)v zqYXLo<<6I@50(3qc;>u6*_~hX7uga;w8&+!Y$T(B8itL!c^V-&x5ErklI=6QF-U#i zy=y_BL7U6-_|PD(+&Le|`i@i#E0OQ`@%{3oF(ZH2x8+KPEg}CJ$*P+6C<{zvN5+V9M7M}l{PeTcK-hWXx_DsU7F+3 zPj;${29wl)Pj~+Swie@KZ}IH zEY~DR>UFx_!9~>Qc>z$`S-*-X+v~kjDu?j4R2_;cL0C-oWO%<{e8aa-Y zAr>vd?OPLsW$xy6Rk#^jE2wX1BY~N3#DG9N>J&*yp$(zDhY>L(*vR2TlE_cAK+Pk! z013>@crEzafj4A+(Zc{pxHcqaQ*|~ZT~9SOxFbRcG{j2o=Jxk7nB7aqn7Ff*Adm%z zEo=|@)Ld+ulS+%m)$MVy5TiPg910`DBe8O2$`r`VMb1Rw$X?guYW7ns-)oaI#1HeU zQB8_&j`W-~x3$rMR~|?7<3mGEj)mDf`wY7)5r<|Ao;8{tKs+Yawe&1JHnqqkdO=)x zMUJGb!sncwdhn|XO%5p7VBoXH=(4(&j1g%a7GjLV4D6w@odtj%Rc<9xvYd~AsU>ug ziiZgF#X*eK8zhlX-z-N8&5+RqKizG+reESwbw59qWM-tz+it?8l{WtXyz-)vqc7}a>X$sx9aIGtp6K1G73 zo#{)WQS9x`!8Z7PwTn=0qX?tkBnSThyYQ#6s3-CX+|Hr~sVxy_JULSUEO}JOmGIR9 z&=mEciy3VK2qN_f5{fxrwaCDff$#nPm7Zpp8FnbuEV{`pg|>+Bl1ER>S36USjmGUh zU+G|WnY}NEfn5dJ+#n}V2@KcxE`qUX@$Z#0UZQ&=Xs+&l@yw@Oi7>+)PJ{N7{IQmX%5J;mIV2Jv%I6r#k=gyNMLtIWBmB1#_5A5H7kZIs!%<>nha4*Q0 zi*82T!Zqws>s22@qY5+@Ny{A+A;wi4kvIDfemut1OYmw#1)Vz>v zM!-I?Yjz0RC0oVFMGtSfu8Mfjtv*JGi^VWeHPhwrO z91~8_C)&t}43DT>q=8^8e~X5Kq@%lnFY*U?H-=0^?JUk^Vn$}T2G`Inv;bIuE%U7~ zNpx1*eU0N~y|q9uduncdk*=1#u1_oZRir}Tu(!R)97r5)M-O?w6Y{AcF01~0Vy~>XeP(Zl_#q19N0q07|mTtz;(-9j26=X8ROFFJ*d_18+Ryu{b zA+2Gky=R|8MM6)bMm#Ab;f7Jb;u7Y<{t?dnxK?7-B*{IS*jx8OB!L!W5|JX}V{fcG z1n%P~$GbrozN&7_!sJ_6?j|9y{*D_;L3D*OXmYk9A8NoIGvCXeygJp8RzbQakI{D? zLB17zlm7tfVfKfMOFtWUEx-~wR*jq$DXS|RSLm;`0lHw#jo2uj2FkjS2{Nl3qe4jh zZBN7-o2J-GOVk0a^ys$6K2Y>+R8~cYYl3J%c9n)S!u$388NQq zpAP;a>_WUCT;1}4-uOj`()Jg%>?@%hD!DMcypcHHqQ=&}&IshW(Ikkl7rz50r!Nod ztun^T)<}_?XXx{_LAbz7v8{sZ6J;6;_+&gztZl^VbiGpG(K|yequ5T;jY~cmz+2x` z;04PM7NXw&0F~9CvV)1(>~somO36_BVQzLNLulZU^6|=~+W!E)TG41Wnhp=K4Wi*m z!D6j#EfLgzonEoG$xE4}ZB5db53*v8SY8(T`>+x&QdhbIH^gQ44=U9Jk~2x$C`kdU zY=sUL2p`gm8bVIhSu|C*hAh|WJ~f_2u|<0eh$?P4im9U1Xj`?ss>)FDBH$hu;is)Z z#F}KBaT06=0v_S_b>z6Z+;lhio8=zjYC%UrV7L1Nv+&){1xcCFM6$bHS2iSqRAp2Q zZ;Hf$}YE4sptZb8szd9_t!=_9$q4jc1^fe>AnmbYHfbTJpD(MC&*hucJ*Yy_La}1s3?Yd`kR%rc#mQ{LiD7LBD^hH; z)QuSy`0sChh>~d03OfQLVV6Eos>HI86`X?h(~SlxJ9bBGowXyt8%e@Hr~xHt6t>SscS z7@hBRHZc)ln#SWpsW-Q?=fg?{IbHoc;UdeMOX{be4`RTq7nrpTm>_*AyP?q%dh_iud&<>m3Ii1metH&7eIyx^0l=iRr% zjR40uxg?Q$wlJ{L%p7L8<^}XWoe2$GbV-)SF;U~N(CVbwlyTCeO)}NlX7-#O zGY>O1cty}L`;Vh5bGrHKpygQgSba=RE3=`Z%CTmQpIsf{hrq*eiGq0KihDnH8qz|* z0Ln)-IuQJJzxb$`O zxZXG<&WGI1yN7rp5VDNGp6i2#;`blKE^l#tEnbI3o-)RwyEvN6GgESxM2xcAL;hB- zq0Aahv@L#gSjJeLt_Gt)&)3iQ%8?>J8N7-O@5kjz!iHFl=38n-`B>^dFFIB_Bc|Tq zHNE}xheJl+>mO^4LdUdo2Kj1r^9QX;!JBH)5~8v1afC-W9=M{r{7s+*{&;sj2}vYVq7HTrlD>r$au z)NEA#`G4hVR557w6i5F6)B*nh%X38mtM*UXt`bFde0oMnP`8P-u+98TKVq-P61loG z8GA0-Fuq;S8sayz4?qc2T(V_CbVi2-@%#B$1jk(&zZ@2Q7G1)eCXt z>~{`BW!ku6Lfm5n8&V&GUE95m;r_j}A;?5fU?iF^5jL4p z7hK1Q0J~^;5k}O=@8ZXM!>~4f6w84ac?_{C2(bn3T6ajWzs65hxJ04xBot5z>< zl)S#;4}Z2k&BF{<6hkn?z!WU~>lJyQyC=XKDxlBd0ao@t{JUB-eqlQf#JWecCmCK? zW5Og2F)b8F6FWsDjHKH@s>O)73ViDL^g;JVsy1S~;y$!s3pNW3vEuNhggM?>VehZu zu+9}+4-Qoto0=R&bVZy3?C7L%9BDLoEGTAW3>rtoN*YBBMZ>OJ9S&TVw+eBBT#8d| z(M|0{_k(BRd(P>xIDGQtVymCM5oSaUVPw^S(?PDJ(`=jf>z=_5X6472s8I_mo5{EEUF^6uOiV2d(ZnZQOt0R7G;vLxS?n_=X9RGz zmbevW+u$#YDxI&yxM{HnuOW>jWr{N_j&FNqW@F`YMeGQGhOEFrQnAR zi2HdX#6#aaks&eR-L8AKBH&wxh>GS;4Lk5}jMLz>c0;&SCW27`NDE>U(%fNXON8x%*C>Z9_!rrI+so2Xt z&+Ky@A_*4>BP5HOHVqie2)H(R0kH<-KzMN0in2DBWk-4YG{r+9SAoIM*yTDK5y6dS zmkhc*^i=Wtoi8Y)2c}a|WXP7?$%p&5AMlze81fB^InyMz^lMQ0?r zbAEtWYg3BkgJzF{+&oyf`z|B@0HY`Vn&?FtB_pT)gF6}H+B0{tylwSUlsd9;kwY6W z7t=v*rnBol#rl@%zUFsZ4tLVIM@$J@N(3T2{nW%(5L?Ul=lN1C97jPBhTCzF>!=*H zsK}AXy`n@!jp|KfHb9`_O(r`sO|^=3mR}PO8yjXe_+H#AL@~v#QRlUJ=Lxi%6~a4| zSGy2jD<1HM7YsoQn&fzOw+o7I6jy^X)n)l$ZL~QFAh7mx7r9okVc{f_EDp6~B9q{% zd1WuTvML-PYmyE`%bLV!8%)~qu{^5gQjISW*$c{Gd==z|NR-Z2RsPTuol3Qe?RVipVinZ4JBy!ATy&?_Ho z2r&{7k@A#@(&owpV&sByk*PM;{6?coCdN70yB`;t`Ia+>9nmk81rM%K;UTUMJKvF_ z#7uT=*=*9dnFeKrUSG%#L=>5W0BznV@G;e9 zPq^K5;d91{5Z-7O{y3H$d@?2cEvdi{FeztY(~%s3nL7=ElTvv9~=cwWY-0+F1UfoiDkYC(&bkCvBq`l4oTQ zP5@@O7f^ZWdyYP}IN^plTv4M2vo3#Z-JM&H-*p$c_5PK8qh%FMrM}1bb^ZKmJBd*T zh~Bvm3XbA*F>RqEQfy))4Ck+)Z-U^%C&`mWH1|^i zYAwuis^Zov82JX&e5n9$^)Z!V%dfGanN%Yv9}tUWJK_ISG$mMvaR*vSC|@cx93x`Egr+pNYq`0^69Qt z8j?pF5G{TdJZbI<7`&%ZpwN4*bMYjbo^)7H+0prRu_KqCorfVsg$iO~xd02=`i%o~ z2HbsVSt>OhzuRP!VV*U^pvB0Y%($WLHXn&hr%cAdNw)#VTL-*`!S>$m8x1PLqbbHsl$X!;G031JNV!`x z5~>Icqyv2g?rM`o&{Ff!RNQUzn+DI_pkX{gWm#2O30%!=fZEmyC#F=OAv5Sb4RSwEx4oENI2ne_>z?1T-T$3-1 z8YQ;O+pwmQ zlVb4UotZ%(v$msvB)8y2A&JE$!3V-L&~yFTfFI(DGjk?zaJL8J``$~wAH74ou#Ks*C6Sp zCOS|cj(QWvWqlIy#j zkEy`pXP8d7m_hE50+c=wKz=7v_fHO26&Xs2##^~v3hy^$Sa`N(7ZD%UPBv+Pa6nGOBU`H9hGwxJ zF15s;)NWM-ddxpZ_TEWT{EG$?usk~eez!ZR;i?t2`Ds+YsLgmrkKlOZzUTf6uV;On z$A-nk(Mv0vy4irWjBm|FhYkeRjXthfWlV&=nGG`C7XJXbxBmd38MU!D>0Megip9AH z+$J6roRJM@Z$xJTgfNX7R@%`)YG;IXQ1l=SYhrIr@sFjXacGs93 zE-0X|tGemyLl^66cCF}R$plBQvJosD6pzrTm|s5CUoo;h;i z(%N1)?QVbp`Bi0wNp`v6O2RPHtD_Yel%_s3d6VF`V(>I%lCSF zf`=GQ7;D5DmZ}@!`V$RBt1;!!G?dFq+!@eR}cte^ZWhsJ-mJpb8jEwOZx+!!7THB4l`VB3c*rQ)S;t#i z)@?QPp-47{O{}-npWnKk@oXJKw$OR}KT0=^L~xr@8)~Nfe}>N|(DI_*faT!$js zizn;T%AJPL?~B8oLN&S-O?~40?Ml#5>_LI;WC?B{D6#Xs^}nE{V%m8ym~Xmm{J+-U zF;YxT4sek~Y@nL}+S@LsoME#<6VnfMy3 zRrVL@e&e^vKMLa=Q8M%ZH|ec31$*CWiD*Dil?VpgMr#61hLo6>XDfEUjLj+X{Qm%U ztg_{r;$`yHR9iu|bdDO!&q6C6bsFT;g~>h#-J|Y&*qkBmfo|>5gq@pRkcuk>(Men=#V;~6pXD!8vUjvX1m$9|==xa|#M&!FL9iD9% z^N#ufHPp6eV{&xkudf=znog+eX>q5_xiu&@h6>jI07t{?;`~EaEt3BLanX3Ozv)7f zOMyCnqv5wpx9UA8ss8}DJq&*cWVkJwU&XVb3R?PK%luT^$zO2~M;H50pJ^SQ?760wj=2-=#R3H$g*?pxCmc>q>f*Q4HCq0c#+cE0!!F{OaOcboqrdVAH<_$lO zDP1fqM|KLGZ^pU|;L|)v;swAq1Dn57O!7>tVZlr3) z#`nE|q?eM+kBT#CFxi5o{{Y^y2IdBY3;7-uVUEQya4;q}BslgQ8wpp1i3E6u4S4(L zi?KNc!5lh)nija?GO-u=1N-ArqA7;@%mmpCu;v9#vjt#zFyZggtD?&!F&G@dR^Y0G zl!9}k3t5Me;ZDkT3@k%8hVDPKkCdtR!282q8jJg>*?7imI+2u{#^2dUc%lC7$Lr-% zQY)@Nzy*y>%BvyD%5Qd7xVq`Bj=q$n!i^`g3@ChN065Syk$$0Bm*1f2T)lMK!!4&* z>5z=G$9Mi`Pj41F6f)stP(c8=KgFB|*1b(%LNeIdodVNgfrA2cGxao%}+%p(u zP~jNnF`Jbj9yv{}0l6C19b{BzNa|?Zr4Mn?TZ7rkMv=(+vv|~BL6~UXX4m7&yLv1! zj1;__O=ec);$6EefnFE>{C(-E7-05 z9YLtM6QTnjy~<7XA3B3$qPe&6NXkv>7D*XqJc4SbTt~Xo7}jnS42wKl`5W^6DUmZR zzaF<7K?GaK)zL)~VYe~A{LUlB@lF2#@}&IDb})2t^Y&yLV;K;Im%F^Vmn^x60c_dE zPh^%PSn>nnbOB!p=RirD!UJCj9@hY5r>z4hpC`}ov_ zLB6W~>Od(L75Y#i!$SQJ!}X>*1}&W-;qx~9>LL!2xaCgALaJY(peS)0zc6Xo=v^c| z55kp&2NRksC@W)|h0TX56ClxL*n>;fm=sH*P@P3|pmOGQN6@kU-VQg-iXOfgiT(8k zsMUR@jU)FR&ob%8xW{IMJI~UjL@!EUSJYmi*G zvNC4WW?$kBVmbTizDqc&Y_IM%&_={GagxZ9-C4XOfJI zN~xozKs#%t^`sz@;q<5Ai$r&5`~5Bql!W;4I7W)#1D9J|^x|#DQNpFB>Hek-ZcUZ> zqLYP?%d&f>#IqHccd&&#n&UGl00J%TaU$B@x);gGeB&z8?kuTL6+LD zv2LQ=YHY^g?XvB=4I1I`6Erc*%FwEb0V*@Kj{-W6T{_hqC1r6)9f8}zVVTT0Y%(#h zB~`)D-q#J!r5mWxkJ=k~{*mJp%irPPbxY(zA3|+%NMUnfZWPqTDQ@sbH){Ap{{Z}~ zC@erz;ua(Lz_B2nqvNGnxmQJQX?PcX_QUF1XWoVkZ=lfjmx8cn z+4x+cf|43V7qK=b6V;IZ9blM%O%G&rt4Ky5hoqjg-6-TPeBZ4S2 zJ+vJI#;4uKj=Fk|e7$N*D-*(n2WvMVcSDaG@f9ynkD`cu=k2Z-L%hln6lib!Uh~HK zTUu))mk4hXO6-f+oww}VRl#{;&U_5SbHCms9e7%sO%Shwv$V0Z7b}>xwd2Gd2Hx++ zt1RGe4$qOg(^e)s!fw-^N8eH-V)E{ra|9Z0BC@r%wj+Q>wOblx0~ZMdgHSF*VzkB% zBWE0itwjZp2%aPSkN8l8W_xIHtKv~1O~tU=zadD7@*TMLwrxEJ=|v3>Vcti#wdvts%u=FO4ExO^Xh`92Wk=w(B!ofZB`n0A zC-=gnR?7zOVy~wG*4@dS z?v z>Sp|EAPn3pAX(zNf^f}-blb;0UQZF$=A}irjI=-I-*x#ZvM(_9I|GVV}g`u+F${fHPx0prtAJ5 zo_f`dwp`~QPM>AxVc>uKzZvBCU;4#X*9Ij%7@q3wSTOrI%`{5+Ws?3CEZ1uV1-bOr zxVo6id3L6IPp52JebQc8U)Vjj;N+c9;TAMz%B6x5FJLoRTT{@Qu6k^dR-|c$Y)(|- zhP&y4Q;wRzSynKh3juToKs4ui>FHZ|m7Y)P)f~=(ZvO0jVtle(K?)gU{{R)ZEypVZ z@};QF>Bo-Q52oq=01=a(mn`{iv&PI%GR^rD`-n?kT zCU0|-N3>DJfo)O!%9m*v2qcC*rGr5TXYQwkK+2A9m4MIy*2+b!Ngj2xO_EWQ#Xf!+ z%h&1QwPwfHlu_}!Tm6d?qeSnba4(>2hV~vuQCep&br`Wn+EHNMMn_imu8K&#u5b9- zp4%?ijeB%ABO8j!%*hCO6(UyDwqvF3dvd+)r=?drLxu$>!O|VB_IVD?8z%zTV!KjH z&xpiFK6oXBu~^k(4WYmB7~)`KZDkT>S>uv%{LL#K&bsK~4ddJMVR4v@_YdF7-YeeB z?91{X4m>MVUlu}qGo}8Axan~(h{Vdq#AVIM=oZ7$!{JcN%A)LUxhK0;`b{JbV8i&? zZW*oN2ZgRkzP&2A;!KpXnPeYIEJka%1blxJRxBv5)iz$wK9pE_ND_Dsg6Bt_Ui)ls}(`2$sgCWLtpv@FWmIM_bk1anED?>=4 zFO$AI57>=~Q7pQ!f+1t2u3KMQTa9N?E|iUe4b4Ho0&RclKRU9A?jMber;xbx*R47u zU^dHAEtcIq-gKx|RJW&f0|G$d`?V&CCSe=dyPA>(ty$$7E{iGagCT&Zld{Xbn>53or(a9Yiei#xI8I{tk@2f0^`dkN(ha%gMtmk=`o|2`(wp}C5P|)s~n#us2Lt2 zqF#x8-P?shLTosXeRDN9+xH`(r^uHKKK}1N)!;G#b}SWtnYeyu-B|F!&Q#5Lq@x=v zo2k9?5)8Zu=rjk@FKh##JTKF-0=1VgiELKVoLJw(^Xg+GKiK??6*2_y@}Lm zR#$_T_{Q0ft`HU;5uKYcu;9LRd+6l3aBG_q3*d2|_?TnIqx1OwHA`F-#rs&E<#u$t zLubo_?^YQaM|fTT0JHB^vm(DRjC>46qW9%oEnY{DGLrZ`_tRjfq^I&?n;Yo+k6ciW zczdA}jPhqzODWXG%1&Ty;Wh_Ra1NEOdbmm!ypo2Nd-*TB$q@SNr7Gkt`lwuk@OfDKWjkQwX*`shRnFu!ISZhxPt}=(ahI$N|N!_lAeeA@T%osFa z%ZHBgu(A77{2{frU2ZhuJ=f{u-2P4v)pByNFCG4%Zsykz;xO~KvmBl;Al@7MuU2M* zo;Hz-L6u_589s}5ZQY4u8db&Nt%}29L1Ym!mw}D5B#21Rw~1XY2s+x@^K{yn#ch`j z9?MaNQ+wk0Wovu3FVyyM!bpGGF%qP%gI?_;@pz9TaHF22^d_`nyt%ipwId#~OCAqR z_Su?Agv*7*Dc0{34?>cDhPGsnxigoBUfMGalL3L}HAuI9=SG*>pV9jZikrPCrI_oWHrI&w-{Vy&wb7^3PqL@l{@YEBv;MD#vP(CC zNYJhIXBOt5X?-q5S&HWEm1Rl@u5IOXzV}1zaRBUpm4LDz(quo~(1qrC)EyI@|p0wD2 z?*Km00{*)D?l{sITucC)8*8T#ZoK~h0B=By`+IjF8`xND=lc~05=ofm@b1=9dD!b! zIF_jt{rlb`;yC{RhA?#VI(`)v{1!*#qNlb001N*B(nse}Cd}Jz4SqFrN+c<{LoU(6 zSdn#LY-|tNyIAr%>toP#uC@-2K4-~+?@McMGH>cn=T3c+i9NkP_DE0oQ}F))D$gRw zlm(8VWrESt7_l@6NYFGWYCse4}C@Nr+V_A0vn@#QZwckc20FXaZYy7sY$@6>dJv`8q5rJV(m) z(}BvLXH9(zq#s$2{{S9g@x!V7fv9S}!rdG9QQk5=xmOVFFagx`Jt>h1Vhu4Buur8# zwT4N0&>^Sq4Jj{N~fG$g3z@J-jHB)?= zF-o`{<35f1M=$+_@8$>OX<4sp5Kp5{)EfOw?dk8*`k!@6aVj3{{{W-5)Cc~>AmwtS z@+Ow#Ma8siJ)L$9i;a{|hLw=}OBl*{axKQ*g7l={gBHf+%HWq?%yyiAScwx5xM^6B zfi)|AGZA|p6e}pp3D($=C$gMcD+GdYNcM^neEC$}oad*>@Ms&Exbqw~A{kOhno$Wx zXk<6Y`Hp~jb?ZyT7URJ$D08xV6`n9cV%#Y?tT3}_e?FC-c%whL9gRHlVpSH$vi4nz zu|HjZ{{YpW{{T-<-#V}Gu=qx&sm=1pX+Dqg+|JmX`N&p1#JPb2{>_QEEp2Mk7$~Yo zA5nsN9_GVhI}N({u^MtG4>?4m)D37J=;}WqL#xO zCh(c|iB@j}UuFj&NX*CKlzWd3d+@484DRJdN8MPRZ(0na#Z4#}RFaVF(7OuWPUjs9 z@CATB5&depuW4>R&!q80GAUjMT{>4evwAWP)m}uNNukapSk}cZ2pNUQ%delHtuQm> zeh!c9UwWm*Z2UCy5@cmy%q}h!nE|&8kS=`9Xhj}Nc1<~+hoAMJVu9`~Kpi-1MSwxV z#@D#D^!=Iy#HJS6V1I@G z0O)VhklCAW1z!@G3T~|VcAgP$r;Pj}kbW1gzMt(l+4yD&zKLgH(U^P~(w}7G(L21~ z_9zJZsrY|NrbV$RXojjLFC3m!4#5I}0YCuM`UA^A24|rFQfYuRzy&mbIa&Y!)W9(` z04qQT&q!!8iU&j7J{%lYw)Wf*`9q9h`OIz>A>aBlcm0e z&1_6!{{a4?L2q0!{Vn^^YCgivH{N%|kNs&y12)AqR!q&drr(()kSvZC`T)cMpy97tx;SGlS~!}G zR!nlF!eBPEthX|~@5!mW5co3wGcR_>lJ5o~h*o(}1qDuPX9V%k>tYWbN4!#4V!R4k z?7!|~{m$Nau+ub>tG9TM8D%~poLe>SH3rqL2~`=RmgQ`<;dj$zCLU}!Oka0CLURyE zWFdi5q2f52w)ii&(N2z71h>L>i57J$-Vj(l!DFTLzYaX>JcA86o7_9?J+zSU{rOgJ zQb(lp;?T11o+JC#_z%*c^2v|Vitrt`_Y?i=e*M(9u=JzwE_+JFANQ;|X>Zb|vN3uv z_zxFpxS^+d-uoZQpQ|K4Mi0R14%P8MA05vlVR7=K*O6c0;qW&-sN(EC)cgnON2FN4Xd071jhdrs{xypV+^0hBjhoKOW_N9s+?+?rLr|QT(7<>!AYWTZ< zYJLOsr|ZZ)2nKG}v3CB`MnIgnPip1Jz;FK|pfE0$fCtHh)++Ow|RneaA$|s3L%zl}h;4zy{SHG^nVh(beABru`Z=dyG^P7B*=@AnF0Td~_cguO|tU z#VeH^*C4)YjR!wE#}lH@o1L)j64>l|o-00K=&Gyp8lPI}L!@)Eb0$`>PjOb2Q6~(R zpbr|U=V|xG~LEpaCmQX$ujv9hI zw6W8leI=Rk;kGsTZ_1(!&9{lT)u^UGZmu8y0L-vN{{V>lySE>mb+qRr zP+}YTg*l!}cp6z0AMpal*1h-+JU%o}u#ZI6+>m`n5ywUORV=*}8D%8gimZ@iGz>X3 z(14+U4NL_i#OOtZjk#-~zK55c03>Jw!jb@KfMhgS4)I$+umh0g@}LIdm<0xa1XNfG z_j-Q%+JT`={{X+=ofb%Ohr|#;`Enznr(k=$^0%i7WLTtaKq0`A^b!oTfG{+`Rx?Ni z)YL#yI$%4(Vn{az$6vsTkP53(BpWpVBP}v4m)J*IvIcqdPiNM;P&t!2Q|NTWVk6)` z+IjSBI}eyP6&(KnVLdpVsl3kjy^kf*LP%R?x9i2xxc4r}p;ciybooC6ZmL8E>`g}DU zwig@Nj9?Srx{hZ~9{nnX^$9o8H}q&F_Yh;VAm{8cg`Gx$#nky+9%rWyI=(u&U%EUQ za(yB+_REr$v@vChs|>Oum2iKAu7}rAU5NE)^9~L&X`1fr_Me8s;k&u5i!3s%EgA$v zbH#`x+e3aeVWu-lQ!DZ9ye#9qiw-c(9efDaM)3fAHsft>EPZsUXGQonxhge00%=_4 z&qWkEcBqyK6H34YYG4@92dMyJG^PkW=mXcMV>}HY4ov_GtpIq6b^wY)E4`#?gPYJF zn6+reW6#l=Z_MIe?cY{hJa#uaWw``v%}t0kt|yz+x{@f6JXMGptkQpbC#yzndX`G^+Msjop$Az@()15t9PNI)dhes(z zIl46c!|b{&G}tp7&mydYj$0i;C&R#kFYc&EQ0D2P{{X=(Z*qK{KeQ+CHM$#A=$h>L z!}ONjriU7FOMJ7Fn~j5wJ_Rg4;XP|+8QP-;c+;~l!tDziue?@+IWLFWm*qha^W!ha zK|mLt!?$s+5KAS}dR8<1ORY3Bv0=f5RK_YLl+$l2R zP0jL+2R%h-#pKVGbZN27c%BESwYgR1aHd0jO~t)v7>dJd`3vc;o>T}HPYt;9xa05? z0}UFf7CZ){umisfbxxfr>_H3|S}uz|#R$H5LNVy)*-W zX@I0{Q5qDzNMcU(tczsE!#dTGDVId~<6RgWxt$~QI(y=yzNhO$U;abbd#!qT`GY5e z?nls96~<>>2|4oqw&zR&_xIuNpiG4;()9w+lEda`7|&?El=IWACJ5zT)v*_qy=x@R zP*i3(s;sev*^@9}7oBF#lU$l`Hkkhav~7_r*hxE}SfNIIppqj5XKM{eTiv<15>S=eGi%ur^4HC|i;(t?o(pS59?DHVu@X&>|mQdvor~e=$LS!v6Z{>0k2CE%gMJ zcVCz8PHnEq=MmxMg(R3rtnZaHLz^gD^V0YJwyj9W%a+Q*$1Sc8 zrnjo*Y0|~+M@8UU!aXaR&q{@esFDb17!&|B03gr-uRw!RNB}g(9Sr~|8h|}&V1X@2 z4@W@C-)PK!sW4|r!H2e6f_=?z(x}gVoU7p9qo=S(&JCF)9Pl^Gk(&yDhw7U2w?>lX%*Tm*HBe}EVuSSQb8OBm2B~-%Yqp5N^#_^ zZx_-rUlQ0zGJ=;!bHd=*f#`Jgy=aa*T$DVUS)5~1J)*drB-UvnVgoLrhPGkQu7~00 zP-()MB-TYoF7KCS*o-5PRhcj0a4rbta4%z8;WZ;1pyJBpdqsyju&jH5!c92|8Z(op zgcI>R2fmYOb~Kwihv@0M@a%jcn-yi2LI$?Dz3pyyu>+l}E$?)VYCBc4aKQH010v@I zRsE899-L|q151L~OeYdXU3kSd{u=-jLmn5>V1D&wj~l1-T3Xaa2||L{EmMyU2Q){Cpm|9h%F?5 ze|s;(J5$Iwt_wEVg$4#Yo06ynzIBZDd78%Ej;rLfd2PY?IM12q&{iy}`;*;kD!}9&|dB4+S z@O|j|9b9v;731f607ciG06>qQ%Bw}9grAQJU^CiR%6%#05${{pu}N}jk4Vk& zCXpsK!f*Z_EXc~i!PS7igaSFQ954o9dX7ZyMyu_Odm^ zj&CH6Sc}eAYB;@;LhHc@;Vd0D!WJu(>jApgg<58{npPg8X)SVQ~ zi?^hkXe&tU?4gC&l0efY0lyLts>%-y0Y0Q!v}5eYo?gL)fIGQHY{{jATS5)42O842XPVVdb1~S`%@`aqpZ??d)`n+~BAX#ecrBsG z#CnD#R3+CXux&L))r0y($%YDXF}NUPSwa?#?XHH_2V0SP<@$1i{#okrXNE|BGqRt& zJ+Q}*#X#Nb5*PzN5kYEg{)nK@*KP&tozwv5v> z3HDQQ9fV;R<}j`OKO1rP)!wvV6cugUqA&x&B&6*qtY|KrY6ynA%cut zE##1qz>pC@KISI2VB*Yq?u?rc+HBISahEnvWCO!m)Y+CS`d9Qz#FGYQzGE1_{J?8e z$FkYGqj-`*z>jsbx0gz=fQ+&I&_Vc;2QC^Om!g0OloO~b4wvKc7r(!Tv;eA(0{V3v zkF5X<(b#d+ak%B>)OpYc9(LchyUa`LqMW{78;vhn=J_;1aAw)6qSORUXG8uW`O+k3 zyUe<`tys7zU|?7O0L(Ud>QDUzPxP+74vtQLCJn#s_Of|PFT*>2R8O(Qf3>Cm0Az#E zU*>-r&dX6tVXZ`Az@TD`v;z_}2=dbdz|mkB&;S}>dep{v3PKb^Ob=Rs3At4hSefA$W|zf#M4A^Q&B= z@^cnB{4wA9eMzynzYBr|{Y^&ET(QY^A-3Mx5BSID`c;tRgm`7!XZEA^DIB;+r&x)N zS=TmD&6sgg2D)RjOoo#)M zA}BXQn=@G45~KwnTK*t))Qj4*`8>{KQZo3W{!{tY%%%bNaxi3y?Q1NYIM@-?jlsCMv8IzRZiKcb(-Yh4F|4OcGY=QWomWD;?A$jued2{eM+ggHdk_uByYs3g zi*qzXCe^`VZqrBiO@HPerC0cJ{{X}uUelMHZ}Aj*3_lQuyC1b^1A^%G9-plqi$e9# z%eIZ-!EG3FvbbUF9KIzsBH-TDY+}>0878Et$hSwcTr4sNk=@m7Y*yE{yp6h5&9-KY zQQJR6KG4?^(;}fz2icSNQuokx(DA1fN^M#?c_lX26wyBdCuR&x#QDnGW6{{Y^|J^9!g zQ|xi+4>ro%2N38NngBR7 z0HB}+6{rDZY6K{>5)=zSAvY8QCAK5@g-$(`$g#*Zu8a<5L!iEi@)L|par(v|kMhn5 z_X?g>>|(?BBj~KU*A(p@OIqIxkCgxw{{Vhe0a_JNXrycM>p%!&B+`a7b0=(g%+i~1 z>G;-W`87ou4C0{4j`j}H$XRSP*7mF#h&HVoFv)bqx5I9%5SdDbwSX2JPJr;NSW}d? z*{d>)V{}$F7W6!;_R&UBhM=h6e2w{5*+H&TF{c@-X&I*RZ1D`w4arnxc=?bRTmpIk zNFIW_7$v$kc@0(tk0VIe_gj20O@Vwdaffn+NhzB=fy0Nm7be$k!`OV`CK2$wqiN@kF=$41`&I( zLlfb0Z^cNqpPxFn$>sCQlPt@uU&wzJ{OaN`WK4KQV+d1XNf!p(NFRkpT^cc~bV}_V zrS%M4M-1#k#2k%J@iLwookjgcQ5R=nM{fm7wpgDZGsuiz5CXdkTR2r!uq2NXpi^s~ z&aF;~vL|&QGAw8#c9WTm6LG*?edFcusUj@e_bao>)8W|cnMn_v+ zPnZO1E-hj;6(z|FA8Z}mn-WNdBQ9TPEsd|j_apP9`0SEq+1d26Y(<9<>*Jb18^Ueu zx|3^**xO%Pf|n$!&eX!(mm zgfl+gel6?y)r+!;4KOj=AG42EZ+3)!Cc655j#hq|h<2LC>k|%L^w$3X>M_6PODAEE zqEC1v2M-oi%B2>=j-uTB?Nl=4R2LB+bXOqnGv7Y9%WGxm1<5B%+z%>&D;wpYN3B4> zGy&xl2=NpQ3sjJg0ZfxUNQes5zynAFsh|T2U>Ruus;w{%1po~o6+=vREP{a!qQepi z0FXG_m#qYm)NeRkm6C}1t@eg%b9?GTBX_wmf z*G35CWH*nZW*`h|UiSLNABUKkN5q?Y3bQZR$l!kTeH~fF>~!<48QTEGZ{HdQ7G56; z1Xnw%u8V~gM@?yg9kt~-O}Puy7}3g|t75*MKZ`)4ndk1T zdGaXmX~T`l*<*uqqQ)y><&Z=i46-(%9Y|z0xVX5p3y%pk&xG7%xg8vk-5sT7ZO)Mx ztCayXEE?-!rNPkKOX@3ss-@A+*|)PO-UMt;DU2#u5)mvlIR>ZGiQ`?25pjhx%Ifm0 znH!JjX}deKsPOPBO@o&cB*lrgoy~{?K-bi3aq+9l;S`r9Q@oq29vf?_M68J5E7m+R?OOQvqdsiUBFf3m)n&ym?ePRt)|)~QCXm2WKmui;1c|96CWQB@Kyc1HwfR=8Z<7vxw5IQd z%@M~ASI%Tf7}#4W1Pr{*&lsF$f5qmseAAtUQ{&m;W z^m22v9qm3p_L;x&rT+k}sL9wvpxah&_DF|8Z0s$a4hTQ#V zLp>Rzp^F-1K~q2nQ%GW<(qJnc0~J~V#Xz8927xkDWl7>5wPbrLk#CYO7s9$&&Sq0* z`Y}zH77gub@TdO(JcIM8W&0Uc54|5sgK+)cxQBEGTl4hwpaP&LL;gm9D`eGZxH=kO zA+%%goq1GPBbPf^*`qsYYRJtoR*at!6+pg5WnDZX*5T#}>&~r?2v6=u zCsC`(h16XkmJfX~1Qzce*@BVtk?Vuv<`O^;3^@~vr@V$0UZ+1SU3Nj5v`;mPj%$0WL`v9KJk z=g*ZnGkg=0GmWXTriW?)Jc4Fu)sj_W!J|2?Vs#m8L0(?^s!bd5Ulw#;%5MVtRt9#E z=)FW?8h`@y4Db|y5ljPvQbG*W2>=>`L(F#4FPAaCP!xI!8?+&zH4&bvPyp119Z2C! zOliCzcM@NPzXAyP){JHx{S{sK+7Yx^a~NT0+&E#yiC!H?8n?;i^&fGK#qCAte-rxF zgjW(9X>A;_q33BnW}wY@m9sOK07*7tE^p<2KaB|Jjy6X7;&A8e=5b(D3+MsRfqUEC zucZxHH71Rt=&`iRZC#%2dz?b+erEpwi8kr2MJ`a3+wA(ajg2qBk_orzR~Dg$Hyj7A zOY8VlSt6ykH<~e_BK}tS>rt_pcJ*!LYlYX3!m5)diYeHx#`dUoSe+6$P19~RrjsJs zGZybSvDTdcTt)%MGDQOzN?da^fNw6;lz$PWV9-;%k`A>b$F&um;@YnvyI>R z3V|UyM34uH{{S-nB7i7++@2@(KaE<7WJSPjj@kZ92jYJ^>*@MAIm~yoq5ji9{ye|` z05OFuorF3KwBr8&V~GCvx9{ClGQx}9^X1RqRg)J{K_K>^0kr@F3Sb2w0!juJ)Y%pp zXhA@l2SDbg09u%X0YHNa05G5fgFpvb099Im9LCxK`~C8uXc~4RQMS97qlA%?Hg-{A ze9lQ?PZP$#au%mxAg@5hCOXg{Qh|yophUytBJLwVgi5aEI(!;xhP6jln)Hqe_F<-)O7& zGhfs;Zq4S`CL%Xs{3UI3ZWqjW@V%;QRG(<3e@b=3Os3$MD=?^gs1h zf(WN?yxC%p%&_@`Q8wW0k=;(gaafe^OBmFQ!BulMQ>ZPd%cmt@2zH&q3*})_1n?@6c1B<8jA<<@>dCoQ!l(wvPGA_ZL3A>J~{vhyMUaJcj1_ z&^`+m&+Pp4KD1C4t)1Dx(4T&kZ5HCmhumZwjs4d7RQ8K-;Ws%v_}bjP+<4JJxw0o{ zZb%p9&st3rOsnlJz`yYO#jStel^aE6dl|VTaJ{Owhq#BtZg-cyl@hWSYwm@C(xAzv zjLT@@tVpDbSjf@@75K0755!P1k-f*n-ly@aB2^*|4Kdgg{{VaPI)6&+>H0Yt%$K!A zwkmP|0Dmd?yC2S$PRQfvPiVdHh&m6<)^=RGAtjaLgS#MQn1|u7hkz|^M_W`GJ0en% zAC31pE2QeNYZb0$}iR;%vKnRgQ&n*A~&>+DyzfC>n_SdP`=hA_R+JOg>8(YqS zga&~H2AzyJ6vPQMtV}&IgL(*xD^mcPY*aBPr^`HcM&p+Svplq)sm0K-gkH(OOnA_zx7U)es1fp`^ zYcrE8U-!JP6-Gi*S%)SlSTOC)8Lcs7Y@S+&kkbQL68nAGbm=$_&_%& zkmFq3RlMJp_F5^s3uhRWbtS9`JxSEo`9T2y&x=JX6k(~Y$yAz0nbuFNji z)23^FLa3S1#Ov1hoP{t5X;~|WBn^l6ed%4q^l+)2@_necry=HLGj~MWa2HOucU&tXMT2fjzo+=inm}) zrrO(rucf~_JfB0LK%u0S7^UKD5Y@Qtr?o zTn;@rQ9~hi{_n0v@*Ox-UqeSL?{a|V-D^3e5DQT(JWiwem+=%JC|lRWDkia3xz8qUj6U)$O2sMi5+ zlpcpmimbH}jQUa-DNJFUQUN*u8US$E!0MSLi zcjiwT1~vkK6^jd@JuN^`P$^jG0+d)$;3%kI5i;$jcQC*9Et+P;Yt8oB?A^% z=m7aB0N_vp%4h&Z0~C&;AwXytsv3}jNYxM?Y=-d)vL#H>HlGzeRDPAxhetanW{=ok z_RM_X`A(Mj)z9sJp<^Hx0o>>@L3#uMO?XogSrc^@@~W)8hiOl`krBSq zkHTzz94Rtr<=)lc`$jzZ)@ks~IQcTEsFZzfrzrT1DW_Xgs+^k~xSIA$0 zzYdq-TOorh;h8dPFvVIiy{oj0vNN}~=I5f001kQ&&bxTvp&Cb&&ynSulQu2d*wD5X z9^(lfAgF2 zB=EU6x0Z&kvpiLq20Iu`j7E&ENcS6$z#4-`ZyyOAE!j`fb|g{X0Cmm{`p#h(r}NVs+*+uFy7 ziU@A$G>D7}>Ea=7E_5S}Y12k^M8fm4d0TCVfPyj{h2VP$K01`OrJh{*T1eXTKmmXu%qA_D7 z#~nw{;lhGPujR+DDq=tjb2^TFKU!b`QStYDC>4~g{{Y$nBWu`P8+-%(MWYG{!Cs1F^&t+TR)gTN8=QZg|iZClS`v0P6*Y48d*|`dsi73|k$6 zDA`WE2-F`+07+;7;L@NEnuY-;qyxQ_JVK=s4Ak-PT@c?~gG%W^oZO|?u<458A6tK5 zed2ik01D9hf1#fr+>fZZPh@{6x5B*n-wkd?--R$d$CU(1nR=+udd85bOAs`sGoHI? zh%0*Qddoh|7}o|NIjYOimv3Z0Y{$q|_}Vx+=)K$!n0$4C@en}-3tSO>LFuNVui)n> z$q8cdIgWBHTSWta1JA8ZP@S$={{V4!QL$49l;z9~+oiR=x%yO}0TsE?e2cTxD$?Qc zWF$l^-Qg-ZsF5=ABmtJ*`V^?O;`nA@VMN-B5>E5Mt6IYLwT1Pywc)Mmsd98Q{8gPT zfgS}tK(1uFJMj*)PyyYj0M9@KVN3u5kdGjzV+;iV8pe?zK%hd>;D`X}W9P5FoeIRn zW`-6iYC~WO1O`1vaV_{|*V44(Mr^~sq#ip2Mgee8BnmKK&67bZu>d*cm<4RdiO;VA zTAJsB%IjNIXE5)62~k{T83-)ONYL9ty!zD9P998lY!8Ds9Hzy(-(Qz1XK4sT#GeSe zbO4fV&ck0?gt#O>!{QjWiq_}hC-SIq@)a+JZQn=9ZH~bk5Jn;`NIH1I{3;w+qNJUl zSh0w89d3C1@5EMvLL%Wn!J}_#-YXp#9%Jx54Im4GbK*z#($_zEPq6<0@d0DYFlrbJ ztorM3-^!6B7G)k^vrI>eY0KB80s)~TT|ZGlD+`;@U(|4@h*lW*+n*8F(9k;#rxUL$ zRD>3A2)G3L^8T~|f%en9=le0QQ&h>9MHmJs+>=z6p#rp7At_gfsQg7DMI(II#V4u! zf2~^*nHA|9{ikRD0OBv=1$A`&9Gv}`XKV>~QK`?e82TgeFdwR+wwE9u zfAp;EyoT5qY|>>Wz+I0XUVxoVh3sunCNam)a!(H~o?h-0m<{t(K$6&Q2Y6eCP%`Ux z*7ms64K=qN2Rf1gtnLXU47%{-Jvq`D=fIzpAVFIW-3j+l7AKN`2Gk5Gl7O*zT7V>Q z5EfvnE=@&_%a#YTw>Hc;)h<*=acSATl_wSg+(|sYesxT;jXM{{Y{)&7jchsf^ZhCt znW89;#BQuj`~Z4X)=406Os(xb$hWh9%CyHRo>Zrh>8Za3}CJzm69cJGUrmfSZcm~K>Te^#5Xh37-1y<0D6i5`Kj0sHdACQ|_h#NuY^cVO5#~#v9TDAM*%4RuZ$2CqWiiQhnou7<$j02O!9&K)n2>|+PzUu7Z%f2bT&nKT3p^>H6 zg3&K*Bq0Y65~Qn|`7EqKy}A+(y6aXH`j%rDO}5kRHFiXf>tGODL9Nf9Djx{nft^XS z&w+g_nJ&)sIu%9Mks(Z)&;h1#eJRjbTZ#u@fk;7=)1e+KLKtu<&;VAGL0~)60b;x; zXhPFVdlSairZG5%v;q>^u-*yB_#5!6;AGTvW}9Lu5ir6_8^S=bzLx}g9e7pAo?l(X zS)A|g9JD!Y!GRrhusZSK%Y|DWOuBhfDEn(-Sp;kCJg5h$AJ&_7$<@Z(nbuv9{T}0w z4|}RP9?<}_k8O1#`9}>oR|;FRw(pMzr-F_Im2>1zZSJJlau#@02ETVA*sI%*Ef`-= zYaUE;#`!upvO^-^ymmL(^q8kv)P-22Ql{KlNNzlUty);lQnHOqp%~Z6*)odnoCHMe zEI;utw6`F2>JO3O@Sq61M$@5mRjquh4_T*ZNYh3L4scx_Wt15TXpjTMu16Jo@mWh7nZT$aLlT(-3eq z{3(nsCTl6TP9Ag!<-XP!nHciEm7SUwMq4PV*$=yQ!7FL z0NOA=_>1`7y83>OMxf0*Xpo#__vI_w(=n-J?2bRQK_*ng#oi3c#ehqZ!p8a#YdbDO zoD{en2u4Oa8#`O(Z}B#$Sz<%zcRK{ca8FlYJ^X4iZ4Dwsc1Hm^Wnumq8~5|7eL`DD zbM`k6@GOGk`_pfA*8c!A=qUAvut9qnkAPPPneRVQYF@GrO@ezKTmJyOx0Hkb08Kwt z3BiW{0NCi$SN{N+KQ;X6`q37~dTz%@Rs+nXNn}h-Q7?h)2MlA+Eb^mr1G^yf<(q~1 zid%+=DZ4Jf>OQi<-+DX#2e0hZlVWH>KFlx%-|eUgYgnp9kfN=APmv{6amDwz_&AdTCzxjk|DOl%^=GgE};kMfMUsmna#mp?MM=LGu}q0zC~xEPEEucCh<0Pb|m(07(?Y z*#)=zGsH>`Rfo{XKlI;Em1%_N&njgv6WKl`b^8;k8cMvn-qzt-lPU_mm|{9b>E5qD z-&&sl7H-S&Lf!>87x2i3{{XmAL1-kMoMM2vh>!TAzx{NE3|*gMZGPzg0L-`l0IJ^- zDOwmwHwP3oFu%z8@+OVTW-qmu<|%NvmPzSvU(JA-zDk2hW8Y ziEU(5o3T3kP|7_~zfUTAg+PCyr5c!}AN;oT=}&;gJK1^sD=tee$Hy@DHG-ju`_Xtsyal?@!X+Pq(C$Inkn$v(|kx-#5FR?EWS za3!?>*l|3oK1rmF7~^cPU^g*wir8j;?8q#xeU)%SCU5YPGMj5-T)q2cxZdM&qPL3O zIihn5$CZ%fHaA@~x{;v=k?HTP{-ToLz~bV}v$Py?wjqMpgpVc1GA>WT_WhdaX`Lk&;|s8qQu-Tm#u5FlgUEfJ+0hh5=iXLlxF9tC27d&;B8h()db}h5}X=!g1atAVknMk)D zBy!MGP@=qd9mki8`&I@Lj-3rM=s1b4H-ZO&gTA=PO~gpQHiTXhEZ-z(*BFv z{{V;jx7D43N*vny2M2|ZQNq=)MUpN%e3|vQjy}r?R|F&g73u&m>-%h~nX~BCBP{ZI+_RiQ)#85Gh;kJa6i1_?1YjZ2|@-0)OvN zd~7SNgQJnCMq%4IKV8I+``5RjB>r_gosfq`4{Bo%hg;ZN(y~as4ZG5HsFDnJi5$%U zI)i!SQQ>wT`c#Kx_RQ^95|*?6{QA@$G|8zJotxXlgWFJj1**4&K8dV_vt{I{&sEbYmd|-YOsP#6gB^Ft^7}seV=Ix1*RnK;$1ZInJ$O2-hiNE~?c_fWC1IZ;x_eIXfvv}!K7 zNWO$zH!h?D%B@(ED{sl3?Tz>E5B5l!+?5)Wd+L2^+M+CB{+X!=G+T7v+93H8`u_eD ztYYc5*xST(^EAk_YV6}{2g9#{Ng0%u7be#izguwWYQvV(FM?E9*9xQfMN!G3kRulg z>cKtc-|NAO*94M)jzcJtB5&)ZZI{|* zj}ktoE}&`4_xsYg4DYUh3V6~65<}&}ffelj`l!$sg-D2&Alz`}Nw7yecEy3S6V|fG z(~QM2DODOuUf$n1p>n7|1x3Le?seDQN1&(K&(E!v2S|*2<>^-Qx>Wg}=n18KmaKM-}Uf>e%9>tmgv zi43uuE!9y70AAXWdvQAPI@;9**wK{j$ui=>w}ds@+}F3ln>tuu1itidmJ#MGBDpL4 zYkpSq1k@>;oZ|W_*nDOT_*yf6m%Cehs!GV(8O!x-_f;ScMBe`Z8aW-JY7Mi5;oaQZ zp#6V$rYl5tKWX9EjIr9<8*}rprYjWL`%4N9$`fuQm*YTidl9zq?I9}`g4Y%m9zw|_ z-aHvU*aK@^9dApj0<5^g^rww<);sQFe~`nei__-khPD8haXSh&ZEff10Ev` z!PG-zV{11KhK@yJt;^d<6o^tX&KOwgNGD5x2ELyvkerf7Na5!#40%JyQ!~qQs#h_y zSUrgX_psMbDvCV*s(YkGZ&Y_eNKuqp;=r4bMr#dtY17K4nNB`T?|;`qIcHD6R9|OX z4*_>`f3X;1QW*;0TX7#c&65;m+0@0JQ0bFx+RiMW6r6mA=~R9e9|oVtWcf5c$G6UT zF?dj1*v}X?{$bPi^QprOVIR=tbc+*bKN)i91?@ck3mpmsJraVu9HTRE$&5#JXDPtPxz66 zQ|VF)A7tl135#3$&@igz_U1YD_<2wQrOEv-sQ74T07CO8+Ii9upZ15a za{@rt-96O?iAUt+{pZ5vaw>^-YKaQVP%IO~E|iBwGkw>_^>j)n!B55OHVofUGTY*{ z*1^%q%x3+y#s1xiKlg|7spRa2K8*f&bQPJGA&+})Dg?x)U1{~Z#n>M^3VcnH2^BUEh&IV+T17s^jmgC z_F0F#>GRXwPKjAHfbA0!1-sb?{B8Qv=#_zq-brLPcV<3j^%2<_v}BU{6G9^S7Ma@1 zn2V997P$CQBE`0L8#@IDjWi-pYitIH0$31u5%Z}&1V@RysskM)!-y0CY}x&yJP-)b z0NL5IaW*#7rk2yx)Lc^qDj{a=0}$s~4!(Ay(?qwj6BD)_xUoL-Qrd-LOFc@6j)pT! zTh4)l9w>CA0?UdWDnNN;1lq=si?+bSSw@;x{00ohvDr+Y?JaY{5&`F6VzM?ts*!kfli%cNg$Uw~hLai2-L+!8cJi!~ z?7ta{;tfF3Q+A%_ywWoRzybKu_0~SjIkZnZv`0tTZXt7JXzbU$`hGtO9=Z(8{2pt_ z=6=p6Dgcr)*VJqJ)PESh1Ncn7QBm8w9pQYETH!7T;8#)j{#CygRgyN2UVS^kEvzmy ziy*a_1qVwTYC%1C@$}ZLGG8W1z7c)99v-~;(mHs)(zx&vZgr+vxbVSqq#KWaqv#&t zIItGErW=vy@D`?pya@0_T;Gih9FHaokDnS=Ex}^h);H@;$G8UB+FFYZ!cDQs7QGf5 zh2LhJw!Ib`!nVyPofbXfiL!O2WOob2fg+WL;#YRIOLwZk*n%73tw}p7%Rgzg?#4Dl zoRS}#W;P^qww5QIs5sdb@6Qz^&0{!+jqn3>one+e?6kB%C^%mzdu@@JyM*KqPcxOQ1@B&3l$Lb{rL*( z7)D5%+pkIhCMXQLavJs1ujNUSMqj_UUiM^++ylUlDtQoif(WXlNikj0+Km+EDNa)< zwww&0S!5bmEatzm#w)_ z0>S=z6X*SERsoXMAn^R?0xNGpc;CoWBoR3ieWUwE^);FHYL7)@Eh1!m6rQg`uw z(f##oN+-!q+mKp(AO0$SU)H*sW^%KtGmhC$`)()y01)1-$=M8lX$P=&VzTRQd`15N zI?E#Thgf_PDQu}90u9t~<8D02qr1-C;B5r2qdLWm6s%Jz7lDRZ%#GW4(_+OP;}*}1pMm+ zBAn@)=Gu*w?U0P162!HyTPKZCjxu&uJ5iJE<0qUaYQ{M zTyi}<;#QTbN zD?RmkL$JpSNd<=x)3I153wkUp6~a+rVa6V#VPc7dpjKFSUjwTjD+;k0Gf%;E*%6$t zX3E0FbiQNvPp!C)6iJyp6FYGIn;#+giV)%1S(giWQ>cBs%?NnTS)%bF>uVc(nN^p}RgHNV z{{V6~pX)HJgjuyo6Yj{mF!H~&FUX1mqHa;k;YeW#;mh;=@t_4bjvoHB0p*Y8H534N z4fLjj#(QErqk0?CV@D$I%s*(}wVcrssom6BViLtBhLIwXzhmthri$cJHm)M_;Qs*e zlkp#=bu`{iPNA8%ZVhdri68f$h*SC1nR_e6_K>(O@JONV%z2H=Uc=|lhn-ThU zDB98VZL0$6>pfSZG_r{_oqF>Q#ozH!poPw7Ab2GUkG7wbp|m}g$1 zoq(1n9HW?|1bEv$EykD*4&GtN&;h32hhbyDdj50(gYBwxI~0p*FFHaUrZIZcKrEX< zdeAE-Ft}oTzkjj9fT3A1R_CuvQP`|3jt4L(82DfdDEQL>d`{^Q6oMMy6UxV!K9uNI zAiD(gqJUX;6Lg?K&hNKMLjiYrk0U@5m>rVZ4(~7&=q$7B&69Ecks5S0WMV~ z+7aYyb~ItgT{|vYVmW_fCH%dE`Buigtj7CC)oq6NjX#l3{!#eXpOQ&X)s4ScDIG`6Z`%1th3>o;LK|jwOL@+J*f(k9e`nC z0pV`7lPZ^j{Bwf)nK!UE(+wK~AxRTZ$ZS>AixnX0Vk-})KIq%{j9ob)w$gkac6gs8 zOvIv=zER0_xzp6u&(vy~DBp+V$vaEOq?mz_<_jAw{Pp2oT_hZ0_a1NRSz|e^tYNaF zjh+RbLmXLkVav;b=ld14GmRB&tZz=?B$$bNmn|CVtZj3DOA1WVr?pX6k91gb2lwkv zir!=_H*NZgO%?jUjey=%sD7#k{akMmYyChNEb`R21&Z z`B6jlkYT$oUEgXbPcjZR15&CNtb-=PYA7C5STI;X zssO7}G0JwyJ)0Rhh+?E#+%@vlaHS!lOKM^XkBZxaFY#ZE$14sTsUmP0;8X1em$pW+ z<^_qjUI&FnYSTAibtK=()H@5bybDHSmn*iN)7+!R-26h;zcAMvJgd#e9(;4S_2l-? zQ>VzeYRKK---sQ1zW4x#f!AIfZTMB0W0NO>%vrEQsVgtNigx)P6dXAsMU{q8t<{OO z#lCl|^tG@T$E0IOoaQN^?q|5k<>S@u))EUoi3I71*7@zz>{{TwV=h+N@X-)+> zi`85fp*dxYaEyED42;E4p9>^=y$Q}ZK9K|uW8j=AL z#+86{T4(|?)Ibnvpd8>YnQf`K0D1DJFD3RZ+r^t+;2v6V_f-!pQE#Urv$b$;k~*5`5k|H&;^5cB9=x9EH9$!0J-6q-k%GW9lA#4C(y5WBaLM+ zAPuUItzoW3vtHfig4gz~(^5s{f%?B~NW?p9I+e{F}5o3D5Y zNG6fg6ti8zjcvx@Yf(O^-M1#(jnlZhHSX?ijk`;5m&Tpo?ykX| z0Kqj#a0vtp!5snw4*>#%eEt6J{buIgxif3c|MztDT2=dK?Q^Q?RGqz_hea`wrQEpo z>b8zzQNzQT6zpb2GWI=%+t;=K|Snx8B$)!#eXR?~2JFg|4HBO&(fv3RN zKP0iP&DbQPM_3;5^G4bgt=9!fJ^0Wu3|*c$n0&FR6rX6FXQUk_WfFwXNWjYzcG8t~ zS8cD&xn8LQ3?NZMQ9CB5-CPya2eMI#q?*x*!4oElr1dko2;?`mbnxfcTD|6R@6nd% z>DHa#GtMa9c(Yz`A^~nYtM3K7inH4>Rk=4jDCBDRFEU1$2}QQQ%?5dO)GC@(s`{F( z6l3_SP*ELI4Zda6H>%0%D$#8r1q8?L8BnCx67@g&lok-XCK<}n-7S_+{lm`gL+x0@ z2_?|B$!{9L?gBN-V(f0U7cj<8M2{E0K@p1+Nz^2gQ$KJe@?U2T?F^6dG*3i(LrcGcS>gZ?8LXuNI-VAAalQ zi?U4IXAvq_<-{ow$mK;g0ac%LJ>2t))!aIF#MJH%j}P$ zhCNznVdooB({K}D5MYMZ@Mp`+#Pqj@UL)~4hh_Ta?{X=9j7)+)>S4DD077LZU|gCb z;IvsB;}46JfJ38ll;qav$Lkb`!>2or@(PZ8ru&rfRKLb;07rAQaPRRhVlRe9@5j$= zw}HfayWcSvqHjD)xF17uJ}5+9vsd>p#NS2MIf*X{nCX(F z#rW~4Ty?0~+8s)76Q3N{3-OTL7btI6qw|Bl zGE7nnvMEig4Z&-LI-EF7mv@7SLhK@#i^=h4IWTn-3=cDzpg$97n$0bv!&$0f&`KDi zk!-@dA5dl84?cS$Pd5qoP|r&mNVFRj=k=bCpXwRYcfi)eAYIBqX-v%q_JYdnxa%|e zXZKnX%tjScw$$XaP>HbXD!Y$?MqkQ3sVZW`Z&6m5DGo1l_%mknBBXCvnoQt044qYc z2xsK^wC?9l)eu^xdGHGu9S&9A+xiHA&yZoA`aCDz}#+Z7o`y;!()c0`Y*Y7{O z@WDPSq(jB|svp@NcPd`_fpqev?3J;aBL4nQ8!I_a*Uqn0JXGzJlQ%&kHnD^W88A#u z)eN?~2zmz?7jx+TO}UCs3x=a$>LHOO?w9Dz!?3dyBrp0b70SB5Psz4NX=)Vdlc41aT>8*pdf7f-c3rT?C2l0|olRNcDA};7n zNp_ojNS8jADreFT&cz9%O;$`!_@nr=2v_s*S!jgLzls!1L5O_cy27Nv#S06(<*0J_ zPDOY)(hB2}17!~?8O_HPQZ;;c66ZUljh(p5=ESGOow7XauXtOkz;qvvSk!(TK&e+$ zfb-63rPRn8HFcy&jhgrEZow!8t?DcH*B99|haVpO)^7QA?pP#OKuByLfkM zUkUUg#==*V zSWk_xk-MMz68Y<;w#*Q#HxFtE#$?1WbSYO-s~N?wPq(XK=I)hQ;}C9x$NwW{>M=U402nFsIy z0D!4^SIA4kK3?ocYl_9UpFRU>jbslH9+{aL28iQ(UR#-5^=1r!A$o{P2>xMWfaBoz3%eo9 z?z}e)3YLC^q1{+%wtrlIHbR^!izZ5*%ip3%7AXQ?lRo>`(^smM@YT|-fWh9-*k7e= zczrxD&Xyf`<%lsN%Sp+tu9x;vG?!}9L$_$4+`z=vZ_HArpS~derJ^sBOWJtxJ{xaR z_PK52ack;h>u z>8e-zwHHrOMgOhhy1)D#1*cQ`iXn`<5b1Y2CNF`HSYYDoOD)S(v>F8}dXR_<^{8bF zI=2e+Cuo!ad`}PMjdYblA6d$>Nx~Z{Z%T;joBAr@Lxe~0fg0n8%KOEM%_xriE6s-x;f-yvP_n^a= zshjH%z9IUuG()$@nF8S$rDXFj30SFUKUQHWYz0fK*bFPDBw#ctGCnl2@b6BU=A0WW zt{C{gPO!H-V=GYz1)u3dbIQ|lUhfAPctW1!dq6nQ(X{uTh<^cjE%PSEiE8gY=P$1r zzdeJ&iax?-@cz($yq$27234w2Y^a4P78baf6s>1g%x|fWsIr7O1 z#JVdyO;PPBpPI+Iqf3-vwtK8Wk!VZKks(BCyrsU!hqH+z6A2@nfh~Bv(2_@kh#Z~veg0}<&irQ2o(3OWh zh*gTuakwDu;RY>#$Mn|E!(0MldX{i2Nw_K36qGiY{2KGdAE2BuywO9p?T6qn$y3)a&1oU#?S!O z_i(%+IbPU+LOG?*o5rGfxTMDhq@0xQ@SkYbR4!a2YPHVauLebXH+x&mu2J;-i6tq2 zTA^!|32jSOD^?fDk(e&lU;a^BYdd91GfYMQVCgFjkH&z9DfN7lkNV55r(xw)Wziho zwX8c0Vx&GdVoK#O&VEfD%*@D{VPY`!!>@TmT(@#V6n0UtwXpQ=6m(%Lu$rv=;s{Y_ zA=z>6hs_~{KBJLvRT$CQvC|PPK7g-?j}4E_0-~q4NX%_{6W$OX`qS!H+BYBAkqSgd zZ163W8PWnAHP4xc3UpE9)S|(evTXfD>e9Ijp(3AZ4IrO6qMxP5x52`jA%e9Q$vj4H zD){3E-?9esQ1%l7BbUSU=sEycfiTooMUN~L*8MNWQh{tr-QV(Fs^(c~HggEL+0&Cc_y^}b2hG8CV1z?^W3v&=$UAuV@!3~k@ z(*|n|7gK?1D&%9H`bB|a>XZjn3`kTP43xviwdoa9b~y0_DxBp-U0t)g!Sz7IP~X}> zi89C=`?6izwr4}18zw-cm4Be-opXicP42bO`c}P_9TAN*HQbBwrug{gnfqdG{_P(# zZBuY^(gdPH1`JD2a4_-9+^-&%J#xq&Bl3ri&Nek#QA)avNlyY1QLcoDvbG%+v?X@_ zt@$-#F*Xbi_UuD%Ve11oR*%^)X|-Jzc72?V4{k+)kAcbFbp+FbYww{0>v**Y{>hVK z?ML$O-sn?&EIaHDBGXNAmub(_LTncd5;eQ8FA$KWhhfwfrEmQ%aH#fbRRyIh;dKcJ zXN)>JMd~|7-6!9xUu8RYB-gpJ<(SAFRH=~|N@Ex%Oc*MLwK#_<5_O$>{E)3Q!gqWw z>Yn!E?ezDi&ITz_g82p#6mTXEOkMSB+&aaJYfg7GjKqJQs08-;rVw$D<`18SpiSSu zmat4Dsvce1R~46Y1!;@-ZgqYV_45qNZ{KJCFjypfdW7Yz*w8$6k%2YX*U+*qua)zF zj#MGT?$P-1eMqjvE0ulLQ%VoI&8nt{AmShaQI9l*i zv1X0e)o^uS3^r(p*_joYtB@|UNMXu5rgHXojq4yFt;u&iiCOMol4Evecy`gmX6aZQ z;a4)bfxiH}5ScK=sfRYp_^JrrPsb$v!m0lKP7@-kGeRbZOMb`LwlM?(@-UJ*40SCi zVb_7~o7}|;w=Imew&pbEQRVPBN(x^0?~TS~Z}V#ycdh&TH0<{)Bn^D5U8Sf?qW=Q0 zM98&G5g1tyzl)!3ey)m}zpXW@^;*N+0_%@V^3v67Wq0T!L<>G>cQTSe&<38HxgPV& z$!XKShGuckz?faWF2^$S7IKi_HtQ8CZ{VAXD>!r^Jyl`SbR&OS_Dxo_>~z;Rm!N%k z^)XGiF}j!~>?29 zP3g$7)aGOQ^GY7+z~{9o2~-cXKMe|O(*doJ(VbPf7#DA$XH}{*8FZPAZ?I}$(?e<+ zyWRg>*I$%FC6VO&MQh#vtRnqBz?umEUW3zUs6Ev*ci*W`wD+`BQS{ybPe;fjtB{+h zTM(fZ+O-@O=-yprkL55POhZcQ%Mm5o8&5=i*6yv~j_A+=70*a#AM*2|xdbSv;N~ zwfjw>#&-=*X`O<{QV3Mx1fOzme`<@Y;m%aMzTlsF)Y~{$OSw$YX9v^hhC>ma4QO>j zMXnwt-g4OB*`6ygT3BoADIxAi>Awiu3Cw>L=AEFj*U+e(D!DKX&Xj!S8Y3%jw-Z~7 zH7nxaTWot3p+fo#*fWv@>!7Z^YpJtiwcxBeF|M6mq{phZ8GjHULRnv)oeX~GB+DN3 zfivM39n#U-G6}@xqtmDk$1EvDMWdpusobc5OFOzbMmxr%CXn%6WN@#xH9?|-mZdbe zVVkGSBDRBX`useK4o$QZG&yn;AXq|6ol7{BUSbygRqVFi6fO2>m7wFbr}`9 zRIo?tJ^f7!uqxgv5V%rqXj{~xPDK&N0_9B)Rm1vhV1j#Jk(vFRuaiQ$0P&;Ii%Fod zn!yk+_d@6D+LeI26N*=!{L|A~@Qr2r=2fr2VF_+x_41T$+;ex;7JlWk#*t~VTwO&? zje*TE?1hell7V|iWOel?+-Rx^rjI^b!c436?i8}^qPxZLix}O{F6Fg;;?9{}ufKp+ zRAGKtzetqCb&Xf`BdrDF5I4^Tg;yGhp;s)Z~3z6-Kj3sVe=g zI{Vc7=Ds4l*zAmS3enkv=aSN8)6LJbl+e<-$VIY|y{y}Ay>Qu~AdO;+g|3pqdLXNS zA)g@bJ5+TrykXHUF4b3^I+jp?&UWwvXDFyLFXh*zcO|Nv1uF*6ZI>n!92Rn#~x7E<%^!%-;-#@_<)m-+C=)=35Qqb}XZQu7w9& zL~s)5fFHfB+rA>6*yx!2Y*@2)7$mQY36`}L`%#?B2zjJ!b{A|{8l+NQE&G%{lSzIt z4M;kKq5EoJQ@wTRdT9J``uzCe+VSbzL zhU%lMn|)4^STCtm5vkeoc2zMe7br5myM;ELTquPA$uxgb^r$`Y3-cjGc4)R*?4)^h zhouVRv&32h^tX}}#QMRlbWoI%2(Y2DoGIMf*||{Po^N1A3cq9qxEo|W4XiwXk56(6 zmLpgOsKt>hh?>N`u;|MuTCF<6_#h%zYCg#(N~?Nn>7dh8Nm~xoJJb{Fr&Mwqa(zTY znjT*ZTl~X0c~{$}N-LY2RO)Q!bKr{F8LL$)AaWuSxU8b!T(Fj9N6L$~evm4TdW<}r z$rf3itPPz3RN zW(1yQ0T!6i3uY8H$_F*Vf_C>RBEqF}9n?sU>3R;sFl23q%qolQUImBC&eK0C_T}6p z3Amy8?Z3T`%sjP!@fwQ?3h9L%f+aBOcpexE`gi1jYmIdPJ#zK0?FuV-49Mh|@U5WjfXjM#qox#lQ%d?^E zw&ZGcDML99pRV789m@~AVIc>+Pg~D)^MS*0Bzjc%xJ2ClVRWNWj?K11Po@wq_)M2J zw@)ec0z-QihxeU}4=$vvm&e?e>y*`eDOybe1?E#Vw^gx8O`9;~aWvk3n%%|`pjCaz zu{?5N%J?KntjwCeHO)rJEZ^FjgFuE?3m(Nq5#&2c9-CjRv5eW zKzQJZkK~d5{^%hI4^u?}w|0BV<)%@*#2@Dm#P5uzSD6Wn({<8X2{-6q=uVV*}4_r@qJaxhdxZ6E!{L)a^O8Y z)l=%_SJ??sL5SgrKE~}x9VIqaWZEnF#EtXf8jnd!Ol+|GE(VcmWbEc=h1q&h1{Gh) zNeQaJ=2t3|B}UdD78otPj?Nk#`@B_}n*ilZxnpM9D_|n+dG?k7RC27o_ZuYLc|AT< zziKm3;?C=RJidJ9e3*K>Lr$4U5G~MKov#2KLh_oqB6F6X4bE6gy(P6i49f!5vz6k) zn6f4K_P?992`I`u(s4c34rf{pz2bM>Y9A;LcSc2u;wC^Ra*OCx7kP%qc{$8nU_d89%?6hi3^;_#(MPW+3(IZBaC}*>yO~aUomx^;k(%{?>5pwC z%00gN;MZ9xBV|rYeZPFo;!T@QM2@m&+V!>we{nDJV`2=%8ok7JOqQ&f$`|H;jMwNI z1A!qA)0O8k9h+@<90wRs3+rNwU41#aY>L5h5_-zN%ssIc+REBB``XD)qB$_WJ+*&5 zJ|?};_*pNK{NkdF#Yl8_VyHut8)sl zv8)S@MSvbp{+!lruhKpdhurs&uBGKK0MpfVyfmc~T`Sb1&Qc&`Iuo1Lzm%I6m6$!; zhNyQ-xsa0bYtQX_@Q0W;nMmS|bPXfVD#Ml#UYuY2Q_&pgsQG#21TqG^ZQO0&zi~gf zS9#A-s-jB3`}#kIHh|{{(oXF}+!tS;IA#NbaRxmFX5WXcrG0ej4(5HxAu-bGAQWu# zkW3e>_O7ZP%|#{own%l>nDixlWF%??A)anzlz@QY=GaH~`mrfLuBHE!zC-KtR6OHY zs5S5C@UESSEdtUF_KFp96z~Iu55AF3SPrJ|XB{RzfZ_J;Z3}th57`rChSYA8m1|*$ zO>Z;HwD&U7d?5v=_4mMov%Be#qqWo5!bbo8jFUFsitY_TCu7I!Q%bh*U^zBxM*xXJ zK-Q6$v(uS+7qE8+PzBKp%~qs)Q^e+@NX2fOic@04!iGyFeLPHDI`Yy-n)%{@o|^h zb^FyJINz-s(SP22dbirYKLY9&yAm_;lCbZMaI4oCQ^Op7a zrlv8_SNG0{6Y$odi0?snOn%AJm(mYEm#qn!-tY2}P!s7L%YGrfX!`Ur9**;MDVt&K zkyMne*YNA5E;@{Xa3mVQU{k5c8=x5%W_n#syZUpFb~>E=%erQJ>`I-(d@t`iZ-aih z0uG9z{i~Q9$s4MoWJ$QUYw1_p)7>^ugbXa%>0dP(>_I+3nyP;PRL4XonXU|4qmzPPiRS{0nUMC!xROS0Uc_bs}PAD-!=mD!ylGj)xFMk zRMGOaFWJ>Q4z2e!18rmER=5qL{`u-%)Ogo|qy^>J$+srVeBIo^A;Y7pF$%&3ud`zp zE4?18y~01c)^G@~Ch;GAPW7vkW_hPtsV=E7HYcev@XG<8N>V;n~~7 zj5_)JJa{IUS%!h&xe%W*Hm|z#pBkF98S4@n{=O!UhBRb{M<(4IL6+6HH=OHEEtO-t ztz%-%=aM_g@_w9+MvShyYkjNZ>nzb8A0pJ(5mwrWrU5qE9^OxgkiPK4sj}rA0vf;cxyV zbVw5@s})=Cix|RJJ?c$q>0lQLCluI_5?}azA+)>C+SqiiiqJp#ZkJ%1ZJ@ll$ZbOU znWZ|u+MqK96LzPx%Tm*_bnh;8X|xsN^^_QdeOzg@%fbN3bv+F-V)J5wF|-#Pu2B0H zGtUKwcX*wYfNonbtA5oFyl_K1eMm1N8?rwMf;|NE*y4%g#=o>PC{ia^`UzVl`|PtB z76X8F))p02-qaNd0-t%`wJN9IeQE7q3}(PZAwG6E(42VDCxV}(0Nyt7`fiBCYnOi& zq~QCZnzm3fX5sJk^E9*wpx+8_G$V^42}+~PfMx+>eV5|JB+LhQrrV}+KN0I*=;a!j ztv?I$B8f#e8hH-SREUs;mg!zE9T<_L39fQOU4P@r$eAV_-(I?t>u;Ye5T1NtV$k-@ zIfb9uGl00%9WVzuw{`Xpr^C$XnxYsTrsx)M`yxiPIo%|G=&!T3sM?)nI zt2XIP?7w5YD^2V2WUu1Fr3N7gJ1jde5ho2{;^)zLqq#BxGQcT;zpA4~Z<2V( zU@SY;t^Q6J+tJm&YvrN;MzNb|~@3Rov#j+uZ=&9T}zdliCP+ za*hnxa&&LdVPs)5S|3xZDaE5I;v^0<{NFKYzm0yELJhRw2zjd}KC)pu;?>8)!$rEG zvRO=i%9b&J@`bd_^=d1Q(9UpWI*hZ9H1oG!y-UTSYLmn#vjUx8#DOZiP+yC?vLkE5 zh2xPDAMLGNdKui^yeD0kY&ZcAF@GHpihI;=5E9uLTX3`}phTZBJN7`!0&O>M)oi4S z3$zLs91S37PI3|AyfOydtR0>RfdDt3S{Bzq2wyl5ijcD42`)|6j-;rG&|&Kl=fYvv zkh7gUICyY@0WKjZuyP57eDVYRd^MuX+>q7C8Sj#0_A!nPMJI2It!;3Bqc@8~Z z%)rW;nbj)LFeIC(E^VafE%WCZr%6Gy`NRR;X^sA8+i>1YmCDUzt*X57}wTzAea+N=r#D(Gqg>* zt%*mkw8Qse$k|WJZ0*bP?^b;c#1$!H&_%2U=Eu&aP71 zxAOMv@a#%BCv*qO#Gk1;E%zIif(xjvZrP=}9a$EEJ;sp{1c~yAw9#ZZtT^MU<|*yV zQi*R;xDrpk#RGB}J?las8KrHeJ-+ z%|8!xlC!6|`OXDKQuwFqCE#iln-X4sxiam`jA963@QWkDRiLfo5!zXg#Y>XH?v*Va z7%>Z|N@tE}4jGPfG6bBv;E56RL zFkB8w?|7Wwk~H#;<}s99N$x~EB0LErXr(uv<0vJ4#1R%_+W}JXh)Qs$xTD(AV|w@+ zeA3DX+6((GpHX@dyCj2%!o=r})vp@Y;P0`LSK9&AUm%*)s3~F);a4j`l+Umdb#o`w zf_YjeqCo;WL`BjyT0`(-GHfh29|qx-*TD8Rm#naH7OmiJtRQo*a2I;RmY2;EW~bNL zxcD;keZ=^k)tXMhwRe_By)6jo4L)$vcs;<;X}+7cMVM}RBUf~JGByWq?&;?r2jaq- z+;bgkmT6XQcYZn`qe=pz9q;-*yo@v3LOBvvJn6EQ|D1gJDBYB5TzX}!B}#P+-ST`` zD!zfHlblk2$wx(RAHc6JQX6A7VpZ?pu)2Cy>xvEqp?(N}6n+ec7Y-CYOPq zhU|4s41!mVC3zIjOVqSE~st>1`|8ndl^<^(Zx)M~@7cVb4yE$>#lpno4 zM>=tE!G-^0E{?%Ivd$zJe8=~IG#~5tML8R$nchHBK^jfVzS;SOZYDGKus~8affUQF zdjy=IWO-5A_9a1c=(Pa?DZ)aT%RK?O)svj37@Q4f{ozgy?R_*=YPUy?qGOKPmurtH z#&CcfQO~~NDq8A~=?vx39i;x4xZ+%jz@W3+M0lL&eIZ9FgyHp3$ML**VpI8eogrth zkq0M$z7Y@s-jn|!G#e<-DQ?e!6=*^Fq#MUedyz}bW74Q4p+-CxG@9%bsW>NJO#@~E zGUC&4MLWo%%xHsfGDOmG-d$_ThvPNxx~fm65E1`zT-Dt3m_3pqoIjx4Lga1&KK%?C z;}YvWm=9(KMgH-=qXHqzBqoa^f@xlR13}h`LSw~|d(zYfWQWX}NKe0?%kw}KWv@8b zmE+{DJd#mbR+bwsJtyKU`jD_x*Y5A~DY48SHRiQpTq**~>EysosA1P3#1lSzp;T1)%|Oec@52lN?@{ejKDMG5EMuXl1@y}~fG zl;&Nex||-rTuJDj3zSPb`pzV&kRPz0ue%TAK2U9ET_jo@-q$5|b=_83t@Dh!Wi{5d zNLZ!w)hfDK-N7(D+Ci&gd@JG6do-Z^x@GZcO`he2n{)7BDPM}xcs*F zhp7@6y2v_B|L3`O*D8{DaEqM-Q97i(WUCPnkz_^n;JoxuC4tmH)u<49o_qA9y&D{J zb?|x$D?$wn?tcm0;+(lFPg^)h(71#}lUg?;(F;AOJU?hIg3oV1+W%R6hAFc`QJ4UW z=t1T75A%i8syHkc*3MNUUs_`fao%4*FI)nqY&`h&Tuae3VInT^x#gOGU)m)Aa~Xv{K(QW2WCD*R0Om6uK|@Tj(+&bV-I7NIrpYA!LK8tMWK1deE#+(;T2x5~S zu!Yd_o}A$3XA2 z<4vGs9hnWF^273BMTiHIQNk64@3m_1N<}Z(FdcX)$d--c*?mxU&=tvNw^WtcLnZ}) z6MWHmm!xI#gnE9JO37AHque^H4~GNrlu{z?mp7!PPVSwUqLG}e@wIMB0sR0J+V8SJ zD`C>O6SY~m_bBHWb@QK+5vg4~(lEswuubo9(E<_t1+q{?=7C9BLqK{InT3g!yiZ<= zQjpv`{4tr|%+Vn5Z8gm{skjrH%Sq8#DjgG2EYm*dv&$?1T&ov>T#TdY^kU z(N@yvroeiU#Zvk!Gr(6FE(}#lvs7813vRJxo*@w=9*8XCMqNG}LE`TypO8vyQpE~F z;i9|YJC`Xr`J_J1vz|v@WusO9EL&e_8r&q#gu@!!0!W5(U~t3jha=k78J?IS0)kIk z5Dllmc@26)J*9Be-=!i{=(&h;?z=d=W1>o9OLDSMqj)h1Ypj7)r&Zht#&9EltkN_q zUFE}?z*6FO=+MUm5du&{B}gqvfDG5)YY zo>yNkV@9kyFE&AZRY%%VOfuh!I6GNk8%}VLOYL3OVW95kd5{Z7%7^u2-Q0Gd121vc zuf-i?Sk3~z%9kCLs;ViFBG~=Qtdc|^9KDiKG@+43>NkiwQqikRvbbgOiFJ!n z$XV`n==x!B9N_YCBR>eu4&zUdoc+RbA!2(Y)8rV*q;=hQRqSGVq}b_nNdyRe2mYv% zB_vB?ls-J|-M4SXidcWw{;vMr1z;;flpp{g5C8zeet^Gwa5@g&-tHotoKP3`$zlgu9yQ{6YCAGh+3)D-*UmX0eWFoNrf5e<%>VGBib`}R4 zs%cWox_R1C^KVOMiB#7wx~w`1exeY`v^K9o@Yh-JsO}lxk_^=Ho362E%IkxA1Qb zbg=QXcl{rg{D-rGMX}pkIzri9|NZp-XWoD164AHy^nw*H4u+lke~wdtWmL0tS963# z{~seQVd~-H;NutM<`obY{@;smb+v>Q{-5OXYTH6>9RE?TlGnfLgIKzF+5Z1M!1<5L|CcWKSLgmq2^aDO)dQ2=b)X?U5C;H<1BAx`{v8Dn{Oc-#weo)kRG1haM#K1@!ave~uBiVQ w{*mJR@6vSuIy?|o3p@@$5>RjPAM^b8(SK{;zcujR8u)Jw{6A{|{_ooV2Mnnb2mk;8 literal 0 HcmV?d00001 From a662e48aab0b5783ddd085f2785b3529703de874 Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Mon, 20 Jan 2025 19:45:54 -0800 Subject: [PATCH 66/94] content! --- F-Microcontrollers_and_Circuitpython.ipynb | 34 ++++++++++++++------- images/circuitpython_logo.png | Bin 0 -> 103853 bytes images/pico_pin_reference.jpg | Bin 0 -> 705236 bytes pico_proto_bracket_rev0.stl | Bin 0 -> 589384 bytes 4 files changed, 23 insertions(+), 11 deletions(-) create mode 100644 images/circuitpython_logo.png create mode 100644 images/pico_pin_reference.jpg create mode 100644 pico_proto_bracket_rev0.stl diff --git a/F-Microcontrollers_and_Circuitpython.ipynb b/F-Microcontrollers_and_Circuitpython.ipynb index 7b43f4e..26a977c 100644 --- a/F-Microcontrollers_and_Circuitpython.ipynb +++ b/F-Microcontrollers_and_Circuitpython.ipynb @@ -12,6 +12,8 @@ "\n", "We'll look at circuitpython here - circuitpython is a version of micropython customized by Adafruit. They have a ton of guides, libraries, etc available and circuitpython is the best place to start. \n", "\n", + "\n", + "\n", "## Circuitpython vs. Micropython vs. Standard Python\n", "Regular/standard pything runs as software on windows, mac, linux, etc. It interprets code and runs it, and includes libraries like sys, os, fsutil to interact with the operating system of the computer it's running on. \n", "\n", @@ -27,9 +29,18 @@ "\n", "## Hardware test setup\n", "We'll practice on a pi pico microcontroller with a button, display, and accelerometer. The pi pico has a built in LED we can blink.\n", - "* Pi Pico: \n", - "* SSD1306 OLED Display:\n", - "* ADXL345 Accelerometer:\n", + "* Pi Pico: https://www.adafruit.com/product/4864\n", + "* SSD1306 OLED Display: https://www.amazon.com/dp/B0837DLWVH\n", + "* ADXL345 Accelerometer: https://www.amazon.com/dp/B08HLP1MPY\n", + "* Pin Reference: https://www.adafruit.com/product/4901\n", + "* 3D printed jig: https://raw.githubusercontent.com/a8ksh4/python_workshop/refs/heads/main/images/pico_proto_bracket_rev0.stl\n", + "\n", + "Adafruit has an option for USPS shipping at around $5 usually, so it's a much better place to by raspberry pi boards than amazon, but they have high pricese on a lot of other components. \n", + "\n", + "The SSD1306 and ADXL345 can be found cheaper on Ali Express if you don't mind waiting a couple of weeks for shipping. \n", + "\n", + "\n", + "\n", "\n", "## Getting Started\n", "Download and install the \"Mu\" editor. There are other options, but mu just works - it knows where to look for code on the circuitpython microcontroller and has a button to open a serial terminal. https://codewith.mu/\n", @@ -50,27 +61,28 @@ "#### *Exercise:*\n", "* Per above, ensure you have circuitpython flashed to your board and the CIRCUITPY drive shows up when you plug it into the computer.\n", "* Open Mu and click the Serial button at the top to open the serial terminal. \n", - "* A pretty fool-proof way to Press ` + ` and then ` + ` to\n", - "\n", - "## Modules and Libraries\n", + "* Access the python terminal and run the following by typing/pasting it in. A pretty fool-proof way reach the interactive terminal is to Press ` + `, then ` + `, and then ` + ` one more time. \n", + " * `print('hi world!')`\n", + " * `import board`\n", + " * `dir(board)`\n", + "* Now use Mu to open code.py on the CIRCUITPY drive. Add a print statement that you'll recognize at the top of the file, below the import statements, and and save your change. Now press ` + ` in the serial terminal to switch from the interactive prompt to running code.py and ensure that you see the result of your print statement in the output.\n", "\n", - "### Built in modules\n", + "## Built-in Modules\n", "https://docs.circuitpython.org/en/latest/shared-bindings/index.html\n", "\n", - "There are a lot of built in modules... here are a few that \n", + "There are a lot of built-in modules that you can import immediately on a new board wthout copying in any additional files. Here are a few that you're likely to use at some point:\n", "* alarm\n", "* analogio\n", "* board - Analog and Digital Pins, Stemma I2C\n", "* busio - I2C, SPI, UART (serial)\n", "* digitalio\n", - "* gc - Garbage Collection & memory management. gc.collect(), gc.mem_free, ...\n", "* time\n", "* math - sin, ..., log, pow, ... https://docs.circuitpython.org/en/latest/shared-bindings/math/index.html\n", - "* ... many more... audio, camera, etc. \n", + "* ... many more... audio, camera, gc, etc...\n", "\n", "Just **import** these to use them. \n", "\n", - "### Installing Libraries\n", + "## Installing Libraries\n", "There is no pip install for circuitpython libraries. But many libraries are provided as .mpy files (micropython bytecode) in a bundle you can download here: https://circuitpython.org/libraries\n", "\n", "You can check the version of circuitpython on your device by restarting the board and checking output ` + `, ` + `, ` + `, or looking at the boot_out.txt on the CIRCUITPY drive. \n", diff --git a/images/circuitpython_logo.png b/images/circuitpython_logo.png new file mode 100644 index 0000000000000000000000000000000000000000..6ce287922ab515c71c97f704b80a6626d64d042a GIT binary patch literal 103853 zcmce-1yq!6*DnqXAs}E7A}}B#O2^QtgoJb>%`kKf-3_83pdd&iE!|xMNViBgNY}v7 zd2W23_xav)&iAeJopt`}?~=vLaLsjHyZ8R>eSc6=kRrf)jE9DXMj#_Cp@N16T1P`e z_qu}(e4^X?IS%-R3zyb*L_=eJdi#U!mL=+fhKAE;p{C`eB`+rcwX#OJiXoOsmN)&n^!ahnZVQdpN*UJrvZS9#&9( z6IxLb8X-3UU;`VNlM#)ZjkT?#fSWMwpM3>@*S8U8ZCJx8gV-Z z7!5Zo4-1roi<^d*pOu3L!o|gP_&1vXhOxOB!Pz)i*>6euv(N0NAW z{yDh;++~F`b6_}%)vjY?+=>lBy>A$FPbW(x+2S5KCUk8@|`7&HU z+yQ3f1d{-MglTUj$il(N!pW<~!6(4YC&0zU!p<$g&VG9iTtME=#KP45e_zTkzzzXc z|4&N+^)WGWGWtI*Hh~J5+Bw)50mNI_7@5J?;I?M8H2<(vK-|vS&H*?WxEM;HV-cMk6CB&cnga!^6VK%JJvA^6~;QwvJ9lwosUigfJ~Y0IP+Ci2x6b z&lJYP#lgZ3<>O%Cf6d)#3L0e_4i!9TeE( zKd#3P;o&jjG2&!_@p5pn@N;pQu<-M8bFe_!*hY>rEu`wqvr->2YtqJ_mDgkK=M<+W6 z_rHxw6=whUD{BjyKZ+z^1idv7fHOueFcaFpKeYHyxbfdQ_wVn!n!|uC|6ND^7s3B^ zwxgY?ldF*f?3Ee7xqmqhrGJ?ajkx%&qu{4`A#Vh=u)Vb_hJRfUYHnm}1_Qhn8!g*^ zMG@4_)&=I^^dD5gjU0>sX9aU`6s9$Gu(P2tg2SyXphmY0U~{oG`P&ElBQhE%JDUH{ zwEyxP6PSa=zwz$hPx;PXY9p_xPB<+`Vb*a_`A#Y4AxOu66yae=#eVlLhWAU}Paw{hk4w;mQMy=sFVVX| zs)##q3_fg1>=d+P(1qXf{RZ%p$5oc*@0)hPj1dn{l!ESw-Fbrf>AfeKSVb2*oE+)2 zfF}oU;t4>3(FrkJLDisYv`CDM`$;-?p4_f2{g_*WLnHB!VZj}d&+dN)Z)oF(iP9_G zkR!bp^bujs5@Ixvbzsk+dpoZ&ob0pRKuDdq$paS+>|Kl|OfQ@o$lT)l7+wI;T z)1udD?WTY(so?fAAZ-kSOXAZz$a#cGL)(3(aLm6qlEiQ-)rI-_V$EsoJtQGb&eeD5 z1`9lx&3s5jS9lkfNmA@tNg*9BQ}F8yCG#ESec76+_9MnGv$U|{muZ~cPOy*N2QP|> zxXwMmSR%Mycgx@Dy^oDX)4RQ8dZV--Yix!MqSHS=(52!_Kin45HW^;fZIi*o{c>vH z=jUx&sF}&ok4|>cLA@kmW#I$}tl8y+%@Ym-wuQ4$Czm_ux(^>ViLI zzSnI7b2$t8#@*&A0>|%!W^_R^OvaD(mVv|ibT7$z`^){VfekUIRCZsxQ8%ykNFwdetf$UG`H8xK8T` ztE5@N^4V3=i|u8^Z}IKKn$(RRE#YF+BjickOMu8v|4wA|mcJc(uBD*$R%1}FhG@vq ztf0(W^3Va|XS|WiF~|yrBoPWj-mOl9jNzOJo6m7FpA{#`Ra|h2G@lrdufctY6hF?k zEic!Tvw#UaPYuxQ(64hC0!fSsafgC$)o3aVbKSVMhIk~qkC$&x?g;f!zSwLHp>Dpz zp&=mF&XSxk8qsFGP^4t?fL|bLmQF3SyGQ0&Q3%oa+@}?q;Tj}7BZ_fDVKGRbApP(9 zLHN$^!t}biOWXVF{^d@yqEveH!{95m2F}ygmFa4i$J8Lga zi6*=cFZf!5SA9Y^_E{x=OQ-@;{)_$FxB7d>0A~O-4L?g*+iwMSoMdtkY9{((S-(KJ zTBM^{Q`f5I{xKaQ@9OcM3Zw~lxrtWlSwjBGs3a`Mb$bRE&EBlPN3hYivMz0g6q4z? zB|gX;=fSrymy!d<)5a4=KN{#Hn?CAmZ6!@AU%i7dmHvM#}8;#r~Tb5__IB8HM}yLeRb zsurQVP__P=ae(gMuT}3Mg8Yh4U7;4BnT#Tha!DvXuzz5~;n-B8dEUA+*Py@Uk=;LS z99xD&K4PQFc`p2;Xwgi`C5$r3qh_ilHAFkw#}~x*vOuZUIyU0tzYJXr!)dsv3GXhe z7jh%fU~r%%pHHANBuKrI%7d=rxGTGEzalJ0Z~oi#2y0bLCSaeeqf$JRA5?f?)puks zisCin#9T)P_)?B*OpeM+)T4x#>+=a#vf{)%LK068evm6LNV;m0ZJ1cDVn_WE+WSPz z^>nH$PGmhkHRXWqlKb@B59$4TE#+f{S*D>4RQ;l_d`$_!;35|V;iAgd%fqSKfmshI z`$Y$qmt8sD3d!~;K!!>Q{nDd5Rj!-g#mXw}hswoB@w*}|1yrwuI5+Em>l*!>y#c-8 zxu^_HV-^T0qa@j}!)-h6M}SZi__b*m$r!55p-bNq=mh{y4JeHyYsJYOdC+bKN8dcAKLj zOn4>DLesWi@A92fH60>FA^HL$d$mO_d|XF&h{7)esID}JzUsHD!75&VDnjd5g9YJZ z7q{=rZYLu39DKmpqUXZ$KDA4Czev-q$NcTA3V%>97ZuSxG{=JdzlF^>w zb$;!-u#Tsfi!P)mJgQ~1=nlqtPQ7Z8sNc&EQY@<4YBu!9!dF)H!k4&}#}f%|z>4{V zv2}?WJXTRp_~J?m0Gh` ze7d?!EmUczs7RE0eV9{wv0Goek)2p`x)i2pL%~M1W)*qOq?haSrHsRB>q@&PeVc@w z3A|RT;~TR3%WvLR93hy1Vr-8uXs)jAP)z(wJ;gmG1dX#2cBqb15d?9uMq#q$1`V6q zncIYnw%yg6?v%u#QHeRc!ast=#|Nj6kzFjrjL~R^$Hxa@2A2VvjhpI+M@RN&D_ed70Vi0&4hCKpb9N6@m&;37MsTNoP)hV%*=2Wz zf3MVpvpYxh%7Qb#FSpZH;MCwtBgTe=)Pnm%jnL&Y@1#*z@--rTRhw#2+zWvpJ<&2b zGW5~r+P;7JXbm7l+9zPxCZ4%INNrjZJZClg2IU3}d#B1$BQ1_Gl6|N&HmAV%EPZFt ztpnoL{YHQ3V#aZRKZLh&Lq11DRGAOa_OyB^8vJ9lWouh_hf`mmMRlw>DJbS}dL{g& zZ`W5^jW{`aar)#A{H}>VtiCrK1sK3ibR|!UAdXh$FbZO24cs|0iynj=a$)kOJKBpvh-y1xltCfqBEs*HV5q4MlpA9v$oj1 z-%8<1$13u9#~y8TS8&fGr5@vSr+~Bwf~46Sx@J9AoB>?!d!@#QF0N3WgE6*Str(8@ z%_v_1n$MmyJJEYJmz=4wRqA4>BO|m^;(OqOHddhB=9qdhqcqsKnU}9sX*rrZc%mp0 zv^=U>sK00#;)qjJRMnPV&yR?1+s_^tzqI!-?8!(c~0_%2uhm7eutycoWQNXheQx%Fh}|N6I(g09(sd# zL+|m)obysPWPuXsK9d+@4CmHh@`6~#;+1_C97|$A?It?~qGHZ+Mkn15%@YQjk2&w~Lz)s_349|ne4N_uSlb@RSD zCktNk>|uC4buB%}RAu;LIY0mWRsio~6aY$cG|`H6PYrn{`zNmyjmw07R<$phT5wgx zn3Qqiz2r<@byxJ}oEIfzyXknM0h8aaO3!za20gfHiRRc@J|8bd;v2G zzCKb@n|W{*KRW8dS04eKsHB(7&l%5E^iSkc4hGx;qawNp&J1n?j$6~b0-$58I#+K# z#zq)do=rK5FIs%Vl;JCWpS++i+fw4Okvw-K)2<9=?Bmem+sU?BsE7 zaz^*obM$Qv3)sKxMXkGls<%nBuunaZvvpyqo?npD+3Hm9bi(=^$I*m@9 zP3rhWf0=!i#`)nbwrC2FYzTebZ@q&i$Tr#D3C6PK`%GoBtGlvEm}s{%2+`I~GH$RK z$yU8#tsAMSqddnB76WR9-%*WsT?$asu;}?f;}z*=s)tS|3)1#{f23G7c76Yo)<8-K zZlCY7zJYNYH*Uf6;srM!(W=oot3fjc<_Z@E4Y|;ZxoaCCE{v^eyVbN}pHLjvc^Aw1 z=W00Zxew+is`>i8ZSyOEd~%Xy)H$$q1T2#uIFM;4TvM4wL^mK^-Z{5RTy*t0@4SLTzoo4JXXCmw1&=k~(Oy(^&TqN#_@&}f=CBBpocWH*mr{Cc z@<|*&bBTp#XZgyGb#ED*zQYn}AzM0gDS#}lbOBVTtaeRIW38$*C*~s9?;r!+RI^$za4My!n933U6 zoVhr~XU5Q4WOWNZd{Gc@*f>^*A3l~4AyGZwp&m!^%#*@9+4u|y0d&@hDp_S8ZGCWW z*)j^5-9wt#G9U^#FgKIwO!ji};gsaE&o(Bg++asR z6G~HkDbU89-PZ)?abF$}>=~u^-# z{wPkesO-zSO-ZIHIhsyzXFvC3o!sJW;2Mg=TxU|Tb0sQTlY#${w{wwvp$fTCr&A^_YgEHl;j0#vHX3XUJ075(97HT$ zFxWOHJRL!S4s}^wH|HZXS0O~#EaH;{1zSRiEfGg|O?laWm8O6_9}#^8q_!ZpWQoHK zAqK#_`MvA4|cXB5m`PI`VPmb_ANusl!JRu z4dM|R$9;E^2PxwyWJ$?7O}`dr$TUG#<4L;k%~8|bGSO0!Hwz95i!}k|R;!y*Z7|6K zhaVUbDu~?m%d&n~MnT?VYa%|b;LxpK)@>{BK+kOo%LcDKYg?`|?VMGC%&h9VNkphH zi!bTc4gKJJBDo|1X&l~b$+7VwsDGE*a{U441^)G8Rzqi7 zrpEYDKK=LrNU#cCg^Yc5KF)ftqkXg1gDhf@w|7^=pOpE>0RUc@$L9M>4llO14gMHO z2-SI8g|!gyf>^Ixzrds?GeMEfHp3;D+1I*F6Owx9Wkp+Te zw_Zu>9gvXqmw7CLCMAe01jCkNwYf$;-zoK^r}sMLc$Cfxu^JBMb~O!^+WAI74KC3l z`@K?VI|mk@m$JH&TGb60mq3N9%5vRc*-X$RW=cL1a|W1tu}g8^cI~n{!O)vG-r>gX z-7xtT7j4hK%+FTU5b zTMGW(@`M@JZtm@1<<9(dCNluhB*2D^HOC#{mEwvXkNirPICS+sShLjS=m90}fC)7& zQ}}CD7Zgz9AuBp8#aaZyv(tMI-+Ct{@2vh{Cl(k%9p4%aph35_JxzUtf8XOMjdx|5 znd@=@7;tal*ElTKfI3)m_$a)Mo4qMBFckLeYk$;Em+ZXbpNIpK1u8=341DSre9=H? zqKxx;4*)#6>`p9aJ(v-ixcp2FPDPq&f)I&T+5L(29m+v!8jBpQ=;@Bt6#Pd_;EZ(z zUatJ&N~u=aC^ahLx*lSMnO2e~S>Qt^?#LyU!Lkob-MYvgmEjJ!} z1!L?e!|AVhs4={F-$TS{KYuIE!5JsmeoFI)fm3k+)}XzMP{R|gM5|v{P<2{6!Ms^b zA#zw8az@L1m~8Se*@>=BdQw}(1^bOQ#H!8AY@#3aW%XCHV({i;MB4}eLjZL*03p>C zoVBOj91{#E5*&BAPE7ieSUKpBGg0ZNB-CawInfDh$Q>cK>h2#Jw^KDlB&fVQF-0XUANSh|}<$tfGCkC!cY;Rqah zYGde$`x{&I9Mkg%&!V>N*+5g`l>D#QKQ$6^d!#E9A9&J&quzf?mL8g&l&LNIu8{Gk z3eYmWRkcG92F779WpN*n9Y&uHTvmNqj(0H)FZ7RWZmu6=-H?cV7#t|4={5dM^wCkA z1Q&C!asR@-9u>E!xxegrTT*oP`GAQ*m?zqiR?KWb4wHFf1BfD=-XaUAymPC1uaqOC zBy#f0qf>Tmb$R)q5`Ua)h3IW8abkk=!i_4a-jyd#jCtaAqC6S+REcL~@M2`jT^d?o zKV`K|wt>)S>jBAk^SZRv9TeSh6(8rf-k5E7+mK+k*y!id@v@!Iw4?NS;6~H4|9<`O z=uqkNFPA@N4tWPC!=wmaL-kaL6>mcn(|FUTwvot14?-Xt8IDi?y~$+YYN z)7@F{AfepplMx?(0fXwuSU;fKA;tyrsT{zDf4W3imxTejgOHE|zJbqggBJp-sE!iG z>R__H(}w_#yx$|gAr8*TjOp0#p-lE^wL^JJ6CFZ+!f()WO=L|6gYRKzfZATN4Yh6D z9mZgPSF7!9z6v-abE|!}ZzN_3whOr5>=xhU*t(G@>fiJxb?tSk;Hs8VO%wZhcAeBP`GPjX59g-}UH#8l-aazQd(v<#A zSLA}ut!mL2aLlzniFuNRO_2lgfJ_(hYfMO)l||+Qj;l=bM+czTaW7Icf3JS^h7&II z6TcVax-zemH zs@>a&#ol*x-K{eZe$vP6;j;KnbJvSW=bZKT`mf~)jV+K#IPP^!S-;toIJbR&?Q4jq z4h`XBc>_}t1CRAockAte;KWEM>udT9>Ui^*lpVWLpdfzoL$(C#RCwVC@iJ^+ zU$yU`fvsx&RP4_Ese_`3XH%p03)Gi9UV9&Wr7YH^UD7PPkDQ_z?KlJ>^L-05qlAFz z2F0|5r9EgE15cXpE@wRy;_#`SXBB-NfP#dogr>E;`XUzK_~b|Yw=wD!I^;M)7?Cn3+FPoPt?0NTvzdxrI?lBBLJXV6?NB)mqS^k z+kBs0MsOBRa-P*i?>QmpGuT(=FWE$P!4k2XBT$r`r8srEHzif$57{MzNNjWynn|N-D*N8>kIRY@6 zt@FUseMYqLYWmcK{rw6Y`sTL+o`5-+S_- z=Qg9PoJaI!4?>hhTE@XwnjV~OncH_$Y*T6UmKQhiV$0SQ2+A0%v9M2uC~26&l)7nRsFtyMy~gf-aU+{m%V4%n~xU?pA`Q?c#j; zA9}}xLP9mumSPmt^`uIFlW%yi2$``C13F9)FG1Fce^G;)I5|BAvUWsw>gQrPsQ@`g_2Gi&u0IGc?COX?WcxG6!>;IuDy5!;E$&s@C)blnV zuq3QMLrmve3;NgUP-S~uSZ``G?HOOs^|{Z@v^oND=kOKT=WgSl;{ylN=92)xs@s*f zO*-bBD(~w7@HQedxn+bkLZ@{YrVBV$))W`BJVZ!tQc=m5;4EwF+jvY@$R)!RI0lw< z4gK&_=2(7iFs(bp-FOKcI&j$VRJZn6Qnzw9m~Q9p^K2qR?c*rhM|}Fh0ERuAi+*jk z*U8U*c8^VHi%3R`A-m^!sTk&E%JHKf+l5}D=ERWKK8w}8(H!kIKR9DcY zK-E1lAhV}+CWJr#lyYH6MBYJW0$q!0EZCiC-Q3myg6Vp1LH2WDIVswZtOq%!qw-!w z`=%awR)rk)A6r`!CZz&Z%m)it1_h&mLc*}YEonK}dpo%%@^h=veA70Nb^p$#FaTmq zG9U}p?{bE03|X^4<`hV^HT)J8k8_RvhC$zbU>ZP~=zE`w_jg$B{EPvclsQF3&R#wD zseZnT&6?-wm%ej&a$IWa7AIEvqNVnpF@F#GY}_v-OPrNo4jLKAN?gd765@HS8P~I0 zeobk-va!!FT!PohOg!HN9yq2ip%H3By9T``B_=TiRC3vrC9)<=m!IqRe}9xGAOZ9v_IKmuu7mh*n9b8e-h^=fGjn#BHS6gjJ@zMjsmM+1$zJl zwpro;G6?{_`mub%p{}erX-cq9k-O!laDcHplyRBvB$!$})Au5)3mc|`TXmw}gVi=( zT6=+E9b;JGgxQ(TY*ASIdf74r@amHiyu4JG7@|`rHf;t?b%-?mA`vMK|+ z3A^YVzmeS7@1;W2^_`wVF()DlL=BF4igcu;vO!Wnyp*_1;Xv6Fz`?udfW9?-u&1X;$d#T0@$|F)|YpaQb0h?Pyyy|e*Sl(7JLesdw>FzjF2w@7DL!~$XPbbaxNpG;v zdmVy=M105;=P&bh>#t)d6Fi7Jnfm*>LYCb~#+;Me`$L*KPEt-?oAs`-PM4n%XjNdn z(Js)g3@sW^=uxTEyK}$zjo*o}Y0>f$x?hcR^H%#L~**-14-ka|Es9buqXT;4XJE3Dcx2ffrwT9qw01xf@1s2-*MUn)fDO;G#O97r2Aqct&J5Q>_IwL-)BkL*XPSTq6VhEtV~MLW6f&}Z0Yym+nEDF%C+?=R zO-70-yM)Q9cjUSStG2Ig5+s?`>IciEhc#_mDi9x|`a4Asflr%h64#eV)*51*lc#~q zmEAHs-Ah<#XDIn?+tZBd3#>J?dC342j3rqC!o~hFmw2{}@JSG|l<<^!=YEoJz-G&t zdmKz}GCq=><+W&N?Qu<}%yKygWWDf(#PcAnG_QHD9Ow9_9!ajIzR@ztYk@1NuZ3Al z9U8D97lM0{Iw7*i4~JU_Cgow+Ps{g2#fr$!DG#?_JX?1(LJS|)km{vKh75fECHw-m z_%^i6h6Bd*Ix5uujcOSeA(&zO=}IgxrIDf;)lY1p^H{TfqQ{i4n%pmy`kYgA=0b)m z;np`qmEU}nqwQ?Tl>(}|&D8jD`cZubTfu{HOTnwFC<8xp{6O!kOcjQn6^9w|`(g#w zb{GPd)~N{Mz_8Z&GofPvIhI5e|18Psa|D?<7}bdI=3Q1^F2UDZElR^PPIyOz1J^-oZi^d{yOmk{X}`p)7xv>CulHRpvGU1 z(mB;ownbv9Lzy0VtcLpn{qdW?;ErRO4gVc6S#hzzkn~JqOBubsHB<%uO9NAG2B!Xu zjB3;fD0Qu?V&l?ba&ryY$I`4Y9KW=F_>ivP*Mq^^)_rf&hl>eb`{sF8UXTNsO}vUM z$I!T<8S8Vv#nam2MXTud>-a08=d-`sfavhWCdQ|d^SqZ)^c@bk@<9{wZh?}X9x8A* z1u*1INjskf>qlDPJP*1@ke|?G0#zP**7Mul_xPyB&FlMR^ove~5H5{PdS%xw zv;&L)WQKIn3Gj0sJrWf?BmwiCK@e(zzQ?ii3qMB(7lC?7(#+Cy)eGnwey$kV7CFDN ztZ#7b#vv=+>N3&d=988I(t3$YVmO%++G^EjY4lXkwf!op)1Pc`yS`8o8n5$+734)x z^UJJR@j|Ey-R;S>FLkH?w4WKb0D@oteXYClPPX4Yu^Go}Ya3Q|psMYP&rtg-#CxecMQ^QaYU}4CH}K6gqM- zG^KY?w_n2bxR4ufU4iIl{O0oduZNfB^EtK4>l*?DAgZm?6{?%C(b_`Fc#pe^^=~YP zd3r}!XE&Y@Dhj)7Vk0mjmwoMNWBpBNTZRy5B%QCUs4g*qN|lA^H0INV0%#uHr&A)6YR7$W5-DlgK@W5R#(nDi0<3*zWHzvBh*N#0M0 zRn-`sPj6&~t=saVMP)>{#5E@p#}z!E+9hU7Q)@S=x*N{_@U+(2fWw{dFbHew6D7I^TC+jw!~GPS4W zO2w+(wdIgBD+{6Cy)vn!y3TER`2Nw+$?@mj)lBxJd+Esyq!Yo~9z6LJs-xbE$xC5x z`64D!2I1Oxn*Do*c-{San@7!N*EgD{IO`8ZBDpuUfrKi^JU~g+lay4o?tNHiy`X*v zbx!K=ru_$!?}2nyI|Scy1_ZxLb$!BCU&0yi4m%bG8sux#m(9BDhg?OvCt_nxwq|*p ztxoR51O!+eZ#~`I=+vT|Xr)*u1K0S0k)0q<#mgYT@845Q9WdUKJK8Vkw_9jvu>xQe zScOxN1W0mCAsi%cmiP7ZlF_c{Mq({zL|+PoIqx)r=Zll#=` zNf6qmd74pwX1%9dL8S+UekaopG1i2qb1ke3xwzJK>Jj(tS{u8)Gc7B;2luHRfO#1B zN&;Dl)hI-Jx;C)8=T7v>{phG7g_}%PR{R_?lK^vK(n%9Cs&3l{jNQ`vk4`9WI9#bN zs0rmnYSu4-@r2%^M13huOTVWhp2&*nFF-+TRjFGRLP6y9xom5i>;e==qsI){P)j(n z8eig5Kn@sZO@vwqZn$>RGbogq4 zenBdZ)_$$Rjj|ja74zg+9%NTkw&OvHvmS}Qmx4OOLiGBJc3d{Gv|FpY*KRQenM>=1 zK}kaKSVI~xXO~&NBJ0-Db4@a{^VniblDa10>)qo|aXFhzV{=?9-E+Ji zs?=q7qXJDjPcXh3jt4Lxpj;need}pnAtTyJYxJzNkXVLErd3vTUsmpmLW%2=5170$ zyb(y^^t5L*Dx0A!<91#Ig6BnsQ}GK!zn)HLq+3`mR*nJa7kw{u#{IC~r~bFUuT4+4 z#Bc12i{ZD+?kbAXXeGE4;kZL&KjRE{0TWa(K67J0#`}5e6L~cpiRbo4`iCG5rU~GB z63aD)t2b=~U^A_CUGOY8(+a{O*&W?`$v0Xfd|fca-DCu*UMz z4lc@zZw9g+`Z^OJ2Y=PPWZ{dR@i?WJ@%cS{o1pPHrM68Cl;8Hi%Qzuct^ESdh1@AF z@CH0!^iE-w$RWKX6?)dVo$BQ$2K#wJiObYYVx^B*u}XQvI@z{==>xHvdl};*`Z#i~ zj}aJb(xdNv>QnFKf1K!i|J4`cek8kIatUc~^3xATWkiDt|^nU+CF4PuB zvx<8?+}{<0I?SC?5%i87YyR>6MBfdL|8t`zHboF?=K0>N$^?QGz&ORYZc!Cmg;@s0 z?{pcv!=-v-jQVj6>+8OnyB;jr_xc3cUF*Hwr&j!M`Dnn_6fjCaYfIEnru}QOQ>HvO15f7xz_UKz=H3od z;>Ne)da1X0AA+aI zdu-uo2PbSJR#TDFD~X6%7XDiE zcwlm17zc9y2sGx2k;>>d&>%9+yRS#SyU>9{1(qbweIG2-m_p zXzhVmQd+`%wCwv1r@pHn9SL!V3I|NxOeG38H45myVcNXM;Kz!-I&{%prBHeXLFwtuI?&OJPUzI4scJ>9-> zdAOesQ&`x?563S2pYSKvB3@ws^t(c^LGg$?R=DGeR~k7Y(!f?rV846DXTVTKMdD$= zU{2_lNz>vbJu0@R+@c#$HdA_U3iK@qwE2d4^m)Q~_WruUk)zu=2Vjic_ys^krAdoDlc$cUlX| z3s=_ee-!5$j~3f@H0zZbuAzqN_p%vNwiTByta?-Eker|e-Rn)wtO;`|FKO(qz)3o! zKMU*&JJndxZz`{0JLkaIeM?4lBXgW`$e!=0qZKpVH#Qfxp;-JRX8oH|{O_(qaK#t| zvRX*cXXZZj)W#Kl^C4AjTGDjzYrGm``)x$F$fdswws=xWiNVh?{|tTl1S9M^t}+*g zUAXDy&Pb2-n;&b6#KJdsJ1Xto8j)jvzOf z>VpC>`#9r0BMP?Pg@8F#Yk?>zhTDIqYR-ohBuPfth z7Y2Tj#$&Sf?idR$A^DBsP8rDE(b^WB8^_Qh|eWx#U;kQP*v6^=}g z%4-%yi{(B#QIhc7>^OXx+IrJCi0y+ZC&5QQT!YU(t~okps}pCO+B-}KjMS4YST4X2 zC@m4lOkpfY02t7`GmLh7FTo?J0Tr1!{c~W{R&ya*wgwna1STB8)Xn%=%)k123<|j) z6QKo*^%HwSZX#TrOKhImSF|-g_o`=bkE`M}j$hy0&TOv!YAjPUBBB0lAvkW{ZqUpV zgAcs%UIH=`#$f!mFx42tO{i|MqE8+|?TaTwGSaclD5qRK@Tij{hpyMGvEg32{H^r* zTea!POjTyo9gIHnvAgb(@tYyL-D=Dc397Mg7=mdNj(#5@E8ZvqVN^A;%&yf{dx=O( zMBQ3bXu3+f-jX|IEv?dE<{73T#v#r!ILN&2b9`h>I)<0;Do8HBG~dt4FO0ph4`-SD z?QdqePXNgOh91C3dGT{fNnS=_M$gfydg$lDAG@`;f)2Aafz~!9eb4i^Q-p=_T)=z@ z8Bx-ucBS4N*^1kbpW3n!iu+Gcc>%UX=@)2!qQL>E<(S&<0Us6XGD6_Z?J3q zAC8$cyImU%q`^kbb`z9Z@40GQ51uGNq6y*@(S2QC(ekk~86Bs92B0j=KH?~xyQm6$ ztkBTm5fH3@w7wJVye4+Xh%)}H#(n^Lg&>ss*5tiF`xHHO#tCWk4o-+cK&-)ya>hSMXmxSu*mf{qN-Ai`08#lD#LsyLp!c-b+6j{ebs z6+tP!+d<#W9@ZR%S`Y!n1;(y}bmw@IPx_7BpgDMc{B>mcms0+? zanjY=aswRR9~@+J?yi1;5Nc6iq6JTt`p^W9i;U2t1w;3$ztx?=qjx$QVMh za!$Qgj%y=D2~yJ`Yj=gndu3JZ!zMH?%;Evpmbh(H;q*mH%I;)(#Z2112A0-b9I4AA zB@=*JS)yIwjtjd&ZF=qEF7zUrF;1BGFWE3e!f{PVu?;Qy`u+4Uan{!`MB6J|-`4DH zKTc(er!Ke#M$8c-YeE`(;RrKyw$7OsdYWsF)Yu|~UZ1i^RJU+!llkpZ&R%5@nE0<@ z%oi=krT$R+Wiatm0R(ho&~GXX6CtRi<^`uW++-+k^VgqvDAr?Fz2>^?^VDOAP?wym zNAKMA@KDa*U79Axm46?G2V&#|o^Qkt=J+ccQm?KKKoL6Z^I>F0O`U8xjbo+taTHwt zisMljW2|o0j34^rQhq~Xbk;hB?Z0}x7zCmlg*ZK!NCr;?E}PTA zk>3q?rdy`cj6zqk^lw7%9D#tA-RG=gM=DGo5C8_#FJ!#o>llrTpR@!&nPEo3;>Izr z84!_B3}g0Jmmz+d7uzTC_tr4@a2|fYR_VIB+D5x3bPW70>DWOw21BgI`<|Ryv!S_; z**Ey~5#X?w-}ty(2xa>>|Ck{@9T6CK9=nTKLVbGK*BKa>C@*eLXc;ki7Y~?JDO-8i z{yxT#q{OBL8vR&4fvznt?8<{!j&UhHtPPm5(Mq0e)!NY77Vd8=V}Z0BA-f8F65qt( z-y80D@BuT>8}x+=r;uz^=HAYVW#8VfRto<&F&%wE)YwhRYmRJq6JVF)lb?P&qOE-< zwir#Iq@D7?JBt`oyr3KE{x^%lI5k-1O>VwagY~qA7lVEo&Xju(EKiC=&}Vd^7pX?3 zo;SR`)isk29DFGI{l2vmLyV=#l^6D?-uL&#-q&>rkPj=kaNI1thO&MnC4KKnKU9tE z*70;T(!r&)bDwD#Gv{=9-g$7r$G$O*cNP-Ir8(SjUgx>qvjV5ArMGhAH4KyCH&4_E5e%Oy0+FENk-m3wf+R0JmTYBLe_U(Hjro}#*`R!bVUZy`8vzxUqhE+pAFV(IHrRu#Z zkm@7Tlp{UCjot!Sp3u8WxvBhT1$1w%z>kj_j}tpGGeUWIgxIAu&7PC+e%C5}uS}{s zR5)5x44uyhRn1ExKk~$>?Y+&N?DRX~XnvHGI&En^&F%P6L+4jaMrbl3_VM(Vo^Q$% zzJ=z}j;eAF-j{P>+OKIes&F6gDbWOJEt(M2nUk?$jtyR3yf76$e+tSQX>50o8;nuZ z6V>N8YgVl~)RhnzZjm_Si!CFwwH16U&okU^awbuEc$`{ZlND+H6euo%*#yR-X`b4c z*72LPFm>bPk~j^La7|y)z+e0>MGzP09P+{A&j@KPUV&}{;j!duRGCmAZMFYsn_I~k_%`~;V4`; zy!E)yqy>Na4m{!_E)buo6lLAPQ}qEpTIuVjE$YRTGY#{X`QXcF>b<|}2Q}f~=JN7Q zTa#86WT9#;P9tQzM@BzE-cnI~fZDvbh6ca^x$(=yd{p0DLB*JJp}xUqweQ4}a2E0a z4Gj_+DEKz+N(Nkg5(0InHtnd0C!sadalT?*HFf4Tz}bbKkz_lv^NPqqZbUy?#GkzF zOE_4u7T86<^CVUjpi9t=2~L`QG~CJF7>w@ovFyz7?78EK_iF3&6W0PGbzA(Am{OSI zmY!9(3eUxr*`S`B(evSK=H7HjVwSEp7z^LIJsHJ1OI*C(X}A0Yalxs2`Yk{9hD=;`xtqJpJMJ^kRTQ2)h|)-i(n08BUk!49DiZ{TWe$1rS(Hlo$>4QrKFTR752AwHSDJwzQ46R3^gn4s5Y>O%t zgIF3N6Lw>dkn(bdXO42IM;3X5m->=O>(ydqVZPL@-nemRpK$M1=8egoC5Mj|QS)QRKnC(Pzqf{5e`L{o9BKL^e%qrjc-jEt zh8;D5h4xrP$mA%dd3k&F{@yRlmJwt;!Ssap9Duy6aQGHg0*F-GVy^H<5^tTOYnn}t z59f!+hlV<&5yT-@X5*@Y!ftm_a}PC?hP*z(A?uph*3FRL_5owYg94$o_xEqup?9~q z(WiZ7kp-u^A>XOKg^*9PTIK+#w00nPj3=);1>}gLmE#d-!W?C&Nrv+VE&cj%mNJVb z1VUBrhT97%-#$<|%s!7cE5`9%z+yLw@yY5&i|+R(;?udLPCK-c1z}QB*V>Etv7E6} z5#QlgKgA0MY=FlnJN2>K7ty|`09{&OxGKM@mnefW@_VYyv{o$EgKyR426z+Ku+97` z$}c{izFo_hg=tOPzwJ{V7^nJz<`k|hhDcjBrm1sLZk2eYuWAqi=2aJ@oA_^wza5|N z2*-if?cE#@$2GQ;LG~=B!e>W8Y(s9@eD@o|?uq?c)ltq5YI9A#=+>&7s=yomgn>Ni zBN`wE#lYw=r;%W^ms^5E6cpgW#sYagLh{#=8y^sug zP$e%A(;BnTFpGu7cXZrCm>1V1_=BVBfe@79S2Sf`|IxQ4Q{RXUgQhRsJ=3{VTD6G5 zO};rE%baY*dqp)mLj?|v8|(ELRr9h!B(<9N8yaYeeqFpB!$`&P`N(iu_cOqeU6L&L zUiyoxGn16BtJ%V(D_ojw?x;$4;eJ;ymzna}e*%NmLgn0NTh&S&FatKdb zk<*-JOEi}Eyz0dFEI(97IL6PT8)}f5PX4^fhw6S^M4i}1Kz|t&HjO$UT)#JdG6!dVmlZw?PjYf+gR=6Bjxm}J}d(fw#h zQn}$KOK@IkzoJrAht02Qp{ID7G%fspp~?t`PR&)(9%kv4=&}>%NbI=R??{`A?XV2aAXQ6`Hai>vbug?8LM%Z-5)+=)s%RimtcT-I6C1I z1?RONQx;4_@9T3AcEPeHxq0{7@g}atD+>z zTd_@%ld(Styf&NV{;*pRS!*~s^BQC}^XD zG**V4E;c+~Pz2mK_CH9v>bR)hr%Q@}(xId%-QBHpceivd-QB6=(v9TO-TeiYF3BaN zTe{!t@BN<-T%J4knVB=^oUwT^I*`QhGIMEu)WkIe=-JVFeQ2*{Bn)xX_8tHYiI2N; z(J^gjirZ3R%-!{e%&&{0S1*AhD&C$l%V!77M$5o{0{3?CGDp*wQ1m|wID-Al((ttm ztVdB5e7buVEGTWZb^-5Z$*NM{_12$Xzu6bFeliK!$g>L(D0Q^B*N0a6a?K8C=?MR4 z$!3)BTJ)@XUg(5Vw)JnI(Dsnm{rMG}(fo2|j*G-4M7IwOJ14^8_u(E*ir#&9u_Mds zQ$rXgz&6#HZOtwa7-t`GKmkw^-k%~puI8(bE&?S?(ST^^UD@|U)7G40E9}}B*7~OT zSXHAy7v{#tG9V2O<5SZ9XisnwN@gj%i9Jyv8XG`G3q9*WiZVeSzkx|Q!EWnIvn36Y zPRq>X>4GbYBABoUudd5IngsUuil!eBs@%~_2A3tFlZW?Uw3iCDqZc1G9y{l`F6;)9 zIIO37#!#%FL$oP)L+)p>u2Os!8KZHwTP&iYwstFRG-5foi<`bh-g258xQ-{gV9 zI>iX_de&sj>eIx^{+P_%@1c!a+*wDOA$9IP20d?vBZ4!T8y}VlQJdxSVsCx9|yjty)$+QuNw9Z;GTGD*AyFY$0<=R!V*U+7Z649 zw0=SK#fV7z1=$Ss!0U`fpq%#C*MF#*f0EdQ-RD1^_l>uo%iOLk`(UTmfjZEdWF^_4 zL)MsKgH{Knu!Wj~s?UgIC!`g> z0ViZfArMHh;ibT9s63_XI98jt*h2g^iP}?mmrIjF(vRbjyZ0L7@crG&IOiq@YaRGF z>XMbG#Q}WZVer3-Jemr5pH*aS?ZS7~E$l5-K0ogtvaPRFuqZrOdeY`G^{63sqx?cH zA}xd1$hb@0#v{*@Ltk-o^auPHiP01^S-J*jQF9?>FY?5p44tj+K0;g4&GvDPqt{zVqwJeKpDdkW6iL&nlg#>cVQQ|7h_X@YcJVIIwG6!ktTJ4+|#!VWYb=Lh#4G zUty~fsJM80%df^+ZNFZbm;S8B*4c#YOQP1ixiSZ#!J>lQFp9rbsoqH< zXVfeh3)&3Bgq*B~FA!<5R3G83$g=NtzmNp4yo=&yV;3G$r%+;_K7Ur2_BBEH&AUL2 z6vuE(beIR%_VY%Mp!Z~DYo8N4*-zQgXH>3~^!%(JFB`osX?cu*CiGk>=99<@IQT@T)Acpy8<@-s8;3nF zT41|CgAp^x&c-dQSf($@RG8a~Z_Hrv-kU4qK`lOWligw!t%@H=-U^ANw$L3XQbs}%| zHTc^Wbw8&cqi#(yYYR(&0LC>yPo9QMpl}0vT@81Rrba>f=E)f=Rn3fxEjCHHF619n zqDJAeJ2*LnZXKU(-lBmWsB?6hfJ?JVl&nGc-hv1{FND5jSmhHlZE*n4buqqCEb2@J zpG=EgxEm78)7stfM)F~$8VU4DYA`Z?9fqaw4>8s1I^5+Y@E>>_y%ir2jj8A#ZU}+WV0x__1P`?d!*@ zjLbE|6J}$<0TA;q_ogAS!z1X=Vj=V^CYpQjCTW`xjO=DuFq2H|)u4(n|)0 z$XlXjIx;2ng)hX#!H;!Z+-&joI_=1X0q0kzA+55d^qXiFK<5hHk!a67(P!Pr?+hj&ePW(Oxyw^15`MIeRr`G8iv!qzxc|ay8pHQt46uVBl+)pDs}(OpwGaNAi0p+P zy>Kv`sbmI#Q`OMv1DYrI-w}8(I!z4=SszGyuRF{ekGJ08%|#!PK_y)0f>q1=OV%QE zV%DUi9hHgvNlxa24P83Ljuegk;!Y&`ke}ATM0AaFkJo4q_f^dstFjIBLoOm>EyVT! z`#f6yG1A?YLioT2k(Ag;$a189uPM9^S!xE2^Se-ukQ3v$w)iIeSA2zK#Acb=)HgVq z8PQs%1-^ZbX%U$&)YxeUrtnG#S1riJ&BL`Xfxz zYi0hvqDk39Y6czj_--?~z_d4In@lO^Tw5zR7R4M{YSzgtZBXffv5jOr5HW>%P!Ax2 zsC$L_4mRKXz>Cz|#bZs$E$RN1pjzA!oAH{>riz3D=2`H9b|X!ggWO}{WKv#uf@9pX z(e27>JHNFMqhuqYq+OS&Pr8vcTBiOgWl8bH@O7dK zq`wxcU-K|2?~Q0gkFo zX*29t-(aD$+prKD8#kRYZlagkU>LKm)3ZyoA~#2941s?UHqH%r56WWYXfpAp$(1^} zT0c3x@)szk+$JY z6($8w{!Q*%aJr8i)-#9@SxU|84{3m~M9e6OQ+;G2t!mOa?Z}0vPeC*PCC;5~U5eeP zotU?D`55@@M#56M_S+yd)BZi$+cV156**G6pT@ki;WSi3mH=#v zrp^o@a1U3dJ(z2M-m0(avgxg%qKaepUEcN@#@+fF{;vT(9}MS007LlS0Nv#yb+Jp1 zTec;j`^mYfQEyoeZwi+Zz|&Ije7Y{g*g+zZ%@AE(h`F8b+05GN03~RVx!kYPXEKFZ zKnobC$GWb~Zoc5JPJS>;N^&jY0AZR@dCT_P2$Y@)>(wvRql`C%8)%WZW=TFI=^-`0 ztKjhy-hag2bwgQ8Zb=_JxD*?%z&{s>Z@s|z<7+GzcY<*q!#{-F%Oefcc6&rfFG!a> zjjKJN!<0eagqJS`m-D)^Gd46o$o9n}ssGKliF3P}ql4n#tGnJE#T146Sr5i{>{gR` z&{7*ymf2|9K9gl1{H&yd-Lo-bb%1`DD$u?At=)K4r(YL)q(Ru&1Um**5J8zoB zOaG)9%$-8-;Vj%mDoujXQ5Q1VMHc6Kj5yDqB$Gc2YE>OaYOchnI{{RS^adT=6AP8V z^&~RNwBzD^#fb7`d+QGh;EK}bV>fA^-roDNJp^3T545(-IWw^|MCrndfV@`1G7;Ac zR$TH(#M@%Up;+AK>Yq_`^(|q>BA8|3s4Os>g7*^!E~^2*OQp>XuEUzAGK*8f!=mYA zBf1)VdqxB+4^Dp@czM3z7EAv_ecA@+{lAB&KQOWE42gF^zqYh>UHt7&qE_W!HetKb z8uuU@y2sDc=fXsJZ~`!t{~dD@38Hl0i;JzZO2pQD2B>)KbuyjZWv2R-%z&l%(v^IwK$*S^n?acJoFQSQ+>lXv47BEAx8iFin7>XM^@YV!Wy#QAEsNM=F}>c-%^MJ6ZM89 zgF7g}wdKN=CzZM=h!^>fWzKWP7qT2=iHe(GG1#^hxC#F&{+T|bp4AD$`4 z^~jWgwEsKU25(i)Ny(kHnn};>(Ij~GcJJ`hUASatwHu_qv{SGkg~<9*tD1B`OG!oz zb_*CY{QqN09Qa!^^dGJgj5^S5zBj58YT3 zF<=q8ngNeoCTLV`fSqHTFZENAQ9P312ZQvqB0=$^+pmcKiXWUhHY#Uih}#VAc5s<@ zkoMn{ur>x4S;lKkB0yW`pw(I_*Lx^|U*rTEtjr)ssu1;>@1))pC!cw-AeN-Z)HYg% zkWdr=lYk-_u^+tA1 zmQ%@!H%C=px^7vBjec6^(Y<*%yvdf$NQOYdUuGLdI~^q zb-|)7Ic_zCYV8I0e&Fj-v0#LGz(z?7dB9!G2(D9E8BWXb_0j@Q8QpvQ*2KXfyfJC{ zC`m5#(ccxjgCuXgT8rUvJ-4BoRm=dpT6yw$k+yyX zGP29{gq0zAjgb5<U*Cpz6UpUm(VsNTF&$*6K9s&Qt$O9>zPQhS0RwzAH>yy8iy| zrbmB65SsC9GgMYx*YWvouNml%`Ue)hkGbVbzT$Bs=zZo-BQM(kN>tQ;bE5N3@V*S@ zrsqz^$vmFL%~PFBf&y|vEs~p-gOM~Mt%UC6eaFNX!0@l^uMD+ZSCWGgqn~TRng%@v zu38dh5sfzka-(MXueW9ho}eCK7#b*xbS|fs$xPQ0c?4UK(Lz|fLh;9@}x<6 z1D&$&xBnd`lW*RaX&EK&$V35qG|0GW9#hy~!DCZo1Gd@K#RTh`)OCXQq6}fb@XG2? z!ajH2qv-}|S+>>v;*t>nJeTmK9^JjXT@MQJ#(MXE-^q`0rAs*mkr}fB^$J3=$RM71 z#V*|WHr8+}cv*q`6#gcRccS&~JKi{(%yaLderDO45$Pw5;fr3<(cX?}gOb`kdye0{;y_qNNxJs3!&hak43hMjm< zl9A_EfN5aq$S2e7uSg>YpA8Fgj0ofGsYbNQ4U@uKr3uHhTU9Mgor9Ab^lih)f)URb zRR!K=T+42pA>Q2cTHFZymjb`y_(fk_5kL#tSv989%6SHa1MvQ8pCLm4Rvb_nxnT72 zARA)U_m$X^okP6U&O*Ano8c6*hb#B)s#HHO!wHqb88fU&ohtxr z6>Xf6ZoHFEF-lYmr*ofV1VZ%K(nFS2weizdr$HD-t=Yp4EnsJ*coo58l=$0w5Ugy3= zx9YkVU!>VS>8wr3;o*aW(_T%q>Yq&rrW7$7#85!mf%Jlnd;W*b&B35Ky1hw}8r^GPU5^0zt!sI*N3Hu&Q@hnHR zNI!pMwWTLqaAi1N4G~9@H`BSeO*MY5E%~N}=p^cg%&*V(gTbo1#B^AMB?iV7$M9qc z=e~R2JRxBP9oWEenEY!#dw8;4Slh|sB#&mT`wUQ|JkN`@K#!TZUv21>oa>||b)Ie| zi0?0E-JQ3IUqb3{NX-~$QDh5K*vX+)1HzA(xU6*VTMNEId=tBUXWu{dlN&1SUC8iL z$50+C&PinQc`vy`{KhQzdD+BF^3cbwZMr@cGYU?cG`q#)I@CRIFE~g#3G}NGbPI90Tfdl*bomN+ zJP%#Fo`{Hf`x4o&&{px?-to3i8jLf%p2^+yI{IhDt75OHQ3?{e81VUwv)(S7a4RVE)Wx-lk$~Sa5O;{+WH$a($aS*7&;Tk}QYOX3^G8Z9?VL*gvvG z(M{@0j%Qg?djWcA_fe5e&!w4uX9ms_uu~>f$EwO04r~rvy_EsepUxjstyZqw_bd>t zkOBb9n-U@QFef=UJh|%RXSR)!ACKXvsg_i4UpuRJhkiUF<3sdh1==QvRuZPQ&zoa5 z0DOC9f6`otxv!x+=6_Xe1K^ceK*~sel~|(+5F#xB5ET;PEOcWSAgnn^CG>MxE`!`C zuHd_#{`olw19R7N7sXHt_B}^_gv!8KT1%f_7K3j1%cdu#rRp35YNl*o0a*6OWKZ^9 zrP*xZ@CX5ex@!F*4;rJw?YdcPR%a^io_*eJZ6V&Hi^d)*r*Q=yezkl)`$6+q&QO=W zDIc8{J&CY??EKe$UI?^+XFB1nBEG{n)FcG*o6IH#<45~Yba9q~o7nR&oSLHV!82Fa^}v@ze7dPj=W4d)e{%Ofo(b3Z8u{xWu|?0K0t5bUTW zoK$UTGN-Spm=(y$7|4=w*C1*zuYDN6^TS1!r6cBYEHE%hGiV4Nxqf~p=!8{;S3YD{ zT9t^mMu&Eq46~raYVM0wQkDS7a&cw)asHWK5gGI@+fL3ZNd z5Lxprdr4V9-dBQ~L?{9Dj$i!N2p^~|tiLvX27L+5gg5x=#P8iHW<7P=JYC%nd6V0% z{sr7;t%BMHnvunX+h)r#dJ75%>ihwwxC3+k$>mjUejGkY0Ae2Plhf8t!YC{I?7$!O zw`BU}3CNyb>8z8=d0mxKYJ@OX=CySvF> zD7Y*4V7UW*jAqX`MFQ@hS#W_3i{s3Ng&(1(P|1R%&?!pS8^P`%7jgiI{ts@lsupGt zie3YO1H@q>k#u>4nkc>S0bk&~SuT+GZ?U_Y#5fq~8Hp+AuxLW9=zz4f%DqwFRZCM( zq(=pg3+?=l(Eg|9FrMajz%}2W_}F~?GxZ-i^zHKQB_EIEXN3$*+0zOVYn<%EY}0kF zW}l%7#zj-KRkfUyB!qGdIPqhLNou=%sY{d00`d^@PcF`hy*@W8r_i}9A(R@8;ES0k zn@mi`9dxQxo?+1MfV-)(Po1A7wlg*n!OU2%t3}(-DCZc^cTPgg!+2HYC88}$gYSFh z;U76Ucs<`+q~1#?@Gj8qK4Q()K~i~4EWozcfz`XPpzdDZvo7))$KO{sM+i+Kf%og- zZrC+lL+)uq3)}#>k=w6Xz9%VBxUl77CL-Q$CfJN+iu_L4TL z2~SQuD_w3h0JWhHcd{igM=Ie5ZE~&3@!IdPePcrMmkO54U~-{>u6&acXPJ^Z)W4)M zXa`7&;wrMbEvbAKGZ)f)%m>k9Q_@jgQJ|MQCC7~t8b|Y^uTmp;44$cjb0rj6@pxJ< z+gj2JY2f3dZ^-JPW{u#HzcSql=9GhegU%!oei0aT)+gSHWt8~8oXfukY1es}M5{f2 zbP}RAt{xWN@Btf($fvl8h*b?aAo#+t2wIqpAK^3fvdR%UK5%S5KQc1e-@$LV^hjCz zlHLnLRfBF#Qa>OqVfy0FzBxNhAAa-JpHu{mFDK9DLFAoRmJYzeenCH+6a+Jr8u>6V zU3*y4O%%VtE-lKNPXWQ%9N_qk-7FDiXvZ+3?2d@v?8@&sy-}2;?raTt+N+*+bIn4j zUK?>W!od9P>zZ}@{M>w>;<$$TU5Cp#a&~^DpK-Av@UzjAkuKR<-fSHlz$X+&=2A_#91adckKU#wZXc6+EPu?TRKptpwR+)N%y$`EF^)$}b(h&^Ok7EMue3tkW{CW8Z4NS3VCMkTupJ(Dla)#Tu{udADE=lX2~B zRdAwu(o94EiT}?Ce!!Y*x4<+22-H>oBuc~!iTZ2vKnR~~pyge?Xv zE$U@BKf3HU89UhWpl^Vfl1>Ih2;#TgL`?rilRe@u>)@~A-Ht536ulX3;nQ3AL-{w8 zZlA4nDXqjHf9G(fwoFC>t!!b69N>Rv(vqOu5{o&S9acb>m6EqvBSkU9p@#?D`S58 zA~qw~=U=d231+EuqmK<%d_exlA{fsDhJpb%@Zia@ZgJ+F!#7da=gD?9`!_88cmpdz);?f!P&PbflD9}4op?LS z?8_OM{DrU=X1XKk?(L4a{LiiWKn378ha9F4)}PHrurcwU_51qm*fRd>IxJY{; zIgvTdji_g?^8AQmjb29n9Mm%86%jA35e68&5ti#1 zGkdTUetPI=mPNqzoqJg3(W9}Tu99}Ow>n98Ass}5ldFxnTiz8$c!%v^aCa>H1?+!) z-Db6`53;^~_rMWogq#yS(t+CFhm=YRj?G5rTYCeEY%M#t-{AO`c`&8O{3a*DD|cPy z`D~i?)$buIeLLu$2!`xS3Y<#*o8e{IPB1aHN>{?<%X=Y7TXxJgRvw6jW2GnfmH?(x zw*xfe*lBU#_S8$);x};hsXi1aF38TBy;r=q77GzPnL|kXRB|d!r3`}xCi%&x1;={5 zek6c17sr$Tkc0-^1_~HKMee<6>gSO3`SqRp6WI+nK#4V@qz5{!un=AkN1cI5UD@X_ zZe)TpF=w%Jc#ug3^!26i^8&Cv38?LP%L93$TD^Su&IfQ3YAbX?bb>`tUP703KG!FL zWAH0OHQf#ySZZrBQ?)p z;z$n!k>MvH9qxam&ZVH%ZGlPAVSd3$i9#K4k6~@zdwj~NAC4NQH+2o$xLfd;;;bLSn8Q6rEsENnl4(!4*1_U&y z5F)fjPBczo>Ue{yP2>-6oiEH%Qx9!G7Wk1q=+wm2(Hp+`X(se%uR8Dc98!Ln%|IRd zR{x9T=QY|d23KF?4hhEVfYt{dEwUdyj2$Tb@Gk}a`a|O`SbM#=I(yIq0S8J;KtTp` zf&iN^J~PLl4HO^010=@y)eZYIi+#`xM_Oxs5{2Tyv?1BA)9kkEN2pWy1o#F8`*#+> zWcCYp1L^td%w{@&xk<$J;k~iz4KI?wS5q|e>q6{%#=(n(QcjSR86$y-Owl+z@)e0p zBP-^bIVvK(GG{Z9&&`|%yldc0-+PhY4#Z79#9R*=CvBCtKz=Xm#@Nb6DQ zjVEy)w6)A3sE-07a8DGw&*v^+;>`nsSW6CoQcS#7?a+IXDGqrjq2C1XT>vK@VD1cx ziJ4h3KyF&Fqr+P2(3nP$n)l$BTf)osZN&3Hof;I}R!dT+$Cm+N5-hI0BAuW0*qZVO zF!4dXhtnGG1VPCA<^>A9aU7!E^+9_>={KEta_^^DK6ja?n`fx?`f*YJ@O8kApJ$we z?~-_y!`~_i1kN|B&INCt?&Lh>0G z>~?JbuV9Qo5=P$oXKYDR2Ur`mn$#ko5quXMY$}i%iKdoh8OJL?_hA;AMeN*{S3Sp^ zDh_T34}(Ym{70Iyh(!AR+5jOXbA%&wkInX%9)*Ih(IX8jvVTEdB#XimYh0ssTY(N@ zlqkHXanz)}d4BaLj~P$GuqyB;kqL2+dHs00f_Zl_S^P!QnPgZvop=+8KK!b*;Fwh# zYuNmj6U+QjB<;p6D{QQLxS=Pe-!?v8vCKg z6Axv7Yku)%x)^6&o18%>pt7!y8HG!zyOJFRF|$~^-uRN1lzZsIOMh4is>XsC7-qd7 zsKxp6J+Dr-!Kn!{+YsWwU{eC+f-m||h5Xx14imx<1u$&7sdbYMFs|>X_Eq%*gg{n; zu#ZP|!Eq7_3tX=b=8+JKm!#^;=C6oNvg!<2D5{i-ceDgCc+nE+64lHTTvKC%Sm*f! zB)5WF?TS{CvLJ0jY(MjDow&++82@FhK8cC-;JGHYPd5Y!n$rrx-I=NAgXu|>sh z6d#U$Uc-+BmBSif1W;zo?wNOI=g1M450`Gucq_iiFA%5f(mdLLwLG~i#qNb*LQ>(E zN`prJ)BJ`CcX?EMDVBk&@2{%330~A1;}EKe+}agl&r^v355ygJXsj*$zz4itZY80TLmcF@BV&T5c~Jnjx5)kio~4HDVxD>;sWigzcpuTx5I6HnFLl0zd#Xw|tx_9~ zecW%0lUj@%gQ}=ig%2Z!?puuOjjKWEOU$t;!Pucj;({yQmaoSE ztoxZb$ODlj%9`YQ8OfJqHkFC{Us=g$lLAPk!-n_l^# zO&V%=c3~PGQ$@h=j{GZNz=#hyV&~(Ma8$xfk*zna;OL{@0Cw)ENWgo(OKS2V!L_?K zof%&=S>Td7VT4LdS!Oy_GH{e_#xpO?ondbl#<)O^b_fp(f8;R)e&{I)tY=)fW^Rq2hrFVYi{AF28g zUGf}A8uOO0G0tBG!H|SW7UBMVZrZNB*>X3D4KsfjE@{$J!aIt8YyZ_&oB6{u|JPR- zeM&Z|`EZO>eH2))G>Z@8^(6t@jlvCnl(JQ*)sOf2aI!DBTrqt4)&{KShB&3Wh!6h3YrsRLaZXcTu9oyS&gT7YTXwOfz!es3c?P@SNF|qQy|G+G zr_aTCfP9tv(0<^N$S@*(Fm~AhypRDKMB4Lb-0%WlpT{*I`3RJZYcVhk8j1=Ad^LdH zo}aOe8K)NBA{q^?1}0?TMd7L(^;%k#0jV=A?1=A@Y_X{zx#oitlQZN%ZrxdSQ=8zv zNJ6OlGa5Q(LdQ07o}3f2O$InCPn+IU=WmmsR90D)ixAoq->&K2VjzpM5Fp6wd3t;I z1!_08s3+Lf%8UfD>jQ0NHOA84Ap(0lqq`aXiM+DgS$TrD&f#_~1CQ+-&RBl^NPHABG~mi>r}^_=&kH{qNkSIl6s%zB6L3bCWl;7{~D7K z3M<$l$_hyz@b}TDNn;ShZhU{&;Pc^FJ35t|+T2O~0FKuD}wH#}&`2j0bPIiF@CI+}2k|d7mmwHCV>E$_5{pA6ahxFgK-T9k$hWuw>UA zr=+(}3$z*qO=P*b?T{0i?vc6#bPF3vSpKui%_grqJ^a6qC^|7l0bz3|7%Qt}#GOY*KpF@V0SxZzZ z8o6&goq@^XK1NS7liYh1{E3*p`XKqxz4pXi_x!ipLOn6s-aibG)>nJ(s|(z02bh*= z(Cu660%0-R1MC`K3U*h}8@^13ZKq73W}YI_eB|>XZHL{tQgdI0WN$Ee`u;ipaQ1rS zcv19-;Z$UaHR-HEgh$jE+6U4NlHAncepd5hPeBMcx9lDW5Z=>ABei}r#=LZZGu-V% zxaW669WBI{6;C;ODUx1nr*FVkwM9T&5fExxJVJ;rzjyhkPKRU|)xR&@9_6Cy{R_E# zhIxG_c1yy->&aSFx{1M|?r9@dyG;$*4(>h$? zx_ppGPlsbR9k+?Y-1BGSZVT-g>lH$C{l5W$-41=AuJDlt?L(iDOKXM2Xj1T*NqZ*J zU(v+7)RVctHqgoFvtzxA|Gi#X(KFfWpK>>!vPDRATnbFZVg;}OUc5+nn;}+!`l5u ze6^pmNQeO|eC%7+<=!x`$Zrr}LQu*|HUx!smq-lf9ucLI<(*M>ZTYGYM7G1_QfXng z76$D>D7uKz6HIhzBuoS@)@Tu0%HsVZ0=ww_F{k?!M-^E(&OOS0Rb2LB^;Hry%#Q6ki_q;V`E-7@9__lY!A?^n& z^q4UurOBX*mX8bgReM|E?MI@fSCrn>JA-%?!*-p1!{f*++7a-T@PWR>^!c{TPssN} z3%OeT&H>o}0%Sfje(eloAj_6`O%U2qcN5ezqbAPQN~+DlJISC&|L^8M;O1rHZQRO#1!K^Qv$A|E5Z3A zfb(aTuEd$nUD!J|v;uU(C)R0iLddXT9iQ9%Q^P|TUPEa?M0PaRe zJa9m3;&;&I7&f7*$!{yVzE6v${AS;F6y=Y`EPU{I1Iy~wt1+NwuJwplyy!9$5A^3s zV8i|E2l5SmdF*b3apIXo{irg)SxZD80CbWc&UG*WZc`y6u?DErmGWW+73ZE^n}884 zR!PbDKpo8+#hwy6=xLdO>qn}NLjW(w&Tsa#JSw0tYN{$WUd8Nra0!Ajnsna2vz%wubHv&1dX=I#&+ei#f8i3mtO!HjuvQXySmK_BVqK4 zlP;VqZ#D{eG|Tv|+~9T@2s49Q_+@7l;-d2iDaHCaBW)=3EO29^{0$ zCX>eBc&N%Q;U#hJgoY*6fPkUUI9_z-R|fNilH3d-4;g;4r82Zu@vz=nLEr}7-Ea!O zju-~v5|9~tk(p&i9Psn@J>&{~tL4$+8Z^kK_0q7MDlC^}oWL@}#jPCM(XN6KN05WwCo*(-1_kXS=if8paIgjGf~MkxW&#`_hGe<`ZOwoqfc<^~je+sb3?3Y*XedU>n z>U!?_pY4V1Razy0)*d-i5Q7$0z%cK)VDCeAzv2*Nww$9Pusr+xPt&$9G89R9KV*~@my=Z&I&eTasznTB2X$ZD_7j=- zU3bP@3C3LU##{*%|6bcpY@45XBe$b0*4a=hHU9#ijwfa?It{jWD|!n~{#o{C92PNF z9WD4n@Wj3I6VF5CSJ?sG-+RFWS8u8}2cS3mDwVZDB)xpb)S(??fF{(^+ z|1n;LajtLsmlZH>5bp6m`UHNVxOp@ns<^HpDYANDytUadP!P8G0khexg@s$!E=tGL zD2TFHG_`!(dLTYD<`-({^NHdSb#xO7_X5I0Wx3-#$n~=vVAFgtO8ee{TBcTH82{{n zKg8o?=RXb0q|@U(pYs1M{h!`;UmG=V&h&nlik6?wH)|W1(uU`NRT26!7VY|ZYPV?f zq7HgmfcKuSuunY)hdn2cARF-t&&i|-ZUEG^&CvWqNO)v!xvRXlm9MQ_v)2#7ManR8 z3fPa4BKw^^y(I!Cq9r;x4oe|Wn4p&rECfa(wW-&S-;p`B^#EoU&U>0^y~&3v}`4tgT$ck=Pi);L7fS(1Rb7rG#Et& zLdAS#{NI0+VA_94lX*#Mc~tpgG>${|-QQ+Xhv$F8c&E>Cy!EpV&V{)Fmx#yLVKj(h5*xN4jJtsBVvF%@b8V)o)iV_Ti zyh}QIsL9HMeu=B_tM~p3ZjTn9Gq*DhhCm>x8vE92&jUORZkW^G+trygr@voM?0=7{ z_I?TZmZoDo`^1%Na?;!WnEL=B^} z!#@FlL_2VKCY!P@oVnfBM2 z31!ATrLeit>mJQm$VuUuF|uvLz=$0I%@VQ|&iVl?Znn3{5UY2NZ~_GuAuB1J*!Kg;#@Vxt>-n`nDHbpur=H|HNbkSw$GEs zsbFOI7}@`=o!wthM22ft{lDs|BBpdr&KDSumspunO5{=jaejcb!021UBLt8Tx2*}~ zmVWVANqc7qWBx};M};5tc3ELbH{|`SHL?B5#(uf|Ji!bRpmmAcrTcuG{o7Oqy4+)F zs>;M-W^FAZ#p-7f5MFlo(cHG!yjYz+$i_X~L@&l=mvNMqksYCj4K0wIic z0M-};>tyjBm$U}yGA&BFl8LmVGKb#saEhF?8z`7qUh7bcze9mc!cCt&s3NrYUfR75C;Fqe#xBTJM0w%6G6Fl}-R zf~$fnN2p3?@w{Hor-`ms;QKOyRC7RfP_XR7o-Ha549fEsy_nA{RNfUS#Li|N5fWcE z3(Jz{-}9sxqO4B+F`KZF)QST7exR&RHH}_i39()nFDQ<5Z8XtO5gi<@C(Df)1RSEs z$ZRIA%MoPJ_ze^SB-HBgG{1G@*pyuP6rY~!Z+ctU)N9hF^Y{> z)4HCm@{Jd)-7_nOd&BQi-!tCoQCAo7e8jG1^2c;9MseyK?Z7iE&i_u=roZpTS=?q> zPrO}FN_#nmebW`FO2F(;#kD^+!oN|?TIQdNkb}S3I@zc0*-7fD61rz^Tby_{IiGID zQIaY~a%yp48*()NaoX!JU5xxwSM{^Q#`kY~qu54a+rvRpX?OZDcMG|MR?o{bI%(Kz zXT#!N8zn?5xdWq*?G1Cei>-`ME{SAeiOa>DSE7<-?~0D-2R*Z#IJ#gD%yYtTdZYpQ zv~_kFYk#ZBBG|$XKU2`1ex{FEcU5%{KmGG5-cZoUpeb)<-nEUDU{k5AY~NwRh()Qr zgy`8+#o&s^2De0O-?1iCL>%yV16Gm&I~imcfR)M(3jo+#kV#|o(Xx%5;Kr#P*sM*C z{1WOpn_;TOm;z@0Gve;Lk+n3q#SAn-$|@!2Hvqk^W}@V!z~cq;>ec7Du^HAe`1~<~Q%s9H3S423tIN@ILiu^7r6?2ZcZ8 z^t?(dbHU|ZS<1RU^0Y-#V~oXIcx2nwGgHrGrY}@3lG@Fe%YtunB?z&HvV=JyY$WpV zOBdRSSb=s4o))GnD=gu^e;slit?15=?0&S>CoktD68;@+b7Iz&zPCX{Hbwwuy5jFGqEdCla#R;rPqxySQ&w*nymyW06S?;5DH1ey%bRjs=*^=C_;MWaZ{5+SPy%_z zeM4o%iqA9B>LEm`Q{5Co>qsdF>~WZmnnbpCwD=I#H-Fl(F`;H` zJ18o#O^3@Xm9itO_hF){S(=1^j2ZtGuG1iTU?&iU_!9Y}b8M2hBOE;(V&*c5Ol!`j zLAK**0xM&QRV8pIZKTFW(@Ss8UgA1vN-?#aWOlzYm=GEc81Nu_wQ8L6AjT~+k{)nO zJ}FSAXL|JaeBn>X^(ix~eR3=yktS~a)w_2K&tg3!dU(#HtLDUBetW!Q(N3Z>gCH zr_J-(-@jdiVZO(R#~&{{snx+EJ%sRI;u1`~KIUc>{c4Yprw{Ylz5bTKF~~p4HHBqx zxTXEyv%5;bDsq{1)obAjWe; z`Q6_)A0|56d;bp_LFK;ZznJI?Vt%Ft$4n7&8Q=<5E&HUIF2KYSad?#I3S|Nkpr47> zVrB_?F&A7JOw3!r%u<}h{E$UCt2=~GahuL$FMe~>?ra5j2P!J!2p#jqa_Tzo%vyQR z!^8F4Az6uHS^sHwo2f64hJV6 zrZ2OaSDo`#zW&(zx$D^f`0c(Pcpv7qtvKTo6XaH{u68qMIg2xeH_9sFS)xmE9}Br( zoQ2b(xUicQXPWBn2A+E^_4l-ImZ)aWyD^2>;!-U@e|waJSm0flzu#97Pk`QNrrNJI zWfb9^z+~AqTLx1>z1@uyUx$z=-Y0fNaE@y3kNSiXpf7L3nDum5V=g?lV*>PA6@v4a z!XNuEZ@xESW-wY=A=~$2v?I}ttLLxwRzO+7`ids&nRaJUhUiM0aNARLu0coP;i0wf ztY#dM)GL5LBV^EX@v3KX>FVdOHn*M0$|%S3d(nDkZFz*>fP|G|taOyJTjZr@|0!B) z?mqqlzg=I2xl{hN=tkEb%H=Yi=beeg;^LY;8zb5o^fg3Ri8gE>;9ad8L=7I%1%ME5 z0NBXSSe!GmcbT9VdehiEK7-%j+I2j8GI8H+_` z3+c3{1DLh`uLfQl!}%Y_tU+(JIB()dndt>cfW91U#-uwvb>^eqey&-}TF)&r&;LD4 zO|+i@KL&m<^Z#aE`EOkKfURuOb_W%&jG7YxS{lkq(c@}5JktX`$^hNMq_;cDj3q3k z6dJEuz!c>h`^z!K-$MOiJa6zCE?@IJ*5tNQb_*PudIXK03C!b}u(4H=d}V?o(~tAQ zvwokc${2gbe6JDz33Io+o&Rt)U7=KDVrr7^uC6nwCwdpKGp2LjMYPK$)?wBZN8xyg zeUg|?32}HB*c;KgY~srlIEpE_wN!Ckm^wsP@8jBt&f{k{=6kfz+aeyvTz@?C|INgc z*1Ma=TEsq|XfNLYzSpATmND<8aTX}^lgDHez7vxj`)@Ig<1V5ph8$OcPmlmz)bJeO z4VYFB&8~8q!2EH%7I-V>LgK$L!A~=KNv>P?KrY!wCeelCl^4B(I~Mdfnxv<3&5Gy9 z)q8hBVWG8$_OCM)MHKZC%o_8n!|c4Z_hPPE`yw`VpGV0naxA|WP%~@H<7Zn53Y96Q ztWlo7{Y`x2u0J4OnOwNr*}w}hKdURs$eGu2Z3p$=Y;2a@5uY#0i@Y$E={FPKh39=l z^Zp2?$kUdH&b82POh4nL=p?@G1_y|ybrQr|AkOdN`%2*1Q4eIsZNL|2{(Ua-q*phZ zIq^$P8AW(`z;{htlRS*csAvaMz<&Vm;dJY-ONp-qSrjcw2Qj}3aTulXf{AsL0KNUa z2KW=AO+h?w=HqRcKNMdAzRc1q7%sZ-?o9R3k?5rC7Fl$YRYTwGoT#F?bNK;gPv@yq zLkXneRG_5&pV6ud&`wOM_nQbgGqk1WLY}nd1)SA?IR$5$x5X z9bB{J*Z9sO@AdnJ{4pyqKzAGm$8oT2`%DSYSIQb_h%QsWBV19NOCgr~pb%|(`}std zxv)?puk#|}yLoj7(PSuf5pSROpZPrY*2qV3+MDM5JFaCJekuQ9ZNy|~M(O96mW{3Q zHQ@CvJboBQfPV)*0z9!`Tb$|NyCXQqxx~A^KJuc(5}>!Q>oEax)NgVNT{iRaH^A3{ zZ(@2(*3&L#QF>N3*-gsMP;}=n7xEM&(Db?hD$?K_%o=ppnyKPm-!o^{p!;rYcDe2K zn6*Z4z|1@b+Sqjtm#=vq+xjjBERIe;j-xBsD$$m~`K*+c;y~#jm-b!56X~zx^sm z9N^Z7&T~G|6;52Jz~TV?BFs|4ID8GbdCuo?WEPZZtSHtEL?2&#v&F~%1|}%p+~V{2 zxe@qJ;0sg_6yth-tI*i;ov@bc`}dMbfZm?ojY(GyttUN5PkNZ)+-CaHtH>leN!e+@ zLTPZcL(!dPsyxcE>Bku<9$~C>1joN`w;vmL;mpV1Vbb3}3;dMYEm#yjcmF%=PE!?p zK}72UwuU}Oqw5Zm8#mi?z25UGz|$U8?kF@Xg1Q_Nn7+jt z%w6~1O+3G!kF$7&wjNJw(m3i-tqOm$lrY(>QDy8sgh|=|6#f|=3&r*RwwKds_N^oV zx`@>#;NygtHBVScHg#XXhVFA&liR{jZWC!MhouxsDLn0=wRAp#H^S4Ig2j{d+}L=o=$XvQj1c;D>fvx zqR&xOLN_9BCWTgDN|%Q}zX|NChV_jU<q4<$42k6wz7Jxt+^aKbLa{o{UoVOl9;! z%iE~rWb?#utz!hxky@a0BAW17j*(*?Xi%dAj zXJ*7bPR{|){{QrKnxzsXtrWRbFBc9yjSGgZ@$_tVcY0=erhB?(lYQsanc3;8dY)>jdcOAgk}Q@JG%d?Abg#>oq9ZoHMMu?d z1$LDNjvu*GJlIqcRa4q&U`PT*8=0|a@?c3yVTVFGiayUZwgPaaKq-i4^TcrokB1m< z45JJK;m&;R(KYB(-p^)R-x)xQ0bYg9Sg5$g%F@I}PU*aaHO;3HFv5%%2Pryv40&`! z%qK7vjF|!hc;|kFM~22=E9Y5j`K>)kt78rNH9pGi)Y&sOK2AIu^LrZAvWYU+h&oYC zo#k9uNBsn!c2=;>Ms&MQKd5JGyA$xIRTXH%VXitP?fC0JsiX@)wS@4u{oRoQaqskH z7W)46!6W|WS7t#qx*R7`CMYw{{Db;+bNLsv^XgxLTHbu`N0&3qr7iDCHJ;0CsE3Bj zD*O}p+(UH^);V+Ztk|E}tU{-UcdOk51CwUQWXa&8>pv^PPqTwr}47LXiuFktHL&7OSj@tEgibG-k6z zZHo`Q@e;m$<%tZ(g0vP~T6gqw{I_qVd3!(UWo_C>pYe!gnd*t9=o|3mrJofEzD-~V zlZ|ap<;1r0S>ALauIDgr4PzJbh=rcYE_5k@S+FrI2PYiB4F)hg4^P0Zh~N!9HWvbidwXqo)Zgr1^=Yso9Hk0B$g#Ma^;#g(Gu=v zB;P~9$zjSsDN0^jgb;{Qpxbiu3^{3}Fo*^kIJNUKPHew`(R?r4M(<%y>LGg4bJyfD zgh|+l;R=s<&j<(3UC-a%^IQzuB|4hHREnWQh`0aSGugSMiO+rXXM~CkH~|w^N?a*$ zrN9#cRWkHuGTSF2v{EUgr!YMIv$>EXK#}Kt{910hb`#yZhG|LW2?)W!rsWK6T*?LS z{XUJm2gr6dAuC9CFGFAH=W=u%&8g@`$=S>yEvY%&#k!WWIKJ(vv__WT;WC`>!SRY1 zB7j`ThB@Gwl29s7IGH2Ynjqg2C!EX?A54+zXkbfIi0Aj&yr9=(EOJPM9YwHwc8H08 ziz?qqrp9TECyv&h=mxr_qaSRgvNmM3LQ=mzu8PVc=zbZlBh)u-(620wJk>2={d6qU zOBl(|b38PIrWyaD=ifz_1Rly+K&uaPc@P+$+a@jW7Wtj7(+7H^;gEH5U=g z6^ZpG@q*e(uxQYtIhp74FFK2h@7TjL?|6uy6C>!llsc7{j;4${i*3omHSw)LBbu32hDFB0dJt|$;3 z*LVUawLgvH8c(Dl*hbb)GMeu}p|dFr;a7{_%JBjQ(ZO*59(cvm7&>7Yb~HpNm1EK0 zx6$#-yLstYgjbFR84n8zQmgudE``XKFC)lNU!kuBg>BoUGHF_yo3U(PGO?;*3I2)O zJj~pMkmkZ7>Sv%2FnPg$Bpvvd8o8bN^_6YG-vw+>75n?;Sm>ud84d>iD!Bjskl){q zf8_-KQRZ(Ii^A5JYToyC)K3I+g8Nt)*>mSooxaH4Iqr8H^(~z`lzNoG1n@6{o`lIY zmG$D7f$kqoz<-x}VomcIT(kC{Nfrl4TVt5g&)}dy3IheCio>L>5lj)JE53?l4aalt zl56PC>|$T)QTC=D;y`*Eo|?WEHe|*y%`j&FFuj*;px7LzVgJZM;~c;-BoWJD&DH^4 z_uk7{Ja`@rnIg@pB8{0M4Oxp=-Xd0T2s#b{+r{t{0oy&;o=qXJ0}|JeSf)WSV3LUh zNX0`W6Csj`Fk=m24s<41x1|pQ9hslN4VuLIlO&h5Gkp9KIv?0ewymKQ&8--T7J8c# z9kJtB-*OJCn@*)YdK>~s+hg=+wf>$IhHr(Hvqeckcr1$(4)WIzUeD0RrNjo3m<5N_ zvUVOjXEkT7U&1%u`Xh?rI2kiQz|*hwLvfw-;A{GB)zokr^i^{o9r5q-b)gK8Fc%YoH3n#XLpm--kzYw<6G1|I($wg7MQ zX%071zSW~&_2<=G7mufm=FmK|xz6KFMYZ46xjOPr!#`WD9?|7>Xq_%Uc$mssmCg&t z40Qi^HDwkJ&EYPtS@#acts&A@vSgeujD`0^y}PR%l7#^jijWbZGq!@I4I4Pkxt#Ih zAp6sgaUi{w{>)C2#lcC(Nd#Ijj1Zn{QEZr~ot=D+wyBMDFIQxLX9Crgz%?a~6nIkN zN$^TF^g@;5;zt~2BKYc|JEt9*-fp@cLMfV4MM9Q~W0XsuR!GMq-y8=|&DJ=d6P>Z; zERL^ZUCUXtN0$)|G*EPMj1~JzJoOF0S%~AeBzh*3^V)25{$5P;nmc zGre_loyV(ZAJ{SyJj3M@1TYS%e^%$}_gAn}L&$qhaq5$}~`=*V{8BLC2-BFUfbF zv4L0q_yJ-Cn{32HDUSw`pwAoOF1Ku1?Jjisa1;8w<)IDs9J(D!vJPkHI|a+4AsA$C zG6}xnm+_RMel@le)N`RxE+Tg%o925G(@>ArJQMhtLcO_)ef_Mv++3$|{80R!U%R`#{*56%3!=9%#y!vW9zl&km+hBabN^Ds6UdX>rpffhFhX68qAW62N`V$V+9P| zvs?;<@(xDK5B@xKAf^AO4iS@^NSHQUkAUmZkhX~B9R^#XbPi=PTo1PtNjHiP$(0>6 z@93xPk^K}Kqfkck9Pcu3jEEya7usA9Rp zzZ`fOTI6Q}7oFmpLf=Sw(F?Li&|cAPrRSb7j3&oO#Ez<-=wbYe;%;W{LP&EVM1AXt zXA(^^@UOmk7nKRv)dGQk_2;8hmjde7!rP*LE!O;Wo=hlze-HmM72Y?+-=ALBSv*cP z_1p%qriOE=gdV1MM*a-ltz*88bCc@MeHS{IFk2${S0Zvh^Z&Yne+Ie&?(%7DfW~76 zx<5>6KNbd_)9`fm$Q*`%kOKE;DK0*Q31dZt_gJ8jj_7eThC5gkUrk$NDT!b!u|N|7D7aa& zRuaoAAWAj=x&_|RZmFhC-kqcM}GVCee#5J5oj zeS6AQr%h%4W}qVwjcC!DBh$e4p%-X>2mVNX6{Y8eLa|6TmnRlGYI>rt1s3}>_U1Z| zx0?EiCt1v#;=Tl3+vf+5pcl>cU^&&Lo>s$y%sqR@z`xYhebmQ+vIzggtw7g!e*^!F z;qNi^_w>R#&f`$3DLv_;{@=ANOr5&^QFII2dSosghyFazl}a+6%CQ=KE%$?ZIPn_r z?;5d%nT1y8lh+L2fwpx+HP|ha6{>lL#HzR0Qfa}fqGO@C>Dst zj+&n6$5TyhNOjb^b;`+5zDM9ZP>F$c68=RE>)HQ&BmSM|<|_7GLzyhQI`IHHb$Grx z5r68wC%6EAdUj9np(*~p2>;3(swq8L1;lGLkqVh=QSerD_ndvy=UTrC9cP;>b8Qp% zL@$F`i+23@!F|-{I#`YqfR{XRErNwhBV}&9=LAm#5$1J!hv_Z^_|jsNtfA<#jzS|{ zDGX_nv&Zq&WWlPC5ydN|rwdP!TGC4Mo*_>9$WI8gHuBnxWaHj(0#1&xNE3xn0HG!u z=CV|Oey}FJ+*IJO+H+O+8cyoImo?x%QHy<4Z$Qw-}tW^NznXKHahg?Ie?j8$V8oQ!`Zi1kYAJiAWgEJVJ= z)KSy(@W*jsQJwS5k4%+vnQyNFK2`et|LQc4YD=}|s)yp&b=;#q_fS7YWb3JuawKm7 zwmdm3goQ2VkvL^qg{fe1Wn(B&h$9AYkPkLb9pT<~k{$5AK@AF7L?3x#8Y@{N#1t=Co~t3^zw{41wu-3^hl&^49Gv9v&tcO`trB zc4H}jvG3#m?79U!8-Q1!)8BszJgr^>*8vQ;^%+xCmje1^P}uj=N#rLU<@=sbP|s_{q3oo(?6G?HKZnTzdoKmPbjZJd zQm1)TqjO=QHF4&GUj}R+^|^=oX`t6L)9X-z=q_LP9gCpXp9orM`Y_r=6qJiA1pQIT zrnJZBw<`$#Dfm{3uF!7f6b3e$w9!VG<2A;wtwrQ&u=0PEa7?VXT-*#t;}@ z{p6^nQYaMZSP0V#VJ8fP(DPC=yygP%l!p`s5{b*<^HxWk>yrUP>Cft}h@jb3yknos zrNb`yfS|vzl?(6N&z&#)U%qhddA#-Q7qg;goJ6+BT_-HXkqIKjEWuDS9xiXp-&l5x zNFc$A#*=6awi69BV9Fqd2;kx2dN#IOAnT+^7Wx@2^pUla6x_0X)TiP(rN>RczcKfl zXk95-7M|yo&E{A@G~!=+-owqy{fbtIcUI>H` zpgbJq;CL2AH_uRRKmD1V4CeN*H}x=f64 zO+Bf{J#-QN37KvN#(Wz4gOoC`jv46nXFpna;IP*|kBv5O)WOu?p`aja!u5SF>$8f_ zE-}~|5iBbz!k#wNCm}#d2?|}e?UN<%;gNSTll~quBLs~w>d4yk(z(Rk$|c}x&BVAu zfvHNrS3H+e1YJnnBX)3I2Q4A@#Eqj1bksa)>d)=EoZ^N3F6WMU6as?Yh`>;K8vsMO zq=N|>(y(^V2oJAmqd8rquPw~J))*`M+PJCsTfSKQbJ_9ETXG$(;l=c1w$3;=DGW>* zBq+lyZ#;oD&8K3!7URW1da~QuF?tWXk`Lgjsl;IQl+i75t_I#n{XFw?Vmy_iAr@cA z2D)DnLa2XjSv?or4+DcUY_k#n#Q8SYaV$SSW7VXIABTSearJ7i=I49kC*NWE==nM5 z%nv`P_PSVaW3dn24dNN-aPpuvGIOW{sL(}h4u z2xN)`Gde10CBoRzkZwCx$5dA#B%X4~*^^r&28{>-8JrYdSEWbH)t2#0Y31{ULR(@1 zRm%06u+pbRXyy7T>dPHv>1ggzggRorVv5htgkheSa3Cyba^MxcF4qpa+Q}3VxI%xH z4@D}-hfF%s8CLZqx$ERbEE>*`H55(DPpALkAMm{F=gN-R9be7qozI{@w+kTzq5^Sj z+bd#w#gZncLLi9-n>ac8bWZ8Ggn`^{wvF7)=D}M?Tcgt*Y7_7`bQEN|IznHuZ5zjR z7IK>VCZEQ&seg;Lde+)jvT*V>n}Fv6Peu3LEbATJ;`V@WCK($79ntLz3mP4G^FEjJ#ufj&*kF4pnjRDq z&v8f`NRsVrVqnv95Q4_tgESl%CDYY}7cdah_VBJ9hA{9vhg_K+=m8nVkO4e(M4dK( zfP{O3c(7)%bBw1?=Lk4IFw(^uE*K=yuWjr!;8~^D4HRHu; zGd(|qUP#}-)O}ceqi7WwPp4>ZY+8st(FOi_{~zP^?{7?JpQecJ}?t;0BeIanR)@5BeKp|G*^`#<2Afj(a>1D=JhT|Ju$ zUgtaA?Rct4ln{BWN$Jprf^ielhTznc$LF$&uXh>zy2B(~v{*5aX4}=Lv;E4`uoDrK z5QLLiR{i=u*8K7wvK@`M!2n|3h1Ya+(!n8XrzSlcGNK41>WI=HRr+7l=Zsv1HYkH? zc1{9?LSkTw$^I8d*^hf57O;ANk`n2<#Ct|5G{qP`ekn>yVtr#Y>>nZ5n!t&L2-q%` zfc+tXClqIodpu{z+^IDLu0soeJrC%g z^F-!}@$qpQ6AcHuB`hF1@vp}AVX6~Cnk^?&rfbJMVKH+wrV;;)qpj5Md(wn|PN40; zfhzXjRHJ#!mSO6X;_j!om0!5boN?8Sf3Himiq&y+2b6jtfy<_NE=~Q~t1YEEL-`JL zn*MC@^Rx0O^IzL9@$WvhllnLy4#hy%o=)T^1LH}NsIpGVyRPB6O3 zd81{sswWJd-msw2QM_@#%~Mi}pBF~?ay$vZ0 zYWZpkAu*5?+#I>gPNIPZo_^d**wA(^x9qu*UCAk1H=hsO23*MFf;9^Q$91tRi(oLg z(0ZbuNc}|9j%0J4$GfnOV{HcZ%&^VLK-;{}q&%DJIM(s_cb*SXDyEqOK^~8y)SCx@ z$#rS9XCw8Ewk`y|2ke?*o73^{x;W(xu0mo^L9JQsm~LtI1L`O6^;EQ|<6Qac9QQi~ z-4V(U>QR5b9RIF^4>I@b_gr};T5J$>R>c;m?-%Nc%vHc|(RB+iVGcJR1^mu_0DYaC zKEPutNST8En8C@zNv>XU9GkB_hvsd4#D-J4x42S7hto9e?B~(z&t>4mWkg2OlWL3S z14EeDo`qW`wL2PUL?BRQQrsmFKUnzf4@&5gg3v4s8iByWLrN1 z?@O}nIcIUlzdi>m5hgm6A~KXlIEn{ec@cNN4%`75T|Z4Ekd>6bEgSzOO!Je|fg{3>Ui62Hg=SKT7i zS9r(I9^0F%*mpJlT}SHGR_MvrUd;wRP{DTR&G$s6z@_>KdcEtT_H}{3 z%yC~ozeCkJb1LCf{0ku0TOh81!?h{yq0|B7n1Nm$=L0tbzhLTgn@NPtSlQay@7QK5cpklHt-&bNr&Lx51IM$qDAy50 z&3GwpdieQGq?U(0g@^x<=D;ik@Rjl~gh4<~cBVSY!NX&re%+K1gvN8EmbLQG%Pt_^ zH%fFUjdVPu>k>-mX@6uN|9Ixf9DmYUKDuRuGcqt76!ey&=Cd)(0bFd_h(qE8Zn@{1 zWNx?^FIC<+U(t9H&t3OU#*0G~oqQ>JKA%ho{uzws`xq_sa_-{i^5PRdOd>etI%GNU zOLTwV1%s4wAqo`wwYV6kz6N?T^{pqqy@GB0s#}Em_LcQ>0b7l+vmXBh;;J>$D&@(R z-u@kQ+U!hJQ_EZp2hiFa)!_7It9BPM1Tvb*nbOipQ~T>**WTSo!C@|F{Yy4 z{m=gu=s4ux2V2-JOp9URvk15mxD~jfk{zOfMviZLDp#(0BX2(S%dBac?BL(*?&G)i zL&S|PoC-25r1AiRzJ>_Gb@62Rg}6`(ClNtR@qDe3NNl%&<4tx5gaYNeCU`7TMdL|azy3Ys>~S)75<}M4 zscJ|QSJ~`OJ;u_+I$m+&f6^73vIEj4;K%iw-OQxYDe}c4QZATFy@7v5;)B$u$MXcI zQNPwhV^pRF>{nf1KlNKUgMSOyEY-EE@-xGsUM<%AY!6j$6qR-RXu-et{(fL`G-Y=9 zm70GfpRD6p7Xn>X?ElL-?q}lPb^IafQ_AO;P-c?)8t6-be>viB2YU-Im{r?R#9PrH z(wEG%p(%rGY(0;wR==5-pZIaESoH=rwmpSdu$lF(<(;J;EB*=)#Kp|zC7zIg!{Xr- zR=~tKvH>?b(q1$q*;EFUs*7u0NJ*hg4|IT#5y2~?FX5r1=V1@r1rYIzc!xHu6tww4HB60&En5#rzw6ef#|Rov(G za(4RNd_MoXDYswSat7D0e-8yG!?-n!DFU+|vla*>hBWER>?B}>cd)Q4AL=;Xl~wNlvpMd! z3jgk*^=OkB#=ra2{nSst0N}Gn{ChWttW%B|=#{e`_zmzWW=Q904tMdCCD-xN6F$n7 ztKY=N)~6s4jO2S6%I~K?vy+vLC(|72oV4%l&JJ$2?xaz6W6#jNNhpOYf?W5zEwrQx zj5S3tJXLxQf<=e^t_Fnda?$S}VQ+Jofs&0=xsccF5y(k>&L;@S5K5IX(1nhk&sIHs zz6dL&4fKlb8XZA5%cQv5%EDFlywy$56+`I@KtV!JM3Ng#QwW(Dh)L%ia6HE2A(jlK z0h?mbtoUp^JX{pv>z0!{p3e2_-%Z|0leR|6s^ixiQ-&DH z_h5TPUa;|fbjPQ(0p3M@#lfa!Y&^M;4D{o9;`ex-;L<9I1ueO2e zgqx~ia~1na^xXYm8#;Y;zB!J=(>b5WI8+urhoisr#4o|JL-}|e$BF>Ysbc>f%>8vg z0sm~bdZf3nL`RnWpdS6*C%6pV?dwo(;ShnkV+ML8fP$Mv3W+HKSZ8RM))N4__jH|4*JrwTNQ2Ha@`b1o=X%xHf_CWEE6ut9{JMhe{1i@mvechfBcQY#|DwzFdViL)kWe;hdQ}z#jAM5iT}yT9T(wx7JZo=q%AFaC51f9 zAT?xwRB?zCIxeI+Jh_BruQ$xQ@;@LZyO=4d*EIl4*6ba_L*Pn*V@lG|5Kp^*AAfl1 zw|L1f?`J&T&c&lHpWI>dp1lqmvWotoV1F2_QvG)=z7e8yzWFjK?xqN08bLhe>fX$U zo(DR`-Bk16U~yWM7EOzI+IdlFJ-h;h5M|q}*z=klLBEZ#U4;M}1!Uw!w_QHJD!wH*khke&UNelg$tLyfWhou@^-rJHRqLJ z${?fpUP4Bg=dJ(OvdaCyGAdK^NGVHY7QW+`f!<5?LP)dW66$w<{WCC7!FGNv z>^$m|8aaWV26{CS7(XNb^;(#&tJ64slLJ0n;kE|;)t^5`ZEA}BPI3RYI*<3#D);|h z75n;i9Uq}SIwF3ZpQ3)5ULRw!Gd9f;s{RXa^}BG00N(z;OYWA6#}k z#gIX);PBXrR$g-R!+hmGegGsGXlO$T$Qg>TC%ACbZDcEt31=lKv1h*@}ew zxM4cea$ZS^@H~X4@C*q8L`j0(@(Po-51TQ9GK8xR7r+yMTS{>^6%>7R8);p92z&aj zIUDVDfhe2eZn*_)w^%aXE3ZXYQXo7K1rYs!!H|dZl(QuhTew^HsDudL6>&fH6=z+_EV?$8;eHNL>YgPD{1b@Vf;Q6U8^0W^1JuU>u?cubnZMu85&9(y zcLnS(Vc_?`Q>NNrabhi(E`J5f8c$#}-%EdHXQ>9cG9fD|4Tf|3IjQ|Z9v;4p-O0%T zhU>GR`j1z^N-aaL!unScqVzz|z|uqy6E1WEZvIng*g2&7L@}P>?lX+!Pcgv^k1% zQXXfd6sM*=S}mO}kqijN!+Jkanpj_BJ7+v{fM37mMlSlotGRze2W_J{dO8z4xTc#+ z?%su*B6{xP62PF-Sb?Q%K2-P-AI$#` z)t?uDn=06DE&dsR_b~T#&e?JT{uzM}qoW{m#V;dmKb5rss|CyIG>)I-fsf2$`%N%o zvgCYGtLvhlp5J%YdA!$AT}uCrRqT5rFj>5+KHO7>F`DsLp}rnMrr(+3@83W2562Aj z$ut6gWEwBdIg6gn1p2`qZ2_2dDy~4_Du=wC;j-ng;;Rq71Lugo;X^9Jb2A_3 z*7yf#7L6oT3iFV+%#)I+Q{e6mi#gEMKzlOJP;-P;2gW%2fkAB1fayAi8H55IA$J7y zhXtmBWd+4+vM$dZ_PDP>a9g8fOH`5zK*ECtM-eDRV_icM$Q6ldm&TTXt7{y!Bf$dFhn-wy`m_}ey`!#`%REJzJmBP=4WQW$nn+lv+MDvyM2pN;L zQe4l*c8eIo0Hr3S_m`W5VcA4RQat$br?K_gv%ymsmV+A#uKYxWV@S@ zLf{CUzMe6_5rPg|aeB(*^o-(!tjE%VLI7DqFc{X+^a+u;gTpF?fy+Q+E1lzGY}hrz z9h(*rbUkcSaG!Ntp8#>&P`j23#x z+nG|m`B8#tqVict_Obri@8^*}ydJWXg0wdP@1e33M0QCXZ>O|?bX0P2g)|;r?BsrgRY)@n%Q0N{cJmTr;lUTg5RUp>-C}m zcuf`i=YbzqvAaoNQG!vQij~6$e<9Si{B3U&3#9ePz-%w>jH+S?+UuGxm0r=a5o4 zjMCfY2?1FA{p3zY8zL+jNVBgi!MP9g(2+_q7H!m#(J3%Wk>R0$fFQ&jxOBwh>7yQ7 zW0JcQg1Z_eJwZKI!h?pKO(dD)fmdC`wr8J-uw4w>!HERf_Utn`>r*$g=FwrSG69pI z86hBoIBIfqT>+s|8#uokl6gQx>B#wPnu97l!bW+KWZNqug;CMDDItjsjI!gZ(|PD+ z7t*|=A2Vm642f`D?1l*UzxHAh14$BhZlUM6RsxPoivwq;6ep%#PR_yNyoUsGreG-e zxKR$%tN43TpG`+HgCiw|;~^FFbm((4JcSZEo!!NyRU`-*o$Pdb_)zZK+-Ti8<7;(h z_mw<#$@4Ic0KJ)QrB-G~k#Pm68ql&3|d})2ctjv@{yZ`ftRy@TCe$t zUn$l$^{s)vzK&y6TFdBH+ZxcRk@dpQKH}9Z@FdlVPF2H>I*k*jy1vmz137f3pV{D- zfnLkf6F&+Q9pEi>9`hx@l*+Ib@Kd0_iv9gm`>)46bZs5Rn2Py6zYCb$^L&CoP{z@I z%s@Y!o6s-fBpO0(+_3S3v_=-uliq?t)kMI`kS0U9eVnuCIqXh8#MaTjPuk{2>u)rR zD4&l1KWt|Qc~!u`EY$&U!WxLB#b4DlNK)=T-DNddeegPGO+Cg_17835MJs;^SV%>gLlK$@ef;9LMmfzj-w%DM|E>uXgu%fyFhN%WSEaK0qtF zhW3ff$C-Vd?wa|SNCn)FE|IAP)8F{#hyMb$)^WTL@a`&)@yROp_sapfkNRB4{d6SP zN{^u&38pVa`);{E9y8D%=i^N7Ne4hj^f;cs;opdw33}7pkkUlf$YCfDxSqvGzK5$; zznRg8dl|~@o3!0$ihm$3qI@XwQgHW^B~Me{BO40yz}gNH*&>CINx)W|w4)y|@DRvZ zlm<;0a;|`Zpg<^ydT?e+ab{XE?qvDXac%t5r6&>JF^E~PwKyDF`8;u8gz>dYdFQ5) z^RPR;9*z_S=PY_QXD@y(hA`;KY(*(`R2t_95Uz_I4zlaglL@Dbhyz1Jj$cc|+0P(# z=cJBTYk;$X$=PJwHfon_0;da`c*1FuhsK8k!eT*eRUeE3ICix+hMW@ z#Vlw6+G{kI*-|eN%P9VpS=56;W^aIXphe>Rpq9D=xf&j;QmTnW&xLnVU6#x3RM#z` z9e0rzwp%u--hK*{x1AS;paHY=A+S95%Ky6*nMn2u8lp58;KSy z3L%rF18G+6PvTT*_)J7w3lef6@PuShK2O84)g;>fvbbzPfqk%3f>{~yNY(Pf|{a|w)$9iR*#&LizRk&>v{uu#-9HC4*kE~+q zMbLcnDAft!EybTSVMT4)Y*oq=*+Bm|v#;gv#=q<0t{NU|a$nu~=h?vj)M>0%;9XT7 zquS{C3FsPlKd47~yNSLI`oSLN?=$>f;L2&9|0Yx1JB}IX`iuANa!(|Jt-S2Sk0CJ_ z&K;N+<9q@`1{lfr(j8mHi#C3cuRm1QU%K?+pnoDKODSwe*jlQ#JP8p+`{yf{sg5evA*l z@@ahJ4NoN}1dDPG0n=pX_2+T+Cw@Wa{d-6+YehKagI1n$2pD04MtG8eo^?`yLL!iW zEg&rg1*r{l4+tvV25qfnvT}1j?;Fa{)0JRJPZB%u__`)&xeP6C;FlL>4vEG~CDz`90oS_!>WSXTDy?gUwvH^aeI{UQEHs(3{?hKpdS> z^Ft8m6nANR7>-NPln6s&59f%TbP+~FD{g91mgD(ofe>G?Y};>FQ zq(7l@!)ht|KIaD+v@@X|oKdH7%CWi1{r#%VE>fNH{A?ISFB_hS><2zGhyDDD7(#6w zXX7jtM4TZU~87=5p4SwE3t0~{9lmz~XNY0l|$_>DWrg`22%J%4m zV+K0Fe^W;EA!tOne%-$ikYNULyXVz7pTLws`g6NkoLI}X>)yqWw|>0rc3-#t%Kp?i zzvc!qC!I!Kc!Uc!xp08v`jSWr6wTTiZBi**!kqEQ5RKUa-X$I z(Sn0kkarA;Ye-zF>%%=MP$eU~0{Jzh(lykk=V7`YhU;Otim*4#7q7j5_rB*cj(co? z=J7m^5GVe>-fMZK>{+27G->#lmLoBb-q2$KmZ1n zL?}VrRWv(_7F)5@QY_EIqN1YPQZy=qKqg1#8-L?PpSg}m!J=g}k7G&T$@}dfjLF%v$-Jv2ccYo-JJv$LCf9$;MOmHnxDAeugJ}KX7`nx*?koap*Dtd z`>?#?g6?ZRE0n^H28s8M(Y(E%v9;aAhtk-YF+xiglQ`u9lDGc!$h|h9Z$R~03?D`^ zHBMt9fe^wkL*1|5rsLF4Ag-Q*MW30)wjKC)udi2W!PBTd!c`5MtK2_ai%HA@Nqs&W z$DuPm>ebz#-ux?b`>Zdo@jPb3Y&39ZqF!YzhhhRRMQ1L|C)WYjR(Xu+jI>Je>mKS* zpDeUasuSR=hHdk3%%`BEDJlN7~-R@ByUDe84-*z$Y|LU#8vx<1GNIY94o_C4oEq#utBOVo<$-$orgG|I= zyiwBAv6_#*>|8o_4bzw^U>y>%Za6SXazzJQu04x$KK3)D?V{x2&Hw?p$|WFm1pP>? z;wWdN9Aarfd(mZ)rRcJ>fgbSm0UQBE31g;{g1L*_BK9)wTxe)8F}RRG&Ut4F#&t(m1^q6PW`+ zbP2?KaynYQ+OPE0`DQCqh&)w*pQ`q?T-a99>Ty1JD_S+bn(~tAScHzASHmOd&wn)t z{8RhiPHpuHrlK8x%6veJ;MJ0o&~4LZTKG=uTzcZInrFx7%Kh>9wx@Dh*Jbo(wj=9o zSO^4C81!bgb7I>C1dI?reC)$zxBU&n@YyR^!>150dNt94!^-UgfT{D%YaA$ZOc;+e z@L!+)9ecXt+;Y|mmiLY$J;jz4tw;}k^5&m${I;DuCQa}TH|Rn}1SJ%~be^H(mr`hr z6YEdnnTLNTi$Q}8J4e{OzJsTK;l;!X7LkHOB4^PuUZ5#mq%l*VF=G+W*+hyqA=@G7 zxR|yJLJ+haT&W}O2(SVs#ehLB6d)Z9G1d@bv@y(ZbCi+B2xARln$iWjhjLf}u7bPJl1!+?pOmWw0 z_`2r4Xi7$6Exh%6xADx|w{hKnUdK>#lxV?5c<|KC`+yLZAu+w`jV=e5Fa|BM8$^hE z!&~{lgCAn>>OX@u^S!S#x}5WuKA$x$XJEN`dehrbaMZOntL3{UvkIRK^nhU^{44rjiGQh__2_L1Iuom2ylX!I($hS;fA7X(j+H zso}9k(1MUnH9Te|bfQbg-Z4+d|2fq=IBStvwH*J1KJTYKr76{v5L8PoGaF9 zrMgd~xJx`C4hqSMi33gyQaZRQ9ajK`t1vu|fTPpgO~<1(nIoRJu}!0F?|4-*oDl*c zrm8`Ak-{Jmn0!4?QlMzsIKp5Ykcd*v{^Qd;bX>#puuaKmtetiHdN}jpKED6V^)#gm zWTGYyukPmL?Sn`)x9ItV7J#Q*A~HgU>;mQSCubX9wf@NWox5Og=Fd(`xSKP&ui(V? z3ovDf;rxCa&&Cj@uf6Q&6GMS5VZW((NvM&RJvPh@ul+8+J$E^&C94=au#pF2Z0{yZ=eIb9otXfW>KG{g+s8@-YpXD#L>Y#BB+No1XJINW#9-hnwdRedMrHih^i?op& zdkkp=KPx8440eZLy1T7*#z-R_#bF+0H zpSS+ZZ|uz#9U~fO;Eb*-IHltfV!9b7z!*2TceVf_B*_6zr$!l z6VkT0`nIh=FKKeTPlT}4B%#En`p9|(X`lnVoZ1=a z>wymg&#lq%YQbF6+v8}XxZ2v*TJRj;pQxSC*Bj7LO}`YU>q&Vv-^%gRk9`F?0zFWJ zW4UNU&aYOQKSDbk9;(5y40Kzp=hWa>Z?C~IKu2Z$q86`dCHT2;+yvZM?&e#*X z7HGw5gZ|uZ+9FGN&8Gk6r`!IEUCGU5x3~8`$}@QvZ;V{V$BpN*$XG+t+ec1Wm^FH< z!`IP8@44^!hVnc+6eZ#E!_5IxQmdj{+ zqzAKLgOr$#M}KFWV!+_~KRiS+7^bH^&R9d3bTmXV5x@!+`XoNXy(X-gp{&X5c9VCl`^ksG-#nG?MJ`;x08Ufp)l2`Y-ytKz9 z8I}}1uoqjx@d=XeX&tpvRGvLlS>{l-p z^{IFT@GW$-ajvwXMd1F4g|}{*ZG`Duv;p8(>$@Xq1pXIzah1op3>_8nQ%%2~{E!(^ zR2Mi=;48q@RURjV)^d7E)iatq33O)BOQ=pQeJR@5KdT0F`UJHzZvFaB<$(w5G*-O? zMaywL`u<|gwBZ!|3$yFeQ;}nDq21`}#q-Pk@fDHF=`4hJ)1E%wy(Ws=H%{Dxp*3At zi3q`TftKxBtTNlth;-^vmLV{N$xv=DP2o}CB|rDh_2x*`9z3yyGQ99E>Z|cLO?;4Uk^@*?Fmnj z>u6-%kN-}wG0KiBPeXc&VH}E)Ad!N@mp}Atp8uPF;L=Dc8fLsPKr$X=JRT$)4U!87 zNr!`EqCs+DlYH333L4m^q!=)eO5sU?=_rDhOVDwN7965^n})1KB3~q))3xla$s$Yp zvV`3%Z+X|{eD?WgAY7M7(V@`{5X)Me^Pd0Bsch>l3j*1@nEZ8*Lb9qn6a zj4`_wJud-155(qYI&Wz&~$q2a&?simz*yFRMOrVKJ(93o^yxpes}=!&o8H#@&b-YMVoYNt2I z^K+l$Yt~=*VE7u&4x9uk#fUeIjfZ6RMwKf4zpt$k+mwWCmt4qXMb9`9+aeW@(1@To z#dY44!BUGSg&PiFHN`mf3%{fNzTNbnwt}aIqAVXs^88;t!tuNNNJhJGg(6}(EbcFG zobnKdskg)2oDGLne&b@22?w#wDF5^E-|)=acJiz9*N};Z8Ay)NaoeM`?j0tzWcuj0 zK;SBuuu*>Pb-)_~%(8X&GtD)gD`L7jH(t7sifda>dg`!rd;qWHh>Q@RQMQ4Ikn&Re z*t&ynS$FbV`@V`LPori7r*vM-$sHHb99~4m9;H9Kt7MozIW8YT1%pAsmH5*5_((c| zJJ5@n@1d2Ar`z@vv;*V{Dy!%7i|tgVU>yfOi#BE!DxW|*(>}@cZIz;EgW)3J8vISa z^^5-o4%FZ{$r>D^THcH{G(L&GW+tcEb~!pD>e=XZ^z2ds>%%M2t7vte@`$C^)PdL_IX9Z>jpV9yNOo`iN9zmC}nVA|-; z0~PV)SYaQ|3FwwMhjCr-EE;7CJ?a1D1vuD-1O$aC4D^5z)P{=!;d-{_Ve7{0}ena#%wI8f6Pe+5OGQmeJtTrJIrw&PX=W(I9gX!&n5C>D; zk9@}j3Qq*EjUbobxs%K9+zyz0yisvqN0{u=wo)4XH1D+#I9`!xunAKHaE?gz?^9{? zcX@UuItb!9hk)ba34v6KTsQ#8!+PDjxCD?i$tHrL0Y??N*WJYr?0fi`^$&Jd+R0dB^k;Vg>Iq$AekcMk73>QM1n|in4kwSh3`HeQS>s$`ASvKr zmAA!x@eqfCLE`Z^j^j(F^C|dOXZZ$nn)^*PKJII%zV*&**advBiv0&`HIW+dZgkJ+ zzoVlw1L)L71HIT^iM~hs)em>JRFdL+4cho!KEG3`2`?%={)$e|-GjbvCD0Mmwdkw{ zzq&Fk1bTt@*XURa<-2({I<@-%@F=jG#|`x`THtgg+E`p@*&pR-KpR}IMz`7Ag?`_L z(Dm}|=~&*=yd$ipD?j=Y8KH?@Zk(;CuF+{Lub8FAbj0 z>q3`shPfP+$EX^js4OIg7N(nSY!^UrpevzUtt*A$Dmq6pfT#CXP*mlzwgdt__k({a zrHW^}n^2BoG;I+Q1}Q^fdfwwg>`KkJ!dF6QBfJ8pI-a3C98=KO)QqVV?FAQaQHWfF zpe5(cc!?AUT+bnDHV_Rokg`S&dwx)5OWVyBLC|(FT<>5jHmfA6r<4O2w1_ySOn`FO z=?(E~`!;@QKfoWH*=b}gim&E`_6u0sd?txdD;aByzRXU9kOx0|PXts+U%;>&lp%40 zrv5IM93DogbYN>#usWxB*B*xzc}0IzB2@XvIe>{tQdy+SXD*g$!!ZAtrb#Fmq*yHa z5k>b?AZ`thr&fOweZ#GWm1u#ovL#aU$SbL?&COo4k>#gK?x6^@+U+@hPoxG+_nGQO zx5Rs0o#s+Yo?3d;nqhP{L3kdHT`&HH+Lev$t`nXk*yV&IX{bPcJDwYRSF8XJ)g*lhHsw?Z`hgi72NUtFcv%=Df|Gjt=hL z*vX>aBu?<~m&gqUi1&>#vaXxdvNmFa;}jaA2P3)lL14-Nsp2p>nc}pr%URZNJhvaX ziHC=8n{qD~#n-J{xzW0n=LOH@jiIM;u6Y9BQSe3?SGiJbx4iDVp>&{Qpe2g*bd7h& zc33==L0hkSFRM%qx*-fC5~aLJ7OHSP3=eHQC=Xft7Vfjcm~ajVL6hZyCo8t9J>?QL z<3!3B=)GPNaOW6K6uK>)>*+E9X#jDWWEU7g_Pay;wRkH(wIARX=K;pcI!UHxWz!}$ zbzH>CrcDHm7~{o32C}=6!Z;+A{pdH&RjC{xIyjC|bZ{a;r0Zf>4*9kQtZ0ys?J;f$ z_C^F(jJUjWpM&(EFDj7JDDdmgjKQdv!Y<$b&X;J3=XrjnxKGMf@`2~0Qyy=xLYfES`u+Ul)L{aGqdd!2#(=sw-+s-Dd;j%2D@!k423(-zlpE(@KXqa7B1=IAxh z?*zVG!{cqO;jxb4KQ92XH9n?a2KorI)7Pk$QFOh#-v;`8@iJy9g!g1L&?mKlSR>o% zlFcMZ(uB)!Qw-M-L<`Pjg=`7ZcCq6T>}UvSJBRn(t|Nvp@svwXW-ATBcAmZVt!!+2 z3b*b5K`9-%JTCA(>khtW-NA+CdR`v9kgLs;=ropt$}sGWVPhjXyqC4~JZvM#cp^m5 zaj{H;NYQ4|Kprp;=9XJ!f<4;Mo9N4aWX-hBZ=8tFE}Z_^f@Vj*vED2UbkhhCF(;Qz z?)Qd)A_gYTM8?4kltxE67MMYT9dSad!ZaUHB*}2IbsIO^5AsK63&U#a42p6@0}UMC z_Ea{sp39=x8kBNL*`tgV21*?So>-R$CAE5gymyr04U5@x@yX;m8Zm5}j?H^n_4@}1 z<}7wBYQV5v-nQ4_IRg&GkYFSzFlYRZ3lITzs3|p7_Sg1|D#I{*6Y*oDO<%(2h>wJsF*%UpDKi4%`pCr3S}wOUHU58t4kWAddSm_HJ~< z>`=}}8=)7~e>w}ApQG!RL4Vg;e49yiysE~>+XAFn*g6ZxsEpTAeU{ddG~r(s+9PNY z%z9y?OA$8Kam;%0cIMFX^@+6tpBWQfOLG{jWd{g}?b=w;D(X@%hiFG_ObQ^c|{eto0^mWI7aklUm zXA5g&7uN?)=j!0;oM|ir5dts6u*zU#0g`~N$b^DqA|XPyOEG8=DLS-_ z^|wMu5V9l^cQ{JuT3@NCI8A-NnGnQlv9-g%rLrO*r97lC2%D4Fi#y#RGAc(z1W2hu z*^&ZXA3F;eKoRW^n&OR4NnKolf;M%i`QChmQcE+Go0^SA+%{pYQx@66Sl@X24Wu0O-8 zGC?*ZU4|nPTSB0MtPTSK7(DFumwP&cHVo@dOH*^%?_C{O$HG+JUQ>D;+E%K7_7z50 z7(T*0x)!ch+(G?Q^XHpK&`QZ)@oD_WcwARv19}nmN}uMkkoi7317(6c(d8mX8=pbf zXV;P;bQ`PlYJA*d)R(USU!I5KZp1%5j(YV!Ka|ISD}5MuKDinA)LeFavKi>jl<`!q zHagI1-Y(A)ysOIwkipY8hq z)IpaNhO9+Xwt$1s2D${Nj7Z$HHO!@&UWxw=dk@7Gf>v80 z(Ghf6fsNzgfr7@+&hfpOqcv}liCDUm-!uP5FQydJG?evHHU43kxh ze}(RweKfHbU3)$s+|Drr{b=To%wN0BNhP^;WU~)r*0bil9vnc6ZqA7(?uxuTW0X;B zY#>faTpZVwq{9t-?6ZGn%ZgU+Ti?l&fix26Z;LUoq?NP&x|PM>zm;@r4AWDyD=L_0 z3}Irs1$r|(hy|K>%97`CV*As1VDOLJH}HFM_VgWhJm8P^qx{i+l(-0Up|OT5f@kpb z;A+;=KzqwF)XEhEb18C`MJQV&WLvm~JVYdJas*wL{wv#lsuV#t6gUeZc2&X^ibe+l zo)!$7ImH<~rJHQEgeN6xkW)5&UWOHB8=i77N)hsihypDG z3~otZLJ0vv(7AJvhtFNZ_Ek$+v2zF!NibROzdRm_gov@<>*w#zky)>R76_?3rfFix z@|i1j;7mUTeFE@y;FmQ%=A-EJ%cIF@G8K=a+pqQFU-aAou0}`jm)Gc+51}JwPn3)D zKLh_&=I_5_VTeJ^hF36uJWRu zd^^wv?ALKGtvS$2L?9B~?SDi|JbsNorMw;A45XDl5Z+GelI--1vJGyn4 zC`FPN3XXt;2XPN9pt52Hg;Fl@;N%iJ1!Pnn#LBP*LWv7+&0S|f{*(j;po8O-egv>w2d#V`l711N7(YzUL>Y9f@P}m#3$-mA{|3n2ymbLb%>RCHG0&0G=TUTeI(IWncgSe&cK|_jDTg*{ly* z1M-CesZ5&2L_@v%pm(F|ypK^iUu1qGY2QZoQ(uU>0G04<4sU(43OLTExzyrrKMs5W z-6MUX<;NF*|E~TSo3AJ45>Wp%e!9!gs#PBfzNw*2!+xJMCN?IG2aZM1YM_)V6FvK!xe! z^+W(g35^c4T8cd(U1L9^h@BAFUXhRyB^qobYb6hR`U8cV`9R_3s^=FlLL8Sko+S+% zS>AX8ZILCIGDy+QlPV5jdpe3Mg+%((UTeW16c7$zkEJQ@>?OHj5yuUTQwTp^?P9o! z!PY1ZS(~#S-iIZFvud5#EaHrN!~E7RtEG4kk??9b2hIP<~3qvw7o8#y}HFhghq^@~hi;C}_}q*+?;N!5T~0k5Vqt&KmU zvmyNIkWeYlW0tLv=Ex7w>i>QjWXGtSEol9V`R>ZH5&v{8{Hz84F*=K^$;UZV!z+Pr z)#5-$@cMZk}8&jVXgHj;~=^Vk2jEUCHk82iczd z2YbgK!STwb>6S;qR=1C>ZXZ9lADn8FDN}}(0>fKaD(;})!=MMPHdsPbRF5ps271Iy z&=TsJWT00=bGVz%*m71jZK5l>g62pU0U4&?WOZG+TR=*)R9jw&=KK>Ifz~xhnJ^R* ztcgbW@VD;Z-%ne^eJ6Bt{PrP)0#6E*fPt1MANlNUEFBtSprN(m`g0eTplsk5*54Q? z-|B8HT5#nP)ab%J8yv^MvMfx)z^z}ZyI;Lqk4D~y?wMT=zKm`ab!wf)tCj=6>(IvE zk@(eqXs&DpZUnvolx_8ZuBLi3K4sig!N-7qo#j672mUY*bEy??XXZ?RTHylkqy|y9 zW6Ue}0?(m7EmJquVT`FLzmTsFX|$vAoj%TCuDl%hW~~nPL^aS)Lf_z4RI>4QZxHYZ zi2!+J1BwG}TEE2b6osJ4ssl;Dr5KRNlH#}m`btLm=eFB?a+%4^Es|vgMWegWQr-{8 z5GG2wBnty5AR0)psq+#xbzaO+ZXf$nkFs_2E_yTDaJ~ z+KLjT$a@6@N)7nFV*PchO(Z&^d?Ro@I#OC$ZAlHVY@5+!lFqiadK&1b)N7!loHwA; zn(Kv&P7|MXPgWoJKeRgfz!cAKs^3(q;?L+3yZ@uIw9%iV9eFRAX~P9T5_lu>M97wC2Cv+F$WF)HIn=vI~Wx{3Ow7vfN5?Q{+JDB3YQsq5AP z#YL~}rqbP*6Hi0~{aWDb%;JsR=?yX9jnOJXSe_Q@JkS+Kx*pQg!ew1!X~4r15~=j} zQ=lWiePKb1qxk1t4jVF(Z!9uN24Go1;feZvn`e(GrN2YoPLs1!m@-Hr*ve^LmvM5( z(@7Qw*^_*bzU&V6r5+(|jm>E!o#HN0YVxb0gzhs<#WBnJ(rzn)==ZV`6k3Qa7Hpo? zI3Xj#qQp8nBFpHCucSM^nyA@8&e@2G?5jix4U?> z%MLa>JNUg_ky!mQVR}Vgg&ZwvtCjPZp+ly`s>nCIAK!#skI%dO8v|#81 zwLb6@%|L%E(|A3DMue`|O7^7=cMgrJ91pm=xioMplmxqmS|S)FQLupH(mb9A%13$w z3dT%%thA?G_SfG*9yPtulT*iyT z4CfE9KlKQGnOzL#_EK~!)sYZK{9O15rG?_!YzUX$!%A!A6&{Je^afE|WHAk)4!UD2 z>5i|WA=pl1xPy=k<0uEq&6Bama0(VuNJJ@Z{mCHqHX-CDyqRBcsr08RZNg|k5Od&) z5tnC1#SYN=gjNA&@JAQrNLDZqO)es7v(cCTYTOP|$3{l|vp^jkqk$DQpu4 z!vareBOXfMRnGxpG^9P6G6n2_LBMfIHiRjfK}^rXsvtAL#id)cvd`ViH>}$y&rcY5 zYFb737oe4>uVa4IVDUVUk+D&hgcl)1`F4jj48Xj{l3;<6qrj$IsVLi4)R1<`F|E2ktoaBmNR+g%GZ$y zwliKFpefWzvUqq|+fS^!`B3O;5-LVfj+2cBF+7DUB_Z3TF=N9Fjlcvt>N*e-#9er4 zugf`Uk1utbY>o@MZAGI~KANs%>DW3y8sRPkQ(hcqI2YU;c_)Jq5>p0=nhmUNJqtsa zSZ*H6&0~8OzuWZ{_N2M@G$0Ip~2GZ#{)u1~xM3+ttrSCrHd?nLh>PB=hnaVts+8ut%lSPq%4 zCO}8jO{L$L;ea4*z|sOdqu=G}qn_@hAO!;vE&L|c}67VqS7|s#TTNHu@A=@Jp z36hS4h-WL)Trdz|wDOV6cPXmL`<&T*6{mJx#xHmL5BpP71_aLp{*JC~yREWUYi?xo zd5V@rFc`#jXWvS07Hpc&gU`T(g7g>A3#>Px(}n$vwr)kY&RU4=vp$1%9DEg6>BIQD zf&W2gl*~ez)OUfnz352!uYljr<2Y%wV)SQ#*UaNMGw}!DBfwwg>G=I)A{?A?T>kPO8rV)1{NW7agJfJkVN)dCi5bz<=OxR>vkE$6iPVdKS0{ z_#F$UZR<^FXX3o;2rU#3bTxc}X^ivJyRP8+_3sAYK>9Hf!Df~;te>>qUT>7&IFDkA zR%}Dy7!t!%IEEnLxJ2^~m0C;_0#*G{!P=bS6FY2P-|J!v*bxyphonj?Ln0lQMDHl^ zzA@qh<0STvU=}PqV`05LS{>X#AaFgKypv`$-^XBXZz*yvIj-RZ+M=^x3opdlbI^uh z$b(i#;m+diaFj*Jh!Hg#COx-3c`svyeq80^DHkE+!PoW4h!WZ%mFO9z=d9KI_5Igz z*FRs)UGKb_zrOD}de2%-)81hW*TXUd`$K}BkYG_!@!B4j|Jr5ql3tfqN6{Y^3HgISeT&aPT4Dc0vDGK+0HI!H{YB>9PaqGr_dc+ z%?mcXj|-Q*Xu8sbZggtzy!Zah7Yaxz=llD1!u%e7O7@`_+7pbSBRQv{v#aVYd~-KC z{q1xXrg1*OpV8$O^_=6w=$g(`(8lL%jC0T}i2OhS{{$S5HYVrOIG-SouH$_U^;cK^ zBRb9WQs&P%pWvU+hEct_1uay!+lR5IV>@s$@NK^*G7TwoR>iq!k*rE;y>3GHeE-or z&TB4=qwg1I;eW}+i9U^+XXf&vdb1my=I*y}-JR%b@bjpX$nV0k0B6tpnMSzb;^i;r z%2jV*w9re+8bJz)?OCjAIjijUpDW%1N)R$aIHuG>Q9>YHh2cD|mR$)Gk-OfIU_2nW zw%_G{x7l1Y=5e58U|$Y@{`$`Z9Y_~{225E_OPkKI89KlgG0VBx5J@fjZ zq#)5V%Fbt;!e2gm1EXuY@uUPH7+cfLZ6A0(yRSHv+)$EH)8LG>;@x{4{%eQLa|d05 zo}xb@NSWebhlS}7fNMyiMVnZ`!8RoU$0HvyNyh_7ycs{OCIUnQ@6P{#B9o)hC$ybU zcYGB)#_l0)jdK2y=kc-=K1M^ReX4^-(2L>AXMV-z&gl3Uj^iNbuOE5@|5~g)gkE4A z$uRJ7w4r`ATDWT}W$?FRlE9oeZjKSRH6uV#K#_y^Gj%G1#X;{VO#SV!`2XhUyqYP7TGqiEy&K%K^$ zEn{dk|K|et`8=0H`3KseaspcD@9(qRe<%8Vz6k9g@snY6pzlOr`MK1&{pHb|;{F%xg+&O^_vJ@pAR8 zo^tS%S2l{M1Q_V@fQ4qRP8jH2MTJY{^YfI0Ap>;9Rd(!T(ef#9g&^eEM2ZfMl$fqZE)pOU4**`N)S}!$1r9cgjOF~!iu z=aREh1Y{7~EzpzMN=IxNuQ}<{{A|ak*)ewSR8#vu;4#z{`N+&_=-p z=!MCYo~3C}Xv62P!0qTX#a(lpmx)emzZ4x!@k?7^Hnm&xfrBnb_$u14ycD}Se5W2w88hU=yl$FL@EA=4)FYK9*#X9{9ozu0<@^!`E?$@fbIeQ zYv51J-XNcfKb0O&LmNTYP(N|Jf1oulzE5p66{_V-w4k0J?DT2eO0du^9e;{0mAG&o z$Lc|sF#QDm`SgXO)j+=h_)@tigpfRE&D%J!{X%-uTR|MEdM$9gB9TBhC%0e3EqlK? zY5#YtpYVIskD0 z4|pC30iGhcvXeXB^(-!W`?mFTlpd2`LnQ=;kRT*VP<9(% z5zy>N3@LF9h2eP>Pq8u7G3jr%TVy2H!}7)x(T%;H+ywF#y=Se#3z~#_$MAxWUzXf} zL1ZjTx;;i>(;C)2^cMyjA~-@|DqT)87nBf~u1m;r@C({@V-|qS{_YM56-0orEW^{X{N9T5S z)04~RiN~VzacJm=P!9{3g@RdLpdXd-+gwP*|99oq-iHGlzS)ZwkNY&bR`e8fTK96a1EvZ6S)I6ix#&!RF|@I_6K%{sf{vWe1&NN}J_W64 zz7hY|EPfm4hw_Kg<9%q==Tm_VXhEe8^m`OV3pNV0abG~EB@gp>Nyz8ZH(W>{HFE(x%Buq zbQakK=<}*|s`uZ~PMM#fQ2h*fnJ$LOpIHB!)_NTY#i0%;yuR=&t#SuI?Z!@Z2ttiY2J*VH0z)tHV(DMH*6kt|LoX*y*!`%Yg)`!=o6e=wch zfaab3jI3M4&MQu13pUD_{8|_af<=eFt!(6#NTdg5mBl$q=+%GFa#5nxQqK?+0#gTT6c9ubGM4fB z%qQ6D^-bC)WJEb{@imNF10~7B$FCTs3^HyFVR=QaUj6?F8e#t4`}1-`CD664Cjq0? zo#|x8Qz=@Sn~+mvyHv>;wLV~l*l0szE;wjoWnPu^k77p9iP zT(1!ejlc1D^nU|7yX17Vqh=M_xfny2939$GL!qygMfB$;i*{D-M_>Q8qMbIo@#lIt zgs!>&HrhT}i+0SNj6ScWXlH61eQt+-zCoW~5p7&0(dY39I=krs=E><@V{R%v>fP$h z;ONT!`g!TG1pV26D!N2#Ir{S-=kU*lgZ|8C(Cex_Jno=;5M6t}5ZcQf25;09+a7*5E9GH(;Vs|5o#q}969Xy@#4@z%M+*@W~n7%#)R>Zq!o|w zc%EX|q`~#DOkD2V2Vi<-t%;(21 zblSWeb!K(~JA4}Z7}X)rpYvy-m9!_TxGoHA7N&td6)sPl?2bXSO8Ae_3-6PF)#$}| zJ37+^wDVyUZE)^JFS-|EO>HfCtn@fEE1(4(RZO5?n~4Rcjed=CXhS85&Z=05IB0|V zQ4a4z9^!EWEL!^age_yE&utW4rg1bbv;2BL7L;*13l5YXKP&w^gbw63qn$Vg`dU~( zUk^u_hrq{taI_id??QXkCvon-kFv}>o^el6G$rY1fSP~TWhuT^=CBh9;mM#NZwO4K@Pt^{|M?To{>vi_G<4tz5GX{QFSAM*bdQhl z;F?a}@V+Z}aCHX>PY`lk_U;{G)7Sn)+oK0aEp0`(Jmx7bU zkS0nk~1bz{t7HF&%OO+Gt16nh8B`@!EqhNQz<&z+G|~h-iCh>&-YDn$eB=e}KX)C0u`C@2MmcWp2z_lap7XUA^XsRqr!%#mrc9AY(Zz5T!UL4hiNm7O z2W1}9@8b%CuJI&~u59D%8(+rV$9J>%z!=TFqlAaX8C%uGpFZ|N##VL`8yKIm9iHd8 z1Z0rLGRob9xxM6_6d@zJFb#B}1>B_V5=!MU^VY$?Rj{jWb5{B}Zoq+%;6Ow*=2LQ8Rxu5ck#Z@-NwF6UG#M%2->j3uPK9M8=BCpjh?wT2AvtTk_?=;g7!!i?7-Ll{_Yo{{_ku3YtI z*0fAnM)*c_T4zmBfRr`A{2$L0*-dre9-qcN#_YKO_#Qf~@Y5U}#yMye?V~XwcZ_2k z;~2*{$~c-L=wB`O$EHvR&sy~s#tQw|UZJGcJ~L974CeN+q4gZLwmpSMhi^aZd3(4A zAwepE9WWSa3|D^!6JskyGLqnuySH-XZM*oz)7P-+kv^<|flvz5^>|=I7pwM*pc?3eK zlJd8Q;VGo6F!4(D!X7#UEW>+W|6KC1Ag4UoOEGNfkrg!U86df`iw9qRA?JShrx>=2 zl9D6e3Ek)1qbs_ShmR2Dw%j}!dz6MyJ2^YGpqwtslo$nv*kF=;Q;cj!1EEZTc<&g+ zh6u&R7_v-PfeGhPK|XjBM^dMv%eqIhXOJpZG z56(~jJNvxy-G83B;m7vyWpRV`c<8QvM32$bvfxc%sxVALAIuIL0v+I7f?t{sMHm z=OnIL{bmd!NV?F2Synx~JOY8IJhFC@%T~OKU1RrCa33$%vWI&>f{+p=6r+tXyi@c;JO^h5-IYmnU8 zDA^Iw#%H6Wh`FV@-fE0>AxZ{lmFIVuYW^W87ln&ibSN}N7(RXpk>NDTFb<{!2p}Ie zS<#bZtRc#?KXn70BPm*w1)9@&n$iW@$MUp~=4l@*&@!GcMc6GOMT@ZI60%$ZwnxD6 zFkD5zMLQ0JIQY{sz%eAnprjBo$c0UEkr2sfgx-!g`@3U2vZ|STj_+jM&LOPO;a?Ls z7$7<{PI6@@>7}j2d&ej=$I2Lv3Rl^*Map-b8p!NnS>l8RB@*Wul2AHNa6HeJ=blB+ zIqR_!Aq>l*?a>2l_~9MI`p3w2H50J4z?vh#5|A)c z{?I!qy164ai=z7ym%Rqgg<`Qt(Xxm}YpUk%mx6m1U4wayg~^N2Wg69}O+SFHLp=$& zt`?J;0}DyP{TRnM#xaiZ1mG+*oO{2=OhQg17#RU+h(x49cV&2HW<~vY^Lim)R17&*a4pZ+sF9hS;x^moMHFk zCZ74XoqXf{KOtH)=xu66Di;|RwApa|fXj1+TpmhDZf_K9PDu8JA?OL397Wvapomr_ zrp!crv01Q?j*Alx;s#8_9HMHvo?ev|$8tRn&vTKbKJRYO)BNa6N*yN6>Z&7abx+-8w5|IRqV#pyeXrpi;L2ia`S_U{DB} z#t7Q(q%>#%;VIl;04G%bJU|P@6`UNgU^77@f^|gC z^MTwRByzsgv}cc$1d29+bb-6xaWy-xJe7D~l3=!o6_2pxxo6RL=4vi_=eG%rrWtHc zVBz8-Xm;R~jK|uX;>4_CMNSbb)#hhS!B9vrVft#J#KVU+Jda|)0NPkKP@o}Gz&0ge z%VF1&X7a%>Ak`Ii=}cI77kC#e26>T^6f!a zHf`b=D__S@ejiFHWQ83J4#kiGhVutllvvBN*SwV5T#kq^GWiY#!YO1nL8DucKn>8(Ga>3FUaO?i>1K^DG;pXxvWzd#4`Au7r zJ@m8O+d!W&ghBO-+koQ&5gu99M$mFGJViDf;IhB%BwEbV(|jBO_wjnyF%t*~!XBKO z)+xh7L5~Mxg1Z_d+oFPfVL?Da+)>0m-GAMkJiSw3rCrkn7$+xI$9B?D$F^;=W81cE z+qP}n?${kWJ?H)YnW?LDaju@)yLQ#8RjWuEZ!(|`j8hG`IA!nHL4^X|39g+6DOe||0FjljbE_6Q5LPRPGD?Ckv4 zj>-jgldklSrTN{J&pI&%N}+_sja4?XOJ!3ciJX)_x5=Cu`%!RA7<5AdWGsHOp8tq( zP?_U^=)gGi%pQjumG`UILj!sq|Rkp=+`;8IsWch5E&CVfu;kT0W&S8izt--+Qu)Rpy+rZ*>1kQNqZ zTT<`Gt+znh*qbzpY#mW^@@JU+P5PUT7GPJrwi6J*S%kIhY~Jv5K%?je`H!SvvAIzv zh+;8UH-Xy4#BabEk_9;9O}}VSWRw`b=U|}MVIVYWVvXX!cYLmHP*J!$7lK}@(!q|u zV4+#EkaG5io*y5nRo7i0@WkYrwDC<(?paf;Erg>1W;;i;JFKBX!piWr6_9mC?)mvd z<~pnZCHKI+6v@l1{kg>JEyWQgU(`aW!hTlKGAvTR@=4F+D&$)asAa@)mr9Fb+=i5a z(>@i>F-;2MncpQHFkiV|O8b&FS7t$=qk&K%{y;4fuvqbV2NVKlq%r_d7&1PeM`wws zr8z}bzavEB9|!OuQtlPYJw;_QY8H>nGR{XjeomTxK|^W|*?Jm!fBfS^}ANrFp7;Yo4gF2)$ zy(c8xTb$Q6}ZEkhYe*iqYRW^*8gE8*{5pIW`X@RKAG?ON2lW^X;L~ojOYF{AlArez| zo-vY$e;hbNr6VKA;)VBP%l3uAM~e1cG$}sBHop(zjPE{98ufAmxP)M+<4YCyG+%iKf9`iRW53gCcZ^DHo==gs zZStVy*V9YS`9514JYV(9ZbbYrxM`)>6W@N;BsVgL{tdH&Zn=V1L`!hH$2)OWCA0gT)205`i z2gs6`H2JAF<3{-P;+VDLFXvR(ITCLubHlC=>AR9Q^b7JO#2?ff-)AnDZcn7DW6l`D zE_0~CYJ}e#@8kbXWXOyPaL?@MU&bCV^n)%pI3{Z&0uZ&?_R z_W?Ozbzp({&@uEnOn)3E%E#;#>PczcSt!fH5w1;EZ$;wrKg4JuN+X_VVQ;+iYFlbI3*V9FCaB^Z zrP(@6tozPk|N2Wf3`?J3ke&iPs_A2ZZog1hN0ZYM5GKiIpa7q7L;@8O?~4wOx|O^R z3a*Y5CYqfBva}-PNGu%{IC9T+S1rwAhBh23ylL)pPWqMoX3o#w;mivZSu$;v7{b@q z@R<@u$2D4CP|y^85N=RS03y_6sJG#2KEiKb)oG_P??>*Xg2rSq%{oAZG?KLi|BN=^ zu$y$DS+I;-(<)NA0E_IW-}5ZDUSbi~mb|LV%Td+?PzW^DUalbJjm|Gy_SB6rq$wi4m&;O}$W;V^iMUf0&muiaWgRE&ZH-1;Dcu z9tr8v$eX&-q8k#aB&s0C-+O~e7YfDXHBy&e?A3{e=Zj+kHkOh~(wof*=o7ikIDZmu z%|Q3a-x1vKU1jWSxOD$nejy1qXx?ly|Kp8HZWBt=rMcuxf9k>$wTH07v{a7-Dz6{? zhVcvYFngqHIr|KnK)K)Z?22r6{cy=n#(J8O<(2@ZA|)qb~qYAJI`Pm zivMsk&9%ywGv;37w=n!hmTEuVMan|i<-THZd+JB%Nhz$i*X*E*_P6j}{7vB%_M6^? zPLp{ypCH$1va6h1(yKL6rzAumBs5vOPCWOp?o_e>J(8-D&rtMybOV{5+MIqO$jTzr zQnc6YoW_>N3ev_)90tjrdaZTP5ghf6$*YzlN41SV^cpI-H8bZN530m;RtUa144H{Z zLs}!*GxPlIS}pO##w14S{+m~ok=~>$U>7)Egry|6VJ|SPvdpSwjE>pSQfA4w5sAB! zT$G?J^erLswagl*AO%)JRYrTS2Bv$PM<6A+`Sdn)d3zAE#_umjv4Pq7>4b}}jf))X zqT+zKA3`rXfyg9BDtf!mrt1Zl1tUx-&87S`-%>ITFSl=!$n*Ev3X8)IVY9X0d~ry0 z_Ir^*Z+&T%C3k3w?VAp2$h-wpnu3E(77I*He}*S6XB_YynUTxWcWGIS?Cx~t!RG~^ z+KgTIw3K~yB75o=_|NC@>+0w1=iZ6iYVSzh;EXrvgV|#_D|}cN0AyrAn+_YLq}@yE z&nD~-oMtd-D^$Jy-x`LprMQ?s&@X@M5^JD@TFV@#+ml@%I0qO86DdAXvzV>#WRp;{ z01E6cI$!$BF9yuSYc8vYirc#kT`a+c&m=6;x-!cP?jniD$wE|8BT?54$-IlkzaF(5 zN&D3mi@i^z9y&-FpAh^#^Bx(8n|=hv)R67?i>WW26zBhx)D$wZH|Oy#wSw)g7uvij z{n?fKXMG?eacE^nWe63JQizj`EEG?rvd}tWL+Jej?UKu4n==}o6-u~;bEeXOHl_xrQxP8j8%#p79II+H-=c09b&i z*y(H7-0o-%X5C2uoVw#^(1$_-JK-S$AUHtY`;lU?R$AYQg6T$E1Rl(SrL}HBNv1`Z zyLn|tNI?(;>si+qFhL-=$M2WyllQ(wDs}z9oj1gK`5m0dF1Cwb@j;7+d-^qTgF5Ai z+u^;@vfX*=XNL1!CnDsti)92eWdEy|w<-Vuu5Y^A-9F+ZCPD_(Z)p2srVr$kTp{~V z=cguDz&9gftBBLse~#w?a4JG}B6R|^c);t;^u?8XsS{imhP{eLb*1_BcST5MWd(;ge$xP2QStV- zC?%4N;4`FuzspX=_@yyiqhxSEVUdR3bBE)wk(pDXA+*@#R~0_~N~8AXK34tZiPIto zg$MwS_((;>9hJRW1m$spQl{tDlUGPfQm)i!PVQAkEE-cQ$$Oad!pZ@EB)G;L2HvLD zkc9O^o|1)FN~?N2XLMBRnNcWyI?dzEMV+a)HR)OW1%+#2O$BEB zDULMS@S%!<@@<@cGB-|Q%NSg^%g!7YUe}jwu#3n11%ZywSU70WA3_~Q2SAGP`h??S zA%HdG&L#XJlABfgpvx-wl)5$ z@@vs;_@#^|(=@{vZ)FR6aPVWhg*kWLN8mMjoey2e7UHSokGrcCyQ9S1J)`PX`4t8{ zWe2{9L^iY*(AisW#5SaV$@yH4XYo@J?}d9E@gBqQ1PBlNJQ!m-etg4VJ{B5+=$v^q z954R-6qUf8S!P4OKI6UPXMz1?+_8 zvyh`T0|6E=N54qJoD#r=m$-Xr*>!2~P^nAYm4nY|(? z;vov8FX6=;K){c4s%?3~K!P5@#I%~=b33x9%>h0JNUq=oHVHU%zcv>HPD6k2d_B*w zm}H&Vv*PC#5Hqe*WUd(ey*$4zYE6%PmMtL-d5n&I`09IQlK&Xg_Au7v z#y9$bsy9yEH5Q^TDu%z|e{#~VGg2SFk#Xi=O*-R|yV5AUWIKU19NFK-~ z2)5Jb8-HQ>vo#esgNY&U^qhWw2OPPpecXR;;;hXs2m9(^=Iv;`(+Om(G~y%B7%V-C zLo<&%t@$F&Ow#>y9y3GY{!Y4y`Rwlt^ONogP2)~mG?s!tBPNMpd&oqpPOUX_B1~e_ zN`f)Mnkzlaz&b%A{J>^-pRS^cO_f{;q?)9HK;knYPy1(y>G!bGRZfnBtW@9do1>># zP^4u>6?>%}i7T)d;*mR05jS$epD&}oQTg>|0Bi@&DyfR&%tMlF-iOHHs%5Sla6$aB zQcH}C$}C+#5mJnkY%X6{OuQgAz{`QNslO}Ocg&m_&+^KrIVHyJdbC|@>ZrsnLp87@ zoP~+$4Z|YXv!c0xs));*?pU8!y_I*}HVP{|s;rq=MZ7a);@j2$&OM*Jh!|I6bKI;O zH1nh>Us6;$q?PSBD$97ysK9` zv8oSKygp?lC!04koy)zEk3@!J+LlZKc}D9|6bY4`L3k3u+Gs&whpi((0pNYPZYw~A z#VpX|F>$1LT+2)X_oTPJ zd>6a@*8>R%eJS<@K{Q__*H6jMhfyGwQj1!2jRU%~RXIOB(q6uV!!|^0 z*7(@=JfuocGgLf5f0hK4R3UuhFX*XE-yNbNF6kaKc1MRqJwVuxg4O-fhl+solmXhb z!^vxK;i*_AHeNuN6Rw0N_I7@E_{v6;Fl-20X78d}s+s%&g4y@avQ{0>VW-~1of&1= z+aul;J0>XSswb8xcs^pB7)Hh5B}7&^uWAmIm4oq-9#YmvY@h{*cGbFxVGv~p?h85XvmUigxQ89cXIedQO%TYOc4|D%A>rF|%l+jhwg}!mc$DMf<=Y=QVvjX(w zr7^W?SR+OWZ*r7T5#Fg5iern|)GONy))N5w&MK_d3X?Cs^#No_+grb}P^-6oNTox9{Pr@u*l{{B@XMBVsp89lE~!}KkKaqjO55o8Fsh{8N5XIf(f zxP3QimfNHZ`8mU@J#cpV!R*Tj%iXlVu=K71-T%BHGabl*0{O0G`Wok;eTc2GNNg;4 z?SB%33`R~HO5+6+J=Rjzn}k{Y;dDj%>F>7SUGK_!im^K&Zn<^{h$67UM<5BJAW8-+ zVFmDqd*+8__9v<+vE|2EV0kR!`%GP6&`9ErApw%}3ywf7U?U!rlis6G3IE1lrOBC8 z0Inc7GcsIban*|W_QSgAO^A{eBcGKzKxUu-$*RWPtLH+J5f$Hm#D}nA2tBLEWs%q{ z_q{C9$P%MB0vBY^`uwKAyFZlsjJM8r(3jX;^Ak4b_fn6u#oyny`FH#&(ULJ2c0Ti2 zSNMypH>z;4#Y_WRM2_bDs-xeEf0?7S5U4yM{QP05q?$K`O({0WLqv|(xdQ9hn3MMw z_qTfy+QafLuVcV(Kir8zCG)h#=Vu+)^{s`J>!S9ijCr8ZJo#@|n0$&t$GEA7%>L*m zwVHj%XAfqCzHms9dQ9RGA8Ie6`jr|Ff}p zv|l4WT3rNi?X=b-zQgE@`gpH6ze@YLEA|D{N)U-`1Y)BrGx@)L z&p%y(_y$6YVu~*L$ZQV`d7T-`uCagR?R;@YWR{(}vRz*%^L(Rz2$Mdtx)`1tH5syM z_T^T*ecVETs&?%P-D3I3Dbn;5rq(MI5G#Oj&l}V5h22nw2K(phvKUN=2`L|M?bf{& zdO@>8Ha)m-m3?LCbY7J-mwIB=Jg;uC6A+TN4-xx2K(DGJl%*L?FE(S(R9!{A2Jjor zzjD&*=AAgDneXEKT}PeyGCsa`!uqHc&30?e0vii-N28(u+DW?;iP(JEF$jBs`=JOk zMY*D?WyEC?f)rKs0(`Ptd?RkV>tUDsU1(oE@q+6xb6YTYcg=lYwzfMGVeMDEo;So# zO=Vd{6k-~d*Hoa2t01~M?{i&qYCViy|G8z~(YKM8hsb-sS*dJ>Ih&&uvrke6oqueJ zYMI}QY(j@?MJLks(2?fK!{KLL8mWP1(c+qDxs5O`xm8y&&EZ!vW_|na3@;$Fx`iHX zpkArwHBy3b@Q z+P~?c9c`DmL7~DV*H3f_C-?A_wdu`v0);E8UOau5{s}*#3@;Hdk8)S-9Tk0s^B?OB zHn28NAYhH&(M>2w!!nK)5Nz#lH0l}QY5HvWE=NyIJJ|_$g?b9oNCssFfi1}!48L5A~^F~ zCs2q&a1hSkMpSvBq(Dg!T$V&wsyW}GgK~S~pJ(5R_O~6@a){>4LW<@TIWNOW^Xe3g zY`=jCnDC#8^7tN^Hoa*6DdeMwKit;bT~876p5 ze?rYUW*&Vi{RpqEkBhg*4&JD*4azBRNQqU$Gtqq8|5x)xaH2qZeiX>FOwg9I%wbhI z2p9EZLYc@#OH`p^gvJj{A}+e3&1pR0$XRto?>&CSi;LfI{OKS~eiOeb_PA8nV91U6 z`Gb$RB$X{69NPZwLUuD&wlOFbOc`@Hlqx43Qe+-s0eWfl5$DlTVHlz6C_6PMH%%Zs zpGVWAeSUOp3=2sx4Vn|bB{Zw084ZlRypg93C1BXTzVV;OUk(OG`kc+&@QZ%o#9aNl zkz5u_ZeQy4KkZTMk9%T9LQw^g!~ZpD|n-Oo#9UULyIQw zU%&tVI?IU!_Hk4=&zu6#I@75X;S}|E3u>Y=v*M+M@0Y@0DF%AQyGJG}e)nT?-$8b4 z)vL{3+&Y`X5j}HDgP;(CmS!_FTbps1J7*T>7|)Mtsvg!lY4>0kqt=m+9!Gn!Wtohi z8TEgnWfq>sOU*_FfIDGKa_i_{A2Ss)=nV`x;gFcj3d-|X{r8!sR#Nc`OyAx|kk1uQOa5m)>Hs#_= znA+9iTR-T1Y9#OJ=&Eg+sp?RwyBgAtH>aOMKCoDt*i~&MU7Z}}qBvTPl@?t| zi(2$}+9FXa^{jeX%%v0X7z{i3vh;kZebRCR^Cb7xc-6MMg3P@CxFQp9WeA5D`W#Lj zlUR9T`g5Juvw-RKQP@RQ! zJS;@FJK0gKn53*&O}HEx1S&C^hg*6f`)K18R4wmQ&J{h+V9yu7AuyaqAB{pS^hRA+ zn)!sy%$8-3bUa73SAI(CWwrxxgtA5bR&lDeu!!&>UFgZSKJ2_;;M4ipdbN^ zt5dC(;70q?21_iV81I>j%HAz`A)EJDkb;colXw=DD{|vH9f&Xss%$9ye5lv#8^liF zq`a@}-wi_hAv*p)RXluUovA-MmN?2DXyhz>VF4)x`v}TZNTk6!Om5GT(a0PnIFoSg z54;RUd&gx71hYn}yduEMZs!4|p4Xav+w-N(l16jHOkK>jEEBOL0{7FH+3V@GAdS}w zpf{;hLJ)_t!a0UVIBW9U_ro(_kz~e;;_stq=c>*IDBkWH>wnK4#R--p@GM(s2!RH6 zBb;I&q{*7!*d|t2;C!M<=Yh$TOvkRiD-8bjcveZZSs(9RG$p|5&X6tY<1_DOZ%#A# z4WHqP^>z%t9>)X4G%)uy_U3WyuuHk9W0N=IRKx5M>I39OK*PW}X8y6wSx zMo`9xV+uh5cv`u-2vW?ZAXNF*0St1@bYbT*y`{&tKsvQ8mJnJaiQ6Vi0HVEDeTGww zGKYe{Jl7>0IE>&-h4wkVa17rYw!4(<7a=J`Eas~I$R|H}%xHc?!$br+AOW)AuXBRF z#>eX???1Vxm8^Bg(;V@>bz*Dt-uR}?I%C;G&UG5WU3}ASw(vv@$B2+ObftK_pLgR{ zd9%A^xl$iRUL-*rIJ}z?yDEWO!j~N3{0uw71C^9+aYjP#?>w>WR z9LHcGvmLTexRS#HEbIiPe;FO(jjo2%_+bRK(Ji{149U{&UWWfy`bT7-QI0dLY8v!o zD(c?gLJ8m4peK`)&D?#6a;a00x&Uuhu>$Q}?qKJr(}wouaM6(4{rI@eav-XqL*Q7Q z7gzEW#NpRcEwd?&_fS`sox9r-#iEXF&aCv6Q~NSk2tp%tF=VOO3OW^Tn*Rjf%AazS z=OEVH^}1<{{6uiHMVdvHa5A(~*ZGD*e!V=?e-L8+Ch($=dc4eom~dKyzeKVBmKey+ z#KR%50%mES8qqO+^a;4RB4Bq#H1a#l-{A&{dt`aAu{G|7&*nE*^qD~!!58olw16yp z6{QHIe}#rfiKjX=ec4k;6BHtl3BpEYTZ5sHPr_dUZXRw=%?{LjPx$+b9%nip>_=^n z9#^M0d%he~O;*uRnG|tJ?0JLZHKa{I*wKUx(kxZDaMnMXmw@=4QF8XZ_q-HIaDmq; z)t>KcMfZoa+X9cG2~S$&u4uv$`UdM#iaIDl|FDB6`BX-hy|xU2UZF=`b#?C0I>f>) ztX+VUD|ns$J}buHOPc-7|9U2roRozEd8y+Und3wgY=H;C1|}PS6Afq9xX{Z~kjk_8 z1T&(`<5u1igceeDW}Vdf5~95H#!nWy+^vt~-k)b`t?hS1stj z$2AHgHEFdnmQ(tl$G*e8S({3ejmxUs+QNegQ;9CS#*EX-5t!nKQc2M>uCKF%Ls=(4 z94P#PBtZ1);N6~K_=Ik!+@2xeWvgSYwdKiD)}}Y~d4N31#^|n}l&DElfQBJXoBq6( zz!K;HZCS-Md&o0?jU{!W3)u8lmGAMKJ8ze2NT?=EeiVoMIBSQ>~OFi$1^llZz7S^!$ERr zJx(k~b-Be`n9d%wDaIRn8Q4&O8`iw>6-Dmi7uf7od*b&WH3IC8Alx&<<UQpcQSJ`L=|$CAvlS)WLFUq}fa@A)Y#N7fU#0 zN8k~k8ztl|086@1hwvB*i}gX5fGT1>bX4kxa8EI)fBcU|k5Xlb`5`>3rj}Kg1Aa65 z^f}2Wf8ttx{@v+zQfDl#@JYJZt7uQ-+TRvMr}~G%H>9ZldsIbE|9e!IEf$u`u?fk^ z76k@SAD7|%b}{dtpDcQM~KfD z1pL4GpM*E?o|`zYPW#@-snN~Kk9lUea->&aXIs>o)LaviY(%Ih3HB3R!HuyBP0%xH zDA2XWJ;W^_!7vHUje{=sckN#U$E*Z16h5d5=1u#A+gX6ON>i}RuW;(&3*{SubtXsF zNxKTfQZVAUV<}#!aAv^mMs@(aJHza7S(*&-i#Aq#blljPC(i}>DcZGwShogLQMMaQ ziKEyAgW_WsH&53yIP6orUHrvSygnjqa3`8j>4FiH$(7V9Yt}^gL6p{xBPDxDXof-Q zadhIc0F6zH4{Z>u+d5HZkAqJ8W8LkoqM3JBe!sjzqVv$|*_Hio^xl=J%|B$cicxU3 zX`xO;qkfp_^6j|bLyqyc6d4_syd;bO&_4ucV_6-hQr(GfaE~m1Q#^9JG`u|`PXCAa zdL;grFb)XkVf`YHEEQ7jp-W_9Oh?a7S?hKs+V|_CWmA*;RCy6bfeBU!9yM#;j6%hr z{yDaBJ$Dq{TJ}rp+UVo;>uQ>RdiReJ7V`&PI1TYjXjcdO_6((evpt9MlYOer=*VhC zw$+P08%EWqX`|t?ww`6ssYb9Av5dx?CNeX{7-2+tU)v1qubL9xm3#rZYN8Uz%^XiX z>~g@kc0S_FIUi_7_uA@mKU-iu!D%*vki?{K?uiIx70%r6)8Qa!{66ya>HM3jmqbEx zh05JXIU)!SLm%)%tmmk-C#{Es6Lcl<-fJZ*HC5~UB!U&lSM(Wh?QK7nlak1knUHjZ1MTeBABJ`3 zRah~(Thrqk#YDYu493mm-#fVue0L4nFd?$676pS7x4jgi7xrnn(#2^0C!=E4Q-er> zMM%5yI2>NJPIRa*;49>r+@`MGKVFd;xyByQ?ZFi*MwRZs4c1U+3IDqmXih@FbvwM~%1l%We_SaTkjNfNj*o+Cqtkj- zlD+4_YShB#dP4Zy?ZEI|YU{7?3)LD=dgR@!O?}i}V-$nC8%cn&#qYzv$`dQ}2;{s27rL;1#zp&qn$> zW`7-VnL8O}?$Th>AyIz9ww8SG>RX@I-15SfZ!JLlB)|#^iisJ_`>vhqFjb#pP&OrX zs*=`|xzPu{&ePLRmpMS9R<|?aX)|(3sy^pf2S!#L!`ha*exw@chIlq_8gxmV~zg`6%N)8RHTR32nn}1(pWcbDRjEt3W2FyVr@Qgyl#q9K3q>#u-Bjt!OTLZDQFHw3JF3uhO z0gJ{c+YP}i>qxCG;(l|I1HB?k9IeEm1UC z6pWh}wf!>w6h|k|4I8V!T_bi=ZB4r%Avo>0&<&d2lNbh2JtKx8D+X_3$qwKb?8h2RL2#C3#KxLAntm)*KtR4rX`j>C z7W8!o?fyC8T&am-j6ke3*G`0oAD#Vcs<=E>vivnf6#zYfKoOY4MPaG8C}9=T&)!D@yo$}sMsV&Bw?6>7!S{oG@|ei z7Noh3a*0HM>;MtBY=Ew3xcK1C)qK$v?EA(}rtx9q%R+@RL~ICmW5(xME@Y3}%!F;~ zDcd3tJemw$vXE#_RImWUS3rP;SAWiz^+$#!PL%>Dz=cqx9!pK$*F?+g+r3d9XN{-T z;<>#U(`dV`;A!lQN%<0Otu;UCW!}2vCE^$VC=1mD@YNM#IRKFmQ0kBznLleP8qwNMVEv! zJP)Dr$s=k9PmM15bEvZvZhhSm(2_sxUXyolq33!^Xwu%9buhV0x>}37H_|Su!X&9s z`=^Wob~;$+f8g zv*t!=LY+trL<(eyX!Lc}xM7iuF#Qi_S6wGQBh4^|^~7Y%`$cWGJ3_*5YPu3sqYd~~ zKz#=jcH9kBwEf|6*WQQ4 z350v_*K-C>*AvXv6H$-nZ!vY3mEP1~z&wrMGwsByg5m71%~BEQnu_CUbB>goE6+^S z92O2b|9*s@DqpB?n=ne_)PnRQ5wCNLgX!p}ab@I~KUi)z&XrpW$Po1CCAAwyA>$An zZ_jgx`rF90)mlKqTAR?^U&GMOoNR5#PtTSv?u*?zAgw6X>DZCH-_zq&R6O*tRapAL^?-Vfh)lwGxvM08^rvC;g4BG8J(!%0;&c}v0`gGpx3~=hdLuLd3CUa!R_klV`9~=5jdJj{} zfmF*i!K!tKx?`NzbHx~HSQR%W#f@nL_w>&gY`+c=_bY~y`NYyf6XTzm-2tm$eLvRo*WGq{yjE|huQZs;TWMH;YlI(HWG5_@tvkGZR8j5 z!%MvAtOYqbXK|>8&=+CuyNV$Rhg#8Ug6MJj_=ge|jc>q;>}me9Z_+%T_3{(`E&He7 zz2#>p-XfAcxdzT`6&naXOC*b`&Zu)pAa;>_+>)KtV;1ViG**viGTi})aOrqEy>bRM z^*hX&P2Bxi%jv#zP4V$XRmIJ=%kZ6&grgiT?*;r&3kG_6j zuKoqs0wb3n_6x;``}(6}uP6CXaLuO*=^<@^4Rb+%acYfCrT|L^ah^E`j>`oiIEYlb zNf=mcji{~9*!3L^of|*56rZCP>44daxL8D*3qWDC5du~{kapPyoZxwAahuCNtY3?K!?M_3clqMPE`yjJm-T)VWrBn<#;apf4y!MeRzDa5qwt z0^SX5JrE@;rCRwxIEgdZ{f8U=E>y4T!A@PH<;0IZu^DY>EZ&x|F+C4X%zs-*_PEM; zvkTTtGd;{bi75zX^~`?tn%i?8(b|b_2PS!fTp(kTOPbFf;@?%t>wo%qC*8 z5s?{AAW!4BqWfqv@W?Xo3Lc+rOR;9xrd&)_=CaT8sd|FyrgT8OB{@Y@3YWk7AVhW4 z3LN4|wtx!F*wO2n%+)iCyzyIp8W`LgyAKH6USDBHuO+g@VFVgl-Lgj$qv{|e*$t*H zC?+R>KZe^>zH*z-mJY+RY)=@rQOY~%N0cH;L!o&5Y;ie$$>ZEWdunRAJsC~-fyB{0 zk^GMi@tXq35_{JT<16^}$+kVXVM!O-U~zMR%`SkG#{ZpVwy>6a94-Fw7j0oGNl)Uk z)CWGVH&9&Ph4a+s*>pQ}`InVqOEOGDA9ZG(E{|@}nW&|ZP_XAyJ#nyIB0zkwQvM~9vYjm3c_@AO zG3BK3=N=fBaOA|N8BAa-7v0}D|9AL!^0H8y1Y>fDU~}3h?u(3&u54BvvasL0 z5N}=typQsx__7o9jdIK}5p32OWXpoieJhY1Vr%$om-Juq$VqJ-`S1{^Y-JGYaTdEx zKl8a{v%#^z4(eU)B20wIM{!V#tw4)pfzqdr)#pDI3>F#W8`fl|S#nH65wV&Kt$znv zQv@M{JwU8CM{7Fk6h7Xr(LM>qg8KA#rFo+KU)Bu$9|w#(9NuIRn$IKYABUZ5ZcqqE zIoJ}6dG+#oV|P^7?3L+8uY=Gjh#(PBGhHJ%8hmbBrlUHkTt{e{93OGvnfUL%Cug~U#){5bkc zOgxKo)E^m!SW(*a-siUgcDclQ0&4efsw4TA;AH&tdWdJ@wm_CprNvUS_Tl>hFzz%u zGgZF?AAD@!(qL2FJuI=v@~nUW-cH7)e|*6RdmA+;p%n z7Xgb3OqBmCNr`}DBtkG>fR59C68lHod>Ql^GN+hK!h}Wx3Yg%yfHXJ=z_0OO4OAlF z9y~BOC{HSWS{*6jpS(B3pL}Plpn)~kZ7s-on1cG?7;^kg<)3G>wc@a%`Mllrk+>>U zZ->z<@7Pt(%Fkoeo`*8+!st5*oTA&}l^^T*v!#Z6=IATAf(6~?x1FN_#$wE zbcTwuRF!~{B3!MG+i1CN&!e3?VLX1aV<@s7kTEz(58_tBKM)JQezI`*hNFPZB|@YE z>AAIZ4){@)i-ji|DyVEL#UXZ*D&-T)g;up#(@8b2=F~99&L}iOF=^6^&7|_Jes~O7 zJk=awREGsu^1wJaOHGG)w?1Bn$k*%iQ+w~POm=OHF#|{1W-O@}_%swX8G;;c%mkvN zD;#!N#ECH`uyO^G5dc49ij*`K1#xAOSO2z%PvDZyf2*YVQ)wG9Y3ky!rTha#l$RM! z|6Sn15xb&N`ZoIz^6ld>T{2PjcVImad2+k{+)wF9zjs&L(Bc|k`-Z0_Jq z2;g33oFjBaBrzWfb*PghOJIO2(nlSB$y?h(`vRpYm*F%;_~1Xi|9?kP0Ua4O9)3m? zkXtq>J7Bt-?vBBgEwGx#5G`1w!ImwKBRr$1Ok#~%fUwyhnQTcW#R_&R;(I=ZNlli7 zpDBcf917Y}51*SMrP^97yf~TYq@|I%6P^fb1D{)~^n4FYm|OBiCJ4<6*~T?&{4Evo z&tj6?!b)d2)i#6no>1Rtd@TlSG`7l+ z1dCjP*noLoADrW?0I^c=X#%CfQZ2c|I+wDc>IP%4YLRk8WRfkoP@V^ zQzC-+9Gdl?8f7h_4xr>DtNAi$M)o%y5pcNRLntn8Gg|DQnI~d`zuDF@e|ZmuoN>xK_&zCK;^!yAt=w+9H-^Q* z{>oMu0Q~SA{qh~!eG|OL`z3RU^ESYzebyJ$?t@rcz14n_-B;ArKJd?dYf>fU`<*Eh z30FoXo_QQmHFqOnJPAYau%aXoootoKH#Rmki53Ke;HtgliSG^BAMdMmLb{=|+Z2Vu zr+FWRZQp%cVFOc;BN0do_$}Zz@M!h7yuN>+mu{GE=O$GfE!7FUy0TX{mic|WKtJQu zh$L&;6sj2hTz-=19DNo>)$?D3Dk;)(5_aat!)jqCL46J&zoV7xSjc6{TVnF;VPavy zw9M{wie7Syv48vOYJVzp@qXKUm_VGJjzCaJ+Woyj|ynMwmBS=s8scq zvcd5_#15&4+KbwFr)vJFmEHERGU56dg1U8ny7WAYme@CN4dz}8u!RS%MJ>XSB}*j8 zO0|%Db~OE5=HRx6R2I{2y)nhnc1R=j4I!B_kjU2RST6!b4&+tT%|irl0%`fZt`#B2 zp3Xem|K4B%IEuwSCDRIldyo@3MrhH+Ma2{ z&FHuvB=37)mgk|#PoVUII3+)^`R##WXNHo`_b1IfSrcdPDwGBF*)x2ByAVz%p}2_d z<27Zao!gyoT=o*vbu`d_9&W*{%Z{))2xL+8W5o)uBGrMf`qCt z(~mssjk1P|ghw4(-g894mI2rV6*NR)1O$l2kmS?*lgrz~8Q{c|88=7o)CU(Gf%cA+ zHjydyETuYq1(YZooBp)jyKginnYKqa8?bT9TePAlbclB0ucbi20vWxatRB&bvp;WB z2EOxUbQ1aqrc^}k`@qg%dDx`%V9;X-gB$n{nF;u&SYI&4&gJK zpuCC1j7B#?(^_|T3FcG%OLC^w90naLPd_wn&iM~a6v_NgbE7{vkLjchaIa1zOYKQ9 zJc>u&TS^RM{|lif64_^9UtRrU{-xk~pWQETyBXemK*STEoXHfWOaYOIu3S-(`6p)z z$K#DI?xDi(1Cii5n)TFuM=uTTArh&kc|8#W$V{LGH~j2!UI4_%i+ip#pCW`7vQGl} zAb-XFG66oDgMOGtB5toH9c4NM36Q!tL;0IY>u^i%6k1iPW>%LqNZTkBlyd4985IVK zH0ck|6{m}Q5&wemF8E6)xgm)vC0P!kC3gNdsV$5VN*da|b;Q634!|H1iX*;3JIA?Q z1u?k<;nbd29FP9x;OU5~vEokAb&rJa?7eiB!^7nWJ>^)YP>w(v;v$eCm>ua`%_tRr zJ=JuW`LO;R2xqa?j8ws@CH5kGxeD59eU<-0H+M3r@12l&tthqrfPA{Zn_AmJ#v_|g z=9)iYhK9}*SnHTMHmJLeZJl?%yrtnUxJ?E|l{(eT%C7v-?Ji7tV((4B0p||<$i|3Q zpt<7Pw>=Uwmk=u}D=w6?*q{Grt^=|!yWV)+cRbGqtl8xT(2nE0u5m|EJ>;lt# zzl1Urekgn?d086EzlM#|H_}XA$$@%&PTDbkDNIa#ujVrKS#w%8h1~#T)QD}n;!?8S zn)R&g4%Q9hnhr+O3;FQ((vQ?(7xa|m84=;Yf>M?*SoHIMi!oCWRP;s;`*_cOm z6Kv~A#@+bh2|2eq?r$sIc4=a1Z{= zn+l^z`Uj2|&rh!ZOlU}RVF!f!`;=1(9&L$fA6uhvv%OF638gqT0teSFV^wTWscYk~ z9&T-BplN}8xp)qAdrGjE=+1*^PEoS6A341kr?qTKG0gE?Y6V*3j#{O*ROBxRiHP=- zR#FG^D-sGCXGT{`BKoIBR&6t~vis%Wqk~td!PNy9aU?jVBZc&EPOX)@j`K_}#5)qa z!`cDc46TF9>Q;{(V95pql~O?U^)h2@1nZt_BYSDTP>0 zC(ES^Q}4UjWL~gla9ZH2$c?y$^y-U@Uf3{=|5Fp(!0<>CKlBZx2#T>)!1ABhlgpU} z>LD`N5%0~cf#A5mrywPjU-hvoNeJ_R6(Qo&giq6>LjNy|Qi~B6d54L}ebyLgfFqaL zZ{!PU2@D;UB_UW5qMIQc=`>?+kKvYmKx=G57+II1JbwXXeyx#{8mqmyzW~nQ9fXS3 z>IvQw10I|_({``3GH1j**W!s-mmB!Jr|r z<@#|!seuQZf@umf8%n~HKxlzzV|B!2OmFCfQx*n$kA&O8Ls|1YSd(r6m_H+iV)V7% z6!hSE@H5>biG>lK7yJzm#%uu7zfWsH&4mrdGe8++-5V&N)*W0-P%O?-GUpzQkZ(#H zI{-j}=39fZl9$bUFEs*nh{!)qw-OQU5xH9JRK3|yI9W4@oBwL z;nF;lm8wEXhT521 zl5z6TzE83j2<+n|DlvA|QEDlEd%)hNBW6+|3Pq|pD(RtWvNp>lfgwtISt}!7OqXR=;tr^Ifp;?drcHZLp(vrJ>J%P%TD>hlOLJV{u{(jI<0y05@z^eM5+ z=|~tA<1K==>=2m}QGWET-$uT0+lduRXAF34*K=JU<-1E&kL4tD{;(2lOmzR9#xHQ2 zq$|B_6Kjbg+544*6j2o?u?<$MVQ-h7^D4k=fzyZjavMUC3vKGe&si^;kOj*Liiu=j z&bZii_8dIkN?!30E{>#+VCy;1FC^#_2_!on*^ z!0>6ox%3p>88zj?>N{#kY6NDiRedIt-Zn$$Px&Tx`V$ZM)x@ecI|*sA%JC;fqtXFe zDPv8(`C;(tI_(}i7;L^y@l+%fPAb4-%Z4t<4C3;icsW|r7TqGUEM?O%u4LDC-@CdT zP{9 zYfxn~6U2;4N4yx0=o*<6`3~bJF7=GxM1}FKEk55&iAvr4+Dh2DqO4wY6gM9FPQwqq zt!-dE*wTdC+|PmbpavjBy#3Dq?5lX#F`Yt2NDW}yvxL@1K}}#DL0_pvm;<)&qWRqQoj=uGWMfQLA~d!WSy7Z9r4TSzKc`q% zTt~1wB9#8zig)BuA)eB^)a zLH(hH#l?}`ugT^Lg+Jr_3M)ICrT^HP3PZ<)a1KRpU;{=ZM*H^4L*t(_+ME6NfH_+D z!gnX~u~m0XEh3HksSh&Yy=iT_U&_A{E#q)6W|^{)Iy&j#7jX#R{w8=W>A!oOjs+l& z!TwhBe{yHrsm8bf^iYn!6|(`#xhOB`LmdS2_>(KnGj(?B_vcv=ib!R51gH~fFz{J) zB0snm`7P@CAbNmbkdmYVp`Er!3<7y?V0S!<5g<@wye|K<7s)M|16DbKHy_6&jQAVt zzbrXto1k3rl5|5P0mBcljxGj3a7hnrSeXy|ORjR9m|`NmwS{KTI)1~tPvLs3<*&v$ z2gmf$#%vW2=&KKJv@e^u^+ennqt&lgvMf$pIByJV18LWtDP_Yd{~&6bIppxr%^sK!zJZd!YxjabmS74fscQozQc&Ia<7xP!qEw zBZUk3>5QEXj+@J&-GbgB9rge`_QujsX2mUETVg6uiGfP|SNYmnYy$zbyAWl08m3rE zFm*{I>_#^!=EFpHU2fZTD0uS(nKcUC+mp*F=C#aX`<{u+6fuCFd`E4qie7wa0ZI~--d&eEEjSktP{{S zB=O&YqAkEmd>F9t|I#kGku&RrW`Him9(T`I7zZ>#CVzyz=*ib$rk&Fm?&7!u>$??i z;7DMRLC}MjrB3_dbyMi?+_w=qibgtiI5-Z(NWiscf(UjU(FNR>Th4ac1J&#;p8tW* zD&iZqtUu@z?9G-HxDyrQfL1(e6Cd5dO*rg~VNG(mzj6YP5bg%y1Wmi30#DXPj{@d9w=$6^;0|2N<1X{tu&dN@{ON$OJx- zEwxWL&O6H%b+U-cr)4N%>PtE+{uBvw(l#Nj5Oec_WytLF0w11MKjexFl$DfsR1nfa z?{^^4<64V{zvgWAgn;(3=+wgItC=K}^a$;2>dC)TsrcL{UV+}c!Olri6tr!W+g13~ zz$DQg`E+tJ*|0GY>)DyjT#-I8Jo+Wt?#{-`_np?q$K`Ra^4o}7u4}$YCeqKN>2Rdr zLs+>Y=#!7kP$8vp%ZVVFPyWs4WhkL-11XK=HeR0{N71*55kwQ|S!hR*-P-`PTj|LP zyMbjkSt2~!&ougH1lSy84;H1IZ*E=Bs=L4vi$Wf+oY>^tnLgF+^ znBo;mUZ(gM(j$3-Z_2+z`oE@vz;nSrh@FU))q32eHNn`(c>vc83|bt8GRp2?0MtoM z3n?<2ttBB^9LFg5p-??IsO=yKO|T2mH=|ybaBpA=bv{&?DUCETebjIV_n4|x7((&; zU}YhlSoewPEb+h=cnA?X8Da4WVvTTJ(j8cEL(zler*;|p;&AlFDc{*v!0heTp2cYO zCxCxRBWz5Akv)IorGxS#u{0u^kNaX4Oi4N9UN&39P(>p#D{@qMsQ4t#MPmK%!)Du) z>Kzplf1CLh$QL$YAx$5kWkL8zhH|!+ykeg5pcFh*%>l9OVH~tX@6UFHUG#TREV1z? zNF0(g%6Ti0!4}1C%?M99 zU3n^jZcZ1QS`}C|@JvStHv_ZuEAxXI(kL|YB4yTcZjD8+A~-4dYO)KHvj$`GANpSo z3X{E2IHX!StZSJNbg4_tE^dM-A(e(d58rdMj6afGSG0b{DON?`Fxe`CQvl zQUFz?a3jc_b7L&a@EzSjH~wesaOFH(SjgmE_HmreA4YKkbZ}iJhe_(0s8yt;Nv-S{ zhP7ytmm)N^cNg+r8dC6nrsWJ z1;=NQzTPd=(^?=+zy~5yRK<|2FE@KO8sFXAobqFg~sMX}m< zZ{cd|v0IQR<*U1q=k}9Bc8}%nWnCc?MVJk6cWR$#J3V(st;_J&DX%Owzlb#s6iiE- z5XlR6T2DlXJ`=@?CO((>BgYzgQ%Cbe$!Z9UZsw&4{3e^3pmXvYHX~A6yk9GKtx<__ zX>ovKxj{6SNRM1|15^qvX$gvc%c|xqWZ^XZjuOo1tu@1zhUyX&> z)X7Y{D~lAGQa=CZpa)3y4A~7iuoqLk!;4j=If5DprJ@AVB(a_sfE3gwcw=GlK-lK7 zf9)7>^zN6f$aAc!Mex^IN9dxGZ3K<{00%V5TUmPcYdq(hEpzK?vZep(R+0B4>hs6J zHQ4PH2z<(Jwc6)C!)y2WF%@n`3QIQ9Vn1qgm;_!QQUXLBAjGqi^V}?!zWi9g)7buM*GJSFcxO)^x}=D&0Y8Jg%TpdWZIfdhsp(9g|LXKOQ%`HEy)f*^h| zRBz1*`#TdlUz?08k6(ht*4pWVhx89^rA~5^c((CY8sP-OVBsT4B-1OMZ;90Y|YTA(M z&dPl$PWQg(RuiidiYTywvKr4A3mLv7tqkw z$Z=3}12M4QqZ)USxNkHhoEQ7isdwZ0>Hl^b|KY#pa%;Rciaw5ATX3ZV`J{thjW{~f1DR|2J5X> z^wW=he_nca9Q}F6w$ck7VA{ii3sHkQ#$-RnWHXK5`I)*i2r+JIE!+=Uk5(!wDj~{} zTk9$4qF$qnavE7WDoZs33AUE}H=6}a8rK`-(NJ?}2%d({apeb+i_Z5|-fJXR>tj<@ zwx*~VT00~4N(xf0K1V9OLcT}-jy? z!t8nR&S8r?Gn_0PtDP&CgbEK`Ijhu4j;am04trJyk0=4$hS^lb&JvkAIu+=7;AG2v zV9QRuajepSkCKc5tx_E$Navrt9x@GxqQlOOJO5ZBmk+`J1<}<{J33^MrLpxZGYT)s zSf5k5yFCpMMx<6BTXGx7Wv-lYh_7wmB+UBb-R0gy%}qZ>7N}jN;SI}b23D8umm&m?qraec#^ZY zVB)IhX9t1V2pQdIu|5%-7O`#BC1#&dmlpH6mfnIxPkV`Vj>D&j6ZQfiDB?;m@pN;} z*(9BDBlBh9vG&-n^a}bwaB5mfdOA|16$p@>q}rX0z45do26#EG5OwuoaPjH7>11~G zP(j4H%2N3)+{2GQHJugTV`zv~;@6D!mJ2I+xvNiZZ6<-f7Y&7GS&Q+a$qe9$~A4UCR6Bj zO29qs>&Uhr{1SiORQ)@(1?q3{AC=Ic`Q*13p9)v;geGV4YbFt47t({u%1Uj;T?eHR zF)-ONcS@?n-6WD0h)r2oWsVa$J701-n2Kb` zC%}W+76^ET0JgJLS|KZCI?@J-yUVcc;*j-8yx;zsQ+wS_Kss%B0sU79jaGWRwC1Cb z7%rZ;d7?z)8atn>i0gD?@l#!-*Tl8HkfCP$;itGwlvF8YPojNIwlzM(eN%yBu|*k^ z$yL>{L7u=35C%N^*f>{TziVE7UOiZ{7LZ5(rYK`ZFhvMK`=OW3 z*$7#O;^Xnx=^;V0i>lRZ7;-jNOAoGP@2(9ddR{`mROkZ-HdF3|mk`tPi2^-PfcdMS zYE<(*jLjIovmdA6XBHY?L&5t>{(g*S_FIw(_}t1Uq7T=v&l7S#jj&NNv0vz9CD`N% zKpaq8XQD5hI%Av}WxvI#t*3G@pEm$zqc4@3=!D%uiRTAlCD-uwYy*WoBo#e=hJRPJP0H3hPdtrUn1q8 zC*6PdbJQ=?%jIRnV8QI$AHkZ4ewpXf4W}&}#YQ?c4X-MUf^mAQqH*XpM>?Q<)Jl5L zrs+mR#F>rYm-)LB&eMd?5g+Fs1%WI0caovm$5(&$^I9XOX9QxF=NT+`Z86^#tEdDJm(TZUkG7Odr7~q{V zmYhWyfRzyWa_}68Y<~xMS_M^Lu%QeasW90LJJpA4eqIO%ymrkjaO;@2P=_-$Hk1S- z23}a|xsH9p9qJ^-*wJ!fM-`x)kaT?~8zA*kN_x!^19K;ps@EN-v|is(E;isU8!#0xMUY%4DzC^eH)lc?&dfcj4Swla>Do>gfiF}_HWaT=RZh!4^dXns&S%jZpqeNRo}Dh=n|n9x z`x`+{>C8doO%n6343$K+@9K&R^FI?ho?pA6@$YMg>6?Z}=D6SKA)G$71{gZhx&I8m zi(QYLWApf;3r`U9s~L?na3rnsiu|kqSN{H}STdZ!p{Av(swDK57=Ej^Fa`g^XuYHk z*Ga@vVFeq3n)CznkpXf@%>A$=i=*CaN4dW598Tb|`reAFlc=x=1q2&J*9bi3y{jy~ z_^2#3?k`}5;aFuWi4x|<8biKR4e`3xFCURmpbmd0e84zn{=c^}ll%@oWN@B=e&nq2 zUeof>hMEt|;qoa%azhE}>vAiaO79-@B1_Ity$mWD zzE~x))PzC4J7Dszrm>zoh70`#_8JEaP*2b1NA_b%zrxceEsEX zu>!yY?@1DTAKipIUc*?g^i@WZm{rc*IiKN=T=sh*cS{F#3CHm!$Kvxv@6E73IQ_n% z{}=b={-vz{488{TQZ&h`@d0f3r{8w%hkS`=lm8x##*u<$M;9hJ#acIP>AI zYzlm_XGP^fp}UxGI(jn zBLpi5Q7NH>3yOgw_OgWA)?wTs;2!9gTayOf|I1MnM+ZAm>3ac0fsh|#y9i(IkAYsA zkFsWmE^B720$aJ1vm%8eahH)N0LzjzqDG3(CCq}~(J~+r@ZFKnD1Ta*AsS;XEPb;v z1zCReKPuE2&9Eb4Rwm|8mDGg^E(9>blFuwm&mZzn_FI8H4hV~*EX=Bg_ye8cK`rY_ zk8cGu5Ynv(8=Q`wkTtIG_h+_0`L4J;=`Tl^LCT7|9Ej7!YHn4~z47!kc1F0Lsr6hpUptrnv2oMOfs~!VM!0$2K&K{nh{t&irX^{Fz+mDf;fd zSfr3J8TtVJuAskGQIdxK+zEYeEH3`0Y!~?C{HYbz$4ENVS3cXVvGvy$B!(uQGRzjR zIHF!xTE7b}VP9we1O={P-`ou*E==HP!a$&g5cA%dB_5sdPXb&pMCSL17WE&O4gucdG=Kan5oe-Q9#I2+AGzDNAYgdkBL+&wNZo!Y z10XD_1`!GT!M-pfPY{T_%6iYg@isyJ#kj*u5U{}|@bSR1gtKRtNS~%*LW_PZ!{7t~ zm*{r>x8Y&&_+^~1!o&H-3|}t^<4Zw-?ZA^d#5qKdaorLgM4rU+n(by1tD?Z!k8rX0=JW5+?;8k77Z!JDdE%%UZ`9?pYK;jjLG`c&ha1LqO5zEa=0w&Zz%|K_x#N4Qy>TIZIpv!vSyjS;L# zeO3x$iIAHftE@~*aipb@&N0qSDhPy5q(>4V$%@q zyIXAR-89{BS3nHBVQe_8-hOgfizi;X%qev3 z84UongAEO@Art;YmI+Q*E`7J6aGlRQDT1eA)8b(PkqaYEfyp49WI&7UTLch z-OgVe?5*(pSyPd;;1R#4>+(hs%q%5Xy0M67PcqdMZvYdM%&Xw(fuF(HpI&hJF$B0R zJ{rtm+bdRZ&kc6)cI>Dy}=+k2o-{Y9_NlsElhPaTZq39ZVJ z=Cc%mJm*faKYhQ+mBnTzyXfb}zbuNS`u!!otbZW~L(7Kd%7MBHrcnq@CtiNGpmzf# zF7-ofwnRgPL*SY!FgT%u6Yn(He5ZBb8Pl`uKV)veFD0oWL@>e);sDf5RTjb)?$y!8 z(DvQol&*K$J)IuwKxMv=F+N8%=3=)5a&ttoBvr}U+5n1LN{aRIm_n(p&cgP_)Y{hO z$1!B!#J#|$Om;Mb|E2cQ<@9|?{|kiuD+_4cCDel&d;_2@lG0!lh|^tSEI;ieGa?86 z9T$`wqD*V!&3*zUaUs=$xXNTAD+8lPoj3x6YOAw)_ntA==!sRKB}&Wvh|pqpY6$@5 z?fl2ZbDvjrZ(OBAW{0IIxB+~zfHvE%0Y9S$42Bzncx4RbqR)qCR&`in>X$3^iu=ps zT;X|mtxesX2mF#+0xZkVEohF5iRPw$A=fIo`n{yb;&d(7Z$A?0Qyq+v*x@TZP+uRM zmA0nfyh+^E#l>Goi**-g)}_f!K*H5W&32VP_HF%aBcf4EnbJi%4SG=r?0h|NQ`O)! zpPhw|UA?_dG9EJ83E4gRjw?O=VWVd+IilB8sGZ_6a7k*X$oR-*JpnP}%Rs|K@BjjiRW6G{^+00Q(m zRXRMnb-oidtbDiCKvLcZg;!>~+E-5G@D`~)3nCw4hwU5&_WvLlm3uSf6QsqGXV7hv zh&A7YL_w-=O2K==qwlh9p#+@~qmD=$4wF4fY>BE#E?+cZcCko(wFMWH)YgKtdzN121Jcch@uj_XCW9H z5E`1&LZhi9uW%f}fImDA(_C)x=yQ=+hv97`ygFu9rkwBD$(c+8E71dlChqSeW^et9 ztN6Spx!b3ZT*vi>vrk>HnO2oa*z}T@-Dg@w7Cpql`;oc5=09|Xij$kLZDsCKCN))E zImE1w)eH0%ONtH_avSCal*{aUWK@4jn2wX`-%Gy;AAkr_$A=RsC1;x|%kZEzaiGRY zN93r)vXx;uN~uh70mOFGO2rG&ptmVip{*Fyv^mfctHHt2%^Jz!LAoR+UedFp&#Hy? zIm&-dFyJR#j3`nbX`vHCwa6Co*K5CP^xfP%$i(-K$ZsqJf?|3I764QvQd<(7TB(}& zt);ZoK@@{1;nR^@-Xqe;hhM?PuK+f*H*pNFv7)9wITlm4eo(>t)pCz4dS3r>j)^VH zNjUW!gcecj{bOL_lqXdvi+UJGhXD~xX4c3p%5J>CqfA~PKg(rM+KH7YL3mopW)>1KDbZN7# z_WC^?!Pe_#=%_Ci!TJY2!{^bW-*eZ3lFF`}TCq`A*~(UW5w~GkqWel`ZC2^=BDklJ zY@fssER)C%PqfQ~MI-xkUp!qAIdr+o#;y?N7pVN5+b83^lTdW`C=9#@5`dND7MJRL zb~&dfsVuAY7bO}X7r;J7aSC30nkPi$WoM7ePb#j`iUbRl-h_@^VnRwtHyBRLjZ8HHCxLxyn5xa#hEGMUL6s$2O__$n(@4wNt8;}OclbG zvK1|H)Y`>aT85*ojzG@`6yRLOAfu38o6iAbklT-R92?8B^YGAVM7!Y+9*2oVI}QDB zx*(@J+)Z2g7b}HBPT#$@1MMa9xg$?_KUxBQ_g&%DlS-%RN7v|ZjkzU3;l3DnQ3k4h zV(>oxo~wVb-f0NRs@wkmXLAeRDu7!=KL9?U8GJm&wj;bb*(^(V)b*?RHRE9NRQa6x ztj~v+gWa5@A{>m3KAeRJ2`4oI5JDtzlwonZP7c<8bYk59Mo=~3efm2WM@B|Jk3-ey z_V*!&Fwm{}N+L=5$tH6ZR|qIC5_GX`|J)7JF5kXXdk`3G|LKdz z>(k$sgMz1Crc}MPrt8!Sj<@MW)LQ@20C}jKkZg{hg1ph_fDTLeRCFdzGMjnx2;=QagTyV1DM+Vgf1XsU$)-5OcjZ(uzDF<)eC53jMzMr)hB$UxU% zgF{&Z9F&cMmNwuDM!h)D?{}mjp@aK!7BgdVS&v-GfyRoUVf3NV@9^4r1wZXBx1K^R%Y{dpdyxu+EK_hMRDx=}1E64Z2{}qIIAGdZ@qF*FNHYM2J z0sG&kSCn`0jTzbrP^eha!#CL1fm5i!{?-)Yr>~dd-AKmmrsm!Z0MDbm7*0r7+@h~x`f*`K!Bq`W>l-fp6>01g@Rd}{psysPvC zHRQ5#SX2Idojm`&u?y;u9H27Q2GvpMYL%ogKGhLw+nZ-qE2TFqGp(KK>h)Gw7Z{x= zV%B&>KPAXvt3vG{i8BW?44iq~xNkML(^-ti2h)3WVze-dZO`47XjUQvZWIW`N1-FeG*GF=h1aZ3BW=A zLFsH)^ibCN#q9E4 z`Kr3(v4bk~EC=fI2o|XF3S;PTy+f$Nc!YBfGQd;~c?$&;gAR(0L&K0y?i`XB+(ySv z8N7e)Gudi7BOLOo1x}X`WGl-zd9*;-72LbY?eWAm&!Hh~BTu}~G@riT{Ot#tA=nYK zYex$q-mH_S61%`@v2m8p$D+lqxK0ViiSVNH_V*4nA1)Ug-I znS>K7dfNq6@L^y_s+Wn<%uU_j-{f%&O9-M2-wR8}BuyCnqXFcdH?!**DwxA@l<{eJ zEI6ugh;4&jv=xJSBxJPCG6|?^r zwF9{^!#qLC8vV?zWOzW2#C=$If}COW53$s?ys1Bk@hQ+At|9bB*<2_|F&VXHsS3XPJ%fqxXQ3XucLjK%^(YyDkv=$HaU;yUVeW zNqG@3hK)=+z7ghs4OmF9=!e;SX9J@pBlAmSv?le-=}ikR2e|!Sg!jC7<7p7M2kp>6 zR*WRG8h1+^sN5_eV|9j z@wasNB!VBk~=TNDmhhb&qmdG%eUxK=?J&t5!w5RF8;AdYRMe*;WQb7v$8^{!Q^MuzadS7 zbXH~zDe^@lf6Mdsv3?^ZztI{i88`ln+SNlXS%r{buzJH_rMyo*f0*tmQ}tpWs(zQC}i+0W~9 zoTthg3pg{rb5c(zi0vryU?>P(M~I}BL6RMU(m~3iV(;+W<>Gb`4rbjMOIvl6p6$<5 zr`@X5!KC{3Hb)mn0(Y|x5nWBaHTFInc5rqcf9?HC%KsfuewtPHNHwUbqTq-hh zJO0O7BzEc&Rb7$}DI(Hs5n7lGidNEKo})AfIdoa(no*XEbAzGiqU|!~SHPf>ij%Ox z{rfO6Z%R_kTTcU}eFUwq)`AxT;Fjz$%53-)FrvAMYo%@r1&!gBU;`%2H~=luQfui% zM&~C>GId+k%H@Vi_oioIiGn#YPAWP~kyI{OS1Rgp@5D9K|Mx55UiSMp?nJ?%kgAe;kUsLHF}(sw z$7DxpH~vszSg8&HBLrOO1hLLRq-131E;CMi8+7lT?yJq7#s_5vs=l0OjsD3tCo2wE zY>+M3TzNH`W-tb%{~-X1U?#xKCE8pJt9HjPB*mF*CT|G|_T27&zCg;7p+{-vGix@>hP|k)u!jsU06{XHW%sH>H z-PVnBcp4p;VTOi+cL5hW8cXSrohDzpRig)u%!J7Iw0;!msrd;qHuz-|LL%<|A>A62Op@Oj7#{49` z<}|%-MT(8sC+U|D|7-SWF+k4&I`tOA6s~B8tlz@^-itRG?;vk@ zl@py=ZTLS>I8d*MxGTbs>+(7Y{1XTc%gPdn#aX9|feT(QoPJcPzz|bh2Zt{P&!ho( zVa<}o@S!cZy$FU@Y&hYi>ZPX|{BBj~Tx6Z}D^tGJ+Xs8|keyu*!~*A=qYV6f>(rc} z*Fb-Ow-o=jG5O>4<<0ux6!n?$zg8ftEG69E7O%m82x>x2BxYYa@hUP#lEjVWHIy&hTY~ z7k_5S4|4+p8r{w*Ld3u0B3(>QBQRp605BZC1GpFcQ8a$Y~ zQ)Qan{uFK}E8e?u{EUoK+K5GUy;Iv(LD)v{*=7X0oc0|GFn5FT{gXwY14YO9>(+0` zC%U_Vtj}B=mt~A8OdyL`MTXmb%uoIYv1T<$GD1xpLuanW;xH93=R4v}MH-{4!>zxb z_8Ssm?dOlNp{-6iZ`>Q4;y_3NkXZUB+vtBPg?~QYE~xF=Ik@1(YD`Y74t)?8r*C=aVCSjA&zixpuwD z3YCUkL|VgKj-$aMUF`)ghKhFnw8ECWY3oScZ1NdGgi}SvDJ%Obq#zEabhMso!BS4* z7wMXV)M(+DPDef{FsMNxb4tzH7f^@^-W3jkUY-5^9>XRb_gl}ZZA-3|h*7cQKOWOE zC{*m`T@_~$esewvyO73kNKEOFGh!h0%@1Pr=iv+H%s? zWM)UiWlt_XQxX@?ne}@`L_-;}or&LUSB@T#X!J4b*<=-I$F%e023lnY3AgjAU+FXa zFB!3f^Mv?2d5ezoq&eR9d!29)IZVH`quh+)ilX&y%zMA|!jl$0O)#{?Tm*d{VZ>Fm z4n%OJ_6q!gt6Ak|yYr@&9S_$%{WBO{VEY;1R9NphC^}GI1a1VyD4hP6e3{2`xkmhr zFF?0IbHRIHSNL;MM&-i+!n=3b6UW^BHxBu#Z%73$ffJ&;1W49vi!NP%U3kP{rO^t{ z$8VCPxRpx5)5T7M&_l^V$bW)RmE%9Tu>-wzWV+%1NJlXTaWT&jqP`H?UyDvkCsR)Q zx*%<4=ZhV`Z=G7VCT6vdZP4%Qe%)pgX;f%w;zz#OM39~^)N}UgQHF@dP_r8pyn^Z| zHS*#^?Yx^g-d7tc-iap((#(Bxu*=GH-Z-Bq*sa)VI90=C3Tvk6M;a|m6Pom)_vyvZ z!$Czan{k#jzC+l)ZUI;blt|5yub(9Ix73)EiGjXPacwsf?pFwYTFNx^MawtzCKmO3 zGYk41)NIIX`~7;w*byC24Vny2K#sZp-=5l+!V@;cdy5KK354-NSI#?2Yvy*|Q0rU` zjLrEROB{Gz!pSGmbgJ^_!TgPGmpIKf@nqFluRK_0qsLdQp|X}7w418G|B@~y%QVzj z(~X=c;c<0Icxcj7n$2yzfV63YZ#dPHwN3l|-oi|}=aApSYykp|toUtJTfXeIL4}zURCr0qKFj;T(sQ>=Ejj3}R*Qf9o` zQ!p?rf1~T!!tYDlV5^!(<#@&ccy zJdf{|oR~ue0U-z2M1Z>d!G1=GNphlO^vM6S9lrkJbQxi7+Lo|AlhF1}$*B9x5%J*A zH>(ZM<{M}$PJQpRgUOZBf{4Huj_EIOl9k2hG?sLuX#s_Y9J{>SL zq*0v}%Imkyb9s=^rmu5(!0O7Q;-02aSOvF8t73ZW<_amZSuMaa#kL6}9XR;_vu}_= z>HJOC<&Dpy^0=T$$2%`1jZT)5?h#K)P1j-Yv^?^EAA=*GK%t*crgHi8!)UPhnVpB9 z#2fhW(09*=qsV$4{n+M$oqu60I$Y=HbP4(~lhk0?IFky!>T!f@F!cp~?ZUx=L@+d( z@7~!RUX<%p*@2KApWZ=9yXy@OGrhV8Ep=I1Zw0nUMD_|Dk|5>&Wg67~~@} z&k*VbEI?g&MZSQ*w}$v5?g^L?)!oVqJhOu(5?us}I1Fj;PD-fX$K#hNz{b2-`*A%u zrh&2Vhcs#l`ef&#!5D9?1_#fy9npCDes5SQa z%z>gj)1HpASTxGQtFmqV;lR;^XkD0ORT|3Q5Ov*uhSoZ$rml^T3P`$}yV z%Yo?4@#|!B>a@`*)3v@cqhXs(yjB=?Ae-YZ~C+jpKX%Ja*pq!IGIHFn75D!@V#)y!QRQkI_g0S7Eb0v5S zruX$!-xLa<4Zt%%j6mO>We9X(NPuwtN^41No>XCm`mp8Og5H4l`*A|B%xNg-hs^Jj zO29wS{MA`(jcZlhTNA!e;2mA%*^?uui`$#SakJM2(blVCoTU$h$CO=ZswcDvrUrep zfBEWZUxS_SsuDDPmPDdpROy9qT16wNdoQ=jP!&C6HZMADYF!^U5=Nc0METlqfw{tR zE6y_v3!C@p=ER%tveNUV%D1#OO+Nyi?H{S^=@5R3LAyLaEvc;R6zKRn8-}lIzWik1 zESflTtZob7G)4SriQqhTmY@PHdx7V57xGDQ+xb4VeIs^s-?QzHIJ{fr_4KxZ0)?8< zNOgRtmd>7tcaLqDW%Q{OEv6JCmt2a@WGwS=mhzAV9e-}jGaL|q#tis&Jwj1Vt7i>t zA%1|Z!1K-Eos0gnxkR9x>FJ%InVE-ub_|SgZyXrr>g~5ss96lsb!EJlxM{7LakR_M zI<_2&M`&hCUD&F~7#J)q+0#H!L4dIc3#fV`odd1o;$u%s5BCAeRwzp0>@{03&UDWa_qD%>ag&f5Bd1l&2JYU`CgsZ-L zk#cgSd(wgXoZ2 zy`%j#QocGdTiS%CmhMqAAXAftt^qo!7GaTQk~J}3*;J~Q-6CVM@6>kE&vN@Ylx@Yq zPR0gIOx!o$amW%K)ZKTB%%jPvBFH>0L_GFP_`-3$zC9@ERK{ zzoGHrI;4FR?`RN!$hq-gO>l;1biM-(!9t(_Z-xzDSXgFK3G_X0)7)#cZ=#*Cvo1dA4?cxRte^1F<4e86Qk_ zyhU1>vbmL#^_hCKL|VD{p;ep9fjYiBjkp1Mr7D3o-h4-CTBNH_GULalKi}Ie{Dv3W zlYN-umpf$t_adQ)KR*-c&e&z6#h=;pj@At~UvB$iO;I>v;K>V*fSvw{$Ul4{?&(q; z#onyz90BPKcnH5^pP5r#oaOEP4nbjE1kC)0Yq(>^bm#)|e^w&GPcNQS;8x1&??fwU zN_TVLMVa%tAJ|^--+t8kRya{J`X${5S#k7)TCMs(HbQcB%~CdDNef~Av%r<~tw|a- zhO{@Z1HMrp?+`}xi9P9*?9(G8ReC5L2kOxl-SLNg^51Lh7u)j+%>^b_@}#=)YA*+< zd0yi@O&Za)X=IYgsdqP0JJcCrcQ=jFM*Abf8n;vY7;~B$z{D%KCpVsVIc5D7w0K=F z#jZ?Euwuod-DY>q~Y4Zb7Y@XRGYehvUB^D2i|T zpsgrvPTLNmzsa4Xs3O4-40`0LAQ2%UaWP>Pxy_`1ePiz=4q2o$2jdS4=LxPDJ0IcnIOU7-gS5gdBUCB!Bh0LK-;F4(ao_5Z`I^s5D;IP1}4hsOxN z5l0KW);Kt0oRQ<1y#3DnnY4wMmb(m+D#yjo@pInths8uQ@ZZ;nVp!gL4Bj*PE)|Rv z4l@x^4N;QVB@#7gr3sQ_bg32VH%f%Ng+aFJLgc#{Q zd|q`(f%X5%cExQ{LV>Izv+f7U4c?EbUoHKe2*0mpF3mh93Dm)5n){{RO#9(fBA?t+zf z$eco4o43dI=0IbS(cMrrqrlw$NwGiHNPzW)&~|dTG5_iYr3n!eOztnkiV+K-_gjt! z1h(;c$nb1p6RnW=f;(5yV|?Jlh?8VW0eu0&g2ko%FG zv;NKF-Bs%Sv;P*`UfIt)Uv-wCcy|YqpJISFJ*VB-`{QTH0{`R6r+0psH_vd=M~@@F zQyzV{ZjjEu|KrZQk9Ur|-@W91VgBQTNAy42l?x{bzq;Hro0F-eW@1G5uO!16o9l0B z7->01J#|=WIOV3O%(Lo$a{HodJL7Eat{*OAn$Q04d)D0TJ8Xn5w1P^etkX&7WSnBU zd_~SJKQ7I@TXELj{~{kA#PI#-{$^!2>xXLH;Y#(j--;MkJ>zk;ZS-$A6lW4xyUTq~ z>%qf|&z*WOf$3?`mB%t1zi-Nwd|0!8dhElCKV^1_|KR$NI%Da{JrN=*3%EhCc4gYp zi6$*Oe$|Qo5DL`)>75l6`K~nonOwT?c5CU(&959)4~Bg7ooQqjyv)l(V!!j*iWteX zW68gSb8>_VXYXX;4Cs8Jb#1bY(efL@a*v-b=ziX;_pSZ&y9hI$8rdIefe+0$obj$q7Zc`tbrQ4QUnQuB8b+jtobnPm+DclkUQXdZfnDUX+$3x;t#{s>}?uympH`2GFMd#-%^Pj&Y z_7x$Jm0c1z$EpUZ>L~ziih~e^LmT-D^)cv zZ#>>8zV1om(L<9P^g!*Iz-V9u3WoOV=l@|*V1C8J_)GDx#_0|38LS&Drx%KM&qhkX z9iQ*AwBS3j3^P6r{3hRQ z_7CtjaCAq3WHP`I6zv86IfLSiK>_|?Hr@wGNW6b>gW-cxDP#OSk4i=67~qESck?_D z3C0s2aI5H9>Kt11G)@Lo5WM_lHJab7X5j7b=H=-J#vj9Rs(AZ*{xk$=C`aF40i=tc z-mid)ucyji0Z;$G0=kYEzh5!>F8+bP0%}-{>aPG;7k`OXMtQg#8RDRL0D#m`Rspqv z;Z#C8!QoC`0gj4Zv$){Fq2cTKZ!~4hzw;^kI+>Vy`m1vwF}U{e>rlox!T*Vl^uzcc z&<)RF6n$HN@{GgyrD%zhaBxtee7(HQUD06Wg00-m)8(i6C~y%-P$y+Ce}6A5#>>;?C<)om z7@P{f(aC?(k!~)ozekY%i~x1}#gFT6u$4m{aAOMC>cG+E@P5!2xewwf4z33mg-gI; zdm}#x;zpYj2b@fQ55vA5gozKX;01D!>J+YR0szTTuLj8n8f+X;H34B~XD|i>UI`8; zkR!^y^o(B=Q7{GqSb^7{JQ4>KT+2VA9LW3zh5=m9+W*G`_5m0Dk5T*oZ{iMYL4=e2 zvmZhg!F~yzM|L}bL%_i(eZb3%3&PHVmqYDwL4XppIBhZr=)plo1{`1zz*)cpa05q+ zvw#7B1hfDR5Q%~@q6cvz;4p-<%fBDL(Qp!RlK+1E#_%iRuOS5R48Y(w1p&H0vP4u9!1b!Gd6xz=Wqw5DIhWsrb z{DU}T2LUbB-|`}K@%0Mu{u_zF%h%1t?brCJW{i_=a6kiPkUIqUdugCO(Y_A; zXeW>Wn4I_i`3NC7WX4f&F#(mHnWv@!&E7pTS^rR`_&)563dP1B`3J_y>GA4uBpv zg5YeN4W1z&oCSad5YtZqi~wYRY<~qHQ*!chM4wgB1H-ET#X$&gx&(mC`;)*GfQ*QU zh?t0sn3#;3l!TO;o|24=lAe*4mY$ZDk(%t_IJzAM{`CqWCnY7PAg7|BprWIoprFHD zDCiE8Q2#dq_FDmJB2f8k7=#^wQbSqhT*Z%An=up9BA2n!bJ(_67N+h zb8yllpE!z%`$oJ{A>>Lj{xtU)KyY>9qj^X(YGv~ml)PlNaBMX~S8s;uR(P@SCoulu!r~xPx)E4hRCqe>z zi31hb5Hxt820rYx_@d#7bT|#3AYXkF<8++!jYv{4rbqdSf94{``!AnPUB7xgIX&5qTa3JsA&I|?iu2Oh^}ALta%P_Umhz*P68C{>yUde|w)1-w zLn&E%uAwgbKm)}-P|vpy3>5DJ3t=N(I}u?k6D{i{YY(rdo7P36q{X*e^6>jS7or+p zXD!}-)-wIQX;=y!@YTbe&P>Qd?MB4}SAk{4VtugnfZ8LkA1}B2_W^H%-6r$Bn>u^0 zyJ#>Ap`$EH>&su)EmS@%IB6QsG3Z6r%W6IDhpDRwxEnpV59s`eWa0lfJZv}0f+@ZD zog6wSzAZRZ<0Z8ZOon|b=6fv=YP8)83fJ5R%0d2o)t1k+{9wPqpf>8XL14L#_=0b;qqw<^390?D4}?5U(r$ia zN4e(~`cqF{oGHTk70Oz+ATyiuXSYp*MKuTRf6e+{xRJIudwOrGbRW>plP}&yD{O{8 z-D?EPX?N{j$a48rOmRdnW2el`9W-VMywh0W*>R+>>d%PubJ1&wkNs{oY`0mOI z`92`QY5krl%lzSM3b8NMpKVR)TSIz3A{yK3LM%~Pt0AeF3bpN7)Y6E{23VyphJ~f3 zk}OvZ8cD%cg4FBYV)FzWR@nZl_gt7=1F?;)LN_tggMHw>^*(^Cd}4jp_}Z@PV$0_n zU|Ms|!dKh*(j#wc$Atp|hThCt418_u55Qa;329M%A6zQ`{LZBvpQ;<^oEcpLO1;jI z<6G}`?yOs{Z-z<~W?uC)wzha+ZWu8Od)ga5pE`&=9olm1va!1-)?@}d;w*80a`*-_Pmau$a!4TiuXsS{z4Zt&P1XeEi~5OzrqUnWuI7W*cdkKG7q$hJ8TY zYt3^XP%cfrfhZ5s4b-~R;=W_qJ;j?wc-wX#$lKB12Xgm;+ib~$7sSPPC3%uGYfk2t z`T0b$&)O`=+-qZ2iU*UN5n2Duc3y-OFDY~o(alfixh&)7PSAAz< z=A~5F_O{!lNN z?*k84hXc&L*1P4?Cl>LPIKtkCadlVV4_UmlPfZ{~Om4ME7=9QR3Yy@55H0f@`(T-J z&$TwC|8-$?X>*|UHbdCu^<^u`=wL6H1{NXf9`kT06n5r{R#BGLl2xco-b~UyV6-Zc zXi&KH_!&9#m$#;6*Z}Lsmf4^xTMOrH0(4nd^RlbY>+LUIk|LF|&*~n9sSG&pw&bm2 ztwQCOb*iGrg=Hj0-i%so9aHex<;C8pL`>F=?>X{JYAAdJ$GfWAFFqRW16d_@L9y4J zoppRl{j9d4sor;aRh3un5;X4v>C2nD5+A~B#kZ@{cik1fZg@m|(D+fIx!Qi}`yanB2wfI%<(9;*<8OxCUCHV%UA<`i!3}+}zkCLz9zE#Y6fz^Y zH8kS2!L+jvC{Zl;p5>rlZxZvVx;5%~@#WkH*F z+@>k|)Eo0D>($&`8s)L#g@;l2yYf9B8<)@5wHOstYfd)yjfU`VTT6v?lr*JQj6}oI zIf`EY9m<34a0NUT@{ z`^Vk;77o2GOMWfOg#}@qCx2|YYlmtmuuokuMxQnCvrCA3RpQ(V~K7d7{ zG^(3l_wGdBwOFf>n%?=S%Q%91?qC|I?z)8SB-~IQY3!$KSaJ@tnpxc3W}%Isn3QqI zzFSJ>lX{)}yik%slYuez?pj~_`pa$aU4zpTswS^3Z_PXpT6kyiaUWQT4sQ9z+-w$R zF3`sy)3GkKj^9uY4Wizb8`-N_*$1wg?&`kIz3R0>@UYWyx$D_&Yj^gMG?CK-8#c@F z9xWNVFN&omU+ir}Gcxe)y;#A#CiV94iK=;3X7F-!=((9i_ z2rNccIqwWiS6j_YZ{CNgi1_HgbQN}eING$XGE}{?buo?S9cr|BW;4^}hxG`9u4Ay- zSpSI3B}vv3o$BLXdoe61{Ek76W zp1f~I?)vnONbpImEajQeuup1NO>@~QP6w{MB))r52^&n-`$RrlO5$eoY#k%rx#j!kvlS)&OWwteS+3HXthL8Rv8h@LSxak8;4?A1IQV<06r=T(QPIBAyFYT4 zt(Vh8%x^qhH2bt1xNTaqN78OB+lh4M7QFX#w7K2lV()p+kzL_eFN$@V`}TsqyUqbG zn_3EYzj|=1IB$Jv*(tQGr@@nXsd}Atx96suSK+&{XJ$L3E8ZyBQizrie*ZRh`^1a) zG@hPHOXcl|MS|LyzDZH*=9$7h)Z#_2K~wMTk$}xX)8}p*7?0!l$7&{K--m=6cwCJC zI&v|7Z%T*ro8~d|xsDyjZlcdn_kDnJ=Utd>%V*)E?i~I>G`JboQBQQq+5LgWA~;y) z{%Bbk4cU0R573Nfje-Neg4v^;?2}(Q2n}+B5GVU46xu>)y1(>x-RI8H`}9)2V)}D% z*o5#7|ECN-`q#`tuiq|7S51EIKOMMzaUYl|-pe5_NnmyLaIaI`m_$vY>eC3T?Ka;G zjf&T%UX1@<@hL{;eg)&(`H834EAcuWR~3bY_xvW;`~vTdCT?EF3ZYcRJp-c8!J}CT zMrtP&o@~c92l(V3e?#3%6WY+KtnrHW>xG7Ia$$|!X(Q)6&ESA|Xyyc-DhoDfA*d~I$#&9z-Qq8;5*1L z_}~xPO<8aG_VwGS<5PSv$gvmTU)2ddz}8YZ3x~gc)_0c5CS?)wh%b3zlqbGAxwz`m z^xc(mu`CE#${#4dl<{m?AT#t{|K{nT&DyUkyUbN-NeG|*N%926vEw7O3J*VCWh@$F z4xT@@ed7J7jb(KjLziFfXu#c;FLE~v$%j0n(VaRD&i*rT>V`CHx>PUOa#v2~PrB4L z(Hjj$>$Nv#8zqVM@?5iGD;s{XQJuLNy;nZWfEu-xGrE31{E99~RjU|9d}tGPvT1L4 zJ8S{Iz62BbdMR7d@@)O`x4v5!c1e8C>Sb-buM)d8HTGt`62<=3sNf^!n#gRYqhtY@ z_mBJ44Pfj1^stQoMSOgB72c{))l zt#paoE+KLlg$GtIzD1dChJ8~@6>d4{n!iwC71yj@2^^RFF#UKRc#p~06h z-D=kLi$-t9vBr<5G^n@F4zIb1_)>m5`D*RKn-=f^QMbGgL~Gu85pLPj)yo+xn_+#7 zWb#ry=|Fo|$AgiN!o~A-z=);s=N5xiv|iKTM%ch!{14_9RPa`=d477_Wb^B$Y3r-3 z&tB-ve1AM2KZMY`C4F6bZs#mU{LRR2?ztZ?Y7w>jz%yfX=0JA`VXmX;rW@M=)24mk zlfbo?q4`Y;6-$M4XH@Mn0?uG#dt&J>Mn}#}4m}>ys!NW9@{tFXB38Fn$JckeI$q2s zZ}|25|u$%$Z|D0Z{S&{o5$^a!1p|w z-u#H9t)V04DTc8c0xKxertF|^|Eymk4HwB z=j!UMvtN&-#TTyr=#(&f*0FQ?4r*ozY>qHz$^rTJAsG)U3)t!u6Jq#WkNkc8=SMS_-?K*(GnfwW;x8&82C$SfW+NH*`v!CXMpDqUyOYjmww! z7T?R)HXNTqO5ApPdAYy-WZyn;c0H?LBUNa=VxwyC&h@hR8bA0x5ZTlfR`E5fEchdX z@x3q6ew1ImhgfAXV4od&laC2C^f_r2Y;tnPkdU_5t_t$iY9BC}-Upm^PwfNbA{QyN z464TUq-q8q)>%C*Mok^hvTW`qY;j_Au zT@BHfo3^(0RF<@jFSd1eUwE`=M{5`gc6&V7p*<*YHyfxG!CyEbyh4Mt2kzMd|~%)Ct~l8 z?#%XC)0yuQCMrdMaP=LY2#@#L0yN_CuZ~_90ffW z9)$4+wR|0Pq2(`OJ`esRdt-%9tziIPsI)Ybdf2~{z9cGHKcdp`7b6^F1e;Q8LwO%tw-$xsShL-I4C>45gk-|seDlVx53xq*fTG_^@aV|wffppT2B5^JbjY>wHASN!T1){+QvR`*)DodM0`6p zb01)e2VeI~?M(IczKzuV@Hng2cPG{C%_#BaEx)ky#mNjrt3;+26)z08DHxplvR=vL zkL~buq3Xq<`@jg3YEz>hkaWri_)!Erqyu=S)(v6%Yqu(X7}@LJst zdwwx({cg$J*^%Imtmgq_g>KXzE$~kEPjuEc`ET>4j|BI7PCd^}9VH$et^8Wr81|l< z@p=9AT`P{cS10a@J@GjspZw*=jJW*SCD|}*+wD!B-6`8DF>34zN7T2lcl&_eQkjf# zcYkkhrFB|pI)g+L^A2l6)aBDGJ7vQpVMC|d4S{-x6O1v7*&n3C2=|BQ&=!l|NBw^+ zU)Yw+{A?#sWe1CBGhi#q!NtI(s1sod0i{oq@YM!66&C1tba+hV}u zZ|7X*UH5@kC7_rM@OPH0&zaqkec;_FZIek}USa({&}m$nTu#8dH{9}_b07G&6rjI* znr@jZIC~SLDgJ2B%xJpMmp4;E10$O4`V)We}+Ftib+l z-rE}!HlO!_oRpT&BfV?5X{!1ekjI>`;ah$qmz>wxeSndP)gy0ukTu*+4D>okNxnZ5 zueZ{qJ#8AM8Az!k*);OTdOKsOWUR{h^|z(L=#3IIQF+8{uu4k-9= z_W987LkJLo8G--%bIeg{=iHn@w}TcRfO92LgRJ1(EQpe6aq1jm3QBMq8^k!@=>&KZ z9MN%}8cGQCz)>;_Vk!`mg7+`rNpr-5lSO}oap{>M_y_WLLCkW5@j)h@-((^{IhcZv0pimj<^r)Ah;KzeK~FgVxP#a&8t*`69*DVO4zUP0$F2&VL>$ za1{fjp#f6KM9V-QIHagbBSZiJFd6v&>wYk~4*%CjzT0%B;=VP4fZo+J805aS=w z+dxd1beJzbD4ysD;sB8J8-`^6r9U+Lu>NrE4|arc z?eAF5A15~^9ID?AYBN=P#gg~aOpz9^QZsw_XZ^{ix88Q z03EKsHL{;HMs0UMQJL}}51b6#f$P?A@FW3GW>7xvj*G*cVj|)Q2`R)c`p@{4JtyEj zH7D@%uJ7jIOA>n#%pbuXVqd~KVC5K zr_3KO*nwN^j~DEZ7wnH0?2i}hj~DEZ7wnH0?2i}hj~DEZ7wnH0?2i}hj~DEZ7wnH0 z?2i}hj~DF!KVGo?H)IxCDk^6Ukp}8ox@re*FfvVDH%~7pI6aO9*Y$ym_uv+mR&c`S z;PN11aKam02;_kB^VTy~H^I#pYpJQg{XnL}x#OSL&5?uYWnfTH(-02-N&PSH)F^LX ze{c@n5abtgLi?dWdA;zt5qjNmOia6|q z^>hMxa5{TCVV!We9mFw#0l0-hFkKKw1-hYwKs*FuPD}t6bWXr<>qF?UXa{hy5*}{F z2&X?9_uAXPwo2K2#@x%`G5f5ZOZ3LTIaQ1S9Uf3Ri+&V%BGBV=Tx;hN|m z4BFpc(9i+p;o$28SMkDnJ9wT4fWtE5QUNqL+rmL3OCn?>B?U!=aO<#s9{=0OpG^PZ zj;q^4maj&K&IN|Pzi59Y{)^_71FmudSM$LV{-Qai13-Nw05DGcMdQo{eUw)Kpzg(Q z0Eu=+`=UL;tjxex1}^^utJ~Ab4Yytw?&kTws^R}( zvfp&T!NYb90@}PifbOgiK=pzSfUWcac(kMd%;qi_1Nl{Ny2NJS`egtxKl%Q!-Gdm6 zKe+zw0*wcQP(L>pIF77>G=ZZ6d;@V9>=U>PKIjgk1YO8XzzKi@Tvjazy2Yh{(|{tN z255sT98CaAzz$qg?FwMQ_0mDW1t1)V0fLv$_nL%3PYu#N>ClB3Dg$q z0`-9gL$5$@KyN{Fpk>fH=o4r!bQn4d{RrIvz4D|m1{fPm5GD;%ff>N8V9qdK*hN?z zEESdmD~COVb;1T=v#@2@cRT_-T0A(OAl_*_O*~UP6rK;>MZ9Zx8F)o_b$IP~gLrdz zpYZnZ$?=cl^W)3nYvEhqyWj`mN8zX97vR_8ci<1>&*N_r5D+jBoFb4S&?K-Va3=^M zxJGb?pn{;4;1$7Jf(=4KLMB3fLODVMLI*;B!YIOY!ZN}Z!U4j0!f!;RL??+viPVX# zh&+iRh*F74h#nIS5WOebA*LecB9QzTzWNlDpBWk`)k-AFHy-Xg6e?IN8c{Z2+h#z&??Wttd(q> z>?=7rIXAf?xfQuT`3>@7@~7ml$-hz1QV3CKQ8-bAQDjooQ4CP5QW8^gQ7Tc|Q3g|{ zQr1wupj@URrsAejp>m+QNR>&|NHt2eK}}1Ipf;e!QeUGkq3)*sKto8wO`}HRM015E zm*y$WTUr<`2dxS%iuN*X9&HEhJRJeuDLO4Wce<-|_vxO~eWItK7pFI)KS!TQ-%LNt z0At{0&|<(a#4}Vgj4*5;V?CyH41Fy2SoyJmV_S?YjEanC#yG|b#$m>7CODHClLu2G zQ$5o(GafS^vk`L;^Ihf+=4BQ-meVXKmN=GbmWkug<9x@F$3u?i9`8H8!FqyKgVmcg zo%Jc}@(G3$iYMGpq?~wsV(}#HN%@m*CsR(goLqv_!>1Zv753-uvf58bC7UIb2xLPaI|rJ;ylTz$9aLXlyicMm`j?=l`D;_lWU9n6t_8d zG*h?Z!R*p-x$^pz}^ zT$JLJvX{CoH7ZRfZ76+Bx=RLMMp-6I=8?>ISxH%c*=pIf(}JfxPM4hiaOTt*^qIUf zZ{^tK9OUlF&C0{&?d7xOXBF5K929aC-Y9Y?Iw=+?zE|Q^a#t!-T2&TN_EoM`-cpfO z2~}xTg{f+&#;HD6qfs+e%TRl*&aUpFUaI~{Lqa1&qg4}MQ%5sVb5x5}3#C=8^+{Vw zJ5;+}hfK#mCQS2a&EpS2LS2({?7WVUp( zY_KAKXol=|@(Q@b{^m}JH=OpJ3E^;o(E{m=TuBooeZYpjWZlB#X z-Lu@cJPbSvJ@zr?mzvmsZ+`D6?^z#NpPN3Pe06*a{2+d| zehvO~;LB8B08c<J0E-geXx3Peh6L&Dx~cK+lBB8 zbD>J1_bx&%I$mrG;|RMFHh)RuQc*ZbxJP(@gh)hE#QJ6P%MY)xUb%GTZKOtIX%t12 zZ`5e?>FBH&ycoBb=doh3>9KopPH{a~MXsh^{c#O-t>-%8`mO8xH=J)gkC%+Un?R7@ znJ|*5kXV#NofMq(Hd!yZE(M+vm$H8I?9J{}@zks|lC*%d*;~4|8qzt_6ViWVxMmDz zDrZ*QK7Kp)_SPMzI|FwW@0Mq=W?jwN&UVWlyQgulE{8iOHJ2baFn1x(EUzz@y`>16FZZartqiYrm3b=Umt&+Gs8PmF)KOSJf}L>_s00m@W-uP-ra|LI(t+5 z*!}(eIjWOK?|GhnLJqh!)IumPtnfJpZ()Rxh%j(Q;T-tp<$?BxJEFlA{BrDTO)czj zHzzrEa|t~WJ#Q7XtD9!9FWNX*-vkxxfs%1zSCEIFIVXD#>y1VGJHXFjF`j<1=j7NA zgv){$M;2y>AF%j)$gv-OPG+HJ2)=9iqTv!kl7c9NxCC5EMhGD(CN3i*fcv~mT3AF{ z7$GKzkdze{krfsF`3)F5n47PYvn*0o{U|RmB**^S%WIIBke9EEF!(YrBP=2+EGjAp zatQjJ_w;u-C+O+N@l%2-_#4L8?O<;fI8GwC??`~Z96PA#VG*$2zr_Bdt$s2(1c0Ue zC!?alPYDmK3Uc5Ka3I$E=e|MzoaR^bLBgMjoKU~Gy}_Ld4$9|*5=LXtShT0VAIOXN zl>t~0dV0Uu|50-+_7}IGzgi$z=zmiGXPfZDZ6F|wMEim7V|5z^9<2w_n%Nik_D8Th}1|4J^${(tnX*kM9-jDw#m z?x!V~zXR^)h8#PXJ3IVW{mbG?c4%O*^ZkQ$g+#=}f9KalyEvfEYZ;oTsJgkJ{lH39 zmQqqumqH-a5h~J3YHG>|H7Rw3h_bYbgt)YljD*_nsSh@U0PPRfq}cCta2f*K_Q=@{ z14jJYk6w1T6H3Zd!tbkQR|pMJS7ks7orzDE&;M<>}||0RA4sr2(6mkei#6EDEdwX=m_vwuqyo zgP^#Ch@_wcLJT1&DK098b`TX27nhLunf`E-5eLlwQQqK?0v6<89>DKtcu~UmA0dnz zuII{P96Vh>l?0Er;{XSd|Iu+q7&p{l+(6+6=rAAQ-?IlX3fHl`e2+9RM*IBI<-f}I zUo$xrfXn1B!3V>HtfreEn9uot$OwKgGRQih4jZSRLm=9T{fOxH50xY%B_V-AAW(v0 zq9V?M;$ouGf{qADCqYq12?sGTX9qC{wDiyPLEwH%e{a)Z4;Kf&@ch}s5A*i(a`q2$ z@I@=RfQ{(qbK`&e8S>8zP_AHYp}~G5%r5-PbpNL%`tO?Ep{oB_BHTyN|CdU1&~}ch z^~I6McHkuF^nl^EN5i=?4h}ph3|zqk?wm$ILb~4$7*pZ4Cxb!p!9CIl387Hn7!(Ep zcTc0HA*2O}=-3eKO2qUW;6`N(oZvoX_dbyv6H~5w@``JYQ5@;`nMsBFl!Py{sxc}l zqMAq2#Po8`04VeXEnJGc}NijTxW2lz-dwf3k*>ktrTepUCN@_3dMBSiYl`IPW zP^u<(DN?szx#Gm_OZ^uZxbwPhb?YYhau6f0@G!*Lm|}DQq3Z>4a~+gogQ#SI)!7ehZ;eCyT+?3X^~LIuVzvNP-CA` zTi&~o(i5^*Hq7~E%A`?MfWnytZZGJ14w*;P_uUw;iuhCybn?1RrDg$XHGQdCOuVl3 zs2kB&IEIdxE4lgyuQE)%s%>D?$s?0aXC+v{?8cOM)9qJC&hJEZY}Z$AmjEWl>pUsB z>Pg4LH}EA*j&WKwtO|9RS~T}wu}g{+UrK(C7Z~H`R9aoJJNhuX1 z3()RxY!zxOt^;ln+I$!a7aVCg-${DLqAG?s!BV=BPU(4%DLAWadE3FN{H-<7JtKk2 zB3Dl%2BZF*+M>G+qE5=sSx?cP_{4{FY-@Gyk3i=<>Wj!%(QKm_;|Vt{D8ur=Wnyko z&)&0X_l=mJ(@xZj;j>}2XfQRjkdehyj3=HJ+2VBQHIjAY?epXmTg>r@YtM1eu98^8 zL^@c%I?KYn*9Kr?AIm2bbl>K#$Gk;3De=ZL>Ttu-ixme=nq&02@5jh0j*u|E^uW@Q zS$gbT^X7Ljw&La@+%0C5-V{Mzv8#X_^WM$sWpmoFs9*j@JJlxMHS6$rkt zEtmZmcg>?o9)#QRyu4?Qlnz@hYJ)sM; z+PNoIWx&o3LFUm)%=->iIIEnF)$lL5YS(eeG@{sls=_L8p-4C|t}DT)g*}{}NBQC4 zN~Mxp3Hwdar^AlThRY}A=S-L<2`SbpRr14fVTflzpYq}Tno<(i*~3p&3`St?m=Y1I z(g(XXgj73xo$!rgaN_K^M!A_%DBzUMtA`0qd{Em+Svdf7bp&QPsP6;_DJ;=f*W|z% z^-fGtrEHx-^S%=GBNx4&%hjgbADuIS6^xgjw;cMWD_l==TEyTSJ2j1wik7xeh_U~Z zA@4i0oxvt8Xzquaf$+2hC(dKLu1vHfG?dwpOD&;8_fo%C**Vl$vFUKsTi(eoFE?T8 zsPni=nD$Xwl75A1A(|l+dV(%TyJ`~ul?V2e)BRy3^U@&vr=(2iZpE@h84Fo7K-oKyx>)i@yt1G)- zg;e+!ltUT$sO4LZjbzllfUZfwY>CL}1#%?wI}PHJ5ld5TctNK6N9GI1op^60aM95; zMR3wM%xQD!=69EN@wHC~>rUi6A-f8FDShcC`oY~{Rm!^e1n!~^OhDOrniQ*1t4kw> zrRjRbgmlV zI3|8~oG&&_jN!ZoHR$;&-*>N1VTAau2kmR8-nbODCkU)!CcBz=ZZmPDxt?lb;9P5D znj|Bii&L#J&1dmzTY;bQ1#VB4Rpx}I-aOBfW>F=dQOV{0DDPGrji6(AaV2&NKzlb5 zXpFcU4p6YfJ`n9INgW+uk*TX%D-$V{xlv43(cEhNT_n1mOKt!$+c;%X=+SStQEIFd z_tr|6mWPyF`bsia&&rig)EQL|vO;b>cpickjMWZiKhA)E-O0+QD&RK#7u`yHe)CYX zk5}j>B1g|bylh59#i+VyBWY3|j$ghqsr$*|gbb8^ z&Z^;FT%gr1--2CVDDk9|oj6IijHoSq^w_aZ^V&_Rg1pNFcb6Us<*5+Id zbk&`0BXLQc+V8aCZ)8YlNMpH*jYP&n^F|E$GFhFPLfYa*lSwk2fNZ|r`z$7M_~QCEa3EmPWYEOA3qW5BKI@{#;RuT5tv&tv_EA+-uu?8 zUlBBnbWFC4#cs=&+#XT-nyH+YX_Zbum$vkk3%maLR`{oUh7kcrp}}{vRzm{Kc9`}d z3yh@2&7N;mB4%%VK5utSmOGxKD^`vk`i^d|J+o|pzZO)r-FxYsXr+|eJueKZL1m4j ztIyto&xlI6Zm+jHmEZ&Hj(#bZB)nBhIz*S~V(u*hl5vQLPY=wS2$^wJA`N0UkU~^c zeBKB7Zup5!e#v;HMthW_UJ@;tk;W+Ebg_O%&-6$eHfi@K>G9hUdap zPjQ*q0#uXx5W=l zpViFibCHwe>-N!6Kk>GC66>nw_f*-xV|FTk!jHQ9>YDg-5+cs{8BcBGjps^R z{Q1`&zp9wPi?n*6PIG~Yp8Za45%+FFb=vJvYWzk|EYD58tq6~3I*Ui0qD*o(m9LA| zS3?9E?RMy2m*5pMO_$D1vtGS@r6*-ttcvd{zE6&)N2Dt+3bC1KX}rXD=bX7uz)h1j zC%W+%)Vq5Q9A{EW0s65wdCo66q%u5F-HhS#T2)Qe$he+1jmyQ-BJfg@c zON!l`-C^K2-zBT^6@rYY5HH*EqzRVT}?tg8Kjozcg?DSCp+URqJGlW{<6Hg4C3b6@#waj z-1t`c>g9bgqlKbX?9a@lnX0>Bky`+I?ZiuOj`xjzsbc8_J;oZYC!LFu;R{+ZjHfqw z2OeVZI`b?o(#`Xe#A5IRzxT+!%cEe^_8lU>F@Iu1LR1lXnJ=FHdN9SXg#5p-#}Y zOVJYHAQiC2rA8?i zXpHereC8lA$-o+h7L}bceX))~KcP{b23(r-7*5!`cpKB`#>7l_AYh!R6LdvAo3#DQ zgfacn^H?CU5N2Twg!rtNX~=W7um+kiBX_ zB#%+G(7YLb11oke5l<;43lVdY#28~JW2#rC)Yg|%o8eJJih27kU#m(&JxsR=A!^v_ zwD~UObkM1`6zw}RRp{ZVUZc<@luI=5(5qxPAxn{#)pu7>yV83*E+%e=(MOXaJ5 z*ZPmUFyfP48;cAMxVC1qHI~mFosihm73(`b-crcMXUx{_Tw|zvPQ;#o+tjkgT~mp- zlKzU5nUD;J(--Qyrv&bFG3Luse_+ewS;;JmRWh%qe>XSX5E)LC2y+Vc-8tjpGamJX zospg|{TwsTgUIVdEP-t9!LO91RaIF+6;+j3x~>qPCY5~qx#2dihR}GM?J2Z`6?>9x z=!gJ)oux>neWg-NQrQKII>t(iHm2CbTgV98omO5~>8Vk&~n8_yy+)4S+~pG8|! zw6kKOfU{O#gmgGEYlY@ssZyi4)&N9GfE(E@u^nx7z7Fo-yK&q*_JmPWDis9AXV}}# zyVIzxAvMA^UJ*}X$%yR`Av3wv@M5H9f{KQg^$I z5(04+Zm*s4A=!Pz!^o11^Lng%m~pdsL_PI`QoMJx_Y7Zh`(BO+Pmt6lWJBg!dOGrw zmh!@5^M(THByxuky7CjRrY8Dtkh_RZI>gLxhorZqe6dTZG9zz}EKAL%PJLK4l36!3 z&YVD_`q_u6*0AGRRWbhK&;`2OkFe6J3O%Z7eDB3JK^84)r%_2(3X!Pfr9KwP2oz@l z8UKAJQDnYKplY`e$K#JndYQ8l^BXCurB`#-q36Prb_`0N>pOUpvNoM9oWA(>&bX=3jdN0XLqGO#|hs$&spl^tDARXkyfc;G?CCcyRP z#d0FQJ%mSih$n)cHv-#Q#bEiY<1QcSW6qj$kIhr)eHyeU$$-hzQqm~cl^AxSF{BEK zVN^s_yldmm?VP38rtalk!|Z#d&U0O)C&nqDT&%BBwVyje2~&#I2hT+`pOARK&Jg#h zYe%#w_&Tu9$yJvi{K|V?CV#J*!j&%ogL_nmP&czgUj#+@83vZS2_4TH+gNvq1iY{q2eOj0-FwkFDpA$YCdwL{ z9WVU6s+}?Gv{M4S4C3F#Z;?_tU29iPu{qtMKQzKp(S@IZ@O=0LE|thvBhn-F1l;SM zeOQ%7-F#YhkjCeMQn7x?S|M%VSI-Fa^(YH|m|fgz_W9OK8udwnn^o9(K!o?klxBP+ zFUGW>*ylu2(P_q<@}An%_B*VF$@u~AZg(V5V+{EslWYMRXhk(@-t;LR%vE7=6(rLvR^IW2{9UhZ{AT6 zc{gOF^Fx(j+}|Xw6>9~L)vx)yYZT|dcBP=g*{)PbZ@ZIFaC~?mT`c^jMcf-DQE$|o zwx~eztiI|UTN05Ntfv%Z9g;sJNAulX0s7iUG#y>yb9%7}5i!ULqlCP^5w&AQg1pxjsO^+7%!+d4YAKr@L8r0D zqGqkVIzQUCr9@fIFHT!-%njuvyrp-;VuJ^ns4q`EA?sBO7kUHjhVsB;Z2IVUwe1_Y z`)kQn!CkCZDkl}G=tb$~eFd#pxcL!ApQAMJkI`T2^A$zju8^cF`ATsm>GoqD%dvOk zY%vY%V=7GK$p+Os;q|UW6lyVNBl%P#@8-w8dy|c_%NWV1EgD+8uZ;~#deo&9 z;};&2F2QRP(QAQCF;~%hoHtH{it6+|p2<&0r#rzQ*&032&7iBOq{Ggpo#P$EuTsvt zNq$f9c1i0g66EsD$td{;gbf5NiFo1CipmU#{)BvE(eNewId2D#$Wi-9_41Zr_vE_+ zvG2E)3vPY3*lfU~t9EL$$fx@7=F9e|b4f$N)01p=!*ThfR4fwN3nZbFFPvA4cvi|a zV`8;$s1*jW89$+EOMWb9weyPIR|R2w`>8tm3gIL#SJ&0^o!;4WIUdD}vP&FEapnRO zY894?9=Y-2%1bH5We;=9RcWEGb+{5p=#)t4d7ofomZhKdzt$$I($k5JA6jrNHz85b z#E&X0`!32^tXr8QgUOe%8&>No;?2u~)+70Da^1{cX1smJ{UuP6?bE2*1-+cm3uTu% zhfFWa%3n~iq!hE@jZ$`QwNkui)^M$7ke7JjjN}xP2r+D?Ed_g;rS8NfhO%XgsNfh( zxE6%()v&f@|CMK>;XGWSiZ3_uTfyH@!5v$C%~d8I*$y9zK9y;f)!w>a>^J7ZVN2LG z#)FvW)1(XkV#BM_dd)Ut<^3^#WilM$l@kF>DvUmU*mw!K4t%Z}A4)z<82(?LNfv3S}5@%|nQk+|;t2tFW~x zmiy#|I9MGY@&u+)l&sF(w>T?XGLfoeb)G-*qMXW7d%oyfq=V6J@f+3g2xJ-BKA|#6 zx3=z*HfKtHWD1X2G^;mPx221B6cWCweRDZr_I*-{s<_?b$?MO{+=?ps-s*jFV^Dr= z#w4Wt9REyjo$gKZa0&e{psf30gN@4X1p`@;of}4%lpDCK@c3Sqycx(OrKaojwivoi z@Ra;*S4ycUzvzIl*D0jZh2=GpnfLyQ;tT6(Bu_(*S1NGS7RV z3$b>rwiBjg>|b-KOWYAl&;Oj(Y7^Yje?7SMF8H0QJl=q(C|_n)mn+_($3}da+UuEE z321tMCYpD$YVo?CmkaWs2+;ypwV=9AzqWb#K6}m97(tkNr9NwA>Xzrd+(}h+8|?X{ z&_c%~=a5@r>jv+-cr zQ^AO5PG9ODS&ZlBMC%tU26>Z;h5t`#Q6%z^^fKB!FJzFa{wlU5Uy|9ttPJtnQQ4`Z;YdiIj z++_D81wTnGN~g_^YlkopMCWY0h^Vb>uB&XGGU9vHl}-c056yQiFxv<6R~DOBh77b zqwMNN)|;gzZ|?VQ;piTfwSEn}3}$k2!;3mU$R-PQ4usZH^bV*Dj9zuc$!@MxrHP+( zI1RTWLr>LTeYczu<=g+Sh9g*d+e~w%HtOb^y3|&w)n$(nlNpJuUV$X8Qv5_>Y7tawZn!&2zvPfJo)iI;tF z>>Kb?tPMWxnpd0 zwM(N;+fniU3!jVx8Kg~Op)?=PJ+5-+d(=mO+mO2uR9{Q1#2$Bsd%mZ>u05ZXw%1>-q(9Kl$)gl~mGfrlwx{LIk&>og(uLjpr+m(SXjl;F zD_9*{3Rk0yD8bzTznBs?m%V)$sX1I(PU{BnLQz@+tzdziy#ou(rPpC)Sp8i1!3f`a z_Vn-4j_f)km27FhTP!3;@lJ=3yB;DjFYn8dF~`&J^Q0cSr$)Eg1rlzMUwJq*V=-yn0%Oq0&S_O$YRoL+0WiX^v}(&^NP0|k#OfTt(! zm&Z0JRRTgPyL;E3MJ-k(p8D=h&T@PI!SSqDwVrpJ=%r%k5}E_P?V=tbC!V>r=;0`5 zdFyIk_IcK!eNT5=ts&p;+54-zy=toOucjV(x}A}Li)+IKn`Qp%6GuxUrZ!*MLDh;n zyrOy7+wlLS3?>)-L3NP`qn~(3U3_6z9d>5(IvV7^ey@x25UCv8!KaYn95u(jgcjrr zy?KvLLTd4e5aOe}6V)LRpw^SWKDFst@d(I_1YkcE<^4@aNx?d+7mn4bm|lqvO7xLa zx%a(5CplvUzyXa^u`%;`_;Dq9NGE3(#QV#w?+w8oj<&a^^biATUP<3x_s1p|G|8fM zbW~8lwHy6qA}ctrdGo*8Jt$Q98`=2zDMM-t>7{uM2${o6^!cS&AWXwgRQTfV#F_=A zce~K$d}ZToStqB-eSZ_6KYm!+j5eq*1@75fJ)bt=oxXn15TCabrL!x>sC*iG)FmYrxE=@Xei9*if zI9dxQX`*&jg%AD*w^ifDdSJ_Hoq$bN&c3*w@&tVaXItX%yF09cS?nFwFR`{LZ#SHrgp zL+w*FU24^7e|xu^Z3c!nw9Jb&u~Av35(#91j9$xB5+P^5Ex+pWLyaWY;2uLEaOJpg zpDWV2z-wQ&vLN;3*pc)x>z{TQ&QHs!a|$F+WSh>ri!iY?i;DRLtMofF!IdK?KI}eK zU)1Ft1i6kaQUYvROBYHKYz!WH+{Rz|EEoMYuM0!m0!ti6L2cj}MhaZ`_M~s92 z6Y~Spr)A&jEbgT78=FpROgduE=`!proYMCDPs3f{`^fo77WtxoefS;(7x++*j3y+c0GG(8rXd?)|MiuA`4?X=~g4^ss#7wm;fR-!T(bwstKm8n35(%G~f6@npAY z(|8Fc=ffR7F~yeAdpvcYG`i)5a~j({7>iG42G7kA@PFCIb!OFOmPWusFzvA86U(8{TcIkREayaKLvq)xzh z1H+Z^qg886Vh!c$&|XxSZ+-nn%B>iGohR+XB#=B0J~i7jE;7VEYjel^SusBAqPP?X zO8iY67MpzbMQ@oVQ88`RSB>vSw2s6UyG(6{O3R+x?vKq9o*cD_VGVk*BY*`7xgx8E z3JHXghGGQOZz#vW`P=v#_z8m9D~RmVo}gU%ume=v1O!;f&Qm=Wd3fgcq7UMoiKJJ$ zjn@>3Wav3 zc3;yEM1f#n2PKJJdEZF8Ka^MM|F7i2Uo)Px`{2qr$Nr?mnTOAV-z3|++ar=klI|*v zSS!)wi6#Hx8mSltHdwZT_ctBf4uKb=qa{-ouXnu=r9R&O|8wa}SE{4PW!K-joi{yx ze+V4eX&6H&DZW>}y=@}?;)+Dd%)z)2jFR)5Ii_dZE!Y7nsWEM>E`w6eD zdgJ8Xh2Pje?QXQOPt|^zm1t4*98~Ucjtvj{Us(D=&}=ndnf~~`LZfRR>xfPIb&7HJ z(FphN>AxFqO5*RJn`Ryc8vTgBCa+9$jwhvb-CF^Oa*wzSo~*Y^Hq*KpBU!VhKM;0D z%B_9`>J=r9gzT2fWRMID!kNh19S3=mLhibdr|)wnXrm5VE+D0<+GzP7HHWEJ)Ck$v zR@W@wXQLZ1B%`1{<(6fKYuDu#^d-x!OSuQ71}P{k`V~|nw^8XnHp@kmfLV20KC*mDWpX?%grvT*{Tq1n6~DxH+|eGU}yfy(Sp zGlTMdmet^Q_oij3J0|wp^T&BO5V8tMvZ=4|rOyqI@gjuNm2!4GgvAX;|45r8Am#aK zyQ!n532+-XZ)G~2PlmBT!ygJeuqI;0SPlG!&fRebdJNRAJsu!`j}4nahnm498eMW8 z+a+Pcs|jPZU5c!9D*< z>-Td>y}N>hCG><*Sq`C1=O^6TR+q5eaK0dAVo)pDDgNjG2@MnwZnq7r3P&l9-pEF< z`#~JBH}!_-reDi9Z{&x=14=LlYMcKnuL0nwV`n7+UWhV@7%XtK_~pi|sI zyYIyG-=h)S-XhMQ3>6Bp>XP&AKwiV0#%Of4YVQp{DS4+&q$OzpWb$~)DARNm*Hv+s zbxj>{wcm-o*O>G)oAq zF-673h@9^bq9Z_-3A!fx7P_B!M+}ZlHatM`@}<^3Aby$ZlAidr85YmEI&DU?;^lQg zKdCW#i_-r{xo0@Jjx6LML#6k@_&G1p>;Y}ULLs)vS66BsA`h4+|M17+PM&cNN@rJ_ z(Fbzji2Z~JtrbP(dKsz$7vbuESV|Q@qARUv*Q%|n$6}Y%PE}Vz7VZ2EJ#(Sz&w7oE z6(7YEHL*)$<($$=%Rz^gT+uSJrvI#)KhE&12k}T7M79e(^L!P!x~eN`3Wj1HuZ9Dq z2(@s0KvCJb6MWS9vNMe_Q*wy9dhsNsY42=V%e#kI10iP(pF?<%9|)f9X`W?DInJJs zlRMV0?DtqML;04k^G=dXCB}i42Y#Qc1A+B7Tb|EdB-mmdC~RX$H$KLv8Lk* z)ig_k%xsT}K0~6*yiY^^3vnad055FpVb^kKc4AoA(K$mJfG5s;!#4|3oMlQ>70+JB zRtnOe_bp)5_(`=!{W@m>Be^Ls33fToqaq{qkI7>Cmn%Of;Hn$Rt_w+9;;s8QuqIO1 z`o#O?wtI9!Ls9GWwp5T{e8L75ZoCr_bA0>u>)iQjC{I#xHy^GVaR3Ex;%pv6{ZBsD zPTx7ZLcD#?I}2*x)I>tg85u{;@IAuZqji9#TaLX-_k+2Ca_{bce@RlmjvrDc$BZ@cV>kcV0dhQVpen61`*qR39|X$r{7X}uGtt-n zwYTq=neQvTUG44coj86u3O+1&8rR<~-B5e>_ZbG4(&!qTCXqd#GP~mcT4rzDA}w2~ z&|#aP5y1CX^Sd$C@oEP$8$9He;^gmAw%~fMdaXk(?wqMeO1Sr&Nf5CZ1tFU^*_+Gp zqA3m7f<lQy=$M60uTSj6e0ng--t3^^Vv24Coq!D_}WXPet5t0>-P4v6pB+vm|D8o!0Q z9Yv%1*nibTSV?gfIbD?l$6mgo2mL^L@0AMnwC;p#ZdW8kaa;O-2}Cp`jue0tt1uv&L=%?!aunDA7)v$fP1-Kf_IezFmFzxY~5r22#vU>|w;S}G zM5i-yfFGQDoJKAiT?Qdq^|JO4Qx7qKLl{mzPwOLyr%OsP^OEQLR*d?QgHKP0#rONk zux~DCDu}cuT@z66$6Q$9A*Q))-L24KX!m?!l9yM~V;`Sidde$xnqn`_QnuEB!t;3$ zKp4(-#{^(QBA0U9b2(!R{(_`wjjb0F4H1d**Yd=~6DUfY!~1gybsjQJa58x%Y|Wv-W#I6k{1<<_#>|M1oN6QTDQu)MU+_gFdR^W#&-| zuZj#B1x@Jol+s0IxCJ%THZN*KfpO&LuC3-@GR@@@_fXlMXK2~C%96d@W=}`eBxTo ziK%46*F!|EoeW^({Y!QRspqE@>5U6!&gJugO>ewR|KD(oS%1k>Fpy0oJgynK`tf27 zZbhOkt>ItsS33r|Z}P$|Gv!AZN=rpKbcpXjL&By+T47CRA#fJ_UC%S;tY41Abs-IO{J-~4$)k*ZvV~3 zCMB=UNpduD?px-!Rl2YM+=r+(@-@N%${K)YPmer;AKLiZIb$o(jnh@d(L1MiJ$Er4 zvnE|wqX^*@?N^FR64|bZ81)1$;?j(hZ?8+stX(S6X|d+BgI6j;vV5!n>o{s-WWI@P zk`Y)!HYI#BAzGLS+>#(rPe)uWMr?gp*X@vDiC!M5Uv6s$ zKXEDX)XTtyuFFHNYKMZV#%OeNws0C}L?K^+kk5=Zfcu3N)e4=kzqS*+*(Mp`zM$YJS{_J-?5J>a(#;d3R>b*qi{Cd zO8hj}Ox#yN3FG@tSNQ$ltvCuq`0R#91JVd)sM#jLERphfIKMs7fJiI<>O81zWS@sv z-mzuocA#L%bzru2 zOvU*E(}1@;xJ)-Av+lg*qXL2!jcC)ut|$7ZmZ=mF7vE=^^i05C29f?unL^-SpC~Oi z1y-Z9c=of8reYb&bjOqzbygxB`8F*=Ym8)Yg-7J^Dk(SPsL8WSl}mXZ^A1DR&0fcF z;2$a{ICF<)(FI9vx9rRV53smP9iKU)UMaU}r$+y{*E?kRPWF!-x*<|;sh{q*ULLmo zyqt(pdI;)k-8ZiZ{@!-Kz(CBiVjWN|zCeF=TiVFs_38EWL4XVW5(kc%mq=B)oyY`j zx;ZvL@!==O2D_u4l#T=3klM-8u{khfqcxsJBJcj``-4c6}PUKrP@yFSqM8A;jqc&PEZ&{6X0&AzZ}zBTIN zqd#bheZdKDI1z*fC$Z^>d{QgC(nNxPw$t$hZp7@U@7sOP)CXDx4F4dcuU5Q2U8!8| zvzOP3G7DW3G#UOisJX7+p!45G=|jsWrO>8`YP0P8;8^m+D2^l8E9=EJWQUi%PIKrE z5BRAe&ctcTGnXhwJ8>j@0vT&_>+psQvjC#?(aAMxJ|Au4W-&rI6%xXzyjDJ}0WSnG z#6R(20th^lp1%7#gPq*uWP`36>fmGXsR&+OCD`NXj3Y{>*i;TAv3W#y6;~q`6&?=P zbY-LRWtw`^zFpRrR&bvcIBarz8$f`bghXExA&folN?mJk`qU9x-Gpw4j-)`0xntD zYOS(fJ4*h84?z&hS2BPL?sd@M!j_*y5nY>{K7PA0QbkGH>X8-;PMbX*sGbIaCHi5v zmDI1+Oue%34FamzO4@a~(eR85qaHVk@08fpd4dn|CWl(?9D!AuAm-CxhQPK0DtU7v z9i5Xj9+Cx^7>$I9O;n0@4ssswMxY>prz}|Q6m?LWJ7gtCU*rDcQo6X#l{pGZg&tQ) zi0%Y(zOtyU-qHzFE;09?ISPhi_N=jJyVpVFaM^Y% zv>8-u&H$%R2&=J+Pb;(Z+co0_I&(fFhW0`{Rg|}EdwTANEFQ6-RnRA<4@o#)kk&!J zra0s#ErA~`X&SUZB^=5Xt{1Im=P98m&R0IPsb=rh13*$7yS-NBv|}KLGB?uz82K;~ zpZc|`5<2LM=aoL52rn!_d(WEifgN&S1+6s@^hrc?P9hf;ojS*S{imjnF#Xt~YcpkD zIsG}yzz$xpGQ(X6NEOpxC+V6JX~IhPS_ zc;T;yro9fq6V}P0!G!wlMu?NDriPeTAKDY(@FPZ-g|8HFT%(VlAl%l%gD(~4L+zfj z;ng8b(RQfn!x*Vgzro!@M%D%DL0clF(FHq$nY-?16LMH1Ib76ioqh1V4=O9fsI=Ke zK{Nc6oyO7pYQdQ*XmbKSWkUDZ@}q%7&a)4N8ogb!J_PK;OIf*2T8OM7K6>K$V0Hr5 zObM&LPvYOgOYZVjtALB3F}&%@*QfI_Saxxmy;d3b^r;5 zf1;ZrOoW8RxwP0ebf z5<3O<-Ggv@&v1{(_hbtzvs(C0V~8#3S+Vj@=ep8LnS|&=3(tb5|K3Wo!73?*@_^Hc z&S^W!-1(|XCu3vnHDP-G`zq7B6KiixR{CATp93#ie6O0cTII6Ipxf92YM2dit zH=oR!Yn5Fak)=s+i#BFO?6F2!5igc$zmiKvjK=%9vF4r5=!r9uZqUF5F&ja}J|`#+ zX2v@J0F$+1K$5nKrl&V?PN(lnSMIrofSDL?YV!2z3Wv#b4F z%Wmdj{~lJ#>*G!F{<_3{T}(mO-;}HHcO4dfCeGR-vn%j?l+MPvwJ(pk2@EWhvs)V_348HqDBbW{>E{aoO zt4OVbJe3VQQ8+P*+1>w*2~PV1UyPP`jm1$CCY`Ss1QqK=(7P)gHncp*X?}Bt2g=8N z-0r>!r#o^7^WlfH0Q(EQZ7ZtNz~IybM$H@unB&?ck1M7j^UUP@rBnB+UW-ty;Ep@W zH*=homlq$%_}SIW=@ug->PTN;4WRuhhkoZP1psJku8X6JD-X29Ht^h19xn58uSwFM zdA0MyI9+_css5*PiUAVRV4?K?wIe@H!<~?AecX_~L1I>21>4Kn50>2Pq11MNK`7pW zcvI2>rwKSyNNo-$6el+Qx>^=B{=_5rRnQL@2d~{Vaqe#pIVZn1QjOAQp3e_;mvVoa zTf;7s2_q+pf33^9+NZq=VdpQh;}>&Qo7;9%Z6++UM^a}hUI~T_rg+c5k3MMXf;Wgh z1qrbOswXi+oc&DlnRb^Qcp^+9=M&H8%m;lx$OWf4CC@Asi~dFo!$sLHUHCo_3e)I+8@8BuDvg$QSRmqI54*wPXFAc5Q0!3Vz%w4$f(l}Z(%jfFQg6bohOq|_yA@Adohq8*#X3tstg0FVh{pHUs3DSKg zIRwv#)LZS$>(?Z*M{UODnhQShq_J~zBP@xT;>Vw;rc;)oVuRk7kGNk+WXGGBFouTt9Qf^nKFzcR4w@U&kK0F^y&Pex|4@FaT=$4 z3gLVI$4+HmjROb_7`t>+osbnHK_DSY3yXM5ivtwmb7*6bAomZ_Qbk`c2nBcipHL0{Dw(3|nv`WyYnbd= z;Eu6VR6Nsi&L|Be2JiZJ7k^5K^U~~5N!O|}k(z?6sBQQhfz^zak=g*1K=d_32MD+E zt+nTvCY*%Z-aE`iw(t1=3Ejcp6Bdc+RrlR%qMnaTqO36RaLgHbyL3{$Y1%mA%t!g} zIzIsDOu!&k;9xb}R>TuWr8=h;B(hKBjhA~Oa)F}#TWP2*Rin^Na`EqMOy~T9&4Di>^^Ti~@0qGkJf-;S?Kdk4ve?>{ z>d?o;>%qc6kJ-l}*Jt7TWhqQ~JiE`a62DKlhj9ydMdEq;>1p{NE044rvNHq51g3-A>N+5h6IC#hx3(Lb`mlC2cX{v%qp6j&YZ8PU@*2ED?viOP0T}0qnlc~xiHc>ea?&fNcA;W z=)@Esu}eOGI#NxysqSe9v~V3<8Hq-W;rR6kc98Y5q$!shAzW`pbx4n-#yE!iS~nFD zsOrdFfiHunXnZG@WWx8|c@3P?j03GxU!hgSyK2uJd*)w7jzsPahOQSDrV@%e5w==+ z2k%JH|K*URTqW_?A|k27d=?=!_FPRab0e+wzE-RhXSFq;rvMMFI%$stHc91~JSK!^ zOJ}tiK4fLHX{NhKwIM+Bj;I9ok%#= zAVclo$B!&L*7{K2LXP`f@4WvKn{a9zS~rwIEKh@L+~ZxW7UeaOD;3 z82%KFcXV0fQP*a53&pP{ov-uudNB#KVLR@8WQKVXUQ#(q`5cz_?{e25!JoYqkT1$&1^zy}A@6NORUbDa^-O!gfW zu8Vy)p*s>0Zu`M=ezh4MBLPI}!JYAR*Kt{a^v9&~pCiOAX`qTh<=oOzJ5oZJkVMS& zN#`zFqy6vH)FMDmQZGx3-g(%=#W1=dTm9;he#sLP0{~wf)hq4nZrc*EXhOYX-jP^u z58ccWZitFjOuZ1!k9Y_8WJK5y z4OM!hE_HAqC@~Wki=hq_1eYmGuJgtcH$>X=`p|wi;y4u69Z&%_eGP*2l z6wb_I^Ba&OVr^l^%L`pDf2%OkR#2jelq_O-2WuacNiQ(bSmlZ6a8&#cW!U%S#!drx zxvx)YXNStJC)QH%wJl=kRe%?Wk2?9sB%7NbUVB!HQ#suGIIq%G-ykX=YDuML#cx8_ zyYAmJgkhbuDSU$YSA#@Ij{i$SmUOcO;R6oEP$`zG6(z&1?Z)!{niY4Nsj?R*NSiK` z-ox(gjB&&4tBaM_S}$RyK2F(qhb1le9wh zzogtgUR#I*y5{YAP%p!Mo#~F@gzk()OTV;--+(F1a6`46!a_olpQizwcB775m;Uzo zHnaH|ch{2@U9Q`IpCRO=;y2j-?)XE5>nGykNJC1CgVk5BR;xUf^FGJ#?--8WjOfB% z=Gtm2=*ru59Q4}b(2>SycT~5}2Uqhrns+maFOy8>@V7Od=}YNidX6rA2X9=gL>5P9q^|NYX zno*PhQL7F=(BVsX6i}-!!UT}%>NU5wF7-GSaGE*dlhGGeD2z`y#*Wae4G)V zRu2{2Zl`>ar=DQKYRY=0r#0t3)AFVMjR>(JWqDi3J8Z*Q6Va7q4CHV-lK2HBUW*ps z^&rf(8+tz$#2O&Yr<@Ba>+xcm8stdi=&RR;48~!&p_nI5ZVJ-Lc#|!&!Be+syA|@S z=~XW(6*o=jr_1pZKaD!Y$6W1i+yi}FvwFUH=A9}HTmR;}8s<@!ME0?-MmnOJza^fw zz{%HUg(js+%d%B93a0r>d=J&$_ZEwit`%*jK%L#Zmtvy80V6_wRGxTDb5IM}I@(*s zONA7@3i`IZCko#2N@@jQ_^FDU&#sT&lX7SJVk(OTF3hLl!L=|CJPn-=i))Aoz4sVs~4A8*!E_=*PW?wHtZH=JM5q2%J2w!nmtSnC8CTnSTXwM<$65OWcv z7}yX)1288Nk>~}H*AcF6XUEkK7b_@u>IMbdKxQBMpR7yshBQp08X)Ejvh~^fVt+a! zH!Buw{dImFHrrwioX-Z;Z(qp3iKUt9D7dA_V1e3M5CBN{;o+`~q%4qisW1G%gq1Szgs^58C$U7D(dewih|y~U z;(|RNp>%yWrp@rH6`IG)1w2<~*|Cku ze6>;a7!jRBT^ms;*LCI;({FmZ7^NT+bTr*=@{O@Oa@HqW3^|;k0&wifCTq!K?&Fjy zQ-WnvF)8Gv8mOL;{^v@S}9>@-%)%8-#$|eWH{vD*6npc$irA_H7Oe zt;gGRRLWVmNfIhq9_bO#K%dxbb+%8q@%JYV1`0cgzU9>bzO(ZAfLVF!yUcOIO%-w{ zeR&R6f9yr8+YsdwQKhopb?=Xvp&`5^fquvU{`*B4mEuvs&TZITiIRBRh%fp+82q?A zYuD@PE6Kk<(jRFSEYRvk1LKAL=%gTGVJOP-M99YN7-7rSX#=s>_Su%sn;uR-+#FM} zH7dH&cfozf4iP`{Sg^q#uBGk!!A-)TVOO7uRoHwvD$##mm6hL#`awC$Imf4O{>a#L6gMD*Xgq!-v6ebK2cx4aqO z9&a!LO5V68YW4gncz7iI@A&v?JF{nTx*YhZ-75uom>9GZ5o&%gl%azR?;lOETNhqQ z>ZhAa5NUD3~(uN@CtH8=n}0NA*=YH9gmG`}^- z(0@oGgk$d~5U0;2e&~*7lMpRxN9#zqIH|lfktN|7V3Yh*l9E z6j8Mfr4b%R8dC9e*Iz<}D*e!(IvFCrXrT4B|(OKk-g>SRx%8 zZ^wJZgIJxnS`loq0>O!f0?T68!N$_~{cM8AT&UPtr3$nDVMNKP5W544H}dSWsHAOq z%C)ianxbtJ)gvPyIsNQjywkaUPSqomIAhdxTQj3JiED6y&6&k`n(WSx7X<}r(oZmY zp(3WHhpe4SrI|O8HEPRFQ}<>W@=Nj`1}&~za~>5@W34sy+Mh*0gBjI!wz0Oa{3Y{| z0Lc4h^iX_W8luY!ZMg606ZVUurq%pie`Z2$M1*t9@nR#)jVZyD@vXR6v5#o)R^dOysLG20 z<1-LiXX*}#Fr$c3c_mb$8kPvoC>XbdJBKWKyE8F=7rwFObl)xAV>z}e-+N6v`&DJ- zx4-C_)~_nCSf|6+sJBnhhEs8B14}nzU2Iu~y@HyR32&1%lN?`7YuykSEb~Z5HO4sw zrLNd{JN}5fiqnNT#MuXz1Bg1U3hH+FEDnYwyljv*=EgL8`Ku0mexr-VcB>XX&mR_9 z%T$NRkHn5fr#PD~tHXtJ6bOaPDQo+9Q*%_|WzMT&Arr7{ZVj4pj8{evR+J9Q6o+SD zvEx+ZFBX^F?N;ja3bS}CIYIP#k5=f4;9iPt8X`mRCmmDi>O+%8@;q1(vd3QE|Jtid zj8P?M{$>z?#v3^a=A!$mEW&P)bLc}gIjr6y?&Zp-e#L+g$ZeRrOo5}urwHx2qQTWW zf!EKwtH?{crJ>q9s!18McMb|kyH$`iQZA)qqYU}(ur%br)P&f zYF|h9-ra`q1BXKInpl+{e0sZ3Rg&JY-~Br0;v2p+11%CJdirS;j8b%l?{sWofXnG5 zmWJ8OG}FCf1P>bMK{aMrpO#yrN`0d?84{1+c3v%dkoN^eKR*9b^)A{+EDHZ`xT?gt zvz`nV89g~Mg3%PuG5zybl|AmHL+5m{PCGe3?T07jyiJC^3g(cQzBPhT{mXMwLD59V z&cuZ0fM7`K%FFi9@J1F5^QS&|rw);-Cv<;$i?S|D#gy=bZDve2$ad zBuEDVJjv;kbeQ7Fp$4bwP1fouL5R6uWc#dwtSq00MRiH#OS&mKT*vI@wpm--2tOs> zt8gOP(0|RIdAKW4KRLRS48^d6E}5w*LT@C}V7D?!t)Il;Mpujzz~i^iNo`ZRmbOp{ zZKGEa=^09F5kxqigX&JPUp_H4KZdRCn!a`G zVS_2_Kr&VbG*KfdmEes;zad7R9iZt3xXN2`lfRr7a2h9Q?m^SLJuNM>l$+ZwyubfO zl&8w=mf4v-P-+9@ymbN5MoTIx%5Ve{O!!^cwcsO$CwM!8|79D`z6~A}s*G)!)j!k! z7EE8be2mKB9k0gDM{M%j+WNfSmJl*Z&+5lB5D;q7+JsW?*WJ>LzJ{r@Hnzsnrc`DlOM=#y@O^=Y& zNk|Z7DPTCy=*b4p)xW(^@%z{Y(C4V18j$enYvQrLY;}006ZjH29~Bu^ht(;9&%~Cb zVXoaKcxCBFS0tj)BKsVp*dHnnvX9{Rc{x+rrf7s)U#3N4z%9!Yf^Y3zaFvy&90tc~ z3Se($^EGK>KJ$Mpg-2R&Phc1&rKM=`J_%f~7^lRKwlL15F_*(~Y=fF^L zlGvaOIg89W+Vlbq^Y3Kg%Wuu96yYAN@R>)|c1D4dGTt#=Yq9f z1&LKTr++eL=IvnE-^(80IXQ7({62KJc38q(yQF-dM25xvyS~73X4}}dT79Bm1EIL6CICSls~s#K)q1H1p^jho=!I^+HTi=ytXGlu zNXzSG(sWG1%GA!HJoe{<+@ltlLDdYz%PSDPs_C~alx(%PMsTC{#;e#|FFh1Y4EO8l zzABU_;i>!we-B4fn>+O=>E%OD$wZ)AF}z&k0@vA;R-hn>dAbz9g>A>~uswHtk;O7s zZD`y3oP)2ZV)=}43d^|+t~)dqkpi4X-T=j6sJSU<>Tm1PDauled8#K z+%2zsU0`8XlASD-b6OpK4EP}RL;!VHiohOAR;^Um6p@We;b`s{_>ZXJ7SFxl%)=}S zQsuuN>80Iw@TmMCy*~Xc#yDlm+Yi%v#b%CA>ZUH%e=Ko9UnpAqohveJ%-7r_Ae9lT zv0`_u;oIhgr@D2`=*=?A5b)Bjkd8<&&!!i|q=g#lo*uNgbJ?BrvK*9cVq!FL|bm9uMdtW>2D6eDG6+$Fq*_Ys`R6XWpOM1pJ2(gh*}B zb^of$vB<=^w&pGVS9#lw$6D5pEtWo=WUb1QQfjGOTx=h2^E^90+V7yEXxst!toLe3 zBpU8&Uz65-G>bo4Ni#cFG9R0?T_dAHI4w&MvfAxs;vT17J=`pr{klE;PRObEO@^4V z3S^20?~jkUWUX#|p4Pp~af*wghd7S6i?*a?xh|af(8!&nw%H=5WabgNt7|Hq(r@MK zV^qFt{iW~|57C_k^u^f=_U4_7^zf>So)Q;px+$)QcYS!xbWA!b{g>%IHazh_16^A^ z+9^#52YDDWZ?77g9fuC08&nF0r-CU`Ta?r7gp}||dfikbLrymn&2M}JFq26bFQd)y zner6CNsgYlndJTEEZP_+w(Uuf!6NqopAPl6SN-ElChtIt>Vo<;rX=qI7v4!*B%Nih z;_gUG?4c|$&qr;Us?14`TPgB+esZ73LUtx2!Q^R$Bp|3zI|29i4j0nNm0D>g_OnHU zUUnrVx>2|X(*=&|C`i~{Oy_?K<3hX?p0@vrgzFrw>Tc@dP(Fpu+X-`;dZ--Lclf*B zQD?}AzciA9Ou%hTR)VF~%Ksll=NXq|-}Z6$z>z5Kks^@bNKwhsN=Z!-O%V`qq==TQ z9I2HJ7pAD?0B3foiHV{CjvU$L&e?L0N=@x@Hnr}$y6=bQ{rT?voag^Ij{ouf{_-K( z=mlAkP5w}w1RpDqyU6=Fz!dwLlJneRk;+1h=4pbiUwigjXQ}3ijwDLsYib-e1iBO? zFOg6yB3~kAF5IJJqh`FX{qmK2VjlKPPJBOpyJ=PFa%^bCOj!d^*~~%=?&d%rJ$ZmD zXD>CsXYAC6OA;Ol*r;RSgo}RDgPE|_bl-G&rmOoknyg4eywRdsZ8sTFv6UG#Td(sj z0n?v?@!c`eV@X<}sZU+7phn|gKMFHUF_jMkDo^S-lUy3y?JN!gQJ16LSE7obcp*>o zlu_-Wg((SmrM!V*F5tgE-9l*kb?wpKV5l6MOhmsCV0~}1jOd#P88s(96%WH2T4f5<#Oe%456r)@p6?AGdhVP zf1k}I6f_Q>?I8N|zUEtAf!=_m1zH;=v;d9SL;Hz5{ID;TgzjqmM2V~To-#{$Rj484 zy61g1Zw7$snHJ6RR^5|8@~1}*h??JK96Q-v@}e8jzSz-xBQUu5^7?}&O|+Cs9MMEI_jmS4`st#^DcA4 zzR2m)LdmpHDoj=0FY|FJ$E{H7B>}n38$+ z{XKC2&UlV5Qgt(-HIlL|q6rf$ZT-tUOSojjycg>bb!o@gvm}$8IgDmj<|&D0GY?WU z?jGG$d<_H+qB->uKX+n{b61>BlGn&^{YEs zEassV$zvvtPo-q~myKtt+qk+%qyNUrJjn_I49Q}mq8vPfn@|C_YDeEnpct;U+8A zmmv|uvY<2i4#o#j!F>Nvdb`U&TmC)n^Y62kgBaBZjS73B>l4gk&rqH#5bfvToq}@j zJuWTx7dVDoJFjPJUM=H_X$^)^JmrdBEGYC9Q$j#cLRNNDrOOYRj>CA?`7c??J+VLc zoY_kIZ+WLnU|^-`hn*J!MD5>CTB13mFdtvZ8Ih8)ldlyXwpyO{By!`ncd&G`xKy}zQ@fhROxyI8ss!V?cuOlySWi93o(4V1 z4<>D@$&rGL1M`qzw>~C>i68NaTC?~N;yDJ27`rs%&UhhtV!c@aG=6Tble(L*9ID@) z*3}2%C=WB)tr}$)0<=V?krF1w8iCTUy*BsAdfIW4eE3@Bam{=cTN4RL(g5_e?Wt(J;1rSH>m|vNy2dTyMhblNH^pw&WLLHWP;Zh`a z;jw{*^0&yC9o@Smm*-R`9Eui& zIR7wtL)e)KloX_sAM_5uO_lZDzhPN>>$52p^`9k77>$vc0(jdL_lTC9R&&u6dX@Db zbf3nacJ1+F+i6*Jn6oYwC9cFn?4DX6UBsB zS9iCW99+pesak>WQY+r{MFlhFmi_Z~4@fZT$ol#DJV-kW-e970gIGLu4gW-H;nN5) z0o~XEM~3NEmg0X<6k?2HWKt7PPnKZePQ0)3_L)Z1*0FL_#SwVCMx7y{R1*9$K{iH6 zCo&spVp1LN!*KWI;#naFltIC?jsGJgXY?>R4qU4O(*Uyyj_;h+78M148h+TvOex!G z0s^hg_S7OlK6T4vB}U0*4jx1{-LBU^6Xu6`RJ@s$%)xl-RAY$ketF2ZX=i+k|9i#Ow#2Itl=PgJB8PeqhrS@eyO7rn|6mo+ks+CR(S8pHawo_;-7 zZ*4H@cb&rN@a1I%k|G*dw?rda1EF!^12*zGptG0zSV3j`YzLSSK99^+E9vwQ|0GdQ zEj$|=zVWmtE??BE>*5l52vjRD*5)vEi8z^SP|;sGEM9S7g=$iv<)Sp=Y7Xde?p59U z^6M*@ynLWUah=@W#n#GseyAc=KXgsNKP0AG+XGDI1A;4Qkdsg0E>Tnvxy6xt1^e#% z7~wA$=p4sbEzjW~sNsX~vkJti02dxCtO=i!9wn}{9@8jl@sJ6u4J&!_{jDih=(8Hh zziDVk4BF4kK{FfFN|w2?)0R_zzk%Oftv)~b>!q9U&iZmlvTm9eqsu~X@Ye&-qqq8t zYP+r0uECZ7zw1xD?`{lxJu76Hm95-@tSV9ie<)?9DAD0Ps)kd~>N@o|-4k0?hq^9( zj$Ne9`-Zqj#QBNoUz2gEON9NAlQas9d-2P8ZLU~1$t-NC?jHmDhRHinqe`vZO4*dL zzYGgRfpAS6hqa0hJnWM|YIYQc8N~NorSJKW6yOejskpj24Ajl4C^u{1ScK|KNB&r_ zb^y9DqqhbM8i`ONSu*n*lZ^A~)puTBnpB#k8+DoSmGaVCOcE)1-#?z`6Fa~fN^P_O za0liu!Lq^MUc+^0DSiASW7St>TTLA9-x!!eL~kX5BA_pdfTTA^w1yn2kz#S;=3c_J z1=r6P-BR%-7^?kUB`H8-5Iu+nafb^Kch_2J5xu99>o<%Y##iIsO_mjn*n(TkgqlM@T!R9Y z7k%^DLP7iaV>!%hn5=Jd3FrjAM)^m?1fwa%m&Qf7~loH(Dq{ik?>@TYNo8%YW~< z*d9b?S=%`E)LQKMr*LPax5V@7XPwgh%He^i>aWq$iA7o8X&3bE-KDT!ik+X2aC|hV z%w%$INZK@o|4QG8kDa&|cK=tlsI|vi{2%$qo)PUzh>dpoJmNDOhib}V%tT~og*t~G z>ii31KY9>QSYnk%is_k1hbl|>A25bOFc)(u2gGoT$MP{UBsa={awLKVlwugKO@CG2 zc_q86@dF_5D11+Q779=N85jO1k`!syuSt}cSiXBys-vHfeOogPXikQQ1kxuyS;PQv zlYtYJ()tgBhSlq8r(qLGPQa-9Q!`kT-Qr97Fle(56?N7yK9YTLD^A2PsY?crz9NXbYc|T<0JE&tg!MbSB!fG+^M8gm2fUNU}s}68e7lLv+Xz!gzDSS`f zjOr}GY&aa!=;dm9*QGS8#5C6CL%7E~qEr{a7!??9`-qx5V^ejdiJ8Aofz(X4AqOP0N}w#PRP-y_sqU#0FKW zhx^(z1m+ODITvn2$I6c4tC*Aa?k@ihzEQliA2Lu=`_str()(+miBefr7tPTDR2EYF zZ6vNNZcjOVk(^Pq5WC7vy}xv=OzjabKjD4o_md_E_E=ET85_|Zj2Dr75q8x_01!@8 zK$p$J&GKf%En?R<;58r2z9aP+of~djRE%&-`{a;dZ8T#9h0v)Mba<-=h*6rg>M!4% z3~*ExU3>=ycT!(ks@ zDdSj{Pz0})U~IQyoeaIGM!Z=pK*-37@Wg@$Irn4b;hy&!lLR4!DzHGd-7vSN+W8@U zDx;!)+ZQ%{N8rd!i+B^h>Puo#?ayYVW-bF1HOvvXh2g+Ewm0jeBFM%*|6XTSc5f^% z1l3OD!wi{ClHt;EYY=fUHsx(m`M@8~97iWAA2n`^gL;>~_l~vm`07D*MWQWwYFJ}& zboe0Kk~$st{l8hG)<*>eky)+h8&C_5o*kcN*Uk4F-e%EwCEBA*sPU2DtCwLZb`cdx z64jCiDff1B!&9`aq??tSrLg?Mi5N+pscPM$f~|5?7?I6(BI-wGFl(SejddU zg9>^AfuFN9N-|UFi1g|a`a_4#4>PXUI-4VCP|J6Z2kP2cYH-sx@@o>$4?mKWfBs4j zRO=eaRwXBFGGamklcv>1H%*fjKHqv)1ANEyA@KvBfxQjeUkoB}Yuo)Nk(4NF%;?3z zBw)vA2DN4inHj^~EtlJOa4{r($mY#}A+RY9JU z4`PITB)Oh4FsC7PFyvtmGATU@z@b;Hw%>;h1Ylq?inro|^IsB>zl1;^Ydgesm~+32UybwP6YxC;>xd^f2ex*42>OZTst%XfFX z)f(ZIR-fM#ezbx_KU@Fnz4Um&V4csda_kqNY7CCMt)>a?-!q%!f{LSk5#bd}q0IHociu(U*krosiYI=oVe zv2?DQyk&$`ul2jXhje16CA8Sd&8xIvfLG)~W(7Uf57)`zSXLq2R@VF>n5fq0?)ilLe!4@#F@HQZNc80< z(&QCZeJ^IDj8RC>1vK|*zX^Qy&kmm6+FzT-xaYj{Q!)SHVFrSWgfMG!>-1a zY83G?2^}xhy1qNf3EQ5RAv2~mi$KrinbrX;ABR(urhbwZ+cOJf*0PC>ZfG9UXE!v@A* zi~e_^M$8~zDKOS=0`s(~ezm)SZnH!*k4O!ZY$ZDp{Vvpp_yW&fY|AK3?{pF@mpt%u z^;*QG2UFgJz2gUM?%6~@h2wLxHB7ym)|`wu_uC5C9Gl7F>N8akgqb2VXb1;F^-KD5 z!dk-}a2IF%VB_iy=AMvL(uQT4=CHag6Yd~#=8_!s0X$BXK+`R>r?kvzBnJWRmom1s zsX zI!7g=tHrGnmB2BB)!OKXIRkg-Mi0Y8<#x=vey@$Lg_ew%p2Y)BdT%e7t-Rf{5OicX z#Auj~pSdhlMy!0{0xvW^f7EV%vzXG}*1(M2wGPUe)3Dv~(tB-Tq4y5N^&3K&@Qn!$ z1@>_F=FtU{6P5V@%)dJMj>#jlSuzR>o^z=2b9A^}50?!Vpxz*2`+_4oshUdqMvuu+ z8bOf{!{S6(-^k`9%MlC$Bslx3rtVIfcIY=vT;qvDO|46h@&Nlk8n9U#|5-jqL(c*~ zz5UEK@021VY`oj|I)g`Q-0kKU$DN$A{8DAWwO#FLjOW`(-J9 zuM&YMrEalcyS{L z_vc8-D&3VJbAy|&kk*+wam(!&`(>DH36|v5@ItAUfhN^Fb&Jo72^vRKD~5xt4=*%J zi@!MSK@0vzv;ddOs69t(b2Y{U!Qy>G4m9?ejXU^*aZarY64vDa{B=hdR^|g^15{!o zJMSlwIumW!%|Wd+86e^N&;U_nzwPv6pb6wRHdR*S{I(3oRW73L-P__8Lcl~^I+y75 z;%$Oz!Z-;|-Qwc{&!Z1^jRHwGJ6J~9QC0?b+}bzCT+>puGOSaXoysWOQ?%~gMp^zu zEN&=jsYqT{xNmu)x7%9b-J8+R!@m-$$fu^4m1qj_2au+`n6fX1`_>8S13#3ra5+uC z@U*2t>xThB+3G2kk_q_fUT(3)BAc|9u&&gTs=G?E9c6xB%9v|ti4@yFHf+C+s=~|~ z(t6Fg*Gfe=)De8np;t}rhSxKhwH{-Gkn&SiZ^vrOCdAEo+Y7wG$lvzqJX! z*2C|P--!|S=;!_6cMSB329hx@8hr1B(4MFZ)_<9#Haa4}>dG->3#ne4Kn}jYR_}?v zt9C^LE8=MLwj@SM1aOYG1p%WaCG63mM~safaZbW4xuo^YnS}z=^L1ryI|XI-ETeU| zXibC@$0}g}FI2z`vd#Y#u+`3?aX-}>i7NifSny-gF!g<%R&IyqSi4Sdx?T5BL=QW3 zxRegRTpe>0GRv6xgwdCiJIbq-qiX%_t>~#j)0sip*z`1hI<=yLz?l)|qHa@o*CJXbktxpk6~)W#U$RP-33cyA$D-1Dm{ZQA z)~WAB@_q9)CQpO5o(slumgYSMh&x6agFV(aKIR;>Nz0BhO^Z}38S(eprSv}}De#R5 zw&GB)L(NBIqkBp*Gw9$Sj$EoxJ{U$EE_+c|_Lsd*-xH*L zpaOhE?Su{z7MsW=l-n&Dxu$TT8qH_`+{PGo-a=7wHA9F_nn`p7NlzGnh7|2>V4>8T0lXX?88ErweCw5gw1~nw~ z=8TsyXB$(CCWlgMH3LjZrNmS9CXP?9PLwfr+X{w!AYsSpRvQ$AsP4b;v)RV~4OpDL z--f9sL>lvxQJ#`YH$T+WDf1+?jaFTbQHEsi2)SOV!Guhvyjj!?OF?q}X1UNiTxS#; zrhai&$`fKRBoPV;fDUB-3wNylycl0lx3&F;GTpw_Sg=AZ6w4~z zvj|j15K7t>ug?;@Z2)syRgpmV(P4QQPM|kRY>P2(6*7D;)+}{oLq-_hGUx~``sxLE z&`BEOW+^~TV_LaM*6YD&p7V^km`iKJ=18TblE@@u(h_L!gpSx| za<_O(Bb`4p#x8bOro_CgJ>JgYLt|H$O+mZ8-Mtk>`Kk8+I4*n7K_zJF$*G8t| zLQXnpBq#p_1Uq~K?%?5cDDZMn&vTWn4{w$Og$Gxl4B4mR?v52{>%({k$do3Nldvu< z6;{vy5!>(x69)y0W*MHFb$Q|$=SH$kR=KjBHe~n#!pq^C(3uyBaf&|K41IFV8_N}$ z5vDQU6?5($ydCB5@m?JyOh_=AFD_Im4qN6ViiZvyOjYa0 zj5rSLodQ+){n=S;_>KhieUiSN;v>oK>8fPA9u#Q(adL-z9jFTAG>_K@gi9TVl&&o9RyvdBgNlS`+(%v(7U%%CpVMZ68$Yy+ z&FuUN4^JY?Jn@g-4(SsZ(40bpOMCw=4wtYkl>5-h{62G~R*;nvcAz-Q=wgTSE=7c@ z56`JslV2R)DKJ2p8(u8U|I8*EzS9r=Z*tkMjW60BuPoP*LWaC z@Al>>jWQ?jGwhd;^n_Wp3NOW?{}ekj z&_vtQl^Ui8A@pRW>eRa3GH1&tH!K;;l{Hdj8irfDN5@s&WZmuQ*EZfo?T#KR0s3f^ z%F?gmmVg3)K#eZR*MFR^zvI zoA-{+EjpIf19mfNojfI6^hs`NhwHyABOO#sGI13V6YeE^L_tPnKtt$I%XU-1Tv|wZ zWO2=-dqYDKb}9F>)8S58*EKWF)wT3FsGYLS-WLmPj#WC$9<&aMG=qY@Pd;$48(&<( zL`JGo(r7E$Ph^d6G8Et^xZft3T*GC>#`&_lyK^|W_r^Mxr> z7tdLKQke*p<|u|TQ1+i&A1HZSDMktaRl^MR2m{=vkv1aus4qy=-+D$nniEY0D?M+# zpr~X7w=@El(BT6}#@Py00{MR;6r^v&_&2OUNW%CjN_4P)#Dj$*dvmA%i9j5f93qYN zVj?C&wu0Z@5ORtozF8C4AU9RWNYQrumKT{Y?EZAQl8w0*cHz;Ak6vGcE_<%gq#sM+=1s%F zx#J7-F3ihzpsM>Qs&QQ9;+IRtg5fh;^l&?kY4@Vk5|J?0^^B+?58_{yX;<@bg(0ng zRSr0!wOXxMESxlAZTf3*sFR`;+ocARyKu=1X)b0tfhklI^sB!chDNe1^Cq)BSiu@{ z!MK?pnzGH~=nG+``5*Mp$S2c{kePANR*gY}FP34isgv{IY$?IbXA-SF{@4cyf$C^(J$JQrxK?pYy;%$r7kEeSb{;VTe(i zbggBOPr!O4rq_q}ZC6&vS0~LG%+HCmb1Na~Lpr{_@*H=wf2NKtglk52pV=%VT-=pR zG9e9%>;6fve61fTO47)8e&e+Z@V>t*i*wsN)(wbJQQNAnSMLzWnq&=&6DR>~G2$ty z5}#q0hZQiFV;P(G8C92Wo)J9PTeX*`8SMu6m-RqlNIBr*m23&uTzoHsDTpX%goL#Q zu7t*x0UqaGHY6|D5Z+DNW=hsdGwT&)JV2h zZOsLH27KL^&sTh%qma&g8HIuKJlGbuS{FWV(BbIV0(p*_Hd0aY%&|CHsyq0J>u^nQ z{@HK?Okl&)z;0ZDim^BU&IP0RaqY0r=b~rvptQ_+T6StF(nCi7lsS?ugu|W-q82mj z!7)7~!QX&)T)Di#dh~~!l+~}2QA*;c9l!X&od$opJDJZD#71E9sX3RZcVCP_pK3!K zpU+Z+vBh$_Ikl=sR8}w@J${{E+Zw=wrolut$M-G|)1jh%zDTnq(YjxmB|4svSAHcD za7?HV#Kgj;tv}7k@`P5h%qSo*Ck53mEM_gmzYo0V-+e+iJ~YUf{t9Sm5$Pz1A00%* zVH%ngN{#+##VQi$jp@>3@u|V(qEwtGTRy6D!-ARev;hxzQf7Y6H3!+R(MmQ{;eO4F zmd(=P{S@VJ_wRcJ}AJ6#G6+GWj&v{mL|rtBYL$K@1l3;Oaxg?$I0ub1IIW5BxK+}DdC84GduryCEnV~xF`lkV|m zd|6^kh(7LB+ zP#`R^8(d6oBXG5pI>{}Zv_J&xYG)nqc|l+bZUG+e8|>Unf2vdPQ*j5)^3=yLaD}6lv$!P757wYRGP}}&9IAgV=xQF8kKE{4d#B}(mR`+YfZ^a01xW%aiGOho- z{HD0=csm!(rc=)mF?`u2*-G_3TT798XW!oc2z|-rD`yt~G+)qg_{{L@& z`(E~yKN?SMBNN&DE2-=YgY5gwrO!@P??&n*g~3y9^fKG;r7~BSx#j*rSARcrv8l3? znW*l1Pe{<9ef!d^usZCh`nfanEft+shxs#WsaNrTQ)PkP^MJCznASoonvb zxiZ6_@*wY&NM>WJt1}VmKCUyR$;pg0q?^Gn{Ih6BzYt8zTeT?}*U^wy0e$;*fQE>E zZ3OC1uwSlPO@>Hif)aH+unpIQZB*QM?f_DKJRFLh!={g)SVa^T#qNnZ!b3$xJReY} zZ+ao{nWo==%a=zqJzG@|xfd7klcR7(@s%gZjTS_clgt_i%u2nVQpm!{7Eev{t}TAV zE&ecy2nA^MS^HO?)!C{K)sdD2>vU1kb>uyEz_4kG`wt0mxiDinuj`|CuW6Q5P4}XO zKKlSEHTk=12?IhsEylB8W1co52o;m6BO_Q9^1u`S9zKR}L^i&gOzu$#zo;Xi4Ko1v z>bXAm(A3MPwjpF~WaAUWdb*B{r%}j7*mOq8aDHa2^6s%1abb)Iphzn`S8p>|A#rDs z>2LLhcS*P{3Q^Et4)JGJn$7)vvTD9MXNwXy-cbCP9it1=sN#&~?E1JoGl+Cg;xn*;QNkHQ9td1nujD;JJT+!!ga)N#dJZ;XV1E&WDDJ*hkDnx0trvy>Mk=XEu7T*(RkhAA1(Q+$L|t z#+Yz(d!EipmM19xcAn(bPsqn-N=!F;{xe&e>O~67;o*jCyx*&9#O32MQONFuruxRI zb9GHq3w(vR!`H&o_~9Sc`U^w`2y$tme?Hv~%(sSDym=E|)>iwrBn%&2+mejeM#LFc z?wS{Sbm^%62+A@?@5s~)tTS+#Ea`;qSkxTej=?iMxi{HRb-T9Qa@@VQFSs*Oubf@PG}zS2 z%XHc4|29pd3m0IH0z4Tu-ZLL(A?CJ?xT>#=9ayOn$uIrh&4E4V_6%UJQ6=@NQ2q6A z^K6v0Sfd%Jsz{^VSLb{CdeJOZ3!5c(H}y&2*>r*CeBQBROeP065`Q;d)^jsc?ZiBu zhsPrDOGVkS_0zd+nwwsol3u!1zuf5(?YO^g%tKj8^1?{KJNkcndr4axaP05?Yw}08 z2sAPds*{i`m$%Bm*G3&rE`&m{yuG+^Rh0Ai!NjSONQOzjDxS+fV@B(EXelOwJ2Hql zb9k|M=DG636Y^WS*R$sw46oh$av3gobLxpmtkigB3&iEP$7iyYPA3p zNO6ZsRqpzUh~cZecdXR|GB22TT{STP2e4c6tw)RR1(kdo%ym<^gkc>*f?&#N1X^Iq#OkbQhlR}Pd7a* zF1<4(lXy*CX7B6q6@#S$Tro|@{!7$IvJHN|Cf%zBr0j8JBE%{d`pd>n@ACl z26w)ZcX3}X@P&2fF}`g&Q&^TEF{)`-twQ{S0PqM&Mz9E3*{LR4Pb3)|76YQv3|h7f(pRDqB+N71E^V#4(9)rpTfGZ_eI^{wbrz_OM_9{Td1-e8Ieo(0 zxGBn9X>P^95d6(r9t3xV*KafXJh5q|+sZ%L!@+OUo6xZ!TO!7brP z$NGgIoIcJrI^wIQN|FmYjRlrJdNWp=nEFfRu11J$qY?&xO)_M#*kr3fQ%NGd`{csj zb?&{3CMqZkJ>sgU`1nn%lFDfUj_qbP3geE)#CXGlFG)0BYT?v+I!nhGyj^}%vinrq z5_UnQ9mE)G$yIzB03HKxA%rko5RhzqtzN6vS2FHqO?^}pd9~~w0xQ;w}Y!iSie2h z=sLxPadgLLfD0CqnZwB(clYj+Q6+hQroZ74AI)}l8eQ$uqBwKFsH7oa*~w6;)=a|D zg~&d&7(aegL#aS5_dyzWYpMoy==ua(%BRTK27bpP?6mu*1%tfLY&<0|VMO|RQUpNK zX9^*uF7v^1j=SQUK{;z7*2;5lK1||z;HwUmKE)&3qpnoN1hLABkT1;%gQxyD-v=tM zM4zv$K1MosJacb{ZDk7K{I_cR)a?dLlJ<}XgV1?Bf?ce`L)y%{JC|J#=%{+E)jVLI0>+Ywvn>}Cc30f z=)IZu)Ru9;*}JS#n-S0WkHlPn+?4!axlmx{c%J=LT+J(#>Ak}~_+C00iKcs#GquB0NF= zrh(5M(DG?wJ1EjL>5Wl+JA=yCSeM&V{31f{qJCx@wi~+>tiS85wa{KYt#L|7jO^R& zzPh3KuG&P5E*mvCUUJwH{GP%5`OcOe_BQOLPR zUQL_7p7S4>K9)j(t7pW3vZ<_r`$lxh)77zF5VlOV1R}_Lmqlpiexrq!U>U)W6DIn_w3d|AfSBA$Lw46y{N0R1|~u%jMO zOcZgWoKDs4^@UXo!8*4e?s&UM1Qz-tLIjrRGPZ_wGVXa!$a9r9OEc?ND!`#sjD1PL8g2f8J zlh}0d)tYuvwJ_hs{rdiR3b-FwOvymqZj{(F6QS%l9tnv-#nR!os)#hDCwTm$r;G*( z)jT(!(BnE|weIF6qVs6yfLFRNocM4oJ%#eDvb~|U2rq5Y(DTgHOt%NIQ#%js?XL_R zHqPr?7YP{xRX3h@WM9F}afiIQi%NvY67PiRNy^+cjXtRBM25>b@jH5x7D}fvOyiS> zI^VS8RF|S+_Vr)YvxF>fmyxJ!S&k zX!W7PAABdL`!7m*$UVPKb!kgPgcztcv_Wd2TSD!Z(ciz)D8s?R8)OO8y18Saa+dId#mDbJOAi^fD%nrViyA5`qQj`}Dqf1P|rTVJ?1Mzv`jsSsA90)X7Nq^86#AT)?6G@|kHi zN^l=g!BXw@6y{rgz^g=@Vd&x(Ad|hnW$##gsk7^XvL7RH4sxp%UTAN%oo~~G)b@`= zeN&9!orOQVsEW}fU+7^BHoev~BF4sE7{xc#Hy?*3MTx1YR_{$GYb;9)J=H+R4yT4o zL7TOcTh#n$G(4MATkw61Jg@hgten;4R=e6{0u{8^$#-=Reo-@5^ua+3E-tpSQQ@o9 z92Sarzmi_mvP1C)XGSPGQU==`zMb~0A<<=XMtXPm*vc8?^rpp=$MG`!Sdr=R8j(MN>-y)td5R6!*kLrb0#Kx zo$*mpz-2a$tlbhkei$A$6JIy1Z;W4CRpQG9odpE0n}ia+%gbu+%wCpYUu%$iIdNwq zeBQkA-Q`CTnSBmAV=ah`rH^v-FDdK$QNXeHw*fxM9wB0{ZFws+aig1Xw`Ko42UwoC(J*caT#G7ZH{ zHaY!1m@}@&dGKZecv%hR{#)m|f*ByQKvEn|fOYs$@$_2>E=3l~Fpa`b=ZnMYC!(Kv zP7O3UxH-jWxYf2NXchQ6F-jvIF%Jtfp#O>RGU0n!e^N@fQxKzLGzvAKJ1Pm^GxMxG zG&USAfuB3VKx{&+UqS_b>Z_B@b6s|eWca7)j6v(E_PP^q+w#%cK&ePWGq?Z0?tl=e zznG-0epms8WX*OWnF5?`$G@Ah5Khr6nS~#ezR0H092v~(k|?cLAMZW#597gW*^`vH z|A{!6=)1?yt~rSX#=BfdO!F57qmd~gfQFE(UMZ%VEX~MPm4tnO zp^?zN>xUM_z^cQ>w)22(BblevV`AgGR6<(IAuilQp(p~ChZXq-23IV3>m%@2J4gK~ zoob~P?5nDNFdb9_Y_)|X3FKNX` zHM~ye6tq5D4?DAjfK8nCzCO;nhO9?ClH8S6mgdBa;#HcZ0np z{Z>papd_y!m>xGtm06c~u_6d8L9=~s&XB?a?596n^2gy(Nh~!irv6v?KLzM2++b%= zoRp`btdR;CPBa&PNPg}yW-_f}IWHG5-IM!x_!+THC(?TkP9HOD{_g7NieYvYs=>A` zB3t7DP7B|AjKxabk@Sc{K_%4`dH$)gnk(>8HQo>}tw776l) zPgStc%p6MU(Md{HI6U`7@TD(sm&e8>yhx0AZnm-H466F&twArfqB3Re%ITT-8)IyXia>O<$LDibIXVl{Pi^S?RRSXKCw#RmWVX>!}-Aty?ys!XQs z^dZ&yGGW(x^5ng1G7;_}N96N8clIziS*7}eRgS%8MVFZPwi$=8$v?zhL?uN9tSJRa z>!^*iYX4aURWm*rVnyaktj%CK#gBL^d>B9`{uWGiW1tCg+v8lA2Hd;=ikOgSlrR?a ze%o4FKPI&|kxt4OJ^nT&Dn(xcEo0*dfAID7aYI~5>0IRX&?ToltyQZi!AGjv1IPXl zy9yV;zQ6nqCoACdbM2GQT7Tloi_qAb$>4Y=L2E#JrMkNhMbc^%J!SgO_n|zM-4S#D zm)mOqI(#NTXi@7vyjiSe?%bAdnS4a-7%ty~Ue8O$7Wkl&_Mu3ZLNz0wD zi(=1uArdZ{wt1jD`Ak_yEF35H!ThnOX3$tEeu8$UI0&=xEsPRT>A}eI=U2RNcu;@x z=O-lF`c}_0btuBXJu#`B8--a9*NBx953f&{I4BM3ff>U3uKysu(Qn2T5yNcqd$?Si zOoDXz8>mcDsORNq5{slE$P1PVdOGSjU~5NVn-Z7tZ6`V)ClB8!4{5poTa@y*ZSNB) z*ZPiM7t;*(LJr;=A&@aK8aSP4HU76(RwPz=)kVSsRHIe9+!-+)q3rhf z4-MAku|B#DJcrc3UAL#%nmm%f)-Wj1`!)_i=)>ga0eUwdlkV?lmmFx5LwbspE2o#d z4X2n*SZ~3!^2<7B{6iBv5&h6c?`HoR`>E;2zBB!>hocQoyd-1t3yxuvKPgjVI@GO= zBuV86r=kTze;Vjfw}&7?tIt_zPK!{voFEdO&aD-5htyUAs3Dk=*e@TlHPISrH6?_2 za+_O&Dp?=XHo6abFtfMvr`ik)PSblC3&jBZhv&d&X_5|hY!@olg?S;MMO_x~%|uXl zD$IcDm@EZ#KzN}rR|yf3P*%NrS-(T-DA#-Krvc(|yt)1+)GRTz@NF=1Mr6E?iTq3X z`H2}j>UejfA1A@AU#mzp!_{oWmF6MID(zezulW zT}KkVZ5n4Fb3sN%l5Lk1f41udqy+PS6rG796aN3l-8aqHoE0<2X5@%S$}wU_%*N&( zo7_1i4xzKT$}I#r+g^!fhw`zKzn_xt&JJ|9nP;}5Go zpMR_dKw*24C6U;cPWLN4ixqd9hfN?QaL_`8x=g|GD>E@`vi+%rRUO&*iRJH10$W1K_D|hah;*(|v zrxa1yI})x6)F@kN#_+e9;}lo)Y=KwCqnR5FwAWn0SXp@&P>F!N1k8owR$go2s)&5V z$i4;58{K3OLfEnWT^SrPED$Um14&*>)rI9TVCBy29%5c5NZ+Sc>wkQnTDaJ4RprE4 zoBKxGtzva>)}(NR#%(&Q;-ZX|^wsXWasaCSWa;^`h{gzAk%Hp5Yw6r><$&n^)!38( z0eaw5o!E8hn-hsA_a>gTn=L#(K36d%uTlmWNFSIML(uF#OHwp2d8f|YxZ{;Y_2>w! z?E`VNUJ+E2^k|ASuKsUAv0l*O@KBrWbnYdgNP||`-MCcKR7WJtQ&&`0uZaK+jhzp-Fx7n!DRaYRjYMG7 z%|p~lMm>qq)h^QcKmpeIn2;Z`O(A_p!p6d+B?-~q>rEYvd`zo}Le(Kfv-I4rLj5P? z%hdv&RbC+|&}hTeq6i6G$xd%aIKgdDSh>2YD?zFm{NBGiCyR^<{M-r|$8~;qEHu@^ zG4|PZ@_uaSLDdTa$*nOG0}`5p{D>UURv_K?8W^>Zk3|iw5>$_|vO@pL8A$ zXdBr3qEa;IJ1oRyD`u4 zB7f_qdD%rY-%mKx*Z`7pv8K<7D|+QBBT`_HLaM^ax?q-3k8k`reZ05xMc@D~L`3hq z8YFz)CuPzx9&_R)0BU6@XYqXyRbauZmyfMjt2-uGs!lYqqHh*3Bt5nu3%Dj)N5?WVO+yHdyX%77S*&Jv zTfYO7owD^?SMG}?d2Dr?r7BaLW0o_%80GUQLInL5zYc>ye*JA+=7j?27I!*_WF?_u5G!nG5XdrBbJj@= z>-+6wdZQ$2?KrDs{>61~{+o+TqRoP+`ti;$0{Pe>`Zpg~vtZaCQ_V_gW^+&X`sj70 zlRXDrBwgf)d=L_dAJjj#V+(iVLR(!+^ls<|l3WW2?B?N=Rq6U*QwqlNpGEB$&@ZOu zh$@YD%$94~9qsQ-IKO={fhie%a<4wjz0m^?;f66GW2d*r(MlTHT_D)S69vC2MP9JN zikcXdhQ+(1DSz*s)9ABnbTeSqE-w5U71j7Q#0Wj3Y%`Y>GI74X#3eot7Df(m`u1N( zjd6fuIAh|H)<6=vS80U-Ll@c6SywBjny|zT;?s8ANz!0rhA~kEM0WPuPj4n#1C2*= ztWlu}VlEcru#&!Mp(_7T$ea`rc0GU}1#gIWbq zeNv$rI|b=LA)*5Ft1H?S1aOBYWbLRr1E72%xbVjFYWI0-k;xt11KJ3C`cgU%Lg@l5 zT0~Z}3IvtRgAUOiHz=A33^25!!}?0o;JKP#BVRp3=tv3oi`PFY80fcxM10(3FKNbv zT@_TP7-7q=96J1QaEHpl1Pl3rM3@u%E&OW~!H zVERDnb0&dbkE*Gv9p$76KOGr_YeOD-KXN+K_YTOK`r}m8Eicra^JaAp=;*|h@o}IA z!5KQ;A_MC7sMX_|(p>CWHCDd7K-iM^GyKh4!C$rQ&qsTdEJwXj17xN%A@4PwHP>~XF!@QsIU*+5gIH=WbSaE$I zpG{DCwhgf5Rj|VJ&wmVSLo-7|;Cdb=&?!bkPTj&41gRuj_IYVsA0rXvey z%fRDz8qkT)GPA*#&NgM7p19rIv-RKBcsrk}>_poVN`Ah6vI{bK^>>Y&zmnfeBeQIK zRk%83C_}Oc+n^$PV8FpyYJ5n_ArM&z2m;h)W-6xM3B42Y^An4xg2*}++5A=R@++q4 zXm+TQ@_Y)qVL7Ft8=w2Wtvh&!p7}$`=o}FR%UICru5R*1G`D&y*h4nF&wkR6=!o>% zI4nx2$UA43V&x9eQ=-CtRTnlH!P}zee{nWTqn}jh2t-FpZTnIj%rhxEBqLLh*zY=L zqmg@AhwYu9DUt1t>1?zBsUCc*IoWpMLJc<1=`X&Bh)ae6Q7nnTDa^F{%;+f5Nq~ot zc$mUs`L_n=aX*8Z4#=9naLf8zok$?vxzwr0bb$U{PQohdAonwT)0*nF>rND1wqnap zf+ifd+@S8~<*PM=E?;%@z_G7+)K5i-%x7^Aeo+%%JkSTeT&(`1x1(MS{2!PNePXpTKaSrtVCx$wI?qj=sKwd$ z2wQSiIYPm}BMO$g0g7*>yC4n-E->q_M-Ch7IB+O|H63~0h^JBIPi zqJpF%1f_~5Rzfq1cHM+Vot2N0t0Zbwy+zNwj3K7}SFbyGTKbMx_r#58W&uS}TtHJTNb#bm;2bVH`5(qPDO!#3#;zE#8Lb; z2?S9c<16DgujM=B{KOQlb9z(Vj}JuZcm_Ccz0a@vwsK;PFGlp_CBf+d5k7+8(Kx&A z;-Z4L+zD7HkT*M`0IkN>R;yR8k%(2tYtIiOhokc;OxZk4Nr%>Kx{vQy0^+**i_Y4t za8+qmHy-m9#SC^)`Uscs&^9)NviR+)#Mwcqo6R`Qk zPqmPZ5)g;LGk>mW!e+QV5rT5=b)VW?m&osYO%ar>g{M_&uW_;vmrTHBD_@>~)*;Jl z+wYe$&uedz*7Kn(6m<%N5Fkjqcgf2)4%~EKwE7Y-xjeD6bw`XbNzc_&Z}=xU!Ls7lm*tQ6x&&Q0r$SbQnN})gG)pZP z1^XTv<4=XVYI#*^owEZbr-*UakS4M!4obzXTJ|bd904ka(9}@$)XTqlW-{dtxeRRyfO0!i znn0a=a6L8##4p_uDH`0>V3y6-0QU;HS5FCR6N1!f*-|v2fTdKLFg&4875hS0`*@-f zj7($@aztmL{Upb1g1-P*OKk@=JtZDMd3O$5F@*H_RuAl2d_YMT0m%P;%v7l>ussEogx0V2*+GSAWtfuAM-mupuor7=!yFq&J%5SVk zPfWVaso6Ps&G#lVHBHE2kF#h8nL~_#B!MR`#i0O4g$wmiyDNYEC0sG{iZ(Q?vu|cE zu&sHMA+LQB_W`*A8W66@|NcKd^a2nt2%%9hxy-|6@FIBI-#7lShf03VTI9*y`AuYl zbh>Be4+EOO`S(T=H(}1`&VO`R30$a*Vz@4;Yq1$vAZzTYV|B?OqZs+T`>qMss?J%@ z)Et!3b){?9zPE8{OW6Njxa7B6ZV{XDNmcA{#3eKJX2`iNFbqA9uRg&s`BmVCH^TYj z$BcU&IhP{)-fXMjtqfGsBi?oZ}>@ z`Gub%ceBuein3r*n%oZ({PE!>1U!9DaXY8K4p!UdXMe$SFGDL*JWsLZI)%r>Si5c* z7raWXJ~LxF!K;dp*cR`d(|3k492dOSNAJHhQ2puHH^hLP4(vMGEjQTRnoWF+qBSMb zpkd9m$VF`@+U4JdqtSd913)~hdL+XqeNi#q0`wvxTcC$Q4cHQlIC1#x%2?o~P+wZH zlA0_8638Iq9rbk9LQ^06k|q_lq9pL6aB4+uK6^ z&@)3tAl%cyouD~1$70DHGfj7hJ(MJl0mmAHLQLSNqYP3qeBQ#ptFSv_UpP+A+BCr1 ziz(Z_mk*KZ9l2pXT&n`QbKMgi7GU6YucUlt^T~+Kg~+V4aD2K3>8!5iMU{Kyq|BVp zUJT5LW--Xnr4Rln(cUgJ(oJSU(>v&akJ*C!X8~vlEwfjPqg|&p+*8621slf%Q?AQs~aDo&Z%2tU-;;VZp67~tXTl8s0 z{D?KodMTt(v*50P$P3dUR#BxR@A63M2>gCYICC+NiejPFD2f!HGMK%4_=~~%-<{K0 z4OdjFm9s%FRE}p4h8BS?Sk)m97ow~R1u$a@;X`!2_&E;W8&z+Cl1^MmOVlgjI|Q9$ zy$w|c1{3P5Ug`#$XOxvh>{*t<2l4l^WVq2@3zEvO{AN?yU3Jm8s^Zg2hOQ}}*6vOC z#Hk;A)`T18wjzn5e*9PW^x3BO$U)M$dD7%sSCp!~g}Q*6%IB+M=@%_$>)s8$n=#2x zSgYduD(wQM!3m()153k~tjmxkzKN(qb)d36=wlYVBmZXCFSxV;?a z&htv2sf}T^H}`lW;Y~(RJnYwDzUvSZM0a&icIfS*kJ4+q@y+?-?6lBh;Mf8;18N+= zz<>o@KEg6O3eV(tg4f(1`D8tv!<*QYeNazQ9k{QpGVPdsJ)bAP%D{TCue$+p)#%G+ z0(bsA+g0|`QGjTGJ?kPhmURZ?Q6t?Ln~3!YIf{8tRYvkVpq&|y7P ztmdS}iheIc2C~lXA!3vHuc#A+j+z7YT2soguRE@$_2}G+QA`2Vnw2Ti#d#vFt(^;> z^XWOx9yiV+V^%FwgNQo$qK&K9?j5M^qyvOGbc{+cNp)@=^Bo8VE+}x|M}JKwPndUH zWD1JIK0ZiR8~ySIzEgRi09(e^1vg=80|zoZ`d99S6{BM`2RYJ|!S&vO5eY5l6yH~J z1mrZ#da=V})DED2X29M$(QqFlEFO!QlFu3r{h?Kb$LlLS6_SpSjSIKhKxzD<)RL$00I%IJ{NUhlmbi%P$x%)s}O8|QKRx(sSMgsRN-Dq;_r=V*79f#Id{l-_m5ovq9{#O;OlAqWgLMR$ozo=4Ii1kYB6a(PHEu>A5#yMcPMbD zK4zvYRyllU#4&W1ry}aYljb6`ZFYN#_U<*PG59=$Yc=;2FGmao3T>o7##E8=s&$uc zRrgNWXZ@?=<|I@5wEk)}wnyGTGA32&OoE7&h~=b3ps_GdP@gReYpMvXK|NF!(u_4e zr8R4$e!ck-Lco8Ogv=QjUr^J6s}~EycU}qx^lQ_8Oh2CiBp{0gQc9i`=&uSHY-sCV zcoj9&5v_zN6XZ;s4GO(|*JyG*dd>@I3%r$IC&ty6^DGrhxh7_?9a~3{qhRRWP`2xG zHU^rIoa)@A*-^>W%7Zs>_d3P!?`fi+2?jainY;nnrxC0e2ztfEgzhU>rcoLq8S;+u z$gI2w;gNg=pjxI|+4Pwqx^-+R9Y6mU!2}@TEB**frMxS6lj%~=iAf9}u&VaB8D1(L zK|)`{Ff(4Xo~Q&Y7x7H8<4mnq4gh&)i6^I zf*7ezQI17BNp)c|1>9|V2sW|q$mLE<#VSk9`Ltg#WuGKyv+s8%$EOU%j zBgZq^sT&s#+B31LtMv8rle*)I44!BbX+k#2+zDbV9YFXE}$169ny;}g!_vM7$1PZIYY>ut% zSw7?Kos-d=@I%DbZBj|@;9P&xX5tT?%oH!zFjP|Q-ROd8c%qTpviI6C?D&ZIVG95* z37SuSbpoAwyXqYevi+}w3T8ZTf!{X+>G^l8_~{l(1YT0S)xBeCwx9cHU!Vf^y@(I- z2<9o&X}_j?hBg22(Xi&ddK?xGi7BOf3x@;UH4UU72mi`9Q6Q`{u77OE5n;u_v+dX1 z`mUsnVhbn9`}$C>!wX|s!Z}bk`cB++Ob&%hwa4SmatoT4?E>~$Byxv6>P5BqEV440 zYo&4&^9~BF@;s~R)1eauyItY_~J}EDj+keev*IPqj{ML<%Y;iy5i=d z0~*Ek3yTRKpV)V3K%bIs|25ZH9xNSky5;d`#M{LN?hC&|st(=bu>xe!!!yK_F!T+> z)d}U!XaWzoZI6?7?`BJ=3E+g)X7r(OY{P{{;0dd{gSFxPUAiLQ>pv!hTQ;k>tD`Qj zN!@=f2#&e;unX>H96b5TZ_8nhZ4!pBGc}Tp`*v5i87=aiE7J~?K_o(dm*=mQj`uQD zc5?yq-?cFNSxjeUvrZR&Gwf_>N#}PMFJmxqZyZHXa~A@}z}@GyKGd1|)w|kof0ext zS`_M5cDfh_(3RM0u8R@N8{{vcxt$}ULL1@UdUz)s+^BSbK4>uvv|+>kwW{#enOkiTU-_k~P6a(Ss0^ zS{)twh;o{)o`S23x33Fo#?xo*TgsvAfL*YW>7_Io;WRkTIk3B-Qw+S|=v*|P4Bzh> zvd|4ml~Qa5;XFH&>PiQB@87uFvsDIb@OUb|J>r)hKnHW7JRa5=L9?3H)H=Q-P65aH zYfcE2p%`i}c}}%86@_|ZYW_9zT5e-$n}Xfko7^X2o00oM1}OwX=m@$~z5zbNOjsEW z@+%1*RKmx{E4u^xfA)u?@o9~G;pgqu$g*+*b_OimPQxsvru$b>Sy8^$oQEf;A!(=_ zXJXx-v&C03)|B2B(%L4-YpHaWpX`2ti5ikhoe=$X1Q%$PR@Ig|(OGQ(+B{Octssf}uUa(zld*n@Bq_8zn^H`xqusgj< z@&S6fbg%RFm-;+17Qqz#>j?M#88|vJH8WREkjL@=o#(z68iQ}R+lIC(yzACVS8 zvmcjm)qnT2)h>qx^2z9Z`kVX#-$lE@@s6-I%+8(K;oIWcVbt8Dc)uf6nI87)wI!}s z=NM z46rpOZbR?=(DEn5J$6>OmfecN-i+v&?l3q$o+zyA8~iw3u$^u&DfQ+Wijjo-AXNVT zz`uYi^Yk4qTZ&+?xY@{3kZ&sVv7i*v6t7L|bn!Sq%3;gXdhVgwM%PWHULoq+2p;S~ zD?aIbmoL#!qlk5jJPt$_lZMf;bq<)Ra@8xm$$u)_Ofz{WQG~evP6X5At>zdelsU~q zFj!7@P?DJA4h2HgdF9_GzQh+J71azIB7>p!@Jf^&3Henvm1&Nl$0vFfh0WB7JI*}G}YkK8rH6yL(8urrp}T|r6Gk)GZei6UC+!kBWY zQ?qzboe&ZDUdBdtlJpdHp(pUt-6KP|8vCLs?PSWGx}4n2eVA3 z>!AfRHTgTR_{{#fl10GaTLVadPw^z7owwi}Z$}qF1h|AXl#kb&WZ!06e zhsB0*Czdx)- zMkOEZE1I`Lq??GQLz!On1!s2+qs@ft3bLUuNRAiP|N6JWz-^5IhwfKTzLdT3=7N&O zZc+PbU+f8+m_Po|Oi2?(3ddMrhM*8lr5wick^qP6f56|zIzpO%vQ3qP9q%*`@Aft@ z12*!`?`{>dN20glWF_1YiY8`@WG_v}2A_>6;ns&n1LVT9)zQN?lL0*@H7btNBRr># zT|jTOsn~CmKWe8KOs&}lztUv=^E1yBPBQUYvSnH>>PB*qnc`J!9jHuyIQ^t+WSP6` z{zF&KX6}PaXVfLsB6s8x?`3xYK3*$u664_?aP_@5C8AI{LFcbRCdK+`-Pnrnm~E>{ z7e5_$W~7;qya8YGY!#{zp@$1{3;3`872$iT_T)jDVq6`rY2xN}o9!=FA1DBDN(>V% zP3^cs5@-KZuC^hfT&r{$27t=3?=!8Ai(bo*dr*ZTnywvn^$J3=b+NCn2TXq=!LSbj zjV`+SB2I%&SuZ{G67F&LBUH!pg$cxq#uWZclO%*W?2?~|-u?cD#`&WkX(Xf4@Y50e z3oW6NCeiS)P$8U{K(IH`@P>%eY?l zT_n_Z0I#R+E?+~V_q;(-bG{(qG^i9NJ6g#u zpCfnfcD;rjYJYKmc&qX3AQ~kP`X@)#fxW0H#K+kR!?9e$;FDTQEklg@d8b}RsT?fS zh_lYha3~(Zb{VPX#b|Sf(-c`!>ywqQen+4W^kWu34p7994t-r~RNx%=RmUdg``x@zNF2`lXbv^a!+rhB(n$d^nkpQ()$4_wC%{p-7) z^d5iIuVvSc5v`}uvHy5;-q0+h1#m>GvIHU4l%Sy|v(D*FT_K4zVrN_cyiW^dxD*7?zx;2W^2%C)CsCW1jyCWzC=4`+<{CJB z-wZNfom^2QC+VEgs|}Ja7EWsvs~kKZ`TFd^p>RmtdDhg=O!R>4$o(k{C0idXk#=)_rM|?(x>LL=D;K{|OBav|Q@vwIaD#bdkpXIWobdFNFbU5ZMk9DWi+gFKo!xU;_FP5E|H5x37RsQr-?u@~HX3k(jS}5i|{?NmH7emupJc;bz zMfggJ*hRcja?oj?{k)0vtwlO~?*bTk(e1W1`3WAK-7FgfMRzpob@iT5Ty%tH{l`qi zn;N2+Mk|!WE#?(5dn#6)6LOQEi8`+zt6D078&8h~eM&Jp$Vxc)vMp;Y#6I+7z;y#4Njzg5s=^5yl1iKYI8P-EPx*5v+pe=av_72=aBP8+nLBouPl< zHmaM#+3UwDd`a6*Le5)~Js-Bj!vG{Y^jcFPB$j0gmG7&R5tmflut_%py1c2hDPT%Y zVp}yHwbPgwo6Ay+%n=m5`bK?N$1!i0EE`}*0ZwAYfZ)l9Rf1*FWC>r~`4lBiw*?t) zvOHsDKpq|a`}VI)f|Dio*se?I-y4;=%-}F4%`9VV`h=V=1(VtQ^4hPvJ$FwMJ5So@ zubhi??eX9vALbF6O_78%IRJxa0VF={SWI)pVygZr*WEv* zL+-GIkvN4J{S#AieZbd;UW_bV2pgH*gnD0`53_bm7h`@`n1&`42TcB{Kt+U&#tT(H z0wplq39j6qnei4-L)^PDw}cM#lB`Bl zw=QNJ@1b*T{d6<$ukzJ7KVWT+y{aIMTwA)C@3`W_Pph7VNqOzF3m6U`rJzoVK6mAM z>KwP%Adkrqu>!B^mFomP0038<#)U4d>8$j|Xlr$62F?e#ZJ=V3XZx3#i;ctS!>)bM zhZ*(Sal%y-(!CP2`*1OS=^l9{D*^h4(P8y(ALF(Y;G-;YyBkN7KX@bTv7t)dglm2? zF(YE@Mea+fkvbb&c*Yikjadv!wryrZLb=@-2iKOO^GlK^MC|Rm1$AISTGC;-id>V- z2iMjY?P#^S#1s#bp|$^)K{P-gSh>cr0iL>=ez&!RzKq{ur?FhVA4%7Wx?Cr((g5K+o{j!;WkD$kPBK@{Ne72ygOoc)-vX`MXn*Zg4@UnB9CF>%peUrKO(uN)oiMPc zAQ6gmNJXZ}*MytekIP1023B%8gUeTTK;}qO(w#nyAkCg^8ON&kscFG0KQZ|?xEsESn;{tyTOhSnC+up zGdq}`=J}RUtbE^7UKQUO*}KCa?h7)%EYzU$l4!b; zC@mDW=i56U(K)HQ=%7v$>zatZ{OC?pfI0J2o)zp8wtso8Cs0BBU5I3w3NV#&Dc%ix zIa?lrK|X(V(0UU|>mI4QbfaX4FJaL{h!Bm*Hy(1WwfY{tTCbo`GOI;#pN9iQ z1!(D>-8#(l%1RcJF8Lr_vf<#9l3vUmo5T$M$RUaJ`q-_1%T8C0Fi#(JS3#V)Xl~#w z#a$C#_6!rU$8Dfu|MXY`MXc{O35|xJ2w=R9gV9XxEa!V6PdV-ZbS6IMCOD6?tBfs+a3`|_2Z z{Jy;Mu=;|n`e*hNc&*!fs7)4mwK26tSTBA?Ovk8*dz$P7{-S|Nryar1Zw6Lkzw|-k z@?4#^i|i<-e+;Jx+EUcUp8_nr4&vG;;ss1u#*Hsc-H;pF<*2KA+_ z{@0Sg;6u!?%ta^MCC?gMb*f&BfvH+`(6*gln=|Nb#s%m{A?A)0E2}ue|Q$@(dw37 zvIj5dc6=UHZo1e)!|-iMzLnGbb2%O4Ou8t{SG!KJxD)7N8S zb$!irG!Qa333|E+LK_ z1O9JTJ$A0|B(XfvqlYmxJ4XiDrw~OD^qq%Blk%* zeEHF@KPwVSwKG=c$se4Ec5;I18kW^xVcQ!h;_;5250H7S783S! z!vlVibPjLReEHm#kBkt^zZWb!@`di2o4^NSTa`3h%(ih&S$igV)OQI?oXuN-YY02% ze7V4JMxmmXR6`b>7U#K+E3{4(V8+gOlsoM!jyZNxbpe0JP!Tfx@bin2s>5X1!i|fQ z>!)tr%cy_~6-nP{bpC6q5H8<|%|GLIs(dszgFnepUV{E@A(9sOZ03Hqf*N)=UQr_8 zQcMvTEGHYS-91Dw0(I`FYaj5$Y632#W0dcakA7vucG;Y>(<@l2$qMJ8fK6x#LF=!o z-&A0d3M7DxLPSc})H$1vUmzCuT~qfTaQJ1ES*^8A`9p)wvcgs z1(OX)2_n(6*-LJD(LnL8sc*ojJzBOPZab8^C^M6h{0L@)C>x)YSn@T#RMVDQ6H{bq z^EB66s|tOwJ|*Hy?rO{*%%%nMITiMq^J|j$yPR7pL8$Ab|050`nr(UInaVl!4&WwH z05}oM730IC3%K)pPez0S7j`LWk3CG9Sezyt5)vdmeFt zW$VsP=V*!)#ZpPd{FD1pVMJy6$J0@yk~wR%f2~2iDRSB^a6qte4j_h1ylZrvBU?;8 z95&XQE%!9p^A?URbp^dt+hgQT{*FwHr#;4lI1EX7g(y54&DUww$>c$Cz=>yfE%>S# z#T~+u!k}kUZ*r?YX&PIhJjT7Qv>HJ)`7K!m^v&7#N8+`=BC7jJTSIN(w$E|~u+SV6 z>!b7GX&KgNO(_GUnx_%V7u9kkT^{s+Z0hxH#aj=L_QsGy%yVB7^1bWn^@ET8$LF0R zJD8}B0w*0Bqb33>8~l2f&Xiq@p4TA%iy01}^Nbua(|=X9bY2z$umBI7)n8*oWR&N! z8XY+Ue}C99*}rjXtx+^0LOMk&QR#R`*0#oxRGnvh5vMZUJ8)>vtb86`WCXgo8qXZ_ ziaMI>fnT^3+9ud7G{_V2s82JAr}y-5S$)W7+ZQEat*xt#S%sKsL)N3{AgC1(BVauh z%5%8*K93xLqg?TwcN^Nr(RCiIFFK*@VEgCS0*2f;x56b0O!Am0`la5w`SKvpo(Ck| z7oAX+OTrJX%*!yZM9pTLC>iI|9pqH!lfUc$Lo#UP5qpb-d37W5NZw9qKx$>9lq5%tF z9hpEKa<+3PIZd$qIxSHdcLRM|Yd0+r2TS4x8UnhHYsDFv1@z)G)(`3%-1HCTGh2x0 z+S#aq<~$ScHcfq0X;9h)G{gpR4E%4MM;nm}i1a<&a5Nev*OHs}2W=56jbj}gmb?S= zix@s{V(^OUY&|DLf39RkD)hg4U%TJzq{qzeQr+a(Y^glr2rLz`lY8Q;fuDR$!Tg1` z;C2X04&LOu{4Kmf|Jwj&W>S7^*S7FmHW2`I%r{#pE1?eufFIo$W4%lVtQTJlIC1~z zrF&`-#M87$QhCpO3jmy;R-pr&QEl}T2G2Td@SVNZ!Su!O9hqz8%?T5(E;_Q8)r@@# z6)sc-*h^qEx^HfHEXu8Bb`SLIR-A^oE_c|pk=}JWi>u4LISDh*kY{Jf*9@)wOttm) z!6EWmqsokq@~^*67cPC1FW}1Ns%rHxvc`n|Yda<3zO#3yHB#E%@X)QgyU1o}W~`|} zu%JgHn_X?eHsK0Y1O};(iEZ)7Nt&*u5WN$oy0s04ca$?jumvi@=S22D?dxpLO3=|Q z264t~g&PvM2B-R%#pb}8yiR@il?1e&3!A{JN-XCEDPmq@0Q7!cPcoIZ+{vX6v$}J7cqV!?K5^R(>-8- zj$3|as9Fgeon(;KkOLH5wI-N{P<0R9`EJP?WY-jbRC6!GE`2H$vEQ|O{@-aKLzFyv zm7RRoP!ha&7h6qq-W(@*OZJ-joUfuhO+^2dpA+}X1&@L7YPUx#!i1r4t=qM|7w z{lP?RZ$o72VLGsTy46ZrFc-07%*XP2I@P&YT698$>)znexLa?ag}MJpOf0ItN@#^_ z)FW2-W+q$e-3ChMHN3?mLik0jyo^R2s6_1)B^xx_o>SD`WPLOuL6}w(x}7vmh3n{n zhOW2T`8n=>3%zUGXlfnC)k|_{ z478KXOid-#Ihxo1Fkv9H1HNUQi?3^!jsR{>hDSP5eOpDIRA9(Z@zk4ubdxabgJhC; z)||wYEA=*ou-xkGAweDvocvgJQcE-n>m<8)t%XL*8KNsUFOmsaL0;WfS#+myYv=V3 z9mB9D(nfA#gw>lj--R<(bHB8DF%n4fI$Yb2Q!>MZq1DdGMjd~@K6+L-y7!b$v%zSA z0d(L##*SaD175`C)4h~mBeMKXlX#2hRD{@_LU`N7rt8JZnA>yjZ#U(l0{($Ht!95! z@{aIlN8EDnz1pmveSWnG&Y`rf>)_A3BlK6L5atoZ_jehj+u;+AEQ6MXq|$t=&Y8ec zMFoCIgSHhLJR5J_y?HEeAgeN16GeVRaOz9OjYf69y?P_;3thi&(l=7ZQA&DH!9eJC zPIM_U%apl>3K>!&p9#VGQdxTK-Y2c?E$)2@!Yt{>g0xy%u5Z5Hf~>Xx?OpZHml=>N+!R}t1(QI zX%)9+9uCcO4qTqMXsih4AJStr;e8F?TK*jhld;5H^x0bOlW+V&`eWb*>?$+td#<#h zioBE__lf1W&i-vWqeu344Qn`AgGHEpioxYYZp)os91O`f)D*Ss7XJQE{v<;=g${RV ztGDs!nmhkVs4X&nWppAh2fTWf@Y6oO>3Jy z<7E|2Y7NP{mi<+$_I5Qp&;V1)R3{fIfAfUL$CBL*n=V4Y>TvMR&8z2qti)pCYkQo(SrA2fMlTNf!qC|j=?HNR8&_*=N{k} z&z3BmaYk-!{BhAnSO%x#*C#|Nki4W8iXaBsN^bF52#&9}hTM0}79@GRS>E&;0u(yO zpH)Y=y(QUqUsM+;+=**XlAwPmB%==6v+O!n)KP2SL7Rn!0eWDJC^-}Y9l~+FckNOx zLk6g@Hvo`javs{`&kIyRS+YhFzrD>RLw={<===Mbj{9}zZ=#&D+=~L6C=#FEqAXGg zIV^pgwagob9tjoeXPMI11yV>lNv|eS1MPXnSivR_M(69wG=@=w4gLsK`Q|}jj~2qo z{qN$_{ILV;l6{8!?KbpOU)ekxn^JBWa>m75i8j+wQ|9^)Yi!|?;?Azye3lS{ZzI_X3sMg(l>yB&$iF#~Ts&t51ZY)F-FmampSrhhTCX4mqcaBa;_mMy&XUK5w zRu>p3*%|yDVF53Co_zD#gX3=;98tuM;nL9Fu)*eUj;n4L`C3;p?JmAfCH>J&wSe*) zw&x`4QlC@d^L>et>o;afBYi!lIujec56}G$5h2Kl|JyIk*3H$@Tm5z z&EMDodNP3YbG8bEAdS~Tj~lJv60OH71sskiEHux1b7NG}RXEq>SQIpf(8+xz!@$9_J1Uu_dlEO`~HnsF=}sZ5Gn~NF-n!1MeGoJ z&mz<)TB@}xR*l5o1PM}N)NJjVZSAe4Xw6Qv`fB^l`}6$+uKWJszRvq`UFUI}&x1AC z)@w2{p#W71BUdAfJ|Tv@^`YTyNFl#UIVKiu9=4XRvQNfYaB+iaxfT4>G`S>nLf2qm zl%pHuW=vmaX`GurF2iz1R__}Yug5&eVJ+vCkD0Haed0#pAirukO&)Pu8BP6iEe`#_ zyCzpKzn_-Z_S(#G;v4albzC*0PNTjTJKsBZ_OzIBg=hA%%_2=5h-)B2-M?`x7g|g7 z|7euX=85)~2M18(+2tP5mO0y*94={F=7{P^;n3O^S6}vMjq);H~bpwurn+b z>+=$b$`5VHxDRZfaQ78FXkSdS?ot3OyLg+}#A6Eyv?SE3Bbr}lO7@r%K}t(`WlPAS5BKm7yfJ6%_Mp6$VXVl^ zZ80A6g+0-l6gYA6q(lj$b&0_;+UB`jeFz4_Kus}H`FO?*Ue&3|Zu4?@#7i23oDO^Q z`OHZ)_%M@}k-73>0~U4;%t4Ldrlyjd!F-x{_c;U=Q8XB|1CI*py6vMaeyvMJ(A%;W zT3_`6gltS`B$yOqiFU(!ld7>qX!k9^zj72JBnaoaIn|@fN|hTSh62mY$eKCl zV5QtUFG4mbq2@i9f)NM#|kT1mb!E6zn+r-xK& z%gGW|fXdKQV!<>yyshi}?wsYoiMZTnCH{aDmWJ-ZFIqOY2M-B783>U;VVTEWtX4vr zx+fx6oHp|#d${h4ffah{F5nMn^b5j{9?F~CV%|Gs@@IT4xCu6`q zM}z^Z=h%YOO^xNeH-Z?(P2T#ozsVy*9v%Ut#y-CmpS5545s3=#+hy1}wGltTGAwJ& zs!bTzut8k=`NF36VBVKbKrk>cJwW|ry}-pu(aFOdoRW23B0%G=Mm<+Qf>Pbh+us|4dO_BU!T&- zr4YeC2jNPZ)T(d@C}74zZjtx|kbe@71h3RU1+|&h~ zu)N6^a%fz__qz0wF@rNJR&ZP z43>)XCuFn4JTvzUV8gXby$dw3v+I@!P#KVYU;FABfoCew9VHGx5!m3yQ*RAPAJu|8 z>{3OVi04s=7h6fpJVrUQ|o4KIU*4d{hF>aSFKj)fr%SD1YLV6IV z<9Gpu`kkZ1QHyT^VU34!eyc#N-9Sm?b3rfOrV+3u^fHRTNkNgJO-1+QmX5ll@x!mw zIJBLwYisv;=aZzeV$IJ|qg&emL}QU}ynrN*ApJLdQOy!DC4p3KkE5UR2Gvevj2a`|nekF+NhbEdd~ z&XI^Aq;WXF>K+_k#KD&lDo3ohy-h=Uy`zPg?*gPgcjG$ovVrn&DL%8lS~zWl^{-YH zWS6o>=%A8tmr3H$P(DT*5v)Z(vo;>7&1Ko_4dx>*933Bm(Z2*nDlcVtHUuoq4fcWBbsg%lFmng2OGMlAGI@x8+qB_w85ISSTZJEWHZ2 zqI1Tp)5~`uDVpCJ_7W{kL=V~<>c+-v4D!*VGP6FUL2Fg%^T$zXRPlna@T)&vdF89glJ}c986R+Zpd5`05{xS9X5| zdfaMQk19N$?J>HiJEvj=jq4lxoCAzPfWE!>M)N24^5~?$aWZP_>5XFuEM`3uBR@zO0wOM*V7}xRmLu}aRab&iqkg~K(U2OAf^^W_>wX6>DMxF!J zp{kQL5;}s_SnSD2f($C#rYgo5I^y5t{i#FN;V5+3E5%%xlo#DdzME-mv3&gWvNI(q z@Exig%LVh~9t$p(*1gUY*5-eNmx0yJ{;*ot1XSCVw7(VYk$lZdsIm8tkns*M7DE4U znke$t0({}Q%Q)4a8c>g_DBB)UY{|azmH?lq482wt)K{&oDq>;NlDXv5E9MKINK_y2 z2l30xW`7>eo8opNBA;k@6y>@E%*#mk0q`$qex>Q@%OyvUCb?7Yu)!tR+;f7%BnX$h z&>rkh-=9?m5e{=darMP7k`l=wUZdi8rA1>vTYi>7Mo2^Gf#3ij}Y2F=p&KW=m@vqTur~@a#mv*R$0Ulg1Xn(B7Zew3yT39q85x z+C;___G(kTET*oln@1_Kd_YTR<$Sw6e#ZXopt~!Jqlx5VZA@OS3`XWj?DujYil{K{ zHk-tTmR2o^w|3xL57RJyuoQ7x?5t-JkQ@QGc(`n$nnJZ`f>PIyKAmI_v1dF$VC=<_ zZ+GS&CK!iV6i~E2b`40!msTR%Y>J`c)dvnXeM*TFb*-MWa=ozC)C7%T+~WNw3aar! z*$L9-Qjp>RT->U&G0Xyj;B0932>E>3T*{Wzl7J2hF1XW^at>)U;|)6^P#YhG#%?~P z9hUk8n-@C_dhGU`9^20Md=nG1X#^dx>U3_bcj9z#b}$J8H}^%;z>~tZ%JhyRXn`_$ zLf9l@GWW5ihf_q{S>|n|b-*EO1vW6RD2FdmFwdwD-*kD0B3#Ld6P0<7XBst*g{w$1 z$ebevj|M^doE)hO*i-0&qai9>2%zi17Ah5j&_!_5OOER8_}CES$|(H~hV$=}6WnmO zEuCfw`V0M_To~)k^nWx>a66d&-yFkQGu}$w&5*y@+)F}btZv<~bEdBPM68Wo;ekFPiO`CQ2Pl zJmj)t*CeEkv`2_Ykx@cF-v%O9JjZPUx4Pn9v0pwH9`t=v z5p&SapA>N!rSI=n3TQ6aq~l=mg)+iH4Ei-Wm5`L6}J zsI1c_;*YbcF=)fC-fk(3!;;Iijr|a@t^8pW^92Ec!&Fl~QlUhacdZ*g)$994Iih(} zmTY>Pg{!5N^%{mJ22?7ZXFDNv8cjrV!MzY`eje~PPcg*r1|OQ7fG5vtj{+9$6?Fj(%5ZLzBiXvY4rVpZ{R4ARdbkzAEHD_@$c9CcyNhSkyo!361n zpa|KBfVdTiN8`%&YLX&-(Cm(u7yFEY2Tf$G+}Jc$NH9sJhG;6z$|3#XaOsNSe*tW; z6>&20iLyCKn)T%BkK^%@vG4fXvl9Mj>W!i!+ZLV6Cks~uTPin(@rM?KKI!4i7YLN6 zgYwa)KdSkHio0_W%IZ?eZ&3j~y7%_Dcw;=*`*hU2Tb5;Om_HdH$oxlPxDpxJ#m#`+ zKB1C~76<>RB6^DCC^k@8VJb+g&;)lq{X}ZeIHhR5?wx0EUDGa)Pf0U^{iFZ*Lhv9% zgundomK=`^s{hII(?g9V$t|SVF`T~#gR$3q3zrx#Rc{E-+(2E$4O|KG-ey(EsEf!x zu|N@|2^j|+g(56HwpaBGBP87%thDy*tNp^P&0ANGBtkGbW+GN536m#Eq6~B zW8cov$M_H|x70k!-kD+{(;;;4?6FnY9*W?S@xZiFt-(2h(Rluv2=mPheqNqj)RhOj zicVGit$tuQfRRVxCT*&v@;ioU9ZK$Xoh`~}Zow<=?FIFC6+k6o$hKb1VM)rvnn|5j z2WLDh-SDVjZ^So|L9r;WFob74GHA?m4cUE6E2;raiBB;G|Mpejfm-Zbyf@~}Kwwf! z`hGY0jWzkKG`Y+z$eD&}7c(;J&`8rrN9Le%k%1t%Q#U0y`^Nlo1`$3RxEbJXV>TGy zQ`&PqrTnN7&{t8>3$eNWVR!ULRsUL&zB0jBPd zVU)!SG?PV#p=m<0cj$-jBl<o^8=}px9}q`Yl4WhQL*H(b zyybr3Wm5pXK(z@EA&m%%?;B-RbxG_c1 ziY(rr9If5V3UmxDLQ@ylbed|oxOiEwX7}@G>*$XHSde*l>`8k{A4--P%7g5BmI_qA z38y@g(>k5bqV=2l?z4Tf`o7krDbl0&o!(9(w6Jz)Ea@Qo)sVk926}d7{fW}d{TXnJ zb+f)R<*sxjh=9x#SD#EGEYJYCTqdfn?DNS$I0j{_N=oZtz+CuF);A~pkkFlN-fB)0 zwXLh%si(u07_cZ&{+grU_I26XigTOjGY`h=SPoC7EhJ;yR4xb)=b=n;gBKV=>2qkU zYbSeB{gxG!mDHGnUVx;%mQhckXiiycJHBbW=8IwIe-nKLq}k6<2K5`_jJuuwZRzi~ z1trJQtqG4xrmXUivh?h2rB5cQMC)(t5k}dA z_k_5I?%-v*qidZGzS272hnk`WNh9mU&}=(Xv_#K>fc55Q`1f>>b+tmmdpaEg*eSx^ z`;23DTFyJ^B4P!4$g2ri*lABeWTLSe6F#(Z-uIsXnrkwUfmC3KQ{HO$5oOBs%&I*E z|ErtXeOmXHX?gvN$*j!Pe>4WgcH=2RsC2gygg?3U-KTt;ZkZ=Bm^S_{hGKL>w&LMY zu4d&QE2G5WVP5X}I+8POZZ!LKQ>KU}ODu8h_aR_ds+z?~$)0O9M<|4- zn=2R~K;qx>qI8M*D@fX7o7)I8Mo$oYRs6p+W%*mX#_-Vhj@h53 z-c^9rW^WyJ{^eo=9_hPcjpO+e+;@nU&#%n~$ZE!|t*##0nAkM#DW}#0$^P<9cRXx5 zi$X``YJXtB&c4}{LtH+1E>pn^-(r`Xavbz#zRh(q5h%Tk!6lBk352%R!IH} z0qE2~(mn$n0!yLwlQr1HM%&Hj9=qD!$y%Q|0WC6GQzls8YX^ccjC!?b&w92#Hm5bs z(mB!p>YX3Ev|N4DTBlYgeu5Qu_KS-NPVJ9963qvUU8#`Y0FBW09in4-OH%|GiQLsH$l!6 zRLa#A_WjQ3#bXxloFOtUs-9nOgCSCw8xav8NPSETpYd-~1^(ELw-q(P^z6H>NTEQ4$8r^lbs8SvN>*Y+-C+)GP35ABzR$Hjqxrfoe?P+r!=gO|(IFEy``!16b9Fkh-Y3%u0*=!gz`3Lka6z z>h3lzbWe3)^2ves`GYAV`SK@D6&JtRC)AgbZ;f}##Hwgj?Mxv0Pi80i@gpDCiUd;S z92khN>0?yTsy!Ry%LRVJ*V+|DQpVFwh9R~wQ3q1yHQC)Y7q8#n9GwqbC5nw=Ra3MM z-@s9<>+k8DIoXsU@>Ck6Qh1Xagt5 z;^;kFBewdyX7A~OD^#+Uf3^X&;*dB}&rNUq&a)_Nxc#k3hf#)hM_YG|)=cXo*+p-T zQ`*hrZxWf*_DzB@Bq;K7+dydtr8AeQFRQIfbKjl;mUu(Z%U5bGEVB;9 zsFmlz>+q#p-Jjf(f>8{=OO}^G37t9wMF-iAmmxGMbs<;gxs1}F*K?Q?Sc(TGtV8$$ zuoFA$&Q%O`Zelo6aA#6lSd&I9*qnLLM!4DQgG1?ogtP?(RPW@$TEg4m!|`AOx8{`C zZ=Yptdk&reDV#OX35yLjqZcbgm~NigYvG!zPX)%{1b0FPyV;c3|u5-I+ zBg2?zxI0ppWL)k~Xb9yKR&Y;u(}Xmte*onICE4m1HAe^UBnhWTt6R!a_4o)GRQFt+ zb2}bvlJfjc39ADGts;yxihOtPZ{~9R@E{;5=jt%^U}ojZJETro)3y8KNUY#jN^OL& z>p!rVlr2yQh^72BkmhdTgp|(L#cg)9jnQc!y#j;=9Ai7$mE(&htB5EP*VM#ouL+wS zW08*aaiop}%Gb=|?>KOl^kaZB`I!{Je`YV6hbWi?8ikIIf0YoFaT=U&7;#zN{Y%_# zl#57uivRQj=1iE<*$>gdtur-cDwDS1b#Q`yC2pwCIdKj z0Z5B4ihlgjEudDI*)`N@6yIEyDyuQSO^PNR6W9aeG{8(SDN_JintEezNU~z6T?228 z6BCq}pSz5fkr9hvszo$so5>X>^{EiNjQ=8mUsj>%mKiWG&+am;5WuMJU_J{ z!W1Ket4kWs9eN=KS`meVJCvn5hdo=)JO_Lm%LmpIlLj%s-0jJzgm%e`V5bgcNKT#$ zy;A9O_;bdQ_~&*Q&@bF$JLoP`IQQ0(iW{RiCN~?K8A{+hy~5IXiY|_=1-(7w`}*Cf z^25G=&y9m&M4XUy^RDQ7Ax>mQMk0Y@QM)fi*vxpaRcwRY3c3#M;pmj{-gyX^kA|vy zgelOD-lry)&Eq?57NKI~hYVJa~-^{w%}hONqp*P)SM2Li%e!%S)E1@Hwc& zHv3|B+znH!n)!Z)SU5->Zy#hgf~BTO3PB2~7Mza2u|Xb(o<{qtCICv^Gt{SoD%g!T zLCF&*U^LVYt{dfM$D zGzfwOx3WJ}{1+0Wh&xLheQF7qx2O(3+ERCFF_)}nmlTM z<5QkpS8ne?p4`nw(N?G+>YrGWUZPku z_#hSMZrO3qNXmnxrB!$+=im_ZsA6h0+;&iW(%@imU2Uwxl@9ch7)*c;1}%H?wx#4+ zyX2fY5!9;Yb0!z2o(AsGxzxT2iuR%dUmdika@X~V7!SR%XE0I1m3ne_*2zIpDZKnK6#b=Z*M&b2Xf^+Ou`)>T|rT1)B!-AEZlBCWefUR{&DW0BAF@*)gT8)D`_RhN zd51k?Bg5k*I-wia@1#@cGc3B?ISgzWXuD{>msRPLWF$&|o8^o2sD1%{{13zMO^9(A zj92DWiqfLhKHNof`u@rJk;qAiT{&=Z2g%4hnV2mEW!pve>gMT4x~;x9a9n2p_aMMO-)eM zhiYhPUTq(ePF7SqN#N0ey~Y|7K(VEYq(x>%NduasS zZr;Iit8e!;hwQO_8xwsyR(40hm=sNv{CAJv+B^V))vA<#Lnvp&1n8J9sPAc*+`{EK zmKWr=)Athv#03)+*!$f8iS9^aUr`2o**1yaxh^r94h{S|Vy~1NMl`h5>v{vkGet1t z39j=9s1+u+fzP(R)gpn_==0Gu@rp(q?my?$L$?1bLoP&mT$_90+8%YXaIzO%) zw@ImBf&qJYfqjaEGg{~NScjNTkU(gUy^tf_N?t_ig+%{)Jm6}gwq7b;qW=f6@!p6I zaJ^}DjK$vhSM!|r@FHmqz^V|hgC5j4i+@lyB2Qp^Z$TNX%8+M)^EhWs1oQ2uBUevX zm=w&!-i?Y{gm@T*T6A)MAt<{yc%lb8OFx;G{<13UCcNQRAC?e!x@Hf2q zp+?AFebfy^?biA zpebYHv&NAvxpZy4ISfvQ?kOM?+Kxw(wvgWQ!irBBi%Skcc^yG2*(+Wp+KUWWTaT$+ z&aWqIWIgEE)HjCwBxuT#x1MPdBE#29*4rC>=vb8|icR+jQyNn@SS!TKduP4)xFnmE zBPHY0rXSEdF&6w??XhZYc1+ax6WcZmLW$C_b(jR*xI`IP-s%Erl_v#%Ks!>|eV|S2 zC6lwp_Zhj~8ru_)N|D|93wrJ9Dw8AX)(~p|!y)aH%af-acFS|=;Zil-QEiAt>Ys@aqJ>A5-m+Q()n(SmC zPRb+Lo}6ELANaQY5x$2V#Ce{|{gqolB0&2td&-^ZxIfN2t5DROM=NhjnYO-<@pA_g zm~vX423yji#`Yk?+grw_(K)+m^dA+skP_?>hc@wi3}rFh#`pBB8-nvD7UHYyD4f3Z zd4|XPxxZ2bqU%o}=tXx2XgPNM`hMsT55+u}`gud?3D(NTR$?}nq2l8Qig zs^?v_iAWc{!X`iFaG`p^rsUoPo(Q+8`mpLq&o$bgMHoXy&LW-2^OgFcxfdw zB}k}a9@6Q~bK}80?&BxmC2L2=uJHOh=O_9V1u!`yu(*`6sl`C@I8OWa3|roPR5C?- z9FfKnWBDUuBg89Wlkdo=9yZs?udehCF|fWTYN0pAmzaVjB0pPanJjndhoHk79h{mT z;!hi4RoWDZMH<2EVS3L8WwSV6X{a?uKiF$)G47jf%3v8>)SJOf0Pr5^64=F3LZ9hkY>M#GD`6pc0*^JCbTW_>lqqsb4=#Ch~!^wK;|@cwUSs$P*N1H{w0vsvNV;8p6z38Aq|YU}I>L2(F%|>UvV!8gAkR-+SL=HuPBNmLo>DEN(DfxQu zWuo#QcFFeD9$>4#nD&VslX7GoyK|zC$^O;PNqTL26ZvKKWu2x+ht%jCc6Pn z5V-6|Q`5dlem&$}$5+r1rgq$VN`J@UKZpq;BlXl?r)qh=AkA56TEUny@cD*=O~||X zRa$mQ*Mr`jD!_Z@8eH`?7NUfBIFWD>zHeLcyn7-BwZ|I&dWzFrjS^gW;htBS1!y-x z;=tk=!iW=Y#%jwN8b+sVH3sS&ZZWdIJfu~EcAb;_nvRDSK)9l8(Fr{tZPK47x}16s zlom^O#_MZyq0V^nRlwlbf@aBOEgweSnkhMm2;&RD2N|dhZ`*3)_3DD<@kz;UorN_0 zkP)wXg+IERK;BwM8`o=1DdZvac9-)}f_p2zKC*Y@)hf(VLZUM_o8jxnjV}ZdsFQ}ja!u^I5tL|Z zX^fU@{%!0Wy9=qRWdUZob@1TJwmaA$=JIAM9rh})2=*meM48#thvWH1IPq5!BDBku z+@q)tERednYdKt9LNqQ)6O2;}{S2Q{oD=4LscUUMw|4i`g5$(O`fB3fYf)HIXgp$@ zz-Do#qufAvCj@pv)q-(#`3N3PIHaH1J(Gl+k_w#fk(k|c#SU$tam1)`fmRd zs`;zsa+ty5FgoH3o~5%AS;qO|6Lk#TRMsYs>bxeg@T<|CqLMkTzhnXzo!YMRbpvIa zD=QSIbWqjnD^T=`eMC~sSO3)r7@wo{W}SU9nRGC6pFkt=RzjyB)bodtXb^GT9Vvb_ zQt2Vc;dPa0!pz+7Ig$gPw7PaE9XaQUxs~?;bcu%!02Y}s(5eb9Vmx??Y zhR8Lq2|zUhyb0WkBec50I>uQ?hU0R`&?TkKh6kbim*S$LIZq+F-ho<5gl}?g3UR~i z(k)oHK^M}qgTSHu-e;&ORYU;R6#<;7xm|?I_FP75KMB92u*1^sr4_axb# z?d9Bn%;76Uep;FS^MsvN4sEDK!ajincU>ea@9k;pFhk>R{!R`U#q@+SI~h;0I^EX!~Ppn z5lfJ~Svr%H32gi&2JDwOw*iCz1&e$H(NlF;4y@V;CPi4Mfs>!Vpr)+T!cuS5k5H^j zD~t$#a^v|SIvIXM4*sQkkKjaVTBH;5 zn0`GZDq*&TPCj$+%yp6Sa<$e4Ek36kbWa?5dh{wuW;u^!ijX6*q&|cA>2I|_=>E2g zSYXHl1b2ChLAUtdIfdLO6F63xCQZ^?LEHux0t@<)?#K|r$a7yR$-#<&My%ed`o4jh z+8#m57zPYk_LyfqI-6I4_Eq$&^v0z*?51M$U_mHLn1bix%?WK}AFgA~q0)5Ni=TuN z+i^{)eA;@s<{NLm6bnu#zw^YRBXwS@!1`&DOhIyDBpH=hrb_I)?(VBk%FE(D32XH* zv8&Krk58G}i3fOzPzCWDmB(JBl)`fw_pIk(6Xaf%0q%9FO=CVTk+VI)8oe~TGTjkm z)H>5W5wGpRq|P0Oz|CFWD9;;cyt0WS-#agYhh8;Uv3prEBkeKJ>YnUdO#BMppjgk> zU8f_xD9f-i6H_;4)*q%8^7AUu8N4hB{NNWzbkkyB$4ZwMY5Oe=)NkloXnZ^?_#0{s z)cxrMQuUKxaNw-rTl~FL{5@hbGd~pGc(lgbG;tNWHZsL^{|uDePQDb+g%|Nb(*Zsy z4MWUVQd2%W>XDqi7$oIefQqq{m$On4weE4&5JGh)+(YW?0sW5;gE-Zk!|n;Qv6W{* zs(pX)d6Lha>?)qKB6#dV!&u(x`9zP6(M|2lS6R@1DoZsL#}jV$p%f_Hj(wDz6LA`I zq6{F!eT=!7n-c}hoW)1uE4H}Zt>$@E8{-f?zxnd77#!Y|QclNiw9AZRh4eID6xK=u zt-KC9OakyP&2-ns(gKyBeDOkp5a>Z0>U6{dvYsM5TiQ_`h^rjlo=%dL>-b~S@Ir;= z>uaNNqM7+senW!=(>RT!LT>#)BV4p6qALY8Lu*q`Lre z_0sb?C+eQjzR<7K7Lg5LgE^ zCW2EV?57I9dP?(FL&a5`mW_D^wKK_wa+0XwjC9kYw>$_V;V-j7(ixt`Or4)sRfvWS zA?HWpruQR8%n}R)?+?BQX&)Q=rkFEKor4;(Qu&v85bj7^qH|;viT^jHWbLOj38)VNL z#1R??p}dFJWKO_$St5h_crIeoT3xPZ8r)pw8kPXf*EE@cpEmT!=@jhVbOHSaRp8kg zTEjmo+VHCge()%y@8y#3OR=sk%5%a9=UePSY08d@w{Ewm@cq)x zPMNHk5J&1e&@8Jf``1czZ}R2~@j~FyUQM<-Z_5`r*3U)dw#NlHr>?bkOjwSlNqFt4 zw<Vuzr5m$xNp^8q>xj)6#Z^B0OpJl*@!7KCyOTf#ASzE~eO}elg)`;y zwHBA8e5q77Tn@(2j?*>9k|jXGyA{C#IxhK%N)NP(Ldc`7JchPjQE=gn`jNuMMidsfyYv zb>1lXfFXwlqKlJgZ%4@=f{ep<3+=?mfU$>D024iBiiH&`$2M*o2K9Fg2>LLb|EAR) zRF6)YzA8j+elY`yf8Kh?m@luJm@gkdZG*c|aFo9!V@;n$?Pcq;UpJcJ!*FDw%Cf_c z$xQfBK9A<;H`F6uf)`^`Vf~H{l_|0MhRoXbj|S<_;g>xw0?xK;{O&cx^g^<&?I+O? zFB9CrzPw>tVgBw8LFwl*eg&Hr{%prLt3SuBQBY55JV{=kfd*=wkvB!!P7b69-E@!! z``b;7)ECulkNV*xK z`dX3`+_(i$(8umg(WbdQD8JZ{>ltQ!ktvU#%mnmQ5L9g9_)6H&3E<``|BIrXl9~v? z-0SdhgQ3-LGC2w<4XhXe5Nf^_mm}klHA%N~Hr3!9duO99#J9*nqau!P=v9Jx-5>WV z?WqS^M6>FSpJ@s!phj_6z+uZ2x#u6v!ggui5+b!j(CqH~$naNBHZ3p7L7aZkoHLWX zG0sbiR7#STbq*%K4%;tVxVb#NYI;%m-yVvK{)$Nv{)#}NdxDbr=3Bg@jy!tz7|RIX zn#LxrYC%*?n=nc zmZ1*+8(sLnjTpu&Z{2;OpRBn-@^uek*dPB~7I>GQVyc?Qe>Rzw{GDnv=~CUE#j6WnS1R^}S=4@4Qh)^% z_)>jUWui!)zFDutY>)uT%j9^@)@qN{62HR~$cLH5 zD!7_`>xpPeSE8{#k|1V9Vr}IAY!5vqm&62SHVc2qMY~=JwpGfKWW*S~Qdm{}^Uw=d z_t}*en#UB`2#K{L+VF(Wc05l7(!e6wIe%)5^u^McGnjqlL|S+Zlto0h19BBE=biRH zv2}XxQ<;sd*FxxvRyq;-x}=N^y~O>kl!7{4T^B&4>BYzhvahO6jaK-~rDH9rQmJQ? z8~{liiW`$^+R|8DEt43C&(6shWTfs$PNBIvKfn52_@wJTciS>qIcK<0LlapIm4_9c zrPvJ?aP;>NRVR-UE@yY{*c?Z)oW`0W294D4<%)DgL&_j8Kum?rH<|=4?2i5jQm-d5 zH|N_hrMCs@pdTSE6Li`j~7+a3oioXSZ&1FC!@QZ2S6Fa5pXz;FzssaFnp-<$oV-m^tQ8Vx|3R_i% zbkK}g)VYjwZ?7p}FuYRoww4@Es~QfzdyfgSa6)j+dczf3PX_Vg&bE8qV8@aI9Ld8L z!`X$UEy&WrkBC3-zcj0Ge0gRIIpiL}CR`(N-|?8$^eYuuO5?p|PAQrw9XCx*)MEv~ zR^sWdQ56rI9q?TJ?hQzfP0@S*u8#>*m!}|FK2vLwYlSH7Tk9oMUzy!R>8g?aMqp*Jz|uyTFJ|j zzkX~KrizCQ39R!<1vR4sT>J}718c{wG*JMn{A?^uD^HY1M&&EE7-$*ZP$OkhcY?am z5omY(H@-p#w?A-gbL&t;2d9V%`dkTSJ(EcOiIJ^d9egnV;sY1`Y!eY@N6_lG%8uKJ zJhFf1YyCs_`Nx==C1`%md%&m)DmgqE*ib9B>Yhm2)M-76kJi^1X!{mZt;~Wc^Qe`- zWn;$Mav4D2a%&i7C#sBp7g#j$V%$iUd%LU9aO21P>%qDXJ$>M3;LqXQvkl~#u%p0@ zq~#+Q@w+$kJg*t^Ssas+TH144{jAmHCgwo)q@j)0`|*d6JoO+wUXv`gEGF>VEL!k; z4%3KhJU;~=Y%oyvZkHR}JDG8|bXA@|$Sb$$`dVz%6~LG7VHiDk6#(BEq)lJ}IWlyh zw)DI*wJ&zA2%evlVut$zS5OGmn;%O)jw)Co|6~7eISsUbu!(I^&QbQRoEJSFE)_gM zC>&q)>lm`2V2)2GA0%dT#p#)hs#$vtKd!rYYb^BP=HCyd4PR8hJH9?R*y$FN36GjI zGV30HBF&K0nV#pMBhJvD?%6S>fm7&w#mPT@>(kR8|7aW{J^!BnxV3M-{vXG~cf$Nf zWp}IMBwgF~H7mW)t}D&3vXy;Jg%Jf#E7`Im6D-Xep|9-EN+MpHpHSBpN5%MO|AaiC zSP0aO-$SAK=9ryM=?)IN`YRmmez8lkrKr*grTEMee{uf7)rO8VE*6IND7`JRv%BlO4;2s~0nOx8 zjM)8f^yXH|hl{x$!9UNaZ|#HrqXFDi^aEO2S=>XHj5Tf)KR7m-1TARU>J&VlL62mH z=lQb9NH)HrMiNO_LNbGc#lbP!uBR16in}R)8LPhCihEZKlM=8ecI$?&c?Y%HUU=6p zIG$=~IVEtGUa!KqS~4x>4E$&2Uv>BNV0zFh#t*TTo+|7dO-eEZ*Ls=oL~ql;4g zN7H{kon&YisMAsBl4%xR}4?>I5hN0D|cU5ifh#IXRLKYJ%@@xTB+kgvK`p$ zOv`PF$Ep8l3hS}|+apRmFX`VYk?p7a%hFrBCJM35V?`vjgB_*I z&uhnZrlTxg(>Y{g@%>XKlM?3cPiaM8{#VNfK;H(Jj6!4gup`%1mNS;@kFTZGwBFpkHT<|qo%mGs zFJto9BbLno0(;XR&^~+7vGuifD?5MDkYb~m$xt~diWtik;tU|@n5;_6W}ZB*`djhM z|4Ip)&GeF5hPtg^Y`@>#kT$+hYARTvV-Lt@IQp5`M%NbzmWVy#eKOM$!mXTI;#f>A z2w!SJ=yoTJ|4lB6d{5Y`?Fr~CpUIC{bFU2{-?h|vPFnq>z%t`8YSc6>z*?Y7tGHI+ zHDIFhzb!@mW6X7zZ~jeABK(B^sw3-|_RTonO@#OMT!a)wH`0B$SAEfuwGsXnp;LA3 zfsjn;-UHs~(0?>D<ykBj?@{SJop+(I14qT4+5L?7 zvUj@T$@8y5-8_WY5JKw_5J1*Hn(6ZWzim9?svmy|TfGFlRQB3_=o^KUHY?_vztM0b zR7G@iD@4T)ju0QQVv{*B8Q=O;Gf5gZ+ zB~Aten5-M|NSz=o6phjwV~nOsw1ceN3SS$!Ul#8$do=#^f3@>8T=iq_&ns^<=YKy2 zJX6V_ySw*CfV|IzjE-u!X~SiG759(E{%`8|_godd0h1}Xk6TaDR)_Ak^GhbNKS_i`XEXL74D^0l^jfc;KrvGua&tIDs~1kE^{%^jz3&k-(-}en7kkT{}s!b zo>2bYpYwlz8)YJh$*UWo@c(G~>aZxkplwP@kmd)1EYc+sf*`SUcc(#jN=d9BvE)j3 zcZZ}Bg0u+IvB*+_AWMiWvBCHFzTf)?7uUt|>~qeXIdkrNX3mV&7ldtV-MKqZ@kLnA zQeeKIu^%Ma%>pfX1xJdrYO#P;$;SR^1G7O0`1?Ep>j)D6FQ?{H(J!PUVHwYlM$fzs zenPvR&X%l<_!b+fZ1;snVRcA4ija?-ZOXTJlK;D|FMhdy-}$%EtDU@vKmE#+(oB}r zgBUzFs2J9CJ}54my02t^(t9S&&lj~4rrz}!>^yS<`mJ{u4k<1Fam9F@Asv&_|I7Y2 zL6UW+v5{$bRGYz9QI{PJ6*zNYoPRv$+vIM&T_5BGcIFVgRK}%@e(`-a5KI6>^Aqz7 zmFwgf+a&6d#L~8=DPam7-nJ|>&Ki=B@jCCxjELBl9jOg&!LxBN&dY?9i&4$7Qwei0 z!HL+JqmH`48;;LV#xYjZhw6g{qQIp#jf3*o#+T}FZl9?4Y)V`z&sn%gjvyFG8dsdH=O+zFAp&Ki-1z3T-+?YiXhqW`Xw58w)U>9Z@+3v zocUQbhqJ|$9q+uw1F;et@$O$m!ZcfBJ;c5wG;m%l9q1>n{a)@U1_J*3O&ds{gvqX* z#><(1|4yYfLP@u1`9)OF@VUO99G@n49I-z^dK79ibZQ2g@!tLj^Us#{fqO~LOPx;@ z&fTA{l`?NYEj77xJCEHx<_o&ajfZL!Kj~;&vJ3OkF)>+w2+(*-7VME;{6RM2A-_pwwFM&dNra)?2*L8_?fUkBGZ$zLbGj z-Ra~FsIs}G{!(BQ&9YREqwwy5Yeq{wfk73$)}a0PSO$d(xt2JJ7d8U9s@;I05#Mj| zDizc>_xGRuXR9;(w@+P@JjSM|q*C2&g3DcslHn9%s_!hX0lgFZ5l$9eAZ!gBb!D$G z14|`NNfi6QyUWe5o?H**8VbO)Xq+$1{(Dy=vM11!A*S_lfd8HK(Y|lJ zkFTWSOpuF+$)K0;dM`E?XODG7z|L@LfQ=sv{kBdMXg#Ntj{9UXTKyQm4;nU)59Uf{=37Wph>qz?e03qiOs z`iCN?U{gCFmB}U9yE$olPRhb0umRzh{x?3WJPM-k_5TOEeqtk=Av^^ieAAo5(1k4` zMq}!wo050h@b<)fyClr~{uZ>Bc(iyoS5~#R7UZbXj;B7k_nl5QL9SNnFJOZ@?)?q< z^FI>Pi6D>gb|@J8`Ao@E;JAr6**mbAdyRMSGpQ?LHZ|UuGFokdW1D9tB+l){jW`y( zRQ`Xf{6P8C=-f7~``x$wHxhBCRu%2GdZ7|UosUf<2)^8Z^O}6U^OF|2<+!QLl>Qut zkLb8K3bFuc)N)e10C$@gPT=kp`P4ldA?KW1AEAHW6T;wbJg8f(qaryndEF?fe#l{` zV;_kP^|GFMOpDAf82SQ2Y2cEL|3Bn^?gJrxAvIURJoNfoMP*J*V88>BTC4^aT|U#h zV-$LcTnUdofmo%aD=l7AJtzMk+UNr<1Nv3w9zosjXTfc>Bwjtv65jN4bveM6FWz?| zW=KzBx-C~Di5}XrnXkiWtA9)@+`PEi=u!)$DhI1e4Bwj@A=Ld4v z6<_M=GJNkeRdGYlJ!SjE?fImNCQ6w74hNCyK_;gxDO8R3i$ei6b?5Tmvu88^$PsLF zb`R?w8fnXYfgL$*=<^zR6mTTPG539TK1qd?eB=WO-Ke(X7fWt=7OsDqJ&$$WfWgd* zKLeUgqYOa0;In|lT=|Tx^+@Z3vA-MGl;5Mq8%7N3dZ0@83MRSjmr5lSRZh;)-{9|) zj{fIyJ!xEQcIc_wxw#RN@B+&oX4~b|7|UtufLh4PL+?}5(3J7u& zeOZv!63pZya(4h31~cuRrn@SQ7_&q}hla1G{s$<6_69JfBANF>M!|%*Ol}y4F>D!~ z*=Rdw)y6ZLw7SUL&|noiwDb`Po#*|_|B6FLER9>=GtBsY(Vmd$kZs4H3d+aG!5^?La_=5?dfZghhs$;OIP zn56c!9VZBQy}s%Hn)3Uw$Aj+QA`6Wi```09&#T7FFHxG95GCf3nm+>4YmIYOXkp0A z()7KSl{*e3XdW;?aFw6fqds7$ZVcTq46=)L4R>sf=d`96@Kqh$FoRwFU;P~7+p!Pe zCN;btb?{SN>7&OUrs$@fqtySM0d)`lnZ$VpFfsUPtjXc0hjUg5_L+7g#Rq+Jvc6B> z%Te9WkvCt$Yn9hZQ5Q}H)!CV>@?vR#HTySfeSqdEBQW>FesD}H@y}?TEHy0GeHgR3 z;r|AOOLF`WU_7%k30ao@$+$v9B!i??xg!i{Y^gVH{}wNyj4KJZeD&QFLVSz&^u*cg zf-T3u(Ci_Td>Lgzd<#ko?kHHU`YoX3ojnJ$Ts+-F2C~nd585_U@6sJfG2^&)PBDCr zNg-ZfJpF4UWW+t3ceuViDDhy*Ol#Bh&FH65=GBKpf8+|{`8cJVwug^t2xU^=4zIy+ zt-=6ybfW<~)DwhVNrUwx#KLRWlbn&6{clM~5Yy(Mh4~rG1KA%!ugYV-=c;kLCLE-c ze{a%GKc%@7*VawmEhtbLD%QLb&>tCbgQw;n+V&_F#o<-DGVdu%>Peb1c!0u!4? zqIjpyL4sGYWU+5*P5=AIWl@&pOUoQpL|}|71Ex?l8t%vXdc0N$dFG#pMa6Vq<-L@ zJn$YgpB8s_^0pp*9kir+|D9EN2i7$Cw}S$OfWOr{I_u6-lis4?$b=LIp;uH;&va%{ z5!{R4h8ww~XIRKwyZg7t=^KsLYKv?BnimoMtX^(Yp2^x(`s#-i&#Ov~Ol^|vo2}eT z7)r%HMRjZaAPQsORaAH|m?3F7PxQo@2sG?qqDbW6N9ktK_)c%6wd*-0>t|bv3)l7- zG9{t=FEoYyvZ@sdXr@$xR7?iS?A(%7X{0G^gJqZnzAr50bAc7+X^A z(g=)Gxr7p&%xSAIzf=kisxMHA4v8O*%1H6cC3++_Hvd>BvZQk{tRipKGke)C*oOmV z9}5e#4^C$wCCGRquoUH(DL=gXv_Z1qu~pVxW0_7>O*dF)t3CMIYggwc^0fegL%i0V z@i@h_BsblVmkLTJB1SesjIw0>2IQJa*}l9aK0lRN9URzAN@!hpm^xcpVf8Op7AX2F zt7=qKlHgpLQZ3{7^49_y9120=nYBjS*Tfe5MFR1Od`oeeE#HX1?-{UGMa{0{_mSvOM zf_PxOHZ8eGOY)9+L#KMYC3utxWgPG8{H!oDBSjjPE2H;B*`mfm`T`fK3AW_-b{H$G zY^9jq1}_@<}ceoUe#q zdb&uu!8kz%-CF+F0P&Wu3?7RzRJu<|7gl*XblvmY6rO&tar~5Ld`AYFk)%+o<{;eb zZozC+-(wQ{Q|r)zZ(%)B%$ikr(cXgCi#APupFo6LMI>5L>m$f1n>>qHz_LS>&U64#R|zepObjuQ>j2 z&@#QX@i9;#dJCkKXgxF-+dDCG%Yw* z-zKe9S@H4?Z9N-(y_sLu%Oy$tP7iBa?V0~t8>Q`E$rqLh()nmBS#q=B=ZzRnjTF(> zdHPgI#mP14Y0k$f<%@)IY=^(U6M zOg@Owa{3$>(6=wh%O$wE%4ZU;ral!b%Wu|;*I{M+I7Qc#G5kc`kfKwp^J&{+VZvPg zT?ZO^U+LUeK}0-5&H;RRna8Z`^`mkU9<*##`{p0nlV!owzmyJReE(+x-$pk z87B=rZDVBqN>$F;EXCQ>+I^anSmVzkcO0gd%>T~6%1Ot~Iv&eKU-Q|MXQcbXk9ya= zx=d4vBW|T%E9tf*7Azd6`0fl797>7_ie_WEP3+tY#*8>963MC%e|`;+t2Lz zoz$Z}xv81fp)y~ROe7hbQGGCC{WzcAi@to}TL-kX!FAo9+gil>%lGBKUv0*GUKtNP zO;J6nlwtmq2(^(OxeF!bnC4AYz>0EDX@%%*pi}iv#N~1H4f0=#=4#nBcX-*&^K{&k zk#sK>l>Ru9&wC^n7JeS5_G{CmhQ;uYY73e2y{PYuOyufZx8S`0p`}8Wtl5z7`%65o zN@HfmhOxX!r4W9lbmCqM`y=ICrj1YpJ;@3wA;ty9L++Gx`I-4Xbu8nIAekS|L0nlgJe zlkfNLozuiPYtENW3F~y!?QNV-}gkX%Df;96vXz`b}`65hcL27F(*-RMY5n$E3RRHC3pe0y5inUqsNF{L7Le zMI;ZuVYX=Esww|`J6k(v!mO$*`HXjP>|0&>7V06Tu9zph(QV;-PFg0VYMp{@+hZ|- zZ*CUd7whu&7?#~y@zXLAbbZytLNQkb6ww;w*{mrKwF1*8+PpvLeJu2xYaf29coW5XNu4a~0w$r&uq$9Rm66a>SFh5ctm4uFQaTifjzBu)C1D&Wh5jjOY7;U{|Jm6so<&3-ft#ePxh3vGC;MNpng z;HY|LTu29orxx!IK(m*R# zqeOE3k~FX_ocK04zPeL1QdxR?mb(-GohYr6J*_zMq*o_&W(|w|G-3 zM96b$P8!UfB;5NRP!n>B0(vCc`JI!63W=mS+h#S&%X*LgbA`IT#d~~u#+rI%)Obkl z&|iCrUvAC!zpMz!ib!GK&6Ap|jACeV63w6L}_#tJ$&M`N_#; zadBZ^-$2pELoNL`5Qw)6>hcQhjXGoV%`>e$Zx6+yibD$fZ}C7~ar5*O()-`cgR9g% zx8={oS*9Xp#X(qIj8aC*-_Z>K#hqLhcA}Bsfk;$sn}}ZsxX5ky4|MG=BK#5t@rDnF z$0$oc46MBZnkgFEGxxV*xji_$?kb z^vbDfEX9v%{~Y7$_XoZgKJaNQf4u- zy6G1+cfk5H``1P?Bg18Z8yrsd`zL7ivs=9Cc-L_$9N^J=*4tj~dYQW>SB>Gl4jY3m zXyG8R{hPVakqb|7CxXTMqzh_tPket2G+N&$-qn8&2D>5<8-Z77&+R9K($eP_n4K%r z(w}T+GC(Q3pn(m!KAbF=#t@vMC$PJkn#v!=4D-#2icdxXGl5Xoj?ShRB8q3W%(6mt zya`b&fhZ_yjnn%lj*Wo=Z4WA*!MOc6fTD^EyW$bIcx;^8ajqB6IM8H+y3E)j_%8}4 zzX1sO=QiO+k!Ue!8MLDrM~~gJ1Ap3s#GRd%yqY=3V8OCR*BKOgINba>t_yvOC)X>$ zJF2-?lP^lsjuh`a2L~lcL=}2naL>0my9`8^&jydW8!!t*jJ1 z5$(Li)4>7*_XcDJrV0yP5HASDzs6t%PUkLHs;|Rvz}F*&qW9s&KhRh8K|JcN#omw{ zSU4638I?S(PEFmt!eHgLr`mhg*&ddcrU&Vho9xe5{prR$7V3{9R_oV^-jbZ zINDPlkOvzALb3NYWZwmYbv4+Izr|xhTzQN3>dXvu#Q`O8X!ZYAeA!>=@jeIkCZKX( zQMY)_XQwq3kjJC-z0VPB^CtrXGiPwD_f|rz|L2{nTRef5{y_fyF60Rd@>~WI6n9$t zM_PL4-%dNfG5s{s`NtSM-XDk)2bP0DSWPT^03s3bcUXNe3(+5{d&_#PSHQ@G9DVqTwGinjAJ|Bmby7J+W!>- z+BeIlKk3n*LZi`ow|FcN=`(U-X8Dz~>lI-$MCQk(_D;C=}Zkz zom`^5k>_YEMyYD^-LxF=r5Lw9#Xm5=OV|KvpkM|*3<=jxO$7w`tkl<2oDSSR4Jc42 z0v#N8ZL(@}B^v>OCFrzQ1?J|!cEIA8flu%+hXTx8Ff)>UoP_Pfh7<43hCEMTawiM| zqZ!doO$)Oxp4qv+F-7lpuJ3U|LN3=h;SdPb=ksgKbF{U4Pa9E#28N`~l-Ff}GVIXM=LDiucbhFE9V;dWpuUC>8>qZ2s{$d1o)^GI<|< zi&u+djY1unlZ!z;U; zNeSOUZ1X~TLq})PkY*Tl&3kh6E76l}P~1|P6jW9OLSLBu+_SF`Yt z!s`P~2gfhl?lkV zRF0MIFfAyb=f<#C+#|R55{DN#Z)rUoc|FWl-|%w9W39na(Abk9bBdonFYk8(DwlTX zb)CEprCsR#m`6<;zce3pEGZcs*fZFmzuu#W|0!Ug z7DB9Q(mm|lPMqKMh;)hh<2-G2aY?%PRyQ$r+@!KzVvJeJsK%7B(_v1Jc`JTn<BBYLq(LVwr+9YQ9&xckl__)V_8134mW`DJ|lt5oQD+O{eMvjtEb z`FNLAR7dGs!ZkOWg4@se=O16u;CaN^78wZsS5r|$C(cJr_+E;N+_-Rz^TBhVJ7``A zcO`#+#je_6V5hd#vTX{HCLwS4D5ySV4CH5;TF!Jt%g<5&Y)C{!9oZYV@N&-=h)hgCDxmhl^}r?`d9Ve;{mmLCzH zxGR~L79-W14*O}PsYhPZqsmwDIfiKjiAo~@Ins&hevHN=;a}}Jn%sy*I6vCii*r<3 zMrC)5)_48Kkn+6LXrsc~PP1%b_GR4tZHhf76(Z5kcOzK5Dh% zZTD~nq5;{2+q{!nIIXSH2J`T>vHJ)zD={9gS6H9cf>xowJ`iU-TY9OYsp z4O!D`R|%O9HyS=p`o))hVq`>_j(>BOST_?4c~cQ7{Bdg6$%zrRh-V#98^z7XH^%;Z zPQ-7~n>BDe)l*!b7fAomYMm?PF^60y-j$YT4OaThK157k#;;%>VwN?BlpJPVG-!>^ z?Ra%sAIP7aCQ(}}YE@F8Y`tZ68`rFN3sIPd(542>nn|Rl$lA|nI{KR3 zHRFbr4_uSD(om_WO?)c}o&gV@g+&*B&rKbPCX*V59&y@!e{vHfN!4eDYSX-LFZ>r! z2vdp1k-=8UBV*%0mrGN-ReK~pue53XOy0ot+j7Fg z@GxmWD9uuX_6o|ay_#RE+Q9~W=;hYD_$KAcl)2G;*%%c`w>gg>!R3s+jA7=w&~rp4 z^!-eXAOw65*Yv4E-tQw>-J?yKdW#=cNO5~A1=l49wLZEzlgH+*@D{XS$gW_L1oF+HR!>i0z$#M`o5#rmsXsVfXldBm}5r4Y$&L}SmjT99X#{oH^4`I!H ze11|J5Qygv27IzD4~Fbx4s<4_JWsIaXoy^Yc(3w}-Mh=VkZ|i0nqF_Z6HMnN?&K!e z`LvQfg~K@nt-i*)21Wsw$$7a@Dmk>_YvEPSo_%|q09*h{APgId z8Pdtm0!J?mXlC1aIQX)9=Wo5v)Rf+N=PZqQFIwdmuiz?Nt`=7PBgI(1RC3q11*&o%dgfY4;147;O0%?Yfu*j-{yfp{uEY2 zwl<~q*9sya$uA%wYaG1jGEOw=>h#QTXY8FBVh@~++ysx7g`lvAZqq$yyIgd5zuZ7J z&?giIk?joRy!aLyDiX&Ew=5SkLx(0hFBA zKGPeD83kbY7tev;w|K=g42*W<1?RX9Ycvx1k41d};CeAMq}I<|o~#Z?4ZjA~X=XUQ zAN&=K0hfS_XHKeur$fNSKt>gLOGYRX35NUx{Y9PDIQ${$<1N||?L^S^MgTCb_bOzc zexfc7b#)C7MtjorszV*@dCzx7lzEFQO{Qm2h~UENt1+xSu81@BGoT^;xo76NFu-Yn zi;%oR!HTK2^mk0Z25;C!oORuxkpox3*_^!cB)fBU+Abi3_k}nZLPHb|E>xGrN1EQD z5e0z8DO##JVJ${Re;g+wDUl4tz>1ynPqH4zflCzC*rkyLS0>=VANdi!&|R$?e)W>^JpD!932vM_PB@S99ZfYeiTpb$axvH{ zW#=skeK**12MPS=78;G*ezHz1ItVJhs5|xs#s~J!#g?P@!ju#8gNmdv39p^K;|l@J zp2n?5KtfIl8K@PdDH1t4fT`PzAiKp2Y_`XZib3vQW5@gN(^4i}A_J*Ec9I); zCi2=**0k)9roH50^kIKcE7@DdKqm}cSiHk6-}aRfPn^nXV{NzxFUnY$oGD<**&~6> zf0Em8wL$P<@;pzas9>Uefm%mHa)8L%r{J5GS(dxdoyT_8e+z()2l4ri@9uKZA8}Rk z+Z+hJ*VW7nvhd97MDR1cQf6|9E-BeKwz~>$K!56veZ_C{wpJtYuCb6wGnMM5W$VS- z2uFgM8Bx8m>xwI7bl%cv%N7TLM0p3Tb#$%jJJn717I#A-FJt48FtdA}2`Fy*$no9P z=etA4je7RgPXB>wOe%ty?|Dk}s?-mabrBWwM`I12=pnurrVx8lI zjk1hi;qfvK`pw@J;_0wdq9NuEu$g;8mLoOs`^JXWX`DW1Xj@Z@If<#>Q0_wZcfm)V z>^HR)o5U?KAMUzAoA5?HQg&=<3DdSgp&UldmJZmeMoAF`T21j@pWp6X+P$M1O-!F0 zDe!z1->du1b8v)uRN6Ld`uOzUWgu!@^b}hp>#jBRt68IXGGcNk>IF~5go}ZPA=nsS zi#d+?ca0{jwxKGmo4UVb)!retEb9}kmSte(Zef?B$W`-9tYE94 z6Hd&DcomZ~bC63N&99djq*^+56EXg!Qj#)@`ac7;jEQFx)$W(l29S8cfTs!ACf_b5edNUdhxxB8amdD!>( zc7nwf^X3bJ)+pyHUbB8zK}Bsr zXsgdYjczczL%NfcPgK!5zsY&D@~cdB25E^4ryg*93_aU$F-``I7I95 z@o4-lCi=(xp=m^s&A)QCD|wEdWCeIyTjx7QJNkX8yvNzPMxH7mH1#l>6u-=1&_HG` zG4egQs)N6!4UcE|k>p+^rPri;hc1bL6JdX?LvC7*kH`e%Ks#7(y#lD=-SR6uHpr#N zWO0quRAtukaT+>npQAmadz-OR=Pm7mFRR>YD{UsbP0Mx57uvCj@dTJ)tJ2={Plik2YLBFDgw9K@|NUL%#~+qz1Luu$00-b34M zL_)@LP1ApkcO&Wz5;bU*-J?wGTE&e$`QPzkH6N-8MpmRj;!CUdr>Psnw>q)sYIDw_EBt6ZuSJT+{18=I(ax z5JRm>Cl9UchcHnx3k^m2$ppeA-*}U_gK2m;*c;XrBS@8sZxrev#H4Ayv6ydf(>W?M zA!t>yu>5xPv_+sHg^wBfVDF(;x|7nBX+R8cQ5C9iR_oMJ+2E3Pq^;GOTLaW$d&EFb z_vrywclMu$Munc^)ZJf6eHR1eKWJ?!RZe_#BMAz+XCGk>8&Di@F*7csgzuZ zDSM`H^Imc{R0OZB!JZ>>1KuMv@h4Vfg<)I0eJGXV=a-?3iJyMDT~-|ccWZNLdB@J9 zX(P*4Z^qxIp<_tq%Nx2F<=CVY!-k+XzX*A=? zsAAb;Eyi9j=40EXZ6p7YFyprL-N$_v)9h`mx*S5uSp)M1R8DFt85J=V#+H`VO4WhL z1QgTFsIW0ByIj8DMHVF%$mjoA)q%@>82Y%2P^9vKp@e&9Qd_T_=>yr&W|P(9n9`F* z8z7CCTe8g-e(B=#VAuK3sB?d!P{;HZPXhNMEh%ZG^SJHT+qMadT5YAai<8F00G}eb zl_up*)cS#MMT$ydinf|vUVlCZym7vw9*U5$*o2wMBB##^k|)WS8qB((H+tpkg^ll( zu3yX6aI(p=?tA09h*-^k@sMyME-x=SyEg1N{d`$fJTbV94Q?Axg?pPM=cu}|6G=7c z(u#fri;j2K^%!)oR3|lb2Fc=$1`sI-b-JA~dM-*Mf8LLqKLd$h;@Id>pSN3`Z36c6 zs~)f)@*4Pb)I6X3g%u2yhE-=Ka;JQ7tEU#!?XIy~)eH*XBqw)vi9btPY|hth$wC^) zsLcxB3pv(hbsm%cvKs-8bvvAf@AHTRQK(cju;8~C@pG}#;xp^1sk2>-1AfB<63bCT z$3E$USVQ)an46sXk2#?#?k8`2#z#IFbfxTw%U0V%ymwIo=b8F^oocpbeTQp++4y>&ke3Xbj)%xWbyMaR54RAb55 z7t=wWiHftGwWFs(fshAiAW;W$AIN_%e31>5is}WVzIBe>V5J%bu0JPNIm6*6K&7-e1u=q{dUBncvOh$ayd~5i5)FAeS<`-)B za+YJTC}un8x;P$NJ~BvTx+hh~oLu%4K!Gzzx~=_7<1-0s^e7zJ2?r?a2|75O-?aZ6 z*&d3XnnojgL%p#$dH}(e@?Bl6$^DD*><{IFteU;O>*Q;1`T#C`9eU-T5FxR9u@SM6 z`F(BKcvd&`Y5PX{LeGt@a`(FY~J>ynHygqcFS)~q{c_wSK#IpAkrvYr4O{CWWDBA%#!8QP23DURL|kSyys)})FK-R%(E12VJlJTMy^h;$Yd`Jsv~NO$ zPiFhP@3g6K)pas|oum@q>Lj*!)wAf8Hg>^1((=^o{zQ(Ked~^k;aARUgTqb2qw!zA zFI&w&>MY;%7uQoJIySfxa7@1t2lb?9HS3 zlnS>nTUOyv3)horzu?}NwzlMY1u05p^9EwPkBPp$NqD?eWZf3DCJCKHC_d;NPZf0x zE=f-#Bevj7&1T0xa2CW!?@O5Lr=4wnJ7zq5nhJ7bT0rdvP|)N;?MNH<_aByDV8L5FX!u6U1r^zRQ`s*er|b{4-pzE-g=bDUtserp)^{GJl-7u@s!r@=`_7Rz zT{$zg%o>xp?lU(^ATOR|av&&owWeuW3>S&_4K^v;?yOHXQ27W7y#Gx2?tW~ua{$4i z$cV3_c(g00daOk*Zs&>6AHgpLLP-scj6eMv@)OYDM{Hg<3^K0s= zJAkSMR*v8z%-gbFA2(E2*VM+OIdI&`e7@Jlct^}YjF^*1+`ZIRz24;eXK;T$UfMG!{ z*jOVD{Y}|`Fq;f!SY>8l%^oqV#s>)x=`*Zvc_x0JSr*&YR3(yWDWEN6-F?O^rfc;( zd1ag_KDRL1{*VKD<`@ETe+gZteN{1TN+>k!7Z|xum=;VZ@Ak!b(c_8x)BXi#M%2Nm zkEYXk4B=O5+2GGy?*+-epZ}L!Ff^Mxlm))~-XT_U(cRFWy~b>P^-Y7qJ6vu2!v;0C z^$@a?fh65xgOMk5BeIlU@9w;~lOf1TiE(g9+Gk>;N?MkKZ5Jgywof^fh#lQZP}w#K z@hkEA!SqmH)-yRbJ1I(|F|ItK$f(jLOMVDB+g%!9%_r>Uml*txtQeQa!^67){J6qc zNFOd*k_Nnbug?B%^W9&G`Ip_X$D~b-yR?HMlWl*P!qv}qNCwBH*k?tN1N}e<4}PV# zaf^pKqtzfet*gE^RY9I3dp)~)y;){}1PkQ0+Dzm$q!{KF!vl6fz_-C)F=0CTXO-4i zeH>x{8nVm!?ixp5KL&(nL7j-7=a?|fs421KtO~!C(=-%@c%z#lzu%(<>CfX2q9RIq&fS=fnP5rcGBa4g~qhc7B2h6Me4< zL@#CM>W@V+z|jzlg70HPgPq^O+)U}G)Yl*`@GEq11|B2`!>@@rL@Nxdj7@pVU@*we zbKG-YHu?6t+#+$bH;W#SCx8jR#rwVW_nQhuk?i7L_ztq`5?kgB`0KQh1OVh0qeD+vfZ#Y3zu3dq@FuT!W?ocgYI?qF z_!f^3b;kM<_ELZ${4(|OIv)4p2Nw5mM&2I_nLh_yFknzWT>YdMH$QL&|00XUr>_q^ zp`k&_|C4OH8XQ}_7N$~kPajnLr}8o22|;v?UFk8@9CCh( zcL)gU?H~phg26qh0RGeu2R7R!CYaoGAJTPlehGMvA$TJG*L#_s)%*L~cARho;Jt~1 zUenjX4@s}D;h0{z-nqIUR5B3N2J#fR_u-M~T5}i_1`9!-fJY(4@wH}Gi2Z$+e;?DJ zui|=kh%&}v+AKH1C|)&VdL3xp~h zh4aVADwW}n4Lq^>y0hM&3yZ%jyv4hOk%y~2#m5DlGhE%Q)IIR}bJg{u2ZSBJAj@-I zbd0JpY}7M!sdRJb_?F6Ubp_xBb73(fBT-lY$F>v7GiU#oG~oOBnDma`ejP}^*|Ncx zSR`mcw_6zMU>`kc`!X96XZOiM$fo8>ew|_3QSQsnsn9gR4M$@W)`w2U3dhjQPO|d1 z!wb&k4g^P2nd2-|Dvj<^#>CzKEu72qe#~@)hFY}#@N;j&pQ|!|$-F|kVH99QZ6Fj& zN~SR=kw5g3$HAoH_m2<1Rga<@P?*qF!Q;@_RXrhf0%_-fpW2t}H{& z!BW-meV3z=moxne?_7ds(QJW*PaRuQ;O1h6j@F7oM?&dK8~W-ka~{(J{+lw%dEI>z z>sve#o3?t!)2b2k_=f)Vf8`-k zB}l@k=rB)Ay$~|=l+EU$k6XNDJ9~91zg87JsiBG#>qy)DC(5xOb*q}o?vJ8bCfq7= z!u<>8r6`w!7SyMP0@~Nyax>8u``#^_-3rF8%`%iqay$|v6 zV!c|h-*$EBP7yt1Mg^fMF4R0DGVM!;^OP~k0X=2S244j&@JUx(WBfE#_#B0y^f{lW zYL(_49izTWqSZ#LC_4+in0&4F|7%Wj(Pv1f2np>-k{k}4u;-8At5*|wuxDZy8rakk zBgQR|nM+WW+xlBZGQopy_E6=&4+C1H`_cT`&A#?2f0ype4dCpA-uyQOwRlrO4=-w1 zGI&wa?|CU{nvQGc~|n8{3spUpIl=5WOyK4UWeR5hqcK2H2f z>m|}Q(;`4R&zoD~LBa>q&HiKMM4?^MnS=f%I;xK0z`GnAqFf!c870Vt8iuu>W)yEc zn9Pe8@q%N*+elu-N0Z?Lo$IW5?pJB2JhkLEsn2o^f;;pH9DSTjxKEvUYW$o|uvwwL zQ76bD7^v<-@zMH0Yy1zbHcPD5*BQ{^qbEzJBsbPeJhhFbzTJaF_m>@9IRhz*X20fz zFpVA>lLo}jBj?5^`X80G9lo*3@_g3yN$6%Jk!ZeO#Ec?o(xiospWT_3TR_t<`nyzfy|}wJHX$WJ$Mt$ubo{K~(KprJ^jx z2co*76EZ%3`H$iIspVmULL;W$3U2a;Q6_r;eZ4b673Z-6)FuQW16(RW=k~ zDM03bQ0313wS}vi{sYGc05@CWA3x4W$_N!7%D7oitI(v=m5JpvLPi%3NmQ8x*#0UZ zp#SAU!X!+~v3taMLLy+|mTBAM>Dwq0+u`kvQa$LiYogGKh*9)LFD+S1lLo`KV-LDS|IbLU#nTa@le@%7nkju~IF& z;QcM!^r6AR*4Tx6iNS=J%xV5kx^_mv3LjK!Tg#*jX_c@pCqHNA73fFWKxg$1=zTpn z;#bltXl?Rw=<}{0ZAaRQh%!MX$m~Yx%p7{h(W-w z{@c_hrDFn$HFb~Unr&{OQu$7~==0|-1pMsjbU)HtXn;#h>kxKZHD|qEL`dL_p3H-S zCOOUdE7DT?K9`2k%E<^L-uPWco|p_Z4IQe4QM!aaU=65B;%i4yF2 zFW(L)`4=;tTOh62aD@SEKSoTXm^uAbz6#WieW1sCm-=qJd4S#zzfET9tj9%K9Wy7C zin!Jp>pB@oNRTX}D%n3U?)fT;;%P8$*TGEbUt>aNF0cHzD@(_#GsXsxn4ox^JUkQ~ zOtr7&jeZUXj&;aB3$`2xS!F|wG4;=7SD8t&Qaaz$;q53mvgn0v7YyUF) zj`UQUJKK%$F(hi~*W{G3l5oItkPO@*Np@HNa)%bJgkD%%Wnx6R&|4M`I{HUAnStTCuTR0+r1{m--d)mcYZ(pm0nnddtJ502bs zSSdYtlJ#999=tU?`GVkt7#T>lInGr91`kPn%cYv|kp`2>fv(L}8MG6?bP+(D& zzkyx-!M#qd>PEGUf{z$Ux+@xn)YRW?Yj_~2CC0#Y)45ItFjBz`ce4IecYx4K^yAoOtwnx(uZX7 zJ|&C_+29! z!PqL)Cs}E{ww=smsoE9gF+GbW7bH3s59YbfR%W)~O7SdW=7Arq)S++?WjudZbh$Zjg;Y70w2lsj4;6>u{ZEt z$D$^)X{y|2BRa&!RdFPi?hC~#5E4LtvpE2iVpYSaD;cfs^>rS3dg2`peJR)Uvz3%El%wEj;^;mTw9IF5ewrM7X@MwCWjPZSY!~<8nge zi*&p>+IZ)>igvDB10FJKYu0VXqpImBjAFQ*EQBL@P13!pZBlvmILXF59J5rx?FLe;|bt~7*1wdNzlSXkitgIQtj%EY9?Sfu>$t#IRpn-h7iV7z_+QGA7tb9mR-9oB*tLF&PJT7f6QY-tSm~;_geEYg>Ps zRh9R=MP(2?YbgPmIV5CcS0teh6^b&2!8E+o`N!#`^v|st+gjxEnh&XVvw0j&6D?y6 zlE7*_9+%6OFF#(sK8s83GNC^37WWaG7-dN$mA2OC3(xZXv#oDM%v{ELR6= zNgRqs*Ib4HvKuS8cC}dDS>4ZI+NPPQO9jMIJZjz3ByB7}JH<7;n~=uCD#b#u8QALT z4Q4+uo@@Ng>Hh#Txy=*N?Ms!&iKD$&{qH0CQbyC zKWS%ig`4b)Or)}uWh%-~r16q)MjM*&y;Ac#=NF^F(!D#YwT7kB8q+I))EVtnhtFg5 z?W>k8hf%YX@rmX*;}fdP4O(his?P&i4`BO~9OZ3RX4PT0wuL7VTG;M{qh;ri&Ljj3 zF?ZU7f(~#&=b9HfHQlzFtu~``9J5?q;zhaKJ4&|g84N=%6`jV?Fa}hNcq6F2ZS(ch zeHR@^>ISaX8X39$c^InrJcgaqwD9#XcXYIB3O6vw94pNg)^+j;V$6h>Frj?&f+(H! z8EkJft818&K`gfdRb}&Mk@kf4a8MR2=Fm`tGd zz$+U@@v9J2WJoX@6`%UY<~OZcgUu&Hx?j?6pk33tS6b{I6tvX~^(=@r;D9U+`8+N#K3n7%@n&8ndK0pu)z(6RwHQVb`KTPPOvd?(w?cZXM(@o=D9y|otCfY z-cYA<8HtU9+jy9tZTInk>LZNo2pVP%~Bg+2(Q2J@4 zIuqvG5wCMPb$Lx$)9e;2MB(yv{Z;)-lud0#UZCPpV!TPQ7p>!orwm-EL|D@aiI|r1 zIBvQ=?$#oQP?GT-RFE7Ekm3E945RWm+%fNp!0Eb#c6~yvaMBA&E#y)HyGBW71rFS% zNMXYt9x??1(LSPeH=ODr70WUFjxa zVA}&9So?8^Ejha9l;=ws>e$jx^<%HFWldi%@QNcE<#$g?Y{wJwrQPcx8ZR8(clZOG(T z-YV6Qpik*3Q35Lo*kVW^q@%{mslyBxDzL^PMuyq;jzDQGqLJ`&e7iBmPBX{hK8o{6 zVHuv`?xc=Mlep(D!6uPZvB1gN0L}(+n&jV~yoEYGakQnIZ6wyIr}{$Ni<-6B#|AN4 zmDX*yB7<2^6(~u(qhJtOk-<*U<5JOPhAyzUYlcw=%~|i?!YYUpEX4gdC)>qebu!A@ zE}mjy9U!`8C_Q_-&G&K1I0Ozi9|O&KPP1zLCDk9qGe%^3GnP)E!)3aM(hMz}hLl08 z6Pn6nGPp0!?ANe?2z69;VBcm20OqlMMJtY1T{I+zspV+$mUG-ZqXcX#9k<#!9yab- z2>Oyp2X$EMw@~UfHeHnyO%y7bWo3QFM%trthX-RI@sI#gR91NC$DEF+C#rsEuJsdC zPO8!U9ngJL)!3aj7(G3QhCd6gsbX~cyjf<7*wPMlt|6!Odi6wvjrcDIzTlnQC@TUKN@n~GO=S2IFXU> znUB}r?pTLFZBh+RdjY3Qe+pc|s2K!dmjY1>4(=I9c=6##_6?22dBNRTO?bMM-JYX! zZ8eW=TV=*XO(-TJARxl)$leN_!)R;+k+QyK{P6XgQPb!)i|9q_nkP_oZ>Rb{SLHHP zf}PCGjX|w4SMZpIi3BDf_%7z+ z5pbLF$JxZ_4mf5E-Y^AYJo9KaH#cwExw{S~Xk4PJLoa2@ushXV!!`qDRE5d=)i30G z%`ccS^B<@@s(FacKUe1~(ACC_j!jtR>J2lgbVAc-DUP|7!~mxwg}F{`m41B5WR=J` zg@h4*rCdX+X}8jp33Fk!!>HOGF)G0%awmZ3?u?Exk-RWG5lBIMqw2QSQeC~(wcb^h zSq$4GF_~kM8C%v7m04aVECyAVVO9;<&)?sFX_@xl-}d(Yf8G2%QaR`AS^S@Wdbaz< z-^M@h{yrm2e;QY`d++bG{?Wg@&%A$!hAH%_iJ0GinV9{)`~3di0Q30NNAs?I{w0!` z^4Xb9yu&O^DP?kE<{tT7@I&LdYj+729^2PXL& zIkeejmqEF`gR>-8v7Vf=iSFcTZ?*9N} zI&d_-;w@v#5JvOPTL%PZ&pxhwT;{R_&eQw+#Qy-(=lA~r4-=j<`TYL?#$V_?eHi{?YsY0Po@;dwApc z(yQB)ZSxz<#QXmM*ZaIf_Haf&KZQN2{{VlVi2mr_XZP^{P6K{TD!sOdjizI1+CG1u z`u+SzC!CB5RZh`6ME#@Z-hX|!{{SBnc?A6_%_Di3FWO=!`F*E(j}wjn{r>>?et(bS zP6j>dhCQM^_uJclXy5n$066#Y5_xRnAD{S|RY$+R`|Mk9?=$T??d|s8Zx06x^yB?$ z`>N6XxY}p$?eiOL?e_NhpAq)slS;hI?ep_H@4v)G+k0)`pbT;1nCJIZ6#K+azxVz2 z+kcO55CG%w_Wb_5-+#PEx4dt+yl?yae*XZ!h>ydLX;r-OkC@->GaKz68_wR| z^FAN|C+muiJpL4@n27#dciKMx03Or#`}mZGCm+6{{(d>8H~%L40%lDfITL_~Sc7Z@h2(_xt^$!y}M+#Xoghc-v`> zlfP625oV2Gfc46_h9AY}4uU#t1M^5JF#k=0xaIgc@j ztD59N!dbio;^4O7^X=oGuf>jqIL5S2bN>Lzu6~*S0HXf@4>i^w;3vi8$bN^qTpWG- ze>unfHayp~&|P-vA5*f~91eunIE_V^!{ICHJf=FZ-LGPf3f05M*UDH6)m6fo+yenU z_L*G$qG!g{p!F7$)YkVGS~bI6+giG#$=a4R4#2XgX%#~pDI_j%JmWQ_bx%e0KSf+x z+I3Ep+C9zUyT=@l6FVei2W_#)W9run=?e7!gKFZ2QJ}MODr=p_Wu36K%W>Jzd!iWki!KJ zCK}ZQV6i3`j7gmESj3da*E2gre9Zhr@8N>Sft-7PiT)n{0Ql4yl}1^Df#&-6PefRhGkDvN~*TSQp z!!++G+GqWLcl|s>`_#aXrVc+iH2ThcqxnwXAKkQk_=Onf_kT~%_*cuX9Q*r0})(*YD<0i<5=eA=RU){DmYOZC?b>p#ZDoSWJ*x;)ZV{lD*hONC zsj&|F9Bf(gffG25w_pyt1neLnD1Q3 zaUj6z%MM%<03Fo>8FkjD-QB)?>%<6%dqR{QfeSG#d!1I27Klb#W-4{`5YeOWS#Gz!SiEL%FBV#ow)397CSSH0=MP-Kb zU#Au+OlNt$kr5?{{+KdWB@2l;nGlVK!j#2cQ8ph&(PUO@;?r&R_N)%@bw(kuC26B! zO@Ln8Nwg)y?rLSe0)`k#m5?6Qn%_YE08B9SSiJjmm2$A-dN|h$l z=90H)O%1QxWvYnu#z>i}Wms*Spkc@boEa*)9K?`JvL+*nm3q=_sO1$|v1y5Ly#rOD z2`3~190u~*3ALA4&^9^DGU18vTzjce_HB%*HQd2%*Hen5C4LU=g)SVl+Sw&lmR$Y+^ZF0yP(krRST*A0H;jwu1gs>C@3~s7;E@K zl=eQuAQu3hUX>C>QvG2G%*~4A53rij4hIZK2E&^Z}N>JGD**r$2O8%Z~ zy2VQDrE#8$MN_-pw7k7%7c*%-;KUt(IE}`3Ql3(cNBW|nU_NcA>mVl*>${Bb>?!+j znHiEfIa=L2x??@7|7i+h^$3p?ID`ka9FX&KmlU%7s8(8(e%PO|3 zQYmTGUMJEds}FHK<*gNYR!ACwQVVnh8fIZ~#%{$au`bTWsIX3gOM+KyRTYDZg_8bH z34j1QGa_;$1X5-Y-S{a^rp7n2t+G`1?S|agCVO#>xtj9uCSSaaL`?g{M0irMXyioK zSxu;!6DAd>QfyalN>ajN?6TO$>ogSk;tG&}fEZvfWZ5cHw=4?VUc@r3I1s4yL8O~) zjkjW@D#@gZ%lfVta3ZkImiGosfbsvAnJE}ZL?lp+ck(+ z$YWrGh!~IpL6c{Sltc~qHLg@QU2cMqZm)XRr0&g_1+8itdy9_5gh+ve7%FA})e=yp z4$Ce`TYbtg41In>alD@Ac1jKDQjemVmayVyor#{|sgS+I`eUq zA2#91&s3{c#L}2#B*!9DC9T?9DBK{LO9Gnqs?Bq5tBuVf0iPKx0MFr{HE(!A+FdgO z%CWg1dB9VgemL=8plXQu+Y;ZHUa}@%x%1e#&)?sFj~7S4{y*bZ{BwiA$M_0K7xuo} zd{5eA{{XAv6sAbFnU8P0Zxin*59f-+WHVGBkV>A4zh--74BHGr^FhqD((!7RrOw;OEi)EL zXJ5Z6TtV8ikr^W6C(B^!?L+xrgCvGmc*|oPw0Lqz^YqBBb80LnR%>~O=pLi$-e9vDpQudfUcRCh z?f{;j()q1k74+^Zu03i^Y*57-u;8OvP@3zsy~JG&7^~ATHJ@5RV|D)kDzKIzGn1AQ zNdrl-pZ3}yJ8nTBGP0+q0({y82$`ztU;Y!kE43W#nzg2v)(pC7 zn5MZLd)g@3;*wUhDyemEGKDc+zyfbnVD3k8H!*ZEopbXqXUtEMj8lvl<*&If0y;oK*LaTJeoz$#&F3mQ=OSdbC%JpJfOnO&T)74{!{qIrY z&f#xy9k>$4tWM(@4w6Dx?g;xEb0K4o>8s5^>Ag{LK)kg)ijrk$;`v(xG`#sG~^sE>S+#&PF7X04n50NhwP8^zADa0XX9z#JYAABIPt zHJ>ywOMen>z7)#EXshNSir{toz4LNkn!j~|a8K~wq8khD5K(tUN*KDuJ`j+)olJwG(!6(o8X z$%3G--o`LaaD0r4sjCDQ9TXMIFUx4e61z(eNnC^XSotHIHWZ#K)qW!HIP*c#3iB0# zO~7cSL7FBkl$TL$JA$o@Os>B*2XF)?3+V!wg7(LB_%HDi**&}3ZhwK4k34h8{{X_W z{Z8dNP9_5+CZYXSA??WVlaCyn8r~1YQ%N&a`C-=g5V$*9GdY6RYMyIR1#Es&ars$W zoe~N;$K@UM6ij_S`|r1me^a0k>DPS!0J_~OwlSTT2=F)m0Cee)IpYEBL?%4_4B5m!s;s(Kqqsgl2< zEGoU~!3^JWgijcWA`sg2LS#;&)ucada}q{aa2iX7h9Z8sFhbe=*{vvs`JFP$Zup^* z*b)E;h-8~+IN%8!U>~Wj>vfoa`;YZpMk0UvnroPd-`J=6F_Vam_Me^q0BQdJ02=R7 z@zeUj&OX8U{#@4Oqks8ZPW)z1@vZ{-9rB~2e9*^H8?5yPr@%&wUXiYfxLLy3EP&?G zne_*KcdJa+bVfSAZee2{)AW5K;_lN+N%XIuGap^c!-WF`EK$k0H#j+OZytT?TDEwN z{MNF;-P;<i*qoBy zqx7uJya@)8uPhOS?ybJ#jQP2YWal~X0M36Ob6dUS$e{eH^dO*2VDuG35oX=kgUMwI zJG^2d88I;>5fKq3v`3B0SpZ(B2Z3*A=Y#(MB!aLy3EihD<2~Dt9y9Y2`20SV$v?zb z8#(^~IXYWTzV)iO{KlN=ULx^RL=(|hGn2cHdu6{9F7y2rQEPaNEstG(Rj(mdC$_a{X=prbbT`8Xkw8}*e4%$;m@3L^v~CiIIfv_eew^{ z&o8?6ro6;n)LOSyV_f>!Yubh}b*bUb*BUl2)5hXzfKEbbM`>&_AxO0QKqOE@owHMA z6v+|wPP-Y7bF`hz7bnxa;5Iob0`M{oHnz1g2^JEkaBov?IRgWn4;+!ke;VU{g2^ay zABa0*c#1kr)ZN(Xa?fDv7MGIk#20CchPuRY*iKoz%uL4qHCq(}pzlkJ#%0n6zbEFH z1CPDrWFA2C_*L!0DeH;RP6&%p;BkZUr+4Ac1K9h1HM0Ixb#IrPN0OK2ywBt5>J0^V z%vN5WBAYQ+^R(;gHtCFOu`4=wCkd_Ifj1&$(p*^SQ4t>*oucwP2h(~|EA6W`%hM5U z!_>3NWZGB%0Hfez$OqoA8gtPAER zP;}=b=Klc7E&h(tRzIfsJwN6Av=tQMokG1#9nPZUAz(DJa8AdJLb3!RWgH~A%>7g1 zT@7c4;sZf&{l^B#WD?(J@(S_cxXvQlKA>SwH9og+mpwaYb#E8TtciEI85I~m%`&!C za;xjfz&Jm9-n}oEwmAO)8J?%dshCgno6LUIpj|!UUNQ5`$kPI~fHYuu@6HdDl+117 z)1lRdozy|S;FSLW1FA)WIXwOz!@#Sqr33ZumPaSM5AXi~kV%e5x9|5Ky1t1$_no6? zi2Hl|e;xk-$M@gHPu{MDSKDa&?Y`UZ{r>>t;Yz9crZ?aA_V%BT=k4?0e;Ro;arTdB zpW0?8?=u^Jm;HP|=RbEjr`EK;&pumKVY)%<^kq(-Ud{#X!fEwZ^$cc&wNBHhSIO7T zUCB9U5G;FaLR7IRCBbSOJH&j;a@!1F0pGo2UswfceiVNn{i7e^)9qtndpPYH|4ztXR1TB=ITBR#nt$|_mf+0PS3-PE_ZU8Wm} zeLx8n$cjga%Iztgp~^4e=D8118{1n3oAtDso0f)OnvT~>w3+)+NRbJnyt=ZMc=IQu zw)Q?F$->vwM@popry4eAen*8t7SKZyM%R)17rgGtFM0XjeY|b9pe?PkuK{B~GvolE z0Dl~LuFKJdpQUsbVi}s{V7PD z;ywQWeZ9Wh@AlvJ`0)|R&V2s>l`5x>^D)Qjoyuo#tJ(&Cob3@C{?WIIsx^P#ZKvsv zY4(rr{iDP8^H8g85g$JB^S8`K{`-4)eR45MzR?r&{3HA(BY)f9#D^H?pE<=U-+77l z_V?a?KWN{7<>EQUG5!?i_)>SDowoaX&hzgP?>m35ZxKG+^Gd1TZT`_Qw)6IhnEQV( z4l|5XfycdGW+HvP-czQ_-2%;_LA;@9iG@{{ShS{6_#|+nRge)u;P0_Wk}nrheZ40L#RE%|{+_ z`TX(u#Z*tc#?vto?fmEG=lFPm&)1)=2aIFinyvnwqGCQL+uz*2J^uj5#A)D@=ls5v zef{Ts=6$2zY51Rc_xbP?!6P0$=`+0T?>@!zJN^Bqf9{VE<24U*KPIYn+jx)Oes=yp ze~*6=sGn{)$N1y?>iciB?LRZ`^S`&We?NZ#jNqUAC~@`A`B#zZ9{&LD_h0SpwujZ* zMEx=U0P^lmJ?H*d-|z3X{xID{aiD8wIR5~2x&Hv%y=*-mfBbFfQ;t7bSZ5sn0P?77 zrv%o)3zA$`Q(Eb_eGRn@k+U?LkCt?l@wpbaY zE6i}lNGx%eZ?jCd-OGQ2-mcUd*HroY)%vqC+~#*7<)m#~dnBc(tZUTGsY;!2ju^aZ zRJjWElk^BgOmZpZKEl!LEwrAI)h#Sz7WVKu1y%40+uVAy<(%UskH0nY+gR#dU#xn% zJ#SmMYs=f++nD{(46$M~T;U@@!lLj2=O-qz$3Yq9FUyxh^v1jCZkE%YUNAmj^jA+T z>8x&9)cUzO+Z_$^r_}zg>)xr3oQ&V4)0Q=^O9iK>lGxC-R8x7FNT+5u=w1!P&Efmx{spqkM3OL z(jPAtx{Bg0!#dQ9=eVsMx~kvNtx3FTY@O8~&XFFta7>vf+w(cL$h%4kghJzLi}JwqC& zSahzoH5mSurncZKJHwP_=iOCC0hDO>|B%3uYLV1i*1vWNcw zc!`6q@^e_j%?=Mj^%F0oy35uLC9d^$j_U_UyzzOC{*LI5#l2ajbiR$mbiYG%GhgZa zc26@>osCDOx=~Csw2AGAuI&BitR;+)IwY7Sk~t@MK3*7Q?k?lnnrpbS+gF@z*%NV$ z58qi^h>?~Hk*7nc$nv~K8CoP+V_SJ$qB2U3tGR;}K68Kxth=lH*ZIIsp3P)>ebgS7 zVRXITx$Dl1bi(eb>6N`ntTFm;qP|@6{ddc19b_uh3agyX=4$Ec*trA>;)!H!Tq9$F zNg9&ex;wnqQM{SFnC*88$!#=<$&C7Uk?CRgKp%TGX%?SxaDcBp39 zN2XHuPDN*suDsV>by?ad;MX8&qI*qF=Uz>lp^htHUCSm}+XaT9^1z&90LDf_`>A1! z)Ty`@8UHNK0H+keYf9X+vDSS{{TM0QG!B`qHbO)BHX?zw7bw^Wrq6#K-gh015sv;YuVYZ=ZeV-ao(Z z5&oybsxKo4{J+Y+UB4cHAoCf}yKu`2Bj|ojAQ1CaM@RJQCNdUeq7;S1mm_H~NMJ{d z5pjveu*KEM`u6_-?p54>*vI?Z>-DY(Ir7?yOv~+v?yAAPha4J2MzO5ZR%K2VSOAg| z9^}}A?W>rRCaBb1Xx*R`>)4d7zzQ^|p-6|a#Bi%w$(Gb&$+IkyF^$a1B3H|jl$KnA zptrWmiWdiuixrmU)l4!QT;WEwiMGtHCQ4MpBY@)4_K;$fFRqZV05bawQtH5^sLXcI zj^r=6b6&Lb7&){fAMs?SP9`UHtx7RlCR}u(LPmCk)H2aDvSMK_t+CIgl2Py55rphb z*&!2P%}S253BFB;<5F4*g)ziMVFcOi)_RiUsH;z?=R26Jrd!RBdq)*2r~ytgtoqn` znAl`T2P%;IcgHpHa}G`OW&rpwL8UMwFe3&mQj=t)LZ0@mh3c0ZDpAx?g?j|TS;{#= z)h%nvuuKWSre~0)Pv*MSU6JzYi>ncN^6kGDq9mRTnu(( zjMS);Q5&r}4u(gL|Kl%C3%iAV~>p-NST!lo`uSl0~D zKHR<<zfW!OUzDZ4C*l7N<*f=O)LUQ-1GvNagY3Y5XE6CqkF3^`P6vY}UX z=)3A!V}Myp;Mn9a84x6HRLaVEsscV#ssbfVQaddcwzyY{MQ*ZG?nH35+NfkQ>%XL# zm=-M^&@S=vk{D8+U6EPA*R0hyxk1cUW>s#}Z8F>@!y;kq?!9%GvlK8`ASE#nRmF?& zr8y>+OGhN?E67?);exRT3A$EFvt96-C@Dz685|-8Oe`!XVjy3IDG?Uz1sR)M2qt5S zWvLXa9=3A{sK&Lf{S}`X5ZGj<7CTJwQhr?@N-Z?k zU3L*zic&!$yGd5$0M|`w{{Yr&scLjJWH1NNk#Ow*dehGhRWBn>(zuVlbW(}<*cs@ zXeWq?%u3n)j|x#Svm9{P;Cl*sK_3rq)RI!4FG58m+cw3sGb|M4DRxDZJD96>{{X{+-;eOy!j+27 z(}tPj)moj3uf0YtR((Y&$6>5%4s2YW-=|Utg`KG8m!+{V(iz|iQqs@Rn|6(MttF3A zstVhY?h1WPL8~^Ku_nZ9PLheSBB|%UA&G@4V4CVyNRX<-d3HrTnWz@rwxO;sRaqU# zfmtE#f|CWx_ZC8g%V|=cW-*?Y;My5#rF1XWyWA3WX1k1vZ3P&H$;?@hJ-wu4V}O)M zDN1U!fb3RTwUG*}_-M-R(+du~!3Efuv0hw>aIr-s`EJr91RxIjRHuf;a!ZWNr7&iy ziMpoZ*h;ENb(dHQiW#lQl=u}ja9`c zAYE|Bh`cJ?OK-?MV*7On?U-4<`6y9v2>>+2g5pJsYL&L$NOX<;XXc~J-k4F?s_d6n zbZyi#EDD9$tAfufEpD}r<5pP}FleaJ%#zM0#8=!P9~JF!^EUa;H>u;#3=bcV6>oQ+ zl)1-~8-br0DnQTiHTnc7;fHOz&)0t2Hu>9|Iey;$)8gwOs*&%{^EE*5NcwU7g<5^0 zW@aX5dD?#e0Jr@=%fu=a!OrvV@Alhxo#sEg#7I7ANZuxWx8K@*zBc{-f0u}RQm~(x z{S~P?k5wBU# zf2KXPs)m@$Zv3625!^>3bN>KkPCllx8eGuZ-U%)nY)u^MPSV&iK_qLy!TZcVaOc3S z3F+UHZmi)vqxGMo+LIlnzo$B{SK&2wjjkE$*&K7OVd~+P2bRf_<#iryuaX{IcadO} zz{zol>o(J0^!9;gZx-AA9`UCmAymflBCuBam>Nvy%M4`ZtTc;wtaS}!++2sW)vbFw z!ny->3l4YI=5Rz54 zIh7#|^*bD_pr@0yKp=oOF0ca|%PR-NjFjZNx{9h$}9^0;hHvS)WtX-vX% zEQq&6epFFr8(8m%Ur5H3px((oANb(@(%NLhOrrEv|CvVf~;l`!mn)^#xb>7RI%hPPFUkOX0nd+L})B7 zgmFzI{{UorfW-1iwsN`jjJmVoPTb&a9M)9oZWq)g@>Q>KgBwa+@tf-|iBy-(7 z%rf6l!HC?X9s$j4chFj0-&tKld)WC!wK29O43b;Gk%D%Q8we5S`S@iF!(Kb)J&F?$>}<%$S)&}!#_cmP1vu_?_-oh19-Cbkj~7stE54*$oC%^ z9a6#P>HRv!%Le+&^XIVslqa+;%mDMWv?fEp?uiO#DjKb{*r2x5ujIUwxodxFZJFZ) zl`SBgOcl27*)m2-@L4y2K_J$@VLuQ505v-MGoZ9jQx{hW(>(%rXyNQ+b%rM`Pfg)6 z`GLynG17D}BM-NF(_xHIz9B-wT$!yyArtAb%{HZDsA@>d@+lN}Aa@!lTY5kWlB8!T zxsRnWjNwICTxm%arNyPa)N(A(B!gp0SGyvGX?D7)LO{v)Eu4Z$HMoK0SF36B>r1ay zaact3vYw-?_1Qf~j%HRcc>M^yJ5awSg?FOItx|)x8%zR4n~2PZi=73oEcGs>yS|SD zSp8y9t{X3O`=ckEf#*5}c z<#VllWb+Bq?xFPm02zX@r8K51N7Tz%yQ%8oax1fk);BX*7*%$}o2$k(;}HY@03422 z^vLpxdO}HK)(fl64(ky1jgUb*VeScXzDXN~(TpD;`Kyg$1k|($Y$3W>ZesbYh7bP$ zIwRS&lojV`&U_qu8r&~5I_ssHXQf*E0o1K$g3`&>+9Oc~JoM{!hVz|TJQbEe#-jqaa! zaI7u6qBbE|sSKn#7EypqWr*BBHO}wCUrGbxt$j*mQwenF-3LYPR4liwi<*xxDG`!@ z5+~v0;7FtB7~k3=HVrimzfH%_I*sI#dCBeD#HhJG<9zaC@dw_ut8@}-^SDEcSQR%P zc9ud;2h=P}p8#Y5U0dpw4=JhoXVhIagszJ@okO8@W)Bfo&48&{`8=))^%@AXX_3aV zPSeyT!uA0vDfW*TeR9@Y?H^LJw_VfR!peZ0Wsi=1zkO{QT+v%A)b70WdjX?5RgA`Ev$XZ@H$9N2mCjYu^$QPE51OdyoA#%8IkR%S zKrT7X^FG4`F@e@BuCA^$xh;SzZ1WioKp;Ft6s~;wjt~7@)^63|`7Ku7NkmdzBtkMn z6(uHDU`neI=?4cN*0Z0MZ4Ie+)YQDJl~v?ZYU7v)x}C<# zU>?1sW=1#T6FYd?^$VEpt_0EKFKXR67(1i4iZ}N^w5@~gIjk0+Xx3K7-JCwzCSX@M zA?0^mX9vR%BRp3-{NMRQ>(^I2*y$dt=v_O7$!J_M`b-zDUDdeUO|hLZon5U#A&0Wz zW64zJNpt@I*?4dr_u6neBy(7GV(OO&R>^K)lX$}&i3%h7LC!%_jycY1{{ULHk5kd0 zwu0#r<|r;BD9Ye&c^%h~rAS~v^XWXCc^!)89;>|*uzIfVEvMKa@NqF8za9O)d|%_! zjx&msdHgu8B=iHwcUdX*56wzCwT8uM-3!+Kp7je!VKdmxRgBHut$R^xidu^cXY!1B z^Q&A2vaBCHkClGW6tMYtz-iiS!=v>b4&(jbP?fCSB5@+`wvtIfVh`O9vw`Ipfyk@- zhJrq+i(8IWy0T`v4;WTg?cBz(u=OY#ithI~ZKuU)v;2a2{4!5OgHGey(&X#c>q*Hs zS?S;RZh7kpJTLU9*B|U?*fleKGiLwySz&aYxr8(EO+cAD~Nl%&D&)= zq}_p!8Oa`y%tk8XN)StXJ)WquCD>f@>e2|mvJVj(RmM(8Bm?_Q6>Drf-hLhZUyOf1 zwWpR#%Fb&pi*)-(=u3E`$YZcM8#gpX=jL#Fy8szZH7y+FZQJkCdqQDinO}2ukBZmF zP`Bz?b?r7XV4Op>K~p3TZ4iPZwTM?)Ayg7$m2k%lt;NBxwbV2ybeoHz1ooz4OBPg_ zE+4rd?jS83h~8sF6%w*LTckG#jUOmF+g z`FMW*DO~mZORyF7SC>233wUiws8f3*(vUK?F= zV2;v>Ns~2lIO94eSb}dlb=M%nJ23k> zB5#`QY*226hy10{(lU6#WNe-XCcbL){(np2bs}_Te?fVD)A+wqu$+HfPpG{h)a!q& z5K|_Gg4P*YEVxQzp@$p^&0l1OB1U5+WhjtD6=Z3VqhQwe9jO_z70N?77$6YASnY2- zo-2}TkloE`Ez)YYSIaa~EB18T9eUM9#v{FX9i_a_Cl_lcPOw~uN5@1JklJXQ9`wQU}F&lO+1%`TUwvej{&)nV;t~zqH5r{{VN0kH(+Us%CbN z=RVth@wU?+e-h*PlS;gNkK1qC`n~<5_S^UHAfJ2+g<3YBh}(?ujpN^WnD~jG+GqTHM+f)jqgI%m;yt71 z-|sQ^nfLJl$j{gLaZhj0@~SELjsE*j@Y+89-@N|-uYVC!lgH$r&x(Na!0}e!m(>v? z8%%6N5kAwl{{TM2J9~ZpK0Z7L1DcLF9{&KJ&-zkiy~<`i{kDkyULpo5^!)Kv9}y8T zKWN|M+9r01-~RwUAC5Sv`*Lyl{(qio{{U2xe;v2?+uv=YkGApew}1cv_*6cJ#ad!^ z_lTdWK0ZEU{5&}EQQ(jV0M%_D-?Z)bpN;+eDku8>{y#sSDIWW88~s!E-gf)XxAXBI zKJ@{d@Hju$^ZhAXMDg3_e|YxadG?QJ`~1)F@d9&9lb^zu?=e5mZRdE8x5Q6~R0p@V zY7bRo6`Io8p9^BiP)1)*XE83iv_+OvPDdANn=OrVm>UG3e4H$%AmljA#7_P(+Q7DL zCsbR>3^r|VH+hF8BJDSEfCD6j$pCX%9Uk^=J6F>67!XT6h0GJ8vBI;%DoCotaul+F zan3wf&h~HcOz76G)ENy`sr=-1i#wdk6IlDUdT*u0tF1N0vT^j*tc0qi1+EB1D_Ddq zxWrG)@LfCNx5AAs!VN!8>NSGa*$&lP3!iT+!){r~IV6%;^IMNo-0QtttzT=}M|B`ZV-h8k|T^5{Sl^i#-jlM@JS}Or^sjF&C;JL86L7mnd;81>ct+c=vtaDQ(`q9 zn8#^_(#10FK(4l(yhWm84$3dsPTRpKW0)Ki`*hxj>zSJO)v{V$|v2h{dqTc<5xwC$}SI&nI~38+%Hx~C7QpGf@E6(AV5F0Wn0ay?R0Ioq%zO4?>9C8jh!4-sySJNVj;g;&ntyV=@ z12iTmuooyYz zOl|5w)JVYf47JU?hD!<>zo(gQo3@6TyQ#B9U6@+kG|T6)_F>h1vk|B+AjDVnL%|>heKejGsTUc!+VJ775!y7qglt>(Ua_=KM z6*zpKV_74tURS)b`G>)D?+dT7RdQGz2ZPSwv_*X>uW}k)2coWEXy7$Alx3|em_+Av zTQHcsYVXn_I^1#TC-LL&8;g0QxRT;kmMQQ<<8p=$;ec>P3YP(wKeghdg8sqn<3S~@ z?YVW9BIY?%O8`G<8*ad8)sFHB+NAFTf*^CAPW-L)Yo+#dALW)adJ8GkY^PI4C8N5N zny-0!+Wwqgh}0JGTFXr3`}Awu(+O@jAyF@cy%#L0p%V6Zl6a&o4|qIp7jcJ`Buwn` z1IMWynT`%d00YHMZ+T^R12hY5e`z3z2vCy5THK+Dy(~bIB8Wo*7+_~0)DBDV=<<)0 z)f$^uyQeui*?m=yoK8(x?RBhaVO5VR`Uab8;q>bA(?*bZYF@v~#L zs`F)}O{A|=D~XM(Q%a_@uz$!up4JY!)PRMiM9u&X!Rt13j;=Gm-t>t(9|CI($@ z#Y%+)i^C+f_T!PPoh0r%2L&oHtp#V>IBjcDj;;W98?~3E_Gke@>(!+I)U@lFZkoFZ zjhJIOK=@LefvnhROtEVfxe1AJRIgZ`rj>RBpr8mu785L!OoZ6tKI0PAC}XV7_`uCu ztaAlVwE0mD&fv|h>@vRarGklkgh(QNBpAy|LLo|iELMlL5Z(h44Rc2I%OIM8$QdQw zs?f5hA290`54~2NmFBZY`cHl9ow8 zu$09p#N&eHVTx;IwL&h}Ks`(rLZXy1-Fd5RfUGq&J?PoI!WJL}u`rC`N*r9qT8L^O zh8AqCM4c{Ti3?>mBEP3HAI%K_WQB3HUC|&-k&V+TReGw@3S>Ccw0&_^w(1pY22^In*;>G>P`fpzy8vQJV0iK_ zP{C}hJ(R2W9@eTU#kImM0@cp*k_Qyx&4o&--QUtzmRNTnkp{9>1uF=ZOsP$x$qko2 z-4~+8j$oI=ZQEiNuTCV{th7(%sw{*+3^0ZxV1Z#tNXnE_pJuaN>RpdQ&wFA~Miy_90^3?L~s0#^0CD_nzGFZD9h zbi+<7Lf8o|*!H7~Y|ATq@nXtWr8^6tgfg_;s4~L|I{4StVJ&ZkiYdYN#K4P_$VI!V z8V9)v$cd>%+~)v> zr9+PsB-fO#Irfzi${?k3sruBWlB!UB*~MigU9?Z8O=_6JeX88oWUDYN6gI4F1@#!g z6=Rv$3wctk6R|4ov=cyDRH2uYNkabsHG^^~)FvQC^qe_|z@l7aJ&+lWy46>+aAQ2?S|!*eQAyJqcH6q@9o=cR!#HXx0F=z-#KB0~%?QlaAI zGbGb?fUW}NbmHE0#w0D;3J%=R4qH{rcSWHD$7TxwPKkr#XBTyNMj%` z5faV?ED(j5!ID9op2p0Al;vo-YW0|_62bKA8?xH5jW(sUiB<~D=%OmLfURD;B~6oO zHyb7xe&nTCp^im*z;+octj1HbD_!PSeOn`HYFF4`EY~aM@?;-s!Pqq!1Onk?rCDW= zqe-l@VKU`hG%gSGHI8M7 z#bRcn6|p3#SEvO9!eePtq|%D37)aJmLMvE^pn#M!vub2TZBlle zlOZ;7 z*3B$etZNS^F2ZBMXhafhzF%r09<%N)WyQrr69sc*172GzV+`SWI2mlHB>MnJCakp* z%VBotNMww+q;6sqh9D1eRY(KsYwwn*@Cy+?F?P_*N4#za0Y35b?-Tz3U%!grVGw-= zDno+Jj~S(u%Nu@+^-IXcF-dS ztnRYXy-WPh`Zy<_czqCM62DYTu*a?WFrHTFRxEg;ISF%mF>d)ReIT+b$pF<+Ju<|Sp``EJ_JJqGsb2% znZCWXdn?PUDF|sTBzVbO?Ij6PMtQ-<8Rn~5T`ldMt>Ph#ZlhNUNF{d+;FTm2KA@0% zikklbU*F=|uB$=+01(%7v^qtl1FKj1fsWH`>H>W`x^q_rYcV+$;4=FKvClXJalVZ0 zNy=ty5eR@r#XdFtVmn!{w0Q0=8s0)~Ol4Dgx7jFhAjmihz^*fsoZ_zImS}YCRnp0C zq9WW#rcnzIwaS!Y7#>C#5#y1~VvdJ-{qo15^p1n+I8Rft7;Pc7I}M6owzw?8 zH!xkp+fHp$^-Z(MCX;Y%;%OviiKDo5S92p18kLp8Zeqa|q}rr}V}N>*Ud?-HRjRL5 zs@9O3HSD2++V(400dgLejL5YnqXH6%n2|V`ou|baBa$g3hEy@j6BT7V6=gUek75WQ zkF9JlO%=>BTtOh33DsR4PF0b>Wo16$l!6b?)6uy^Z4)IW5Ha_eDcU1%zs!4o81W@l ztr^Y!AzcE)^=%y;t^F|68P;m5nko65781RUJzG&*%&P!Z2HlK`n{v7`jg{DPlt3M$ zknTi8%(_Ij`qjiXws#BMxhx_q7%S}z#D)q$QW3VXz&Q3C)-zSqCDLSNn@^Hdh=D0r zh#2#a*mqWJZUlkOJOX&F=^>FK8JL*@A)USBaVd$~e{JG?L>z!egIPavK9ryO{{Y+V z;xw&I^FiesN_nPkfjv>H^*)vj2K>`%hMcdAab$xx`FE=avm!I;%m*B}QH&QEX%`ut zykjmj$nG^8eMO`>h9-o^`z#BIGEa~}DNyGD>7fqYAM_Zo4Bz7*t%dU=B|#%*33QVo5$RkB%7PE>K~mJDB^EfIpxB05~7c zvV2dx?=vwI@AL0JXr25~%~baN{{Tv~{k{I*$NW4hHEpBnpSgU`-ex0cnf~u@@9-v{ zVPYQpXSKHrjnEQKdJIBBIe~*a& z01p(Te=iWFSKs|_;r?{1{lClK;$z$Q{{UY86!BF){{U!>z9J)S{o~tj_3_|;9x+ee zYV*AP{{X&zJ^lV?{{XAvG^+R8Z@1g__xtbuJ|Rl4nf`v>+kZI!06z{n{4+|gf1hag z-{bc7{$3%Ef3Ns|l|PR)%}>QcO6nbR<*oWpOKH50tjy-K_%y2vhp$r3THGhq{xB z*E*f8#igOTnmA(*Fkbf&JijjesNC#wq1ym3Qdb0ln&gi_aos}bJ?&G1Uy|Oc>&+`- z)}OJUGrEgS^a8HFz&Fyn`bHX$HHo&R~vL?;wOMR-o@>xk%OcFuy#`Q~WQTJVGI>oGiHv=1+7uD}&fhS1`R$7kDU8rpW{~B+kfY_@&5pS z5C`Ab(ycpv=Wq45{rms~9C@WwZSS|d@BBV~Kk4ElAdhNQPt1G&01vmk_<-Ly^W6w2c-{W}OZNHq(^Y1bC+kf!! z5sE-Le{H5c=Y74u*Z26F&%Hy(@%-~ux6J(eeWP!k_xJwq4E}#V zT95GYNT2haw)mfU`1|{9;xrVfn2qLr{{Wo(NAENH_<1zXjQBYIm2Z%Z_xh%1c=p~m zjkn+CHva&xhM6u-1g?f03O+xdJ)@Q?HG{{Sj;lllDpYX1N;F%k1IGyEba-Zzhk_VELO zf=`dn@u+j>GzM-q!se%x`{ME+v_waxZ{O{-f78ah)lHt3>OtU*KJ%0R0M^oef1O;| z{{YKvKl-A7-W8`vX!fJu+6HDId2`!{Z$DQ149B;&{?q;bK20R6+8Oj9=L@)=0*s$= zk?cQb9G`xzj2wACQ~CV+)0(#>a~!y_}GkV~!yb!cc@z5noc13IPNJ z3gr}j%8~{%imcVC>eu0>IO_%Zrke7{IY3f5MHA6`=XjR zSB9p=^p8Vlx?knPNw*9AA;n0hEM#p|)Hy4wrb3FbonppdiGwnk+j?5bB))}M_Q=Gt z#`>%zL%Sy;G-e7(I1E4|6>klUU6h_kt<1MBto@k4iKI0|?ZjsPhE6o0$siw4s1!Y%F>DkPAd+9EBHCqRc=PSpd*_*bk zG#9X&>>CJql+4v)eqJ=(%$D~T(I93lQZ%^qpe>WMWbGN_pBbvLEPc}|Dg$wEXzs|W z1HWf!X4`;U0YNy<036^~MjoKTrI4tM5B|Zyxaz%l`nO z_TPQ~0FQ^$@S@?5?)-n!lfLouJMHf~L`25>d;b9RUp^Hvz$c6!&p7rKMeV-P9@~6< zzi5e{x5x4Jp9%xu0sMbIS*4`sf1D-hl0FUGT6@C4uZ{KM5 znfp(_@Qu7egcE{1{(nEhuN!VWw~gcD+kfF6-yiGv_*4%+iRbszoBKp>x4eIL-)R0n zJ{aflAD_?qRKL=f%4U7%+xUBJ?YH;s;#_|kQ=vR|i7$xvnTVO4quzFi`Tqb96AWYN zQ65EnyZ${{CC^?u08t&!Q_-yQYb4b$N`&j1jBSZ>*#;tf7aKsx@l?d^$h>1q2DqQ; z=>Gt_&-1I)1S03^-^ZWN^R5OtIR%#>^~Y!l&V`L+Tc{}%t!@T2^~2 zfst%P%~Mou+I{g@11vV`P>{1c33VLm#Rc^=;CK4%6qE=+L2nC{#GHzh3>8|1%En5o zRxW|AYekX$J7^=j0%mNVQgE^Y`eeIeP;<+Kcv6OTMmx9Sz?m&6IYS0lvL%)QM*{Cm z#gq!=P=-Lmi=4qh0ExnsO0B60du;?jLy1;BHQ1s#BL8wOVf4hF1T3kiiP@~Y!vT3#rBj#OBU5`l!8ooLER5M@m_;)~>sR!x1EPaCSr+Lgj}rlCh!{eZR~kaZQ7MJI zkunV%9l&Tur>Qnjz#AT&vuK7tu?+er=!1|WQmXzWijn)2$DFK8_90TmiSVOP5U)cfm*DH z#fYt2)6FHq-)aob;8ZIvWxy@gQZQmmh0H_>d%tgQ#souL-0}MH)ZLD(=LcskviTWGJ7^M$#rGG}0AAR7usbyXsrWI<3akV@|n%>@O8oW-Uz zVmmIMS-_aViJ5@`dnAnJNI^;;wuK_inoElaa5iEe6BE3pCqA!e9_0Kf`zm4PBL5dta+ zued5BZZSU*w0KgyO6#cIa`k|}Uc20fShbO`%*C{(;=d||uCZhn1y|MsQlTyelkWP0 zCH*j^M^~z;?_5PnYYJqh3$03fw%Sgvs~d`|gxIP*k=!h#$!Y*d1b4ggrAXuUJ9AGP zcFjVXUZ5>aW%^3B&?Mf{YD!^H$pmh2vx^Lt&vFF#&xI+f2^-9CG?|I5jk8 z6{n97@BaW-m=P}uRAsC^uh&{3>lPZ=&|%hflK@iQX(X}n>MOMOor9Rd_lbyV*)XL@ zQhg&xE}^EUZp_+AUpqGD(?CF-PSvZf2_jjkDu`$l@o{V?63+@zfk>?_t(R9_!6~xK z!8BV*>ZruZ>iRU?HQui)ktiVmAnX)u$evylrZDWZ%K^8eP=Xw{uBpunJ&R=a2$H5? zL9i}qK{{79WS0u0msZiD?q`tzA74=XpTezgWLT{3rFPnp#^j%%+J8U3ze31}g0aRT1}zdEf1`BUqgO^~4t64{nda(GAP_^93?V={C1h}vMM*rSZkjd!Yu8bKuO&CQt3 zGmPCuSzQ=0ypw3j7T1UA;?{5S&2gJRbmOP_ZzG*?>Yk*YJ!`0GB-Ptd%#M*kEo|>>)Gw(evyvu z*`=7+T&R>j*GQ94D67r}(j1Y&IY0r&i%mL9+iMMeT|RiDwU++avP%y5_nRg={DZg{ zz|KZP65hn_Z&iN~ythKSfunkJTcsEa`aOL+>0Wu?m*%o)%TS@Jv~3Kq;xQ?75_@&v zhOJ|Cl$fYUxwGk;tL;ToUg}#3)=QVuF6V(|+`Fb_jbvAGkK1<}_WsUFT{4J9>{# zTf*MS+L^D5$#L_dzYugou{{Tn3zfIBH>F)rLWm-8S zxb7%;$N`m-NcOUlz^khU1Td-#d#J&z#bbDp8%x;aXtt}Q(a8`;DJEH!(c@+zfQ^;V zsa6aKf&5enQ_(F2-E0I;Q`T!A)sIreX^hDYSZW4I9LJy4?HdOj_n7gf>+WOJ^a&T8 zzd4XN$T36@J_bCWuYi54ZH;$my5|`K<$oXf*7o!Gar^6=J$vczOLX^?uPU8F!BoRy zdXcY3JX*x4US*3~pAn5K-K>q=ab%!qu})o74Y5#18zi$+PDTdfsbGsw)%2vY43@WA zdP_2L$|QJgSU5bCW_cwT&KsTqT-Fl8c&@Z7&hd}ut#2AQ%7s}r2b>gj9J+;A+b!x| z4oGYr-NXxnO?w8I@Y=PaJb`wua8;Zg@-Fll^$zQczn8kFg zhv-ldNlR3+*t(BYW$G)NB!|0jky=SPJRa=U(K{dt2{IB(w+9=C1e1#$F(ijTvz`zl zNu;<)K^wg>&m!;%8Bl#G&Nv_p3{jmh{7khjr_%jbt)J<20_v|%blY`S15aR!J2W*~ zv60Sphp)~Gglq~8EPiHuGuhENV zQCXYr#PF}Cs$6(XQxcmEVZBS8*(3uSJz~yVTWRLCkv?UC9<@QRu2lw5{jue?oGt+$ zvQ0HHs-@NBT7AqxY=dtm-buYmc9O+pj}h+RmE>^SjzFx_)i1=D^w&oEC)LdX)4XP* z4yoVP7%avMH<`&+ewWl*Ik=jaXoK-}W^YoPSr{p?D;3lBlfzab(Ek97hOch4)9UJPNiZ00 zpXyA7WY)cav#6svM;`2yV{GPB%(v*}Y13mOY(%M2M29G4YzT?1q|arjUR!CGEY^2d zg%&w7rZs6YB579vyHdW@45XC=z8EPLj=jIvEbY#x98q4`MZKOO6UQUR9y^O~FLBkT zj1t&&+QbAUH-;Ift$&GzOQRlOwU0<_^t%hFa5`@=+)YgSH9h=RLi^jMs%7zIXrDpV z=_Qvgsu*Gn;aFtEWxEfIZMLZ!zM&1o4+Pe7Ttq!fw7d>b?#?hU4sdgv0g!mjYDWIn zTRAMdS9W(XTg`%!_exI?e?dknO5_|AMLcGy zLM`c<6|wl3n>l>-+PC~q4x>_WHm=#i>I?v0uZ_Coqb4x?PF}6cbfNW_ZHZmDFgW00<2M>w-f6F?*vQ0N z$dSz(m13ez-KnE>06b1nk%3Ui+c{w1j8%@Os4k{-ol*qfByA)!#*Y|d5dvr?iOcro zK-veE$I7cKQDR82f+Ld_9Fno%endYa=(x23NXsXljLNX(JI zh{>PTzr=Xqx*x~8#lE;bL7*$>Qpvp<)d_1wAwy-DeY%plJG*QSLU4A~{Q4%59ND*? z2z3b+Rl~Gu((Ns@70%#B;sycZ`POo#`u3_HR+X+flKz)GVKUo$P5WO@g_N*D7|Ak-_ogRvuW)O(aEjvJ$5r#D4BSjXOU3eDCqM z#?e1-^Pl75^B&(?pnia398xEEiQC`je{XpH6FYc@X;mK6x3qsBoxcA7*!uqf;ragnDpkF|ZT>%x#K*tCh>YOo zpVF!)?-4u4+va!q_Wk@k{^S1uhniKkkKsFe{C|Ay;vW8gJ}FiA{{Ua*AJ6`t1HktD z{(r)iQ|&(9-)*OFf7&DV_lW-h4-x0ym2J14;15?vHhd@NAEu08^-?tKK>v)nh($C^UYV!IriK3pTD-- zdr!P?{{UZa4;TZ_;qCtbg+HYxK4b3^G5-KJ_sstQ5B_oe{{Sv=_|*(V#O?d-zrOJsOzj>ZPAK`~BN(M`?LOZ>9^W4S z0LS@%pMmqAdJiKXoPK}fO5bhv_TD4oZ}XV@`*>q^Gtc?d0L@0`olzKE!*T}I&|WtC zE}9oDc+?8aJ0_(>Pc}keq(&p&V{aJUUe?z0O4O|{T&11WywOaw*5tp$iVg^Hy4 zZ5*e^QTS=_{{W-9J}qV*n!mWz68%y;g}HEc0Awnl2;HNkosrEHlhOW>W zPf=lNTvkTrt+(nwB+&Y&J6LMTO?-Yb&~r-AgqU^+;kboR;#@|qa@&~gkroFfm~slL zN0La$1J9YE)pW~*l`SW;Xy;;#um}S0-fmb0j196D4KctC_uIj0^u18%50qZA-qdxv zgHK21bKO+Tbh9mf-9DmP!RnmOb4O|X)lQY((>L&Xkrwg!5z^UQ_|YtEtgq6&WcIMR zCPg>0mBu@AC`lenjp|jzYaFLO-)0qLQ^qm44An-}EK04s)7s3J2$2Zo5jx7Uxt1j= z+26WEGDGjVNlyl^)2}MNTd@5e>YqZi)+-CCdR4ErHd2PT()j$c8BT?IIQ=<;$8_lJ zY5Su5Weg?*OyDV3uIEMIS|ygu-C?G4$g(t6$uVuQktAf~WQlu<f z>(f*;UsEx-+)lW{GM#%sr>gEh4U7q4i8(V+O1l<(ifKz4&Sf%k)2`M&4mXJb1bAU0 zh6G@OK9yb>q_^#ez#XSoP*fZ;sX>f`!A4~(;eo*hf#^?{u9JCd(YG`oN3_+AJ%Y*V z42G%9vm>3&YJBc@P-Ib3os7PFQffQaZsqR99DNGvmpGv{s3{5%SZy@{ZHSE{NE30( z9Fka;Vo$kZa!KU>04kyq6!gOccF`aT5+o6#f#FpY0H9>xR%iX=`AmM(`^NtOe+rxE zJbw&+e~nkiwETSi=WX}-_m6)Hn*eeTpMT#~wCx+mxBl}n@jvT-5vT&AAb#&PMH}z$ zzrOz85%&3?kNvztql{xbf5Ykf>eD{{`%Fyj9`ipDKQs6D@Tt7#jBfltIi*DW&+y-Q znf@N%$HJs+k9^XGVt@J_{{V;YG5-Kx5vD!IAD`==;Z+m7NA16~PrvZ?{yWErR6UPB zkxPl4{{WBMXy4o4Z@0|Pg-cHXZySGi@Am%yFA9AtZ;y~>LiF9 zjGJ7oXMSuXB+5G$O1;7D{{YO%f`In|@sEG`ME?MYPy42?W9BsHBxm~90mv+Kmqj|I zPGqat2Y0Jcv~yTqUa?HBO-+cYEix#E1WZJ7o?s%W>N0I6YPdneB>v+Nr7kMI-GmCw zqAaB=OqS$w2DcWc#9z9N?$bSVO&wDlqe&5F`1S#jQB zjS&U%DW3{ZgKogB6Zv=bIk9EzL#i{29SlEC+c1e_)w&{)0U=m+`w_}ONuCs^QE9jA z0*X6P3a-@-I%2V+E6*z-0?d4p*|Sh(3{WR=nSfz&I8ucw>syl}RZ14sV=Ds5kd)R) zG7ddM!VpaDMTr*Ayn2XKiKUa>QmVP`0mKEC>j$h!K*f2fZQ{2s4kXnXC@FeQHcSEy zaw1S90BTWGt0KW2?&YRZ$APY*oncZnuEnUYDq)?H6;fH9VS3h>J>Y?bA-VWcgJ21) zn6?U>N+g$PmL@X}7zUdCDI(D+jARN*!kMyG(2bUGN>yE}HR4&1N|@&`l*3Rxc58|X zJzze%T5dKKn=4@)ih;!Tlu3+F1u15!Hf>Ex3rUzX*J9emLqx1wt!Sl)X9w>Oouo+R zOM>RPh07GCECriNZK{^YM1s>&AxiujUjkv@^tkl@rZ7LF@CIjGRduAX_B`I@~qP4PE5_haXMOC^3kjShSTXvwO zAqEBp)(pbbtFO3)ro0u`!|J|mF&o3V93{{flm7q)xDgb{sH?74KGP*3?xi$RmbZ+O zttpPPYT&)AxTCBpkVSe-w$b&D*ttoF$PWntk%%Jjr726W;R>q>Y>c$*`c^_#+e=c> zP{)`MTYT1r6ux_I=K{{*O863#!mG3M0z(W1_|!uUmMja60}$Y2;eMa$D6QNcDp;^Z zutZ=g;!0K0Zm_D(OuX8%7dFbPlsdX*+JdKH&2yDiOiEE8A<3a6qGx67f?AaGE3(a} z0MB)5uis1V-?ZjQt)y0L5)uTqDT{j|drD+N69p%+7y^`F`gMedZMg}raS?VgimoL! zp%CWU%8E>lfe$r`;bXMOl$=CNlqpdYO0ZDxQCK)3?Xh3gNG`KmYGlWSASMrVR|$p0 z$p-T>P%?Z4N-1@!*<@a~4zl2Lh0P?keI=Avjy1uEh#IT_f*QicDo#j-L55I16skM1 zP#@b6u!Pon#=Jz=9qO;OB?>qgCD%-FYrtAoWC$dc0S78mhS3F$)xuWvwN)q73y&c3 zC@8Q=n?pUbTZuv=5i1}#1vX>a6r>(BEID19<=u`4PJMFd`jA`zF+*IQM^3m%loxsi zEO!MnDp^Pplo)rE*<&l4Y{aIT7S}H!4K$Z{-&`xesSq(OUp0#&4UxR;w85!ISjbp= zm1-+mV5v|Qpj@UYB_jgpdXE{*>kG&sa$5;P=1D|FC*ewqQX&$lq}q2NT(}aCNSV2D zTX$3HrOIU{HH2%JgIOBZDwvYzJ`}0oV_RDD5&)SNQxjYldJ_>S=XES7n6G7TV#VaM z;sVZ2;km#mLe57hxs|s1;ej#?iAFRg3}<896qym8Q9i>mG4T^I;Y!BSGUBkrI&qxg zt+QE98MV)1gMvhh0ar$_jItovAq|CxBZ=*)L!qrZ>Ree%A<$PU)m1ez2OQe{ht&62 zLPjhB?fqtVCktX`VBl1y?KLZ9h*g43n<05;2YK7sXoYfTs8sD0cbPGcaWODZxh8Xx z@TEIqt#AQNi>{OYsN3zcjK>V)P0>AsU%wPj^BS`!+-Sf|tI@}BNuU!7P-juq2DyP% zxIu2xt+7^I@M%mSm0&8m*^PrHpdbk3On}nFye?=jl8*D)mvv_}rBuH$n#P*)GhmG4 zl%SP67bXj2l%VWcUC@yin+O$7E7YjV68fPP`D83vw4}vS7_KT*hyzQq-X#z#+*GM1 zIc^r&C*x9zsZ7>c4WM9fb0(?U7;e>>E`#CB!K2$U{dN9~DMb^jsL#0&NvfC1llf!o zB#!et)`du}g)K+8m=`t?Z&;W-q=5jXbbs)>O)W*|r^|gSG;yh=p2YURdt9S}g88zoh5JTSQ&jf}h%o8<__g^+#zxlg}}Bf^2~F;|B> zn?HN~d8^OI{yu-Z!l6x<^N5e(5%>6r{yXpCN=(nky#D|V_MQI#pZIuEwM)+ttURT4 z)SCq={)Rv>MUta2W^)d?Sd>hAmo2u5iJn_Q4*SNp)p-3-yO(nO)t*P;^HG04u08RJ z%V@Yab7i*T*6`<#{%bGRxSi#r$>&kL$mpDopwfD$Ole&!OI9xzna64?IjgphC089r z?AuN*rBhDQW^ctIGJq$!k}F)v!V-n=B_dK*`o++bsq|D;?ONK{n4@33LM7Aza&hWr zV$wTf8DqvgW+Su~y)}BOJF-iE6T4%}G&7F_04Pwak8lUn&>E2*xA7J7wNA}-KDw|z zR~@k`UZ;YzE)~*Gu501I9|OWjU{*jg98H^e&*{KP@h7hLs9?8xndcZ7(}`9GJT~kw zK70YHTAu|yr zw0OdG0RI5e8X-OvZ#l+!?L-Dgj1$57X0vf)^+vOvPU}n$sqR1Z`hGaBBIk4sZ5fd0 zE<;vg>PhF?f|)ad>rqqua~%;~))(NuKX2U{CcAeY_1KEm`)FcoCi7Ann^V}=w? zfSKTPw(Xd+f_+T&zPoh_clBhsM%#m)=gFv$5uX8fa5xGNxU8_V#?5Vh~{C45=5_waQeAqdU7}|G;X9p8ICDz-D5i&Yi8~#3g-lRNPJ}f z0M+*btuLA9*R*c!^cNS<+{R=lnO-etQMt6#7TJ<3nB-Xf}v0C2V7(ZBJAm>z1oYR>)*A()e30~ox@!TZu`k7DdP!Rtqtm#n0X@wXmw8fkXVWpc+_L)( zAaJvlgO}~!fjFzzN+Q>xSffC%dwUsBxKfJ*@u&b`4T^Cex_MF!UuaJ4(-XXo#4W9( zfX$pU%>iSB##_UGcyK`+S1IpkPc}VZ=|4cgI%4~sFwlB)F^%bNb{&Al-py&uwt1N> z<%_P$XDT;Pz-LongxCfGYc1iWF*7~1a-N~lZ|-D=m>~-@rr8oVZKnfoD$K<*$p8R1KT6U=zZY9-yN+GK zrJc&KnPjTmt5W@5gaC=1Nk<=8BnvQM5%!{D5iun*;%zJ>_dgKj7%Ho-x&pivYm!z&JedSu5i#GxTIF!R=_udGU*M&Nli;Vh^Zrzyt0pO8Q_clH z4tWNy7^nM3ud1m5EVU)U7#!U|1_}1|$KKC_j%%V`UOc>Xi_AxnzKdddpVU+7{yPP) zy2o!9dmVpFY4&F9WpYTyWKrDI2Rz6r(5`bJQrMZ~=-OfHeKyso-R2&?r_x52s(56uAoCB+_sJ zGZ@QD-AZ1j>MN+N)$XRayY56$f`n^iNtop16+&1M>P!Pu>ei4wj)7-sb=$KxuskvX zkAw3v%O2NY%Ia7ENyuPG^UZ7*;la_axM=S=I>TS}Yp2&Vt*u?5I-h?tc<$k%sp?$b zrPJ5#(oR1Yl4oIE?^D|z)Cz??xFM0Ac^;Qkv(WXMRfj;B({> z2OmLic{5yVwo+VP+gxf2^O=%6h+0rg1Z2XkybZ_Jc7O>1j#|EfW_|bf{{X!EZS&%_ zW+_uX@$L57Vtu{7J-=@XRlk-{-^n{(p@*{xqIE zWB5T7{mb5G-`;21J^ujh;g5P%nfuiwORk33XI?#(Z4wvTU_i2Hnddw%ip;uSw61<&F9 ztDgS=iG{S|{J6U0>O7{I$kf+;Grgv*;q=ALXOhV3>~~SLzDG;x%Gz$0T7hJzC77vR zp^Gk8Oe)d$nG4=LaNmn*gt3;+C2-`Mh`ydhal3#)3_^u^tEfvyy?@qeCs`|mLF?tKlHO{Fc ztGcT>srpsaZ3WhyJ=472r^2atUXp37{{T|PhIcVvP+LS$w@V>=9gnAfwB))#3VFSw zYSwpMCY>fmt>F*ch%mP>$fWy@$C2Ga`3UQf0V~PIhc3A5?l^BsBIMCQPJp^}Mr*D7z{{WWr<7VW3@m8(L&w)+t>|6b#-}uhk$G`9Xy}U|kf^u`ns*(L1opn@H z-`BSKv@Omud;V!e>a_B&tXoS<_;`%su@sW7{7`xukyW54|We^jQ;wJv;?1wnuk7 zBM2UsWxy@K$bC)X+d1GDxesL3W!XO56}v-7v|nA2T!}*GfCvPIto+0EC&VRn3j`Z? ztQVx_Xu5bK=>mTOzGR>Ll_A^1ojX?72<8XP?AzP?UOFpqVlRTJDza~-0fgWC4+(U; zeF$4$Uk5+?hD(#aS{Fx1T-2PC&%s;3aB>%1axm`Q7G$bFv4W`xF#pfpln#K~=h}Op z0{3oN!n6woK0NS}`|gWaHqz%}cJBm5zYLpiz3;%*2)mK)P8*8=ebuEk;B`Sng< z_3N+%#}dE0+cjo;1TQu3_2v2R^P8&Puq(%f!(fra(mBh&6vTI zZFdw2qRDd$9b>vS8qPaqlQgvh+nemE1snKe8hAsj25H#c%IN1PTJXa|1C^}zgvO1= zA;)9z4D~>+w=f4$H@GRlpf{ei+GgXa*?~$GNV&N49Iq>|j|nlLI9YhUOH-46Ui|_e zr!UNx+#G5lNAeV?EjWUodUR)FJp(xp%4!MG3v4yzCnG!t#cCSDX#efFi2G9D1VBE* zB~Y!gtIaA%5}W#eC$8fuASJnbL{Pvk=sG6M3QaWsfYT5K4>?>pf5fw>b;qU-<@nH4 zAFa|&4Y12rC0N%^rqT$c&+@Ng{}JSElSJBZoF)Dn2H za#A-2);ZIn<|r7wuXjY>T!7-Yw`RP4_{JI{8hsLW4<;vO= zS9zk$8j`nN?(%O)rH{HgHwO1z>-XaD?-(Ea1xy28R-Ho*0WkLB#@d#{llBbe5SScC z$aU`yw}AW0TUE4>-5($BMYLz<|3I?vmS3?i86*m9$}T^&<}#kE%2j@4F7J_cF?ydB z?W9gt<&ct0`a;<;jOF_S)IvmN^Fugk9W!b|Lc25Bi2AWVk(oJfSw6q4qcc5?Hcbiv zx+{52UHKOla{}hPjlX*Ww{2}Rw#N{9qEr1Wot>9pycVB-F7exb3Aoq(qP8nP!wdnh z3EW0KJlt)0Bd7=oNf@jc@MoA0Ujm-w`ofjP?hmgY2qEzmh(28L|D8&m++N%jiTggI z0nhkDjq3axIQ+Wr{5Jl7A%dAgS3HnF)4*Q4?FX3vxo(%2%U$}5ssv=f^CKez7MW{2 z$KiculIS}Sl`8ZdYeod6HDpCWAG{M`*LT3WW8|x4KhQrL)M^j4Pke#-LD#{4>w`tX zZix`UqA?Wz^| z_^m0X|Cbko-2d}4*Xa!!E$^|lA(IVm%e2g})L#3(gtAp`ZY~rt_7BOuA<2^Oa8~W6 z9=o|q&zX>yXY`dG5$b@_Ha&dp*Ivk2raKNUYLiuADZzijV3MU}bnkV;A&N|%pA3d= zlE_mFs{VM(QiO>KC=8%CuQqfKDa)O8$=I~TqG@e>VrmARR$XGa$6j$g%1ENCcx`3x zEeTO+c36(@6&Ak7z#yoQT60>~$oL0aSpm>fwzQ`H~%+>KSa+)@?BjEc#n zPFKdeC7iYZ%9DgS+a4d0B3>3=f4)RG#(e^uU*xI z6Q3)Vn*}ibA(f?n2+#b8lyjAxO}pPo5IoKDz$GQh`nib3h*PS%YX^0r4tSZW|2xDaQB!9+$2yc8lf|$|*ET|m$(jGaq}?pR zIT%MlD#YChm>}tVJYa8lErlZI`om>W>55pj%s+|8np@`{sqPEi^7lp$RCj5fGGzBX zR&yOtaa!(?p0+h{GQXtWca~Tp-H5)cmk=kG2wWKt)(kbgi!!z!DObXvPAmfs2!}|8 zje>)LId>|3YfhTC)O2SLIo=&VC@C!_Eq%>Cwf5`J-1lThw5N+6mp2DLW1!mc^Y2(` zd`QC7?+U+t+XMzQKTwJ)ADU9TU6lbbbzz0oZ7)qCB1 z({7GoVs$fO=lQfYErkvA%E7336`rgD$i=je^#z!1w~WPbXv--LeN^d3G*j=iL2Nc7 z*Z7hp%8d+W9zzv>HEmKrng)*BL=Zu78r!#3x;m5UPt`qRESB+}or%e*Cg1wgrU|5G zn0hs*Ug2R0-D!q)+B4PAGxb_nI>lQs4_c}=F;-QWcsb#7xtnj`3d1>+N!a#`hX&K& zv9S#=CPc!bk+dzfM9X}*(^w0r)Q`67cq>|7u(_70k4t%K+UiOpHsxTB#SE#2t`&R#uG z?t!QbZsYf#_$@FA+2oezJCZEHZ5kW$(Z%u@l?tmM;B4n^5?Kz@qPFuo3ZBR1uc+no z0Vy_wZ%HT9ipZao=?w`xnXPV}P%)HR*))USIT=uX=FDI>NH&rAX?SE{lvP#BswL%)hEdOh z{Og4mJ&7>Y@~xs0u`J4GPC*$`eV+q##Z}ZXab}j+OWw1mgr&)x>xz4&ZCTbyRZ=0J z$I0<>PU>@R$-mBg<@c9d*KZ&-WSi2R(`e#(Bgy{mfVM_IOD&u&8mk)ClGEGkq$kwy z8AC!ZfsRMqh!pBJV}O@E{w>(_UHFwSob_|tGy|N{qx+pr)afFQ!CqbSJz>K5BFP>* z^JfE%!f&=(lkbT^IA#1Pzd5W;9cMoyyTX5bQu_MFRmt(!c(_kg%n8(6f7}Vn0wmg& zO;n}Ys=M;zoy!U1w!-j?yFiyiojRx|46-uH`3jjcRsRgKmK~bTcFZKExt8&oT!x)# zoK@qi{<-3Ojjl^Ha;`tlDn)N2^F@9#&?ugHA{+oX#dz!)>9Mk)py^-YU~IP}*j#bgG>6 zp=H0ndpd%c!Aup#5zVSu#x&Co68J&P2CMBZt<`BF4#w#5HTk+~sP$??93QtIOB0oH zcuHj0QM(Ki*@{J-u=ZzzVx@}i#{v;L{=D`_+tu)`QU!TM8uCH7gnN*Ub16=+%lc(6{v$DMUE?+mffRZL7$u+?buG8q9)CVGWeU}_s zCP^JN`rggVv-KB;0kp-V@gcv&V!Hr{#dbLrnQQSai(|t!2R&E+$xBh|oH4Ed6fJSG zKxq#+V>GY3SM0NYhdEs@}NS@&45Wy_r;rPJB=78A=|d5y_uk~Nkp<^$b0W(40#LZuWjj*Y&{b(JmQorX_h#*ysoio zC3?kJ;rg=-$YYG!!XW)9FRai;O7Ts|-8fD;DKq}Z4~l$=#i)8R`S3qq&>20v(l;k) zny+}{5?>Kk=o^@ zUN1}>Rq@;Tq)s$a{x)w@*r)CYYV8^yO!ym*7Qm3WAgfI@AR3bAA2a-r|7MAtI;tXL z`uR`1^`>yh;DZ}QgjbH4(CK^1`+|bsjt7KxYy`zUw&g?UR4Vq5K1`Bfs30nVcrIV9 zU2LOi16|D6eEBijalE%2ieu{mE-b_GkxA3?6oCC!b?{L&;|M8ZFIUOQI$Kh6e8PA3 z_Y%dKy0ALZt9LNc8!G9)u6=`kYbPsUiISTPOx5k-8(I7P@A@2Df|%|jXQi;ZMICm* zBfycO5p7O3UN$f(C1TYV2bOADCLCP^ z%e`d7mdFCXT79sSNGMAC;SWmimc!Id7NOE`Y(3+d*IX71^@$%8HN8>bz7bEXG^7~u zC|?^~V3JpGDQfq<8cOO{U>OkJB>%8g^Nwf1;n7NcaX&70ic(4;gGbLpPDF_!*AJ;) z6BTx=sxYb|?Uym=^_|*hGBY>kE4HR}*sDd??4_lf^P}lsn*&aWWSe}2tU9BJ&k&P@ z;eDrhqUt&HTMr>>VJe+gN{trN?%rb(a|0KzhK%lSsadfzj!hfuB9&rQRt(LDsVS(6 zxcdA5HSmikE&L5uG__X}D-8>y8~vW`;;PF#Jx|Ei94<^k-WGwy1O7c$*pPjL>L z{I#PD9PN#KIQ2@zOt6EpRH^~R*J!Ue`nkOGWY5@RH+@vPyMjM+@RT-F{s1*&XMRH4 zLJlJmiQb`r5;EUg{^4}dt47#VAHOiy{w*_6D{9t%w$&3Wzw(VUseZ`Uvu*l8=})g9 z=lJK&rnzHF(hB#C4u5x5O2g;kPJNMZm{<>GS%3%5W;l7w{Zq6#!lD}n;B@vVBC1?G zELLNy6|mh$gyXme-Qfj+yR{F4}m`mL@ zL$4wGkE@nQ3tQWFubo=B)l%)Hag*~$c%fAkt45;No<@dVxf9~-s(&I7>Xz6r9Qmk@Hj6eL}Waa5k%Nbtzm+m2F5|Z$qTgP8^C3`WOglD6h_l3F%OC=@jHm#P`$BBPd4D_8| z8I`PnFuoj!QLM7XeZ^^|=tAqoX^qB}iy`A5PI=#(0{-s*=O!cmy|i#n;4u>Yo9GE+ z>*o9M+JcI*DZ*`eB|O*G?}_rVUc#SohMV%PpM-|6f8C9;8wJ!o_#L;acS#X!c*cA{hXV} zwQmfy5&3?^UoYtFby&42ek7Nc=Of>|3byC;s&_SKr^=e47c!u9^_|Q{S~}{~@M`+` zs8;6%v@${I1t;rbMWlT(R!f40bTu3rzt#g9lMT{EIE9j?Xm%pvWfvrlp{fV9yhmNL ziKu0+E2kD6dB%j+RN1;rDperM`i7LrehOk5ypFowYnR3MHGb09pm{YAnVFn~p(S5J z%AZFk>*VOktwrUfO}_b#I>v%QN6e0K0gGf??h_l!+YF}N8KcQue2p91#jigq>*MV9 z`3>qBgWI%41-a2FrOiV)tcln*cIuHe^un5Jo4{?C>^xi)(tOCnv9r^e$Y6c@v5n` zyW$5?=k#}-Nl->tAdMlRd^@euVnXaCfTd<4RW}V<;LJ0*+Hs%>>oz+-Ch>mWG@XmL z8`|bN;WKfWWY1sAMvB)rDgyIDTEe)|@kuscb_MZ1J%h}o{Qc+J+s9huTAtL_&-eW|fJR#1e)=D_`WbDd`aD%T z?Hva@e!Rabc9l18Hgs9w+x3->=4PLrGr3Td#!&AEIgKh2B(dvrNo~ZdSc`8N;z}53 z|BI%(DK}>0<&xJELKCWsRP=)_wmxvKdG6P#1DP~+uq3Sxu?1jdu`k0i8 z=TZ@30!9EQOzHmB2<7rhf+;1@}? zHY#5wGxsGi2DIguCJ2P)7b^w@!p6$JQkuOa9DRYo#ih1|gh}BjUjko%EMM&|uZQTY zuUbCT5o&-sK=NLDLJW7@Cajxi@kwTE+V>YC-F3td?fT(4MrN(yM!Ch39^w~$myN)s z`iDgQG!}K`Xfo-p3VL`36z+~!e`Vr)q_?+$^j(CN?-O{J%C~Yq@YxRmHEj9WfD3w; z=$GG~y$-Wa{0&V1slmv~<>I}Ln}4xen#Fp9g1rAB4c{jOc&Lw4cjb!c3~Dhf5BCh1 zh+jV@3h@#~jdc>^2qSQKd0Tvu{{jNp2sSLaYgl4cvB0C93xW=q+h0FFOXuWLQ2!5& ztBRQCC0Dx!lB)y!A+Y}7fF<-1I;(rcJn+sEU>u~NQ{bFHy$0T*41^H_bN_6_%k3p9 z=_N34e2&o!yj_#%Vn%$21HdBSCofCYP#E=zJ#fiZ`=ac`B^J^(aDm|A`^0q!K>Xj@ zVk$F&!>ND6|97rtHZ=Sm^l~9O z+ych>5L^Ux-a?(kb-)Y2ZhuI;N`&Br-<9#VzS7O9E^Ud_e4qg%ZGx9k18kzJ7EU1&l|B z?)~pQ=6d8($Ay5;vuvb1K6f3peFp^qUKOxI09FLuR)A4Gr9HbmO~2gUK3rnm?|zGm z^93%=C4x|c9DA&L4pi+dmhv2D@Bi-q6H^BFTbfC8)95|ySf zuvj3!J^tCOpKjmUG3|X{j|e zDo2MXPns9gVX&AyOQe<**`LYVw^9^Q&NF$x4`2h%KNA~-_~#Ln$CUJZcXyO5Tyz

AbRO7eJriYi&QG>NtRI<6ZnzQ$|9tws#L2yh8@=2^ z_C0peenXs{W#i8NI*VPuTWQg_V6>X8at#Y*qdWz(Nfd8_{CNnM!&$B>0VA5=`o{z* z=>ROuXgE;1RPN2lpyL{($O*F=g3jj@#&Yu*g(h9!RS!n_@wc8$@*_AC*|Ud zOf6Bx@%!(yzd?6HH2QFj19lY~oh7Ul$2yMWNsi+>*2=5Wt>;gM6)BlIxMt3yKi69n z$g-v#@VXVzX^<#H#^&zKURUi2@EX{A@$$u87&A2EzW!DzJs7t>kpv2@IdZ$}7m1#z zttsyEDC+t`mc}QWJ?2ojLRLKceW@rR5`F)MzgCwS^|>d?BLR6oYQW;8zaH7L3o`^g zD?4jH2F{_+>P>oxD#vyB56R$X)3b_Xu0JXb3L$I&k%PCdZ{Pnf@U=Zk zdrOq!aDA--(8#yU0dyOZZ5RY2iUB?ra(Im(bV%&|AH}NT={B)1{5@~-UgGmRL))N+ zHE}UO`3~64;yr)95z&lMDIN>^5&V@Qmf8CDH^zE-R#ch1bv9=jO&<1h>H$X{%Fuu=6i-(;q&8 zuDyPnh>^^0>KIz9?~D^Qk4x1znyORa=pR%x$_zKO+4g5XH@J7a`(p@cNNNh@#n)a&BT{{Q zK_(e*s&AYhtV33JnTblr^6u>F z-$f{m9oa-!-oIHQFifL`vskm4K#H^i7|}@^I#FH_O#u#1xGorX!bMr#U@^f;p71Tr;bc!k2JWm@bsxS;co#*I z8IFbas|^@Uh8^`x-!YR&*TUoKv``AeTGWw1o4df&t?Q(=gU4e)EzHxJQyQnD2#0Xp ze&aI5y*l}Il*r#b=9I(WX;vkvib(Hl{k^W8O0F3rMX9>wj32GCWg)M!8$c8W15L*k za=a2{zZJ7;qj$c`ef6KhMaoev6r|Nj(sInk+bOceRF~n=Z9iu@(CQ;(|FzpfRlh`H zVp7Y8K-0AKJj<}|Xm&{6ucI(TOx@gM?3N4Py-GY~ z6u+O9+DRPtcW0}ZoJD3tffX1?9*({F{vr{?=Gu@X@i7ChlzH+{CuzWPw%>4`DILU+ zUOGNpX6sE$7sZ6H$e7wfAoIyL_huhju(1bFxpHTq``_~rgn-iNP{el(UUdEJC~%mx zEux*ZQ?n1Pxl`?4GNYUS#Y%)?W2xA>#v03x{C(W|P3ofuC_gs zS~csUQG?s%?;sd;xVlGpx#O+m4(0Or-gmQaHHjB^{4Rv{UQJMmlBE|X``|@7eo+;o z+JZo+`=~Ya*G4k6EY}@NCtV0A-YR9qoUE6-5u2kv6rc z*cD_u%LGkd`1Rktm3p$)dQT`#G#LKT%062&1Y=?H+Ape_;mS&=e26oLLz!u)SvO|| z?8cE2j2IZsTy7E!V$-Pmm24o;S@bfcS=E4Ez8*O(9Fqp3=jmBtXu__PVz6b%DAvrC z8r3{OPdv87r2K`N_R~mtw9bl0AW5=4Dn?%T+Q<2`71gokLasw<%<{yP$vW2K)%(dJ z279t$*Lo){r$$ObOZ_I;s9Ic0g_~w=I}clP?(rVQz!$Stn_HXZwbT^l`VKPUKkvTv zeA8oaA{atPe~4pMTWAElfqZE77W}Psin%%p_1h~b4K@iR1YL?secYHSdKD2A)6rG( z1fNU!d2+mC^6gnZStZZZwc-G-0b89UIvVE*Tr?4^sAOaV>~L17LShrXzF^5_cue>r zk$AKrQFNW|;c@A2x<HOtgL+en*iKK+sZ*^Y%={I@cx6}vj;6xko$7UR=cFpm+>XS$z0 z;Vjy$gS+n50Q!KM^F)lg&PvN09vi-2 z^*>}I>b!0GFYCG8w~p3KA~aQ+Yl}eXVYE!I`=j_%(#n6es{CT4oi%9X;Z>Qivh0Uw z8m^3oht;b@Sx>QJwP6^RWFWN(vntaK9-|dC9kEK#tUi`vG+5I!+S%#FOny(19Hxb6 zGjg)XPx%`MGyhF1)^K0c>?(**e`g@j#i8M4&72rGtFD-ri_ya6_>+HOc$iMnk`zU3 znWeIwC`7Trg#S{3?Fh3pmb2|=@jJ2vquQTL0$E8ZnoK5biu<+Ha1Owrpi@d2YhH!> z_leSq$C=PoL2+M3RH~;HtMrpC3Y|QwXs!##VgQp`h*Pq_Gw?6q;!085GhNE-~3Klk0XyjkoP~U~C8R+hX$m|J$b;=qj-cE3^p{@22vZ%+bpAhJtWaPZ2g5-qMbD>dL58* z%|hZqGt3U5(J2Me-N-W27tsZuhs%Sq{#VYO1My^qdChx>Ge=8c&!m4ol2Rt+V(QOc zWBL>&xW;@K4YZ}uxywrm|0iuw0Vowg=u(je{84_Kclmd>`3JT^0n(#lRp(z z;c55meR6=BT#nVeq zZ-7c-(I~J%O5jKY>c>aoGL2IBUxr!aJp*kJ2+(3~w@14vV}l6_KpXV`kWRnxqRvEi zNW=do54#K9-)6553seeYAd9P_Lh@BogL&kse(eOEmuUw#qQ4hLhGU^5n7j3{;G^6M zA>732#z`!KZN!JIwF`Il@FFjs4;ttjgW)Z&KOv1Z27|lNqu?mG-EiC%xnS6c+}!Rq z3^q~r3Ft-iqI{`@H)cAmvi+A&wKaROM)Vfxi8quH{@p z!WSS90DnHo+HY_{t>zeVE9!xORrb98w9EUEy&_Q87E=CE zx-V_<~>}b zi9xmY=$(YVp29sOYJRPsTei+W=z2zXW_&n{$_pKvJ8zH>JWIYrb(hE{k)N2Je$gU- zzbz8r|I!B`7a({7tj`HtLkxMyH;?ysr7BbNvsk+fOg@|3qCQcuH+bUL*KmaRYZfFJ z+T}AMU`aZ~y@LK&`1xA*rrj!$em(F$)1FDZp;PU-54c5^E(UjYJOHh%1awomQ9|RX z4|}eaiOV=KXlGdYo1}Med(<`<0)zKmTns{Y95Ut#B!J&kovCSTw&S58fmXARp+vDn z7aUUl50kq6a35Kk3h*vIf<+&{!(%?+&K_tM{n`ym*L7y!wnuFZ3>8O)Gq2G{Wh3T< zfv8C&cHBMK0|oUJ^}Y6G#zrBKA1v|XqQQl}cMEviHNiv(q`eK88mYk!>V;|C`l+GR zgLU*0u4d#<|C{5Fyug)!0Ria?t!;G=RqL zyS^j~A*uN^yLEXf0l8ei54ewdb&r5xm_IGcKh51%Jiqkx96rDFMMm5EO_0)P0=@AV zcps3`0aYzDT&h9*DX^zk+|E9~v;wfC)qq|8Ath{YUq1zHp=L=a%E5sv*zoKd2~(`= zDW?fI^+FYQYfkfS`X!b*6R?qn8rh%Kku$4{+~E zXMq^PnD%ZswO`cT?d{7gLL5Pe8{Z9uP!AUK6R7=#2w!MCh$}t0O+k)b*S{oY!4MME zVgy&nb*9xm#lBouLqPN)XeJ>W5CpaN>ng}?LUF07YRLo*m)|QE8Yg!`G#*b=OB*ZG0ZIrSa_}mf$qd=h{ zF&7f}Akoa-;?|Lbe5z}754K1lBqGd~Jm@)Y9*lm*r!QpP<($6)gc%x&W}n1Mq+>Vv z2E)fj60;F>fh0WeJHbjJp+r2`&vBm0^tt_Ho4ZS{!7xnnat;t3EP#`&3c%c{erUQ7Tk($)YpTtJKGYis9%SZfA;7i3;#mtFc?y%ogbU6@G&csPFEX}ol} z+#tV=vjI0ICD)!V(G-Ozc8yf1H%-&CT22iGCYVFL9LoVrH6LfrcgKbFs-L_O>4Lo` zoP6wlc&zOjxXVdy0Z>f68z6#zX4`h@wFCP-$*tQ*-2*XgzoTGd?azLt3gEjZ|0jQc zwH9A(SziVKS6>Rpr|*9De`(8p060Ix5vR*8@V;~2=R-*L79=xV7)$8c zku&VT)G7InN_m@or139hijOsR1wg*fIK< zP4E^90k7Xb`v*OZg)5D}Y-{`l`ekj1qu@hS*8S5QAjaPY_RQ^=;8DrT31IeR=xa+; zaR;@(h1zf5ZUa>r1c#sX*=b+x^1dGJK(43|^8Di~c@n!FKGTSvW~bBrS8;Qe)zZ4Vgyu z_soCJ!63~NqUZ*?IXIQfUMO8GQZ1ih>x#-+$NHyg9i3roe_CTYyB|n98Qj{1yi)1&rcDSag-Po@j9FZ!)r6xTfE zAj8d=$KI*_2iGctGYXg0x0wNZO}m)I(jduQBcTrb!EqdfuUXG_)2>tbDL-M5RU4$^ z$-sDKEK}xUS?~tG9Rq*U$cXDHHwwP=H2xJU=ye?SsBAdbHnsdlM;yFRLov z@h;E*@JNfKjC5KV;C1NqE#$?fgNJ6*G&jC5S_L{_nNNxH-;nd)v|Eqp4GzK4{aA}{_IZ2L%4UWRoe?Y0DQ z{Z;QF5Bo$*Wie-)j79KIotXt2DVj<=Z~Ejf%-2qY-HI$Yy*_Q0fo+|!lxwnRxKxZU zUZvK^RsFzF>qzS^FsNInXo>Ig;1PKT;zFIe6L>BGt@A#)5DfyGc>SoSGVt2UpG}ne zx;U>QQ|BKt0s8$b;z?f!eNPC>d$ng3#ro(cI(>vA4s~J~3 zb8m^FwB|I61X;HUG@;*VROmCh%}el^jSn{d1Ph}^Y$*)cx|;9zb(tMV(S%;(y&VYz z0hs|}7*k!N9wL?e^;oXDW7@_wrl!M-Rcdb%8)U;3ag1)+>8TA+w3uY2Dh2W~_J!mY zN(QacLh?(P%!wl#yef{+}BU7|fpC;z^Y{QH80J7Z_dykRu5)-!;(s%FX zc6$};PvhB{x~z^sD&&C=5y3yCneItGKkc>`)m`NaX@%s&JIH966+UvT{c2t)@*_1> zHS_~hAP3JrajU-6!?dy;6TSPEd{A{NgJ^qp{Ox0Jkf_pQkssZ$^vw-)e-8F=t?6R+ z$bSfh+?4m-GasSK5Fdk`Sa5qw5F|cW_e0jN zpN?NyT;sJPRv)-W_)KM=d-9XUevKdh5VRaNFy*-UAv@+qE0E<>&c9P^&X6UI+m4q4 zL}}m$l_)2H?S%G%@B1&rIw+pV@<<{;u3_s!U<8NVAE(3h%klo*fO^lq5>ul`;^3y> zBR!q3sdbN?^`5sMGnCXfXHU9Xju&+01XBW9Z&^Mo2^hBUJ+UyL*&Qo>V{GnFQqiSk zk*@(0yc6OY>oD$fw#j-7)*5>q{ArGmasL!F*x=?y*t?4ZwvNLo@ga|iOX2x>JwVs% z>SXynBbhI=+~eW(2E(Iq#>bum01~4z)!-|JmlMJ3@Fp5VMKR$|4U~$UwEMfU>yIeA z6FNwp)ym_@ol8$h+r#iY1%$am2`!^Or&g59FV;g9Z)L~*m4yJKQ)=D2K7Au?$x0l8 zVGn_6is37I63i3&-7BET{H65|DW+zG!Q&s21>GF*EervWF=eR)1=`mF0oO-h{VzG& zS#j7e9W54hQGx+={FMWak~q<@sLs+4EKuY?Yt=V<3@@)MAy3D3>#2zNzFW0N?P51S z{}|N|lo1nq`?HyMAbsa~(G5bNJjVR4#558bP^pC9jTaV|O54tXB0Y?D4Vt!jB>pHcP6jd6gs-h1}u0sS*vD&ds* zGd)y133Utep)H0{CS6CJk>>Z+>lx~^3+3&|WQYPMj8UN_21R0hH8&ay9`r#h0y?9y zaMm{jd5c+J)yv?to3RSze`7lmeJS;42+iMCtl_5zb5Xo*CQ+|a?Lo=}?ZJ#PtT#$% zFH!=-oIeZR;eElTR@k^rtSvOxAK?+WD8uWTW~(Rb=g*obcT5!y4tdPuOtCpYrX&79 z3a#~a0}4Ou12*j-sU~BEJL77g4CFIj@m_TcdxKREZf19gS%O^B;vtQUk1dJKYeq$| z{8p~!Pdl67IhJg7Cpis}A_|ENp~H+GCIJm&1#rt?Ilp}!lLj9()SyEF9hd4xXAtOM z#SeJ1;iJvhNvu##7lkp6GSQ(DWF!hor6IG$jAuBUksW;c8UK+}3EeK5OkaSGq$(>L zFDfc4D=P|6(fWEx(h;>AsPs2>eZs2MX%^4?@g-d6lWxmM+1bh}NSRy+%)#^(;>EgF ztFN4%T(p^_QM3}dq#kN+fK$Q~qpbdu>(4i(2?u;9bB0O3oU~b~c0Zx{&_G*ELmfx) z<(xLt{_yFZ<&EELQ?5sEBA{yl0 zONFKNK*_zbfNs%Z2_)%ymrtO@`7(>eqvdiPE#I=p$uLNN`L(L1?IcAVDF z*3I6S4({qY#-&JAfUKM*wP6(%P6&)&{o-i~XPwWg&nCwxof0Sp=DLZ`*n-g$OY3%2{t9)SUzLiGO+S^{P|L!cu?5QLBD9Hk=>8c3flC*0P*jWH!Ft0FGXCFVxVxeEi| zDEcwnPcUCU+}03XKMUSJ+yh1|44^X90+P8Dm0ixyd$*~n$F_Z;Pz;^%m9nNfkYU>E zm27`>PAjG%x_?M%=9adQZ@ytX#os#zD<@u-dFaPaD4aSsf|0Higph)+M;y)#MNd6T z3O$=hgNm1z2)PZOd*TGBStADzZg85{kd@z#Gh@a=_Kuvz=u-T!gzE`va&1w+{6nfY z#~*R-m*e;ygX)aBrcH?Unv}c$8!3Yw=|Fv?$Hm$0l*-5SnRSv~P_!-!nKW*a0H($2 ze;DapsQ(S4$bNoP(S7G>q`3#u&vW9HpRwibRQVXkW%Vw1z^2M*@XyB=rAd=%SaU~N zJ8qb2T&wP{P2YFE=P`bF743wxrJ;hkj#Bh4}+)UuCahgxM~-Zgohi!l#zDV~?R zvlsg;dwe$$uCGMc1zKv>Y_z9kZW^qDf;FX|VO3;rNlyYTE~z zY&f~=4m#EsY@{pE-Bu56zs*0Y@y8=U(T8n7#PLCbpnP2qd!mIUfKXMxC_%U+%VG&8Oi}#ct+S(}&7aYU)LQ8Ph)TwkZQ#hS{1zu1Z=HF%{L^_mc)GKJwfr9vt{R77LwU}5 zjjxIQ!JmZOmHw?2J9!A;N8AvXUK$wmgAv4O2cA zx1{Il<#YF9S=)uAPR^%r`qWKK`kK&wlt|xkG@?ewM7~UQa?+j7*60e50;yaI0Y|yK z$Ded*S~KYsa*R(Loi}2iu1Ee8&p0;CcTjPvGKib+Cw0}vh;e9Tc zsHxzJpPDZE0~JHnvBI{C`=-BB_&%&hIdk$wi8&GYuXar~tfO%u9ki9a%{DbQ6$`C> zJl%EVjZltw_7Bx)Zy^Atm@Us>{N2H``MS3J&0+ETQS3ZjMPb2|QY1(g{fU0{wjsXm z$x%XqQy_0a1cCKywZAzIc(gf-XR?eJS}n4R=Pur))6azH@nB|a)D;~IRD>jMYpfo+X9kQk%e9n?mVU*EJ}Mu%GiC3Ui#?G zZK$S31oBflzVY+NaJ6DJdl#<>>ge`xUUzC1WUaC+Bc0GstN;_OMaml;eHjruXr_zN z(+~3|+28w3yfD0%clgshZ`nm+S7o+}W93#%=uQx4^y+qHmwQB=$X&1+$c~CjQlN1U zure0hW!*m)3$3VfdyMI{aJ5%0yrBY%^XQ}}E(Cs<&>nJf>df-y!Y1@iFuXB5EuSY> z_9(5!X6w`VE? zEl$&2#;WYG5p$@m{(j6c%bSS^n}MIED2%e?C7!g&Smo~+#Qh!8_ z9HSj||FNzy9k9JHV4J9NSa#2W@F#w*&JZI!_D0f2#`>HDfqb`7~D}(=--Whacd2!u@~n|g@{8dJ$pto-E8McbselWXtRAr+^A;e zXRxX=;^%LZYU6a~(_B>j)p!5i7W}9Ji_(+p)*2B>Cf*dBla!~WJt>hb>Z1XZuD)Tl z1gokIuGBZftBN{xR~WvQJIRf9x6#y7%xhiKkMa4vP_7Dwe*H0$%+5Um8s|~5jU?hr zx|X>r(||6Q`Da;b!KDCyzFA&%8_MtzLv|ncpay!wux4-dG)wMt2dT@Otwk;zUd%^D zyY5M6-wPaX|YaVtroYeE=3eN+9a(VHXlB-loJG&MI!{@`9_-gj|L)~^-mwkrB{vx%GGf# zV4X*QUDn#oN9D=h2cw(^Qt=Rz?PWAgUmu-@uCX3KT2$%V@?8#`kyD#>bwvFmUdJ?= zMSHX)6&)$H;`g*TWnf5evA0%_*A|v2&v!dwM-z>V$ z$f&vRMs42L)bPUz_B=BfDu2AeW-=+WVJd;&4l-GM6SZ?}c1)GyPh+=a%v8_trNjJ4 zd2MtpY7TS#6U^Z^K(d~dVU(>I&?{G<>D^WB7>+ zYLdDCu38rU_k1N5^#pfqV^EuuBs)fCL2js8g#Aqbj$-maO>_{=mZZlr8Xs zEl2*3jL!z7bZ$x1R_x!BWKG_BPDapgI!FlT$Ql3HlxW~ffO^|09tRkH*HuZWY??VD3Q6uETso_%3^FiP zl>Y!8K&)!~S++2l4uv!=8@z8D$g3(max_w_DNY$3Tfrcx%9D{>M|V?KrKfTFfwh?> zldVq8On-1;r8es>&up2;XyUV(ncLrJ_V@8;*L`QFbS9Dd()u>Kl1T(mz>KQ$xf_@Q z+yIG|bAyfty>=}YHrAoGo*~&u;z@m3J42{o57eCFkMgZ*>UW)vi1d3@=$#kTZ0PCT zO|RUb(|E#0OCUv7#$KkLua(SL#$y_-J%c>``gDTj(?SZ%#X@sDw&!{W#)&$RT>h)* z>E$+nZVh>D8D?d7NaGF^$uq2SGDNv{3P>D^z0~aD(qUVRsbp(^R_BTrkRqnt?^I>sKpn$!x?nbN8kaLbJ8 zqf*(YMnZ(yIkR~yfu7*Z-be9kP?pC{)T8Koi7d5dg&}plwQp6xW`IhgFAs55ikTHb z3f%EjS}SzEn@^TWVY-22Y&Eo@WDx+;c4Yp}U8>5&D`Y9oF`Q-&mieUV$5}LmJ$uu( z*w5)}m+~0DTLEhua;{GeaH!@nc`Qa&iY;RDm8^jatJqT5Gq&-uMEJ()za4FKJNT?M zZk4#V?ksY5Bf7S@MutLm%^O9Pm2eo1tuD6ZGEX%+UE0R#_OG+W7^BgB3`kMQx`tu7$EhTi7d zRhr)E1d+JqSr`UVG3-=>{S9I#Ee`POheLutpTF=mgfPBlx?8CFm8*I|g3eIN^&dcC zu=(w2rKnzAoBCfJp0IVXWtTOoS5n)EISq0y{3yYuuv->IcN`*UrkW=Y9lU}kBlcuv zW>h@+AsatJFmP)aHANRIYSA*v$X#*>42o1SMk|Aj>*MQDer0;C)XfLc3mV^}x>k;$ z*A_J%6A6yRW)fFwqLtgW7m>)7Ras2iHP@{$0|r0*$2s4I-ZkE$)z?9S(&9pbMEBM%-4WmOsDCkCwgf?lF-oz*USR>)oJ&?=ZBbyr{QQDkDS=m-c)V6e&YoM7{z zesTQ$0iia!SEJ#Exnt#eNYAoFA4<5dP|oH|C?AifwKFn8Q8BBZh=R6G89y*Wd5W7j~YjcO%f8C+*RGu+)?0xg&-#iZuZ}B4YO^3N_8=KPl z7awwg*Bf4#3Q^k24QdqQiF-%AjA!b~G zk_qDkatJ;T2Oj!;{{Y2rih4E8<({#n!)147t0Tnvc~=O>YPS@(o|$0IM^PB z`LXkR)}zW>rHtur15RQxEXUi_c`YxMg%j6XymfKZ6`GUD-V-HBL@*YyJ)CPU5X(JF ztYol?HjW78mSiley_9E-x%b+`B)7IO0j>Mt$5H%G_<+|_cPzBMHqKRwONX&;TazM0 zz2V$+;2bbT-G*RzJ28>fy=})MIeSHF9S8j`$lAi5b((`poG7qiBU(A%A}!r}JKZz-1>94X|fWFVs` zVTvp9ay;cPAzfn1>CEP9PGzu}UYljB<#hgMDS^rvOe{XXFTtaQ-VveEI?AstX zVT_HuA0wPswEQt^W(UYWmWx^Zrdu_b%xF7$gCmp7-Mf*<+jeVKYCMb+?&Mx?urPdaTf49rB%^Tr}Rsob{SBi?rZ015a09wFeCB8NWQet$onE9Zkdcc{Vm{^_kJ8qZk9 zgtMh_n%Fd{YF$AZW>Z(7nF(@3PYuYT#7<_oK1Ne84nFMe!sQfn8;K;l>UbU5qO*$Q z3&!8HOHiktKn*XYhdIC)s~vAnv01boL2Y9B>D~nr?H$iVlY+Z|&nlQ8=OdHtU77Pm z);(L$4v^gHE{dgt$!ZF@%{hcsJpD^|G0d%)vea5BO)CmHvk;N(&pt6TGEqMsG5Xe| z`dz#;M*yF_Dxp$va8Zw>jB}MAhBH_`wbrkCd#0~-Z9St)%Tp4sc?-vhBvfL`q!WNn zFns$T6@fZ6=3~w0Rj_sSUQbW-k3;FJZD~-ml+${K?nfaqitniEdtmw7GIkXy3aerw)dF6>$X z9u8$(gOaO2rZkXk5p*tR#Yo_3ppxb$Ss;r6nMgZH&fUOzfNiV+BLs|RHEsId7Q9Oa zid3FW+jqw3l5EEQ+>D_lG457nMkFcE031PP{NZSPS5q^+C8MIciK(@g10j&cHjbUg zVlG9~#a1h~>`@nGmTayS7Q>k#8QEnUZxiE@-F#HChhDzv>u#UD)NiaFR6U~(*6f1L z%eleY04JaEuSRL#0J@U@0Hid|x475zts_Cy;)+$0?s=o_iJV6o$W{jd*~nfA9-+@P zRu|1pZA*%;n!t2FuGxH5oMJOI?oiU0t089*XznJqQ7R1QHq&GA_ryvEaw?_7W;U6= zv-p8M^|D@C^me5^tdXp$>+<+$+!C$_a4`%Ov4NA02a2}Tz6o4u7jjr?Ul96o#`YOn z-J_QNR4Y0N%S6Q6ZCL=8HXxh;HR~09jj+W_sVJyXN9cLccpG#ney>nP4a7_K8vgB_lZP`nPauD_!~I(48>9M;Fu{ znRSy$lLe30X10#M*XVPO6;+CuNM$<)>I5mEo)GQ{H zZdH@9>R+fUDP9kxfO4mUin{5~(Zi|wzSeu*nCiU;T(q^2#UtC^%HbqjdRTnEMnT-C z8(Db-*52SVHFYKj2dF5Ef|h#`i_KIAh=anOR+2B)7l@R=Iul?Zq9$SrCL(4%{B-+y zgz!T+1yW>J8OA_$3<37Y2OM#l;M$dp+FqlmX_o~}#+^L2@)abhcw}hUsUQ-&l;DsK zJb_Y$%lo2zw)<`O@p1k&W<9g{{Qm$-w$sLAZ`yx-=6)k@xBmVij&uJ25Bz92Bb-u7 zJ)?NvX^5DK_WOHJzwq|({*(tEKg09<>f3$(CU^MwiJyPJ&$M`c8K`;V&0BwXExywm zPtUi+%zgd7KHmN#`|5AN9xBl>@$VDw6Y;k5w*LUmfAius0zRHUtzJIgw%^NW{kQ)B zUmhV-V+Wo<1NYEbIIiq<HM3arq!y!aN3cSeKWIJ;o zuWyn5)O*bDGrrN|pdO{_)<##ogsD8{CGtJK?tg*tT;O~-=*Z;~CXp&W2+GdG0E}=q z@%zUo-#8WOFxZZl;;=f|mQa-Gdm3u=YkAeLMVtX?gyZf;VsievWj~dESL^2Acl6~D z$!F8QjdQ54^-Wd_cy);*o)s<>Dg+*|0|Ve=91P6b>aUR`unwx*oFUvvhL(z#qhHAke>`aJPj zUZ~n zRrJ$czf|gMZ62oU9-HT}+KMu|t4d(&;PF*8E&Oe^1Z1h{;HrcSz{jV7k>)ec#2Oi* zjW;IPZZ}B0?vGFA8TrbCK_#r|11CQStlC?fm}$mfjU9 zCqG26+xOzvVX{`k(h|_A&Np{A+@i2V|Me3c+0iS)iSy&Tb5{)1xI( zg3aVR3l$SpEJ3Yu91aJZ)ip)zjma*pZZE<5m5?p*^%erN@~yPZVIka11tmvqJD z;V_x3rb|XSS z+aQN!9paJ?S&R&NIaMWy#z@`zJfi&ZWJe?dLo=x=ppq1?2Od}wIOJrE9eQ@Z7AR%`5E^rW%68>bk(dymmNLAeLwqg!i$2&xpZC2qCi1lF552Cjpe zHKYVN`ENt`X{mJ>)IU*m4bvL}qDGsrh$VFnkgq6SVwh|O3X03U!CH;*v^oM5{fPa!NG!xjZwfigSGi0z#j@QXw0Z6i&)yXu`@7lK=hOU05a zJ+_w+N8WwzNIjm>Nfr1YI96TZtLEp&Uyt7wJ`PLqF6Qs0x_?o$=^LFPG|P0KR~K5$ z8sxG=Y1;@)a9u||z2&^|1(q)5t1?TnSj{)pj=S{VrQIP8r}>xGnp36vBTur8tF|-Q zi-n9vdgXfy#$hnEt01oGJwViV#aQ|kp7zR2ffBV5haz2PsGF&8^iPI&x7wAXp4>0n zhrcXokkjO;TX@`(+k>as?d~1N72hY9Ed$X`tKxE@BK>oz_a4Pc@9#V}w&yLhB&8Y5 zJF~-XjAt8LaRRiSwf!4D4fUp(EW!HKWUR%H{@2yCV?%N@|Qh-<$I0d6|>Wz*G8CLZvuO9x6p8|TD;BVBqm;~T5j+0?54X45#M$Tb{U{DV&$sZW>sSwI z7!iR#)CezbFngBM?eDkVJ~#dzA-m~P@t!z8@%-kwD_^1gXUBP~=*i=HhEvmgcTn{f zsMT3VVMg9(CuOYrSIL_(b z%-7Wz<=0V=LkrYUAvPEP0AoxtPwJm-hGr+lmanea=vw{N{-ZF1PPEeGxRuEJs}%WS zKN1cA^38=Dn)&7WesrF#)?GL7pQrQ-SH0IYjdtSB+7x0tlH6NBk%R02KBjiz5HmIu z8qvJxP&}`BJxNE`AQzIC*IQc)m#vI} zEibKgAB+7jV;zrHU0p|GeJT`pc&CltKUUc8qTjK=<&%1`UP>~I*QYvr;U~jxoYo@O z`d_83v>jU3DWX@j62PW8fL9N0vIr#30ahqkPbxt*mGE6%&uWc#s5B+ZSWPpk=(>eH zGe;t;xjb&H{*YZ=8kRpeic&aaw(GH}nIt^>w@2yvC&yFi?}q(7tn}`Y);3=ewVP{Q zO(sSW+uAeR%7gvl-a<*kf*50f>H~%Wg?X9}(nsQW_?g!q3Gccqr}R#)>6tA*SI2dG zs+cvHFQ09t%JI!NZIF~V)sqnot z&+82l(@af%hH37q=Bm|wKA2e7R$LeC6uyYao%9$dV-bWWc}bso3sCa?1a)kM(L-6qnn(^#Cw zBLPoLYRp=4+Rs<#eJ}==#gfA-MwbJ9i`QaT6xm%)YPTPQT@@yq*Or&|-9dePG_`*G za;zx}M?6y?Rw_d??ojB6t&O|fsM;D`YT;+lu4QW&V1h;w#_H}_rCpDNQZayx8Qrh| zV5&|~A)`(VfDdIB{5@5d6aM?<6aayWeVOSRNQW*GBJEY}+ zkJPp{S}`!<$V(vNTB&40&SYXiN_)36SV>ToBJJ#Wt;VQyEV)6OtwndAG6GY3GAT5{ zSD$X^wXmfZ>Ke-yj$zg8Eep1bQ(V}N(nY|M7AllYdyN&Prc8P5I|PJJ*0m}<)ze}< zUDP_$h*)i^jRmML0eZp3 zai;YflVYuyi!2_&wA%y=g`wW6TDGv}3RI&MXkRlIn=QDG!iN}fkF5+y_C-~!xfAOh z678$Cn|8pXvBb_!6sL;Gh?Lvo-=5ueAgrCK1ExNpf~rQF7~6X(X#@xB9PH%)EcP`h zCJNNXDs53ztjTh#2mr9T0+E%xBI>w0CN?PTFJg&~*negeuM9RV0szJIYN7WEm|RJz z;xR~&-rK8p#wu4*AV>}4$4i*~8m`VCotwcc8(rm+=OrY${6 z7sx_;jP5a&($W#)#efo(B?%iA;g+vdiicJA9xp4byvPRbOtH;wb=DJj%b@=N`x@EY z+J3JJQg zrD0Z+k%rNMHO!O}+zbz91hOJwN<`J9Cuk}?_3c~)zWmw9UCKipLg7?0hrJcbzdeR$ z=^$8`ghYW%0+l~X?`p#CTf5n5F7_V%>z37Isnmp%XsLy1@^sWvBn1oZvzvxedk`B` zrS}gRU6q>La>|{6U2JJ%q?Rsn1=D@au56VLVBo+?TO=TLt7u!NBD5<3EQdfNSrFWJ)B5ZMn03{q~-7J8!q~{{6p? zh{kfNNY52Jj580!(q?y^=imPTZ}lD~sVOr**`J-gx1YBD)9wBL0OR3GsGeVF+uPgt zN5}d90Mo*i=QWNp{$ovLvDnv2ENf+Jyoyx@*oMr3MsO9$4V&0h*;6m8U!(D}%=3Kjj;~W5O8?0iCGPbvG zc|E$XB1O~0F#SppD|xo^e?Aw7E{F>1)rI-EXBOowV*yhK%YGPjP6+jixB` z+i3|swz&(C2sJz815{)6UUOMyur@4ZwBDWazQuU6MGrd`5 z`OYrg%IdlS1S&TKOwTCsv`ILY+f{cfgesoqRBl*3&hB=kc`uN9J zs+3|;65#%>b=M5D%;%AtNTxZ*7#NMbY`R3qiv&)idoK<$7~~8g=NK5^fDUt<=D6=$ zA#SJE$ORcC!!B~9r~tSa7$@9hkEi3u?!WaXM(7VV+01^0xpMBb>SyHLJnJV$^?sSW z%x8sR^TU)I*OC?spdp%E0y3~TrWhp{- zURcgPW(Hsip(x>_lOsYa>cQ%!lh8dn>E4>Z)w=rQrC*2dLi1X407}!9v)a?9x?`&S zN9qQM4E~}D)RTISI}L@4EtfGWi4J8hAz5DP$Tc6=0^NJ|x0k;)6CoMfr}WcDB-r4Q z4b0Fp4oP$oCQVvewARaP%M(L&X9dl>wZw8HdAsTeyJ3#T+9Zi(SdK8tcQ+i@u+H@g zwr{81ETx&q#Z7P3Zzg_C`fsCgcPM0RWVNob=|7xm*zIYj@U&A}OC^4tY)RR$f;i&1 z8wW74lkuO1SZ_L(306dweN$2CJxmS7OIv)E%$F06FpC?rcMts8IAMyic<0izIV~%$8ElO?a%cuy2m~=PgwgZdt5M zu{%oZ-2zjLpl4|)Aswc8%HnrEJURy(KPpWS#9Abas&$(^ww6cA@qC9rXDG}`L z0w--HjTorT6VSe#{RfZ40nK?oSB6NnO--e9GuzK9s}c)7Wo*Bnz3+}WKXi-=)4x7; z(S!2IsWSH5>a?-FL+DOI^~Fq-)W_qx*`V&Sq z>VObKZ+1I)#xutvxmT?29<(1Z8naH0Q#GeGzev9k%~ztVD-(92vwB+3m|m6Jt(wEp z3gIlO%zis7VGA`BxhpFh{;BxWZ4>46NoAjO5!%>kb2&VewmoNcIx`G#f&i`Q!Bil4 z6~D;l=UdZ)ppt95^@Veg-!#1y+GJ1;7Gpk8q@)IAZ*nWAzDuQJnmJ2l(Dc1!D;VrF7z$3?Md#**@;4ZYT> zu1_1N0a__!;kJ5RN{a(HkF$;EPMJI!^Z#WZgf<+g*NK_$H5gt5$!PF^W;x$miQ z+>EYMDlj)!NBWJSbz(YmPV2P|?1noGRWdg8w_>VlQ>75XH+raCzUih~xgc!FfWbn< zcA4?z?~1o8s65(@yePI-(&k<{Z%)qkLBIjHI0J^{COqK+u6 z^mkiUeW&2g+5;j*OzZ-L+AD?_nF+u|c;y;xxSvvZC5${1XxgI481iCuwi1BjfZH1? z!zFxy;Xy3wa%d<5JGqK zdxHbF_)NZijY4J{oPhPKTZ9rAf#=P^sU-kD+x?!eQ z0QW>)hSuupWcMIc9z0-6g61aw08P7!Ynv;HNW)(ni*(<@ezDaq>`I<@1F{2>ImaYt zZf)7ST2wewCZ;rGvX)JwEf4B%){;8pY$VMIRaP5!u>%q2y>7AB+$iQWcAp{4>kNG_ zH+?YFT0)Y=8GJ5Ntp0EGjwerJas>EL;7==oenx6{+!1nOPG__mjz3F+3)pl?nMK95 z{+*yg1ZOQQw%U#5#mpN?1*8$e11sZdki>@FRAe*5dw(pYtfI5jXS_+KLa{Bd>4?Hy zh6+^M#WVWkk9iV<7CZ{*XOerCnb3&Q*<3xXD}SbaQ|k9lAEvSntCP8>sp0k3S0jqS zWO5V?()(2~xvD8?D7$7s`eq@+lyxAwlzJunHv)5YV-Ds~fg?jBz|GqyE0Uh2Jc15$ zT>k)CjM;1Y?YzJwPjejT`$>(~_RbmE)yjfVq%yLc43@{E?$==QSUl}429vvcICX#s8HIng*b*| z>uCti(ANquA3QW+KmdyMze2Qe=vI(-46+y@a8BHnF|Gi>9+mb7oE}N8F?r$F)Vgox z7b}y@>ig{J6M@q-d=ft>#n0i--iO7_iS9az$&VW23pe&qX@Z<~LaDoJ(|nPde?^ z{W+s_l^qx~ZE2dhUpv}2JJfAotTk7xWNI3qjT)y`;)Np~lWDX}>y)0!VXnhttb8`n zW3-MLwPrF zB;5u8l<$aSDc#8Q=f!m6$!*+jcT4$z)>tg9Jm#F&K5)FrYRxm9#>_hro50`Ilq*up zVlNEHRwOKk(Ag50_lfb$IvQ~2?&EBPT5Y4>pZc(sCK(l}z7zX><&OkZ(c&>@N37f}h%u8=(893h9#9&U6 z2+->i=Bmf$TlZo+6SSvpAF00a@#EXS3iNGTLFla$P1Y_9_g%f{jgZ#S$?Hf7^5p@^ z+%koV427*TTap>>W|kbNQ-;Pix$&PFAG{n9?OgiM_`FRY#CxvxvDC5j>}5Qm^fLBT zsZgs`m$EMEpHbC03-(gDJDC<%s)frLCSLeCp$vFIL346H9pvcP11Q*H)^)3X~#3p==xg;p@>L>PVclFLuI$x(&^(Ld%HSzjc zt~yJ^UDLP=m5%MHdXSRIWo$3gF^>Zwbd*Xro*T?Zj0achb{b}nJ8E`9_B(;uNWwES z$lT%Wv|rcn26>)&NkcPXU7xh8|^DayT7^BEFb;i zHSI_tdA4nlfm{{b3*>SE{^=xhSK5ZZqn)W9yJ->6C~mFP<7jQi5@V02)0|*duIpa1 z^jj;|ey!wi+RqcEbhe@BuC&m0vOkq&@>rcgsI^2sG?qPMrg8RRRPojd&89nXQkieG zqce|f%R-F}k6BL|iyIAahO@SiZ7T7VV&MSHd(;&G5xclCl^L!N)}4FN@^!7Yb;X4( zG@H8%yQm|Y<~xZmLnX8_8*s}i+OTO^n<}K0Rt{RXKgx!S)0K25OmH=mT=4aDUOzNz zObDYZl)Xy6LgklC2+PUWtu?15^&AezA2AII*56d>YySY5RgxP*?2+Tr!Ab=iPX$vu zvG++H{Ppn6){Pr}63kTGQ+dE`?g$&=3M9F`>dyaULsn#5r-S#0-Js9mL4 zP^`WXP;jwSqn4JYV&o76b_8T&`!nwW^+ZO|L!6?FAdFw$YtC6QSh!$u-e6axFh#grSU&b zw3Au*cd0U}-&*S{61I6UNd%6|f%lbKHDR9&bMIS))t-~+9=7NmNz&e@>GkSu4Xdiu zsh_|yw8y{izlvmFgZcjeU&f~LJaPX3 z56|S&QU&iDMC?#g^S1M}d(21e{5|*mxA5TSKHr{wzd5KM9C@r1-z?o0vE~B5ng?jr zpIoTvQ_*$xq~PBaKd4x8`Sv@L&P$&tiHdMSw$k3u22u3@1h~l# z2X7o7AK9lP8QMP_&m(tYw}xod*42wfO0M-JvEi|w+ipJ`c&t(9){1gn1)+zs;jLFY z)vlG`uGp0uOey7c6w|URn3$EeRM{A0NXSg@6Th_JdX)bFyV-)_Nthgval}$KGCrUY zkBZt9Vc^bDElj`s|a5n$t~nDvFFAE6P_{k6|&tP(fA<;fzYcpwB>3T+&(+B z6H=vB*E+~CNA_WBuUTqP%xw`9GaK!;o6wqVwc)uLl86 zIj*sHw@-rB!pwGU;6REL00N*2s-O-4A4?$dUozeX{NSA5}316#dIYMnT86@ zCo33+2?5MU-Y4Vu=X%dbvYSS`yb*{lte0{+00|iYp~v10o(DYR9Mm++m-&Q+{?a*o zf_xE@7$0nV`w_)__xa+|SbQ&7{{T9sn#sGL(pa3fRS+uXc~)Pwjw@}2$1p2P$Er-? zH!jhfN6f~N(vP;@`UmwylOa*a3S>;O5(&qvEx;Jv_}7pB07*S2*59l2?MB?JGwL>3 zo53#8%3@d9!6e42r1PDi@lY zskF@u{!l2_!Cb$OrK-rT%rIG6gexQyinvST5>o}-4ns1(Xgp8CiEJ%3E4VJ~%-8pU zOb*J~R#krL?@&S>X9Ngc#cS1w&DVStl1+Y01V{$70<85 zLf2O7^_$BDtKBl!diSS2GV1>TMRkAlqeCMFLj#=a9--?VoWobsxeRV!I**qqE>PSd8&*I|k(wqti@S7jq%3P>QD#@FZp8*r={9IseZwN^69yR` zT&OL$`hw>maB7{@o$KX?a|x}rSsB#sEgDItMo{7S36eI2^pXZW>tw8Dt>~{jC7I7# zMY~n{%C+Y&RHk(3*&MBa!@gHudy`E?PV(SaEGQ@$xl9OMn*UlzuIP%JZ87l zdLphjQDv%h$5Q!f(irt=rZ%}!$<&_*aRDL9A}4;^r*{7U zS>Nff+C1>+7kW*sLNY?a(b>CqWWgJuiKNVnkPjcaytk~)ae33)S5VD$X=!uT7JXTN zGhKyYEKc^YcA+dVw{j!}Z66J`Ly#-QTBWRLV6Wyh{c3rf;yM?naX1U|k)@|I8tqX!Bs-q-Rc&t!w9D9Yn@ptUhPeX{&jcF4Y!@lFWA?DF|FgANY@_ z&uw+2>P}|2O0YM&9`zkJx71xd6gD^a-99wf zn^v;h9D1#T+wRimxK;a?aKNS;h}#UUfWvn4U9{<5@zV~Q#~Ba)=lU)<&hT-zn#M%I z?lG}%^BYFr6CU0@Wns>rVS)buF%CR`(Iz;roIPXz0PlZQ^Pl}EfBV1XbA2n_OnYtf z`)~gMoxXfsl0Sd(t!|Ms9`PRD{_(f^+Bg3IuZWD)eZPGt=6+%#cK!Xo#y{`k2l>;V zNNX_Wp72KW`JmlPq6d%l;yv=Re2st#*#wZMhU~xfp?IK=6^+pu&DeXKkV* zeW%~s#^wug;~Dw`_>O-+&a6OC8*+U=pT9rhUSF&xwfSlDPE#WS9$osva!ig;5&rFU zWI&kjw{9nSnBG5*-Zh@8$kQdyf|7m!@I3zjpZL~8Nx{FhE6EO?Kkaz`0EfMCPb;SS zJ+AbXOkYgHOyYHiK|c?>{c-aVtFiiqlN78D7H731V%D8NwzJ- z3;+?+wnhmBw`T{;Y_CQ1Hja8-}w8_g+Ow@Q~Cb@BUhc~cc16{_uu&b`}m2)7thll=Skam z_V$mz%+AsA5x>OyNBDS!Kn=sj2j}^Ie|0PVUA`tpBk#0(&)@g>j}O9__waE^`Pw$y zXy4v`KHnd2=iyP#a0tL($Nec=?Hfkh#?iFT@A1F-`*;p`sQ3pSK&6cP&)@!C<9OR| zdHMeUAMf|@s9^c_{{RoKpU9<*k1xFZPrtVR06rh#RQdh_zEgi6S(W*i=#(56Z2B8* zdkR6#C7!y=n}(9*;!L$G5fXrbnM+wDz=+?*F#iC`uDtML{{Xr9{F=Q_?Bo1%{vxm^>U1(ymvY*0cuXvVBsCkp>dVrdvRc{wJxb9F~5rx2~6(<#Tk_ zmt^juvuRL>$}`h!7S11u!C| zF0U!Q-mm#`nEJr6uHT`PSA(UKUci|YTL!~pv?z%w-+7&s3{tw)_)Y2$EBb3u>mIpv zt4-@|MX0(*)GZZ%rM7g$Rlk7^Q-4lpE!odySCD;cHg6%+R(0o+hQurxZF>MFITyr! znd)w(y|K3Gti8lG(-~uF_I-@_ii(`~LKyXpaDe|2#p zE2^~8LE4Z+7#4Mo-9jUhB#^094GJQcd!9&Wy?#m^lhb4nQlMA3u12N3r@Ga|Z|0{J?crq`4lR zVjhmE;kE9MwbM&lYP*q@UZ|s}C=GQ}TFaX&`lq%Urzp(RVUW%$lkRuzclC4V`m)}j zHZnspP9N?x4H4eXa5z-S1#yNL&f$?^2IC+?cM>vA22VbCC)LNdkHWs-sVG8>%|rvaj+BX9;3+jo&at zUxxji%>Ef1iq|!hrpMOZA>Al7X)X0-hZx>qSghXUXYXv@Ey?!Xw>;vyzZGfRrm9ve zBK>YFlSPmw2(@7$2QUQ_Gcn3%e`)9OJNWhH10hCT>TqylzyBD z{UR%nh!1U`BuCrh;v;B}k8csdsGJaRd{a=Z$^apoZ6936!4}&@O#FL$@BBTz{7w!A z2;^i{J((bme}x!;I4&g;CF~r&VnR3E{iEsjkH60Q{{AH=AP=Pq5Y*9Nut*E4U*VE`VG|7BW=U%<|u8_Yb`I^H=E**F!+R zdu;Z_t+<;5{$St5kbe%~O#TO+E0%SnT4ddQ@O5+j3#Vn zmGZpvUo4(`wAN2K=I>MHwR&HDb-H`gdc82CWxG?SqFITS-m#5`Dpr_guN_KurU?6% zN@0r@peM!m==_>V_-ShTdIr3n>ge7DDy%LQ@SVfB?!~ujx4Rft^yF@?v3QROfHD&i zk8+%h5~I{UzD`a#A6m!WQFNY52j@S_#-{169rUxbb*rl8Y|>@QD!+j6kQ&k#4`JkBKQ0Hznge~8^*b?|SdH7m=W zt5&;oid{Zvp^jS=&B;r!?QY7@#DBc91XB~_jsE~KmXNCq#;Kz>sJv4juU!XCWJ_F0 z9oaZy;F}TLiCP)WWD-yz9Q(MgxlFjux+|@R*dNQgCWsuBaXPcLFHBGoveKzjmJDYifi2-mT-l28TD9vH+mR?plv}$* zY7L@0U6`!9P}S982@09H56}iD^vs`yDad0UPDL1+CE?6$Tk+ov1z2&-z zL%4@&U?VSu?r^0xix6wOSZpGd+x!t^z~;Njj{OT5*3q+ELLyu{fkx_F7U3d0M5#dl zOjlG*>xpe9sa$JOW?+;G(JA1BI3O+8hF)m6rH?o5Y2CS0 zFxIml3Qg zV_jgYCWjfQNRA#Mvt%TEDNd=D>&#iLVz4acNT<; zn1~tV{{U4YtuKH!vjg-8`8u5c01Q{&sv~5Vw$t2Z@gD;`=3*v4mfkC`2&3>7O}_Jc za%pAv-}asM`+pB_5vWsf@xR(XXpR2gdHZ{KQkNTjqubm4f3M%dl@X}3GpBHub1;Ci zRD~>r8(|Q9>?uC&n4TL!%*VIB-Y8tp^6;4e-O7x9@(23XS47i)Tk4jYcXzY%EJp3S zv4t(2xf$__(LTHR&FFVQtm&cZcTX}l8LUH7W(B%;OkdTbkH+aG(aCCUL#P#vK^{LD zO&J>ReVJJb$D1Zb1I7(+?ONq6B#J1B+WXvz1Qtq|~_4t2k>* z^r_PQIib}orna!&#`W}h=v<~c$}*)8HcH@E2$mNg6&m6wR^~^wiZ#>L@#ZAp!ffVP zE)mD<%4CrOCVtgiGLj8JG`(I+i)(25%IM8}Ed*dM_Oaf=)4Bv;D_9JMZmy-%H?*cq@Y>#^a#~|q)5hAWKbqk(lxsQF?ZHoY zYm^q#1HF5G!o?K7D;!XF8YTIt<8{Q=&?+|MW%=^! zYas*-L2}VLtb-^@;qk_3Uh3C&vt31VXEO++xRZF=>oBtmCB$e$l4OM#N+WQjsUcc7s zbdZ&s5M1Mj*Wxx-5#MSt>9JpIy=}3_yDF^mi40cDCn_YEME$7A3fRX4fm7-lmF0z- zUp1t+HjWwQXvXc4MX*V6DzmFRaBov7MUl~cSmL)sPh_fDRg_nzyn8FUdDmRV(;wO8 zGxA3gJ5TMre*V^1w$eqhnnNnT89vA9{eQ-;qLi^^U=fES9tisTf8md6#hSlVX#56U zxb{j8mne1Y0ENU5uDuW8& zcwu~jk04ho>dvI;{TESdRq5+(QgsF8Vu%QLJg?k2Y3 zX?HzUG;-XuAa@nJN^T@Dz_LlXmNPWDNVi}U?mX5Eb&lIRy<1KAdkyp!Nh3&Y2DONIU#EO6_an%;f!cAn$0^Gg(jVq1HMwgz-*(lGF& z;r#?wS?CvNyf58MDPUrfDFI1iBh$EJgI4kU zLbCmJHMXtLvFX~CoUutO$k9s1DN$sG_6egBCB#!8`zZrwF|xQuOjhn{T}g<+>0FMX zx=6W-9DK2ABMDYYEviPfP~X_0lLuV|@CA9nQ|^+7`evIrR3h zc=a5E$AC?D88sU?tRGWp)Y*vpfyW`0hEpF>`2Y{8!S}9nb#u-C06@AcjMG`3rF4rE zTCQU=cMYe%B-7bFS(5zHmLk?-*wCYi!Zp=oF!k-U+%UL>0ml3wylC2fx1wC!rL$=E zwocJX;hB^uiZd9Lvjp^@W8k>+Dfkw_$l#ub8};AW?A}n-*gd4cfnQ#Ep7#~NQ5EFM=P$++S=QbjMR{IOj9km zPlxRho=bQ(Fpf8lOX!`USrE6ROksE#dD$`*m<9Ei^?CX7i)#U>^=WkL0r_qVUFg1^ zXGX@3$d*ub$5JcQ$!VNxXciET+blxsotOPU45bp&lSu7oI@oB|l1ZstOAJ9- zaq}=Sc~^0dhF1na#{+k(JC16I>d=jN)BHSmX0ftM#v7n!Hbq%PidESP#sfzrLA!){ zQ5+BqK40+$@?V9@^*7h_+W@C%+cRTT=7&OLX11xhfYr40Evp)5Dmr)n0JrGtV{dI<`S^ z9h>|=mT2U+m$Kc+dr~AwlTU0jAndxtR$&do!mkJ}pzXzG-kf=x=vP#9m2G9y-j`{7 zww}npGYxsub^^_O&Mwi=&QQ%`au|fVmSI;DAz^P^J`NzKmg7Dqmgi2fXvCT=xJlJy zM}^i%-5mN|T^9#&&QJG&2hU$3-RxR%c6qE-vr9Hfz4s>LKMst8lL9ZYPDtrJGf zj*J-?gIn2?%;M>3JUyFu%I!`@o-%4-p@L}`Dv7Wv21x$^!b0RAP6yv%k8S)}d{F9r z52f@5eQQlkbYDub#b)J4eUt4A`h#FZqj_u-lB@e!uKm+-Nqui+HMjeWW(b?oawAtk zwlUxkG8BFTHK;v)^E2h6p*3{Apz9`&#|v&VKJ7MDbY=Z>o5s+>3Z4v|{BiCAE-9Eyn3^M(wKN9_BNbM3IC=*Kk5Yk~3Jj^*6Vk z(%R<9;#-nZCn`HeLX9rKc`EN3J1AvQAVY#k0*CX(fXnMIENjPUEjFx;=WDGoZ5T;v z2?UC7$`z7%SYSb_clU^%d$)DOmfkeJxV(o=w9_uGTQ>3CAbv71@XVkbbAng^eU3B5 zVS3j?)cT{OHJvXsGR1MIFNb~$V>037@I$2hJhugkYsEm#gcKe!SLlL?HL zFjHBKFfvCm%FlGb`->8YDV`!T1M)gZ>OC!^?n9^<0)hgV*sd}O;a7$npW4VDy1cyq z00q7xG`Mb-U9w=7TZjo5&)&?1h#z#3kG+gw6J93Po4<%VI(sjqwGABg2${@O{ITX$ zYN)F#)H1DbC9fDzD30+kzfG`Qa;Pv&n`7KNSpNW=1%m>4#!Ym4%72;dIi_*7GzPcM z7M#dvfHi47SCLYyVDgxPKhefyZ0*{h`d!u~ea)2QkV6eer|=07;x z+p~o)hB(700I1;SAPfUuk@!XNUq*{g{{Uk8p6BG3O5)n;Oe`i6cPtVx{>|Ye?Pfbl zU^8WT-+e>YjW?t*x|37tO=E$>VRcpPW#(mJ>ygRTUY5knMiq6*tiJ{?88WUchD3;j z?LPUgq}MN^(=>ZtVUt!_-bGYx@2B+9d#h?X#1Lu7Ani=j zsYhLm!?p%Y%ze8-@-cz$T;tO{WNIGbF{m=jz>T66U%17mjIOnutSnF;PBr}5`0!ZZA!))ma#Vr z^TBrrG6akYmQbO#f>;kvr~~z{chc^n=`OJJ^GEedLEN#B(fZ>Iok6CrTF2PN+P8|Z z>j_PU(6)+YD8(2sQovxT@Wf*nJk}}8`L^==r~28N^7*McgO1X@OTg*sI->nOP?FQw z2*l*8RJ%%R>dd*Og}bL({c;-M>1@ohIPSCBOJFY+>#-uqC5r@+Gl>CUxFHD3k5I{6 z;~Fv;yCqTQTEHVCj(ZgLF3QXf1g1d3M4~1pJSK)~cG)~l6BSkgfds1z zs{nn7#Es}fE=L4pdxPY8tuy>Y6#oGJ8Zso4vX-k}=trg1 zBa>3f*$Z|7oMeU|1k)S*$G^V*HGZUWu-LMXP`FaRK*BjOk-^4(pM`V(0Eg+_AzNYc zBf zY_+{cJtL@Xkx`O%5v;^00$5$X&+Rdnh_H2R;1$DGb?U#E-6Ms;HrB4yx_23kK#R)> zhqkPiTPFA!WppZ?dkkfwX45P76vXUCaS;U+wLYNL`iMhhExT~B++vMfmStVTxa>d* zJoyTz1m}w1wH~PHE|#{qztnZu6vVtL%NxqT_z^^m%*@^wk8I=&n&8h_wbo~>dgoE= zT#h!z2)oLujH_X77SPi4YszR)yJK=o_L5tqrbH#TN&-d-C&oibwHkG^t2p_Im^9fV z4JV8c+=7D&qala{^IjSFk*?~UdDK^W#M*4Oaae#YRHUJywE%3~$_lq|j^jTGy~tC7 zE6?eknspykQ5?RU(Rtk7D54OIjT*A57QuBG7c3~zGp;dvDnOZtgmA2+e@gL)#@W3bzY^0HjMU(SpJmB zlyZ^f^zGv<(^}StajhcTUB+g*hES?E0>`%g1{7rD$sPr7{SolXuk@a&>D&EJr|vDR zG~3AJmPRn_NY@~e%PY1QBMXDc#yJMN3)h~ud0)^v*QfnG>y_;=ja9GpUM#wOh15!J zM6!CH6OzW(!)B_WX}MTeRnFuwsi}~#NCn)srKR2C+Bf(YzdUfqAQvl^MJyGG0f(a` z63hbt2Q7jHdba-nREteg(?KMV$Tmpv#_}qo5DA-NkdcB$=4`5tP5>snPegjN;4418rgeI5_7u6RiuYyL%gm<`YD%*)pVxr4Xoo%#6ES zCRZRF;EXQOn#Wy5$@y!_^`lbhY==cUhpGCDYg;!O+n5bU7_iUkhZ@LRj5cPgz_g?l z!Y8-FLLg=&XKyp>TAxGQb%p+xdK%+Y*Co7k?niVZGR_-2)EN{ZEImAeF<#;6J0FY| zKMu5wX4m2lm80~O8gP|ky0z~cYeA4i*tU?B0G;R6kWO=&l+xeOJw-Vy+FPK0Wy$)z zxpK@~r`3Bjt!LY&Z+=0Nc3$%}n##kgWF~2@T+U2p>PK{ZWHj~C@8fA~ejRFky+^qu zjr!AIm$v2>GBLOX-+p6Ne6tWjh!Xr%Vu(F}J+N@m|@BvM%$8IxM zXx(S??bQwON2C`}xHlF?^|aXgkMh>*EyN~IlIAtGWo9SP(Xz%Fw*{W}05f1inR2?Og;_o|P1{{H}ZnfhWQ z{jidQ(;ZXko3J)VF z9DV7sBz4B6iFgLma)?<=ASeF-qV4arf2fqdXm>d*jpPsgU-Ye*^lqi@kc=PiH~MFq zU968vV@q`zdXT9jMPsynRlP@@Q7er&tr&Q`hv&tdBPj{Q&KNQtub0y``SSLk6z0A< zoNo=m4-nvnz#gtJPZ$UIeREb9+8(2zi!1k07k!(w(UQzsEHNQ)NybJn4o?G`*HF_R zhaQB@=Q`UOd&@4E&*)7vpc|<=l+0G1r;*b7PpX82dX-+ktVI@r}f*HsOvp5(oec zkOfh?)vb-pD|0p{z1mQSTqK4_QjCF_q& z`iY0oIK^hQwo6Frsu_AZQxN*suBRoQwxfW@Q!048lVOaQ9^Dq6`vlL5lEFMNtg@yf za#S#7Do6o{%9gz*qBCJd^5yHIN(bf7Qq-hcMy0W5-6P`=2Of5 zz1G$GZKHb0)167wJ9$pEnfH~^E3WZ)CY}9sZTIn4-r%|i3 z+K&r{()K3>3Dh|(f+}Jg{V2JP#_6$L*AxL2`}u5ADs4Nxxdf~?CJapb9J!Bg+5$#B z^0~!pmyTg2p6r-%OlX0Mc?cDsO}O>d~hoIwo7h&nQ0Fvj4lKNVrQNF#y> zAc8m`)MA!70~pT;%#5TERgsFiuwWTkNFag%7|*z`O|(RR4deFz0AD}#@ek=$_yZa9 zRqem=pLzG++vDfND5sy_{#9@JCTH4z!e)2)+x>e-g+o4^pC+ib`JcRee*W=rcvFsf@-a$@oul`kncLfckNW(0kCROLMm+w1 z@TVd;#7F-COFP8Rx4!=Xx7*r0LWjT~i2VCi4E<5O@Ai*~{_Xz&pNF+dan9Zc=l=j2 z`Az(NY)bse^kJQ_WDh{DoK}`1wVMl`p=CwtuWan8sM};23ZR&9xPgu$d*aAHHFfmN zfA=c&57@*%?SF`_3yJm!QV>kXR%JQuy~u&LcC<_jWJraR!dbYC{U&F~h9tO;jxc9E%T827+l2!{I^1{DyX?2N_3We{q5t5ZeWQ3)%*$OW7>|3Hp znBj1eYu!TbR2IdlmDnMXm<}QamB1`o)hK3jI%%p*wOED}l+Al14>O0%RJRq^ZIL!2 zRX<0$ltD-=H<0k93OMx*SVNO`tiv4;9mI{4Hp~rEk4iVz78<5SWwgm1)^>?Oks`F&fiNKcsqxN3$NS7+SkeX^l#oxGhPMuAfy$Bao*t z=ouARNSFinfeVv^iszpY z{{TlHhCifDmY=2kN`~@lew>m^n^9?Y){GtF*(rGyA8^@>DH!vPYoNY=HQ(W<b+lpMzzaZ=`ZwiP|@jjjkSK&9CoeLF4Q%u&DKqfb?2sqGi|a)Jex8E zX$EtSmiV*rL#gJyYgzQ@t#sx@X1IVac4t+QVL*}w-PX$tjgly;YlaBvej+kj5)Tt(=P1iv(=Nhw)YCiZRA-lV@LAZoq9W6XvOry z%x0U%W_12gE99_wnSF)eGY(27C~B^s>lzFKqjZqMnOqvIsw^_C+Qb~yK490r74^qQ zYm)UR!(nl(XnTvqw!^u5WTcYTmsY&Iv8FaGh>|Rb7kF10KC}2?`c-IF`gWVr-x~EB zZj0*niBw-s*y;U!6abozm#LBRqviowWV5(e|%vq`HmDWF(TbZL%mq z1290NYJSmT@-R~SSBLx;_>a_|6+S)nH&S&biTZ<1w&~*zg{Qd_U1|2mRE%Ceq|t_k z+fvjD!6eWL8@CK_+h=?dWFI#kYkHN@Zn5j^-%)iov!T)5JQJAG_%wNc&+5$$g3}nv z6o)6NF6#X+rtDeBWv3+7vKZ$09*7!YLs`bZJwI;dK z`NGon`balA8>qTfhs@)(1-$hdwR9$;)EZA4{XNDNtaUV%UzL5;IR0W3smD0j#%e3XDm5U%zX|WLT z88|5@8p2Cs8pv(03G=tG1AR{gvFDFJ(y~&)Ix_^gw{`X*{Qm#~z>nNi8t{H#eClgm zInxXd0lIIhK41L9Yi4}#8cP+HMVuXw$Ky<{DwVg< zUR^Ni%RccY%<39kcU_miTRz$>j4q;NWef%bsA3f7AU5r!k35Q@C(Sdxt+YvfdKYrX z6v_(>jI!=3#13*e1cCz`4C^39oz;wqeQk_@otJ>Q_W3*Oj z)QBl!(U8n)s@cj`^&NnOY0B3CaZujtm+FG7jPev5k2LBn7fk92ZuE^+73{SOUd-7c zNw&}gi=U(aS(~p?4gx$p|54rPpiXKR3RXa&4 z0LymeWjGnmh5abL8}%Kvu94R_*8czvy3QpX{VQ9ZJ4N0y47zRntd@F>oP}ASp4xU} z9^T|&-_Jd#k$B869~ zQB+xAiWL$z^7O~X&y1J0mb#{&b*E_%xM!N~*|gn044fHUI-}0&r0rA_NsmhH1e(qD zcj+zgYonkx`gc^?bx%;;4YvADg*;lWrFSRnMzPvF$!>)5^W8}eyla{`fxCa3D|--$-v!TKRzY=8~C5` z6Rx_W;wMmESZZ3u+?EhQXK6jhW*t7@+sCJA_AfLMmRoak44Q@Az=OLb#FJaX=%ltL zx!2z!9X<1-r~HNWbEsZua{XzutF-4#b$?VkZKL##1IwO^>b|O8J~4eeRm_bmd7G8h ze+S1N8kR(z8EyRlxvOJjH0|hF00zKPU z#;m(bdk3d~@_KwSO)kuJUs7t?$5C8BlF9NjMPp~`K;bRoHgmcuUB*8A(#s-kX78GRja91pg>|^fzLvAt ztF8{<&vPA0&ivw<@)8QS!AO_t? zEr=HslE8pXg+0ac*cl2_xb#PK>XR=_tW)U1!&MZjN?yURs%jg?!a%NO2%2J05=0a9 zl7&iCrNMPbMG$h`3@X)7HRNVgGG$VWhPU;L6AXbMH8Ei^`n$Aco)oJh=_a}>*qiHB zrZe){C0c6g(SzkOFWptq2O#Mv_aN||-ms!3M0k+IluDFHQOr0+%BQN0 zO&Ds3TSP>b$b$kAn2s?cF)p-j;TWB=9qP zIIN`61I8ii`UOe?G90gVT<726K>abG5K4Ltj0l)kKD@0%yQW2v3^j`7?_@w9g(%6I zZLa6nuIg?=#FnJAa^9Lk!qs@@jMwhTCR)=sOCUg0qgQufFj9rA_bta<9cpB(6?&?$ zx~c=J$RK1fZLnFpH7dd(Y_*~KC$fKAMLmJhHk z9qi1Y`GfxeOvHh0U_hxwFpbuin4~-_$SU1LHM}YtB#xqOB7@Gz-pB|kq+{N9ZSC!h z_Yx~5DLEVMw_y%$N-S2cM=Xc;{{Ss&z$4TYrSe^xn^`vijmY|JFeHEgd8tiAJ-6%; zSz~2YjY(uh&KCg@DsMTr&C$GfYeYHgU<&r*w3vdFZY`^?b|xzmaW7hsQ9^sluVxos z7W7^3D6UhPmHx6sT`Ui-7A3T)UV^2C&5lo|c5!d@HRzh^DTiSd>-MZtQrM}QiD_Pd ziEJ{`Ug0hGj&P-K$Kj)dv#k8{`En|BW~(tBL8q#6XbUv7-ETpNws&I3cP^x?P@t@+ zUOp7NPhs*%8=S&Bs~`DgwoU+J>|4UI`=gWe;;c14`32tq`_J*8<@4c6@cm8S`VX9*Qac41-XeE_jD=r~qucq%^YLYrGLa&`QxcT~mpEBg@a4jNW#1t~1qK z)LKy(y#T#UpFuZm{7W(>hFBE}T zxus&iDJhvdyW(WC>-fuN?_4+6k!<8hEG0{8mB8Uze2bWsa%5OCpyQhjI^OMdu8Y3; zBNdjD1&xftL@OjF@Jn+Gox}Spc0Vs8wghb{$pZjozr*)CQ&?v;_My`1%wELQ=+BeB zl%1TG7blKnYtEkZ!z+l^+F?t|(@Sh#$7L*`Hh94#TVgh3%=pYm>390VdpC}FH7!Y} zg_VPEfZ1BcAA{+`f}JST|j*+b6lw6C({ZT7~aisGp`3b6ttLAJ4ncn(;HTo zAcU>FfH`4-Cx$1CDLKa8JvadUN%r6!Lv?Sd>bLjyaD22AzTp_~Kqu`me(Sz>I0tXw z4r`G9Z@Q(6=~tR=j%uw5PgGIsfn)k*qwMLNj+e=2dVS_wqx#pX!-~&z`jw1g?2bQO z=?se-sFiZSpeZQhb`Ud=f>Ib!sMUZOEZEJgK`BpI)XM1f{)y;9Fa12c{sNO{Z*+5?u+Qa4^8xG;HmWf!yP1BQ>>1HEVggr%m|= zo=r#f{P9MCyNDXz+}m70c9n5-ui8+ga*9q@AZDL7-CxnYPU{v!GoUhAEkTO&C(~~y zIF5#7D(S64xatkgo_Wm6X1alm#4i3I4z>JlF1cNJUlc4W2Y+c267hGWBFEGaSW4(F zA6M!9MMmIN^!Ti=8cTrS?J>ky2>?6Seld|&+JnzFgqKlR-1df-)HV&6Bv*#^N3-q2 zGLiO8Fj8Y@zB?8<63FBW^+GkF)B67a$_(_!M`#R%3$CTq-Fp83FxV@xpzB_#kFc@GCavn3M~l}h ziu53({%P@MZtY;#^<6$_Ma}N2{Wxt<0CU;Byc1j~Z%6x~ktbkEkOt$x;;a@Lt=~@Q zce-S)YMLzlM)xwfY+Ltqh`UQPk@})boswILfGfGS0hYyT_f&PxHWTM3qn#MW>Wu!3 z)Lk>{XHd1zN;N(P`t@g*j;U!*rD-tMH+1%1DzZ_bb;@hq%Tl9R>}<|DURC>3BRcF? z@EZ+M7^O4l+Ew10e;vV%(tAaHawfdfZj|Iok%1-rE0+bxBt2ca+pmc{;Lg}UW$%<;FYclbiubVyaO3`B2QK?6aK zf4da7+QrIb@X%apGBh&&2_i1^&JN5TLCt9Tq*oE@+E$-&3qyGZk)qnk8CDM*@L9ih z21Ce_Ga`u(xg-&q=>GsydU2_h)7my?P~~z;z|AYR^wj!j$523n0>kM_>-U`1!^fX= znE(QEu^p#>Ec{ZK>T=DiTE;$7-eOsHl5oIB-)tP6q#TiqD`(i(aJ=bFMLIUh!EdIT z=S@|S;SM%3g3QR7T;?@w0L6z5z&zI?Jl#>$IItt~K6=>FaW9()}&dJr~DlxrL~UGiS{Hp22hvs2SYDDxkv6(xIgtX#QE;y22gT z94BJZbqKF+ql)hq@lUE9EXHKOj?QSCQUNgBhjc^)<0>-Bd{)dat>@BhFQ(fi?aigu zr@c^aYn>u;(dQ!r0&{@GpBs4@qc!${%P*+Fpzb8rg(|2-}F4Y9h=4r|{vK1={kl0O5<%#SJZ)v5-&p%FT zQQbootd{*b2YK2&CCneJ+GM~Zw$YM?K*KmCa2lXskiSw}%cf0p^Rw!g7O^WZH@2^! z+eU^mIFVi1t<$#NnSz{xqz;_<5q>qlENVXpF&ZQ`wURXI&-ZsPiz ze-C?%V+$&iT*4G9LZZBaVqSf!x{60G|LYh0O7Baz0h>!%b z<9`n#ivHuMH2aHXypCwJmuP$6EhLuE>N0%8K`!OnCBFFQX3q+_;FUGFYH`i_y29cY zniB={4(t&Lnh7Pbm2KsC%CIn*hQ{1Bwn z73J;hI>oonwaZB|+Z}S^Zrc!cZ)b%j?zSX3Y;ZxWZi{DiHm#;jJ56lGG+A0O1aZ5h z3Kh`;hC&(L2o1DjZUF|jqscm=zmuOVh+^2LheP^&EnM>^cS{J4=J4Tymv>0FjJ1yO+A^%z#{A4!t<3QO+j0ZyPYK{Mdz;4&0Y-bD7#EH}UPyhB_Xn z)14cl>3X%xT;3`fHn;%WEWV|+Qn=i)gUN4DV#+-r0jBFx#c_2s&<(1jFa1X#{qix8 zM<5VzN03c&r={IW==WCt01ypvjKt({I(E-MDs>}E=#2|Y4{C;Ms9jmr$ifd_`qOw* zjEb$TPX~g+Y3kOR?^SS@b>sSdsGajjG0knM-&;tmr46E>Wd<8`x$e&8avS~T^I!l1 z0>oJI{A+rY@-CyNY4^7G0hFb}O3+GRk^2uFyh7k1h%_*nTWd0(T7}JYzo@yodMBqX z)Ow3uTf<;744gGwL$Uf{n8su-ji^Ot-OHnp1ARM)i=3E9%&I0vBgVPbI+Pk_i*lDX zV)?ICpo%`(a?bIwT;Sj;1uRre$;BnLs*B5=Na>dF5xz&3IO86yWS3lekEd?# zPmdLWx;fV#k!bv#=jshrrS1B<3sq|sGI)z_qdm!EBoKC>q+F=tMYnP#TqpL9OVGDV z)6-p@TS}dzxlpLd13MD!6X1i4M~62Ju5cB2UO|pw*>zHy}$_!aJ=pW z@(%?4ed`A1yvX#KJzwf}vc+q5X!?xOXu)Z!Dbraj=9$&`>y68lS=AM=NSiqf7B0SB zj2c2{sdC;xX2CHO_MOK-P_T7H;fz_PuQN5hv#G+x*SvOuu=|L<@ohYmpZrDBE%w43y zI4#bK&u-=(sa?gk3en@ufOr@e~`-m0B;xpJ|* zjSK?u*Sa5;p)&=my*=!Q^o%sM2u3I2;IM1NO zM4;k6CyWm*{jw43aY`HPNMHfukWYdJ27ST($2HrR^nuoth5rC$ZCQOsKQ|~U22VLp zz~l~mV?Nx*>Iapco%yiq7n(0HI-e!1G@hYuipq6U@{K!_!k!gbdd||ATGZzwlE52} z3kZ7whC4DyOLN$Gc*c(GRvN|7pL<6vZWN(V1vrpbZsJgq}x3143?=9qO%YbM#ZqiF7Mrj&s};!)w{g{=`IJO+IIy}@{eX_KLnk~hKVaYp5_3g$^D?)tN`9tZ) znqIB-6Ri5zE2{B2izVetK=o}{-7|X`IOXN4QNmzp;i@k!k8zGH((xubNSh2;%uEdN zoqqWxw0@zvh^jTLmXZK)*=vCkIAf4NP!7y5KK?OT2l$P7bsnCwY0ycxre)PZ%%d`b zSz-evOl{o55<~q6B$~f)o4zIn{%Pdwp$ zN;q>|m^ULU5(xUh0Hh%11~QX%2YA}XU}-xL#}?px_SA(S9&&xh@f=qv(|$Z^*4D0P z>B}zbzi@=Pl|b$h>D#hH!r+WEbH|=4Q?8zNFLlqRuFy=-IL#!>xtwM|@^PNGnC4ii zuw_9tnU1gBSrdbi@&fuI200W&;&n^Zy%0i(W7y&HKqTZ9#xO|a`N!|9KU92Wzv`}> zyV7RR;M3Oake5l`QUq_jfEqMkSQr^3=Zs{G=#BpXPmr&5zNfYn+}0>=S1!uMt0WN@ z6B2@h0(1#LNp}VVh#tjc5lLo8Q@41=JPdQ=o;-1%_2P5Na>hj}tA@!QGvmjMwi^Tk z>^P^ewMxEQ8DP&Jrib%vV}Crnl6?x$yVcs9mEjuhYbn=gEzU?+WbjM?Do!R!Hu1*< zw)Y7yZMP`FI6>~YBX=1-aB#zn@+$Jk$Y+UU+h&`UyX?F6kiZ!V<9h@EyC?_KoG$EV ztC?RmT_;uTX-uwSby6A8MNrOX(2YoiYW|>NvD&W%h0++&)HqPNsI;@=RU;vC#!_l6 zHgT}}^B}6J@shln(pzm|3dR=VBq$qUR*~WnIdTB>#z1tC;mc=&O?rYaj2aAAou#<_ zX&t_r@y~Fv-NtS%;xhJa?b2{$c%~DRIJqktU^3$hD>-y?uRQ}VF4)aJ48toly*W7M zV%j+Rjz&;x#bl9Lv}5Q3y@hQBAEyypb@G#q^efFvMX~A2{TAZIu60S4V62fD7I__s zigmbAz!_h>LoU*wc+YF-zOK==JtIcFw7-JJ-WVZQw~|=lcnU@qNM09ZWg&xLg(}KJ zs}M=1dK;^>?agZ#EOxxpbTuw*RqEhQr5!)3EVY%zrE0Rf*$(DCoJ5Pdu$Vp*6YUYc zH{o@~wU(uKXLV%Hs9vgeql$7E0A@QaZWrZ;ZVBLK ze^BSPOBTU67#Rlzv+b$>0EtGW(RfWk)4eT}&tS)`7IkMtvey-NOeYte>vu}={$VsX zt?4F&)R6Q1i!&PDFqyj*s;$R0aE8XnsghCLAuzV5V9JVK8SUO!)cvVk$Rd?DedLBf z%)>qoILI}F)ZSR^uB}|li@0t?6Ko9+bs|$FR~rUXxeIy^rAb}GEH<1U2=9!2IYGdgi@;%DJs&p z6O!>hlaZ(0t|NC_T`f{%B*!u#yCH`Fi8ka;2_;zL-4h&u4^rqo7ObnR%>P(eRMqRX7+V?jYkBUOd+PYSm?RoV#Hb;o^?mCngcYQ%~(>9jvaiK$RX${9>O_w&aTu(L3 zH*o=mJ*Q-MIRGvR&lTnE4XhiZtvcsY)Zo+lv9E6$!7pPiW2jqcT2-x;=9@f+?9kjo zBuD}EG^DEJl2;hk)qPpOXug%;G_U1)CGOasK=^bTD+1;kD7~5@9kD|%NZ6&+sP&H z22E}g=sgjs^$%O>ddZikdRFhHbnQ|rcw%QdZN{!GZA_~g4E>MG#kn#AoKs>)FSoi93)4G#FRMnbuN9yYq+o^hSj=ggr%X&TOxN=o-wXz7fRf1r9 ziEi-)#!JU3_=TkYs@HA8Nk4Ax(kbGCb}ucONL&5X<&M>jgA`spEI)mEFW`o)2D8&z z+RqJ~dY+M~No99^V5qjbtkEPvH3Vb;JhMj8iCAZAk1L#4b+iuCp!7Ex-+dLN<~{e` z3s2*x`%@9WwEofjqvOZ2?7!qTKn!9SMls{;)APsgHS-^;KmF$FEb@O?UjG38)V1nL zH{WgJefRtP{{Y|H#ohrq$K+NDt??7>@4QFt?K^Gp`)~eUBqJ@H@%j4FlkN3=z9v7P z@BF>v#7{WbK{(nEdqn!Twv~4jS-^cmP`}mL7C-+n9 z&-zkkC)?gPo#tn4wvW7T_l>4JGv=ZObB=s@^Hsci`|s})^Y`0mneiXtPDeEvnuwe( zSKdee08O_fTTIM;iEp&~{{H~y;)Tik33$&Hd!>x(Rvc&TqvPx99&1mvMyZTSVx2e! zWX)3yB0l2i3#K@_Mq&rQ+K7+|{otp6iPzdHQ{Df5yEdqUfgm`_pADH)H@d znKu5&K6dAZVaJdw5p_k^Zh1WO$uy$PjFY^ybzUn%CCswNpH4N02u|@P$4>J<8~c1j z_>682oqXfdg&EJV1Z18_@tpqvAEj#_6W~?2=~xi}21&qBJe)^?h5DWV6~fNE>g+dD zG(S-KXQQa+y0L}p8ov(RE;RZhRCUICGf$!ZKz08BQ1t~`3B=ss!^7)D=|^P2j0RLi zcS~X>1SezG*edETxuOF8`r%jtK-p_-B6EO2P3)kR1ON^>uR7RHZlSRGMft<>&_GZ+ z$Cmlo7UCfCU@VG(@~wloV}ffeXdO|U>-U?FEPB&BL#JQvdtY?}@V39MHHFM!k(J0+re`xHjNG6}R=U znB6=0W_kIur*Sxp4ScVf{{S=CEoXZHi^t+@PfSnEE*}G}>p9rkiIrn2^zQDYO2c_o zT8wXOMkL3@7*+@@`f)-kK`+Y*Ffa&f$s_0M>DswJv&W29PDYkny=!!hD?{Fq0W99N zvq^XvCnbSq$0fNnhCIu4Yp1?ddc)?&R&-kTOZtbF*A=|YYVM6{%w{VZU1jo<=C`L^ z64N+drD@A6wx3adq}fiE(ZV|yd6nCY#@eVgf?HhoI(^2sOQJ?@zx7B@9B15LUjWVrgTP_>Q_)FMk=1M zvxrW9_}H^1Yj2f&UItV=Dye6Y1X|oUs?6P zQ94VW$@DFOr?o4zRUIjS)}1Nyq2(`0Tf}tdMPOj^nqL!(ZhJk9vzg2qnX0dyn{=t7 ztq>+$M%~NEVj*56x`m@)n@{%F2ta)0{^ITjJ4%A54a_a}skoh9NTfE;9E&BylNQaQ zN*&-~+JkmWMYGn(#LCP_1G^qa`%oTm>tV$sqG);i^F>!eg+Sqs40q=mZThiT*a_k2 z$EhvWkuVVf7A5dL`_GGb*KLlS7#P_cfqk(UxSO~9Hk>ceV0|k**lWAVKk2(H-}Rh9 z8aX~PPS8pE^IO9^e9!(rZ-0-E64h1DlfWOJpmm>kBH^%@$VZ<`~CgAG3J9GTm$`oKGk@cpP$=(=il!; zNAmXh@d}19!ttDbf6kmAY5xGJe&51A-##DVMjwyo{64kvhxqrCY^^$S z5FyZ<5E1z0$0Yg&w~AHrnH9U;Ug~owu1R1jhP1A zurWx)t^f}jE0q8+Vib#be^37afma%Jtk(LT1H`uw!+Q(@XpG9TV5;5#r22c1xpi57 zp0L;pt37AQSk#)EBY?nY8+sS2sp%eqoj7;(3vG1!P4w~1!)PD(f11POaLmo=WZrzS zl=75ZRWj6S{%4OhjSEinM@Z;#bk9d>nnlFVaepzqy?d1<1hUBp8!&fnNMem6j1#=7 zmt(n~A2z-<{BYDd`{FJ4R%sTRUa!*~eA*6^HLb*#4|k`*r{7N{t<{~yw6-lOPknVg z)!bJQJW${EQhQSZS;;Qs`EK%c(k`s|Kj~gqS?XE%PvrGZZyk--_8CD8!)jd4 zFHQz0PYp*_$FW%0Ld>Q`r8UYM5hXlty0+Tmr`|1FM7Uck)QKf%nL%5Q^eXNGV{vWA zahR7kLG7+wMkYe9t+E;t-BF{CA=aFaFDp! z+;39K#l0gY<@}BG2T3pe=;{moN7JQ+p{4M*t!dpsOQ#W2PnqL1)=J4YO5khodE>0T z_njP=(UwV+404T2LDu!XVLn4!)Wbt_F6UWPcNt}Dh|!7rHCM*a6zv|9kzJYp07B1! z+E%}7)jB4dsOeh1n`afIQfYTfs&Hl_lNB-@#?{Gr0%&Epl*KDI_$AuZ6=E@6t!Xd@pm%^a;HAcBpZxK(1O z1IZkd#s`}Ar)m}TBgm#ceGGSGdF9mY{0FzO_O4ZFKQB$pk6N_1Up&WaZCM^)yxeBG zJ>{29XEj-2uoyi(rEjBR6p3s(+B>CH~Z;=*edt#f73n$4}GFL!k` z-z_B3#VBk`D2)}GMG>m(MkvTh!8Nz}+Pwp>jOuPT7p&{*41K*zp>H4hox0|RnCiuyRirW5u*q6=4xN?U z4OqK_K}7~LOVv=ZC0~))>l!-gD+SzF8&>Jaj&U%M&l!%wM%_9Z0~d(KHfEgOKi`O_!O0J&htd^qAYR;nR>Ux~=x3hYK1oa~p8k;wkD_g@Yl;hHn zdRFM;rF`zaVS96>L#M*lHcZJIDhUP zSlY_Y@-q_h+s7*tAqAPYIXsdv&MU(C*Xh?*F`iJg&TFeVomZ?i7yI7m{{VjOcPs!j zax<%QP03VkD-|VoXfDQ1+|@-s0%Kq}&n zZibcAcJmQ6za+xyD)sGE!(=jOB;z$TTUArd)mAeqTIY<+>_@ctSZNO%zh?4VT&O4& zMiXfJpaL0#A5qJCamUiUA@DO)Z;3r?(_apCyM=8JQ8%qF=&kPil1BuSp%Gulb8Qwo zeX!9&xk5{2fFr2>W4yTZyQ5tW%<5b6y?QVCt0WRj$jf&e+MbNos8J<#13 z@Vlt>UZ1jE2IHlzjq*L5Fk6e6U}a^B`Uny$d$=ZI7Fb#!HfLrJ2by^gG&=iSD>a*RTYmG~Ms2iSpOWiKY2L;Mj#$Qz zG$yQ@^Yr}D98ooBSIu^7W@Mq6Q`DGGfteI+Fq=1 zyOt%3BPR3&ozEIbBW4G{VyEdZPyU_%00`yM?2}s5Vi_8Z}ZR7O*kJaXSXtDM2c@1-k4O5K2 za}k)ZIowzQ-nB?mE1z1xXg(B76WcmV;rCGJTE3OkH;|%Q$a`+lUMmJij!m7&J76(Z zI966yO~f%}^ol(r`eghc_?gz1e+K$yT}ED{Ep;LZ^!1L_Ww4KQ?+xU4a|Tz2A_3UZ z%&MD8w$?u|*S$MvII5;*-x{ry(v~V~EQV=ZMWhS>6}vLYnE+rtf>2}n1ZI7#S8AtL zWq-ItoNQyNsZI?8uP{|+@1bZyAr_cb zP$gs(=K>aMC9=626EHlxtm6$fzNN~JI~rAl$$WX*RuQd4yeV{X74o7f@{*gDdg5#ca$1su4B#UQ0W-ma3! zlPllGT3}78X}4Mvi?|)erYV}BBxq1tMoqHFgEcle%#)!qr4W&_?hhQJ6ouoAQgkcV z?66c$TSzJs3Tl8%nMIHiWI?%LnT|u@N)DL>rp;tN+SJ;x`n4g`dfkJGDRV6@z@%G7 zTnD@eE1G~*LUXwIQk;Z^w>3E%?HdJV3c=!^ca7-8;}Lpi$eH@TL&4*xUIRX;(=c6 zGiZ~B#6YQ1whrXBPO2ERV}`=VBOac`vKEw8b0AP0@=1uUa#iHNLT9-$=rS-;tzq?h zQ@gI%u-@X^HZlXMB`G*qDh@y+quvcx%j9Q>(6Ux{+>)7Bu5Y70p9e z3KK;zm1JBvqk@(Z@`vuvsCZ4?gt9?-Z#+5f+mj;WIm#(-Y#(la4Aq9G6m!^JTg{H$ z%J$BA7?G8H9zFQ{abJIwn=MNkarH98&)aRHOu3fZd`BXm6^9Cg=qee@IXvW=c(;ii zzGvfq^Zx)}!^A08+ul9>Rkn(@%FS}NcOz@6Kc?1D7{ZM-!3CS`^8Exz&`iC=w``A>DbVTNAZ!E)^X6h>|&O zX4*a7p|_C}=OByf(dI)9 zi|QsLU1}XVT{WT89Vc4>mcw8(T}tboinWT>Rdbp5BUD|fkLc=dR&74rtc&vzQB@&< zBs47UZSL(fOMAG2>KdQPF)DXL%Y9*McNo~-qEM%W@hJ}+(E{n*L@4M{q}wWy@AMa*{4O}Ojw`L*54nTXy-3XU zUiOf+fnQI{42?OYI?0vko&yEgPN;S4woMdqu>6)&)24{oIH?or9F_Q+Pm0d;Y1V9_ z4N_Yx3yGAY6)$}%C#y!7gtjLYIenM{8>L z8>B+3p5caN89R}hFx!-tUvbi(HTiC+^{%Fo!E|pN9X8Zc)Td+hEz0;hS)DG857KU$ zYf7lk)coF0B5l-~wB87{;eOkhSbKR{-3xW!!ZXmRP(7P}WMyr;>&8HvlUDC(mZE z!O`eWPVSrOB`ccWs9sYQs@$wXaifpW{a5M8>h7;)^z#n*%;wXW%izZsyb+3A*p=C2 z$;L+3+Q@4fRe-h-MR#*N4ne~pI%bnCu>cPzP}J2Vz~&D)+F04@+RsofkE=@kLp{q| z+xHbElPN!ERn*{?HVkk>*y+qwMh|&%o_5gM3(jYn{;gZp`0Y8Xx-p5Zr##K{!=l&n z7rHO1ZiX(mRJHF=bZO};D7~#KD>t6Q;q-dc)D>PRrAf7iWvO>^H8}HmU^xvSmk0Y-%c5L;%9X)SY=q{;sQ>FRbo+AhttY%K; zhSj%mHS<`?4P#3h7cfVMW0Vas7fXOlf+9R!M=74mO1=T2d+Tt_rOTC)Ii|LlD{x9Q zw(jT;gmqJrGHbA!+UrrVlIP|Y-c{K9LKli?A-RjVqtawVoJQmT8IyPeb}KXfNrv3! zFnk(r5@nV9zQ-uYJEa=ZhRkPna# zup`JEA9{yz@WXk-`TTwP`u_kQ@u@oKMODJOCw0_tB~j96eu3LRF%! zI;C-~D=tAb#VUwS#qS(qBY%INe-Rh=#SC9LFKvbj_Zw+na7J;Adw2ue6#ZMLnHF!6 zgv_KcV-gk&JTPo$cLSW~fm0?Rz$GvRi)fPA1|q>QV91z|lx#yIGZPcMPW~*NRzzss zL!*KSAP_;|j2~h+BCki9^An-8Oh`}kLrlplx!ak-WB&k8yAUkx&tvFK`|>5e!U$m95PR!2?Kj(_xg82Waj$3ObNUVp7v^e%}xo_a@2mgKXU zEFL(wC3~o*2@|}G%<=yK=y&$od=8DI9uAoS0E7LKc^(gsBiQ*K*r)34JO2RT@DKjP zpG+Uw_Z%N%?^QYzL=hJ)AEqW5F(Mmj>yze}QCw<~3Bl@3800E~! z0`doGJm+?CkEze^=g%}6Zk!u%u!k+iL`jpzJmWq+BR{jpjw;ij^f?pCbZ(cKwnA2m z@+@yFWCH*bXuUV}l7NAMmU83A>D$DEMA3j{T_)XC&f)|qhHvi?j28SzC-JJL&d8Nx zX%X4N{hInlIZ$zxAArE3M?~n&wv8vJL|_48BZ#Ch0u#7^#3mpDKG7cE!^L0KdSDnD zd?0-UYmeoMqx!E+9R99@apOId&m8{%ckBNE9M>kHVA}3Y%#Ko5he&DfH)?xUroOe z9=G+6qxs&nXgV2q#)u-JR)ZPu*U z+wKz8EFd`XkGbgXkA~Xb>~u}6u}ZtfEv<_rZ93YSnM&>v8JI>`1D~cbR5a~Vs;`y)!NoMT>>6L`c;q5;+HGz*QAS(837;$QYNqL|KuqAfOC%X<`{ z+ghkeETfKFobk7A*-@4AhgJvcS1Whbm`M(&XNh9Anl}FceLJGLnW2Md``f#qsa45V z2iuz0-m?BJ+ULubuug^QSCc&zip$u*VYPmjv!*)5kJNg1ROtN5+}b*qO6PG}Zfae` za;;!tgE6tHMpqkeG;Q=wh_t;C{{XSkY4@6RiQHe6w@G0nE5^(FB(k0HkV2e!6-M^= zs^Nwyh5e1~rRp<9GCkWzCe|q;oZ-VG?;jW^IZf)f;ksjiN1xDOEgK+!D&(l0-0y9VXujods>xQrB zW}DN%-l1s~>KMvjjW2eNnaJfdq2Xg#U@*GO>5Y8uqQst}!p2gnj#*xAjIw58cD1!g zu41{K)>J0nmqF=rhEoZY40@yQ0~;_W5?~RMDy7Dybp_qMoz;}76~OyBTWO1S&g#T{ zMUl*Tkpm!CRbq^G;-mca=`BUnUoBYtPK(4XnKoj9^EF? zE=(+{(g=nlnOWF5!h#2k{{W5+az`2EtE;Z(+tKyS?qeRQtB}N@>j;yI;vKuwF+3Ls zvg8J4JEgI4+ew3}^y{dQccycrFDNrbw5Vj*u~UV zX>Ts1WRVPRk`Ww7*M^U9+@ydJz{p~8S$C#7BP~y&dcUk1B=wG;*V<#KT2Dz2^iT6N z5_I;X(z$$&S@$C!46$B2)M~-Em>?A5g9#V|jh$j^YfUn1YlcYf=a$-h9yW-T$2d5{ zFkEmLV=67s(KPLEMm9^UwAcE5 z#l-g!Y8NHsDQuTNFPDTOH1fVwM6kV@c?axsIE zn&KZ2dUn&Nx}#XqwEL-kS|b#yvS6}_BaTB8o(9lZuHd<1q!FJO&8rwQ7xq}C7D3SjIN&(T}t-B%fUK3KkWiwiQNHH;{`$Baf9@&gQTq>)ViNX z(q)!g3te7#tmZLDW0CEyWF5p30ky*rpoRY7ACGgNa0R~7SY%BU#xYUP!KUrdwJ)xy=J|0b37KZ zuu!3nZTrNPZdqb>XvH&belc_oF+QNq_U#~UcUp4vNipS1Bu z6GIvlx0zNM7?uavc#gevRedk$W|7y}U3ISPW%IZV1)%jsEVfA*EOmW9sB~pLRGl>F zuSqPSie37POIa3Uy>!r&fyesOBoCfL0s-oco+wt6|MEB zMq6~xKw0ZHdWHOYf?L{INU~g+VMwl3`;ZZ_GXQn%gi|0ZfrKD6bE4~MRPR1&smmm~ z$8KPgXriH0o>6^eU@byIQ4NL@?@vN;pk;ai4AETnSD{M)L)>(>uxd zrzi{yMmFs(2MxHlmD+jq`whp(K1M2%vUURPEg5L{Y}>I_m()swo#2DG^MVQY%{oE} zNfkCV)4;9dWZ?>3C&T+g72nLgXm@v(9PKbp++amqqFJDjjj*DE06VY)7j6jhM$B*< zfJo=qRs0i2Zh_3M@yH1)`zf=4RO8gZ{q;Tz4Yaul3^N0IJnZz2LM%&!z|1Nxi-6cLO%oPFG?fLTu<@+&E2e7tpv z`xg1oHjcfJ{aXQR4&|*j)Tyg%mUm(aOM!uupV$8YJj{&DMw>rVX$bc!E=(T0a}xkI zw$fW@JF-Wo2RRrkU5P#md`G#8)^GN4XOFhbSY1FyBwVQq(hdTU3X$aGF!5QF$@fC~ zm887Tbb~XK(Qd6yGS3468Bzf# zvKM2xfx?sE@&T@}_5T2_zE=8K)E=H;I@?!BuUls``*hyse-2r!olJ}J7_21bC|?{+ ziP9CPGnB;B^~Tz&n=e|s-1x+FIG~2+?ikd^^S|?9nN|5MfTZK^VBvG>BLEX#qrBCh zPJ(UlO(mlMWig|=Du6Q61>*`E?_lj+%y6KZjp&bBe5z}Xs`V>KbaM%$>vbamohJ1z z-VaS4pSPCD(9Ye{H!{u7{!v_Y(yD4IH|W^3ms?VAA&53Zd2dqE2#vY8vUGc5-1f*I zGlnB_gU0=?RO1X4uzb}&*DZ5=Y%Z-Pid%KWZ!!>$s8=Eh2|K%c*K+zw?o)!K8sv|f zKg8F{UrPMK^?#;brD8Jyn>SJw?+isnB8{RVCV=RVhd0gh zXG=G4ar|;u>xzqH^TOx4;D{PUY5*e`?X`2q? zgOCpJLCMX1MD*7=LsN9$r<#)!jdmXusI(rA&towbYz@m8tZrjXV=^=`mMxF9x7Vp< zNjAr`4Kja!9UkJ;Wu5fSX)k)PZxw+JfPbZ9bCMHKC z0Y(ckBMPJFqs4na<@{&o;(m7VN02_gDio6Ujke$XBX8U1#DMZnX-Jro-`->CpO}w* zw)gh;h~7Vkh=K+&&QJM%f6kxAk-SV6(K}DK@BRM({tx>8J}3HSpS;pzdE028dHef) zwvY1L#A-RfJXLMB`~6M&_KKB=nR zD@$*t!7T2oKxSB!u?kKU5(fm}XWp_pL=#-9^fA%=~{$$ zdMI<>W|!55MYJ`AoFbXyGH^|kvAmZlnf^Ss-*1mLpVC94#>PE0sA56n$!&}da8Gl| z_VzvoYthN3{7Fxdvb>X;}*P zD#|WH6vZ@*dmf%_cZ8xq#j^#xZyq|A!*7VXFT_h-UR^ItxUh#$WLXyI#M{Jy`~+qj zKvSLA2Rvt*=6?~O>YHhFpV#_~H?k8WK+q>_smf%M6>@X5srJXUc;7BMN6G%8(3)$g zK3DW#MjN0fQ0r`tmek!c(l~r(DSDS7-_jcP_A13(YE2m{3!>b0(-9eJD|&d{5F_KN ze5%@{afA`V@nryPsft`23^4^;ZzDcNF~%#Grl~%lCzIwRkoPu79a$T>3mzR=Re@F| zfyX)A2?QGS`F@{yYUwVX$7C|v6Qx=gO{Z9Nx~47P(QGa+8m(=I%qvXvcqqkMTQ5CJ zHJepDBL*Rr828W&*)wTu8!B^tcO`?x_G+O@tTSKKnsJd zu4L-hTn(G~CSJJ9kC^T?ttOdC$1fD#7^S!QatC0kTzJBgTMN&p3`-1nZbeMD7b$Ta z*5Ym=Dnk*I=m0KqIRQXkatiUttZ$~gt9f+NmfM)ebaO!5)fakujp=T0TW2)hD?P4t zMuo;{+Im%ZEnBMcm0535S9YJFQnj+OW_J{*8wA1HJVouGcDazmrLM^`@s8%>l2{Hh zNDN5*uTkfkie22sw(-R&iaRnpD7*-OB&x^ms)dL}&J-L0QWzgCeqQvhnk^fqdMVR9 z7L#U*&vfOwcNL^@RIv@vTB|5|%}t}9O-O-$p2%iQt=+DChRf%;-bE3#;v@;M4?zmJ z$?$}f9)Dz#LGzM%p}VaQX6X0b9zfmTtOL3Ce{M0)dIzGnN|pqi=ymu zcVrR>Y?jF9$Yy3ALQPC=?urQ7Vq*gVPBFJ(j~+aB$wQwiaqKbgdQZ~L8PQIk;5up3 z`WA7zUrx?c>aPAq)?+Jj{(Ci%)Oqa2Yc+j@{LXUjcP){(a@)+B_uMl%_=v7puuxCj zP^0%K!2bXb=Tto<*_A>TB<)d!A3y;o01g1p0An?frYC9k`S{=VpN;e~qKwK4<6S`@e^X{{RfsNI4{DAK{;BR^HqG^S0l@A|vPf_weKQ)VMwm zkI4R?)~^E*$L$6G0FV4fhv7h{1KU5J&-^K29{c|Q5Bu#K{{WweQHDML06(AUiup(U zeeGiZ0QjNkom<|L7+nIkw7S6F6N5cghZLbMmtJUEg{cCEdfgEN*w7FC8oB#RxABx#b{d8 z=dqKwDUpdx2)TjJ!j*fr9V)DZGQyKI_}D6L$JDP>5Zf&$Sa{Xh_YIq~i3}MrMy9x# zGZLkAhwz!!-du7$YRdU!>$Z{Vb3rH1r?p(wCR?Rz zDz_X{vB8z=u|k_-sc1_1C&dn->i(9sI^Rdl0J*idf0&MBS1kaLJ3K*#3rERi%AJ6a z7>rhl*MFm*!tc@^+fCDcCs^HITXgHoJ)pI^n$eZyK(g+5P8bwWLb{M~!Bgj>etf#) z_}GORpSNvokm zNs(1YCc$llfpIR8>;C|X-ESTB!fLiQP-)VI_1nUWJgpd)vbaeOHo6%c>xCk?k! zm;V4KpXk%1!EG#>ez4-{9vDQLwe;pRjg%P_21SS~Wf#*XPVyt;CU34kUAIo_2G06pKXKb!xVN6!rYaqvm*ka!edSr$0@3Y3?ks9u2j+80b+=RKj*wt* zNYhBX4PnnwdwxJ?JAHBOw>*$nO5$j9SrCoD-i7}gd>#kY=s2dEIGknx>tdO^m@}c`9O^qPGpkQ>$uMF^GKz!7Z+(B4E~Y zNwJ;flq13xMJ^{Epy$#-^f!eh8uc_clR>KdNzrxtd9Au@M26H_+&$)@VcN5~)AcDN zzgIWz_doAZLuj(VQ6+X(f(WGxjz!nIs%q-3S)9jZQ-ae-#N%|uS!292d_Z;5OfC z`G+S~{6w?WwRP!Zd#B#(*Ll9xM8L7LM(jlcvPQBqw2?7M;_c6MD|aML<5on-Yc8$y z-#WcJ(|cO;C9ZB`DmNphG3nG+Mfz2k*v?qDpU3A-XvyK9Q1Q<;IgG8q4bLext~_Gx z^^4hUu5V`FC6%jSpbER#H*dfy>J;ZB`SQP0+3fX?jaola==vlbL9W|s_b{Z240qQt z#ckQ|Gu*>0GNiFQdm9^F1__r1eLi!in(tY4Q>fhq$lk424TscP&m4O5N#V4{kJI=p zwldDE#8cMU?M+(doQ_SUi8jbO__Erq-%+r^%YYrAn|7B+5Kfk`xchk6?{Lzo*aI;v zrPu%fWi5|<16GrP*-Nd?!+*!p8cGprHc@-Mw z?PfNtrc{t_3teo)`BLeUXzM)&?GtK=DF6PwAY;R;U$1FlMjwTHn!h|A7(fUgFnc2qAL;6D_ z8~{D}W$^1pk}jj^>1P!{wJ*u)zc;X7KK7&S$ zn^uY{Ws!AkOk7YeAF0|+Xu5TcuKTZ*X(rk?Oc%M^Wjuhx8FdAKAgNGJ+@2lrxQ>VT zpRG-#U(KWFokylv28U9*pSN=)O?z!~Z!|Yo5*LqTaL6H&S&wRX=2nloinun$xx!JV zyfQ5G*0wgSdi6$t=k*X!sG7)%wNY7W*WIw&cD~% zzfoy-dS<1n>9^K53%H|B>^ES6B8R+W-kY)sM%sA-u^&}B?X5ahhR14NiuE}ff2cV8 z)-bS{ts$Sp*v?h;0MN)4WWycat@(Lc7mSDeIVmZDiH{b>^6CjYk#0g2gJljdK~fIk zj2wZVuj5@8^ihH}_~X(jlEX4aw@sL(3_&)`ppA!c9-_WH5<%-0BfqH()RzND^0&NWrr??#La9&Q#Q1V?Pc(8RzDYkQ{~2J2@RvI{O#W zJcnB2GlO?Yv3*s_vYkwJkhykfuO($8le}x7-*IsL ztOh7I1t9w?IzN6Kxv|Fp2cG5J!vP!E0M8Fl0LWsbY zcPypY02NVk&6ia-T^ITrd>Qyr)g$7sOWEpUsv`NABbMt^mgYBms6t#bLeZ*_u+8_2 zaL$`SAmis90r_P*%R0@*y{sbcq9tqz4l822p;eqK%H|R<<-{z|MlIzNEbUd>DYQ;J z#zL)rWL-CN?$t&DOJb>SV<_Ti|kRR`iq1po+?5jMalPRK?#hES_T|;xfg{fp*C1L zj!c1AbywKNQj9p$p^~B2gt6ZS_nwjBr#Ay7qKpInO*KglHV{V+cOj4W+VYh z6?BonHpb;P;5%{kdu_CQal#aB{D`CWnfdUgVw}%@y^~Gr3A#tyxb~ehlaw4hRkISJ z79wSgKG>>azUzq&KwMO(@&UnfAg=woWl$!9Dn>S?YVJ~$+fw)=u~84Oh7SB>CTH2;vq1~G8YDx(96O)k>*!iD@D4eTm!p6mmHYK$hNVdiQ09k`*b+_A>DIw(ZPZLl*D|vd={w+c2v@OCaoSBSoUQ zl*e$2#}}D?loFJ-Um7yTlF)Uel*c)dc*OOwN-pr6eY{Jit`5z9hAUU%qjy#`=r)<}2veu^`eGwBg zK~Zj}YP+E>sT>Fj2%;DIZ5TLGx9jlH%HPEK>+-K|lGckX>OBgwwB4(XOG7V>$Yess^^A( zrce4(Ku4K^xI;tcMDAAXY@Hz#GlZ@@lBAKY^O%qHHE}C5u5@y zMBb!ecx09)k{K7?IU5|}sw1FFxMh#KZ+!&T@~+~f$2t@{SaPn1Y>}|e*%3|-F4?ciuobU9C{obim$POmj05-HuX%UHrHUl6z55)&Dzios;CWhiGq>)*}tkE^m-IByG zb-bMDtP=5h?d;gZrpA#es=*2>xm2_I z;X_u0RMlNI)@Hj}m6la|J<^?Tt@Zwqw|owyL*_F*K+dMt+-A)+)UHG^SW0U_8MQX; z424?NmE+)HS#NYYG(2Qo`AnP*8MTwKR2PDbs;CAp6AhIe^ei2I0t zWXUMyUjs1oqo*~xS)&6>r!jX@U$>|=ey-Gdmn4)|$Z9=Vu5~s~RO&3vn$@OPP)`0( zl$0)H5muTKGcdj8qIxZ?Z9&Rd!5k`ny8$fc{>qvdMFKasg9!A(I)- z(S<}namvRUA`cl0pCr~tm@W2++9Pef{@(up!}s6Bai85%6P$bF{HYuY870ebk>lIg zcIC^IpDnkN;~Q=9v~Tm_o-vODc#(pW*v>1Nig)bgGY!_5I&}e+>TsDpf>G z`+ok>xBB_<9&`KYSBU$6ghz;Z;)BmMULjG>;a7o~_WuB1<@~%y_*6f4wO(UsnEwC| zy#D}qx9`7)y+;T0`TUx*PXOzToi7A~rQyA(!QL+_;HejEoMA-a3_aBdsrB~HMex=e% zV2+-8qR3(grP;4L7qfbcPjy=x(_H3>)Yt8U~{bj-Mx`G-~Rq(8(-%#Bxn* zI*@$CME*e?pxGOg*0-YEXyx@SBT$~v44Tc9%@oqITnL`VNTR#7D#I+3?L(c)H!}U< zgVpQ3Tj@5m*Hoh$t2AOYj-T@pis`PS^!lq$uk*@!d&-|vavCD=5oCCh;;y-|L%v1Z z7SIJ5!N7!4zk+L%svBs_wxGRAg+S-NkiD|;^_CR3Do@__@mXsh6pq3z z3SlG4fOclQwwgj1um(7%69PxvW+Q@Y=MV7`a`76E%I8f7HHNdSI!)x;qC)=KU*Lwc|2>OP*3GfgfA0WtJW7umg*uA4(}NUxf@S-GM|#)#_cWzo`)U=4VpGc zAdj`U$R04h;A8QuMwuEa>JlW3SX>p`+}wu|!}~wp_9r}J73DBG&ljuz022INJwIPm z)48Cu4_~xSwdwX_NUs~GbZMFN^D~X>mIF}Yt1TDpYr9XYL5FR&E;$->c=q@f_Btc( z8syQ)rruj<)Tsp|ww^6SD_ZUSw7DCvw=M^y9GsfG)zak6rYzR-td{o(RzTg$d#h=z zC1~Z`KoQAgz}l2jNZeF_FOq`i-FcSsCjsvST5vS>sM%F*9rM?Cj;|aKyc-;Dqa1;PZI46ODlU2>$ zou^x!OH$OoRNC7W-7C-9j59ve@-P|O0~s0jt$67VnNEpl9NtCwyK4Dj>MbF68+QqM zwn!`n3n!0yXxX`Swmmh*?;e`Nk+ViXVhE(5ON>nT%jk)5ajI+AA1>N>zjTrXDio;6 z@sK@g#d4nen;zo4<@!PE`Zl)REiRR)!>mJSlgB&T%(5tE*|lF8z;p)<K7&1<#? zsan%YGgH&SYTZSrYUSoXImBSI8JuNIpspf_*1u05a71dZqu8G7VB@mhBv2|E?sE|wra-5~ z!n<2-l>wJ-aLTF)4fnSJg5-}lIXEW=#cH=<^(iNLuBDzy_cOD|%-Q1%WNeV93;|=o zBbWI=gu?lQ<7m3rt%`%q0aiI}Ay|7mAQ(7J}jlc1asEu3H!+ZNMV~_Oa^7Ae@ZV z7rLC`RoW>qfXJlp1}|7(KrEbrhK#Am0A{ikez5hGncUuL$5eWWIZXB~7(C{9H7-R~ z^Vpgo`sl~x8g}4Hkc;G#xSTF6%*=BpM~cQtU1d$-T6}K>fLRU*_Xi|kjIPobI5@zp z)LmEAKQ%4l^#%Nw6Cj33`|}AJ1kc&KcR#YjEC!5GeJocfllsn`uN^HRFHhR_X=&vNY?TUU`BZb|^5h+U_FkPo$Z8NpawQT0y_ zR!Y55HrR-5l&ui3Cw9wa?fOb7VMw!pfctkQG3zYILlNf(~~5O*o1GPza-JO?8}-d!d4+S&}0t?!<(QZRyY( zK#;6cv93xtn$IkV;w-3U^=%jf86*-th$NqEpEw}Z7;T_+0cLK}Fa+lePk=lD;053? zLFYNm3t=oS`CYI;yDWA;faFad!z5#M4-m4JStX9(Sa%bW@F@gM<}3*&oz)fgvn z{6_-=$L}MOYVaV59i6b5QgQG908v8~+%wB$XN>0_eBscf+g5!oVqmOR3Sms0VS``{ z)?^i9`gr#yTCQItxS5^H#GI;Ny0`8a_8H4oSt!tw-MWxWk{F-j!E7*VVwF- z->(GY1wq3a8C6VF<70{{ws`tZz>W#y?u=yMcm+-~RrKp&9FE8flDOCxC08E7h5>Wx@^QF^0fl`7>7Ov24#o6% zw1!79rR`_kh4jowW$B)Vp&30IKAh2sSPVeqfWqe@RB#wa%qtI$Hk#Mmi+2 z-^wOc#k(|Y@;j86%ol<)xO2NJg+AlyK9kkmJsGia)b>ph#Ta02;0!{>is;BB^PUa? z9M_cSUr{uMLt53-7`~%n@p_w3z)-{fPI_NZ-MeW+X4Q&hyXH==GhJ|fc5 zn@@$$E}waMV|%4Z71ip3k~D5t5i7KTq`)W%Y>(L_WAUrY{-Ej2N_Z{w?xnYyQpH42 zU0azQkAd4e%i%_F21l_x<5RyA{b!~0^l4t7Ue1C#shPc?^#uz#O&>{?dhMa~$6R`Q z`PV@(IhN zce37XI>SYJjdyYu^v_rxy**Z?j{g9bCR+1*uWTPnuTD%S^ZVJWPiCWAtp20~Le>37 z6(v_gjEy2vB?VGD0E7@jp!w2ZU_C+Yw;ZwLteo?TwYZ8z)rl!2Z8Wz%^<~+zMuyC+ z&@%$NCO{N~+?&+7!7R1&<@kr9-Y?FVn@V{+iRJCHt$O?&Wwb$da!g~~vAQX)eYFn* zS9Awy*(1OqVnsTRo)wjd8wYyekTO8~c?t8Ag20>{;G9-tR}Br?$K7dJW4FUG0G!1c z8@7Nl0l>fjH;qiv3^=X#Pr3Q653o0ZXWQ(z;@_j8>j+syQ~+S6VI{X9n0U+p8VFvDsw@&IboP)y(&h>XtWBZjCN(;MLKVMnyg3OK4v^ zhyl!zmII8r5B(>odH&vCfBNUo z`qhS*cWKrK#$t^B05t}(#Kiso0P7zc&i?@4zl>(wagX0u--ptWQM`Nmdwrwd-}avo z10DzOr6-TMZM=Ok{9|wXef&yrK<6Vr#+04se}Cg2$K!8*@&5oX5!i9TzSTZwP|pLva=c!~Rbv=M)+9lNYOgTARX6xc)%WVd#Jp7{qIlL`3m9R7c%!Eu^)Tl{Dp*HZ)=Qi&KRXH(3E8 zmJ5s=U}u4qBR+JKPZv(m>Xz7+>FwqwDdY-!ws#8dl0wl3Qzf_{HyeQ5yOy&~wDTjW zdWq%>sn|RxS9PyY^bSL)oe9q#7gpdtwI83cTp;U##b$2fNRsY~Dbe9=iUO1KqY6RYf)PPh@IWh!nze>F+}*TMc5Yq+ z6wBS6-M`)KWLKMhBHe~(j6%MZVzN0T;|(90FE9_$HF0$O&h__IQ|c`alIt7!4I|Wi zUPq`nKQ!G>=$Bve+Iy!std)~TQOo}9nl6b&L*D z-He1;X*^;9z1~1DGBFh{7&XM@Kvmw@0d|Z6K=kpBJ+WEaP>XMGwC_!egSfan4tJ8p zhtZ2MVaX>suU9+&06Cww`}_QR{@*?*)o?k-(yzAD@BC-y_TT=qw}m_oJ^uhduh@{{VlF=O6ockJ6|2C-9_iGe6 zQ~7vQtT1wYU+|?5?=v3J@gI4O{(orr{vH)6@#leGCV!9kSN{Owo1+B&%F!JHuue0r zV%yE3)C}7ZD^j9h1Y}R^kE@i36o`~hj9ACa-Q((?_bT;2v5WrzTl{}NpFA0RTEi2P zi-6=c0Fzk)+=F;UD~HCTit&swuqY$r4DH8nv%~_WMxgigYp>l3Hm{wF7FfnSY+IUi zf%Mrt?E?FRq)yyP9J{31H*s`Fg(=foX2Wg5(@iWEB*DRAfS{WP7J(LTNjYllD5RGQ zf(FXmD}!Y2r43cKE**Zu6%TEqfT{~8Td+?-n@~8jAJ%gD2h_uCnOKW3#xr6iDRXUV zu<=#KSE4LJTBDmbu2_mn+?_S+DRX0DRd{T`i&|y+lEW#3Qo8r}OLZ%tJu1lcTdLhw z>6W0^8q=rR<4P-~S*#VjU!~L5bDB>zkjdRt5>ByAjxvu?pesPPaIk5& z7lQrcQ?zW{>TS<}p+iU8kggQ?1Y#_I@{N2IzO%FoJn=o;Vn|`Qw}svbWkisPS#Fge z;11_;rG!ir43p~A{{S|c%Lmkcv0?RA6B&uXX?r+ckZC+Fox^2gHTg~}NNTUi>nXOW z;_K8}yB5|ptJgaMw4rd;!#4=+9UGzDbe@NGXL)j$H}hO-H;=P(B5%{x5d*MN{{YzT zJY;UcEJow=tMr}tfuek9__1l#+8cl9TZm_-TDp8Go<`k0J&g+sm&^=|3dEG6 zvyhW>1Qc^R{{UM2L+T4uy3_Qo-JQhO6CsziyKFYcZt}miA!fkO-3mDyi!Vz36~9D( zhkawMTXiQ?&v~qAnqHY>Kgl)Ru|*~BqNd@Hh}{UaiZdDQt18Ph?$QTXL~>=1G9Fg- zCz8IV^p27`rKozT)1Iwezl)+8#Y0-sI8iuMyKTy=gi2$20 ze-Hj5^(EH5A5QfZ@z!m%c$~vCr*25(RARfZTPg?usb&~((UdAfb+6Lr^ilY2(;WjR z#IJ{Xd-SfY(z3w!R&iWSEv4G>i?^eIIxYOUeZuaTe zmGwKw?ZX?h+536Gj2FPcZ(1-`tnt(=SD4!0i0&_`IliLmTnCucbVa_0q>7=?r1a=I ze`i8xFokB`l)u%UPSn$f$X;-x-m@}^u4$^yD@o*Fmgl>wpOuX*ridhmvn~P^K(Z_E z12_X}?#LveQ(sVZ9;x`<4c&&{hYt5YDC`+^Ef7VL&RQptuQFv*l-jX0ZH%nDNj0q6 zI-Z!s>ODJ)(`TrkT9|ddzFoSWF_V{OrY(Po9Y+>p1wM{e8Fk$iO=*>OyK%gHc)@(O z68CJvc)OOH7=F@-Li`FB!W(PBiQ?R6{G38tJ`W_TQWN)WV&ECmBBV34+qNJ&WiyAT@iuWqj75ycd7pqgpkX^NcV(e9ab zKg*|7a2-I@o?9q&drji1X7Q@UYU`SN0Zz_mEs42VcQCm8wJ5iWwu=^$Ony;r;F@cY z$Ixv0iQ2{emHoxk_ZqUpZ#B4%J5KCM@kp{G85x6ZV#pav0&%!uurXObgTD_t{{Z05 zzocqCL;5}4{6Mp@ySOr5HLPvi7Zzq1zFyw-H>b->i4pE%LR84bBWH|6(PKLWJM(Xv`q_O6D#>ez@KPK1}jR^I{X4ElT zs&F?Ng|v2^i(AOe*Kn1QWio_7tgNoNWeiI$6$TWq7ywtXb>6SlCa~A8ZT|p7`|Ulo zIOB>7h^(}0sggnoihq~3h2(J?jpvcOb{OECXa}6_U7UYPE#NBT2F`JLoO1mIY-TRD zV&&Qi$xG@2(Lr_(CBPpLsNIrr!a%3#ivxC0L)^VtBiQBHm~CYVmUHx91d>4UlU{56 z7`453QuyVdX?ldSf4hsZJTDr?(a9W4Hp&EXuw;Ku(lQ%@J*$?w!%b^w!c@O=L*2wH z4T7{ev#Zm)T56&wN^uo2O3h?46{GWOLlxd_cerwH;KGxUjdCqhNpGHt9YQ%?<$#QQ z&v>(X_ZZWj+MIwCdG`Yx{b|=Bxm_PoW{H$XZ9aGlh3q$yF`wRlt#+fLR;gKDiM>|l z715@3W`opc-pD}GdvtE6!s;gDEMzII<&7%~#gaS3rosvE#;QUKX`fG?NMaJN%fWLT zvF~mN+CuRY?mZ>JAmby!8Lx-G47!U>(fZd#)Tg*cZ3|Jeyk%lWR@V9}orQw4Ae2PN zBnaUN+{jcDU0u45BYL~7!R9+F&|2rziyEgHuIzvJPS6E`x2f z*Kxo&Q1>KS)Rd74bC3Mi>PBU|gboR1MbtuD5`4F4N4slzXoQO!HzhzUr|b>C>Amp6 zD@3tfWGP7dLQdVenGmT`f&Oo4z{)F>X%&4Tvw}1W@qY71<(JG4LbYZ_Izg;I-;YWy zQN!rXa{RswF_`K$wYD8vj*ddcAL}M@;Uzuy+r>5d*}5nY%$skF^w2W73U40<3uZcdD)+Lb4$Zu!Uq| zzR4F^k`}I-fmD)IDygwYOf5tUL8?Da6IhgI>LCbufvU?O1o=#g zqGAO~WeEnu7f@mMA@h=pG8LkN>>&&SI=IIY*wIyP*+{{`3vCPn-pP*&RabC9n{W3T zZH??Z)w75!MWmyqbyGE#$s>GNlVCa}pHz&qaZ-pjS?#i*rpnQ9Kd<)P3~;%iX>t&{ zp(goa;&)syQb2(+f+2u4DaALkwW)b*wJ=Zu!kIB?Dxd=bHKi;FB}ha-@hFKNJ4|mL z6s%W!?biKxY6>!c>FE2cG|Z_{)Gln4kD2{{s#Ib#r|Opz2KQdP+` z>;8j@VUjBn2I*~eB63L*w7&0of=ziHc!L!N&;)8#aC}m+SVEnZPTUo3cF;shu_WsB z2^j*MeTTBee)jdn&jkPv4Wv9NKqxjemPM4}Y_5^Lcj?m8w=oOz@=_Y%VQS z@+%7#lGm!kvJ1IRv`|`dJ&{tV%3HwPyW4K&7{d*p`i9 zzba!5h^;T3nImL~5%q!3g(xbNtZgrp+m<%r<7`lR2`HrZrrRFFnTsr!E_+LLQWFq~ zfqB9GP^Ee|IU->wpGRH_JF$y$?{Gq#Pi)s^-q5BQ-Gddpw;+Wj zhy?h_Rv+h9I-0BL_d$VW+6e>63hKlU-;RF@`}bT%&GwDO?h@N?m^t1(zTf%rQGV)i zjw%iJ-}nB1){;{j$L$jv{?ot2ZT!E-`FM>&tW)o_@BRBm^S=8;_=wFa(LdUszb|d3 zCVy{u{k%ezcq#gQ_Kp5O^S8%^DcG6cZ{hR2d;b7;^8Wy@g(~qg@$K>Nw}mSE`^WF? z{vQ$V{oWL)%+^!#oO^A+!(F(o3OU$K)4azy91Dh^~*({chC#6|>X6q-GhSt9or+)Jz7Lo4q^Jy1m^w%=K3np|ZJe z%puitcQj@W(~|N`Q3kPSWsx~9H)$4_(CV`^(n6YA+_vXmOzme3bKOM?<7t{0q*mDF zdz^$MfDN3-RF3Y#-YX$>9pB5D9UV8@rPR*_yz;_NaN9h{QRYmDzVj(uk&bcy0EiU-^QziDhf67R!!4T88n;QK6RooNKC-P=I&q%URSPmzvbbE0GO*>?^#KsN zE}4zSH?KXOodvzM%ic1ix67x>rC3RAa8)E7=*sR0VUcAFyRv}eky!XO9Zq3+7wVFi zHuh%r74F2*T|y*yu?@npPT-a{jgmm6SgvxXBW81cax``esoe(YD`{k}YTq#!Os1vK zjG>3P+yXEdeJt%$YW{0H#|?Bi>ZF#MsV7+@I5JS9^=9k!J-O9&O&r`XyV9VZ;!KVT zK`O*{oxWJMN3c=qDoWj_Sqr0Sv_)|#}?LXGJgB$_iIQ|k2<#t2?dC2|3+sndDc z%`L%UYfZEs{iXAfHO|~-H}~fSI}}In6CN>lwrgxr<0YbRbB+)CAM!pcB^-sAqkZoq zjA#BM@b>;StA1xZ+hM%9>5Sg4xreo=@%Su;oztqtVJWjIsPz`H)w#NQcTQ=oJwz=f zZpc~8WGh!5>jhw4!(o7jzRP3Nc4JGkztsL<&#F%x7O+67(n|7YVt~N%!CC#iBY;V+ zZ?5&eqYkxur05V@PBfc&ZZ77!l*JTF3h$AcOod3}1P5jW2FN%7)|O>I7yTcFsifbL z=?_ztV=azmYhBQ>q|X^^qWEO>F&!Q(k5W~W%qWvs`hxhVqM;VKtR~D%r;L_SI%lQj zywWY;)h;Bq)t1DIp59`G^(keB(kqN6=wxYOmNr&i3Kq!(XIgH*_=^>;t0es&X1a!u z_kpbi?0xH$v9^lxd35q**?SqZnmOYt(GnaZg?xeP!|`G1yD@s_GOaP5v5)DlmFlLk z*3GAhiv@tg^uMUKx>&DWF_+jfT8mlHyIW7y{{V|^bX{cODhZg8dSj>F!L=2)V7dXB7y6;FAK@E9Cr4SazHhgulm`q1(E67C70$UgFiKavO5^HADYV% zvJaPD>Zp_^Tb|Ybk<){SLyb1L*CLl(=VZQ?upiz_G0yRlhhbRW3FDt zUP3Rq68Oht={aUBAwN`8mq_lhWWXkQWwbl7GetaV(df;-USSQ+Jc$p*Hc@SCsae_xXMhi0!2s7_pp7&d_v(cYh?g=dnLP+@ox?OV`E`Mo{820BrE1f-X{6%i` zD!zY5Eva)HwC0<&tMivzjQq(gDwS|_ZncoUXU3__M&q$+ zHvMK~xsn^ChQ>IdlHulaDTQK&SYvWzMQjjeQgSc{J~Gi#kWGy_oyX2JC-rQ-y`~B_nemah*KX~klrmeqcJO?}jEyT{7W7!Mt{2q8 zRs?Z^xhhUEQG>3!w&MtTVk=9DuC47+W|>njc>~LA&51|=v~LWm8JZUgTx>h3n!k&; zPHgGyuAz-LlT>1Q&7%4lV+m^maT(WZZE-|$7;!~e%}9nX(@Q1KVFzc^obWi0d-lG+ z7n*gJ%XWQEOSq$uG^Q~2Yy^Ovp@Nrkz*JMnEw&8;SDF`!xEElpJnp3uZ!{8@KLM)0J;o zQ*zy@pz7kzD@~gOF~zN4;~$tarZ-?vLxuJ=2Y4M-Hv{g=C@V93r+R>TJnFPFyHR}zM-u+nNY8JX4mpW?3&vLE(>dgSuBWW$(Wo%+6SmY)|F00#R z891skJ=)(~>GRr7t8BL$CGFYC1fM9YEXWym7}-^Xn3WSMbIvPfdPUNIBK=^{`0a6~ zyq)x$7eU#K{+!BTwI5F_;dMp>Kc#c`uo|-gp2roYb~6=nv~4M|+-yw5ex!`;;|r?% zUYA7Gt!;05ddl|B?QQ25HkX$&M=i9VGRqNirH^koS3pAzt~^!6irrpYObC-txVDl= zo(W>NCOHNh??xIjju~AU8);St0OSq-0MoiNr(Gh@7>zN~%?GA5){0I--P~T9!cZDG zN^i_DxeNBI)L9fI&9Y23?eaxF-)|nB)9&qc3mrb@*5l?ZC50LW+*o#4Z%_#&(cLVpuj#^=_V84l!*)&>0=y7Tab7pi4vo}(QS#x7#A$3= zV)X0XJCc25+6on^QKC73vt+C`K9PnoQM7x^yJ*@spBisl-3>O^PQ5E6v0GdM`xLtc zc%)I0k%5u{B!Dx{0j+nf`fpR~E|b)BO(;e4_fG>Tk-|sza)x3_4eiJnCyL|>{Hb+< z<*}T-ZdLypOsTK&R>$E&G32LQ0*K4vxM3QLS1%ozw$(d~S`<`^Lk5M7)4OW9b{Qf}$%QdCMEm zbs4m?Q3(XCpjH;u3{?v)o*lG@cw}T_f%<3>6M=|~qO@d~+jN)&j&b8T_sPNbK9GFY z4%|z#xMBrm8*+beDjNy_z&=3B0fC8&h)6tV@udU0W)G3pI+*|8EbFviS` z5Jd8s2rY|@fmP!&7;?%70BvA1jN|Hg;2*EyR2~^xPRl;nz`}nm#X-p9lafHm{xrhC z*B4k)$aGd~#V&9%He3M(nU*m7oJ3+qWJ*Fe+IdWPyGCXKv6dfrG3PnJ3RwpJfq@Hqq z@FWx9fssW-v&NS(N~7 zz@6DEjGrKko-xVfc=0m)&uH&e4J&Qh%65z#pDZ{Fj{^#EhRq}L*RCzaaJqcCJ)p7! zMY@QN^nif5jH=ayvKnS`QxZ`T01-14Ga?mnwa@}c839f`Lm-ZF0X{vvnw61BDF$ar zPq|z+-gf=qK^P>TK0x7WU8JI>;7|yKmHx3Uj8xbejvK4fJ^;`wst`mmJf(p#xlb6I zx?+xP+oTFX&QG>7!A5x_+d2Fyc^WAaAsV6?6_l?SVnG2*23`gZTL&ixIj3%sS*8tN z6a*2jIU~48SSCV6%9B0XB+hcpq(t4n6J%`?#DlrGBD%-}>^TH_vJcbfNb#OHKk5VCKWScfrkuY$n^+73?NiaKX5|go3TO~0& zNk-7Y4lqS9Aop+>C=JUM@sbE9k%R5z061?ss&=tPV=mDfjjMpGBIF)$0sW;Ul6;bI z$}kQgu8>$K#oHw+K5-qTk~?h4u33~9g{M&eWg>^z+D zlG(`4Fetmlj%FGw{ zHN`H?OuJoI8lX0P1vS@l(2&C!xdQ}>AQi+U;x?Un>!`GQDQ@lVCXxb;wTO+}XCCYZ z++h2jN%M~#GeY<^@dsSfY&9)6K}WKhF)VK+v0Ls|Im)9p?>NEnx5jH?{F?L!srp;Y z-$?ZyZ%Lycio@pe7IGF*mBiWw5n-}vi=e7@NQi$?Au};22V>qi#_@U5y-lNP8pq4q z&oQ1zBvn?8g7Sppe~)je^XyG@K8g4_*IhH!Iu^01>6XJz)2;*0DqKY)j7I7lAUVgV z007UvG2^KoWc0@6yPfydg zp28;1P{~V6FQ8=RXJP1x6};ClM)E3LH>NVjZVR@+ivIwzWPB=&fX9mTuA!<;rdvxQ zSxt8iGa|sD$VFYu?1hxN#<^w+9rl7k9~A}A?=@arI=R*@Wz$}n>1&wYqhQb)i&?WF z)13Z`vudKV&C^x0ZOY~Fm4BqMIZK*j3+Mpuj>?Dw&0L142 zd)AI>9SitO>5Xfw`cazD6!DseqZTRG%+f}=^A4;Aox79NdSgvmr=>FWGQNh*{BEGv zT46a=V@`i5EaKa8R}je?$gJYNSi))(Od^pj)lJjo9zxNg;hTkL1|>Nwy!QAf2VT3l zv$VLnGIZ6rd!%{flxc7joFc5U`oiViP6Oh5jKJ#K z8uv5M_{3rL_n2Qvj?_A9C8u$jJT6xDCm>aEI!HA>w7^w6&LGCOE0^p;4!}FN3q3j+ zo;dCArboCKMER1twmZk#P+Se+l0h7N6NcO8m}(c6fXMe|jT`12 z$`Z&>pm~62!r_++E8X>@@bUaHdLz?qUDYnB`DW5sJqe^KRV_u6t*rW|k+oGf^7Sz* z1W?D`Ws5c+mC9951c@0-_v16X__aEHgeEq7nW7IOC@mvx+{bDI$>9DY1Mu@%nY9_> zg5q@3?dLF~IY_OeF2P3T2pecE{n3&8{i|d2ub=+_EqHwv%GgV+(>iaa{S^NIc|Vcr zJQlpu`K&)lG=8jCNmZ0qpU-K4$Xi`}{VMd~a;D)ky+K0~ZCjdq#2P9A{}VnVd{*?fsbh&+Xz} zkq->bocj;;{nXtk@>ARU{{Y9^+uQ42lTT%xo5w}x)EZ73c?xW81h4^tBaGvZ-T|p@JYr+^k8S<_XWXa# zef$CApL(lSk8gOG`S$zm5fkzJcb@}M;*${{R@?sb`^NtO!~K1{DbLdtdEzk<9`UqK z@AE#}$MOBVIW-Szh19IBy+4{|%CUB;@wR5oIc!&pX&{(16_5VHB@;0v_K$ymiMG44 zwbX5HH0#)e)_2Hal@4&pAlS-qLBR(H1bM2~_cPf~73Hh;?kz}>8;%)0K=YBo9^lp% z4K1e%24|-<;CN2`y;%M+w0jIkr;mT*6SPF_A9(Sgx51x=XM@u*U<_axfckq)=Nx@~ zyjIe`5xU5LPOdrU?kV&5_P>o9kmYf26wAx|Zck?v^bziJQ3_ zw=+q~*OZPvq+;Il?*R_ThHbbU;%z?xTB1Ga4Z_7D%~_lz>Ur5g6Ip)niERHlxRS z3kOFG9IGf`#ZL~di@9422vSFbSUWvdY0E{qIBSZ|W^=KO11poCqkwQd ztRstbsx)RCwGh#c+94vWF)GO;3;;PU#O>qVi!sOI#~w~@XTP~f9p|}|<>5n|mte7~ zl^_A1NJ2pXeawtvwZF{Q;m6P)GJ1DS>8Ilz(rS8pTxwpT*ss$KA=BDe%~h*)R-Lh? zGdZnkrt{iLR zxQeRxEp$KMR!hQrdt6H@I1!!O11TYq{79^=xp)O~YdG}(08{i&qx~Y!=`BC3fHW7B zjXP7PI_o2txql~+(Y3mFp)mQj)zq06R_e5!RR@_MzlVrB=Rt0 zbVv=6%LeV7^T7?l&N6xDIjm%67`xCz0flWb_G*l(1FvyJL-v%Z!tEpjmGTIv%?;-d z%P&$oyPfDBi|Zbf%=M#8CgZc+HRY4X>YQ|AYEsDL!IW}%^uz2`rIDn|Dp9eB7jD6h z2gXj*w|Ug8g5QVQ>cu@}JxUHh-ZtkL&N<{&y6U#ga~+#SJTuMAZ7sC%#Ubs9F%<0> zhDQ;d#TG)q1{ga{X1D8IFJD~I>8tZqSFZAUPbsdb>5_;3WoJm?a~SLfPdp>q;S^Ju z%VVpQk-_&a2E!w~#Gy+gxWQP;hU9U-cHT3b9jr12GBM__%zHh$QT0T9e_uhU=cJ}cKD93~6KcC3`)p(!Z@BQER{k$qU&$dtJ z@v8m(rhY%e_TGMf_wfDn@CXAV^Zs>c`TPFc&i?Zo{QG|16!+sJ_x^uB!l+|-pKazh zo&Dq9J|=uB0OXO3{{X}5N}c0)iT97*XXE()0Mo>2;dlUf{{YAM(}Nq9(eLds?Z3bC z-~0anhlo@%0P*~P#=cL#+5)b*^Ec5sb!IvbpxHJliLxqEPM)~QIHJHY1O&-4TrYB5 z&c;0U-aKOY`MbZSWB&lT`TY31PwZm)`oF|i0n#O7wBWN1DuE^Wjo7LAFK$sNtx!Vj z%Us3?n<^QJOwD;mCj|gmH$<$O@Dl!?4S#tq$#qiD*q4bmmuKwhW1H zmf2vfvmwT2NTLgv?xBd7l`E!Sgtt)qy}PZsKP;Vk>CaI!jPnt%w51N2bq`5u5T~Ma zzO2OQT3X``ROI?i)N)lWnCOg+ z+qmq0U8vPBmFjH7jx!}>aj6Jc*P=b=!MSOk9nl?i@k6cCRK1I+>}}w%m0J1x>noT%UbDyNu(*5|PdbUAbuL#L>|M=4qIFPE>L!WH>WZ}2 z1&yZ_QtBC^sJU$&!!8vHpj-<5r=)eMI;Tl{yXa1xeGHd&S5T*`WXTbNMuf5TBP7wy z7-Gb3Xp1pbcKO5cPvFF#2)-lhJqZrC4xa68gISz`V70qd!b>Vd?ef<#{f4D#%Qe0vM~WF; zV|QP5S6^w~q4mqHuIo0d(#u^9B})gSk49)+C0X_b*6q^9SV|jvEZGg_0+nTR;^)}3 zN=nsh(w`3BLcV=(SJV>z{s`S5Si=b74y>h%I;Kw6J5(S5oydK*d zkkfl{7|fNdPFby?t8%)7O6r^neOl*HHoiwEPP=M?{{S$?Wa=o@UC6Ui*>ygTlGfHq z=G9s_)h+|uTsAWswY)IAA-toL6F47r<8P|4uOxg}>CU9HwduWQ;r6v7>c1ua{b6Mz z!*e8XY8O}5`h-cjP0Uc6nBbj2`HL&4keJ#D;hnsfPx=$8vRzPbUiB8X>OMcKwJ2V~ zPOr)8tx0EB;c!{~J9`IWzFNjs?ARq()3)!@$6#ca+^qAnYH4D^Jzm$UwVjp27+sos zfH$`VSRJQgf-#%`NgPH1=Xq7Bx+~(p=>dOZb$_h=`Y^`erip1;PDUZY=G1V8Pb+v}B3eAUDw`VJ+9g)b{eU`D7uiLzC zvt^`nChIIXh#7&6X`Ue+86p3 zGfOMAw{k`#mNH7@$mclRPSC5hL}h$%*28tg%KFMbJ=X4&)v~AAfej%{!A2lbA!xUl z?ec<&jf-!e5OxllN|EId{{SBQU<36y2Oo`5O9!`?sn}em;UxJ1!(o0&Ieodu-(lx) zDtO>l)_xhesu*uJJvuzLMCnv47P;VTjv}iwr1k79Siz0!u0ggYCTEW>F*EEl7dk3J zmzV5u42IfIJQMcTBLMq*ah^y3bBguX=%IBx{7~uZc_(QhFJAk3QM2upJ_%;{N6!JIJtxWhCHwzy$M*@<0cgw@a?reSLV=A_AxX$1+;Ey@+Sgxc6HLI&~Ld&`~R0ooSws;vQ1QL1R z@;&iiEL}*^IPRzQ>ri1jo73UdJvEJStg3nY%l zSf&%WT#&{PxDl6Jv0T5WlZwyQ{H}D@p}LPjVfta!W%V^0y9?9&PD4>v!@e(I^@gI# zFHd9i)!jF0{{W=U;Z=~zQ~es&@%e03IPG^WEj_5%uA1J)&sDUV_w|&L87^ZWs}PEe zP;*pnhHH$;dFOsbp=err?FQ}S#&IY{Izwa9l(T!&Sv_MP0<}Xd< zaXKra_-?XhT~>;8))PVEL-P>PNzUJ=jXbF_>=(?kM$%SRCyzzcy+wPcO{`m8+gU-E zFj|P?l6HnNRh+bn%v_ZvN2hv?!ZZx4UqiG%&`059I(?fu_8h`B>@J6QG(uM)iv~<{Pd^$Lj1ZV0BwA z==~$4bnd*x*Usj3)=Ms9Hm>DuQOV=zR;aeV9tCaYl&nGf4@7mZQ}sTpYo}aZqiH&3 z*O7Y=$GDi}5k`d&J1`@-ITJ1U!l1fmvscd8ohME?VeQ4u5p5~=FbnOAk8H`GO zZBU_F&0ENG@?dT3E#LaBFovbE$Fe~XQYzj6o<|0y0Zy%+%~)N;+H;9K)Vy)Q#MD!u z5K<3dT|}^3#9$(JQSBm86ADnIVilTJD9OCu^;>mcUtWQT$@bS=YZM=*tuT=1*gofT zh$c=UVx=l#$>Y6B-DU*ru}10^D?Td#r+Z903|s&T8r7^>4iV7DV@%F@h*4@TDlJteV>{Rc}`=uP`N6t1KxY z0bNLS69&SvvbI!Y!-V++M`>gFO*JU;zp9o*vd3i%mQn;ty@KtL4Dpg*Bj1F~ZyWpV zKK>M}RoJm|?=fm-)b{-w4#WisU7~46Zq+2r0Sczd;(LOwVnV>*n*~agy!+!`4#med z(z{SKF1FoSVkK2mQn(}slh-f;LPp*1_}<@u8hkZnKIYX!?|Mp^WfDoL`j zVg@1rJ6abesgt`M;Z;A|){ky3`Y2?sthKL)mN$v7(6Wjhr{ zSgnef+foRtLg19X_=G5y>4qN>Ql+W|C~`%$>JpX}Y}{)_RfJt!0d}dUm@7j;1XSm_x0;Nq= zHMwJI800dAb)varYn@+KayJ6>|d--V-UWXjmrB%tJ1E3#}MTyPH;nt9uMZ2Loq*trM6 z2&IVrLacQ#8&A88xsSY}J-}pxBPs)d&zAoHI{Wtt-VESGAl&A0iQWWFgi#SOAGH4f zgm|21VrS__`_1^8L2dE#9?|>9@twb%M~Kw4gOQSr{iA*Tr+A;^JIBX`DxzbI&f7=7 z^V|4N{{TJ|rF=wf??1QOZ*8M*^&S+f#K!UWn2q9n{(ZgXf1Jku0OjFITyOhKN4E3t z@3->sr7kD$w0{r0e19+F;ZGIiHHJLwQeDMznWAMaU%ZUhKVxSN_T)cK^SAbA_Kmz` zH2Ib}wmt&PHs|Plzk%`l@lr^oqilWUs>|et))|lZy>W@kkoA71T$UaTF)ADAON`BfYn(v`-jwePgs)GR_9BW z(Je3Fbj-GM-v0o<==bPIAz^hFmhU2w3wooFE4o&nQ_#J9>yDn$+G9X;TUJu5t2Eb= zu9Dn7xM;0ap!B2iUR?SI)!e^OZe^^-HI}Jp^=f>!o~usZW(Mv_h)9oZh7o_O&NXAI z%WV*n4MOtz_BD5C+{F%q6^gbz_sr9|w@1Kth=6dUjD3}j?VY`%%!bPAPK7Pmg2f`K zn_4#++O39!!w~KjJA%j<;EkuD+5(qQvsmB468@voI9#b>XAh%7x+hP?Z*b2n5jKgf?g6`z zn{8%TbqD|lcxdf~y}*kb#9~Gsc-VDDpIPdiHul~a;FbZYXwrhq+nPN~r=Xusx+I;9 zqWvYZX>wIdqDVkm>i++DK$^mUR%5voUTx zrcfAwM>~aa*UiR*&Gj#+{!{d(p43{aM~(iZ^-`8sT4=0wYk93Jg2{AuFH0kBS1wSo zQye!%=RjRzA|f(>)#JYlA>>v~6Y5uyOLH5o#+j(5(}wObp3HWPY(Q^DNim#&81O4i z(&kGo6Iz&AEzGv}dOJlMvm%0*F2;3e%E)_i6_6o2TM8I#Bpnj-2j!bmV0Fh)G+$0M z&VDo&gQexiOmzA}j#B*Fz;(9|h3KbNE1l}yu)Or(biE4~*%Jd=3C*w|wn4^QL%Lgw z>v=A2QaPm7Ud~9!TpLT6-&BG9TqI)Yb_R2e#3G%*XKj~Mv>H@$%?r&unr-d$k_Onq z?@N(;QLfwrB$3=P5vqd92pJi~M^QREspqO)NXny5=2@i!ullQ~HE9N&%>>@nnn%p; zlvauhb2sPX3#PQ~%$8fL{d@9}qBOECSGQ9Ony-<=X=%zn=4NU(2Ti7y7TRuF1)X{- zu_Eb{+&p8fXSb3K4$zf(6R7nGUM=W{WHBY$?pEM;dqEM8F2oU%2{^kgtAD3zvs^W$ zwYN*kM8O1sB^P&*DIAA(h{_}|3=p95JDhA+lBeoiZx`oxv3wIUT zc~h-l7t{>p%w*y(T1tx}gY>g&l%Fx-fX+`jBa^4=@U@<~uOOS|mV2Xj9E%uLb-lKN=W;iIyWPoG$wGFWq*r4z znq9c9KY+-uC6>$AJZ&|-xtr6GbxE^Xb{3VqfOt`fIR(eOgak(Al1?u7F)?BojKEo z(0+{dU(ODt4xn{USn2IY<~v1nd!rf6F-qo}(f0M9nLN%yo?4D7wguTdfM3*j>?UUR zLe#&~)U3m#A~J~z*ZR~K(R8;>t;Lm%maAu@$0hkFtsIcYGvZkqLW}a7=4DW;CwYRg zC52o^r%yJcsm}$i$IU?{%;FIvj^Z`ENJMd*0p5#hZ46bH&jG7_{F+qKbbPt!Dw<0% zs5Mxzx%*m|RO)Rto6PgB{YOa`X^p*MlF5~B>Z6@lM*=a3DcAbB z4EpohTlR0Fgj?F#t)%f>#%-fTj@=RA%Cwlq@Nh(o+lFe_Ns?!RN$#yC)9&VWl61I_ zw<5^cCo8#z-JwDiB}##`*7D!ejlyB^)~)68#!i4kFzvK6h@x$VS!*iP6z&&dCyAdv zGqmjyyw8ttd_3vPj+W_dFGjna?k=NKB%7OXh2%S$2)qT3GI4+iFS&sLfm(L2GF@Fs zaErGdkTP(?>dWJI(Y%4j*F1FT4@-LYqW=IA{bR0m)}PRKF?~_#w^p-E*7$tBpu2f} zK2E;USl*lI+X8rX)2XQOlrVS-VUCuN%^SH4fVkVb=Wo#6;*VOhyh5^=pp}_fO35o- z+%gaj4$&FyxL#xI#pF374XfG6)9E+X*FF11mE%y*uxQuh<5^?e9Dv3^WLX#x;JO6_ z16@_>zNgcjGU=POo~+h-iy4f{IyCwyCoq~=A-j-Wp;8>b%i3^~3a>UqPa~NjiH=dW z1FLW3v(n~<3nQppY5}2+GC17vvCE!5%@h(q8NmKEG}?xbqgytutm;3i>}?qX%4U%l zEcjIcHx16*c<0`=kE32}x*5~_u0qBAX@tCtr7)ta6l^^0DfJsBew|LQ9mFtC(0`Y;vZgs#7v?Ac{NT+EVeo;vUqg-HRLo+dAq+nJ%>0eJVde5jS(>W}zpsj>fA2pZE z<#fgprlZQM7pL(r$?l35?o>-sgw#1c+c^bfNkkJy26k8@Ssvw{W+`f{N!Vl`cmPNZ zyBy%0n?&mZhQd`nx=w-YppXO{&bvJnEwnUg3mG`y&dTFeC)h z8B*9br)LZa>uX)x%Ixlyo<(ONiRAz>m2Vq!!LEg&0r$oajPp_tf<1LCO%ko9`1Y`2bfbFgPH;O;6kh|1u-DA=PZU)TqKsS(yY=Mf}Z0UCC8LNmhjEE&x?r*^8jT?&T)ar z!OjWtR~Q)akSi2zqmD5-%SjUC?UjR`CMu`KTPGM&Jdwv7bAjTnENoW#{{Ty{ z-ZML-V6N;cO6m?3h6XZECy}^$Ca~Ik#A%x()uT)15}#1pED^}jeW;qX>(xTVAy1pB zj2ijO2=P7m%~DGqH5h^Gwzp5mB--FN7nl;9@+PJ%mPKlY~ zF-X3V$Wtv;HK>F;j^MKnB)|wUoysCO?Z=!JznB*L@^Gx zVWr)YR}+K)piW7X5TPTR03>i@KJrkgnH}esicVdOsH30RYD0CC7No+p1We%pln^0 zn(`Ie(L|vvD1`q2`Kg9P#~B<)!zgaF%d6`P-6hiI^ye#_&0}@` zvcl!9>0MF%6sM4{)Y{rNRp^YCZ_D0OJw~M4!C2LnuVKg&Kvygb1e}<{%6xURiEr#< zi(t4(tt9NQ=6J=@BM6+F2Z`}M8zX_i1k`TC@Y+m*JBy23m6{PeN4VCP4QngIH1UP? z#UKv}Z%U~+ED2LtyUX}r*WPP<+;thYY+{QWndsk_EiZjT4zrD|(`^!3zg5OQZ;KYt zUbgBL)s#dM`dEt4o+}0&2PObHZg9yiMwXS>#K3!Je`qPzb=bgaK7kVKtrNeDKP;N z2}D4|42*b_JNA$Qk--Do+#loT&(wQjvVlZdQpQDYRhZ)zd>~KAZ*I$?<{_CG|r>xRh=hSPub~@RW#*}mvsuKTY|D0Y; zB-lE0oq3Y(M~p(qk=yFGmd=eGoL2V{?HgVhto1aOXe2|)GBP#7umEG9P;Av#SuQVZ z?JjMmNo96{*~xfrEiSbAW4DstLFrQwld~jYnSmP^F43GLsd|T}~ujsPT=_;e7hpl-h8fanW}CkmCu6iBR7SqbtYjX@z$Cr)^n|o;E zRJn{PDz`91;ars)fnD3esojsnd(DTIzN2|O^9iGRd*%bDT8~)GeJN%!`cpMeJ)OrV z6V;syZzr2pF)J==$5!QS(-2UwuO8DAwAkNZrHqSmh!*nD_XDE@#LI^uG0ONSJRb+m zRkqY^ZiVfXaL)5fYjnM{Yj+;+v2bG#Bq)K2%BQPwZ@Zf1ub+FleyiVqUAi&Wn|@(& zniI)(fa%XsI-YnX;H&jlL-jk%mb2-`ztom-xY`IB89Y{`#pz2z2w!1emNG<0NSWYw zN32adBxz}Vaiv84vI>l|O$?~Pm<4I=_O?y{muSEMRFGRO=98x-u)9fg*!3A>7g5N! z4A8?Ia@)+Z#~ZUXwZok348ak`NhZFkD*;VP&_Z0IwOE~kV~q9}ym5)0r}zEm##U^! z)1M&7=l=k@Z2thQTw7!1t%uS${{V-eQ=CiMA`5O`aogNxKl(4W`+tY=-^CrcCnl~k zF;dzpfAltO6Ce8Cp@@mw{{ZhdHl8v4i2f7r_xs0*Wn7id9+6YS;l2Gw-!@8T+O z$^QUpf5dy#kByRN#@7D;1MOZ^Waa`U3L<~{E&cY0_<@gj`HA-T@lmnk&*%KVeNkTv z$LAlP-CCdLTAj<@PyFpu$JeoH^`9vnP)aLQLmP6$PMpJ}=CT@MGvC`r23_*1F@jiv7YD{mZO7w`d9EV)sPj9} z{ZFEQI`ZwVwMR`c*!?}5Z&Lc{(@v#b(ppokK4UshNf zdpHt=hC?G*sks(fsE-$SG8nHezDnb^tu4&apbE<*qUO<9s<0u_SYOl^&ekLX4PXL8 zs_B*qsMr~;qZY6%r6yNVAi7cK^J%Cx4wlGuCo+u}rL1&2&9|1!Hkphr2EP>GXi}l7^<3Rt!3>LIyC4-oV=Bov z_ETMzw^^*DQ?&-o+Lgt-ZG2}PwHPJ1Ay2hbhf21I&GPBx?`4W;6);bxmIN9-^+C>zLc?VAU7oQhw180<6(g5q`JS26S;TWo?q5dC!!#G*3T-&s!H>_ zYi^9>G2jj=iPAJDw`-@O9%^2oAaDrG{ts_Z_eB#exOA=Shdv4Z55$8FFO&B?+8 zmL!tHB%J28kIaWxtLZMRb?(PXHC`hd<`l4`Z)nl+TC?Xs@1Va>eaqL+ZE2NQ$13Rzd+OBhv!Q3|t4o@|IbUtS0 zT{mouLuvBuRgeIN+1Dz-1<50BBW?Keg22`$!}TXx;x!jdH68x|Gy`$l4_50Y*g&b(zgU7A)nnQrkx4I&)N=PW z%ElO^L)l{_J^QH7b7F9Z6F2TSu+RM%tQM3I%#^dA6KUj0v%zl>W?vUygE|qmTSk9&^s`>3@=f-rN z3^KOziTtYjHIA3)&-8^|)i!V#WJQvSVZf=i<@+El;W`bk{}3sML9!=xSV+b5uW1(6^~_cC`Y^LowaYS;$J>x$P3WVxQ6w z@pX3FuBRh_9e~2@;BY-43~&ZU2PEgsWi;i5Y%NyV)<||KMiMlt$axGTW_ECMknHSR z>T4_e`%d4t+CRf>{{WARYQDw*AJ@m{_tpOZl>NWE-|xTPf9c{s!lUHmA8*g+@%|Ku z`^V1P{o*#;ZBrG_#v#VIRoHtff` zsK5<2dfQJ$cz>r=hgNJ^u81Ts;Xg|Uv{EGtu0zg8!j#Q+vLNq~3f|zb$;m+?rD`OV zGAWle1%^qTRoEsBh$xB|3=xs~RIa}M6a7!`Uy!yD+=cde7sS7Z`oCY#Yhj{a!>8QAZ6T4T zc|>g+zR;l}jmtK2cM=p2W;n+p_`CX6beHJ6rs*1oR&@TMuR+!GOK%v{qqS*c`FPex z-uF|$v7-h93Ax{ql~8wem#F=D@@eLaHr%gJdK-$)YP}_iqk_A0F|PBNK(&gzC6vbL zT})VxoLM~HG#z!r{Z3`8^-of6h)i+gS`WZIe!@HWto7>|8qQo!(A-@`haP}gdl_<} za0)bX90f0cyLA=+0Lo?XvO9et?(`i?ON&#tTgyegh9?-Cf!lbyp&8{(tTs;xbl}4D82nunWU=@er&mp#p}}daE{Vj@(|9y#fw&5FZ7oisk`AiX4eUeh zcP#pxZMye^xpb#XN7L3Y=|bnYjV#m6FJ^gu?8QzcWoO)#8|=o(qeKCJNS*MDfMw+_y+N zm!oj{n_Ol3tI@qnm8YJoM;Sw*w{>Qo%xFv|U@@6%F>0=>sRO2!o4ZQVQssyAXC(n^ z8)+3RO*HNx*sZsI3&ggCi6t)MnPd;h+=4jWSzH5+r!A6=>KSW3pNB!}-5*bGyS~)A zXQ}6b!oH28Cab00X-LW4&BETm3~);-nPYSbrCuPG-bm5RG47W{yuE3zw{_;u7a6B7 z7fLi z%%&G0;ztG85=xPR0mkoY-@Y&Yh`P1US`BOACat3Mu9W&u%Zpt=YjS@qa2-C3zB2pn zGR0Rb0}9LJt<$Sx)ULbk0AYPOJY#U1&1xHyvU|-r?c{l!+nDYx=K&RC3BA%*1V+V) zjf)2joHw@H@Dub->FonR)-Ap){;caAV^CP*k!*$R7S`%Ro09}_t&+tx)ArcRAX!jE ziX_?yu6AqP8=L7bTyUK*)R(DcwFZjP`r84R$yIwSF4c;*^kZsSm$-QuS*q1CVUgSe zGc89jz)DEM3f}HTF|r&4_UbB*)JVl4Q9^XOR2QYM%ixXM4s9bBsO>UH^L*_Xk%dMB3wLi%@O1$ zQ}jiCylMn%Or7+jh1rP_tqs59C=M8q;d9) z69~efz?sa<7_lXT5DqXo{6>5V^?y(PkKJRW+iI~~{AkrL<-cgkI$Er20ahi5SGknP zTpTZPu!F{P#%1z1hrs!J>h78?J#Sdi&gQIRG}`qZlEP|Srli5$mtR%$!|6>d$K~}4 ztSr}9G4y423;QxgGEg@%rR>(dxG&?fnM|0JhuT%tU@$;Rl6c&za&fp1B7J}Kf7UN` zn@*vJ;;yS@E|RWQQYjikouq=+(#IsKs;m|yLd;z41n_#B<^KRt=&e*eK*nmmjoH?n zU(@=_DXR0CexUVZsMx#!X>DnDBWFcvlhPVTQ7AB3YDmW2W>&qf>r!rAR;*mMg6XcJ zmUedbRyOM^*`SJ61vb2@ic70@+c_=jIrE=>PcZl|@Dt(J#2Y@P*ShOQlUUd7b-ToA zWWBv#vimtw-dk91B8?1fBNH5*$I00tQlS@QG1R(qshMKNSIb70$K+JB$rhCA_g8Q@ zE4xb*q`Hwhmjc9NFz(h^wQ5?%#N&>0xN;|0ePtS!O0eHlrYxYA zdsj$&G}k(JR?_;C>gL|!+G1jE)x^8DNfVUa8H7hB*E}#~WZc*+q^(cTf2RKc!@r9^ z5HG$9=sE_gYpSrjm1nqy&*Y4na_^DhmOHn&Q6wlr{fJorK;Z}mzGs1Thq)0!Gg*ZK zbmALej=(L3p~owlTCIS}7#-4J4z@@TFZY#&=H9t+pB|3o4;?(>6s9V-yr@RARJcQ+0uw+Mm=T1o%_^2G ztx*vR3l<$qo8JMn8K2Ze5=HMb;Y!9;?n|7vrloZ_q9Jk5k;*8+1+%a%eD_+hs@62C z6fH|=G{k4v)TWr#CRq1ngwo+AL08`0#-kW$T}s#Qt$VOa3TL(gywQ9w3 zB^JP(dg7C-gPU{-yk=NMKT6~*u)d!PQNd~F%78jqaSdb>%^Xuvp$IF%ltDuhs{$y0 z1aTlCA88_vUKFEGA8UiJ(-utJB#Ue$D%$P(#z0Am$!2xf!eON)XcR14rE&(LgYcyb zTH31<2BWUBR7Y8k*?D3D!KuIXd;w>G<$r*ut_4^r9vx}Dng9Z^-_k|^&PuQ zqu5P!R>tu*N2nNT<7F|Bmc!*B8_Jd- z_~OpwPIQ7qJ~K(|t$Qj?j89J*Y8{x;Jw*-KZ+r^&gid z(~qlOZCa2C81a>~wA1b{Wwn-REn|t}iKii&6rOmcnh2$31jZ#uU+q|I2LPWq#$U~= zTElNGt*T$V=`7umEOAcu_RkvJJ-SFj&hU3pj9bx|94Re;aD^Ymmr2{PsLtm_I+2RP zuJ)WRp6VQ;wA$!(LrZ4*^-s&i{ac1wGR!U;mUjS-9yvP>tOgwkUI;lB*SDJ0jGBwSpB%b%ly{Do2{^+` zVc9oU(ne4;Qi$eRBVpWERbWbx0oxv;d9%dy_pbdH^81q0d8~%4>x643VKcRGM!g-0 zt)eiQEY0A|XKb7WjJtyxLYfufmH|u~PKDQzBZZcqV|#afWRf~uSlT_|2g62^MuaKj zEDV_^1TPz~SZ4nAOY1v(8_w90((dIgi-HEnky(_L!guELlW?LU|7HKUA!}{BJr3Mn!k0 z#doMnEG>2FMMl^{4+XM0X7WCOkKxF=x8g*acC9v>q{R)$vcgExp^!AJc~#m*6+AKL zEEsW&R*H3h@iM8=ezaqHJ*awHsq%I0V>)G%)cr=oVe!^9W{j)Vom+cD==)lshm(s- zOZ6=%u1tiILTxT3uwP8ox9RSin_2x!Eye5-8R52BxodNAbqteR+p~ZQG^-PUarcz^ zNCvSt{c+b;+A3?-T2_~+TZnFMWVbSiZ+=?E<6Fy!Az)H$rGvC9e(Q6sjl>- znl=K*5Lds8dwn0LE-WrDBYi=xU=~s=B(C|Q)TV2DIbm#&MACs9D}{C5t;i;;$<^I? z7N-r9Y5F;|yL+f3oh4`N+*#VK?Zg+6_RvS$v@LM5Li48B-CPF7c2l7qax>j;(%O?y z7fj#Ny-}id_MqwJve3H9r83mIZ&PXX(6svY?qaVs4O4OXN)KC9axyKE8J;mSnziWN z2KLIz^4|LB+ujM3hG3>St>=>3cwI;#j8eu_GLo#NTw^2*EBs398%gf%@3f6IFD*L~ z#$YczGuqxjmo~RiO^BURXxXzj=5kJn{M)bNjwisQ>=3-rg>Y6ZAv)h@>N^; zLvz%c%N9(`pj5JBes)@lca7qFat^n9UYoeShS)U9rBWq)F=EIVmkW%lKT5w@XRo@Y?3z7QTDVHKU$Ug9jcN9Rk@3$gx}M%inmtAfYY1)O zdx4}eY=^BuI9KdAw-m< zsP4{~QH2>R>dDB)H2(k>o}1gnL|y?CqpB(KMhU5?m&rH1MPAmp#}(47Qkp1X>~Cp3D$UEzl`Vp=rnI{sFz2PT8nKAA~6=xdHs6ZEWP z-~fKpKf-)#e-}O>TJ$EFZ3@}Lt7@8@rDC_77mKwS`&py|lB#y9cm>-(vTM;@J8Jrz z5M5=hqG)4sSJQ&%tPp(w2a)VJttabepDh{Ct#_w17JotN4E4O02Mw!rPG?H#)LPTM zIMJGeTw^+Kht(R+{k)21zAgI8D^92dV0-oxX#@cH<=r{)HutGb%0-~)HWI@uHqeWh zB?~>|@ku;($mooy%@jndz7r)^IXqF+MPN zpBE<3^=nuq>5U%h(p7@yIqc(QGFwckDoY7>O2^ot46ZlMKEoaS{No6YrKC8Vp?=_RdIrcsA(S59KJAmoX*v$7ew{8j0KBvgBx zOhC=$v9`H_d6Hh)i#t`7!IUh`3-+6C#t7)!fgs=#0l~&8?{8zi`9p0R#e^*)+(gWs z$b_lB4Z>9nrv>mrk~8;(SDnobsrs+w+ZTq?)a$PxTGtJeup-H+Ql%=jb4hE6{WC@a z4eE`^U}8_7C@2~6sCA{%Y1Xz^j|`K=1m3RL+{zj!8;Rp+_S{GVa0K&MZn5coORYLr zQPDKlg)b&}q#f2N8Cayr@T^H35HNfb#w(Jz&nKN@y=KYc*?_lyy9WrTl(BWIt5QVb ztCpHFYaS4;ObLh{U_5xv^PpRGRlV$tEp09?if3}i2;Q;a`fv%r2OMVyKf1jB{{W+p zT>8k=boDY7Dq7-Qyb+FCBjrI|zyTV~9q^ zKa=>js|@y0?8t&y8Hh80c-i!O{W|_3E}wE)huOGgD#-ZYGB*ly?}L%xoRT>QSag?A zbfv`FH&NIdSztZXF_6nLk`%mBgZ79=7|*4KSy8YKW%9B&>vgjWIPFh~(RLez)>XpJ zdX+4;3f231KKLgOe6zC@#WyTWrOdI#2mme&orlKDX(R5tiYvIJF9TsV`7$+fJR8nj60z4z%d7tUE5#PthG*~_;nl|NglIvW2w4Is~x|p zL|D>E)Z2vZ#P~5HzU{&_V8u^8Zo^}%<0&a?2=6gVI}Ip_VYGrIpo?!|8JUP5h=}|A z_{}i{pKM*2;|`8?j!-qoL7eaDMszqy-;I*(|pWoSg`|dW-`NR z<1L(E01g2eCyXF55Ze-!u$Dqoa~^$zt0CAmplk~E?K)tPEP?uDPmef(-YYDL6l(pR zNdRu==o@YcIl#!rKaF!q6^lrVEA7cLB7jCVuu#B_s?CtBcv3ybn)A8(iL-&q6^lz7 zZ^7n8h$fsu8mbmyY;3yJcXnKFBOgY?#x{;ZP#UIp23Trq7pnt;mp9Om zuoQ4G;8?DB{EqM*Qj!ujY{~PFSBKo$%K|V?(UM6%)$WFPjDkB;wZ=!OLubLj#s){R z{0`Axt3y?T*4h$6ZB8`vm5!>c)9pw)ovSfQ`dR@8+ZnL98EG(G0W-Y*n*2#Ta>HvZ zgkeN2h7E)Lo)m;5oT$NO#~hA%twXQaOVPbcZiDR}1}s@ODLd4VTReN6qafo1dme*D zHmaen)G}+bEp`ifDP}{XELROSTF_&?35@B z)ZqoV=j+@Er)VgclkrSltSlW>S#n8NY?60<3gi-?3}*wA#%kGY7FJ;BZOV;-kwF9S zavUM#*%08Vv4}n9D`^YRV;3Q2FlhZq_9>VW2-<5IS+K$} z+b19bMnNa>;{}FD`@_idRIss$+9?W%F}sCrq<|Z4Ibd*FFi6LNn#q`-Eq!3t6d_(FBOI=>h-EH*yqz;Dabc$yif3)q8Nk-tPaK7Hen%M6s z9$)&cr2NP9n^5PmILi184pSo59W13Awh>y!10!A<(N^c}Vf#!*@VF_HDLtlddSj_{ zoBd)qZBj>jsAj|LAxERqrwxD((}G4fW5XO*L+F2l9dpxNNuz7Jzsn09GH}j`Dm;N% z9SImwk_!$2&fMcGT^;MMn@)%Hd#ic}r2Rs|HvX^IIb1~G?Nrh?H6A}r#&c5C(Hd`2 zYTUYO8nksAy0;*VWlL=#CRuN6W+Qp=(QV?jxwu<%A|=SlQ2w3FLy(BX5FSAr?F6pk zxCc0|L~0t1=9>taY^Auf`?5S+NR0tN&gxxR(la8L5s4X8?kj;&-3arc(4M_@Ls4|o zrx@GesIKcd)6xT9nquiY=NU?O05JuzFYYW?rW0 z%?n%|T5U$NZym>J?1O|Zfr^GR0{eGu3={_b74C34^HpZCm|bUz^5vlcy4x3C%#$_s zDte)~mSXbR90_U=jX&xK9d528A{1fFWEl@^L2z+1wA=M>Rb1IyYEX35i!PxUl&8-) zlp%%XkGj2+gDi2kZAm#J2N|s+QTS)j0Kq^$zxrOKspyxV5H19|9ELV!(b=ucf@or$ zZRHm`UG3g@&A?DLt8U4`6&a1z8Ldr&!0HrvV(H^3(9_uMVWd@**I26e>c&o%Qr#LF zYL%TiKbLA*!eO!&dlltIy2}}Z`ru+QbyrnfS*D`hF=rfN-6x4&`TMN0MAHc4Ud}{< z6)x$J0^kyP0;TuEPKeU=JDnnLh|~Pf&P!!*W6`8|mEw{pq?&ma>mMuMo;a3b2r`!A zjGQgf?=)Q#*BwE_=)CVhbbgFRp}9D}=^y@$da`fa85#(@sKTORy^BJHFvz9^jdI8# zh}&A}kBfSKwX0d_ce*4xZN2MkS(Z)UNZiHhMzBeBGOm&Z&L%OJw4GC*^a{G zvs$0>{1yNil*sYMVyv5ZsQcMhZlrOT?vXMECJdvzBmvqxbOUsSRaYvxVfO&Z10(iE zcs@C=CEQOG5WUR9F`z8WsL~J^VcQ6<=ZtP;1nu&0E5v6y-Q^ohmcCwlt34#cGo>uS z7g2`pwXTL}mTD74Z9F;f9FO%jT5YP}g~SxeyhcDyd{+@p*u%G}%v`#Uv>D1aPo=m# zHZy~a;MO(o^tgM3s*coaDJukxx;Dnwk8DItzNP-le%-?$WL9gTrgUCsA4fBZp+hH& z$o5FPYkN8uBZrQAQd^sBN#mY02=d!)V_~tJTAMkdh}nb{@%jTblnOZ&P}R1qSlbDZarg3iDNf#ufWRZtu zZJSh+jE2JCoaY>JDw(^qLw2G-tzrXAp;&gqCvY)UT$LybZcxJj`-5Jm1FUqOtGB7~ z`eRaIbp`DeoBoY!3V3Xde2tASsDCe|mHdx9s)kdH%6?gq$Jp#P1)ZC!J+?TX6y7OO zV|PM{F72e_)v>lVKNMh8k06d}q*KK^%8@?zgKqEv^zTsUc^Dy-hE^F;JRIh|48d>h zynGh(8*-0--|fHu0K4K&4>|Ewzj&torcd5y?Gy7KGrzyz#ChZCO#c8nw$l;&ZeMSB z_nH0vfA;X8#SeO=e1$s{E+}7C;#pe442XNFVDVr{ETD!YXXYj*KHeeyG0sQl%}fps zeZ_gX(7IftW^wMB7?>aZQ!BT|(;G$K<+ttj@g2-RZ2tcMf9F*DaQN&XANEBXi_;h! zN38S|AU`lbRJ-aQYV=vGxNjQm3-4~}{;>W-w-WA`D43rK36yM<_YmiUf;kvD81P3J z$BK+-kg#Y_LcoKS;N)@+M>)?q`q!FYNjgxyKSN0?rTsTvmc{1Psd1WQG$xe|JB`$6 zY`t0fI3dHuN_oI^$&JORYzap2$niyOt-`{q3WbE_08lm`s^EH0;xSi$Id{HEer7`? z%2nHY?sYy@j_k7j1mdMFXiW`yITYQ|no8Pp6?1emDzm0Ak5*cirLwEKj+RMoqcM@I zk+_t)`rQT>9HC{HYXnQg#u!{OG)l_jX#`{y-Ma*M#^PHZ#N={nRl2!CjJFP^GOP%8 z;gNQs2Rs#DN|DH31_cd!rkys)Y1io-mrryp{U-Y~?^x3Jv~HZarr&actEV4r*gF`) zsCJNwl>sdz%M=w<075GWh&&NUs*e)7qi#@C9j)hZ&x4$tj2=%snl0VhN!?4CBb2FK z!Pqv_l2ah(Y3D1P9GV)ROFDaw*UsvGJ4xYaYo_U|+C`dzjYZP1+!j+OiOgiHH8n&O z+g5L2a9*O(tgSUzN_EZCUb2=I5khwYdPJla1HmA%$sb&?C+c}QI3h=tZ$o4pn&g zv74^sj00C?jRp*HF(~m!TU&!E5Fj%HztTNG`Q67k@^ky@p}M(cgf+{RgBt;M^lkgQ z27Nnyv5a^as5+e$=-mq1Zk;ZYbi$=Q9MG|(Dpl$JkwP@9*ODB-zfGxlcpMX>E&*$u zSW(T8hs?_&3&a-I*$hQsP+|Lr9H{5+pCifsW~MiHk{OA)cJJqYU9kBWJGtj01D|dy zSUk^u9v)r%&}jWVqw@G~_gz;{Yq9DaTGl+}`h;le3Se5#6PVIBXln|f-BFyh zkiA*5o7o210`9Qnt)}Z^GS5Aw+-_X zMI>Z0pR<-HS53hcU&v$_t)b}WN_3|}`cc!qjc9MpKcU?)(pYU5rl&Q1nOwQzaHxb< zW=|r)8M$=kOw8a!Vo!(wEI`6rW97C55?VvS*lmLU*f zS92C14`2y6{v_5({k}He-}}BJ+xYmBqCh;34I_E>_S!!2zuGtd00{94d;T9!&w*Eu znfQ;s{{YS>-go~1Uj8HaR7WI{z{m2XM8xg!v`+s3!+85ow}?~k4<3ILkH^R4)&0HZ zef_rk`^4@3y}kS>K_>&jtHi{|zrVcC?e_TF`NxGr2iWp|Khl;YG4H>`@AI(z_xb)m z`S8X^;ZmPC$LEjdUnSq|0oic*qUg$|>yuo132MsN2^Xm$Z&~K4+dzj7V#_E6u1qFM zMnAG55>bi(i<`{zmQUgKWApgc>i+;`7e2@QMQ|brTFXjgO%k);u28p4HF2y$%IP;$ zP}f0ChY(2dT)3=qhVmCU>eOmB(Sl06US%nWF7m*=Eg;FI2~bGcM9eN13n!Lu^3T*w&!E@F04j9N-bW;dah zB`nJjtpIc z3j)ZlMGRw54ek#V_dC);OeHI)KZJKuIt^c~L*;|6of_8qwSHuErkJhM-lSpmInu@G z&1Ztr*|Z}As_;07uVIw(!peb&}~Ms(fYX4H48g=8f7UQ zjWxQy=Ix16MBfq1kU%9fgOQ5XI;Y?_!mp0D)_QlvPMIA^W1&d%TCdFA+V-T80Fd`B zE+B7GC;&e7C2#_<2D%0Kj`ior*N|STXwH<+l+M5Pdp)SMo-1B!y-U;Hv1YWrUY}^Y zSsach4|g6~f%cQCbw_U-lX`K`6>2SNTsFwH{6~s(4_bUj>d~v-FIz611QM)lCbqOI zb8ur>IE`Q!jZxGzncD|wV62&8jhSo^6O=0DQVjvb0J^2f< z&Ji{_ZKuNEG{(BpIL#ZXG8z~2OunnoSr&(TEq}=KXgS5!ShE99}IV?{+lg)K+fZaiEpB4T) zYI;ts`u^ArFeTEYOK)DXE&RnkJde2 z)^Lp9Rl22~#!}l)76Y3t}_>3wM!pHnk%6(#E9gU&e~#3(229i z4mSWZ#?W{ic{s`U&3n(eAU}I+a5&?~?&taDwGYoe3g4G5p6bszJp%L^52>9e#Qu4$ zX;7sJ(w$f7{yomMn9_Yi)3lvkT86sj%dJzh$yeywiETSe?ln!djgFIZX%r-#CsUaq zn%J=sERy}4H!*+E$s27}D}`vuR#pHCmUnlyxo`tq!5c`8w=8>OaY9Edtf1jeMnJ|q zjwNdCZ)dFie!_KX?sre-vK>n4Ru5Y0GSVu_(bM(wx|c}w$52{MI~AL-%UE@dT#Yha zcd@Pjxe&)R`4mx>!E~#Rqm7)fdyuMy_kedw1BL-t4axMVImtdoK0W@F5=npY<5Gyk zJyAhFbS}bCtZbOZRPtR2RdNdfx~z4c7jz{!wJ0*gVzC!BtFjP`rZ>_;5jt|!GF_hUYOUF|Y7)Gh zBT**iRJ}6VybQQl!%EJxw-|3hRZ>(D>c>75ljtwelTy;G{vhc#msWGx^&?(Ns#j2J zNZ!q?U})K=XH`@zj9$oz7JRI60PYIvhe}mz);gtgt|$3mv=whZe+NN!Rc3&VsH~%z zwPaSakxYzAc#F<^XxeOVvSHvi2P0|*H~{C!;2#}cPd+*0$>8}P%ldIr zm=t7m*HSda%NG@hbY*Gk5y@HVb9!k~t$XlRXyhH$d`n6CD!&tkGbE{t2pK+NCdnTc zR`Rkakr|bfBX`^(hn(&hACDL#ARiTJe6DS-mNG+>V!LGRp9dI}e`bD<`zHt66};bv z#uq1qS5S{DuA8lMFRi2(n#-n!F;sF{A#QM7T7J~F)tyCvp6nRqvK4X9X%h`qL^p8Z z(AX0sntC!qWH}A@3+)-$q>`gK9Q$L6^Uvtl@-3tFyI8EAtzJ&?Vm29-NplDoZG;uv zT~(QmLWRJtpj%?ySrgtBv{^Djed#{wCKvinl_^BgF5vSn5?=7Qo@Z*oiIj%YRebXA>SM?XJT31cur&8-2&zLP=h0~PmT0#+O&Ql{!o*kAg zosk7&6;j1_G62b*o~bP`Zs0S6yuKE(>GC++5?U)cz%A)AmfP%EutNPk-Ud6)7>(=R=^U&H%d zbUV!NQ8G&F1_z?LyUnV4l8qUps^TGln&HU4halhAr|0k0}8_H$pFJ*TNPCR*MbHj4F?DT;wjnHSmE6o+ho z54y{%dXHIMFHqFcw0$FKX!~~R(mN!*q>r@{J|hEsj94hjC{`>=<+^M1NB9}=uU}7z z-5=8v*mY!|GjA2lnvSJ&pP7m=a_t?})Uf)ZmuMvmmSR+{(ofCm?WC%z%_{xFIFjI% z3hPrukr6a<7D^??_yHm)9f?2&LIOiG-Rr4QrjaL0UR5ff9t^xmq{{Zcs&Cp(Cxn%Y z7JxztQN`T%Tu2Is>QaWP<*ijs193=WZ+cZ&U0}X$Z>C+VHJwU`755REc^R-mf3?I$ zU?ECauh!dyxo>920y`Q#95qK}9+H|_Y*~;=O<7@!1&}*3PE1Az!jw;9%NpdevRie+ zr&Wo#cPd>&JC&bw*t%+6VO4?w@1W(S5wUZXh&4(CYeFg4rsz89?pe20EbT2;t{AtO zpy>8kIHH(yNVhGaykJ(-CYqG}+C;UfyWXa!_nj5g_RV(1Ymf@%Vr)Yzq$HLz0*E0p z;>NFjDnlEG?6hGjyqH=`c_uPMmn-5RN>MGy0-D8GZY5R}!&}sOn*wWa z6pL13*7FjBf{B9qqGRg!-@=uR?1F9D6!%`$*X+$ImEDv6zbW+SvMsG_EIR85;#n-^ z1GJZPgo;UORoGlE*|kFLw2ftr8Mw6tx6SrdnspYRP&|o_A!Mi}eWi^xue;86l_~H* zW2;=o&NvyDt5zG$#WYwRq-%xJxY94`*H@k(sV(VXBh3RYhgr;{C#nW0>7T;JzfutPJ9AX&+ zl2WFI#N4{sy=wX^Q&Su`xw~R0FY=JHX@?|ia$@Ti*;+w>047ocD@w{dDL~dIu&Upv z+ZgPYqs>DU9IW^W@a~k#?44>^sErm*!hp?0-c`PcWUERBtol?kl=hIb-P*>~3 z)NX9xBIFP}*(!k^pF&Wbg;1@^kH9qO8dgJfks@lyMmYJMUncAw$*{vQ7TKRy(sOvfnp-`o4Q-*3Oqg(`<= z<-Xg-{{U$A+wbk+O1uvK^AW$>_)oliPtVMFQk{sM;z+)B_}|)gk7)k@9|}{EANbmT zZ?^k?9sDUv5%!6XXpgqvZN4Yp+vmcS1GUyFxypI>b>ek%^D^kXujj zk8ih(hM#aEoGY9pyl3d#?LWIbe-Zp;WbPpVWrri`exvz#{CM}SE&0c9Rj7HZ=suw6 z*F*ZN9bMD+`f!aK*BuRyERRpMr%v@2z5Ktf{TA!AgaUNlk;myN{O2Eb+Zb_il2m|Z zXMBZ?)G%ws6qvq$Wv%p5sWz9IbdXHOaVY-I^G>-4*8U{*5DP1nHX7Z9_3nuW*e%3X zo$H%Bn59&`({(r=EsA1t4Ay#`xp;07cSgZ}(L*Y*)T;Ho$A9q6K3+fgVCpeqdJn2J zKBd+<*JwPuwN|XwRJ`xbx=x$vh2G~4Yox=ZqRh+MfFzBUgjis08`H4Wtr9+s)n|r8 z9X#DV42Te{#jP!FV!kaH87Tv-B_ALi>=z{QTK7xV1pQZI0Y^<`HK}3ySe_Y0!rQ%@ zMJq}6PbOuE$0CLWeOL?6Oge#MQ+1cDpNH>P^#1@(`j>&zINfvCyxytDYb`NrPih?p zM>*0g=AFV>*BFCyV+2<6$y$-jZTIzNz@Vmy&vBUF8B#QAnq>+v2+oNU-tPcbl=tdVx zr%(%vB6rn~7zOV}?W}9s*fDH?+NjZJs9;BwK|~h(XK|VFX?b|o`&KQcLPK&DhX*4n zeLVdLJXFFJogO)qvarGBhI5g@1Q31l2sMMXUXHV+^SK;)g3D?=j@~?i2)n3snQ>v1 z%o8?^k8P%9b3Xg{>pB*{7OkgR&oiQ2#faqx0}Q?h7~mY_4so1&SDL!3qvp{yd)O^w zmPVgW!-id)F6y;ph&i>hCkU=S=BNm31dnRqF1A@>{2I8ruV- z?%vQ^b)78p7kj9h$=b(Kv_%+-6*S#`;V5N=VXjD+h?g%I7%r8%l5IC(jbzpIO+&oL z5eO`8Zr0@Y0{|rj&?k}$6#yKH&pw@adS=&AEDSJdeM?}`jizq)qPA&hK3$i%@v|ca z+l71vC4dBLX!JX*I+v%NMA5juk98$E{)zc*^8wTRqw`uS?k<+5)mpdCE<39FdXG*m zSxiQ@v1>wMtX`H@mM@5@5faC7oMx4L@aZw%$!{W!HrJ&sXN#Wp{VP&yi{P>6GDi$6 z++Cv#T|i>l11oi=x9hcpnASa0Q`ax;Wd#bD^$wmEHqx0C6}FM?r0h79D=0_GcFs>y z{Ft7m$YT7&^&2Oob%v6}b%V^Fzv>2y#Oqx>l+#+Rx<1AqO5tc_a##$aM#d-9*~DL! zt->TqP?!j>ZTHP3tr}a4P#X$cBxR6*ss4s&Xq6Tfi z5(*Fr#(g`7wRMO(X?356`h1q@G#A#&(gZBTx~sQw3`CUP%aW%VBw+cjNBOVmHgl_; zL-M7imuFw;+(SBp)ud|;XVb;Lu18JaG94nyeirW&vSdXWbhrkWD6I~-QLA=u1bOet+lgCJgAj98|s#!EbFFU*+pgE zy_-p%%*m7`qKiX<>NJe!1)BW45bpCRU`GPBQ_RMP)%oT5?XmqF>O=8a-!h(0^SIl3 zKMR?^sBY=KCy3JD(tO^J8u-SRTJ|*+t{hEqV5RiHSizB)jAoy4Z)Xop+}vD?MYifa zP2OB?cw=}z&SQW;NAVFOp94H*(ipBTXJ{?#*7V8Jj}pNAP^+|U3Rznz05WueNHK+ zxr!O4Zq3_#tT>D)e%x(w60{?0D!Y)RsX48z{66qGJRgKbJ}glrHO5- zs>G3#(OjmO93CqjXs_iNX~PvP(3{RYIto_X26gfKNFv-E@is*6QMmkV1Lh7*8D~F4gCkx9<6AMu06hGa{YMJ8lvW_ztgQ?tyYeh{{Xt3L8R_j6=4-u zCz3{X)oN6Mw<}ExGj+^484asLl@{MriaVzk%>yG_NJwa}e_ELV0fre`*vTS1WGP8P zw<>do)%5uu`%k@_NrpM$mfXdC8mIfkn`zP{v6fcutgze&;hiL1fstJ^xMQeYS=8E7 zrX4knajLa8s>amJTpd2ND^g@B;49q7qVz6oP^(qD)|FOln&5U}#@md~j2~6r+}de! z+S^+#)cS(7Dj#T7-5V0jSaPZd-5i|$`h~`$qUhGGt!sB*tF0|rH%eY&12b(=h{+i~ zKIt5DTE)^YH{A^B-K>qa>fCN!8CvVD&X`+OwK}t$$W1aVeD}s=Bpnem#efh}GBF-G zheR%^(;q%AG^e|c?NN&(#0s$7LV(Skq#Tk?3Gv{H!|Fd4ejUmpk$SEbMI}IJ?mPfI zeU~f<V;Xeff~6D7nbin z<})9Td-XkaDUxGN08PEIs8|rmAl$4s%5^~TM?7NHfOba5_KHsB8TRym2aNd~)(7Eq zH%r%jG&JT3as|?~GM&+)J(RqFs7&Xb{h`dK(UlBwvUzC zZaT+LI(3@qOIkShHoi%j{2p?=TC%|=RT`}*g)}9Q1w4JBrY~!#VNnu5v)eOf7GjL5 zWDAvI8C_0zVS=O)!q;5Zbd5sOsy-fFU7I_FlKH|IG{4m|BLKa_G$l*CY`a8noM&*z z$j@h#BP&ryyh@ib^Bcr~?J*zA#>#P$e;V{i`=cH(Kf;`3ajx>6xWXInJ9})i_uhU! zJWAQxefX(|kzY4HV`iCki>eAR?Vt4PEnpwo7OCd8s5?E*LpnoESsZOQ_%L^kI?d)pjt#zqBU z8p^6-Ddg%0E;zFwaWKX9n3dA)vSJ#Mt`Xdcow>3{oF6T#vbvt(F0r!k+d~fk@LPbu z009^yIRn`9G%&h|6#^Z=INVjSw2T!VSChF<9@*fKK3=HgaMo&75KA%`=i$*ddv*yn ztkpEb!kPwUiU93>9D-t13!X4=eke}e$yIw~2jDgV9)$$w2PY@b)C}h!3dm`5jW*{` z)nN-W*vOCCcPd$uP|BldV5xusW5~!{bDF@IuP%i^D>?e$Uh2f|%>G3zd?*Wnu|fHn z2+JD4{NWj znDfe~jqh1>&kGl$11&T`our-3vxH&R4GG<6fq6sr3 z586~f>>^L#H%Uf)v?vrGhSjLk>4c>=4M284We<+ z95Ka^`-=deo;MIiHk=R%1ON%=&y!qvE^c=**vh6%x08fr%WlRA!Oz-l0C-*~CBa>a z=X$DFNl%p4M*@SE6J*^Bvem6llI@WTRuQ;{;R0NT#kA2NPq3MvesjPe5O;Cmfd_+v zOAHUWR}f0f>TWI8D`X%pMhOkU!6YHvJwSyUTR8Q3wnCbVvQ**>Rag4aE*6!Nqruh~tVkwzw@EkuoBqMi&gOoMB3{F46;FVjq`%8n z_5%l&-F7F5^(#%S8r(%97l@1(h0`bVjkl4W?3bbt)^12Nd?uqyBN^ESP5WJycSpW zF9!AEhob7&RV%YIZS79G&rDr^q%4+5gCJer{3-wm#K4&&fB}gq*kT5E@P}7p{i^CM z-uJg7ljVEO?cj5Oz1H(ybJREJFQ=!QG6KN49zA>MMAgW2C(oIE<&(h5s^Evw2i4*((Ips{@O-V8m;Jk~4CClHO)} zKTS2iPW0}EZZ!*bj_**im0l-NB%*YZ8KJmVV%W4+12|P*rFoy?4F3S_pIr4VosOSy zw;FDft=h|LCBDdQUfp20gHg43lq(%hR8=NJBb|ehfGgM0#@4ad-G7>)n9|MCJu=gk zdRc00=L)V@LgMLk*6RzYSR@_KLdgrQw~Zquv7%R)xS09zeHY8zb!Ss*abH>uGfcK^ zIPR2pEuxOZfpc$`?U5vfplk+g5;*Z%{P%Lh@YALA+q)ac_1>?$ZD|7A27^$z=5mPS7sWXV$^!yPb-?RvzGDFv+T z8)Ml*u6%-a-+*-Xi*>DP+HRMpe{Xc?6_gMWM=c@8-B{EYKTL7tSGl^MThcmXLDaR4 zT&xxvTn{YEfJVh%R7#|UW@1E2pSH(t4R!C&E|}C;e52}39gWet+p9XV?hSfJADYn` zV+X4>#+=kyZ6Tf0b-J5~()p!Iaux>lxT9>B!p$mLy3O@9XIPFs%RC}0Ydd)u&hhL~ zBcYHpqWPF91yX&cH*ucXaM-}je1N#RTir)gyVLCjjkV;mKgy*2f|l}38?_A2=`U`j zWJGcVq7xo{Kps}!=+9X+-mYG$%z1C>UAny$)>-W4xuc}?RO(tf%BH{SV)af6pG}s> zOFE-h7l>m0Q7@6>1wDQEggXs5RI%TePUIzw^d5GyhUEiv)nOd5EAgcL{#eHXr={-vXLQ+D?^!auyp7}Yi z?k)9eida>b#2?2Fl=LYImeo^o2T^sPR7-5En=2v``{LtqIBOn z;AJFE3Q4$R5H^+>3PpIR^4;byUi63YC(>H`q}lumeCX!12T?TI@$JdvbJkyP%wB6k z=1)IV>j3GETTi8!{Uwkp2qyw@IJ(&acX6y*@$z>i)4pCa+L}A)r;j)&5@NC!9u5)W zQ6O))NM99q1+~OiEj+R$>m{79GKNsWqJV9UiEXdk5=s%rrQ33H+#DaEdNt=qrCALR zTR)@x!#h-KUp82NyLHD>^wM>84Lgv+W^^Y*wEqB6@NdRxyI`!fkI0{@kwVT<&!cZcxdU$~UbhZVp#C1RgoDxX@jJRfZeim-%rF zjXJBLwP{i!e%e1ok)T(?IXkeyV`ICuzlXLrtT=xw+FKvjSdpa$7Qv6!?9I3@p@STTQ|*FxU*aZyshHnrkB_&$ z`+oEG@kjjX;*q@V`%l~Vk8QoD_uu2h-;dIjQ|-omrgoj@_K5k9<39c%4s*pne-%@( z?K^D~AGgeH^D{me`tm8}t^QHJ#CuP_w%_Cb0DlAcRD65$NcrD*`|Te4&i?=rGc))1 z@TiY-pC6to)BT1S ze}CU?{{WBvJU@+1<3C@={eHBl+j*bcc%NzZpWEN#ZR6wleE3v2=Odrb^8WxjPyYZ- z{5GHE9`XKhAKl<-oN}WTV%~V~_WMV_+voUwzxME<7#a5SioV-S`+NQV{{X+=`@BDW zKm+aP^ZEW2Y5UC1(Hlqc{(jyeQ)fO-NA>;mla1yheZHtIzsK9(`FnU&TbvI+>G{oC z2j*w*yng%t02uxLC&Yh`nwM_``--9X8Q8t&ZT{Ow+vDTJC=UaJ{Qm%_?yGxmKK}qe zZaliI1K3-{0PTf6v-I{73xiZNq`%7_0Dt+(>x|54gm@Li*w**!uSYs+s(90dU37Iy7j2~Srmz+M$W?1c3 zqP6=isYnc{)H0$eXqX(t_)@zM_)qnVr9C5OR=TUMIyGylI@d&N{Ud|vhM<0N*s{`g zZ0QWc^LY@Vkgn9bEY%ctE*P=s5P<<1n17B-@gL##sn_$`S!r6FdR@h|4$ktKin2VL zHiV0Ue3H+QH~~&_IM>Ec(!ZyFMa?ruyy_m7z3Nyx!f9bev3pqLkLA%F_sMgesKM9M z5ZvTpm?**P&c5?4WwLf$I&}E?N!tad`&!@7DFGVGp)dM(Q&J> zinDS50H&9kl6EX5SC_fyoq{-%I)kQY^@XCM8JdPl>&E23xES7f$1(6 z7}KBs04bNlYkM6oS^8&D(id5`TdQTd2`X=s(Y7~BSwg>XcHPxvg_<%(;sI?`>(0Kh zs5K^_>aCE&tvQOgs`Y4L7iO*x8;a6cYPcK@BTG`ga?DN&r6i$F#k8f^rdo?)%Xqs} zX0L7Oo|}WGboey!JKe;sEV4Pkl1U^x+XEyi04z~1PS}z(B$X`x05yL|uZZ`*7j^sp z0E#x!!SgqZZ)+4J$YPEwU}KCX@3aM8S#B?5a3$~0CDdkHd9en@^kX%tHOEAHS7Tb} zKQ5X^y*!Sz(i$S?RJv!Zy4$KXPHOJ9)A>7r>bh-?eJve}tCzf-e9g-*Wt$X}l1h&s zT3I=LPTxtE9WC2SwT9yAGOD-tQ(HWneqbG+FSI`6yDa0<3&)+z1$rysb9Fwa@Y6xD z)nnCmAtISvlA|#Z4)$6fi#UQ?jpPFh@fJ8uxY#cQas0L zonwR3wKLi?s9s(F0Hio=0Yz2xex1qbexzhCfR=Vl5)V7>Ts)ucm4H*%; z(0i8Cv$O`sxj98v+}l){RggI^xM1Uc05XiY$-o?(bM9;AN1^(5mX_A~4=R>jrDrqHUY{>3fW30fhfu$S>8DC` z;%u_Lt>(CxV_}e`#Da#zK(Ub`bA74L9o^qh{IrTAitFwIN!rE9EH;n4K`ZVT$*+w6 z0Hi(C=i`R4HRZn8VvZYobF|6_{G|SI{40*wIgaD4B%cN~lKF@} zGIa1U_-BlLGm*|K7WA*88SP`$yyg?9cE1M>wG>5`J5J>*7{dY>AY`8u=$++ zRy4k+zezWBQ-d@4c-XY%{zxGEw3geWSjN@l)T|vBP{O-H!Rbw zv^j8)uz6Ry-LkkJQ~n*kdvuiyU54oHk>^7oEQz~{)Ov(gfezbf$Wy;+O7|5DV9Kj3 zEvD4Rr~)E_wEqBW^y^@)sYbd_bA|8RLb+C(#>6w(d=S0Y zqLEi&u%6!J#^ju>!gr%&Q;e*Oy$6OQ;8suQPvO(&$5!iY6_CH7w002eMGZxd#^H0; z>FOt@sv6w6R&J+-&{f%TPJ2Li4!vtXs~ySiF7@?se*=E0w;Ge2k=b>fM0{*>l|^-K zMnS+hKH@W{l#cf1>RVR7jV0RfqI&i!xeuH^;xm$=f#U}x*DLsU@d|&1dR(@BU!mLS zko7L5e>4{*?;F*r|xfYp$bN z>Ts(?=JDAt==MtGx*2+`$7gZOY6B@xF-cEMlppHW0(g`egvln00!?P(X{bo`raYYs|i%W(N3C z*S@t?+Evl(G3{u2$+gS{UO9%R@SYQXXVTeHC(B{(t|LWuB>JFGW0A6V6P1ma7HIcm zH_?8P{{YGd((RzyY1;g67PAyWIV4Md)NK%5tgAC4$!_dDA`}+^Qz0)l;YU6{7e6=M z4D0WgooQ0URDQUz{6W4Q?>8w9Dj_@^8i@=msyO ztJoU~70rF6ib+#db11llcbO&zut6zHjfIOdj@@36rj7yv^ey!fJQY|@{{VR>Ld_r} z8^{E?FoTsqK&hd^LX0{I!`f$sDXF;^EVi$%f~O5lf;$!&SnZ6}WDgfq7RnLn)I^5< ztEJmXFt_6>P{dM5IDK%6)+~}M*_$P0%bOrZt?dg+ye?XnZe8gp?*6EXxs0h+Tft;1 z3~U5QLIopw@v-M#C%X9?GILadlNPqvQ5gzYz^KSAqr#L;I|bON*%!Xuo0ja?ss!K5 z>!6xqn!#n@5oci-fRwp}MF2b*C$K41945&k2Gm@VQB`c&X@_sQd}ggYeX0ouky1^Q zBLZ03D+dsJlXg;wyER)`y?{a-R~Cf0>&+>HQW|Wkwp)Sjy;9}x4jG!zCB;&65XC9_ zgHo`QW3^`@#l+N+wMmq0lFTfV0kziykYJJm77J)VoCz3>sqL{!@<&?^24Lzmg~CKF z7M3a)EE$+MWFCEU2L%(p;1j>d55y^6ZnRf;omJ#3-bJ@XvX`R5<#pm8HXOFgNvlk< zEJ&$qn<8rGDIqv8Qj9A1CXHr(Ui`q>Z47-?S+JBb46SA?3Wl(cY1W5zly^3G!+8>$ z5isQ{?;)6q;1pOD>@v;kGS-0BIbwi4T-d7)vMXBvR>%TLOCeLUIEg7u(X}@#t;?xY z#2*;;p~|;Ob=5nuCtWgwl-gypc|gw4GBEd&L}mp_B1%*PCP!w^h`JD5gWhkIp z0oKJ!w$--Pn6!xuovP>x>+FgbT`UFFUt&=$V##S-iV7Pa+BGTb4}rV}cSz#2rNeUN zW}PH1*z#LY@NrC7LJ2OFtjY+?m&3Ol{3%ia5V2-ryMeE2Y%04ly{gQ!+rE%-wrh(Q zkDgaxmMNap41_Q_9IL{WxE@LnHhkjwVaGPrdbV$Mvp`#AoLJIjT5MLM$6QlJZW2K< zVt}q(xzA`;a|F_WUH+EAH9H3*a7j>+&p19f=bs#NSj}lm==!2B-gqPf#~D-4JaOlq zEA&<65>^U5qtw~jH~5)peLm6ew*Ddq3O<6TCzkqVm@nEtpR{}Xd&GYa3Q{NAjLAVv z&$N8~=l=j66r}`h6TjYmouhB2C+2^7-h3%Yvte~BzSE|ARn|>p{LH}n@g3$jBAJMf z<31#j#Awdm-;q_V;F9KOponggQWSq5@*Yp&T=?^a=MSqMSu}Q+*4i(jgVua*Z&_h9 zW?40LrVm8BPUQ8LZxyC=DtYG8*vigFQRS=Dk_Zs3z@G92%*lQIa z@qpQ%mRPV@V7e=?VsJKK@2E?D=(UwtOiT@LaU87kET%BHww5CV%5YVVcpO%E^1tTK zA?9DExgMlf(K%k8s*h26kJI*PeO8*sscG5i-lIJ^Z1Z)hGFOYqGQ!y{rv%xoK`NIr zVoSwDx!+@@Uq>R#9;s@#D}Z*c=_HSCP6@$`nZ8#xduY!?bL)Jd?FVvDVZ~s$$!HTAAg^Di1_i9 zvxMBq7;n3PSpFY}@Aj=DQHd>XuI=MvvKK0+%X?!#jdPz?{vcYHPIc3$T`0nID_84X zDbk7&PpKVEz}~_79V@IZbhj_ntR^2Lr8u4R={qm_}yK9c2l-|cJtRdFPudO7Gb0im0q|a{gx7ehx zOp~g{%41-`(UFfJW)83ZBI)UFw$NH?w@dT-&rD}@w?y@qQFZ<@{sx{arh0G8Ca?_) z(+h9J+-%#`c5P}VM}2gMYW0AfBy;q|+2;~H!SSbg`NN^dJ z-ffC@#Y1f*Mi7AQfq;DmA~QbhgNfdD_@B1Z;|Y6cu&9zCb`B1Gk2vw|?OBMWV&Noh z%-#qdd}My}bO*6chG`oS-}mWOI@}oC@>)qwzDT?e#0mNM7Hy1C>%@Q;bT(Bbb! zfH7D%%r~5kU(gU{<$O{97^2()le@k?Fpq#736sCsO*Cs&w7z zSe9xmHhZR>S)tKfmrWBzJE`pAiT869u}=dds{*7Dz}4IxUGW_15ZPZrrdTpwU)o%5V!$t+vCKWJBKz3Mv)Zl7MDhCwy8#A?uBJyI^ZF*zmEJ#Oit}rn#MjmS)nB;U%58)h?ip;HS&a zED(IaRE(bD4M^#w6c+?HbQuP7l^7s3T1C~JelDQ3y|A&i?p;}0$j5tjTK>{Yh$JK+ zRuRb)!9OaXVn~_(qPm z7+N5^X>i8v?pHr(jibe8)TH^{GS)ewnKfp^&3m&ui^2k{{VWrXFzM~eKXW=($u|lKMY5!>k6w5L1`;M@OXZa2~H(?n|_%V zp&5ok=EHIbi7OVQWEPSs53%P>MJOsykqyS0ib z<+r&TGJxC6viGCzsM^TbAOo{KFY|e*`m@sw71aD58wX1tuC(4WQPRfcF)1vq4_-4Y zsgV^}?UkzR2c^6UcQs5$9pWb9_gtFJ{!0zE_d6Xn%81>!jnQ3O1&c1_b^74vlUR8E zA@xUUf0(khx4X4@V3r-5nP!4#h4#0gIs+RO^s6!z%Aq?(^6EWO%tjj)z+HA^@>MEW z?734l!Dn4*4L?Ba&=SJWguxTniRu%>s(AO%hd z!X|N+B;$i#hR|%^Qi>aiNsSsLW-G_3)EqD13FLh-S}E5506&!a8?P`r68`{Bbq1`P zI%@%~b@rjsv@s)w>9&Z}{X)j{!w0A}3U6fBV=4~SnN+XS(oIiNmll3l?W0nh8gw}GDn)2cqZX$p(NwzJ~#D3NCfU*PTvRbB{b!7riXJsy=He5`| zCsdQMXd`Qfjag4|ktE;S%9q+gobz5=K>j9rJ6USYb%D)v{{U2U_ZyWex53oRC@1Ebv2gE>YuoU__OYShgd; zS}8k=oy&!6kU*`I=!cnwb;G3{IqN2$)9c3II+3R+>fB~GGf67WQpV&M*h(@JUc(j_ z_DM-_VZg~mZ!;6NH&pn;)V(*aOQmXBHkT_{Op7ss7eZ8olkAzBA@;c2kZ{#r#>y>1 z)4s1HEc@4KeZUlEPhg;_Do8jSAAfzA&F3XpY<^Q7y4DwU(Ie`W%pwg&WISY}iy(xA zxA%>vK74wUOuw|%tgN*gC-2$n5iGGcjH`e~euRD29?S?nD_pr*EsTgx$AsYVpB{dn zo@++>ednUDP`d4?dM87qdg7KN4V~&flE8I-_8N)w(^hLfkWL(Wji#}$sdbidSMlx5 z)&&*CATE-f75Pf%#r1@iSMbc~BSkDo(yBU@?!vbQ)#Qc#>+P9v$&lfFSjKA^b3UzU zbsTSOlG(`16HOed&lIl+xQ%Whz+_1y&dCEf+yby&%UcUYfFmdJ4{OZOllj&r`#F)^uil*?mnV|Lc^T*YlRSVlK(1~wa; zJ{3=ra0eBJ>mHKSdh4byv@JU38(XQ~DFaN*s#Ydqz-(4+-mK$k&JT*@wLc|&Vb0yG z7@JrOt84PIq|>o&_q%biHWtd*h>F#Og*^FB_ReM`c7UB4+p6Kz3&m-rPj?_2z>YLv zs-?D)RGe~n{B!3u!KVEhdbNZY>N_p5oEB*(1mpn90Ei3_IUaM2V-Y9I)=J9E%58!hu$%D!vmWtc{RL6~ogOLJ~6OJl4iHzovsoQFB%QdjeZz#&(t0agA zq1BJ1;N?I#_gdqD^W9^%qr5$zqb1% z8)S{1G<~k>9ZuCFI8&Xo>YeQ?rF_A8bJSO{dA&Z`b{~+{`iD1w*LXYwaOZvX@Rl(Z zI*p#WkP$?+{MrYUZ28@U^{=@>TcgfK!Yp?EJeoe@=KR=3p+ z6<`v+A!@dEvnPV47a&3HEg_xbarub&_V?J>#z1c3jo9+TobnH!dg?L!N9b{t9Z_cL zx#UaWDZ%}oaCqXSZ~2nw)%AKxJxbAnwvO*>bCqF)o;=HdK~DvC{mAFqB0ctr@j<19 zN3KP|{{XB9)9QZ_`28y7dj9~UWni)OEv9(S+Kk|WbK@A}lb${CTqEmVR{^a0qtqP6 z63gF)%Ihqx>NzSz;2YpqAZxiGa}nvBJS7GCaWLqZkuAAuGDC3zx+sBzJ4mGAvLs@} zmOY)g z6Nw2D8HNl;7#Nx5SKLlZsKznI;<*_dfC(V0A1BGhUA3oW(ONQ*%l3#%<8)h@LkyK| zpeYWc$i^2V6%BJR>iYzz)=KP6c&`jwB?4y-heMdj3c{}3a49YX3IGw@;(SAHU{%16 z9uJQmir;DI6-asv8Qq1c1jlB$o=R2nt6S7(ANu*xZH6Svt9Dwy!Sw zN$#zGuxn*EB3RkTCCoAkZk3!zu+QnD1o=dc_VLcJx-WCq!weNmo>b(3avLgn&$Ari zu~!z-Iy&4#BS$)Ak=xOcF*2%&i>Et)E|MBW4@MU0JrBrzB+7$9YKd-PFAw=1Zlz zn>9lQ{8paGWUXDuV{)FcwbFPztq_S%r5PaSWJjFN(kI7wEvLp?r23~!)HNrwh6{ml zEK*?h@fs4m@8<{z7zf7U0Ilz%z6bS>O7&KWuWC}+O=G1<&dn6eWZKcZVO4uek_!TI z+^$cMYoMKZ^O4gIg>`2{bh}t-eBM_%uB}luW$-#(`OH3##bKpDvu=nYFy zz0)B1m9l%QHP3OQWZfDdUGLjwR+vT{Gb~}4CR+y>qPh#_r$=?;SL%E=km-iJ!BW#X ztMr|&wNFp(X^kVQvKWm^meJWqXq`yoC2EGFD}%nXAf8~l{EKLj9}t9E%Wv}**8#VM zZKHC&9ZLowm2#vHyrqUn&zhZXwLhDZ+V@U2@j}dtDV7Nl$`u4E$1BMh!vYpWOpKA> z)CpQ&8s)MU7)j>Hm=TJP-SvhOnkf;P|Jqb28 zH`2P&X^?c)j;(&`Wx8omL5-!$Mx?4UGrkKkCycMT&3Xf(?mF{P(xUBkzNe*W@Rf$z zD6S+4v2d70+!axB6+rxbg>#UB)IDFXw051Lruta@L8}#% z>8?HbU0-VMo}gyx`0Ch-hisfX?OGwyFgr}rlU@s{Hl2CWS{1XUtXFL;(lWv$nbI^J z-os)0j;Q;URa-oeGgac&I?hWut}J@jT)HcAZ45C?z1MIhU{o~99a&;_Kp2+D;1i0R zujePpW?QK`FQ%BTiDI*V?;gKS)r;2{{+_V9bzd{pZ7*|J^xsP7^&3<%M?00%lpkWf za#6s@!q`H4#8^L32yL}FrucuOMLwKvN6VQMO(?V4Zdwu9*y#v$W+C!H%7a&Fu646X zr@TK9wa2%gvf^Pc5PZuzL%mGB#V+W`N~s9kF&Pz{bst@N1JFHTr0ch(T4zXV4OOK& zsi?5pj|+oZtEUOljVd~?TGX+Xu81mkr%lV5Uc3yIkf_jt7$1Blh4Fe4FYokThSRO4 zun`GaBxu~naX7aHHo{A&kgCaoFbF(@SK8*4)tbGnzL~Cd?x(A1_p=E5Q%Gcsyol4M zaauq*2+XW<1F7(97vMh@UWRH7W~~q!XQ)`bm5c>!^?asdM`mg1hO*~Nzuy%-JsN;{ z*H)`;g6C{8?3i(O7$0aN=yUu_>Xlab}jeHS~rwP zgXTh*%Ereffxyn(c;0H=cbi!3c0_c^Byu$AU0rLJ8(zvr^>x|=SwYv{wV(#XF;n#c zi3IzO{xln((n5QA8aC;eW@UYuOQ$HuILbF{D=8kJea1eyt&%^4>mdIC^0OuZI53Q< z`W!wo4+Mfh=NwjJ(^>0BQPf zO4r%}ZTikW=D@|3M)ptx5DELaj#>?R2HHD_;J*W6g&+qg6C;fZ)mw~`P!jy@TnA(2PzqhvK^AQo@;O8EH z!jzq&W@CNgHktktv`*h2%lv#y58+Soq))%U+9G3ljiz`0Uv203cvO9jTWFXW{!#Js z{n7XK@Zz8<+eY&{&(GWV%*Xft015s+6srCGwvJnE_x?Zk_WnL2^yZ&laaNy=wx71! zd~f%kkAD#SY9r~6e?R!uw*Gtk`~Cj_)cB1=42n$qL~p*^ZTx=m?LWW2`S^t!(of|0 z_oeUc8_Z1m`+tYN-_QMg_){Ys@=y3uXXYb+X!iO3{{U~_@8UEAI2?n`R?$D}=lFk* zh*0Mk^N;YVncshXr{mf^_S^oOPx<(d)7qx;4o8f5{Q2ki3Qp0s(H|4`{vR_Rzqg1} zjDG5`tDf6N+;^GZ-{!RC;9yU055OzpAh%@)WrGr z$NGMMgH=1A(8<{xxX#ouYmsKX{*Qz4o7Nyhn~|8Txx- zmmkmL{HN_7;~pVVKR|r`@6Y+w$8F+v{l9PLAAb=bijGltY>VIi(F90@758x+X*`7FJ?g`=^D)rkZB>iGRyKmFLN)&9ya+<(MZ z0a<36GEreuLdHc>K_ygcs*$!k0{a4^K()4pX2fjc?e8749v@6qsL*r`gtR)%#e{_m z0=BjbdA87D6S5C~B;)E=rYi2RK!l3QrWU2ZkA*4_ip%P%7iq7R6>i-sRwjzEOM_C3Z(_pJ4R2!UfAbXD&qnI=1HkW9N>(FPkf`L!&<#qJ zY*rGoV*|pJ6@|t@=j%r!UK}9hrA;VBR(g54Diw??ow#5Cv;i|Je8IpHyMzi?QU3r4 zPOJ2)pI_1CldU}j$@MD>=0{uLar$qms@53_$J4!6hSK@5!sD}8EH!~vTN9L*xh}Gs zoy>HFX@tJHu)~ggSk$_cN4ASp>3wyyo7-3|LpL^DX~Y`yHNF%`68EZe-jL8;b^c0$~(^G=G0 zmYFhZjMvCIFR8lUsLrK(FI~x{2;@k<&_L$mVH(NnLkLxYRz+Np#IbA)E=~tn{Rh8A zv8LGDpM&=2ye1ar3!PJava9WB7DK3R58MQ(Q@Cy1PpAs^9Y)bqG)A<`XgY7dtF%66 z1EF>Hk-e50)io2ePf_&nYHcLk%%CMzb%s8@yEWMGUl(?#yrNBu2xoEWEq?c0(2ec% zNo}ZGOEtC1AqPD%W z`G)@hc=;=tCyimbbpRWyE1PSGqq$Ta*w#52KGtZ?-uWOb)jo@t`=Qf$?LCpyda1|N zi`nfH*9~K&b5)sx!M3eVnB_WksH$W1-KFWXwu42}Ri$4j8u!5?$TV$8L zw7N)-CERjGRprCM*@jhl7%HTwYs*3&?FBeY?2M@a>s1z686?t$@fnBSE#z<=R>7EM^>iBbXQU`rm4pC ztErlwEsoSwE#YqDu+|%y?d1m{UoDT*_HDB6)>zb;db`#d)INx3rTJ-# z?;~uH09iv8+6t~!N!%0%9DrDZwEl|;Z>4-z_~p^|`UmPho$saHwT1H;FQ#_7k(}PF zvP&ehz=vTa1Eq856loo%A4=$sa7L*#L|JcmeaFJtktzKb+4&*eP5?~3%!!Gu+=YOo=7!IFwwXQE`+PRGKR{_ z0ANl@$Y{U-j5atP-qba{3r?CC?)#7lm5C6Th>eus0+O`5V-WIgHBKTxSimG}TvQl+j4#Y~*gS8(v;E zh{b!h*ZK=v-0Av-_OBh~!n5{;yLQ$Y7XiCqw{*x=w)b2NqY)Z|mKAiZb4=AOuNKB4 z=@SKh;f_pI{g0N7LHUbr?k)W9l9PQ~Uc&eEi(EplBTMvBl@{xMB3?B#-08akLFD`*jp+x#XVn zg*@O`t2Z9lP*1i1{q>!^huqUTQ_c@fvYL|h3^txtk?Uq6#pjg@bf-|-=+=%4m90IZ zJ;H_LVM1jrbg%_qQ2jBG(UKO_b#WYfBa=*sfE2KB*Yl}wCjgLh#yH3ASEYYNiCatf zqtnM()Iixjy$ohYi3Cy&6HJ)f?mI!*6A}qx#E`$UfzYoq{(St5T(6~YSzk6i0W7u; zA$JjetgKp`3%zD-B{)&5fXLGhB!|z9N*&3iE*l0=_~rJ@0+Kk^3=wiMf(Ii2WO4P=qPowgGHRc(p6i=Bm}F zVun%GrDa;;815z_BqcT=NoONQ+eOqh8zi|)q1&ZTr?wvJIS#pLZgYZ#535h_TMHVTh<04mtXx(B6N&r4(q%XB83 zsP6b0pgOD4A5<1AoEH*F>Ro`K!V6-FiIMxp^Wv?BlN@Z)3+O}OV1UGN_yBnP`_?1< zpXxh#U}01FyOm#m~WieP>2A9&qsP$e>o--X{ z=TtghZk>Fta`04Di}Wy>jO;!X^J@;hRY|m0DnxHFBa@!ZwEH`aO5*8W+68%AVmKvN zCkvGelZ+1lXFdgHw7!?>F0Sf5C#JOPeLgK?sIH;5iJw`~Y{H{{T?=ugZ02F{g2F>c&8ki+$Wj zNVK@rRx_sKs;q?-HFoCE*OR#_a0blcb9E0?>biW|&7V-irzscOBP}6QE5-ggY4W+{heGM^E`2rVo}@mmb)O$kT-fSC>m2!ME}v-~J+HCU?5j2z zyoIRLdA#0AhDM^25T8ht9n-Nal%cs#hP`3d9ZRn@j-{`Q%^yhFn9NW{UPg*u+9-}C zbK6iPcPtcT7YtaH&FDX(pTMt$nxcF}=$?WaA5%ZfTP5Gl>Nh9-;UhN$tHowndNBE&uArcF?g^6U9q1Yh^_XB zT%C%L=PP@QCs(gp5c{IpuBM%au|E7tTJ~|C;SlpAEF8Ev@TD&v^(Wy(^c`hM*#W8y zQfbk{jS)wyre8%}Bz(-p$)U7q}$K6`OmBlUI&0);Bb zw3=>QRXbre1?B2{*J7Fwx9~8sEtr-N8Jw(pju()Ws9{^m)T>u(u8NQ@HLo0o9e}gg zi!n7B3y?Sc^&H;Ay8;Yx&hE7Nt-xf9PD%pBDE46ZRGLj;RLborf* zd=0FWi7`xO@})qRH7M&BiqjVbWYUDJ>o3wO;DVCi;FMiMA;R>oNRB&1EmSaM08Ci| zrAQ{Um1G_+&3oznG*m=5b7wNS$T+QwF?gPHK99J>~5 zcU4qN(nb3XQN`;vR5JS31R+h72{B}z=J4TX{9!YWax!XBgGsGqoLXOaWmWqz$r(P~ ziw4U5gvHNO&1@O&3YIX=!x-*LAZLXuZG4+#aTI*nd3Ma|TNf^1F`a4AF`8w17A|(! z?MFoFRK!)NFy8H~f|PT@E1z^_k65T@xp8J3-P#DqSq!o5Cx95R0F&%9b{Jp+sZ;1W;LZeCF>WSJtw~v4NM&Ezo9u)f3MDNSmK6m}& zf4}no0H=uJlm=rR8EkEud&CQ%b?3{bp|^~r zA`Vub(j8>d+5J_KIB6~pl{_9g?UzK(^0b#2BH|N=h!xg4V&##R-qTQuNt+o6f+^Iq zW00Ypa(%P(@z+*cYmGCgA&%-LYu!3!i*u^)kjVq80#Dy%R@gE!MghsJBcrq*m>Qpm z=C<=CkkC0QeJ1KnoY$8FsCe2Te;L!Rnd!U+s?Z&1$yye7hYOnO2x_cyf`41n6(cml z;s_%GgMcCwgmEM|@ic%&c?Rn?i6MQ&Gepy1%urmJdRdmF2J=%xKh z3|89&(Vpx#i#5f|#gq4~ZkjZBe)bvJcnm8#c`MKw&!^on>NXQt>3p`A$mP7wd6w2V z%2^bEGVYYtT~W#A^ww<cbomYVT5bS6tVw1*TCQY{U2V~5mafd0*09nQFjfH^Rv{AsF)=gm<7m@vVxT0)AdreJ`(um_^!wpm8VyOt8F6g zK^CWJewTL613_~#09&MDdtzO(MyV>6I8zVbbgkWKtMM58G0CltxdLRU1e{I&uW&UN)o-k1RT_=e z{qn^y*uxqkX^9>N;Fl7-vltH}bYfBz3{{Yc3LP`VG~FFJ#0Nv#Psu1d0O)a zl+`-*{Y%N(y%B>pXv&z|bXh4r^jsC}Byu60w$-dA>UgdvCJ62|9TQkC!!hlLNSYhi zU50URmon^RAAdX(=B%aB^-FC9?BGbHHrAa*rnhcXM~qzF!!DmJD#Ukf=7kO!PUx9N zzS7A1IK@z{ibJV@!M@R8z#22ce#gl#LulkErFlf;eNRB^v5;jZBs+l z68`{FNNg@PG?EoPmntI++dw-`Sn;=ZbL>wQrk;DWhP%`~2*m#YLb`dY`hl0zy>RmV zuA8N_rWVEhLzBU1POIttOP)HI;vw~980>jWsEvE@+?cTfn8#{*wWWpcPHJV1)H+_N zYjG+-=+bu4CJayp10b-$$O9wmSsg1t)bH&&i%yE%TVHCrKBH}J_c1(BcchFgYb&yy zipL7WYcU!9$C$S~uX&fw=`N~gzucctu{r*w^f%1TvBhaS_@&*>ry;F8=;@BHY5fD4 zvXT^1*S0hkD#JpUG6;fJkmV~P@vYiT2AieF+>vHFWv@-iBF4+O{I)X9*-cHE^{{H|}h(6ctsgtDbbjakITxK{P@+OTg5drP0aez&9 z{{YEmm)Ci0UtcxWf2P{sr)ukOnZ13~9UY}L))ANuPhUxAvAR1b@U6hys<;-s(p3L@0*i?s&TkPMK3USIB(6qO>({xQ_zKSm18|@|1Ic?nJ z#Wb#GNP%6?Zp2Hx5!*bFRN(0kUObI;6`fA%RCLp)+L&}EDAr)Dvk% z+qdPT(*;UD+h}*KBZ?j`-yV-D8(g^#t$-cwY>mPn!Cz> zT5fe`TWY+2O?B;UDSxk8ms`=sD^A%MznH~&r_#7RA*yR3AU%wD^oLODORBT+=<3)&ng&R4_iESy?BaO$9NinYAcO2v# z5DDO9V~XP^ojP4^)1F~NR&;+(b!@X*&!PP*(OPR#^y5JzSYgK}q&&k{)mr0C>)Uw> zFRy{Y7J$j!x8E@b6DX)EmpLf$$NCIuYPZ%p>f1wQ9;0D%HNET;xVg1$K6^)!*zIB8 zw7BiJ3<{F0aG)C5b-P=e%{tMo5=j~uby$PJbe7Xw+(<3vwPTk@k|~T&5egV&ka;!b zI)CItRBJwzbstl!JE-*MRkc4@`pb%^f$Ji(`L3Mdx-RcBxelV{G@hN&xZ3ruWAPf* zdSgpBBV*Js@6%z35GKTo-`(|G);9ewZ55yEeICn7vNth96G3q#w$_&^91VDow1#U* z4#MuP~mb|JJ@Vt=5j24LXmh4V_Rh=HDM~dgV9ib7A z7X3wVy+_rtjTX*R4xt^SYcAOzbfO3&G7ZtG1pU{~tGKR1VTLGK*w3X$e{Xkivlypbh2%hck$s%6IYY4ut8?_D80)%?<7vceh^TrH)ig{;33D=VV}#0)v7^;t67FOx0u; zw-0c!4gUai5uBCJ8@a*!2^k(Ujw^^hT6%NT{VV6QSV}baUaObtdkV%XB5$O0%8$K2I{sr=Dv{upUGue62bc5V6=ga^R(n-K>%jvD(WE!z%KZ ziK?`y@RGUO_Kwb7TWba?z>*DNwXG?eR)bMpHa_8+(c`;{Kw4X8(@b;4Du>(*H!7&n z$e;qM=yS;Hk6E=|jOkBIk*&2QtwMp%WP?sDD(VdFY;td3tB{)PW;T(?l3*w^=z#$_ zoru1zrxVqhmZN2+HMX5?`o`w_bV!7z&>A*pcHBKmtCO=MaljP3)U+J})Ai21IIy(0 zk|b$Jn4aUl*oN57K`b%57#wamtzGF~oc@sX?(Lp=CgoX~tb{tcaT%JI6w0LMpjK?h zOm<*qV8?HrrXmPu$2I8ztaQ-5FQW^{u9iK;CW%>H18rZ$NGHeruK=3YFFrDSI=N_L zUZE>0ljt_LIKe)yOnz4!lbra@aa{WIJ=Ls#TKbof))=}^$77V3U2#4Xt+$PfHr{5b z-}Gm>*_9D6;yE~?Cy>TpN3@<7)b$JWSmxCxX^JBfv8Fbv07 z^~Sqk+BtQy(V^@HbVQa`E?wIUPp1kHD;(|101bGKk97k-(v4kHRq2}8yp8;R8#hcb zxti84Y2(M|anGS{t>jd)gMcb_n9tKGAd-m~DJ~v1Yk8%$c9h1Q*NjHQhQ!uD@nKlPb|z%3CAQ4aa#{qb=JSuklDql#cv!IF7FdV62Qh;k~rIV-sP|m4B>ON zNjb%0ENus%YF@Bc62+wv+*6{hlHnlzn3RHfB$UBYGIC3k_qQk~I6NB2E5V1Lqm!vLLlouZ zF@an2C0WX?n98+%O{;Ww?og`3wo9)ph+BIE3!RpHp)B`1$aLByQs_0>GyMFB_|Bmln4#~?Y+7$=ae376F!4m^hiR#+0wRT>EekEP{!dgO6#LnhgTVN7;8lARh`y!2<+% z3yk|?KK#|$)g2?+SwJ3@+zg>fA)L2{JF|?oeCLWoarIm$`q1)8DXdb~$Tas+!7fBE zj9HIRD&;f0LcpM6SU|Y6mL}XGF_crn^NrX926RyYwP5_^_z3jWY-oQw~<#zu?-)-yn1x`TYPTD+#dIeJ?uXBT9jLY?bvRl$BTV%=#< z9#OLb0EP-V5qnsCGmlx)=f1GH(^$uJ1DVRkM18d+huxN7-c+xKI3tr=Y3u%i>Kn@& z4L7Kvy}zB9M{bWgGn{jcfmGlrKC%V}r2AI1{v?^(5v=+_(hNoisTmzrW2ikN*LpKE zM-a^Zm+IDINOiMEBL4tMdYyY4kM#(|(8aylu$uc-Y6~#QVFOAgBdx)45!Gy2rby<3 zcw}hG>=Q&xitQVY1KVSM-hTH38LW<>XLT)&%r^EN!OKA1)N$8q73nPT;E;p%Jok3!B_gmTK6Q~y$oEvgT z3{_jlqS~vqrv{?0`F>d}vTU;^!>^^vgG!btFU8%O3o~vU4e>I?aJMlODj5n963VTW zVilLj#l6*!{+yEX<3<`~^v^n6G-bA3ArLjZ>o($LMorze;i6*kXVP=JesEix>CZ*_ z?V87iTTtbZ(tUArPYrcg$ma6dOPX^2D;R|?ooQvfoMi5zCKj^gBL&7IXpatjOzCUA zFRx@v$xPOLL3Ir4JcI$-l4TOBxd17I5`<>~c5(&d#IyT5J8+b(g7GnZR_<5ve+lTCF~<`4`9O zY$I`3aJV6dw)U~c$E@NI6>>Rdt>qg}EuUAPN!OQGO*dA8Iq&q{Ld<;R(Lo@QH8^I8 z9EN37SX}m7KDfYP$s)0OZI->KL2EVMlO~`N_e{FYlupV}LvsYosQX)Zkw)jjE=cje#ZEjn5blpk`VUWjpZ6hqPyf@H-BbCVAC9A52QJvcZ6ImTb=Klax(=K4s zw9DA9?PP-HF7=er2N5}nahXw6?Sgk_3U>uk*x=S1>PJm7SZ_34O19Q(t34^xomkeo z0|%k%q|ZqI0K7a;;r4h=nROf)UXeP*VW^zO5u+_Co%;&fVTNk)nYHQ|FZxnw7F%_` zzqiz9S=r-R_NKCpb7o670&8{?1;*psVlpv{c{+CXJ$p^mA%=H`AJs9uKskZqdwF9^ zkf39Az0#~~=Qvp~a7QEbQxx8-Vm}TI7oz&**VbnGbnc{vvDVjg!?fO`>BXwO1ktuz z(wrrX=9{jM=nM`$n5D3R&23u`0I*FUmCe+5?WbxTcc@Emqu$4;Sp|V1cQGU-E zi-5+v%W*(Lqmvne+0Z`5Be{Re1v|v=#x|YyjlJjF#{ixLB}=(%uI;5p)foV6=RZJl zM$y1L3g6O3%iv&+KA(^7{72Tdx2Izfq3|$1@#)_&JM9}y%NuPQ{{XGLeG2$c0{lDa zP^TbUkO&wAcVzbVAI7}J*C#zwtYmZCU*G+jSFo7-{{H~K-*}n(e|L_Ee13e^qez(f zh>znl_TGNq#(#ejA0(atr69NV-am)8_G9h5{@x-6G0&f^DLZnR_!#()f9-!CkKe;M z9P>(UNB92#8IRt6BX5H7H8WK+?X*t(cHiII_-!-%d?`u!_Kl)GciZppAKmu-zI;8Z zIjWuGf7{>M20k{4pMTr?yecCgjx+S6{KxUwem`%Gzn{E+hlN9q4mlNDPxAZB&)R<8 z`}=?I;ZJWFs@vFRe%{{GxAFe~ul+nmqsJcq0H5k=y}iD7i20AV&$NGkh*UHDs@s3> zzuWx&cZu+*oN_Vw_x=@A6SRLg+im{)edGR~6%3R3dsS`iJNtY_)BgZZZw!wjqH*Kj z^N+%}=fm2gz!}bQ`TYL?jU#F0yiCl0 zXK0Aqeg1v_0G8e%QvwO(bKD@~ABp~yvD!=D3kxqxXN6+7Q_Wi$q?(qZQpBSTf z2gW}?_*cmn`#_}(^IOp}I;v9Z^hbo`C)2~oU9Ga4*PXXLfqVA*!Zr7}b1zwh?TR1r ztMB_s{UcxXtF->gFWi5|zJG3ohJzbHHZIupsT=jGD%l*BWmxqfC&UC85-bL+2uPv{ zkb{th1zL?oKC(vReMMDP8b+$qHKleSTEQqKU9bl6xV}}vOo34?a~m#M2it`y%Iy|j zut8)jy*2FmrBR0_#ga-H16?St1eC59TAH{I7yzs=<`Fq?3Q)BIn_DqX6Ec%^v*6n% z5K9G5I~Vd6WqckwMwP~6QBxzTtaUa~6!J1xlYzMWUW=$2*8r=wtqCW; zH0H;BA!G!cGtIQmfR7Zn%DUaP!P8kpxEE-DYi?CcVqwP$TO-E(yjL)n{{SifC8UiUiz*f0u@TH+z$0r`k@=kJ4zAVu%J)%mc52aX zv$Kq`eYyxVneMs%-Ebg`HYmuihWR}psv zwd(y6S<458)mfbxn#*El(B;rJaSqC68DId{CM2Y8atnx@{;{e>Z2(5Ij$B5)!X=(C z%^0|oJ7SSQWq802pfMR4HM)Ek_~F<6Khl<+6K@8ed!bpq%r>ikr^j#=9e^v2-dG3TOQ_(hkGrt0xmfA^?_I z!DQ_QI~;FiTz)x=$z?rL-$NZb*3k{#t2D9^E%BZy1X4QX9zf3+Y=&$Qo#NS2Qse35jI zKblqDJ)4II-{!Fs0~bfYJ6TFP}bAxuSr!0F`{W^s1k6RpqE)7PqG)P5C|O8 z?kFe1C?4f4ZEvmqU_&dixRIB)+`u>p>KNn<76${t_N}X+ze~=p_fbqd5xLKB8&u8G_UK+%^{hrZf1ABJ$QMy|=Kd z%HdGE5OoA4r^>S89#!kZ$qg|`4$HtO#J18K7j5%$Nd31c1mqh4mbLex|&q z4^nG7j;*6>S64Q(+jR}hq9|aOyEU|TUHMFNvZxC(m=riFr|!1ZRv6g*Jl3lb*OO|< zWqPNmE1&Irvr1K5Z@EVCJpMP2X^7rDSV~Nh=tw;vq&WT;EPtOByIB7KyGz#79Jg*; z(0#dU66*B0Vz6m$nd(V1ACKw=eugfcD)}sCe@~q| zSiMItSEa}1Q5Ag+t1HuXD`g$Y0mm}#ffxhXpYX&k)$cKk=%=UX+Dbi zbSeuiRM0x=-tg$!HU5haP%gi3Zz@<^UMYLam=onvZvCfbTRlh^doawsxo&NlEbr23 z1Q%0k0=h@gzNKpSVBh6$r&?nrWU>pjZgYJAl0a?0P0D7mcjztbF)CT@QwTdNVkK=| zs>UNQLQ38yJW!WRzmCQ38u@M;j4(~0hQj0kc{n)-Kf1CL{ARhgnYw>O>BG|tnIYIN z^%<@$$_C$qadK5;QoBf!Bea8&yNcSbkNGUh=k@-L(Vk!QUJDbh6OYYn>o;dDjL}$? zY3&}QVcBB#Mb?ov?tW>hvE#xyIKpOPVh51oG>c2PXVxzvjNF?j5lmsoEYh)L3|Z7* zn9gw7#{-@Yb3^H0i2nc>uC%_H>8(OZ^_#fox-#5dM{JPU+DQa+$s4z;x*Fy%s=Tqm zI6%y~J5ltnto~m5o385hd3tp^>p9WqYHVg-N$L!Cb`KJE@Vaiz@Uv3morSp5 z9bk1W8Lu$9mWMz(W7EtP zT-HNT9SX?IU~m{5eT*KJtB}lHIyr0OM$TCZRw_zm7kih^n<~Yw<6Ob5Y^xQm{mz|! zZtwK?NpU19uLZmUwocJ6TmFi_orCkY<%?>vy(j8Tr!LfQ`-j)h@e7-MI zQ_ExTmS-P~J2@=X1Wjm3P01BC>{H6nt|P`qYpZ*!4K{1bYlRWN|s*!xW*R0#9GuEuN<@u9Z>F`Vzh2%glj)i z31rxFK-c!cm68g zcDh~WKg(vQVRR1@kLnhK&Ee_j{-$KLP1}vY<4a%SF}kZ9${*4Chm*!!2y(`~<;WrL ziz2ve7@o<|p9^mKZ&uR!u02l9{?6<)e`L2YN>W68WIiKxSN4&2rb$9FLtT6`{X2Sl z<2S?$uY*=y2dZ@K?9ts^ckZrir?%Z;A9H%7aisCQkpikzjDiwm^!k2jdvk1J!UV~W zFm3S+hCl$)nR6?5#IFO}NX_t-#BmWg5Utw~j$N|7H&Qp|s+C<1Q(-YAFe^k{HL%2c zin0S>%96#ciG{=n%-Mn9$ZSEWL0aO=PFX$WTIe!sK}GR8ww+!$vTH-dRq6{#-_`6N z12&GzA%f(kTeV`m(Uc`mq}7zAcR@8Wt_KQG=}aZ&&t6Ot16&xKGm)DFigr?)2iUe1 z$*XehAWFI4G*uW)a_>adT&@(#OeQ2v{A9v@Up=IV%9KM*b%Maxpu1sX(T#hyq86Ag z{dSnFWdw0mhSQah05Ch8)?l+#_)>=|=uAFr(DW!Wu9-Uyvaa)`a|K`pCS(WnFqD-K zDV^uNv588Q;$;>Zn?r8EUZU##$(qM`=v=qHzSU!Ff=jfxAs!4^sL9M&zqtgZJn=!e zq?cS5%-$*PLen5s!YM;$!aqovTX^K7SxZG+WH&XfN(K`fN9!>^{)PpXAz%KEANe?U zpnf^<4qI=;ciI%M4Sb@h3hF-`Y851`HnWptS2yC7nw2ds!H;3RlCcX|47G3(v$$G@+If#{b|hnRizx$XY)23b1t`i3sP9zUF0(}^ zRTcuxW1&{Uz^u`zux%?g4jd-OOw^JSV;>SjUL{A}XEX7Jlvlb|oSFon7iR~hj?$%w(EiXlSZx?MUWu5F; zHAJGveoS|PCCZ{yroBa`WhEl}MD?^QcQMb%(?wLszSzS{VN46-u9bES<1qOkQDR3S`KCr5l=o}dA!B_(@pP5tpe80@-Nk8J0$vJH_N&wUwk(Yj zUH3UE9Bv)y8+EG6E3NMtP3uUmYEV;TELJ<%alTvKh&WQMkI4EugJR8oHVUReHyd@W z$J{$HSqgzBCy_A=f;l))tu2%qM|Bj~Vw7m_7gH@kl$CYSOnTL^@Zkj!4R@6H2bJMr zKuAj6+++o42m&=Lbo_+l-FwaFmTG5qs_!3NdVN}QHxY}jkV7+=^jUioYM_FeV_cIW z!8;Zju;H+F*%j?di<@%eC>?YB$LGlX^=o<@+1&`v*D<&U=t_~F#~+Us`X~hRD`zvt z4)v+pH`*hg9iw@fiT(Ze{y#I~=h;d3=lPRVecSNB{ywY`qN{r}H)|lYw}uI1k`-5I#P^A2tkJPj>aOZe)4R`%X1485rXYgO(rq|7ubg3(gM-235NmPsdDT$Icj~YX#gP%K#zmYZf!vp|Q9sxa_nqV3W+TRC z(%8=`0zS-geTE0HJ~=#j{#DPX4HHQd`ei~?k8pnx{sy_()sH*fNYMUdw2zmq1JQh^ zRV)^j(Axh1sd=n!a}SBj>75U+HPw!vRLWs#)=(&Pb?!Ncm0s#`^-wVlPg-D(2n zNNw&NqLT7EBNxp@Yam|N%|{%fMT$d-2fD6YYqlTpUDtO5A)mkH`u;OPYCGCVy&Tms zsp;GeWu~)UW9s>G%4IbuRl}0>o^=^_J10{XMsKx6Q6EPA&lU8WZ5vV=G&5V=Sl?=r zX}*T-x*Kg)3z==^iGu=KGjEHCh{~&m3^9X4P#sHT+O5n_XLY36E%L0O&ay{!r zYlSFR?V*&IC5))<#!ejoRO^d-=(Nucr z)eAi;>EK{AyYcO2uCiImuCZ_y)%tqz6TD9I;icJW_u81#=C_h4<+!)9NzjIjUEN#F zaSBL;huBsU8bOV_fdGI-R@LOyZ0wTy##m)o;JLh#8BB{a+FHpBcMSs~G=0@Ff~fpC z8+|zqT_Mxi=Uq3_$uTiyB{H@It!rX{pcx-e%)t)(&%D8JJ8k0|dt$MKk_9__FyxR= zkE#4U@x@=qKGxeSEtrD6SP)qK5d-P*cp>H>u*3WomxPKzrmDUzEn z7Lb?e#P-BuCSqbHcK6;o2Tyc$jMf(O>bAwME(vvA%!DBTDv${E9$4qWAbWGhdcWc( zr)#O*+vrznwst^9&#`0%PD`*P9st^^2a}VIayjMZEAb%ecSHJ>jnH~?rS^KCTN$D> z_fxu^mB-{Uc&oZcLh7!h(dk|x`gc#o2R~Zof222M?yFu#D^(8j3P+TU*ZV)xvFhoj z-07DqYO+|tHPlXATg#}+ELN=~Y(tofM8Z}ZN~TBzio!2gd_=v`q}24iYfd+AFJ9Kp z>N1adH0yM_yM`%ZLmYDUo9s&mLn|PY2yWC)4)z&p?o8*goIqV&zymT$(3bqtfW zxU&r?G2boC>C?cslrRfCQ;%E@GKj&Qfdo}S)&BqxS6WRlYx-T$0lso5(U$8zc39AWovU9s}d=Od`SX487JBd&B>`gyFnZPiUh(!G13$0LT- zD5ulpw&w6$#==)2;GWib zZKYPhD(l>jdN9CsIKU#PkBEI|rRrBUn!WX{{8pyUXr#4^5Z+o|Lmk9Ss~{6YAXaFk zM%)yIkzJLryT7k`lS52sc+`}fr(VmX6Q`?}6E@zmsUc$#zWu7>25pbrAZOg8#|Y}H zsk&|{;gJW=hcQO2_e+jTA8mnsS>)^j_a;sg)2vZRq4m{W2f3he~8UEidpPo343E_E@N}r`RhlSBnP$x zf+^y7CE3n4x(uC_DUSSKwJWgthTZKNHS_pCGMXdHdFg~%!dr3XHJ&~%MxYC$Okud% z(z~l_#5W_PQw)KhYOSfx*Loejwdi>DhQ5z`+l1{klPZ>fv_6?Prq%n)xTyzjOoOSu zC&6#6wbSX6&8BJg`l5D(ra3L<5)%k73b~zocvsuma=`8!fitMT77nTD%i5C84ysMy?xSm&XUlXf!dySg?Ttje_0UPFxCr)_Qn0FpSz+w~New)PW2 zcevg)y0m{T8UFy@t?p-t#6*E)Bjsd{NRHP>#zqBXrs^Mv7Sl>3z0%g)M|UT9iFkUlWTWY#n$sEfF6I(VTj%cTXVyea|VwO1&OBy=w zD!}7$=x(CbwsAOYF(OcTY@G_W*#@{YDMwXIbEPxwu{7jE_(aTaw0PCNFZ@N5pzSSf zbg>+o-lHQF60YQm2+0j2u1DW&Mwvc$oE^33-kh}kXKw}7!Su9IG1_sLbXGf0jB-!z z#b{q#{QG74CDcqNfmcm)TH3NS-jml|O4OKF;iy#U=84u_O~>@F1(`fmwiT^Wc=bL= z2&z;FAgY6OoP0+v>3@qoTdu9kUTWHYj}p%noGkVwqmue)9^yEiyUMV{$e1#)ICoGK z^I1JxO1ig-DRkQbsK0LJ<>G6Gj%K#A*lr98B6WFH7_y@jSK3!_I5mgM@m+O$y26%2 zqB_cv;)`1^r*@xvN0v9MmUItWaJ>iA)HL16xf6tSePgIGvL%p(sL*6$askS7mVI;9 zm-f0<#5(4i^LL-C+Tzsdk{Rvd)M1`$c~fkpT#xs85QJrN+ehb^})GT@yMFC6)C|x1(~G zH2!-hj9qM%noI9y^u_xWZTf`Q7lGGvA{Ss__BbJpYf$*n)ml!k3}5cLj-R?GecF81 zR|OaYB0N(+b_o}i%L9Tpaxg0Y08X)n`p>-Y5s~)**0)0L*}a2DI-)F#?ASqu1%0bO z=JUoFY-Upyb<8h1ILnpZ7#T^K1V_LyOlBwV?LOW;Q>5xvTF#$is#wS_EOiK$SlAyb zz#JTVsmieSU`LwQu99nGEN9a!XCI$$$38JyU8X$V^#d*DQumilP0(#gqJ*@bwbxo# zs99{zl*#GcQ>1i;e+{Q&H&YFXw#%4g-^ymI4Pdw{Y|77?{+;|}?0#DI-u?d4*5^(U z7mh>#FqT%03OczA2u5+h^p9dOSX--&X43xFHd||rGWT#vqMh1hWQ<75EDr(&!8;pl zuj;{F%5pt#oX(f(j<|FK7lXnYE94Wav3cvZCcUpqUY0(tVyl@kO=l_@J4%Tyqj~wtwz0p4)$Zc7khFmg3Zul!ypjmoq=Ird9PmYB`oE-Zdh@0)`g-2}I}4kK zhDDM^W>eXdaaqm!Tt& zl+PYVBP=Nx_x6d>biS?qYjF1Vx<$;fC=V%(RzicHZ%EyMFuC#L$*vav0HZFs6eAr^ zr?tQeqjYx)q=W9*ZaFzP86;=LVJ&B&bDcNUmo(0*tc-qP1Qr@95;aW%VHJPN4T6?R zXMFQ<&=8d%71V<{sjAN6?WaK}53fH@fb!y5Ef&dC(WQb?C4ZGb}5y{Kx2&i8g8|e4oPjAw#&B5Hf^y_R2iMLF^F3lNtq~H zzfXBHB841^*E2iF7b_$|hFM7ASY(VJ>Zdpyo^kZ5(90Av!7)h+tFy80A#Yl+P<=V{ zxC11&xWGKqEKyp6JJ6~rdRBCrxoT@mn>GO9GR04+fR+%?zqGS*pM8edNECB zv@w$e(`i^ZVDk`$z>>s0j!SKi>brM%L|aZ(G7rAoXLbSO@W9XG;HR&1IApnuHZt%My$Y*SLN-+FcI$q%Em>JBr(q)s5Vrbo-u%O0Kq))F`Rw| zveBVXyB}gac_0!LVUMS8jlbQ`-SM9pjI@D;k_k$@n<}#jTz3-rIAbh&a&>ha%gmNy z$dH&74+()2_K7eo6EH7bSttGJv+` z!BV3tRE`EsXRSNs8>|_fC>p|*I+*N5n)PK@b1br{LfaC>o4XWRHCMpbA}26KCM;x$ zOh=7w`>1WLVR_QhN#Tvkn}m;a8-e2vMhgNkaf~+u@b7&&@B^*2TNw2rb#JGo+(_vJ z?;_5qdE8PoV2QBgDLamG+iN=cM)JATT^r^*rn=K2Sc}-~6^xzCy^1*twrm1y;BxeW zS)x*>M8{Z8*y)8mHX-%V@F64;hSkr2e7qO*j4 zX4%|UbV40d)B_wT_1!!3IivcI*G{VRD*=uM>VAf^L)X_?2%-UstCH7rFJ!U!j9sCy zMC`3vv}4wcfC^5+*UC$j4OE61EX~|f0#;Xvm-dyF0}^<_R?Y?qAc74+Z|;tw))PPk zU8I#{+zP&2sX)JZN?;tEh7HGqUdyi?Y0}*p(b~IS>ZDb6oaxS%%xc|JZM91Es#yG0 zNxI}?kg|zw(*=Nn;$lsWSj@+~_~0KAekLxB)S6#Q=~_LexqmB19KSLN5lL|Bu|&H; z%N&M~djh<1Teg*FbMmuX$8jyb;7Ad+&EXZ8mN^4}4hivtT>8xZDqT0z`hOpm%=90t zRCN<|Znx5zzMa?5l&|aED(wTH^#1@g037DJ~Lj1{{Z4=(0V$jGlzba%ri{lbbfbKPg6riIQo5% z$Y45CORd?R6O73fuKmqij-1}7d5Mbfm^Y1X_kJckSie|n32k`u^si4Yt!FWYOFgb< z?XBWi8HAm)5sY0pk7oV&JN9kjtH-Hoa<-o&QeXUrqKeVVX9~fZCzS)h&Lj#}H&HMQ zfz+uZ?^eKhbn`W&yuxAcX9K4hJqFw!t-ql4Mw-^xI+(p#rgareW+yVL*(&v|SVW=t zeC`^^8s2f*$P7%0fs97S;ue(;Rp}ZwwV-H?r0bxFZ|tINy}=}qVb#8iaEOK_%pFlljIUft*@ zx?QqKBTpWxvjmPl+dpv@ZsJIhKY3!<##Ic8+s7!*{xE$K!eKO~qHj+s+{EhXzN$8= zX?L+I@qR?Vc`C}5Qc zFZPYDrJi=Qv$nwAiV1lSI|g_FFD%4+f#lXp;s;-UvB_Z#rJ`yYjq?-RcPJx-40jGW zV$X$C9(_l^tTB}HHWXtib8LT}J*#S#)fk!Ff_MSDh)F6FeFCMzPe zVfh1Nx>5LqXl}P^9<1rUoKvftx6xf^UqEY%ZBA<+j9#d*QMOq}8E)-h{KP8~9;*f; z#u~mMGBPJOFnl`FE}=78>(6i_mEn*gAu-7iR&+VQY=;|47EpHrNm44D-xxZI(nOC? z=@rwyVkqZz#;O{bW^2+YB^hC6|7Hu`wSV>I#k=99`fN4#(RcK6%%kM8jtP;vY}Khyftk+hG_{{S%?#83A` zZ|(Q-DLm8(_ahmv7p`@kEfts4vfY*oywKwNMPrT&ffY|KNmWN<4e+YNcuY1#jCxlB!8^ezYx5T z#ceF{_A?wZ$O^0E_!$5i*e2*pTYLMv7SygYXtOtWg`dH)H+P?v1<>f@!C@-jL6%% z*n}>%<(v^r%tk^ViCs}Hq58eLLedh@36|jM(KVy*m7tC&=SW#zX(mG&$AH_i4m{PL z`ypu7ZFrY=jUqWmw>AtePzbx`MvTk{Y(trMD;>$o4)Mo(N3>*2UPUSLRZY? zwHB18kiP3}qm#$!twC1_k)w#z7BqIGy^RX`p;-K`Paj(8R+5A|*nxfL#tT*W-Kyw% zRlcvPbaZh=Go)`CYB9Xfw1L__{9+yPiB%b+$R&cF0phY6f5ZE2Qu1wY1R)r-81M`6HjU$rPZ~9#%jG~fzVhd!Rn6f zCmBq_y;+nfhO5bqJ(jo#=25(FkI=tJ8_uJ-p3h3?lReBZOLA1-MxSE}g5+i{Ths!s zJx73Q?^F0?9+7UhSGwoeG_gaJw`L*bZKz1zJs{+<9snl>ylrp9TcWo5^N{l4R<3E? zQN}MK7b=ZA^QMO}iNe#=nLR6CRmBfQXH{3zm#bcV1+bjD%!4?Im>Ig8dfTe8R@gVp+|w*CJ90Db-U_WuA65vXUv`ya38`c+2p zzsB(s5&P}$x4zy7z|976$LH{;2XAkGh%dk2d5?c@+raz#)An=c^ZEY(!oEiT0NM+f z{{Z68qHBH7I`%pU-Lci!p}G&RuCgqKm#HBETU90z0zzg9WI+zYF^5u3<@o;VMg3wQ zpWRpLKE?y@hW`K`YT%{e$6f~A39R~+-C(RzB$}Yks+g&Alr-f%<$qUN#c)l9z5+~) z;yhQVSDvobRis8z>dH$U-9?vB8`&|e)T~b1j5cb0D2yxtCS}fLv)v(xQlSnO-%`dU zbPC9VSn&@;g`kLhR5PpMOyWhrjgv5*=~fSTe(r(W$j5Djp(3fcGG|u9th~C z;$h}T%g2$Pw&?DX=ugAAdf$$_qH#S%>aMe;)ct*+tzfj~X7);^I~AbYkF#ttI>8h% zckN3q8fqk(lt9kza=8ye^;cGPGHO@1KM_w06_V-icf)a_9eVnBn^<;jp^ z0B*tRzoAd)!xf#BW8kKq=I^`|K-Y+3MPVD2ljcjTjNYNKk(X+=?3Dx8b!!oi>6T|N zru6<}BazY>d_PFKm!R%yHP@X+8aJqw@Vcu3Lr@y`3Dmgiw=Y$5!(wW;k|~C|S>Ad& z{{U3#T>?w%s6X_LjF(n-MlK?0U{FM{jGe10$rEhO5>VScJ8R@0=?&0&Kj`=IZ&mnx zr|O&fcI;`|j-GB=UU6wP+s19>Vh3_tIqfdvj^k*OYgUb1Ks#(q$Z ztLZ%S`vL4d&N1{j&M{tVPwSk{oTaBRX{|+AY`uK}LnWwko#xTRS;%0tuAau5ahRmH zA(K%uz!T=8Ti8-ftlA_X_6w*iBcE*cGE8n}xh8PoQZw9k3fwn22a+%|$>7&K(B|q+ zq1N&$mlwGx~WKs!&Fu6<4&JB^+j;RcwY$tD$8~vveyCIb0brU_eKmpHE)sIof7sqI%=uPg-l;GjY_KRsH_}O*NuTZ4`3E zWfR+pinC7^CTo_k1Ul}FX^O3x&%J*h4~ z8&K@D6&43&STs@7<4#TyT3_{~MY;(qZoDAV|NXY|(R?=zFzMB>Fmk=~f z8ku`{R#TXSfB@3RZ*w%Up=JnWk~NK3s=F&P(1U=%;<}}#jYK;N;}gWvSL4(Gr2pmd!w8Q<(&hiLo!dvCt< znKCpm1~$hRkN&uS!m@&8AMKv$1|+$<#&Q1u%+nr!5ni)OW3bq2m@D-v);kt7<}5FI znrX1Bp=%XbE!4V~jD@P~QJ5H<5S$do-y3CaE^cP-q>>d*<6r}iy2okA`hNca@vToo zvC?{TQ?S*vt9aJ?vYXkXR}I~bM6tR_xmg?%tO&se@D&NF15VxQ&YI2Br)e3R820{Y zb*C+D>b9`DjWuiK9%Mz6$W=TH3UUnowPKxsMek8!tX;7+wa@;KxU&F+UO*=xZFtGs z^j7XmRP=AV&%TpXrxuR?#mIL zZH@Bp)QRbTnEf@MP9CnJeV&1Jsw?8JVcC|OE~S{z8D*-pDZ*IiAEs#cc$~5(Du{O; zGB@2Pr(0_Jmc6Iljj=LXNtGvf*kt>-$Ul432sywb1$p#m=;_qg9VOJdF0*G8b6n4+ z>lW%ILdrMIV=hYq3_sZ)w9XF^u=V6?*Pgzp<@%ZCA5rRjo--Sz>`#nm!LT=p&yeAD+O?Z_hx9yMPv!gWJa*UMGNbuTZkHD(VPgX%u5$7XVNuT-&Vd3yIPBGsl@h^kfE z?(`A(wA3V(BRY)nc9ujkGRATO#~iXY&qzL?hiNDd<_Bm46~g-N!FtQ|i0ds6N7UAN zb!}P;8)>K7P)mC)mApN|u2quVXF$OuA;cvWw;nPz{{S~$SoAmI2aNJJtGt+Xm#bPk zAJwcUK{aoiT~F1mQH{!8>Xu&ZEE}`fZj@mcPalry!Zl6LOg@_8Ee&Nd;#5lk2XU|0 zy6&l@-D?D~(PeuduxtgW=IKU?UQ z>fL4t5>u#Z7Z=Sek{Fg<`)%%_f)Rtl+d~{N=V(V&+(P_y?s-@8-(Kb#A+6N%aO>A%M$Pl$_R0I^pWuVU9H-a~}&j zr>Q!NTYG!$c4>5-C@2=w7{_u~iP;Qlv8$09`kb-BB|?TFh|X#M0HaUAKZd%5J$KQc z4y?2uq<@&Vj`jz zq8Vdm3CcC?JXE6sq!nvW7i>hK?6EfS&w{P#5NovIuL`iGwT3Hx?hz*(HhGUF#7dN; z9Xy45G8QbCbbSXkD%d5|VUGOC4P+Uzu&&8>h=-hqJ_ceWMha9&tS-D-%N^W;MTmAq z!mF1+C3RaA?J*6WHdGy$?hqKjNW#=J&S6S4Bfhw0rpTL%A__v#b7^Gd6fG%?e&tWP z6YUP3B`y}Qi6T%6P?1m$sNS+t!mZt^MKJm_o;FyeF>AEQcw8Z{Rr$4Rg&9GJgFAZ) zl=76ht{ib0D!_GBY}U(47-6#{aMe?(&F67rA_e-gmNig)wjX49DNb0XO?#U`=9eBk zqrGK`77JYE%Pm>$F^yZ-FXuWsJ?{uDL~(ajbWM% zd-%DnyLP*!uBf!KL?IzO1XQqNN14i$70V>P)s{KS$vMqk#UbXVis6tlr=K5n5$$3!(p?^%W=}Et7P1UFBYm)uRg+*mv>~C?#{t3RJFSl z&m}5K;;E;<0@|;$>Rra$(`LDL6a}?K*07USCaWtggeD-RuoggN60(LVMWJ@tbtJ`C zk{DZ;kUXuG4O*SSsyD9JwP;Yigw88VxRX|un#5KjW~B%=In{ECwaQ4W`tgrqEN;s7 z4*h$VtsStWT%26Zuptr+7f3W(D%--9I4^6_YRyYElo!{3A7tLBuh=OOQ zg1^$yA5gRsuIQ2Xu*ex$)X2jpfsmN~J}VonNb%{HrZy=fr)^jakn*y^rylre0VC)Q zeu@Y=XQ(pe9PU{^d4ipo&U3%Fx6a<*`0!TTsz~II@#dx@49X9KkLATtPx9OE_nF`C zKexAt(wqMP$NoR<;Yv`?wEKJf%*WeriQC)4mFKm1F}ix{)U#s>Yw-XQVaY?lpty&* zZMO66KgxVtU4}4{qmW1A?^(W_bdOlHc^pQIza)?bHl7JSGvc_B_>}oW>R*~1wt#+) z(77#4ItQV?Vr^ia%!08rQPqnq>DF7OxEzf}SWM-q<=?0CRGOD^r2%M))O!z&dlTB~ zlWJ*f(>=5{O&S4|n8m6?EzP?RefFKk0l3Hn9oVj+a~6@SSiz@WU)w_q-CPzeAk0Q> zI(TjFR{^jgxiRh|kfiWbnw#k-OZ?MR^V0tSG`gFnc^x&OdXYjrz2|f!J5G`4j*(~{ zoarq`p!$&E$5=UVTI%h6VM1vn&cdkMs7zceVgoH{Bv4%S1Wb<5Yx7-Q2}&KwHKo$W zV6W~))q#|k!P_pt*zz$l!qVI5w@s^CCFX~3Yi!UZ!nAWma}3XXVkK}Ux4khqLx9n5 zDsl)rKjgEey+rBfPr8MsbcZIEFlV)sb9e32so_9-T7|QlqHJ57; z;c%u*O<++5wUqGjM!_5PFHKoEWVo@i?MfJOvJ0D+$I$vDL!L(<1I1)DYuh`0Q>e8F z?;)Dn>Tx<0kT&Huw&{#{+$4>ahBzbKb6ee)(YVTZ`&Thk!Ff3pGb3eC-%*r`$%I6| z>Yhd`AE#)IhBooD>GPXcNQerF6M@J9y{nO5PWp_~Pcnlvo(=$Qppp}I zGC%}{&VQ|P1I}iJ^A)Q+#dISh(r+*MyLp`(pXshwr+#KMu41+@^c71w@)y^g0oFWy z*MZ&X#zUu|PorH)bUyoLM`px~x2n9gKI{cB>0UY;UYzks?bUato;PxsNF>zK|hKfaEhVVdFJg<4L}f zey6mG^4P;(&86exZrC=ojXQIWm$yL$_a2|^#EI885hhqO}x+bv#l7dS&s6% z)Qk=z%tn&(mrp+#e8!t%`VV`{rXszJA zTMcJSxVMhyc~f;IthUp^FKrC4%CS1R3XYA8u17uK#OaDz_`Z4Ud|Ag>HV>k-4OCep zd{`4~0S@8=0mePO=V^)C#y;}U<#D38W8!1w* zp_Rb|5X#vE5$r`_9bcg`SX}M&WAWE7V;H!xK&z#$1tpAv?2*8p&jv>ic-|reqJ8FL zspwr#X?>?#we93~_p!Fgcd%0A4jc|WEImga`2={cJM~vX-)Y*t-|D?STfH`Q?m{C{ z%Mc`PLU7)tZWkkk*jL<+RQZk3o^5o0niO>>%kM_@X06C;?=L!IqnK@R`6e#bnCaG{ z#&yIsR-?*mnt5AjWjr`&dzlv3U_(m9m4I>PA~J`lY^?f*`WFySYpuzm7MRKny4%`K zb}yD!M-C-0&I|!Z3_%|CLQaa+wN9AR0{q6GH&4E~BgfgAI&8JXxUz>XRKg$PDI%P+wJv-JP? zlGnFp7_E1l&^T<2=bX^0hFM~iTwZ2VfU?%DAhFha5xth3X?dmUYo|#hQZ!nPwy7Mt zgXxS2&9%*xW>$>t4RBC_xMs3#(VExmE||a6q>oh9%s2W{>X6&b37bW{(WXmVZEgd& z3AFuIMN4^AoQONyc1I(}T^{mLp*puXUbJe>ThiTQ(%YSJ^CPdip{Dd^x5cWCs>5lF z{Y^24#h$6FNv^MoxWmF*XKEWV3z1>Y=i_p))^vDuD>t7|jJTUqx@h~0y%O^N;_4X6 z=XZ2O>Rovun{SoC)h{|vsy|yrVIG*X-@s&qA(=`_n@o1+7U$OQ^IXHrs5h3og_;OC@DwOuEtuw#>P%p4&3K{5O9f23*- zmyk(+Zzd$xCGN3?MpIOPJ-mQIk%j;sc2rx%&~2CHC;8K*UAwCzf^XoP zZLUc|ca)M>Oyex=lfWW7Qh6rpzE7&!%U#jwro2WP_gi%~s#YC%S4iGqrx!~ltghw;ngp_W8XmE(2kwE7+{m>N%WOWIjQ!&UrN77zky2_t0 z+LK=SUGo?k-&XZoq?T~ukHcK0Rb2(?msMz%Bd6L2EmI{nldCUbpPtUzx+7a_cOb;n z2?FtLZ6$z*r>-Emn%&a*X4DaFr&*B6XLkzA8#H*4U<`;+a66I$JhfAcL+U#XTH@7h zt*>;!quxhnJd(4<`h~*5B$3`)7>dOV?1=;~zF)J6go&3mydF(@S=1hzbS8$9)xAH} znluMnbt5UKG^U_L+|_t35uVmrY?hOuta3CKL3>k%Hp1rfd#yGw;GEVR&x^UP8f4K! zyIsizyb#LbCyYF(&RN3j8w*CtAAmQ4ag&d-64X&X$m?|uf8k1=R zQmk167VA80A&eX>c-jK(LD!77i>rjdV69+kSXx()s*9Bv+jpA=e?Sg(@RSHXO2Qj_@9IG%nEInb;6GaV$ zt(!(5+Z0R&0*v<8a*@E!c_WW{7m_XM37}EV}ef?L_-je977OCk@Hy-R} zJ1e4k{TjzwV7i58C{Y-#F>gWTFPswMUupG{r1F)>PbTrEj8;_w~j0OOSXdR zPP&>a+h5hwSxO@!2VVWW#T`p+E5nVz16j_Zvy)NM?FFi>z={n{CMkL?X0@JUZ#AUK z7DSR*<#<{t7Cpn-KosVpv`3Td9+c?ERr;N;x(n1Ut@RgB^)so}@;xZdYCS?ViVlUL+M6)-8V+Ex6)Q?m@MTJ zSj%s3JY=&ZA2BRZO*u)C_ZZ@5X!ei|Mol$^=TXgP4VUXX-W1N9Sx~8XF#x648DfUbp5w=$5r#XdqL&s7C$AWbe5{>eyY!C z%mv(foZ-VcI&&e9-k`AJw{y44Xo!q1zhSHE8lIU1V&huWO{Ima+%z`|E-qq)VR!CG ziq56@4&W98bNxjtG>X}^7fV?5+iC8mnIMeEwl#2sfFt`bODi$$`f^DgYkIP}PM#AR zjkvW~ZdrnwHySprvbP>Abc(2xWlEm$ZOj)2Q4zUMw0QQnM0DJJCDXcghO(DVe2JOW22_~)9_Ee)gfW$!rse(Iio zP3EX+ye~?6Inkb+~9I3*D>R6vFxq3 zrp8UT7k81a2>$??wzmQ{$^Dm>;%sAsu$sf&L3i_7c@gflhTd27l23M7c9mccq^wY> z83Tu{iR&hJMRd=nHMPE@RzYvfWEH3T^P0|AN^Rs*a8kjs?iSdugV;8hGzZf4UV6;41DyS@1_V8T5~T!!=J()O1}2!S$_eL=f7tDRCP-g`Kvd zg+r2m9C3nt)~NK~&c8}}b8jfXoTd8LQ568bKtaE3RXjz&vJIgRu$C^u*v?BW+Yq>k ziTT({C&xMI81>BnU9xGbb7^=Gozki@x^NCg?@8T{9B^w;y!hSl>nj^-cLGR@hQ*|e zIrcaspGhl&lj8&1Mm)y#ZyDCkpjp=F#j2)1i7vEQixsYRR@1X(xdcQK%beX9Qb?v( z3o?9iDDj)qY_4r?wF&P~EzYYWO(MoXQIobcP{%xe(|hD#0u6bq;>TZUU45xp-f6J| zr|B_>AZaqPFx|dplmWD7AV(1-Cem1)!x&gH^BDM)gA-qQq$=)8fU86`ux=QElisnB z$2j0~10w`6yyt{-L>U}1tod)cI3NtL94`%wu5**(xlp@};?24MkP!&l`1G8zh9{gd zXC#fd9`zxn+|n|8O)X`M3$VIu?OUvUwF@Bw128shcLp~;J+Oj}q7GtCoU6}hfKoML zcWzQZ^=BUBXTUkZI2CuL7m%P?GjVY$g-oNMIaJw`!S>7T+BiAR3Gw09E}vbZ(lOKn zUliKWn6$hzgfWLMnu(Uzi|h2F+bkpQ7|HC#48+L}`9IW?Geg_FiY2((6|&?mPCZ9y z@JBc}A5JT>NAQ1Idudsvf>wtt+nK{NZQY2*)B^#JEH`9hCp<`LEo-OsXuA`KyOuii zO^%o5aEivlzcjW=JgB@ZHMu}@=qd+pU33QOLI;FyD`U=A`sZR);# zKrjax88xJJA4FgDwY`iQo!Uu9i|NC-s=p&7@3yF+@5Zp-Hzz5FNwq3vV)PFldJD$|`Xw_dYi)JzEz z(w}bHO|rNF+(3hN9>Q@KQsPTk1Tc;K269UYH#SG4@PrT)dl8)SYabTq?;b0H5;(Ux zO{JJJueo0!79(#sK3fY+WE~Gg*rb7@#@SC4z>QUlYXq;|By)X>QVWnrk@LCW8YZwuT!3Ipbp%1n^hxk^#!{ z3IX5@5<;7@o4miYqKGI3nUaj=SG1#y#4dlg%4R=OW_f!I>YKro1zrvT!5%^MjywV7 zh6fFbw1zvD4iXX*4#y`9q~K&==g$Rzz*Cd=Ni3vlrRkN}LepVvyy+lvdoi-fLO-Vh zWNQ^neJ~(J3j&DZ9x52jOSHLe#^QFBEK432l5@f59FxbIp$~1QMnJI}fswowKU zfH^n^=nHwl#YkANwmmm1m3EQ>v70Qc)OEy=vlum)tl3>g1}8jaeZu&e8EHj*I~51s zBxe{Ts2-L$E1q~^?l2AqHQt^RY@OVX9J78EqBKCbwC+eV0fqU1~Bh9i$C# zfLa&Y5->S}GC7km@fpyBX?a_A3%76_I0KLu1=X98yLYJs zq_(xV)^!%q@9pDG>@5tgyOmXa5=N}9j(Hi{z!I#Wik0X`Tsl*%we39tiPf3QISpfM zt7D4+b31@F*~QVheV(n+Nnvo|2r(&{ff5qq{jI!7@ahd~O1QtXp2uyi=h}&L6YLS8 z8(bWdyNqMQeg?LI@gJbNn^3URH0@+w>JyfYA_;XC_5*trd?IC35_ca10Tk(6R@AqxHHLRp^(#>RYm3a~=%@=UD$M0$G9y3K;xTBdBB_~*x=RSGH3%Bq+fNQHucO{m%6xD0dEV#=pWGB+PA_irK zMI3h`i1FfYh zws!ktmRP2NRIpLK;B-J)xEsk(8Mw*h`8CMY=#HoPvFe6`#%6T~SF~qN?e$Nun9Lti zvHdBd(@kF9m1>_W+6NzV6@I=$06geqGRLTN_~i1S+qUb{fk{Ea;dhrh-jSgGy?YnZ zuC+^>DV5SDH#WC-AFc$8Ax3N&q_;8Lw`{0a83O{acKS{9v05EY%Ka_vrm}v`#nD-< z87<_EqK%+Ck_5N}h_cEMu|-+NE{XjL6wmjKk2=`hKfkPPt}mGDr#PTxz;}R;{ECqPW-W`?|)f zZ*i%o%qm{RYZjp!7g!_pvkAA|PDW1H$a1GOv_FP^kacdBYuqjm{ovlxIexrqd)fz7b!!ci!}TjxY1Zid z3aqZB)vC%>Lu^X5C0y+)jU@)u@XAO*3dE-&)VfvoUv-~OX*Rc(x7wx1kuIdMaQ4u| zw^PX-z%l)rF}7uzP^bG=_GYUMG7r?2bMMoo(k;?B3fj$$@k!bXEMwH(p6Zf-vtdp_ z!4*G>F#{#rl1>T5d8gu=0jt=&QMfl&^1CX#GN}$!Y>mrp z&yuJ@la|0ZubgK2dB|S!-`D=R`i*Iu>Q;-?-F>^!ex6>(F1{B>&Kt~CE}~>}T2mIf zYrk_do_>={JA}iADV%D7fdrlo4N)Vp>EgGLyfDRN9z?>rF6W8W<_vqw8p`Jmpr<+T zaR_IMPN%uhr?Bk7u6852kj(BbRkYNKGun1A+Tb?KMYnqZ@{-kw!^@VUrH0qtIn7}6 zAD30?=aqd4r0-5L<(RF6*BW~WGnb!8E=XL{r*C&hDq65%yitxPSbY3A-o+a*-Vb!lfJ5s|sX zHv63vf-$?589o~aqct9sr%$N;N4L~{3HjGpIvdqasq3zu;BytVeh)d+pD%q`v6#7p zYVelgq{g7sIE-7{*mG+g{w|d@p~9@1v_|42v%a;rlnq8GyQU_EWq2(nM3Efr0%6<> zy9#g=WUW%vEMdAy^y_UL^#!C>DQuR;La%XeX{?BdSyot!_M$;P!6LgTGGvFrk?E8A z>5}W$mmaliO#_geUXav2T6!g|wPs?S$~vYpT92a|#Tl%4X;fn7S%!kwwB3}-!LF@* zjTNbb23xM>Z#0=MZsB{Ft=~}>s)`;pfSBQcl~6DvV=cQpN(Kma1L<1+v!g+$bY7>U z>2miH$V+_`8x6xUL#wEbh11H-A%@Lf+#~LlmlE#ug+E1oC((EH{{T?2_6f zAvax(rmVpt;lM(~MC=d25nF zuE8X1KePy^1((D9csQ(=#qOB8vec~gc&;ukH2ck|>yXM}nNJ90e6Wr|hFtI%5#qJ) zUW?;H>&O9;uv#ZsDHYT)4U_(iZAAQSEWNkY49D@X>IpF3t z9y!hru<}0>T+>X3ajI$gJ6v5tpkvg2+BO3t8*|9sc?6SK#>y#+F+c1(e6r#@wdMR=`O@%P5|3so%z< zqTJix>Y7dMu`h0JG<4pz@J&}1GCe2<_x^3~6} zng&ZwnE_jKX;K)EsY%ACc1n@X5CSqXS%x?Z&2B--+jhs>DoQKa<7`000P2)69Q-O_x}J9&%ZU@MTMT`ZPz}$ar2YlW6lP6C-6VJ z0+{~*bvlfAkoCK&+ruFF6^$`4Tt|RG5A=RH4-NN^f|=z%SHFkNOnjsn8RM|N{@#6$ zAo(6Mikw+l`2yqr0OxKz`yW3~Bf;`U>PhscQclqwZ|cIv1%dwn%xQx;i6|wPGt=`t zf_^9FW9cqlBDYg6a}~R1o?u=NgN{d$?05%}QZ^NSbNG9ZK=yAqkyhGhC@-&jpgazf;WSF=ZAF^}jaj%uWq-(6spZ@^jx1z01naSjX zG5C~fT=t#0pfeVAzJeWDg}~;tX05_&wveGXZB2<3)AW_sEwCDW@@7gIfwIta>lt)j zkJj#G?Yt25+)zpLiQ9I!y;!cT=CoD>m|qf!B*;R*fTW!58k6entn1o!v^OH!?XM+x z{!o}@Nvw-m&lS&Xo%!DpjwkhJ2h=fJP1cPsqrA6t+fL{Xto2*^N!1TKy3j3kYs@}p zLn9L%FX;NT7KqbbRIR5gY1-CXg}Ha9_&g?@sa+)nb@^7>v&D6G@r=-JZo0duX1LQV zt+e|djE+-nr$ulUJDawD+pYe?cwwe*zCuJ^eNm+Z8hh7to1{t9Vzo`)jdb6HSIkspfS|E$KhY3H3l~) zhtpnLsb;$AquJBkPA>h5#TMJIF;!EQC}fijv?sN}VoULT)H-&fuk?nQrCV7=bANUE zwW6ITgTH$5Ti!L|&%MA_)1)Rf`=@K;)sAc}Bwa6E)ioKC@(3d`8KO4V4GKp804%n$ z+N@ErBH>2qwksXWm)dH3@gM4Tp7SN9`e~*7yZ%+zq-lLO<`1hnjx>gHk}K(k=q{S$ z@mPIHa@I&zx3d+I)q#)-YZ85uP=$Zgk9rZU+D%niVZMX$N6{ZbjNi zJ~F3CI_uG|FurqeA&bgs-7jOMdIr{eO6gQ$pF=yX)qbeln%K}?su)cJ zNjPL$w%<`@@3dSyX-rLrRP@F7PV`2zBtP#^>Qk7SQ#@=fEUm7ct>M@lus0LtW3dV< z?8yvR)#jC}J@&P2Z+mTZ6xNpUln-q>#?0}K<21!PYE?*$BW701IT_$r(dLVo{)g#} zx7u)c{{Y^8Qa^e5_wnsshh4oL(&PKK7N7f+`hI?u=U%Aisde6b-Oc;Qtp5OC@UKb! zKRf*I`~AOfpBqjy`>O??+0K8jkK_6M)lnPoJ8wJx01s&P-hZF8e}>*4)}iMo8T|f# zl`1E1c%Sc|w0{rbx8L~qhw-SKc>4bUPtUbfd+qZP?;pl@kKy<6AK&JO10SDnKa*c1 zAMFa_?IXwDdU^H#COQ>D^e! z2W@+4k-7KbK`7GY1!wY3Pw7IeRCytEYb$$IOIV_`63;WjQ@*csy~(@JBVGnz^LD(Z7#UqSP&B2CLh!o}v6PzY z^swS%kGY329pis!pKbg}sLqBv$y?H=ynliD^Z6L7ewwnDH_>fTH_VG>xcaiDfHC-F zkK|2z4xwuAD?K{V9Uf+k>((Qw`8`9UH1=1jIISI*(wdi6bcLEWmWj`L?L&;ywNrCX zYf9N%hDwGtZ)^>U+FdnXF1uXYIqUR&GgpD`<(AsQ;{94VS8F3gzzG8)Gnd{$kyNjw zmLT)AdWzfheCg|coA@cN^uDmy-AC3iX_3e-mf0TKK@?Y!U0TeLqpY@aGusEuh|tGx z9LnxHhWekc--gytUS{=$y-U}PLtj{RYpYtrP~6VxEaqb^e@eeY)ee;5Z`#k~P1n|X z`i(|q`589dI?1hVi=?)1-nNUt1rxmCQbda&hnW-jz?xtH}=bwC(s|tF9dp5 zs=q}Zkn29PyXx+xd3BlfEm`j7?@R_PBh&jO?JXr0G1Wzy62gJB+m2wnA7;Ii zT&(*Q+PsXn`g|)amh!ar;#5U#rAsU0ZuM*);y0^*EEr%j0!w(e^ojUmtNcCJdRt1f zzLQmk{{Tcwxh1=3WP4pw7n(cYlQ6*w$6-8bv9*({+dNL{Q_&Z1E@=zS$mM!%k_p~y z^#1@@t|r?#HbR!B!qXUR%$IkHlA#Hbnc}$KcbT6UwV5uUzL5?U<%IGv&uz)z4|C0V zz}rt@d!i$4Egh}eo=NnH;scY(+PF{;u=B=foJd)-hU=YLs%4j2)!O9dApj7GBO{HXXWPWhkNpfu`>{lM@qs(%@B*VBdB;@65^s6#r&S0t#hTVI z0)fjhBn&7dlYw5t3gdPUPS{(kuzw-M412`LNKvk~4)Gqu3=;{7jl{r&wwRdlaVY{x zFyFNQ0QZ~o`>S6;GcCCzm5x6n9u-0H?g$|L8zA7LF7 z4`?Xkx4cCBPq!G~ZTwJzMcZ&m&I=Fz>f6WU)^6g~X%kODjIyBwom~FrTw(A@)>&;khtv4G*-oN#-L@~?$m$}HtIrLL${;u? z)!V*5SGi;XHqM%Ro5mh$A;tR-B=`BO1i(bTj;FD| z>cJA|>!RxEEV3oMk=wJ~>Bc!EOPOLot=ciMRx$wK?I;+GZRQ)OIKHgvZD*X+c^;nT z^*r=1F@v*|(wN-?Louf^_CRkmzuAIHMI7Mjm<+U4)BT>7# zvAnpw`I%wAwO2)EVzGkU%C97hu7vDhq$llpH4oAc<3B@nmcG{AGcC2wnIBAQVk?w_ z(hv9ZDP)2fEuFj2%Lm%V&yCHwP#uJfiRJfKXni;2cc^;1H2%j^bZ=bxS)=qGtHfK% zqd$bwdcP-z$==7^b{is<-P3Fe+N-j=p=bhf7CS2_h=uH0<(``Z#c>28E9=7`l0f94 zVt{UOp4@M>P!>B$D;Xq_R=)+>;!n|g;%2p~>DLFSIx|$Vi%OXxxr+V^Ij6Fj;7-oT zt}R1LdR8|{k$ck(pcMiUI^vGF%QNz=Osu`Qv5voUChW1JDe7@9p_->Pa&GQ37|Kix zYwl#sNO53EQWbA2W|b4yFHz!1p5c_l2`a&ZM!MBuA=}9UuyO?thlDn5x z)^0VQoRKc=J8vsoG>~5hf#aSg9njNTGz}bbHQcF-JSxW=*KZ65dMWk4qnTZEL#tZ9 zqumnKU0tb=$L2q$^|8H3(`>Pw#i&(BQCQO{tC^(S^?kQZ(|cVqD|v$Kgh+BdL*XTj z+{W`xxwp4@Jwc`y1n>596fz5WAK$pq!^W#6wdByo$Np_D+-)Qd+OddpGx1yVkEA@pd3x74Os7C}#XWhT^H_R1W2$qh zGgq?s9CG#EB^rS^l?Eo8tYfbvOZvUeLYR5D7OOMdjfbMX6JB(dr>Aur>h}7KGmV>8 zJBZ~1NZ%f#DUH+K0$w{ut{+{9)jxWt6%v(**h*&XZr%h!-L+WE1 zK{DyuXUA%C8bVa`2@* z;In0u$)Fw5sOZRr3k|PHP-qjBrkW*e-d7_vlDHA|J<@DRG6_mgeJzHH9Llxot#^vy zTV;|{&RDaqGPZKxagiB`-XvmuyeVE? z4oBt5%UiB0v}?0c7u{mPOC$jUpO&=fuV#zoZV6b79deilgmHjsl>J6m;!C`oVwjbi z7|N9$knS?YX=>}by_*mxR$7^n;JzH5ED(^FAe5&Y{c2Tar6TVk1yn8tmOi_R5m}>6 zHml?&0fj|Ip@ykq35X@c$jJCos&Z3ZMe0xpxnA0=lwYpv?NY3Is_I>Ngqcc27Xt>q z5(Hc9EG3MoL`G1q-C<2aFHL5qP4tRwTBB~cDI;Q?I9)|pC&ieR%n#BKazw&ubMU1} zWMPS8v6bu5wrzWCPzv{MzAmBW!0+KDf|4q0hq)|ME5w@-`X*b?H7Y$ej?F}a(_$Tu zLu!Q@?+OYd9hyW+Ql%^9Yj#XHI^~;l!eEzu7dQZ|rkU9xHUTp!Ny^Lg0g%FI>{1F=`2HN4qpAHr z^Rean=S(TpxvTGM?0%O<7V3}`2Tf{e{I^h`y$~JVK*L{{XJhy#2TS z8~pfEuMzD#dw(sX`TYF;{{Y?LN?aDxzVp8?nEBp+Y5Nbii2fcZaA{oTe*V!P6EpYQ zedd1u0P1`~p@HjJkAD+n;GFYO$@-eKnQ#995VzlXm?HM~`QQ7e#4>)g+{5;d z^QChspJ|`(lAXVtZ~ORU{b`o|@&0C<883PF+n2x9yiflCvmYP(cx3%)ll3&{oW}FW zq9@ru3nI;TIAvK4GQ`Icq-Z^2mTXLnh?q2dU9#w}K z9C`kgWv=O$FJ+_NS?c#XYup=!aS4NC_T2*HO9ZDNH|&-3$T+Vb(l0pvdisgwyB*hU zOXiECIuB55YW-ixbf>5JPK)7+p03CADR}4WYWZDRZzPprGL}as1Bt8(bFDEQvVoG^ zbGJ==qQqKSTDyMIFse3yh}df0VWyZcM>{#$D9yzj0LT()p<1@vehl)mf`Ip zml|(nE`D9^V~$PMd$BU1iAtYK<2$$qWtpl!61;Cv^)8Ff`JU+>FCC}4hl$e*)F1pf z)v;SEr1Cum&-KXlm3m3c%LKtXZzYO4kW7)XJjJEQw>aO{H|Q?jdkZ^suzf`(EcYjG z>h-phxDN74O%=+O{iQ0v=NYWTeK&N%(nRYGT2#J{##n%lO9cGn(pxkveot?58KXHr zbg4te>d;Rz--&mh&n>#w1A}i@x;fOHDXzMAqq?cnon?gR-FzZ-E|1sLZe%bovx&)B z?_uvQX|WbmWL!_`gP9>87LTl7Ti;*lm%3fNSGs(G7^BS5I<#vlNgI|KStD>jAP_+r zU~^WJ==X-(PrtJ34N6NrNgb7DgHK5#G0M=%6pQktZbup1q~%y}Fl)5_Lwvz?N3Xt4 zdRf+frDZU8b^fZ(>$*9M*gQ2{PAQeJny)X4#szF*$bzdPjWj{beME3XUiKnLNgGQH@?rXM=a)IJ{KxA4g?~X04~N5F>c%5Z>$1(^vQE@Fj)~;7ej{BcBc&;) z)ajgmsn(dn$G*w`09*wyq9c&_wXs`U>pAXGo;QU=fHHv`u^Xu@*v8=S@y`(kGBV0{ zFA8c~o9$NHSz8x2^4Yf4V;jhBV3F-o@*^}wHW+7xj>lI8Tqq#!<2d=J>Gq)O2Sf2# z+*5&hDmtqfsI6V}0dl=+SoP$q+I5;de_1_?J8cp?3Si{68Q(|irn$7Rw7j*kH{#A+ z(xljtlP(g_&;Q)|69{@G|(dLQdCr%yY@DoRv8su?$JDV5#|?i+G5kaJwV z)80sWi>TOm?K!D1mn?S5#i!80F)tR_b-rfTx* z65Jb$GjDMOowI_@Kq}Z)^p6B=$G7hXJio909!c=wtaQ_?CZw0q36%DGMG8x_fW@26 zcb7hL0OuQU`C#ofCm^MQE3JK|yf>zztiA+RJ0!RnQps!M5xFqgD`CJ%1npw)wY3op zYS{DvkanB{gXEGq!NATBjyWjPC1jdWF8r$&kdnE|oScu@PbL29pT{9?hZCWcuU6t86EToG{;H-wi zM7Z61SP^0XO|lVPa%WqLg?qFv^CW8`6BtEccmS~kI9PxOk2!8Kc+M-_$+aRc69pOC z*d)K*UfCtM=NQ28k5`)64=olc+?_${S4y+%QpSawO2($6;@aD7VOGT`g{`X!h^-MM zP(dtgk+_^&<2Bfn+Q1Y0W@5M`ob3gJV;-MyFbO#4#w&1M4{FCmB8~g$0e3-4#|v?rma8&#Tj)ATb1hK8uhCxCRu_bfg(- z!kmag81YJmvqD9z2l3>E*5}`_$@4hk(PZlH+i*WKqkj#r84uGym z{h-($kPje^P6(rd&{#qQTKNx8WomO2g}UK(;$%WfMkHcn*C4Z!Xs^8yGEvG23rIJ8i0%OA)8%rcjo(a;K>P`-lP2Ub{J*9}+Fb1$$WTu5q=Dzs0rh$D z%?MXOi_~1Mc8XnWdDa=IwoQH{HUe0(j$+adeBxz*eVx81#bpIc_lCk%3gZW9Vsbe= zjKm= z6)|zj&XW18B#UPwBsSf=M|+rhUSs6OUFBb^*#*lP(|pwU7i2e{A@=g1au zJIutw<42RJ?xKaR+d;W|2-u*NS~CzMAdvjv7W9I62aNqaKOgATuFAd0`kKVeDBecP zklRSy0AEiVd29^%z{W*o&nX^O`irD`{{Yj?V|wlfBZ|_Ovexq~#Ewv!l;kw-Qy*9v z%8&}AtXN!>HHXiL&i=!;Yoj`t>UxVo9+4z5cBNLAdb*)-8AD?n93KE>yk@penD`m3 z^runi`u*Qf+g?GY$-SXiq(^+kBtWSk0gd@NX5e$|D{_3mdCH^EeyZs1oMd`+taUvt zQtT78Mz+A=D9)4VmJ3vC+(%6GzGqqF@83_U^_tT+PN-L^Eqc`lX@Dw$lIhmQ*5c?{ z%H}!W0WljomvH^HW?#G9F_i}mhQ{m;Yp`m!Ind zD|Z0XXk}JqA$@99vaU!Vacj(v<7?(Oq+NOIPfKup zH0btE4bx7g>n$0Hxtzx8Kg^#;Pi0w7ncJ0Rgi7lvsu)cH1sSwPJAU3Uw)&NY?X*pG zqou^ESY@OH5+r2Gt0Q2Lqab;yb$ec-wAC&nvg$OnvpWjL)-lM+8YFTIo#ZY7Ck2-v zeQSJiK4O0m%>BIqfX37EV`p3IJhpP;AE>QH2QVUp@+OY@yu&^5Jfr#cgsW&JsT zx)V6*c+|Az0}4h>gK<5y5lJL#(zepaAIzyMEM$poV_9T|MeG8O$m(JzA&(!8Nd$V# zf+T*rTWhHWyqjA{iwzCTjS|ZN7oTjgy5epWpd{e%3?_l|NBD#5eK&#BSv+5o{+`j# zX{{}st6N&fQ>nhLOI!6rRrHfd=?m(i>J>{+S=M?|%4cRBWzIsmOXu}C(uUs3bd9b0 zM%v-$NE#vDiZbGO4ZDv~l+)3R| zW+GND$J;5Gl7mkJS^E@tmrB0SX8C)IT>x1u>=f-~Nfa{$Wy(SUDsrdWBRC_)j-zYV zHg`8Ra&=r2i){MFn;yr&%Cf6n1BS>W!RH4D&(tQDy1iGV^p>N^P{z9MdrE1X&54SN zazWXQEexxbT5O3J))(A9+(}Hp?YzwIGndpXt&;NUCWU1XNhE4rRhw!%C=R=B~SN@_R|2`z!DKJ^ksq#9}0dXBCW+ABp_F zoXl)8J4E(AnBzNt81VTU6QB1ePJI26e-GLGKhmTzMo1}RQD1-;f~Ue?8)sj9~;K=?;a&K7AGofVJdk!iaZiNzLWm|jXQDp?I`1qO7K6I zifpjBVi*~F>c-PArL#T3-cvtGPW+?(Z+=_&8w(CIV+lUrWgoZG(@^b2?-CKu z?61G@_or%OF_`jeDC4p8O~NAfQ>9j^yhDE2v6a*^(I0+1rg;199xBHK5E5dAArI$j z1<&um6iA{%OmVDa;2o+LAb1A=6OU}?9@OQUm2Lzor189l*B3141KOeV<3!AkA{pLUiI1appBw+oTaz2FZ z%{F>>0)EAW#7_RxAD2|0n2u2&qw(z<$MEqw-(IOZZzf!vpR{q4^**kDeM)R>n;Wd5 zd;$hyjPQT;XqwpkeG_k@qgI@|jJML)O?W;7viqHoj#Cjc5&J~X#{MbEJo5$a&hrJ% zH#0Uf=NpN~UQsG zsM<$=X(0upl@>%LPC+Wbf9t(gZ}_xIy-4!_FBW7{{Zq>ees{! z_rTBB13oJ-I=89RC|!Q+DtI0FFg^GixaXcd`SVt0fzZ}C&5a?apCTlo?_#RDL{E<; zk9Z4+PZ8W>+IaiNiAO_pV)*H60sjE#v1k78*P4jx?xi*Qt0HjPvIC29>b7EC!$2|iLA{X2M+^e;wmKiO*xbN>LzqVj$I z@ALZpJk-n9JyxX(^%dfn^R$WFZT|qXgU63=<4vQb{W+`u0LtiHDN;L3RQhZdKDHWB7jRox0bnpYQb@Jj=@ z#nC|k8+h;m+D|H>)DZwDl;q2jT5sC77S|l!j)rTC&zHk2|N*6>cszvoWIq8a4VDO!~5xe80uO4KkYrIf{J zA-8cA&de&;tR_BY-4!K65|VYJ5q`*L>4B1!9(F238Y|d7`kh_2Wp<}#iz>MWHM@;# zd&^UMWaHjLaP9jHn$)hZ{tjJW(zrgqQu5!`Zh>QZ!=rq~Yitfazftm;SHC^eEnSS# zxz*uP>_RIpwqH$Mgvu_sjTY;$6xA}?K*YFD#=G5bO0bJp>F%PNLcY`Bcak_7Et%DOj)y8#$Pg(3 zu*3|5fJa6@68``;Jt6Wr*9|Ap{*`_k`aiB1t2!G6ull*Fa(aVOX>`@nnVg;f086K| zN^t427PS!7)7GrE&C(j;$wg>G23o=5Jr}NPU1M*kUTQxPFSNgrxL9r0ON_hDVU7Ee zCgj8;ysA8xJIEjbx_SQqMDNk_Nw>FaPlCE8HC2)~?AWOSDCJckvuR{ z0DC_+Ix|A)E~sexoio$b^mk4*-%q-Auk`+nuap}Z3@i0cGfw4iw*DCIy_$KhOXxu; z$`t0*dyq36%6nHpYPY(chp1a>v&ngXr(Ik?(>V>j7BytVi~XPs(iJW13d*GI+g~dG z087t?eL3*E;~j;kMroG4Khv6?pJ{L`ZDcr#=`Urrx|ijhnXQ&|hTmxP$1BGxh2AA6 zS~0|CbXOe3i&hvG*@D?j^!+yy-gf@SEv9yf-aY>QH(Tgct!`15854axV)*0Fy?L{z z?wj?VpDavNr^=9d^PLTIKJ!lu7jYm)kPxOw z%d3!MR*953MEgfqbSOP}uXXe{UfK1tp$>M7ZFnW=ET;mk7)`NU80t#Vgd*l z!f3>h>Q{nCd+`sDa8IBNmP3q|9G-Y%^#B5JeuqZO+g;0({B!S*<>%U_x@nac>m7B2 zS-I({m&#-)we^G>&eosHQ?SL@vsq74tR{srVrPhdS5ZhqN1Wy$GyJWfbBM@;c)-O>R1mrJ-T#8g2B7efDp3V1MeCDf~e`MRjwg*n%w~qBS}z zw(Xog3sd4QViuM&C2Jp*)Q5HXEJOiMt+!CIW89?!-gS4d>q{PyuI%N6WZKIZ06eV| zu6@cO1xfG;-NE)F>B#U^)wj*!>|pMiIc3~l4`-Gx-!Nb_v9lP9NUIy< zW5?C3pXn}-rRu*kU}dv-tVx}d&5Rv&5sX3@wIe2{g7U_#H2C|sD7i9DzBb&VsWPtu;Z@1o za;Lk9wNAROj;di%i_^KR%c`CW2D+Hq?y)w9C5p~)xm3g;3wYF0!45)3j7_(f1)$5s z_BMg!ODFCv)}XHHL}a1>(cm%qp3`tMfPaNqUtL~Z$9Jh|R*_t3-8f;2RBMHfSs251 z-(;kWf+zGb8%wB0DqU+OY8%+>j+H#-I-<(LuVB+lCaE>qt5++Y#bYv<@*^$XO^9*D zny!h6a#ZMr*g%v`2%5tFG?FD}%N}|4BC{h8;tmMs1pR8>=6fEX>1|9zrYK|)sE}@1 zBN9y%Q%A|p8A(~9kQFQuhz^QI0_tZ>6@ta-h`evZOxT?4+ zDm(r5WGqV>VsC8kxtVPqB%bZ_J(I8sHUo?d6PnR{{{WN^HYevB9pz(4RM8pb zUC-f>l=SYrO;M|L1$)@5c~>;9;H&9vNlxq=sdg`7O1?#S(+5R*D>KO@ z<*Bi|7mx|t<^IfuTX3YZHUJ@(L@B!&1Y-ui>d)7mIi~ejO!N)I6VzJ$y`h37wtdPj zBABNC046>y=3~2%BW#nj=WaZOd3)B@b)F}u8ufMS*S*y1Iv-gJbrbacjGhXQR62V{ zRHBYb&4IIB_wkLg6`&pJY)(KuBM92I7N@RHII@C635FC;nF`-{Gr@Y%`aBYnBA>f} zK{z00ycsTqqV@0TMb$R95oXg?*5cCc;%Qb5(OKVVG2X;w3=eW>resi!+;aW6k8sx5 zzs_esFkguce zbqn(dF=>Tg9LCpFzr4~;qZe394y3Ci$7%B<5fZr@BqhLETWKM79jDS;JBa#He?;$r zD$i#p!fi35k~FwyTXImpV|tzH-OP5|lB^Rv>>y^mm*dx{dO6Sx29ffw(cdcAI+~ZM z_&hgKbyr&zkjsrOpXvNIyk%T&3lEF2Vam^D@|hhwkqd6Tz^_uA$7OD~<&ty13;K(x zdV{EDhgRwtWw6q)Bei);_hfjS?g(+UAxs^|C7j`K5R$R|9li_vH@Jta`Y++eo74S8 zFMioCZJ}kEQbmux3z-|46}D^xlq}8VYvzDkUmMML7MC3&b%dezYZC(dgj@sIGH8`q zLCZ;x}?t^^Pf+nxfsQl*5NGF4S+q)02QqWp?%*0BXl8y1@s zFOkKis37DFA#fttIT0nm3Y5LH^FL9Ue88~&whHQEg<@syVggj=L?EViiJ6#>nV$+) zDs9w7n?XFW_IQ6cG(o#kZi5P^G?F%I-Qg#Yxx}<@Jd($SP?9jLBShlje zEY>0{aI>bPa=SE%6w*(HHY5l4k7oZdlgK?RcJ^;2LGEUYk_cEKjj@3BhHVqoNn zrS(im84zqm#1yEy9=5>MN}9XW6_6|Lw@~aMeUe>|%ckhQ%A$>7RFsPqEZ|k+zr|vH z6r;k;YIH3El#^akMxtJ;0?zW90@^k<8qG{T4a5R79p39pgGK^2Ql%;78(?N8raW)c zbLNb?#MUDNQn<0A+kkm{qb->3#2LUKlGu?Y2q{%b2VoOt8;eDMT6X)R6+L8=>#%Hh z&fPQ(HOYgRQgI-N5r{VNfohdtwuIP8vx@#9KW@KiK?7jRXcU7W5HCeLy+F^o9s3GNt})jE4Y}U zlMd>Yx}HEXc)EUbJg*b$WbtsGx@fB@YVp=_(#p58P@%6;c+q6S-F<>Al7*#kW-JA( z>I=O+wqIH|(na&*o;m(?VX7|uHvLE^F+Yzy4DtB!U!urF{|KVE4EJMSB9x8K`&pWFQW2iL_ZzuWH{e~)}drC-1lXzY+YtB4h0v_)?ZL^X>F?LYPZ01paP z=Xj6jKW~3{`%d2x;Yz$r>^sbRZy$e&`Tp+;QlcmK+im09_WSKK{Cp}I$DS(w-#dFo z`)%>_?>oo+KZk`!BgT29N6h`B=Xsx>ZwiJ+YW@`*)#5&P-{afu`)&OG{{Y<{Bj?R3 z`$xaLdk+5qzrXt1#3_;W{QebajsF1Gx8MDLcZEYE>rZi?ef^>$Bki{T0LOo}+xSx> z&0Zotf4|%QyY2jZDf^8s2Wc;9k8f$;Z*Q25{{VjqWPNMpAMw!BdZ#bu!>73nE}qS0 z>QU%c4M%4kfy(8oq35bKfiP?~jb=n~5BpiT1ro6HB6QE1- zUDN#o*D9DX&h(!V=6<@jUi-C2-*lL)n z>H46(_UZKv66rL3LOn{i+o?AqJBxd(ZAoW#+qq1UOKQwP0hF)`eMoBorLM7I zHRX-QiK!%W-n55hi%n^DX*HYMNFNmtM1|> z8P`suWAIw8{{T;Q_)*OCzcuC0TVOPnzkN4S zit;%1Ybb6m;nwYr>xjVaNhwQNcWx`P;@Cy8hn9_#0PP08n|Y|%c1+zlt39=^>RX7y z>GQmRBSP1(1lheNf@tKB#zyYcizv!&BZHoNH6{;T^*^FG4wjyw>K>WsSC;;f^j7}0 zsi5_44-u+04vEEIuc$J5cAirhn~I|j$gLHPqM|7?Xe{^%_`qJ?+0Cx%_x}Jj4%@Gn z17yh9?OVqdcV};@mnRv(@mDh0>K7VTn-m&F>Z~T^z?#-r<=b&`@~?6&xnD^K4UT@5 z^kMi>=^FS?!~X!ISs&>2j8=OksJfbYHMu!JyXi|_=Z?Htt9pHz2wDbP+Zk^NEz6Ye zy!Ed%EYUSKOk|eMQn5&o!W3(2NF)q81FQ z=5e$zIYP=vB?d&ER^_ZE%wjrz<~S_%TWO0#?;h7iTq|7-N=e1UCjfSy(Xhb@1^j^f zs_R(Nr<+o<)FW8hDCLO9B1$`^-08iUV7ZJ9<)OP9p)wMo4r0RbT_NlKuh2aj>19r$ zYK$A5XD^jbo;#{6y^9rXU#pNR_Cp?v%3SQKTwqQiQzabYW@mgSR^Hy*SuLG|W=&MI z8D}bptr=&042I(%563@+S!+7xi_*G8+V;C|n`k0r1;{o_=+ zXXm@7S{D9BDAvtnKQ@IdsoTW5zj|wO^p>i%H(3P}9HJs8^&yiYKTiHR$4$eo^t_kL z6@(X1-S+n!?*@?2DNnpwbFr{vuA^f*DPABCXPrGEp)$woK~zG;jMQjH0pxNMch(TCldw=-T`}TbK_x` z)(SE)F_ILJGmL+9XM>S~2=Y%nR}{2qB7urXvOIxza(E<+fOrIsOAk;O+Mp6@cO3Oa zQd^4YA`-7k%Pd;Yivgm>)vWEz=4AOq@34qOz?|&^Z7R*Xvd7j#DdcU&+~l4K7|*tI zk%P&sj*!twB1&>2M}d^cc97l8r)r*5jP4$+1qygL$2V>^i&ONStITzaHrF;iMPPk^ zh8L(C36Lq0kuVvReLa~eHZo-VZgAd0Pyuxr5daR?z$~kgmM4(PaCYDyKfBz}+}dqL zSz=>31$Rh{c9XP~!+n1q3Bc!rvi@7LG|2U3B~^M{oOUgZVGJD*kaeolT@5BnNR`Gp zd&wMAiP&I7V#8CGIpc}p`*`Ah0+sZK2MnVmoO8+iIpo(5_{%&=9)$>*Hx{}-dwvXJ zB2j=pW=LRmk`Ep|IXghjnl&2}TZ7laY`KFCbbuVhFNm3Xqmh{9@W1TH#?!tcRwi)l zH#|U{yaE@2%V6O6IS2l)9{dRreqJYp#v`8@a!VF|Pp1cxe(xY{^NMP=InA?WuBf}L zZ#OJWw++=%`Yt9wDB)HPPr4q#%y!#|Ohgr$2zKYVOrf*nFFTLykaOwda3N18&lPh5 zOC`+x*cMb^aB}Bp3b{E41nw9EXl39YF`F%bRNldZO9AHA%0^%z>aaqY7>9nQ$pMl6 z(C|12_bA%uYDwBF8pzM>+QM)Qn2E400F@E(RBo z<+y3@J5r)++<28L+?RdmBLV{!Tb zq;ttUdx4*0&Aj&yB-YV@%?m3il(R>{^)cIkJdRa;$l#ju4X4~Wv@Zy4u5N5LcHJtj z zv1HOj#v-u52+Yf?Eo*~sW!~^H$GImZGI26PE24*xDv}uE(~J@^v=iat_`B8;_>C@Q*(oB&XAt=zz6xgZW*oIAse9mL;l#gu$TNfl45)#F;22N+wER zKQ()XNvaapT^IJX*5$Vu{sD? z3^kR;RijWCF~^L8qw(@F&0nCMcIhU!*Z7{BQpsoTa9;s(=2bA^8W846nlGwQV3_jaj{T^MmT>Yc?W}veEw9{S>0dKj+E(cnsqBuE|$OP zpHXxUtkZ12nbGgpT4So3cAj%hb&ji0X^ksOK%PT3yLXu@^^}rI33^AzO}4nUk5tpd z^Sm>`G;W}RVwxuolLsn24-OU3795bnky{3%Wq&=L#8!5Z%VR7uqevfZ#jNO}OL-&S z{{U$e{3waF*0YjbEKg9hj=$EJ z`Z&IlYMT|5c62*5G-L9N8jux&_Hddzv86FKn=P!C_pNPlB!XFOy2j0%<7c7{JI zUUllb9p%GrMh4+TjHbnUCu5*pe@J)AY%} zSY(yMVpcE61eKl0BpiB(9AJ5@hPMQ(dpvPlJaIChOe+wfph196jU}?ezZu%!~S?(CT{b;B;sG-fCraKEUeCZkWUQO4Zs+SkuKTFnvBb~(*q zb*(1i%TBkP=1UlCppjoroo=ki+I~?i**#>Q!1LwR}BS_oHj(-0THBWDq(w6Gbt%44Yh&f&AbePISP3g;P5y+ z<+V=j)y2iaLnm%UUAvHu7Bx?y^n>Haw-x#T^xh^qbJMxnH=dv9c$nrV9{N`g?aY0T z+wT*!{kQSHY6t%SNMDdKnWg+c=NhPK;e~~WVTKUJpWm=%y?Zy0VcLE6pR`8*0LT7s z7FBwGb}19>J8!(t+im{;0Ke@Kzxeo6DyApf-{1M|AI4+&?Z1cMc%>t6?CCGuKyl*>gyiCUXME&P|zTO;CtKW{^^ZaMq?enyMfB5)&kIDT1 z0HrFYd6?U8x9{&ieWU07e%=}S`%JSKMrcsyv)YazSHgTKRbWZe+m=)KRB!H5w`np@xK26GraG&_xK774}YiU+LaR# zw$btNyluDb_V@Ym3W>n|-=EJl@)iEjb><(NevjkFA4QQ{pvlQv$X*Cc$XM1{>giH1 ziL9#ncvXX3iy}d`;ld`+2@Fb{-CuqVpZlf%04lsu_E7#H{{W4A{pEc;Ss4!IK9TmR zPxZSO91UAWp|I?@hASB{gC@`kG)WQ5V`4Q{sM23j{D`+2yT?r|b$Kk0YO=<{Qxe6) zNp7r|mA)-3SIw3?izmxYA%vv?al#0%HdBte#kK`DEDYI-*(C~C>}6_~xu_}23RtsQ zK#UQJ&IpHfDn6jWp_4V`()yJxR&~0ElE^7yESoiJ+sDuWMX%PAfEbb$&e9TN-i0W; z94l9Kn>9<&?$dhFa3a?vm=fPw#j=+X>|05o!W;r1=-zuGrFK*Bm-880p*nA@`qDaC zp}L8xG2KGbcug&;H5aSL=XA9@nl~qBBAiR88&gfTMX)VugStS;g}4CNC(8Qw;jDiW zH47U#HE-2Rr(2l|2s`ZiOVN$IqFeiG960jPf0b#Zk;-zhq0d1 z`l8TjleXH~3pK7ba@_Ss77iN`Mqx=OvMfXj<;!m}wf!FKbpGf%^mnSxd6LPLuG5Zt zcPboY97iCL6z6CIA-OfD{#3Z$D_D<0$z?s##?G+aJ4bHvBC&O8ZP?4SdN)EKk%reS zHh?ud%$HHy)&8j?sCONS3mK}ItV-$OaMv){+7vX?FqG+6s+@*S%j`Rimvd_gLmR@B zfLh0wO3-?8-=*}A)sRltXMD3ftf4naGLUwrPSsV3Km~~>CxNv`j=nVfU;hBlcf^M4 zb&5METGr0W7*QQ|MQJww08_~9^2+kvO3dYB3ZYYBA*Fl~g%F0&Q=2fk3|O4U5-3cs zryo}T02}e!_uscZ)3(!*)r&2)#xu%G?eDhtn$UVh5%n7(BY=hNf#(=f+9~n-zrv^d z_g(Y7f#@$luX&r)nmZ-ZZDZ1}%lZ|hw9Y?E)^?e~CrN2!jn-VjQ;Wr!ewl8a2QtOW zim-%O}r1#fnyu zdu$tUX#FG>0dl0AfV_`zYv~7Z0>&^%8QsP(K_KJn#t+x)UYDez%%@OwzEL&ZT{agk zu8+%xio&(LPJYdJRSM!!Tneg&Ku6fO(4v z#&Rp?&*_h0CC5|rrTAeS5ouTGz>%L^#znx$7{qOlsXloX*3BBdK~JR^Cuy|gZf6rt z;bSqhY1_AY)&Bs_vS5*~T7sEk!NVd7VM{i9ZZWv{*tB`!jS$=*Ar~WYDhUy(P*0o_ zj(p?!*UuiQ({=l|czR&ZKB+vakjHHqmS$(TbtV|s)b5}*6b$b1;<0XPsa;M+KHj0V zr)|=|qBVv;OZ8tbiN|UjZXtR5*|Wx>_psM+K)g<6^Fu1uT4juTZhl&e6Hdk3P9oSX zwHr&7(aYIeld2g56kt?@&#EAD{yE#YkFCH_1&a%brprw zI<~7QHvVFbqnE zKBI+SbrsNM>As{%y4Y$O7Ncu zG8um_Jz2zLe7|Vyr%`cOqw{KRt<&sfslRT^8%a7|@FWpS0Aq3ww=n#qJqiHI;2##Kp>nIWQ3(PmQsR;h5yEIXgzT`W$tY-jVQG zE%l3gTTh9XF+I((miWQlmdt7q&8S2ZD54^eGRCd3qTV)!3_NakNM!m{?zVK7R%!0eYovM3pysg`a+!N3{S%bS#vdb& zb&6QzuMAVE5~-oJjnh(!{ZnG`aG8vkw|Y(czjpUk)2?Eg*&H%S8><$H)a(IQ10Zq7 z923W2(Ek8KzOLzSjG7li!>ehQ_S)}F+}-MKhVL;L;ZAbVu#XGU2NcWeAQb_u2O&045h5*EYZ`JLTNKV9*KGz^Oy6JAE8y!eJ zWO-q;cO9;st?OiLVDSP%rY*$H zx;fzy$W(wrN&3zLSN_Vs7#>Clt#hS%;`c@CTduLxH5R$m?X{NF%=1QP`HQPp>6`u6 z2#pIe+(`>8#T^+#nHMYoJt;3Uy&=eJ%H2@8(0-D)t0}mgin@e&?Qggm>P}ufJAz3n4aaG0w9}j^q9KPq^{exVk)OQxb=La)(rVqQ>yJA5JlN=dLTgEa8d@%YK zY5xF}UrT#qr#^>s9A^Of~MYm75xwgMo=RO35OD*pf#e>&Lz05HB<`irEq z9SYE>%;_BVoUNz&kQq$Xy+?$hU#K`dZd5R5X%$&Uwm}YH8Z0rZ5`0W1AG1Sp>2HN! z?6#w)btHPMcirXfl=s!Ofxs!SlbSyWe@@wcH~dk*_&}czj)iC< z)Gh`0>k)9W9Xy6d`9`sUqiIlJFqeE`wm5Yhe9b1zD}L=O4y;|sky|oNI`UqPHr8=) zi7B-c3!3a_a6%1`B{8@wtXHq7i#AOyaxQa4b*7)wEgxDJ72H0>3;6B(mixW6^K#`x zERp`t=?avqMlAJ;vt8;JR#&16E(DzkyawtN?F0n+i$bDkH6|?NJcQh#?iYn91HPw( zDN3ZHuvHXQ*AyvRCaSWTFyQ>xbjxOJ6o__oEX zuQaL?QBW;-GkF;@I>t(rfXM*KD{@Md<%>_IRgH-&)K0OT%Yp_cHKow{r+w}LuUPrA zW*Iwfy9`>PYm?@s5UUj|G`p4VI@*M)#gPj#yiKNxq+GQ=U{IzKi}f4dftO5*l10Q6 zp~ouf>_r=hxa3J^dgpStHAS&i6Q(^)w;;}84P#ILI ztWjph)zq1-o|{%t>*QX5iG{?YwPIlT_XD`4PsT>7;sf$p^THrEDteiPJbky8Cjr5e z?fszoXXJgh@TFs1a~E+Y+U1g7R0^dEl`-VC*SF}Jg`$Zfn-VU$6a>9VZ6-iOQuvV& z@TCV=CW0CKzRjN6ZK7;Z61LR3;{~%R$agpoZcnyC5Ndm5S1U3JH~3PD@3`_uPQRz5 z!bl;w*c4K&kg*ns)aay=g|4Km4jN&@gDSQF39RpUQjo$fM-ftuen9JWhC5+ZlBG)u z%GnZ@`e^TuX{u(3}Gy$#kZNPLJg9EOOa_-4Y1km zOfhn1f-u=iA|c~=s^sjQ3hlZHt6JDnha@jV5^mOIWs2`?TtMbu*i#}*r1-!JlzV1d zb>zHrt7M+wtxyiN97__Ft^)GLn?!gEjDl2f*)tM1%yJFkN*z&E*mDsUTCETYBEYy(l&ASsy=;F)nPtC{enOJ!cDCl!=kql>buFA4WUU*(ioB zWd$B9Tbx`#N08`$lM119yREKN^SU=5%?*B##9WzgZa(*IN4C=&LucMSy{B*6+B{vK zKfgcXYSDZFoZ}zhC}N%G{{W@?Z~W)@c!fK3N z-|atbzTf!qEh@eKn2&FG_V(Lt<9Oe~l;{3^zW)Hv{@x-z>HajXQ~YCn_TS_C_xpVK zg(=wfjklkO`_JtkZN5Ff&%%}F^+ss16hv#5*RDwdHi#(!A7f`8Tkjjh54PK%@bP1E}$&}H>r zQy0~up_S<_Z>U(#tYNS=Qkq$Al`B$XYH8<Zc1Xcv?J<&BY{r??I*i(8`&}5_ zL?w;EG2GkRCCoA1#kX=re5~sPs(hm!RYD7I8uKH1+=d9XSOL=0~{W#K^FH>i- z`b%4Bk2Cn}hHFdJy8Bhe-7NJCUI#xml(HZ*rx69TNfpKWX;u&{w;F3fabu|sKKc&e zaHwq-{M`0@FLF2Aw|EA(t1;&LsVVC3lN}R<(iN_B>&-ru&FU+?O0}qKi!iwyXG`q$89Gx1 zrqLby7riu7V{Y00tTpU*mlI%0VpUB01VseMJ2T1Co8Q`>QUK z2#N1WwlmJ=I0GM2cmwe#92(H?JbrC8cR;#LtU9HkVx`!_XEbh-#H%xQ#wSWszpFK7 zGfIC;b%t72Y6bn$6w4vI*od#T#9= z*o3ki2$Wy~PyFM6NaGxDTBMFJ_YF5xW?>iuHY%Gw*`Nn|sI)8?8v($!uw zDfyIgizIl6#L@gz`pcKo9eLF_eLbi075uwtZlK=RbiX~n3|_La*4(#A`Z1*?<4C5w z-NRvR=JTxW$keRr%d7Rb+S0}zmee#f)a|-;WR~Hy+epBh3Hr+N=1AV$?p%nLF3i2t z>QgXWGJ@5TyuJ8|XVfui5_O=7f8Xwky{=_CWxa$qCg%$&`&)a79@NAJ+k+8*ux=}I ze5m=R>u*%F?!5m1dc%do^#i1xVAQ=U)|lNRkbYB0WiRQJVe&zH3u7f+cE2yPLoktv zaETczN(5p?XE7g6^zNmlT3$t=jWTPKdv7WiG8k?w?xnPp#^W21v|>aAZcxQe>{c4v zta{H%)aJLl>eJLVvB#%hTTCs*vADCpw_BK!;@dKIrCdo16p*B$Rl>&E6~4Vi>b5Tj zp}#f6WNS`qHnr5nARdynjj?4iZMkl|%#xzGL2U*x&5{ujF*D=O9b+}eO{K-F4Y$S2 zai4Ggr~&)K7%Ds#U_Q0obsnV{v^t&=&fGk$NvH8pv(OV{z8h5ZDDn zWpT&|;$uY9dahQM>*uGQ<_jA+?xgu)2$K*?Zxbq{k&@5$<&{U?+E5zjHkyxF>UMI< zonkZzerC$q9^%vH<1$~#ByfTwngXf06gz@ShTIb)opHkcFP%up;IO${)ngHFH-hW_ zryNDwyW6LV>4!_Sw@~_cHi&Wm0H%5Q)e1`)F#rp#%CNM`3&w8mQoV()zE0{}uFbyn zLa{47!s>>>;LgLfj9|;RlC8lwBQwEq@f98zZ~C?fq!*S@O!3QM;8;#Uiel6Wtr;f^0$_u$D}Fl84zIOaST*|eKyxR zpIzG9YSO=0#Uz$GO{T94HKU|*MIw_lE}~{-W@w|@#QMJQ|BQ+~z`d1OJDJvVpO=oj?>U1vBLZPsD{IXc1Dc{B+ zI+o_^Mbhr=UPaU-xUq^ExtEgg*%4RbXUz6Q@XX%Zk%;Gbq$O&b=H-}XK!M^ zsW}k~t8Z zdP4+pjARkGjPY1YUajj@H#V2r$v4(hPYlL1MNsy$NegU7MqwPK0}brV0|Aqao{MS? zP<1glbS+v-cB3b2aMCgzo==G-t`AnogpQox-ir(SG6Wu+$(oT}i4ZN|(GF!;6+et#RItdlTg+k$Tn!r^5 z02H30GaZ;KofyTdC!VR0cSRD7ZH2Lo*2P22Rc|gVJ!N3A5LynTYWs+^Qextoh-8RK zNSBSi*Qk1?@*M-^dWuPJF3z9xaGf^DVm(I2d-z(_!j*Sawvr}E0^&ls$2r8_o4q>c zSoxN;8f}oi3vea44+NGi5Mgx-H>o8_L&niK&el`p5x+eV>t9j2jiB*5r(Wo^^!rr~ zTT)@O`dNpL&Ex%MoX=gsvnztm*QPO;(>WE<^;r8u0#B=GB)#Ltm8^VK>Mbu^fLLn( z0Ialkir#+R)|~~V!uJ$Bwzn~efk_aCLdZh4L#<^ryIHO+TwcAq+(#sliL9<(ds&fx zvziv(#dj$MqH^sNfuk&On%XSJd7qSGZQ!gbvD|nGDR6?7fvJ(%Vs_ng4~dRkc8)Xq z`1PiRs#$BgW}m9*#5JCw7<3r>x%W25TqRoj=oEcsi1ey#Axkd2!S@eL2)c=QNa156S5= z=3E&;fc6tqo=sRmM8}*GyZkA?x>(H!jo~4pS zYjm|GJxP8OB+upqhRAf;VzIXX=Fq}PRiawV|}!4x@+583r#}DPyJ#v`3#aK zSwhF#VA5m)PQ&FuIT`WhrRqMGhpu{l@22iGaiqP|#NthDkM0JL#yld0Cy;qw|=J6`7ooy<~Tu3Ua<+(#A)A3KQ@@97MoC_{%J+ z+mRz65EPP1uHXXj{xRooKj&IeW{M;?Go+FL#EqbhfHUU{B`pTn)>k0cGNSL=Ksn20LKWIZR~h_R9lqG91SYiyQd-T@Y70Wz>Tr5k zZ*6k2VTeaQQ@qb^AoiJpk9eOJ<8)l_DM3XJ-wNci{QJ^#hJ^w{Y;TGtGHcdiL1` zS8YYFwo983<`SwD5D?IN;e1}gpty*EUnq$a0)g&wqOvT7o=mK&c*xth4g=+Ge>MI@UXzjX2#lB=j)w6b2=Al@K%s}@{*klF5W_Am+ zxSP0871qzU$Zr#nDLIl(7zI3O_bz#)kwk1=^1CPK`W$(JyW z*aWf^Cb!p#8I@aKrioNVd7XuPU?eyAX-rwqBCLxacQ`DhV+R={(n<52V6$BdUl^*ieNn=Be!i3e_FmTk(&j^lFfV1trWs9nJG zpB#(limz1nG#ZV;pr#?mQ?;lh`ZfC?Bh4Wt})+^5;QW%FoZ^0GbYI-MUjI7fx6%*yN&c&ZF{ZQ1sJ}#MR-3MO}hpVh~j$>3S6d%*w z0{v^Lv;gXAII51DdS|(*G`2^#R`3JPyaVDkDBi3B(&o(F!0o;<8D(TE>7F*07e)kz zR#iC%YboHaJU~sXTk4Y7>Nat~3GM`RmwRrBkz|f|+B7k~96FR~QI|fTKnEasfz5Px zrFvhey-Cy^G0+)$8VgD4ZF8(HJEyu=HJZoR7e@m@_x}J7+N0E4db=fqztY;8BcpdU4P0h3 zqjkFBPgDk2Y7H!^8`Gzo#=4kKQ)x8?GGhbcpZjM205>MxTSi?j-U;NMcG0EZ1h8Gj zXEbxdv+hM#l^?hX4A6^!|guK7sY<=w95Xns{rt1>}z1;R?vv@K>0Yu>s%(X!_Y>H)pUAq(;PK@SJZ5`N#m_pj+o)7Wojv> zeDrV-wvlqZ!CI@ntVwYF2UTaNpc$vFbWR(s!YYPLg5ru-!*%EyA+RxH|V1 zWVb8bk{q0lDy(-sMR3|=(WKV)dWxa$Txu^9MJ%f(H>i!lfn<%KmSkec#4wGQHL%`V zx{K1EFc_UjmDD~~^fyflNcA^W^rJtgbv}UUz093WO{Ue1jN6xQ4UcVS(p~JIr#S*H zM_H3I8$@`yv-q27W7T~*VX7{hsPy+x#E%{17E)R~Pc)AlCPbD;Dxu>Wvw{N#;EYvR z8(w>Bvv)j}clL}IWLK?o8!piNND?gYd9pbN;-7`0V5ehZ z#I2=h=_M%@GzA#&uBAi>$FvX8^v2QKb9MvJj)5vywBY`)0T#fo(B=Q_Wr`ay|C zQSp-FHV-MKviIT_5;IPzL`ga%V)oloxSml1PZUzk^4*WIkeNPW-RI>@zKx8#9Ax7m zf#eFOan+v`5<9lG()7tC(%ST0M)Js^4Wh#~VQ~TO_aL1L9jXk$q9bVTSGmsqE4qrN zZ>idAO7z1quk|-gI_Zn(6zTmrjKwbYsMc4s#-`Ozvxh9EWh<|RMl(ufCCsqJv`Krw z#6-u72s(y&E%fWDJAIqPn7Bx0k<`M$NRBje@{&jkwRz|8s+S#Q*U*{6$D~-t^03~+ zE!^(~xVDvydAyLq-zwYj>HAI?9l-i%3}@oUt69~oKS#AUNi_zN%;j_4J<(3onJgYQ z)|J9_52)G{dWD40`OA3iK*Ob&JSbfOXoG7TG3|x0_{n&=I@?PP#MV>8GsW`-Vt8&N zXBNZ>aKzzVRh5ix6~=ID96I;nJQ`)Lt97SoHx_dwGCNw`31p5LW@~YDu`)&`wlfSY zu}H+k%O_|Zz;s`weSOaAZDcxUSXRVUuapKS6K;Z8RF{#679ypnZIk3K4&Vp05U@mj z`A3UA3#uDa)FjjHqK+9Ea|uoUqM#R6+(^z3rw5V<^NQO#W3KPD9a1|DUMQkVjI3^> zVOc-s)Pls3Cn__B4UF(>)O7=@x|2$3Ook$bTv^nsH9Kv*ro$i^U2b%g3pX(2$r$#D zncHdGe;xk-raC`M)^xjj+o>iKNMr;?!yc9@zE^|CBPWkFitBHPdf!d!cY1Y{HtlZ; z#B(aP;kiRMhRXw;px_+vI2ES8W`7Xe_m=DigUd6e`iH7HPN8b7hLh9!Tc>!m-_#Z? zVlTjlSroveWO>DJTO9E%D9B&V@65kE6|ebQYcq`YTVyS|Pocbvf(xMdNjW-fza z3agf81nmQniow}@MEHfS#W(vmr|C1?+n7U(>z1;KyV7=(w7h@$Bm72d=fz0++ zz)^C8DG1-ianZdLbr|%-)vo52ej=442HDx+`G{4gA$CbLSzwJHrz#(5BnuY!lkrtF z$JM0iT{ha@)4B6D@?Gt}j9c7%t>Z;%q0-_TX>plW;Y_L+#H&nI_&VX9>plZW zY3I~;L-o~8o@#rVlLe5%4o5!RNM&5?H4B!8!?7R)OA9OojhW)=uyxEBbuGFNrElT+ zjXzYL?j@R7A0C~OL=l-oG=8iHUO*g%2RO}Dy7;5lx?JmRt#tjSn=H^pa~Ikytt1k= z#u?H%NQjn<;S7#SvNxdaLBIMZS5?)TWm&d%(DVT-Frk@+Q?!s1e8%%LHRNPSCT4dM z+j*Fu9N(yPIdn}??1o+$Jy5a6T^Nu(vA7(oV0j;nc7BrTNP3$^i%|eYaUY`L2Z-eZ zBo0a1z=lkdka6T1)^9RCZ!q3lv?8_6b4=*@W+9O0_Pcf|ZzPHvlTSH9g zY#lbeN-OqCy`$#F04yt)_NR!<7f!Q`NAohsx%06^jD01WWMkCC08TUD6P#97?tAF% z=9<Mm;CE(nQY9pTyo1RADI`{;+5BI+LYv(ruD+agVc71YVLE-A)p_&L zR%_zABEG2g3nS9K6;GO;e#N9*g%6S#5ZE57u#)$wA&MDWrqsEM7nE>@~f5eeV)YXEMH6T$Ewq6kK}f8nzfenuCdN&N7b*0#aL*ce?5V- z*>N;0f*3Bc!~n2{oSIgZ8HPisl(e`=-DYHE7?1)1O{Mp9v?v)QalsXMlj`jS!5VRr z_T8OK5wbb-HVX+0qq9jl!zY-{o{7ZYH$8K&?8H}>qvkzjf6r7bf2aqx|{6=cMy~OVf zGs>N@DuPt`T#i8?kZ^v71aq48diPj{jiFVluDh8#&h6Bw=E{Szy{5&7NPR-FfRe6)4gvPo|ED_t&n!KRv6Dp zYis=xZW6ata5@_Au7k>DaaMH(Ic$c4R?;%<9K>(qONZjGR@_+WcTnm2H_YlUWUX#) zFFUsBsJlmHG`L-+Iav-wWt~A>j%#7L=vxb0ySQfg<+XrZ2G4dRvXt3C`K+pHs&(S2?Wl8mmDwM&#>jjSG(H)}6rWy>qLzW*Wta z{I^Na(|VT)aIEqoVzMDCT+fT7_>tBRewM#0pgo<;QAq{b-d>m|mT8{eD|9`c;>`0S z$LmE^E0Nc}L{g*>MS6a?`Rmf2Ua-11In+E8D^S;6K-2v- z!5%#9T`%bdqwmdEU6PQB_=PU9m50QXt_XilWTHG;^vB1Jsp`9n%WXTQEMvH^wwC3D zw^OKPi9>BhRA5>6DyDD=Jdgn*ePiLam7?3lb8)I%&lIyo2@%B>akB|*3-;e!Gr}XZf)b|}FW%62_&kRa0CNkzRmuEp4*r4S=JnjVJZV9ai!tFMF zR_93?t;|x}M3ZlObP>ps5){TvfVen5pf>p#BoH@O4UjCZ7Z;Qz3Qr?KtGAo^Wr)4P(B9~v5DW~-e-9E_x}K2-SOfS z@n0Vw?FNNQes8*829`zTd3;oM{XivF)f(SWsUcOYU(sldkBObO5LlEkGr1NaKjk;P zcy<1frC+c1QGVn8HNb|;C^b^4W59c_U|LQvSs5oVPVua3NsX333>xAh%FCBO)MybE zdQ?f%b_6EZx9VUiRW@hF9bEau{S(eTz(*fJ?41 zv0ElDcruujs(3&&xkrU4XbNLtR9J5aVrmbhPr=;Z!OwOtGzGtBdo9(dwR!E)Vp&~^tV&tG?%nd(^fpxRKFkN7!9JQp=3+8zU9a@5KYn z_7lnPUbN>&x<~kEbVIA!MxKPzT|(-Xvd`Df;4+u-TAJ=iLrwJB-jd<@MryqbU4mvt z+}Iyh(O6X#rL8VI(0cZv)K<6mnx|Y`={HbK*?O{&X+N!$wa3!yPxIO=+| z-kOYzX*T2ZcD2&9bC$;TcL#&&CL2d;s#;$)aHeM6>}kE#`>frjp3Jn2FbHV`R;2c%4GwM|L?-xLhcZIZzdXkBdK~cfu_r;IGDAU!?kB!-M{r=~Z#t+Vq-;cmoBhuz;W%-SnF(tbUd*k&f!2Egg zeZBahI)BwZnP)X7rm@#5I=iX5e@t}u8%s>%CsXQL`L35`H140LjnO&n6my$+Sf`J< z3U!KdsAD71R|W7`%Xd3wg5u*|zPZ*GWYd{s1y_4Qca71yV810p z)9CJj*XYHSENyJ}Z(QpgTc@$QoHa0MpUpbBG}o>Ab*w1kGDCk8qqPmpJX^!%luI>a z0r;%&s>ll$f}Y%n?WTs{OJOyvkP?gAe%nZ76Dcj~F%}@9$qR=}fMY&|>F?4P;!eFK z)DUZI-9=@r8@S@QiDb6<%Zq=KxY949g$qGxbR%}tt`ia4+?lQJL{l zD

FR?_v6X%u2eBY+!tZ6s7Z`E7~54ISW@<*sM8xqDld?1i2DCED@|s^Y z=%*oSg{*<#^-eo4VR-DhrB0`xxEM?HQ(?nZxeE$y43yB-by^vGbJ#7#_MUsK1Xl7A zc6xU&ZImfIg$ukmE4yX`Cg>P;rqVT2)6&h}ti@k5df!j=sZ7#p)v3#1^^b42@QitkKl&&%Avatu-!q>mQe&$}MX zuM6QdZ$$Cg5BJ4?OKP62W$`^o>E4?jpZ;mroqe3o*?ek^IihkH4z1bA$UmvKs^@J2 z!x@|HW2jFPs2!E26>%*03mZpueDPddUNmzD?G+KCPjHVh5rD|h#kmZ7Hs>3T!&%K+ z<4uOMu6$0`w7!vhs}G1BEvH-Q>Y9Yb;+`A34K7HUH#?)6JK0h>U~oesv0Np`rzPsj zS{FOlUoSC-p{r}@4=FaLr&~47Z&>L%xLt9V$7l?81aX}>xnE8oDde4)z~m?;ciUzf zPfK|EX>(&ux9Fvk`>OA)wF}AO>a}((RuwpH(g)N2)pse5KnHb`khwWHKA_kC07&15 znq}v}iwn(XPc87OSnah*BfEEk-bnP=V064;3B-ct+DIc1i42e2zzD41ZlP$6E2?zw zRW)t`o=ZaL&0nf?PIC4)EuX?`Em)jv>OB&h7wp^9Avl7`MjIaoHR+5XBD@1uc4hK# z(Rxo%(=WPjN}Z;T3pwTyJ-}Z3M*jdX>hcKL&>hke2y7Jq`OSGd;>X4Qk?Ws|-GA{T zM7^||Lo#US?{70r5$wsQtgaoAPGeBP<5=>BHcS=-ocD<9mzQpm`OegRdMyRl!lkCV zYnjkA^rdV4F|r!+b9qH(k*Tp+Y-CrAWU+7+G3g3Qz45da>p5chtS;I%=D|LdaF-mdV!nB_16#8JxkP$ZIRPDR<5$? z#yg^T%wAgDY77Va*~eTN%4YRDD}HdA=Z7l_W=t{Y;)St~Er#L^NvE)Zu3FLc67qbp zi8~~ji#BC4sfem=B}zFXgap^0v~P<)2~WUp(ho?q)xK|2ywtDewP|l-7m`2)vs$!P z!X|rxH)>MyDO4vVjBAFi=ID+aC6UOdOk!^1)0x!TnfgN&khHO7EOq^3syaQTRhV*F zu-HvV$XKxpDTrj$h0n43>AJ#P=>py--6KO9vxMVv!ZkaFP<(>Qp>hE{=NwlK_*-FV z@dElQ3t6DGeRBNS!z|cg6Y4izFQ+8s2@3tAGfT0E49nXm3}`GTn$0hy{{Rvi-c9nK zhqeb;`Fo+)nqFG+eqwdzsn*(ut=YY4cPTnzI;VDn8aPF0_G)-J98FZFQ;jjOr!Aao zc;p9O)b$-G>TlMP+3IqvvZbVKA%-~BmqzSIz2+}ucE611~VDBO4QSjHlW4-mr~L1Pv8_Ub;D^iL6?e5dq(%BGX0 zk?Nio2h^Qg*2-2cU>BvZm@Rl!vD!;b*G!P+bD0a6J4bibG*qgcph{h3-Na=+6>Hr~ zuk{_u>b*@p)rOLwCA5+|8;6=FVJSvzBylNSxeU!G3$!B^&s+Qg_%-nENIJ8lJ{f5} zHLuQRw@b@ANaC6}*}j$<^A**6op1rz;2B?VW6jVK&A_D+$wb`B9b- zeL@QD@UIgO@TD6`;J;WC7&Mh(Rfa4XT`Qs7?c4@i3l1=6(6$gPrVeHXO^lH*3R3Eo zY8FaEgDQ|i&1SrHnWO5Zw;~&LW82agj7X9f~`KQX<*q~ zVx(6WOx3ku9~OoyQS}Uya)ww=D>1o%iNGmR3spf_59f^fKx5j7#Cr@!v`gb?{^$oFi;jLShRR(sWn3G#OF+&g&1I0=z%dJaMbFemU z<54z{QB5{zW5vF{($@%uB&;$L!U+}+8u84RB)AimD%5OHMMmDcY|!R4V_UkVrEXpN zfPz&dyhyU{tgDs+MpTxehAksuEd>fyslFHK?upvGht{*g?QqG~2Q0XHT4IXkTtWro zJEjMM)f2FYNRpIYdeEeSLIS$iE<>nA+@fsb5b;%vYAIN&k2OIu#esnq$@-z~5X*>7 za-}~vo|~&>C9*O~3UNx&CVTX)R#&8c_nf}mHI9{W2UghP#FHbqxQ_}`M`{|k3+xL_ zE}cuDOERx^^bw_Pc0&~SjDvfAoMcIF%_I{s zlNM7!^Dx17PH!<01H{jPK|8lQ3e=-eZHs;DO_~>&)h>|IbW(L=s+l%bdkJDa&JVap zB(_BJW5Gt5DK#oWwP*pBRJTplE!kygnv~yq!pT);afzPO(ulS~#>XU>1%2BkJjg)Q zt-tbBbMkLD{#Y!9rOw@N>C`PXF|$^2bjveIRY39Pu4q72x9*m<4D3IX#JB_ndr`XP z-Eq4zAjj9#IQ}(lctY9TF*`!W_%?L@m8K1@JKm?rt4`6miTx~A z^Y8IH$G*`c_us|cozKflxc>lV{4o4IkMRDvplAsF&esb#n1NHTvt?D*PmPVdMtqM5m z&NB!TgC7uQGH?4xF<@-`U++T>?bM0Z@&n6;ewGt|ib~ z>i#>OKTN!_zk(?vadW0$+gug7me%4jH(FlVowGo97huZEf-7FI--gGXex>8|1~aK) zr@AP#RPx``{YjJQ{-(rr4>g9-zF4{o)ZH73)>~$1rk-CppVpfBND4|>hCZTQV9Hqu zGP=|+ms5R4o>e)C3ggvQHo8~K+e2k{c$ctQ zEHOr4X>Hx3IgRJTkSfG5PRSTD;|+@4ZkYL3^AU=|ei(tQ^u{nVK2|ZEM#A-N zmGiYS5lWrjlH|H`qn(Cm&m8xEvxk?8{m}<9Q^X6#bn8~P8sXKYJ)wP~%Wo+D<@B-X z#zZ*shD&+&$TBzwg4J%iQ(EY^8cbIr=j63`u3&Ns_iUrMy=5Q}3P`csL<%q&0f(^9 zRP^qZU9frTJYuXT+Pd-i8p?HM@ijE;wyR){EEZ*KZ)QIkV6MMD7z=mZFi3>jbPy;9cKb~gHkpqKvuId7p0yXGOz zbho@05X~7)@<}zU@WdukJFbP9xCCOgUx!V9VS1Jp4Wh$ucdp!}t+;r5lIr$0Xf8DO zM=5F-Q-WKb#H+SAs_ zI>FF9rME-Nxql_1?PPH+IT8v&2=y|pi+o0%soCjzI$PVkY{D%T{h$rQYIV`^kI4m4Ja zci5a0tk{)qAvQs9Q6n)MmYvl)HLi(g9G9uy5^5Js9!Zf6-Sqb<0XV}nNa&@86q48# zqUs+Hx{iHL6c+D4%Gzm`KQIQ^9NF5eGTcTTgo=_eZ@=mxLBPfjL3Qs&u=zb7>F_wZ zBdKvItm^m1rEt5Nnrk3!E6#|5c(HPQxFXmOj1JMh{(0-Gd%mF)YDf#;!tCmqBs6Wq z#0S@C44D0;A6o2}ogrZ-Per5J!iznOW3eGs3|)C4n}S5AAmrc@4;Zdb`Iho+u6)32 zk1bg3L(*){rRj!_*1bl|^)iL#w;x_HIX<0O!Qqt1r;@F5=YKot!WUHJW*~~d5;xzP z>H2;BwxstGSlusn!s;mGjwuwR(oJg7qdJ^`%93s@8CgM66p>m*mXpVgVL*~owcx4?M74t}@o}ZLt804RPmiQde7=;?LSkonCUlY0Rf$F;*kx4v#}r(8_H5f zBm%!u7jM}MUq zvv9?LQF=K6BLtM1MEbRu(iVL#@jGv1^AQZCd!l>gyDY1?lrf7L8Iy?+=K+wdM*jdy z)ov^`I~1{V-n6)aCc=UuZ5jxog;@B_{{VeJa6-S@A3+#5UimlksntHB^Es5#|C#U{k>FaGZ)+5q3a?G0S!St(6VX3l%driq)u_!di6C`f5 zF>`NgYUfS7vU`i`TgjlFDJPEB>KiNcyPDmJGJLi5%i9G&*o{eGs@|cGew);-K3GhW z>#3$%YSG!UMe?^lD}NP|!>3(3BE+{AvWuxi@vA9V;w6i_t8WLDA1@tk>1RgK)6IRP zwKFnWS6KBzo+9w64-D>;$?LrCdrImluTa`Jw_T%^hBBC(Omn@`l{HxQGImbkZs z$QgKLb+{6T18O!)4?OiNF`(*W@Hl%KcMQ5D73vN{AB?LCwcAEGd4T?p|deF zwC_I?<3;%K@aE%MTRx=e`zdbkt;n~yiWTlV!;{&SP-L@2PR77EMh6&EUYF@>!EI-6 zXK)q`kw$TVfG|bgqyPqTKZ*0^xf|w}%io!t@0iu=K9qF-0A6IU+Q(1%Ys9}>={<0r z6&e|x8|zMER_ltovmAHpTGY4xO*H8?wW z-!ifOs*>U>+j;b-u$C5Wr?Dhch@}q8!ex*gn$BzXwz{>IlB~8@J-BZnWS&+@pqZzJ z>eA-l3RXeBH%A@CWjqkdz>IT8@a@WA{Hba}{{V2-wFh3c2UioUwXU1LpSJtj$3SWC zGZ{XjCqm#a+R7CTEUboyD$E7c^upT*6Ju*qTV4n1!PFfKaVC$fjRQxwvxanAS^JjK zoi1A|iKC1JX6#QWkw)ev1DLUzt0XqFCsx}IY0Z8IIEWlc%{pp4rHC7pi)*1Jk>f<1}47(fZ3@<+Bl*3JVY=D--J~16b)4gG@Yg#;MrC(~75Zc(C(@6Z*;3`D=g5;w-CqMxRw>L zHpUy(+6Q_WSfWlDjF77M=RFMb1*!C(NV;K+)>%y&ysleNXDexzy>&pcXl<&QD+6?9 z-SjLNy7USJj!HhEhysroF08t_hRQolK2?rQRJ>c*u~c5uJGfOorrHPq@sdgLR(j64 zVbc0cy4Iy+_iJq=QG|*pT32~ostwYV0Y~?XXTTZGD@*!s=g&syI~jJ+z-ntgsfeRy zjoea19cci^DT;dXQQMF+F`ednoaRS(_l+N=G_7l=8t>(1wY`q?0?5Wi+G7MO1LvHu zE6DN4`_;^DzetXZxXR0>YLHI@YyiOt+*oIBd)V~gWSkS9NIok~dfU}(uU$HmcUoG; zeorY-)~JTcTyT$A$6J%JMo1ZASY;3^X)B1rq`jnzF{IkhYS)vyEZ4f6jV!;gp~yH2 ztVs#{&*S2}{qZ-gkHj5%(($a$n`5LzA%R$lT%d4dCE_3#W55Bn1;FH%C&5>#HN8c( z-V%i_PMe~>_8R3Jv8+;g2$+J%#AXTtK_%}o9xL}+P0RA@8FtPK5}DhKkaM(i=NaQZ z;MS8JzhRnq?p{$0XKMsr=HN>Zyo`{!<2z4|IjMX>Ak;%qD zkd;eJN+1Nigh-fCBpxmvHbxB5@w;g%{O4}ez{Ua3KZpZ?RP5xANE$ds*$zC$z- zgOkW4r~y>@CwUwhz(B>TQEb*L8UVzJ&dWY>5!h>0u+5Tq%!3;8i@s%M>=LdGsg%q%p?06y&yBbli+`ESy($24rF8pW zSm(V}cQYwnO1E6KF7?K+yG9aDDfH@wunBuGl`Ea*Z7#}U+3qs>6mF0b2=`)C0G`AF z=N{Y%BltU^BuI&MI+F4^39unj8!Ds&x=q+VpfT-}f@a(1M^VkWXY>~wy5VmjHSAcw zl~uNY$8IfIu0T*Mh6(T}ozJ=v#9*L?*y*-G3*u3^Hu_{xq;3I++{i1mKM16XaA5N6bEStQPecHnY19D5Pshv2r4azK++x-fK{L?8Wg_{{&qzG%EjYSp|Jj!5B zQSY#cY&v$H$FA6YJ z#ALjZ7n zCmz_q;CSQI49jMZ6O!hpJ%$E8Bx1I921 zoDT$n_lpuvF`qSVnfBynXeFsOT2hIk$4!P@?*pKvay8frkP?`lQUNeq4&qdzcZp&V zsboa}5x@#__jBcQw6HC|aAnI8g=}CCehBehLDCaV7IJG4URdf;1QMin{pgv%0K8HO22_E( zsZdvy1%S;>`FiW8Np=4KQE?qMT@3a6I=Pl798FGh3>06C#$CH?thS}l7Oc}%gZi*> zzZipwEv6q2H0@_cn)=c~7s<||R%DTcis+k91$M|VRA)I;&V8$DxA?Kq9bKzw+C`er zKA~~BV_EHe90qgiEJ}J&jtC(5AXYK+-+<~?qUx7Kx^trXGt`YsgVLQ#={Hikd(>Sc zX3kSdY3*C5dYekFzsL1^89df=SbVm_GENUoD{A1Uq$T80>UM84$sD$_ z2@j)u6I--$q{`b@D{zbu#Bx6VaCxo9?!xkWJE*N7h3u~3k}^Z~E-fxl#P;&WOA{r$ zxp?J8jq!pX(!&ydNv~^OruB2o2EXe^L;A_neRb5`M~zTf*Sc%^J*BXHA<|azm@b&~ z!$oH6UiCRFqH*>wX7hG9q*;>GZ6J~au6$hB+*@2}!Qr?u-0u=e6C{Y?ik+ku0U2Ud z2tedBwtn{%Ue{8!)LuKw2;S43mkB&mMP{og2AAnAj<9M=INXkYn)-jQG)9BTc~e#c zP~xlQu=u|24@TJPLNeG|(PAdsXq9x#h%zU|&E~yjqfdYOs_N3~QfnLNgz#z7cCOk@ zPTF`{WR~A#^Zc1Pk;4FEK1yI>t#lby!GBm-?F%-YG?ugK2Ixa1D{&LF1uh$62?9*f zK+72J1}FnHZ8n$u=Nac4PH8Ls1?wIsqh4D2a$Pj?;giJaR^I7!-M6D^+SXe0J*Zz| z404C3@f38{5CLu}I~N$%L+(KM)8~6@j*!)_(^kh*YLm$KR+3v?ihQ?HT4Y96HPZ0@wm)XA*EC0D9Z$r zR@1s>UbX8TA3@VgjXntNA@2l`B3s(Q8qG47QI2=*&I>y)6F(M{vz4##OQd zlt2pbK~)$djCeS#r`F9ntRA+;s}Wxy zLuei{TY9glEfUjGvax}kqOr4y6MGgV7jg~ERPQHf$tNV7pU2Ff60N6wMmvjZEzNrt z9g;UcXtFWmZb0;MZ~y>vkWM~*fA~7o@#UMZT~baLtFh(=zGJMpE|qCKvhTjWlk`4e zf8Hh%*H3h*W1)$?pLPowY~DogR!{Dz1x$(Yh_}_I79BYoN*dZ2tOSLTGaN*;R}nq} z$h!pc22wJhoc25MW(#4 zN4Q;^b8&HZZ5`4`3gEI^L4%Q&OpkDA4JXlUNu;_>tzXw)FI`mXm5o`fdM&NBVlbHf zR=agNiK;xkYwH@5S(cvD%2mByHTA})uZ+o8TOoC9+{`PNut=>-I(Ey0|nmAlG$5ovLRFx z6@_kNwMg!lyfGvrY<{AqyvIy>CDwdDnSPC0)SWr&h0R%~wKtVa#%k_EPUK^vH1w{R z^5or|YDWsO-{{VCZIF;H| zUd-_}6sX(}bd~|sm!Wm}bawU)R|KjqXD@^eB}z*G^S z11E76^gq(Q2X9;J+BG08SH)EV|N!8t6nh0S@t!hFgcbj10d&kx@B+cSRJXmz* zni2A;ueI@)S8mo*q@hWw=0H`!EWCmmfk?) zz;CaL=69bgs#MK%J6`D=Rn=l~HHd)E zIh&$@V@MLRc@Z4Qh|HZss9W04Yc#LjGDCj}?SjXB#iK_UA#!$>ARKU4KT4(2`aYv| zWvW}*+LdH&I%G**A`F(=j8jU=(-lDL8arf?z<>uVGs~Wpbc?H+7dz2ji0Yn}brO!a z)cVKp;p!$n(sY()&XdP!UWMsxPM)f-QR?cdlxgdjn|9JSYCWrb*}1_{0V|2L(&UN_ zM^4h^bKipU((TWf%u(qv!ps{54#{INAS94>oG~qozOiLB&4#h7!wNl=);isqx}3Vr zKC;uog$oIRo*4w8qf)K|0?GpCu6+c+=P3D&^Y@&|;Iou*+LNrEDYd7s+s0g}Q#V$h zLNuK#w(%CMr~d#{728qQVX8?gB*LTX6NuV$c@#l?7jYDwLU!`JuVU3hV?TFrVYu?e zPtaDI)HZUl&~6smLZ7OlMZz&5&F%BDa5LQ4Q_x4H2;k(`Qu=Gt6N~`nvKDf5vN;b@ z>J(~ZZC1z4R@e0CW>$cdF7rw^A%l&SBs^j#dGXBp+o%Q3s};4OSs>H6VpU0JBo+$T zBn7|#gOb~cHQIg`bieA2A+-%cEM97iBvHCS+lv@dQz3W1B<@p$+M^uSivA*X^q2nt z4|nmsMbLdp)%sn!`$yHvYJQVYepg@gLh5Z@b{DRg94%_?v6Xh5&aRVX6~b6!koS=e zMmQ^p?8J8WQeQTkBuBY#aEaUzTq=_na|bIEpR(OR>uo?mqzRJyh1OQIf6bS8?Y zsCsXm4JoPB)4woXMysi{{<9IqGQUstbq=51!fNAAMizB!GzbbLzMAo0>9#b?ktJno-%eiVII?Bz8S1U}Wke>pyv7cj&=t}mNS_Qn;_fgE&_V7V8V|vLPv7pZI zRAd|zxeF3O92&{nMXATH-P%v1&1kY*$k0yxp3Ta>(!HXxvmqOX<&`7AfBB-_0Q+USXo0PcGmI98Ae4_U`Gl-^$ve_K8NwIQPm9)+!L{xaLMJf80I|d zy}6skeYp1(gSH7tkPm8%!5k@bye>zM{{S951^P^MuAujpU1J>5T-i?;w3#!Mws2YE zD4}qvHsYuM0HhftZm&dqCDv^|PVYikQr6}&(JRbUme%*Bf##{twHYdYtpbdQ&93!{1)p38Mx zsK5MFYu9VknT`(lb)IzyLndh>Gu;s9lGsUA!%hHq&>nS zk0k8-F!&yf5=a2np84+A*8J4r^j1I1o(Q^?jp^=%^Apq!Sp4oMS7^21GP-+8=?XY| z_$6jAX>M~@RSeae7|K8+>l`Kk_$8c1?a=miT^DzMb=4Y-Hiqr==wbOgt6QgF^Rvs| z?YRqV0;lxM~*D!M`v%Mve?)sC?peBVA4^{Ysj%$)}bKq`mYXSPLVS)Y|JcVw-HSBDu&RcLH9CB4}(pgkoZR zXgx-@mVF~FgjWkQL9XABi7K<0yAUc%v~jfK0f^d2I3(77&I`kJXK_3a3L8NYXHpbO zlS$l%C-#>)W#btH@Nr$Q(z6kz^yk}rE;nvb5i>Jce$x>fN59%WJbe)900&C+&>lWU z)BgZ+pGxwFQIr1AYd`&UKmPHmdSX5!=ilewZR2_Q{{Ua(<6^8Z=L7!$3Pk?^%lqv= zR0B0BOKjT~o$qQb!+*nl@xdfXp?^st0L~c-%4M<|2Pt*;dSg>2$ zmh%u?#Gi|bRAbES*j3fDVy5cyY-Uwz6@+q;bh?^MPaL7F0HOhsfgo5EwgyE?ZnA63 zL=s4EE$p(y%?pz2H(EC=+N||7PNjGTcH@%s%-N`k$PkhhcP~-4s%*@X;}jyhubII z9ie~>NSsIEr`zN*4zwIi^val`o`7c!$63Xx`ezK+DQ zsWa*%mm}q_SpJQA6`tJd4Kzuf8rD6)6O)GS?Q9&C6C|joC$@5H$ufWCa`=xWwZwXN z!woLN;#E6O>l^7K4p(S)kG6;KCOKh{j4yOx5v$tAs+qpCYFF!RSqqI}oX(Y}=MEs;d%Rh9?g(1lSlUgmm9_3_)&X3~YV2&HL+e1C_JHJ<7FC@vWypDPnBzCq7CXqmwCo^W{MAl6*f9cbzANIEa3v~Ha8mx%KP z*PTtC#az?5+%BXH=CZ}<>(zArZJ~Qem1J7SW5*$fVk%cltWkzsI|l-GCJudOD~Hh+ z^A2ozcB{@acXd>RNoJ z<|!hvZBF$&w)V0|Zi(9810Ys9ql(Eod(L*J(U{Jk^{R)LOjnl8Z=*E) zWvS8CIKnMWs9hR+Er`}R79yA~4^P~<1WKk-^$Lj{i3++$jYusbyi+~=YJ4|SsdWoeY)L7)jEE)Ty}p6 zsA=k5DSE{$b0)?wC!ER9y;`%G6OS5Jt5sVn+Lfntx4(`!9@bW5m4hF%bzXQX>V-)L zCiIfIS08wWP-~}ZU!qS+bq7&uT~*dPjGaZQUfhW{qRD296URJvmT%a(c9!1plHuFTdQUymNf*G8_|?~u$6O_3_^XZWkFxDasdsBwv+TV_;EZb z9nJOp!b^VC-|tg{F>NSm)5(I)qDk%}w$$8hWNVvrjgg`Q7R&jw=^i^Ro5<+@04{pF z6!p7T*~4e-^`|1t?i{nUG=SjOaTv`#1e=v_>D^0i(^1$fQK%L>@~EahKQ{w0X#{{w zLdl-W_X5aR0>Lsvp$I_m5g1{&6O3=rgW()9tkx6ic9%A-B$lo7*DTh~&_a;14d{g1 zTrI`QwiVkUST-;sHj{NKt+-p`k%AosA%prR-Yzq)%ie_i~MOyGW-_F*B)cSKN zfWY~CW}nGd#%FSxZzEf*TB^NjTE|msY}TR5YfIE{_{x^E*GorbaQHghY$f$ePrBGK zB`vx6t36-zN%(oH#R)+y6WUze zUPSKFJYw?iP?qvryNElAFC-T3nsjL^ZH@?|bODK4_kLRSK1;3rKfluqW;}3uk5gN# zr!hl+AzIMd)NIHF$`#VvEkddK%)`Q}5@pC2VM~K)#`9&Ubu7@|>6Xx18;8>HfkPLW z)uYQ1k_#|aETcI%{7rZ-s=r2yj+OYI)gKHrjb-(_uDF8E?$yn@+QhT5X(P4@Wo1#i z1y-22-MqF2+!bpsj&*0G)~Va;W|yU)tZJ=1ytWG(?2QAvl*QtQH)Z)X<5j4#R$z|0 za?F-kI`yKyIaMfvlA6{0WqM;%(6l%{RkbOeEnaTqW^pF>X|Mr|I<8RgtUv>HOC80S z^S_PX2YxWD+I{Z3@Z#5`WYDyo#v5s^KGNFN);TUFNG>K}D@n=Sw{tq}@~cK+I(2tb zD<5p=I^AE*lS2(spjJGNq|H`@WS5A;oJcAKiK;6mRcSNt3sN1d6{95z3t$MnxJfUN&(b1TkhMUKQ%=|$Wmy2s+V4Oi^I{n(dv3#+^4(qTH*CPuIduCHL%AXzOnf_ke z@3M{WgvdQFrosa`SC;%SmG3*t>vP>$xxb+^)HPg2@x^VmXl4P%)5rS0rX z%d%MZyG{NiS<3o~pHOu-mj3`R`j4w2Jm1vB;WF3^?VAfx)vu8xR>-w0%!NXgdf*tf z+7TY)OmE{*zW5WNU0r}$n(|YooGZ(dHmSqeisNmyjj}T|S5;N))w-0Z?KYINnK8Akue~98RoZhLK)INqWHP0alykip zJu4%z3cXphX))?SGFsG2Y?d-wqFW=kA;gYUA}8Ez43L1SO`$g{I&$@yX1Fe|V!%b3 zRw^ylQlYFB@3raYZFYf71Li#7)|5lIFyTr-uG-}TUm~}0vNYP9g%WJb5MpC#D==Ds zO_1X_BVj`l1;?2L%9O=tUlO*FMAKTDl4C7Rm`zw@je-(LrEu4TLndc)+719jlvBY< zkmhWBRj&!JaiWDKv6iciD{E*i%&|tz*B}cY3FjTI_W@+A_?IylQj!a%VKI(UXCTRS zU_VWedXOL%0b;LG3vziXW&jGga4~Oi_=N7I9p%PPMD3jqsGYV9* zEhil|ad{}aZMFizJDMQXSc9PyH5i9{D{%i16XQwmcxtyBSe%`}>~u^q56y_9NOX0ugY zYlmLgTniC3GSQic0YC#^#vw|Psw&6CBF!QstQvU*9dA<=L^vE|%E7Tx)xlUBDL|%H z!>XhSKq#BxN@-JB_353p`cx%%+^eZmin=Y5T?q%0$!kTkT!}opW|UR~Of1c$P^B^s zWV+*!mA@W}seO9g=FA~2g9Z{;S*0}+W>qF;96-UV$$=129u%Wo@xINgCANi0uWWBF zx=PYb6uW3;de+#ZQb}X6cYrFeRvoAUk%Cf+vf>t^V;|Wn7@?|N!z%1T6=+GpE>cKT zYl`9n3u?hcX1ODcj8vkr_^Y*4Oi}kQrPYpc#Wkk3GL^M7`*!JAYgsS@E&l+DaJ8~K z4mC7@WlGvVC-loX=5L@lU(OnXx7QAu;;uFDxu~eCtFgp&tJ#y6m4p2WfC5+)nUpni zu*G|3DRXS&%1Dj>0J6aU0F_$a#wD}7i2d0jl~3+y*dOuyEA*q1=G*Lufr-CrL}y}w z-JcP(&$LJQ_`4@O{c?Ys6ISW~01sdX@=;C9PqfT!J5JmD{KxS9yh~G3W_JD`wEX;S z{{VULr6gn8cbNB`wu$|>_TD@xN}uEH5&QlB0H5&x0MCUfaX$0yzVY|_L`U$S+B_*r z829#{eZJf6AGCiT{k$noM0>{jOvm$xjlJe#C+FYi_uImi=k-oradbsVB3-LxAhREo zq+@qFN+Nhqya>+UB|Ce^i|sz#Tuqkyk@9~N>_3mc;Z)^qs(z>Q_*X7E&*qQJb_>oY zOgy^umcLFT7njj`W2l)#bvq}S!e=_KiodVfrZv``={9j}3KaDwn9?X_Zq<7|+ZTO8 zkfm+yIh{MPKBK8yPo^!+o|ce3$c2L4MQ?DE1AiP$2%g^Bbc#8`^1aSVVt>BfY;)?AK= z(9G!$zSMeFpG`FeK8B(NXlT3U-yP-eC!w{?tGQU6N31Mq1G}B3%A$k`5RS$GYw>ZS zn=8pWa@$eU5-Ih$bcqr~bFy1)QY(g%Fd1-{7KI@thUH-ADtI*u`wdRt{h+(H)qbYZ z_}x>kayiz&Qq|1p%^jN5)O7X(PF4_#s+!d4Sbj<5#Sk`XsUXNE_@}2OwEC6pg~f&v zJvw`+rCp(Wu*m|HVS;cwxFG%Q;D+>&ZnYRDipNjXEpGr*eFe19Fm2{J(n72oa9(yf z7|SV-1Q6o4PXVf{)Jum@-cR+NPMr-4|#BNg`w~GtgBIOJb zW&CVW*Lua^(DfNDbo*5i#?i=8T!KqTb`!gEj48(pk7HcJ^9$#n%zsFH!QaxF zc^XeS(k%t2Jilr#qu9>o^7QqSD|P3q7dlrLG{fkLRVCx@jYg8J#7T+%n3%y3(}6T~ z)|*bb>Bt{Ud+k3?Hwa446#9j{(!fMara4t!960p0)AxZR7Pm5WY}z~;wU1ogL8<(X zuYR_3BFSewT1!A~JC_m2lfYgnw#SX?th@Vdv6ZlTe-vLbSnMxR_2y=tjkTq69Utn~ zRQe}`#$@#pbF}Pq$FKD~zt+L^4)vwVauII+Ql?GCLIbvy5+m!F@oQk(b>^EdccraU zP@WwY=GE1Sg`n3in$Z$Z^Tf*=_zKUQ4H?=B;6Q1du3} z8;vVW8laNKMSR>V+xH`u8So5&9c4fn8+<&f`HJheQ}n-7F@0LgV(WDeqy1*p-5%9; zv>n`xXH2`sptGJejUAi)*=Wh32&? zv}1A1f!Wvz9CF)HFmeV7+6H`AExguwyz>*$vFT-Ao9ewb``Y^d08%3BdY`Fp;PCY^ z-8t#K{-8PO%45_*n|2kAb!9B#MUAwsWFrP%IfkFrnv>mJ$2WIVOIs_8wvG@*5k;E+mEm$RB3oa=N+G%uED)eS(<)1O<>}mR@RWXgcaImXA>D z3E3L+Plj2dja5ax<(#cFh$NG6`D?hcg||sOP1$8u!9I^0_^ksDF zL3w_?LT~38hengnR4?f+t~pVYY+g=It*Xgdgp{IU;j`U|@pW&gOLKjs{Jq@sS?W)J z41;_j;%j1yZzk@})e{*3WpjgrwSYAVWb2!IO+lvW`An9&MW(S7!q63AChwTDc*VgE z*g!)^wn)|T6^Ip(b;sf_=Ceg*y19YM;k14mJAl;PG)9KRWp#EytZD5t)LygXx<`S3 zSk9v4H11~IO0{#S!_(geWGy|9Z7Y0Z`0(*a+kVY+Diqtk-JOYA3bj@R}F{T9IGTa z7B8q7oUOe#nLO^c(s?X?4>CE74np>d)tN0bYdNJdjzIovrtUu+ zY^82z^%mXZ>Dp#ny?*`)EM|)CNbT=phJMw;Mc#wC!$T-k3%Pvc5DJwf=OAETU+Wt? zi~9@Cp=;@^Brz=Z!J&@oCXPAcogtB=Xq>BvIS__(-vu{*+F$V6Dvg+$T`e~6t^SJGIRL(#b_^>KQ{hgx_8v< z7f!lA(*UwSO~3lRPQ6Q|m-@}FX~H5YkzL zZjb4AODx#U>b|~dUXSH+-A&2k$0*+}y3+@O*LS*!j~o+QrYN2pGAyL@cNY7olt&Qv z@w1+~*J0_qO=9Dy^u1ldU>N(8XW8nH=9-3e#%D-`;D{{ZW` z?9%g3j>+UU%B^p5*LJrrYaQGlFo|+fXe35x*`pCMIYJ8pMQ!($k1_pE>z70{KUMWz z9A2Es>ZfWuE5hmPwla7ZVz9ceHGsxmqjMoqZm~xFTufO85R4M-0fx{~<5lV}ioIu| z^%`60n)Su@ofLL+?7NQFdv~IaX)WXtMgSl_!a-JC`w^3p)3mt_wDIbT1hb}S9bTg=P?v#|?K(BXKmD)VrojVM~%%3tBAuc3hq`p!4;@oORmLi^T&H`(`m~**Dx5S z`&)Q550R6zD3k1Dj|J2^$g&mvl_1wb{Lyss*IPO@i_?kD)~}JpYD$`uBx1@Bx!AuQtwtN{?m)IzQw_eR zVQW*Sl3@`;p@otdQ&_^DGxZryD2a&rhnQ%cL)9HXvi_{mA-GF#zxIz18OQ^39$byY z07o30`}3K9M(&-5CQh!njppF}gd}bN9oP&92N~d=J&6QrFH?GZp6Ir%xzp_Brz-7A z?P{&pA4rUycD=o*ggKKa;N&$75SZe@<;;PC&l^^gs{XMO8Q^#>?B(rC3$Xh#xW_md zTo1lS-V8WCeCzQGp|AcM>dT`~b}t~kg{HT;iFln^&O;_n*%h!EK_CneO7b=*LU~ix zddEp(^`2W=^xvk~y<14~dRmUX*EI0Cyp9Arw3C#tNMWZKm$7Y_me1=6Ouztp7Ta@W zs7W9&TO%l3;h90ii=S5qCvG;A;B%VEXdet;P|+ z791prUh&-Cd|{*RD$i>qCfa*eWoX@rDDNIr?odt`V`&+{Bw!H2uzgd~`j<&-7WUf3 z%y*Xealtfq7Pyuvt;_8aMuTQlda|B^#X&4`4SDokxp@b{E1H$pd42CrvQ@X#ShN6? z_7|yf4`_>c-ezG@1QQc5mBPT%O%nj>NlX#|0GHeKUn3*$eeX%YtZtZ+O{m$&8CSKA zbPDGQzY@kq@Y{y}0J>NZcH>|yr!~!1i}E+f4U<$Q*D{bmPp3C;Q&S$CZa%0gCD{jd z)|ClBk8;6*{Xh)yy+_-QCn`M(s#KOZ!2@P8H@?!_c{s;89E$fuEgx`h&)WJ=AU1ap zKmoSLpS*B+A6$`0Tbku0{WPZ4co-5jv62M=E@IN5?Wxv+;n|aGAO&j%GG(ftrefup zS2;`qMmOh#7I7F1an zmJvGkI?yl(P3tvRp=7B*#bV@KfPrvFV90xBF)=bbs;Y>JH`j)3!_$T*(xKFoka^lL ze`cfs1e-&K3;{eA;O78&K9l%*TR9wNh{S_J&D^yLl!lPL4HD-<#5+zCrxs*+NslOK zme4C)44F#AB#HrcdYBS{wuV!Y$-pI>CAi}sTmj;!Jp0{aB{v0PLG!eJ&fCG`tb`c+qXxfN>FsJ~I^B+}MCxWd4MlC?wGxf>W#^~7%w*(y>*vF=@=&+OzC z7(RBWn>X4bs=Ep<~&ps_xb&OTxpV z;wxju?X{9C2)VXQl_$hNMp?)UVu&qwSalZ>yrGgngKl=JkQjm+++Yp|o(Uqn(eaAj zTaKi*SWpPs-abPXU{+Z@NT-axLgxbjfDS>d+hU60^IeaDtRA4ln%c)xNgE1Gtnw0M zyO2os;$l`J4v8O(LKj`q7377(Wtg0Wn0tRq%{93480p7b-HX>wmMswvHn{(SYF#w2|S0?c5{ATW~wL#&GhL&bR3ua(b0{ z>{gU+Qr1azajdCT4$0y2Sjy7ZHPaGOyCuXTCPV6&lI1hwBhejAsOtKOi8Q8;!YElJ zkV(B!*kwT^0!i8c0QltdobFvW@HRe=*DN}Lx}a(j*~s#Ceq2Mld~X@S5;kxgoDgxx zHL_lAyxwZREZ&1Bi|JN(sQ48Ie^Tq5<}&6h3xes_PqekH6&$vAEtkqJS9>(uT7sx! zv1y>wxJWL9h_YZ7NcZjCBE+o2Ae9cluw1ZAu;5o#y-ic)p5sht zAGE-2no}5K+i5#-?N@H&gdtgnY%u|jNEPWky7{EF*X>i)%phpJRiQ(qT~v;jWNB-B zZCqY=GWgS2{Yt#x;?zc1e0%EUDxFoehU2W|IN^QRSltx2dsr?YlfB(((Xga#cpM`r z8PAi>LY#xa7$(-%>rrc~m~Y`*P=XhX2}FgWl~}7e3J^D>oFg~@fLm}Pru@)(jz^cy zn(O|i7CpJlZ%;5$dfpzKRg3xD#oUD)Mk^0W&BE-|mSpl&l5TA9S9I8Z%b4-z?zZ@^ zs#^8Ek4N;xw(112+g!~oB79uR*=0p6qYy?8;gDKPrba7yv(mR|^WC`2iyV@wmMFU; zQrThy92{qWPCNtRv>bQ7?qBp^24Z0S!w$nb8l1hzBgCtRtAvM{$J>5ywxYHfZfT6F!orK|R&n)2&FkexQv-tKa$*K@@U#0J=1LnXY8ZpU<~n99nkt16Md zZAfab#Wwbk%j)~to{(yqeKE#puB7U13$LxtE`_e7WI9=-G-j{Vlrb7!+QsO)juMo*+*b2j4L@{IthdczF*?k1GR&La28~FG z(Ss5VO!l`)CA95et6_BrbtZQcqcyW!gCcA(_O`1bc;seR9Ig)=U**Hh=D+IA9NYS% z(wwJ8^#+yJR+7mxHmS_z{(j}8I>IzdXh+_P|>=dDnYD)){dxZ?G>vrxNSV_XjHj~scL;rH5c0! zZC2PC`)wbeGX)YrxAeRjrtWqnm{gIbX)c{yR-*eN+7an>ejoR{~i}5O@VIOWM?(Ue&!S#^db6 z4hriCv`%X#!4X`AcnJ6RpBJ`Tg5BIjZ{39&gvxR|!yTi9J9lt*V~S7J zKNew+RAKt4&!c?sxQv;y-zKokI|N&u-RpTn0XJ-{*j{5Ht0`qa6|HC)o~Ph6r%dc? zJikqRz|-gw>fT-br6=@SDGlHEv34QNpA7?5benzzUbs#>RL8l zGxveOt4HgezlzIG)r(kMX~~8;IQgmv#F! zo7U8H&aM2UDrYK{d~LjbIe6o*nhEZLEy%Q?i*o*mi1r4^`_A(bH&1ms>Q`@RJ+xMj zD9n2@q_F=0n`I>Bih7ifpXnb~~$9ZAuNosv@s(N*S=;n@X93?pF_9vRec@4oxf}~FrtmVV1 z#NxdUg8W>l^&>x_w0@N7wp!+<>Sa!dThZEn#e7{$w&$y1tS)D4WYI1t#$)uJBSGpL zdD|_B8CsJSV2z>UBW==M6?o{j_xEfGLQjlGHL1FZz$_U0M%e~F&G5N$!mKWO_u{34 zNSFFnn{PTra>YrIg_6$hJ2}yvVJbwgDm9^8HNvsVLJ`Q$eHZidW3GCSt=J7WqwL{_ zqCG+mn&hl%?KaFU%+^fsft;MKHw|Jt)p2A7QCGdht)zzFh^31nt!2?2EvQ9u($b$65`ax%W%&Nw5l3j z*V#uV=#I$JSwThyMn?>Tq1qE#)YaNiIrHt-Wl%L`lLBI@)=)4;Kr=HihA(4Zy!%fd zd5;{^sPrjxODE6S{YPULptQxkXRULV zUzNCpMS41Jsk^cyb}bQh>#U?pX%@>%gdo%|C5&w@#xydJsz7(xq+t^vxzCJw&1Y^T z))+)I$l{t=q*#?^oo&;5{lpS5e90jjQ9|;3l>;Xe=&!{WMeAO@>E4EqNjjZ@r>k`~ zo6z`Psps_7S~?2Gzt!C<#`TW_qB4-n(R&rB*`sn|W|!CfCf8uHL}Qd(jW&I< zn9PyL>z`0kxgqT__@?xmRC!_Q{{WiR=}lSv2I#J{)%qJZg{gu3_f+I^8eZL1R>)#$ zV%}p<2Ypv** z)1E5Dcdbfw7*fzndt%M@QOc|&Ol4#eHo%~amjp3gtQUR;ch5p~HCm$^q;(17t7E8Y z{00*^pP_5HQCfo$OD#=Sm?t7l1>I8H12Y_gW+q}c@h$F;6dy4h5;To&%mz;m6|s;H zBOnq!na90dTismE1QX5oWmRThJ9098K;Z2s82|zSAXlgACa_MI$5l*Hsg%fM959T1 z;3ik}sy*Fl$_U3w@cmxBiql9X+Dt^03IsV{#gXoNs7SrV7m9qGM>$t$NE; zyS35gk3;FBaLSya#&cU`&rHv4b*Mzwnv>btt;Wg4 z%td6L+CJovvU1R~E<|qRhals|Xe_VdtMB>ov^4&Sz^p&Boe*A_O3dX@@+;dRnq!iYde^sYkR)M z!H(i5LsXs)mIM>o@bH_@!sDiuRqe?@wanbXlzK=lI0Omg_l9=ofh z@(XFTZ^vab6u{!pCSCf3m?#OE*ER2m7g{!n`pWaAdS-jLzFgc`2<7>R7UaqD?srGq zm0z}U(Gnxb-Hh>-(z<5rRJ$TAPgaLaJJvh1A{1#5DRg+lcOYUL?8KkiZD0qa*SYKW zolOJf&rRtaQ`8*`j(#^-bq7oI*A*Cg17+*X>UKO+ddS;i;W&EAOPOVZB*BS}D=9A+ z?vwbRbJdr(7FJyapxeo9Z#4OmDHI;kucQ$X!F}67`?(&jD(hP5L!(*?xjLUwnM{$P z0!0mp8ykjS2WZO`@<8C`yjC;M?@n`_cg^$`zew&UA&k%Ky%~(xS8&T-fz^8FrkIRo zZ(ivf22f0x+_pCnm8RDdR<#h95F#&V$lrWHdrp@~FZ4Yg^~N_;y&^5^D+JL6ZVa~KgOBI2lM`wQ!zivC;Pvbh~vg+PDj24C}(~4 z`|T0)6EQLW08Qt_2*pD_b6+1H?FwC8FF2hafeEVF^7~0Ma#Gt3a^0@AI5V>XvJn7V z8YS#ZB6`JgB21qcl|Sz{ykpj%`?Wc%<^IYa+<(Tn3zDkFF2IwjG;dg}D3m9(lp2XfV-WDM%F?=afj>p`Z=FFYJw8l!+ zTIDoSk(b3A7Avo_RSN^UXtbCVt!tU>Y~r20l&+8=zU9i0DqU^moi( zQE@n3Nvri{1=$@{(_KN2(HUvM<}g!vM~{q1&07(ctJsruatjr#A}d1MzfVdfddAklT0|O+ zg{|`2oO+rua}=U8Ai@%%OL{>h3|B=z6rVSJO7gGf15I?Rpk6`zw{Uj z#44gr-o!E6D~U+;XtJ~>Kuulb4lU# zmY&mEqRyST_5l;86>hQCw8P}uRj#V-kSdC@^?EC%dXHS{PMNg2))-#h*-dk&%W)6_ zJBES4TY#&88c3#6!9Z4(Bvsm3R=zL%Yxot?9|=Ah##rK>VZL1?b_b^&1JSvAnm1SIJXRffEDo~j7B`@M zE9y22skvjb+0)sqo}ua`v9+cc#Gx2ARNSzEZi3=299XG(cKI#z#!GjW7!XPTk#6+q zuEWch?kqF!L;-`D5+D`8$r;Nj^asQHyKay8bEI8Kpz0bGosV)Gy;8?b(e9zu7?oRF ztEn&dTw9;BT|Pp0*ol<~c%wl$(+@D%X4Uf(lIjkMdwjdyu2{VGkH+bpNz~q+YV2MM zD}YgAu7mJh54d_(Z{o5qxj4$#>|?3A^a7NAol-Z}v01@1lUrNO9FeS%p>+VFws$Th za@#>Cx45uX#tGopoqi(zyy?%1*WFFhm-c@R;hN&pQ-;YOP>sNQRamaOQRs8qTF-TA z?cRz4$rpM^R|*I?YbBUvc4f5|rs|%j)!C{&H0nMsws%`~*Qi>LDirQ?`%zWb;i5Z{{R`f4_N9hq&mi-Z8?S$`pZ&ai6T0_#GgQp5xlk;9g}%D6GYfy$x3}u z*Ld!i<@!5}Mhdo(%j7Ydg7pcdN~V17<6@06ST}g3fA*ion>=u!sn_10US^8OO?{+x`yEMIXtzqk53L^IQTW-_|0FM)x>H(Gr zWbR0@E9PyO5)>*y@sovOtsqZPP~3V=O&JQ!j4@$>kP3ouLFbNqdE+@b2D5fEqnTZ8 zht>J&dOs4X`c(~^loLwlOuLzdSfggnJ6LI|nFd+Sp*Y(%-cy9^Im3x6y~BG516;Y) zVY6!}mhMJNw#jJUzN(&}tdh7U7G_me?(S3#yn04z@gZpvKdG}QVc=}*@ zz$4nc4t}mW-jUAav$}gt;ZCBc<8)STjvoGx$>s9x&nfwDz{K0g`;0K4wQBkJQ~c(>NTaLt5PK{{XzDKLMrnrlNiN_-onv)LiFiZ5_~i?!s4k;oa-k zb0s!Ki5iPm#<0d;SXoahPS)!+%Br2kP;EFLw;OkZ91M395I?ge4o8hYNQaINuj%W^ z?{4jH?QI{l_IDGB<5qrMVS`Vc#vddZTHyCMRE-L_ZI{x%SUO*hL#XM^AJn{Pg?_|F zQm0w-O7zh5*#tf>^s!TFuYR?5c3Q$z9bhO3Arc&xohz)M&1((8gA9g3@3DuCp|E)R zZpYzXG5CYh>(vV^>#g+!SGTL#nb|c-dy#N^Y$MX~w2{cd_|Ka5#e}n@NqTz5J3W-j z>PqpavDg*kGFn$q^#yhtHWi|@-X9`fyGV4MFNk)b%318+&Nxb_NU9jXy`JN`_Y%tK z5mF_RNmv-;RO9Au&k>!VAC|VsP)BjV00GRcGzaOp?DPn2FK?&RQ{-)}A%c5L{aL3u z{ZXXBDEZ4RDdfZJnyiTx#qL_x0ta$RhQxG#Gu2+B={y#HtbG)IPf+SS29OH)O?im6 z%rz^S6=Rcz)3}U%F2|;%w;E|uQ@dP%Rt%VAu&%#fS!nt$p?hUvb9p2YOLAPnAZv#R zU%4X?r0&4ZNZNw{DyRa+FM}OR@gw3dOlVz8@f)SI_SNsKbfmYo*6gMIU2gXY3fb7& zL%KX$hGe(4jmpV3(Y=~N?Nof=;ktMDk7E3p)BHGkbErJ9VS4X}^4F8=F0P#Rf3CT0 zQIWM%107MdV)rac^!e%wfZ@f$1dAI4#amNJXdgAl);gxSq)Dz%*SA*M&Du*cSx0bf z;zdbWMY%}bL~|8f1;?R?jkl1}AGJ zm8YKWv3d{6$4Pv!^!rX?x}|}`^%Gq6&XyE$ zxm+r6y+TzSK8(=`rP{9B&%1(ivW>RJ@v7?Rt5>{a^=1AQ>-xUE)VB$#buHc0I(h>g ztnW+-~U!nBIvpJsGZ*=`K*4Aj^ zVGBzUni$p8%%lyQu+f4@IU9avSC42Vpw#-xaKu!!pG@^eKa%VqW^Asj&V_=m?bt?A z3OM4%7cPE1C0A58r=LdoVVaOY)cTFtQk_?rO=PU?_SQggU4atO5E79wSV&6cN>QLo zTjf?&UIc6#Dj}rYJ!-{Pq^8B7fmje@$-77mi0y;aMZv6{Mn%wA) z`l#GsO9e7eN{2xRevnFqvUP;`Eke>2D8n{~ZPXZ&r)lu<8g-CmVkFdS2UjsAJjx7( z#0qMFQS|@>as?`u@JYKLa_v-HRHnjiA*j4oYrK={sg2l74fVX>009JQ5LW^1E;sO{ zJI>XF^SLr`b_3C|75nYS(wJSsld~kTq`pZw7DSqt#9t(Fw2G7uafNdsHNtL%%CUa# zQy~^3(X}m5T3y2k?KZ$0q$+_*>&FH)%LW4ERHVN3n%B#}Ql+c7_PJ$N-F$_!0<*^L z(TFJHYG4}u$_LZ`09RRp*kUb}De=nUAV;0rVq9a8rB%ByTYJL4t550gzaM$_+unRB zUMvYMLvGb#JtfMaR#MfKgMFV;x~;DYLO=~rX#z^#YVLnz;j&Q@r8>(t7O;>TcAsgk zwOGVv#kE;G3Y%)1j~+F0OH4}|v*2PS3LVsODpHR+xUR&8KI|efU!z&Q*r7p4E zW4nYmZJO^`?5eY9E^Rtj4|S_9$vKd_AzyfF7KSbtJ+mdxbk?Ow!Pkn+apRp*&On-& zTqA<)0Ct}jG72kpJyqDc@gZ0OR|`b$Ww}R%DXMhMHY`h2BP*uyvdT!Cc5M^Z0gm+x zON{LcO_icWdq@yOj>{GJQj4dOMMGo;K_cjxQt0E2?6Rl82tw30)Do(LD;YmjX(u+o zoS-{w*-Axwm8#sSHAB?hXK^CdveKGW!8>ES9BkNWSQoX^X*_{t2xQE136WB^+sYN} zV0oeP%>2GOy*y#{zopRopsC8N&|2FT;imfz%9pAt_WAG?#0-;}26EZ$__(wiuI*HE zOp)W;o#PzUrTN=qdfCR!Vp~H~ z^?dS=c>e(DhCh#syDN{Don5(&xMBVW_k;a2Q7Rl2V}N{q2mU@Qlzwl#t@*XW0G(I1 z)FF~9s|n*WLo~@GQ|Z^%@}UOa=E`I&9P{9z1hs1X`2_R!T`1ID9So;Vm!P_BZxer` zx?pvs)#AFHsj7Lkuh;n3di`;OlF|7p+A_c7NlIGjf_o%J1f`JEwad#}Zk?8UG?MeC zQLME z>*rjBh_2?sQMk|E2>>U@=eulplN*trgbMqHGfz&Usm+)l+;(V zcsgaRx^J1$cpBO_CzGU?=jYYirpL=vj@&V%GElgK%0sDXuxjmj2XQTD((bKDlMN(u z+%==^%77X$V0GRGO6}adoKRak$I#lw{_@`AP=fx-Gc=M#{{RIQEh$e?4DgmX)M7$g%tQ|H{{SqPw*J`L>&1~)I2+P= zBxG_A0DFvi{$IYU#EggOfsZ-PMi1aY9AJ;Y)+W|nFU<~jApJRuv1=cFLiGxmrLLPy zqFG!N!iX)I5<@=%B@rJ!Iu?P|_5)6~hgP}~U0Sx>m1ZuWdR(vvoE@$8BPO_qR{TEI zX4Wrm^gB-drl5g}??hOnE$Tq5LX{+M938p9u1NWm@+0Qks=j3M+LuM?jT2X-{YKM1 zSv1zU)Y;8YRkdE1M?m_~XR8?t8f#0^tijJ@ErRLQuQpr@UvRh%&}{K&ok6Dm0JJj+ zE>P&R-|2dbOgDEo>DKoV_B&((7FU>M#t7TElfbKpx+_~<2FgPd!>sA{TJ?yv+K!Sg ztSy!~MB-49n0p)cvPrxWfGNp1IbVinoJ_ux>Slw?X&oDk#%WH6^^2sP9?K56UQhkz zWIB=NVwad4URO}l3Q;-}7>s@&zp8q%qOrPTU3IgrI@7E-^j@3I*3@{d9YZ@yPvJ3I zeOdG^1C+h!^y=SXpb$K+$dt)JOl|siR%lUaRyMNUgqTf#aUfvCte4l5U3SX_+Wn<< zQs7~qJ4OX)`iH~LrWfSf+KZ?yEHuj$bt@W5x_z?1(xhzt$h)nU3de9!>L((%n>W&? zY7Ugup*W;c)_Cz{^t4ok-L+{}T_r-r#f%e_+R`GpA}9$3?eRW1f5f|3wd=dP{VV$1suH0PDy{2WbG{ z0zQ?@Z!rExdWF~RW97!Stm!>XUDHmV>iu_}>NcO$maDFn>~>>7y9U*VDu(^d=FsiF@EY{Af#7MFzD;$7@45VR5!L4ga z>F%%7bX`^(NSf19p60=j{gZBj86-Cele#e7w*g#$%EXmm*lN};z5W+{cIt0bdZ(*2 z_K;35OlloZ<$nH+#nsBw#v>Dn(RWjW>q2J`z9UYhjT4N;rAXvnwrj0oBio4^y%yJ0 zu)Klp^lPFa)#aU?6=V%#a|DkdB(Qd9uZWXr0D{HPoRL{}(|Vz_i0u-<7ELbx60fu$ zpGi@)$xkhS5Xz;&EUZD1SZyQC>L0@w%>GlUy344E(Fx_3>b9-a*qR^G8UR0(W_;Oc zeyGsTG(AUeADB-{ld0=27ZT+a$*dFIbkB%sLs_(sMKb6YYbBJnW@E7r_Hyb1cT^5L zsOcq>kl5a!f}q9)Rn)YNa(z2h(%{qC;=Z$<2-%J>8$`CYNLhnsATQEPG0ZW zY5xH0FvpV~?Ztx|ctai3cG`D$rEjBYZtW+%w~UD+Nu#p8wY|Btca$=%<4+5e1xoD% zC~Va`9+cLsibn>mGc~2Qs~(?qJP6koQR)d~@LAk;@V85Abp+BQDynSlhWkvh-7hM> zR{X*Ad!rS!UbE1Z@%aMPn)5$|(mGPhGdMn+X+2Y_vYDJ8PjOm~$*i+jyk!fBQbMoeDH=4bp2xf{gmX;2CQYxHp zXiubj?P15Fy))AHYinl(joSzUMIH&j+RGZNDaRb+`GfVYN_ph+t>#mzn*RV9sd`7# z+=ir$N6{<&C$X1DQ2zkkrOujadOcav{Y${>X1xzxjYot$elIOenDoqxp7h0m?M&^= zz8vTsXVbSAr&j5$V#~XGrQb&-y`*;wD6}^)-dW6zDr`xhxZNCt9#rGhpd9Y84xOv% zklTFCjG{4p46xnrA)&mtjboYyNaP*sdx%wvw$DigTY@Xubce~_wCP5N^GnpcUq+}8 znjWL-Pcv=N8j><=v6IPZt!tUdU+JbN^II4F9-pYzHyYa_0bQTfqt%fdZ#dn1r#kyo z(ezy^E|}Hfv9z^@3GK=qoxwYa-Z+EpY{4Naz^?tikPj7kVfv~qbH8(_+R1M$w$gX@ z5W!N`1SunI?zYJzWc{$YJ3Tzs5@ELUo?K)c2EH^u67!j-hlmG?46$IJX3hxhEhbVM{NK zqnfd`x`x)t7F(ow)G>TMNoHcr`1v>o$vE>{8L2d7T9_555ru#l%(*S8!QI z(1IOeW0$9!O^zZ(z+j_)-^a1^9-Ff1ew&X$)6{K--bF3QGS29C%G~*PJZHk~QNr=7 zPjL5lYdegEkr)m#6gP~YYc>e$-na-i>RckC8 z5z{P}m2G3K^%kbUepHy78kW{hu5%k-9@?;J5@~lNVPwx69fjXxP`2(u%LT2)rQ$eI zwTftIr%P`9?nhbBw%`i79D{>coBbl;ARLk6^~|J5q73Z;n-6y5OR2?j0hIw zd(03FmeU&VRL^?0kXdQ7tPiP{jig}A5d=iL1q=XxU~qo`O=9|ssjPZ8M4w;O?Bur4|@D8N&izy5_h;zMOy@ zIwr|`2O^(fk@wtm9+$DzI&rlWw7!Di++m(Kic;IgLbec$4>>tGA9(O9n(7~*5bzUiJ0;zN&1SPqMc|Z)*^BeW)bMGs%y%m5V7MR3fV?1IAmVoinS{`rQlZ{StRT zI*+ek(`V~GoAk4(Iw84Tb7QBgZM&55xUEMPl&9E;23S=N4kWI7Q6&Mm?i!2C8K3oC zzN2%e!vVMpBYeWZ$`vFE01_%M9tP|YxG@{McSS+eF!Wze*hSPjeA=d~Z9T@5VXA5A zF_I)DzFjVis;e_&e#|#)5D3_%ms5P#RM$27vp}`RUlW$iw?^n2iVQvhI(HSOvDsWQ zZcx+M?L8Jt)6&MowNPf!17l`c07t@b)5znf>a$PR)vD%mG~6dVsH8OC|8 zUGZkiSdUrJ&aekcw1`It&$Xx6=kO) z%P(2>5`2{YPnD(uP*U)B0Ey+W%*!|1#SGlE18VNXcuWo3PbX@F!8iaM@_d|*D?rlC znbmFL+EzBYR&&BDj^ZhID}tcDc8nZj&p907Rn)%SfUYQO>rI1Y#3#FUpb|mJO?wSF ziq8lc8RA~6d4S+^EQsF|Fv5hLn-p$28OMSc=W2oNjt7n_+=e$TAdVot#v4I61fRN3 z8@=*R8T#O2g=MRGq6MYfR<069Tn4gXf&%zsmI-XlgO!tZ9#S&ZZ#xeWD7o7!F+w9? zazP<;gTW`%`2|m;Z9iP*t}T~n5iY0H=$Oj~Gj^8zWkjmbf})`_q%vDUB;ji$zQ)fk8p zsC#w=kmHV5b^{!J-Z7qXM+bvgo3&XEVwFe?{AUWvd;x=;XTiotCmiuPb0#NN!Aj{x z`gu#1YTg6@Ua;JeSgQTZ3MEq&`>`PsL&1!mBEW)SQG+{?o!k-_f=B>z&5%Qb$Qv4-j_A7zdCJak;a&^Zx*>4t#@NU--#0#npB~DSMyp z@UC~As$`a4U02krv=j9$=hDKm+}L8}YF)2c>a1C7DbxX$O8cuBQdcpw?+~)y2;v~3 z49k>=;M76sNnyovlAE?Y-a!|Ck?oPoNmCt zZ#*>B1MQtCDO=6r_9c~@Ua{AepAr?o2(hFB6SRzu(or%y?ll=DXJHxN6hPx8jsfIJ zg&5n(IUL}I=NwCjx%rRc8%lBV8UDOV!;QC$|JDFGN z#NTB?%2Rc5rTIoW=0?da)UvbNf>mi5gAI#}Z87jubOxKOXwuzSziZ^=K_l!guNjR% z7$ri!bIR~XBzQHoSo~S&zN^-B-6p~b+WS%NEM3?lC_*br#E~O14XMG~$-uzPct6Ci zLiIyibpDS>`g73@QPiC;sacmiW&IIy#a!1;y1%Ax;Bp-r)On;>yt=mfY?}_xyDv7v z&_qzKJ*gss9*Hf;Tf0RjM42RtSf(Dh!^b*zqPb0{a!GDqYZ3&Yv{UJ3yB5 zTAt)H+sIZI>`Mf@ZY^ZUD>M^`@R8x!WXh4Xvzt7-^utzS`n%@J?z_|30m5}Jt@=|p zgUDJ_Yf{wsTyI4>f2T6pS~8Oo3~cH=R!K`fKxRuhD2=0gxFm(G?jt~AKR>9-s(8e5 z%#RUM#&V;|@sWY=R!eDh1;xA0t2!GiD2oywEfUHl-lscBW*(Et&VH2<_=9wBSZjYR zePq!cG{9WcS?vA;50cZE3Q{FwDE&LDH1?vigsOH51nsi6BFH2fV+|$%5$r|3j5_C{ z?s`MwR*|jR+Fade7kBYrGeZO17*(B?(XL~@vYy+y92XMX z+*_%U!XS5rmLkk}L@l*T;|r2c0=buf@~zchG96da?DG?%yvbMS(=|7moVGrvP&IX| zW~{|@_gdq6GVYz|4PlYfH^2MEe%%dbrs8-=$|{vN2!MA^%Td(tw5TrO>GhShR;#O&Ivv>p#tjdrOA3d(WH@%+_Wm zco}B&g_&E@nT10Gw5!y=UOH>nPPXb#ICw0tmmaHB{{Zd_sQL}%X7y^=YW+2<)BF|O zE~d|&e232bf2%bQ znAsiD<%EVF)QN2ol2%lZys|Sg=L#zHS!ywAV&AuCCX;h(Byrvg=nraH?c|Lkmel>K zpk`4dr0q?_6$6^u&%@uP8p8#r`mI*yP5O<}9Sf`a%2H=>@G@i?8Q>Ke8G8aihW_^Tr4>`?#FUK2756h5gU*MM9lc~CstY| zwdJjyy2;qFvxX>#soQD>RZ{0Wh*bdPvfln{&p#1#+sln+*6PnrX_n?9W@zGfLfyhX z>H?+6#zr&7@2NZstK@T6)AFm=t#?PJy-)uD;&&%|sy4Jf2Pn+7iPMOq<{jNb((%)s zH5^rfoTOqgciz!wJFGtQOksu|Fe$4|9iD=sSthWBbo7}!4zCDBFx)GS*Kxv$BrJn5 zs-H(0#mrD#%heM@CXlxFQfIp|Mo?XbvPhO$XH%9if!JN)SqLM}4P)CLMmnofuTZob zx_7Q}I%U3KIuC==uCas2T0nIBAJX2T>YZt-t5{@yh919Fwaev>8BqGT?M#aH-!L`H zMTQvS4HWh=>IkjbkQ~JnpCG%of%bqZqY_Z=z--_HN2wdTeMVbZOHHPu&W9kh^50s= zbc_OmT-!n$W;Zen;3+18(SBR?=T7=btdZ64E1g8^Lv=2)=~kxC)~$fgkTk4Ysfh3zL6p`9?r-_(5 z+^8|B1%s(QI_RgGjV;#BhxIEl(_KYd2cR`)m)?)+3~AuA`8`(rRvXJztrw}al5+7* zE4!xEGx~!no6VA#{L-{c6s%{J!fQG-_c!t7nKh5r3S}rm3HHPh9y1C*3g7yfbO}5Uzt>l?eF|~!#K+IYXOlpp+gS1z9x=Yjhy8Bts zPD>Y(#^JC%yq;3SlKKyUiQ2tN?vNRaO=zr3iFW{bGjHsdid{RWO{!`mxWHT4uxUzy zGTuVxJC|_)AydMG;MJc<^v%Ypt6Lk*K6?vGASEo}qi#4vT&T-8{NOx+li-6{x2^g> z^u`Y(YfNd+=_+5R^J9sE{DwinwYsX9}N*7;pHH0?;tcJl-Q#X`n-t!dO2*5^*VV>Ql+rA>7Ov6?kE zaof*g%LEgsB*`7U!*-&O4iJzss-bZjhevC(+v~9Wovp7}bv3Lq-bHCSO+NPW%T$2A zqYSJz+RvzI>D`_Q9a-dwOoMwfy!8&9d7VEp-7)ids=6(!FdaeD82~EEK{y=Q>e^1R{>i^hz#Ch*w_Qs5*79h?63us}YH>|( z3#4Qs{OyxmBzPl!5tA(Kj*)aDOKTi&m=8U9T-KP)V)0s^thxgBlgVGlUPd!f<7jkG zN#b%DOe@JzIjX^uOX{-9rbb$cOwT184$-3ATSW$>rs+X#N_WOpSgD54DdgjBRk7r7 zYf0)oCsCF32^UO}k+gW%AzjrZ`P<^izzxB|vTn}OLyt%Rn(Bv5dRu$W_bU zuGZ12i}vbKMQaF!Ag<$p;a1#H1b?grD(?LpW@mm~)_q0uTCumZaV52ZDq9LmzH<0% z6SQC`+CVtXcaMgBEV?$09qsMEZu?LQ`#nHK9^4?=kOMF!+i)ag4hS{NKg9^{)#=`Y zTDn)(JwdAQnvYd#4w&_aq1cQ1k6Lsyt-52IF4w`4nYN!ZX+44oYq&DkV|BmdTP3D z!Bo40y0F|NM7GPzM{=v(wU=av46YQCg}GYi{-Vfvn6=c5<^1l{#($pgKe9m8cCp}JRtvsv`6 z)al-VtB|hcF)X2CmXO0D>g*lcSW4E3n)5cT)Wmej*4o+Fq87Gsp@r||e`KpoE72!O~^m84h`mA`h zWBl~n)f#vG+M(J_nVzBbA5QANlV>z$vpiAR%Vu*p9EL(2UZZ^}CkJe(f8~A64utkPB5nOH?vRHx_2DbanFI%|P^_xp;OW5r0 zn)!n(ptHMMm`hr+DQq#jcQ59!zRJwbY>UA)%yJx5K^ zZ~AiGqSIiT7IyvFWSbL4q(1J^-7@lbPGiYYRW9`V-5*P|w9xcB&0fYyRc=-Zg!AAc zfYQCph*&muli^`kjyxYYyUXUbo`HFa)%hJqjq?qT(zG=JFIVS=0`z z;IiEUEe)oy*p}8iSFsl})~#5jEo$HyHw*>_JZ81elj?qvvan5GNPEYFOiLp3Llx3X zZyc$pi;k09m9P6v!Ijg9b=9(50LV-n2uBSXvvq(F+ubX zQ0gsX=5Iq|a(XXWVRM>Wte$E5{{XCPWwe%05rxL+&bf4hr?m7X!p`2VHE!R%m~HCu zSPbkbv>PrEfa5Xh_R_7oJ5!boV$R|TZ0z*-lHOkA{{S&(sZAvLh~%t7B8?lLOM{%_ z6~eo;6q zR7ct-CZeV$KfB-C$F=%Q0n;5i21@*mu0FWzC;3;IdW4g&>scK9)yMwvzP|N4GaK#v zzsGNHZ|?s9FB=E&&0+rlcc0Ja@+lkpN8TrS+IRPu+BS{8+xT%%@H6%Q04lBiA|vN- zZKH2*Qoy;)i19AmNWmQV#4r4&`|x$o{{U-W^sD9m z${u`!{x$RSVA)#409abAG1aWC_okaMxUW`j-kn(EFz({kwkeH|(`LVtL`oqc(0|pL_=zk6m?5kA~GDw{{T2yP=HlK9mA~& z{6?;I0{dxd&YASZnJq1E8m%>y&2-C2YOAzv-%_r!{+?!YsIMw33(F!%Sxn5a0`^mh zn3CrjN5CGPg*6D%RJbu|G7zF`C?Yd5lc?zqeWGD<|*vPUFTWxChTyXl6s+zjzSnzo})_R|E_~fqK zU#7-nH5JN9ldNf{iv^<@ua{1t_SIEOqnxc+rlM1mRf<-+-%Hw9bk?4lDnzNH0_95_ z_T-t%%4Bcb63EQu+wQX* zNG~m|qFCdG0I=V~7GPApj#y{jpDq_Q#-i!RNi|+?T85uqdqe6C8->!kYoVIMtXgY1 z)0~F1%V2YQcU{I09(bB~)aoO(eHaGKyp9QZ6S4>#P4rZ&pVm9JtsEB<*)6@yQL06D z*8}EI4e*k&D|(X~7I?}(rwmMqmh`8=8MXa)rFt(~zSZt*W_vr!C~dUO0&Qy4*hzgQ zt=+z&(XYuz8MrTWx@4kRtdd5!jy1Bn5XIzt$74FXPpbLcX0^s+o1DU8bk+nJ(mgBZ z4wi{-3lXQO)YHtPSEu@)^2FO5AW#cx3Gb%DioJ>MtfDN|W_j);nh|d^H?0fC;4lDg zSA4r6@)>|65s(iRgZRT`)-iQ;)uy*^9p&Di1*{RtqgnN=Rz}t+Rc)~zn{q6YWrt$T z8Zj}-8a5=Utz>GobxPWn$*)~wL47{zH2R~b=f4yZQ=zlVEPHM~_C~Un<(Vj#cC^rJ zHdlGo>YHA=#nZKQz3{CQf6hj^KAa3ZPOMLWfCpp3GPVs<_zi8V4~m^7B$oG<>kYxn z8-BD;`KJX-&2c0_al?1fpdjs>tYn(tz}J?m)iSuXEvk#ese+anumw=mWEOs*a!Py= z_V-kbj3^92oNTu^$R0rhA9RfQ`iuj>$m7qGgY`flC9vRNeLx&@j2=G$&$pgyGxVoT zg^aZeSu0N(%6(lqhp&jl<*SKv( zlzxEJ6{&QiOJ2$8R$kPary-Qc*jA>f9N?8R%#rbA)05A(lyhjsg7S&<1tygc3Av=HS}@-#i7l0b==0l zMAkcfmEKrNY;S}X(=4#Uv7~{H>ByOiM$8i`<}#-Zg?)@k9-P$&j!9td%NK2*kXIpd zv;)EAaz5|`f`56fcxffp=Bf}hcUUl}TLD8J3MpYTAt_uz**R2#)+VztIa3BB=`EpI zRB?x2Pmg@?NZfcH=Y#bhTC&3x-6QjcT=*RRK+p0fw}YlF%j5bDqpZ-ZtmCL^4Rw&M zj=Q3|tF83*GR2)qT7n@solA|LmuU>epbI>$J@*c`bcwE~X^o#4+2)Q0GnmcPuqbAZ zG9+?200ix$t^nQYknX|QKW4l``d3=qUg}*lXK!&8tb0{{X71MR=GNQ0A|Y}mNi@yH zNz1G=P5|1%CfLoi9#SxRqpsTj012Y9`nSv1OR^e?xoYV~uju~(OzURmX@#d_jX2ZM zRZ}I9m8@zh_fpyK>?vV(!Mi<;nV#R~qqK26kq0n|Hb?;=dcu={0nR`?WaAvyhI$J~ z)jlNrMYi~PA6N9=l4iKMfiCX!3k#0qmiF&9*djJj$0M_^Xhv>hU_)`02xjmaqX*PJ zq50S7PLS%JnbTUM%2_u|brUB&80mjXDeHwdTwTyt@tSK};xz!@{H@k#IkwWZbA29R z2y}N6c9X?rExonm){@^t49I4KyCWoW43u|Q0VN8<(~-f$Z6$I&Ev){DzZ7&GBdf)a z#SWO!SuJIbJDV<@vD0rZtz=)fw`;p%mliS25!*V#@|h64ExI;kd`Z)M4jWNs8W^2r z{Ts80JT1&tY1o{>F3sCbwCb+MvlZNCJVGcc)mA0cx*?cCb*7!b)>i(|b>es9O_Ad>h}aFv<;Uj>csF0Hb+4&SuZ#6*85L zYrF|zcPqiJ3QvniY3W~uHhn2|rF9LqtoNnSqX{jnaj;pVV!%kU767&jAq7}~a1S-L zd=vdTI;Z1z#hpvx9;MMX8YZ3~)F(G~m$y=xTTLLuO}wgN^$g*I?u;`4?hSn4F{dkf z;=M`@6)Lbc<6g=~Z4oc9q&eww>)R^(62=szOhmFQcEm8_wiHO5kts?<)m?eI5Jpr;*2^ToT9OTDE?8LtW!D0r zCBI@|#BC(La?UDMMaOz(u;p)2aO8F6~g*6|rkysZhEF#49M~j#9#K9Kw{UPNQA%7MVYo zTZ>k!s-!Sj+QPlYve6feAr1y8%tL7RY_K496HOhn)ngCDI05I zN1MBm0zRS@@5I-}cQq-PQNJN>5mNW%m7pC4_ETk$WhD=4x!9{QRVM=Q7S^dC3>3wZ zi4I0eRHd6Ws>L=|$5d)7jYK}e{{Sv!7`F*+ik94T(wK$!3F{zg;JB-k8xpbRr3MeI zWo2~i%Ca)$Cim5~hRB+dqwxMt_roR@bOxv%8H(OT{S1jOI2N&$dq)uhTAKVYheX zzpS$}%in2}pQrYpzwrC`ynJqKdlvryylT=eQAzSuf9{HGqGD%n{QbW3xA5D5Qb5>S!Y19%?ekLXZuKe~%}0x+ha7QD~a_)fsxdSJt|BLSn8|^;rZ)CNX!jEx5oDFIKpO!7GnH7-4aE zbzKtDF5Ix{vkO*P3xcvptntdF2*_UBE1~in5OO){cbW#6`WCAs2yE{3s71=ivBKg= zqGgU)on}Vm`-tfvIaWfh3cnb;rCoOOjsF0~USG;Cy484nU_C6sXL`e{x}Q%<)zUbv zf74w_q%`)Q=~kMfim!F-)A=dt>-9ASTF6`Bv2j2 z!laR~DnNBo!A)!jlAgD9pR64w)*73wS!@_>ojhf&C+N|EBBkgF?OOe`V*rs=h@v`aGjW=fHmwX)akaEd@RE&}^eCP14TdpK< zYZ{fJMqv@Z17j+Lag{1?1_69+es5yy4%M!h0L*>32krO$pbjzBBRu=fOX5AJb$!ZC#U|kmc(oE$1Di(BU)c= zx_C7U6u9O{Z|vdObsCek(C+QLd&=uQ&%{U0W{dLU)m*NwZ%%bTTWM)uDBA0!`CT8T za+NSSOh1{uJ)G6ouzCG2Z!&V+_Advdv)qYf2`G?g_db}L?Mm{~PK+6}sM7OE)s2VT z`L*hL`gp8%md>W~hf5wFr#otiOHSJz+ia`{Zy8vvZDQ(+-7ZTg?zFGg@M#F!nPx+I zZFO@E(lUaKv4~?1k_iET{7oVbnV9QN_6Qh;<?^+o!mz;qZ%OYmH#Ds^q>@g7~KNH!b(rhEQfJ>)Dvh0s{*{6`BJmBHH=g23V zd)Jn(we4PQO7Wo8r#7Z}jAOkb`b>?EI3_%8E8_!#$HCRVH$8moFG_kvUp>XyI9X!|*AoKpqjO(x3X@XKu=d5}T0 zw`@utB1*Rb(DC5pjA~y)y!Uyj>OQ2op)wRSWAWlvW1w!0n%@R2Zv07a}StMez4SY*nzu64YCU_RDC->cEPGm<3wnowroy{WhLXT# zQaYC|n)Q7>cdYK|{{U3DI~J{nE$fi0xG5?5DT9gFck$)kznbHw(&JBAJ6E?3(ZwJ* z^aGZVH#=Ky0+Kjm_*Z*J-kjLAxg<1j#raw1A?G?*E+NshOKJXC#-Mu zRf_J;&@>=Uh3}oBLp*b3mN=!@a)lX#9FQ!Ys@C3Mi6gj z_pHqy(;XGA`ZI=xHq0@v$iGuHSptpW@TdiLP7Y&XZ9-{Q>MIRaSuP^CR*!pU?blg4 ze5%S6WE*udW71=6GVViFR>P{Hk|TB1mr~mN^^8+V7*s=Td1EWe@e zMj{PwQJ7O>O4u zYso%KO0?A=kz$NFl=psO&uMaWBXt93J8c~zpWWOF!QEZ8j- zi0Rw17qV$iyXrom)EBglO*gWF_yg19tdtn~{+0$Jan^|622dfd!LMHaq_Ms?uPx2~ zs4Zep*>;7|3J?MxIFZ3Q^fD2<1lCMjbtIbpk80ghdv9Z?>GRKV_X^rc464QV7TigK zL?$)?0R)n}fIC;vpD{f}>bFFCU)0B2~_$Q;gvFTe#wF?L@q+xLhiZBn5&9Qee&%S?-NzHS=tlnw7%xT`g;yP2& ztu=twc#S91-2>GwsZ`3{%vjdhjXAHnwjDKID?m}jkfOFihB+B*y_egTE>lKS0m?_8 zCFt*neMfm=f2egQR_cprE~C@omfl2Vx1MW9x?8K25XfExA~>Egw;RjuO1W} zr`bB6S+&2q8cdUSC4=Sf6H~IexDnY%UCm?4Nd2KbN{FTl3vE`@gMYO=Q=D8?>c`%&T7ysNzJYO4t4*^`B041W9SG-%DsB zv$+^9^8LWZoSn_&&bq^ol9-boCTMe`6NM;yqEM02EU z?8&`$l7*XVXPjVG-RfOn%NQDVbk(7;nq_xe92H!JO4$nyT~^I}dnN4Jh`S&wNHwtw zf?$zP2rnML>F%Jk>OBt6sC2dYt82)Mgj^O`K=nY`I9Uf;~*yKV@WHk+rd&Hr(xkF^n+vKOv)xirvpN z-8!w-{*B@^tF=8Ux3Kx;YD}WW{wi{8uS$+esie`XATc?SGAwwqU+?7$k zILK@QeevWIT>k*lzCtc*zH~I!v(0hFwB6jQrklchhpjE0j;JNs)H?41qE9Uk*{bTvI7V?5Fi#U zjFR8R#ii=9>WOqGwE276StN#NLC(nr52WEijE+V>aZ~2J`PbhKpW)WK4wEhTzSCxk zJF9z;duCWcb=u0sg2=CxZgAd~Mj62AuTMHytcOSZzvOibyvlV&*sKk$U7>P)8?UE- zBkA3ot=Zv$4CB}rtmY||SQr+vQi*$%0106SjoRU4w!O8IOWESRx3`TJXl;axByWbs z@Qxp7!Vr9*83)_4bgxWXU-UOfy!Lv(SK0=a@&&TJx3`Z=oUu}fURbUYL?g*|+U8B7 zH6?3XJmDT=2iChabzZW{YWr=|I!4%*W|k6;rNyrPDB_+6Qev?G0HnOtR7}H-Bgv-T z;XusE_|~o?owZ#-8dQ0As1hm=t{OB8_Gg4R#^J)}k+&obAL9#~Epo;y%}RYvGiPqy ztCxV>Tawad8JZ9k-Fa@}jm#Ks-GJv+(3-Y}#9Ai@X*baL0O44h2qH_=rq?a@VFI{J z_SGl6cO-~nywXW;YUmk}WJf0(SO!+|Jd&kPk0gzw&m5mcg3{w$)7{7~ZF3T`oyr&% zUn2m52--bZP}}pIiqI!kWmOs5N|$D&q6z_V79d4XOo|eKk%qvA^2ZoYbc%P0`h0Gv zLaHe$SPYCV*h)pC<#6?_TR6nY+7il4F2Xfx{9DZUKe?#xPGb4Hep?8H+=V zQwA2k&4!^4^wu2B&Ob3(ENfM;)+n1R6L0D50x`Kwc`dtkfL~ViU+^PXMV9(FpJn`r0nt_yD$_oNaWRimnTa4vKK*%@) zJZJdO_vtk!W}1$QqrS(*kL!5LQsqsg#7VkiiyLRZEBau&L?9$*J--xrFB=pt7o37l z;>RQ`V?Dr75ORL-@$X3324W)GlCDS~9i$KgZX|4A-1)%4`cb(4!pkZk{{X{+lC2`Nr4?A71~|#%C2+nM&N<{BDrlXf-m<7h zEDw-)KAt!P?$3}g;~A~Z=-aF0w0)G*FkKMVSr!!|vM+>1dUZWHTJIkqu@2!3Of&mj zq+(=dCsfwwktC0C#C^PxlI2e3BmxH+#{_V>@yV|-d|`v;dZNkzzAfNv5V7Gy%8Q(w zISs}=EO2?ku5&2TU<1_zQ2P$E`Y~7>0p6~%=l=i?YYpci^n?^dup&%gy|Axw8B>)n zzuS--1As>d&%S?v;<=0#GDPHmV<_AX6h7U6a1AYl&I26u9F==YE5)5k-J%Dt96{_VDg<1Z?M3|1qK|x39 zmuKIPIUf|BCx<3QR8Z%Fg+L>c7-NEciNW)VsP|7PWQTLO955k>$pb1?hok}fyl322 z>f$_y>+JT1Mz7A~!w-$ND9ARdC>}toC=On?Tyt)N48p{&WR|i}OhV>JMrJkJ?N3~^ zvwcd_L}~P#544g%7;;y5L=4*$=L}ee&Q3kOMWX(X38`7bCb87ZV|_STO}sF7agZ3R z$s?{`7%mk;pcqg<&1R1(9#!sWp1EoMq0`k1&0+M&<)Zs-;uA)|GcAe8W9lF>49H1I z6B`_Y0J-*e*hXRlC(t_Psj1)HfuxaP+uHN1HWiA7Kv1p@ar-0@<%MjTC&5iGq&3|u zUyrGcx-IqkV1AS{;2jxs&N$r_|a9 zOKMK5TFF(ROA(yvZm7%Yoi&5e_@Y6cv&&OFOx(;ZM-x(w^tN`1nU1Ff_MP{(xsB3d zt+BR^fz}yj0!-n8vc$=_eby_VHPE#-)nZ#)oj!YcZA)TU*`L11B#JleY&!!WlsFO$ zNUFhc_lKMEjpuV&`Ht7Nbmpk(;<|Z^%JlaM)^3~G9Z8MUE!Dj#)Oy2GXq;|aIbNkz z7Mae@Q%(~~sdE@jz}Wdgc&P-I*LKppQM^|Wb~}jSc^440@jOg~?p>-?mAy*XC(Tld zeM%ifMRzn4SX_6^FBfrHTH0lXXr~ek6Y5t<5UQLqmEaSwo@V;tmFTZVdcD?6MFP&$ z>0XwxnWuwAs?>j_89MhWQhid%*r#LB)fe3afdbEy6v>_Aj@FkK3uhWg@t55sNI<|p zYa&Lt$p9Ro-o=$^5r&$E%(y#{5qcU1ltzrsK4$vVl7Iw~(k7ZVZ(rS> zH9tmI1YqMeZkP9=V-u>RlG|9_C|M*suip>(irVW zqO|V2(VELwMl%(n;|^@rd31k5vNgbIx&^+aEh$(Y(N=rQ8+i38q>g8{)A~~jB@a}{1V%G#zQ@V%GT`zWb3ZH zS+F3s2+b>N+bguYRkpadp4f#VNRwvf^(ZALdorv)2fyef%er9D=ykc zc#mlQb3PA%+zq({f#Z+~tc)!Eyfc>|k&=1gjx&G<7{`xlnv$6Q$xKe$PV+w>v~Tkt z!^J!gr|0QacN}9U`I@mz#?wEyylw9@x6l1NK;U5b%|j&lB;)bV_|hlbec~oJh}vQ{ zpPzlF_{Y!i@e}w{_~M(L;H3ASLNNh5%uIbV9ALNhjlR*h&xv!-)Sf?w`BU2--%7lF zJ9|WbEu(3l+i#DZyhqQEKcDgXd($WDOpuSi6^7s0_W_vOc%7s6jsF1po+3Ygiijub zaB85AN_U9+ZTH*l5g*+Xw}%{5KDqa*6@(O=Knc$-Mll@A_{l^>&$sdM2Jw;RqrJYT zj~xDSNHr)z0zhUXZHI`!#~*!$Hun0aXYKR9-@p=2i~-N{{{V$IHczPM_tl|m`zSY! zX!hUlG4DHj_>Yf&&*4$r-`+pW{&@bCa8f|Tg-Z#KZa}aSpJ?`(7~V!d zZv&DW2hBjU9tkFr;Zx#P{{Y$k6<_D?fEc@!fA&ZJ0OF(#Dj^?D8bLB%{3=&mmeKDsBENaseZQRehw9BZ zlbt>Sex?}n{{VKPH4Fa${(CY10PL^+8>t_c<9O{9DQz641}aw=9)H@Hj@)tHH{bV( z_wg_4oi88$OtJZ6Kyv)R_X`j6NZ{ky-=!6h-dsCl3?(p;b{T%-Q8klPOu=~25z{mdpO(!4y(5VH0 zs0B&^T2>;pt#Bd$1F(X?Mj`-WHi(G!i1zW5NYxc%MF@xh0YJb5fB+l-2LOK$6=2TH z%_FgAa!DlRi9Sgul26p<&$*>c?Z?~Wm*4H}y!?Cp{72vGP#y>I{Qm%*CL#zoouYP~ z_WOIz(f&JldCf!H@fCTEww?a|-+ynn^Pi6o8}zAzYg z#x8HqjL5&o?9#8-J*Y>X5BS#sVboVx6Hgmoo#coFO;;Uda5*@p!BSfNDZp=Z}wKB-0Y|4SIbGSg^NugR?WlE>K7d z!21fZBxRx?oIY|0JZw4-NN62c(DC{p{YunbN9j^BH}%>w_wxz8qV%2JKB|$W z{WdQSVBCRvtDdgt_P|z%TfFt~)_6LC%TvGC`twrK?jg8XEtU(}71t5RAi9*fV*8!; zqMQP;zUSxDuxlR$ei^l;q)_}L>D$;Z#Iehr6HV9`cWlA}+UIkrE#v?h2phStLDjr2 zn(1dy%MF1bqos95n9;h*zJk>HFwlzK>2>Ws+?wJCID4bN3e}(9Id1#f;KR3@--vLmV?c!|AO( z<>JnY(^WBDPU^2nx{<1DWV5>Ws#zp<1J=6?7QIm_Msk&!@#1BP8o+ttGC;ROscq5 zSrAc@NY;5_H`$SqrBp%lE!!B&W;3~fJZ{=a$nt9!uIU{s)E#7+7sC#m{{YSzljW_R z;@Qk1=TkOoad>xM{G>ujnP#~$qbz8mO^Aq?tWB)Cbp0+`hZmjb&U>dBrgW#MIf@aM z(p0mTt<$%m^*5tse13uJeH^7BFsAdHM61-6q?2+KA5K^dwX@VCo*RiRuD)dqB(C3> zh?Qng7#Pu=lb%Z|#70B9jFHs77W_Qb`cLB5Lr2s<53ag4=H_RbGj#>6!H`EA@S@jN zida|?lO`q#Fw$GRZO;g6t{09%+I8snYE-Z(1X#0-s8d^cGIdgkYnjGo2}2PRyjV~S zlrnDE$t#8=XK8E}<0Ntq;6UUbY!4qv0W6^Nj~{d#`w!*d=g9ijQqa1h{*?7$j>^U! z_E!{mS{jEHi?eRV4?F9k{tGr$jGlBZS882Toe~Qwt#RFy^9C)pH};En6h)&+&9fwd z9F4BHD(VjafTWNcDZNy&9z|H##M1J>HUOb;czsUUNBl;O;X4U-dcL~G*_s+)v7^`TZKzq+kNXJk`N(U=Ice%twLE# z4xVk+GGumdOpPlH5X+VQ49V(o&Ki` znL~hwI436@kKRw?_<}f4r#!o4w^x+fg#?dWiW?+y7idKw`>c(e@)frV@o(ut zrM{zorvaq?wO+v(7AD$?Ow};deEKh$Sjk}$?$GKJeP_z+E%l!f-ySdhq zO!jgo9{y?)RfA%*U5)A)@sbbIuNHG34hNiJ_6ynJWHLY%5mj z?E|PW;GJ=szT29+FPqk_{*R~q-`K&dUTMtt@(guFnQY5Spk(=dJ{jy@PnfoFqD0#w z$`>l;P3!|WAQH|MuyUD_y>Y7OU!wO?+I4-coLBcchNBxa7TSiPtXcfK;LL*DNpa|j z%LE~Wh(h+;YJ-f^i|HnJQFTYAx@fhW>0;J7-6N&0W^UzbenW_6UiC^0iD+S=8J%rC z&NSv2P;o>%s6}t<9x2}SMf>UZTAjPezS7oqdp_7zo#Ty}j@_Uf@w!4r6mjaWo}Dl7 z4qaE`Crk8hx7gDxx`$lTQFW=VWHMUY&n$39V-uBVo^9OQL=IX&p~^&eROW;8cdaz% z;#G_Ci64h2Mcw6QI{NAvP|q2hTBXay0szcDOe}InqCmL>pbE0C&6|Bq`X|so zM<0Z}FKHHoWAML6y|J@{xGwJW`&;XY@dC(hC%e0XY3APFdRZlBEJ@&c1RwiCeL+u7 zt7s1@ohvHbxU7$-yNgTM>&pe6I$G@g3+2PaS1{yC)VIQxu;wwOA> zTF42RVeNkg^(&oUsPAOH*DhpR1XZ`Rl6mD>H^N#=g0jf?L?^cx13kd}fB-cw{uTT` z=_u{Gho*iX=-LjYJ52*#Sm|~)v!b5gaweYM2;>G(K`Xm!NB4t!e8JKy$y6rgLOG*O zUC-;@YccM8)T?^J$>}jv^Y0S-L%a}@;es>i`o_^pB`Gefb72Ip>QhF=yn@6c%LeV2 z+%+s&RQra2K)W}+u2v^XuC5BSs z017}7IVzwj5uPHb4*vkr0}&Co+ikolL6{<+Xe!t%wrLH5vdMKy&0Xr{+E6UhbO309 z$PCt)Wp3yRHnE&U5|o)-RH56v;;}8r%4|yCjB{-9eRtS0C5@u$?-di7*vyt?AwRXN3@tz9&$kj0qW8kVHBelpXk z3lK7^Chh^-kmb!w7_dv2nJU)kWVp9QIA@UnKTNRZt?wOTw7QkXRyd?$KAWaxiUpES8SBe8I9+Z&(#zD9xo1jlb<~OdFHJX$Bb}4!ka1nTf}|7J-&AK{yTV= z`c(9Y_V}IVW@qL%{$I<&l&}28(ed{9oxDdBrY=#hkf!=i2sK$*EWVL0+?TL0Vtx!y zVu|_Od{dS&A~F+=-Vf0GAL0K13b?eomdfTUs7~1-U`Muop#B78AHdd=d7kpmuKMZH z>is^zm8PiUtY3*x}stT?IQF6vN3gp)190j&VyCNK?#wBg; z6Hw7Fgkn$CmyujZnE<*X%B{5HhV_hR`GZ|WI+w$Mu+qi-$_O3yUEF%+Yn(WNTzx_0eilhQ;c~YF?Fpx?MAKQ)l!BptoM_4zg&f8k?h;{+?tTi(IH_PgrwS2YL z-8(H;W?&WE5gAQ%^2w^^1dds(bxSDjB4$%}Z+`$tEpMVAt1XoInkhgn;~PmeW^Aln z*fVPKy{uPSW!#oh#Ihx|=AUv{-`HGk4+N9j9?Z~y12^pyI5;m%{uI7vHFaGbU#;Cw z(U>aOx#(_|&d)nUV!rL(JrEN>q7ojsB@HaxLxj{Xb8EETXv@jlHVH z413}h<)9jyY7VEe`;tXHzT4#G;!@sDW>ffRd8(^lp;}ILFH3S7N{2~&uyn7jS$p{% zLfrN$ua!=-rNXD4T`GHbDF7jTBQX|#<& z${a|y`gWZqjIoeG4+PBp#B=LWki$GxtsCs#N0Bv_t#cLBZM-lr zO>9w-&<9Bsfl@Z)cUMke8kX6;maZM=8#^_d0Pfr{q}a{Aq30x9N9_ag9xN~J(qs`t zcPEl?KsfL)eZBsc4miLW9^cQJ^NywP@2oC$8|#QIV-Zg@ ztgI)D9jxSna!D*f{h|AS#%owS-FaB+-&p!bOHOpx5v7A%>CUTkhpCtW)*0sGG~KIx zEY}#_UbJ7ii&I{n^6}89;u8}tE#@X7V;ie=eweaonue1q-CgMS(B1asS4DM=Wmk;0 z(lAVe@yCkFXrB(X{OeXauxkrFXHL7aGuz1=vPSd95;>I%sVtbt=Np&R#cRiv@58su zk4SonkLpIfv!XINY`;mm{{V*83DQ|Ru||hby5ZNHhgO$YPb(!@PR^Le(7tK)E;YVv za{U7i2NpIxL898}TAr3}cKqIrXJV&o5N=?&)UG8Y5yXG*s~l~Ul~M>^bClLPFQ{*? zY%gJpy!JZNUk&dXAC>)AWv8k1u?BW~Mw!s$113Xc0b6n9Kg#D+x-aGPp}is1v~dHQ z>F$Td=}h(9Mc}iE^$ERY_N-TIh%)Noc7Boop+H{0m4vjQibf!|@t!?vp^Ga}Cug{~ zv$Ke%);X5i&L{|0AONiKoF4&59>TB_{5I-2b5T?FE1px8{$T6 zx+I%^_FaQBV{sL_-9hPoJ5lI{VDS`dt1F6F*~30nSQ%pC727r2ZwQ7gySLfhWA#zfwkLPJHg+qscxt{lHEGD%WGwx^B|%r-p?J1WQyOE=V4kRB*?P zeWA#6{{UM))ysalc^c|pS~`#Arzfd8TcvexPr7NU`iq;_+IL#m#AK>u>uOC8I9)bj zgtEsYCffPr)pV$)1wy!I)wIC#TO9{mx6~$?n?- zVLY}RVAhRe(>+(G=-1ZPD%LuL_ck&stf&jY8_DxAw1BqK(Y`P^IKU#czpbBzXIi?U z)}E+!296^akHYIcSLJgnr}6&)nbV{g+-FR#K8IHoHLIT*3%R9{j7?OI!E@7!cT5QF zeWGc)_MLTY^O_4>v|7ZshTt??jh)4-2Z$p{kW%cdjvJByWZXd&mYYWEDYS&LNR7Lu zk*HYg%4|0;G;L)wGPX#K1gZ!eZzS_xcRTo2d62!-ok`S6_&h0OGM!A+TC$8rsHZ$? zWqjG`-my`+XboE?+PZB|ElNRBEQYjbLj_G?_?Jeq>Kj32^I8qWQrb0^S~s>JcH2=) zr-=7*3r97Zp<$D;)Qq48I=4^jS2kA~eY6QJwbi}MN4Nq0*GaXthB;Ke9yGg(QvI@^ zp;9?5MCvcXcgzJ{W3F-f6H|2!Jvi34`UgtQ{O+;RmNf+(J*E1ipXzT>ZdApN6cFr{ z9M9y=z=NTjot((ch_I=V@l#KSt1Th0w3|$k(@(yFM3E!61GQ_VwY{vahE-;GZZQ+6 z+9ZPnhQ?Bz&rMujNSd751Se7X9bPF=yo$0(sZVYsfI3TshUNr!k+5DVQa;-*TRWBI zTgq2o`X|v$e@wNW2(uTo&bR7Iu-PiPEOpBnjU$@Y*_`g1y_D@rkxw|vc|vWJC^#vn zAQQAi4N2^Eok#tixVX`p&hFOI+8c<*)`=v6nK2*QJ|gX^6(IQZFyND{YMl+P4O6J@ zH0ws1%Tv1fn6mM!=38hMbYkRsgy|_qIW92y%V2c_Qs|!cFBJSfEhxQKt#n+WRVhcP zlSuanfm{HbHaYVzlIJr!?eC`iark3#)oW?5blrfu*6hiKSd$9V+a22o%OdWCk_O}V zACI^NdNZc4#jUhfcaPgq9DKJsT~R|02RX-|sQMb@Z=2sGzGHf;)=Ik1rg|q&1L!9`XyQeod^|B#EqE!s^!ONpPHC$1<=DouvT|D>bbRD_GO5qWSwacwxV{ zmMg1yB`xzknQg8uomG-4Af6wz-L&m0%1@{kEq)!^uMy>&sk(mw(R~MVt~&Rtmi6Yd z^%p83U18AJuQ5*Qo-d}_%UF>YV-J$i%BNDrS%|2XlqI5Y5?&wdr^FT1`YPgXlhozW z^gDYfuB}!`8bx^QrL>-VWH&vo>PYKz7Sg4ea0oaCp5-u?%9^W24gVTBzpVHb*hKr`h z+qJSlxdR4A9JH_FEbW#g^WbL!wJYhSy=f$Kmt&EW_eaos;~wAAxnI%WCtY*VeMR#9 zsdM;jTw}Uz)^9!<>rtItnqJAl`Gd@|?@k$3nDg~F&ZiGnurL}k?Zl>ivpQ_wEe4wu zu`>2_R_|bZP%U0>NyGtwh2)O~AJPyNn$X4{QBn+Qdf(RHsYn9%9ks37n9!{CN zL`>|(&A9|OIL6;ShAHpM@NgHt$H)2W4)cMKiZ_3E_GX5=^?qY)Krzt z#jH{R*c=HYD#$Rs!UKs0wRynMdVi-KPW-b>TB4eDbWV-Q<(yf|T7kLT_E!p$&g7e# zy2}m86LLUSAjZUSgM$V3&IUEhj{0lbyhb*7QP*gY`jJd%#AUhQy8=!z;CL0L{9Dm< zJr?gsO(tkm3m7Dsp>~xnrefjcXDuOa?!}YR`R8^BCa@M4v2L}od&UrTY)yd#_Z)~S zj(iD;E+E!qBDi459CLsk2OId3>N!MhkXi=-g#hG~7$YPSnH=u+{Bd0W06=&q)Ga+j zywk)BWk3O)PDm$f;QBI2CphCZ&)XJF50SC!G3+5C?KMlV(xi&yHOT9+K{i(iTL_9o zBzIglx*;s_z9=UW2MwHgB|&T`8=r#3fEgnIoZu<1cnHx)X;DdwA9RvOsFDJlg#+8p zImQMBGwW70E3H<-y%siKnin?luHzJlN2#tL*b6P-_ACY@3S`8&%ozz>{KTIvHJG^n z0CIDZj1+UvAut$_Mhh#ujxcafjwz+eC6twpu8TBR z9ko=d3T^JlA){f9Z@da2&_sv`Gvbi}Y%)QfDYDBPj{bh}!OIbiqmhsl6~kwSCy-4* z#}wB4vQjgEFm?|uuxA<0;6cx%eLbn$6~+Py_Fvc-m*e@GZ{ zJPHeTM>#o8!jl2RmJBw5xM%MZ>0gS^Z1%}?z$fBmk+=h# zXOAX>x(y`RxGQU+RppV}QbJQF6~?ohVk*fo%V7&-$B@iCBY2J3;u1?5Msh~OoQz-} zQ3n8Fn1%;GT<4E9I-?UC0l1Os`mRRg$t3%7IrNc?dsg1`D&KEFG5w*>zB$e@USIgg!Frk> zN{;Q6N0LBc+>jl>0>f!s`Ny~iJY_pBv=9P@%Yw~zSSu>AAclbB<`%RlieWJ_Fj8BI zK%T;6L*ox5i!lH;;~M}}jo9(*0LD+(CpbPiJeZ`hV+4^pGv!|c1qc9Si~v7qbB;5{ z1UXlm0+}PM_conbvOR{I+AV@JXb*BG#2tjLA#umvBY&nMd{dpu#!3KON=7o?oB_0x zfsxM`^<-zB1yi=SEXvZiawdff9loMlc0%)0Xzf!D~X#}y4 z8;-DQsbOf9oWu;M`2#iyAQ*^pX9N9s-&Ku(cu z+0{tAYHoU!Ga5yW#M#Nuq;-6W6bY;fBzPAn;(UUAyiL#+TAqt{b70poy}aS&V2vlG zqx5c#xEODBAo_4Y_8YdD@nfcX$5F7bv(v64xVy^6XO7&i1ZHEnZ*~|_!2{2nSB>+J z(!RF!3$A?;(;6qD=YK=!PN8($UFaUP;PR19I!Bep>U;Hi#a~xqACQ5`;PM?aRT_AZ zMOHR#UuMn%AAW}N2`>;xlPuBqF(~yxG&0-E9I(ruxhR*mQT*WUUk5wQ#f{9CvI}>E zfPZZHfZ#}71^~THHNu$cDl>zrFfIMH}{{YZ_vgu8Ak4IQ~MU>Fk9-8@V z>GziaW^%?Z{XKu1(%nnf8rLhUH1(WirZw73v6+l0gKa_>%PwdNM}*AXSX@Olt;>j{ zww_e5LXs&~Q)z1O$N>ig85?psWHOwSkyItqF0C%$GRtpu3dyKCG%RFO71hE@hD2mu z)PyeAiGvVVgSCZi_nm&7YCU1)XRrMw(D*AE%-*ul7IAtn4PB<6%nJ5v6ze#3+L;lm zqkg%xh*-;&Vy>5d8cuiuRnbn(lLg}W7(I< z=?^x#6GEe=-B8sTjYW6WW$-wxl}x@XAl9(1!nFEK=0;Z~WOwY6)^6h)t6RGxC{5n9 z)K=mNWaM!?0e46N0zg3kkyi0qNpALY*rmEhX>ntAEy8z^`u-0Ket z@xP^)83o_+dDT9Y_18i9n5U#Q9)5aJ<_AFJwcaxWU)H;*JsjzWl}!hX!)EcAijm&R z%?_<;ZB37+5UIFlstlBl(G11Nb7QOAYACNIz3jTFc+N`3@&^`k<0N6$S3=_?Wpm>- zMCnHE!q&lY^R}_+%L{sxkg|b!0W1a^?BSFtAxK|7Yh*g{t?wHqSQfgMi!cNUHX6$0RfS-Jq5!C$(paRLL<5mEHoCA)Y9P z@CFK$+_)iY1@r@_{a@*CSoD^@&3P}>S#5V?$`?SoO`^3tXR%s;rX42Mnk%F_yG-lM z2Cl>-DKh;%mdpN1hdDIv8UrRo1SCw46`tw5g|CR$y}7LCb2b9b#(`fBzQDQ4$&Mq7JqF&w6SqvvR!5zYVyj1M%W zjKstoPU1o(5;OgwA&HOf_mA=L#ziW<;%8}(f8jgF@3+6Sdw6?z%_+V1`~1%@f4|#r z;TwPL;q>B_Q}4gWv~T?OpSSJvJ|j^cexHpuKJoMXBX51Zy}y)yK{kEJ#BbD8J3$Zf)4Vj#JDpD6dAXc*h$Xx=^N!kPYbuW98!Gw~Zo z$MWC!Prrpn&Q3peKR?c>W=k2%p+ron$<2d~Of8j~qci(^8_8;+x@FzZM zAD^XP<9PRong0I(kAH95!^J-X$2E8;+uz%5qkozCkBFc3?cw+uj~je=2&t@3cfl^D{rRc!B(QH4oXqua7VGhQqPu^QE?2P83H#u$#(~)Y*AP zuhr&irF|}g_2JAQU?2ok<^i6}lU^l8E^mGPYJZ$*SL^+hKe+z@-mjkP&P{2DAQxq; zSY*{^thXWSPAe~sC(wHW9AQzNqi<{sK*C{G8o1?Jlo;CvB8|0_Dk943FsAl2+_t?$ zHQETMF}e7r#VS0$*|QiC)u*eI^$7byWrLWN^_AJJ3$7-SwGyuFHnnachCwhycx@m9Af<=GB#ykqj}T!J#Ct9M`Qr9ce!iH9Jd9 zTJmc+wEI?dHtP>@jFOcq(n}nSBf|Z}+8FZNumyQP^r`(Ry7%;F()vQ@qBN~HS8l4f zx=G{I#nZ&UD;!LZ9Cp_>*^@Gnx%B3>7Ef-1sAG$WpuGT$9_(y3b6kI`Q z`OhVxc8Q9H0|bCDaNBnPN1Si}0P>*xPPVbrV;w!F+}-N-q2)Sr%!v$#a(3ocyuXE1HWpb5mw6^vB|F! zYCjY@m#ez3RO;TTy?gupdgNVPi3+p#7Bzu39@vg9)w(6LQ6wvDw#qGjU$N+|qSn#U zeuCr6OWE@Gk?YpE$7D3V7ggl$Ydu@jT@|G@Hle3qCmlb=Mv-;N$m$xHiL)KnG9u07 zvb|bfp1*jm*2hd^Gu%Nn&BSev&A!O}@WeCk-pWYcJRb@P=DjP_JxB2S;hn{oOlltr z)2r{1t)SHPOPQ~2bp1b3yS4eNeHtjV&{|uPgR~`QQqz~)35Ehr8S8&a`e&1))9$BW z^oDyEr1eIs)Y=;@(d|b=Cz9$8i0bBb=agYSR{$8Rlw3XY`>Iu?0 z3$Lpd(vmsg63=w-!*u}FQYqB7!1500Di?*?096PXn{w_#Lhi>VszTe5)&lGJV+Wo+ zJm;P;a7g}C&Z|{CLNK_j6&+!Si`C_sd^?|bBQUI;m18k!vx~6i8?qjmwhCcF086;A zo^As$xzkHbv)tawvzSV%wj*u6jm#8<44J?@~#!XRpsz^m!G$d)Of1*=NX=^C7Pp>t4f_nwRNbke(iBePt=?ZR4Mab1h)sa zf?Q2K#Ijq;3PxjcHz@@GY@A^5+^Z&cHaBnqs+(3dPU3|mW1M7o$GIc(VVlM$N*ip3F59d6+V_*1 zx-+kBpxO*%72g{&5JxC?yGJ6B3Bn*C4^~JZ_*?Xtzq8XiyQXysA&d#Lcr z7&^@K+ucUHkH+Gq{fr)lgrS2B31 zbwzb!S7`l118V`*OE=_G{{W#by74wBJy|hg*!D6y0JXEZhTScvyi4OJa5IMy_s%4Y zHq|K@$?e9fV+(_xb6y?&B)%uubHtwspr=g> zsJ2as++4O;*`sScJ>#&nXrR%p)T=|z_I3wrh71S{MieLu!3QK9`T07-;uYH+eVXdy zsc+_t!*PW+32LdEsO5pdGF+i(q!Sa|SdMU^kd3g+XIYr7>1`!zORLRGZK%6-u34w* zYTKHhnU$imTD)7US>h>Th96Zgn3knx7)*lQ%pV|;&Isp%4nbTJ2q1z91Q2VfY8`RZ zI*c(}Pk0hETrr7zGBDha%*cDn1ICgr$4#=LNA=mXu22>$gb6pbJiKllDe${X>525dr_=QtiOtfon66-jT|}`k zAUfsa*loUo7Z_7#K$ZKx5~WLpabb%k7TI|# zk6Oq(V#o3X3D?IWsV>SZ_J_7aVA6%F^yK)eAxaLtah!%xmFvbSn6jc-AWf(tq(Zq} zYS)(WuGvo*h!TcC@t6r*@A`^VoHd@F5!|iYwJtALjeG1`0z>R}6)Pp5d2SXo_mf(X zdoZJJX9`fY@#I!3xk)IlmS3)$zM{R^3UMa{F=FQsmBjZZWwIh2roay`3Q%lkVJ%DJ zA?RcDY*eQpo99~D&2XzlXhMllXS1zzV<9&81+9q3UP!$n^p;b09h1F#1GREF$3+lg)76Z%m68# zog}-|+{%|!wWY6JV})08nQqEqYwi>O0J68WktYf^5sAW-I8>(V{HGtgrp0(_y){5_ z*RE$a8)#v|yY?Z0aHUR}VxnLG4mgx4PS{NfWTdVziVjvSLlMlC*V{yGCOCa-N$DD{hmOcAYYX?4XV- zB>SmO4TEh>sK8aDb^>B)-?0oux7D*m&Qk`~%LZlYu%7gVg}J?vYNS|7Q`Ul)a;1!g z3n!1cWa>QGk4-lTsL0|n15uD84r0r0DoL#@I9Mtmd?`goHp7n!v7=yJY$B~|D>)kd z=P7ZGUGccc;>mv)T+5iyn4Sv|8B&^S)T273Hh(Y$oZLmWromK$NR+z847#l+% z4sI?4!2)|Qp-LvWQ98w6n#e7&ww-L~9osnhpo1SvjA6dG8ib%2a8d$;GiPbg0V1Un z6oC^`^`ZvGK`{bih24Ow>D*ys9%vaND}Yu)tdeDfpeL<_GGPi<-uW`Rf%9YK%H``n zmeX%tbOm!RxI8kdo6ryvg`_S?tfjN|dI(tqUbZ|%Lu%*2$G$Jf5w{{TM|cpr~Bsh5$T zZaMv~-`ao6#42j9-e>3IXr1=>jko(w^WjQNME?ME@9i7?=YMbR z+rpIttE7ic-{CA0g0Hlwhzs7zW9cCGAHTot;@;;ylZ^Qu4l6g)ijAzfU8?x9nr;R&Biv)NY*U%r1uM9|Zog3lY{^`pE8F{{ZJst|=*O%oNPz z)U*Epv~b2%pQo-a?2wY-ZW?=mE}J_LPZ8P)B9~|i?whvmIIMqVV!7$_Dy+8p-L0+b zg%JmZt>Tv7Qnv_K?#ntya~4>X53x?gt%34M)$X))E2dh{QFV_!h{|jIALbLTeL1%M zF-7=|Efo59txHeiso|(tXL@mKtdkLKxhpOi=I_)!qLdT&w9cH=LKxou(PWh}SQ&m| z;wcC}-Naxh1HcD@O=Mq3w@bdE(ymHf$8U7;#^NPL5WF!<76OB{)JO>%kE=eS1#iA< zTVtRC$8yZVHgAt=Ab zm+3!J^@fbc=~%C$@Ytj27Fx%gI(-+n)3WE6ZJkhA9+k!0uF6_mMH^!rXSzTWK8Z8Q zFG<>JntTp**>qW>l@-T!-%^Hmy0&4v8=xWyB9vgWF3InHrl3${oP?9yR?SuO`B1$ z(%o1x%^Tm^T+S|Ikq$RR(Jmt@!ac;+kH&C{*ztoV%B4{ODK3j0s z^Q5TTqm^c0Sz0%XDDV7;7BWRt^ z+va>@FKms+X`xZxBqlgr+l~jE0CV*|58+qqFo7hM!4N95oMp;@GENj0Za=ySJYZG< z)_VITn$*|s(Ya+<<#VHst6l5}8p-x6CWW>pZW|4gF|{nmQVu)ylBNqMdhSq3<;H+KSHbN zBx1Rl<|nTHZ`tN1he-UjW^qK_7tuXA*4;&#dHbd4BUj9Qep5y?Dq4WSLRa5TFJZTKOE zFb%t;m%1gSlXW(uqUxHd)nm1mDMMQ%+I6fqF-3I?#WPJ6%#$P}t47JYayId}MD#n% zkDLCb^$X1auT}Kk)4FAItD0LG(5*@N-jUT^Gu8TUK1t~<-9?+Kc3G^nKBm#?WcYzIyjScTuX9Ky?5%PPFWzj1hjyP;!I#7KT)6BEs|X~ zN4ts!OBiB``qI)y0aw!37Ldy#spW>(kd-9o#{=6L`qQX%i@Vrl)vj))(l75KMv_L} z>1}l?Lhhj>jkh9%V5ks*#^K4`j-++N8l4R)(|I)~R_4KUSzRRV?gZGOJIr%9Y_{;8 zC@3#}V#@R@1pdQ~lN}fpv*w-5T=y{~;H$?}eOVHg^(>*>7Yjdf8o@$P# zKP!7qsagl8HucpUV5wQOm3x_M^v@i&ERXfBAYdft$2Zb7onBkJrIbynCB2;2YX{6c zEjMOcWMqhq%os;3j~bpFrZO;Vo7me+tJzH?-9xKsuN~H%Y9+DTEQoKVmM-kE%(F)D zqlnDRs=HGqh~U<-y86IKCd$Rv+tYxw1w^48AgRhl?<#2RTbZxdO2BM}>jCG5eF#tR+6Tm{{< zWTDWyl>*3mlK$$_E2|}%RPCse*5b}znwmdOQ7x|_-5i4p61hoQWKh*TABe}999ZRa zmRl`W-n+;7$I(3v{;yXfRWIq4)fIhJsMU`w!4%mYOIF2I*@7Tc-$KYlzJj~Az4^=C z4BNbrT3@yNGpU|uF*Hn{Cfm66I>4W_l1F(`Uqp(aXC`%P@c`>h9Y^MOAJa`;hr(%|mGuwH?@lysxYmW4 zxqxW(4_@aq7g2SdOqY}iy@REfz~)wx0$PQ7cFQHa=YJTTJ5tmnv(c7Gnrn;gPHR^N z;nW*{ke2SBFSLR| zz+$XFdDdFH)=Xwm=c|h|ekMPOaDH(C+meZ(Y^yyZ3h%5zTFPGyI&9X{PlqW`$Mzu$fG7 zK1zgF4o^FiFRp3n5wUAsLfcE4NG7^S?h+9l*J9#0O`&-TvP(Lb?6hRJbSmJ2LDbzn z_>y^+vs*EU$=vA8tmd_5o3GQn&L<(LgA>x9=^vT5d3>#Nt@WRiDO$#g{{TBe&{gKb z9HA)?DLCjboqpoSL=kIR)EBp-PhzrPv5xp%X;&JNOE(dRidB-`pmh6HQ6N8f0a!bx z7FS(EFVDqwrs+RCCjS6+jb^fINv+elBM0rt35tE$bqpFZa#uCc{{SjIeb>Ed=*|;e zYFxe@`l6Pr>K2L5UD7u0H%I2Oy*SsI%^J++0e09%ye>d+%CfbQvKBT-A&h~7oex~= zuB*}Y+X?i&cT$Sh=HABjZ7-)XG)8#VNiAl|uWN7&Q~ zz$YV;ua0x7WAeFf+b0o>J4-HBWn~ZpGZ7`Q`1SsY)VBKPOxyJ~pBH{9p)T<&DKW@^ z8KETcz9YMXjlcpv@HMSXX^Yj<<+&EGBLEz$Fbc$~zSZ>=CmF{+ewE72HRn^!u6nPN z&Y)S-nim<;-nrZ8hLqGw8O_?%`rBLeUgorRsQ&nFUCxk$bw+Nbmv=QVucx8Brk~WOG=v+Tr`b~z?F4nX$`D_NFuc@xr z47MP1PyD`}<;761lY{+vRls162r})D4gUbMJo~P!wV5>AZBI$IS>H-#oz;NDN7^d; za7U?0$pGZwk0!6RO%p`wtuF7T^^55(7VV=b(K4%v5%(u9j=NYB&OV&+S|_AG53E;E zE@Vd!s_5@^{WXP#%wTfmA5h3OTxk>Pen9b?hl-H>`-CO*v z<%Gs5)Dy!3J!(K3k%!(K5a904K|Xo-i}3#d{{T1o%IWK>z2&9+UE60U4){r6Lmom( zjy9b7Sy&i|+EjGY%f^k2J1r1gzzpkn5`K_Y{!VwBh7i>JHMUGObBn8BwT!PEr%xATNHjsTp z8tgv~EbMIh6GOk#Ztd+ZbvuP?shUV&GVQr|?rqGILnkmmvFx_MX5F|0lUj-9PfY3E zGu3>yCr)FkW2t3yzLL+_!B$=M1`j2u61&&vP{%ONaX9mXt!yh4hoW9cQNF>$#=2r? zudbr*I*8p`J<@L23^BVzON_XU+2clH&4IL&v}2k4ShUjY`jyj7w2BjdYZTMR9A!$& zB(4jjN_N5AjbpfI)ln0;N~qnowUp|+9{XuX*g3Gbn!-(dRbZ+#QQLShpu!jf1?(np z$@))!6&6JivO2tsslWTg@JS8oBalej$=pZXz^+qg9Cq5Zl%@MICCq!60fimJ!>Li9 zM&3^ZrtS&NX&mWob43ke^j4=f3f){7crpeGtTIo!yJIp>va3h`01s&xh#8SFf*ILU zQ`6Y1HPWUPazJ*IVJB~uD!X|EjN=DBGhWXfbJ2?Pf9c3u5*5xy!rq+Y029Ut9tLs2 z;-P<`T|=_LqB=KHqE3UZMZ{uS$6KxsYs_sjO_O=tU>O8M9HjUyaUv7qyxP{5?#uHC zGFK{AOcRcGHqI2DMmRsXnu7KJ07%3^k6X8u-ANl*mKg_yUNCd#ceZeF1$ru7KiBm` z7^Bg;lJNjd&=+2-d41c1Uu}{Bg)dUfVyd|pX=7kpwMPrN)q^v$0!B-1+M&P%U;~`}YQOt! z($BQMvjJH!7YwQ}a7bL?otGojIKcp8n%SO^RLWxXy^KC@4RZyO9Gi&3;vY^eRkMpo z!9s2XGNoOBgtsE##k5I-$B&J3QM$I8b(R^Hcy{gdi5nPT-blf09B#%jk?d>FpA@g` zHC=ue)2|Xp#iAi_>Og(dD@M)6(7Z7Kk~5zt6_V@4jDw(+cC%0`QmaCY-ZcudNLnlz zV`nS&A$xG1Ue>+l!;uh;vc-Ibeb^g`90QLac>}>U%1mZy5Q~u{9)%lQdq>;g zuQ>%qN2|)8VhuZ24mC|AEm#u!_SovKIkL-Oqiivj7RZoP7ct-fTSF!QWaLN15wt6r zhplsfr*?f@6P$Cm(no>kCmE~6wRL#JQV=$mX5milxj4bk-t};#CxXY=NrBEth@j*So3p#nyPtqg0;uJ^h#AIIWOKk6 zqenaMh~&vR3dbN8VouGuJGU_>YLkJGOJ_B_+Hc4{w8&^0n)gy>Ta8VOYHiu0i^nT$ zSPFtcqO!<=*g{TZS;Zg_)tN7GnKIXP3+;9tK3!thM-ypk2|`>3C{OmrK3GP5v4W!q zkVqb->Hh%H>c;a=wQYN-p3_#AHFt*ECEF3(p4gDE-s|Cp0u~uj#!hPTr{#EbH(9Vf zOGdGaxZNm>t!$d_QlXAhPbGu5i>DRsSjdw=!_-8Oh|c^6k$lYMx(im-wXH_t=k-$j zlyS)vlA}4>BLypr=eSretAIe{^XF;Nz71$S535=05Oo~0Pik3&Ge-i4+>VXw2XgEZ z9zo~9CbB=6-!|P~=-*p3ewe}Z$n*Ul$Z9^9>8)MVds#PAwfVnTHO2iKfxz_B6pCi8 zS(wGHiR7~jYnDi%U=2`HzWqKMyHRk~wXqs!&2;NEuk~L}>Q~hgRFD{rRJ@LtCcOzGNG|A)C}5EIy^KLMyu?E! z7jS&BXy0iJmsaL@of$ruD#}ODf{OGy z5X-j&Fe~8JbMs^7Lm|*!l=T;>*eVmAoe7DiRB%bOx`U`S4qrEl)7ZL9ylH2qr#Vc` zF*XR4ip0obW=1@DXRUrIYV&pOpVFN#tPMKJE)vpt(m17Nn3B^ni4}nnC^4V~LpWl` z7_N_Lr6=m!o2e0AWQIwG?br&4Tact@AY}b`85Pg&q5dL%X?kCYuUk~~BTtsN()B#U zY7VC2Kc{xExIgHBm(S=`%+9Fk##c3`f^|keA%@l~Z8Ko34cNCN8f6@OQqwyB09Dm4 znc(X!MCnp3m{v<032tq!F0QAuXs;qw3EPHPLza(g7-Uu>-mzEOcClv#x_{`=cPp_* zm*!Fnm`$*`h(uCWcxGX~Cs*zTk#mf3Udt=^gZ0xJt#t(o-3ruMO)ZzvJx|n~6RnT9 zXVm_rca~sVf|y^~CybHpTwASm-DgeItYXt|S{rhN%Bm3MixK3jklLczLwK{PuC2_>8)K$QsJ{TqeWr*pPA_`Y7Ff)efWRDwJCRr%3I+Sl*sozB|AZX2c>Rh?64b*HgHj`D~}W zXr-9Nv+N-#1h$Dba(sy8ZrkAa!(bjNYs>!tiT3ep4G&P+%K9(P5)G`X^R1h!9iw;I znc|fMWQhQkUj@;C9|8dY17fyG12a`>fW8c@#b+DoD1}ph0*!#WvO-E zsLk5K_H?CYQPcKn;?Tn=xqj*p4CVBmHV&e^2TN<|o)Lc(?qZ7GH;{H3Aj=siYr3qR z!x;hD6^euHG}@g=LR(5~nMjwZGjO>*k`!>gw8aUFGZKD&}RB@%ax+N{Z>^ z24ZT18&zN|TZ(0K$|JUB5%!(q)16Uys9&{?rVvRw{gFirhhMye0!a<~EOC|q0qU)T zq&oWYeNGDvYVce`c1kRz5dy!M$z@ejzm#E*Nj`Wcz2}%twlk&pOzu}1VEbAxOllop zsLriLN+8QhOZDtY8rAh5rR zx0(FsOf+7jrRB(vTlIfh>5LylafPgO;dK81UukVg)167x1J0+Y;g6cD%;NAmUgbQd zJQpUcrIl5Z7ITQtO{DacaNEo}X8!=@AG%GUm8=Z>cIs;`pw;M>UWOMkbZKPq8e^#XH&biAqUsFI6UTRJRMJ>|Fko>2Q-027 zq64%|h>N>@6XEsb?FGHP(=sTK<@TP_TBXWNz_wKtonV*T%0P=C=BQrvC&le46}25h zPK$Aw30NJMzXkJI8)(=rC6?(|=4{Ra#}5Ahnfsjj?)hs(%yi+sJjLGW z{PlOGnaAaD8jt#M(@*LCYo{s9WpUWV3pAEc^H_GX(Y{FKQzf|jOtj9K={;KB;o;J* ztfsaQHYS&ep}7)v=ZK@8GZO-gHvq_Tc@-|H)}Ik{E2~j`u4(#(t>l*wpO&_eJ*~~E z#P4l!-HdO{b1MmAD!b9sU<5UF>qP4$YHcXI)uRR4qOwL^aWK9%(mTP3lt%z^Vp4VSx6@9@U~AZanVme=gVhZ>F>lNHZO6>K9e5Yuj39LtyhbJv(IZJu}mRs&#SI zyO}#%w8QtM-y4gZ42DYkj8H0c%d@MxW@=|jn8sTrBJpIHZo2?IHO2@CmHbh?y zlnV8z>O4j(CkutZog&O*D&$bIXvgYtn>-6~iJiG^8^m~yp`$?$%q6}|mgTTXKA@~Y zc9@U1g-xI3{&i{h+9TiF??1Nt&xo9JPI2|kCw-!K`QO?mJ>ot+O#E&4o&C3;@$nu>KT|>Y`27C>oma$6ZNAYPN59Pc{CIf5 z#}yp#KpFA;KR@SIjp8GJZ)u&sf1jV@@!|BK;PP-sG>!J3Z@0hB{{TPzN${zB9uJDB z-Z%H#@Ar@H{{TM_@k+nj{+}EC?eqI>;ZgRbFWP2eBYn1+_T}%s+fVKB{vH$qHSx** z(9JrwJmhrJ#G+YfdI6^vEGMjCY*x3{UY=656u7NG_sV7#U~3YB-~fg|dA|!|2N0Pz zT7f5y;(zXvub2BM1~Gu&_p5=nZMWB1u*=Zstde^mYm)>N!4_3_X;KAh37&|NXSQ-m zQp87u?c%*gp_yK9jLKt3WEhRXo_DN3{20hD{+b>@dpbZ-UH-3`=!gL#S8NUPNA8jAsr%xgUjm%?cb z(P8z5Cpt}G)~8if=5m!ESgYGjzVsD)0S-Sq{C$SPT_q+ul$vI@V{atZ+aze#aE_(m zkgf}E=e7X_Uk3ynR@Kt|Kd0-HTt20vTk7_yf+IL;ebGu93gXr&Iat`KF6cq zil3ZMHXdHQ!s)J^`E>G~<*QM2mkrb1J+C#T?xl2oo~XUmug>q?48E4ZT*iVwqZrzC zXbm#4U2eBG?Hde*Yg$jwKM!uSEqhPYZ#t8xu5_J9PGYwf_YDif7>yb`r!0QZyR&Ty zR4T?nZRabt>i+-=`c~rCPfKot(sesK(;`f=Y1V9nhuB~!ARziM>>WsDb=tTGKHsaI zA+4plnW}KTK21uPh@+%+Ea-u$t#dg(mE6|4QyHnBpfXtsno`1A>UM5eI?C@GE7fY0 z@LY(5dXwRHv9D{LD+SK4D&5{`*H>0z@0MG|wU{h-K7_{Ng;H;;d-@~Wq_Ym3NojD`9m9)7pVst(IamZ;Q??#7&2+XhO5=N)*Zr0lDGi~ZC zKBv)ijZdj=EN0d8uBg){n@gWtw6*LfRI(5B%>YkyijnnrqJvpUyV{=S&9|?oOCZ=IQvfk2Lxmg00-L~R;TcL;_p&hd`RgDpq|f6)1%a_W9-Lg zW{_K2$uh+xXkH@898fU{D?3b>?g#FA&X#FDud7ee#xGCnDmU@?o0%v8J2>>vu;air znPucx8Ls2foJCS`EZStGstO1rx>JO?(&D)88Q}%pRdRv(MPS1j2Lv_=BLMM{jAQM+ zms9B1O7CZ^+gz%!3d=k#>NzSsCz8qz&^b6b_pfdK{xelDtVNw!MDfW1tBt59S01bO zFw%`vR@ullQ|=CIX`6MCm?QOLtx;r z2N|p7*K8bx8l)#UI1;CVy~S_5Pu&IABL#AE!J&_;E_<<=42|78R~wJLba8~e-gwK@ zwKf@9D=dCTyxZ;_QEWv!AE4AZQ!NEKN7dd8S zC-!hApINcS_0-@|9^;cDRThs1nBq z1o+@$qS~dTfq=e=**6>sBjW{Cf#hRrGK?G$SwZqM;<9~S)75dMIc;aA7a3LD%G7y& zT~4K(R9^)SNGP1Wl^1DvlQmBbNOpsJ6Iy|O0b*6z(E4ndOItpw@Z<(LA%XXbJWu%3Q;gsbI1DyHi!QKk<`$`TSE6#e3m7sNHhL@@cV4B>rG#5#+ky%+$5sZYW zNagd6{@nudNym^eSYRT+Ac+v z)wJZrtVM&diOZpsnQEcYjx%oIWMc72oD$JWmpERa>>k#;^Vy+jt-TZEL_#ItGoR-=CmM(Rr#CYVGp zS^H75?e;k1)qopdJZ7%CE8&xMCsuTpld9`6Xxc|oYBm;ccQiL~7}E0UI0n`hvf2xY z75jGVE*{(FUNhY>;;^?(yw3TG(*FR7ZZpdwypMT!t>p2ZVXt|4QuF;WEkoBS#U}lX zC2qEAKB#BgW!j4=V#Qz0tk-RFr#R=D_XAklpDwnqXR7q+)GxZa;Pp-9e=x}R47SSU zj%)-#s7;Cr`gVaY-9Vm^_s6HdN56)BEolywqY88DyV{%?VkhghNaXuvt8@++}v6zSS=oDSxP)x z+IC49h7>W5Ae;@Z%yYF?I>*EQk?G4wHLVMxw5<~Ec9Ivmw9~Aure0&+6HNp$$(aCG zA)5t#j#!_W!-9kXliKgl5mkb+GJ&$8MR7w@VMWc2y3-f{0*|Y4cLH3;t1DTcZY?kL zXI7(ERN9fSYGrkyf)rNKWRpxz+m6*}M-Aa?kcG>RHXu@q@86nj2HVF?%zx#?N7`B} z(X-Ff)_lIIBh;sxNW>4nJRQNzS0RrIRadE8O^kcqKh}(tb#0_9EG;0_B5S;)G-p+G482X$Q*@yd0mRqn+l}AP@@4&1S(as*Hz?WU}ZH#3`ml;O87$8#0pfP zEB$AC^7{&XyITTE$~#L)RynZYWK{<$$#*UHNMa@wkXVYC12f@DLSV*;gKfz!QZ-2z z?z+9gVqlxn8kSSBrB?RVxmE!LJ*}8t7q!5wh1UN37n)PK8`aSex1B2P={hy7Lxw} zSXKQPuq)6-xeC`&WlAauXL@4R)sn!lY*mQc^Vy5XoN zRJSE7h*UgaGAyl+js#;cJA?{k3J5$YPsUEl4y{}6YOYh_RdN|Deb|c>h;5o>e0@t^ z*77x)f>&LA&f_%@8g+}hv2x{M z&*&ZsQTA*)t~HeV&K40VQE9iFz>6@osWvKA$K)VHSPE*S&yv$5D*%(3@TEFcMR9ty zoP#PrK3UcSUgiyhFf+c8aieq~WYR zjz+=bk4@Z5;SOY>NkKsnrWBs^hR_oeDptq&V6GG9 zAE6s$7TY#@x6?oy)CiqTCVI03*?mztV%F0ll9Nj!36J9tvk8c;Zb-PdBgl~m{{Y(+ zZ*~J(U8y(?6rld&8w&k1j%U4cA|vU#=$V=S0G2lQ-hKZ7wf_L07p;QMd~)0m`$nwd z7>x#Vgid~^Xy%bSN4#yk{{YrLH=nn+i7KTazTda)_WS$9{r-F@S08DQ^Zx)pZ-0sQ z{{TMZg-%>Ta#!w8c#& zsj9I&V!H6ToikeL$NXmOD@g?IQG%OJzWJMr%VtEmFhH<5`_RvCsM}v8p7{hoVs8fw zc)=pNLiKM<%LTL-%RI29%gG`vLlVI~jm?bFlFh?`IFd8S-hj3U2E6xAyn=OqO8K3` zd8^L#PX(LmJ&fhuJFY^t9Ex#y&V#3<+G9j%?ww;RKFq}&tzCDf%Tg7y%Y^f@m)ykOw}CqcNB`%cO|8Qao&TmftM8zoIxDcc*hX>}GK~*RP#p>hRmg z%WK9r71cdldYZl!iLz5RuF+FTENH|nr96OQJX5f?xQ9&9>?c*-rb6(SQ;^`?Pcpa% z1UA`%kaNoU#w#PJ^=64B-mQOT(#a;G$tX!93RYFOh8A3_5wNsbR^aV8VY;^qHHB6~ z6cj5$&~%m)LU_aocE^WmW;WPOd%=G5FkUlO)3vnABJw;i9_oM0c^{2)8D(pUC6ab7 z^ODTRlenDc-~Rv(E0-Q@{FC{X^9j_hpO&8LzJ$YcI~|I)sl?z2A zW7H2M5Gz-U@Uru6dK*=A+&bseMClD9XB}V5_7~CX1H>g2{LoeNChb$zj8s|eWVK4p zu;Eh_VtbW&6I{5TdR7|FrDhbDBEgWWe4y6scylWtBvc(k8nNYg!$pDWz$(>gGKm6czo2c41 zTMd^I$cWg6duD?Jx0IDzEzWDR8gByH53_$D3yY02g+}7(SQ$Z+JD(hj zmfs%HzrVkW8|&4$3mSiC$8~*@Lb-k^wmlcMq+-WV&)n!uq(~M;2 zJCu5V5CI(VTxY9(8eQso;j)q=K$as%I=)16xQ5UB?hvYLvCz zXZFE`#!vRj+TW;}_R8VYNxqXylH=^ioer5a@^<13b{OuGV+^~w+nkKxno029`tPRW z({*U$d)+wdrrkt}_SYY+ERxWC$RIkktHzfx6vzxPFgU4RnRyEHS&Q>8sk+X%J)mS;|)?k}iX-%0CjN;#bsN2=@Q`rcEn@Fwx88@ zOAl2W81%Q{ zyyQvs40Bw)>lcwusr759o?A5zXG`de){^N)sn^-c0$iPF#J+kR-ax3eXy0BR-?yM%Y4zk7`DOy`;V{8TlsSz@kUs9Z8 zVTm02%cT0FPtdQeY?xYVbKKa>jUCPbj^0TOv6kSj=;R=0dN}lu02PBe)%aF*TdRFf z>SnhD={$ZvS89JOxhxe!%2BTDK0l>dM^96RMx|nbep64yD)l&QE%cD90f)I*!5{I404aK?7KqBJwPg0n`@Yq4o}! z7Ob3x9j6D@K`_*McUil(y0nX8K`p(+NHG&&%cWac#H<;x>lMsWIac(vZoFZ3(ly`V zFVK?Pi>k3nhIDQ7x?5HR#A+6sr zm6ou5QB19L&ZxCZNG>$7t3jvUq=966MDJQIoYrcjrp#PM$G5$(8r%SR6?GdGx5_G>*#87^%$w6ITiBqe2se7GpVJCeug9q8g=fC#P2^3UY=t^FM71uYS(@w#H> ze#WfVI=dl9NLr~!L+S9=nyVwJQ>65zTP_x(P2)o7R<1G&9w9tJBiyQ7Xxik>qbg~x zk?FSZ+wPWF;pzjsE})?)t(#KU(RlIPNvwJ(?zonPK^hXUQJ2RYSt~BP0Th%j^Yu52o+FPS!h1 z#wx2Eexa7y>WZv5&OyNg_g5@D$9Wg)*HZkzW4ec$$!v`&`4KG==w?U~#3q@^pYb-Na$uN*fJXdzp zK_`eLifGEQAe=B{@I^>zuOU4^&^}gm28Po8ALxcxteUr0vr%;#wyMHn@;XziSXK3Z zHLX{p^_HN1Jlle~)Ryh=HtaeUH0K(oc1pAUNW>sjgB+wPXUmr2v1vPob~O5PiY zrMI#9R-Vb@y6wd@GX%LzI*Gt!l={k>(|u~kSdI;4tYo`4e=BmZG>ad7mDOj3khHK# z>V|mvI~yoHAXdcrMe@zmZie(f0n`0Wh{Mp%GgNg0R^@2vmW`b|rc0|#5Ru-Yd;Hm_gvOA;+jmh_R(9~S~bR(JRyPw#C`hApjBX3)jY{QI72q+*1P^N5?NO!J-8{Tr4u~@3 zQN2oRLXxX2m*Z@t4#VU|WG2&wc$V=JUlAMl^^TpO+GyGeXqsXLh6`tjPXNf~GP~p; za_+>lG5+!T0b0D563udxPQ(?FTLd3S3<7KvxpZV^J=_ak| z$3S{Dg6YL&KVDz0dqrxkS8m7q-s(OF4xC)CRO)iTjVx9)oYgHg4$&)Pw8@Qv%Jls7 z%Y9)oTRo+%ymLnJv4}xw61tRcQCV(d3n2%0Wm9R!;BdNzjUbI5OV(gAE#2M3kh~Mo2Vbq(sb5ID^`lk3x2zN9T>f+dM%5t3(iP}ya5A#h1dbM0CUp?v*jG^6d?)A}Of(~<4fFm6(% zw6ahnOJUY!9ne8CQWLxpgcQ!>8_tKJ=^D>X3C)(R82Pkb;yeaGN@Y-~EImpI!TMkj zYm>?PM_AtlVbT+ASJ;j7ae{I=+=eWHk^Hi9Foc$E;~vy4iaNh{m7q3~<`U!Mkv-TVlE8ot?>-#z?@x01Ua%d;VrJG_%@!%hfGm zlc7S;W->Ueb~g=~!Qk@uSi~zN1*mFvaXC{3Y`Cn&SRkd$=V5}J`dwbEYLTm4+dx1} z!meW{*83Y7UBn+qz!}e$tj|Eh*S9fhR-F$m#0samJaNp6ZX_hCGnug%kgf{$&vb<6 z(zS^7wgad-e^_d@briJ?9dz7~WOYI{1xtUNP1`5xX^)8Adu!c zjKPR>W5Vn#0UJrk!1HPv2M||nSV?5&0BdgBNs)&N$gCVQdi!qf*#U8e%!HhMQa3TH z%PEOu3AI&#!j@uCoO^nX->2OtCyK&@YL@QPZY?9f0Ft0Aih!{!aG(;(LvZ5<$-&I8 zP}0O#If{&QJe9v?gGCYnDM4@=~%s5>q^C1(ha5k;-jV!S-b;NGI5Bf{ z9`%fAV3yI^CRg0Vo_rAaC^C2rf>ped3C411c){SJxKR3aW|31&04}$5Y>mUJ;;&r$ zV_Sg?&fU$!arR{I7R4S;8_*fB!;qk;;C%qcIpBM)Ny)Ej$q0Gb3dABi3Sn6HH)D<1 zVUhz6Q6S*p_?4k>)TO~XNd_X4ZFLcLK~ggts>(=Wz_Eb@a3c~;T+GCX__vgAEtbq{ z$OLCUiWR{ifOsR$c*(4djNPu%93wial0NX;&L4PX$YMDdz}u7QTJqN1`j+PMh|qsr zQFO_$jNqP2NsW|9*O=t984{S50F?27j~7gR8(eaE2-x9%?5Gb(rg(e#I&)iFiu z>9ASbO|IydAFVCU$r>3V?K{RW(t#rfUBe9H)S;WwNIYcEEM8wlW4mDUvE=OCP98coY;y+{P!x_d)4ewv%^vY}atjr(AB4wwDqa z5CzI(XaF7^PJHeM&2E}6#*UxsO=izUveGWCFRlZC(uhg`s9f&=vGpj*oB(_g^n0z^ zKd zqD<{(A8ZJTYZ&P9Tq9jwL3eL5;xe#G6g*{}4*lnFDy{vSHVY^$Ky24QyS2O#+E1r7 zs}27EZxoLtQY>MI_8}u=XD18;m0keK^H__>hm~!A)1JI_A6RRjFBqPSX*>Nl#B}1; z8m6nUtn{|D)ph!#taaXJQRq51uUdAI>9phWn14+{tWf&KyoCWUUMgu$iD7dP`KSvU zK#^QF^ABPPBXmiDJ;=khAtM-0G4-c)V{p2fUCSk%&#v&9ZK4r()_Eal<(?givChdJ zCmy}bp^ISPZ7-fai0clebPuXp7pB+}&F6EpH11PPVbf)FhW<-TYb`yhzajj>%=WSJ z@xrl6Yi1TQ;N>w92v@-fs7s`WcY zWcvVer845dNpRVUaaX={Xcs!ImK%X{u@;4 z4O^1CZZq1SsTqvk4raSDx&2L(%h@GN%TX+Vot7(zyS4aVsP#w03j+3+$+QyffO=#Ths`FxU7wybqdgXs!X$p86m$DXUY3EqR zl{;-!X;NJHgM4=eW--x6s3P?92(Mb(Pg@}*PXwp5sSje|V@}w9R!K4mZUYt183fkP zP+le0k=)W|GcHmMk<2B5F!v0je9|jMv4(JVfE9MAHRRv;dG(tWSE(9T8`2$E?K_t9 zC8IK$P1W&~rBwP)r}`Pxn(E3a9gu}%)72e&bVV{f;I_$pEaP@f%idq5ot%FscP+)A z>m`kitozK1xY?F{tO7`>A8o$weGj*aib1K(axX44myS!D8#cI7gsV*@ZVJl6?N{O#|?~5qtqD~^6!gf{a=L0 z#z{+p$N7Lr{%hYeA5Mk>*3};(xxBfS^^{JR)^`z2bkJPIZ99Ct%J4nAJZl;5K|Dfe z+>EYH*TKN6Nwf`GZlTjPJvkE24K@fA+sz3!^IN6m%1vxrV>~lQXz|T%RXJb~G6KbA z^mmmnIe2d{oiOVTq0t(vC5_X)QqWo#RA5o12rf5C;ykiqx@Dj0(z9V|3A$AE0_{~^ zJ`*Ht1HQ0WoIy_ayY4UT{{U1=Zw{!MhRIS3fYHcgR=177jHp?JQOG3m8)hgQ9dbjwuy5-pwivK_VL>VE(m2T z!#hBJ3wpgxgWwK)RyU+NGg7(MEv40LCAHG5Nt+U`-s|Vl7SKzHl$pRWSCOg~a6!JA|Aq+v}>Anf)TSGv8^L@#^lB z>UBC@^_HbFO)Z>6#Ir~c+#%q@z4A9;l?3GAgM*65d_d@lCDruJM@F}Mc(obTZeH3R z=gKe{7fTFfNeV!Hic}U;f~13AJH0*VpPOw4?J?CXFO+VzY3`f!zs!~wsoFcsI+2Xd zYAq$7)qN1^29N57OQyKnnTT5YSv^V3;G2u4*Gp?xwC8)NW^paQQCnJmuDOAvlSi}`Yk(qJEd&hA>Lxf4W@}=k8c;S-0A7A$*V^_y|KS# zvz-!RU=ZBtiXK?^9s41^Oy!B&7y~4LYK{JltDcx0Jh5DA5$Wl7dub%mf4rNE9b`*u z9ITP5_ips|krV__?n^SLHSd29?uGe+(j7+@^&g_T{{W}d`ZwjR9$ep?)i|YvUZHB` z_1jzZ9h!$nKOZcd-kY5@m&Y`&oUS|8>8W z3p)bHnEj$p+BSW`BMa@0ee0|IJn5I|{R%O98L#yWJlnry0f^Hc#Z=|J_i%X?$sffR zOLaF<^!r2LG-sE-rgcj#TOq5nS}&-*7d9)a9R};B0~DKmBh?s{wdq;toB4UYM>=e0 z4@yE3JDS)y+l@lr-g`^CX{5H)V#C^8MixlKgn;(OSmCk z%Rt(e2u4`ST@?{_*ptGNzziH9$t2X)+GYA1P45)&OCFz@9^nkeTSj2wSbzn0pjK%a zlosGGx%NFf^0DS~rCv(^01=Na+Pg#B)mhzN(TW54rn13>)!D4CLG<2-%;`Nd zM(v|^Pg3J=Xv{rasmB4af1Q=C63`D7jN!C-?WK}5xVOE0DmGBXBU{KFG6oR3xgdBY zkD8j#PMRG?2U)&i3#)u@kfJimtvZx^5*GqQ5xG9K0G>gv@$~CWGe0%Nt%zq#Ic!0+|RD7N|t3dlt zzr4=-ZS6lldH(=j{v-W!Q3Kwu?LWppZ@0I?Md%{_%V5nHTy-zxdVi z{{UqV;1BgVt_G`^UIJpCEd-s)UD}P z7NWJa3~xYf&0|x_K}Zg3HVk(R1uGr`r72@p%_%dj4T}|>SbO!IVxZG&MYBxTjWFKI z*ia&50L}u?f$W-MNlJd*)3x4&HjuHNlheM|%Dj|}cHxbqc1e~9Kw(J+SZT14Eh+lf z5T$mb@UZg{)b4Jhw%qdhQnODn%)~5QzEPe6m~L7$lK(SDI2$i9)v0h!EMJF@)zlA z`cHgF{TlSHioE!JWvAaiRNURia=MMZ&CF^oqKV>YUV^36MYpLQWCepWA#0 z=uI#x+uz=-Nh57XYchWKAtW$wjhq3Nh@m*$_l9fE2mb&mzs0Go-UR9Eb9V3`mg3eI ziW4D?Np8`WWoVJvl~!>#r_$L3snkn4ryZQgCFS>FTRs>B(njrdV5P`fa+}SlJ+0kZ_2AoRWDhxrt|TS>%z6 zF=-p03*Yq~x7Yn&s&z+E-P~%r?@(Mk_Yyl9W_eju1X9~Vsz!*38mw@^0xBX!3}I8o z31oH6#Z;w?%4ZdmQ>f#y8g(`qb6T1h6Oq%pYRyzjD0J4VRI|@#Od#?suL@iRctQe# z2(0rY#yA{eLS`T&OOH&~9P<8tTG$=g^*1>+x>;D=>gx`jrdr)M)+cVVMky{Q{c5F#nG^sc6vZya6TX^na+35OIrcW#_AN#zLTSxNp-Ml1!=&dWb1K8=7oSVzWR3wI$VkGUy7JsRz?`y0S*vIBI zes>deA41KXUQ@4`JUeV4MOTqiA^A`aMyl9m62KT+CSqgzTSaS|IObif8)TpyGAKB1 zMpv|PkUSsVT{B4Pi~UB}+}dBtyp|*CtE1SQXG2f3q-)E1Z%yI!=82(&#bmM> zQm>0{Pgr$f`hMP*$KZ6`o>wYi8BY;eRVLsKhXNgH>>#Ajn)Ztft7gLV$oDgdQFn&z ze7A9&%E7VTFD~O6f(Al@b{09y-k2~HwC%sG2-?)HF2uquGRC(IoGRv?llNeHuA_CL> zFXnbWxS<#a|%8>%$#tb%D$yGMm< zb{!b@_LF5yzO>P;@ASr-Q@8zG*HSD?6~yBY+Q5y}$ttepRaFd)yFYs)8*uUbYrfHS z@6~Vd22EBw3vquX)ueYZwY$s2u@N1W^nI4!x>#-^hzG;PB8eR(-;F(^G1!bSBTQ?X z?W`+rpr?w!^gXV5#Ge4GQQaQLg@?f3XB4^}p!_h9z1ZKlZ1`6@6jbenKox9mwQJIE?zLPJ(DOYUiG zm8(ghx2n&o$m*>lj;-nO*^0>rP{?%yr_}N*k*RHH^;NU_e#*OQ5`7D3niI7Pu^-Q( ztdI7dB9)FvJP{PfJe=U9faLH&-OKYOy>6AextiYFeYC7z{{T;gHpMEac%;;{w2*B^ z1AKahohocVX1AIqwk(#O>R&@GR~vI5Yrj$OHgQ=hZkIZwSUULH^WVu?hz4`?IRfOC2W(vnXc*fvf9dKwYbAY zEN)9hlCdETGvua1TdQ2YRP56AIWzjVQ6#F}JcU~ovs5dpDT)+LR+HM6%52XAMI->o zN!=b%ADI>X5+>JN6O^9XWZ5TfXu++>(q4IUc)6*5-fu-@vlS_)1if{rG>1&}2C!vS z(_LW2T-WiE#@x)n&{~3J@irQj?O~1jjQO6e@S~=$XL%ysVAHQCwzlr!c^g(oK|gEu zLYE*fqdNxL_s>RulwwH9YFU*eKiHWV*J3X}I2GXi`}inIzpV zWo}shC;oW4uh$PNTH{9QDjhj2J||mgJGdOq7fDd1s1Y>vl`0_GS(_K`MlzME#4~%+ z$c==DY>3q|CA0L;!krhSC)0J!Hu`yGkyk|)00G-7!wiC0rd&|6L5pS-s!QQB7ygHhpVj0g=vR(AEH*x?Mowg` zyrZ)vDvn*b0$Knkl9cnRCgr8ss>@3Z2f=3b7U-m<+DpP%~wWwl*YR5D=8ld$v=}YEcU#$-JO0 z#yjd_BDwYlk4qzrq2 zBHwDolWc;@R6HfEB8|yPZnKwi)C}Jh)?6Kb%?_=~t3t_gcH^-y$2sC<6A3x)GHeJJ zZER%1l;y^AwPm)QR^4jLiWJ_nWty}WXZo_YYQWT>`Fcuq z?w}&W7PYS+=C;xIskIT?v1YHQC1b1ln6m={=l6rSFv0=kN>$>q$Qu!2f2)BximH@S z6P6b{3a8nTCs&R~+9710)?B2cfP$4I#9QsEsNyW-;su8+B_(uJ!`N%wsVGxzA*ls4 zjx27TLCa?B0}4>jJS;fwR&BeW=iGy(lC*gXWg;rBiM?{lfNRqm%WM)#4qGlvz|U`t zDMiq2ij}hkMzI(@HfY(e3B%ZJTwK~4&SpH<5d%>Wl?XBz*&_m6j}@@|DN=1-QRrbm zY^+hLbtcm6Ew-r>CButZLrCRHH;rHcnk*S}N)*m8rg&1Ew6Lv18EU$!zAp_*!n*M< zZ1zM<74AqXS>3U;hAPx3J6% z+AX4HCV#LS@|d5he|`7g#zI1Sl6`l-{qtD(KeCGhfRXf7Qbcm6Z`d;9+Y4{r)m{kIvJ_Ah<6 z+wJ@(+u}d>@TDqbq9bXD_})MIUH&&H_Km;C!HSB?Gs_WmX9 zw%^8nW_&4E{$Cq^hxqtXtK0j&(GeeSedBKm zRrimdoxQ!LCu#Wp>F}j0H~s$mL{Hj(hxm9>l^)xF68YQh8*lgUr8&wXCV!M|{{Yi% z@8L@MV*GD<*Vay)d8E+TZl3j1s2UR$XQFz0D#{vHRON73=U@Jk>bmZ*`qi(c40Bcp z1~B4E0bxG!5gsrJso&db`os`jG;zkZrBq>nEfFp0Ao=sa@-zFbI)_HnFSP9z=IYU8 zlzh^&<N+}$%!iw+`VPNSG7i#9spb<=Q^{nybBOZAtNN#Z z1k1#egU>Ih+D82*S>qfkDh5;~GRd%;QPyoOwKu%hpo9Yvka>AHPH#Fh8puVm_4K;&klDl$95 zr1udM%3!%kQT=hR>H4;@qTXvCI=W=)u}olv9!TVhIhTBE83Bgo3>1;~P6vv_U-Yj` zTv%xum9~Z~Uj8Wzu%*Szs>=-T3+#5AB^W4W-I5zC;{bgKejj~U*Lvsh_356Vsj8=_ z-DL`0O0@^Abxv4clgw4sx{WvmYOLYKi*>QGu%skI-ZdgbKqfeN*tOeJ!Z!Z^Ayrs~KBAy89Q&G=rlYf1X42xBt)qtSXwV3?Y!YgwVVzgth$raN2PA##po%&_B4OWxtfq{h=`-Ia!L z%F0I-ZFg;bX=@$Z^#e_Fr{2kHEJ*?+7dvmwphk8XSM8qcU8i4ML^`l0x-sTMMQE8){m%x-3(c?zzTMbs@O^)|S z+9uNr%0VO4ouaOwXO>?(PCR+`ISp4r>He(KCh5MRX-%!m#NTFJ8@Usbhq$P~DarM6 z26@M}ne_X}29ehnG6jgu>UwIVg}%!#XO$KGL&(;I5|@kJvT9ep<2wrHoXixA^B$a= zt9qB_UefLxcr3u;L>S!J^bi5bVU`R&=sbW(twvvfe+;c(bcuZLFYODaC&J|Yz(xok zzZmDi)K4&dC8yDiV_!*AjFaM~CeBMHS!)$+l-N#M-44{*tdX6z1@rl*|MnVk=l9cy)Np@&|b zcAaDu{{a0tk8PAhLP0eJ+=#hHj)8Au0qE&bM{>w)GLFM1IC~(NF#1r zf;?G#H`H}~H>NtjQL@r3wQV8>wUYMQ@JqT$N2U{R*j79FB&kiC03ox%@!oB78vg(x z)*Iuk@Va{qX3m??%D`iEmQMC_ORqvkAtk14D^OegOqe+-SsO|Pq{Xmz5nsMJnnu($ zc_y}dd$pHrnQ*|eB6i4S%C=A|1`IrqMr$4Ma_3$>MPPM^?ITI7ZGKuiLhl0ENMsA@ zkwl@po0Zj+cm+sN&b_j?riCw+Yeiz9Le8`7z)vm3xB>N0!Sr(VS(o#&)jv~a3j zgMe^)caZPuYsgsdM(!wRa*o_W;DgwvW+r$ENZvpdqmY(Tr*SRH@~6NgdC52f9x+s< zL*7V)tr@oqm0_@ePVhs52|G{IjEv{q_gp)c0Q5i$zZmpwU6CfoJ*Jj-hRWK-HGR&bgOkG@VF3q=VI=0iWe#3);Mo7*9qA0<-R1KQyu0W(9 zkKSO&b}4yxxXPu{y`YST`%^Q#l*EiBJ;#XQqA$txWtb@=fInnsIXK6UdX;#RBy~`- zDh2YuE=UBO*ui1|$;Ju&#KKjBuS^(-dz~#!V63=<=V_Z-04Q|q^7QHv_U)LgwkRE- z?IL$grO=5AkT5~Qf><7TBpt^fZpV%>SsRoh0H#j(4V4PGV&@3sAmDDos0R_Aa&cE> zD$!D$AU~`V1kTtO^_o^It$b3%_F;`wi7|4%EZe&i^smI%FB&%2C8Ks5bNg5vf<_2k zrw7tG{6$;AXwPp5kJB_*EZ!LiVS#`MZ&2ZKzz#+M%~)k-YV@T2$yo@M+N!6rn}Ch& zQ5A4GwE$JX7GBfEFaz(t_4`iov~XhPHA29Z`^rJialm9;`(uyYP>xiQk?>%Z8P&XH z2o><=hJdvF;Tl3S8ulE|s;&%-`A85|IK2a)V} zC%`<_^@Xyn&6jdu#U)7BVcc-UE2&(D$PIzJ8?ZlQV!9=N@ah{nV0FA|okCb7Ce4W1 zIA2;cBa)8j)rD_0VT5uM1+v69fSBUJ(;jZFgG+sOODKO|s6QmdF55DAOPKIwNt+PcBpvpg?GpnNGc&w+*uEd@TK>I#d2uC-f2(cNw(=sB zB1sik1q9`}028zgzHmqtd8B+B>0XG{G~H&?Tf3V2)IPA5)apGr!Dzmh1t^teHC;N_ zV>4(h{)tf@D&3pUj;C)bHS|_shJn@XPI#$&{)2w)r<-L)ZlwvBtI z-$j@eM0Iai~RiYi}gc;bM4R-bf@7v~m`a)_CMr zS!0<*d}I|WRM*eXn6Jdc&nB7cmsfO#hwJ8`p@YKpYp6IKKUSqY1L&^}iq*MXb{>W~ z#fvy)bz{)SC8_2kRU5 zwbZX-fU!7={&Ynf6#5i7RTm$IDxz5uKViOYF2n$cM|7BGQ4JrNsKnoj~dHSkLl;=}H?# z4;1#T7({=x+|gXDnO6X9Bi{rHk!gBBmdYEut!Ca!g|?Ao{bz8|O>c3$NKw0exaPNH z$W7$BoRz`dOlWF8a2uucboJ$;~Q;;#*g zOE+n}Zfix={ZOA$V|}K`GJp>hV!qX`rdXhTJ_#;FJ++p}h~FiT&Gwm=T&o6GLi~>& zmFBLe>HRvwH=64ATDn_ynP0Q3NQY!sYir$5@vvaZ>n_&8;NgyIjN0GvGW9RAHZ;C=?gsVhb(^QZL2SEMc^R3JSj_UDt7&v?etYK9 z-fIhBE?O<GNZAsM|%|`3l+XOFgZ#Io$6YWRv8Qi;{m5c{ul@Nayz{-+!h`c8%xu@k1xZOBGaC+c|p^rY@lG4&U;O#cAQKJ)(o zfBbl4`<_SQe?Olzq`?;RxlHXp^GwhAPx0HtIpUw=N#*wVpJ>`AY1%)3f93ujABVr^ z6r}#~_Wi!o;#1@te;QS{n2o;kKGW|${@YLR_Ky%4K3B)#{&cHO{{H0={3dsq-ey17 z#{MEl7{LBqRC0c`Z>!oii1^-jkBI%|erNuk95;iJP^8Syyh;1dw0rHmNc;W&0JF6I z{umq(G5qOBA&y`2$#L2@+xdR~0JqQZ@f_p#Qm^-!`S{!0kHqg2@%w-0!}oDdKaD5q z_mAwv@9!S_%=`ZU({27dM~~x7(kI@2+t0jw&i?>EKHmQT`}k6mF|>WAJ*W8mN89J` zJ{1w~NtoUvj7g6?yjkzw5v8{{UaNh@L7xkG&=%+J64~ZxOfK zZ;Af^Ufv%{X9w%}eSbe%YGQrjK7M8+Z}5-h;uIs3kI()UQy$V^%0Axz0L%NlDj4HG z>Hbuo+y4M>eZGCXDivGp{{VTPzW)IB_wc1F`FwBl^Ss1=`@7GGnvFOg#%KH_r~9Hl zW9R%Q!1x~I)5UyXf3z=@Z7)1sGju(1VP0M|>WTiE!7{0M{S)60ekDBf-eW=kxwG!7C&!b?!qYYQb0RD(cK(W&_=Poti@s zWXnzN@fDOSg8AK#$A z$x2$qgqtq*MNV0&O;NAxK{ho8e-nH^~Bb(-P+p#97uuovtwpA0-&)t8Oc7w z$*ze0DSm2y5)O@dmeLwi%3hA?RyU+r4H2caoz-eSlxaO&&a~=0z3iOlG>yEDUYt6e z8fT8Lj~cjc&Cs!X)iS{uBo*f`hO%^h_LXw|X{gHjmBrJ=Zn4T#K?V z`=d_Sk8a|`^jpr86USuQMwM#mICY;fMhGFu*|k(`9k8-*I4m4CcCC63I`nH~Ji_D? zcLzgDJ5uSck^cZn@Hn)NC@Njls_CNjRw=VhYM5+A+f-g-v9WcC4rg+Y9)*hgQ<`1i26@ z!qW?@_$_6Xo*<;O)}>>47n2qNJ3yfPx%EG&+80c9H&HeVU#%~{YNN8Mf!2SVTu?QLw6`=aKXVyVW{gpReEOT{{m@*yO>g zu6q6!HL5V~I<&PkSHR(JQNduZ6}y(P9WSSjw~e!qxaJ+Krb5Xw*gGiI)>QrYn&IU( zYiRw)m0-fM#>BFViOS(xNpZRe*U}Tzp;R+hIrzw(Y@Kh_Y1eW=X|LYBw0exT<&rr- zw}M2|^yYS!Rj`65jjwK;w6_-owaJp@k`-2;vRZ0`Db%x$wQ;KtQ)&8t4E6F#Wi={L zP3kra6^N|4k*`^2#y2LmTV<|s(`i20T$8tOC!Cha%N98GGktskfVcn(<+hzmscE)% z7TSH>aXY5a1-vCxDwT;4NgJ{xW5THfv1fhKJ2CZsU1@Z&T~5{c4>a9U>K>Wt<1~%k zQ-iyrvATY{GCJOlW~ICMfyhwM3c3z%E%ivG)j~$k z7R6{{B~n81nBxUN<@;*5C9>R%dF{WWw0#BCI{m@;!+SSQ+Ub@(^uM*ecm@6RGIu6v z*=?n0nXH74V~9i*Ew@18Op)dBJwfu=USD&Xp7pMvpO}p2S!vVKRq%yQdV8TdYo_%U zH!Y*|{L?q(>c|n-|VA-gabZ5JnGm$T2gq z811^DjKa#mMZ30&RGQkY^{;}n{4e;8)Q_$kKZuZP20aqj=41&Toojgv+I^^n;&`XB zolV5|Vs|rL&j)sCJE@lOy-wB?waq-fjbj<8I)ARUZkE)YMSdSErcW(rCDZz|TSivX z`HMPhAlj5vZ?|J4iL|A-nnMd|TQ1dxi_GXya;X{e5n$v$g`JKDG_DsADlWY*rlW>3mK+6^a^Id}Cqs>#puQ zCsr~v8dj3Yw_ZIq%TCgeS!riUFkDNvB>+YiLS2k%00a_Sa5+{b)q&h=7pVMn*M2Dc zOV+gxtJLf@YfWEHv5w++EuJWu?czw$W{-K1Hjtya8wuc&7_O~ZT>`uwrqLADm;ty` zcBxq~DPm|@$_=+xH`=8VloF>^9ROoQ=)x1JXag@|dsn|O#!YpU%^Yyt!{3G?83P~e z{CYubw`I6ecz9dT=V1;s-lpiFmp6KsP3rAn+N4bd!$q?zud zs|xq+m2Og7Wy=_FrB54BXkPV|Sdl8WR$_JES^FB?Br~*(`^-dqe0xkxMOo*2x#gMS z?YTU!(*qd(Lm$?)eLBY9M6tHAg6XazjA37lFk(q#?c|ez`;R#l0o02eF$&5e)s$q^ z``6WJMaApNVl?JcBS$uq+Dg7mQHfPImo7JHvKMX`Xs*S=35-&tPPvXkh(YJl^2UT8 z{k)F^H{eJ+71i9gx_d~sEH14(lcRzI_aL>JNaPKI%HTqi zOfT$=w<#(~xm|7zygl`BR<618o)Q73UAnH2x~px)poM&q5XC>E2=|q6yMb(kub% z^l69MEHb*tTGUZ446)W&X9+P*F~5{YU_*>e$?`^?-8+5LP|q(@Tqju=UGmoqv7-W9 z*)ZFedx$pYNvRaa)l>H0t3MXBqz*Eiaw#JYvLmAAH%Sqd18S(@i-vu^b_WlEeQ zD;5Nm+kxsHi|PFa#tl5V^4l1F$YxV5sjf>h6K#7ywSj60im`i=+$E`4PD!DGW4 zY8Q;GrQ48QMMbm8UdM|P_8prlYhJ3>@~tvmVTC1j1ra^5e`q#euPaNa>8zHW+iS^H zsN#QQ&b!d?UHbOW4;9c;23sZ)`6yj;T0n`|5k z-w^vmX?sf3doyLL2M=!|nBK}^R>&Q{ceYS+QlkUysZqCpsniC9xZcHab6^QAWDL@`R zoS8_nqsB<49r=g{dM0LJygUB@Pbl}>?Y`a=s0LN8&&=8V9lL!|RZ(8uHi|~MTpsQ= ziYqpr)@&(ttaF1}*}%W~c9AoZl+}xeTH4=6kYk~!q?)5rvJ9)Cq*96%NbH#7nl@pw z_=zd3#*~B@w798GosI^qYL1E$_tSlg6+!l)*4m~dyN=~1l@OJ}fF>v%-4i(|j&P+L zZr!(HMX{4iSd_adTOP|#PAno`7i&ELISDJ7GA36js7EXw_?skExWbeuUPXI0Y)veK zBE@ZKz&oExPyXWi)0rI+iwa~c0Qgf7j63xS81qaRSLz7g~Sbp*CvaWx}v12 zYROD86k=Phq``1u_)?9p+Dlp$6WtqjZDatB+#=OVg2<%C6$2%xX%ePENr79tNFkO= zLLCZH@z#BHDnpKyRCRAy+9|F(;@EJ;18lzJF#RpXvhzqv%Ov7l72u?X7%Eilcwc=A zh1IE$!bq<5i&IRH-%oB?M;k`OO4HsiP#{wBB7qW6*kZ~A6s+mx!I;E#)1sC#%J0)Y zuk`BPNvCS`RP2Vf#!BbWR&tR}VQZP^1U=5uxwm%snLo6T{?h*dh^lh`0A(h8ZEyRg zzfNE%nYA)fTiGJtX!@XrHlK+0_n-0h+r~-q8Nu=yv;P3KSm;h;jE@Y6NAXctEuw#i zzwqDZX!idA>iDNsYQ-}V5%0W5@c#g(_-)}zPsDxp{kNI_051wv=il$Yw0_a?{3F7Y zzu~;k?ZQ_3wCjS7UZ~d13ekxCyxBmd=5&b^; z`TBYKQpNS=J*-!q=i7^uJNtV~Pc8lZ_S^fsL$fgR6A%4U{+{2`qw^3S6QL&`wx0ey z>A`YmXcr`irgni~5fznY`+olb$HZ_=Q|`x%_ZJ`b zhx+@~#mJrbxgOi^vsdl6&i?>cw%>jJH}JvwQ@bDc*Z%-$f2}LJxt+U<-{bpX^D)02 zxAvX4oxi`s4fM_`ZR!2t{KYv2zlbsTjp7V9_xt?(ZM;W_?LXZle(G;u?+@lbJkznq zjQv9!@3!R=A2AzmzsyI7ZEqMg9FIBU{VV4K@qY3%=8w$hnC%~|x-HV&uD8;-j*wt< z_1u+grk|rxIm)_|P~CM^{%Mx3pZt~ zpUu}r{Ig-YIjTIRb*Cq*G=7)!6QS@8(c0Iib@XO?PxaAQo2$R8D&;j_dd621mBqwU zQn@I``B-;&4=}s)G}P0mBoLt?9tn zX_~!-211?)XjklK{ zb7qzQ0DhfX)|z|ryd!{CFHeU~ncCGNqRnIV9;C?M5*a#+t7p^l?}-nK zdyBgbLe=eWZS@3us5NU@9c&!^o!!Bn-dqP9#}jrP2`4e5D=^?)TEWyd6D7^OT4c)^ z(q~xPQrn5FRygisFY@QnF^y)4z*FjVWCW|%D*WMjAM>Nv&ZcOro`mv^)ZI1Ho|SY{ zrkxbg>C~C63zOB^JP%CqEXUN$<*ef~!CW%;E?Th2KncPXR1PM4vJr>Ao=LS`OHej< zk{jtFITo@Y0U=1iBh*MCNnyL+2R=pD>ifB@Y^~Z`8#8O(0T%gX3*DLLz>$$l0k|k) ztH}EDd)4@SbVsQ@Ao4%ao|S9eCud4)%{OaZ7JE-#JaAgZj$c@69ELm`+ExuDCsO58 zh+7UO858rrjmGj=uWYPLC}VS{#R~>Ptg9<$bLw22O3~|pBg^^iw#nb1u zlY!m0l0ow-*v@jSxyCBqX^=^6sz+<6KW|aExRLGUk91Gn)CKex3F{&m?Z)Ux0k^4E zRu~}fADjNGW;z$q93Fa(9<95%T}q8Jmq{^o3NiO_*;{Th$SR}FL(ZxONOtyb_QpM@ zRO^8})^>V*r2haWHAa#t7$7cDVJuV=_ji%Cm~(@Vde{29t0w4fo4M){W;Gv@mJ~6x ztr`WELJN`=v$q^B+!KuAxyhvb`RiRA^RbE2c-&Q-nk%MOIm;F)SxGZ>xTfA9yPdh_ zK*@=c`o=iG%y`nYT{BhCgv+JtUB3E)=xx>aA1ZLneM&RWu=d+rYH!juY1sweNW~i~ z5F{6_6!LTG>}09HJb}*us{R)=b)NazYqQ zQ^00MIBvP^%)rl#hL5Mor%QDt_f2&zYdAFDw@=n=M-oN+5i1A2zn&S;?qCZKPx|3GE%m z=0z+w3@W~IgA4;GQUN|UzlWC4boPTMQfc=+NvB%R0(|_ombS9lnd4~#vWd})!wT%% zHqH*^XV0d!Z_Hk=#C0dAnO#GP*IKV$)3=Vm?WwgEp2cYVlhuq>gf~)mh5Ilj+{vqpHZ&GU!YBrjU z?xzAn2x%{pD5orvKJ<)2p;ZP!z)_Yh#&E|C*B8{Y>OirCREcPZwzAV?mc)#_>(%a& z2?FfY5)OQhV2C)Bkc@6J3*nC-VF_R`SC-G-86fa{XD1+FXx6e2u}&5^-Xay7VzU4n zz#I=qbSLY`7;NHOzh3&G%?bc^-b0 zxQlFdlB7RvByGPuvNs!1NjUYP$WTe+9>h?iRp~X2pnSNME=5JVWUWq~EIV$3m@0y7 zI0=Y@k`me?Ic-uI+E21K?)BWwufK>f(UFr25O$Wr+C=K z2@QBunJQLaR03fG2wFJUnM&G5101GAK;lkDCYylL4q7mIJ`Q=y1C|6S@<_n*gY7~l z+~MI@G2jMMz{ml3*|nHs?w?TOaLqJqu)3_OyD4I#^?uo~csy=41&pY*tk_WETG`Bk z1VjUAD46jDl*m)L09S+^yN{J4EsjnU;A1%_$GJ5u(U=nEIIasMj)Y@^B=8pllK9+P z8&m<3d{Uce;(+>lmH8x`%TQ_b?w!-XQz7n4L`jCj@KOQ4AtT;t9lpuZKH-%>ZH~h` zn+It3I2;U;q-61mLve^^iEacYCN1kg4-uWJ++|QP8ONplK2CGyYDgVd9hS0}bV5BG z&;&Btz*r`5p=1jkyqOG1>>}AN8}ad0RgznnW9^5CFa+`m1A&~jNcLbs_x3f6fG^A3 z%`~lTBS**zJxnrNXb2a7sFgdhk04`-g}s%)8p^ibA^B!ob*r={XtK7dv83R+E^7#` zHrhy{N@7B0CfaS0?LeC%4e7?*bCAQx9ERL8oDV-*&00LMIGk^mMD57mcm~+YR5s;v z$W5M{ZaF#ITlH)47_hA={SE$#WR-+_LR zXT}EMdWu~hT?H@UTRo;N#w<)@&O(L^R4Vv9XBfdEy-yeE6Qjo@cQ4Zy3RD8vx{Z`J zaD2uXla2;QJP^5? zPwD$z2IEb+m_B7QM(Dc{Sl{se@{iTNh4m+1-|Bx)^yZntW$+qzOXhFlvw^8o*1c;_sG9p&Wjf8MaqL$3 zd(FUVY(6$t{n$rD_m0xn;+Be4EF`v))=N_m2-?^fC)8L z?$%Y*1@F$K(2wRqIx8cXCzWM}IhDBXKm#YEa^UcB!1=NBCFN7hMn}vyTQXW(%cog# zSc`pI>K;cAYX_ipDsWB1p0>+d#?C9TL$x^PR_vP0cR>#1g|bL?()5j5+R1GU_YAVy z${CfCPrM~9wX&S#0m(nd6_(a?4My(j@$KxCCv*EzAdueuGXwZ^sAnofbNRHWC)Wpg#=rPD4PZ?VL*`htK;84F)SiiXlh^%S>L*bvd3Wnp6CJNQldJX0v9>yCsw_Jn zTT<$)*|dY~4mNvs7OPbjW)ULBn+;ox5zYfh)O7eJ)1ntk{_iA1b{qqV2Q8HxAIE|3 zk2P_tXu8eZx{bio+x_Qu0BFevZZY?=*ugu8{44K=2)8Q>gj+;`s>5N{(I}B1V)2zh zfKfm53BgD28+-fs-tJji=H-`_X=Eemg6u{=40x+cWN7Ve(S{u(j1ljUfD!z~A3N_e z5>XNR?aSZy{k%}B^>4TL$Ir*@@8LuIsWbQY{yTp!y#D}yh}$y_nGk=(vUeyN$6+uLunOn=gU ze-ISTJk`E=Ol=<@AGiAd0I!Ijr~E0JPTt$?KJ)MUe&2chzTO^q6%3E9TWH_nKHl^D zNBus0OOLN0{(Y)GDvRTP+kfNp_Ky%z&OL|}q)5;05$zMc-+A`i+r-qXlur9b+wJ>% zZTxrmkM;aKKo8DoR)PKJ-{y9WquPG^{{VORc!}bfq!-D1dwWDi-}dkyzci$69OrVM zc>c`HMDMgl+r)nV0O8^7#Xgm3h}vg=d7o|m@xR-D?(qdNUIq>ViP1)q86#~TA@Q@SxOGO(?R3`X{^7Ctgu>YNY`Z4Ycd2=2`KMN=b0;y zC9#7$ocL0ca%`baZO+%`ZoQ5nMfXaMFV-31OM-=oCK=o&uZJrUYhx)Mk^krk^2@_y~K_= zmJ-G1D#eLX%)XE|f(CPtNd$P?^u7Hf{wscuT5m&Ld@wevH&R?)CDFRD`Q=e>6eco? zSR`$k8!U22;1Hp+*GgZAw^S*nwKnQ(A|DB=)?Ub9`gsq<voatH5{>!7TpNg$NdqE?#IZ73Fp#8=aW|9C}m7*U!Cu@vm9CK%&b zV~tWY2;rL!%`D!hY~ejeLGEJo!D&3cC(R}9h~_gIYo*D|1`kU0F2$UKo1N-XBS7S> zX%#?Z5n`Q6*%`1>bOU9mwz8?1&h5Ii{b}-A-JBiey?04kRSS!IAS87*vmuhz#_TRm z*#V96Sw`vb=5030E||Yxh?kuUb#(_%q>pK5s7TW@YI^YfTJLE*TcW&$5@RcWyN#kb z7kUP$9(9i`so6(ff4xK!Zbw-o`Y%%a-ihaCEG4$_O->l zvy|Ja+#Ac+o<)}7=D24l%;-;d8jgWmItq$L8rVtpyT;>k>XgBjT0y{2Fu-+~3TWkW3r4@;1RCMkrNT zf}nlMLaRFN#~v#`(7yn_DSSqHovBvQv5Qn{14GBAx&WhOv{ z0|s1|8*9yL9+UOQEs3#<4u^G99@gV^v;~VgTwhS9`WvY5!5pyHt&lOd@>K;KfIHCM zY9awCj0D|X(!pSwPN1|jI#qOe;;U=sE z*4l(&k!_uKKA(32u2SKMXOd(Q0;79390F;tFuG^Y*I9MPmECElJhWoEL83gYhJ)0$ zGzO2Qa=t^aR_JOS50xBtu{7G_NF9pPHY-~j74Dr%IjoGnsWpLKc6*Ml=~1h^+ElPi zy0n`m+d7gGWqv{gV&LvojX+{trgnv6UdhmIzB5{MwuxobKcZu=`y*>?@wPPQ5=m_g zR_f8ILn2L;Ge{VQg%!gyxf`Oh`Tbvz>jzb=b$b=2v@ca}YJ5IFFVZ@}hR2Uj>0)%I zB5=4oRx+W$+NgM3g)3`tLCd{lu$jtxYsj%8MT#k;*#v4fh|GIPBzlGitBy$=p-v$lOawXDV^TXmHfHN0yP?xf2i?G22OT(&@xU5?C= zBx|T}- zoPbCNI37X90}PyJ2LvBWFQvHgwCOsF%nh{98^X$066aw;cd|G^zhQ709SD*McHBZ% zK*9WcvpuG5l5V7lGhu0ZWD<8QUSu7aH$^Dye@bSko22VN($rOuSv+)(NG{Vm+g+0V zp%_mY=YjYW&d*>Esw3z*O{7cJ8fDeK*Ng?Yz$6X1nf#6BKeHD_JxeNL4MsIH#6`%K zGL3ZMwWOlzttsfUTT!(P35TJ8S|e1F+6;-FVIv0Mmv&Ad&UG1at51veJ!7VZ-3>A^4TaMv67J>mCZi1sNw{Ba9{49N_)oh zxSSTzAASA&V-NT#%Ft0_jc1i*v0WzF)8F&+y>l5IXWCYY{8D(d0s$X z{{YJgyI>u=H_f)NYnrD_e*znAuAYW4P^mJTfT{mL0Q#OGd~uyXPsFA|G=b zbJRMOcoMja6jn`QY|ORJ3U0AA>Z#R`vlg7L30%fh$T%hRD*6{rW9_b>AaHSQ?7M0Z zyF+DBU35kufKrl5n9AR+V0jnRFn@CnBKm><{DlFZQrB&k9HEeV`#i_{R>(MH+VSGt-X`0EE&6TFPFSj!W zryC4=oxciIUaTW_s9hp(-tRUUYAc(QD~MQ9if&rw%M~V3BfyygazvvpCn{4@k+>5e zixpIW`ckP)E!3g*TIZckUr0npzrVM?zlAH$g@qf8{gIJUrI$g$X6={2 zp|%lTanH%9(_(5pa_OYiTo;-u%H0MpmBW<676}kX)}>sWx}vjC$Ef5@WGV$suF7^q z9b%)+%~nRcIFz+&V90jhVqjufDpJ{At>pe`My1Ch&89xNSlEc{vf=`4)Ws={u=@tb ztO0%C~a)4)m;rrBouTB^-oe(kq*t*;)775if%Z#6Qq)dwO}w->}J2~3Fwj>1hP zDf;znGP&bceY>e*O1*SgQq)5P=MY#Hv--_I?5aOhxG}^K3ISo4g(+&gRW+^Hq_|V0 zD*A&eR_3TW%Vx-9*Nzo$V#z?k%E_+c#lx8pwgC#2HA$q30jv}G)7wHVWWa@~ zDkS}5EQc$opD=>7D+imqTr|Z95X_K{i7_$;6D*XB%0j)W87{3O2L?%ET>Uplqd&trt9!@UX?Wpxl!jA*iQo78$J=P|s1JIt<@f&p4ZnT- zDm8z%+xbu5_x}K2!@`uf+BTnU{{YK*_}|~#zp1Z^JsZ{sDU!jjx> zW*CTW!S_GA=s(95B%6Zddz^otpK9SxTlL>vH1D0wRi`q&eb!wb(=*cCzOVB6q2GbU zS?Ld3w8on09;v<6Ei$~prXNGD7|m{+Zce*c!xZCcE)!gYx10F&Jw+_K+p#sg*E%hw z&BIyE2=ALOmtU0B>?h!{w7gQcu;qtszR@-v!yTyU+Hlr7D&q1xxGeRHh;35(+H>;p zY69fGfYRo^ABEmtA+EX!(iN+S{sqN$9_j?xJ*) zsQSL9p2unp1*-hV2CvL(%|2NgG({NHS#~xR9bP&6nz5*7Cl%AnA+XN zt1g)ouukpViDXHU$}{6At_byKqUYA`uWEjzeiu5g1Jo>SUXXc@(%H*BMA7vy$&BW# z)z!KOdtRq6b3V!0dUZFK^wU5op0!ZZHUx^tD{u@QTdry81b?dAPrbUfTrqgcy|c%U zJP587A^n<*~ZtURtUwRY@%5&BY zKd6TQyB+Ge8=pU!je${EOv~IfRLrU@sXYYU|**Q*{5*T^IFRV)4DpBA00!==}Z;=NyzH@nlSTLtEGTp-mFu=rG7WJQPTZC zV$t0-t+}{?ukRv3F@n}t3q90HwC`9KV-5-J?tFbXE!E2PmsIKtaclDr6c-Wc_ESjK z%Qf6FGg{f)Nw^rkYHXy3BMwz_!8Oes9-#9})s0Wn4FS;KH&wONY2Jh2`tzo>jAO96 zS5I|V0S%3|Snj%%YRe&8JF%lKi}Ohg zD=n_8ZGQKi`@3csXp7rH9ME>i25gl8Feto zD_N4x;Y+Bx5MRpiFuF1il_6c;60FkxQ9Q(T`>&l$^BJSp)#c)|T@cf~YR75(cBjHu zy{Gjiu+H_TS>v=eq`y|8>$@wWbe@UR7>r`nm#FOIGPY*H?4NvYm(*I0x6zuuuWM;) z*IHy2_TIS4$@3~NE+o2rgl+G{k=v#Q$7r38JXUL3>0KkIddH{qyNj#jx9TY+yh9z! zG%0S7Y1Z>u#3d|@Ma=Jb7EG8Uby%>3*7tcL*WE(uFO|P9-B8y$itcY;YMmaO_IEb% zt6A5x5tqxW)y+yP6<18Aszqy9#6TosV|gf@x>IX;Wn%K%#uocdu$Dzt!j`zRf=PHh z0$td*uq1`R0~)hKd8F$)yf#;JxYG4)LJM}5UgV0F*OH_yyE~b7AQ6^3nN)7&h&%Vy zF0c`F^>i_4$y3eh1%^8PmvNMjzuwhqN!5J9s6q3b<%ZWrsk0X3bkmwU! zX!f#idzNlP6=>jHta9J7*kx1BLgd$>bw04Tm!s{kQVA{Zby)jd!4YUfVU|{nvxY5$ zuz4BJwQ%Flk5+ZZM=^a4jW5J4OiZl9=3%u3&;vQy7+lBUHHh#JJQ|BG6fW-a$2?#FVvyxZi2$!dK61MGip%G^ag*0p4_G74W{c1W$=$-#S=Z>Q zG9{z+qST62INFtKDuGO_`!*YTR}2re)tg)2-)PSTv~L4TewS(;l?s_77C7A|E?e)>ZUl|uBi?Cm_)m} zfUO4N*xGQ-u#jBb>is{U-`L4#HTA^WWLFOpTqMxTbRJ0(;R~3gjpK@7uAn|pgMdv} z{{Uz7{XeTM>@MNdq0nw4y>UD0OL1>-w$^Z5N!f&buAL+;Cg|0PLZtJZwa{NJoj}w* zOXwd?t*%7O*_lF5&D0!-)(;&$RfHQlGV~ z=ECLR)9$`n@+4Mb78&4-6FIEuXE2yLSPK?rywj?8ZJleBSZ%JLuh8w)iT*~)De{!MAWLf!csvIv~&F)Pn62%$%`JFUuq=2UJ$ARL|6odWd@&8llp49L<)@=e>t#3x8=&h??} zb1y2d;bk>U*^*!8cHx4G0Ur?tJ%wPi$ zb%Ir5tYJrFa0}%|cK-m$Z(O?9uChAQPxWhDV)d?0hfF-Ub&Cg{!s(dOOUBph)``mM z`x;27CeudkJY|e>(O%I^HNZtJ5h>#s9seqs=y#d86u=x_dHR+|L}w#VqEI zcS)VLyZ4Gp1|ocVMh`bSRh))Mv7pE-(N78tyktRIbRTQj;C8# z>CT{8(7JaHg&fA8%4Dx-ElYTI+=h;vkNF=g@z4ae)9UiuCAeE>(~RrtY%Ryg!*mr` zle=gv%%?m^zWA*^Snh4~_@w#vd2RI*0~{eT!Y^9X?_Hw+gAoOd@E|SoF zY3X(+LFyeq#AGz?V!o$tJq^lNy=KiS_YgG`by)T;86j#9i5D4>h$0yAqV=VgqjjgH z{*gR!-03D+NOK-pdn}HiI3T$4xd0M4ImKje^gRoyH0gSOsO@H!!u6wZ+Y>LYC*Fj~ z7BD&W4EQ{ZX0>Cc-bMO()FxkEIr+?b@gq%^ZRE2rG6s~Krm~bY$k@XroSe_;fbYCa zmk8xuC_1C5)_Lvq2x3b^8D@A_YcUK~AQb~;Mt2kG1A-gdSh)Bf@XFMPq|2rkNGm*Zj5Ztv$e_P2@t^`*>VkOApp7a*sVC(4nL&x4K!nSLvDC7(m} z9ClV0M(3d*{Jg8Anq#NhzgG2XjY=I6 zZ%Z|HiNR@lR)69#MPhKw3X%rZ$gb9xmmY<37SBv{q!=)uPACLSO#MeYj@xcU zJMFgfKHf6z(>hF>L&qxxU7#C@&ehIBudmVpB#dAW-GN@q8a{@gl+Y{_aokGTTMfkd zC+z%@jFUj-yti~6czmnJrP@*$oNd>v#~l(t_17|6$7%L-NJK$K#S!%H@8cb+bncf1 zoqur>N|M10j;-IDDpgAZ_s_T);De79QY{ZamRO>br}XxYMhe-px8yL|bBOburx_gM z#eDw&9aS$Omns1OuU~N}s*sVjOa-p430)~TDY86<2$-lCh!cSsBALWn36|Eu*_LN9 zBQs@~9E_51J-m^|Tgk@*z&gBeL96RATc^vz9o+Gv00Be{$e|a1-URL3RN*kea&tmt z7rh8;f%KvrsDYV|TSLlT(J45Jw-`+cT!6_8kF>ySekV<#%d_q-52$X=Jb}hD?mz$n zGoQy7bX(;VFzot<0P({B&CYha9C8jp9AF%VDw5Y_N*39Q$%Z=NH=T4T=rt;%Vf3EC zZG(9{XL6Z|2p&_;3MfSpQ{7kHzW@?;@Rdy8*Lce@-J{ZJdX2AFP!cT86xxQ0m-%MM}&CaNgPC8NFz8oLGQuH=Q#u%RTDO1 zyB6*zWnW7>COxvgw^cq^9pAD51!>yE)JJCSLK$C~$yr4tw~-mQf~v>WBQs@E5i=yH z5-Hw9xXkjH{?igDbY=>`5t0EMWGQXFa6ma9N~vq}A)_*uF)$3{3PNP?M$+3$A4nkW z0gsyV=W5IDWU5lI__bxjO_G5r^yIk$T1n;|vLhz@`$4atC;<;|6(*B)n?LrDp(HPs zIXFCE`Og3zJaJZ##$~^2NF-&R;HohI1@bnjVnEJ#@t+3-X1YU%{5zdzrc||#q|{kL zpGO&sSnNBgE3%_dS8>)&%FQOzT7AsaGOF+Q>j z9k~Exe=9y*v@cA$p^NG~>r<#2X&D-^Q$Lo&(M`Y3F_$SBDyq~b@)EZt&y);EZ!^rd zo9~8Nmr(0BH+PfA3u*T1(8xmVkVwEd+BY+E<%!^_<2A5p{{RTOBck0fOyZQJx zc9vOzjg^t2b0Vxt2?4!4jjeKipCLWUnY?NUR+^0eL_ zque0^5XamJw(Gg#kxH;>F%!8)#z2W z>hYX@nZRGnie>8FS5>d7wMobJR8nI;JZJG6;?}W$){CNa#=SO|rddrDnR|8tr7R(dBdlxpI=@OZkw8t$qq4_3 zD+`mgRI4FnJ3tiWidB?JY~8KNGlH*gIm7G{BO*9bj>e;|{w$qxcA4nzuf^6;VfBl;H&0!9 zjIL%a;4-~W*S%K3UZIVssM=XWNc7k)%s8iV$#ZYf0~32?c;BoAmENy%>3Q1ucMTGp zHL6VJLEH5Ooy2~eWMOmfRJ9S--z}=mY1LB0ccHGJ&mU+scLvr-%u5@02W-g$kjE|o z0ze5RN2Ig(jd`urdUwnQbETO2_iA)|t-VUoXQ(w^b0Q0~3dWWFcZn!fml+&e3S946)sd~*TFIS>m8-gHfcQ(`PSR?{4%Ol3h>4LzJ*dzig8FPKs_I6gffa}9~ zaIjiSb*GzWPqCWe?B3?q>`HePnl^sKk$RAX+>e5K*U`?i>T0^iF<)O_`DylUbC;#kH49^)1!q_v-CJV?2|F2+R~>L_c(GQIO!^ zZvCJD^II=Ub%v*JtC)4|MXogKt*9PD>4De-87#zLG0Hv*07xY8Yby0usreLSYhrY6 zU29E6_p+HPEw1o+wNTX8t7-^6%*GD*QH=#g+p@>J53Bxs!e#gKXG)G1_^xsjdV= z)LDsPL=1AzYI;{q>B@?oFq)0riz}o{DTFdX8J0ubZP+0PrBo8^R1a}lj*qYPmay~9 zCtJ&-Y4*k?mS2}!xfSkZTX;gi3_zif=2wxxiZIQ$KB2C?IQ&Qa*mW1~}oo_1p)W2ah+UFvNMR<^KCMu5dVO1zGmHcTUuI9Z+(#s*?*9T%mw zOM9nIoBdw)rrJc^H+WBPcN@tBjH$P=AqY#wmKYJI(W!=U6l!+gXF6mCX8<1Jk9Cnw?2ZA*_N^rIm*&@~zFo9`Pwi+uKd1F>yz2K?boWR! zMn75V0n!>98=BM@?8ad?bxx)lteky6O@wVq!?2aB*$T+!5K}%8TiC}fye+4`p**4X zLllBJCS*eFs?WG?DhX8pvk`?EHJsE9(%D^H!+f?8+mtd~%8x8iBgi8UBvF)Yip;y) zda5p2js}DqmPs_e9%xzoQ_SxzOOEsUE^lCR?>S8qRD;D(S zbk-Sqc3+pi=71?T$K8FiKNSe+!8GbECpM1Eu};j3+mu_2go=26@y>fL>dF=HKp=&x zUn$hsw;wlYEycPQxP~Dli*Xvb-*$cvw zra6)CKJy$!f5*m;dvefl1{eZQ@EOPPu7lG$Bs!x##o#|Co|VBXy|~E?JcaOl@^S54 zH`CvXzgVr~HO6yPd349)a9VRj=Q_csa+n==Pf>qJ`ZJ(9{*HxpS5#caRmFOpKb*uc z?PZfi<0EpmHNyrwL3pJWr)FY;X?|wjHfRHvNcQZxQ?gjyNeqc5)RYhy2HZZCe0q96 znAD((-W#8m7e*l*(;0JU`FLlHk4%!n9pPmp7G0!sS-roBhOTc*x);^FUq>?;eHG>( z%+T~(Lh4F(lB^adr#Vib7KzclS=JA^R2@m$fk?A!6OBSy-Qobpt|kbdJsRA>Z7ax< z&W(T&GMN-HAie^sg#m_nU{2hSYU(bUu%6B<=xz7F@<+RL(W8AqAYC8Nl)UO=UUSIY#pvd&GX;{{ZFhw~U2zvrTSM6Sus3e~-t%`G1Fn zLX+0{k|voZ$AG3ZNK*M3R1TI@8$3B@BaXA@bINy zd5DjH+9H31e%nXw6aGFF&%SX>9jA;;@E@6(-gf>!!|&ogY0rxIy#D}bq=L_#O$Hq7 zg6ny6(%g+mW5}Y`xz@uBV8HANSS+OAw-WD+OhEIW7`jPPRg7F)2=4Esj$vZtrfcrC>0cmpCYhQz<5`vR0@S;69BTf zOiYTIap_Hm8heUmi)hN4eM1&T(0Fp^T`?wHK)ZycCn05)d;RsUf|l5;4!u#;dn;Xa zG$=v7&@SSHZLwU&AcUA^n36L-!P&@^SPXDW(G9ZeZ{ud*L<-kw`>;|{)j*Th zQ|Z&)o+l!m8_6f^C`&FwpH991fe2Ye{n z44EO-rLV5p^N;BWx&vu2wfw&=u3JGYwk`{9VvGyK$}%1~03(r)7n2$>Wm(a%4&TE zx)sPPy*RAx%QaHA1kE99g+dH#4t-Pb+fmeRI!excV^W@ZY%Vn`c-)pNdu?wtiwv^| z8=dxM632!x@yI5>JD;XkMD*`TevzGJ(>)2IY0>EVqpS$ zolM8|Qtq^?n6y-DP*Q^)N<~W5ly!kk^_CkOo~3P~UPq`1uA7QPD2JG?9Q>AuuI=2s~QI(oH-vM(otTa}O&1nqw0&#WOh`77h48w}wvA^?k z08*BW%>zAs_307*S`;S zK9;%Zk<&Vi(+hivBy((TvRcfSMP)I(B2BD)Vp9APYjE{fP5$kWn&Qq~j}Rc>QF z6RzYezRsq^qWZ1Zn-}rcIaF<{*g*!109->0s9nf!dlqGyAVf{O8+UG0$=&2H89P8E zo_PNEh4%_Tc9+hBOZ*-flvTKpzFYrR!8(e(DEaJLG%h2PRgJ-kS) z-jK*n11T6B2Hpp>!EIAd`UD=LBT(54W7>HNs6{<^u)Qtqs;qSJfqA zGTM_=bx)$Y>!Y1rz+k$4dWM40eLm9oyjHpC-d|m@_{~9$S>|d}tVGJU5|t=pyJ=j! zbmqFX)KcG3w{F$Za$acz!WJ1-b0fA@WZH4JbZqbEAdY@g{*WIM`U_R*&y0Eop=z^r zp0jap9*+pKTbt<~z`-20@X6a37Upe-3P?Z$7{jS1y@m%RPce;EilsKj5|8UJTZ84R zjhh9(*98&0ZxQ@`{k&%`p=bmo%CpBZhE_w6%717dq4Qrcv}^b^NN#&}@m81nV9&VGq=paN8f3W^&TyN4d)zV`2PUoSw)fK+%{tX=l6d9 z0B^#uMy^*-0{%wrjJ8487T3wrr;Q{fbSYJwMa;62ivr1G**QE|+=D3yuIivw;tZI{ z%NyBkWo_3nHG_p!j4B5OimA>9;&-tnn}9f9Ca@ZOI*z3rHZj>>uAvFKl52;SN49A5 z--#hlxf+O~Y@+TCgJS4g0b@Y+%5wx>LYDX}HH`oSR<`l$4dz{bD zjddmO+`z}_Z}|AShy$P803S?wuA?=V>ia9?Md2G!8OAfaOSx=g_pv17l5>iS%nU*0 z7)cfGjs=3)4sI9cj|5Sv=-jP3f2QN2VHcF_uPElr<_Gm$g^-TWWY7uX6Dk;_U}u)f1T6fzm_{+G0O3qru(E}oa{La zaezP=&Sm&#&?&C<*GFl6O{T0}FVwoPPFh`R-R6qo&Kc6iA|ieJ5g+EG212{h`%D;P zjEB;nGGB;x5Aj5+(BSgz(A_EI^`2m}og5yIVtPBL6R9+}PHS7qRj1Xqbq>8>%sc-10d-&rQmt9^oBHG-yq`}$-dxE5#knP#v;W3uWFe_)( zT|H%|>Coyrew}X$JdG5xMGQ#jNk&9siU{rn-lYBD3a^LH%Q_g^MNZwQU!o+s+LCs_ zY|vesAZ2?S1~S`pJxZ)ZK%z&3^zptyF(VfAYx1bkYRvPrYtXch4%KbZ++pkut z%DoX6j>X&tFxpEe6CfaAN@#73TP9eBR5V%y%F<1+iuM~TS=S3ytOC7j9c^!wiv?&E z$b`s9$oNu}1iYhISp~ZOJ&9Tt`u6d)SfXeW(&p`0tW{{p*oQ1v>6p530#(@q!Agy5 z)Fjgj<0sh%EofMZRK-1_GPAvUAo(dOVYG+1KiVk>BH2o`O*3@WEREQz1KX~aAqj%M zD{Iv1Pn$>DB}7^!6s?Sc5(>a@aL)=1R!xRjs0v@&vH~O_@njm{Q?U z222)9_YPno#N}#Is*7QEA=UyAs_J#6FJ!>iOe}(5W`&hZg4FY#>bSZ9B35lF*i@hi z)anzO?%EY#R;0o$AE?M!u%*O$2g6l3r!HYrA4%CI#4({U5G18Ocp9xUX<^gJghxEs zg`Vd!Q_LYBL2o|s_MdMGR0nje*iYqko^NT?#wwl5O?086#=50P&8&G$y0Fg~8p8q3 zx`_%hOpk>s85h$mdt`DdO9@itCiRR=I4iZQb%R5!ai2bs90IV@-?s*0JRK0!%6}aq<6132{$SV?xM$e zMOM*Fwz|xOtJAVga>?kBu1=mXm|#G%Nu*^GrAR}pTCnJ@$J;?x{UscY8z^Z0je%8S zv#|D;Cl!_uBE>aqnMpwbDN&aD>uoDF>#nalmG~;zi<4HH>lD{znpGHsE5&&O9L_&e zvW7sCCRr*}+0cd}>gqTg&dT1`OTw+frXZ8ZvTZWd`Z~mcU~I_)l5DIFKCu-jW5--` zV#VtInCrb2kr_rURo7LJlp)QzaOOi`fLft(+ki}RS(%a{N|LG(WSB`}>^HWUSvhbr z>m@8@%QfsRewv8!Oav@W8rsAl3;j?CQl)Fds*R=LcWSa?>MK4ln z7-I|pY*x@wMpCGl7RQAvF7%kJk5;;B!pd99I;ObMPin1Nmj!}7MUJwXK%o^bR!x$L zm|+POgJ*6x=5--EXMusiSrF&xhaCR^4>d;Q18s5{cLs_+3xK03S7qvd_ud22h8y4p-P7 z+WLQoigf+tW_|XVn2(74zTZE86myLJHFRmY-e=w-BY%&Xo%fB4+i3az9tR)Jm4APq zY4)FZncMB{8~*?=^6?6dSKIFs^ZV^T_wc1I2Wg1*-`aiVet*N~{YQl{{YnRrCv9UqIci;`~Luh{@Zv`fz0EPmB!er=>RSy)imNDQs9Z=!;;@&+Dm`o zKg-2fC3t3zMDnM{)E^`G{{W6EWgui9y2A(ke}S%D^>6U(&2^KmQPj-mnOxZP)-?_* zU#p`Q@p!D>Ck51PKhwO|O|iM1A*pY>)oEQa${CMUlf=~!MoQIv>=}vu73VsI!MTQI z?^^8C7SOyPT-vs$Xl*Vd69Npj#1kq&*a;^&sUuAtCyMnu$#UyxmrBDcOSUEa-%%}?p(&9y(LOuDvo+bt`9yf9oN0`+{2^F%s2gous zE)U6uo=;WLm#O62F|V)b_S?o+U7cM=SLppoqj8wqWUISk2Op2r3)zF;@BUseLL_{L zEH!(^ytC9UE!ta{G`7>GY!&ZrhSn25z8I~jW?uxc!5FC$-%5hhQ?RyXirVi{T|xye z7(jdT+%#N|T5h;?jlC>@4CcBGr7$sxhuJ$dt=Vh}ft8QAq^clDf)C~nP9kUTut)Qp zZT;I%wL5JJj!13^KF9bE>zb&658ZI!eLcRv_*Sd=s`A~b`opF2_`aI;bh;s|?BulG zs?(azq)ns7>P;=1shCo-SWi-*&gpC3l2MVSOaXcb9JZ8 ztgK-Z!7LbMlGf%jJyA%G$Ux^CNc*+UI)|Y;YgX1LyVeXzXQ{y=N}cbQxLL3}cXpD4 z_E#`6tdYxx3nJvJZX&snx&FN?%mzaj z)7teiz#T9H)T?~}m3oDR3k4m$;uqpgJ5|*5c{Hdr>wAlRKF&QfOAwAu>6c2oxx2UQ zN*gH-ZlsB#U`JpogOX|&T`{0)ZGUyC-&2Zc~8VLDCtaMXP(4Mz6b`qNglvRf@yEkfKp;!=?QtGClGtr^H&;!l)IA#))6h{ZC&#b(Ow?Ex$;xJ>ehougro ztr|T#(%fkmMteI;TX0Hx8|CezwhTxGg1L`&ImU6$D+zV*>I=PQ`up|$oL0Jp?bX>{ z;4-hw&esg1)D*IYBX=Br8Li6J+9MCGbSw1AO0rOt12C4r$FWM?FqlK3tC^0$4{>go z-Xt7*#Ltc!)mmKI3hQ@zPMfM|PoyDV)$bTs znHUg;KkVID9C}Fg5P1cMy>q9i{z&ydPju*CXJ%uwYeOhm$Y(av>I}tCXs9li zk(@9-xH0!xNSgluKuh~e>oclA(Op91DXUD5h-PAZt4nobv6E9?G*Sy8P(Ui@Sl4j%2Xp3ka zNp)|feC@nHKW79mPbx^eW)QpLWl)Q;nlh?m18Opzo}5;{sC+-3=ULWu3q4NOD=kt* zm_TMfWhcu)6sQPXcHT&uMfV9IMk5u{9ZRKIn#JKxxhgVvs&uQ1Sm6adAe9RiZkYOl z8W2H06THMm#p4C>i{YG|b#Gy)=^{8fgGrOpWPZ}iZtc0Ek??=Bd`TX71iJp!caEOD z8g;T-TsG)TNV!qF45$|)>KFnu`;WD8m#80wmsa(*tLp8A^$VpmbdIo(GS+lSSksvo z>&$JxGuWIuHAM|ms8?b`A*S(pY(IX5WCZe@i`r5xD2V2|XTxs4({xQUPhOv}mr}A@ z2qw7wY*j9;^xai8D^@Ue2uqNG?cPGn3XzPA*3omRXtz3o-yKTqLo+PTZ`h2aGmSb; zHdcaA>ggUZ~WWyqye1YLtl>3ApDmFUSnH8P9H&-)U&uKQDD!Ed|Pmz^aq=mT(@q(&U60MI; z(Z`qaedNcj9S?S}$aP~^XiZg`&1pW0bh8A_2~zei7mexnLbQeLBc^X;Qt7dJ_76~o3vXvQU2H%A@= z4cH>Fkx!**f+(!@IkhNkqIh64+pIDyO>s5C!ooIXV;PrccOb|YaR8d=uBp=Oy`{rW zVZkCHO6?%;7=qwzW2{q$IzC;yUCiP=$~k{89+9%qZ1jx|4GT+vLuYAfZK42p9kPL& z#!E3Q=gDGEy=%>I@?5RVkB06mo_>rD2kss#k~(+rnZ@Df%0{8Fmt^$|q1i5-&s6i+ zt!b<=xSpY4`eURuCJRjCH2wy?@kT1bvRO=7Lzn==pcPFarY0SbbS+QQb@wf5$TUJmnq8#RBmDlYA zA5SgHcH=saTN$Oaw6cOnf-OOwIg0HK+gM2;vjc!mH(-K%WMtO4)%{a9MRe89y%aHB z&uugct1Cz&`$sv>%pBoP2^h&Fjw_cMbI-3+bcL5&!Rah69&J^1cd@QLTxYAg zw^8d|ZFQY$SncK7kjAJ9iWpP?s1>q8levyd7j`)$gN?=M$3*%)Z=|T|*0kuinEaNL zRs#`ZC#TOHm_MvxgZ)^PW^~84j z#Jzx`J);E2wYcD#)b6iY>ErbaBc&K^O-Dr6P9|wp);DNmHB;_QQ9P|{5631zD-)T; zB_$*ssDqJ~E+W#}D6H%GYmoKD?uUPS1f4ac zO{MA4#-zh@FMej5ki)sWfeVeG65fZ&$lMmapOzl0Y5tFOhfM4JV5{Ge&J$wvgxH*Gh%nFs;M8$%*Dq>f1BkEL~*KM`Lq&?+MhXenq5JKxdxl}79C z!pz3Zz`93orf2qz{r$41Sb;`Ll21G`_ym4`e~j0sN5?*f$X0u`Ryf`AtUx%(4eIog z2O0B_awv;Gh$lgEc>IMNcxyLYwL;<)qSLYv4s~`dLiQD?6~vn&CO6(UnfZ?v7uvP8 z<%RvUK8YlXM9VM%ODRxKzA}A*An-+9#qqzPqLL?BZlr9fR9jap#1VipzzqFK1M%@( zU&!3G+-0<}HHy`Y!~6H>*`k zj$*1I_1@;TB!Dc-Nw75?3y)Arc@XSfzi)Gi9wkyzozT72QZh0KAaVf940?;6PbZ!@ z6^DWu`w83(_(sm`f_DN~2-_Z4I2xAd)#z;=xvr0275iNo@NsB&i%8N4;C>2I4Y`yHv}+VZdgQ7ia); zlFh>J$jBJM;L~e;m2q=bJP;)A%OH6o)reXGA z$QT`n?BVlyDVvhcLb}-;Z{-*=#fZrRLKV+laF|a_nUjKyvP%7ROgZcJ_y48 z)(PO}gPsSyO=h;~8Zl)|N{&g|SgH`flgP?|4p(=Bn%&G_;vKKCdO>;*DS%#QA5y$g zJJc@*Hr4Q0bK1hJ(qz-B#*EC0*l^=1kbqf0c*oyCs86KFq+4pgEnz35r)zwRAKvY6 z^tRP+D%c@FO~hBBbbrz&^G}EkL#C5fxVDUeJa;{jD=!M}g&h^0K+7Q^n=BA!vwxH? zG>z&fS@E4WJr!3QLs8YrzT+<4shOEPHVWQI8YzAp3b*Pk0!SMIP*KQcer`GgMUzXo zzJfhN=4~Wi>&D2f_KURxtedif$lHUsee4?F`fKBP>rH=8(O0LAm~MN6x-Ls&WKAhn zPSUF%NC(xB+>DC$o@qKY=8s$XkmxS1>F$Bhn%|;*CdysbR@FKx zK9yWepU-J&-5qBkV-ZXAR#{x1b(6YRBhsyIdl%&{EM=0=rqz}vKv1zE$w%e3t~THu zz_tiDuCJ(ATwPiBY&AQ3YwqS=JE&%rB!~cZqeAJi-Lsc+LIHxLHD-@5-4WJ$C#Zg4 zwa&l9Q9GSt>!tlukAztqrBw9eO=(OHi0Q>U$$Uswyf}#|wRF_~Bj0_RlMDvrL4lz@-4IRjxBn$*`u2kTH0W7%p+U&z4f;k>)Ys|+) zb6rj8hgZ6JrINKzQ#xy{^pyuT3~1u=x|>g5#H6f>KDE<}R#I~T5>OnVf3vjs`{Gx^ zUZJz=6xX^pM4MKyx}F=}%q0MZc;-najBY9wWGlWuZ&?S@wZ7b|kPt*~##Y5xE% z*$$Jw`xkX8UF@b$U023sT~QFa)k4qd^6i*-xz=>fyp?Vv(fU(gjZ7MxaLF^kyXhxD zdLz<)pyTUP%xGOF80}3s$A!#X-i+2)CUvOX5D!|iUE~LMj7gU>pMM#R58+Qx^*>x% zU2EC}){oQc+MeU)6&0JZk%4YDNaJ*m7*Z6nge`{P3a52_Yh?}U+g>f>Ni4+~L0pL> zcMMdFfEBzRbHUG=$lYA&=Ay`JYS%QTl4Y!4pvNx3P@_pSy;pt5VZTcjQ)VJ!Sk0zp zeTrr#e0m3|w9D1hZhu$l25WO@u|^UyQCn*bst2TP;A6o4Lbxwl=o-GYsM%atK+__s z2^^Tf1znFNm_GpLJmZ1jn&SHZ01SSp*79G}UY=t*Ka9Znj@LGFIXtGX$K>mJ{LVuc z)vKDXNP5jyHwbGb7z-COCvMs-rQB zkkT9@1w0YYit%Xr`PVNRam9J8*Wr!V=%LhY zGm6o6ENSge=1clpfkSe%RJ>PAG5rGS29?3t-LK}ir>Pp&!-kL-b~}Xlm{gYch4nR# z(g^x~@+PxgOSa!E%mXtkSd!bp!zwD4IcVP=kU6Sw=-omdJFAGyk{c~PDN}m=tm$@- zeYk=_Edu2ZcD6P*Cl%n^_*8n>ujAJn~0!#`f(G|ioLr8Eyl zbQUW;r5~EQlI&E?^;;R0ETNDapGzLo=L2vy$gS*+e4jPbI-}b`HQNIfvS$*Q%yJ^U zfNt5iazIyIpdY+(*L@YN>UT2gD|Z&1sljC&R;?^DOAK?R)!_{)#LDiGTgwwbs#N!m z_c=f-+~a(Rd91tVH~snA=ne};Vr=zZk5cnJMWd?f-_(PoL!sEM6_)6(BTUdp`mH$4 zY%H-BoeG8yGrbBPYw>MsaeHSRws!h9t1|_>g6~Eu2V0L8w~Yyw5yyw1Y884ijMoi8#pxg?0Y`qsCHk)KbeU7gv7*WAFRUV=WoDc^-*;lF^ zGPtYg$mq;C%_|kvTHYfaT|la>L_)!}swf~5l1B*GcDz=DDZm zAEAC{Zrt+g)jo)HlO@!xRnWev>Rn-TLaR55(z$%K9Z%C8RiZ20#%8lGimf_1jJ7(% zt2dOr09=2tLpe=jtMt2j%M1HCS5gs2cM~LR0}q(DF~=ZT08$oA7vvDR{o`8Dejard z#+|I`SCI`GOZKsrIcG*_&&l2;#L>IkGfJ&2L6#%xQs4(95-V13d0PBH^_N=wt7bZn z(wueeThogDF}13E&}n?;ClzL{mc68M3-b%ojen+6V9j>B`l9g03R7KmD*&64Q6|zW zX?m+llU!M%SoGQCf>^F@V3YmM^4eQcK3-@~tt5)?4;I0IJz$JtvJ3FdO{lDin@uxw<>17;ILbsO-fWr>Y*C4J@UEFVza6O;1*7ZKNX3*U=J!cDj$e%nkuAc^MoHxaPW#Lv+M_JEKJu z@dKz`{iVZg8e%cp&0I`bkuUF z)0)lNJn@-A$7*htYAlts*2HV9UalMk%C`u}kd!pkwlaA5$6ep){k8AMH0t1#mes=C z+D-=OZX;8-cF8cVyO#(_2ZNo=T3^0Sn|Ez*aD{h8dNXHv129{QY1k{6#ITkqb~mj; zwgJe{E{gO+@g(T}yTMYiqAh1LeP_`=P$+eatmWI^z@)ich zcUa^wxf~4|x2UYU)&wYELoqtLO6WBX zv#2kNA&kmoviUtnYY`Wf`gYuwW#YRHazQPw!U>VsrtbGrhvlK{$|Pu@f-nHbsUlT8 zc^Dw$JpTYXhs#M6w!6D$tQ8nG07yJcpr!Iu7}dP!U&$q<<$&6 zxXB8mZhcGaGoD8rjPu2O*L3&EH<_-A>0Yr>(A^QsyIA?F^82VdRjc(SjE*lP9XHjQ ztIbxfuaV5MzDFotmjqn^)r-uwtss=P&Yny#X4xM2YfKASEbdZwSr*u!WhE2@WtKCJ zRaQ_X8TMn0`)yKKK^67Y?wzVwLeoihWg>M}k&AaAolZW{yKc~*+TR)`FabM1f#?sI zTK-VHxO5XYpmO;wMdi27k4CVR^0JJ5YWka?T^Q=s%i43R38I$v*F~BE_~~jki!ka8 zAV%;z+`Z3zw9BuTc&6cIO|6BMV|dwzl2Svp)w}@yewQ{@P}tjDSdCuZ;x%665;W<# zp%TR+#K-n-6+=$G_7P6BF?>^YP;L z%wljcf&u>k0a&i3nitUTm1Rb3N5EiD_KVHniisxM>nOtrm^oPu5!9OP&=hXz;=6lb=LH_`|Pv_>Z*ZVmC01$u1xE*8$jrl7UtgW!oV!M``PapZpt1hU1TVmle zYHm9zGCtVPbv#rm+9qpKhZ0)csGNDmMdK=t>5N5t4F-(kg>{x|w`;Z9t_?5KB~)y( zMY}V?lo`~pY9yrw_D^|rYu2zUth8fotOmMe#E7fMwKE0>CPG`cy9c?cQSHe0rrAmu ziLlGn^1ZaybDC(FgH;sRWUq3$RXpHlv{JdA+hn1Jr8yAdD|U_6rTxXzwOYM(R%Ij} zJV^?hsc0BfYFbik?C)HNKv?sD1u0#&{3!bC){c|(bFVYfJyUw6Y~NV)vM@PL);{Uw$OT~qq04!B`<0m!aKhp!_x5kfxI(J0e{2x1K*Jiw1<~mYpcvw;n$Q{V#SPK_?kfEdl z8QO$bPB9*Tyv;W5cNwd7mZ`yGt6r?UE?$T9ZvbmWssfAGOCkR1R?Id-zAxRh?5T=T ztR~bHM8>J6^dG~n?xhuyHN3ie;v`)~W-^nzl?Z#0vnUx6ki=kTA#2IkU#Ac0Q)y|W zezTpm3vG4`+|T-sEjes+=xF4T>M=`FQD`-SE{V^XzleaBTSmfx^{4vy1t!hAcETST#T!vml<2oSUXt%0B_oO z+G-VA(M7~0!fx4)j*)>}DmH$x_4a9qhA8)$N*Zw-JO_f`J@OY5@yHR`Ji zJxco0NpxF{8dsLqNVO|wHmL=|_U5#dr17@JjhYFL31!`tBDc3e`H|B8QhHt20_sOd zdarA$JzeW&wdy{l$8_hUoj}QAGwRp0^iFbysKi;+qh}+A!@boqX__svby4Wlz*tFh zb%#*P9GV`5KAINhYio%XYgcIDxs6PcZrLocMqV|_ItdE1?qa?&ew_Rv_@AI@l6BO5 zX%lpAt<<`t+K~B_o(L{sp3>K`bQbbm(V0MKiXkYSyaiFsWB2|nK3(V)3t4`J_1_5F zH!S3YsZW4I^nG~d&aRApKWm@LNHOQNqcaL3-s~hC;nAsyK&McTc5r@UcK(%HWnX4A7*>`0Z7erLzBYS(Td4*MrWv^rhBJqpXZLjYwn#Rva zRFde0ZTA-7Dt8pSl#QLH+MB-30WW}~&1P+WGJG$wxVD<}t}Mwa?-Xe?F7q^T?-9rL z!Bn;v4CO!^`&OOxZCJjvb*HKwNv+ddw?_2NuGW2C+zo>uAgj6%rIg?fNq-54p{FQDKORTv z!;cZ2`3T3qAE>vPf;sn@nVFfN8CP{^;DsU(#caD(K_mt9nBM=NSJ0E`L8t zfa(Q-9V}ud*be>CpJ<4fJtwM`Qe0#EGrY&Q@A2Z!WeqGPhJ8!>zqX4twrLkF95+EE zDm!wIY?5tmlz)%5JerTsF-6m6uu6CyTV9OJM94u-iqvti?H=3D2#;@We*P_ORo40> zVUe~Er~d#ti2nee^sSdvc%;$pW)JtJ)G?p0>dTxD-)Z=nbnAI$cZ`j@Q%iH7`kJll{{Y<|ZjRqCZYDd)+gmLx4yi0{ez=d;$ezeIL|~7iuyXIw6{|r(xw<+BHrswA+4_ zDs-`Nm|YemP1RRV6;v-S1KKM_XC8A!%?f!bbjvy8n^DuJGs$f$7G11`S)_SLQrIL0 zcH6+*xKo^iR#v@UVY;)?F72eXx45@~mMQyA(_4J4xa!z|xG?SEkv=W3lUE1ZiaTeqTV}%v{CRM3WYacWts^ zLb4Bgu5kz|AxA$Cn?7{{Wn?FnwzBji~gW zP;*orrQ5BvMs6{U(s&#zUvn3$5R6c_BSRfo%3F|YX)O|_x?mPULlUXldRO7!N%Xtv zTE>L)THam;?%PRo6zIF*ZQhlQSTMl#DNu3i1Y;Y|=-v8T{A~Em@rzdI4!HeachYvc zb@kL&Ho8o<5sj8byfo4RU|Ov=|#jk^+;goUAs38^X$?|GJzfz!8x$dP9x@z?vpnFS* zu=W{%nb&g|X1TnKliJz5vxr#76NVFbND8+F%9PKf;q)^Dhc*Y&W~OOd3nL$5CB3TV z;F5`$GWv=qa`&0=rFfBI;G~vpk+}(q=72f6R3~Gp6c>oT4NOgimkD6ZlEY;bE0Ic- zA&{WdGaoD!GRtU{u60hf?Z+L(tlMHMJL(1B%ZT>WhE7FUn~37O&AHYrR+`FYr^X{SP!>q}jH!=orGP|}CO zV#Jsl3fxTAR~E_0O8I(}h@8rmAez>z)|^VL)4DCJSF&P^b;Oj-Nk&bHZd%oIiUT66 z794O1uB6tI6YVY}l%a8Z2c@vem9FJ3A+>}otywyUHZje#ckARttfXC%S&A5OGL)=6G(nI+oOn`%vlPi| z7Jg)aZLEUpttxoA^`^>D$*gXuFl|M4oY+YTI>Y2vm=%bZg(`6>BO2fc0<{J7+fxFq z)SN=th6*b;x;Kcz%-9XhX-#%9i(CiPrAc#5Cb=2#qFE=6abZ@!k!ujMQ;G@iuFDLt zO-(~c2N3M4N48u>7_}=gbYD0)PNek1KTL7N+;35IhDO~^sxCfc5hQAg z^ZjhkjG3Gm6pYOAKP*A%%`SWX7c9 z@X0@g5kB+p?GY30zTbasy}o_CP^+p;&(F5e{3qw%+rpWo@3f44=h`FNe{Xr;_no{k zL-hL6hwZ<=@{jQL`^SYTakPHl5$`+9{B6Gf0BGO-o)sEa+xyP@fAl`{_TS(Ae-8>( z_|Mht@w7zk`+o7ax4->7DPBKYU43db>7*xx=E~mK<+K9g4in4nMtglfcnOL2-)ydv z6mr}abIe0<9COYy&(rJdYDo(!Zc(3a=t%zn3|AR^Bwbo%S1KNs}Wv?H2Cy{iK$~ zE>=5>w2Dg`dE<@kHAF!$)HKrWH${B$80WLt!I&e2JWfPT>Fa%3=H6LswCN@N zV?DI;!+E6#5gj{Mi6i1$I4(m)sBc$9jn$+>5o20*+~1hGodwliYfHmM)ldgaXvK7@y}UL+Mm93YL^gj~JXO%|^=o0#QQQ%I zVXaHk*8$!L*{$WhYlOUk@|kOEn3)2`>`wTLC=4pwRnas#E_$-!IUd(kv0ZN6qZbmS zcb2yBLoK}65|JI zaoE~*>1v#Y52bp$RbsPwjO;;JxsOL;vek^)XopuDWOB&ZCDZ1eb(_mM0!e8$mwg~o znRJ@n?Z}WhJaFR$Kr4gG2O_dsln_m&Sl$C9cb3|XisVXGH;#SkQKJLY!)tKcmG=)y zl?`11)A{#dg2aY9EtUd66k{;ehUNA)32PRi1ki(?B^;(qVgPx4z47{t2_go07A>p> z_Q(TqFR$bXs1Q3=ox=xDpu@@6Eaj*g5rw}G64b$Qde2CdUtdOn*azOg2o z)K@l|g|+0+&1-R_C9TD>tSajT%E;1~|tZC;M5#^W^xis?qL=?9n#{XFUI-3g^@`gn{jO*sk|DbAl-<^4wjdw8(Zb!~oL zoYrA`$fvkn6HV3aWs(#P1osoo6ws1@G?2V%zh=d@GOW4atz7E54@}#24wZQpoi(UU zZsSJ2NN1aE<-h9K?-FlYyf94!=j^AA6zyk)L08;2$H>O9)g3|dhvokOS!<0$dsk~M zNukd6rPNtiOyu)9NY7^LvgN3*xL7~4T`)iq0-+HNwu#$yGQGvFmw6(Hq`cGg+1mgG zGEHS~B#nWA>XDe|05QqH&1v)6+v(b_yQJ9`lHW|#wL4hR-K1rX8@W{!$oY2dpdMJV zE(YQU8^f$RlWP;wDtdDnjL%bkMB9k9nzN0XSf4^<>o(PkyEC=d5=cP%Vf4pvcjdQ_ zD|}_Ydo4!h&Iy9csW1%7xa~wlXImH0^H8!K_LiHA+(3k}3Y~_||{+H!5 z`ZEX`c5${FeRefv9BK#vBXGRaX#&H?8q)8tEwAq6hD&*5O*-ay;=9@{p5i&}1ZgCX zv_>5r({aJc7zKa_UC?@KPuFa(BEQk*)J!)TVu1z3w$sONG_uEWDww2=k7gm=0hp=S zNnCMSFJsP!nT-XEPM7Kye>9DAjnh42%eoUmm@Q}N=q}?acRu(vB)2oq zvRN6sL7`}zqi%?@yS#WOf4bM*d+Qd4rPe6bU0w4L)4f`KM$@-2>eM;|OO}_@eIvi- zmgh{Z=eko-6z2Y_y1hCSYYJ~8jmd8HJF+5d!)W@#Y8q!q+(CI`B=SA9SJBC5Bs0MG z8h!MDOy#j80$X#vff7Vv=NTfdE;=sOJ#$crbSsOC2`uj>x02gko<+O3wTi~$w(##n zu$Z)@$J=8Jp`9cl0IrOAIM-UIsh(eS?yuImqBUkqC8|1yiKD6=Q8;X-qtkdTZI;4m zjJ|sZj5!=0p|OOcRPE!Y1&Cq9G#1GqiFGTf+UrJ@<4XzeEiEUS7#X`A#ss;xW^=wN zhz_|p1mh$C2DNjfS!o)FQ0bPJligWaUC9)GGa;7Z6C^N7*7L}qGn;pJjT;4?J&n1( z@$4RZSB6^ygQ1O9Mx9`xQ0>M1eY{)Vb&v^ADz(59I-?;c2Omp4rZubp6 zwCPPUXSa$)7nf2E%47^!MG~J$WkMO{EB^pFwSQ*4pV79;+HI}eu(B|UDAieUj7FI_ z=g;htc^vuRar3Ahck1n5G@VePhwJ{B(i&@~THj1`_ZQJkL-__ddj9|km-646>V~G& zSQ~b$o<~r10*0x(rkIL#=d%>Vh2KxHa~%QHn_g{{Ugq30^gmu`~>lD8sK9 zRtm|w0xOkP^Xm#d$Qb%o=sWeS`wZ{r5|0lK;y4j>sF$KHH|!{qc1zUp^S_0L!^Pr+)_xVksa*6FDjE5l^97P ztcPQ;WgoIDM7`7QtSqeWrIS&D;n2@1neBqF7wFPQA!oW#y>TmG`?gq@dxFzC*;wM}4#| zxYP9;?J+L&o9L~tG}6<0_8saXDCW)`uNuu>8nJxaAbm&T; zkwB6+FB#t(D*?MX!(*Ov;*DTS*-Nt1l6spD;Ajad9&+O-sSPPGX-wW*w zakow|R#Sj3Zg?5>92rXIoB{_NkH)#n<~yVf=zmhJ=!nW$$>UdSEm0OnteT1S7Avx= zZT99$67{gey@-N9qy?O&cAWHEhHHB|cjqgin4X(y4IivD zH&$(4#&m$XL7QF!QDYOM@)+9-ab)acadVIrjrJQJNxEu>tXIcz*Xoler%uSbOM~RC1j@yRU3s=}w*0I86<1h9bQTF0Q#>Go71Iwf<#onF{2_ zO#-q~X^1XC#t68JA}3K~hAX+!JD&6|z^luMuC71&CnGk9nTt(=Vi8CMS_k z84}F0hGHdzHqZg&Da!kBFgedW;A1(cx};%Hkt)u>wiq$>g#_m~89x31UUTA)sOt4e zF!okZ$kSCxdPtB1F6`J^mT}5#sX-)DBOb*kCAr6mT@=ZHb0f0k9ESvq?l{hHJZF%2 zb4T0_{cw@MxO^5FG%E8r;q9)8w_Qhmwf}3EbKtO~94&29hi8Ap^WK&G;cCm>1 zNdbY$$~Fif;D1c>#VzHzP&$s;QkiMV}cVi=gf$HFZ38ma3$^Kd`DX#Z6WbfBV z!dg;gB!SvF5&=Ra$qn}91|#>kJNxzfm(BVbh0s}WAR+38kJ1R&Ny zEB$}?LBBCJFp6d&lelr%rD--R#)*b+W6tFtfgexgJY<@gW0Fgq{r=ohj5g44Hv`89 z0|$-7kbOk$7^nkOSSiOMRetr0q$=4Pggv64Og+FzNfb+@m~1VCc#MHg#WLJUh@Nnw zLz1i)4a$N*7~!%rz&!Z$oYXDt7Fm|YIm67)=*T;LTL275Qn+LHn>f#g7_Ope-@}_8 zj+@cfTANU0FFr8glE`CmcN2`Ls=S!vWm>+BxvgEojhN|UM0rdu3%BD{)S~MHr2hc4 zRHV=Ow-N4~L~u6;V}Ni2ZO(9i3ig*zevkbJ9i_FVvpwbhr?7V!ChbAIWy-8- zr-dZ0Se?Lgw>9tlvUCHc9V_Z~E2t{eR&htB>Ex;kbrxU1B| zQ_^9&g8taZV%;>d$FY^Y7AD$GaF^H=jV*S|5nJL`W<8=^x<2SRlhP&z}PcwP%R zO=H!KL)86KoUf_zx*e7BK{{rpn9(?h%-FE%<~D=50lL;v9gYjZ49{c>^tkRHPx*4~4{mguyA{IC0Fk?z^9!qbNzuJ= z)IOa)p=U8x^mdlgMUo44FoT)bI@?d^%DLRdDok5%I@RZ&&PPI5io$CBQPBF@lSyd~z3YuvlFH56cy6>| z`bpGnDW-It4wqGQSs6Su69&KCBO+kgsCAX``+G027>e#^}9Mb*tLhSwqzt*Xt;C3rlG( zP2{N+(4I@Cp4vE>KFq~$0!bCZ77g6>WDo`Q-kWuAF}horp4sgsmPi%^Wr3F2Wmk$! zE4!q{p_wMiUE?wyTSJK*?m)FOo_3Kn?t2@h+c5PYZmIsk1 zWRG}>;u5JVyJ>Vj)mj}IRkzeEt}d4T;?>l}I>N9s$0SKAq>;wO11|ELlz`wXZ3j8` zonqJ5i(ercTUy%uoUz!-u1*IkV6V(3+f{WU#JhyqfbI8ph>?w>c$oI|A5m+XjkciQ zA*nQWQd`43Ml!Ch2xi>41nrOyJZFQN^WR?T_ZHgKt-ZDUuq1JWmN=c_VIh&SGmr}? z#zqeudGW$+5%{Eei@U9~6)jtx&~4IM(>@t&jlD6cwG(riBSyzjwP#DC3#;o`wo1q9 zTN!K~D&1y|$|_b^?nlgIatW_o{;iFtit5(p^3`R9+GyH2i&?$cF#{NMD%#=&KS<)$y)Raf2>!{d6GW_~N)WE-Zs zBdl@di~NUG*yye!sj$nr#@NK>x`(U!xnEOP!n5-k8Z(d5Jvdd7TcPI#Y^G(qfX+tG zQY(CHFD_?seig0UPN2jd+7jD+h~$RjzuUV#^iYuED7Xz z3TqEF=UPXj=$ho+Q889gP9nWynIyEnH(*Td+b+v%NOgtfjtMMbP^%T30OX=I=Z5#@Flg8k0mA_#eWRQ!) z5I*_GwQE0D`rp)Eoph6`9YDuwYgVr4KAUT8X<0c3vDGZz(t2kroTpma>ql@@#?eqZ z0!DbVc$k@q@wI9iM^4z=vrj{ZZ(4 zCpULVYAmL68hteDmqWF$TJU)saax6bU8<{9(rHDMv$(az$r0XQN^R}o={c@D7kwPM zZP0tTUNJD1INA#zorZYZwjNZHFk@)kDBXwM>?_NU0F_$*3o#+?TZH;fnbVrJz1vCB(P`7#wW|zC z-dSz0A!%WAz%k6dwh|!7^<(yZRW+?wt$KFq(T84K>sEJ-e*=jiTVro|r^^~lsL1Xm zwUuQZrjrupJ;Oc2+w12@_5F*uO+f8Wog0}X-sg^?Zry*(ok?}L%vGz(4eIa2K@>r8 zpY4=;c+vXnL$Q%T5hJ=wxDkAmT)3j z7#9(U{0|u!89s1xpK8%hIo@)*{n2e_(N3ClJ4k4qZPX62hf=c`svSht7Brp{I2|~~ zVsgjRT^V+&c-!iBX?a6lAr=~{!ZZw;az+t2duVj{ZaWg_@@lM+_gXk4NTv{@D$O!) zR_?S)!OTE*UgSb+~jjdC~zr%u-DUc3{Q`mEWps*pE$%m?ML)|;+m#v}t0XQ|??b(YM$#~Hw##p> zE#0fOp#+xh@Fe!)IhI(B#5<9rpSWX{QbDnUMHyuwfdmkIUrzr36W+S@hsyr|O!|@2 z?wx3~_1CNZW-s}2(;5?0YFwT#L11jw!DTh=T}P@jV@U3b%ct}!SnVt}b-UoTl&fvy zB511xh4r?PCFQ;363f`{B1m2W>oSS96bd_K$D?or4oJ;L7&SRlQMZ#;OG}GMqD8pu zNb!j0E7)(B?uK^t1aGtm$1U^&qrOtS$Yr|y(GHFEuRBCA0o4r`M>&$y(P%DLz~oOfzQ;%t^$=?;NLXww^vTJE>)cR*96MQQ(Y!Jdb+mojIdvx}Kbu62;$lcN>;M z0orkn4mk1q{QWD9I>+%8^SPllcbSpY9Ruj=`gP@2=TCCoN6le6ftt!{ru6fu7wP5c z>I@zYc$i(>l}?;8{#yFE0&6=M%J5G4icsrT8!gS%h26IKOft#cfs!}$s=n1t#y!l8 zMoR=^oDo+yy&p6;I)Jo$Tc|Cf`G{i?-K^8Z72VJiF4dV9H&KuSxKf*xiudvOl=W%7 zBJ$zZ3cVPyYe)H-^EE@I8c#PF1y{xCK9g!~bnPqCuA}PZ-KZ8zQR+NxS6#>B>nGC$ zFk;Px#78=kUR$K_!dgKjv78VTp_NdxW$}ei1SuPc$Onq44^G(JS;Ku5qO@|!9#y4v zkztjJp%Lyo*m^{mK7z`2kWMF6}*V!W}5mJIE1No*7M8=RaIkbZ|BTKChm@ADgcd~LtH z{lAZk-}0>>(k6C^_x-2mZT>%hw}?`$9}~1s&$jXY9^Yv2rCMj_-ZtC*-)P_C!j*6G ziT3x~XxcxuF~83Hcv6)G{GxroZMXgr_wc1T5?fCRh@GR{_lV#3nU9a35j3xgzxINh z_4)F^2{yrsyt!xw(>!~d7YgKRt!7UYD!YY?6Ilq62%jlnhxR3cSZJ~H7x@1Gr62pK z>mon0gYi;-`=eYV?$ZU+CR0Vh2lg9GO_^xM+cR?|HJMbFEv~UGgVM&sD%gKecqt~mn@+Mj z*_Jo91KF^pTA8-ttZs9kGPW@@4FZ*{W(;Sy;YuXjYix~oTd8UZU8J}oy4iZgWYVdP zwibp~YIA@ZP-!qs@hKkI0I5oiYt!pJN+or!*{xIuk=}%ZlggFq zl&J?j1EDRhO`r*)k!xN5tWvJtAZwx(ux4|2w0xLZwJO0gK(s?~+hQbcZg+&n9x zZaO03#_)Ako*Mq@;iI?0x^}I=MUF@cmESLMq%7b*!l@q6N2`3)bd5$XeeXSQI= zavnt^abgT}D`iqM4%Y?nvIc%gQUe}g^lk}Vbn1={rXvxG5X$JQdE8DAtByZQYis%! z0dH4m{7pndwusyli!mamK-FCL%xadCbA##<(+->f?`-$If|4sIZV>DC#} z?^fgLi*e@>52kDLrTT4jzfNgCq=!{${TV3IZ6QrA=WUa$V#@CCPmQi^q7a2hqsGgQ z!hj<;Y`6e{UhAX181i>>q}p1Zb6jXmH?Hq#S~=uuJg-wVT|GgJ>sV!Vz-XNhZ>NjV z7BQdDcHrwVQ+#ha)tR*WglP21N$%RdoNjGpn!@Hj0?>U~^U+|PL>&a3nB>&-r(x_!UN#bo+->iHsw zE>=k;m^`vOM9BzkXwsNJ=!|4=l=J#uQ>O~eD^9+n(fJEm9XFNjX)HTOA%wqo8&TG( z$ucBOmC{^*zKGf;Xag!wCgl*x6w`37kFmR_7(wk}i!5g^=o){+EmdCCb*Wg{P^wvpJ96yI?##rR&7C#!SJz&lVrgoc8V3)g zbaq0x+^MX3hnB=>oF%#?P_BMqPI7IF84Q1>f@C#S&2k%@7ayy|0c~}1%$C}GmrTCl zFo69F$+dm)>D~16=dScW=-2U2sFVITb&+0a&MoK62 z4r6{h_?+ol>?3#TS9BcaDPwXt&UX4S5zub>@lHar8!~ z(swq!S3Hr&1&YPKYlAL(PjB1Yv&AkB*<)sp0k<&P*xIaT;qBJ=#V0GTbuUPIN;YdQ z%CX%<*ZBN)U^$`IAr~o9Q=*N56wDYgl0h*$$I?;bA}uv(@YcFqk|7*3vPYlX8!SGU zV5A>lE4JzX0HN>1B(RSAta`VnJ|48l96_n-Bfhy-ZL%yV(Z;|JQi)$2`PxN6YOf)F zWHjXlW%Tw7P4z_j+Sa{W~?SxhDb4q#U#~rzzpRD!nwpq&&0;wB#>U&0(A{G z;?V)YeZAPn;#wla58i{0Pp6v1^$+Nc@q10RYwnwiO!$STDsS%Sm+;(5%aRXn+Fs1^ zVB~$8$&xTVUYgOqprxqOjZ65gtF?VEQ^3~Lv07JDgN3Uhf)+%sMnt1{D4pYf6l7r1 z!ph*Q6#hSJ4iE0f^R5%8+f4*l@XUre;8|6b)T<+k8l$B-RrbqI5F?J76;;!jJ64dz7fQiJkmXw!39B zNPw3SX}`<$mEh<6&$pl5oz(PoxPso+QW`h7>RqFp?;Sm)Fbj@ybA=r4Ab<~w**!PY z?G)Wtq3Bu3uNQ~Z9Zu<{GcBsB+8D8f!Q}OhBCVX|45ZA(Cq*VgS7Hi5Yr7uuzou;U zU2|0$UF*V%v&V0BD#oZ6yEJyPvZIW8xg3HI-6Iv5_*3xDqL<<~N?KgqG+KV8tZ3Gg zUKz=2dr7rRRe52Vi4bpASj4J8Q79zfR7Xg>!Tu_E55*RjNbKm&p6PEVE$g49`3 zPjrJz;c*%>q!pc-9CuV}YRcG9%UI7w7L_d9@{P92HvMrVs)cqY2gTG$vo6&wvp)GS3RMuyls=KH4AN)_X4{T^;~-A7y0F7GAIyB~FJqQFI4 zKGJt38$j;6NX;Abh?EaNE?DCF&rfJHn`^6eQvq`v#d&0ta44=nWnD((WB15q1nnZe zUn~YWDTHoTfn+G{ysXNr$dzWiUsl?L%9x10Wo10l$=puAUn01%NEusrB!Y36nBX zfv0Zr(>;q*ZBUf1wAg6+D-wW}+Xb%745g`m1+dATnTNpw*aghgqsYeXMW~1Z>|dt! zikFF{XbPQhge3{3NFmimY)r#b!eo>syh(DEDGGHqNTa+qC3Xt9nbqztxhB*TRRoeK ztn!(8PcmqL>|~Xf70Q)BV`tFV?+r`IHQQuaT3!aljg~^nRRsjKSRUjvkaq}+`yy4L zYE^!5hF9rXvs^4M=y=8&puo63mW&DGca4q<+I{~3e}4*BmR2yWO_NnQ$QURde7II&T(7LDn;(e-Mw0}5NJ z#~3hdl*CCujGD+uRH=I=RzwubGx>vS+{ff#F}|AZREtesgzllxExTYq%pSNE#I8V% zQzZnYIX51Hnsrf<=VIhqw2$hK#aF$$3gb;kTm=U}1Bhf~1V~H_COHHtO;fZY0>n05 zRTN}zB{M9?#hXLL_a`0dAekcJQTHH_OgUJpxXC~*N+ty{Sz=40kx8rb3RW66sj*nM zE+D_FFn~QYG2~8TYxCSmWE@C}6sdAyiE3=TfkbwnFlGzjN-^Q@^h)_DN3nIt;*i*Pb@nQy z7lBKgbu3HkwMoY(8E#6u+K9EZNGej9p_zG(;h)vd^Gg4gS-HJ?D@6NWbkb{oz#Q{>pFr5B~sk*XjQN zjTr<->8h9wN>UXS^(wM`Aa?7nXZu31ff1PbfRAX8Zy8&hneH;%&vs5vlj}VG^X@*i zh_e3xlG>euKe3C_IRos+0Q-U9A8-X2Ul1@~Y4+YX{xh_HsPS)Cerd0Hm>AkUr`}`U ze|agNh@X${@g6>vE>8p8{{H~a=fx{%-Xy)}efQcve}sQ8{rp4sRB$t&dT?SseZD?E zXWMv)_TO)x3XMk|Zx9SLo=T5-L_pQc$C}P3jDd`N7b%F__wg?D}5pfv43=N3|&dBQRO04i2StvtRh zgD+gyAnzv7kg+N?%*;GYf8`yEe}9RX`SDsA9yw!@F_#2jeSZ(*R?MvfymKLqhYX}) zhrff!Bgp>%LtN?e7vwKb`H|N+O;?li1Fp1&n~ZLc)BQ&2&X{g8&W`G43qot!-AB{7 z+>GUv!_xPIQr1U){yT-o*I1{R@rjI_b867)FHxC9Q&Nr#%VfEVSBcuz`4KK{ZX;9Mxq$Z7&`J+#OqKIk8!h-p zXw0hmgNtvOoq8CY^<1VerP#T{>1G#2v3irP_`fk4nzo*66TYf_&3%Wf5X_VmCZI}; zT|XAK&97S8TEdc(bEh?jV&K9zh_uP3p4BB?+a+abh%#YWl~arZRi#Y=TbsGs&Osid z^G0Ze!}j}^wvk#~JQ)R`5+q8-H6#ZtRDyZhy1r3uWN!Io)EfT)ule4kYcDN2$6o6+ zYb@qB2}>)~9G0HA-;{U3_rU#Ao;>YAj`wL?q%Mj(lc+S>HA68jIK}Tnj1e z=2)Zc#V5=Ndy^^xdu+`LzR+1W6IM`K>DIb*+Eg>#No;Oy?jdRCY37LAmm)Tm#_3e| z9dg)UxEVOD*3y`Y_~^9oybb#j6-&9V360R9K}eobNRb)od$sm`}8jnG){r?!5J?w^edJW^HMGHGfO=uS;uw znd!_{p0$bBc%G4U9sN+iRmf+uZ97=1r>aG|MZ?@_%P6#CCftQnD=|fByGPIWg&^tVLhvAAq)4x3>5xvv}4 zeQ!{+IOqC}Phq+97_L?UaD*-dM33Gm==z?mrs=nuZO)N#db3!=r$sMiQbn?YS*C?# zz#>T!S%0+S(t$h^iS?eC>FrMP+V;z+t+e^Y@YHS-=3ZFkz7{c9myH?6VIJBsx*@z5 zJI5dz*gr2`RH*bPqg^@Z&O54Fe^q}$u(N=zoU>hc+qr^%PX0(=IO_Ks70OE?0oxNf zF4Rnv$;?J|I=b!~D;Q!7-2ovpcHouzFpIilu8c;goHGc1r9IT6bmg;K>w-ELLD{gysWbv-kt zD$S~(TLqzMO*+`i-!S;`-Jd0NlvB*UG(yq}&2}yY6_Wd8O+TTlfF07@B=FWRr71@X# z>0ppZs!+yROglYF4j2`|7&<8FTNlzb4Iz4>%)Q*UvWXH+uAe6>NU@TSxW?f6)SP32 zNX=m0t9}+5YpWXn0I2;!z1B?;PVZ5(UR`qcDn(>u6;a&<)E4r@OSE=|UU|%Qk4E{} zVz&Zj)*^dxTTkgtb4`^V17jk?svSW?NhoDWEn3>*-AG&}cL|Yzz+tu5ZzC@bkQYvZ z%{r>sBwB6uo*7(icD<1vE0!Cu&kG@4ylxKIU_hWUpM@45F{w2suDjOV2RYp4vDI3# zwXe&P$fZ+Ld4|#5d$Ejgzas^15d9`NqGT~(#bgS^q#z{>lTPVgrLvPte*K%Soc3(W zvdRnmq}R@va~UzTv0jBfaPX@sD%cknIz^?`h3$dr3sqaYd16z&STA=LTLWE2T}d>Q=Va_bp_3`Doj)ZUkq3$tIA-R1hm> zx&`EiE70zp7K>+CG>*5-WVLRy*Se=xT{?IY%xdj_p0%hmcdFp=ypf2<&C3udLe69$ zB&6m{qs7zo_PsPZR5III#JW^5!5YIXouHA*(g2~*u)%lR>fjYz;YDk@k3(DD>bjnz z4^vs7)LJ4#$-YGqTE%G==iUsAQUol_12b+u_^ys>EipNaCLC7!fqxfLl19_qQB}wq z$y1ju`>sqmu4jGc-~MkHKa3v^hhFLS)7Z%cp0%dPdvaV7k+c#w+C?KMIKjimkVf!E z2I}uUJA3-J-V13-k}lM0On$7gAW+Mb$TDi*Yn*s>N$`bsK=`Z>&ccxrS&&CMiPC3QH62;1Vzx0(N<|Z6OgQn+!$>VUJKbM(2@?<9x4lN6W1(ccv=4q**^NSqAEmr72c% zoetDmdpP#SF06@HwUZnOtVqoJGh!v3!40O}z7h4(^@{b3Q|Rk+EyVN756(KEHx{#6 zxK|Kva-vYmT}JJ=C3D3%^(`4R-B(IwxsulU-r@+@g)$(LVKhwHJ5JJ|Fkh)Fjw>{D zcgt>nrYY)GS89AlRyvW_UZ(YYjJ_$dx$H^q0CbZclX(sQ;<9_vWPIFTyp9~jQa8Cj%&Ln8S zmDn-DGMwNH5^%he?Odxj^BCSKyd8b9m7Ak917&URn!{iR%*|y zYZpr;?2&fWK`|t8D|#b}CLV=MwpVuMY_l_YJ5S{^MszDZfa)#ozdr$|aTt5pgxA$} zHJ(=qs&SVrQ^<{~I&)0b#afL~NwBKs(_o08j25vj;S}ul`emK{xoPg6$<^2^r13_$ zDj3Hk5`(<)kXMm{1~#1Tp9}4JJXrM$b)B`emNupwOEX>k+7{lqwKnS6iHIAFpLL3l zP;MhS$1^E+m1T#PJ1aWl^r7tg$IwrZx&=l|f;=@qz%z9E=c7Kdba^hl@|Q*LojS zn&3%zZRE7Pz@9QAG7Ff)1dzdufMi@2I9A*U8uYj;sjX1r%UcSrs9Q&eI#ft>i|cmQ%op9I%9Sej^~ja|y%DaZ|#G9KFU zNL(>3jCyiF2Z2M?tU$({VRDsJmPk^ti@4mSgVjt`$&J;oy&KBO$nxaoRi`jD{-?pi1+m{&$U(~-=O>J3a^uo*k0T5T zsTj48saTxJ0;-kw7B2&FvYV{%nDH zt47W00Fm@8Mo1Ya1x5++?azw#SqkYRBAC?dM*G}tC08eC4ZkFN?FZ|hJXp6?QCg-D zptM!obr|P54X$C3StXdn+F(G(%nXv(B|qBV#c4*&#COXZZo?6lJH58~3+D&fK=OI3 zIIWKtD3RO9LX#ORd=4LWNNENE!N6ik;8GhG@hNCn3*?7P+)&C8r@3MSPJKcGt4-A5 zV6u@2SpK|B5l^>^c^)~YRNS$&e6cD%EGHR6la}IU<+N}B4d!4< z>*g{YTMZMcsoUxR~2iHMpjnIDMbl2e5-s<2|1&OsdVPAlJai=ZB8HCLR@oOO3j;`&jj zdMBW;7O=QXKCRDZ@!Eq%W_7i%Mbyrt>D)dhkyp&?Q_?F|GY>Xgq|~nKBQm+N(w>J6 z#H&5r7ZwjCtnoBa%@nAO9_2fWM##oQEwmK{a-$&Ty8YFIOt$wnnxb1=Lm-k!Ww&XP zV5~Nx$g;*_Y-Nj;d^SBK4sqv@pCz4W^6}Igna-+Wx@T7lrn*U{`W2)fpxZX?YfK)S z>K3@yanwC>s~F@(9YthyMJlIT`pL}DmlNhDBgDE{G1<=));}dR%G!5TS!9Xjwzqg% zRlo#yNe}Av4+l6Hp6<z_uo&V=cqV(aQG-OV4Wbo}OQHl`RgCWzL$dso-jL zFO?YX$bNCU<{O|n%+3%WgLO_v2VczipUP_%5xK}e3bdr>K*?8H|y2-j*i+cyE`3kLTicD zIompuPGI_3tF+#w=+{b_f&8c{;&gBRkCnBSu(vhr%4gYPd(i{Iru1J|>GnMs@q9Sc z*H`JQn655Cy3@W^>vI!!P%Oq?`y*|FNeD$mRA7Rs$hHRd^siJ!CYh;0G##^NF`C__ zfT)|gW!WTYF5JSAhGhhY{hHmcDE$EH&WOe9jJI2{T4N2Yy0O;oqII)Y;dFLN&SOmA z8LQihRUIvi%-j{bF2JXUtWS9;21(}u?mUX?MEF0d>it>Mv1=Ly&Y99(KL*loB!T6) z5zQ>i69^<_`&XN54noAO&QCNZ)FZRExM8Trs9ww>QzTKmNJ_-9msEdJs0+s8PlMvJ zr&qdZt91sstCG_?Yrlt9KN1GYkxsH=&39TW5(K7V> zpCP3gt;{Nj(W7Bd>9Y%3N9rk%Ol zKu6FIA5J^OLwsO{pVUeEis)!}L-k>>GC)~3{e(TK!UHoy>&pz1Hz~;*yw+U{s9&h= z?k-eZ=`stXhb*k9lSZWhjfg9@MF$JUMstrIPcisS^@zu)SX@4kpsg*dyvb!cgO8@{ z#UcE^r&W3Zt+W=IQow)tT&QdPTH9e%B1W7{+LD={72#f|j>ZT^gLIb`pRATL79oa} zgV{-*;q)kt6C`&RBszcrs4q`yt$z*Vw&n3-ro$j-5*Lyi#g_0ATN|c`5?uOox6gr( zt^OOnd2~NcZS=Q7^ruGaEe)tTkODO>9YeQfu$R340$Y!lqz3;<3p z=b`nBx#qlv`}J-5Y5j|LFs;NNZqFuCZQas(4kC-26LYj zB5h7Dn6ga*@acC^-!HBhzF}sXK=I2Yt1sF|C`il37j$lcuz3R;sB|{Bann}%IIxYi zYb$*-7l|o~Ic2oFGsytAGB}1f(pkh)Wu1(SjOB4%a_I*^v%#!KGt>+dDPnM|i`8-2 z5y#oDm&m)C>j|YYL+R5HPGB5NN%qELX)hHzU#Bjb^X7F+c7_{VGREo`e20*D;Hq=~ z0IkJT=}v^cv({5k)@^$+S$g3GqmVn~g(NO^l>XD7eYp3mtJNNvWS^6(l+n0xVr?u} zZjLxBRb5uq2n9Vzh!KkBy@!azY(ecF`*`&CM|DM&ot%~$z1L|V{>htjWmxkbMo8Lu z2gcKnYNzoJq4f<)`W;_EwC~*9ad4{0hblcX`mn56dRPv3dX7o0TAy0xx4FV+nc zr*ze(=k=FL`i-OTVr{37QDyZukjvt6pjMjLT{RW^h!bi33l2tGNch;b&Zz0@y(3Y! zx6~3z?jdzWAZub=5!Pfqj~SlD$2lYMoivRhhQ#LmIv1R!wiR4Z^WF~a`< zGsSYFq~C{^owL>*AnFHG`fsGPmP1Z;Ps`;@-k;Mt&l{=(6VmR1`DE%JM%SrqTy=0= z{Juv}>g2IhYYDj`!)eE9W4;nTrP6P2hM_zDuWQM!T3FgaCulyG@@V_fK|AK;fy&2) zVo7S+X6T-wu+e4GZHns6XKbb^1O@>#hh9xZpzS=e1rggQP|QNSz{oa@sxtookv}CK zYC2h{@)FUAP_4Ed}*E+iQQcZQte+63tBbu&FN2& zg|!50?Na?aY1(Lppzz2dxLG7CEb*Aw7feP*Hi424XnIxC(yN2b2BOpJp_y%&9Ck+K zD&Lt`ton<~U<2+ZndxNt_UI_q>dQ zfr1Z;-F_D6I-gJJH}<-n4Z8boZn^ z71JG2z~rcEc#N&BQCC6r3#1)kq|9BOk#(O$>g%&Gj5aFT^52?Lt_5cDoG9K>dyca< zuM~4yO$;&%=p7}sx`oGb(sXgTWsQhgE#`=_P2}KX2RN>r`fFX<%?Hlgi%G*pcWHEm z;k>nx7#)m(nJyudY>{UG{XrQTQ?C4#ejpjmLDgJJ`faE3bZP6qGhJ-bolai6#8k+2 z6JGVl%N8G?74-dGEO0H;gZb05nP%Ly<${qtu@G#p#W^)-<@uyrR=0SX{Skpf3&nXj zc=jkezR61#3_u_NIjL=Qi6eV%?yCgW#cVj+FU%yiv9d_=yAIyh0RrsHXLju58kW=k zMf~RZcfu)}TT3_0G4z|w&qqALX)33GN@xtnQS{2ZuUzQfxx?cqi_V^$y@}1Q0F=Y# zCi1af6Xpsw;&FQwAP>qeUEPJ85fGl%G8$JfvOBqum$s>cov~eUi3t@d7 zwD(Y1x{JwVky2|*pzRE@qGxQ853-R|;00E}UV6Xef1ujaquyJ5zjTwRIPs^cG#5^> zbTxq2D6>YsXzg9fdDEZ~Q?q50u-uIN8v2HL<=JvoDImrC}?xoV#w$bS*lU+p=g`_)Kl@F1F z;`ae97jrABbu+9*So#HIe0$rrIY_I`%zk$7qyjn9x0F);6l!aLA4y z0g=qgDwxAcDH3mk~x*SRBiSXqIT@SXLs8`Ct6_6%^*09#1eb&5$#jENJde-vt#hlj$QHOz$CP+C%&v$;?gh+g0qW=JtU;hC0QU3tCjV!LB%s-TdGa)qL=PClV-Xl#WMopLgs^vs>jLcIIrb}F^1`m0Q5kX zIj*sGRQom!D_qTjXcd>k1cPZQ_FO4KvAGmk?XsJ!DPw-HO^^k?n&#{+i6X z`+!EGmco`jzT;$+qKf>L-WFZzExMVzvBcqyff*8Ye$gzL zr8mf_{{UXCcCClHn-YQ==}gUlD6E?fw`RJNVw_cih$9w53fWA+j6tbN?a$#o)xNlB zE{XNg9TL>qqPj2ji%bq#8dFckPPe5`PeJ(DxlC~GQXLO{jwcZiTTE{P<@C->v70J6l_EBnd6&${~=pq8@;6mP; zomyMf)Edu6U0IbPNIN0-+FdQUV)78dQKZ^NNJ1;8^?c>|ug9ZOWA%oh>b4&Uc56mI zD@Nv|(yI(>F@aw5ayN1M4w>UEO~7%Js@qp-PXz_J;!--!m(za>qiefMGjC?gC`clQ zR}L;zgULZIcNG{R2rLfLNfqSnQ}nF;GHmqANwq6oYW@qGQ1`cY9Xi^0)7)iU1hMI> z+)Ra;W<9cu*ifp0n^dxSCT3;0oiSCDPQcv1kh@*iTo;#W)6VUW%o^iy;?CJLU3Ok} za!-S)QKVk3(s~>VXs>Sojcx7im19HzD#oe+L{tC)v}0;x0D7MQjQGz}y4CMLTXhBe z(`p)~r6kvLO7cl8*AmR^(#-P8(n%qABpIE{NZCX#z?G5che|rf*NtB6R)gu?d-+`x zmC@RVErY{qOc3f^#s;G`jYMVX<1!AU?DeYD*nzWO8(qPUQ6{p66pn`E1@26$@=f3K2rL>fb|T~mik*y zrn!1`Y&LQDJ#C^Ec=uAhS!O`1&8n-=l5+~dR|yb+R`EG4T6to;MOR^Ic^buj0?xwEEP?xZ5O=S^txP8%q? zZ#}zpZ(KeiR^7Y6Mb?)qT(o|ti3e`(JaWw%hS_x*@<@%AbsU(S0&9?Tk3)2~UR&Ae zy(6y4)87!)5m!sqrG`6AT4Cq)POTcmmiKazn6&*uIKv-AH?lSbbsMD2>h*6by3edS zvqI|3mzZve(CRl$`d_HE9y0ZvY`r_4vxN-R=|%LFyuHjFyE=p_yrGPMm#sw6=i;>5 zgfm;mt(-mD$J&v?fDXsPO5+0zpyAE|7(0e@Uh?>PXYnr2;9pU7M^N;=_29c@>r>jq;J z(^{5eQT3ZXtB@_Nn$@*;>dO=qrUQV?_6AVV{w%-W!=Zt zD0eOtpW1U8dD2BP@O&H7%pe67{!s<{LzGvr6iHcdjfJL5jxJ!Q*k)BNbOE1R-7Ic^82s z4i_Zqru6V&PT4C7=U(df*u+qcyN=R${hh!JbI1qIF@kGr{Ss{F9~RG2@0UyIeul8V z)b%&+m4z*%idDCce1(b2O54#`Cg+LfLac_gJFFRL&!bUh!k|AT1h0R@xl5X|q-n6E}^VUYTx-Xyl4ZMNg>x3`N} zi8ofm{{XGOkNezTkM8lsUtFL|8{@MZn^M6aQ>I;ihJE=TiKvX1^w8O;Y3TP`$36MY zNH$+inBBAKDi=*H66!;(plRLpXsAlL1t&?QHdeNfN{($RX`+Ez&EQ+U&A2`69It-= z009dSp}gRnfrhGmX>mQB)U749qb`*t-l83J{BJUg9TB540vMQ*bhl|X1(XaJ*&hvA z4@+b<4k3PvS>Y9L7nQDMU|T>=t3iOr-?q9)R0Au_EseoLIc>RMdAi{0cyGIt-e+nM($7?E}Z zB=8jy?9IX<0$saZf6rG{v`&(pJD|0`XF7P=)iBt#+SFJ*NsGnPM5soi^VfQDn#f$n zR#X`cXWqFWKnofE%!f7AI!C2%?XH^g)3jp){naiawMho-;g&(YV;rzW!VfB*_3hmc z^vC$i)3*9APH6X1Uf7lpjZS-cHH5MY5drr{XFRtg6RCY`Jj4Pkm!F9ro1Zb= zTk?;e(;Z39WgVn$Ypn;Aj0^Ox2NH+esj6TxEV%l(8iZ5nTE>vXflLU&hT*X6oh#5C z8Pif}nzv7PEU)hsySCprvqy)CixUu0>s)Z-9B{yl0n&d)uhNg>{{Y3$jC!X;{6v}y z?vJ+9Z|)+RJrnhNcWvaiFavNEPTyN8jq|;RSCN|e-{Cd{4zjF8R){c=b;v0$zzA0< z$N+I1h!{4sJ%J=Lp@MvJ$XVue*mLbwEPP}Igi#{^svWo&wrB0CDZ za4HX`88aKHL@v$Kb8an_U2xXOl8;vehBZ77AwJ2LAiH%G#;?et8lY?aN1=oQIG9@am3?|zbNPuG=r=r_!O{D%} zCVlyc^z{`kx(k}kUv_)IUD9BYa@k6_M`RTp<_t~c+9ZoMs*XFBQjIGN~I;*nEwFi zcb-2R&fEA>yy4Ow(je*8bgs{(^<$6<2V5jpcig6BMgg zu%7c8mVQr@8AtWmrIrSY;+PAq#p-Qj9b~pD4Q0n-*gC|NL<-EIN?SsBPL2xtkz>xvRzj$6vvCLrlecQSz=*z+-G1^ z*edA*f@d|vu;Ax;85RnZMI3Ugl32W!KAS6D?tq}IEr!5KtyQ&JviKbdmY8#rg{_lp zrDiRd;-zf=0G4Z9yufrYvaYF)R#U2dJC@_}6f9SbpHTbbn_{v@|r(b=d`7jyI1uS zN9e6X>*oh`Uz|g9=4T`-TgcXn4htYX(2ekjv&XIU%Uj;dXfAaNTRB8*ph<6cDx`|Q zgUBIS8~{;y58XHW-9x_{7(Y3A2R=q&!S)mo=hFRK`?lU?b)GX<8-WwJ!ft{phK zRy9!2v{Eg&&sV|=i40d!)muvIxu&=mmmM($(YBF_2|GHEV9Fg-0RI3fDiw|Kn1$H- z)*2l*MTe+57SbDkleg+gExXq0t=ajD31*HNBPE!{^H%P`*Ca^Rt&nk98}PwR{4Su> zxMc9evD(w$@p#U1a*B)k+;hZobb^c4EUz8D9HwlnCpng#k4~fNi$f zsSL|$s#!}jT*ahc!5z7MrQ?QuD%y98Z~&F>6CwsAjGSXU+t}IK!FOwYZ35cOtJ++> z$d4gqmfusjfh8zOUE(Z8%%E<-1aV!gW@{}veHgRBU&mv^vW4a>Sf*&rLBYCx6?)Ak z)>yVAPAmXP$bADLGd?pKG*HMRk)-=nAK8^4jAPfkl_2|Lk;ypXx!+NSO=|ou*Nl}r z)w70S$`!^zUNU)8o(~4NkLD*Isq}ZB1nQorbu+7)BS`Bl7L<8n&gjip@#%HVQKkA< ztVdjVeCi&HCJjt>q|`ZrPInuZV9l3)Qo5*M7RI}%Z}li4>uX5087*}IWq)^XZ7PPf z)O6_VF)zz88IMrXu2kJ&8+*jtlOamBwW{g*WY_%{sod$QeW%BHWovVD3$%BdUZE}a zZDpJ*Vof(wfc%^8QxZ%z$~L~`=h1Zosoga4&#pRGi0ju;)sXA&mro#?=NqiG{{T|* z85?>BsNHzfdeC~Cn$w!9-Go02fp!l$YC)OM%Q~HsoEp+S2pOT)l>0EZ5)wgh1 zJG%b>sorKZ=Sw<|mDc#mg$mWHv8Pdyrq$XbU3n5AiD?kdcwXGw^^Midq{cfttz$vA z`E8N364`5TT~9nRM9OkV+1n~q#>?saEEi3)z3B@(OZXM;biFUAC645@qF669Lku?a zMKUlTsY1=Wag|#noVI?GaXGu#3pr2A@VQ+^B5oz&@Znl-Sd`e6iPVd>RH2v&+Ix%- zpnbP3qIJDW7-fk>vMsqofb0ptJP^ThPuJ23;F{SX?ykwBUh}$wS0Q(tWMPj0li;xf zoE%oF+icp%W}%BJ)9ddWA>2F2H(Y1v5vO<~2{H|WW;dPVc!=@cEKoybr)*&;?L+|{ z7z7w#4}jiz8ONL&@y4wrmpaD0k|RRPb2(txV;N~%C|x*mxgZ22WQ=40YfgOpx&@?eYCR>DW(QJI!s`C8X#F{x3@%Eli2ZTm@=paXjKP~COX&h1 z7_C$0rMv07TTAIQ!>Q`FcIH@$hg6u#uYn+B!5pz5j1E-$<#b3aOnpH5mYEi}7MY}K z7b4zuEflY72YMjFHb*#Q8&n;{k%k!KOFXJ-jrTJ78Xu>AeR^}J^>%L6 zEl-gH>0e)T=8w=i(>IL1LswC1{9YpLr8XY87ff~txB~`pHhTWIt90(Ib2a>DQGEu| zb1;PhwdKCGso9&Z(yFS-J+-{hMt@*}GC9PTnjQ7~w8%cj}R zB#!D_ZBTaw^tp$|3wp3Zl1eYPHQu!jrq(XHBF1?%`7LGC(8Ddu6zyyQfoz7}jc^og zXH{QQVCMq3SNMWz-1d=2Kx$*PpI3A)H&W{ks^hZl=$&_7*4e8Vj*;avS~C}05k`%Z z%F&HsUk+AA7ci>rb7a&pCOmgey}q&4wI*3@;OyzQQbqGo$0f0z8=FB9xK~yP7(9p^ zVX*iZ<2rv!^!|^pY1hlB=uzt;E1f+GNjtz&3FUOTXl9C7PV|S?0CEXH0B2w;Me`nI zJj(Q}Q>69&u+?qX8e zxb6FG%c)!I63Z2*YSFKR_AnKVLW`SyT+QA_3UWn?GK}SnTUGM7HGDoE=$5g?dv9vj z`hB$eb=ciB#pJY(3yV!gH_V)*svvopw<&NYK(Yc)r?=)0uXudMtmytvsJgc9q{jKr z(Di>doWR!0Q|OkJ&X-NKwkOu8VCmr7u4fFJ3JZJ-(PYtKBIl2_`Re^IptCKsX#2iLFCBM1RG)oIU^U!I-+n{4LPavmOre&A*(c|q|50%)p5o&CEK753b#<-$w2{nAo!PAJtkvNWDiw}J2RUqv zrS6}mFHp}E*H@PJrOYs@$#QKjA#EY9rHW0z?)LXE%JEMGhh(mxs6NNgbZf4@W%Kv? zDR&Lm9Z#(KJ*m9jGo)HSQ1vUO!>9F^SFu??FZVUFtZFQSY1Ck7TwhZtW$AFKj|X20 z;>fT|Um414E27JBtk`~~(|=v2i>*zY3EAzUp2p`Ek|>TxhAHQ_ks0twjn(%?3o$sW z4LrqX4eMR%mbQ@GXwp0vPGpr<=!ov)-s8C>Td?u0j!*_9Hqf};k0lvSvi|@`dikaL zm({$lT50s#Rdn}B#=N;wg(`8@6zGu6^~+A^!pCFl#OPd3rpaL{QU>=QUD0B@kD81l zOV_o~y&F3&fVB0hWvmgR{{Xxu^&?W@FHCH-e|)@^dhc?7}Zg`?GEwLyJs@4J1Ns>SL%i_=*E)N7d2I)V6mHtE#52!>`c>kyRotvU&?L<>0GymsU~{{XHu%bib1 zH&z;=SY2tG=Jgyife}}a)G(o!kWU`KgUH%s()5jH)wGVG(HmCNuGwF1-O;3o<)d@4 z)sEIU$DbsEI6AS?k0bpc>NU)qGY9!1F*T4yA(hP8u*Ten1x^DQ5&A%(j3ehiQN%{_ zUO6vEX?;i3@M;YwQq5--sa4uSx!oWnWp;uvtBmg>*k_YiyT67101U0Bjo+iK-P>^m zT4m$^0Jfa+#PTzoA8O}+n68V}=;v1QdP=3cnQS#Qjk;W1+hRFZIOZ9JK;IhE-bm|D2bm1BC*i*V?()EXW6 zT}wwNnq(b_lw zBkmo!4%-_z$SQcw!|-i&DRiE;he*;bb$5~o1lE@=I9sw-TtZuzLofsl_+nLdk>qO+ zUUA2P>J9pd=^J_t&k2l3=o?pZ84{|eRPQ$}>Mwr0rrnWF+ruDDg8%^~GdN+|GhT~v zDq05~iOKFnLaS``sAId-${6F+0-R$U_u?EA+3Rp6-%3N#w?^Fu%E0DCkTGw!%CP_z z3WsPU6(yHDiNg_*IktpVT9{Pviep|wDLsUt;}V%UI}V#M#6~2ymO+$piSZPUA(uc* zps68patPWy;03`X4;K3Kim7f4(K0aCW?H(&Sx+!cg+Hc7{K)X*CTT#NdT}13VHQ%K^y^X+zgDu{VJ=;rk#aFR;3`i_25W$xFhV= z3YZf+!OF-=b{LK6yk!nzlM+L;l0NGe#_vxdvOE*WIXDM3EVCqtk(*T6a2o?46j;|Q z_L$0?h8~la9&#~JLeQq<%GlpP%Hvdc!lJM&&KTwl5FEO8-~%lBW+F;`dgDKm$IJt>Q&9)_*8Ic$^Pkgb#6Xc3^e zZURJe9Cv~;xJC^sdQb&cQGi1X9yte(P{$cl$E(1pBmV%C$uh|M;bncek7)-xvOjHr zA&70Hl)=E<2=wO|H7T7d34S=H#7HnG zGF;)B?P#qsT+Z1u^%g4_;!^^tmTfYB^HcjqD;b=j1h(DW0XCRm7g#fCOFgadED0-(|>+CD)RzVE0Vas1=i_{px;9kfXuOdOZ`3(00 zW_d)E3|mah%)3s;g;;-l2hL8?2_$$YC)oZKcWkN&jx)O6^VHY@a;E?S&KGNB4Y>p| zk^8C=^6bkK!i+NAxJbxdaa>)C%CKpxWw0Wsv1SaAI|xF;RS-l{23{hBB1+P;N{B;b zdIs{K6OKx*GRGv~o;~WUklagkYZO-Dp6Ai(CO}(x!6ys7)Uv0i0AtmVGJ2DT{5$l* zI$%2AFP6V|BV!(UoSKuBeMT~|aubA#(rX2-SlC!ebM4HOmpS7YJyOf6qR<~-w7!BX zHD3C`w*)|NRoRN1xLh$F9ZN^kZerA; z+)>Pz6C#4G6N0C3$yOmj2`lfR_Qi>s68jqE7KP7hnUs9 zU)0@9>LFsa784a?*QvTU6NBm1YuV3ODP%TlG9APfcuW?=FDZ8&;HF>vl_DzgQ02N>y%Rgv9Zr%z^D*1rkWBz;&5KfE8_|dXCb0sq0>6roAESPgXS4O@?&8 zrdrQb>Fj%1ad`Z$OHbhLMp*APtkRY z%`Zf?ySLM#7P7ou<0R`8)3)4Xvy!MzcA}{qk}Im|T4XD1qEu5XsL~R^9idRSzpzo0 z?(hRo_sb*T!kSTp!KBcvUs@!nc%^_q0HV@Tq)NjpvF zm9Ce2PFM9T3s$A5WUYjI&eaC5sN8F}*7o{NwR_jnSmaN2fe%KPzh5a^()+8ea^X5x;2 zpAR+Jg;mGqa-B8k!+L>%@=<$8>a2uibq+74_-`@?tS3}!j-iHf{Uol^Pe{2{XiFlc zIJ;lDV#|q}W8lBLlKZ!$Yud)QJ%#qO7t21UI{f#^S__+dc-q{SP~fgve$nwDV3-1{ zO9b}%dAii^R@w%$f=Q%;)+K9p`NX!GVcc04_O~%$V?b8`08Mm%$%mK?U)A1)^niOr&5+3j*KPeVl_s0Og}M-qV}JpO`plrackxJabi~+#Kzdme~8+zMSM$! z8@)>U=cevf*w1TsaV5iB$9DvBum(()lGaH*E^y9>$a2QAHr4{~OO`U}admAh(TUX( zGcbxqRCZJWRLGl4DuBC=Km&^Q{bSaLcc>NBrnODO$BsIZ8W?V+&HnphP>WpkPCyv%zc;$>n*;e#3Z}(g{0FSzUzH83?d#FhsvkkO2 z62#EN7DZNg#`4F46ssNx$pG+t@y7wWbNG|_n|7zrt=78lL*{fAe=MBlwY8>`n5UEJ zW}AOeHP=k(X?3uFIh6kjtt|XVyBT%ck9!B!b{UjK?jhXSb3xiR865 z*9=#2?xP~Vb0Lv~N8)$pM*{Oy>GJ}QJGq{KyIASmzJ)HcYEF~X($q59 z`n_M%c&$6qJa^1=2>_zXNLfi+9Sj*b=^kmMN5tM5HxY!GTp4| zR!Jb7#37mjg+of1c-aWX(ijhUH9KuzP19r5)2j6uE+$PrSuG{v)JJtA!qM7XtH(H= z22(2}k2d7oFcdC2uhCAl<}iB1>1%C8diI^o3{#t#e3NbtD$oH~P4+eKIIf7EVA+pu z41+DWc$=oWhWdN&lhtm_@m&BSXWNvNdlmt3vJX$I05Dt=n!4zYvb(X?eqU6)lH$Vn z>@6g(Cv4+#N$O?;2h#fqC0i}`YuoExbD6cOvhUM6j_sTsixB*6tVUInj$(Z>xXosR zU|1y}&7pr!yv#)S^~X%;nrmoUd*4{ZZc2Llk)dJ>k_q7Pg197;j8+q_I-^`psnnv< zwK>+wWE%uiIws|bK~a*pA%kT=9_JY5x!dPM%`cihkYDLe1EE$M!nQ9l%KA(PM@8xZ7m~`+(mS+CDD;%4;{mwuvrsy zvPR0wxB-CGfwWiRJLX4N^-DqK)ZI5jpt^^tT_)(xV*@YL)_S0=S=8?>%In>&RZlJs znn8uDVTFwvM51{J_s&CkKM@mj`)V(2oh@v1$$oVrxGomqX0o;yn_dlqF3^pHM1~H} z>jxf+s9@^|bbp?>>%BpB%T=fS?6)5dDviS+BtUrd{#E@~A!4Wjyms`YM{rKR;*Wz2@wdbsJOyqukY z!sPoz{9b9c+BT_cH_ddlo||)P^0F^v_f~6r+jg2g`_)R%8A2u5_Gcq#SqE(<-74(d&+26zs?j}C!)7$qdB|mH zPNu6>ihee1rY~d}P(TX(db1);K}iI(h9p*8#%3lwa_*+-skF^rNZ^H*!rsk*n;EFVhh>dvZP%i}sKF{VM4iNt72<0Cb$Nb|qvhVNG^X>@c$O;pp}GXDVK_fGkc($#ah zjZ3ezzO3txgwE>>o}$3zaa^%+p!C4vD#h0{n8z;v04`EeJZGNcLyfKi=&~DmJE*ff zijQwHz$ZxMghz){p46|oO12qx_^U{??RH1C?Q2%EPj4J@%Nj&X7jT)HCzc7`VI*!> z62llt0V>FMj4<|^pU;n5@PCHxj`N{|(D;2}t~1>^(puk8>2&ApVf2QXp{O#mjml@u zmdLKO5%^{}`d$q~Z1f=2|1k^cEbEwsq1klwEV^si29OrNO4*~?#Lin$7P zO4^QRwu84_EQhc3_uvM5L{Geo&o6lKZ+)gfQsyWj*(@yE2*ys*M$`NJaqo;(cqMj@ z3xar&RhVq7#tF_3w-uU<{k^6(-ger4c~0@S?;Aw_06o8N8lR3m>m}!r?@gIc zx79n8Z#xvs?YFdT6Z5o3`1n)X#WqK{&%fxy69m9u^ zirK}*5JSYk$BB1lX5y6%Sq@jGw)*x;!wS{Hb}dnlqS0k{3#{6?=-cT`0g>Edh#+T_ zF)&dODp1U{p3?=DDyia>n_*T4Xw{cG4!u>R$j;4z3c|8tWIJmhim(h}Oesm0m7Jr2 zsTy`)!OB&N;ctx^=Mzq?fpL1bh?FC>?5xroRVYD6Agi*tF%d2>tN#cY@ zJEu!gqY9<|QBPjZj=>JRz+xqPim>?IOgC!RuCrol_S%(9Y;hi(_+qzmbUvFk?Co*c zn)*9wWKyp!ly{PgSz9EQVwq0ne$iuA$sC`~@9C)@Pv~EymtN?7C}M+6k#x!KV25dr z4Mu%F7reFsKoM+V9LC%XK_$e96-g>1I&q{rv(y|%P_x|@>I(3b@j2d<;Wbv1#%sJb zhspI117Z67vKPj3nu{JeeJ752s96$CUB^77DQeR#@zSm1)nn6dq_GmrC0XO!1WhF2 z%uy8DQB0BW4&to4cP`>M#;5SZr+T|p()G)(k?KfvX)SK_RJ^e|q#9Y&EnZ9R$bsnAG~p=B?;Hdq>mi zH$e3zIn=#MPID}*1rC-fpms~CIBidCp?Y^I%vQDp6gJ>g*?dh#&lii?zqT4}+!9Et z#o(4KcP-@PP<3CzeP$DNuEl*Yx3|(! zM$xL<-7(v3bV{o2QXX*-bZFWWAj+LG@_pq?UG+~lOG$Z})H>5i=vpVL^%Wd;j<=0f zOg0_B+ib{nK$N^?N)sSJ53a9JVv}WglLBa4!KdCuDlyfqpR~%~Wsx|+$U8%r(1Yc} zwm-T&S5@f0(dYDj>W;P4hfVxb)Vha6>6H1)s1na)5ycDcVJ^5MjttBiQmYiOpUZ2N@Q8M^yEw7JOu*P7N{4`gr0)^VBoR(lRSqdTx4lR^-TtBG* zQ$G2Q{gIHYm*He$a>X2`Pm*K+@t-6q9{i4Ly50Vop9eJkSZP+#>bi!VY|9tV!ECJt z)bxjqC7mv%jX)b;x4ppJ0Vkbg^8@AU%C4~2m_Du_nbPU*1Fj8zvaET1JDAj1OvJL< zk(zD?Rg?4M8wlYhH2|S-`vAI@>`++8i@g17*NNry3%IVaqTpN40QSws*{jIgu{=rZ<{=3OUsW+^!G19WBP{X&H-Yz-Ff)ZxeL$VS5y4Zq=|7}Jh3~=t0EYS> zLi{w+R^Q=gSS(WA^&B&$-PXNwQ+LbV+`*OC#Z3-wzA z%PL;cGXpcDbz}?>`^@h#5$*3A@AmOV;D#_L=hUA607>Dm66og!@tKGQ8HeGPv%4SV z{4>o3o``Qx4M1&@Jf~6%v=D45U})`5TsRC&u(w=t+wIC@;&#Qx!7iY!t(K!K|fbxLPHJ%Zqz}p#&m0om(N2SZ2HQ zI6rVmmkQB7N)j;GS4KO%&Gmq`)hu4&zH02xe`pj3Te}01`z*;eD=&srBbY zX`MlQZ8~dF)^u2}Cs_xc3)BoXymkRsMk38?+BVyEz(k~_YY<3n3oti869k}eJA5pGA z*kxjAMVnR@+e>XMO?TLF^AWE`c$y$wDgbwEp>h(Y9>cTLrx^LNGgI>k{V%fK(P$9lt_)X9Eye1tU;SZrA<0b<$|Ni20?AlmreOO1A9TH7Pob768rCPNb= z+ES7Ng{Z(9$GSba*oQHaxkMS*K+U3rut(Dgp#Uowk~Xxqo(fc`zO|KFRa`A4#Y*Ut zidL$PV2*U7P&5U^m%{6M>_5?q5!Mn*+ERIKgM9OaA`RC-aL&*SqMy6V^3XE-dP zyZ3T>lxk`$eU#Op!MIS%ttG??SiuyXiTx;(Tn1M{xQfqQ(Qf8AhT87hM?Xbb(6Rmi z6Z|U?uiDLhp=)+F-7xA*ekVDe5<;z<`i-F{XMYl zTCW!>1(`*Z@A^*(cM}=+5&|E$ir3KyFE3$P7G;KckUE^J1(B38pLJk21N0)OX|goh zexEZ$&@{I2F-H5yS|ueIdomNXzYu7-+i$nW`FsBWA8!_weNFP;+Bc8x`1kwA+vEKF zDaVSao-^+=yhKj(yzTzIzr(|tQf%3)QoC$jU@EG@W$bUdp=B@=&NiLmWadA=#H>&& zZy+HA9Qfyot#1_5&lFbZWSP&TFOo+*e=619wRAV6-E+_xzL@JRU1pw?)R`SWZo)B^ z0)|h$rnNpFR%26E^Hy7b>bP2P&6gxfk_h5O$}y(Lxjl^0T;g3e;tQy-s@QvZ7DNmP zIZ{9jIO90Mu9XK-YgRVb5#H!4aF@2zTFPXTwyu-J(K!S%m3^(baK{V*AdHH~86PCw z0L=AMBi2lYs?XW#4ojZRPdFGM zhT}~#J+;JsuSBihluV=S=1CkfVDRsjeU-LI zNN8cn*U=p~z!(Cf6{aymnaD+I#4_Giq?mIt8(+f(>RQKbb$-{(`xwh2B1tc96t|6- zpjCEAVpzlDBmz%0kNs}YO>=i=(;~(&Wh{}+Bcxr~TH;`$Mv%m!Evh zadczavz(RAeTNyq_Zb{lJ-UJ93!>dj>wo*^&GlQT>Khq-JF7E&F~{d1I%%l7fugj= zQ%C5%cay`up}ASyW&ODmgxOmrL+%DvKW`*0SBS6v8^*X z3iV-dMQ#*EWTkNNGg|61q)C4RY8*-lkrWvTvs(z9lnOW7K%hk9kV!3*j7B@{Ce`jf zLKV~5oH!B7Au&7M{Oo`SX2Q=mFB^JT0ki@$R=4<5bP4r(LyW1`UZ>);{{Txg{tHHB zbo~sTF?f!qXk91O+Z}Jx8aG>`^3QBOH(R%zS*O`=q^t-zD2{$EY~Ca%!&gcHT7^4IwyOK1dAQa5IDSHH13*ufn0^?1%({7-= zifHj8M=S-3H>q$vO`dq*XM#mk(sXW#(@oqLy zs0u?cVh4b09Q1ea{^;*Tb)J#ecuu%#9YLDY`X8#=O8xC*`WYL#&okC-b5E!`+g|D% zopd12Qd!H<6~gO^>Vjrxgtv2>dt1G7(i_MVr)KS5Y3X3V0HiE;bKW$=3xdr(%#1-B zMnGH)0e^d?bd~Y6W7T%aC6)Ylu$}DNM0N?MMFt*H+kRd(QrovPZex~WYcTX5%MVVv zCDR=N(Y-&_8v2(DqA4C4o!r3I9Ogp3%*E`ZP~oV+O6-&JCb8Ik!~lvUx0%W>QuPJ4 zoo8n4b9B?r&(Y+n0YdV$WeOYZG*6;2vo*==> zz2x1=Ac>5a3%Ko%AhtZ_w=Y-eEGDDTxeYUR6GIp@AZuCTA{dFFsVbKj&UOJrFLK^} z!<0<>@8gE`4Vr6KcT0OV$yvMNWrAq^(&o}$C62~OOhG^x zMGNR<2Y_S1WzQL2c&>Kp?&oTqc5I-^o*{4Gi-t0~Onbxw}IqkB0^ zC2P4_qN`tHq7^)t#fY%D`$mNaOx)XFJ?vWTjFDYg+}X&ENhK~`85qYPkYjIa05Y*E z-q_7@h`Mv8BhoLl&-TLGZOqnF2|z$nOF4|OFlnQ9CAx*sk)RwdOcGH*NnPW0*v=pq%7F;W!O)zZRX{>r;{{T;! z8VzQ~SmV@&q9brfVrXZ0?s)f%Oj7mUXdQhulF#)<3I z`bZPVZ14=miLF3f$d(msi%jFXD<2TB>8)OG%?z-dNP)8^l$v05ZQpt|j9jik9p6bCK(8$S0K!|Q zSv<9Y)ZS)m>RzADZH~e8<0p^8*TG`6UURG8@3&Rx1HV$(*v#Sc8pU;j!bkJ%yDMkZnm3hw1rlYqj^0OB z-lPW+2?96WVsXIDbURRK%Gq2NDm`@?&&F1!3COtQDYY|QNil|UnUph#lIC~${xd!? zpBFj`&#knmWs>#{A5+rh%vU!@Y(hC35<@EjrwnjVdq@BS3~Rb{_0h13-UQ9mJ*e00 z{{U-Z03AH=!=K!J>yq6?{448q3sdzwD1Ktoj?y~r-(GU~of{fIPhAZ$seHxh41SjC z236XetqttuQ2d`7`V?48MR{9SFjC%Q$~3-!)^yzyP13D8ucjxs(vlcf?WMTyOKWSY zN2=SyGNk>#vzcBqDkyS~o(N!exwS1aYww?$&ru&RV0ocgkzg}JXC;Z66)={G=C_j) z0_>sGFc{!%zf^p!U+OI$iUkg=<8+o&qB_2&v%zL+Q?HS+XDyEDwx-ZH!SEgr^jHLb#X{_xZY*r7)zL>~NZOPFtgP*+2 zO!)M@wwZ5drbndd(fqZgwYh>NQN(Gm#=L$R$@-E>G&(z|% zIi|l0e3qBZbZvAz!=>5-Lg9SARq8H`c9h0>O7Ti?fXAd2E7YkAa^k!6nR9Wivm@vv>CDWXM@qi|VVVOtezeQBiK zLpX)5EuF>mTST##WVgG$Ti~;&Y%@)7C}l}wWLHN!(>TW2dEx42s_5T9Fga~CYaGml z?Pp5|Z@z7AI^|0^{LSJ~f}Fnm6Y3}Q=44ExfkxBHHGZ>;=HRlhW|BBA-Gqpe7}?f1 zw+R0L>!~A@K1V*-tuwE>qfqG1lDpS*u?&~C^V`OzWHLqs(l93gj(7kNa0#wc>AyK$ zXvemtoPYFZPh@N=-9}kTtZhkBhuLV9FTGp-n2H&QFK)^QqyP?O$Ywb?@%VTL4Ci%L zLt1JazOUAqJDL2=s`X04Bqtn^U|5>SqgJ>PtyH4J*CDvcGGmnRGuW@JV6m{;Axt#v zuG@y^X&;9rpE+(hCqHy;u3OZ4_OaEPjoz!&8iU?lY!QN^vl=9Ah~teTAS^(g$T5~I zOAt>xkL0eOO0rZsk5^Rdujn?WzmTO@4Uf0g4Bt#CzZn>8*p8(UpkTd4n6I2&6van0 zMRnTeawz2!x7gdsCY?HI`kb)N#mcO6q&q&x>}1&B85Q5sko6NDUy@?yFFi&oHu4Vyy3dd|E&I<4?IQ=;PK=P*MP&UfPj^+sk{Wqq-FkYw!xcagWr z=LGwl`avEINpEW`Hp;&;Uv@FQwxArD6kv=D0m$_Fh$oR!c9maZvTG!X5^OPSv)e_B zE8T5HX8@cwNoye$#Kyusz@9`yG+s4nV%a+Z8OBK{NMd(mIp4H;vH>9TjB!^IvLa0+ zkf?b!zB82En?T!+M&JU4EI1yP2a1UUqseM2q)=H1J)^k*!bl9QG3^_KEXY?2oz5e6 z43_)dLUy=b>DvmiFOoMYY!BuzN3h|ufyIe2vb=vTtY?)*+-D4{z~{=6a5j)maKMr% zw$oFb6lg6N@mQK%w5k;dNlCMtY@O}S!7UrRw=zuPEFplO6mHqvppispErNF(74k5- z&PnBn+mb-%8Mw7nlrq2-Swbm|FuPRylFTqbQ|UvKfLIVsKwm3DM*9{!mB+IY3oW72|A z2kDUxmP#O=&e}@B!HSqgv=IF#ztOQw4~q#}6^i6`S$msNnTdRnjAfStC(=mvJf1UI zTUU`9+jYQ2j2RX<{UmNIPSC`iq-O`*a0nz;)oI^6y<)=YEPjT_&NnxWQbr5bmPU~_ zhza(q+4P(DuEC1;;3Brk0}KS&B{r9q_cPcwklLK^*tgw+GZz3H_VQJmwn!vKSO77! z5OH0nNBHg3dVE&)^Xc}Ql#ws|qHglLL>F*2!IUk+*}u+PzjAS-~syKBP!y2aJfv_Kpf5b3F^B$6!-wdRyZzvDJN5rgZ(*i)m()iFeBr&Am);w7W*; zD8#bhsRV(@An{q(tR7!H&1%mzojdC$k<@)5x6;m^V_8!VqII=BM%>;PIjL_xr%-jq zo;*1PbJi9#gA`xniAs->ZKWE845}g zpr{}blb+RkW-cIw?R96dyN*rrMqo*zofKtbF48N*&n3}V{c->S?<`(hI`h+xu4?Y9 z_0wGF{dt?oXk8c5j1EUjQ@M|^Ye(pfORse`O+l)uy-KW&QEA%7x*CjnqN2kVBr-&0 z;;p3D1`DOSvWn76lWxwi5@IiJZeZSuR2am&nf4vq3BYU~BzqX*yNY{z$u8rB+!)Nm z62}$9t1o4oGZ{=KD=oth454pgBIY^tY?MG{9P~iCy7qUR|tSTWhzShZUFEJ0FX1mHO(HD{uzB-sniW6 zuR6nv=niVVZmWO1O<|%mwjU#ZN@QY>mtXfKMV07kgfUqSMQ1Zwu5RUv3l*Jh_i(d3&a1y@5*^x%Yq-+2xa`Ys)HfPE z^4rM}nkajV8=IAxOp%sTa|E&Pig<}r>I|fiF|Zy{{IP0&g!F5q{VdjYFPuTjKRWcL+{Rzo(_rdhEPX^9jG7ZKR>e}nx^t@Z7Wz15mR>6#6n zWy~*g9n6xOSW+kY^)m})nf6rxq7Np$gEfOQqkb%j>R3p+GJ!)m)~je+4`43 z)-N?XtBVT(a|6JrnJ5r9ZPbmWmjiJdkI->kN342VQrC4$JIf%QxT92NG6a09vG>S0 z2h)*^o_tp*EdCX}Og|=ilgrgjH`AO~Q?*ko95E!- zNc1kF8ujhv#KQAVl-#T3!=>89+^)*{^ zc8b3+%UsFmjPq%Tfri#=L3W^u7hd|?sqU}z+ryyEi#xfb$8z62nN^hu9nG!U1$Tf$ zIaVV%0O6$Qol;rur)3QHT3ps_ORg4YH*6UXkgxL!3*+qkDq(4B{5L$&Tl15c>z&Op z(;QBNj=W}i(MLay$OVqD=V@fRQAej0I)9bF=|NTWd|j${?N()mE?dObGJE)=Wnr#E z1eUV&)zF=zyMd?qi*pQ-+{@lm*b--QKOxysvRH7qsOnu8tlj7^SggJ0TYWti)r5VR zE-dGH8tysRw1!8Fh_>z80_2>t3hJ*%`VpPRYN*s2^A5UoaRP3}(R*rH430&_P%d?J zFxDwSM|fbp$mM%(Fj3*nH74qKdmdy{zkF!VEcR#cGNdzxGaq7pgsX9xcZ*<*A z-)j)YiEonk|9r~{m9$xkz46>r^gtnZEDWD+`mBC1? zOnYM_B>*xp5%0gxk5F{~08{9;8cmIz-O)*5k81@-I6KJ$fsO_VApY+afa=bN>Rn%7 z)U_KMRg&I$m6e)E!6UY+$CI8&#t8lXYny&{e4cr<>gCRsWx64zI(2&^rEnd8(fQh) zMbuBhV+R-4E}EmJ<(5HW>ey}j6f3(WYAWmtCJNxio5t3CN7VXt%*b@-U0KRl zv}PrrwTTdw%Mq~gf=C$3=B_$dp*71$WKCH`liOcdU&3QZ=Mo!99oiON>TEB&Xl(6F z?!#@t*G&=lVfm!dJzCKEVN^7IzJ+O?r}W3ImwJZ1PicKYJw?-hEGqK+dM=iY?ZV9# z^8#5A$Q$AnKtTlt-PSa%x|2^^`JkFaHVY;6(ar$@jqQrsEK)_YaA=C}+zDSi5_4B~ zofWG-meatJ3)wC0ElsImy-lX9`iIOV$(W%@BW~G@sD0Q9!ZEh8=aL^IerftKmdIY} z{*}?#)abs3^vBD8Psc@SVa}GR)4e;@I@45G>JDljQ9qH}$WElBuR}c8ET+a8L@Eb zg-YN7#7ZFK2&O)*{Ak@luFb1z?|U1O1P5d*laAV-asL3)d2Iba_O7MTy*(dIXmDxd z193OnT#@^7u<%Ip+a8rafg|r4(C<6F8SB?lI!v7z(;k&*4zXafd0dVkt6eMVHbFXi zzPQl24L_5mMcPkRxn~+*Q{y#TFqu?Yh!&9Jq!h?4#H}?AO43_%9JXzL9KhqZA%^1C zei|EySm8@WARB@Gl1TM)TV1`p>gHQLQ8c@lSy@b}-M6@lBu{H{iVKCFB0{p`Y=9Q@ z@mej?KPKOZhe!1;15RV^;4-*grD@+RXV+e^2DMr08kM>i(rrbdb$?5jr?MF7cBZMH zWy~d1<&}=FTARXnI3f-BbXq*!ngR<`%#N-viDvVdA(!N%F>gRt9{eR^D0AF-} zMQJ^Gr#elfdRfw|xIU%T)D<rc3AriMtOogO5c zyM&xMJ;%#{trDu^lD=`+eL16YM{0tywBCx;>(=!wch%l1sY>AxM?X{&R)8J`MLVn1n*zb~J0_MZw;rYHL|KHL1v#`7QjEXVWkrCZ!) zB0Y!g?Z3YBv`4q_-aIK+kQR)AM93TzPtNoG@$v8f08bGfY6Jtp85QvR{?NmR9r%M| zY|ZmoA3=I^TC|GAGfo$i)oocK!)-!b=0dLo!N5pF5l1PRIK#xjr@#7%h(GE$#Do91=#H<8FN|ZzF`tUG{C~L94omHpO zA(iRaRTwGDOig)%+;&xQK`E@<6(o=W5>lDu0=9!D{{V96*1Y>HSuENn*_cA>wV}mB zWvPjt+ZZMg)hyx}5T#Nk)oHP6%}6n`WTw;W%Iep!$5w4hZnAa4c`J$PCR+oKy5n%G5?R!ngNZY*ynQ zWw8%FJ49$bQKWo7)-^~X>$zZFP1Gve{JPJJOTNlBWGlpb%Kp~C2TyUHXnf|>tE^~i zc6G-Sf$mpI?k#;>)0CZreREa&*{qf?3q!JD0)5g$;;@6H0sHdfrs&!?!Ub(g3qz;r z@7)O$G3uF$<96%@jLH^JK?{uF?%R?wE6SSB=>z(5S?QW&m)5;atJ%qBB)+-0>C1~b zELn0Uktc%EDP!0GaUe0bmI|0wI_GZ7HB-k8r)p3PS7*5Qip_ZI6&Th*TDU-c$Pr822q}z;k5toBi{{T$zWt+t#73*?`rk7gMj@@b$vBaf?FeNN&>XBK=VK|cR z-$Q731eReui8OLVckK}6yTS589Bv%3Cl$K<6`P^8`<+Wp>c94bQ0i-mt!^P2PL&<( zdTcf~6Ze*Md#iLX-m6*@cHzajMv5dvZPn%Q*vuXcx$HKSy_d>qyj%3mJU&BHX@JqX ziq%T`BTp@D&1pf&U5!7GhQkH5y;I}~e(aK&h{M9_(%dpn9ny(z0Fof$Hv4%7P)Uaa z+YN#_;8l;r%PTE6R{dY5HPn_ivD*mR`rR!r2>DoYZY|@MbcRjEva2kE!Q4ryEshI} z_F$l7nYP>RGbKCE{r=l{yE1wFYnP-=yW1l<=DRiJzsjb*)_zYeXqdNKra6wa^(PUk z^=3mYU9HY#dNqWol;W3H43-P5BIZlDb<<){hJ}e^W&x25zcAd%VGy-lhG!w&vH)IA z0m0qrz}g7NB6^=s_AgTSiK;<=dh$oU?tKacjbKH9I=B<1&@Pa4ve#2_l&spr^)pgm%ww^1^+r+@+-7xGvJA%9 zW~Q_XD;1^%NXJ)*WqQ#g1j4Nv>6Y;|tnVeklogj^so;VLC7DMa$eb_tw`9{+{UJUP z`~h39g})CvA^NJ@O?QV?xqFzQj^^VAE0HYC49|TqUD3N3Nk&SQB z?6;YmZQiJ9KA&LgOn?U4%@slZVXyq!q3rjtUey!{Ajn+HC+d$^yIjf z{{T*k{g>sgAtSkF5TvXNJdulj%;GmmBPpF0YG@5;0( zC(K6f(##s%)%tnJ7UCS%r9(<}3BnlwZVTxzc1Sy#aj252Sy2aE3+gw&n^jrbP;C zyxjZ_)NK9%d_wqVrR#BZ&9%)+cK$tAfgMvc|r{HE!O2EM^cX*iD`JOj*J0EMpCS#WmsVHE7NGlhvcLVm6U%- zGj@{DF3qYIRe6w{hBnj$o;xC=jnZQt)3~r$qiW7x%DIim-WoOFjDk7HBiwPw{{TK~ zAs(|fmv+q?uH>269PM-<0wj&cF-nJ&b?|(KLg;*!qQKvyUevV`ydSQ!sMJ^*^1C`` zD5+B|>-`H_v5e#7duS~F5pn`6k6%PRFroD_@Lej%yFfFXC)$14fzBbA;QG9Xr6A|- zx2qxLy0^H!)25x3W77k@&|6SMnsmxk%c$wdg-mEM8)_PQlnQ`cKszfG*0NehQe>#! zZU;1sRqFR?Mfpu?;d=|Hu@)hWv8r^{Qe1{h81U}1C60xOAeQSD&@wjZrGIN2@vYUi z>b*WftQrKQ36Hh!sP@z^!d)OF|*Oq~ow>(my zXS%iu7!fP1DNk*HMfliOB4zC>kk6h1*#1Zv^PvMSPaqO2tbU9C03N?dPl&%6 zHGY=(r>I`)JrxF-e>@L!pv9(+{4(1MbMrCS+crpM0w;2^U^ddq2>IW)U|A=17YZy} zfUbzByB4icy??hOLhUxEve@iPP;j>z+O^1V*o4D;ucI|805y_O#N7a*$hD7fqP@{? ztaM82`c`bqw?bMibQwAT$T>*z9x7B@p0Tlwr+MU+f|+4xRI=2vE;d4=Smd{Ys)rb! zB*p2*4C5#=AyjP0Qku0+;^0(ebpv4*C5tO=qPr=m=DqZjZ@<~SRZe=j@dyOVWCwDX zF;bN40Lo!uvt2E-UbZp_am~2I6jvv9je{VHcSeGcDQZSXgZrB`jo=DU28fd>?KQiR zeyef!jg0r7)M3t4WR8AjWMg@q_K%MWR5iuC(ITsLEaUn5ih+8qx~Z!&mMsXnLii@G zZM?VQqL3LNB9I;cr3qO!6t)FyYHnR%!!h)5lV*J)n8Zu0u(A?SeUmHtkz0zSS`CPZ zTtq2Wvqi%+*ri*oWK71{J=1B;eYqQOhbFt0>Y>_Aq8M1bmkA~qOHE_pN_=SxRIq%A zLR6?-nynM zZ*se>SN%4kW<(+jfY*~Eg7BpZ83{?HE3kOrUO>CkRI#pYt4vjXNd>)~wG5K2LLdeouu7q8aB(A8QqDQ6__Swij>(=&7@d{Iap^YSw%#&uh(pjLJ zCo)9IK`u&WW@L(HefRN}x!v;@8@O)dnfhmO&If_cK>R#b9?NIR+3e2V%vjEIje{8{ zoZ}fM-iV)b+JAZX-*5VVuW9i@uBkEY8_e(TGat+2<9YjdiK#{himl^#_KBE@-adBr z-*5W(R6+bWs7+B2T6-zVBWbQP?;FGyb$nufhVvW$01xBh-sENnA6$Qktj>T))^zd? zKGXb-eD!`YmZ{Oid3CXWLT9>(O1*zHxjEA~Jz0>_b`gIO(38kwb)Afb3u-y1r?LuO zX`vm%HDXO*vnF`eZf+%mRwmm1eJ*3B%p|;{4?pn^Etnn?Lpz}hx2kja(CN&(FRom*tdCdolxutydXil8v`nP91 zr1?(4d84z5MU0)?UT@7_FUw-I0`m*YUT^h~v7@Qm)fK8R_>=ztu1dS5$}@VM<>Y_) z&xlF2`gm${S*~#K$EbY2>j=ODX^!6I1d)NnNqTmW0Tr$3w)%73{4RZ^t@YH?VYmcl zIadtaYo)Ep^?Tz4ha0i@Q8mF-%KtL${0dl2xC>aExO3XyD4*{ zTii;q=aom7?F!_mCnJ_MUeey!UuoBgZ5(rImfDBRG)PyxZS{HLjL3X3NXtjKjr)Bh z?E<@Zm(FTCIApHw8fnmY(1FVOsgfpsS_)toimE7mObmdDwZ>MaSGl_yJN zZC$R^Q(d{^B62f1?HXI#PN#?)$*d#P&8#*PgPSM5MwrQ^>JgFK?dp&=$YgI4Mh6+l z*1DS7%Il}I`mPOXT`b(qeQHkI@72v5Y5L1ckTS5j(ryCHENDYKPD+x)Y0|Alr}0J5 zPN;c{uh#uVjq3MN^=DTxI?q8rSY}<3>P9n0dHd12dlRnlHH$Uc#$vSQ0-b$63CGu3 ztfMw6BA#RiE`@Qc*+tOCE7>Qp)urj1i-=jvG#69qGe;!K7?zDLqb&rns0cy=z~dEb ztJ!q@%-v5c`g%vG+OD|_7eXafy0lFyDMh@j5G1{sJ9jX=hj4O2U>w%N{w1u+yRX`_ zGL1p3@b~%;<=3E{Q0bsxbzXB%V(=QvSb56AXl+xdG8kNa)mPLFevpqsOSTS(Nsu65 ziY8{!Zf-65neL*!k`I^GdUnLdt(c{?)MUSo?g?YTS4n~>V#CvbeX=X-78bYq1Qz#} zOK`Jk8s*YEMmwwTH@N@mI2AgTuQz>6g#t2)AB| z*p)Yk6kWPqs-!V9{l9K8BfOT;;*O^r1|#zhVnlo^D(@rJgM|bZ806sRjEcI5%u+Xq zE6igA?`?t3&Dbmh>?Hf(fKNPDylYIRXDz8S7c$9;_d%>o)FLiaRGHv3)Iw7PAefEL zCL&5m$L2TeJvnD#XQWugWiNW(KpVIR_Ke(@AdWX53UWXJPlH}j>s#GpQR*F1O->PQ zb!&TuG5xrjm&odGAoe2akNT$ujW?=p|f3L%yfGXp?s!l4zy`KZ#tJZ zfzo;ls5E-(rEtsE`kNb$w^dq=C8to_VAr<70gRyWfG#ICk^Z=ssqgM|&1OwL??e4W z(845Dg5+Ia+@;mD$WF;VW+=oXc0!T}891qfXb^O!k!!8=+&b-tQctc!bnkE8xq>@w zA!oO^wqlJWFK;pLD?$W^X*+;i(|rrlx!iY~-!VEjseN4P{+H`6ywm++&UE)uVl_|a zy*=ueM|B=g8d^tH=nPItc4%m>p=beEPKGSZMi(xSl9xQBR)y|34+I+f|#h$UJ ztdd;W+$uUit#>?{eyygN6-!#p2^JR-fC5OEY_kHlcai8#t8_l8ZKBy~dM)_3g5OiO z-yO@`#bF$Ju7|Aln3F872B~LoLir;zN~UNjV3dh|A`^0jTTR^uG`7E@iW1d*oPUxebyKoq|S;Vnj25 zFvD{4M&Y@0!wtVt>eA_IJ$2NYIUG+x?B>zb4MCBq(oFUJGgld35Yd}e zRjU_>u<@0)BE2`x!N`g^PLXqUX{z2mt^9gy{{X75Cyq%JO%lx<)}50)J0B=Zx-)D6 zRzs7HD^BU1CrQ-w`}fqeiw#{MxziM_`B>pt<+*sSnki%+|tsTkr zpUgK(PR@(!2CvlN)LkQj*ZD1S+j(58Y+|)Pm~Sr{7X{Lq>V!dx=7&;eP#r-Nm_@qG zI`Lf2JZ%rC+v}6vMIE?-H34;{?}ZUiOq!D2#z6G#Rk2b5ATq{Ejmj`HHk}ioTP?1k zXKxS5Tij{-gbO*`{{SywF0F6avlb<$ibw>cliu`qFyu9R3tdp^c81Do{){tR>q||> z`Ml6KKRAA&&04)ZF3`G<{nTqsJNcKt&mWOmv zP{nn73$DZoBsX#x?BmAWfl;EF1F#&aW`fAN}JyDNI>62PZ4y_b3t-%pY(Ainf4X&qbHi#R#T2XfF zOli45UgDDgi$HY0)Gs9Y?B=KP>x{Lja{2td>N@`bs=9WYb+dg|xWeFY8t*fV)7pEe zXBC5OZAT26O304ffxk&fZ9XaMF83{<>Ju1lVFb!m4E!Ishpr;Vn2Nfv!FNv~Kbb}Kcz z_VThvw;A8h^AIqP&B1Z zNZ2da1XGjP~Nr)%1!q-IsOytlTx5y>-86Zd4eQ9KQoMOh0*UJ8Rx}t=c8A8&8l$zLp5Gk%-31-THmR?e(D~H*IIbeXSLi;9 zYObzoO>e03I(ayr>h9XbV08TmQmih$by!m2av(eOOASK)Ta6;>PQ%#hIzYXe-{qp) z8~mC?uN=S$a&9GwzJ%oY&1sj~9-5JAwyL)g-f0@MK@Hc<-EU#@D=0~0?wFVe)@2Il zcsoy|ARUV9Hj&a@R_UU2cC69*mn~0D*)2;}#Ob>?bjz;Nt#v?7$foMMH3q%6iMBSC z?=u2hPmLe0G?S@mA2n~QE}wa%2DnYz*Lhf(Om5+D7DXg)4S;dGjEdNWj+?4mNv3OB z8fzM5>0F~2*%g)YkFc;}(VljY4hh;xt$67#lrD>PDDpLK=^P$9wlb}Em{nD)R^Hpw z+viyhydzq)b`{(>86z+aiZ_{_Q_;FcsnrX8G`i&WYiuJQX4~I_AH&;rNM-1|8P$&A_FF*;0_WeX#oJY!kS8>WwEqCB$*vA$!-R}-;3eZLq+Q>uY8E<#-!UeKaoIA3{@gO*UC7P~ z939{feZaO2c`M^DLg^hZ)QX)y{_m&jmZIft+DwafNlsBgIWfKoRAStM7YH$1f#oYx z^ixE1=Pgf5>&;h|>Q1iyjOFzmsq*7zsw~jcT~}3eOw&12l*}W}#PE6cWQxBr65OIX zLPw>?YXUZ>VRB+{#ixd1#2Ci-m@W#swiq&z@02RQ*30mpRO$N-A5vWt_1v2FrY+j! z!KJP5$`xh`k+D}sf=svt^UolHq*l9mz}1>tQuVVflF}Hq}w&FnOVUdhuY9{4W#u0;Oa4HEr zo=MK1@sn1H{{X42<$}`U*rk+E&Ms`ePHyS$4(yST8P&$ay#~+#$K3|Cm3Cdi+Pi@J z3auckBGQJUVj=AWdUf{uvMeuQftU&3aw+09UFNu1og)hU&{_WPrHXnlZX~OLzh-cDk^w8gQm2wziktMg5L`Xj`spZg)CTI%@lBAC9`s6} zAdl36mm(jwbsS z8NmKyk>>*jrIzMMFpV}`5TFKSBo;jS&f?AQx1G5FfKE((D;ZI$O?0AR{gL%eTbzm_ zQYr6t8_3(*WK77!GFZvlKG6k7S;wq9&Z<>L5D-DYCy)p@4A>dxJ}T;9Wr=sD#fjMq z7T(H(9F@-e70FOCcOM@0S!nOfQ9=#%F{>4nOeHAwLS5^vbhOE~nL8J2mnaB{9x)LG zGxo|fj#DAB6alzy;0>~106_DM8BtBCoIUF322smS$ z40yrzJj}8Py%H)hMlxVy4amSO8wE!jh#2P}mgHVe*tQ{wLZZz#+ft=!?yOCUTCLVw zqiXAkd!i(YL9@t*w-YX!Qbc1==>GuN5C@RN9if9SELDIfK1T$3tC${X8JVM1OT{b( zz(!7Xx*xiSB!Ew)@OT5&UQ}Jh$33Dub}P9r8wyyhz3G9M1&BBku?v#qQ_ezH1|%D9 zHM>b9cN?3(F5oCyuO9v$6=OEy&6ak#)oPtM!G3kt*Sb+1@fFCI3}vdf3tN|fm4 zQxZ#j?Z5UTxhFBc{wZ7{7^aF(wgG_yB!QEYx9AGv3&{i%;Nq@qBYE!aUIgq#aLW)c z!DRzrB$JG*95W1k4OMkr4IYy(Rc9=}Ibk^R%U!Hju2tt+9DcXaGNYCN!)X-k zQ6zCR`P{Gsk^%81H8uq*0gp3AQjy9d_Fw&?Yv%$_(c*T3KNBBeV?kFJB zue7$*?o?pUEYbxod2kUJ1x90lJwqFF^`d;bbWfwbIqEGArqWhJ6?06{zm1^)TANW7 zq0ZwSR@5{pA*o3PRxCzay9y!z2Vv#oEAYwnZBk3EUVUOVu|e4FyGEu$%B{Q(Fcj@4 zpMMxRtejsC`Xi>VtnRd4osum|+&PM5GtIC*OPG}MeB|< zqQP{tQ0V)2FxryrQd?|fottGh z$#S5DmxcjB$Om!esKnuQSr#dt;yECSMU6;(gh@P7cGM_fH${d7x2af+aw}oH%Jpw8 zqxxah{-x>oCs^s%O!eNWz*4ruMLU@dHKwwedIfYPfe@D7te)pNje{mq__XLA*V2^^0QaA#Pgos}6$X&kW`8C3`}2*K;xMwtpj1am0vObao< zEWUnlnID)jn`KYmBL^I*q0R{{UL;Y26!@wWa80ytL%{ zrJm4w$3o$R&Hx_u7OO zx|-VF!4wx(^S$2TBSOW zOjAY*J{OJP1_EN&oo_W2bdE<-^%qy^&X(e`y#w-d)KbjgbY-l*Po@~Iw)HLgL#Vpv zC#Q2wCh84Ps#F~6c(ugTu8fU%gtEvVj9e1gO{$AsCg$p44zGJ?rt4F?HtvH?Yr9l= zVwpC;vZ#sWEUri;pJ~X*y`9_^NY|H>T}bwFF-TyB8;6n`sNrtP>|x)MHZp;LG72ne zKnJMaPkOnnHOE5w8`S-AkQ|P8S!kLWT}xuJqMclnT(@$%GJ}j=h6X;>nh2w8s|?4c zb(2KxBO*9EPP)J7FN$ok-rSC#Sr!|sNvfO5gIZtSem z{{TZ(68zlC(gdBA7D+o&Ixll#s)-7KCBmrQ52bum=UFv%T+Y4|)0&3aQv9BR7*#Fg zDX4B%eT3OuS1<|giIhPQjF+^?l<(uxy-};(TIv(r*y=g9`B*;vIHU@;EpgLaC^C|$@Tj4&fTADQm0GtZu>^8T#u zN;*@F>Dw{&Y=dsH=lkHr>FgG~%VSxb3w*>Cr1cFZ6?qsQOal4kwUxf7eRHDT$l8># z-`hBn2?Wfp@FPbAs>)Ao@gtHB)ha(|)t;|we`BWTy3882<4Jufwz;-4vp}81xode) ze{7H3w;`Ebkf{NXV<)5i9qPTkC#w5erz?4ycRB@L>+(0P-(DT5`l)1R)DcZ|$w>ns zN0hAjY+Pf-UXQ;#G6{Ah^4a8Kl zX&p~xWu@I;b%pR%w9WxY#HO zff>qaV@%ZGx?8T9vaq|dHjai6&XU{R+qBALSwj_>3Ke!;sVH?SqZzC=wwm6BJ(QLm zajNQ;ch7%qGG0p%cy6q2BZo8OH8Y(8AXlI_W8yZF%l1x>39V^4@*p$0+K4nUhb}ALU~I0MXZ2kqF1xhCZmz zf;OD(6bz+bmt$a`oUkQ*XU<@#O%d=DXX=Hh*k#X1EKgVr5lK=rZsk=tCPx|E7zJRSmL{B z17UC~cHM~X*2+BgSnMAE^}CaN_qD4Cr8XKrNQ+>8`FAy2cD;SqUjb9 zx_{zd9HKN!&&U*&sErRF*{=oxheWrbeCO!W2FZB2wCyp4E9yVa5a57YpjE)ZAKb{R< zK+YqIQW&$U5(zxy0>=cO86;!rjMi)--X?eXk7*x|dHIjw@BV%@A0BwDh(C`8ku&e} z@xQ!(gnvK%{64iD)whU<_?`Fpk8hv6f3J@arhkn$GqisH0Dt4R-{l5+$GqA90QFJU zM1N%m{geLyc;>h#a2073@^q7KB__64uq+navZk&p*6)zPL+q_CiG+-?ZSF(6AptOV zH41AXXy<0d#i@#WWmSUEi(V^%wsonovL|l9m_JErbO}0sJ1tVwwx}X$>?c(vp_wI2sUwY&fw9$&7!bf^ zb6qFl^`z!Y-9|g5f-8JP$Xo}RoMb8{cQ(7^XLPY15Lj5psp(w9*akHuQAo+-9;QRp(eQeHH`#UiHIx8s5Q zFSzK`(QlyYo}O)P?^C#vCV5oN+O}1QB0;obCl1Xc6am2@iP{hzgQ{6w-HSP_^;NW6 za7^E7BP!e3gGgFMJ+9CjPbyn-pI-pZwfxlh`#Xc#hsZPw=8E@Ad~q7qdxpkx6|Wq_bzcE}plu3n^s! zmy3mL`r}k=kU_7`m+8FSF=P5ld_%D5Cy(U|Y4YDg1AUAdyqa~t>li|S0y;l!rG$TD zaU}7Oj2Ty9yr=3urRhuuRBY*NS4=;kx}v5JO6!}wUdd{GH-x&(*ybtX@t9oRjt|V8 zlx0%NkfD3kA51T>%I2jwdMUdLYjtdFqP|JJKC9R)U1R_)*? ziL-Uqk^a|TXcpRiw@qp>+CivItJ~i+610YR;7fO~iLPXDjX8BvZNLgpmws^0AF zD|w}9A(_~P^B;d1Ya3xT)M&%mn;%_>&Ij?^;I&PV+d|3E(qiaEbRcczrj8ljE ztcGBAF>g-U8CEh61UVk{)$cA@PNH=u&o`RgMVGO69Q`w+^?rfIRCL-_J5Sb)Nlyu( zv2{>e1xo2wEw=<>2XZ#JcbS=st81C(x4j}x2~|YTq%!Zv8~}L1JRF{QHS|Z}HP=;j zPw7YTzf{!bmegn#H+ozs+r)O!o4BIW<3v7{Rajo=3}uOV7dg#w!%^ssTc)*!UqosR zF`ligsOBwWuVG4syID&aPf;T?Sx8A0=y8-WMyN4xxL5>GQ9d=euPs;-(yBN(b!Js{ zaB#@VNMOOZ#xi}f2sQJ&sk$4iv|g;#x?fZ2+t%tBE@X_tmh(*{@)sp!gvN{~NwOr4 zNcStN0uP*a_oH4`GkDJ>I>(`!za@^+{Y&cPBO$*f7mbcfOZoJiTU*HQ7%rfrVBzi4ts|$1uC>xSDxQ+Ex^~Uv%;Pl{2=aP9*#Xb224ZrFs^rWP z$^u|{cE)3BTj?X!ZL-I=a~h(5Y^r>UyCvsJ0;e4SdP zuvKjSW2YLT)?a0W?Gn}|EH)>M%Pf)1d;8!ejUm4=p~CM*QH}s<;3R)CarDpbu6_Dj zXqsl1@r$Y7OScjJw6=!sN`>AoFe}K4>ja{U6^VYATRvu=ilk|^H~DBDgdo{3j0(C z17V4@b!}6*SPClSs96%3tCB%Al9o(NM{t&4#IcGvwY;-#ju2gs8*!Y2>_@mhER~VQbSB;vRJk#;xye1jcS$KZ7M%cU6zTd?SfUt+o&#eTP+7veK}dR ze#OjjE;7oLIx;eOXWjMi&17XzwlN;~{IN8fK^`pa23(YkhMB&8J)3rO$dOq$w)y$yR3jJg#>HV3`e#tl+M4pjXRy-GCZR8^a_f zUXbjq@ee3ps7-gSQ9LpI%U$MF`iI0fT$?PV(x?A}Cd>Zq28# z8R{8g#6jC-t|V3uv_eP-p6kdA6sVt5ew&TM+=#JK)g>g`Sx&gLxC-5Lu--&gVMHt? z2s~iGW4XuLRHa$4%E%~ISlCHIO4(Ux6(G7bPFId|9MrKJ15lz=pnK9~?j|8DQk**~ zGb^3Og*!Bp*;x{?ve!(5RV=v-TIQ{Sma-rMNR*jjOb`hYlv4d8(Dv4>%a#E#OT2-z z=y!+0#m?cO!_;a4Jc%(LA7b&UYLbd#fNw6XSv#wp5bhzI~Qh?8`vRZEpuqgtyyzO9s@3$DPeDQ?XpZQi7e!EzybthWlD70 zbZf22jEzftl7b5kO)2d?&jE~78%8gJMkEeoL^xS7Sx0S4T9pn8&9DH}^}>uq*Aq(& z$%T|egh{&^W^=}4+>FY8NQ!rvQkZ$R6GD*?^Y?dE|DBNSO+EXcGiY565 z#S&W=T7|0e)OKB5L62|c%w2jF2%wS;7^<^}$a9YhR8?xW6ij1ny3wId$K1NQ74j8Y z%2oj+7}hz}Wxe2oD3WBt`@&GQjP6QNq=z6lvb2&3X6GiRJ~$j4 z9G@<6xCp8mN>h!nr-9e1HN8eD(wMk3N!BhBs~+r7p9mK~QW8VoFeBd%=!d+mN^{iQ zI`!I6vbRysu`jz;t+i1J-Bv8)@zjlenLOOy+T1G^lo-TG>?~5HtiHV_#x+Q!w5hAK z6n#3IdaI_q1)O=~;1TOpHde#3U8xd+n1&1~Z1ANeRxSFBYUJLq;{igAXH`t&>Z};h zyOP6RSxq-FBMnqTAb7vLaUfl|QntUz%^e@9{K0v2)4I=8VYIFTQ}vHSSIpmR^7&&acteAR!^A@`5X^|;%4osPXMEq2QZk`3(zb=Dl^4VeOANIU`dE=U)a@#Gg zTYqnCavjGQTq7OFJYjzE&lnu>U#9IYGYudG!bmI11#%JtUKPaxCJ_+8?LbTvM$^C3 z^zGv#HtyuT#VaRq_XChY-O7-81y3CF$2`_L+qd%e-KG*l+K+1vLoU&^fgE9m8;%Y} zI5bHP{@*)$?f(FI+vD5CDzA=nO_tI8{+;9Y{k|h_-~Rxq;y=_-=CAjir{;J0kA0?h zi17+ygUHbgoeNZ2)+jA6v`kjq!Z`s%jF+^Q;kWnrmPOu$GmYQmYVOMItghg@jYGT* zxC5LX2-1$aR&-83s93E&5pb$kO)jWt+gb}*s@f5>UW*!L z<%F-FvJBy?*v33z?=(Am({bII)o!h3vyd(TXlH1hf$~Eu!y886f`ohct-{~0FYVSa zx_!Kc8<;MTxOOQt9l(sfpfJlTq>4cfjgAjBjP%Fh>E+)^oN|6Eoix0XOEv7Xyx*(@ zrMBi|)Z$pLBbRE8%Ob}aU)qh)8ZxD7-Fm^Jgh2+0X>Sq>J%I#+wEBF_J)E&+$&OeZ z+$jePjL7Q1nwIkCFM1rSqak`Cr?<(u!{ww zG0~ODMM??W7dH%~h^Lo|ww99HTP3u&(%&p)4*7PO8@Cd{7n4rOR|>cITx>pwpJAylglF=+)Nn;PQxYp64 zF+ib++(u1EYA?d4pnA5~O77~NdDjg^XQp(h;x1Uvbsr&?x79s8hw3u=v4PW_S-Ev2 z%~OV>uN7Y9U;?a58o+@eSjUX8)-^BI(Q6HM(p-q`5>+alyN9su8%vo`DE|O?gv#Vf zrArbwgN|{L>AEahf9lw@Xrh7{E~K|$^KZ2mv7}dVLdHY(6C_9sG6zM*Q)wo;KZ3z0 z3Rf5}D>g2=4X$ViNDkb)V+)V$cO;A6eoOdxrFnfN=D_L@CU_p?`<&HejT0M2004gh zUMpGjs}rm;qn2g+7{|)iyD?n~a9K1-KsB(!jwQor{ybxUzm11M>l^I~(d^^5OQ=f{ zyV-$F-*_%PiRYgLoK}m}{{Rp4uBW|<`g@5i?jumFVhTi?e&K!IN&|s{IK^pim>Q(#i4R|_F zMCY=V@;Vo$%<8UDS&pRG(73n&bp~bfHPlTPx$8>T+fYZb4SheXH5(JDiJA2%@8Fi% zJMtELYiVv8>8<0FZsv==+tfZvVO2-~=G##CYocD;Y4F0Urb}x*oz&9X#1*eDENumq zyw?lAXLW7Bjhz)tht%PS1ZF;oc_`6c2kEwl=|+*&x{CIb(A8N=fae!Z)=J%LS&P|= zv3AvIQss?)LcsDB3;@9K7?_!y%s&zDq0_8%@ux)JtF2(PicQ2Yj@lK17GM_zl~HrZ z40H9YHP^xIBJWz%b*I%QL#p0Qdo&>w#%8#axj0fzLP&j%?YwQqD{Qqcm&EFgGmz4^ z5G%%9rxlbd5uZkA5t>g(&-}?~EQUTN0!DqNd~&T~$#t7sh%R3;Ou|7S8;Z&sa>;|k zVZ4LG0$0JVrE#ZO-B?YgO9=THqA-*k0GPt<`V_z@dBFhIkLw>H7#(Y@`Z=v~T};#! zvON~m`Q2HjD$vAZ)kf}1Kc=tgdxMr1G>qznERB;;sFqM?^$`!#I!rwecWr+q^|r8) zn~O_}IaJ#cS}TJaHpdeyMngoW_JIVCrZiRfab&tx?viymp5F3HSwSfoXxh?$m_nJ# z`kN|u4iMmA;MalIzlG0B`i-hJuCLTu%Q$&`biRv*V5(y%p(`$i>W6BrEL6Ff5@yY| z!f($a=7m5fwKFF*Y`Q;E)9xag(_BPYH3)SSR<_db$6&*Ut=X1K9{Y%wRsI%Iu zQR=qk!yAr=(XpyJyQ8|xlB11O7X(!Pk!Y-Sb&+#mRJ8cyOei>#$D{Ro2<*}=b{94h zTQp?Z{p7Z}ySYS|cYe^ZypA|fxNZZc~TfOXpDPoo<12`s4HFUEg4fu_O z2(AFiiAM3{=fK+h9CSUbhN-?Ced=vl$z@-Z(8*pu0?_F^-|Ee7wq@0%2F-Gd$75ep zsbE=Rs>3sB;iPMOF> zPH|U{(;7^Z-AyDLlTs6#$iqsp-A!?64UDre68)PPAx}(rP5E(x0j-$nCy?BCNAyr= zyeCw3CZq4_9Z{?Ex}RAlGWwrW>fL9Wc5_kc9No(8O4)kF*ZcO;0x-CNk7=J5@^sFj zKgun}r5A3=5;)d48YM(mXWJTwAqMs>fyPPBd{(Ked^NY!@2;=cRC`%&cAN;yf!m27 zj1tmreXz!=OA^HMTLaausq`;HFAJnPoz_m9^z%~J#8b%QD(d}BiossDid;rLmzP52 zwVC7C`m7isnGrP1Z!-nr&*CS;5B%xrvD;e8EcHz;VI)@=S22kOUKvxl8?RJuE(vbpu#YwEKf@{ks};aphjSnc73>#O^}Lh|#P* z0DM5xG+QkO*H_bJ8fkQj=3O>dyIXeDBh>}7I$tWZao$E5Nln`cQgSy|O#DgcR=$H+ zkje83Erg(4&bHHhoKFN!VK(JrkihL6jIHayYyvQLXIqz)4S#^>z6UGk7o+RO^lMh> z9bbxNPNQih+t1k1T0bqLD%8naJihfSI-Y6mb1T5G8UYEAkAE0xKSpl1ZDUf^?fQlY zCDr28Vv$zO@}I1eY^?))&!N%1X^_C+D*`#IdryeHA7!TguQQ~O$MTyyjUn1?E+d{I z;KlZVj6qyBHv&(QUVqC@jPlFSG1g9Ro_zt;i~68+E}#7KSL^)?8B8XJ>9!Ky2Se!; zza5f~T2(QZ?{{ulGO=Z^?z`%OlFMqJqo-SI@>nLZdubKAOlP0uY-NG2BxHs=iO6~7 zRi0#p18qIEIV!mEYQGTr2HN5O099Tsq5#Vr4?D`RERxAMjx5Biu&c=3wZSU5QpXk2 z+-{)JTKh`ibNUll>3rUk3#^P@pu%M-hmOw zm3mNk+WaB}>a?Yk%6RyvXfG{R+BqF%OMN=uPv8~G!0O$_8;Ax#imsR-6$BCDuP**Z z;jY~f#Mf8PeA!_5cZi`vc7i}+U0XRB0PgZ<{Pgt$RCJr5I#Vg6vK1X}#=XVit(>GR zWAYR&sl+uZ(yF;6{JLE*(8h~h9Ck!!76eFNUlp`yxH~34*_ExnxjVa zu<6=5xC*O@Ad+j<-LGZ{W){_s(>o7lc?k0HqiH%7rjX9CNj;`w=n@#3sT|+oTqjympiXzl<<<7-!i&Yv=OMaA%Q)96odMyz6OVZe(&ZEE?{iTI*iLl+#KmkvFnZCVQ5d zHM(i`_RTfS5>Im@MI=y1D3FLlG;Yu72WoCR(;3Fs2O#wCgEyMZwYODU*mT_5#jV`d z5x>h{C4)gD88#Bx5&%JM?via-)P|2F8jSPDs&tlbsT3<@G#e&ej&N%?F5A1FPQt}xojuA3LM&Hvq#O0X}IRG#N zX&{0~1aL4tM?bP_h3!&>lnC8OT>68OSOOS&vBA%=ApPY8FiTYl{F9>B~^k9 z#s(myO~B3hLmI;E?=ZewL37xqGkv0?m&1-&D2bcsaqDxyqwN#UmvbX1u?ip332+o zPXw|??Idl6JBs9Fzod_Rk+kpu9C;bysoh$`6p*ZwY}x_FG7*U+uRnM&8;c=r*vA}@ zGTP&;%j|SA!C6Dz#u1CVB*xb^S22Q-PaZPC9pXis#LULtAgrcP(?%lzHbEF6n0?j< zk0XqLbA!feMGx}*;V$_Lqcd_rT!r4O4npz?3R}-SgH1+AEW_-sxHuXSU%hZb7*f^A zEs!lZh*+#_dlX2V07*d@lubEIg^X-*v=R!Re<^s#twb3DzZrvcdi6tQ7*(H zRrPW(F_VykmghT$(s|7aZAhDht2*F{_w9ipQvOhNn5z~RuuA^1j$28VAU=0E(*pb7UcRtLP+HZbLqfVBb+b_4l;9*tYnHI zLZ+2S5v}Rv04_SLs}j14isrG2K(2QYooVT>}%)CNdY#=H!Ws?MD3X_%={LkN)WMm*Ixwn!>Cp*q| zk&%KwWtbl&e36m3arCQ*;=h78%xkt3BXYOxhXig#BP=t(1%qP*?O#xi9D5U1%bfN? z>Wm6d_u1eA&hHf0?a3P301`Wh{Zl^statHj?!`&Y#RoYBLEw4z2kV?ipovvw zbaE?IvF!vn*kU2XWasN2dn?-|zOa(XwOQiQ=FVbA1yF_shuu76=e8SXJAlS(v}hk1 zI_FEahRj-8>en{m5;-m*bd}U56cUo4VyHQh*LD{LvOzm1}4zAgDeWV%tjjZx^5_S!&E}7C?lN2l=tE{iT3fB=v@vCE?co}JgpCFESr?3 z;l&L(f!(Tn%gE3?eP=7Pwof;<>Pj_e!~qqd1mWr$Fl4*$OFA!S<1o1_1~0 z@7Gqg^Tls08m#(mp>H5_vMYIFm?6w@$|cJxpAWOuz$$s-Z_1~UZ6)PXs{LBldI*N9k|Mu3~K2&14_>k+(a_#d8^nt5!mi_@P1`D%hL5YfGy+ z=8|}%oXUmVzo)YtXb2!-kSmSD?;%i6q*N{~tmM46zk(>CxLAyCBZ@e{CRUOAWjPBW zD(r?u9N*S$&By%p6rFuh07 z8q+s|()v7b`hQT>(0vNjT@l7bx;ZykUQ19}3)rl+%eDZamg+hIaUzo%`rpGJh}xWY zw)XuaX=QJyM}ChR>XKacn*Muxsbr72XrL-j0~CxE3bOggAkene`gYbeSo)r8xvfRA z!7GbcpKY{~cH@4`#Ed~HhjQ|JYDmF2%H4JHKh)l$^+PAs%@eG&9uH9C@Sb1GMdI}` zY-KPrsQMMueNV0uty5l`2h{01snnf=MRD$fXoF|iR|A6S--JICbP_G4>B~J!PHTy! zmNR~0d7-+~j-50p;@N~v7(M8v!v-U^RWrJ-?zPUBzPCu_)>_WvwJc(2gc3ANXNKY_ zR6L+aRpQwyF;L2QY~)tNd0+D9nCOp6dSBCBQJKQ$r$b`yMqeq4k4ufo<}w+quA#Q9 zUNMX#$6<#dmv|v;G9a&2Vo?P%5tq>Z3UxjI0A1O22Ul1_ZK3JHCP)@&|%IxmgSK0~Ocp1Ux@vl|Y?v`sU zWv$n!Fm>_lqBv}Q2%8xc(P*-{wX8T94dNiAA}4?O_K4a%b^fL4{Z~-bu4l7@bQ46V z3ds^>wlbZ{_#^^+0s$Y6D~|PVO6ofHr)zy_JSwq5v7YNPup&bFQmTIp9Os@mu3fwE zz3O9pndH2)tonCLR%KUO)>m9(WmT)?^0fMx?Ppf*TENqbxl0SfS$#oei8cw8NE|9Q z@q=ET>R~3CsD7r2FKk-Tq=)9BD=%U`#Gh&uW4RG506;T@IOVE%dUINfsP6R%FNM~b zFuGWg25TL$hJ$!p+7Yc+uo5S zx0$#;q1#B^1`K!-E50#TQ0Q8mQd(RWjjketPL4spi5}A6Jj09~vd56De)}D=AY77e z8}P&HR-Wkwy6Ijn-h>otPO*7<>LxPD3%0Uj=8$z%PV>M8z%5zZUlKX z%Vc(D*LPMuQ*(W#-Zq4;Z0{~6bvLn}v6xC1Zy*+ncuNe314h z(;m=rGu|fWX+EAKZun^m;qnL@xHQ8501TeK*YifNGwIayTb;;t^QcO*xNVM8| zO{zM0y$y!NVsP<77LK9;RmU>zxo2UusU-q)C|ONAO)sh;v4>5UNmqtQFC%}pxBDri zm`eo8!`A3kRb-42hfu@Zne|SOzP-|9)8dW=ngr9@DT5C5lUvAMD6Y z?$+h5bxU5!fPI=5j!@3TmT*8U2hm%>KK#`lm*`u)H(C8_s^M+k zUKPBv9N=J7$C!?h>#c2o)TPoqi7*)H0`K@@YlI0 zHmX4Rihr{{(c`}K*H#TDOuey{luHoZXk?A0h(321rHm1niT%KCH8)yxFYE1FOw}#p z-mJnqVMm`}AR(z*s=E~VEzSmIO zWF5>lOQ<9zp4L`Fl#Y0N-z>|p?%U5TR3`Xz*HN1r{Z4D?8sAHfZBgQYUEZ#hc{H(G zUP7`e$X?P`wfVsyo09&X1!R3C_+0sl(^}&P)C-!kO=^v4gX$+l-EUmxvo;&4^PN&izR=d@A7P{08%y$xYuw}Qo zu!h{0P@w~*)FONVgOW$mtP`O1IP?fK7!hsktfP)gXjVpXjz2~p4Hllt~c}1jtj^wJs(%qo$=KzlG?ZG+N1~bkp z9o2sg^{c+jdPJ*t2)WcQhj>E+Lbub!H_C#n!cNJIhMUr4%C_8sPh|AIh{xdcvM}}& zRIk3dGa-3sOgGj%VCELt4Z%vDARBEH3gtfYGvhM}^OmT)F&0e6IPY^9Q6cy*cRy z52ad*MQSWQa|5erbsGD0?oUDMBgx@%JwEHtPxU4;vo4mS)2ykKn8&Gz^-*jFWt@yg zmCmggYhxXka(Lv5XfBdgisHt2oG^4a#F0AXWQ+pMfyi9e!}2C{D7v__fw#qTZzMhV zFYM+*vRk?WJ98s#cqS)m9mIlhT7R!U4v##VnWUFnoWPxT}5|QWaC|H zEm`J2q<9{R+6`Y;Xq_!Jhei=OyrXy%tef2x%^0DW8%Wjs-PPRu`HEx5>^m9_{ok@=j#kE({-7ll8k6BuyMPZ3@?`W5B-W-}msPE;inM zw%gl%z5TuC-+zB^3RlE;`$N6QdHcfFdj)7OF1(c^YZ0X#!4a*qW@Y zy3)p^o-43D^pf}NuH-wIltsltp~Wmjq2i>i78zq0hC`EZtf`&&SVOEieC`sfhiS-h zcV=4=}NM(iakxu1mgQ?HadGuOm)7Uxun4C|H|S?f9l8TVFU z*Xivsr4|nyZsh{gwF+Y<7(zx7J*W}!&w94s;my{g1b+}F)71sIHmiRyiFX-f60}Ov zBD4L#$Cd*FfJicl!YySY&r>E@Xx^GX*e5&0T;F+USnTi5c zSnfQssU2o_P<-J(9e*8^(|%+oi*eP_mV#E5nvITvhI z6XQxh`GvAOEblaEp5?KzE{ASRWwyHS+Uhak*pF{|^5w5xf8`gwwvyie0Hr#~t>K3T zX{@zw_d8LXZFM47CnQ9w2PIWNt#V=+M%AoE%x*(XWbqa|867{Bz~0k29827wwxrm> ze}`RZLU%0`(X0LC|NTwe&}||mwx^3Now97E!yWg z-7%cTXMD(Y2SMTVvoIKqDWWiaZqpqgO}bgO<{Oo{M=Pz=`fj69sjm&kS4>#Ad0ryb zM)Nr+e_CC_R?_w2?PW-c-%p-EHu@whdn77R4t+tL*8mIyn)S!%)zs2UXRB%bMe$Ei z&@{~nZDG^2zxIW+TX#!`nXY7pStGbjuoYa}M;dpUW0xEQuKj4y0i}A8tTL3k)rRZ7 z7gc9#U%~Yy8uL$UZC$A8Q_|XUl;!o@;P1Y1*`}~g0G%Tj7hlxZ9?1+1mBc!Yz1_@u zlpVRulQ4A=EOG-g;iE{TlePfBWNo_}Dl!IZmHv=g1%{W^@2KfLcL&5BCt2;Z7voZn z{{T>tW45g*v#Gw~9?f7``dd8LAQ?jt*7g@X28tGs@DEu9o*{np~&E!aXDR0 zpzzAW+^b?bt`Cxu>VIY2dTj zi*7LMJD<{Qmia7UhxNP=EQmPEq-I#%ag=upk^mu<*8z}c3RQsV{R#R-{{ZJl;TK+Y zH%;l|Pxy(^dTrE_>EVo_Ci!_D-s;r1+DU66M`cDE)=1hJH|1IWdvcka)_*l;Q|EOC zV>PKS*_?%~MUlT^-d@et7`APeMAg$BWCMAeZK35-%W!U_tya zKp6S}0P%|W`KfC9rm?Bdt!kQ_+Lo_&{pY)uM|s{u>fhZbcsb>8z%KzpfGfEDEc26^ z>93MqDb((x`n_YX+o<&~Pda<~yW1D_gkhK`Q!SavOm~kJMyp<{wpLx+9)W6tn+}tV zwaoVN_Alp!d+dNQRZz_!B}r3{M(_hTUIE;|as_=r=pWKASLmP7k3{P}vXWhUsb#yo z(zKPHM-Qm>8|-JflRKUZWZst(47`FAT$yCuURTNYnXOsY?N!wr&zLB{>kKDI^t-y# zq^#J}c#L|wf0)6x%{xoMGNJ^KmtyS_(-s)^cPhg>l4HxoHfvkB7UFAENvvOTI))yH zQ@A&%@5TWc@_dd4Fh8Sj$3Cj~m((47bMZ=BU4KdF%Mq{H7P7X9bgPSLB#pjRl>FT%L+Za$HSVI;)uEHBa(a_IyUVc#;8*l(EssiVQ7WPs++}*# zQBtS_TO_)|Y=Pt((8O04&l_odwEHHG=t;OqheqW=zz1mC&Tt9FE9WOvd_(Gfw(31^ ztu>yg7rL)eT;H|UnqV=th&%0VAyzAb64mg5P6DU|ml>>=q!fnY8o^=29&=De(LT`= zl5s?Pe`LO&kG9@1XyznEC-xSy7jdoa-OS2K-7J83@Ce6>dsbWs8_(LCl1SZQ|k^ldr=h(fq8DV6yQqt-ugVd6@ATh8FWOT-}DXwPd(*){eu!D}`_W04FqtSCNPc zLO(3c#xhU6Y@I2jT-s@4*?o6L((MPGG#7QUD+F8Uwi*j(e$=pUxYua5i@i+9a(KO3TYfhKy z+batqE#hf(on78ERbR40KA&}S+m1XUgC}hicGC*G2O@tIPOEvV&-q)-<9f57>kR02 z^*2J>t4CSmvv_PBtF-gh8Ho!H$m1)j#l_K=9e(!Y1|854FyuR5PiVglwCkH0`bOf> zbyr7-tU8@4TFUCHsM?A zY{-B@l$$qiWS3;h%L=YF>8Sqgn~`pyv4swG`xU?Y*J$ACDlHVqvtSwH5ilxLTdtY3 z?JdDt1{~E`m~=g0XqAb&E6t_A#dvH9I7w_tnJh+4W#LMfL3#$dyDLmrO4k+X+HJYz zR^J}>Lb%2}tE8sNNakEXFl8VsgO#pSs%ceG8tzv)tCs?7_w3e-$y>yf)|GXvK?q|{ zgLwopV#A1Mi4+2q&Ou42Smal(s<`#2)>gk!=t||>tFw)HD(#i_rd1#@5=5h5fN>yF zl5R`s*Ht3PS*n?3n6qLi(?Y^u&aKzEO%CBOtUSbcO9m^~2K>GD(IS=k(M>N>GK8(~?CtH4A3Ml=tK)TX0La{aF_? zPzf}7^4N$(iaq8cXKxBul(N@WV%VeP!moPl*i_vqxFXPyZ2F{&XCRNP$*AKc+?32D z0s<7Nyq#2B3CG<1Pf1X%y0we!Ryhg;6{_{4B4nr_XtFq=!W;U6_t*v@N?s$h(wkW! z^>$TK&Co+}xa&1>cO|yi4+>Jg@@bGTDFac-oMK4Mmfi%~8K-q~%aOuu`9VNh!8K@22Z3ho@v8<@MxNF8s;JfO8@o z;bPJvp*4{t7A}B^BT}EXWo{`FLhH)KKFnNGEilEMfv}3VDz-akZ_-VMh|C>xhf5hO zV&Wl62{V)`Dx~^XO0^eQdc7^erPI8_8J-#RT{{VO2eZPMYsGr^9 zsET9h*kf_pKJgLv+i#iPWB7Q8{&=UoE+>8V-XLS@{xk2q&i?>yqJPK4DgIQr-{wAd zji-2-pK1O+-W1I$KHqttwEKJQ9{c^hyec%Qk9nVI-*}miZ;#_2$HJ7Yzl`l4G5ltI z_K&y3{{YwL!j)*5{ipbUD4%)Se%=(N$IS1%`)@l=-@e}e0No!S8~9SIoWw`GZNK(^ zpUlsND&SMUwETNa@3!C0d?{BM+9r01{lCB8_xJmFQm+&39{&FTf1hvPf7|cjN>op` z_O{+V<{~~m{{S=X@jv+RrCuf`V{hg5i2M8RKYgeCyeU=B+xSM`A2aXwiT-}y&%%{> zncil1lJ}pDw%#N7d;IuPl?6L*zSBGVeEdXDxA%Xag(-16Pt5#G%+L6Lbod%q$+zRt zNw$2`biNl$zuxFhG$i2mFobJ8RKkt7+-5}LAfgTgi;;wkZ8~Ex{{U$9wIGHuSe)^K zJ5uByr;i@~Jl0bG0C>7_RL2hm^APKb2VsreqN zR`ZW4az^ z<4bFZrm?iSYp4M-T3j7vB3YX zv3G8Cxn!CE5;+HaFcz_TN?SB={o&|><{Onk*28I4^$%8KF4fLn!C=)L ztYv#Kj+Px{K>(B!AYq$tYjI}=mDF8BVPcI9j8j`l3}u_9{y0wvV|yduUN%s1 zxQ-cr9(ncCeysI1y+ZOXIj*I3cQ)qZIs=c(>WW&kDH;zOI^(Tfam4Eyy=}Iewp#;%L)y<~z9V7CV^P zST@Y#Bpl*(T`J1MOqHUvGd7cTcq5%=m%nefT!JWM8(%Wn_MS*?11SeMBLo5T71fP5 zh3W@QXH4pS2dFamtv*i9Rmn1r4(0-HRj+X(>l2X4fx;nH9Q5O5Jg6fzfI36vXQLfNc0#U4Na@T_}ouaK`|iGHc#+&qvujNBxr1 z-z~XM%EF^7frEtm!<=C8*V~j556CI%KDy-)rM(hx{#z7$LFOeJ;uDgKh#Ns;5 zoax>hGnms_Idm}^I}xk1cl8!;OX?f7TSZw364RM!!&1o5tz`x-w)&I3h5Qg&8bX;EO`kxa@La@-16ZW|LCX*6=0V$tr^JgCBGlq9MmG!Y__S z<;t)OFmc}&>}S#Xn@6!tPU1+{PPHm;1UsUQ8e|ZaiDD6!a6@HT_ht7uIjv|z`;=^2 zvL{KzEUJao;->v9>_`eEpyteh{am^Gte{F@VmwiKgmOg6ftAz}3BYCWFitbz`2eWq zxmRuHhEpVl-?ZCTVu0CSBVZ$wk) zDYO&3H@JUS-`p|@!9D}v(T0k>ORfya%n6LwAsaHO3cU(Uv#H#FWS~2*}#Xt%HI#zk!~2X8@3SH9bQB+VyN%T~iY# z6?}cdBd*586i&>7jlpKl5fTv-17Kz*VhFrgPxf*s5(k-qAwKdDzjUgQah1;SbIu3W zv$ob`TI52?ipm7LwmBqjWh@&6XK7qx0FphbBI*<~-^enTal=sip=Q)B#M}`Eq?%Rc zCdjM`NH!7V-NIGGW5q`1MMuDA$vALVZVAGYLG+S8pCN&(SyZA+GZ0K_gmA!?Bn&py zBPBsN<2XA?5sLGdSpovssR0T;;hN*Rl0a-}mp#yP+m`Sl_=p}{xpCevgmMyKXDrHu zWw02xBopH;$UIQnVT~daX+e6fM7aWz;>dJJM-q*x+}ns&HZg6GtCep#C`NG0!62L!@;D3aS5U~4 z62X|Hy9)&v+OlrJ+UFqTdRXvzJOjg|#-WXL-t_JDiRn(v$QkpkWy@biez_4J% zLbljoy{Snm%C_>&+V`T=b1O)Ck=bLIv5}ap3YA35g##1vTp=b>Qz1LoMuDKaMLn}GmQ%fk zTapj6ah(4EGm4P5ptliCG&^Gpw`*Z{s;)K>w2}bNf)V)6HscD@htNNYO9SftnFHaLyxjw9F9YL%zSzfSN>Kx=Km5f%A!gPLv?bj-9 zhF7;-+hjv^LH3&q+namQY}T+{*j!~@q*Cl6>`GclToo|M6rv_a0fPcjl;>%aSJUn9 zZA9yJbz`Yow)7E5QAC1Bf-KScqq&Y%FC3A$^nw{1ATqz?tEl}`M_+uybnC1gRk77~ z^rqKMFJ?}bl4c&Zlh>NU&aShlbXJ1JqJppLE}qiEBT9{2gOX6&b8tn4#O5Pwd~dXq zCBj>zw$}{-mLNa?LX9Ldoo;S(%6--zzpRBrDO?4zUkeS3&zVhE}%N)=H z_Z8#xJVCYwjc}okPs>kRb*_5HUHYpSy;rFyQ_XdQs1<8g9KKH;@Tr>C`C73otjl97 zG>ViX1q5+373Ls@Vl|GR)U|1&)2)WDa3PtZk10I7M((_TTzK8U0~i_nDz8!Lx?k%J zM&?~2-R6a!Q{1&uo%TImstK!n@ZVQarw8e8%E>4R@qnTG1M3M&$Z~fDW%t ztLk6$BdHi_UR`mzl^TORtZwRAN%aE_)aw}=OQTIHq%>y((g3cO_TQ)*2{W# z;F<1ir-^>pZVHk?JD|&Ot(s1a@>S5?Er{v%mFixE);aB0sqJ|==`OIiU0~`i3HWVQ z)-mdK8(wQ{Lh<>zSLS1q(%Abo>l&h&6hg#cOu1Ee)NUCN^)9VzCF3%oit)#0Wzyoi z0g<;WMze=g8O{MX@lc;j(5)hK{>y1Mi)aRWwh%ha8Ptpe)S*hbw{XH$JGTH$eEn*y zrm)f7SIX!x>K>}IM@RJ&C8sO0#-h$Nu2;tEYZzc_n_lYSxdtH$GlD2q+r+bZ?fAFp zex&L<$+U?k)$T*hHMo#>r3%@2)yd1U>|>HfGlSx=TK7(L?WxqQZS+fMVSwBOA1ww{ zZE~YMz1ahd`7ASEpdC_}t5bQI+NE!Ko&Ny*oqv73=iYtx@syl>y!bf#NB;o4)v{Xu z0LiWY0Q#JMf9x$g$i98&+u~>MKHuH#{{UYU>b)o5Z>o2l=6{CY$KT(=l&Jep#Qy*- zr`vD+zr(_nY5Ch}pTFP!zkh!ck0g_y-Ab+Z-{1Jh&i??<CzW$xp|&`}^;{`+INveWUz*DOCkO zRFC}L(ee9E{@>x@O0<{0+k1R}hwzB^@cPo5pS=5TxA=VhzTPAF{V7P9n2+1r{P+3y z{{H~+@Tak+%1e0K21KHFE>paJA(;1#M?d`xe=%*VWY`+H8?{{Vz|QmQwOKGF7w+uLt# z{y&WPQk)(4h=|{RdHtvF?=e2x{{Y{@mGL9~(G8;?K00Qm#U7)}?u0i%yh^kRbvCw{ z0##*0Ve=4Bxi)a_KuJKakp>W2s0jW%rBKFm!)mKwkb)_p) zl2Ajqt(^FW705Omb0ZBUDnyrAbk5u9+w5Bu*I)&u9AX;$}5Xx zpw|j115$%Q+9`T1j#j0cCsFh)zAFjZg`&qoohs7ZH+EXCi@Vec zu5)#DE~HkVB}XY?`4uj04xo=k7;{u4K@iiP0q~~(0H&bnsiW#Xll^yntj{XVIfuB> z+OE}(I9w_0JY#f?wWDt1iAgE6j*qJ8zcnSCmYUL7$7rXzjUY@(xtK`m%o*ck+NrT0 zEEzuk00%62v<^OEb^P3yo}{mb>GE}h-!v75EYfs!8EZ7`Af&?!6}CBLljS5vK`@vP z9+vnThCheE`;C$&*%lAF_@ z^!LmME3prKLY1eiWO(Lr4fAXVk zad`x|f@@p0`)g|{*&6=<k?dmKd=cTNzUbA#d14HR( zW+m0CQ$i~^&L+_=x)oh>f45mnt^hGlWvWYXY}J<4=C~*ycy(U;;ajeYPksl9->5?%F-SkBg*SpI`v|D~+*m`1Ig^hIuD7x!nos&rNf^FwOa7^95q| z52sm8L;Ww%9Z17ejE+a98rZ|LVb<~73U6tfVI?mR86}gO$auH7oQuO2qiGGhT&<1$ zi6-7x<|bCo=w;+!5>D32j2>B8P@hhGANZHiSA7+${15oO-n8gVX6xs){Z`p`+~}H@ zyxp=JeXN9Kf~##WD!LfvEgwgGqxoX5<$0Y)>u#m$=7iRLFU)lP>8qR4^)fawcQoZ| z$jw{LUh3|H36cWJ9Z4YEGm=0eEB)HgQtKoNuRNnk

(i)zY;wzgwc?4$8DHi4KC1sLyc0`Ph)IGupaBzJU zs#=p%ei(TzWoI_69oC_#V<2{4M@-gcA4j~1gqbxk_cFn9o;{xP2vH}D6vDwn#v;-^ zBTYxxokJus5BadJ=(zorm95NxV}a^ycm!Zq3fKC(^d{6gl6_hF7h9OmDUwf;j!RuW zRwr{Z+5GHGsQJl`HG~jO5k>`VXIy;0VZ7aR%c2^$%f_eC8cU^m8w;s%^y+F{errtP zv6!O0O;((`{)FO_DpJfTwTi(ayoYBSX2A7w7!r(IBRlhn z6pR(~j`Q&+;dY1mL-ZfRj-dEu)D|5t(VaIH+QOHXcNVtsTN4~_wlJz7HqUOz`@oI) zb)5Na8|s%-`Z?vJqdKRe9U0VB`j@Txiy|Fa>Z(>4eLsH%f-h42DWzKZIjyAY8#!ch zha`|&nE-aJSwaFy!MC=O)4a0XOhAywmPoVvDt~T9 z;eGh)4R@+YU3*_But9MIB<9A;CAL|{Sc$GO$g0n_N#>bCa{jI}DX#LPlC-rpo7q~- zI_)n{QOS-^$7J%@*3T-KAY4h|FlJt&^pxdt(^jG)`rF>fIJ9`~w<*oX5*4|6I$BFTE zHtEbsZycE25x9|Ol6j)rBE$FhnqO3D~4Q6@o)o^Z(KeG&1Cs4qH-&qV5YV!6|GR#i!2 z3bI03kpm1z8x4j;VvJfjBit8cfEx9u=@a@A{4~-&9BVyO@V44+n(AJdf?Kf@TwF_Q zd@bUVW`gE9rMOaMjyX~*h`V#aJ4VH(gvga|EW}ghtEIMB&Lld&O`O31oC5y<-p;Lg zlx#6F!5KLjkE$o!cbJbIr>=urbY{ND{kb9+9GvY8x>^jJWaA^i_Qw(S&a7oXzay(G|9MRv5wlDEWtF86_09d-4mh$12>mIVDtU6z5 zc1xldKQ5&?nbR4aHBpqOA4!YEMxAvGk}dvgXC~uIW$Zf$@#f*G^t62(nk(p%L95%@ zB;P;SEavM0+1h`)VUe<^xiOf`VLs4T=vB12Mcu}w9;F-Doa|2Tso1X7j38~@;M_lV85?3+qD7eFap>+dv$VUu(5Aqk zMmg2G;@|%ON7~#&Hu&OglCJEsvpLvGlb+kEt{7!|ia|So74qJ4knOFq7NvUx643ZI z&4U|2AP~Og6E+XiUBXJ3cQlY3?jE_WT}4<#x|HPZFDjQ0p!0jW_X0J9j!9Y{*iS@{bide&xHMS{eW z7hQl}r71agXK|8{gOe5sEJ;c>p|-R#&1Ma?0RvEMn0=ep89n|t-B>`7rPCF!^&xQ} z`4k9{koZ!G8n$bk(p1+)cv&cI*HWD#hRVswi*EyzFhOWI9v$WjKoXFH8HFhXH4B7| zuTNc-?AB&Ya$$+F_H>D$GzVvP_iq`l&sjf*>&q4d{L=wuO` zDi-k>j^s!ZlydIY$XJ%x#u(gb&PLracp#NpNC2$WaTwGhEH+YwM5vQo1l+NeDQpTD!KD+R}5zguVT?A!mvGw z?o5a`aw6@I6)H;}E@frinF@ndOBJyxHe_uk^1Jg^77jSF>3}&=JAh9a4p1`%3Q_pu zH=V}P?&FHU!>m`aS&32C$1YymmYpcG+7W~`OhSwsWlo;i%3z38q42P|k691294!r_ zRn3CMTC@R{Wv#Q1vD~#MQpuEv@#Ibb+mRm1QS`*H^^=fc0WHH}_3k#ss9Po!C33bt zU?&X^HF;sA#yPT;Lv#=fff3kbn=zlW`oe!%z+Hw$7oFvLiwyEK{qLBtZi#jwNBEp zn+s;cKJYt4#BH~X#Ncw=Nda@FkDUY|t`%L@H`^0}O z{{WYYKfG~O$nt+a)Y(SSJhq-&N51<+&+-20{{TM`9(eYs_|AF!@GA2=%zJ&NBklWp zZT|pI<>DOqpgH7w{(n5;oRW!;ef_=T-eYini6V|bVtiJAU0zW)B(_>aHVnf(6%;a7r*_@8LnW`1M)zkiQ^5b@@t znoXN2sa@9WA8i%ZOli#T00Xx3F}J?+KGFA?+r-F?BdQ?FIRFpD(3}E(m5;4;i>CB5 z*!?emR^h1XT)kU&u^M*vN`*Z3QjHiXxpy6hv1n}FrmiL2V$?t!Cz(dm<1(E+s>uw~ z$8X$*+yf&oDuDaB0EHh?c>HS}F0Eq)&Apt{tXEfLh@)mzX$bZ}SQcaKqbz=u#Xh(6 zn<0wI=W*KmO5|{uD4EUX=x6Zu@c3bYnJLRt@+m7+0~$1?FFJyDd|%i)$MLk#lOPj!-68Oi&X72x4X_od;AB&jGeQ z>uttG=O`2Jml(=~@cV$<`&g>ORI_Mp?iNtcU6m0yW!oWsQ(@hP-Z@>l+&pHzK07T# zEG{}PmcohwkZUEBPSGM;GB@ErY5xG}cJ}d(xV4_tsFil^@q!5aMn}C~$12I30x|U% zuRW=C{*%$HmFhgI@$xj;eWYN?O1x4(>@nbW$qu@sZ( z_TA{>ZKRe}%U~QX;x`^gkF9IE?^oy@IV>>h*S{|$%e(-L_)P8G#Yd%b2n6}B9X??C zI5lwhPh4Swo}qZvz}cI1;=Xd+?=e#iW4psEV~CM)K{8-QXXo3-X?`AcYe^(ar87$s z?_~_RR3jnC@)UwFan43K=C!u?yYT)vR_0B876}~2u2J@x6zyc)f}xb>a3pQP4THrV zp15?e?h5s_O&7hcyH!a~am{UQRqS!5&6y+I *+N<>uWc4`(Ua_M*Z7JEEj0l$7|&J2q5@1knY;8j-zKG zdF!uEm3LdYWu_veR;~osG|%i112geE?d|+@>7|Ycq?%U|#Skpa+yw*4KT6*oM2#L- zV6n!fnU8>~GD$u#04FtvndTp(i&&errCRDX%9h(y@-de>a5x+jjk&-l1mghJ zHTad#&I>0|K;cS)M&biFB@~dj4B!&0oUr5rM=z~CE@AeASYyeuEG`hMvSSMolbIh& zxX0HKyu?Q-d3Ced&*oPv6HL^xZNEiE~Qe_T8CBicUI)}ZjQ%wivdSZ^%ohZvK4g-5)`s^ zaa0)AzPld|uRW6xHi6?);=fG2otzTuS{%~b!uH8HzP&>58=85qRcB)?LP(sWs*s-RwTY~siSp6r{{RuF zGMU5kMdiOTtjAV!U17C_%yffVjv;!3Khoq* zb65WWI-M&dZ*O&~=r?gn+K||F8_2_PSwF1mJE9y^$6<5CDy}Ujc<`4_`kCPPF-n*SM``t9;OOClpvcC8TCUOsT1!i4-5*ft;BZ=h5BZCwNJ|+z!(7R+KT}L%AR`>zZKCQrk$W9`MQfc+ z)fPY2Gf2$pq8L$HSW7Y50-eo}-*u5?=hg&n3Oh z%Umlusy62lk{MN*cw{)kc*c3G4}$zQIx&IO9VO4z>ju7@e@rXrnaF8Vvx`mxsM(H} z>djBBI&GWQs#ZP>F5$CU!!Iiegn?>}K>q+>`mMD1^&LLqIpMhv1aaE~8%7B4+gTkw zZV~gkHBP=%|BxeUB zDS7kNnu9_4e$p4Teri!|{YAuMS&*)p&I?s+W3$g{ms;qO*~!RO+r;th%RlAusddGy zH?Zk8SBl2oXymAfV zG>CL9Ho(00ke%ll+Ve-ad1P&lqX#)Y#Caa|=D+;&{6v~V1f4+2j0jR-wIN9dl`RqQ zN8SDVTlQ)rR_iTO)Z6s`0Hv3zzWp3eadzKd9GcRAAhBMrYK?W1HhqR46_X^%ygrzj zF9@6=QQt~-kK$KHv2#0f4)&RiQt@=@Y}j4@$4 z0#FXw`@xSVfKK7*+z+?&80Kv;iB#IOgh}ae1_~(vV1S2ruLNTx=Q-fg;Vm>=w`7*3 zG0Wvh<%YDVYH>DI0zTlZPq-U!As);_3L|~%q;Ms;cl5}w$x?Dq^N}L^Fe4+Jj~OeP zgS4*lx`43A7t%=DtskVXYdgspU`XH*>c(+W0YX6-*F(mwVoZpO)=Vxk;!&aP5}lxs zD%xl3F_S)1w8Ykg#EmXHV3k(qAeGM~HW;y7VE+JtgSn;p8vTaosmvMz!(1e6X>%>nVc$n_}UM=O5H&%}vO(K!% z&#PzyAns9+apxHalYnaK*<*V<$Y&x33`z`@5)TA2KahQ2jxoC`FkcZd#Z%O;4`f_8I%BhsUwOPaf#n-O5GF%A^C6L21-?lxe z*{mZktcXZrd|i!;B&f&VY2^BW!5-K@-2`~#9QmsdzzC-(tWi$TtBt#Gq&7}K7zflz z^MW~|vFHefTv0%RTu=;MVzdgCEwHhOTo&ZXFctAg&gUW@MO9>YEz^lDn2PknZ(k)-cK&JP@Gd;~Di)cM#aKPu5uCE7~Ph+GM*# z(rkz!ASE#$Ujyb6&BA6*CL(5<1yz^kBy?mf2w*n&7z#!K&+MKtk8D&N?~>bMtFGMr zoSd8!!!INdyf8b7CkM`Hw>V8w%QS|#w3RAK*iBmz4{1YWSY)sn1Ue=Kl3eBpr;&$= zf_BT1BNTEQ0Is+XHDYuzO+wZQ$M#QPoDp~e`82}<7CmTU-O!03ju$BNHbWWMi8;%s@4Cg9y zl_!8R`|7=VHnDTAr7pU6HuljRH<{68j zh0Ei0TkT@;l-W?saJYMHt2W9mlrxQ$fe9GNM8w2Me_(b#jnLrJ@1~O4?rziDmob*i zQXfE8VUAur;d~IJaz$<(6Y+1U`m3t!v^`qh)nK3IGSS7hRqaOX06oSSa=C6if;jfi zy;Sm@)qQE^!$Btwe^E1mBDEq zpJ}Xxx*ms6(COZX&FZZ|gR80XEV9<>tzkBGWwqG8L@-t9Bo-n&j8(Ii`?GWN@kDO! zq>1I071**EVeBN09soym%Sac}T;v>79?wpScw0}JRe~WmZW)|O+3(6GXrf>NFryE$ z-|JNLo-2dhS^OV->gt}VbuU`rah)$3+Ow!SmsVh}VrF)RXNk=alHLTi>lk#27EsU0BNZmcEhbZ9scS@v#_<(!^SgdInFZ6O4QP0B(@@JX`(6jnjy z7~)EXnDfr(;Bva}%LhqyrlZqp^8KkOWo!ACp@T)vqRet6Qe^8Z08F`GA(7N> zxcV}|Qh`!3^D^JXS@rt~XO`$_SJ2PidE;2_G}9P)?Ryf&+os*x8E}P0@T3#U)hIM= zUJGb!*QhkBs02SPA(q=x4r5D!JaQ;i+OsOE2F_8PPS6#&BsIhH_cl3 z`I!Fz`(l3o0Pkk2)>ECou2kP`_VtLL`L>DQx&Hvsdq?s1@g0xPp#K0P^r-yJx&Hv4 zPyMv<_50pEzkd~fRaR%- zJ-qw>06M>VwEKFB^E0=!SXTc4A53j0^FMFiK0HHfe{lZ*DtDs)0Hk02rT+k5<@KjT zfW6kmoJ2?V3{F3W@&!M%_<>S5U`Bqq6*{`VD8a|n5J&W?o&)`&7>WM?=!yq&_n&X! z5&r}`S?#Hr2%7=|~eyj}-lL5?|WxEl0-y!9YI0gh6kGxBk}i+;@Nb#QgnhBb=mu z#|QjPa4zyC)hd$HY1P>$EKQK6Dz{_2x@lA$pxCa62)LJC%7g`i1|=~&-Bc)juQjTp zHC~x7MMdgul0;feR_`*-K}>Xss(YqE0CPU@pc&kz6sYs5T5eV-^o(4{w$Wn1vNzy3 zh&UHv#lo?AcvQETLM(TPW=Nn8RG?;vg(uOA(hDY#qM;p8x)hqRWh=~zU<9HIaj*oO zae{&|*jLF)G56nnYVDn4u#}~YPb#?hv`tHyVcn)Nr(i*R+UZjS7Yth4D_N=qO75@W zJC5t#cc7hU9*L)@Qkp$>$Ez~Fp0_nlx|)4G#~wS?hCcKH-y#-0JQT}&LG^t+BgZ-G zIX)OI{jz*YZ9BKwRnctk5kGZwtWgIrXVO1G-%n#jdLc%IUE4w zk6>HOI*G1e z@>xuUsz+}>p0ha@;wc8H-6UX4#)fGT_JNZldcQR&8ri>(7Yy66@V_ ztQGCs-x=g`(W1o-#rV2;C0lEF(N@~U$nO;0DlMq(+;4xDuPGg4Z%?gjR_je4mc#WM zOlgj^YTXmnUWaPFsc1~TIC2@xev!^bqYX8XuaxRC3f<8>b|D3RwH)!+k~K|)D{GqS zJp$C}mUh;L8zU3;2}L>xi3pk6HRheJ z+|K(LxhFAhC~|UHOR71^@&({W@FwbedBoFX!hIQd{*NmWA2~NHO!hN zIXiG^GLe(s6n`*V#Fq2CN4DGl01f{Dhxz!fbB;XK4Zmr^c&y*ie=yxt=pJS+XspYu z>FWmR)EWagPs!+QO;*Cm7V712Eh*g2#+>Cb;xrb17h}qr7x7G{_v@-Gn zpFOuAv}fFblx{O%}4b(LL5F7;M)t`Di+o2L)E#z};#Cjnx%G~Fe=a90Q&gO45K z#jon^6+LNveH>%NC$_)?;Y7Q)>S(a&_f;o?t};@?Tl`gR4AM*FsUksOUnU}%<5!O%(9zV zcD6p;t-&^wPV{-4qOE5!oVco{H8{=jm;qxJR8~ z7iu;JWstZJFvvt!5s$l$S{qHdg_hp(E8BIBGTR%u-jJm76L5;yNbOb}#bOwVB$hV2 zkhghjEK{db7hGymsM6%~vfCCc6`NNryN{{8dcj0`tLz|-XU08%Km-&E0h|yNDZpO< z4gmZB`hQY+Jd$fwnrC^L#B9<#WV1Hn#DS8;fD3Rr000100Ya!g=9FHhW{k~abw*pK zI{yGbW`|H{EqRGUE>0UJx2eZpDMc*@SjMraS@KECQeg$zu%luRn)Sa){{XZxH)7>& zE>i^=!D#mYSJnV042NqFtUv?OYuF#7560;J6YDY0sM^gwpKy{xCueCQH+7U{Nd%bX z1>+#`zC~psPCbuSvmIsYW>-a7>!(<>-oBxtZXNt4me9IV-k8G9S&$2{m(2HYc;(p0 zG8VBig;-~92_RLJ#zE+PDe$)L&s?P;$3OR03tPTtNN zn?nT8Z*|RX$W@{-2MAh<+?ym7|DXIR}LEg@BH=EZg2%m!N%S};_+!fHJu7Hn9< zUBDx)w{ceOw8Sjht*Gj&o?Rb7!qeV5sxIRav0<>wn%rpL3oOdm-Akw1e7fW1A5vhb z*(@^&oP}(Y>EIj>`BKOFx6OYL6RYFa*p)m=fPUL3)BYoqFNte~7Uk=`Y)`Qsn} ztGL223Jjdr9e))4QRcHD(X~n({_rit zk4{lyWfmEFtcU9oxFJG?uj_`YVoqWtkA#eFr8kYE1Oi~1p^>StAtRN}@iGX_&M#*&YB9f+HD<$$4DOA~O%BkgfVUrcDt=H)yE6svcmoc5h z*rMn>h^kh#naGHwgMaJ+lM*SjK-tx3Y$^cN_=?}EE2_wVT$bpTd>~ofx&}fBZ_rX%*OunKRy(w@*%Rd*qf}zhp4k47P7@Q8)~XOMMc=E z4}sz^&MQ+2T)0$6c002Wr5z5lPR*r(RfSEl$b%9B&gIAQWm&HZs+(5p&8|N|Sm3#b zHEfakjY^8iEmk46DJr5Z*NL@$7))BgBGiV-EAlO7Q~JMhU^&do&LFolkW!~CxrZZO zi>uQdfSn{%tzJZerP3C%xfQT%sm6TPQ44^OcJfJJvvn!*ZHn=bTkgAXB~!RorrOhD zzA&B+VwC2jtK*W!E)vhwR}=&+`;xVil@3?Q2sm%6vtZ84t5AI=+FeF$qFgc;^lcPj zgz=MOx!3MMCy^N`Qf`@|_DBLA+=A^}UP6=?s6;;4)L*V@leNX-O2dUI1)TR#aS~%NvSCLfQltqEs>3HSDfG31 z)IQ2D+gvi~EGCQHHDLE*oKY>1Gz_900^?E!HiiQnpEf6S0+ed=PDoW|S`&^zUqO&N#=tYx+Ao zXu802;gmedc3n-~Rx@ z+t_~o)4cxxmx$(oQlsw?^YK4@r`y~3_=oVQ;=EqEi*t)tXLzgXL)H*)%Z}6AhEFJt z$0?oT=1NE7+I(d+p3u7cPrOv^{r>=m9)5@S)EP-e$CHozf5YitKVE2buS)d4p44@3 zThP-TQNn6>bZe)!Z{jnjPpke^dfdG)tkcnpCYsI{zofd(t=rL%#;@qHaUo*T$x;MY zaltH2uRM<|GT+CkeyqQRiHUAu(c~A}CHzWA5!~Bi>doD7vw{vYk!7jeN8Qmj2(II> zHiJ{r=8Z$mWpS#-^19xgE2t*tPPtZw>LhT|Tb;_=lWFE1tanR#dFB5ABh!2@YewKa z$oV$>J}})~{)kq|=5iNxRsgHrszyJ45K}1z{>&HR2EuvhH&5)d05B zwM`sd%Vnk;-45mg(mSLs-8(hZ&ZW0@(n;dCGHuB6eo4R+E| z8U>bE#EE zktDLKFg~ThJOBm`)*E=bGJ6inlhgXut-3SEiBLtWNdQuKz%eXXTzXsgocD`Pw@{+h zg44BXUAlBeJvL46r;d_{69Tzrvdq*m@5W#XcP=pz%4fz4Qu%+E#QEXD1xVeD;ezht zI3)AIz{$mD*LybPV6tr>22+fj;ILdBxg6t>T;TjbbZ%3sT@vd4g3jv=H=s2(rM;!- z1^-79CAGAcd5;$^|q~X)&fg3NUoAgyLfxz#wl&t zBh+A5Nq)-6GERGlR4SH#3@eLR4K?L+sh25fjd_ODeE{kAO1!ys!#%06x6du9uK8{2 zrWeg#mBZ`H-7^q}4O;bbDx*sn#D$m)c1d;PX$H*6We%ULT*0X6I_1r+mYHwUa_JJ> zOzC%I((5{cNn>_dhUQy{{z3Pg7*!Y@m;y;Ib*%#1^?t9U+G^UCw|%Zbt1Yd(eAb0ICc_OX|yjdbDSQ#rXc`n7PTzQo1{)p-i=2dVx+FosO{R_?Ea~Cn1 zh^Xdz^=lc|tgTBm+AY)C-GW*<3AbO1(Tm5f6~bJ|@h3~oe|^*aO9r7lw%V1IvYU5~ zQlWI_)b(|DiH705HAE{QVTDl$P#4WUsXBFy{{To&q(=n$UZXq3H1xgJ<11vc;gV@(?$IefNEs|~ zR{sFf>70drN8D++pht*7d-((6{IJXhn^ zuXPt3&Ya^l8uYt0C8_Afr)CLi&04=)am7<6y0?YK(OTmgLLhBuhmJ9(O(nLcs7npp z_U{gls5CR%64J#g&16z!Rod<$b^+oT5+Eb)?lpnv^9j?nc_*3+VE39?o97}DLD_4f zl0&igfY%XjjyD0jZ0bM_#b`dVS5!J5k+ahcN0qyOQFNyRoXhnGG`xk!R=21;+jI{^ z^p8ubz0cG!_q|p9K*HDK|h6vHDwRmHWG|EGvJl6BVN~-0a3FA^e;XtZXqH|in zbtZz;T}J4&7i41rK5w*lP^&gAl52*L=#H?*^m8+dhn?-})tytQbXztp;lncH7>Nk+ zb)@SLsor$u#M86fY4_JeNKBt=9;rOgMYTpts=c+s>^T`EaCxg8M?}+M(sj*2bo*pW z-kXlm;#lDUCxXZIp_$ue5Qrw&vg2}vRtFdZa=PcHdUewMU-*G)9T=-RVvP=+^n0UO zJeTMB`!!e8A26LkW_Md^SbhA1PL0aA9OfOZn*FgtYCt3gCu!95>GcQEZSb5*qM4NIW^06T-5ADNDX)tSvMynxG? zZD85P(xUP16dwx#Gr|jR7oABglWNxbgqGnh^-Fsjmr_Op$rM6GR~#`CBW^tUvxYuS zfqAD#r|KO+r4O*QvA?}o)GjupxVk_i0AWI0g;W7{>>L4IfzM@i4U9IItDM7*2@Ay2 zVk;*4a!9o+s+6kX*sP%ypQnJ?JZ4oc_afyJx>*q0o>Kq1nwQ&zTU!m`t1?i3*4SH!0;I3pPa6)XE7CW zK5cdTwNF-Y-D1q-e-JGfhRe|m^Yk91(LFWL+DTe>N3ST{@~Y`vzMHB)nA2TaM`6=^ zh>R9OelYzlF0S1t(a~G#FioPxZ=qgXSh;1oj%j+0BW+645wdQPRNCAtNT;^Z;BmC( z^&LM>ZlRW0v^5hY$6_1RFyR&SDJGKE=~#)Sg5b&BLIFjVG6&RUo||Abr%7z|2dJ9D z$6Y#0(kJ=4wUE)B8R{mscBH*urIh@)=JiIS%<7~j{mVA(J5^~c-K;$~+hUPg`N`G> zx)?Wlr&ZbNclzd*FRi+YdtDD-N%aP@TX~(KyY5)0apR1Jf+>~@iAVv;M%(bXI9)fU z5o{uw*Gr2|xVX8{nPIk-q_;_(lHTRxK;5Fp-QXC#RYR`X$w_FRYCFYM&=Jn1$ zRO+2U)(tn*5X9s1Hm@&8=`CN=ojGGq>B>uR!fI2+ylmp16~2PV;jR%xut=v?_>rPq zbmvZV98t%JwC|m^GpUHQlcei2P8|y~cMG(rPIji~b%Uv&(rszdtkwtCY8?()EhCs#H>o;u{waB?H)9uc z10{z=q&TSM6r@7|?n$fak{IU$x34-EUDmbFhdOq%sYLb~$+IjZbygFIP?Wg~lYuxv zxgQ7A%((;_!d_e3#j2z`7V64L0Ce2L8=G#zR|k#Tm6YHW0Q=X@E{4c;MwR~nB%MLj zbJnb-OR4fNf$5)7F?y3Pcc-|_Uar*|{{SD?Y&TGr8IfK`RBAk(tSBJwR(tGLs3fBW zq~dzkpQ_)Up@!aj$)TT9XwpcYC;3a;IeLCMSO@Kx1;iJM(lFd4Mgi9#gIxarRnj!n z(k_j*p9RDkQr$XB9I*@CKJFcJWKt|!mSwk|*o9X^+hScL85pml-lbsbYaIa?Jx!rs zcLRcBGdRrkte%#fcjgF9v{!%SSyGoj>9Ez1h>NGWx~67!o_*K4R-dbAGris1wle9e zZX;l$8`d%~&AaZ%30w>}tB!G7g@G#n052||1^u1L+RGy;#v3X`Y=jn5;DSK|@vJY= zu7h-&Tw2Rl)OvqUQ3`dy>0@Z)FqBod0k#Xa7^Wb$@XOtB+m6)6(7rbxR(eZJ@w81dYK)OJ_Xu zjN_cwFuc%ctr^o!t!J=0KFbRoC{4(%LKY}9vio(VRN?|*OLSLViGU#m#KersphL!6 zLrbXT)GVgE`RKH(riMB49hwp0n3L)%-U{S+Rz3;w@5e18r@C*cWBo^HESprcONnh_ z8)I3W*-9d=c6Sv+vid;f&|}kB28OKEsUlTMbzTBUR>ad^+s?3VV*NXWI+##{{WYq#PLy4Oxs3CJ2Zqz^OLd8_dDS&%BBFpMPm~-0qQI3{LFuM$yhNdBA1I8RIpIdsLGK z%Q53{5rr5Gt+?_@+rVSz)r>IkM60y6tcTz$hMvuuwE`J6TsnU)^3KCSgl@;z1jnio z9waUSk@`YJh(zROTl+YrlG$fa$Tu<_!0-nrBZ5EbjlAdF)?DvA3xauJ$VOkW0Qag;AB;;IjO6sA?olMl~$q3a));nlRzb>9q;{Vr%F8v;YI|d zwD>_j84(=E#TV2qV?>c=FO#S@5bl1aXBE_VQRaAC2CF&VzHGOBHaE(rUmV#SN zQ$5e@$u34?l!6oX7sE+vsl2)2!+v}YUe3dT<0rSr}S+qB?g73MPMk{i^k*io$1 z#%`+ZwOqTeYPp{fKnD=?!m(qEVJ46({%P=XfJW|j89aCZ5snB1oR1jbY1P>dTi1*{z`%lJ^D2dIml6sih%-jj0ly2KID;SFCV;vF5c9VsZ zV4^mes1?LvyM>}wJ3{~gWjOl=lu3RBQQFH;d=gPO>dT&rpm_14Q{#BgB zlNgb8sN=*JVk~#L3;3N5`qo?1kUw355XU zF4{Ms9W3d_kJW$g2LquplatfvvqF?)}KR2gg7S6-ZClaYD?`Hsjo_}7)_VIu4 zvN`Xb?^&N*mPl>S%B(J3lay90N{1gpG08b6fDK`Yb z4xj5sm<%UVdatT_?TP8v`?kYpa#b-^uVV3Cb!#riDRM zbhVV6L<~OQvLdWk*D~p0Z=#Aejqr~gL0@QvJJGYoKHV04h@@o_9F-^7QWh50+QhdO z5=|sCtCo&QS;HRl_NG|mb`Z#6^vIF8jNlM50j;j#VxE^6pUf)>ad(rL+tRG;yr! z6L%Ey9od=R!B#52vt55l)0Q~xEq`iarHDBsw>%#l4h3-ICD-kHrTTrM3jY9{O?P`2 zs(P8wc6A?A;4#Y8U0dm8&2Q!FT5H{Hq#dU#=`T$<3p%=v3-WrE2I)m)xS-&Gr1~qs ze_M{{OX+s;+1u-p+1y;4c=YSI?Ip5~+}*~r<{O)KdEu66#BxX-ThvZQqPCWoR&F3| zN?C4>pDo3-4|J0&&2cJkvYm-CM?6~@(jsG5LZv{gzoK>DnO$d$$`4sO{j9oJyl;`M z5#}}3^j444dVf{vYxH$Cr>UriQvQEV$X&~2F<2_jc^D(H86c>d>LnWs2ddv_R=R!V z_fB-)pK)<(t;24C``32!M{{V*&;@B!ENLqf69UVXM#~1pWi2#E6Ij`5x3||3+{1Gd z6L4+iLj}ZrxkQi!J<$=v&bLfF(e<*F zX?=T>>o$8^=v)&t)@!S4%js&EtZtFkIZI%x)j3ddIG9%(?Z3DTQn;94Dy+nnnhccA#c?w=EOee9p%aO=+r<(7L~MO$%b6a zSSbut5XDZt_1CD{Q&-uq)r~`-UY%p+`>2>~r7T7s`{?N2i*&n6Ywnn6it}cCx7 zQ&jB1gxs}R(Gp_;5#ofJt;U*=Ol=^zp3cT8Bo402ERTH+oT~d|RN+~{ln_=yz~t2n zj)v)}HAS_!YqM*8ai`k_TlwMbOLcE|GhDz%WmyA4qBsL~Sx({@E-TXXU(AnG_2-&g z4vM?gE4gaf-Ak>i>b{j))6}YAw1$V%ogdL!uTSc2Gps8mQ<2mbwT^2kRk;53iCR(4 z0uemQOPihAW%)>8ir(F3Dr0Gq@g+;=iZe2AIktGc3n>c4*C6M{7h35%3q2!F)e>9y zbs_Q!E*|X5XM5jATZjZC_T##ZV($Wqh#2j`4pjE1qCH5nptaAYyv&9DJ(*9U%+{%1 z)$4Vg0X8w0k&I6^HOpZbm>@`{PAJ+)U}GQA-9xhY+1^}{4dxUX9i#~+PS-9=6;qv! z$GV@{tfxb3H<~uT1*(ZJEcFkwl@Si`#17F&ec296Y#0bzJd6y%)g5kHvn-|K=GA;v z0T9Oph1$nkdm5#=mu%Ez3llO$A^^bxfnLNTGvnEP6`@6^Y2Py;S*|aDXDU`iRLKg8 z!-K~xK_e%R6=m@=swdSocGKfoEvkNFh^Ysf>ck} zF`U$|H3(%}Z5GnjO+lcZ;C$2qbbi5)>_mBt2AIebxW^y^jCrk7Nz-)8i(9QnsV^@E zk!^EnYGbmzlFgJ}G>C4bxQ}$DZIUx0#Tfyd<%?ie4bwen^KVzoqx45qI*+Dw9$P^4 zlS%8GheWeDusto-T`ZoA+syShSakmYUsHo_Ls{dxyGgZ~k69|Md~yxE%lk8H9=CBl z&c4Z|*+*fdtF-olGB4s*gh>V5QkMHmQ9f-XK&&HB3lhv4vJ!O8mt||yvA(&fT;6N0 zAhOjB!F@JK*6+0XedVYMkz7w>i|B3{gU>eZ*ifb;?7WM0x32pC06VJiJ!0y6x{o=3 zFaBKo!D;ue1ye~DlCjqcda~w2NYortWHMNKio;S>XSBQL5N2Z$$b4UD_cPzeeIB7@ zWfjGo*2P-Z4T{j+TYSf9)tSpQEDj{V-I5rSin8i`GRsJN3G|EYN#Va+_?j!rwwn{_ z_bYGnQ8v}>_rqb~2WT5z01DaeCWY#)8`@Tt8*i}fQ&O8yv28mfQB_p%D`(UBeG6pAb37y+_XAO)D01^9`*jbYqT<$o}Ij(yCAYEze2S{{pN!`WZU#(tG$kZBax35(cHbg-L18~t)%x? zp`*7Kg`>A=)pth=Iu$D<_%Xs+f(Z!8@mr<+tSzTq-NiLF(KhJBPU|d@4)VIls;mf72c(~? z{KWZ}&-qvK8vO~>Y#xd0FPZ%|tgf=^c2h~$)Of5ZX^w+xjIICA{3S|j z9z->i_L_uOqUOY!Bm8iH6yHlGx7 z-cJx)h^@@9v_f_gPVob|qGHg! zxTfRI04FCVt5_t_TgBdf{lsOJ-)K`HS1GuvouQZj#11zTfIJNEs&&Oo-8%2m*)p?? zT`O4_$Wdcd7hDK@twSvpoC3)w1-{>0&hfNF_~x3F?{D5vd4X7+q&FdRPJudxl5#d zE9oDYy>VAYXtTm)G-i{t)*RN9>fb{(4T;G5BiF&xY(?zVJ43;!ih(>x7*P>zPBn_& zd(AF5VrPjm1h5#37#E zc4f8_1O{lPw?+#g8-ox>K5}1GeCv7H(>*8Ywz9@+4Hu;~B>8CSN1gp~h0kc_=A$js zRrPO3X^xz9LW8R1mKbcpv_7q^V<(x3Yuj~uEO_s+bp(P}N7L4Ih}%UXw6jJ>d7d_v z2+kzjyMni%c-wH%{zEnw1(l;n2@`Nz77cd{VJDK zSZUB`MtCfuf^yOFr~%~tK=&VsCbNw1_u3qRC#C05w7 zq!zH(givu>z%mxm;v>iVT%LvK4ABETobZ;u6;kL59Ky5-s0v7Zk5Jb%7IfeNA;lSWRl~Wn71T;<>dm zVFh7HkgX0fB8Eq}p@YbRxo)Ks6~c=pTr1?r`7$cLyt295nRhE&jk19Q3ayEg4iLnE zE$ktQB`Q7xAn0l_kE>ZtA5sv?@EJQ7>=M}8!NX#E0aj$-nPMS~2_9Aq!JZVN5ozs8 zDk{->lQTs_sFhZHKMuBoVAPvYq+OfZCiTcGV_6TG8BeFps0)(y4~>c=3mlI z`$tZmk5AO>4A*l;(%9T80@l|_BJIPFHuqFAy6*L+?5WxrdOySKM3P(kmbg?gC{Y%D za+b%12PG3ZW-GN$&>M3AdPVr0`5*j9{K9#l(*0HP`PHtpX?+o*be@e4kzx8>sdCzX zOX<#|(`B0)t0k_g<1$szU9QTGIq$!iS<+@8Apl*Jxn4Mb!#!@pO3*K2)cRp{#?`K5 z7ZS8fIQeanfe!MlAV`o%{<9Em-O&3+M)#@dmbY(XBzmIhlG>|oMsC}e?h>*fJ6c`J zQ2>ZY;gqJp%nL^K>rLssYvvEAT8jyg#^kX{iUp|kB|8bJr}Z|i!r`b>>ISYw>g(Z; z(X*)Q-(xNWFqI%4p>gV8hFZkkGw|a`g5XUwuO-*WiKEQI##_06SC@kf)SofAk_$^& z)QwK;ZVPlIg5Ei<<&GlukjeFLIg6ZsN?Vzurs*+z>RjGeJBg=~I^i`yuo_;TOjClz zuCB|kTw%nu%*}$E40M%kbFZwrW!5gE>U+k%Tr%mFGCb439}St`ddC~ENgULhm?^s znoF)&__LeNQp4)dYdg1@S+>`iZ_F{1X2WJ}yMTL1!wPnR_n&VVT`S_pK(9|=^oY>(`>lTOMAG`{Vhtqeq}4$h*>eKF40dx1KDBnVtUtvm-l< z{@pyoBodU7w*mtz1C@0?8Bc}>^TsR6kxd2c9q37o(VjUYW!ofDAt9rc4=T!ii2D12 z2cR7_oplMzFAJY`9Z=FdvhcY^;(!8pFwZ8s(t!aum?D-$493MVF)`u|cW)em-L6q( zBw-6K?3`d=oaFmsC&gqU>29I8ux(;32KsFtFvYIc&gJbwslze25q3hU1Tz-_SP;Y! zirOxYd1S+NU#B&-X=@zj8$WBPMW*8%yfsUhIMaCCpHFeQ+pNf)p=z`L0R6vKWfe$G zca}8JQw(4fTnjm-5J?rnD3p-M$V-(B%3WA6QV@kMg+VIBhZ}Hx3-GJpCYkXYq7P8M zy?dwX{{XH2Oh+BOQrZhRUriT9S{Snnisie|6pH+c$EqLiDvc8va(nV_a zQQt_iTkVc%Gji_>LPEl^talNYV~j=AA0l7);$ZTU+8-E-m9wF**2jCvqxhDGL1f7{qkQtmqJ-B zg`=Xy4VL-1n&r|(IT{C{w56RNtSaNJirzS%0Kh^t4CK$c_d0}(5x@%>lUb>jY#)0oU25a;^6{aD5w>uWKY z7J3Tp5l|P?F&tVGyhJpk$2aN@z385vnXNTVUQI(%hay{h1X;UG58RekDHxD=DZg;{ zQN?;k;n%=_j$aWp__dyp=?h&0r!GKid+wl}?G4;aG9|aPiDbBFUxrBxJ+=fCk;ZG# zWbyq{(c+8xzfa=wxKRjYoSu&6Ht3=@p7or4ndH@o?{&d%4%s|{42C=f33PQ+gj;6KUL17)6+H2 z%16d!xwVl};bKwC$=XQ_6d?Bc&%=+{-gK zmO$l!mL~r`^-uN+NHy7DqC9r z0NO0+_nO@1ve3Oj&T4&Vk0v<1JE8F!e@kK5RkS#Dy7jF|I)e7TpHQ@(rfOG<{Hgf} zDGD(3V}wnX&Uf$8;(Hgn)S2|gU0&e1`IcOTw^-rZ1aFT+7w$BLtW95P;xd1c&L77;B`U zVq$iJnJvC%XTp`_OC5)xRjRg7y5VZ!3KEmbZs8TyoPU0#9I0y%TXsuI7b}&UN)7fd8Y2uuS4E|#+Gu-JX8QIch% zk!u}E;Q~OhRWPw$%9903X3#cD9$e+B0_`-IFr_JYyPl$7jg_q>>81BlFH@e&tYvpm zy;ACBD&h@c@=Qv`V9p*8vXN4$%B?S57Tw7*jTOn{7j`K_*42^uzxH-T&IO+N??2TfV-?QkcBDQZcSV5rkhphlU-(yZ0g;wC4OZ_D_W~qh{a=)_C0YY6EBw- zOvi9a6t88Be{eAu(8~vMxIHwXSo;T&eO#FkxEb7k^)Ul~aYjWvRz2Y$8Gwi%2BNs! zx%!Xsuhhe#q}Fs_q%Ct;_dBHBICHEqs(HDEqwxINPfS3vNWJ+CY+LUh)4bk_ybE+l8$?Ge21Grza-{kQ%;6(6QNQsQ>@k8hp6(HrgY{vH&?HDa=E zA=PYvF%MBKi}~D7+v%D2f{&kXiH+mmZxbsr5XyG4kU{)KL~;1mrt04!zE$<-STKEk z)%_^L=X$xO>LQjOSlhRfi)mddw`pQ*TgRf)$|S~V{gWLZk2gclK+ zR7hjVLc=9_H3ide!@tSLNA6)V9X05Nn9K!VRG>sH)|DzE#0=k+}a(QL5X1bX9PPo;n*f64UmXPTxORS zZFJWUG%*u&6ggPYGqz>81Z)enjLNbXTrnVIc*dTe@tp@axs~#axU1$6~)oGoQ^uuuT+tJER|dJYrd_d z7�kRP_*E*Da|8g!ao?Ao-cIv-NW4Dpc3G%_m&jzwS?5OJSxImJ(+*j#Fs`op6w z^}J68rG4D zzZv~QS5@cHtgQvnZn&p+Qc|gQ!g6NtH=s%&LvWj@_1oC4wCmXRrN)|(#-wfnREBeP z7tAPNv$S_4+$%^45|YH6)uZ&rmhtK_I=jWGGdn3LL@xH`(b~|I-D|qkn{(MJJ4a|0 zmbBlHe=WLGQfb{^r!?Mc6{z%{qUzqO!R1k?vL#}+XRY>Ed#R0dy@wX6WNsx5^v4p4 z$6N}s*C8G*t$L$Wvt(#W0+y569m+^+Yn!8cENn72f4q|{Y<*FZcAOJd7o8EIU)#%V zJWtt{Ya5I!C@VIdZ}OIs#@h=crMK9*2km3@$PIh`nE6lX2S@aVm(V%~AC$xB{UHww zE*05ErU5mc zwN-otjV+z8sXJ@ak%_hWmniyc&_ZPUtKL4BE&vHoJIok{-up+6cdfx?d8S{*smZd^ zL@gwl!yyN7kx1l7uZBW7-H+W{y~5iioxC5Vibtcg6z&9nbSS|6!yMwd#jNx% zlMIeWr<%W6>#b9ZyVI>rlGPd;E0o9vpRJG1mHfWX1-ap-EQ(*xh0t>Mcd8wLV)js$bKT z>I3}5d0THoGOX8nT7lOE&tfsw?|R$oh=^roFV#dQ24;Brb4#$fitgX2uPo(Tl)q3d z#st9)n3StR#0D9K^MGUk0KC4!G(Llj^0=WeM@rsb_SRdsVs zb-!Czx0$Fw&2ypu04m4n*JUg5{;8*EvlWa{zJYyv4AB93|*q^ASifMG=rb?UICXUhuJ~pbn zGDh;9@}XADgCo=pdwmDeuPPls)A@W(iPu`A9fQ<5uTyL5U>NH+>bF0xGHlD|El_;Y zm8OHTEjB8;CM&6P+gR|8yjs4Ar`khdV|UeZH|m62c$Ry0-iWe1iyJQ0Bq@=UWkK73 zNx(Fk^WlcMb9JgFsc|HlmuaPz7~gEBI8xnTxFcmRvNQy#qu9uzn1X1o6YPERGgcFU(P&A?zlp}5@`McC&!!P|r2c_SR+ zx!J0GgZVwx+QVOJOy;oH6Oz}pdWCyX>7dq`1ZnJS^86&tI9OUi*_SO*b~{HGUQdp}V6ix0EB6HCSYm&5-6h7BiAX%~MI&BdjZF>wSzyQ+RFa`No;4Xbkjepv57!0QEDtrokN&qQc)>IE{QZ33Et`mHJfX; zBKBukRyH>5fTVK6X0{^bRIccxYgJg~Dnh;k;4sZ&u5LPJ?hgEx*3rvw(<)r7q%%ix zbMtarZtiTE4bEjnV9y&fDxIel?mYc!Ova4z`J{3hLsDGE+h0&|l@XYwDi=8}#^(8~ zqSDXw`>+Ku983DVL=+D3Iv-x3nRGa=P)Lt(`9>L5*>23cfFn4@?C0AiwI7JOwxgnS zPNS&km-5)%$2Gc%V#jnV%E7=atOiapHu5+gO>ypg!u4TiPOW~XW>g#qJwO&98ci^m zVX)nd7?#6!kboHiBAE@KN@q%gM$)1($rXr?x6cfHOMu7juwtwU^qi15$@lXt{{R*K zAw(gB^<~o;0aC^^QmjVb+J|X%ZgK|Pl6;ECIlR5R&POYe&1zD~slVAd3Aq% zcX_JnZK__}6z;#8{QGg{xHvp;z(@s-dwiusjl{0>ymbig5RFUus&H>dO>&-Z@b1f zy^w?!mfBVg7blViGN7JW!!CS|Yq#9#Ju|MwC57&lZFv-`SGO&^V=K29MgTI9IU5;R zV}qPm9Xj38yPXx*=Y+@EwPy#H$Fn!4@=dKaSahSB&W+#@m^&4n5|S9f4rHmI^qZWyz) zU9v;lvBBODkX5njR}8~&YQ-4k>KwgGSqyFqC6|bs!Esb^#bOerR|VLMUzOB>tmuuT zxlEiy!Ng2_XYa1``&iaH`?#!>{mjS^woXG8B(~AOC+l3lNz!_oSB`7F7eKn!g6>(n za5Re;3PY)Q&??A5CmGyE4mszj+GozkM=(^nFH0+#)@^2$tE4IA=H{Ag($W@m=SXwf zDqpvDrElvO9+Loq_D_XL$?0_^ZHfQ$eA?=+$3|dF;-I=$!!!}z1w$l zA{jo+zminfbJPAWboPs<^p>A}2BF;34TLvapi>+VX9dJg(4cbiG>t08`;|5-IR;8;y3L&RvSw`gufxg}EcU zCr~@}fEq%^g15t>(FDCBnSrm8ExSH%SbUliZDWGK4Xn<{fqdt&(eS(e=Br z4^vHT)B5hGYp<1_(m|%n8W`lUYjGTG*E4pbSqLcQomm{POk*C3{{WiqjM3G#$@yJp zguR$PR`R)veay@l|;AE&2QV5 z&EHLq$ORq2B(1*>mDt-Ka+1Jfot_a04BMlicjo`dbENaN?l4r7;n*~ll@^XVJ z!Ez4agU^6*T5g<=J>8|0cKz$!PEiD4F)hAU3W>HtG8yneQ-$Nn8LqH&hsp+w#8s&o zZ8=-08p)KB+^y`{&5RZrOnvC%>b;$%)LR(QmK+JR??1Emx=w#if?}h+8aF zKWaGl09Ux_wVV<-=RSQSn)hc%{4D7%k+rtD)GQ&@HNBuoJ;E7)Vm(O=Qg2Anaz=LU zf4oo9SF4^-v<7~GQ*M-}p!04+SBTWQRY*b<)q=!RV!d%H_bN*E7A)2b?ZoU+v`33O z%_pdI8H9!2(rFZdx=AOsmzCU%rHgWJ5(%+J>!vG7;(YDt~Bc09$Q9gJl2HHA}i%^8HvT@rX(6InOp-b*SFZ6`^p70 z1B7l3i4G)1<7m=#DDUhbxs4hoaND9R3n5ZfhFANprBBl%*zw^0tk5p{SE;oQo4-}= z*hmmfx6vSFS4mSKoJkQ5tApf>E-!GBkYz(MDBlhsA7!S!8=FZ=fSPJM)<+j zx-1abSZb*vTY6AjLln|1U}aQD$g*u!2VgC@C{PX;6}G-cy7$!$Z{{}xrnMe&g`7S| zPioiNuSXMC9r=LcuQ(CA|dZSHV%i;EHvBwMXjTj7ifzWGBkg{Y^qpG%-r~YkotQ1EMGs(Lp9lt<>t1#P=mW0w2|RkX^GZFP~FB7a)&tDaxiPrS2ns` z+;+w0y0yBsc9Dz|tZ_<798VKO<?VH4WUpA+5EmGns6*PFrdBSVXv{0J-Ds740O{Qp!79K#Bxqg&}sI@<9sgy{v)7kpv7MsXXkD4H z1j85)8vdW~pQ-fAXzgvfucxkUV86G&UiIvRG?wwSMknp49iR%jVD48?52mkiD(&e_PY_i+wvY#|5O_{M-}vZz7c&Q3)~v zGr7X&AXX~-R!@=ncp`Y&fI`l@cmtdqo_(>$8LtD?ZkgWIdfMJ*zNyl<;e0uit@VRjyGD~V zaLUld*pNFcTibjj;I})7&lOHB8VL0*O6ESIgXQo3X9{KB@e8GFGLq#+$w*~Tp?x4O zF@fXtFX3xnKSx?((bdfnM;)wszt=9S*{LA61uyr#(u~JUD{1AB+zBzo7F_RojfNah zNd&8(cf~=|9bFx@t*k=978ovI47U<5rb*I!c2yBz6xgvyoTD$PNj{pmi%W_tmAV@B zyUP?>Vi06czo)+Gi!mjLoE9XXQZditUQbf~6?*2)d+5;qU~~?Xx01Qk%u%_RwPjGf z2i1O!XdaO2yb>s##mDrA^8E)!-7C^k73SHj)X5k*xcx!ZMdxX3Y%XG*CXL~Hxk7D{ z`ER3jWr#Rwbl~)6EyJHBVA>H%{x+uZ+o3)ta}bn2wk-&U09Lwl^n< zPMX5hk*KsN9cCb>hy+K8hL6^U8;FLVrx~S=;v;Y_Bx#x{=QFe{9zB2~V5*FH}?mrSmWBT`?hfv+x>NZz!*xZrZpS((}$_Jwa1D75SM}Vg}8LoZ#r1BxwF0!+w z`j@4BTIugj_3uob)Y>#M`kNVVQsM02I=P_V)9pyrRL0z{`g!`8=M(YG7WTrx$1#Zd zykBcQV)r*tUFlYnLm-CY+CeHvq(^bvCE{qCaF#ZSU30-B4aXIU>EDNOSlQj!Yg(Ka zcJFm%c^QI8@@2A--6EN1M@E8B?-YmuAxSIh=CG0e7aei6uR2()=a_vvs(LTdq~ULA zoHlNyiyc+M<#D|me@QdCa{;ZU%&M+}%)Z03xmv9jHP=c2i2HEah4)xCr>Z>n_OB!> z4fIi62nybq@2y32t?rcRZF)Es(n1rI{=> zAD)Kl7?>Bgx)FhDL?IyU0rq~8UhB#a;pNuvFUP4e8vg*P{W{lqOC3AuFGaMl=^9qF z_9~A}IxSN*Q%c;;rzqDl-mkbh>t3wWFo7ED74niI@qMCoy|ug(om$3Eo1EJMVTsC- zX>2W!jqC_62XaOGf$_9?s~)8IZF7A!sL*v-lF}x>n2VXydcLD}F651Sap9wkf{?lU zLaaj^3hSPl(iq$xk*}r_K+uGLT(Z70Pski|WwPV#1T5Q+-UJ3ee;oH&)$X-DT5V26 zF}pX}sn4P{;ZS?y8QttjCc4K=X!g1WjcKLYvdFM6+B)MBNZh-SILSN=_yAUodBF1B z<`1k|7M_^s#>32 ztT57ufbl~A08nY|+6A(T_TJ?hIb)bIl-vPHpp^k=<%U2RagE*y#%p4?j@P)dHlsG1 za|Dse4DbN#HWS>2Slon`DdS>}4tDU|n$&F*_+$Bn>HeXurtn>P!`SH#OAXSjzP)pY zP*dt=uh%^(^6io6PCE&D{alZvvC|xrUyjM!toUt#j9??S!VzbQ<<_rd8l(~+cyG+^ zB`n*|e%dHxideQ4Z?ud}-c}8gK_2x^JwHf|>}Q7M<7+iY`x_9T?cF`XO%%I>p$Q{J z+1a;%!STgXyoUMTq0p{?XxjZo^5=J{epfQ_is?>B^zN{$qp$S$IniwQM>QR7W-#)# zXH_P)Y;M+lRjmvvov8qm<>E7IlFYVqwvQjpBr{uFptzKz(a91=#NRd zLDGzcz{}I=KTY(8ij0v8qBGZY<|4K=_sX;s`ee4sTJQ;(kpl(H%)xlCf2$?LOd$nX z!m08ws)2Ys6Ob@?6(mrkA(0CaC3ai{giOzzaj^f#%#QFXR&R7RkFMIK)@2U##3MbLTeGwDJm*HJOLV*^_d>h?I) zHYgtsF^QOqezcNdJ`x0 zL2V@Liq@>Q=CNH%t?4(~JKI^^EVCDkg$l!f z*<+HU{C|aIvY(jui7DEB_n&{i@Shn9=Jc8UzIe~xB0b_K{9|tlRik;Gzq|bR{{H}< z^6;fvefE!iz2YP7x4*pq0DpxkKepS)$G5)!0N?N7N?y_NF)_UTy}kZ@qyGS+@TDw$ zwwRgQ;y;8$#@qh@9sdCH;Y#>>{{U#AcB9YEENU^45#`rFG32Mp%och5cGoBXAjm}f zB1BLyQVA~K)e{qnkNZombM~kH>ec%F$no_509xRSq#bR*+I4H!F)U^J1h82g zzM&=2R7F;XB<6d9#6dA#xPuzC8V!JP`U|Itvs)ise1&{0%;UK-z!J~(Qv7&BcjpA@ ztrf{L{{T6Xl-bH+9bpm!$<;+Sio9H|AmA#&n5u6?@t918;KCUL;SvfotYu1vQSS$h zi*;Cb0vB$i_QqGtL?GPtxlD+NNE{flT`{zm9&j+F7h#lNQgOBizh}~@jaCLA@zq8W zuTGR!bdW$uNFi(iE_V!5Ga`qAmEK>%V?uT7T=Wa9)_O^U>I2n{>#YiT`x<8_cMt-? z>7JeZw;ywkQBccjSXquSBwR`)gkodIKI*+&;kK8lK;IEQL1LQSMXA&+`{}#8A&^Cw z!4Iua zvuA5C&qlL-4fB+YMq=J)NAhO*9Y)p-Vg!bJd$?fJn&Rg6 z(npsBnB#@_1PG#izJSQ(uz%vQ=Vz*(TQhnq%P*E(wLX~Y%$|$G>wR<7*rAEJpTl5t zcXAlLA)_=cY~4E*F?lO$!sKn;$-29krOjHEeLGnD5$7L--4&-6_-m0IRgVk=Nlj7Mfl5 zqZOvVEsel3NoQ`dN7=NtzTez7msb%_>Uhgrq>{vNCr|pn*S#Nz$Z3ogtJFAsDm_BR zy?P4)n6HQo*Hbb2f~J|nFYdIrZCxRkNlTBH zSv9C{7f+58BrKA}+Po1Z%lAUdBq}zTq9ykCF_ZIPtoB!;t?N&h-8B58sr zs!sFRGQdHOF(X2eJjF8XNNw8Loa;wht23(jexPgo(w+Im{0CF$&R(`l8c}ENoM)SwIyRS}djlyHb00ymcEcq_fwwEi+crW)kVTyeT{xhB%p0Ur9tveU4f^ zvLX=yG4gn(VOlC1T>xr)6d-AS+_`D|F5FMHYXuuK}St zVS>%|F9lL5CD`A{=UL_JqN1vetJZQh>w>OUTEP8qS{)M&sglS-($o zcT(!wI<1}lt9cECGDpc)njZAmDA^#B0VWv~kT)!fakm`X^lbPsYu4Ww{vCARSIaKB zqIA}aHnnqaas8iW+V)FpJu%`SG-)0CX6oJWcO=kAtCm{lf8tB{hSXFY$}u+OOk8un?knRBUIXf zN8Q4K$GHR20N^T*NEjc6MEoj$5nnJpRO@~t%8#22oers%zsKq;T`ua=wB{R5YkC@| zPvLK8Z0RjqI(n)o>O2j+UMn!VwkEP})4N1dVBVKV*PG&}!)*so(Io0VpR*cN+Iz;* z#S<_`M`cBlJC_B~0h+e?40X$>ZwbG3rWJ6n}#r*e4QVRUzF9KPlp;E#jfq(4mE{0#W@ zulzpgE317MqPm@6>PrNj9iXuJnCFV--rOR)q6@gCf+STjc3B~r9^A^UC5^@T$jNC< zH=5~fFETit5t3c0se;pmud#Ycga}n~@;XwO-3Y0tE-L8~Q2`@eiF%T3tSKnJn^pKa z+J(iIvvZ_1%wc77F^F>}cP!WhHq@CS7WDey>a5%FU&rmO?aB?Ck)ANz>Qm}On_dpXDLIX zDmuyEQN9qa?Q>P+L3Q<`5Qk=^y zE>`OFu1PZ|VKZPB(qdO}potC?TDdc7!eU91EEq5Vi8U#^E}Wzwubjd|j18Jq6f!BT zVX&4ikXvdDq#P_ZNdbrGrUWEsf|QgVJfgv|cMBN13&vbi9JU%R2pFY-bitEto}q&# zNL-SaJW2)=4Dh9Tl$*^eG$$P>HGw8iIEXn>3`*pom1Ll}Om77fKSa?!}^tnNoChjiDI`umDqMRTa zHU_~4O0}~bP@k(v)p#|dvY4`}Av{+M-AY5(ToYH;SR7qwr8x%w09VSr0Zy=+?Bp9= z#sOZ@ME;u8WDzm~Q^jB^Ql2(aQmWCa>?k_rFu7YO`eqqRHRb*E%qXmSdaXHzEXbPS zYO50tysdizl;}246D_cSMmejsD!d0=iX@pPA$E!Jtx3}hHGMnD827k=FJ&o6uR-g! z?pZ)fIlWmV!c@B8lb=Mk)?!!P?8^A;w3A@kQ$6N#ky3`MZqk-lRbq@+vyrmI)(Weq zk?y2cXe+3^O;s*Rl4PLZB3TkjVF~b+DC}K!7k*4_ihryNn%BL}pvJ=;Y#zw0ptc6p z!~`2bMJnK(_>>Zq@}Bsqj=xozEQOacReKti*{)Gus}c*Y(JKAbt=B4q$fVj^rbxvT z5grtyPI0mb8u;q45a>-`Oop~~z-Z^r@6fBir))Ghc9%pQXW?@TADOoG0xmsAA zQ>Aq!nlqcJiOS$|nLHS$B{Xc*p_Qj*)-uAaUTnczpf{A&m`IZ5?0BtrNuFzsHo|*|K3d{f zl*t%5*yADBKHxAoKgPXT%*>DWiZ+;^kLSMMzqgA&Irgl9{r>=;&M0|_nA(1rn2&fZ ziZ=P4Qy=Sp6JrOCPv?w(g+K%K{69FVlHbSMly0cOBlr<3`v`f#jU$s&m3T7 zNgI#RNypIgd=3w}#sRE;rFb;^Iqm}Qbq8Sjwm2WVJfFkyseXd>NV>z*9457~Qno)V z*W@u-{BKX@BZXW-P0v}|Uh5VSSY05tW_w$h(pbx5cGd(k zu>b;6MRg^H%5gzmL@w89I-}UgJ_o^BB-}!$Tk9qd?_L-UY{{Y{@ zqe_jvx0(6=KX1H$hTq-cN>I#1L_}}z?H~2q+uAqZ!j*XWo?CA*@3ikRv`4gmueXIO zT|CaeQ71rFEM!FBqb!fW(1XU)o)k&9xxpoVfHiPS z&z>Q=qW6_uIgaVp1FIQ5L)LwDLmAWkW1U`}!|F>9=+>)B3n7`dgI+ehOGc}3WdKI( zVnGrtG25Q$X(als;BNE`+CHQ^mZYV`E*j9sa~g+VRl5ao;1isTdFCA}eFmMUYnP9z z9VsKZ(p$SC_mSiI?XPahf=|tEYjK17e0zh<&ZBAGqj`C~mFXp$N2u&{n@W~#nUWdcD!JXpepXO&p;+^g$vE4nw`mvpgvkiI zz3GJ0?vySUx|(R!w}l`UP?E@?D>DVc<1L!nUo{;s>9#XmdAG=P`=+{K82lbv$mI z1qFg7tnzI*IFAZ*jBVeMnF_rC%VF-;EH&LZ)_%Han|di$PcMwnPR4ZuEV}v=Pv$RK zVdbz`>ZM&&ZIMK|GtX$+JY8$ENpTNMUA)rW3AFoM&vV7ZrCvlLe%B*qKa#nVK?MT#}+Z@O~{s*)=2?y#6N#tdFgA4-;l2rsLvn8-eZb>7I zkHWrpI?ml2Usw6L)fr4ix2e@k{;u=kp>(%V@&5pqJ51y>=9Kcyr|;3}mZ`CKD>iD? z#!y?cILg$j5Y32!X@@QzHNKjkQjes1YSznHjvE)Tvbwvml_$jRy;`W3mX3@eit63f zA(e>S(95xW0yaCiZO*)+Z7Lg;TZ=V{;be&?w0Sg%S+}Dhd9Cj^$fOq99yKI*%-2i0 zE2{Jk8_UMI&1ub5(S1FwJl}M_$4q)fYpI{oZ9j+8Ij=4k=xTjys8L@g%5S}z)p~uo zN|NUk;;UpIGO;%t##5+zzxBSQuk`(vr!KV7X#G^P+}+!xQ(!wyYiO>-%vQ^L!jc#5 z%Arqy4Qsk)hi7S}rl}^MYi%f#r{!a3xTDIKaK$X)HlnPP!pdb{-tg!MV#6nF{{Rk+ zBmV1ZbvvYaO&!zx9;(yYXQ0~SJ*;|luJty)#`O-aztP%-xV-LLHK;AIFU-N=ubCbu z6O3r&BhvvbU~{E>Ow?bfEp%OR?)69--tz9oOI=1tm|96~Z)V`ytYf(nNG4KZk=&$- zlIOt5>2~p1-&}mW)_1m=j4g8v*4EvJXwB`)ZJdA>Rt0j7LcR+EfY(TT#A1`wA1?aa zO!YHTT^k%+) z%m+(q^oGbN@*s4x6!Z;|a-!#WD@LSkP#9oN{W2^4QZ|N3^(%v_XhTCC(JOa9-gTM8 zkjitLg%-}1%(Cvvt{)%)T9wY1q+Kh-Y%L#7*QC^hkQgH|Ft^bV8B`EfCVPn5;JkZI z{4l{eKSo-?7BwGAaY)qqKNWumM;A*ijLu)x_^M9)+_7=nvH30Rb3I*|ZHEjab7OtV zBus>(Q242&XxfgOtS+HEmIq9h;#eg?7*v%DtY8Lk7)UUNFgzRz%Ji()gHO`&3^#Gy z+dBmjAmP0Ta-yMZXP)Z+-$G)~FA2uG+a9Xz( zT94K$%M}QWOl{ueQ6mu(!af>w?upb#QIl7=cIJTm?U}4=gc? z*|ie|v4vK~DMJ?J;Z|JW5xfJaXYvVg|nenuA#mqW)RBD#@!Wm3t-Q zuWm@)6-gP9nMeww-_A}v4r?J~uO-ArFDgT4=mF&a0HtvM0MAyU#=k9~w8~CTFGB;C z$=vkQ5o*0V)@Y3>aVRIUvzitdCQ=2o2?P%*nc^B08}IIJV~v#(D3rRK25`mjcp&4z zJpJ$r;E;G%=^d(Aw0%3Jv+ur)+|ELb)E3BMBhyP&*= zBN8-19it)8mINqP-Oe`n=|2mgy0GX@j$JYn1XEfhtPl(tT(ObmKefCNa@&sH3CONi zd4a{?X!U1WSH@S0NVhcd1w~ARg|TjFXvrs(agrJ+8q61ZRK{@Y&u5Yt}s$br`y5q=YDbU*s(@wC+MXNxOdT zM*}?PjzP$-EqQ{l!Rp6Q9xy3cW^2zkD8cV_Of?2E{-#;GpiCkNcJ>1L27TbH`bJRN zJ&awZXO-tWfo?GDq;hb}l6lTS7~ABJ9(;3C{{WnBrgWG2HVhx{ZcqU5 zK?jB$1KM7SKcd(kf?{x4Dp=HI>uH4Yr4?9t2RiOGFRbiw3b?@?izLTMd-F46_lfaV z33@K`r!`mAJ7-;#-3Q3c&i%|G5b^gw34lEys$y8~3$B+sA`Zs{UJJx_Z(kXKTBt-2}NIfl%nXhyyHmT$AJlVnMGTYtU%=AIB!U3-Y>V zk*nLt(Ez3uS19bt2_-^1nK)c7T#RiP`VQ$E;#qm`*!PsTlsU*;BWR62@@=G6*Fjn5^<@)0328_v*D-ZAs-SKtuz8Gtu}!Xb!i^ePMqL7qE`4(%T<%@S6w3bqvnAt3>4;sd=5F6wwwLLl~8aWg{bL8NedC zUqi{?La@CRp{Z+7!sPN*v8c&+^40PAAiHSxTdB>f0!<8?2$?Y}kq~6?NEpYC9U|Pjuexyv`I$6-acJGYEvxPEvytWtUl! zyqB&{xk}?GA z_d?M0>x*f0zMHePx!N|#9B@G@FR3sN)ykF5=2PLZj2hREKD7FVS?-qVtryiDYoxUn zOIYch3DS;@X}izDyIggfQuPx7o5*JRfc$%iGg=!9(yT_XoQ)ZgN)|1&Z8;68De9EwuODJehps80^0Gh_$TIrV&8Fei@-A!xVWCmG4M<_cb zdoF;wP88&lr3nMhYb5zF)H?E}uk%|&T55e^)*PmS^IxpAmLDMcIJ$WW)5_6WChk8G zfWso%>0&VS!!KinWRmt;<*b(2VaYA-q`A{A<+~^(j!URXjR*x|xMW5sH#Xt`$t=XN zC(@$=gf^*Zs$Qk4yR55iHrJPN-y|7z4&)C%bwEI)Xyo%=r_QHRHAa{6`Q|UEx^nw) zI-^JQpIT(J&9ew)j0Ngg#wvxNNpBvxE^#;@qlc&vlH6iqesT3@P+j%U#fxUuqGYy@ zQns>7SuvPxMbvSanNNq1Z)pMjw!!c#v1!(kL8q9&+!`4ika3m~JNX>rAaXgtlOw;NJEqLok~kEokepyq_N1e zeTV976f_Kyl}C&=mO5(cPu5y3hMS~W>DOIGVYrsu&u*d%YiVs}xq?NN=7teJ5rt(6 zGKw2@Tu-M$)>%vnCMqT zwV(9MH`H5MEhs9;YOL-eFdBzY`b@4z6=8Y&JXma2&m`&kTRd98J2?4pl*2dis@e55 z{{TUJTU|!p$_SQbi7ssP)@QSx3#egd7OLqRg_yG3!4snPq;-iv+D&BbZ0+uJX>Ees zK#)l?#;tuA(IH`g$QIDsVPStJEu+^E?ZQa@-6jtDsw z<(|D&pQ_-uni&@nLl^~+#z%3BNB}1&e(2qXCy|U-&i?>QdiB;UP8&=0V#icErK);) zho`2jbxE4n98|Ey)m?L6tN0o^Gfd^(kFFWbBV80Uedz^FpbL<=?}_irF51e>t)+vm=e9Dd%!A2HI|i(8bNg?Us_(7t!31s&6KEZefb@ z-5TRzoz^_TEYUJDjo`4@uByUA5#}$fINV1@HQu4tnx%N%Bdhu;({8Td-H=!1**m%$ zNo$Q=*PB_`T$wu|>Hh#ID+Me7A;j{T1&qYzZLi@MS&ArUu-5}jnSp%~$pxGtVq$>8 zt90g8+k!H7{o*SVKSAitYpK~SqerRfkYLnXX&qN^>uc|L$}4t?n_S^ABwJmg)%>Mcsk zojlY%8^U7odTn;97BZJrbf-;vJJfw!m`Y75nXzd-LbMVhO&Eli5C|FCjob+?pRA>= zuVE}MWs*1A6tX4L+B{(AbE>x1K<9Qa!yXQ$sA#sfx<5{8b4c@RHx9AgGfM6r8;EWt zvv*cu2$7AUF43lUNI@q#uB>!dUR%%_-m+MnhC>mk7R+`-6N;|fo%XalwrXV2O+h64 zi)g=b8ItWVhkdq>6naBb7MH1MB&6DEcpmN}kP;Q}2IN*53;;zFd`u4vd1rk3mP}^_qip4g9)d=3Sv#rv%Fe9RMztdKEOsSpLMY@G>UNUHKpUTW zjQv$Fb8yEQER#IB^f z)^+)`{>$3h=-*}{lPcSofbAj!fW(ovX*fU_H=5L6G@8>>=x;2(U^T9h$XUYbEg#Yy zaj3M;L26U)V>1|>Bd$@rp|r9YHLw&@CM5&&F*{67cUic7J5IU1wPZJN0LsJ$Oz#Q< zA@sQ9`c4CQtxu}4eEbs^(p$E{c}I4XIrZs{(*`Gx8C zQ?Q*X)E#BcbuoH#sydC^iUC5Npm9L3@ zh{$-wj-$VdTf1#m&er1RPhDau9t(B15}O!p?roc3J0O$^OmehiEQLoc&1Q#4X@4bS zb)sEf*;{JELYgS1yt=v;?|Xkejo=R{GS38vf#Z(kx+JPxDvm2P`3dT0SoLmiRcWrN zbvrxM;>~m$%ST_a`7HG;CN9R7&-J$psd9RwO3+@Otf37vRoI%*NErsu7$}(^iOy-) zSC>#;jYM0^C4{!&B!UHpbXQi3a3W*`i91b@vp=bWa$C({^}RDsv71brNL#Bxs+~$X zqnhq(h{W1;@V6Hsr6rug6)}-+S=X&(D?V|z8H)ro zE7lTrSe4j|P{=)yN8Oo-o*ZX?9K)|I7Ux{C^&&4}118`kICjYhIor?P10Tw}x54L> zbnW_;l3d-$dz*gGlukDs9E@@Z$UKwHbA!(xRQmU$y1(VyNA&xvbvg;4x`H~MkNeZk z=~`NwMQ6I?jMfMG3(~HpUbV@ZOGjn2_w<57&2g67zG<(`a1vpM)9$WUQ;$ruw6(ao zo-rhF-7BA)NZbpHTUiyk(eq#E2)$X9`uAp^W9jQ7)cRTooY0O@QZjHs_ zoztrxQZ&+aK9S1eH61Q4%_{G!3av%Rl7UQe=2OeX7tcr4?k(kwT_;lw z;kPMrOB9(UQZm6+mO+u^;+N{Uq0|y|)NTkjF~Kx4NR4dCHJF$@3J^RFjv0Us=uy7` zQMy;m$C`ei`D*g#rLA>pI)B%_W!A4T9X#s4QZf2J1DU-^{R!!YujQ3FsGA z^-zH3dXv%}3#zqUdb^D=$>*>%?&K_2K<^3>woNbr_=ZZy+BS%4_OM)h$c`~?r)-h0 zI8EpuU?-Bkt)QHo0K}gr{{T-}BDH`thU!@NBT0n~FKw9%FkC2Rz$6R}*}wye%=dK_ zEkSwtoHj<=F&2zHJeu+t$vLJyhr!jjwKZ|xOJnK?-U1|d0^WJG(Rk*PF)mNBRt&s> z?lL(15B09s(^l}liDqWA#KU%bk$~7PNXQ_O$Bg@U!2-CAsrt$1ho!ar;`J*b<~p}j z^q-SXs%RAE`f@!j(z;sayXl>rK8xx;zmMrE-zAC5CqrtCjXK01Q8y3jdxI>6#j?T`TE+sZUg}dVg2p{HJOkJDozr zGe}`_^fitvFV<}@r}U3RJLPMRpTg46da(*_POQ!ASL(x!k~_fGn^2P8>El}%WJsFY zDOJqdw#-^KXiB>6m@@Y_IA!3j&?z>XZ+mHNJTo<^c$u^{UecVu$o08z((eb+wGyvK`+X&WsIoy9yK zs2}6?tXEd(@ry`xTUZt@-qn~W0dUyZ+;Nb2C)^R|6_w^=-gn#QZN7h>$MgH`?c(ye z3Q{B9OK*Xg9jEU*Z!`Dz z+JDc&m3{c_@9#VR0H3$F`2PT(g(-i(@%!!kJ^knJzlAB#-+0^S;v!>je{G}R?eG46 z6t9Qh_K4%X=idZ^L=h{?euQ~5 z>Hh$@m5~|k#l{9W{${ujIShS%GP_M(wk|u-lCYR;JxeIM$GyxJ*GbiTyR){qatE$qlB(Csr346PkzfIdJ;-ZxTk`W?M!-h(?;H4(SvcOr~YZQ}A1GLhudc}(E zB$Pe*FO6g1u#ParDT^t(i)Jp$H;Z7~64%#>yvp(r3df|YfY+d;t_lr7 z$h|Z|hiD0MmEP~bXUpeYY<2F}nJpo!^-d3=dJZ*4nd>ecdWO(xU3Y&!pzXItX))6l z@&);}pbW)~CED+rvg~?m8z$1?BoE9Vq}HQn4@@0C_QkFq;uekV}%p+DA-iXLO3Tj@K46rkCkvt-+G5>b%~q5Y1DkQFk(nE3U}hTi0fj zLZq3hxmJ%od@$FnbRL(~Y&8y!U0Jmm=4?tt#e8yKd#j_vmr+|7hP5nsc1Gv@#_?^^mT zsWjD&rsH&dEh~FZYKA7JpV!(-t&7<`Id>DEkR{^tl%JHi1{S1i-KOzZdb5?gc;`X< zMZEZJf30X;M`t|tQp^mI#DQ+DZezr94UAX06RH5}2$5I`BN8iZA7C^YG)}PT?ITvv z^=PNEzKL#ZuVa4YtQ|G`!NaMT95hLFtEgzaURM*SwI;RH`g!$l;a6h*6q=k?myEqyF0(Ft+H$FtbfJEwtexkpzB=ie zuA6nI^zFRy-D(lMa$H;^+lXO*OR6I~G_ta@D0WbZyK!eKt5e-+F=>ceYsjwU#uZ>L z$O!{1%<;$IlY~_}k2wRA)9*04w+X7cmw?j&k)vg}JJ|KzOIow_`MpP}aJc(8y6ca7 zE?z9{o5nYR^#lbQ#O=BKE9t#ULHK{IYgab1$3IoNG$11b6`hO|%#+A}VP=??i#(MG z-WX@(59v$sGo||X^n~cHiPQCaTZ>RN1 z05mpb-QWtLv$y%mwL@1x_Mevcy^YVE)WghQfBhSTY9hxYQ`d;`&Ll_ZC= zpx=e^S~Y~~D->a}P9sG~hDr1Qz72d8_{FJP=s%~%v!}-$yyEk%`gd|jp`&>(BhVUY z+AM%%d7er0#rY?5O6QHEXCi=F_6YQ6 zMA+V2d<4<&QKVLfrmrL$nV7)+i{KGlfZt}^41mC#n)oyEQ(MxtKhw8X(I>ICh|lp4 zM74E|0xjfgd86){;Y*Ox+yy2=07obQ98;O!z}A*~@e!}*emaf-)_IP`d4qOVa@j>| z`X`OdR>>bu5lNIywrO^14l=PW>ZnFC%)!7wl}YpFiSZKR*P(5CSi@^Rjq)#O*2i~x zK;?smw<;LS?)$r#XxXtRc}O6A;<>WXUhZv0p`2<+Jvhf}x~dT*5{BBbU~g#1?gNwv z*$+hB&EYi9nVm~z)~I5}{0r>R@%`ae#cWQtr_}59bNxr@=36&9b2p3CX~fpXT*~1J?X^?XcuV!ErIS^RTd7*J zV7qTmWS6P@IQY+{^oEZQO!W+R3vFs&ko1bqJDdDp|g? z+v(Bj(Z?iLG233myICeAM&U=L(Z=Afj0RS~<8rnMQIbClf5M-roe%2nH_W$~@xO-hSH(7N>5x+|tj=$=?Z%d!y-$ZLYDbnflH&)Cpptiqzy-NIB zJNG2h7g3f3mSB$*mQma>`z3tf?=BulzZ4xc_?pL<{-Sl$tXiX_nSQ7B4=dD~b~Ro6 zpF#CcKr)pzD>N1hM&a3RaDcD|X$0cxVw6`XwvjmdBsOQqA-UA_xq3Y4SA8KZvRYZh z-#^(*{NgGWo94;cGTgedg%Udu{j(U^wSM%)X{Yz()a^C+u2SR{f*~edgn(?1vZr)n z6=23jRg9vBMj_O;t^WYDU(s(fxs7krUb1BMF0ilV6HjUVC8w}@R}gCchhjR>XCtWH zs4nWfIl2_hPj-TF{{WU;x~ECitjg4xS^@IS)AVh751G|i=^HgmmXW?}#tz$cNP^m{ zjm9(F63FUGcd{G@RU0+FyNDY*Nn^ZL5it)A;2U!>D==L8(5VTP2e!bg<9hD-b~r1o z8uNTkmN*Z-$ zi(SDDb(IyiLW#T*e8`Yf1v4V0I7=#ZEG<3j;8g{2Zp(+!D3Cng6bB%#@z`IeKFVb4 zNG7`ByAL@fDm?5=)CjB!7Of{=(wRLsP2|btk+hFW2Wp(L1XCn(s2QGZV_>7glwdFq zu}ZB~fTEj0ih0;m*In@zTQx65u9L564zi}NzO#!BsV8d1-cn>XtOKIy+E(DUaal_F6e>0n zQi_XK<|0PL-ZSn!yiLPi)9)R!EF{SW-xD)4G4C@z6t5Ls18mqf>|{pxjet3#`KqII zE7jdyg!iMiiQcCp;-p8`b1h&lB}#o2+SXrvw=SitHEfq|z!TA8zAe77=?KQ4%QGxc zK@$yuEL^fpv$sDAQ@FI=$Q87{Rx7OK)q!QqT|r$t-Q-v*)Gagt{6$WM4N~T97!%k^ z0Mw_W7^^uasn*w8s;j>Bb0vjGEJ;9>*G*N+S4oVcEjd#sg4STL0&LBH3R46UEHt$@ zBKIbmDTFXAJl3|6BVjpGmUdNblq~bKSn9M(vcP0ix9S-w z7ry0^pljwG`r#}z!0`Z7!HEkYN+lJRXI<@C<3Jz~hHw$PcErNKudUXxq@|Gd6ilx3 zk==?J`uUWpM%c={s0pl6QI@ff2~r-bK~mbBYpkq=J`41?{(q>h>VeYtOKZ%cVPvHc zq*|ymV$D#m*)VZ27FQPK4OpqPsLY(fGFujTi~+UjV4_Q5nI$UK-7{hpl>DWg>v!P* zpIW0kb`vF8&!n?i+B2=&To90gxyvS5xkRa6-h$CG4SSMPXlBtY=DO_Lw<}GG)){xy zyq9`Z0x4XV-R%f@*h<6o$smaFrY^6}6-p}s7ZN1@#*xi&y%1?24) zhA3dfEO?K?IxSwD-qit0sh*cks0RASHEKI~tc{^_r zB@R@^^X(C|AH2@dw$tw)9wsqJJjTHP0NEq=`+HQq=&(qYPCx4}`qJ9O)vaRnhQjI9 zuKQ21@&R75jqhwv-UT32xA5^wL)uqq2GJNKk9-b%e}z?ucSh@i2+8ByHNxJj z>&)L;HTGv$WCf0)17jJcalq*W;IK5FZKkChgomkQe^__aBxLg`m?0P)j@1pFq-3Vq zXWGPoGD$cqG?^0alPKJZ@){9P2K6#ev%ZHi)k(?7I( zd(Za1f9c^+_WD)gem;IT_mA2m{I~F+_N(%pzi8X%-~CU_f78OFRU6L!@wWck#^1lR zf3LTNL-DIj{k~>>q9<>Cz2v?>eY{5%8geFM_WiesoxlBA-|xQuAxaA?jiZ~!U&Lh4 zHnI6S&!ue#8w(KekSO2nF&oI2$dJUxyhn>m`zviq&f>=HJC^rKQHF4N@KpZGDZ?oo zh5*#Ai6T65D3Uo8t109%upxmTLJ0=7lQHDWp!$m~qcge89&ag>>E?0zmquB&s4Wp- zv(~W}Fb&FA1&E8S&MP5#Q7wi*#iNmkou)M?dJj#uxfgJ1SFuhZp4^cvV{}(4t1>w4 zdV_>trz0Z=n$=gLI%zELEEi8dDSluw#$}MJe6*r?e3D0QU>p#0kU7T{1*p7-d2H30 zT()yj=lml71IpsH70}?%Af)V9h++`CIm-vn1*u!fr+B%TNox2 zTWZ(V&bLus4&1S*7cj(ONk9=`6A>}E@gnfx)zp0{qDKY2y4yL5+6${>23I(S^eDNE zobs~lUp%2uQ)%Xb$^IW6SaU7TyCbA>)?2AE`KWsD(|R?%)xF$ypKWhywnKAnSG7RELn<&UBAx6> zU|8hj@@h*#`55RYOZ0^e4b#kadr4`0d+%JYjK*dOuy?YLn>icy?c@;W-M?bQ^J|>b zVV2V+v_wVO=-YW32f5YnFJ!kESDB-c@wmPVY#+2q@s3Xwh19+u^xmm+cXx9P!h7Al z!yLvib|S{ORa_`kRYg&N02r;P$!W}PPYX{6WZEd8s)(xKmCdC^O5 z)*^PaX%!acHJu~gQDn;n!xgQFbxeZl-ubkPDKG7oBonkbmE(Xgi6w2=kx^ZcWNz5S zOA(A_Jm-~;mg-z@P4M}k%-+Uyr#+|jCX1$5q!ULerZ87D&KZ~BV|=w$;j$K#Xnd00 zEQ4$jL{E%EevTbF*Vmee>aA5S^$4#box!vQSnro@$Uk9)?hbOB7#!^)s6o_n+uJpy zb};r2XKIkgVYihgg_AAmXx$X4=YfI^d2Wb#C+L@#nz`zIG)AVTok?>H{K4k)_jMJ= zP}7xLj?;R6rQE3*gheXZ zqRJ3Pq)cIgGVLlvi7clwx`CD_nw9nS?p(=hq}y0E(UF)yu81C49#?RM$OWW!d<-aJ zaG-Hnf3AHL(B5KtTd4X!)J5eFLu$%N$7d;FGETzYwM7=ITU|tC>i(rgcj;H<1MFZD zvxx$j@!BqIA-J`U)k(FE6B$m|qi1NTj4n6|r9caeU}CV)To@%Xv}tj;GP1}ws|N*J zaPo2q=OE{t)~ICv01RI&xx6Nfz~#@XSy~z&Bc8R7W>cy%SIO@n~t({Y$mZKTN=erw${y%xk@0 zrQd6jS$w=O-Lw-Ik~!F_xMG)lMRVi-0D+G@T#65_npP45AeF0FYJr7_C$=Ld-8w|UhQyT5 z&_^XPGZF7Pi0K>siJc11ysXC}Sbz%0kQ6`$al(U@AI`a1_<8XxO)HOz^So?|p-h*c zk_WlTZX29}8NJR12bTW;>uULwb6(5(%cfaEw%N08#qB|;ELpj3CJY&7EMUvNUEzZ= zHWuIVL_mne{5meT30=BeQ7YhNZX?DQJ5&veg(C`ngV}%rwHu#+TK(*@&wJK3*OSkd zVFBt51 zusH>3$to^%g5|3)Voqa`Dhu9dUv%E5eFDXCr3o2Sg_UlhSrC)Bj$!8Ub?-pDu~~Ian}4I+IcY4WhWEAz7~c$ob3o((9AT01>QdgS*$n1^^EBF9X`La` zni)exh}qBe6DgCYQS%WJ;G>Vyb>`eea+roV1`1+$m%MnvNzj_pvX_bHj2;#4qV%W) zV;-PSK1KohV*9&`wxDO*;N{ZPYt*ZoVzzpR}bAjiPT2Yq#KfKQB ze9m7|>Rk6vaypAV!?lsUIQ;6t&C+vQMnD0Hl&R&$<2;=Y413-&A!5qj9WjJym0Osa>-)j3T-U*~ZmXAcRE# zsv>}@0Q_rsGzUR4x+g|-%S&r)f`>Bfu0Kd`g?g`3T9bvyUn`KpNEMSSbrvua$BKZ6 zw;T8jH)0FD;$Y3+-&=yMghsl^ao9}y(`nbJ)=B{ ze>g{ zjYpENb5A@d800FdaC%6sDZy=($JBQ+HD*pAKw$?y(!$(eei*)~9<6nIc-FV__ojsu zqemYq6Sziq2?@ghM$yR2WRB6H%=!k8)4ELTw=HEIy{wKmWy(UqjClZ@6x=eoBa8qm zNP4;CAIwIx*BY}>;%aE{r<%A{G3>RgmsREwkEEA2%GpLuEH@i(|QHSIT8w1Uq4VG)U5 z;UDbaNZYup2^_MVZ6pDLbKD}$E6<#M^OOb-$&v`lJ5K?ea$HjdULFzpxOtGh8KX%|t0Jdu7h{0|<%;Bx-u(F@wqvCI zJM*EVFf?@LyU^N0T2{nV^jMtkGpSf?ZlYC00F6{+isflmRiKd-MV?A=Kuoig%oIZJ zruB=-roN9$pG?$dCodG1r3VBT3bP{yZVAEKdGzPcPUx8aAau@`YoY6N>D^DK*~hXe z8s>QJl|UOKk>1(knN)fe*esv{xtwDYy+hMpaWZr-WBPZ}-7SI0TLq{3QK@>Fr?NNd zEx$vbjmFVgEmpyM!r1n-MrH_8B@wl%be6DQHodgEy>aOzy}k$@7?!waJ_b}{KEzhT z)LNfg-CA5)^u!u&ktDH!^AlXlBcmU^+lo72fq?t2?7(^0d{%&EKM!v;mc4OKnA7%M zZS8C99>2h`nFpUZJMVps+ASj~IQrzuTQbw%lz7;qveqrcaVCc>kf__~`CxE7ZToc` za85@j2l1~j>OTQGyHb|w;$2S0N$yLrXS=fJF;i}KC*g5a@A z!eg!DXAwvNc~q`J+A&vlvDRCMx&pVT9g3i)j@Zspvynlo1pu?#AE)(mYjSW;57 zt!s&m&Unsaq_h|`y+Z2YbSKh7LQz||Fyxi{>ax1G0D+a@;EZ#f!=`lKity^Ta`kUh z+v=J`VpAkYVrDK?gj+US#>=&cVoUwex1K91bPh9o7$PM8R~XD9!n*S8rbVrQX=0)SX2cOGBdqHHl=BNw^nn&ZT1Cd zXSYew@aoKR=h9dxUBDJza7JsVTv_RN)}JqZZ8VYz42vu`GTSnpg%Ev_^(yXSLvY)< z90OU8quyR#L_6HiVf6WN{19;(bsRp~kjKwxmecCP^@&*WUxKx{ItM>mHidAkc2u!z`&J4=T0P5+kJGApooFUhHl6$RscmLX@>sS}?oqt5J zwZ4j2nk#Dy$if+~68>2uEj*ZaxD3o#5LL>6xCW`iebd&^#SN{E-Ytv*CZ6a{;ceDb zMRsIeKy^E^O>%S>RmCYFqn*W@X;ENqLlT9 zGZB)bLnZ_nV7-slnRQ%EiGhwQl@v!PoPLM!H?4F8iVJR{(l6|zmi68Xt2?rj$EaIJ zZFL02B@MF?ERi%}86?i_;PHELt>|~r_OCSip_o<{crJS~10Be^f@qj2*(`DmryB#GQ~tqhKYNuu@MP*j{Te zJ*2j_QOOs1-I=6q%y+S7^>LC( zO|Nu!>#btnRa^D8XjU{TVJt|Ew~RP-#!t35!1Lm?#@FGiV(*pxJ>`P$RRYeP)2q{K zuc=E3wp7nfYej1iwfS+8R$Z4g9aN$>5er1Y*rEr;igdSB#`<;A&!@HKpCz-5iNr1P z@%Fau+FUG=`5XNw1JnmJQ=%3vQ&GQNQG|Mu-K)eAhCXZ@uytXVh@HyYa>QigCcK_^ z@T0?Ksq0L4^!}X+n%}A&Y3hbbolGfBRNCt&O|o4!wS`KWWy+llc1`w{Csre9!$#4fdQQ@cKnt3>x9J78xl6dOhkhuu*w@g& z0j8GN0S7x~4*k_6^2d@Z$?9*yOE-Rn+PYJ(ZqgPqIURjk)6u4vehWhNJEqzjrh3Om zt{!n9Z^LL>ZAHkKD$lxd36WC#RT>vqiD!0ADtN9IXv|L6TLMXTw{Z}5pR~7d!5i+n zk+=*JV{g$`NVekU{%eP{`8iS5nl?8!X>fu`8FF4LfpEg&6T<*Du;UYYKk%Ynh3ZC? z>b3)3;g_v&dj9}lYHZGV_>0yuTAN1d{Vbg)gXz_#6X7&*m^^h_b5hdNE_8uGiuVo_ zq3PbSM=LGGoYvP6O$5>RZZ>7+?!|EmcJ`$Fl%IA)g9JCE3a6>`dum!lnoD1#5hGd2 z11v{$a$BFY-diR}<;(3%j^5#pMo&SyJJ6@-4MTHNYAl93FO?dlR}cAk+J#Yz1i`s& zlW%F8297HYqv#W7zU33+InzBeE|)LO-z;Y8H7Or$nZQy>CoHN%43!*sBN2r9y z^>>8V8QstufpU$u;$HGQPj2acu^Jt$ws&wzbpUPg1ZDIV`{UL7C+`d%4t!>;y4&I4 z>Wj!V3p=RnF1B{&F06a1KH6giy?QZ0pQv>`dDHzlyh)aG?e|6*F~@O@_snYDdu6C;*OpM)%?sQv72CFUu)zla z_#|NCpM2)Ey$9h%_K~aUnw+=x_X}d-nG{OB#RQ$Zh&Uh|sXm7Ph(*?KxJ5pN!**qpX-eo;x&3WwXS}&EZ+mqJ zuC~w%Xo(KwhcSX*7)`|B3cz(A!kMq8u^J|zwzhUpdn&EdG_ot|7hgAUiqXcP#IobG z8+3tqW?})Zl=SySWHjcL%3yT`igz24$Tr-aBWn`4D(O=A%RpzCF)<@C5kF4zKJyW- zbwB6))2kA+s3E_n|EY0Hhm=ULu1d5JXY<{y)%2#`c=h_p>-YP*Ap~_q6`!( zDz4v92aUWOem;C?C!DV&J#F(Sni_LQb;AjvI(w)zwY>w?9TBNC!Rrh@TMXS(iq$lA z_KQThf6@M~&}J*scNCzhi+0%+;~mu?fN;k;Q;)w<+1)=y0xaXG~&Ad0IoW@(>hxA zhNJ2&90r`~uR}wk-9XbCn%(@oT+U@BY`K!5Xj{Np+D(p9JH*FPx{3>Xc$II2Ci*5f zOy#Awy&>|_M~4$a`5^KiJmZ|x`3)qbf;lDAo?&GsZIUplab(0ONS`U#nj#gH;iEjK z09Q&pzH}Wu5$U%|I%DdCCx_`jPxP*d##}K7Ze7}I5myu$OBIBQE0awue{Ye%OCUG) zIYDh=37nWwT>Nn56u4nnBJ20D_>!$#k$!h^n*g_ zJsE=59X3WqFCICJ?Y$XT4&LH~(7fes-6@|K^J%EG4Q^mmjis1|SM_X@2P2FJ1RM_@ z`OgD2FH>}^!!2=fx$WaeQv&QV#f1n+U`!65eSi`IN`P0I*KK$BUipm8Xbzlo?@x7q zr_06Sx<9OZuIv1kdrswYIa_{S@?B-a^+QIElVoK708gkm%q|L+5sbMdNs586xq=^f z1l7#xJwHK{vp1{V^ERQ;q)w`=mOMrzt!XQaey1&*tCVFk0?GAGKU zoycyG32jN<3`-M$VV!r9nGYB^uG47kEn^ICw|!!(BC(@IFvZxEQdj`{&`t>YOHL#XxP_DfJCD$UeYOz+Aovo_2Odw#O7TD%8e?h58b%DLztqept zsdzB~RHn*mmnK+o5|%RQBv@A-5>Tbv00Upu!AgFd1)7PgY*_olVD6;a5#Memz)eU% zn%dR1#>$Fj@f=>W;N)*HJ`}CD@|EZBs$NPf>nuJSr5b0e{W{k941Q|no6hSNX*`x2 zRAI4Uk8V!`o2OdR#9fB;>$64GCx@f1;5E+hTzBHP!Ydz%->T-9Rg*})(w0clMNaBG za}tNHh8hr%o<)8y|(WU4sHx{Z)s|rj~0O&7rB7N*p8q02;c^J^beX z0HSA6rNgpyJ&n`=`b?iVq=Dd+`$bX?Jt3Jv%=*0F7(rYyG0@ zwe#-Bbi>HrrOas0Sh_l5?x^bK3rOlLqMq3bZMUZI+B+d%0?PnGYppk2V+R6fCG9gO z=(W^0YPTAnUqH8#9LOWGmf#O>?dG|PNe%!7nl+pc z6llJ1kwk$IWRtZ(9Q}E$bFDwxA?iMR9PE7$CYen$w90QbmtQeuln(h7Xi|#LOr)yB z7&0ZR7?^???hHo$Hh!4>8(TrX7uUT(Yp%RR7}n!Ya~hH0n8oNvIl&#pa52EoHO@XK z=(_h`Xs@DZ-CuRkv0W>q^H?eynH9hrQh5=c++!fLB^>APfyHVF{w@039jNiS`d(FS z^T*|?Wkj!arj_Kn-aguI!rNsU5D&O)P;b0L3JyqOcZ2chq_o!CPr1{sZ>{Ev<|l_M zZpc(R6eI(1z+g86$BOywr+?(#&@{fO(t4uP;*H_D(=V;>g3Dx*cOD7Sd_0}xZO+N+ zd=t*%3G%+D{xbgnh-XoJ)#5zW;JUS`dSRyUT8j^7P5D{V8ou5Bi$;ycGKc4SGgD(3 zKu1?jX+x8X*;}>Qadt1v(_%dxaSlk>@L(cb~n$9x;FbqqTqIAJ$z_<_6bZ zFL_YH)4Ok7VYTsKQPk@*j9Fna82hTnhEB$p7mZj734>__umQ5d-`Y!}^xsNF)4d6A z(1~#+-INx$Hl}7+(nedBnVGN{s+BVkF`g8DHQ;ZEAEG;T-^cg(_b*@mt<=u1rRvLI zx^b2u+FIExaGAbpHeo8+F82|x(&Va~3L{efGT(@fcg>A2I92+ktn}85#%o$vD|to3 z>T8G4di^`D)J5)_Whq$4igV?V#|{4gQK(y0xi#OmyUI0o(4gnmp98vH*QTcF*({>D zlHp`8deMP)vpW`9Vscw&WR+Os$&8|6KS8`TP(MLj7!OSTjS!gHgXRvI%5(!Kao8C+N1?aNF{ zn674Ed~_WnrI$(Q2)YDaNpWQzjMgS{v8<&g5`!QciiRE1aB>a?YrtJc`XPU`AEYyW zkO!|8*8Fu9pHK}u^?N*9?B=(XZJK|YQdRz3DUe1AmdIW?CEtxF;xA*(_<6Q2r)vc0 zDw?=2$CJ?1w(E3Fy*QSP+v#Z4v4)7bXt7(7YEMkux8@EDi{&si{Bx*21$3l6G5*gz ziqCS$bEvYZy%LrzvaE%OU8L<0ui19S!V58a_v3X{^Ie;*`+N<9I}fA-xBvmql0Xfg z7yvCftv?tYPptLkuGhK0DB6!7I;T-(bsdaWH>((v8XuWkZT6urzoO->t}@vLwSqEo zGZPUz$BvQHT0X1N-7TW@#f8)}CW~&C@yjeNmI_3}PXYTttRo`22A0xcCcw)whqRTIx0$CG5`6 zERb1F1gzthc)oA88+RqpDP#A6&THAf1o|7Pz7ptG-8ZUr{m)(K`g}3NYPZp^e%&L$ zR9m%EJh7^cs~pAl39Bgh2T zak$oP?jn{Mtde-81zB0L8CYSIhK#8UG6-%6JmhAxey#j*{{Ra^`YLJuyJl`anqFaw z@~=V{xJ3-)Z;|1V7DjGMF+^hL>PfD%qxC(elVb*-WoB%xEMpNt3dav_IM87u zk7z3#XfUXuLZBD`3<~4_0Gw~cvrzfL(YSt{;QB$TI!~amy27@p&1H4QzOk)!W?LtX zMbg0IlTlSyQ%h9^*tGj21!e4QVNjZsz1!cu5_}e);oh-6v#4wGYZr1`J-VW#k-&mR zR(3tfq-h%n7C%Y_1&JGo#g4Vqw;H{&TS$tC8Cc^PJ3+=y#qpoUx%6$f=*1-&C<}DB zS@g({RIr$qTbYC^2~x~yKn%>Z24R~-@(4dd)~`a*5eTovmoLW@Q#7K*y5FltJLfH> zZHQZdMro{Nq5`H%L9qn5IZ~x@_ne2R?1(A=4?rJe5j&D$mCmh}B(}*z4SlWqMJrT_ z#eibLQlo`7LGc~4amA$BeU{h&Y~$AJiCwdE?i*~@09gY`atwSbRmKB;DpD>g6%8^E zQqNB7666R}ZF=@Aq9LaBK{1OKNU=%=NEE~eWaJBql=#-Ib#;<s;p|C( z9H~ii{ZO?lu9Z}VD&3W>XKF59C?xW% zr*lvoNPzH_DN=ppTXa;VRWn;7D5k7^FU=6_yb5dySQWj>h^#h!VaP}mc}IDIxJbg3 zqYAY;_RyP$WyK*;^#P;`Z9ZL`{aaIm(nQtJB${?2`(z zR_MRluaHJGBA~7jQMZ9iH=@FvxNmWbnbOC1A^r=G%sFBW9+iJ(@1PBRV&ETqf(iRc-2Lu zeIzs9YXpkStcZ#fuX|BY+qD3AxX9FLPCl^PhMDlW+iEJ_2481#!AZh^)IkzoT*QgN zzUybk4NSjzefb~bU#TBKFu42&MY=JC#8{}@E*qo$I>%yT7_v?|l&WbgN>;=JEI6SO zT%=%{$pP48iehGSmyGRkGdh%WvxDRT8U^}($R6Gg)0)?`^+mLRBZpDkJBB$XS1scs z?-B_5gW|H>z>n2GGq<#R#QxiV4{sK^Cm)4hU~%|TA~)N8xA)tBZ-1X?pXDAN)eK9>sXoOUlzjLN zyY_33K7n4MDLOJ#pIMer+OE9Ro;j7=z+xDtG$gJGLjAZ_w1B6Rnu zI^U;mzgHEW%2~i)qd4r&oyj`QoK^Z4>lF)Ify+G&qC;L|V!r|wBz@WSM~kbwguJzT zOX0jsuCcSQ-xCq(Xq@H7*1-tng91YjdbZOR=Gy*C?K*DAwZllNr?)T%X-SnmI3R$| ziltAfPZjC9W72chx;v^mz;Yvw#q{R_d1`|J$}*WY*mbYV+}LpT5j5+(*wW;3Oa<)= zB7wBjE)9j9mD25*rI8}!bF?ytVxVne3#kJiQIo-}u9s$-wEB!}O}sYoG=sKqyNGhD zjP42P<+GkYeMoczsoGacHTNy2uK^d9Ux8foUeF{qMEXVh#Qc3l3j?-_2o&1-A29h`xl~*`k z^>phac@(uylhvA1Y>~oltZHfs0|UlO)OsmfkWe$c z#3`Rn@;tuQ51@jK&|a=oDI!%d@*}xfWO{S z5sps)CgOdwTS25cnbZED0iKN2_#HxP88_9Vkx68$M#5jOjAV zw~ga}o#Wr%+BT1Q_>KHy{{VGmG4J%NL=^8c9{W%2Gx6;oKGDA4;rH;M&N=*Qz9Zj^ z?;Fg<+wUK3{{U_O0QQd$-9wN(Wd47RTu0`1+uQ#D)!Y97Klkvc`K3nx0B@b=-e-B4 z_>XCi-+u~K{?i`*^B&uKZ87Z|NAd8e)kJ&7^X>D>V0ZcZM&920{{VM|D*HrF&$rLt zZ;k!`0B;IaM$!+v9!WKc3r0`~Luhcv7pD+im_Ee0{g~`TO`%t9jlwo&NxNpXEOv zB#7D;4&$LIk z&(HYyQk4vunf`wp#O?FEe?M;uQ27gtrH#LJLbG*BHms~0%eO32h{7A&o=~n)9JZbK z@3+5*F~ISk9{BQc=fw|$_yT{BCb{{Y^V8+e1%D@p>V{)qY2KpY^Y^e+v<9K+_N)zQ zmbYHR>(31?tHkjTtj(cmAbp>7Q`Cy4^Vuad6Cu>H0M(KaO`(XHPiI0>&$U!E}%+iC~MW!Ay*k}-9n?x$f>a9 zcQ#QIVmFELi0Ubgo{##&OupT6rWO)M6tJ>4%qo$xWK*~*=WtMtt&j&bo9X9$M)~bE z3k8N3j#1iq?e3M3+p+aL5=j^&oHRw5k(ZV^82L1wy!F=I_~F*hr?P0+<62v<^(|*& z?J;v6tyU~#SQXRQc=u#ymu=E9Br)tASJb>r+PtOI5D4v@f=>jP!Q1s1!60O2wBgd- zGz!Q1k|_e=uvCy3bC98q91MU)4haDBitqQ}>C~>E>W-fIh0JSBWvMl$Lm!{%nz5F3 zhM>yl7mZd%hHABiSB#C*^hkq_@u*2;d_%fl4Dp<8PUBM1tYp8q`I%z7op+F`b~IM* z0V=DNQ=d7;Sn=hTZ?#}-XpLQM&y!F#!2L<9AJ0@C&1hr{(O9#FC_TM z`GCY^GdSy3s)k~%9aP2Eb#_Xu#uDB$26a#VtOb3SC*wLNlhR8Rd{cT|sr9*5t z)`5U*9j>h|d=N^%KY%!^x7A3JMg2#r+$e3KmrK2oT&_lAbdLmi+EW1e&OGhENxGY- zda0$=s`Q4Z#cNF|kwrV2e^p{8V!m3XkgzTnE(Bp0QF5!&;NYSbEWwIdi4TeO3puQ2 z>|DYioB&8yStDg-SB^;C8P(&F7&5Xus}5C&@p+}{Hrk!Ay0wws7RusC-YKJWW=SHN zDHSA+NZm+ekrmYN!@)T&SrHRI+V=ZxdG{728kN5t*^Uq8p&!j)Xar|%In@iXl{{{U}&+GF?M z+rpHOc!}HmWiXBnfKpqx1YZA{60J>SNnYZ z=3+Mc%>ME5;YzT^(Lct2X!qJ;f6u~{y`my#e`%PA_W1YPfAa99JQMLV5&La1?epPE z_XyWn)&y+lD#WkinHt1mQ8C9yIzfh9H9WMFLa!e>@4e7815m4 zNgu3BdGTJA9d5e0*g-2DLY;-Ul7qU;p{p}#XaJ8=#zMQmvmqdeM02Rl?9UMbQkZp{ zZS*x><@!prU)(CrYz#V!;3~zdQ(jwA=@TET3qXT6OZSGIA0z8-( zRG3sOuTcfJbtX;{rnrRx!VQX4jBnveP4`UHRfE53@u4SH#iH-T(;n2R1Lxr=<(-A~M z!P6}Uxnklj?8%gn^HPsPD<(*qb8U&rH@#)YEIU=0#W6J5R{dg&Nou>$B{2cPTN?&s zdumgY*j0*#@v~>S0-_ip0qD80Yc^UrI#UZgq{^rnJZO z_Lw4MO4$lh(`ktShmb|H14Da0#SoCNq%oE(8D zFE!L_Sb$xUt8ayh%EyEggvnU=V?`C*Mkg+kuQKCN65*yC6rll6p>V3zyJe!pkpNh( zt0bYAgRezlj#16DdRbYqP^FZU9T~ecLu6wc4t@y7E?1b<}A)Snq`g zG(byIB>;h)*)5o#3R7cdjYIV;T3+Q+cvXfOS_ZDeL%PK_txHM>5CsER#tBHZM#zGQ zm{OYVp{ll0Sjn)V7_Qb*5I|T8>W9i$skT^*#Gd?29pU-EPX6&6JESNh~Fzv_RDenL){vDMeXpX#{sFykr(ukh`+#uL5gO+fvuf z$>gY+NXpIz6$JT;WE7-N*NRtFE<)rb?`swjq#OVlKlV)Y1e& zNbwKWDB-sW1u3^m>lr-qD=;8p8^G(>26}Q;aPLRv$+ie$TidKQ zUM#6CI%XB?@;0^Xj@x)Zt&3vTB?rP3pjAaS2F%z?0GhKp$Vo!h^@Lf2ZS)d`T`_3* zL~`UpVr`QN<>5*)M;uc!Skp3}awF6E!!jxNk|QosWi#(HBvUgx$xqLPE5y|%Rbqlt zHY>vE44lg9`kIPKyy+oQsR}zpwSe9&nV8#X?v%=vDwJiY&0%tvK`Uj;Q(oz^`7+&w z5yT-ZEvu0V!D2IBBpXP`fYuN`6stB`8!V1-@37LE4}8%2C4vdOrdW#8HyaC;LjqMZ zGult-j^W`-GR+`dR88hG*L^l3r8UhfH*LPLq9)c*m)>g@4t0V~>t7&~Y!ENFOHzWQ zHTelvTd~1w)D<+pCoWw|6Nx0xEL4?eyOXk3?)u8HLedO54T3x!7>)fwj^D;m#s_vVcizkrw%t1@E zwJnZOsbMl|Qtw~0P4ybv>|xn(1Q+lrKG ztk=7JWt(R3C%$bwrB^&R~etqV1+JZ?P-0{lAq>r|wpE+2R zVEOTke+t)h$s?A^-dK<%a`#z4@rIg1oO@>_zj-yB%YSM6OwQYTOh(ZWyv%#gxA5_0 zSsFw~#{2KQed2z0-e-S^{$Jhq@fwCH!1mr^eg6RbEu-3F-}ry6yh5Y(tugEW0F}F% z+c@oi)4|6tP}>fAhfi3LqP*piTGtsmSNRCm$r@C#aI;`%Z=4vO`_E@}KAz(bWX2U_U<)fC8&&W@Oe-^6{bw+m)lEC2gWgOL7bo2UXnL{)dE}^ZifTfeI4}{(cv|`1Fa0{0iSN2Xe zcZ%Couw=TnXNz!jcL8Qov?~w@!z*Cq9k?SZz~?$0z22jvYV7tm5SH1pNMdc!HW=+0 zUVFe0ayMiWjHDht272am4V~6{N}h|<-7e|ZQ0d_HCaTk6jEwG69i{QsR9CW87Nc2F zqGDD`RLB63;Dg^{-qP8ug`u{%ycZDJ&6Jj0sg2|tRa?&V1V%Rv$HN1WgMWIOw3>-) zdj_y=O5ArKfX5(}BRi#Z04qf!DR98;0QyJ;jd?DmQ1Z+=W}13t{-Wh|RM?)*PcX@$ zjf&GCSvk2*?R68ms(BA&BZs-0C1b>*Ep-^B?>+QAv{@B_iJ6&JMt!Ftlt>sem61=D8%Kb_yaTU~#bq6P8;i%N?>_L;Rcctu;eOkF zOwEC;nu$zvmTm(Ryh(DAo#%fUNZA}S%6n}d;z>Vv-~vg>&!4Cxf)9+~yB8hBjw^EE z_TeK{ETcFW$Wee)Wb@}fP6t4|xOqjnp|w6Qs(RwvG5UiZyNZklgR#*7G+tyQdiKV~M$~>ALM}T4@t*Z`O7>Q)24d9+$Qx zq>PmA&yS7#UPobbEt}sWtJYNBW-FEnx`SO@jZ$o-)QlFZ>8VeAd=qP$c>yF zsLnj#76juX+Ob!f-j`t`MR$0yI%6XaakvrzDx_q9NFH(RSvHlb*$Q;>6kHamU#(v4 zJ1X8+Vx_c&iq;n;5xUI`Sq}Se2OobHaz^mUBvLNPB4VsQjHd*D0x?+_W{%<*r-`@4 zGOMZQm0$=w;PMDOflux8Gwt`^dQ?w@HA1$!m+^w;2Z)88Nml1O0l-o zY_BAi8*7xBSU&oKcP}M*1Ohn(XX{?NW8Z0snfq-!Z@;um?>^BV_TR;|Us5OUw)^|- z{vO}!`1n$jwEKVb)4#X3_wT>7f7im5c%PqmpLpMIZ)n@w+JAk${3;*iRVBCW_xAn0 z_xAn1f6w;tr#SkWu2B=W$F}=@Md!>%Pv*~`2#j6b%68ab zYoF?Te`Y3Q_x@AAh#oP{IbUr4(5N0&zJ*)gAF_S@tAo0SPx)rfbq}h*-^07Cn$JJe z{Pw2HYmHxq>fR0Zv9@hwGIwn1D`LK<3-oPUwW(XVSX&iDD=~op92zlVEc6&6wA8M3 zjeky*5)r;m{Di^vq;rXIRBiwPg=8wqHsctnbsci{;`+kRLFv6|0ABJv<(fQ-sunXn zyJ_sLDaKt3JEWlRB%Ib{>Edgr@bdF_e+i;3^#1@!XD~f+&gdN}cTm^V*(#bU^XQ{a z`t0>RL6QuGqFP!eV{qgRWHSLi-Yzpv-#U#?ZfMik8~_M>erR zM3nL?Ir?VlF7IuwZnc|Mf>(%kI&xd6Swnhej&+$ss}6qe1Mc|Z+;s+*@|HIiQRp}8 zGzlU3o~2tWg?wS6cs^P{tOf_);9#|H{{WE=g=x-#<-FST$4qAKYOOb7e7x#9D9u>H zJ1>u~t@Nf&{k#c6qMqF!lQkNex&>NilVf;laX z#4TxTW01z@d@ShTV3HMqAmf2|9GY~O&}te}2vYLODP2}|yhtWXsZrG?KoV%xqb#ko z7gNa3o?GQQ)2sSpZsv*89cazyy*r~VWOUvmPGUUdbk`xLbge8^_CjzNXWQtNh;k`C z4MYJw{DQv5)x>>PmY+1R+dvguK@3U$@nh2uI8;EY)5`ZrB$-Yf-BroMkZS>|#3s}) zrneGeOPQFpr~6`-(r;!gB1j^ZIQ?F-k!2B%$jMyeyq-ev_>3=?jU1dMIu$8ovC*iQ z?0&tW)YRp&8k0AvbD2#>-EWMeR=#rXMj^Qqi_{#6L^wD4u9+Bek0PEn*A1IPK@SSB+-% zEv?Gh-62PbWQtpP7#B%ZcOeXgvISaN-`>qUHg_5<_7`$b1T2!hy9F0;JoeKhu}bkx z451k}M8%RoL!bbfUWxPF(T23U0)x#P09O%~zpE&>^)R)PLgy7EO4o;8=d+IeGS@5YZ1Y;GZPM$l=E zZ;RC9l%Rv8ly$lr>ZKe3x7LzN?P={a=Lz-?8`FP2gH-9*$9b!aqo7(CMIo# zypIapKpNsM*mo-&phOEY5hmnaxMetgV|;>+z}4ekK@9%@EpaS%^Sqt7)XfPpl8Yei zg>p-6Z&XAHP=Xx?1p3)(7h=6;Sgfa9GgU;j%3G}(l`e2rNt_eN5d>!e1tJ3^TMTdF znxn90RU{?}ARYlBK_|cjkU94td8?LmU7)Z9ynZJH;C*-m{@{LfMYm60B4ql;s2QHGIUIU93c zUk~_!d4IpH^Lhg?uBPZ*z5^SmFJ!V>_on&1JEqrnNc8fTRW(kR{P>Nj4P%ed7lPfK zS@E(xwk%+XCwqmqu$Bv%Z8iHV$t=S>kt52o2$Ep~Oug7+Nh4Vb?%3tgSQbIfEXDqy zmoP(l)3>%!Tr_d4&GOPjCYC3aAd|CkB$3F#m% zrt;e3t9n18_>DiTGzL>n=TobCgQn4}G(F6n3y%JwrZReJ$}U#EMIcLbK`syJ@jO;m zw+#wfYgTuEGM6SjuPU=kXOEb*DDbPL!iEJ=)lx-Z%H$fSCaZC7mk)WO-CF#sTJPQ1 zaoM~jVY*j}XO2jBD=eWH%M&Tz9xzY4#reVLo?}AwFR57Uo}ss;I#Jd5=!UGetu=CN z{{Tmh{rnDL+&+dX2lqtdFvN&#_!HCu&^A z3dy|+;097iJFs(CA3q@dZW~XXB+-s!LL%KHdqekO#Dp?!Il~l_(nieSA04l}{dsWd zy_*#^CTm$8oPSYzmD7yMFnSA7Y6ofieIm->uzf_;nc&4GlZxs7J1?m)sAgfCAkO4M zfVh^+duvONlHILYS`9^0vS*p2R+dR#6@amfh~)0Z$V`P|4Y%!irPbx-vARgKE6qY% zHzGv0NThz)g)R*7p_y7_?Kp1SVW&7@*~l67dIQc+K{}V#jZe@WFQ~J#)Qv57SL5AF zEu^!Uj1F?%gMCD63i?Y_TdfqeEsTGzrpqg?$!IFbvxgrN$88k$v)o&1R<}~x1T)*D zr{-W+k)c}^pU95c}d+I&`^6{*3J6^z#A_v&g6>x@b$zlp)2-s)C5~xF9=M`{g zmn=n;uM)p(I`+tCF|?osG6(epWkxBqxWOu{taFx<)Oh`CrL^9$!dJ_y5vnjay+@1; z)*B&$%c~oirmNJ4D}~9VEa9*EYYXnyumI$g$S_2rW5pTb>`N?N#F#|IcgEYJY<|){ z2IW4-10%>DDtKoTMHGb^2AM$-$+Sqh{gw*MHxCDEFwcTVH9rbrOvC|{`^>oiJ&yR1f@%H-uHB>q=AUHTUJdOzR573Wrc^>tQQ`Nl=&XL{g zn{DPX-8jZ+9PYWu<#SqZJBP{R^xm6BM#f_G?K_a77ppl)#auW+q8`Bjm9Be%%A>4k z=)W}!MJI0(tboEqfl9Xj0A=+J#DTPi1aN4kQ@tAANbVyp3`8$?aubyRGbt^MrWl3= zNH{g`aTyxfyhbZIjPE}gn#5x>nCBgLpxuqj(MCdrlS@Jg5OnM$wm69yE+r6AG2t|A z1k%AKJCHLYV1hD?RN#&X$l&{qYDi{D;f8qf5_MKwj2t)w0uP4Ak?d+p65}vjDY8W| z0UQoD=P(2BKOa=bzsJANihLj8Rev9?V6L8djOhOWRkcms8KE^~<~0pG4qsFHL&W8= zsk?*In*RVl(%nOQ6>B9;L6aI9^G)S(_aQP;hC*0T+OmT?rnF%LTqN;KiP_vEkzJ5n zMrDPWM}(18)mxAxjpJ-Gkye83erQ@r1h7c`;HE?>uGZ{}GAm^IkVzBmAa069kvA^w zxxzr_d4-?6av#$@0mwsPL7)7eZmsid409W{Y|r_SWE8OGq^g0YqGb!<57#hFP;r7JUj%bVzI zzGC0zBGfFT}F#Jlf)+>Ld}~RhXpm@>c@R~RJbNoQc+Q~%Yi+V3pKsM>N)I770eP_$U`y} zS=IYnmDI+{STJxG87rA#)uEaj$y(Ox+4TNqhHF`(xJ4=)KVg@9BSw3Q=ov}|K2?Al zs6KVPsr0dTo75h)=>0G_?xp9tKYVgOniHyZ7fRK}U)4H&=&O%2TJeA6mInABnn5Z*gg7b#LFGTz!;0$&XCLuVqdViXvMt8v_zX@kiOiIq$^@d z@0gy5V|7-f(OC|p>AD)1M>|l~)foGYwuNCIq;xe7rRud`$(2t?lg4N)rZ*{&j{fy4 zWD^eH)(WPWu()XAkaqsq2379F9D^u?9@%jJ0NM~f?*Q*OPgP$VqzxeK%u*)W&LEYe z4Y8jc#X_8gV7&UA7}qW~)Yg&fFG~7=%^IB-uCO|hy+!H!I;)|>7h%mkPt%0tDB>Bd zF>q)e?glb>JbF8&!bz6G1ZFpwg~g4{vAJ25L9~%#lWdW`9l>SB$8GAtP8~NVw(O89 zST7>D7UdQ|E|uLk!z^bAKw#oTQyZ?~nB)s4Iop6p$#OI8v~9fmZy!7V0Q52U7>J)1 znIBQdeHKZ&p5`UKGau^JC%XE`!Q8tpel*!4gPVOrksgycJ>3HRpa>}Mi;r`gh2?j$S zCDj8usAk)>NfuJyTS8*9!JMvR#V!BGKLyU?mfT%A+P!P*2e(}Ow(=uW1 zAL>Upv)G z^ig~+#hFru8pwMB3Jzi*Ot~pdw(23o+HH_@*kRR$Q8m(aderH_%+Cwn#w zKQ3o>xHI(5mhSx$FI?)71P0?UkpdDj8t}P!kr2r#S7;Lf+z!>=Rx1saDvZ2tO>&o7 zWBp6RVgX@`kPzjw+#(_)VN$EnTCTR-magA%Sp!>%Dum<47^>t!j;E6E83PvBVvFcm zc8LOf0D(%mRx%V^Q){#x-4L?c73#Yn*4D21JJqY$z6~K&2#tscI1TI+o?8+Uh#y!UveCb;YY4&Sjy;l^ zKG>ufUY$yl9o8>-7$l$t@@pnc8o*Sg0-J~qH=3qn+?5Myl)@cektO85+uGZFLgBk; z+~;|9u0o3NTZ)vcw`thMR&83AF5G5944smMD95`2UZ5ZvMgWD&9R|^Kx%1jN78e+m zD)t~NOP6$CT1AI+DOhi}#GkSYzI?}Qx-Xysdt4*1F3EGx0 ztXz?^#7lB$8ze)S8>BCR3Ajxw6wdepb*V#oOdysHsnvm^+Zc4>u3 zf*5hh0+h+b*RZ-WrutLtO{XfyqOc^&ELgdYBnY6amhfEKPjI`D_jfXtDN3@?NgIZ7 zGggwFU64plKF~m_r>2WGAcEnnY}P3?kVy!h>1!Zl)T2UKRdj7$l!Vr4wk(TAJvb5p zwdVyYaSZ@kiBZA{POw1>02VOf6sXKu)Ou z1=0t;-R2k8;HOT+lAmWFX}JX0MQ6GjDW1yBvS4EZxhWNdFPfBndzV>Zf2PguV=@qn zSf(Pf!A@@zQ!1MTFIbXa>DM4%5pYaAg|QwKq2%eZy(sRkWJj_auuXhn{9j=I085lw zgGW83ZzuNWTiIMBxBa&tKP4TsbSdG+*f*yKUhXb>dkfnB467nfq^0J6oj@w zz@U_-7^c%yaCLqpuZ{ zmA|yxgJEf~iJBK4`WCVV=2b-l6;dKie^|1U;|r6Kg{ox6>vKx z-Wt!Hmkcvz;xN{GND|>nVal+S)Jv|ikXK$_;*nz<*HpUj8jo~Rs%A+uXJ3?Fl)Jugc z%E4Q-`z4GbN?8rZ6d8VGshCW8DhC%7gSooIt5Y zVKyA3_f14_P~dYV;8JlUrAne3C1BfK^p3rBuN)Z*FRcx8l>=$#kUrTc9AdKtL5PoX zR)CTr8B&sfu~5pTdy0ZosDjOtWp&zW-wREaWEo(Ps;f-QJ;cdqNW?jtk%TE;y;)3{ zWfQ@0R>s^irJQxH>cUb}R!wRmf7Zqlhv^}Pf}!xDT+9p)fW9Lwt(PbHv7lU z`^M6tp z)>OmVA;(t?!B&N*CQ}k*Os_0ALdpgpzvmJalx(FDp}L5I6_e1(lE8*icMtC5Y+?XD z<2gCdVZFGrxVD=MD@5md5w%Gwb`XDMh&#aDjozLC<1A=Szh+U@IqHtHrrfPfLc6#; z$`rLlCh5y0s*^_%RK%gxDzyuc1{BL=4Q0C+MKlu1)$OOVVx|j-z-At=SRkVwdC#dx z9PQ5DRA%ip%k|VPwL=>hft%5in2h>eQ`6-zt+@F+bLWglnZ2a(y+FxlFuHkqheWec z<(X3lmPAzUU=M>KAr;#eF*dz1G!Rh8l`=wPBxYm6!UG+&HkyMtV1Z1Lxf0+pP~q}b z@VH_eVV8r+sW0!LpHX}5Iajdq83Zy!OkAjUStGzJz4L+@itY@)E2TL6XGS_d)2qE* z(%MR@G0D>Pv&p`)EBX7CG77HBR1=iRxaBQltf5mdLJ>RfyhhW5yNY{zxh$uY$l_5R zc_6VNLj@n+7;XoO->jvzmc~6o-q|3INKCj26sm>X$XNQgKA$+qt$C^EYgOe_YW5$Y zIb5DHw6YHEOvX~+4`_FAcj@V)R2U3|lu3^fI5`*}c*sd6@!OW>MNpN(?^Qp5L9|(n7Q5eKpn88@;79z-^Yr~ohI`+rh1iu*BPvi z7S5KP0g4RnUwifc+MrHK5e8!}P+!z z#DkdE3RfGOX^=BUxyDm0a7bSjWc@{|JhKZe7w4jlL**oVm1PWyPj6yKsElh1b7?YlUyGVj@b%ExUyrgiVAoJIu$4Z0(F1 zMxq);m107n(C`w5hp|89*`t8S`07&2IiH*{tleubnWG2@b)5U%W~x zHWSDVk}J@3yUq>^UhB*rgUjeGL8J0H>(NIaX7%cq5;lo&%E-x8^vQK8bc~1;34{?0 z7qLM_)9A2CZ7s!)q4OprciK=5>mCd2bdknF<$!EwYYqs(wu7l|#ofKGqog&6xpht5 z&SNja7fBl96BC{Tl$%q>W+ub^(zuty=5PeIi4ag(+o0cHn7X7ww%T^`#?8(iOCuCkP7qX_YCCKrl`}WQeH^9 zNY)h{h=tVPZ9ovHRA$cOg$}qJo!A2%6xAMUG;d0E4uR?Aof(&{jLGRO6OsJYnQDVe zO5n4UQ5C;47oeSFX;fSbWM){-!AOMogj#er_ZpXbQrU9^vM%EmR%Q#l6=iS%lOv1} zrMW&T`uAOvOHCzX(#K-*C3jx##ifswi$*355Q zF**FcJ5FVE;`IJrwk4>`S*u}|PR%H~Hc>TpflLI%L>xiy^AYjlO-E0P$UxCueA3Ol zXJJjHHsli(hVbZH$zoQ^Q{UN+`z?PLD{DsbR&R&Lytsb$^(bx|={e2E-y8$`@a`mzahY4ss@ zyS9azF4F_Ie{Fz$#di-NW0CaYq&n1*Yw>9R04lAy!ihw~D#kG?<|2UO95V(XPuJUA zv_DchXQsMo*9~9g??mPFHl)B~G@;zPsqdpVQutWZ1wy!uJ62g0g>c)mFmOA=Lv7?^ zjaRgi7zb3YTVF!= zqFIDu-~>>CmpGA8KpcWp`;H07t@SPa{{YG({{H~y<6W)dtJ)*)9@|d)%*kyZ{x?0NkE07|yw5j$@&^Dz^)+t0`F-hb=iQL6Th z=6-#@hSBzj{{ZQ{DOdL2+vnOR;&z|B%*6cd;Yzegf1LdLZ#;kczun27%kEPV1MR-?AAi3803QAnpfiR;g3J)k(m30aF}E+MP;(o^$Gk`0K4;=1#2Xkn z@y364ML8gW?hlVX4~qG$4yNiqFFO0Hy*{O`N2eM)T*&v&H2a+8PY_(fEDC3b?T3uGhRE*q3xU6jR zTHQUYnM1d_ilNm*dQMbpI-S!uQnTrLmZ5VhG(~OnjaI}9Spp%Dt*!o^lfwJd7f+dN zIVDL<6TF%uOz5pS_;>lFevQj!vbfDvp?bHg^EYz6Dt|@jr#+cFbk5m;>CG;h z^{C1PN7#9>?FL5k1501poil514ehPnt-oYI*3(NpylB_O%u3ScV3Er11aFo^z+9^g z=lXjx>sMDYY4^4_w+knHU#uy2GbN_QnnQ2)F3%c)-HZUma6l_S^vah{aQIvXpU!C? z_mkC~Pt)h>y)}!~K0_#J4IummJ$QO~ol##Mq;RpC)OhOlav0V6g0_Kq+);5EVEDSc zw$qufAHAkb&^m{T-Svo0Bz9CgnI~cym4WTYwOkbhRhF55sKfFW?3%<~+~+5GJ;i46TG!5HOxbzox=~}I7;IcOOy%0D z^|Uqn&weICxu#ie!%XcK_ex|YH=}I!@@QA7Z5&Vq)Gm~WX1S3A8#_=ylJO#$SRcHu ziV?Cv3TosFh1DW^xu&_1>|ky832KhZ^HY?<*vTckC!X1j*s#E3xL|VELUm@BO;w2L z4l}ELe$+Mar+*WK!TD;{T>{z#*HQBfu-sJfQ@57_ZBx(%E0iUI?`jmGUQ!)rO z{dYwro>I=MZ+`?<$ioGMam=ZOAv4ZZ7b!3R+vK z5P6*bs?A+?roiKXQIC6X-?Y^B#6;^oM*=WVF_O7NjvF|my^Bza2&0W9hB+ceM2aIQhO6^Ps<3`s4uy+GF9 zkxb6p{7>FK+k1WYi2ne`i#o|w;%DFQKHEm|x3}**@ALlvPYP9_r;Km5+kfZZ+vYak z{Cp`+bDjOYqxYY``Tqbf3RU7}eTUnBZRTcuz2n+H$KS%0!JfZ#Yp6}@{{Z4fT-L+dc)Za0BC#E_dS7LCoit`y<(AVh=p5hTC=={&?AJrJ0a!ZxB z(mI+6m_%$Yq7je@WVX7zi%^z8F@hFA+>G*=#br}WxSv(f@1S1fT8+CzL3IjlEiLYC z5gR9h(a4{F3PDmU5$PDz9XF|s>h5Prd4knlEPqx!#NqLsM(PhtwGGa-YP_#hyq0Nx zoMN&XzfIJ~#k14u>NXv^e-mkxtDtGnR2YZ^oa8kvO3GEdg5z4YxqV{WTeph!5uvoZ zl3SZgi)COURf>6INfAP-B(g{B*{mj)qiS#^l$P2g_VMY{XtTbY(#18^qDGfC_e_k^ zv6dK`M46P!E5#eO-N}VrgXnYhM@W3Zc~jAPKR|U)MRhkT(_Vpeqs*q0$?05`?wIu} zrkGxdF7CXkul!0K>V04n+?#6rB zjqa1EB9K;lc^F<<60FgdW{vw&NQW5b@C(NItm$s5%jhnlYh2Lz$m^{jjO zC5m`mX4F+A2uEW2#ng*S+eXZm`{B5Y9{0M|lY6%AdtC>-vCS0bW`f##d82Dv0`Sfo z{o=~tZ8th@p%gHNRQ@M za~Wi8W;PsT5-O#|uAg;o1iv#K#7>MF8@XZMx4bt62V|)Yds0hpRT^Ir|6PcUc+rSrb{cBFD^~>v5Y3@w#3Y@hazbEa$^UJ zxpW_!){ETe5otP(wH57)Ucv_3`)ivEbhMnl@@B-Urw#|p&ay_h6|m>hZCRD_(fD-e z_hog~fz~>+uUL+wYduq=73npmjnsWf(w$!FR;J6L_pz^DD%$dToU66AkpifH6NqOJ z@szt^YpiICVRam9V+^sx?vcwIi0phAH@=-SGGOaNWo+9 z?=cZn+9uXZ8f6|X^-HL&@2AwX>-aAo-s@4liQtuFj%5Q)^a%z*4-(0hUs8a|Kp^8E zXQf`=SwW{?X_s1Wej5up;<${*G)&UpL|x)IDi%kKt1$~EQNh?nXMH)Kb3H!tIp(Vo ze;b(m#{uShq#FMKRxudct+-`h{{V*mp!F*|Q3y#k^?LW4sa(QP8ONn)ltGE@a`Rc) zTWCSA7T(88)m}L!ECR&}>JFjgZbGisQdo_k9G)t8blpN`)genqn*RV*(>swzk5uxT zM>}H&8`+r|RRPIyv>f8G*0<^gn$mb%USKp#YRnH)^S)!e-gQsQu6F*2%w>9c<`<^A z+o}3ej%T2{qXraM_-3xFSMw|{sjRNcuLKqJ&N z`L!wJX{_hTjNMo}MLY&JEWq-w8#XCwHkzIMdVq&ZytXeiQ`%oZnV(D4A=6=wFPyg} zU*xY8O>J}^&;~~2kRhy#+M?by_=Z+>f{*t~{Sb7eejrwy%U&BDzTo{5?=dx#gf0U(@P z)_fgY_d>38=RZ>^b0wm2ABrk^jf$&#FsP28Q|gw7)%tfSnnpUnO}p=*sPLC)cVwZ8 zw*t5@k{Px6hmy}r->5th+*sNd2`Pv)&}z_H+y?-FOl)NgtT^5Y7$DX~EZOhx5o`tA z*0=Hq$%$kl3#}@7?aX9`Bf5cAO8GIe`3AD@ojTY}Bj#_*zK_#6T}y=2ns22(St@i# zOkp(^vhLf*Yb^l$XR*hnowzJp5(bTGXudT~x)aNgu6D z(HYkl5lIF5O43Bc{L2!t77DE18|Z5ZbEMhc>AGq@jTOX^#c#rRt6!NNRqrY2{PuMkmW}R&_?D z!s{JHozD~Btt@7!;2ElMc%x1w4y#_cEpcL35lw$tp4QdZsF{D{|nUQ=4-vifqx)>65SZm+AP zN%rj}j|Yuf@Npy)Hgap4l=^M#a%+txh1?}(iKLB@nXL5Lqm)K+dy6P?C0|G()RCTU zqv^dqEmGNG>BWmsvYkvarKw3G15&(+pc5*Ms?j+H0zqYM%A|PrTGFPl(%QdEbnb^& zHJ*>rT1%_B%$|hEYMpJ>Y}RJyQCEQSOLG%|(p9jR$=cUdGQOzRYsca81X#3V^I2y0 zA(h9C`t=^T+QGJuTv=Yxrb6@03`R?2)Fz0gP~; zvDTihSGS()R0G>D$g`GJV5UP>PnF zL#iyg7jvj2lk6;*#9GcZYkA%@m1TE8_Ye+It=D{#76h`0>hn?QeL8qGIL}K(#l_BK zTU(hW7ZJfM@wgGT%URfyB3-aun?lAtWY+rmNUofRS$wFLDN*^h7ZdoD<@KB@HjvPo zi_KKww5o2%7SmGBx~le66N!Q>d&nSU3&o|Vc&%1gz%kFJT10R%3&$vyAPDzS-28n+ zeQP5!nIw^B%F6}&$~SPseYb7N$OjAx6UGh)_eE&8NV1xbsa;FyzfTXY-D?_MPwQ7l zW3LX=y;9XQ^BAtBO6gngYSqI3}5#MSMB>LRoxD5`c*0w+bjGfaqu-O)`nemb#=2@GQ$PK633KL zrs&!yc@aK)?;bH%0@)K)xs@Y}ZO)wUCKXD8&K=3)_I$D9XahJHt%lY+i6+tEiDZ;I zUq*;BRi9*gBVRdu;|e*+2N^l6O|Errl-3?tzZAZwXk6|mRdnwq*MBS7N?N~7xj8K} zZylmEHR(d2IftIN zd63ik`=@z5OrJI0diC#3bpEo6L@#=)OA`6uPt0an5uHr%pY6uQCcm$@JK;v=f7;izuwRc~Emi+fDPCze@f2u$L1{a-ZJ&l~)-D)y2f zxVM{VMw_}!GN~<;UBOVXEZ18t+Rk)as2Up9snptT?tfo?GuckHQo`pSgTI*6+9ys| z)LL4;qOhogwTB%pdOilU%meXvAtU-HxYKvIlEThd<`9d!Kud&;*fQ!11OV7TC%>o* zqm{#NNdgsO0OVj|`?nODn?&&U9>($&RovhNmcgWn@Qk3A3>`OuH-bPoIm_N_F&RFY z>t8B)9Rt*^qG>FrNqnJnh;jBYIpME=TVeBlZalN-yV`eOKoHys{KE8 zpt)%hcUfLN_3ehSdo&FZQe%cyXdq;j8SW6Mjgw?Yfa@edSzCo58pcbfS>I^ZQO#`R zLEfGclUzn&l^~8qIY||y11Id}X%LURq^gmm7yQI^mfuNru2_8DbtVTdJs#@6QZ)Db z+r()tep;_1p7T@w^mKX(&^5i$LSuQX#DMcC3Urvcr--gc?af04ZM$3*G!g0 zOj1P@am zmIz-V=x&L2HMJ`Eqy0h+tgWs+mETU!;af=?=l8MZ;{$#ZNA?gEVvvG z0^h_8~g9~jklQoQU3sKyec%WkM;9EzlABlk9gnT_Kp7lyW{zP z*Ti|Hd^-OCw2YP1^WmrM#Y-p8%PxR>EhN@6S*q1~;=OwSb}PvCfuN~m35=8kj0rG? zClH)ZdOf?D{{Z!ASpof&KV84(Yv;nprKsRLbCatDNqmi6vl$WMF^;Nr-TH}$Qn@k) z6U=5xJAxuLsX*Cvy9~Jcb=ZB{*uWrX8M9>|nNus8>reHDfdbCMVA|g4h!FQ>b1GDA z^g?W^nJTL3A?bWQvP_hcMQwexSb(tZ3y#8|3R*l;ObB2Ia#E!|LaipaA!&;4Trrhx z9eUMlFjw1Mn|YfIYeuOh=K!%`$$$dfsSW@tRD1#yGV2SraZa)U701#LT1TmHjkI0* zyVoV8L%^FW?bYo>6G|Wyt2(ALHj@l}$C5~^*KhTk7U~tJ*Q#t4*tT)$DX!g>G6+O{ zoO}NO^j;LGy0$lE(L|fHe&xKmJXS{~i(f*TB3#2)Jzu97A4CK$4YWHa(+ZsfQ)t z6X8m=i-TB!QJH*J|4#>1w$ZfPGSgTxNXP0R}L&h(jQhqNYVMtCX&) z%4HBF1{N88s#{D492aa_0yc^PP(VU1c??3x)Lh9*UQWfSqh4!Bvt%e(iL%K%6sCi9RSbmb66D-o^CAUZd$3MGyeUo0o9{l#@+<-*v6U{|MO&8pa|G6~f~V@u zxfp=$aWxP2VXQuKDpPL8(Q78%gIQSwq@i`>QoB`JrmjY4#fbi{7EOD@d$Ryj!eT;9 z6r|&hum_>YA+oQj^ zMJ1r+$Y9xndaSBgb%06e9qc>P@a|7ICZxFV1u1ze_NcKbTGeV|+|1ppHWyecEw6W^ zI@Oj#U9$KFxKHXSK*XF75rULLvK2i#n)bw%r8FBgN%j+2i3l!MZET>)L7>D$m;@cW z5fVn;G73;;1zx2q1UzI{Zu+81v0k(3<>=t2RJJRaXL{Vh9^a;}=FA$t!#mawBinDpF~oM0Au=)GE3}m|~$-EO@n! z^wkk*y}@&aP*M*eWCXkuGF&iVZeUm!xxzzQ zpY=83wbV-(l-8|HmQ2d4;84}Vl^<^Em13KQGSY_7MP3NtXAl)n z(=6()pC=`#Ez{0P0QR*4G z<&yyPs9P{`$HJ6PZtgZgKa{}ASZhW1g_$b#q3yBSjCXK-OC{aT`NIxE8OBL)VjdKx z9KcC5iFOheYm$^zQ|ap@FIb7IOf0HoEmtS9(v&T6OsxHYT(Ou^qwyq~kFKT#WTDZ^ z*H@NQvZ{5Z#V1|$;CSQtN}vR0CwlQEA@91BQY<|vwN>bA!hW^C*(`l_`bY@k=j@f4 z#Yh+-f!$`<34sYplz*#sKXiJgh%(7IX|D2Vy2YuQtgZmCLqpL42XB(#zu`w2hP2PZ zl=|&jZBn*{-KSKkL0XG96=mcRk{bQ6Q%D7{$TmXayhK$R;;2U`ClZzHX=MuI3mI+A ztrzCqVywA6^L`25Z_n&{?eY`2na*xcFjcL>lyy_i4hSS;X zr0MDy%nlxv94b6tLYx}(Jvs7y)SR7! z*ws$P=xkY7hgcRh8J$6441wmc$Jd!nH$aTW&UX=$-bDEE@pCq<5pT1Hycl5a820i! zHgn|QaaI<+CjO&waoJpw0v*nB2a}zn81d>n0yg-p@7F$niZo`Be@wB?Klgh=%_re& z7)|W1J+3?FlH~#Ydn6azWv-9yG%S=ZKA0aEZ=ZNC9`1DCYceW0QT>@i=wPEBjijq% z?vSnZBVxJH7V5&@&cukWtlgOdHap7T2S#@BAYif~BnBank&#^Wb;v7B795Kc4(-rq zYt$~xgeZ{2LVmI{YviDc31jrc#7qy3mKL>W$N^=KZW|netPdn_&m(}#=?9-yGhFgy zxsFF!wvV{~Vfy)l`~>HK!FuDvCuXfFem;`~lV z^~+!s;{N=k>M7w2ExxGq@F6iV6BzwzR&8UpitNx72G zrenHQ4#g*KMBROL-k`dInBXZ!6Q8@5-XCQK9 z(vMPIr_9B9V{exmP{AUQ>f2dZA;*wCT%W?Vi=y<-G&h-=wbswfozq-!v<5(t_3CY( zT?C@uYKHBN=6QCGB4$bpYm34kMzmyN@SE#=Z_eU2^ussnU1PiH zyf$|vgdvbNv@yIMi+Ro2v9MmI{U2q+;~3l>^sGXhd@Jm+YM5s;V}jpM|cY>GN=_mHa` zQVblgp>9S(j|?;8AG43+M(}5=?YL&{NSGju2R7&L=LaNln$`u&v}Nxj^%C1owA1aL>|Dtd zrAEYXRZiW&g=BCxf43Xln)OD>#P`rxF*}*IXlF~*)5D8LQ)S+U{#xa3{NaPyv z`8yh$HRkK5nN4w~Dd_!NTEjt|>_r@)W-4}5N7JIh?x^@#C)4ei?!hO=mE)0tcL{BEC!*kXIfP0wX&SOdQO___K#&bn>AY z?Z*cWxH&JDAo8d1KTpSsyc0;>Z+U`3t4ocpc90?fWE?hq$>)*B6%FQh9gWF(r_mI0 z6_aYM@#(#LwVtRd&!XJCRkD}FluV4FqysS{w>_pOY4Fg(IlP7N$n3`i;D+oB6$6k) z(0Dxa_*C6i`!4jCEJF>SvKx-^+({?F&Ius$ao`%=-lb^GAEmlq)f-xKOKI!{v(TD` zsoKP0XwO3dU>o0M2ccaVrSkxurjkODgk1<;yZU76Wm^TBm?-?>&E6M z3$-KwgLz{>DKBnwnTLc%tgiTN&ErZ@4j>g$Vr zKLBBj#1Z>hG31lM$Uc+o2;#J^l`PU~h25FKfO?xa8((MuU@D&=015Z@tYf3`sb8Hf zVQ5%g&&@iSGNCA3i91Z%89vN!6D{b+nWYhb^7t(lrc0y>IgYI+ zv}9p(`f!O6BbkyBl7ZTN{9R8X$!DWT-k|ppjDhJRwX|axJGXfl0GuBcXJE6e-B7X? zRu=PMcq8q1WpXisqyl-t7y~u8-biazK9Jh5%6Rg&jdQ3Lr-drvX-ZWrLe!ybuei8{ z%;KfkvB0OR8cTW|04P0sN%F}y^6@$ddS?e~x2;ZP?B z2i~ifzSBPw8}IS^`_JAt@TmU)8c4?e^D!I!Uf+M8Z*QNE^*$q?KJ@|b_)?~Q_L=z~ zZ=auN_#c6fZ}9NP6*XJqXxsaucAdTF+CO=n{6dv)e|Y$xZ)p2_d`$aq?J?m>zT11u z@4vinKRf;XzTOn7-+A_!Dc(2UeYV^0Kg<5UBaf{^1KO8Aef_3m;y0P&A8r2Me-NnE zz2|MX?d`n$eE$HiZwiG*=XU&yGaq@zT#d?0 zXx#<2{kYye{_*kiA08lmzj*P%@;o1}LbQTGA>z^fbk#nd%DYf8R` zZEp6(Awh3U*hW>FaCNypsKw z<;XV{u-ja#!FmHla||jXc2-|RgLifkgp-abbY+}&`lZ#E>bNwh^FJ1M6VGWfNoq)% z+DXWsFx;%MFjE|;`$e_ z%I@nr%>|Re+j0Lpy)=Az~FS9OT~}JX`K&%%HiuY7EPVOrDWsdRa~+M- zN50C=D3xN3E$z`->SqZQO3m1fOPnU{tL1PjM=*MGrJZiVVX_tLYfiKE?=Af*)ViBZ zvs>xTigdfn=T30fuc$RYUA6xJPWpY1Ei0BhWigjwmfJR$VT=HXN{Gu1X=7<=WofBe zUoD(>7ST$vX=`I?B&CoZT^d;7Padgo>T;z<(na;uSC>~BjfA>a%v{=C$s0?m{Q;7nr`|)X_+R0>>R#Iv9nq%8dDr~Tg;j?8DxmjR_MOTF-QY0}jEgQ3` zEPY3LquzJgZZsJ$vzf0nEK6g`1Xs|NOZeTSYmaU5s*`n=2g0xFi z8AZfHPLkR?qo^37n%v5}pnUgI_*hGBKw@_+$0+{*c2U3zPHM(^H3(+8fh-bvE#^cZ zP6p^Evp2C^0@33e2H7Jg?C@ASfr^Wt#3vDkp_OM*dKcC%n(BHwLt1Am>5Wc$a&GEf zL!@;Mg21Oi=`6iGl-1OEjEcIErEOEPh7~^DhbY+(LjY%pXt#1p6_%|e@<7n{B9h8z zXNg|v?By~*%t(7{g;3}i?v7NITNwh>T2 z_U>U4jn5i9Qo`ubuqekTbaT!2FRYrkS?Ro2O8TLJ!Rh=?yUJ;;dzY2;X<~UTr84%X zw2_X>sEb5V!WC%bDy2v}s^-!4iEe^jX-RFTyR<(rmvK$lxj`E}wd5*`C9~|5JZw9t z=&h2CwOc!AeyVA$YeP&5@_5`XuGE?*39en!i<+NKWHpWx37V>l2`rX32bHikD=6#& zO4V|0BVf;A%n1@Ji;Xho1)6oXmF%IAN8V^;jBjC(tQ>BNL&zxDY=Sw(QnuCXXPO%$ zeQtFbV=@S1xJip5lBMHi$96t92MRKzF;QNFKdSKBcOR**UAU&ZO6hE#v&!PCy$s7Q z1&pbZws!`MvI-Q^#NSd(xPu*Bmj$?%*!h@2ZzbHIt+YAZ_#_Rhy@wu1UsgPk;4gbXH?lbbqWpC&cvw2h?3pq%s{s$7$** z%wW20(%M~H$z?0XH#YKGZRvYX^c>(#jmJI?762qyG7TYC=-X;-EU-ZLERtB=TRS9E zMFgdL$^-20Ms=(HJcDS{=l_U&ZRkIQ?hb)91;28J7%}yoN zr?s%UveE^}y5HPZy|#g(?S*E?cLIJJAVhNB!IUQpATU9ERj)L@vzc8z355du*Jk4T;v?rpWGZetQ8 zb0~u4XN9G=Yna=z@dlk`g&d>6Trom~f<|rrdsa#3wz<$=33f>K>~8HI3xN#lZz8nG zA^BE~-Ak>?DG1w_c?4Ig(tdq@7MC(-e9oo6g`m zg{8CNyotqqQ(G;jvqA}1buNl>aOmY82G>hlOUtWWR^H~`&KrBB?ZqnhEiQNyqO@zX zw#Q`9xLH;5HnuZUrlY8v%R5WGCRez1W7DqkU=1*J~5$=qpH-#q^ z?C@T1I#;N4XGk^Apw*boIo9r-^*^aPW%+D9G#xx2O7!K8QK{%^6)yROOv7-Mt+uKJ zoG*&U24S@LU0K=N%cxs5^fP?433J491-ODk61<457&(Yf8J0N$z8K&(4OO$hy19!@ zoLI>LySRH&46!k{odl*ec1J2!Lj#18GRh7&0i29?hx|Y~6`IvGbd|k5)Z8VX=;dui zjmhV97Y#OfcJzTgZLgy1W~M;zx24NV+!}C`o0cADfLedpYiOgEJU= zb1U|(UbG|xnJE(1sDy&3tgveqs01%l6Nj-To6 zIfku!e2$@(DQ?x}I&SfbaCTS7l zedrMxzzw-ngHUZw`bc3g=@&P0&kS-y5SHC{Gs@5yyOPYX#K|IsEbg(ksh^>-4`0~?tAO>h;SpvIGgaQO|0FpBmPCzmM;NtuBw5@Mw`in`WOrSy_ zyJdoCU0KJ=FfW55J36RGaCc@RQGqz?tva)y-e0m=Pc@xS$l9TirKIp(99{ZBZ$8G* zwX7~`3_cSNrzkAoGwswbwnb`5QVFbJ#;g`w(}PZmO-kHPG*(jTO$>3p(GkbJckD5< zDSgZ&U_^V1t_WNV)MwPl)9yZ21E`HJyCkb>7D?4uBFM6lAXJS^YDko#qvWv!;)?4B znI4Y$e$MEu4z{P9MeS}j^C*6m(Jsx>(->Cg^yZPft#zH;YQ{9?pFK^hwDvvMkD0Og zArlh;GK#iZZHrEA1;wVFaMEmvBnCe0@|RGE$rCC(r5Sh1V@GYMUo0w({;7Qpymw;C z^HjIlx<-kS%rHi(?Cg@vjUvRX9K{HhMNnB|AXFz-wRc23tmiX5QPo;|T4ePXU9;L> zLbDH{v{qNB`Aoh~L1?_%vAFCWkik+m)2bR;rc|y@Fwy|vRJ zmve@?U9q6s6m1%`aLDSdgvv14pP=He?yof_h6b_It~FbT*;8$+CwfitJc%Rs?jen~ zF>S6GI9~y(W2_y2=?_Qo9W~Btoh_^~kLm^6IXw}D(%mM@Yn@+TA&S$Lbp`yDjXj6Q zHr@v9EG?SxV#J8Dxkq4*BqBUkYds(4fWN-5u`oGk=eWp>xn+-ZQlv64FO@sUKv06m zj0zH8YZ2QAu+s1KIW7XnCAG6cCJI%bWQjG*5wfXP42vUx*&q;iQ~GzU-3-?mogJm| zRR->3Q*{%n{VvnEtd@loHkPjGZasP4rB-@w(c1@&Rd!V}vQP`S+i8gAW-}F^MzNMO zoEs~Yw}ZbCU5<7cyDpIBG9*cd+9K`Sw{}k%l09DfIUX|&<*brUu*;Ul34^^9vXzwX ziQ*te-lhe%GN8?3Y#*ARCwT0Rz3P@0^6@#{`i2pmmzKJY8!K&9b?p^S3!Q1dlc8Ue!&hnX$p99nK_CIMlJUw|4DX#|sB%J5g8d z7;R_Z4^s?+-bf@LHIp~DR|uQ#q?HV6fHSfCE*WFNCkPG*Pr3-m85C1-SgRIn+;%G# z`?s;>g}ZUs`cAiR4=gs8D&3PzoAGkiw7oM5QOTrIy~<{1cp!e}_)+`IvGSnrPJJzr z>QR%y$mIQMRi0!Ks!GVQHuV9B+WdOg2h!XRP{H7Hz^JTti_y4^INcwJ(mGcaq+XkK z-=%T7cMU^LI=(_mZ>888w1T5l{zcsqOv88j;Ji{>3l+3B31<@75LChudt@F+*^RuO ze0i#`dwTaG@$Tho#UP1Hjob`85c%8)_BrCb^ZGl|D>w}~r7U!_ruH~%$YpMh`sz$Z7)n^wMMXrrHRZVVEZHg08`z6 z5I8>I;8kVSbu^adWYlL#uSO3!tr549lQ9WC^G}qFNpCS8DnqB(+s`%Cy_|5|+!9_zKpn|B zC75z@c|TLhs#9NH+(8Yr_i{~bZ-E?a>`?&V1yXi^J+L_TuPa-kT_mTeHRh}ypXrM^ z{-)k6p0>G?##hRQZu7LJKSX36bnppX<5<&j0F28EJ43yf1fmZ7L9;}Xj?ic^nHcNdJhq>js7tZFO> z!&0&t-Uwu1@#6cVg^|ZY;pBuB?RcR#w%0nRT;5*vp+?c*| zID?2Yg0ea`lwuH_K0eTp$`=FyAV99Q`ee1{i_YntNr%*wC?gk;vy;&nTWA%++fmnnEH^&N7`Wefj?7Ou6EmPzBY}$_u3=cBmBRYi;A_Y z`}@p9`|Y%S_nqVIKK}st@TD#z_{Z%ZGc)t=JA8kKg(>xn^7fyRdI_I)}YSoxnNqRWH7)caXH>(qAHQBOvVN=N&U6o<0=0D zx|M#vazFbu^UGq1%FVd!tXbF_*_9j>_V} z*am?_@oOZzoW@N`0wLC_p>^IUyvGAAs=huHHJM#t=8j6yw5%%Ru3ZvjnMg2ZLw4;1 zrCE1bS@C78O++Z1%LKM6lU-`V){t$v36-W($zP^20W2;oCHoYqO;E7MF2z&}ZNrn1 zDv+b+2kDL&Qrgw)kVRs0=2vY6+j|x}j0_yYl}od27J_?cM!G5ETVXE6q3EWElM1s6 zD%WU{!OO_z5JUm7rXorJRH+)(U1%aIxZ8}f$e5Kd*r{OyjdlGdPQV1G>k%_!VAl^L znUO9Y6sWeo%Tacm<8kyrkt1rrzHAL+vt@EL85qTgGRTFZU=W*OV*sOwErL{|yUM<@ zsOo!ErpmTuV3MV0iJ{f8=@PG1MIkl=>f^B=E#ET|gM}(Et+^8xDasIL>O#~bwGFM3 z5^cI^t1u=m`q1Kr2sAj13yOAug(}LLkBO~z*n~g6xk%%i783G99cpYU4O`H)-UW-q zB%pvs3}RTpQi-n8YCzITn!#v)2kNVb_}zguim<1t0(YdD zWg^oNhyyL&W+4F(M5Q!Jj{GYhCfez$fI6yFcV7is2+2j0x&v`@V3^^FjfH9!%RfwD zl&VtM=;tuFlvy`Zt}nL|8EZD0qe~vD^~n*Gu@%%`@&cH~OTb$&ZG|a_Y6aI5b%4ej zTV?|7M@RK$4|LK5mvbv&yh~O}HI$l;M8+abN@~N_#ek7Y{{T>BX&?ZYnb}IZ5yegc0b*>FB&#eKl(4^6#gy8&k2R*)!z?kx-rJ4^ zg7!kiXFe36QDWKGWlOGb1~qo+(I%f{rcSx0yx5~G7_(2&lpHZ??!>@PHLhc2DZ0v2 zWsa>fyEQEft*Z6e2t~xL!C`=qOr3BcWo419tS%W_l$4?%;YyHckTr&i_Te@q$-9rn z+@MadVCNcGHqT?aa@J5|QvwkSSb)!Y^F9=!R|KTvsIQNBq-?cJo9!UBryAy^w$rmF zCRPNYK=l!nkjFXSmxU-q)5`&!m)P|3+eombwalznQjJft683%J7fyg zi&dA6c-Sj8im-C;IjJ*R-*&{SW*Er&Y2G;$M&zX;?BqZzrtOs5$k@M1Em1hcJ1}O3 zwj#un@eIti5X{StUCt;MNDfB$HU66GBbs+ zSuoLz$6K!jYRZO;G;I}Pp(VW44h(t0h^4Iq-Z%jhSfwVhE!FNSC|kD0uG6E83t3ii ztzCSR*w-RqNi%VfjHy5zOSZ{rd#OwGpjGA=mei|fC;eER07x}~Jc8KTy--Zz9CiC@ zXs%0%NWisw3Y7d^vbP{FwRA0kH0)YBt5n;f#UX4egI*2O#XZnRf&K09*~{JdN0`h%NUxh=||bW@GKQ zw%@ng{C?gnD=9l?e_Wp{r=y#&xUDNf|%cFk>&Kx(?0PN z?Gv}#!}xipoO6&oeJb3FBWUF@Ge3Q|o&EQp5&iU~2^4P;w0{_x_S^fud4Go96s>0K zSC+js)dGH?z_z}W*2g^ElwEG-GdD3YGQ8b13>>mZMtw@QZ`1X`?GqB)y!K4y(`kxa z?}>>Claaj{d5y+N0|g24x#q2}>}>UAj9&&>;24f{3T03^*xR_0GvI3D6+4{h zpY(&Ec)pBY&xGB@;qaALs79I1dCK8lHkE78_aLIIwpb86xxj2*rirVc|I}4Q?k>oZS?b|PFmv8)zF*({--i20P&P;U=zq5bIoE6 z9p%TZm<20NSnJiiUV;x(4Z&%J-c6}Rk><+S$Jt2!SIx%m;lY%Cu@o*##pK$|w=nFI z#vv*$5=IE@FnuA9Y!ai!3H!dE2C;DT|HO5m0ovQ0>I zd&=%pK_{uW?Mtb#xlDIZ^qFasW+^u!^)ov!aNK9DSgvJY!H^IbiC`3;u|&lSi|KB( zwXtaXGD9Lrj1J`m6#H;+T!L35Z2?7B({xC5y;5uV?waW?k&;Dq+T;=jJDZz0P(W>< zmL-mSSB%rXRl3imt~!pL>q7MIoxNpjzE~D!vF>;(dtq(3rECt#4QLPviwgmW+Db+u zJY1%;A&<8ul9dFJmRSO^7=4?Qa8^9+InDtmBby`A@g&9I)uu?;l0vDC*aMVTD*G5H zByJl|Cj$n(Ur#)*>KzZ(kLmmMRb1|z2+memWbEWE>WdZf*o!#xwQ|#w+GXQ=$l1Bb z#2my)Prr&ktln!I>nn?KAIzhmXv&2FoDt|FcY)72+&-0YA5X(;sat9m*Nq}u$dU-< zR%QetRw7;4B(dNX047JD9y3aLU+bSubD7ul->N!y1&z$VgRFKf#oH7WZH>pK^>^cJ zESiPbX-Nc+Ba+&9pS0Hct1Jlx&4OHoRRpmNy~SOoMF(psBNzub91=*$mR_5PUR_>T z>a$t3!!hAlI6~WmWrG!9r#z4g0#62~>3L!5Jx;P{{-b2Nfm2x{3zpNFeBMt{HrQwK zPsa%UV!9|ra$P)dPZ6e$=k^!+lM^u!7&TK9&Zf*PPux@}Rd%eAY$cZib7#rVj~w}y zUYm`Y-gVUEmT3EJCwW=gM~Y4A1Lx452v80iIV57e2THuZYfTT=O-a=3#r-*B371~7 z8tJEMeAV3}B0iav_b{N<`BtWMxoxE)W01$kPbCLSJ{<>*iq~daz8oGA~ zdN}S;zUvc^eChm`uemBnqCiSuR|@*$-+B2d@YAn_i%q@*D3OU$3XQppAwN=c`}nJU zV?_OE_LE0=w&vUb$WfTM5^un4;dtZ6o^xAatFVgInrl;Owzg}lP~q~Jld%KNQTc^t zq+7%OaRv|+$KD5M@r{)k;$&9Z{1rb&QVO5u1!v=B5(6UcPIm$BtO#H;#z-gl*F3Zj zmX9;tI=^EZqP;n`?WK-RS^`lDa8+aO5weANILkVuSUHKZmyAhgxTp4y1Tn?I< zx|cFC$sTh%PaV8QT|<49oN>a-HKfTY4Y$>V3d^_>4~_`{cs}N#Z=tj|nw*nfB-Z+j zQbIO|%5HMX?5qY)BRg21PuCT1FMSsCG1C22kE52L~0jP1P6q0{v;RB|Vlb*xcW zYbqDzMC$zRqKQbumk>4LAfs}EypvY9yMg1m)6aEdbdE*}9ayk+VpaL%ws<3-9Gqk9 z`g2gzZv@b5AljJ`-W1=mKolzsG-CvSImkYcGw)mWMLW!G8_wSQZ}0rR{{Z`V!dBVs zO-xU}-|Z3czwhtaKuft&*DyB{BhnJAp`)?J@5g_<a5l~8ZOUPnTR5gC}Rn6EL5ELJW#f< z)2+?Pip4G3=(9*-P!>YRELk&zEs|KMD#Vk3O;0t&^vQ1=m-0^)qN>KTGdYMafg58i zssIYDw5S*iK(8g#u84(CE!|q_e@e9e3YJ?_bn8*+tuv-Dbg?>9OV`L{yS7(etzCsx z6x-Gs%N8t~7}+8=9`nb>H(Ii0&~7yCF5CMxj71P)bK8*{Zs%@&Dtxf3{Wf%MUMsCe z?1L*mc6S8hxf`isk%Dj-gM|e0Pc^^^{3m?gS*v;v0i){K3KDfqn&S%PTDtBYrkduw zb46cZ?Mdt~NMy-uYY!MzmscGAqqzZiBXj_=gZm@AS8zFFoE97cPZdG*Jw32TP+Oss zljyl2Pve+9$D9HH_VZm*{5Slr^^c$$f328qv|_5^o2~NN7Ve+7h}4*z)9fQp(aNoc z$i|GT9bpYRQNlt6yyxlmKO1J7a_^(1tJ%w^&u?`kph&UctH%%wyB)y=l!j79KaFFg z(-O-4<`>Xvkk0^!_WQ#HUCtQG9Asr%DnK~LC%`-GdOGbe%;M^4og;d#q$hrHaA;$( zIQ+y~Ls4w?Rxve5vX%`kU>~!^!s!X^jF*C0*d$Y1ix}aG<9Bfp6Spqz7_h+m!|w(S zpQ+7UJon8cGMz$6THk1iq<3i|+sN62j0^&$N??qTFX_}g1oYbo*88y;RVvQ=; z%v~zj>d{h_3{EPb!twa!CvgCYnTYwHXo$HO2&kwLBj5ly1Hd210sJ@>Pm=8H%p zzsI-ve-8>(d&Erb$NBqzoc#RHg(*=px7ug^p8nJA{5&a2_L$p$X^D-$pS1h_-@k<` zkJ^i)Jy6pAZ@ldF7J4<2>kmn-bQbQk(0x95u7)3}y+!LrAE!Dys~R&8lxoaRFFJRn zX2z&O8OtJ}6N0b=I9OWAEc%MaTDQ2DO-qFT0F%aAac6fZySS3vWOpQne8>VeeN#%kx3|<~fsuY@Kp;!2IOc}cZd7v|GbD(N>S?Cp8Kyrk^DB(gof+!KNxF5bx_#CR&sDTurpHSBRn!AP3y0@bGh-6itwX3vy-;m5# zsIWzMilnAnG2t{sTg_<&+?NwvMv_L%E+dvL#@xNE%GrYM%3Y%7(qKf^ zv!u{4!&RjEW~pp6*&5zEdrNkBr3odx@Z1phTP_ht`^BE2Y|PNlw>H@;~7ZptxU!>jzx8af-8%K2khi0bcBU+*sO$h+I+WK zbkW4Nm#HE9M!3A}t24k>Nh9x=+9R>MuE92pqG(|BUah%N1f0$u)+(D{IFn%dfTawWkY4^TTJGs@`igijJ1=`_ z7@MG9nH?V9VQmh{R7WBb zSSuzZ4+{dy%1$el9WUvwz3G0G(wf^^=`OKqWMXlCQM$ue@9A9TS0U40oaiq#y7MK~ zo||dCKSGEQ4MtkQYEMB6oSD_O=gc%9JYuxXUf$Joht)L{Sga(|Tjm-z3bt1oZ1E#X zRY^Z7bY2-H!xUK%x`4db)OvFAQ>`wQr-^63{bId^nljQ}!+8b9A?`{Q4ehAk6kx1P zEKC)*xfE5di1jn6IliCjEC!L*SSi(^scbIhS5D=z7gN$-GTw9gnWwc~OsegmTZqY8 z=`OAuldHZ0&1#~XPEbJmW8qeb?GYtep_b0t)_sgjazP|l(*|6CNJ-;^2LlYia9b5~ zJ&n}D;#Y&^-EMBKP%%Q$&j_-@HrFF2BQ{hM;DAX4R($GzP4&aS4qqy$(Rx!looA=B z0n_louM?JTUkjxA+PdUg_5}UB)*ib8C4c0;HX%bP_Qe zN!+Kw@m@=)Jv`K<=Rc_$TSee{tErtwUurtIy%y~yl`e+kbW*&GJErtHpIcKMHPKH| z>t}|J4<0dTvna_Dy*w7}i!-RCk#z;P>j>szb&_oYk#!uBq)!yFx~}GmRb7n{Y!iY8 z?o6+wPM2C8;%SmwqQ#``y)viD%^X(~EY{LQ(s49pyNfEu9RTIZWh=p8bGk25^tV=P zJz=K$*QE5G3qbh~=|(@R`ddJ1T3VN(9dzi=O?BMmb?tl$@zIdfI6M}pb~hK19CEBC z$ZB597j1@7dvmGjGF&#XW7L+qeD8QJwEM(Z)|!QZ>L<6FYipS$f+^(rcecAoZf+M0A|^zD%{+J!%s~YM05UdDrzq3khfkbc zLsv{@1739>t6gTlsfo+aWOEtW!+D{|;&j>4##ttnN^8Lz3b4^gq{7kJj^r?zGR<}; zv+1X~zLMtN-dhJ#Je|e2Z=6MO9`Zyg0;-isf-|PLAI8>MNY~Vo2n; z-DA04R#2^Q%n2c-EW~gRwRwNUD_Y_;=T*8??Jbno6s+K}x}T?b96l#RYG-14>D4VK z<~yTto9HI3c~OCGjS85@XB70vD${WDVK&aXNDf84w}V|tA=K?#zw*rRJc@p1-EXB? zRwl^VcV{5p!80m`0I5bbN^Ls!=S4()Ci8W-c*itrkCUDB^k^<63Ru0J+A~CZqq4;| zw#gMp&pvuDWwCl68=LbxsB&6Q8$(@nNu3?l-dJ)v_X~4QYFphO*Y$LTZmH&2hGa$A zOp)WU)Q1TQMVyV;uW5r(lM^KOy{EOhgHZnfWi^{f?hU)N@y{LPil|INNp0dt9ndqZ zE+y}UF(YrqPP$>bf_poiFa5OAFJ!e_h<;V!md+-V9pMxgGd0w4NL3`57)%PwJ0MWt zVsACwRM9uO8`0_3`p>SqQ?8vm>2|Tv*zHZCBUEX@qvm5X<d{G5VIBugP>LPH6SBA8OTBt!wHBnjJ0C%{#5qix3^Cdh$Ij)l$fUCPd`h z1+e(HwYZF(ZrMuz0JvPs6lyrc7gIg*40$RGZCqeu0|bLtQrcWY7L#`9-K*&bH^pM%z8zKF6F&a`0Dp-3zwzNu<5%DB9^TROzTbVlr~Cf^`o0vZ_WMljx4BN!{A1=l z=YI-S=jY#OiJu%@bzD>L+a8@tBOo%m8!1t`n*pPhZlt6nh9C`&ZXDe$EhSxol*ITl zI;BJ!#(RG6U;FH{?d&A;1>|0DC-BX~wS2j8l~3bqor&3{bHE zOHc-Lx{AIFRGjJzE&{S%F3(4h2@<`!it6--R5HJLD1*Vy?xs#JffQ989K0ib33qF~ z%F2ZI0M;3L>*^lL!CgIH&xK@~R9aB|fUuonu`gF%*ADFSeQ?o(`})6oebn4Rax(#jpY z+f#Um2*}ib@+*4g#Z9LY6oZQT(u@dI*j{oGVdk^RFORxqv_{J3*=3aKHl!SUHiRl0 zFB0G)s7Ctw`%-@nZJM85Xa~*|i{X^nt^J8#U@tYX;Yf8Ed!lPN&H3m1qNHM~iXr^rf!8awN*kJ`A)~3(0PN^~c%^zs%ye zUUkge&0}!(IiE@H02V7w{&NCXb$xN_Z$;X3C<`Pl=yS^;doq<3Un7NmN7@sJiPJMf zGe0@f62tNDee$f7WsZxMAudinQnMe&-u8a`2MRlQqE9Gbr$_6P^5Z zBXuoNZHcpl+RWjFXiQakGqGkCbjLu+lLOReV?Xe824CXCz&R(R8mogh{7ZAG7VDhF z04gZ0-32Fjo0BD+Y{e>eCVc5@T#A8=4i&e0ueti1UO-HP*hYDD=h?AgvLMMJl)!S| zYQz}B>uE1RkE1BR6{JKtJM*IUi5BjhTeD$`cPL-iEYb(eb(w z>xz+bfINN3gfKVtFBvlPNbN;v_MTd{+H8?YjpL{jv^*%iju3pZD86CPyXsXgOehw z^{=!nhZeQe<2!l(-5HWg&-F91`D`l@W16OEOKpfz+qNsUaDR8wqgpg{h*QbQP);Pl z(!aD``)tvcIvyIA#HBf6B+@j_+WIlM&Tu!wd&bQIPn6`lcBA>IH)EuIM{#thGV4L~ zv0{npm=Tfsf%(Yled}B`|4aU@z2(_H``!|G0U^$2Lw7+0bF*wE`;=HtzOiBnncG?m_0q0n5<&h&|Aa1sbvYdSgU}m%NLF||NifnL0$kUBWe`RtP zx%60--e+^^R*wB!cMWt&&fg9xae2^&;QDE~m_4=dbF|d~Gc9rEO$5 zt*ClOavToDRaCBn?uFxMBm^gMrE&6fmjn^cunBxq4z??7mlUdT9qmqg34ZE#VZ@oA zuBl7PS2|54kUExXpw2<^HbHsuLbbY)(7+ipl_S;TXF0*Yu1QVX&~{JKmXsf{I^=84 z1~5Fm+HrUgU5lx6qxGPZT}ImI32#vYfxkL-pKUJd4;t36f;b$`#R+j1|2J;F*<4Wh zX->P3JTzsBc_#LQ)0D442F*=!wt^Z?Kbotpl2iXizlW+4;xYBg;rdX|>TSx(ROytK zI`3+ct){Ue$S*m*lj=$Jr9zdOqRBjYvttL0Mt)Uj@4WGOmiAtE?)XD`G=7OmjZH#* zY0Eo`_Sfmrn2@lts)!$c2+3 zT~KQBpu?6UX-C^^^GIU|`9xlOX~$<@a?(-{4$7uECRUGb*XV6hcf2bDm884DkP5VR zQ%lJ-+TeAo(;E{FG96u~kf?vVco|SU&iG64g3Z5e%KC<^jv|6_1JOQ{1FBJ1vDE4b zM$K=x;ff2q)~Hrntl!^_g^>fbgj?4hKSC;+&T^q$rA%LDos#Tu%_51TxDAilKFIXA zfKbZVgo{Ps;FcSt`{|v^)pbL4#8bJZ6RdHk|3wGLhrnw{7ULBcYJ(&7ZU_|+4cLdH z`chE?ib0C*t*xi1-5bFDq-g+X?PHc^mUcKgUsrFPmzo%w2K=?U?@n5WuYgJ}`Ko}J z?JI;6JOH`M>>CYthY{LP`Ey>~>2yvgx?i1^&li^+ot)foAQ)$JlaEZF{HwZ~H4-vabLX+#Coyhb9_UNt1-M)gI8ir|+CPn4h z9ux`{kkAwFZ{XZ=$%(vNb~uuHD7v~nql@}owZrba%&{tdvnq~UW*Oj?z6dT`wzn4p zLc!~+RU3C0AT^$grZNjuKBEwk=?{Kr$wHtu`-;?&Cue}0yox*Q7^rc`mrku|S++qs zUIG^f&;>@A@Rnnl1GRar>DJncTn)bGf?gs5kZx;busk#pC=>v6jNQ7r%C1mOs}8|v zj%xtoefL0eH4Ip}-vtKV!2soBHSJj`VCjR4;wJ)OZ@M2r>+3rE(3`wn|GW)raWum@ zumt}B{%3@W`0-P~$1(;J69ehzP1>j>xLc1qVZyrr1l;kV4229XL-ipd-Z^F7xpk^c z0FAHi>q2Mu_uLG_3>W@rPpP5vlTH{X;2uBTSEK=l!`IKiQ%6^)B|QF{WB`MNoSc3* zKVqOgyN0BVlx@X@$PBOgZk|Zp-MekD?q1K*ta)%p0|awGbj;@SiL)5=0u9RX3W4lr zy}K?kVi70{NJOO$b0Nx$R(-S3bHF)C({fztW9=Ju4p6GJocEw$dEF?t%hQL|f0gW% zsZ(NVnx0w7%v@K@EI_inq-I2*a z4RFgO7)FQbx&UeU!Ku#WYVt@BSb?s)j1B{?1*J0b8*pL2?QYgvw&ILu&4<8jyrqw zDJ*C!-ZBOKdT!~p_vY~WU3cn=n6{*x_Kd#Nao{L{>fOnS2nEFnngPe)XeIw>%N8sA z0<3WT#hF3mi-^&-)YMc@Q{Y6<(Dd2)krYgTtoPKw^3Kxc#yT`dL>=e?!9jpwp2SM+6Gr@Bo-YsL`Yim9Q3%XV78U z3n@B%IeqGQCTND`&(CX|`JSy)hl2Kto=~UGgia^G8AiYM9Kjr=8_5rk)a_^a@dMj7 z5X`ci|7FjQh4Q_!9OK%lva$rr$SI7>h>;?b#dJ(AaWBP~GA@!Gr=L|sa4#$~JZAg( zgyQ{mxDrL;Th<`4^)&s+Gr%{j=P=;jnTItlv33j}`GaL9s1ENK;kov}ov%!2%1GKz zL*a^lMXa)-2nXB}QjaL4l+Rlyt`W{*#+<~9qrIcU@dyrvrL!a5(O&bsqTVU2Yki!z z6`#wiezVb>vT1$%TS#Er8pChY0QZ%26A~IfK*C_;zE;ad^%4G?)|;R$Vw>LApZ)~U zpX>YC;raQ5KlN_^gdJ~7f9g4WygB#=9DoXLK{*1+AZishHK<;OrcCH*zFOwEga<$D zz})Yy4V>FfTDzyQPR`H4K#{IAW!1o);?emLnM}Vw3aIuyEioE8mqz}t^k-Qn3fPkY zPeN-B4dzzywgUn zqMp0=L>-ryD~ltVbRJl)@_O8Q0I{705+?-EM4o`oLS&&fV8DZi6>k$3aFc+Zrs#Bk zJ`9YgFqL8YsC)LF1Ga4A4qr!?^`)I*p=Um9(C&sSKnh$qTy(3(SCiiBGkj26Of~pc z;bUTLVLD<NFK{ZLzmYm{jO-?PN8Zqm~5i?Eh=kQrA$FNLe%euV=gVTbd>q zoF7ZP`|qc^SkBXZOxqeRafuP>oKN4N)K3f(CY)Y6zwCA4Eck^jILP5sKT)90YNS0d zPhfK(nYy3wyRx_=?~BU&r`x%~Ie_bJ+8wSg+>+O{J#?Jf42)($|>Rmx@c% zM9+e$GT!Gm-#qz2)dfv|b(K1$)?%&5>xHK_xbHA{*sa5@9eI5r8C^v!bJFTRq-;$T zj*xX+^;(YFO1{cc)CclT z_N=rR8EW;!r$T?_S=yIdIW?{%3D)W#Z@Le0)TwJG;2;~VxGsnR^loD}&V{+>w`ToS zY;-=GSzj9gQv}Bl?sIN~z6|#U;FHX zM#iO;lpM`Owe!OHQesxDiprO7fW?W!kp1)VSKY5a!|^GoH04xPF)HMzM@d(dBA`Cb zEm^RZh3J9b-crGX`OmcE!^K`?iW$E7bVo~y-}pp5L2Io+o;&Shy;!OHhSkf#=8?tV zHoY1*;Sv0BMT%oKdg6i4#_eg`_O8!%aBo||noP}extgK4)?gEl!W!Jp@CAiP*)*O= z(6c5iLWlGNeVbsu`VE|pqLx+yyVRDMuj-QKy}OJUDTZPDUOxcpTAB_1c=_kIv#Cq7 zeTNCYDYPY2bRB53Q?fUY;MIONypJiI7!fU>`m9t3sW~qJXlo!;Of=#iL8Tw!TGFRR z-GFMHRmy_EsoHT4QLtzg5zjXH?y9I*L9XhIm{!b%W^!n{2YKevdnjvv0Oa#AdtSUx z5m@)EI-O20wKzA9IWfoZCPGh;^e;|>?Llx-ReZG&Vi2bQ*{VN+F&XaA8;ZqWN=YG&bJDH{Gqvma1d z(2Q-F&=JwipyKSUVl&mWOQHU%Vd=Mgt3386C8~yscZ43(oEOK>j7T&dE+JsYc~|u< zPzWCT<7+nH@;8VR!EMXu!=m+@_(fZS*Rmtx8{-PcyA{pCTC)+doHN*Yg9LgTL$B!UntutKBUd?%^{VG)-gdLFW>npkv#v};MgQN zn>1zFamRBC!XZ;!>_>r8EooJArx0}4 zC;dscos^}@3$jCfe-aNJh2GoB5b@@)I^C@AspTeNd`wUYN&IWBBhBIRl-cIrv00G-fO&jR`l241FP~OIFXy~luLx@6^APg+DFhyWygO!*I}L~6Xfvq zv49FgGzTn7DKzC>9-J>om37CViq6sjF7)C$tvs)tbU+)ajYbalL`Po2%iWvz!cy*|ug3S=(E7NYr-TYrwu zbW?cj`xjg{{vowXbYC&q?%_xc;=|4G-=9LqGDfB!2(L1;w#mlDDZ0<3f_sJs+Z)>$ zMu9O{J%UctK8R|Ftc~u1{{|u+K>$=wn5gqrhmBgrdG-D4*0z{1ER5e@zUqhwM}HA| zU|eN^bslXHIC!$)C_(Kn$(4YdUQJX(A|t5wEdNSy>Rx8&K=JkVjg$?W)lS`b5e=CX zu}@A}%JZXJOA%mBt}U@!`3q#^QOWwC-W&6{1LRvx3LBHHo33| z?xd=n;jxImO{0n3j5~^^XZt=WWl`e+%M!55!3)KSfxzHX*7cI5ws+;HdNT9 zk>B2T;F&B#fOnl=r=T(+kdd3~o^ZIU#IG`u7E<-^;VVkh{ojFr|5ZZIy#V!zRp2vn zGhwoe;oJE+)9x%8!PVl--2~K5PlCEY^#j!hIiBhV2En{F{8t498UeH$x-4|z0n2`X zci7>E`+WA7{~ke1T-s09KF5QDuF=gT3$J7om3=s|vsj!Gai?bS5M`7feBKrJX#Z!t zZ{;1G_~}3_K1(8tCWa<{^}Jm(C9HU_l}pd!NqN2ShA$;%%O z;nl(<=*wa)7ZvZ%^KM!28Gk@*F>pEI#k(SVYdllO{+P^!VWa)_7#X)HB*(dk^mJ=C zYExya4tA4^dZ++e_ngZPEd<~XEbdcaq{<^`P)E6F27N~NO+#m%S?VC3_%9+LDf+(u zNC^EF&D(XB{vUDFJ>{HsMJc5&!pMEr_>HHd4djv5z>-iAjZ42akUQj5ioResW zt?gQ|90qfS4|3^9(8Hx9Z7jrU!yirPWYDzyZv}yNx+}V$?+ISPAK8y z$45udfyui-sQWC%WkS@h`^nYm>wxktFrLisB#FZ$5en#pyO0dz#dF!aQSEhxRkoF$ zRq$j{GyKn27#1}9=*3p*2*L_JBa?;rGkJD?4geE)KX5Zya><~S^>IrMB4k1$NQs1= z;2jzFp6K`QPDpmRrOfWiZs;mBK(@u|)+~>pg5+yd!1Z#7Oh)wayA${hS94DXEU6$c zO6Xt7;0bt14}cPm81CGz&gko|qRz{KjcjjtVby`-> z$j;7WPz;opRSzO#Eb&u4C^YK7b)A~G%xW?N6+0auP=d48AY#6K|LANbGQ4Q z;I7>PPxZp+7wyVOP51u^wgnf#T2{fE>Y5WFn`GVRCxG1eFX^+RbM#v#otK=QPgyed z)dELe$a{znn2H$Kl}z#)7sk8igeqA!8`xQ zEJHGeY}}ntNVF5Y6)1uRQtw)}rs0V|MK>w;yMZHgS0|ThQWnB(7eEEi&qVJ0^;r&$ zHo^2oC!K(#+a-J#{9jM>OiiD|AE~K<6A=K7rBI&A%Ve2T|=s@^ESltijJfJD7j~NID#7)g1!rc{k-pnefEzo zfzEbL1m0`k1)|SR9?(qc2E$D!-FFj!E)=RCc?4eHki4Bq89ov^J9~Zvetr*35NV02 zwY7skq6f9iZY_2V2l#XVbIwEo$SZQy59nbw1pwRYydEcnJKUWRmdDNlgdzcejvnv= z7&me$Q8W#qrmg@K6u?V7P}jo~DmU(T|10zsx>M;!s+?cPAW$c0;KMTnI@0$l0cel{ zu15qw$=}+JnK zml4&}5K5+X3Rpz|a;aKZ|L}~y$L$L2e{*@Y40CsPzrTj$MVz$U0kwd!z3txQE-9uHk) zNtR_-it&L^0X6LtG49=BGxFIoi}QUi5egQrED6kf%tjO97;^*e38n@;=7l9w`$}Pf z_i_e@E6kl1%Tb1EJLBa$^Z4f+g0k)6@e1OQT3jC8<#v8uI?6P&{@7rtfw+0hP-t{S z>{?YEwDEIBtA|qK4=T<^`-}fVtbD`c#TuQ2(wJS1OS6RmdEZeMj=SA(j6Hy7pn66uaHIWBnJ2`Q->Sq;i#41pj@E?aAL{hB7}yj?skvVF{- z(XBS$jE^amDx0}AXC)hwEfti$EB+V^Wx^SW&Q5b-Gv4wd->_4wR;LpE@P~@R^iN0s z`HNrCgd5KjU^C1%mVRjs7Riv@y11cbsa|o-1s}H>%30N%iO^ryrbhUBec#QM#}z|c zlJQqnK3B+=_Urm|F~cgK*DR_+t^ zO9%)rCs2{K-bj+d&N#D&o={JPAb-B>dY%7y9k| zI4)NVBvn1x=82@5NV&HBs2E{yiUso>)sGm{pYge{Hf&xd5#n%8(@7@vr~HdHyc%GJ zqTeQ?%w1CyQGve=2Y$yi_5n6*idH8lsg46yzF))sH#H}2~COn;PpyQqPw zz1S{A=+AY5YoJ0ePpB2V7Q@D^7PjOPs{bFsI`peZv!`Jde{&A0?_fovtc|(Bj%p=S z6%!75S!^el9RE)qMdXy#WvNE2mi>3$>OzQBX~o8&;3vsOY(8=stsXaBWk?B|_VO5g z6+1~a(wSX|>eo<0cC}OrYRUUgg(i6d+)B_g1H>3up<^o4;FaRKP&dR$w`ZH%@>0sb z%JAohQtp>wZ<9IGiHh2>BhIk&u$a{4hjOrlXfagF1%xN!T=G6%nlxo9`SnFpX9hI+ zZYg4~E(#>ZZmZLEb$qrcN%`~YR13c3hdL z=v|`>kCKlhs4=;P>!U%LRQOmN{%~tHF5d9A!IdCiFeM=`<_OD7BYyC!X{{|4r2R}e zhvHCw>vws3gNkGi4JUK2vx`c`s$ardpXb9q&(@E4^9tgBZDAK?q#(ip)J(4=2V&Fc zT1?z{s2U28r6;DuL~}{HJmXdUi|BuH*$d?Iq#Pnblg25@^|FKz>Vv~=V~I=WWS(WM zmprpu__EM!9g8${$LL6SG~b%NwNeU*fwG{~+4i6%fo>Y|lbXpzK(*r$R0&NC&UtDn zhttYSoIis(q%M|LpOCVyF81GGDo_CgNEz3&5Ac>Y7m!kF`K`W_s2VYECHPdo4G{p( zZgA_L4$No#yn9{6Cx*jIlvidExGahvpI%@%-vl_6@x|-Bx1|`e4C2x?JUO*A;8>tj zXZ{z13-!jQYrv}c)}HBQRK`pt_&t(BaD*Z;f^%c!Kx?-(ka7OxHJ#+w#d`5uV;-q0 z#+ZasW?6ReWm$)1%5u88=-4CNg&KG5{B@7{c{$R2h2ZLgbxnH0i^&;kqty`RK`!VV$v1TqM>22H zHgjXkC63a+)%A8yLqr%rz7)>l8Gl1{eA%^W>*Z4g8@BD!0zV+#1G6~Vot(^+8tOU4 zaHLv|M1S?0&d`T$S@KR0Xh#1jdB^alCXSoiwKd7DY4Gr`!66R=B%|88NewFTvC6PQ zHxwsXg?rVSIL5j}laIy2U5_U;doC3!=X)T;+n}kdAA`n$-oGurnH{t> zjWznRXJ?prG#3OADQORE&c5kg8t2F!{o9N6K~X(bq-0HS*Z4oprVlkp+VF2#P2Y*J zs<#*Fo;E0XoPWKNu+6|V!H9tq>iO^RsxV%*45k@tC>OeJl|Fbs7vm;|dR7P$S1nbC z;(pGOBSzqjkX=K*Sd@D|NEVzHl-?e-#0k{<wP}AYp60wa$AiI3+9G&v<-firWcGR zrIo{;Pgd`!)m1fch_*_2t#LHgdBT|>(PdtX3tIo?E8O5kNbY|5TG=C`vc%f(m{>3Q zR-7_S=B8u&dcAO2JNnepuZfIy#XQtZOk&o2o4kakt}gkDZjeH2YEXtSUYH3fr}5~3 z;&?NxLncj=HY!qPV%EmOuaR`ez@V932xIT}JW|bLp6*NF z*XI;>MK^?zJLnsxjf zSRdH%Ou~Cn^yy#ud-oIYj#C_-X>){}&A-hyV{3lB_tLQ=VWv>U>LzadrFug0EHg>$ zcp7}{6V~2atb49>1{(N=vorVput`1NkY$GY&5&Rnopp~?bRrmRk9$ugE6h!S zQLzhYlfY|q1OHwe)9805!7q9Q8Nf=!0cb=Ob*J*+C~7>bJFWh2hr5LrYkoF$>z^864M$iy|{K>KyX&;W-?-VmjRwB$VzX zIMCa=zSE4FwBF%EDJd2fauZjv#LL$G#m|TH`>ESGvAQc2nb4}(h5^m)>;iSFmr8ro zZGRR{Qib>kN1~o&efR|am9ANX!}4NUl6~iYLn~+iF0Dks_#E-Bu=VZHifqCM48!L4 z&5<4?vT64t+Z{Dm&P#5Gr?W@pVk57-FIUrG4EBLQYlsop&>EMl%9uZf% zSY+| z_)GQtF1>NF8fl3KqszcR%0#zXd+{_s4Sba_m#YCOZ{n((J2K^}U9x(fcxxzf|EK&e zHZ5L^#V!K}!M9UwwD3!8PoNZNZJWzh1O$=#%E!x`&O_Pj!(3q@_&HM##iDzT7n{|K z_MbRvEbK~$I!25}tv~k9#a>hy{Oh~jx^t)si7m6%Uu6Eof|1;0^$X zGR>=YeRpEgH+&W=g62{A{u7>cA4(6-f(wdqJTv6Ct2kURq&4Jf5i=HpL^yZbZu3JI z6r)ooz8;1?iNrkE4>BK-@ov2ZJjb(!+?fBzj{s>@WEev1tDW(7bBJTmgi^=+qWkXe z)l!vL@v=Vysok|p!2zDMBZQHRZQR5f$blz6M`^^#$^L%{3;FouMw)>oEJf@?Q1^B> zWkdSmMmg@nVkV@{>iZW9l^PtT+-t+G8O}Db`;z=T;qLcxOg4;#;#u!&6OT1wsJaV~ z56&jMuG^60Wff+yb*#$YK{d$v)Xqk<#@Sc5`(GQXnXDP6hpXMJLhJ7_pyUp@S-$s* zbb`b*JQnjm2%`!24qtr()l_Kq5_>Ie4oOz&%$agZ(wP&&@Oyy`;xhhT?e*Qd5y~j{ zLOcY|(8O0SR5RA?&DJNV;D^K44)-(Yk%_x6WF zY#I&K1?2F(vmPpjWCP7W5;!~G*# z>7(d(=y6Y=kf^7xF->L&>x^fJi-<%r&)brR+o)kPYh+(#g(@M#SAjQY+1@0n&fZm6 zxgma@rVgYlo4=ZJ&^p6ql=M_tn6VX);dQkvfZoX@n6oEYCbZjlPI|oOSH+WD*Bn$i z#sWvZJPQ$c7vo*BNAk+T#qni+jWLm_{EeZp`mtgA+h0yjxgT9WekflH#35|`M$UN5 zK{@YEF1;v3_D8D|C+gUSAz(^!5*AuvJN?Hlab%p6W5g^cO@BzzFjL^Tm;S+N3>Gi5 z@iw+3?%S?HP1n_v&!CRl#MWf9yEtRPZ!I4VvUI#7LYZ}7hh(=g<|&2HxfAfX$~|K! zc%QT)L#+`C$j|_Q=~f+jG!v-PDfE07@3&#@ifwfM?RUvf^$6zbuL=s14^t3s=S;DG zIbTkk^jQ9L$_f0r$*9}CZkAIOHaL-G1Na~d-M4IB+faG6_>O(T_SY4BW%s%~$Qt{y91GY7gnhr64olgsITb$B0m*Eci>gQ~Ynf(+wxwXJ z5#zf{^$+vMv$T=Rx)S}%$a-{A_`P>_=?51X=n}sT-*KxS3;4TmqD-3l@FwiKz$h^O ze$knYQd@3;gd_h}?d7~_KgNezLzRF0)?H+&^+wzongl`(!q3&FgXK3AQs{Z$c42Jb z5dl$)m&gw^Btj!wIWddZ!^!vHfxz>fy6pS+Fbd^9l*3Q^VBr>ZxmPv{|4OKiG)ym_ zNu~Y!oPsaq`3;++C0%(<2)W8rzQTfQoPT-lPCy@mql54~InjM(Q9&bY4t{+LTs?jM%!*2H%u9^t-*B;&a$^hR8Hj&+%hzne1bZ~nkB-mcNA~)X`>>K9SeR{mH%vrzXUw>Rb|Z^AstYVaeWfPPNjt7 z{ZkZ5!OY%~F%y!OZ5;eFQ*3*g5oem-X7 zC+DjUid#X*+yH8)NyP%`Fdudth~b)+7LOh^iE>f=p5E{E?LU;JXvv{%#Fo@4B8vG zs^}5x8)X*PkDw5CYU&c6x))OAWohk(V_h`+@nlbOK%lf&+th~xwVezkg@-WHJSQz1=HK9`2C%o;)*fMS;Z&3Z>ML zx~H=hn!pV*q{}C0+Ha}$yo&dVd_ZUQPHn>78JytY=kH) z;xYzCcF{j6TBgWLPaYkZhdH!RP3n$Ks@1yv!;{%gs+Q22&Ed9;iRI;FKK}5C8T`Qn zh7e(J_AC|Ly-1suyz+--P;bU&)u5+UHY6#m%k5u(H_3)?jNiPE<&TyK^g6d3^Krq^ zh!}Wa1NBEI;qUek+MgoOTBK9!9H+y}freH#O*T6_QwtwpXxvP{I|W3H79~x}W z1{THLW$Mf`Frftn(P=Vf4@K?+TB4d}aevo84t(rCHs0r#Z#PtaS+wx7FGF_=jDbx? zfiXI4W!bI#4tUH~+ibpa<%Jz-%k(*?T-YwLIxk@Di6QA>QbCWP*K-{`%O>Xs6;gP! zFx~|S2Gvl{KO)mP?_8eXlm;GXNBW#}-?i@!o4z1BM+1q+!YLK^%f+Oa$#u3NmGy8g zFg*U3)3-?MgL6TKAs%ypg20n$+dSand;~cOOg(~vsw}2MpcQ#`W;rh=a}VQKNFZu! zjsI>RBAr7Olr1osaLpu)gqoy77`#grfjf7fU*=w*2Te)m)_Yzx0lTBBySM|p-#g6! z$J3blfx9`2;)$gq40vOT2Q}8f9aUuOw||8o$V$`9t<}W$r&I)!e~Ow?02u8(Kq|)e z5j1{hnz=sMT`DX8A8wj1k%)fd*bZHhkFNute(3Ut>+s|Q~xUHWRAFQ4q2~? zidGH1^e~331>a~7^FLKx7(KS{;4+Zw9ht!3>m-ycw~V&EX**AGEQTQyVOK+CV#1rV zAqOy;4Vj0vomitg&96SbKrZ3Y4Rue1A9mMYn8>%dc5|7t7`D!lJ!i*HA&wXsc~Cmq zXnea2QrItm&zY3k=0go0zN zC%sj@XfDrl!2+TmOr+(afW0rW#sd@iH~AhNZ?=O8&@}OZfIA-gUW$6ekyurTq z$%|!<)=$P5LwcU^1e94G*XMX%J>$mvD|Unyb#(P{ zz4cM`eRz^Jb^greX7j-jVEUb9s%u7S({xz#1oQ-rZQc%>iWVTVFEm_yBdH2|ZUXo| z+42Zf`f}!#2Fd=nzXcoFnVMVSI6ZU!srA>i>=87;2u8>MkC&eZIQmV1{l1>Iuq91@ zmK>5AOUgP9U_K$Qnl?JtUHm+EUeV{vQ%`S$*cFES&bT@n7&m6j5!HuiU6Ql%xHmeC z_xHdP>Cj>7qWuxXE&A?A*~hAcOj@NQn1cLa_~F4pmsB(Zchgf`_I(o>!?UpC6NXyaOAIaq8PBC$f@hOs7Fu&)12s!tJg73*48u90Ai*s}&98>`MwR9^UBF zqDN2z;t@okJO|9Q%3ITDwwtH@olNDsT!-_C=>;<$!i^5v`3A!3w#2zVH2KwWd)b#2${c(PJZ+!Jbp&?@)k|6t7m6&#KZiIrv2 zo!n}(=b-PP{q$4oJ-oY~)y-bZ{4I7l2YM5x6EcI9y)22=t|6IyH-N^xtfNIsRKDY? zBN6vybwG#hN&tJWIoSPB#Sj=}HZN}sgM4Eh6M<9LTT2fmV@&*oF{Tb&l907$GqP+_ zil6Cqn!#DKT?K96t_|RsT{-SnwV9Ixf!(HVA~rc<6D!bj559ynD8`S;e~ca8x7)n_ z;S|TZ>OpiAu%;p-wB`kpp-LR$B4W&WyXnmL>F>$r#i`(lL_P!xZt z;(g+zHkFuQ&6O_oo%e7k*;qZIH|>RnQc;B8O?#L~Z%YiID4h`F2@v^`l)(N`^X%qR zteQJek@E8=z{*yqz^-atCU$z3JLU-WWqAJ59H>QG-xwbrv&Jtm-{^{t|I#O-`7_K! zla)!4HzbCjdNP@+Ed6#D5wgVs?*c^9v35&&PKV<8m4JP}fIbQ2S$tb(8R0yEon?-J;)?l} z4LO7=*#@&wiG^BsfEo(~QUy_b8U>N`HP-W15W7glung{hd|ttdhKJ#OD;}QcZ2%+!Qv; zK~t_{qU{DdS6T@QiqjG;+ZuDMMnf-1r{nJ`56GU{3ulRiH!rs@mK;lKAWlushKwzT zC;XW0*$v9e8yDoE^$ki>m6Ja|7c?jj%C?Aa3>KQQFZKNpHR6+AOJ2gAt;ST~hHSGO z{3#@Jp5Y?@OE|{H{YOpB&z9B$s;50n@P4*Q#8=}Bt9AgF+_FBe5l&5N6%Vflk6`=A z$9H23dX1Iuar28)Sxbju`=~oM9L%oN%1j@a_SXR;w&+H_6`YBAtxqDu(?ll(kxigJ zWBjfRAQhwJiAG2shhv|4$07DLe50}-+%TkMH?$Tt&(-z9(7UZ<9N zUVa)i%N;;)vkA}|p|jqCG<*b|iJ!YsXbmL2j4gbN#f|W$;*Mz=tul1#s2o#!i~D@2 z`Nt>M+8G3td88N9;_p0199#kd5JQnV)%B|_$)8}db*^ngm7pGr5k-!QA!OR57 zss0tcqsLAdt{}t5A>3L43z^9{qz|l3Qt?#OaPW|nRSCTKVo;>~N3x2AH+H6>WhQ%1 z-+ZM)PgWw@~xT^f5F-zHb8 zk{(THNo2te2{-J@#xp!4m`em(8ykf`@QC{44yszTv08j9Fg%Ph0XhIDtyoOJSmcml zHQ(zNc7qaQyE$#S7>$GZs-^TM97?uNL(s3w2hiBx*y}->jA|Oj@t*FEg_NZj>Ducy zywJw9%|R&}^A3{MC9?w#P0ZMI@2LC?RTu8bwQ; zT2X@5NNlYYBxYh$J@(et-hMStYn?8gr{{V65BL4LuIu~#eBN*S>TW(2ioHtV9vbRA z6M`M~bBVVgKP9_L7I!N~05SnzyB!%N1y+8peGk>XpOxCU1~Ef13AEp@uzg|4HBPSW zZ~{g2q7Z~_1=2OXCtInulj0LY6@a4eF6a1~D^%-b8tzb5$eLFKGlR%at6GuSR8Lew zp1oGbSkhG+kc4b`Ebi`qp0k0^PuI8xrPnSVt562@BA*8pNQSmAO1h3vVUtexGGyEj zk{`4BX{kSVp9~KX(o4o&M&r8UW_+|Xyr1i5`xu2$p@#FRb-*CbJsoooTTz6Y?A*{R z)lsZVTKz(j$T!u&3n%J!2*wc<^Wt+5`FyE|ZV{S4qn6-f`oT}D$gtiZc|@&@F?zw% zLe5HRe@IqxhL7$;30h6*v3xe?K}9H4kg_P3t8Tqmufp44s}A@ z?n7`de#r)@{}5yX*8={X>s&YC^78&(g~x+9Gba0ViY*L zRMmNC3vS)RH67zYcSTbEUcW;T2<&G-sR;Q{gwVKSgIO_8#8pgQz^8ygLm}BHG~tXT zz5PF#bo(vM8%!<001g7?^Zf^Gb2whA3pt^~d9HhW#`%)OmQ=7rcHQb3`9CfR~R$aQ? z#3^jJSRCf1RpyrOE$yQQbq0$?NuEbnHZ~nN&H>|VO3!;>iT^Frziz^XKDZ4aJ+s3F zVPHruXvY1Y_Y`Oc_+Zcly$!Owd2siQ6GxM8aJufD&On-pl=RDOBZk)AQriXhh#;g+ zC@*2{>Sw>IHBlMjDywecn+`gJmHI?dNTV$AD>|v=@+|72$EKyUk_|nou97nEBNJE> za@W96#4a17R|;@JEajXo?eB!%$TB!01uXk&XMSc$@0*263z8Sg`TADaELccyQ+w*5 z(Db;8W2@HH!L28|X5=(O@1FNg2rn&UYMyput6K^HIkAHToGqXm51$P~S86Zaj)?F} zX^p5FCPvtq1BdpUjyT!B>s!c1I>sAgGMydUU>-Pg}!?U2R6L0ox$K zM@%|LHq?zSqQVx#-{~05`vZVJUb|w)7wi6W0QJ7}HOwau7$~*;*x;+MJ*;SF#rw-| zYlNuuT?KT*^V<*3=M%@(``p-n;;#Tkxr%(XxEBk<`3*K%wmUba^{j>>CW{1c>ZeDY z&*6fF!WYD0i>!M?aJS69KwODu|N92(Zp-4(zV*$Nzfa|O=VYrPt4gHUBquJFcD!_X zO$Z`^QA(0A&_In{94Bks%9PV6OY^a}huHjyuCJbab}fodLxyROl%b;gSs^}{$~XSs zU|q7!y8yMsWXsQ~=;v1BA4wcS)nWD#uSxv&YVgWT*!97BVPT#s@Y#P77Gc?U&+%WI zl&ubec3xxm=cYuo6s$HQB@4gwz}?A_D5}D8%kREaDV=GZO;&?xMy=@F}529EnLUmyU2 z3tb`sU>}(xg=q|4CMK)FF)mD{X}s=y6Yb(z){$MfeTN@)1{%Es9ere zc$mO=qm$8$rG>9)X-BiC7EhxIjs9V+;X|YC3E2SXJ%bq9+qsQ>ZJ~0lvUnBS8&B1< z&P}(utErnpDP-U$OTH0nJ=pc)_U=*+yH3cNnrl)%SvMg+66@`Pd5W@h-ttLDWJ#Mh z=YL=dA2I?0>3HZ+R(*i%^}p~c_=uNGSJ{v8jjO`wI4n$L{e_V6D8zieh3QlzcUnKS zeoK@7hVkdZ>|DH@$S=U9JRm!xZ-v)~5{dxy@8~qUe3!pfhNu_S15B{plOsR|jxn*< zF2$B z_1uQ9e^#{M%+z62`e%4n{4+#=Q-rpAey!U-Dr`$_>Jsp0cQTZB?;D=*5gg^?t@WIWbrjk5445*(@B zQT@_-uq3Rp8`pVmW=UFRImd7@e?NPRxKM<;;~0CS~MckV(6kNYc(~;oFsA zF7mCXD><=cvN3`F)?@}(ZK#Y5YV@o1PMT2nTKw3`+mIP)rIj;sxS4`C<5!ExfNzhJ zk^Wz~k**}>E^^V$S;`UQKUIaOj;u}Q*eR@%QI4}mV}Jyfe2|wwANtAtuRcN(OB2bp zoj5`jIkVn_y&&QYV@n9;3e4Owltt?)Pv-a8i6bkoENG6|P8$IR&uGq!a=UiZTZ!*v zixiio!ru(YUAB5&{tDEY&(JE&OA3NV%q$LESEj^ijIZ0>Vt4s*bE*W5+*X2bgY-bZ zZQef9BtbDCF2C+gMFZ!`gUdB9>+k#ymEg923tr|`NpM|jlJH9ho9n;wsZM3xid%Be zYB`A$KPdlowlS8Xa5Wo6U$-f^WtcR9U9DY4XmU@(sc;RZad#bIM`)JA%9rLEN{Sg( zDjK-&*WdUoyMLlUVg)Sg+1otwCl8At?TKfeo!;_r%dLG3}!{Um8R>(;K5aLbq_ihw;fz}U1#YRc`?XIx(yM3kHn$d&g>;;EEPynzQsjo)Q6*b^Dd*I}EWEvcihV_wZ;tqd4!HkO7#S>{5{(V$`jiVRf^R!! z(kC%JGN6k>lGb9LPt|#SAlBcozQv26(vgLz##&^`^^5+{--hM2VuJo26CtDa6XbyW zI|h9tR0xwmB|hWh$0xW;E{%%2CjB^W2$T-wr*IYGi5S!K=9>@8%!XyFQ)p$^#k}k? zli^lk8u@8xmtexfO5w4?1_Ao<7_cQpS>qKS6#MRW4(h;(w5`zauE&W^Ytz`Zd0de( zk}jH`n6<(wm|WaJ8rVy+P_E>{FL9K#Ly@j-c1Fs}9}+$dzcEU0fVXj&PKDH^luYN< zOd$c5RoBPjl^1J0riyI`C;r;cpAOfD49-X=eYLSYAQpfc6im6Q*yIRnOZrl_AxC2nk;0n=Wc-$wRM|9NdLm zTw{@@x`JMM21ea8ypkIh8@9)%f7%h4Z%f&Ddx7|7`^V2G3$_kH*TMsuC_W0@x{zAS z2_)Q8__9Q4T;yh|7sSb_up6&YD5tei=Kt^dh6|gUtc|2deeiN&TW?FATdN`UNq1-I z4YAPgJKe#gJsWK+dcttY_RCxz?obVVD^AH%r=hE~V0)6--z0hKZH_I=Vzo1X5~bb7 zSZL|Ih4fAMWjJU0Q#%i%cJ-Uu$D;&YE6@TmMM*sO{%IibPb=S}=PAn)jN)s@&Z6yn zw@J%zq_<9i%CWOP-}Mv;{)CDuI9Cb#)W#odTDcB=GLZRY4UM7(Y(&YTyOe4C>rHh??+= zw@IQ{KzxB5&ED5T+S=Tzql2VAJg?>XZTrp(Hea|K&zcambXsj`UA&-F(%t`Z zh_x-FdeXlP6)JuXE{0eGIFIs2mmU+_HKWM2|3oDS<3~B9Po|_Gm73~21g5`TSW1cy z-AI-goexXv^ceAnV66>;QA67K5w?!f$j%ireiN!RNnUI-aG4B6YpXDE&bHql+2VQz zUor|vy(`Cm?=NxOVaHkhby+us`5z}eoflk3m*)qxKENL1q_O`^LUqU1Xvy|~ZQE*5 z*Ep18nW9=|7U2Wr7sP6@s$uu|eQC`kQ7wRd`%44#I5D+DMl^aUU-06S!SI%|F9d`k zw|MGIg9#{F1m(CF(|+GKuM((&fuW40ia6hAyS@DzI5*w3n@{eUpFnF+|cR}5fxeB{pRYz+c73B@VRC` zD#|R!URWbRQ=N06i~hwp&yY8sXCmDOo1T;Yp2aXp6I_VE3`NHuh`#e)hM#xlZ-)yZ zvG3Z-d!bLtA5hckeF;uP&i1rui@~Hs|FR4vEltzvS#h!u`K)@@bAV$;Tv3}k@L9io z8ea|b?d+XL9Y$|&P3ow&T>%hALlf-_#*-eH)BpV(b2z>0r{j{)@m;7z`Hoyyq{#>Q z7%t{*O!ezdO~dcu5)`d$Qkt+6FJnf6ger1!GZW|rMGnE%&FMRu0gdyoF5Actcg2J) z60Z^ZGh!ltku;qC(ipUlfuK_wy6Be5gw{{=rNA$Ze>%;>ya~4CfEl(+XHU_;%lcwE z3-g)jHBZFiku*)_0()kqd1iz)b(Q+AcYkVGi@n21IE>h9S-t>VI-TUcO_j5##IXNs z78?~zS{`eU_T-Thkl%or54*Y34iuX-mFdD-NZUs@L;5fD)8oJdW7hlbh=7d0t&B?- z@LYd~*a#;EH)dhUi5D@Ok-;1bKNS$re;vw%u8LyD->f%6<};G>Zp>t-oe9=TZ#DBW z8<$)7?3p?ecJTo^{bVD5?DeZlg_EH%c`(GPB}gJaKf#Z4FTcXfR7AT@!B8YzGXP_` z#H+7D-h-q!5;hIT8vg+Ua)TgV44-&Cc}XABhbfP}_~H$qsCH=dxCm|W6gp9q`4vxf zs1p2%%dfE~!T9>J4b>lCGZ*j$$h|`sdQ$}kGgXOo+x~E3{#ODs^==YLrWI|39ATAbpkgmD9q)+d(1>c)Xz! z^s#)*yw zLI@S*seZwy+9_Btp;l$>xh3DlFoH*n)wTaz`J6klpg_t6qadCXH|V^{iMPu9(s38WTY-tG6XgGL%vFq>6?~mXg>JNI|L4B!jTK_6 zrbjffM2Zu{=j++EZrbN3K<9?EGt7Y-4NHSbQuoo>RXf^DY<_1)Gvr^6Yzk~8JXuhb z6~w?f333&-awt!)S`I%NrJxf|MX(J_QX{MLcUTa0#a2Vh3ns1Bj#>YK9)db@X0Pmay`_e}pz|GyTK-{@lX$bCr?M<0&rzJk!tfPXB? zFfyCUBZ>m}_+p-dZ*8q&o)h8szutH?B@_qfSD0%ldwjS>)e04r#xL=S>S>Jfm)8bE zvjhy7`QKS;m<7A1bC>(zCF?t7K9&Ja$A1~YE}lDhpJ=l>B8aV8@yl0`x_S()1A%m+ zc%9cD)=wEezXufA3BcSNfB_7Ri<^LCC=rdUzeO>2f(ndEvfgNpXV5iU=hGy*v^QL`-x&S4uxYo_mHbLQEXkkD zd&v}#t33C`Q3EqBzOea3lV4NLvjhGN#6*$aJ8~khK#}AOP3L>41@wi#pe^d$d|1aM+UfrWGtjP_Ib(qQ*2v z(wrU`Ba4v740|WfrwJlIDfe`>t!%kUOpPyXpp67(EV0Am8yaLdOmPEK4ZXg6p&7Fr z;$ykx@4qQ?c(V74{cER@34y4Z(+jF@Z!L z4Z6^`u3#(tvn(0u zl!8jCZ)^{JNKxLXHQ6``I+_D_dXWpH8m5j)mt;=x;H-c2Zo&+-z>Bb8dgxO=_%lbeB~|Ku zR)0SvMPX@(Uy*ngVNOM)FP5l67#jA)HMhvE?Jj6RO#Z+K5P+*AueK0zd86 zu*B3xi4Y{=rB!9p&-}k+=U&r}zuJ7)tW?}mB%3&X_TXs)4sjdF@bWj*emS7Mosx4l z^-(O_#%@v~)^aRP8MjAK&hv8uzf!PRLs!E8u`|!2PNM6PVWJ`(Q_lcxjB;>>Xxi2E z2J8lU>C2H?L(LuuEru=!bwA0TZ3ZnKTv>oZ-x8y-L&cp}mWMR89u@Day$4zW|Q7Ov2Uw z3So%hez%J>^@`i?faVOyr87zaKr%4UkTG@F>Dyap8>~|lXnWUmMh-s9t8!nYJA1Ms zo32e(jy!O)<`iisdpj7(;951-pPKVUxog-BH(clvKyi4VuUcbAPYDKx zx|-|g(VlLB_N*5)A@e_4nEK}Pf$F~BYlaSebbVEq+GT6wes;#<6|ey(JJKUsRrZS^ z4(a*GAtZjoz1CXwFf6mct@e(t?nV^9iS|E(fLBYGibdeT!duT#tGoq*T5VFRmg8C2 z`I$Ve+m{Mw@sw{S*MB`whVO4UJhrWElbI9}FiQErJoCN;iZlBfilQ$l2uVyXwo@(FFjYlLx}d_)9C(zcB<&jCrk9Ko{k4*Y@X0)#f#SR1LtM zGI}o8!A0e%`6q^%QOrElMf~`0&4H0O6QqF!kxXFG%`^q(M=HyrMvK|TdVw_>Z^6|F zEM8dLFtSil^KHsy~xfp!jX)$iRl-^7+^bAnIb}9-V2`sh&$83rF^G(+7@!sX83ZdfS z^jfR52naQt>ah2+s%w=vtwRmf3ClU#>?=?|pR4SGuq76@+~t)fOENX;yK;hDlYpJB7c;_Cb!)a8-;(Ga?#YocsG5DdytaAm7t^hjMn+y^`+#i--W!YJRp!A~ zw{P9jOTHfO^-avDF5ybn)ka?5PoT!xL@;!tyw8o4B86-AUAmH-*RsUp{M)Lx^S^ci zT0}_Kc{ydPnJ|{s&v4{(ae9=KC0kqe#10;D`-wwk>&Q=*dkVnD`z4hXuY1u@wv3T< z$ka{g+Znr;i}RRhqT|^sOt~Y0dKaB3pIKKOT9I0P+6n63MArrVO{5kD2Y)GPe|4w( zF6@EOjh+FS#|BQg{*_UCtD)<5ZWm_9JhYyD8I@#NRGQ_SiLQ?5)T$|h6h&mMmZufZ zRA#Ms`7k6>fo!vvlm8sDR=`MTYi3OHW=8b8O1QQ7qkMuZSKklS(D64V#7Tl*>Sm~2 ze#WATk~Gs=XUcv@IV(z`$;DeUGp?nBs5GJ3jWVqp9?a^cSKm`g68rUdyn|(_Qw7o^ zJ=T^S0XY9}%r$nn{#=I2;|-duXh^z!Y&gz1p|W$FJ{2SH6e=2dYe7?|2+*3-kYY0( z!Z54e|7}Ac@Kw$Y>k1&%D!t-$K1npTy5=%d8f^osrkr&&KITxf(zpc{+Q0X|Vnfy_M z@&&7ob@H4Qh$zC$Ez}JKG)%ZRyh#KHp4$uqYFz-uKogHsh=A=LQNgfUkGD&^{Z&sd z*Da{8VX~UC3p8!*w!p}2r=fT`L<&bVSC!CcNMtOOpJ(+UF=y*c*fN%huT;ts1GQi4 z2|}0Vfi63xbv^=zaAszJ)vI)$Zy>)LHc^3xI`5-t8boGdZ)xs)N+F#GQ6%ChMl2MU zD*~bzs@C)9MhJ&A80&pYZM3_{>{`A_u<8Hu?%90i;gq|66IG%e_rv6$2x5#=VPCVkyk8*ynpt?dxG^!C|$ z7;(5mik^C@g^83!vdf3G!(mUZp=kOd)E z&DUmLs5S&H$2vB&yapmvCt6qWtfoG&@N+5zo@ICbQm03EztuP_N{3bVpsI)cRkC5I z0EkuSFz-7yO_jA*`u^zy({SFKk}@}p?Yvgxkd=?1331u2KgVkgvjwIvazcjAhI%b8DUkFum}gt%t=evf ztp@jblWO>bq<^KR?p+XRE0cWgY;J=oi&2}btk~B_r^sl$toJvZ@>ug$q88OA2Dp-I zPEq?7XL2mgg=_Q~tAELCjgQQ2gXe?P_-skOQIsA=KD&8^O?I>(r~XY-$E6zhK6R6!0<#VA} zZ#Ri4Dt1WQWCkCNyMVNfy8P<#?j#e~LnV;aP8A_s*+j!+8j+=T;}b(CY*NL_*^W7T zXC|@}p75^e|9EBsKxOcZ8Vf;Rq+wRJw3G|q7SnR5n0>H{eO$6KY&x}t7AkC#ppi9y z-TdFmAHU9P>ia#Paq2rug-qniV^5A2DDxU3RRb9RzcN&^^F^jloTbF&D)H{4zB5eg3|Fn%o652CTw2p70o(RZJ5k?aV_bfqJfbG^yUng? zi)Dtsb?bJ*8+v_BZzY6$4E#+9eY1QbaLm|p9@7*J*R6H~F$w%GFP_hNPH50)k)P z_S?B0;rsHsW8tru6dnO*_1)hbhL(5OfrK%I&`7Y+xE9z6YrQ!63`+;l-iReYU*Dq_ zsawzRXC<5kI8U{P)i54Sh8YAlkt55##V?>vbgh2o=G@8|4x~pHWO~&-xlr(%Y?44{ zT1i$*K}m=$o@$n4KSQ+%&qB0ofDK&bcNZ{`o&iU&7%&l0>r=l8=2AI)Ao=dt$_vBW&ok>##{?)kCQ%`}rzMZclbV+Kp zH)@fEe_--COm1UUNs4gl10-S1O{jnUUx@v-;-4H*pM(EhB#x>kE&JF4BXM80#jE`j zCSW#^0co)5Ixe-y`2L5t$EpcNAK(J?Thjdj-f3qn@wNY z?7BTR7rKaZLph9!bc(>DHb#-SIo`~?Y8PX9l<(&|ayP+Rk^dw2rJ3|-)s&8|YgW_5 ziq(QOZA8+7O_xL*5q2pGwhmGt11;&4*gWISeP1&Q6Dx=PXqs% zCEP2cmLP0#8cS;F$&C5~p{(0^_GAwJwP-cIZs__~#prc^WjhU5d`Z9?aZQ2qb0d@A z(NC+>3^oeY4*hc6UOT1duJFb-yfvuF(R*$t5D$Xm|8Ya|Cz&rvGR-6mn`DUJ-R-u4 zjME5L6}YBh#&N?n@YKS=n}0jxetcedaW&UMfGNW;-xM8PRkBi$V~(Zyn3`O* zvE^(I15!SI`#JLcxRB*JiL`l&W4j@WmbAc1ht_!|uKtLgGv7W;4-!J4^Zx)iLnIxY zTf?RptkyX@yC-COQ$!DKAwdpG?&2jWx=r?CtVKREzy2iVgl!=s0Q! z|LXTy(H|ceb095zPDBvAiV9VL2r05~65o73A>;$6iyym-zrXQL%rdcgDv_a~`f)xVGA$e$+oM;%VnMc$NzN$BS=aq=A}?RjjI9 z9Lx3!Y-kfOQ3)z2jPj|IN{_Uq7#NpJpr`;RuxSQE+bY!8Z0YB+!3f|>r||*d^i{ct z_h07@&Eg9dz9Q+>4&Bbr|R&ZP8mGrd) z08&Du-wO$$sgG)M8l2&2ZTKyr>tAk_cv$E(1XY3-g$WU9Kp|Up8RtVT zC{*bbm@Js3qp$^*dP`N4dC{lmSBg5iq@@U#uT%Rj(B;S(jAjGcD!2y-J{do|Hv8j_ zC5o)xuL=!wNlps7ku>$#h5)MezF_-2mnl79h0oW^a<7z*PwG_Ym=(!YvC{y66PiCT zuQ<%9*0#%g>}KA91rCRp;O7W?to)JwMKxBw_mY5hM+(>S)tZ?N3&s9lH&;%$@^%1) zVAn7z-boT+&uWH*&$m0

Lha0h{yIgcA z&nLyRAb+X)egbLFB!r1vi#f)EOEzE30T=5y#$%0yvt#RC+`?SUkih{me@D~&!sE)+ z+j{xSNF$(^UhN4577$3mHi(5TefcN)HW|jArDjrq{OL)?8oUWoLg5-rv%DaKUagfL zH;T?A%P%+V&oVvtrN`i6O_QpEtfu+=oL6$KypS2D?nh!3SCfMs{@$=EW6hB%OIxE% zj^9-oN+9lOD)b}tQ?ul36d_hR2?ht0yFK=O&&rjC*4>CrLoKdumV@3Y^Nt+f;Y-{C z{o6AfDs(oeffF!9d!Hn4{=#tokQp5Kk zQJJi2we6-~sDGqdwzR=8xo?2w{DtF7U*0sir3R_iP$8&M)xw6-#6dm@LHIlO!2ril!g#0B;LbdO<6_)qw}g;7zd_qi!9y=cSq8 z4^GxSx$fa+OfQ3tX$~o_2*EcYzhGYvw;4-d;Plk?@(m`N{<4>?2E5%#OAA=5n^z7! zsDFw*w_X|>Str-#BaX6aUj_~zPzw_#iZ4j}AefFQXzf+`0AgNMx7D-MDs~NH(y)7; zc6GR0T1?Sx<*uM!Wm(9^={yB3S?(x^{BL3u-g`x37Q3=9DJtO{WXpE@=$173IUhOO zl5Q{CPbb~|1F~*;qgkEQxDQL3zNg|ErxY}S7uGChvHh}c7z&PcNtg;_D)C9W-O?*o zkzERMTCdqGZ27q5sd{(Yzpsq(<5G()IiVmck(VIPi%#v%?0I;sT$8c(%(Cx+nklz) zsqlc?%;W3|0>0r?uc`yXWZ;l2buBct%D>Z$zKeBn(JN^BgoQ3>YnOj09160CS$g-6 zjw8SH@ESTFjJPHwTMah;aQ;?S(|dFC;L0E7yF1xV4F~MT~zrP<9Sfw7(lGBCY)5l|4B`dPqyXE>6Y; z7^aA>$cP+132E|*p0pS*cPt+j9Wp`1L(33ZjcWyX@sdJLQ_X|_Do+6XjWI^zz7>!J4O~nrvU~`!oS2T4gVI#=Nfmh_Eh}H#dYwg50d4NTYb{&OfT$|W z#6dBuWCRnli+s%z==bP8>43O!CA%#-IcX97T!M7sI?OLrH)hh|UZfO>eieMWwwyzg zdLnQ*cZ~3csOog1XwjVIvWAWcKsp`-p?ni9wxls&v3ZQFGs>529a}2rN4Uk<9-{im zn7>zSI8db@?o*pS@q0~l>jD(xs2e!<&v?mMm?4BCWJ8*JpVw9ER?&f|Im#)wR+}n$ zx5AU2gefb4HAS9>0oM~R-x!K(i)*4@4)iEc+C+@rg?MXdj3uINEZU`{nO6@Iczx_Y z#@nfYdhO~!t+lpS4D7VJ-u41RPJ)k-7Y~e$8L7Z)0>I6KG-J;F^?{Q7xkoeup zuEgK)k3z=P?J7QHo}j_BQ$Dm!_y?w-`zJZ&;Lju-cZX`uL48IJC#c=?)OlFSwWT<` zFBdDDkQ;rhApS1|)wy+nSBut$!0zj-RIkKR8KcjMGNkEgaL519awvTXC}6+9-#!IN zUz(sODTqJ^f?BPSO3kf^4Y?$$BL`xK0;?qb*Yqqzt@D^h54;qo;@Xa_s?eN?=t=J4 zgN+}yeR5m94=I!|90{uxbr0+w)$jMm%4ch@9MV5Bk6qSi;Yq{Ql}PLLevA>lD6Og7z0_oUnesvi%$2J%26USHNE# zo<*cba}hA}+QF4*7N_jTicMx;px4PKxi@J%hDE|5T;#+uVcM@d@s%fzsW)P0RvR+%P|}^wI1Nozu?Nd(!RV`xRN87V^-Jd(R@0! zxjj7Z?dm>Lg>RGUs3JccOGXSO&=EbtKffb?Er>s{l#j;Ai{HEvrXe_J&vCWBS$ICC>Up7B<0pwUk>b~q8BedAu zD>fIz5-rOw9jF+krhq4DbThY>> z&l%_-O!h@ZyWr%=>lTizVZMbH*~7i7E?rBioai=BbGjM9v&VPdC=$MxXw~SF6;tG1 zx?6P~ZWuD_ZnHjl%4Z!FAH1N3bVf(i&0);fZ>xP)Ym@UwnNHwopUfZ?Bb*5Mlk0;? zK+Vu~MNP?%=!Qt&T!TC?z_}A51#1`>o25X4YB9txD_4eJN^rB`;6Tn08 zWBs0M(`WdXze-ZG>0`zN&`&l$|Hha!uLy0wxjyu@s^dS8F~?RjoYR^euYl#5wFLES zDr9gM{N$>AgG2z#HCBG^rD^uKo1}%?gm#_#3D0NQ#pLl)+v1yHih@vOxu4}43*s^D z=W;}SvkvPsZvmaOlzTzk)Qz)k?6vfA{FvKlHp8$1bg2s$AT+~Hlb?zoC)x!sx>Pj? z#Vtc*9D^%>dH|odqt@z33vdX%Rk}eE zDFTSrB$DeH;ND=T;c2V))fMagkJ_rwHdoH3DGlF8vm%oVUvp=NSpjv6HOXaqG2N09 zSAT7gM13xA4XWs;3ViJhb_8H&a~t5cX-Z=G*j|&gMmQGQ;}oWW#boJ)1uX4_3*5Ze zwk<7vN-K8DsW*td_P>U%FCN?csNRO0zX&jq%9X@RHVW{Uxne5SDj#>m?ii!({;wJp~Adc#Pk;rKYceacS66_lXpizUs1 z&^OQOJm=%Ojt)EzIE`|fWG=As1QjOcmJN@)J_y#tMOa^fyODIHw>TB=QvcT?cebO! z>e>s4U1^_CO$NzxFfEDeP=&+Y{~=X(w$d*3&y&qhgMDKPh1AFTLVp3!+Lpbqt|Qwd zKo-*D_vQ=}6)EdJxxnJj;er+28s^Br@q#bG%~#Ou#`3FkwJ)(Qw7bAr^6Ln-XLe8a ziPi^`Q6f3!d>WnrG4D_c%eFl;>j9jm-W{L`!@rfNVMRa|l@ zPUOwo?wj+yN&Tauo$!E*UtB3C>hFwz2{A}{wrA&-&Jc;r6M12DE$M8NmrzeJQ}tvSA;gx%3q|X z3=+3Eho)nl&DYM zDhhXRs*$@MUWaH^8_uDZ19q^fpK3V%4l6)w%c1zG(;F00f#=4dIi2g+it+P6-^U}D zaQkpJ68YxqVGRcBMTp?bLPRDB&)LLb>_2-!?B{E-?@^TrFa!Gl+NRFXQ=Y_@q3#TF z1MG;%Bd7cG{+#s1u+v@k^Cv4$-j@fdc1DrL;4@)ZrfHsocP6ql{$+vQAlDYxujZ2= zPID;<0F`*TvLTQCc1`!3b6b-O$W@o*AN*lu1Q`;t;Mch!CVVA9htAsX*jW(0yb7Gr zdE4$>u_6hv58~<8A2hMx{-Tj<~aC4#bk0xk*%-+sd%t|#v1+BQ=>~#2g%8uVeDt<}# zuv8eFugGaS&FzPE*xJ1%cFmvFoTZh?b&h5K?d_;g@X`Jgx~OtulC9xG13gFkX=bt^O0?sbhDK6f=A0?_gc44Wwxq6c6k*b z-3jLFq#%`fRn)}rP%KUVY^QGB_0{{SjxNsPV)i>Se0DE8jqd}6-L6w|wi2}@HI)IU z3BV02^Dt3s4A;;mi`d6)t&2H3pD%agy8FV>W!uSY7i9sxDzmS>;vrDy_p!TXoQ^N+ zH+`qDe5$0f*AceJDy}pc^a@n5!IPTI_-vR(fnw0^!tU8cUm?p>v7H=TuW~qTr`6eP zQ8P_8GaPLHw9L)?%Ej~sGEzH~1q*kWS*UqIEG|X8zvA#{wv&zasCsd@dg5jlOsUuR z%=@D%ON~h14KykdKQ}c9J6B#e~^S%fJ!V0Lm#<(hO;$>5d|iT;llmAD;)JI3p-ES-feu#uQn zd`#f@qR=azvZDseGdW5N3Zu#UXvutdx99V;`(0bauE>?b$SCPRx%s(M6VOHmt=y9LQ&XU0Fe83NspmSO37ij$0A& z)(CLA|1;94Ln1TUtHK>K>%<>9GY3;+dX!WSzFz2hrFYNF9(S8tdyXDGb+B8G#Ppl09uLh z(igoGtQ44%k7hiLco@RGtOdKk;C}6DEy~{B=u#2oY4s3o!_r0}r0es&a7(m?+kKV` zC(Go7f|nC_ju}_=no+j0o)8jXd($*em)C9%?LW<5!eu6Z(J=WdLD9HLr>Eh6z_l(q zok~mn3n2&>07(hal}?&hZA+MIycOG~XbJ158~5O6#~e?eb>lcG0(5S@(Tg@}5QS^B zfn+t_Z5#6nW7O09DXM+EAD9+z+DTjma%QdEUE+;h+7oghDwI=wg})N`7p|+<+}A9` z7hNj;)>9lwT7hK8Zi3x5u&&ccXA&fsT?b_C_ zeyc6Jpiyo_;J)`aUO;Pz=rGhIe_ZhoV~kyDKBIjOaZZ*wA03B3Ksgd_SGz&U4@57Q z;QFGDQC;;S?Hu0m9|P7t_@-q$j5*yUaPQ^9J+RTvBGB#)A1f zcF#Rq$o+p)h)Md=JFnll+##u0zLd)yl}dT$EX2I2hZ-|3JPIc0_t)z51m6vA%Bzdn z*EtHz$m&M_k_6c+NJ%)UGPLUVt$sS%S(%kSvHf}A$}Oyuz*(a=R)Xw`%acv>6QFq-(X7X79}90ERp9Tam_ES?O{boyBG(IIPjc+@lr z(A~M9yLR5+`dbccDgl-8uBX?o;I_Wt=%M|S_q?o|h7&L)ZC9Jqep~CLSYlv1gFldv z=$4L<9k^eFYqHI>1MvutVgZhNGrBOC=6CX&78jV|VnYqqcY+5{S2L!`Xm}CVD)9c9 zqnn1M7c!f%7+#nLiu;G?R(8|mH~HQtN&sL{(8lgBfhV|Z2BaEco2D< zVR$Au<~mIjXj^Qyt~?*402=WX4gG(H&ciRs_3z{EoaF*{xj+Fm_sHtFQ{2dMrikVM zQ%keVlMA=z0C%M(Dj>LVWyhVfrMUIvtki60*{}0F{14abzOU>1{e0f$-Z-Wwl-^_M5 zW>sP34tu>Nbe(!p#6!O=`V1jn@Ab?BA@wt95JWOF@s)k!BSy7kXiIgnx?5_m*Gylh9>EG@(QaG03 z@Oseb6V=2t)-?F^{sO>d8YFAiY)Gp#5WAMBEYe8sth*@}8d7|&i65+2uw5oZb+(OM zH_`%vU`a}K1VPVlpMxYvZHxSq!3rAS)=-zv@#m}7|2@o^3(pnyJuj`W ze_*2JkBY?j$5R%BSyt9!e1;aK+SaZmh#Ur9_m-_{9}({Bn8#eXyv1b>iNwds$@0J+ z(dzis7hb5QR(^tT?Jcof+lc;z?gVs4fZjzDgN{QyuK1w&=8hhs29%njJX(ycoJ3y*)5NB$)UrX+^&QSbDgzR8eb8hbAPO9QsR-a&oMGoLzkmajUPsDN`xJypWUkCS3g+XBWRjHhFD{Xatm4bT?&@@>DdzA7!x;I%*1~1 ziV>KRAhhbDwa?S z{A}^}7pk(H5_*yF`+1`iJBf$V#t^_PVk-ih+R_O;9nZ4#cdq5+I|ON;6ZObOjSGZC zPTRcZd+uS$8{2Jco156&s--fW6WNdm)h|sR9Dak6h9a|ici5(1dU6g(jhqjx(WQy0 z1CY(CNwe&z{=tu>K*Yq>Guhc}pGkOIzEnyjD1f@z6_Dl|fSul1nZ?O-C#h^*W~!Ek zv_KdfPjGUwm4E{mdHcRj0dD&ti}z4XtU9I?tIMiRK=5ob$Njb{Kt9>UZj^k51bH#L zDP{f|YrJu;DObBMe#_tos0h9rhEzf8ySCSYKUXxn?0`DCeioNWS5EDpN|HZ?^yBm^ z&ZUw5B0R?@F+}IXuz-W6IRO^_LK~oc+mzl_o@e5_xxd}>0#)SECbU3H^GHb%RnuJ* z*fLKo5Y!Km?$Tbmu+Mw$03hKU5%2|%1eC~rUozk5B;`ufTg!YIHWgh22^x+;4KgZJ ziB=%hMS+LNncCL!J1WL3@MMW;>wAbiz&cj*vw<)lBKNxuLrc6sw_b(*!~brWcSU%4 zMbGZ8_!F+w*v_6HyWry{%45!TY0^S>W0g>@bt$&mX)!MWzM(#)tF1w9J2O-rXHbb` zIHkdfBF-`H$oF8ANBM2H>^|7)7^ut8`}^KwZxp4b5jMNlQ)*`IDc zPoblAC4ndLHN;CeLTS@siLXoHC+O>tvCpHm!>|=un$iol99<|x&VZddr+1KJ4Y1*zYiH(P&Tefc%5pN^j4fb3!G&C<9-M%v`2Li} z{Fw8xP2DA-;T7$#`2#fJPQ74-sj;44^Hb4q0d)5LraA}N#t2{VvX`hsw#DGhm!C~o zyK%-?D*EQ%J?-aCLz_3ONT0kkzBxeJ9R;uYfsM#86mn!9-^;z}vbLfh-t=Qn5p(qeav8ubm5v zJeEi`xHKYJywq)u$TmE*f7OySA5dkeL)=-6GP}{Q}wF= zeCrjSs+vq=XG(%J{>Sh1L2MMTVI?AZss4$y}?mO<1)Y zX@Pjo4RM;NI(ez@zwgTrGZ0(gIn)%?UK~eyqAr97-lu@jaOuKqA)nA(aHmp-qXFWud3g)CJMzE$b6BxAdIsp^I-VVMf zA>Ew&(b8{f!3NjfhpgE(+vSj{$j%|k3fNQa+k%ckl=IKeW+#t@ol78hRT4dVrMF^y zvt__;A@G4JXIHtk@x@7asrYv-;sOgL8{ME*2)^74F0mJqT8%oOlz&Ek)YyaB&ZlJ=J4|$CHrvS5<%3Z$-Nki(J)0lt=d03pFc$5n=U{52 z@KC1Lh34E<{A|&6sHu;^JgqkyOe^$%I*7^@0#@C+0TY!$+ECB#hK!v)YpF>7lXt&K zx{~Y5KGf0G+uvzg&PfRwtd!vgCH9O@xVY%Z=}L@aJyoe^;(7s#5tFUCY|+-tMw(rP zSOsy~J5nGE#CjWsw>X|5DFLTdb;;C9o`^JpPfJ1DkX3<5hM;I`VIps+F?pv#uSc7z zga1?_l-dCLPxkRv7rYJ;LH%1Ro!f=WeIuidzhor=3@h;Jcwu65jf4yeW(pNmi{mb zrUq}gD4G;`iI^BjfZ!DLwhbithIs?~9OoO+KT+2a2!7LHII@l9P}6*}*Fm&p2_i-@ zhr|8P^e-*l?5&TMrdlEkXL5_z9#I7>obQ^z)Fxyx9UX+q_fhH2L2LEv%D!vMX=>7N z4-EP+J=Zg!l`;PzbftcNlm$}_Hbhq^byWD)hu9Ibg9h`&_`IQBt%0{p*9&4fLckOp z=NKXCd)URNJnrzg_wx;JPK~ow5 zC}Z#J15Y5#akm_fpodIUm|t;gSI>3X`hF7)U_Sv7=63@+asDiepC36U;FSQ1wzKO+ zWJnYE5B!@XyH!8(ONw%1!OD9 z!QPlQK0s79YS%85(_v&wGz79mFn%$8Vg&+T;(VTtGqPj?6{>>nh~flV9S?}K&r%i{ zFecb!Sq~=1W9>|Sc6z(UrM?n|lx?1`Jv|O`PYgFn?~i$p8^c%Vdl5CnQFlgQUh6t< z0(%KVCs{$qeDMhKAZx_WRDBc$(7hJKR_t!);KK9?Rke?`@%*sX*E)!eJr-tM+y>dW zzuFPbJ~%32sFvq8{S%PO)FCf_z{YSWv|WGKY*|LT<`5|MQ8a?-;B61o@iRHWB}n+V zvFV*UCj}>yJahqi6a*Wm5v$^){ zKXUhP;LS}xd<7MiglY|w)%DPxyA54craqfKo;-CeQSUy2*74O7le5u0S&!VId?m=J zWd%gT${!ZWf5mGp2s~)hW1dJtPp8C1dKCHZjfk5oZ3W6xS&sdleH7{6ZgM@|WfRAO z%`(d^<#{3+kRgxxm(zR+ zIaqz>tl+vy&N%-tc{eukKrq*)G#_Jhw($nmzHCYtGQfaIy^$U|yTpR4QbuPahr%Fk z2%qzd3^L+#SkvRju1)udfb6|SzKG*|y!f|+9UJ`Uk94V%(WiIG^qk!P&1n05EVlRZ zGQf4=eU6rp52_-bJyuzbs}<14TQUQ6eksi8;H}}|Qb{!IQ(d4z+V#_~8*!sMsU=kV za507|Ayo*zhqpt%t|*Ascs5MA?OZUH?%>6-{pWnd^YiZU?+_L0?$Hmy!`F!X(t1AW zs`a2YOFr_BMd~)OAB_IJ9rEocrG3EbS8u=$9O zCi}u~onc1?`>L{LkFrgw&9&fNZY?a5edUCvPo|H?_o~_2Q??uj5UM=47rcb(D@-w? z)q^5g*(rzzy+T>uW^?mm@9VRI{Z@=6_@rUoA)b6EJFXeB124y=i(NGC)MGZ`_fD!W zbm*WnPcr8%4=Q|5A68dY_D+zg-+8QaB(uFs3M~0-RVP1Dm2CzXIC`!QswI{~ZAkLp z!BYCHr|mtPyB0b|y_E~#IO2^zjt?@ zj&-e%Y}Vlyf}|V-QRT|e_g~mCn5xfQcyuKqO&9X!dEo!*FR7{Q!&R?KNqd(l_5j4x zO%W8I4o?EPk1H=Mk7#33L)UBUr^TQ=$c=mTe!L@m98-LKAo=-nHO=i#c3w!l%fB$w zFY)T?YSsVh|1@NIJoeMgiHxv_Tyd-p9?CR;e4<{6Yr(XHPKS5TQ9M{Fuqqm+ysC6J zBKX{8R*(7<8MD-^MDSS~du4JH5L$mlGb-5+$-3d$x|VwW!V2lXVt+$|-@MQL!bgN% zBH8-%I2_sI+jhOHzB->0O%O14R&hfzP0U_nk z_LPbC{f(x1sAF5)TIZ0c{JXX&;AD~GOm+g|@gy{JF<8B4y&GY6-WT!Z>~y5shs6&~ z>pq(c$6@Ew=}AVpGA}|$d9zrQp7?LeSMSuqP6)=NSr^FVkH(-c==h6 zf@BVPo|6=CFx?5YJKr0^-QPWHG|Ki{{9rgJi@AE4kX@0DKjw3pLej)wb$udn4ogaI zlk;t2PqVvmW05-N9Dy+HiT}!(VGY>fB^1wNg^%2TpU#n==;&VgqH~^z>9S{p<@Y@t z1!)prY?77Mw;N?xx7^dh785L{6tz}J&d6}6!;a__o8L!Nd z=MfqIdPu!U|EjH6`f{5Qj< zP3!bhkF-W}t7U0UEkz*f(hn<=;&IUQAMOdKI!@b6!SdSCbve^4+hN=&aJO(!yYgkzL`{24;D3VKC1FD z3AnsGIw=4>bz2)$Ot$qIMK^TTN_XbXC7DimQU8ATMDgIdMPcAP%U-4*C+@HE+*8R3 z;-V6lUuJSFzvqixu(XFFeyihLo)wi4=f z1M~j6Z%;6fiC>zbeF4wY?OBr483nz;XAnensNJG#IDMaGE-U78z?qb{DfX-K_#*9k zT{^3z(4!d?ZhD4Tzl6vQ!ypQVVKm86{#X7lfkYE=wP?pzjB9hEyX_Nz*$k|-+JhWb z)%k|-jeh_84ND#5>p>QxOaEy}iE5a4mM-2SrY9fCj@likqtyguhV9`Lb{91#wIBCK z;0Iy(2JNv(5lp~AB`>17Y^ua(zIf`kesEam_QgQiCi2q%rq%8^pL^ zfi=H5bivS)jLM8*^k6bFeYi|{uv-{W#TrghsImxyQL4;D#rLK-D7)KYE~%&{*UUbh zhx--$ktiOWM@&1aY|1UVCepyK$2(Y=`;3X;4K9~^_%d33&GpWVn7C1Tl!t)Bkm@HY zm>uKfW$AyI%T$YNnZufX_l?B1o-2-}PmBc^hVbi08!nZK&BjdTcnW;2zd<;-WEg=Q zVeu;kBK!74gPX;_+DmKu4HoGr@eLJalTMMeMJ5b#L+xrU)0|(guk9}@li-J52O0x- zD;uo^@#9-9s^B1*Q=_s}Zsn0~Q5-jFIk7IZv4ZknUc6Z%5E9wZk_j)!xBR-`N zf`=fhGw($*O&E8{6*3zxp+1pqcGACmZzDC>CsNQAu;y6Rm#gPQy^g7Jun=I6t^E2Q zrzOE)5@z^+OIN`Q_ZOVyP4aq*9YpN{e@16OT)|JJ`wE3H?V-DKBsBY}fsWUD)U@?* z$%mYMVM1xMbp-m)s~~G`E%I~sN<%ab1J+&O!ew6hdq#se5A4?1{E9pJf5CxsE>a`DfpwxEp zr>6nI-|Ir6Uu{YW+^tYGf}*g!I0g7ivHHkI^`S4=n`EYd%{9H7>gYXVbZv0fxJGdf zE+hg`=Na#5-z4m3x^wCsGV2D2KYAHv7&1wO3(Wo$dabkC6Wt0iL=;4LBL;Hgn)5l@ zp`}jg!I5fMPb`RHt#Io2fYG&dc1w_cTeGJ!IY$jnZ>Y!AjYDHyj(kKI>lSdCnL0*5 zA3L&L{(a!Rz&8ntOZm3aY=~QLMtJ3S?aPLjwm+2n`iH+(<9mazU`ZrY(Q5}Ub+ZZhIkDwXed=}!aK+>uY@ce zhJg6_*0XvJto9^^x&w4tb+Clj%@Os*=HKyv_vnf!|(hob*sO(a=i7o-tFF@VC zo?MjH*FL*sPI8{$|YwS?~=PUO3 zu(+972Rnt#@)Ti#WgDL_zvf1V47>N6UdPzTe`9so*ON0e^GN|+!(?L{^!$%u0rA9) zc0p~0X^iJB!dSDvyPG@fiGSvu@mE2)8fsC$B^`b{Oj6u?K1-G)t6Q~lS<;bJd`TSu ztN=O;+D$aw5|Bk-jZ!)V%vT*3iSX_)gl-D?KLOamF5+Jnsu$D={L6|ycme%`(L zSncN;Q^}Z`sxp)m9!>WiBc6SaEDm_z4qkd^RZNgn3GvV!Z|%BoAnMCW zrs9$ndph>bvZV1LclqSQx4865Tvx8uDh6o!r4uL>WPli=H#V5WKR$0Na&@6yQukh1 zxgF?vV5*&iJsf|y7W+V~Yqj-Be#xEl4gC;%b$YjNv3c}@ zV6$7(Je~tES=ed*fJBxc;|k>7e>wZ0RK>Ge(L)e+IreB@)w~P@g%7URkr||juJas$ z{`n>6b4%^Dsvj_G4gJ+kktBP;)~B*o`UDw7`o!#t1lBv`eLIBz!eMy=$8+9J+(a8U zJQkm$T;o*8>0yk;w{@}Sjn}8o)Y+c(~mGXw= ztlE4sefUklNVt>m4e1~rnq7-JD>xc@xz%%0Enln_2ORr&o@zeTd}nXK_TjK&%?55F zRd+D(2?QA)GZt`AH@J{g)mnANchOU>NeP;*!hh`zpugIkMmPGfokTXS!22YS6zvJeUu?I+^MF+p7( z99RVCMc359#7LL8h0kD(){cTERZ_uMq?Nu008lPuU)~Qq9K$-DTzg_GOOuKjqDCfs z&XUaDnlMmD)CmBG@fiQz2fpWRkgK)vV=n{at^BkLl@smRK%;+NM_z+yP|8f8-L_88 zpQX0Zp?kXEcGxTXK6XDnqLc=S%@+2a2Fv%Xhzm9gaT$~M0vS6VKa*&5_}%7(1Ct?B zpDK+o*{uIsZO|cfHRSQ{#P~PC*$}jkm#M<}aG(?1H3!=_pMY(Nox=sC-E^sU%=&YX zr7&YGgdo3^ zB6-}f{x{FPkguG|i=KP-g++qgf?N@E@hdD`z{^|BCkG20d(d2RSG5TPK%f0jpDbVb z_D3HaOL_%xa&?@@igcdY1eU5O!(hdyN}1dU7U}u190Yb4NE4=i*!OG=Ey=aoxANbg zOzGNa)k({U)z8w-!jQCOb;lQ$P=^UpS(H+p7VZEvXlJJMF}g^C zYolUEggXAHn#?pj{|aR#b0*Y+H82`P(kYm~eYJLtow+<;^4xbDN+`(r+kUR;?rZ6# zqDS-eCG`@(!o!eXMI3BQnkkECOF=0m8u9SsBG9kuOSV0Fm}HBkL@Z?~9pD6Guxa;+ z<2rBG{8HRSqF!=IzaVxJN{pwOBu>iY*GcAHQz~2UWb`Wm854tAIZK+4*OQ*AO{hB} z>(|Gz|La#YC2adG{L4N3l(PrT{mT1ow{N{`;Hh7VpM$lI+w5TXTEYyM;f~m+P1|9Y z0(6H$Yt>2_zG<6I3SxYwEKYK_^`b*7e91t$ftPqALsYi$s4TS7?aSuyYx?h-DiRk{ z50+D%XL;qcO2CRNy`vwDv6@|(DIRi7_<~}>XQDG;5h!aL7-ihH5Gi<2+&I@W!oN}7 zm9xzYj%L|Q{izj%yll@-rJrQ`_^Ib`-h0RP*T2rec>8iv`?KCOk-(u>xZXzhu$uYC zX0{=Q&sN=L$D*|9>A?F|laT8kSfvOU@2@yJ=4-LT&*gy6H|?yVs0LBs$4lQGY-slz z8=NA~Qg;x&pr$vpA&T|UsL^}r8xk+!>EcAF$4yJ87L*IIgUCs-lp2|8H?b-# z*Kc5xL)EWj8^t^f|6l1*uk)L}7SMZ% z9aImJF+$_3{*Ol}sOVcBx}?B^deQBp9l98H#bgZP|L9S$hN51sQ5RsBeHv_pPf}Foh|<+ywO+j9gEiHct!ztP8V;&Np+*% zA!sfFOaz7!vS_)&7MtP^mPbMGqO%Lg>@Ijo)awDiO4$~^cJ=NbDmPT$PwEm))CxIv z$8zIi72aSgv0}1G)9rFTyX*0VUkAbl)zR^~7&WsV_a0klYwRVhaQ>M(pPC==9kVEXyXM~7+Rw+B-%T0+R@ zPG+zT3cMg`z-B&D{DO^a!<;{=4GM$gj%XOBuL?5*+UuzWDah*fZKr95^iwS!uu>;) zq7B*JE#b$7b`Hv9YYofvDY|f)FeaqO$r)5zW*RcE{OXX#?%Vy~a|l?Z=xsjigBZ4ZdCfehi+M?j)s4|e+|OQZ?d zt^2SxfLxv7^l+;lQ~AWQ_1ahj0uws}>U0IHlaEM9?2(V{JoT1^P4l#HM3%p{X_gG% zC{Nx@Gy1Y@9n%14&Yr*OZ?`>F^MFekEK~fMAkl!4^jr#?eT3VSl1u&>CD=|L0d52W zT=o2&U80`eWIuC|4ol{K00eU z^Iu^Lr#EWvphUN`J@5ycm(=#4m%9PD6XfrmBu?dnE{jKyd-z}q>UpDs%TWmJwz{qc z>(KnctWCOqa@ijjAF_oJEc((l>9Bz_LHUU!&2-zM0-zw0k8c}PCbcG&t91O!&V|=h zw#K_n4>!!X7`ZAIkiv#8dzvpHBkoWetQSbC5*OZ`b@jWYaDpodr@2!Yt{pxHm9+X_ zxw*c-l~qZf^d@iJP`eP z%a!+Wf&9IF!)LLhLN-JYeot1t3lEmp0+7j4d<}i_et1}y6 z!mTcJrMS~1!Kz1odAA&Wq?fX?&b17a?G@Q)BgC&WVld-^zjZ>6UWcg|M6y12MNtP>rIZNj%?+-`$gWBbj0MAr$Cj>ZEimE7BD{Keu$sLx)p@X<(!CS>k zg|+^`!ghUMp{7MOQY^STZN)i1rBJ^{15b0Mv`)+g7Hv~Z%0C6!Z7`!Imz)1P@UP+t z#|DFn#F59EZyY3fCGl`iNQj+j$LSM(IoTbE-r)t=x2ZLHSGY@(>1NmRG|8jU_%g9K zcN3;4F_|Oez=wOrFSQ&d^v0Z+_{uOp`2J<&4Z)fGxUpJnz>u6gzZoJO#Y*^m^A1w{ zlARXrlWUQGmLGxV)4C5PGbNuwkq>NL(X8W$l{W(KE)4a4AeOBKoeLUx zYrMBqFMn}SQdPi9aEt_|o<1av`n2ENOLAPGS+nV^y7VJWpNJ2`VN9nd!>LuKW`7*a zvwB_Zq$%OijP|KpdbfVFN6Yk+HNC=z`)>=}p(%M8Z5WpuhssZu|C?t;bGT4ZVG8a* z=G;7FXb29EElf1eY9vLL$Z*eAWPXN=g1Vl%VJk`7_q0N4u3Y$7T+w{X?Nj$l#2{Dh zoa*=YfN#Ai&larsr_XBS<_s4=;a`Y#=AgFi&#)qzpE+NdTT%#?_%rqAAk;0>B3CLU ztP3y5_tcOI9&5PsYXC`SGDyPcf|qnSp?!&iQmWMoRXWe*3bpdQQT<#MlxRxc@~C*Y{Xy&NcF>K8 zZT@9qk5;-kB-K&S?3*2^Rc&0heyYgFD_EPg^v^s!vdQo?^FCWg$d%#NCXpKng1hm! zrq)Khkr5DR&vF>Iptgu-md(UA>H{(fzMheaCzXbITJ)oTqhhVDMU|+={ zaqMSlHq$l{qxu9M$73IZQTs@sQV9I-$;=o!MYat}NG3PkU$493-ljZe#V0VZQwIe1 zWLcOOBdYy>btk2~JERU70&;W}#N&B)arDEv(i*AvJ_Q~lZK3$dl!+~o2rpSF?>bjk z%k<8%?4~ZXM}?=Y@(&fhDhWBvzo}#Of;zp5yE2i*9Z5kgER;ke!j@f-jCWtURAPr4RfTh}HpOEA``MJj z!>19c-s7Oyo@?CB7>@|xGE5~qSWoXORtJDT{t=sLRM-Z90;z(H)S7p88Y)?3nkB%7Z`kUfM~a zb;p6JR7PN5LT>9+bF|`;Q!-XFd2+1^G+D9{bTt0p z?WvLp7J}p@H`zz=X5-0rKM|zw>C@0eo#>9+uU%c{eS_wVG*b`_z8l(dx6d%Z9YIBF2fR+oq(>8Vwv>zy@%dNF%;1Rnxp$Zm=GvCCc7jGVrjzn!or z&Y&MbOo*@W?PBSkon2Eq5WGNd(*MvArSWamQ+wPvQY`uTXhW0~G*-Td&K4l*HyrPT zTBb~JX%K%u96n0NLc53MoNT>OQ8o-{KT-GnQfM*aw5csFs0e26=W8Sffor-+At;sI z3WNtCXV4ZS!yaOKQ+mri@4N&I8{?QL=QMM-puZsCHxO#wPwf3OONKVM@<(l1e#@dxPvqMV=yl@o!>LEG$DOVpG|SW3nhk5SnRd?0w5 z?O{V##GAis9^mA)p{vKQoD8D=q3+cr(#1QeMf_5MKKxRCZ+oCfYW&WJg+qMIv3dLc zxI$DvUDvscW~LG`t$5$9!E7$4w^jDJ#%c8>xNM_p2C149;;EQj(hl@3Z0$Z5jV)cE zH$~(`X7?sfoL!5_Xvd+Rq{-Gi&!sm^#pd{ri@tQ1t6283rwYYe9;A6#Wc4UbTR5Zm zFV@%FAsgR2t&`AQ7JZHo50?{2)I>i5OM(VDlo z5(Rs3N8}j4ia+Kx&;^YC*1xR)ad4s!<}F+v8}{f{jov+xTW!C$NR$C}tm2rJc`v^0 zp^SJy-4H|pq_swrz37_WwPMWoZrnypK9p-k&~^3yBhagBa;IHrC}jj}ejlKHF}lmW z>Bip!WII~HvWw3vlYVZPJ%N^nf39w~&ab>>1}UAnLW06~Lj%&+R3nw6H!XHP%gXG| zzxSG`{Vf>tU9GQ7*9;Pgk0E6Jn6LfI&DB&QUGDu~ug0pQHJd7h?HkI;o8c-6VF1p|LA&F$iV(*!I9;phWY_P~M zMcU(QEa8W{a=c!yd|z%mtp@d4yOJ^OeRpa{Iml?uuk^6MW!FfQ>r3j(U6h&}1SkcB zk|CzI>#puIDEqCOkI-)|ufNJR^ll?bJ~jYo-!g=F1fo%qq0}MzKH~?yk~lrA5~J77 z?GjCw#upj@CcbP9ZF4XBAnZ<6uSvoG#+y$#*tfw&r{dnkMWC-o2f39f2(}qMAF>Ua ztUy9smt4aD#7I>}>~k(pP0aX}JswXHFc=I5jn|J7Y;f0>EVxy)wBS>>Uaj{vupYoNUY=hFj?8xmP1Jb*e>^@`fM_phuwSmPEt-RV z<4^slYScbOjFlCK+zk8L!!?(TX3?JcQ%5;+u*|Utjz^u1Wb{9q!F2mBS9A(x^i{v3)KIy zn?jwlX|IU=AJoH5xu#GjeOXFUDhL*9gV|`4lIkOy*f#38UNIiMWJ$+f%j3MF83C(NXCw_a{WP0ZL5r9!LOq}X>3!DWX8{dUh5A8PJFt!MHYCku zO7%$K7+mbDee>qzcYQ9x{GbzOT>>K=V^NesB*N42pC0`VAzS75r@_IZh!0+WOuU;- z92Lu1-qM!02p4<)>pu5Ok?_%Yh^GFA`*`r{2Jp1 z)EmU)(5@IuHZ$wTmIKU=S(Y9I#lIgGeoaMf1>KIf-AtQI?=kx!lBkEub{mF zviS^+V2?v_ z#3yA{>{eA8*SU?;UlTaD`VyCYS@LC%5Z`g3&l$D6BD55Ba ziK^H8V4Q}*ab8=~|GAlNS;}bEac`n~nz}}sWQoiMtTbo}KY`en96=qPpj$R-y5LbM zbt^vrB~pR&Q-vjx7Kt9_Ri*>Zgky9Vqth&Ad+Mp%gUB&jfS-u7UM6RTPrHA;08}* zaMWA6BoroKhr;HSyHG~FhwC*DIItd|T|1 zNprTNlWWn(2_-)MZYY8|z>)S?xsULT=@y@!7CO`^R=sAS;$q(U24FS z8Ddp|+M`J9hLTnDZmIH0cI6J4Qps^jO=0N7MTgzTO-y8Eb`IH)A254BV$G;v_6T9Y zYgMJ9JH+|E$3g5|#ogZIbMRifp_z2<5il{$35{ns2H##$x%QV{)^FQHZ@_)7f}n1z zRpod|=u$2G>zCJk^M>d0sRdVsg?6KmE!Jug1dX0Akpyp)fAL$hau;SsYdL&{N7QTK zR&?8U|v*B2cet3nd$Kzm;XtpSa zhl)60&PVO&G>k=OqQ-R5hu#?+Vcw9T-kiX+a~>Rjyp4>cfWAwl0O+!8!@+8w`-QyV z5cL+1dU{u+mq0_u*>1R(hQy^hxR=yw5uyBsc{vGs7>9gN*+g5mzmpmt>vl>>eKIq4 zs^V8%sZAciB11;VOIU#~#emz(D~AW_P4b0F_yz}=mKCMiTAC&q`IUs7lr0_A{?8@| zU!-;nLsL|h6x*!Jp%h&}lBT5XOOz4riSI>uU`e$Y@GNnLRP z{rPBBlXhe~z*i|aTI<)K<8p5l{1cHpp$%q6M!$L5xE!?39@0*VA?W#gsqWdC4%dRI3q*jq@;kZKq3k>hzOzAAx>5vYra%!TmfKlUpM+1`5C zY?Y;0yVtxcYBg}AeG6heD=3FH=3g%n$S_+J#l6%Mm{)*+Y*j5LnrnKDV#~D=4;n+} ziD|Hv8Mmv7(oJGXdzwx!zh_ApWAt`CPF2gmM})KesGc*y!xU}GTFw5HhbRu)21f{Y z0qq%fwNWicT2X#F9|d}3aW)--PA)$YseWyX2N)FL4)Orw<8p^#mr`8boOO9h+$M)t zvn@sbq2|M%g$|=|)W|E)_ma@p4*fbh+TQeo3D(VJsGNNdOV@~{^318IItBVtx(*&3 z0&QUEbfM6VOGFqDwu~RmFz`6;tC1?XJyP}#`Y6J}DpQ1Cy}XD^P94V(#r)rL5*FLV z5(Igg7kdbb<5e&Y;n{8d=dWvoZ|lAc^RDJ1R{hDJf~Vury>yoX`(%_4V@cBVIi@-J3zYu!=E3D#LzO03Oh$xby9AwCmM4R<(SmyXI%V3MpO#?4?9+EV+DuAhhCVPu}|tQ(xig_1G3RRfZ-4MA5=$w`|OAg=oH3x6HI5M%+i4PbB2O z%Fqt}L|5Ag2NyYwUkSI!Y-AyTqA$HvfRmkQMxRP3mq(O^4xn}vrAwWmOY%3?UMit7 zT62k_sgu0yBI!l_Z|S0ef#T^u&Wn0RDe2-A0($iNbe9!}iy27Wp&2Csouv}zBg)^C ze06q#?%$Qf)zlG{M>mv=4T?%Te2U8oF%3wG#xGQL(9zmCc80zd--n%PILOS`YZAE zNIFvtL30)v=x!_Qu{;F|e3thU(GvAf9l3$v{y1(?ajz#Ju3dCSafgzkPwWb)kzBI5 z749r&ASEcX2^U!mpU*&3+n$s~7m;N?bV7_NFt3BfP7h~;W}-P#e`hMt@#mloMduPp zgw;yj-YBemQ0TS!7~7KTuMt4D>V<&_S&^JAog>|-f_W|a+&_Kc%=AX= zxav>Qd}%woaRG71QO%0;yqB%?snUCa)rGFFI~7C_j9#;I#7!};gNs#oQm|Pag0NM4 zoB?A`YCB0IYe*2(>#(b1n7`;-2Ge~QPaX(ZiyImmLwMrU)F-aTs$(xbqUIo+&fF&9 z%@pTNBR13wT|nV&9?j@5-Biur)yl-9T!ExA<-n0%sFz#9h2hdzSFrKQFPq`Vhfm2r z26V%5&wa%ZvfX_W>0K;jtC2ylEZxV^Zj#PKy|>b=&h%^AN{a@Bg8idifAPv7uV^D4 zuek+o-xKxhM)$1|(a+2srZ1Vd-7Jc@?t!#h6a&`F0e{KflAtV}n#H+9+|IoVaedH@ zd2+Jn1!>*IbjhLPAAW-WV^v;x_rF40^|NlbWv7B{OjYqiaP{pul*(YHYt=UT&El9w z&jhJ=A`Y}Ge38`Yx)!(CP-Eu4JMyljEt&Ohnp&SUc*G?s zp3}f9*;GbJJPd19J;y>tw(Nfp*>H`|jEU&fP}S-^L-XUg-;+bJp(-~JmY`AI1_XWP zRW9-?@g|GC3Je3hYyo5_o;nJ7))(+13j}fVY8G=#{F{#JHKE%_4(}&Rca{u^@gyc5 z?Vgqw2^!TImAHEm;;Q@S#8po5H z+7iXi1yCPilnquxCTk&)c|H|%hNW=N-O zAywaLANqm0#SOlv)_^xPp$XEVt~G=`D6+$#79}t>jQr3MaZ3@EsOh?=ETj4M5j}=U zQ6Gv1eN#qxQ#s_=yR4XS8MQs9#40c3G~FRR{?UG z1c@*HS&5Xgc{xh|r^Q1Xqbayb$eWZ48-g>EGIh&8wfLxa^|Dvuu4C^uJjT)3d?_fb zaD}|o!quBNyk(xL?GuQT;6gucX4dDMXd!!SI(|wrbk7^UB2UYCBUw7_Z7?XenysxN zb$=dF?S;1BofL2HWyS*P%NPE>iu(-wv2u4=|6-mxR!B>f;AmyDLxKmbFT#@!)eaRU ztD`P7QG+9D(txpPzNMdp4d3W1tIpq8ixe_LDSnPIl^jt8_TY8pFTy%(9l8xyodJb!;G5bI`qWK znT$;k)YG57v;&^yPA0di$wTbfo9u42$ViNshtg6~0@IdAyrhl?S1ABZB*FO%fzN-t3kjuq|}boodep4@C->zh#v+7O^I ziqv`aaLzmGT)evwZ-A=oG)aedK2MW(aYfqhzo$g*1`8R0?*;sWowk>vYT@*7BE-LJF zq?39MIFmZ3+syR3J?jayjETSp)~qVm!sASSF>mGPqMH7Fr91$A_|hf0=*NCFg`?!Y zUL?B0BfN6?KiOJzm2`EwjLJ_Fr8KMyNX)m@ygdklXDi8#ZK2!N> zsXBGOLUb4!a>W(?E~Ip)B+uybZ{5y%gtLBz`LL?|w%#Gcjctg2ywd!jPm_WSM0W&@ zx0$wkCtV4!(i;Snd&BXytGW$ECZiCySCu_?vcE5*~zLRGFg;0GMTL_Im( zK)y*i;bpv>B>xf3)tkkz)qkBJR_@K`X`b=a5H(p&O}eo89VlYHHQ+&&@E> zOi%AtrMicLszj^xxZn7^Nr;t8ewyh@#xnTA!1d>OsT^bJa+ka82YT?dD>q#u2%59O z-BFsNLGbd+hJ9Y^ot^frPY%Ag`!9^}c<7#LeW~&e_dDA2V%{}2Ub)nUDll4`e9w_v zg%DVciu8B*;*^RyFnt}=TG`rASZVKEvE6p-IjETGCyWgJ7SLdte6-H&QeO8fvUUS0v?>Vy*mR2dseZ|@`AKYAk`MNq_%AesYBF?V*{xhJ?Y7Y^JDce!(xxpz5F zxhhZU$xi3<<@*otdhyfqJoo#)ud92@qCXg#U1Oc;sZl ztbzo#0-v9D0N`Ge?DVjydwGIm$*Bw`q#Hx~AA=3Q14CX=R1LU5n10w>FV~{Tznssv zSd_VHR@`hwHawjZGakzAO;F@0nJlctq$vCiJS)`g!_{a9{ztamP)K!XJCUu-;)ahL z?dz(y7f(TLgZ%0D0&qSf89dS9jZR{ZM5)LqExu5nj*O+Pb8(#OFKb7*di+_-ukFD* z_kNxe@j}D)Xcs7Q|48$vwAk|osJmrT2F@vw z`oh+syrnC1+V_nO{zaSH)zG?1mb6k(WYSEPV{syBlJxujCDryb-m9^ngg>O(-$c(l z@yxXTs5Jz`vQnYjsR?hjgV!`$z@{1v;YOYI;>}~Wh|;QpqymlUMfVPc0u>58*&sZ4 z;^u-fubQTy9GCTxv%EXii~8()QiO89VrY+}aPeudcTS3YD?(-%i(S09~|)LPi; zv&Jcj)~q_BN!_YsJXZkPL}O8s`jisav8ZiEs7P(?RtgUII7HHovzKsA9=P@62$jbh zmXbSQMr&s-9Bcq#%loQ30kQxV3Oj=S^(l#M1)`-d@Teu+Z!V|C4*rZISkdl`P@kVORQgckvgz+k~Utj>{*Hjk&D%AUZz%bnFEu_~R(^d6% zJPI2t^bM(zCw&zAx*+Yp=6y9a1cHEQRP9s8aX$D^)+^-78bB_#k_}2miHEe4C)C^I z!8hvj%d-^)Fr;03huT^}T%k=Tu`qCnFZ6@`FC~LL33G<_I zyJo;Smn5n(EqlJ{8W{ba=n>Y4-w~=xgGCh$^1-P~Rvmb*s@R`V%pWng!V@@x|It@y zT$m7!k;QV<{|h!UsONvM)_)ko9K?*}0y)H4j?P#E-|1)mr9Mrp;$kq_0f9ufp_N;8 zX7dyPcNi;bw*>Y>DBko5`4}f(Z;7CKiR`Y z24i1^#$b6$Hs2XhRC2|w76pqwU=_+m6o=jfDYiVKg#o!Gf)3SsiESe6As%WMPZnG$ zjL1=Zt4$wu!%eK2tq*Z?xX=XR>{Q*sD+io1wNT}hdqS4?Y^)?TzjLDl)vt-gAe+fEXb)?*BK%yC3;e-*ZK}cR(8W4g-WFNINv~vjl{->;5dGg26JK_38=S# zZTZI9r2P56!ln}*kmKD5r8|?y3;j+F*%8E+zd|G2<+TA7Xc`Wsmp*Bo{HUhZ+L|Zp zUQQBu;-V$-#}UbJ5plS3l0kUi7x4ZETg^aT_l@O;!oV$x`-`6u5hw%`?EVMMyhH)-N5F7qV+ zbTGtiz(&Ig2{?4-fj~dDrA;r+l!?Nd)g|)V`N+Sl7c=>p>F8!_cU3J~#@1zM0L}_B zGF9WgKW$mD75r*9>6P$xAWIp z?JH%E4Hf?SE>Z`?Z&ZuD?)}T@n09sy85VGG{rSYpWHk`tnH1Qv0O;sAp82u5AH`C=f*0QixYMAJg5RD z&E$C1;Thty=A=GZ=%-n*{Q~8Nu!g+LX61{<4u_`E8bE=xE@%~_6knR;sahw*MAtAy z(v_`^ayW0~^Si2J$cUqaD{2Fk`FX?R(&P0yR{}n>Oah z%?rag<=*9biNho`?|naSs5DJ&vH*!u>ku-sSl5@D&54=KQ$r+cOoEeQ-hUok@yV@r z290$Krk?ebw*e^`2G!#R0-RjQ?OAoHr%>xUZ!Y8oq;k@)qvoypKGvvR0_%1DP7AWk zs%>r^5j?|k!zuBUa`%iPSK4VuePrLNweallavCPJ?j=?z2n9~v?s&ZQL^@D16-uf; zj9KTWeydeVpum{sQIH?A&U2Kf(~-tFTcY#8Qp1qK$d36lFhXs*;*=NRRJrh1A_`m; z*9oYpIxRQmcq_Nb#Qvi{3ZA`;T0mDret&s9C^RMgd6DCs! zt^>I&)=;DY)dCv0fMIJSAzD1fi)%NRvQnZgpRV=F{83HZ0}ch?B1^MQjoz7UL*26+ zt~aOw-v^DUuu(r!uM)$3zNcuRl)Mz9(s8c8ElSO3w1E+@S#7f8veOw{pzwbTNCy*0 z^dEENXEZC{Asu1EtJ;K19qXk0K|?xr`32lur}Z1=oZm10it3-wPWHrY-P!5YY)`Cf zo9gDhZ}L+%>3{;9ojfcY(5_vKTV`%f-uNE_d<2m^V@eWVHpb*bf0+sJv;Ghg^+wjk z*&8=NI-o~QhF+1eDHjD6IWCJ^w?AZmZC>e0N<@cxqLzuhuj6}UuU}N^Czr}^xXD;~u;vK#kby~|Z!05xSf(;sq3qe5Y9af)NE3J` z!~K!(yG$)fMV!%qD49p`ik3oCZELM9&asUY*gHhxl|f9(zh_p{`kaVTPA2Bi%Pjm*^Mg0=2rbq%m!U9x2|0Ws_6&# z^^AaS_y`_pfE$w{eO%J`88X`uTk1o0rJSmQZ+~&2QtO~;KODR%rRvQh*BR>Sn}rJ# z#FP>I|9WDCzOM<7qTbmvD(eb^&zE(LStKSe0{%-ZjwNs_W!D$F{#K(}yfc>ll^vF; zkktD4%`8RsxUoC%*XB7UC?3An%~3aVRzm3991F?K)`iALbK}oSb`r7iJtR2sIPj)q z^?YAqz|yT^CtN!Gt8dX%;|Oa&b`#Tg{-+iIXb&G}E5*UX0<=OrV-`^W4ilAEoBVsf zdn!YGYg6)LEaN&YY1gAvyk(xy^GMVf6OS^A!FS)`jk8T~o3ok~b+Y0~KbV8w4a?&f zTqo9xce#ENg&>{RF1(Ehi4EjT)S61+%?!9r8%D{Qbt8{|g}foJqs(zFv_MVay;rgg z$e`QA?S^Of8mwQLTdRCD{5M%vOOG6z$gd5o^!U?UV$`asb9+$fxct&nM@7Vw2uc* zdgUtGksc+5uY1o;RDE53OoZ%#hEA6YEXVh_1luninb*Nh!$V}OZY_uP26ZRq$93Gx z1%0u9Yxs?Rd6w)Z)vrsAITE(;NV@f-Yo93d6;jS=7VlRajJjL zHwvc%fm|mSq=YGhLI3(vQ>{=)cKI8A1tAH3vMU!)-r;1O+)v{Gegi^|y!g@Mn-W1} zKdDGn_af)Fi(z)p^koryZP-F{XxT_vwg_M%kWGW4Bl3A!@^u!wLo`tm(kph+he-$I z+*?(_Z@ozD); zMz9`JG)yeTJs}~kK6C8DHyl228iTA~Tu)2? z-P_QnemjSD!l&jxbv?UVmyxW<>0vZ*u@T?x?p%8DkP70{_0OAn=}2P=5p-qfmi}bw z@16tfGa}z~*-RcQ!@Act*SO7pw#R)Et@UhKBtAjuuD;b+O;XR^3^qaNjnj~2)j$4G zXQFOT2+!@d2zj*K@2!N^qm}{I&xF{pK!(qZ=@FvwkU_V(Ip6G-pi7mG^J9HC%%*(O zzBOBi+uQe8g|)-NS5_lnja*}f6nfQac!%=1aWg!bldkFE2dc289CX(%zJXIo9G97@ zV9r+K;m$D;im=F_b@j{rVOuQN6V{%SVI;RRRGt8_sA0A8o7aS3$LqQUr?N>sR>YK0 z?rqiApEz=7Kpl(rdT@WolHo_SQe83S{4!-WSuBiTm>_`7`~=z>l?e9^VU<0+)z-EC zfV8sZqxjGIBLPn#^DL9E13+k@P^qtVrJZP4C;zn^XFH=hBkNw85*tcwv@riMzMPdv ziOYd!`ENlwnQG%Y1z z(XwE`PmZ_c4!!zD)I!r{GiIGsXUTedh>aww@dE!_xJnTaN6xtuS!pcu5oos=8r@Cs ziDku;lNTQIwOeE5pw_8%8DQD?77^W=&#}iU-B_DD$NIs*)*hM+rg3|9N5$ZY;O2o0 zMbW#V(psv$%6Yx}aRQ=08nfz>;cG7OVLhcj>q)bn$3n<#n}6K1d7Ii~(sgk;lHjm<%!dHqaS= z#+m9F3>uLUQ{3*T)h*mUW4EZ8tPLHH?!B`CYeFVBgvg<5oF+J0jNggXAUN7sdvfX{ zD!Vc*3%2~?J9>h9hMoTwe!NCunalcp=b>uV%wJYUL%&gyv%`&Rv?GKwIc>nCQQT>X zog>p}uo~@GO5_;sAsD+Fd&=Xhy+0@(AKhs8T2HU!MTn*x<-xt7pH6dm7UM*jar)1#7cdBc;tqMpw zkyXHM{5_9PgPHeaZoIlyz4{IWZcol}YE-JV6IR-1S`zthb1(`~G4EQaDcp|=$j^f( zurdYTUEu)Yw9w-cZmhTNu#$*?4Gt$}H43n{(IPgp(M}+}F0dI?sXcoCv2t@q)dx;T zF>B3aIPr7Xjb4Uah)w9fkwp)7pGpNw8bH1^JzC5@>H!Pocl<5Lcn$qB=vN$-1JkN@ zK;h(To-(NJj;!|~dbGKFqw?tT&@w%PS7qc&SPBDRRj0UBe1k5c)3vGlsvGxj1Bn3iuaxP`p1+%Mg& zP@kf;vT=jDb3&tU0KplEQTrf+=9N#AyK3tNocYZUTR0;zjnPTZCc6z&s zt;sZ~&euFe*@&lcF^(MDa_cvWb@E7Dl(eKPR=^e_$)mfH*H>%rl^ku~0^a^YUF_d* zzdx~bydkrvBZ4@jGAiEx5a5(k-PxBgL_vAA_zKTVu!qZ`6sGOb9VdG1IBHB=3D9OH zDj&#IT3W!)U9uXAD1RvJ1`j@J&3L*$@6mP!dHXWH)Rtcxac(|te6b@pYl}1c5#wPc zR30sm=|F;O7HT>b!5)k~$aKU9=MoyQk9FClDE4~@gYM%As;jFEvhv&gw3fTXyy-k9inEd$z#s{{V>Tlu|bNSJM2rC8WNYe~TQTNRvKcTfZeCzlzUy0n~WF><{m7 zGst&?ZO%{)#Z~V#|=+LQc3u<#Pq4H}tU;1K}mm*_?ke@#NbAIeMicmoci?4I8 zY-H7P-nhD<)GwiOyw8=t=IwU!z=2t(68RhG?HmR9dZ8g|w`)F*tN3Y}<%Kpn?EVlX zh0Y`$Ii{JZ$tU8j3xHA;Dr=6Q= zmPh@Nl*?$`^S0j&kk+4BYnN?npWGt+2yiM*uDcOvLYqtP`&uDKk21oLfo2q{o%L2 z>*@a26jRWc!crHXKRs$M zsaxWdh%EJ7$N5IjhlM{&@miwMfNe%5`Rm?IClj43mdS0BECJF+1VL+VWUYMr-p4FU zrq<{{2lA+aCpOLr58Ahv$)EX|$EXZMtXN(mp_WiSa_#sC1?umgPs@gd($K4B3 z`9+%w0%iZw_>vVXG@g|4RG)?*U9doG?krqJ@LGDVRT-<4wY20xxFTB6dDx?@?wcS% zS&e`JU9h23EmGvgYYiT%q>LS`12GeqEXtB>H&ie*ATpi_K8?P(OeCCaLoFY4hv#ff z{c+2o$G1r8W9>D$fWI5;hV_isg3kcl0IfzD_ONdhz|y=M8mkp5$upe&xgbEUK>EQz zjNF=Am}1haf=fDE`z37-Z_#s344)0o-wXF?P{K)dV%j_gj0ov>P@_;J^S=7^p_@;* zY!hLq49kz4be*#Pr3U^Mn)2K%I@kgW%j> zi=2n;Ht97>YQKiBGRN$M+g(G%5d{D@pRM?-o+avP&C!eWNeWAiXABqk&cbq_x%8az zb(WADKf~zfqr{|ycOCX7oS2|Tc2zy^XuImOWyCgkT8tzy->=CpQMiY$WmQ~o_RxRb zH2cJ*fdxnY8D7?L-RHg~tv=>hxqc%L(#e|DVyu-&NmKRtc80a@F*)6!nIGGb9c6Eog9#1FnIS#&_p4z5BzYpH_Ke_25j$L z3#6Zth2j6erDILvvr}O?O6lKTGi85UiNo+J+P;(r>O9n%@hF6cO6dr=|@4YO^#{v zsHhxiC6+eLCLq76`5|+uv(5INpKou!F%jgQy|*v{hLU#Af=bidByq=gXF4HiPy6pV zcvKX&V(>0XtW~R7-*#l#Sw_-g6v>K$5y`&LS;|&&AhfoKcOn-pGFX2HDFe!0@yZI` z)Bn#$W+RGJ>%3GUhRgKt8F-=2|Mn%+uhH^xxCl3Q9-Cb>q~oF2ZEmq~Cs8d$Vte&{ z?l%9Xjt-^S@;_0>Er~IaYAEc>@V_8mSJEF$Fk4NENyP|N21|KM<`g(_o#+CIqcwU> zJ{xZx8l30+4@$?(SB7nxX(u{aRy!0aVbBm^_mOh&J&499L6ld98(f>igKEoUrS@#e z|8LLI)Ex&I4O<8jZ59eQbFz_Ny-8{$RA1BJ<)thp_5BI1VGU|lBf7c?j$s!iNg z$gwHe=F0V;xaz)la5?LiEEi!#uG$D)wJ2UAO->HJ%Xo17nzLlpnl2|;B7oH}!FIHWklmSqT z<=V563=l(9^Bpglq$=i`dr8G1(fU@l{8fM=)WW2a>cDM10%8Oz`X<1?yZ}+^V6`*w zF7e8HN6S3NMZUeD%Xs0z^GTb3mDerq#rvg9V@*@!E|L;M%yY11i3rus{(Hq<{80z6fx6uJStarVW>aXZ4qOCggpNvDx72+i!f>**Ll(0 z=O8mKVmL8G(h5kl4xk3R6MIpa`^|;P$67Jg3EJ9!dT!ohpm->J{pY(f7(=4ce0j4c z!nud+j-_(tdIySpT1Of;6VH9IGN85whD3`AOJHlDJe{H|hf!_zfi22wE2d`<8f07#QuJvE-zPWWMS^?%ft)ow$F`k>cK~p$MUql~&j+sf z+XZan%&q~t-zePlK|SyyH?Pqj`$6^3k$}!zWrt_`;%NGOqk#R5ImD6d zCjiL0jKf@FCWjkQL6C|@K^K-)B|}8r+&hkti&gUe1Rz`M?K7A%#-_mo4xpOJoI(m#%y>wa)jr*>O}SS72fS6~`2FvlJCj>mnaKA$S}7-VFIWthZH zd4ys}cPZIFjb^#UBfqp;FIlV_Wh4GU5yejK6fi1_aH_I}Ho7v2a-k-w!$ob1y^7?! z{*81B7(RBuQrw{VOO48HoQ+B9BH6p0^6Y98a>5W(ZC|%D_2P!3*> zix!_%)q7mHSkB=N56tyCC3I`$wUQ=%F6|UMJlZ7PPu+ei&gLck;pYAn?NjkG(ZpVA zUQT^9O3q2-E0?uwdz^)&1Lp05pjDfra|f#(p`Vwv?NvxWGmGBzU4uM+{#JUoIbnvj z{%`B+2m5TM6+rprnYe6k`xjKzn+l~U$2iljj7S5Xb~Pq{8wHAfrZ2`!Z0eSClv^Ir z1}!X{6;`gKj9OlNM7&k2jAIj_rM81~p%23l^eH~d6)Y2*V8HZwvbfie8I!l6M98aU z9z6@VSK;y075t)1m-6Hrq8^X=685pk1RC? zUCdP|C&ZJOxh>(vbR5*wLoQo~RR2GQX6ph>C!JKsLkzO+rmU%oGzypILdlplc$Jl& z#$bhCn;kPyYF165602PB0&D`WD?pMnUfwjurQ*1uiNRz3v=&C@2NTGZ8J-V#$! zVW3MZxN!mUGE8Mx*5OUT1+YzHRt?Ke+hr)-2Xdh#PC`oKmV;~65JI1nbIj&%i(_lC zWf2TTe_CviElkXV&JZI#rx8mxpx7c-5mtb0YxZ8VJUIRxY$ z{DBZ35vrW?HB0lyRDuCB$Un8cbt*X8&Af+4J4Q|bPIK6#Z#E~R`g0D&^bNhosz^u2 zDfs;N!)MD+^4D4>G3!F2E^VN+C9-Mm=sHr_!!V#bd!Y_Y?HT6@e+eT)-hPj39vdjU zp_+ovg$R2(S_2vB#8t+c=vFb2YR2n2@JA zNYj=`f>`#m&LPswKDmg8b^sc1iSSt&FE?J4egQ+F{D$Ig-b!hm| z&^e;}cD;dcrp;~v=68w?o9=VxNW|^>ii`mL+&(*n?ZE8jtN*{pzF6-K{v8pbtO}@v z+s7Y%z4eg6&>*xpul}tO*I))V8&kXBCH4&>8GK6K;njH`L2$=J!?v4AP@8-sfFxipEIqwcKY)VIV9Snodd9eb@ z|4f5n7ml}I1`k{$rg>en#l$?k`Vhdb5l{TD#Sa6IlFuPz(>T&E|KLIZ6N4)6Q};XQ zrzoH=vON%zYqDeq$ZcNQ7R>urVym#@q^3*ff7?G-siK6Xezt>wTEC6y7^1vt8{8#D zAP+n0%qH#NNrvUV;z*%S9oCwy}d+g{tESpJEwB4r&F>#>E_#?=tlBsYK`AT1txw}8NZS*6p;l27K!7VATk%G9o$I}?SZRAO#!+953uiB`Q?vzXqk$>Ev< zjM-+%GO6so^)#mU4~oJgC$O;?Zm_T)XNCa}!dT{oR zhBo=gq-+khFREuKu5si|^uObupzlrZ`@&^Z}Lo?c0-Ozfc0hOI0}{t4qg$F26e2SSRIMo@Eft@unb*=_AvS& zXKgJmOv~&=;cqR(8454-N>ZdedV)nqQNL0p4rE+M(p^o2%Ergb7t|p3)a7dp_6?!) zjr@FHMOsG+zMQ6wUbYcWZQ;ceWry_P z#*k}pLV)I#5Ebi^G<-{(ke7wCx0tLB3vl;U{fpmm^VtZVyaCd%!m?w(vDK;>)SB=~ zN^2c1q%<$5D4Q{>yUoee$h&b-@eQ^J0VG_(UEAq8i>t0V*hH?b7v9dNCSfq*F!rH` zo2WmV`QwZ5^<)Z-|BF=V!l)V`Ldc}ncv*PXSlsC=b6M?8t&+5_kBOzHyG6~mFh`hZ zoA|&wFFsKj$2~+kOkST8bj(sWRHLB#v8hGZKojef=fx?vl+EjfPLnXSJ0KR=lu*s5 z4$m6E=~)vTDucir>1_4BoK0G-&rh}tjVgQP)Me};kOyW&REmooteB>7S&F+7kTrHq z`-0e}CfwxMsH1_w{GSartp;`@aRkj~{ul9zm`TRmyGDP(qo9K5SJuFFr_KPx z3!km`mcdH3OHRsFSNSVe&<#tauSXCIqrv1y-li|M__quZw!8owSzaU}rbl$%UAZEg z=+oVfuJOMo{|3}+=@eVHg3b1!iHuE+>s4!R0>MQ~?hx~Z9slkCjgbY;^NnAVUsoiS zN?l%mWzNd2kIftxy67Z>A8Hz5v@qW7t)q+0vA3qv-vzd}`Q~vzQ>4-WdrFFOioym$ zlRu|xVef3T=d>S!fC!(yGpV&@9*V+JnI+v0!6I#*!sA}Tk@xi_@ahRAQGI6^s& zmT_Mo!?T&;%Gw>_Gx2nIud(aSn@V%F*f=4hun;tkUQ$XX6q20>&HccK-rGkgpM;hQ zm7?>(SXWmO;;5zAgE7El1m3oj6+DWm{b?g`^U&8{OyCKZH1@+yVOa>h2w;rb8W)<5N0ti69;i!(@ z&^nGiaSnZ#tDRIDuu%Jw}0nqL7?D(SNxRKh2wAX95(sJ}M07!1McKaL?a7 z?8|;F3-v2;?s&&GrNC3sdsx5pV{f)~D22N^E728vmRFdXjE$8Z(vTjZ@JyaMqXYO% z0vaEBsbJ6-B;yAK>e|QC+CEVVxy07J$ZXX;2wH)nr(w*>f}Or^6r*U=*1v)tv9sk~B-Iw>oCa<%)GUqgpwwJ>MAdWo2a}fu z?&Kq~^91geZ+lBhmw*s0jdEAV&gjf0x1cL;f3A>###pSOg?Xxp&JY>&t@ZJGR@Wnw zTJ9>A5bt@Vht{Z&@~A+cY=lqFvpg^s))hv_S^voM{V%QR?;4uIQ2%W0!@nVFmt^d7 zc+7cOu+^EPpzp>zlfs57`V>a*lLlcj5X^Y<<6OD#Q|!X5Sxf657d|HDwXH@ z6<=fhkBtfXnaj)7<{pBlWof^B!Q?@XGcAAm)`_||N#0C_r+?v%ll5xtHn`2QZ5DXL zL(d(w*u$P=5y0nE3cUx02S{8JqZ5^w$c1`dxjnmIwOl9RAqO6U996h#v7#93)}+k% z>l~qoqGHmro>1@f>nfM?rMjzCVMjVK4C-N+S@OX~?k0&TwH%wNW_g1uRPF^DjY2m& zKAzWo-Xy#390c}I4j1Gli#bpPMO;Oh@Q>|o7BoJfPkD=0NUaUD{W{23wpm7T``L2W zm(kRg!mo`jFGBQQc5&(^Cf*SvgBMp|?=GvNR85EygItxNvd`+nrvgq%>BgyV z`%>(tmZPAVmbn`r(h!hEYbsz+Z(R#llz+e36y$xIEJ^O98l^<~Pc z7~Z}iFe~Mbg8+9Ewv@1@^z_gnsqla@9W_!&{-Ye>XaXf^XmHnIi@k(2DsM0PhRJiM zMC1z$IYoB0jg3dejL3Mv6t?7m%829+?RC3`?j9xNny;gct~Xt7l#EMBe|<%cO0e^5 zr%)33X#x@h)$Ko7!JkuK9&`&U?Hy?@2u~Qb%8hH5XP-|+<#RUM0j%1TlUx}>6c`kA zzEK3cDN!{eXpr`KUoM>d1tuwJU-(HhTk+H~)P$Lmdn^g`U&Txihk;-_iCXby3MPwa zm)(KQ{Vat!xv^~0a`s?d=vS~bk48ZfHs-Hx_NgJV*slim(O;?(m#)`~>`PJZgI+Ml zhRK(>Ygc^=LgNmBpWavE(c^N6EPI8X3x>Lw7{E>b<(|(gLaPod&b3ufqQtQZ#jHw9 z>L&&DyFECH`2re{|EsCdNU2D><*OK0E$>QLC;%fr-ey;ZnN{W^v=#v#!|1hSf>#c;*%6z zX&B&-d!{+tQ13`FDYWoDWFh%8-eKQgfaGg>jS2u{NeyYEn2I~tY6ur@U5+Z*BvR}b~zpx%Xrs6`{D#Q z-BS-#_$SHxC@KA<1jfcRklRY%UT{18vkr<{jZ|c=wt+cHUzxiNfe4Ud;5E6dL;+6W zjxpf+${%p3&isdQ)gs@@w0P(I?G`_rT>NlXCTE9|t6W$OA6NeC>vC;weD2Q-p;B6e z{)K(5ex;VJ#?;o1OH1j=cx)S1+reA($n14&7G_jNR)c87Po&(i%b|X3(K=lVRH;0Y zU)UX%e+0P&&o%YfsP;TsXqM*#dx{BVW;GRt#2_jp=<^ zDKi#|CFTjhTB9L;Gf~dj=SaZT>9$gvOok==qoomI8?9dPKL!9xne6c>xJSDI?MSj7 z_vg&UU&dAUx=ht!$PSr>>U=)zA;fgXcGxR`Ft`%l{c>0xy%ola=tA|9Ycbv=YqfXK z-%eros~7n``P*ENPS_d;!x49iIMUl*}XZ~m}_zE_3k|J+h~AKN_+RoM3W;q~VsMhOj#LQ>F3^ULONx*|e3>hA6DI4!J#Sh#bLWr*y9lO^g%u z^{QGs@YKwmBuE^+k=a%t2f&g#Jc3rR3_qE~=-Jg{1q@O9rc zkysu)=%c&->>E4e&~N$Cq1meBl92RXrKVTDE@#S|a(56E!c@emUgS6~KB_LYAstuU zIur&(R}_eEw?9#mdp24Y<@DPWf^tmYH37nrA;^oGB<(m>S63UXcT(a*fo@(^STq}& zZ%+|M-iFFP%2y9PJcOh-g|)G3&p)~$C|xorTQhNeVw%V{Mc$AG;UFrd7zh&cIhO7b z&~db}_Z{nF>%~6UG{AOLpPPb*4Q25 zTU~B*%Q1cKYcHF2<;;5)#>^?zosB3$+k_VM|I_N`vs~d-AOfkca=W2OLwUM9@ljYX zX830^9flz2v_#QW8@$?!&4(F<)?y(bL7*&_4ihFLbg){e89^|qGpW7oWg_3Fp|w^- zlH=)opSvd9r)9%=3Q*a}iyh(r(KqKqPrC78j2SE=znNfr8WgPupXzy+9kP6b7jg48 zD&@j@{qfl!iK`&`tZYIh4~%=V;vp*6azGKVX%%g#@1g<@M+NA}+8bXFaeeas{FP9| zE6pwg1tW8)0$uuocaZxf7Ct8ZsxOHKwCX*TTg&3aeO_){Ilq^$k!`5_7cHGh1Fpde zUcRDR*_vQK`-6y1K6hJ}Mz63Im_DhcAui$00GZd%TvLJI_~3;ySAyL`Uurvq?H(<( z`^VDrG8Ghk<7a|$@D_q#h{_tglib?{L&p|E`7UUodunRcx9X)ChITRH zr>P3!6nb}d?<4bd5{1FmZhSEYealb4+v8_%d{j>r<~EOF`pcT9LWJGuRqMrq0u4@R zc8z>mo+|bFuizs8MU=29w-LfkP59AQEpO4_k4F{*PxQCtqWR+?s-t0+t1cZ=I)_uX zk7dAh9kC#^$ljkyQTNvlN7APQnjZ6;0}_PCglgpr4_lW_OGahe56|N{NoXc2*9*|A zn)Zv`F}6-$_l+XW@ltWkdswLWRuB7JnGI&slf{Q&#r9rsuyBB5-il zG9<(0fu@L!I7S?$)j_O*z9(e_|5{qIyT!RVRlQr~(9@t5bjMB==9!E`)?_0Jhzm{! zsKww0hfZhhBb6rTGFPD0{@)36NN!SA_Jzz2>pcq>p^8^l6|0}WbjSI=y{oMMpbOP0 z>$0vE5iY`~FvQt>RO z)YFuV+EhPCBcy>kt8OHnu$<2ub3^vg;ln;{JP2nBts>8BUFMTBA`j@+;zEY3%nkxX zt5kt@yL6O@-@fxSxpTu6Sp|rbM2t9mMUm1L`@7jUbm)L;h|IZ(cK`c1*#q^7K+UTM zgpwW7-%M-$kQEg&h}YaipHE_`fp+I~Yj1?K?zEI3igy*{F$cR#btvxEnnybH*Y}2f zcj+f2Xq*+Kau?@mgAWW6JtP^HvX?Qs(?-V}15a8>0$W6EyYk-k<_JLW{}`Ie7%29Q z=Px4?J)<{h)JrG*eNl#l0;cNJEc)K5UKQ)mdc^I66gqkCvOuP_iu{}Q(6H~jOdP8w zzsmr7d*R-DIwiwOWvMy#=I-R6JB*^Sjul+(#PIJucj_=-wY63l20_Posy&4+c7#f~ z)^p{9rs>Nx=$K7;r$fgz1jWm6-YNV;s;_1X?jcQXEVE1Irv+W)Qz~s7AhKN!ZTjtT zSqFb{H*Fv4W3R_bWI^#VWE`H*ZG*l%A?@IYDw-~M2@xsRx;W#s78HT9mcZCND96^7 zAn@+ru|beRu|hWoA|0u^csE9nE}kCd+S?d+IHeUe6ogD~blAzp-H=&>+6~=tO&^BX zKK@c_w1LRe=pPfi4^O80-`p~<`u19{ktHrzv@3PuM4f%o9U9g(c^Qdw3yB#$hUX-t z8$aGu(xR#b_y{f4@Nt;WB;~8#T)%^+Umr4aA#I}1%axr&o{ml(H?}Ujj59;#ggR3y zp0+$z3DiwA{C;H_1X-L=J+-GVx;D)7j3;^l5TTC+L74KfLcIxcT^?;mMq@BP8c~2M zrSUm1=85^{G(q)cQdUNoK4tx=*-pOlaDQcZ2WdR%Y6`W*v&tjAU7Y<}W00!KF@j-E zqm$sq7J+)Zgt-ZSJik1UzdTbHQS93XJsBu_S=)^fEz}5@Tj9q*|rPoy#Z`bb=!ANDF zjh3LGJ@O;(6T-!qZI8CAad#o9a%IXfY~2~!-0ahj3XTHZnxM$@N|ZgMO>y#zX!+M< zadfb`dUxn6Z z)^=N#%7a}I7AJ63C6o1=!e)3+Oi+ zVo#X=F`hqo+yQ#k* znA{Z#m*N+m4S*yu)(R+gGJ8JI*Ihq_F^n)prvNRAWDKE_@<#*=*Vw3C=ILrD(%#e! zo&6Dggi11+%Le8|Jey?LPZscp2@R2&Su;CW*0qk%oxfd1Mv4H06#iKj4x?rK4pe5U z>v}b*BTiF}qUpMjg{vBMY$yfSt_O|1{xQ;liU<)GUh?CxxGepr_>7-5W*?wI(G#k@ zT=e@pjz2*YM6ggg&qCK3kng^89jzt|;EVqTaDda^v~k&_xciXn+kH@XqxIYIjHyk& zlQ9LEmMWr)az&P|F#TpG+JE`OJWCXYFFEa_a&y`xnkP4R_LsBExIq%H|{Uu4b zjfQoN{OT)Mt zF2~?)nBsb9tSnvalVV6RbZEU~mQ|3-Z9XPu_0@Q<67AQ}Y6j(@Xc5yG?c(oO$ZGG) zq*Lm0Or4t-ReDr%fva)Z9=59w%^bH-*}!|${=LltX9DbaTL%kjF*pP}dd#%ejXa2j zbmyK3==$BR#8DkSUxEwxH|pz4d1F?-QKT^aHHDRjUkmH8wrv)fQI1pH+7L{h;*Kvm zQS)Y7wBZ@6fJS5=*gV4-b~N7~K)p$6Ftqg*gU2Xnx3H>EaGlBKc&3mvN^`)Fs2YWb z0>!q%qI9^fr_|>1J4QqVS`+M$Q9?%UXH0>b>{md&zGNh&cB}BM>sN!9H#c@woNr@L zwoaqk4j2|naB33KsA1}=W^DF)Dydq`;;qKyk%QAR_^&WlgNJ=@4R`|@i(*WlvYE3P zcj0#;&`g!dlSoQ8&A^yQjjl-%UKT1an$&pwHmb1D_hXB6Me6mq34!2+THq8XROI|# zOfezBH}C~v`3RMf@UU7o>xC**2)AR9*(}2#DEN+Nm_{)zF$Z|$zs2O+0LqOLUS;Mx zjgO>uN}I~JM-b&yUVA*I7sAZowFYbmyJD+Ps7*CrpB6+_4#Xp{Qcvz*EM4ekOA!IXP?#Culk8Qt{fWx`iYczJ>( ziRqGD%0!*dy_6fy%5)Ge1?0tn{qY9Z$9T4*Ac%r6f;lcmMyYXR4=*N)>lkod7S)({ z_dOYMaNG!0l@rj^Aj-GWpPZ+~!ZGS^W32+_ox!IRyxsMG$>G&{Eo_b0&5U_Df5U7` zdSvJ8MK3{31u5!@tSTmp5bZ?PSw@|`e+!8Za44c}dHsI1kA+?rP+q7Fr*9h~g7j55 zTK~*dH)YaB=PCMu4}SR-rtEqP_Zqsk%4$8-r4KhAOet+Pqc$^~7w3$JxVvq<+50o_ z&h5$RDI)G(O{|QQY;v;iFn!tN|GSBfzYwTRq1j)=%XWJ#u$2s zVu`L4fS-RBE?gAVz6B6>Q@WLt&l9Os)MB~wQ%q4Mw_IGr!VHW^z|28zbE@vCb0N%+ zxVi`mIW^FtB=VG#dA{Ord5!!37Se-7ldG(5blrTrD0nt<=jsvORw>VvTZsopkV;w` zQ66$F(=(ZdMJmOEf#irJ)x3iUgM_kAT%=5ujv0FtHmC&lbd~!a3!0Jlbc8f6G*Ju1 z@~<)bH<&$ab0V#b*}R_l5+3C z&#(1ka>k|jM2PIJrDBaTTsTbkQyJ71+|R&fZ)DQIqZYaI0X5R?HT)KiD?2w5F+QUF zwbn>#&!pL-r>f(teBjZ7i|QVsBZfDc&~nP$eP$`Dllt%6rKvPRE%K?_1<#fOuT#%< zqQ!3MusgbD5@h`K>Yl5yyCTA0tRM-IkZLm~ilm~C8r#s(b~_7$MRBAj(udSqb`k2u zXfKaWS%oBEODSF1a<=S=bXg!IuaGr-C=`Y!E)rbanHK3O+)$~{lMlNDll*;3cEe32 z$P{jZrU%OObYGs{1ai1{;OY}fNlists2{h7qEfT<&>f?LX`K4$><9@{%}q_03sE|j zJ?R_Ysc5XSm*L(*rTMpzodR9ag%Q}cUx^(1&myTbu+`B1EVDwo;P!>J(gVkW)zAif zyPX1nr0?Emkid67LAW&lXb6b_1ekLx_AG0(Q^MG1u+7wuq?^$8n@8=dVzi=gy@&bc z>G=bbBi0h+bmCFBiiKMI?}50^dazPn#X`8Qnk1i*)GxV~hho5C@m#12C_ll#WKOSy zu@doaj??I%EU9sxXa_ta_HvL7hcw0W_2~jehokDAKELmqh_o06@`jYy7>-lRoZ&Lp zqporHvGa>9Y|&l`G3my zbeL#BNF5gJeWtj^t=Q4s`vDy}%=;~3B#GLeNAur5>*mYF+AX`^6)SKcS6zI#Xlg%^ zW+f5zTN3pq6zj{lKTLo;QylhvPc~{T)#GTe;uF0lZQ9^gwgeHRGA`o6m<+V6 z$;vE!ezyeg2oEk8Z3CaADt;+x6@Yx7x#!Knk}k7<%>?iEwl(g^gE;WRvR|msVeqeN zW~onPDD-1n_qo9mB(tIKoo{H}!er|wSu9*`Be6nK&;_{@f{j0m5}Xf=9@po_NvU`d z0_b58v-7rNS%)7gOV4E9XrFitg>@pt<7!LI*GPhRHr$}SHPv7Y zU`_wfLqY5?$zxit=ZqNeqe!nM!|Lw$lPPKM^jgD(ewj483^T zWp$MD^(Jsh*N{=!!jO(Y_M3+Y zZ=`>#dmL&oJzs5VJG_cuu+&llq?YY8E#h!t~ub`cvZV9 zpsrQ{ch}M1uRq%#c!>Se5vlPNIay_4owy&{e&4>AXYP`E62|qS6n&}LhBHuX>&Z1J zr>AuneVNvT41>z557xI8H(>)e{M^T}{a@3fy>;l&d(HNY#7 z8;u8^;M>Dov?77610a*j2W$zl3kQ6-Szg z?#&@KvQkrJmz`of;R{cvZ+hFiA8_>itPJQn%F|g6qa8E_Eq-`Tg*N8rTAx$V8%jr{ z|NjgicnhH_BdQSIcqzwExx6R%zO74JD00jR_DoK->&^(us3bY%Ux<|%lb$`XaV+Vl z_+(kW#3X_s?eFQAq2{-0+yo=;ktU23cq(ylsj8yY#(iUyt_&@>ahA2+ZUmKlwCENe zE6I=)@E7N^%nWG^UmTgRB;T{C@*H%ehmbhhjb{CHKOm+{(DA4?g<^xHpDyJOzWu}Z zrN4431MWDD=aA~~Ei&?+?!XOoUE-7$Dvvga&^Sg16&LD~Lb9$_m^_pwk@aA!1({i( z9^>U!JZ5ofF_0ecBW#63nyTyl*217;@4H_2VaHuW4bnC4(SMa1&hzbeKFmK0CV05X ze=3b?dd57Pa*6C|RR_$}g>jp8=pd^CJnGOr?iJR7?S`3qP&4I`bQ0BoQEZ@^$*N733{5b>q@hqrI|%uz^@t*JhQ^S}~%! zRO*0sNkS?S6x8%%B?27KfqPZu{Ec}I=RZ#`3dLQKQF(q>ib}XO77KH^7QFn>W2}Q~ zQVA~DSSb8ok?JIkO~MHBjHza?j1E8?Qe1n{bOr_Y{eZsz=4%^mTUx`Y-xS~CMT|uL zjT8Wd+}8y13MaCwAVNZJSFPKneD9-yea z0YdkeCm8td+*WcYSJj#kA$m&f!A+?KDZ;OZswB2)?|#9oXh%eOF&Ufjk=u9^4S>8|HoljBqwkmS zgbn50%-V%HUd&jkQ4GBA9t#(~vTI!!K03(ma^3*@I$$S|i9LaB(}7-@s1Q~Gu%FD z84e588m|-#NqJ31VLzbLLHg0UQ68K)05|_tVSG@_t?Ge<)T}iHPKO4&PREVWWFTt) zD%VifS^d3kR`72es_LYT^Y`GY*+jmf9LJCAB=S|wm1Ai(>G|U7;hQ5wivv}*wCbF1 zR?`JKXahc&6_W9ih)dZ^20O7GZ`J>fd8SUfwwx~|81i<)K?uVN8Hih_0Q7LXJHPnh z0Z#|e)=%o`Y;-xc9VD);fGnDc7YQWvk3&f7NaTR`2Fvzo>@^2ER31|5nmEXnub`zu160gd2~F_ZQRQG<{! zK%VCLX#!tc*~n`_38SeEpmY0gC8~^9<0GdpbZl!5SY#SXq0Ol-4Kqr=QDV5dbhw0v zRI>Sr;^}g!Q1Dz2j3$is%hnp7{71zr2 z@iKwZ@>?niTZ4B-EEI>XSqk)iV?zRg_G#6jEHqldDSPGffNKNlhW~>QcRN)g!-of; ziP)+dd4*}sZ-849G*K;4DGrWw7k6vQ%S`v4fg8tCP(HOMu_Tu()x+5Y`(pkE%jL^s zT?S^^#Hm?e^c0KDDzr=O8&zE8c;dZ7T0JZjBvj3`n)UZV9M3XyuE#g`j5a2s9+X7u z4vMNvqowpbc%x?9s*Lpb3#utQ+-Ln$V5S}g1d)Hi31#S={z6A?pS#GRvt7~aN0qW zFd2DE)K%nsYyT&`R71Lqd`%i5XojPfUl>`dSnMegr0Od3XQT1<$M5hAH2TfflZeOY`T{vV z0mu!vqc6?AxFT$zt>T85_FxIRw$$u2) zpP0nX#b6N5SJkKPRx|EpF5&5qR9qGrmPy%WmR-1G8!^d4NwJPdf^dVS$w;^+u}}&> zN=4W@bl-8w4PoZ5-hSoL+HLqn!`jvgy{BnuUUHfXb+vob3u(_srcBf` zO)G!BbXE00*QluwelSGwZ0hCo*A|D%ceWomx{s9~{Si3o=9fD4?*Q>OE9~8;$B40X zDJ>XxF_lMdD*flFb*SWal3zX6X7}ab6Y@c*<@0pU5t~av z&)cqV;^0di!?v_um4JWjc&>DfO_A`U#HFES9V(wszMjgzZykU8g3ij*o-FGB>0y@) z`|~eien!cU;zw))bUZwKC#Am0?4t+eWBe6`Lar~&Ft1iSo>%FY--nOUOrDa86cT?T zn#M=WUK*}kY1x31=-Kwci;XCVlp+?AmYQfbc5wm&s|qq4IKC=XNq^SZ)c+_G=bRaP#R&T27$WK}GfYZLiX)yLgDSqH%@Ngcn?feQ7<6@eA(aw+dTn-u_QUjyJPKo>8f)~Y zuIf9AQO>G`;6m}Vdgb)e5?Y`tBFDp#=nQ`S=9-)7RN-X87pg&exL{_PtjxwgK1Vz0 zB9-{}LIRqh4|e#l`q1Cz#|<8n74w5|6I2tjbXBHaIR<#V>eIbqWTM((mX)UGq{pu& zpN2E#8yEhe+POo$-YXSV1g``Co<^7K% z5Ps9JGXzV%9=`K5bl8o=xDq#yVJNEm{$&$^;rXH>KnfVRl)HhfgFe6CT90u;NqHacroZX~OM`d0!-V@kSu&yre?hNHR7Xm5A`4(~-BCLZ!C3?2TVlNKG z^9`XE(o({BH_!iZ=wMr(H2afezhiGj_pA~I=ffnsQW9p0+jt|O;=F8j*elqpSn##M z5N0P;eoywh5a*{3ed473F1>5^h+r{Yq{~$2O`%G#eNF($=)rTMzhS9D=5ymE zhS8y5+5d6ao<_$t8>tbdPB*GMZqgLFl+V2- zMN+Gk=12uAMQm{EWYK+lmCyajjl3qZmG_-ne*IBR)Thv`l~$GCo{#x-j2sbyd0b~w zb+{)O9-s#5`=q&{(W0P>?uc8Z+$t-)1I@Z+PTGx|37Ifp=28!N;ywfPfzwOH{!u;aQ;}|}-67_`JfZ!5YD@G|hj^Pv+~Wo(74WoR z)3lL*z%@f=R6w~HDI~o~Qy|^W{Iaw*`(k}Z&%@B>brgfR1i)4c?cpDUjyRO z3yd=Q{2K!f8W(?e{BdJZjGcXZC+lMGwOGmHtNj!7{i!hv=|MUjKieCeo*Z!Hnm0`S z?%%wObL4AVR1;hDnBJ`4Kxt@O+~Vkgj~m2U1Z~ML7;JN0cxqLZd!sl|O3}LE2GU$j z-{@ODdXdH|;Vjd?SHGStbZj3epd~g&ljz{`06JV;J)A5_h0Yc<294e$YV)C3(!m2O zhZFocW1x0(>k6S32?uBWK-pWbKBi?uY>!(6YEGZc%1NDN#5>KF&hR8&ZmBt%Ai2C{ zHU$;m+MiV4K~(TiQTCy}v}PllV7&#}A0UO-I^hEA#s-fCe?#$38ljpVlo_XJ0R$C2 zhHP_r+1B)3dC^RFwRWl*)r33ON(MkZw!Oa%c7pEZgc+*ga=(VmMNa5M5J}nzNy}#buaGZ`@zmGb3y2gjB z`wfa*&5G30txodIozHVEcF|?rv8KgaNxUDLR})Yv9yO*HV=`xn;rGGP2&z@czo~y+`+|SkEpu3G=Vqz;eg=)teBK(@ zaKtrXi?nPgcyuHVfm^68@UvRe#-(X%uAYr<-8jG1+D)mYyMm?RhCklNDYBx$DKmEw zb^eOuKF#jkIpH@QpCcx-qDucJ%5apyoH*`NTI5Gw6yc#*1P1M*(5s=VC98FQrV-4#h zq%U~vfP5sVCVpCM|D2@R<&RimYR7)+mDJkyoEBx@&{gW0E8nXMyPZm_>@p=js?DzV z;zIXvGHj?HY}p@$vI&1+)KJ57@cPaV$ONOqv)-McxHO!YKvA!1`ieDb_eY#qpI~+4 zgVbB~MmYhOH}|A1A3q=uFJ0(1%|8ctuR05Nmv}7@?*a4L$N6veC~n8xgf-(vA+f`7 zd}B$vT>eHZ>Fy(0cG(^cc%)Pi`F{AOVEtBWNt8_+7RY_Jr zT@24F1OqN9qBl-lf~{#CtQs4cMRjl)=cAh35$lNCfm6(noZNDJQ{-VhRf+%ao-OzE)T(b*LcRv`$V`6ZSo=p;UUM4Mac_OvC3>&u%la3 zc1WS##e|r>JxG(||2R^|gmI|_I)B!2Q6>7y>8LkLBUzTO4@rs7{0}k4BJAX_6ge||3IVbkYy%CY4~NtG){l^Jg@Hvml3ul!Cts)j zz#V8_O+VMkr~CZ&U6lfg`gh*4@9zg+)3VM3ZA2Y{53!6D-`X4tW`-PA^AdF|NXq_M zF-4IWLb+9BP^;ehFgb&+DI=nuX(*y`;34Eb1aA$Db`k;H-qZ zN@(I}4ZO8(!fDvAJx-174Mu!VH68CJmkxm^uv*~ri35+iY=0ukYn*2eV_!A9-GQ@1E^?;FM-!Htrcc$d% zk6F=lW3kWo(%o=8vs+Y-H#6AF3EQCv8I3-ES81z{gK2eWR`K`m+j%L+B8AM9f4G&s zdnhW3h2NK(0_C30vx$aE}86J&fL%WLG&9}AGSLp&Qa!`7A-9fA%n9}#$!##5@!(dxzQ2qZ0*u*-l?ZSZT?Y@< zBB}0D29pPM3Rhln!{Q#wvbQz*fvvP_-!9LKaY<@%6cI@>!X)yLIF2`_vfk7F@q0I= z>w)JyWk-1~nm&UyPd4d8SQtScbiLHz?QKB zU2AwFYGIpoo$np^-Lg6mBZp3|_%}cO;T#kxn2vY3N7|UXl=;hA+HEy=YCXEzvA;c& zZ{p>m3UlVAxBw-Difx`SM8dmwz4E*-^a8GZ3)(c_%mSXyiGJ+YX(Q8_p1WOSv2^J- zQcv+mkf(?so@auuKV|X`=uGQN?pIIm%fTg|hdK-iXY{UUB)T_xz0D#e?H-1u7Yh+iU)nD3hNrAQwjfMFFWffnQ`WfHY zyv;`@`C!sEW7iU-yM`!tytdJd5|0k*^))k4xLD1EXbR~1_~+-mpFa1Ut=kpLHdSBULZ7S&;curYDX3#nXVs#qYAL<29_@h!SLKk?(a58jlk!ZX@ zH2;*mlI$<11e5xt5lUZs+hx!%79s9ToWaAWP_K`Ay_Iz_OImN#{scQj~z z7el}qqI0HKveHKcf% zV3f2Y(6w%nBl_s@Py z^~_mE6j~cUOy=hk8lw2yE{5?)KU1?oW?_V+E`NE6 zxS*@gonx#Ju;=?6rvT!Il34dhj1R=dijp|?OLu4Ts>PKp5k^xSE0lES@xy(Is)%DM z6h7_`7+O9+ND*b*NQIOa=$`QrEOVtA zL-UDTa~_R&rua1j@09%56!itTPQlqkD%^0!a}=2v_McsRWu{?Gj003n6T&2-x)WBN z(-j%NxF#X_7)$d1IOKH>R2=25CrMTQk7L2JTRx@$voo5uj#xPXdoIIIIUsyf>#*YT zh04I?rYEyPi_iM6yJZcE?-Ti-phFted&G6UM~xETO4slD00}^)D-b)9`qiy0`c18< z*#l_%VQGk)i)a1n`8k=>Mc^$rLvhYYbw+p6KbW*(iBt5X7Dy-H$Qm#=p$_z-`|vZi!If`;F>hb3e0Dz2~Dtm%C;6dEHb%k3+T)=fgH zH0Cd_<_9|BM<6wo9`ea_bmMH9jKgauT*tqfV!a&uwSfvsWK`bgp2v|Tdg2jv-dek5 zyl`(@+tkr_dci)cFRncW;6vx!p~guCX#j~dUHvN+PFLrait$MR5ES`p&PTWX!riZZ zQ(0l}hBP%DXy-#KK1UGim=$BM!#Ty6oa#3KUqK;M8}}1vx4v}k)8%lEq9Bg$^HhiN z5Z)B~nm63S>0-{}iu^O?UlF-&XQ2-)CKF80SD}_K4z=LXy;d&Bc zJk?fY3ldp#$ul;8V)eUL}+ISZE@X^9e0oPczHKMNwFTtg^cjf)QU z)DRM8ZiH@*#u>sHe)YMA=_57Waw{bQo|0m%>;|ON!4HoO(OHxc1hx(1d-u`$hH@;0 zGC9`_lXU9eqZk+uPspjL>o!@@}{`oGhaK-Vs+|@KXI>7_To%HtVw@MFN z|291;Hj*p9er8y+J+GrdI!D8m&iZv&{jyd-w_+GmuPd37|Ja=Pj&~b=A>q^(iF_67 z>WyrKm3GjEc^F2LL63}ngc;e^^_bcgDM{OX)}tCvv=uFDd!U)*7Xya!6b)6NEFg0QU!Vf^qbThsyH_>Q-K#E z2#7m0IB7vTpWhFKy+ut#P{qz3#{mk?Ao$=zr(<%HpnS;H?^+zu-kNaM&f;$R3gjvL zpL{o?4$h&u(vM}L{9K=jwidABrHtGy9ZU8^`VJ5kL9=nU*Nu$$KJ@yQR@d5rm-q2f z;HBr0MNv`Xd7R?VO6IN}LZ+;$a{ z6gn^H`d^h{nED@aY$yJd;DM*z0+dB4#4r^@9}A4$)a1x>wb^wjAHs2@!f#yNbC<-R zG(3?_X`36z;wu`~9X59@pnanaM=g~@VT-uVqxLyLWHog0b1glon&H7XZH*(^pA~157nTGu5MOJtMOCY0J&d`|vn*K*mcs46V;j=E6dQ zd|Sy|`@?I7kqEiTF}^t`o2H_T?!OjWV5V$hFrz@|0M8Z82_Ar0UBD~wWxi1Of|}}; z&jgN#BZa&l`G_&^z3*-s)HA)dH*-CdsE|ocDcg=}nN4b#Y@C=)uR(oFg<7U@%|6gv zkHXxyt`}(4)b^1p06}USv&S86-UP;M(Ens>&~8O!`;@Im#aV0f-wv_`dE*60tTQ#X z1O9@kQBlz9!#IGnWoX{|9qRS95F5cmlb!Fw@mtb*&gwq`xV8k~G7#cFHWApBTK(Hy z4T4|awtF|-iqO7c%tfIRb<9}Op?y#%+YGpRPGvVuBDgq7T4!0}`|FM|eoe$|<*GJG zjSR85SeG!!^d?Z<|LIw`{$$Hr3#Ans(yhoP#R9EC8#=asB0e^d?sHb}zY``oGwk3> zg?s`{o^M(wdW7rW_8e$6+n6u5TM*Xwxo(1?#gx3`D$XB~lW>qL^8KjCCE{NTG)x}q zeG7{3ml)-8+cL4cp<4WkX~T}+$Bb0FFhQgb3O7?ksvQ?{fzmRG|E);m^Gv;r^56hc zmRQ}#(J%WZGPFbgg*a74e6)UN#-%*N6s6<#W_HX9Czso#J=uZT6!#f#!CHPa*WyG; z2-V}c!91Gt2HFEWw9}w{eLus_V;>!`Qhddy6m^i7msB{+|L%o#I-5tG%e4Jv^?Xm$ z2sLGJq!$X?-1j5fXILh;v;Z<>^?YObkviQHWKB~@Zv+>h-&coG9iiNuh{D&2`x*|Q z&Z4kkU8STBmRZ6GZafxIQ3lTYw>j;yt=x6_X|qqVjE7gz0R-y@1xq1@R&J)ridTwF zEdr-ib}fy$>^RUI^Rp=ROZjibSUiOKDoCP-%mj za)xE5ppCyvpASqYNed6ly^Jprqbk3WreWn$a_BK;t1$WE_b!JqsnK>p$NZD(()EZW zl|c1Cnr}GO!SE9FYVx6tjLwG9hIFVQU1Y6ozBxz(Qvo$du~QT`^47qmPrR5y>QzLI zovaJoS2}iU_L&DRrs=g1il+@0zPsz#3I!+TF3voeNaJ-iC6UdK0uGLI)x3{eBfQnT z01+o!2auU2JKfr~PvoqB%!L#bUkLR~03baS`T}eFvyFi>a#~hD|5?iGw(^9*+zw9P zb3=Ut>00ss$6& z8GK)L!IJ(NGe6`rZfivjAR7ciquy8rHv)4F_km$t7mPH)ve2lQJ&&{oVjA#;e|a&D>S;k4EjBLt-(a_!6`g zhLpe5`R~ZmLuaoD+Z9HOe`H6fSSPTCCYA0Tr=`e&Z$eOkjd7OKN}YgURT7q!B&}H{ zZLthU6P-I{)Z`8}1%KAjXyp6Ty4aEo>PwmtvoJcyPerEFyC(kw4p-E-{T5Ng8<-3nq`VUk3es zi%);(K`}36qEXpGv^(em?g#S=3l;hduqqhk)L`}{Pz41#qWF&^rK#>0nP@^ zdscd<;xBS=btNe$=y)f~tL|7ghkcxA?BKwS2SzkF0>)Yn;)8DXVWN59mP5_(PcVrU zFf8!^6iVQ8)8!T-NrYtQL)_x3K2BJrP1AFpxc022qTPLoctu$8=#qu3c8u-~q|6DS zh^RJ1-sAGhk`Zk^Ob7O(J$;MYeWTMgvV^09`7B>&W0bDxBp%DZ`Flqhiom}D-<~;l zl7%{2>!5!}LKy(30r}|`Lf+&1iZ!23Yve=!dqAkVH?j zbvI>Dk8A5t&y?s8T5?txD4?5>L4j;Pl2-qz(=}e?4 z*G9Bifo%xNQ0J2iL0f0et+zHpuG~zO|Jpw2tBH!RRVum@!o0P{$Ls_hd#}l{C)aIj zFN5ElcF;#kB>=hZ-}p_PxmP`a@eUYWaaOVW6!ND)=0**A2;QnFSQ}qebKw;L zSo&Tpn5~nI+JYJBbPeVafhKpI_7Tewu+prkt^fk>Q>l+C(JO_FM6}-D5vnTPg0m!l z=-x?yiFIYc2&Q!-fWEKMObLZgazq2C>E*aPPw|3<5Sbmc7mb_TDS)Zy zQv9=J??XI&t*tc)Tg*(cwZ6XU1Ewl#_-=I~zG6H+eZAYjzH#e4Hw7S4y3S)^dOCOy zbCbtDnX8@))r<`kxjv%94#r~*dX@Cg_>;Z z*(X+VK&VUh?NF~dU$;etQ74DNrYx=ti}exHwO;cX#gRNSRStmPmij|>a7CrABVR6( z&<&Xit)OS4cL7sNLgVdons>Bj7+zw@{fsOPOavgGlSd)v zfZ5hAm?WXhezpH`5OC)nz!9@i!SJ-T6p>{VxaR}Pe-%~n%`{qiB`XC|K2w9U#60DK zlt2*a-TSHxhz3Km`h~P9`Jy0PssMHO-j@GDEzg0tdHc1=ijOVZyg;hnyN4?{G<;;o zuRpFWCH-^hQZZ*^gvtf-h4!u~DUe4%QU-8i7Vc*kZ6+oC`&adg#l-53goJr%UCMU< zioud^B1uXkT;i5~YA(A+x-(k4M)he8LV>$zqnbY`!nP745mkNzMyFqdWQt2)SBb0O zgvSAppXTedEaZ`UzCxi$)ZwVzu`7cl!)!JpNTjy_B_0;ekI8r8!VuK+(W}}m?h=LA ztcO9#esZ3>n-V*8e19w`y~eL*ASE*e!^_1H{}1BnI|tf`)vTQOrSZFIfq^AE4rdcF zet38^>B*5p(dW@8r6Alb4okoA5a#gmSc4L2;~>H#sfe56k!=BO=TYiWfMeW$f z+XR0{MLP{x=4zu1C+;O4KYB&8NWEr^Lp_@nq^i;oDpHqUr%vzIgsJW@(hkqIbD)S<9C5CBg$5cSl2DB9K@ZT_(;%sX?3bw&^G9~@~z(6uie!Wmfh~Wdrf+j8AGYY zh?FRkr%p@Q*k(EAELa;C`5e`?TBxWjZcF+vV^1DN*PMl$|3E5 zT`sk@F$V`db3tEtw*BEs;gaQXneCxS)M6|pgT)2!`1d}QMXW*!S;iHJWVT4Ci5%TU zlq-+6jf$8)O3K_bB8rLMQbCFO6A!F8#!`#1K&4v8q}nI*=URrykpk@g`bYPwLbr>r z)@=83Mb%yHhA07p`z;s+IcAAO|L@?ArRBLsy{r3W{Y!7Hdwp2+zdtExi@5zb}JStCi}H#Tu(VDD#G1tc~h2XWWcv>uw zh$jbK2ufVORWI-D*oIg`D{&16yV7>&dSiua;@98g4A>`Yy>hH>3*3FROFbV5uyBC7 z1}o>{1tNS?_BGo5Q}UMLU>qsCzEUH@dCWA|jeK3%qXsML?}iNGl3nTFe#rM^k;PJ# zlVtE2(eeJ`|2WbtMODmgCQCv>0=)hikQeqr;GPJzAkT?;`MblSVw zOZiz*L7DaKySJ}Sl;ytSk;{oo3TqJQs5YZLG?7*3%GWKSKnLtVj|tzRN$cv`cA-(9 zIF=b%yaJLR&KmW8qlTTi91M;_lq7bjcBd`hr&W8?dVaRPC;30f{H9S56`gghv+gf? zmxWQn%A^4STXL~AZG@F8`dMC@sEeIjNVua>nWF;5eWeP0Jx zuy3Id%3y)%C#&`7K94b-j;?k720s4KI48oWt3Xra)jhL!Dr~?N1i6Hlxxt#&lwR?E z-VcIH_h#EIwBOVk5a_<&b^d(Bd8czX(N&OC2)*JN%qMYZ$~I7aPUXS#CJqGu&xO*j z8W%6gzI)eNsyNW?kcCIqJiXv>S2#cVJ!#CvQ8Sis8)=QL1D}P+alR3>&1Qem*`@E} zDx~U=#D_}-2DXMl(0uD-FOOnQ*3l^}x(H{lAvuw-yI^-rj1bO}s@wVKxt)umfEJh++`0`a3l@eD_d}_nDZ}bYpSnG7HcVbX^9 zd6swp=>x{UeTDhCoii8eG*EVLs)sy#%4gD&nL-P}dWmq`Qm@zR?~^B{{W>}ef$T%s6Z)g;); zCb0h0q&?*EX#Nf$bfA+`N*%GtpE=h)QpcKLW4wx=5IK98#N$vI_!EG7N*TqVVog8<)u5_^2)wbD9?y}Wy5WGE=65GL z>jB>iI{$!8bB?SkCb#@sqc36Bmyxk2281~`_})V}@_v3csLYr6mdu`wn*opkHGyP7=bO6SKZg&;kof3rqcT0o{#o?smKOr^Hwt&v)z;;h*F32Xm$4 zLojx(MC6I3ukPlZ(iGbw5DWnIP(!b!2Mm9@qWJNW7k}@>FO5IVIS%Z_jTRgJWL#MF zjLZnBTe||Wl`e2ckU~2w9p-}8OolWI*@%14?}Ls>UvJBUz@x-s`30w2a)IYlAqO3R zd@pPF$uWxvZ_?7`9?0UQydR0dt^%)H2rI7N+^IBN)Ymfd6gwjP zLohGt7obtgbNjyLF^!rp36BBC0PQ=s;o!WLqIb^kwTAXzXBW!>1J88B&BjX|z59Rc;#ah{k zHy|LzG0w90uwF?g>loFM`5C1b56ujsyt!d|P8SEh-mQU1H=oTDL@fA~9!A;odUevl z{b_%EOhiQD+&?jwrKiEN8UdX5Pi6CV_2L@rk!UbBG!Nj?g=(buowa;^akSNe8neKxjf!j}upS6|OT}ZffWtbWQK0EwclDU4zm=e~p2phS^JXziHnZM^NI ztZkKmcJJV4PqOOv^bI&rISn^%0;GO!de#u|vqS2N-W`D*D;?5}AP-Jvl5FI6LS|lI zLqXfc+QR8TEJHgd`%JLBk*%p4rR9+ig{^#+8wT((kS)N%t3JO6kXlQw-bjJ&NrOpQHDz;2s|KK@&IfzZORXIjjT3RM{P z1F1&Wn%vT*>=sYk(hPD0uV^mveXpgiF3d*^r_0ZPdPL3018*;G^SmjQDYc|_;k(XX zvKp!k@;z~c-PP-p^PDF;KhGU*`RTWb63<~Cq%%L78Tvz=9(wfVox?tiydl4sTb^}j zXO%J#-|_~Y2~(6Ox?TwM+(2b$0L8nx4U70Fs;vggA?wVm6rMdhJ6S%M6qiEmF4L73 z!9M)v=XxP(DZh&pT={79Md{>H3R~uCmv{V_Hj`G2hOfJuiMg4)HG!Hj%R+*eJ%Z!V6JG>aV*w8vhV)Hd3 zG@_%dvQ$5Xo)Ed8B~E?C?6Fq*hHd%GvGEo&sFK#e)xI5g>TvpS+5J~~+W?z=zfx_t zu*`#6Yd)nrN7;^V)-G|+KMY(XQy{O;T6jY2J?wB7AL*e)u{^P%IvsZzvEe3KP@wgw zD%^c?^+u@v;hxm3V3csmb);ISn#3CLE#LP55>Ht%Jy0Q4(N#d&#@%zR8|l5XD)L26 zby2QR+GvxJ%=bs#(~eym1}>!5jzu3d8}aIg27Mu>j{~}l?W7Y(jh4jy838M8MqSjP zFTbDN6x>aciVO3|sd`sV4=!YtOVJ59Loa(Jamgx>FS`6m2`olECnos3_ z=DwBxmQtyoEO|A`MsGZJkEQkjbI;k-w!9{ZS(564wL_66ba36D{jDP*g$Oh6dsBqyb7t`lT^iWx8 zNz4;P8O34hSV)Qe72X@Jjo0K||0`5l4%U4~<&>UIf~Sno#i@^W%^craGloOc%2CDC zHDU~QAUB_HZ^SOrKNHkm+;G?CS5oR~XWLX#wz z=v$%JWIC#@_i04aW3Q-th@y|o%9f7WTtBbe7jQ9=#xjxBBzV!_qPImJZ$fRDp493q5%$97xb| zTL`Gub=&@0%+&@;TOxE^Q~g003wln+^1BHxTKnnyDB&a)S*S-LoNh95{=a*{Vdv%& zD`*KuAuHZYL}GlH!`!hzSq)MfzT>W8p|A`;zwIabId^!QT&4K2gWw^&5fYvd zY_K)R)2S`OI4Ij``V=P?n?1aD?_Q~L5zA_xcCKkxx%r^J24>=gjf}4Q5=tn_AnCE0><_}DT`Kp-g&F)P7ont!ZPWYJJaYn8z z3k_jK7G+g@V=R!eGO~&Xbi=cI$XTubVBk|T+29qt>g_MqlTIr4Cc<51WT20DR^Y15 z>Aw6S7!K=o&Xe=pY4dreu;)Xt8r#E{+&x@H&XSa#{=OOm*X;8`Qg)usFE>DTp#f~~ z$L&usSFVKji$Cj=zHD0h7d&n_yIVt#ZcxE6&OblW;@;|IvdYZl6FL)YT-fV)IcOW6 zUE$RvjRDfqyD<>?2yY$ zc3cUHHkjWPwh-Ke^c7T3002pjLXY?i72%i|4u0{k^DS+5Om8z#7_EC^$#Ja4clz$t z)Ui3o7o3zLIRl6vM;lsBlYS?6(eT*c%{Nu_SoQL+ofoQpB$w|-dtB*=GfM}k|8P?% z%v(EmTip5e*MOLE`6!iirfVVNv2%0fakIdnlxs~2hO33?N@r2=CN*+&<#Q%_x&*CY zj?o_1#s6OLm=QoI&01*XL}2dCNgN*$NpZ(kN_UN2!nZIKxsER z1wZ}?ZT6~Np0q2HB)v&am=Q*K7m$R6QIo>wpLDsuZ*Sz?ug40Dy-^|bF-4cde1jKi z3T5ebcUcT4Q=>Vr)7ddp8AX+Yl@9D+NS(=AR97I+boCGlllD_>#HP*oHnZEtqZP z{Gr#$d}__06(RgTzOU${D{_i{PA%vI4)O_6BZ@y2bNApec!_5k1&Yk5fHl_dAREAi z`qxFZdY+&AwsqUJh!V<=kQJayr!BRp9KC5A>sqmc?R6AHeh!fI-_Wl8AhQ}ls}oLV zN4`i)Pn6B!!{_(*fiaI-WkNc+X%JS$lNZiz%n(7JLoH!Uj|ZnCX|s}c9R zhRWW&g%yG--gqjV9s3u6iZ#a>ug-$PRIki0Uu&;M4cH0)rFu-#7_UafA)A(tvm&O+ z0V@B!R@CTHBR+n9YOrck+}V`B!!TZNmxjPct!qKaxS{NQMN6ShtJ4WZ$Z|V~pa9k| z+f#z3g-erjm%HD1Cp>7b1@DUKhTaMrOS^&2ro|4=`G?Cu-mA*4(c0l?cE%AsMU2JD zf_e5h&pWm1^|o2K1&V8Z%4&QZbbn*aUmgroqfm`7(bxEE-dMH;ceAx4v6xD}h6>46 zxI7yj3TvNLLUKrQGHaQt82XDlUvNbgmTDx0r;3ocL0@|C&-KtmJJvWmKvhWUwarvT zrvRwxGo_{5{y!pRgdMmYu<}o$Z_U|ifeO8zX3ut=eWo(Mz?XcnQ_f?WaTd;a)ND;# z>$kOFMHFg}Tr;v^!TjJHsTk3tJ6~XBy(wID1f;IlX5kf$y_!?(QuyEH#dh~8<&1h?b}-DEe|sCattXNfs&(G7YsBAWAD^uklM^^1dOjA(DE z^P6?mw*;z|q_=>X52Rd8YbQyns6tC!H~g3blmxv(+WH6`Wy`njYKwYbiJeYZ7mhU68X*&O%mn%@^um;C03ZKN5$dMHl`T*d$v zvMhdQrrIyq{Qds1#{%8#Z+x)~my++>bkQ+h_xJD`CeR($bovjtnzEA#U&70D_nDsmwU%;aj-IW%M}_t!EoT?WWw3M9d(LY5Z# zylCxAZai;3Jop3iU>w_Wu6(#Tx8GfFs`)VVhL%-YpU+`xg(_Z^I9wbBI|wz=H@P?8 zFldH2PYyJeURYJ5xr?XhoZQz(l;c*2763U|KwehfW?uxtOH&mEixQ2RQSfP-0G}v^ z{lX_SrG|-S1F#55%}UFz>sEMyKnYXw2~kY3B>UzZe5F^ig|_TuK5)ZL9HUcoNNW`C z6Wa*3SZ)&#zs#0dSKu*^E6pD3Q6Zy(IFy!=ejc=ol@iR}oNy%Ehx&9^c2nF90%s)e z^HlA+`}&N0@h#+~8d#gzl`vu`Q*6wQg$n(8qJQHVA4Xl$OGc@6mNQbuMdCj~(F9Ox|`V^7sY- z{;I7;soqfa+5>yQV_4qIfAQth!V-dC0Z_NSuMjMh#ZmB*Vab}IKVyp9OMB)APsA2W zk7YcSchx_ z>F!>;QwmV9Ohy)FmniHr@E#eXtISCE@%E?Bw2jTb#v5I4H0X)`m^OPunjqZ2Z{{>z zhPfB=+!jt&xO)s|ccH4u?HB~V(`dCm9#RHdGv;q_>5kLN7ET(;%*UiP89rfy)azEt zCZ*=qqb5PCUW@_n-Yo|h2-GP85x4a(>80J6gHO(h5Skj7P`&busijhHvt0=hH$`WD zxU^KCG+jBB@4^FDhvGjX~tQT|i&^zL?*c8cC6;8H!G z>>+6{fwi0a{MK;-yt*pD6ZRoI8^+3o2Y&}F1pMx=Qi>Gtas zzKwIVpd;t0kX#9tUKGm4>NTrqwL?$+7DW{m(-bZ86Zi!5y5Y#Y>BSK^-`er2->1&; zw__(qCw5>grz?k(Wm>M1iV)2ZI!!r$KsMHo7i(Hpji%+c=44}TKKFU5sbDB`FeJTd zyMxXtRrq7={cDx4pQqu&Ub2=~ic3&@eH9d(8{lthzrX0wUZ`hYH5t!m7#oKE}x zO}8UMT5cSG&{Cja6VcLvFlVqFuH_9Tw9nV{9eLuCaB%kwoyC0%2WcjSbF4SNHH`l~ zlVP)#yChrJ+Kwip0hn@aaKUqN|TC!XxB=d^t$hOO|5j5rV7%T|emE8NkP$m~_N- zW&-Po%O^EHvTShG2A84MrseiQROd2+dkgO5-G%))SJ?8>HeYBVpjg^`>@CG3P{*~l zx#>B~YLPN0z$cl3M8{!r6@#v2D%K9O+(`}3YtW>!4wvaotGx{E4pMF_hzWP@3xr zN_)auF2;F6FP|!&c9UJ1fg2KuKO`+9g$qgr#!w_&u$JJMR+P7LZ+@ury$eN!iN!19 zFje9Y&T*bRZi}>3uEo^u8UC9&|pEd2dN3ZI6ZJOKg#Nh^UzXjiv`g7?LeLB4b&&W!8!^<~kToSa6$4dQepI9s6nJLp= zu^yb0#$`Us@|@7U(={x^!-IuX$yf^A?s7y%Y`uDG!F#IjYaOu+E#$cz-@m0Tovyw zkOjlJCS7ISXUIM+{~%e{dlWfMQ;qXlq-o2^eQS61vqS!B1g}u?yWiN`fpdH8BmEze zwyaODx`l(PLbK!4|Dg7i7mokUZO&o)-U*oB#Y8U>`^G-lH31a(2bIzQ`Dlji`7``k z=bIk=k55AHx8(h)6<7H%=&?XQToUNw#->@jMByZLP63nAk=qs%t2M1aa_+ykDC7oq zBQ6r}WvIO{Aa$gJJtd-TWBFS~GyqQq>9F3$Vq`IR;GFra2S#YT_R)S?{Rug<80fC+ zR(ydybrupI4ap0}HRD{p{bWZmzrB+)YQ|KK+mX|gA7Lfhvss;w67(_z#JHO7NuTrRgG}6b9H|#IF8=1^m3!n9h zqTi%UW?Yf?cZa)$a*Jy`{i7fTJgv`|dj$I9YL~Zf)ucP8raHXXp;0*;wT1Be^im@w z4m4$XS_YF$@iUf(Ml7g1wz@!MqXvxb(bv2ka9TbJ1c?WLJN8d6MY>+DRAOL;FE6uQ za=Z18x_UG;g7^C)bq8H1zQqdb0Bsk~bOE)ECs_kegi(%*nibN;?XK6VDQUX)TatWU zgpzb4sYWjWOi!u-p*^$bis>i1Me|Z*qkh?8ZR=(CRJ{qnh)RA-)RqCi@Nu1OhnMIR z!{m($1_sQL`+ddp54oCcGCkw^-XU_v*sN05vf`#`>gHuh{{2ezpX^9;P|cqKGbSq$ zm5;AOtS}wXj!7)XmX#>(+lKSID}JF@mi&_5r|hGs3oZMTDGeLt->`kFm&2v|8tc1; z_OTOmj@)K#bIA9Ch%yOsAQTlmh94f1&W<(}-=+lg8GBH^yWBb7A_>@W-@5KeA4oso6()z@ljyI>>N5Rysq6A230*~K$qjvTYoJQ?S@8I@d`873NoqCIX?B_i_{wU+)eEj5tS|ZcV#QVytw6D zYakr%uaO=6eJw@Ie#rQSyY#S)mNUMzm{xK8#EHbr@|N?#ByJ|#?Ou6I2+QpQ3jZdn zbYo2|`Hkv7y#I8ktJhf5o1?l!-D-z{{C0Fvg=Rb-x|z=gIyo*GpQHXT?9MQ?7K*UA z#BrO(XBUoZA@F-icU9fwUG!`)!fbWP+`6$Vb3+td^T^4@dgD`_b7)M+uJQE#$?2qJFihLxYr2=9o#W4;XImy@N-PA2VZ@(Sk^sMH|p@u<{w-A z{#i7Fhk{2ePp%t{&aq}=$hX~OgN)0cBpk#ET1I-yJhn2Z#>QseiGSA*caj)pwz2*tVCi3vm$>@=0EI zV%J_Ab*4#LVz$36L2TN@c|(|s%>+Dy5I9DO8ch7qEEyxB*u)k81Yy=pI|4)`#LpRI z0Az2ZXEIzOcIpAPZwo+{GMYP3r0Yk64)e8>C5DEqN=wNwVHtgMPy?*5!)1-qAkhLg zZh9^S{kEjb%xwA9FKc5yV=7F&Ya*les$&B+P=$_!wEgt{`(3bj#|91KX9P;yo z9s&6@9y32APw2?L(`(P}7DH7BDS+YC-ekwBsh9PBL9BV+ZvMXpQ@|unqrjz>$~UwB z`Srz3o|ta1`1SpePjq;9FnGXBz!kmYxY-q))!e{|ahi^_J@Vxs5+6nj$eEq#;$JhG zGQbAoCesjl)BgXQ(B-nujY&Lk4MH9GvVx`Gn!+>wB(gbV$YqIq0+QkK9c1(+s3Mn` zKAOxm;^Nk>o3+=XgqTUzFtf{ghNmX48$%pl*wSU&-mZIW$-#?SvjZR7@#8P@jY3Oo zbV^Uk7$h9Ph)(JMQ4xWTC`hA7d5Ncj`>5R7FvIqzO6V3SY{288cN{6;>W8AWxIGz> zFXTxJ?O~dKdCmRZeNXRVf(OrA>@sg4m{YRiWS;A;mk+fjc!VpFC@9;sH|R_7|WE9m31? zAU3P(gLCK$09aQ@Xqae;`uj1xXa;5(xKJh^aI+`fn9YqA1@BI)bYBEy$u%M6h1X2a z(0S`H#TRbz;jol4vlG?dgZsHjjF;A-sQiU;|4M{kL?|s&C*ABTKjuNqBI~)&bFAis zszi@;`FA(nh$>{|49;#7<}}2y%fsUnY(qRo=_t}z)?bDVN6Ek;m0lY)2u=r~191}? zn+`Zbi0!c}MV{TX&YY(DQx4D4$(D&``eFV`LE~&NijbX`ND$V;POwuXh?DADJvnG` z>gQ!o7YX#=fmQY4N4@tK#T!G4HriY;UI~WI+GWW6$+7OjJjuJ_IDt}=gJso=^=ln} z|M8S^A8RyPOl6X4{EXoZD+NUwO)5_W*Jl92S_W0Q6gh1V?8F5ADe<>AgyB1nqk+$CjB=w}Xg5MHSO4-B8FgH_R--Wk@5riW`4<1YGF~<+!UomZ*@Z1p@;kx)Y+VGUHfi{mcd}$eDN@|fc31w>Ye#QxK`=e&oq|8 z8o#cVYlLsWg!I z=kO1894TUJdUX`Wbi+8$$zNJbAVdL0co-nfd|ec_mP;sd=6x?1%NGk{vAwZH#1qS* zJ>&3g*OGP_r5j}VxzbV+H9sNa)yevtU&Zg${7b_a*fkd%?Y^W2bGg?9o&mr>XZ$w+ zWALfodDYCxPi979p>6zE%d4mJy_Q;I3@UYS2KmclrGLR+H5c{j$^6{moTY z>Nf@$*@n)x|T*obl?sL{#`m zP6{C1+6HWVy~(2}x7bj+Of_ScT28IEAM3cJb?k?*8lj*4PLv|u2@YUt&=lW z9vr$`p8zP<`bCFdY)VzHafnKn{#TtB#@RzFjlc4Y0(^E#9^a>xzE9(YhcmzCtu4g9 z+4vJl$P(zPd|3e|Yr-QT{<%WUW_+x0b`9nF&Tvf`ZvB(1hS#x5j=05Eor3yQ$|t(d zs-Ik=BVPA~^D5uj;9r@?a0Azlu~$H;r-?-D)ZxbPl~|+!nM;RfN6m&v>u-GcE$NM` zoK_ARUKB&(<-|V4+{(V2mXit0&e14Lvq$yb^T1uxP2XM`1mL#}nNCax0QaB6Q_+MJkx)y}F(PVm6DXoA)!SMIE63)o6J$M+xnDgKy;1O9I}! zT&=XXektiQ3orp|rg!91bTeFHOk-_{ez@_`&Tg*Vb}RRgBv)JzDv1W^Im&zj4%0MG zeFiuFMYjl7VvDUsx0^Bd{;q52#$pXrd8*^hMcvM|VfTwq-JNWRXbGdP?8GT@ zDP^(#ifJ)=@IgAf*Ab(vnP77#$ik6;ZL>IOHR65yGGQ4yhPy9oAfy$wEG82)8;PL{ zLq8CcUuFz(dT9lrRBsnD=P8sjdadTfKu4l_7 zoA>O-+Nxp|2)vHZp|*`LsZD0}!;`i*(`g*(pLQ=QFdwp_S;*{@uW#W5H__~nnZuzDK5i5UQ zPLzdIdt>LK$gnu$bx()rm-RC4E;&(04J+d3{uo-l1lT+p4|a{IPMfE%?YoB=pYQM_ z+hwEb&jfgM-fsk|a}3D`oui0jITI?zJjokCp*4O->%YnwrQRkv#4r=lT`kusmF>c z;M4ubB4qKCf_;A)b;K?$yfJJ2AW$s8qmuaHwxuVGa09Lmz?`gdR zv4gF=EW6#E$cv>HBULFL11_l{b+5(!IW&oGc&6v?j<*8grlAd=R}v61a;FWm9*DcD zY}ur9Yr`=0R1cy3_@sK2QVD3~n$Dle6n7!imfWdLXUi!R&L%y`@xPH^L{?kO<7?bI z^NHEYU%0~}O9OFfvku*qF4|OPCBxBLY`W2Ljx@4z4wPxl?@+p2U{t9C@f%ecR?#Tl zEQFQij1JStO*wmRq=Xd84rR_A{L_Zsa2cxWpHnL_Czdw;Tp%mU<0t5Jx@OB2|GdZf zp2a(3flq^~y}93M-9Qb&#+;GND)}iQaWHub?(!*ucG3(}fA*RTK_FSbr3{tPhJNdmtGe}POI-8^ zzu_xCF#M}FaAzk|L3}J~7-Hca{*Vea?t6N2vlcP=j{4;k#LJCu9MKPVNnF`gMEN$~ z^!6%t+bwd=cV9vqv*3+z*|6G=J;UjZnn1lWI8F0+c8d_D#LZZcws^J-H{spn4$@XK zs!-DE>f;%oEcHr<-atPB>4hEW)^V|dtE@@k#3iq28D~wyT^!#BBf_JTr4 zCbT5}ivOa(3mg3Lp%J=>r2r<<=Y*l681KzIxm?J=RTJwvVxBiul4cn<+l3p`M%9bM z^7ni0<{wxxPaz|WbO!U&f@=}je zH&CY+YvyTCJSUXjEOxYFN zD{@vctAQja`moJ!QETU#U!FS;U>!zlnfNxmDj#ZXS-!qz{WL(|Ud2nFcqTK;M4$ju z0{$YP8)&{BSVu1(ezLq6V;>E2Hukkv5BiwzKrt2in$b>#HWd&UPKu4ofDG?=n?BuI zSQy#oe6xV`D?!@uGG9l&s7|E7a9N58Zx%A!ZJfrmiD^moL?aNc;t2f?rR@sAe zcr%Kmoy+ zpoOw>jhK2#KzS1*uxEnd&5bV)1GgouPrbQNed|Zs+3KPvVyKR5mffL7+dFC1aMjMQ zW6zTv&mXWuE@C6d-uj1PcGTFKLfaTmrol8~Dqs zM?k(~(L;KpM|B;LmZQ1l&t7#t2rarKjyoPqU`YsEHsGUCA19ZOPQsKV;!jpJS36`} z$n#Uv6}Ch0Vd>{j>qeh(Qy_4|7McGsClr?O1O3?X9 zfTMrV35HTx|K6KjMs4XIJLk%lH>Us{2OC&}iEFP1d#q@X?G+L>l-bjYnObc%ssQi1 zIi{#-HOh08d$&I2j;2zT6Bh$Ccz_CzFXwG6Bv`Yo0iw#rza00mY5*c{%X7Ix>BPeK LpP%Tr|F`^q^j_C| literal 0 HcmV?d00001 diff --git a/pico_proto_bracket_rev0.stl b/pico_proto_bracket_rev0.stl new file mode 100644 index 0000000000000000000000000000000000000000..68a54fe9c5f60e5344a9543bbeb90ca163332ef3 GIT binary patch literal 589384 zcmb@PdE6aEmHr!tO<@)l41zdWARz&=Ko-{AelHLf5i!c(2q*#uL<9k0W)R`d0Ln5T ziy?$XE=v%i?3#c=-uFeLtkJLtjtT=3g+X*iBPuhFzj{ucI_K%`>O1`Ldp{GVtml0D zxm#CP)v2y7ivPcVZ<%Vx>lH<>bHRtU@2>e~zf%L|AXLTF){fU+jVz)?uLv9N1eRs)b3uJ?k*nf1S?EDaO-y6-~aK( zj0Z=(e)0C*-XU|vqn%)diS<9TU3dTQEXjCq)QXL^@4mKYM?BgIR+xC}F57i~vinUL z4~{B6zg>5y)zPD!s3=4f#dh5V3vwQOTtpQ`Deq$dQ8|_qzh1d*^?me;@H50Ok&nC1 zY1`WSXb=IwU$4Uo6R%&eZT0);2@nX5>aLw)-$#RpKpQ|;% z8zaHy!BH>0xQ(?w4Z=KFVdC!aNw2=^%YJ^C2S@FC)HdDCwwzO{Fb`Ikn7?>(ckbfLG9Dat)+rOahaNCRJQ{>~u)@UA z3nq8>-{Rto2S*jf#P0L+CW=RcFpsL@#PH0?-Ejy1YsQ0*`^gKp?jHWDapKV+%!3ss zPFZ(y_mTt7&3JIsAGh4P``WxM#iK!(2P;f``KfKX3;*Kmj0Z=(aOYOtU(DZ3JQ{>~ zu)@R#Zr-MQ-hZBv@!+UK_uZ;{%_eUbj|O2LtT1u&>DzR_cGxKy4~|;&;)L$a7yYGp zGzjxxg^9c8Z`0lV1E0)zaMa4PCUlp5djs)k5az)O6X#FaraShBhi5!EYST#*y4NgQ zM?4yYd9cF7+;z9+YOn?FCU zd-wcR64fBggB2zwo;fM>uO?qa|4_27?{JxXA_b%Bu7?rZXNKrN850d{zy@JXm2u&&`YnN9p+}9u2}gSYbljn2ZNU zX}cmG4Z=KFVM5!=j0Z<)`zRg_!aP`ELfia|2S;f;FCGoTJXm2uuU#1rj?(Lucr*y} zV1)_21`930z3|`guh-!yz3xg>gAfb^D@QyoPu* z2=ict37xCScyN@?&xl8ZFb`Ik&^f1!2S@2VlXx@;^QbB^eJQ{>~u)>7qEHWM(rFjbR zXb|SX3KN=p$#`&-=3B(0L6`?COlS@%=Lw+#h!BJZtup{z= z;*ll9gB2!jJ9rxMgBcHwTC!|M(~uv`cyQFQTg*g$P&~4Pc(B66 zdvBeF{9wj|qjo)gCh~*gktM`~6(&x7Y8vu`84r$n<(Zkt4~j>Y5D!+Ec;LUMAwQV$ z;Hdp(%tC%pqOyc|u)@TaW2YlOnDOAKsprf>eo&&agm|#R#3|kB$PZ>bIO>EaXCXf* zQCUJfSYhJcBc>xinDOAKpTB!H@`DnUCB%ajCjPBA9r?kG2S*)$)NJGjB`QmZ2P;fG zeD!qX2QwZV_46BNBR?onSwcKmVdAu9(~%#{cyQGA|2`Y}L5a!|;=u|N&ptLC`N7P* zC`V0x#~kDb#Uo3I2P;gx^1^iF2QwZVb>F->$PbD~mJknCn7I6R(~%#{cyQF?C(c2B zP&~4Pc(B66)9cMZelX*~Q6E?|2l+wq$P(hg3KL7-J_Gr|j0ZN4@y*)5D!+Em@st)@`IUt z6h|Gnb`J7`;*ll9gB2!zJ!1y)gBcHw+T>4jkRKF}EFm7OFtOu~GrH%_e~)DTLZIXf zV%~tGiejhkIk&%a8_c~n2&H5|4I*6(;l=EVTY|^&I3Vz3xg>JHZMQ+Ly?9aFq5RB&wZYg$eBwWjr`a`#}=b zPO!p+_U$qr9Hsp^iE1ZUVM6<;84r%qeyK#Y6Ra?yeeH|~M`{0BqS^^on9wmp#)G4D zoFGx{1S?GF*eBz`Q99l!(I&PNtT3TtxQqu!>9|ci+6h*e(6MO7gQIl(DIV{)+V1Ltm7m_&&cZ z5y)QWJ^y?8(2hH<974;v)tn2$|9@1<$9?zmp+g`0j+DhB93OwZ4oA&gcK*=+Z1PB+ zh(I9tSWIku+2uo1Kc4g8s3o2Ahc4ObVex1X=D`XRdmMH7(2rmLcIJI>)a_54H#BS7 zLlV^>%!3ssrtEV0&=nWuJUHqLC!II+(OD0QM}sgAR+xBvlgoz|kIi{-)M4*BZ|J-^ z-xH4pVIHh7F@NpCp-t|5AoE#q)Q4A}J2Y+fcO|MpmK=&K+7c zBmOEIgn6*S#KsRS9Qwej(aihcsDlqXcWBL&`0HyB=D`XRAG>4W&{>D%JUHr-ndc6z z9T&f~24NnoF!8M$77lIn(n#igaMZ`foI7;-nD~h{2=ictiSbu292)eRzGyFcr*y}V1)^^l}A4pKWPaL?;*Yqjzar*>Vx-)M}sgAR+vDWf6R$F z4~{}Rf8E2&#iK!(2P;hA+O_q1IS-D)_3DuyEEA6gVIHh7fot&NSH@qA1oy&!!@pjK zqj23l;m6+)j|L$a2v(RtU*g6cavmIo{=<5&d|f;mgn6*S1o}jeJsN+N5**$`d>sJz8cRi3GRjehJWF%EjsQEzx&srl}Fww9t}b;5Uen9`i55w zEjcjf!BNLubK%hPOYabm24NnoF!A<-t{8gXALAJ;!Qnl`_rX!y9&pjn_7B}I9u2}g zSYcwpk}HN5EXjFr)Oj0xap=4aqDO-;4_26X-yg3SdfP!c502XIp)U??d%$h-J{p91 zu)@TR2QD5ueZ!mwM=iVb;-TZNxm7$Ggn6*S#BN_*JoLTc*xE^OFZ?(B3s(a=?#d%C z8M@(jUlWf8As7f&n0R@^D~HB>Hs`@nzuooHp>YRCj|O2LtT1urC$1d2XqTJ^M?JOq zWkWL`_^P~*24NnoF!9)VIHh7 z@$3cH4voJ$=fP3M+Ak0NXuassAk3qp5E15@hOS(k^WftmswkpImIyu=-SM%U82_1m z%lqKt{&}P8?0sYj@nD6Cjb7@vd>;| z+N&%f9;`62c=G8rrl!K!7L#jtS~Y4<2SZk&pGOnt(MyLJWGfND@+{v*o`gy5{~-sO}=XVk}M$} ztT3_Tj!RnlR~%IoU$g#ImJpAs;>5pPzNDp}$j9Aw&DX4-m?gx66(+{~eo0Gzm!tmb zJGWYYH%o{ID@=UngEzJG+c|32t8cS@dzKInR+u>C_M2M99~`ysr*60LN0tx|R+zYR z{jao)qd4k`*>~7DDocn5D@*Hj=JGz%WR%HONa+6 zOx(87(zf|_I_^zVm)m@MmJknCn0U{mr7d{_jyml4<(4~-kUmV6XPUHj5<%SUAi@nD6CXOCRk zl2_xXNv|)ryjqqJ4_261umH0;wftZYqdSf&3d}ghs0I;^A7>`2iWBf|!3q=j3@iCsBRC45TgunA6Ra?S-$EttY#tni??2_8+X+^fz;C*eKQ|AK!tXfc z&)W%Bn83MNSqESq9EI~StpjK$SYZNfOl3WTd2kfkm9(CronVCtw3U^08Ro%JXhqYy zjCO(*CeY?r)|Z$EN1>fh>r2`RR+zxGtFlhUJU9y1tF%t0onVCtT!Sm?eawTSaNSMo zecB0Dm_T2mvTn&dI12rTv~H=LV1)_viPD-W9A5re8GCM`8T=)Sav4eY6v-Fo7}k*}u0&^TMpPlpID9md-cXRY;Cs<(u zb2TTe%z1DW=4T$={YiNr?F1`KV9x0q>%`TK)z6BfFwgXp2ct(jQB|D4+}W3Q&Ux^0 zF<fXeU@<0&{?CkIQ**6z2U78Hpb41S?EnF7v*tavmIo`OEij_d|If?F1`K zU{3bwl{pWN!aVFhT^K#u309cE-17FX_Yj@9ia1`RpywSBUMUQrZ6(*1id-lkj2S*|QHR<)}(N3_! z1Tu6B7UVqYQAP2L{I1%Gs)GDrB#@h|ypLY^1&4nzqnM(Qk4*2QLFiAu*QqE(Ajewy zKHw4lf(Jz*ubRG(1`&Zku)+j##g*SxFCx7TMSLVS{Sa*=xs|H~ntT1tOSW8i9cg=&N zuzn)7yA8rTSg8lILbUY3hN=$II2OI2P;fqjb~*% zXdWDeb)9KE*dWY<6(+D&wKA?X501k6)HJSb5az)O6IgRw8K0X6M`4|98lN`^^I(Mu ztR1e*GnfZQVZCsgXJ`=S!3q;t16`RfF%OQyy5}@s(jd%(6(+EjyE5-%9vp@B+iBjX zL6`?COz=H_5^NqE#rOHO6IU+Ye$@A98#|hIV*AtM+l{vEtL9NlXT5tg?W>k0!prM* zSYhJvw{AC@-&c*J*8Ib}M$^7(SwcKmVd5YEZrjoPzG@tG{`WQ?P5Y{43GrZsiG8n| zGMe94jiWxb^*cw?zG_)QJXm4k%fFdCn%`HAqyGNVF{5c;wJaeXtT6HDev?P@`>Ju& z+yD9?HXJPuKUQ{MYYQ`6wRk1S?Ev z8n?+3KQCw$arv+_8%mwonVCt?Gt4@I7<6L64g$y!i4ti zG9DbI{W*zhCs<)Z`=}WYj?#XqM70yFFrj_zj0Z<)|5~Ej309cUF+;|Kqja1gQSAgP zOz7ArHLg%v=gi_p>s|d z4~`1YwZv?cc(fB$#fg1BK6SM6{PQCG_0YESao_yIaii(^=j{Y5Ox!qY+GyoD?&iT! z&n}xVnx5m{PO!qnes7sRT6rG5d2rO_*KIwTo=4wKu)@UmUzk1`o|}>RJ~*noaMEaa zZbpf=q@7@eiN{vV7!A+=$arwnuP&ZE8lL|l9_<7xOgw$f4x?+n+0S@z)OD9_J39T8 zoyDV_V1C7-!IFiHoDiQ zyNgFV!3q<9+-KJ4@BesX#)G3ayKly5?~u9T(N3_!#LLrWkM94SB^eKn+Hm!bqp$7R z5s!9)6(;T*GiUTCyWf=Y;HY(8nl-x9>gdr}{hydWP*I|W;F+bS3`hD~S2n0v{Vd`%7eKd#&1cDVN zHdww(^><|+9QD#3bM1H4Ak2dmCT_fX*XsFU9vt=XL8YA^4Z=KFVdBi*Zq@VLJUHs= zBfEB|SlJ%!8voa@?NQUNs2wV1o}Ak2dmCJueLtX|K}gQLdp zyT4t}8-#hV!o)pS4psXl=D|_FpL~GzOB#fEu)@TG1zqIyyiGI@jw*@+t$)=Z%%iF} z@fX|gf&5^`gOB@n55FJz!4iFj24NnoFfsL4dmulU@!+T}&iw%LgW}O3%!3ss&b?(% z|J1o=Vn zXb|SX3KJXtdT-~u)@TlWA;aWFyp~d`yaLd`9bk$5az)O z6AKU6ANj$I2S$$Paoxsuz)7hok1MJ{tK!@n{g{!3q=ieQ$r{2QwZV zb->!AkslO~24NnoF!AW4`y)TNHF`A?+>1!B!%;=fA2tzD4I%E9mS01H)D-hKn%!3ss^fSzOaFl*-;?W??gB2$9w;;3xhxZWY;W$dae~D@k=D`XR z`kT&paFqUzhw)i82=ict2|YJ69vr3Tqj)q3^I(MuZDTSX9Hs4wcr*y}V1)^7D>EJ( zrR}45Gzjxxg$Zr*GaekJ?Yww22=ict3B7h@JUB|PSK`qi%!3ss^cpO*1oy&!!@pjK zqx8BfQ4K;c5UenveTj?*M``~-q8fyGu)>7)i83A>rTrj@Y7pkZ3KQD5%Xn~<_U9z3 zL6`?COlTi9?)_M}sgAR+!K+b;g6E zbQ~=n4Z=KFVM6ByG9DbI^8w<~Ak2dmCUlM?whs5027#Sn+5O=D`XRI=7th;3%C>7LNvD9;`5-bL1Hh zj?#H?@n{g{!3q;P*Prp=D4pLIj|O2LtT3TDi;M?HX`Vtn8iaYU!i45tG9DbI`4;hL z5az)O6PiQHcyN^Fjl`otm84r%qJhymc3GrZs3C-PSJUB}8_2Q8w#Df(kbPYnrgQIlafp}yI@nD4sT}zSi z;3!=`As$&mJXm2u*Mwv|I7-)nh)0$X4_27awJjMBj?(ok;*ll9gB2!pjZVgcqjX)4 zcw`CjV1)@?Yn1WeC|zG99$7*>SYe`i&mThLzg~xy z+_xXrk%>oxFb`Ikz%B)09a+YMqp<%#SVtxv4Z=KFsSsg*hOmw-3K^VI7%x zGzjxxg$e8d6V{PsJU9ybzJzsT;?W??qoNQIT8FSNPR@gmi>TC}%M!r{{X{;N6WEg{ z|33J**oP;*k1Qb`tT2JSh4SAAM`1sq^nGLr@nD4s?2(lJU2zolMM}S`EFm7OFoC_E z^5+LfVSlG|eq;&pV1)_nS(QJ}ISTt!rSm*XhzBc7VDGJbd&N=MZ!5J|SwcKmVFG)I z<=b73!oFdt-OUo>!3q=D3oU>B;3({WmaZRJLOfVu0(-jUuY(+gecaM@FiVIBD@HtjQ!CB%ajCa`C2exC`B z!aliapNT9X9;`5dy?^ujOmGzT`%U{yWC`(Lg$e9ooZn}Hqp)vr+Giq5hzBc7U@zwU zJ`)@j_g{|tOk@f1V1)_nDV^VEf}^mHblPVkONa+6Oki*9{5}&Lh5fM8J`-6&JXm1@ zdwl2jncyhw>z($Q$P(hg3KQ6?JipHbM`3^Rw9iDA5D!+Ez@F>*eI_^x`>dyZCbEQh zu)+lPj?eEi!BN;RKCB~?5k!^{4_27K9{BlvCO8WF-lu&gvV?fB!UXp6&+jwAQP{sf z?K6=j#Df(k@JxdIJ`)^;=MbcQCbEQhu)+kMt&rbmf}`*}g|yE^mJknCn7}h4^7~A1 z6rKx__L;~M;=u|Nc-F;H*DW6(MrLIQq<#rU;rSK^AN*5UN7f*e>UFA$6Y5=E57&z$ zNRLv#xp*ZF!aP`ELO(a}$qtf)yt8w;(hQFMmC}5029BU!vLxR+!M=bjE|D z^mmLAc-c;{!i1ii84r%q^HDt7309cUHYVf2QQEGEM?1j^6WUg0JUB|*NAYMUSYblj z{EP=jX*(|-?F1`K=(Q{3!BKj>5|4I*6(;l=EVTY|#>309cUK5E8;qqJWtQSAgPOlV&_ z(Xm;3%Ef z5RZ0(6()49CgZ_TIzJ;G?F1`K=$uo=gQIkwNj%z#sv`4OLg?IC#)FTm^JV`B!N+1k z=KwPv9HsMq;?Yj9!i3IcW;{4b=P$*honVCtos-RYaFou&ibp%a3KKfFobli&olh2z zc7hcqbdEgZ!BILdE*|X!D@^EIf5wBObbenv+6h*e(40lagQGN0As+1nD@4S&;3&--iAOuZ3KNrfFym2=O1nn16IDg> zgYv30H|ZX|Li?g1?6@&&nI{5(zxdn?+k1lu&9PQJgwQ-^8N5o(t4g^+glPQ5=Vqim zM3~TAamItAG(TLzuR(|dJXm2ubKV&bj?z50cr*y}V1)_I-Df;FO7r#N(ICu&6()2I zLdJumblrh?Gzjxxg$X?CqO!kFFCx7TN9pq|24gQIjENc5-^?m-F@ zy0#_b!BM)NMLZgWd9cESuF=VOaFnjg5swC89;`5-YmG7<9Hr}v#G^r&2P;hInyHKj zN9j5#@n{g{QB`F9l@Pl2E91e()m346!aVp`Oz0Z6j0Z>Qx;61=5az)O6L{7|exC`B z!t*WCJ`)YXJXm1@&$`I(Gr>`KzD3$+qCuDkD@@>77x{fAI110VNc&7Q2=ict2|Vi} zzt03m;rSM6pNR%x9;`5dXI7XT(moRn z!aP`E0#Cun?=!(s@wpiz(i$`f^I(OE2A@`D)7Tc zLgWWC9vtm`7D{ zLcQ^DSYblX&5Q>}>G>!g4Z=KFVM5!Oj0Z<)yCNP9 z!aP`ELfguW2S;i9C>{;MJXm2u+x(0NM`=4R9u2}gSYbl1T^SFK((9FYGzjxxg$ca| z3oXID@Za#S*WoC=?n+dH5DWw>OlV&sQ zI6qMD*%WAplX~uZ5^7@N?qI#c%0`fRXU8 z;o(t5F&$Ci@7$p*QB&aIgqBCZ<1f9J@SL9*H4^Xl5h9eW9>F2piE<=EgpewMzFYd+ zaMWL~MUAu)Jt!F>9B#wW%J-2xgz$F@kMs?;5Vd1f3I8pe|L}>O=Xbn$ZU`^ld)F4- z1q*hRZ|aPL#&qZWSEpVMQ6QdG;>?5QbdP`Gd*OR13M!Ax``P5KzdsN^4a7(8`q0-Y zs^BQ{Q;+8Y@vZL2{4fxQt{F3nkHrMPzoJ<1=aV{{z4JPG z=Z~K_r+eNUc^@P63b`C!)jG$X)LD7ijdS}G*4_EOd2_lSo%LXN=l#;@eo1s7*n<@& zyo~c>c;zXb1Lu9Q_Nw~j2NuogPMiJRnqNCnj4Rd&W;c5Egr7)%Y#8_db9r5t`cA^+z!pk7eS?_b5bBDJO z4_Er-J!|H4*N*$PczAs~QH(I*Wf1$Fc1CCDFP;k{(6B<3j(gzRIo;F8JRlxk-%b=G zOn4c@ttX$^`Sx$l5f4}TR@IL5@<2z$7z86H#m7|D3=Ux|k+ zMRCHDv%2w#(Ck+u=#}(KCcF${my-|Z{NbZx#KV=Mn0n5vZhW#e`_%|~C813u!pk7e zyJ_#v=XM(_9 z=#}(KCcF&dlfT@lbJ7Mg#KV=M*!A?8-T1_G_Nx)}O8O-eUIuYoIR2-DPZ54st`xdnC%>~_ji6W3FPZQ%h#8M;(>Wk~Uhr_GD3&bSu^XRY&we$6UP-@X!pk5w4Bz)J z!uJjjSBhfG19t2l_Le8)9Q67cL9e7=GT~(q_}$|73lCR{VuKfU=stII^zix`L9e7= zGT~(qIR9`S!o!uKSa{M7-A8wSQr?Hx*9dwg{gMeUgE%#`BgcjI1Rk!0|5fbJ{mFyT z!|Q7Vy%H!+cp3F*5791$gZ5l0iZjli(S3B^r{sNjeT@iEI&QyY!pk7guA_a2hbu*~ z@7rc{4;hIbUSA{VmGny{ybR*4Ggr-BcmA>B;Yv|lxoCR#{oDOe-iO!M2zn)94;do7 z4C3%h@1475(edKpN>SXg`Sk8TT^K#QzDCe1>6c7+8N_!(?-;#gd{(Z6cI>KY-5Y)u zJ-og~&@1VeOn4c@W_x~d?%TeLXD}2!SBhfH7Sp;nO?_HEE3dB+^h)|A6J7@KhXp6k zy(9FJ;o(YA{NjqK-NTNL9$sG~=#_*$kcsdzh-+5vJ$EGZlHuV>=u2!mwR_9;(ZlO& z1ig}e$%L0dbicdB+-~S4!^4%3$GCX=?x!D#9$sG~=#}(KCcF&d{l9y5_s@o2GCW)< ziWM7e-@W#w=;8G>f?i3#WWviJ&^tyi86K{L|MmIpx|3dy9$sG~=#>P82rq-UW7%E1 z9UXef@NgykuVTAyQ9Kjd5~FJby%H!ySXqht%)^v0vOH~Ddmm2M2zn*`k_j(^2%pvc z>9cYr{1(BViVz4H1RL9e7=GT~(qp-o(o+C*1EpX#V>tljnc8bPll^x=r` zGKiPHbmNNee6L&U!7>zbFZ%v^h)|A6J7=}@st- z)=%{M8bPn5Uozok5TP$Rocf}!6vZF6+}irPUSA{VmGny{ybL1rsfSaa+LfYs;m)nB z-|qD_f?i3#WWviJ{%g0f!`tcDz?GsnblwKqS*ZT zaW?Pc^)-TCNxx*m%OJws(r}tva-}FPy=q)H&0l$aji6W3FPZQ%h%go$PIF|gg!ggC zIGcy_`Wiv6B)ktIybL0Y1&7mIpDRW2_}`AR`9!a;5%fwz-hc=%gP1-4*x?yF#yLw@ zLND~?u{JO2^)-TCNxx*m%OLJvbo}r~E{k)ot`x3?gJqhBaf-b0y5GA2U`nChS)u=#}(KCcF$HWK4!N zW72aaoag(D)r<-I)d+ee;XEh8%OHNW$!CYxe?T%OJy*hcGj*(HOxUkR&@1VeOn4c@ z?(2PS`0+3%EW-EUN>S{y`B=@EuwRX!SJE$;@G^)qPCH}xU)Da0Y(~$OqPTOTv6?Yq zzZyZWq+c@OWe{O}Gpreto-0N1>YK)D#)SQ91ig}e$%L0d9PyuL4xjU+WK4Rlgm+a0 z56zf(eT|@30>ue06LBAo>Pmbc>#SX&^H+&(C*u1^1YT7vgV4_^tP89j7oXeNFWoO5 zZ-j{7M@54FxzR|tK!EIuTw5@zN(w8a_CT z35)ROO1yqt_waJ@@cMQlUOy6nt3)h=&})=`gS7rOA>)zMl6HSzK?jg zlKNNC!|U6L)W3>E>@A@T;+LThcl~4Q4j19imDo>wa`U_8eRzF45&MaWK(8;BL1m~hu60gaeST#jJ9JLgw6qohbwWO;fCLRO+385orv=ciNLHuEQ8Rw4DoO! z&X%hbwU&Zq~A;@;riNLH{EDI6m z`ozPPIG?zr6Ft1Xorv>^iNNe&EQ8QFOYv|e&Wqmu#4YkZyuO`?^P-8sEN3i((79Lf za3#*~e&M9(;q~oAoZn3ZW@}>^gw7$0hbwWO`mlFJ53g@0;yiUCFzX!4AkgnY|ECCl zuEhEF53jyiJ}a+pC*pj2A~1U%%OKEyLq854uEe~-4VOd@uWu(}-XIak0>m;1%}t1h zD>46Z@L|!z>)VN#|40O~8L>qQT*Zzp12EfL6)#WIMHA4Kj>JX|TlAF_SX z!|U4#C{B1;3FIK*(Q_sIuaI|4ugdFdLQ zWe}R97Y|qBI)HT6dVP(M{CPUpkjYPkmqCQKWUjU)vJN0cVSPbreOd`w2awtfCcF%f z&?e5+Hc{3yq~l_pL~2D_30cpO+CC<{3=duVA)l2iaeYa;8hCw;kaZcU4aW+RM0gp5 zu3-@mSK>OEbXD{E8X@aT(zOUHT@vAC5V{seJY0$EebUw0>uZFplS$W9tk_9}mqF;7 zBJpq~^n=5?rPRyt`WhkYeNx|m2`_`VcaPWR?i>3)vTi9I7ptC9|EiUsSAt_X;bqi^ zK3qrpa6MPzIW*|G6-FB zCmycEb$zK9?)5c7*2AT~Ggjs$!pk6Z?VxzL64xiD(S+C62wB&c#sFAhmu_actCc?`gbZxD8xDwaXrqQ<7*9cknn#RajnVSeNgU~g?;^9h| zFAJ-R)2xBl*9cj^o5uP~co{^P%joD_M$eVFzB$c)czunaR}$A#CjzUceZBv6+6{WPoAO6dCbI2VSM_KEN^JoH`w@o**HZ;)mOy}m}sI{h@KhdTxm z;bjndPlI^467QQxvz%UEBjkRAG&hMm9}?kZ5PENhc(@Yp$4IlaUSA{RzKJx)iaR?J z;bjnE4!NUq$a4Qjio!inY1X-wko!NVwZoCinY&hlfoh#n2XJXm1@cgx>)aL$9HaEJVj z%l43W-XP3_6((@k|B+L29vp=`{oj2+^k@*~!3q=Dz2JiXo-40Vf_o9^bvOz;7HsfB zSE3q(d9cC+c3~KLB3)}`@SuDGzjxxg$e9Za{Qlm&wS?`g`G*R zT2x9@gD?+Pn80o;`+qOz!BN;@<@U{^M}sgAR+zx9G4H)N=fP3fDQ4wW@hoZ(=D`XR z*!|{$59K^K3On9xwng-45az)O6WGOP?AV+KM`7olUtAG?84bcbSYZOY5l#NZZkg|# zqp$2>|q8iaYU!UT4QTK_XS501i)P{SL=Pqaap z2P;fqm#eq#lJnpw>}>Vtb7EA3Fb`Ikz;0bdk@MiFxD!TL12@NwZ+oED=Rgn6*S1U|#pFUWat6h61^+Fj(8Gzjxxg$eu?=FZP~a1_4(^-qW% z4Z=KFVFJJDr#H)aa1?&W7yif2@;(}bd9cC+&dq;+F1|tu?uGw`f4vSz;e34O(b1zp z2nK=`CeX&5@|BziN1&ebv>A1M=E`JsG(uW=8>V#k*SYZNviTR6j9vp@K!@ryoJsO00u);*#tt;oj zQL!HsJsO00u)+lTcEdAs9vp@K+$S%bC7)G;Fb`IkKp*v#b#opZg?{NDw~QVQ!aP`E z0)6c-KNWxZ65I>_4gbRaiF91_uYY#uOnDy-LNE}lFo7|{{F`$g9EEYhA^S#;24Nno zFoChpS5D7)a1_Qnm%oUed*aSt6~a9DSWI9HclZ392S;Jtw(_j#(ICu&6(%qiJ%38h zgQGD1+;md(Xb|SX3KQ6^Ywo%^501hPUCUPOAfHu(Fb`Ikz;0bXdoH#_65I>_4gbQ` zfR2kDx*k6*dNc^ZK(N9D_VK#l{+tI#Vdt+)wv8SQ!aP`E0=u;DeNE1Tqp&mk=FiWN z&#FO~2P;fqxA}=@<~%qGJIr5tRrF{O=22Cgz^?hTkIZ@Saj{eW=7&U&24NnoFoE6w zKfiCzgQKwH{}X>3JsO00u)+kMVlaM(oCinY$pufpj2+DSWrHveR+uvcE^ zPsF(OnCQ_U1Ovee6L`wUA-~Lda1@^G@%TQ`qd}MlD@@>NCF?(*^WZ2vq2#Mmqep`< z4_27KQ&*-xlk?yxJZWX0kafrJszI0sD@@?IGCy6N^WZ2vG3JhqqDO-;4_27K6LsFY zD(Asbc=FAwZ;Bob!aOPp5#ikrJ^E07{(bOq@g$=3 zKC*;(u)+kMu9W{iI0{cxO5aD85D!+Ez*C~~zblTylcCb@Docn5D@@>NSNZdUqws{Q zbbe$B@nD4sJhdx-o^uqQ)RoTjEFm7OFoCC!<=ZQc!V||*dzB@`gB2$56t#T2%Tai8 zT55N*gm|#R1fB+$zkYBOo&cAwA6Y^?SYZNBwaZ@zISNm*OV`0HAs(zSfv5B3ujd?v zC-SB1d6p0lR+zw32J`(Aj>3}#Q@-asyIDd!SYZNB;mr5jISNnSO#SvOAs(zSfv1V) z#~&PpCy1u;N0tx|R+zw3QS;*{j>3~r(>N+ihzBc7;OVaU@gPUxiLPlpm?gx66(;bM z+R7-khj3guISNmvP2<`uAs(zSfv4@}$LAb{C+w#2d6p0lR+zw3gY)wY9EB$Zr+J1f zAs(zSfu|qm=Sw&WPdrZZC0Rl|SYZNBan8^Ca1@^0oaTM9gm|#RM0^@`Zr+EZ;uEN2 zFDy%l2P;hAsoME@IF7=Tw9`CXmJknCn84G)^Ye)ug(rfi`NS+C9;`5dr<~{KML7yj zHc#`HSwcKmVFFKU&(H626rRwY=6AD%c(B3*o;shOr{*X;X+F(UX9@9Og^AlXTG}?> zPRG4z>T;WJ&l2Ln3KQ>{w6rB}z)^=CzufW$SwcKmVdA&DFKx+xaMUf=FSqigHR<(m zAF}4vvV?fB!o-3FxO=OXAMD{8#Zh5(ltnd&aQt{xt13>wyOHM<4?ZsZQl7Ixm>oVF2R+vDW zUs+#b9vp>sKCLflCs<(u*RIMs8S~&MT(8nPnRbE|CU6a|toJbwj>2^}t@mjsSYZNv ziORYq^WZ4-AJV#|c7hcq&?l;_zcLSwiv6It{;Hi|g$eZSD(lG1gQL)&OY6wm309au zAGNX`&OA5@{nE4^uAN|o3G}rq>-x-tqtL%j>-yRWR+zw;p|U>FJU9yDgtR`fonVCt zjD0HWEX{+XFy2Y)EZYfIn7|mWvR>3YI11yov|hBGV1)^cMblbU9A5rcKlAf<&y&xponVCt%sKsAFXzEg zm}ffvsOZs7R23&MclPkrIS)QA=F5J5WAtbzSYZNlfTu0Xd2kfw{ignV^k^qoVFGiR z&pwv(;3&*rPJYMU@_n=utT2H&*;ii3d2kfwVegw4J=zIYn84if<-f~$a1`c~A3rgA zv=gi_fjRQ0*NZE2^$gVWoTD%={((i&qn%)d3C#81^!A(wM`3<{+VbepPO!oRau%<@ zJLkbs$Wwf9b@XT_SYZOWmmf^Zd2kf+E%&U69_<7xOdy9eVQS8UqmVax-`eQWPO!oR za$&!kk@MgvG_^gbGd{^Wa|ib4c(td;Kr9^o%!Eh!3l)%1NdhzJCN6(*1?uKccg5$Sa}3i;vm zyJ`^T!3q<|c~{O4^WZ4txzqX4Ak2dmCXlwN z!aP`E0&Au!{VVg}D6Er8{i_CH9#zE&to^F=6U~E%+ICN6@Un987@XEz+E>roO+uylOD9fJ^y-*DQs!{$d%bmJe zB0#L{)MX;=vKoSLZIa_hk4)5v-v^0!?4t9n@I()ki=rHn{}=wV)9TJhdRDxbq23<$ zl>O#^$y4}xuJp^-_Uw$LC)j&^jiBQe1ruHdaa!0L_r&nLlu+!s(l2|5%pLik(;u80 zuJPnoBj~sRC&J4h%CN`psk+CnEB$h>O?Mx;_R#gPGKu_Z1Rb|1nD8=);jmBYNO*ot zDE3?lPklRS*O71UJW)KnzDCe-v3r3NUIwuy?5}lY*c%5PuJp_4r|dkkX5~Eb@cJ4- z#|>+>i10Fq$HG2guZF#G;NeQY+-%D^BisJh0`c(r8bQYmPv9WJ%OKVbdtl$Gdtkc~ zc0>H+%#q(7be4E{eT|^wh8-)2@G^+EU2**Ish7mPyj|&+UpQjM$brATR6M-CM$mDK zf(b8!`04wP9eyA@rz#YCuJp^N-!ygPt@~at9$sG~=(t6}gqK15L)csW%laHeSHg~q z2TU2c?|pZQhu7B#I&Rq2kq9q?7#H@$*>BJI97R|9<@56@m412nuf~nsJ%5#Wczuna$kwa{ISm77wql5p>+JLjnrq5AyrC;8B(O-^SvuvFbZKBuL z2s&=q=Zy$2gIF1!X|c%$@i~gFgxy=ey}?NMCmvp3Bj~tchgc%K3?dwVIQWFmr0BU4 zUi-3jM#8a6ybrIh5p>+}SrOr75aDwg4xg8JxY94fcQG73Bk}P18bQY`3MRY^B7EP& z;d>VkSNdi6O$~?dT0FeIM$mD?RhtMeg9yLd;qdzv4_EqSI5&pFZ&p0KzDCe-i-HL+ zg9zu}a5xXe!t&FM|l}$Z%*+#KV<-IQGbJXhXvPXTKUj z$A#jAmr)nlS0E*`G*%W&-& z4sCh~53jEgblk8*8xdXx5w1@w!gWeKTuUrZwBMyhYn|OGAjiBR( zT`P(3GKkO*T@m`D;^9ia41L|<&<7O{udfkw+@fH@%OFC3dPV40i-#-yGW6M3gg&-- zczuna;}!)IUIr1y1^0*Xfq1ymFT>blMHnlHhu7B#I&M)g;bjnEd~<&o=ZJ?Z{W6S* zR)n#QczAt{pyL(=6J7=pMqT!dLs$Cc!w)^NB#chP!|Q7V9k(c$@UjxvCl&9b5*3a+ zH@%NHLdg3t!f6~AV?q6_@Tx2-d_Hs2_u=*JgnS=HI1K`0LH*A0=~`6yp690DmDjfu z^1Cv^X%H9->Tegn5{nAI*G@V=yuO`~^TP!J3hhTHwO3x>PDp!Ygwr4}7SuKot&c^8cCeG$U9WE^q}?^bX%H9-YTJ%h z)S^Or-bvRFuWu*h`eB6AATSoxYZR^q78R~bopc@a`gTIDgGM+F0%JkF*5ayWQQ`X9 zN!N3)Zztq>ZiLeyFc#E41Fp^%75WLC)GzV+c0&3kMmP-uV?pivpqF7$;aA;xUi(*G z-%dbr!po?~SWx?Lm8j64>!g0-8zH2hXoS=7z*tcGqUiNmROo+pQh(R$+X?CK8sRhu zj0Lq%jozz8g?@A=_1nF^osfRJ5l(}^SWw3X=!IKU7!P#P_`~bl2^oJF;WP-01$B&r z(S${XaSg_VCHkUX-%iLl$_S@HU@WL(HH?ZZDvZxCMiUROZzp6tXoS-saC{weVsvLw zcn>%>-iOz>6Edzf!f6oroOJA5xFX|a`HbM<_3ea=&yB!0iBA~uG6&GnIRK2dEegLW zeAn>s`gTI*8H{im1b(+Vmw{OWi^92q-z+@5zMYWy5+j@jf%8x2WH9?-Q8>qO?!m+B z+XwbI}&QQ9|b7 zjBpwrXxDYF53_0(g=+`eba;4uJ0bIlMmP-u*C(B`#O$C&;Tni*6Fj`WosfA^Bb)|- z>#WYbVwTgQa4p9*79L*TPRRVO5l(|Ze?jMvFtjMU^OwJuoJK z#~UFeA7zBo@WA*+b6&_USro=l7~8)Q#*s~O=m2#nKGCe9ViCza*FPk(tLJiMNX zrzd^l`l{jt=rF?D8u8|F-?m>oZhYprE8vkQ1gB%EpAcR~lzvvSr>raX`3xqIAH?Sq zqU`$+LO)%px9?m$T(R$YFp<7NIhOu1gzz%l^|y7a z9|seug%b~LIfd{tJhW{W4_B-`A55f{T0Ha$AcU9Uq1Pz!aK)}mgNby-5f8nR3E^dU z=(ScnT(RrxU?N>P#Y3;iLU|73(1lCQ?sE zJhbN|gqPu=eK`R6Ja<{^wvK^(@6hd#plu86MiF z77tgfA3c~zJ!J9Fp0^NQh6l!i$QOlT&lMXF3?>REZ2TdFjwW!_@TX%O@o>e)H6v&f zy}m}I5sMs4M?yk)8HA42#KRREpA9C`$SXwIcu)u(-ATQTImN@3@Y>_}b1;!cka8?0 zyj+Ao9XrR*ijJ$}W$|bw(nwf5nD8<@bPhl~T#@`B<^#mT>uW^8ip~@W;bjmymmwam zNPZCW8iR>6GZCU}zC;L}{g8T_lMxSBBwvU5nZZPwVUc6$%#9FUF2bMAEs2LK=^T~%c$2mGVyRl@^zRm8;Sj^MAwM$KV8w8G$FhULg)I#!xhO7V%~2sk!J2f zl+7m!p|gWhZ*!L7;fmx3F@HIjNHdUfES=dD!plYY)45mia7FTin1>xqq?yzZW%Ij2 z=xnXj+Z?iZxFY#M%qI^f(u}YiOJ|ye@NyCUbS_*xT#@`B=EVmSg%dX4E(AuBk%ouP z>5GRek{|4ZKHXp<&CrJ^%Nq!xSpcaIzrC275D!-*KZrcVU?OE2qv_|qJV zc(@|@LF8Ko6NM9&#}PuaGNFt=%@v7-KSfgI%U;h&r_K8_OYxGUmu;g=&ovl9G_@G_z_mnxr?E0(Vv(f6TrjX*}xl<-Nf zNZ+8BL1<1meIFJTzULL`chySZ`%uF2&ho09hKJ_1)9=cT8-A6;>HKIV@VipN^5^2= zG(0p%FCMPgI)K3h&JTShwhllDj3i?#0S{ekAReyRdWOLS&T~6fXo-eX3+H8c=$Z-f zaK+YTh=k8A6egb2Nl;n=GIp=+bW!xiaYVg1!$0{s#?maLN!BAgRS2aB}EOFUe$ zbzOsr!27X6e{MMSEWHd5U8^P@uGo4w@$mW@fqtSM*Ve-c5qh=5v9}CD*W8JRE4Hq0 zFoFKA9V_(6hf`1A%kaQh5Nk$5vFD1dPZSTYuMz0C>v3&;q7Y%sfYptmj6YoiDITuK zIBFz}-A2&1dwq?-_`{ABMnXn-8HBFo6c1Ny{ib+$eT~34N{?&nMTH2Xz7hOGysb$U z4_9p6>j>V5*VhP)2klsR*YE`4We{QPjJ37m;fjoxNAO7uBnl^Fd~O83i%7!*-*=h= zaK+Xki-*_O2#n9|SolrhH-J~=We{O518be-eYhg?B_sG{4kR$opvSfK)I#9gh%`LH zoD9}%i-#+=E_^VN)>DH{>$io#`Hu4w^|tmL|EuSUt#2Pp&~a^jyAZLZ8&QuiM}{@@ zGDqf$t2B2|BLbZy*G&BWU-dN0_t3 zJq_aFirqIcm`L{<$gyzU!!--P5--Cg%)R2?4DoQq?*AA}U|v*@EBV0@Tzlbx>v}B1 zBg`S=9ux6!#qMJnOkjT3j)i^*`VjE&GCaauIPR4Z4_EAdoWVr8k0nIe{WwCPpS33R zi%>6f`ncyuJY2E+iUt$uejGU#`i1Dz;eB`+9w9e@dzZw+6}vxbFi|*R_eTkVo-+EW zaFC1%?!gidSM0v4P|tofBHbS)$3ib3eQXe32BG(oNv_Bh$w!T#=Rc4@9!HNW`6weW z4v928Le2~K#HDfSWI{s9vG)#&1fj5`|jkpKAMyKp!(H_bl+Vd z@R#oMlWgCJRLOtTL!YDQQTj^e;(a*nT(1+#z4)Z2GDH+3Au9a;RK|0jq#UI1*9-rr z1V>ppgfM~ULH_)TyYBm!&!4vyo)j5BQFv7EyYxFJ@9?p6cnIuvUA+GI+PCY**WWLT zB9(((5eOLxhhoo_e!0$R+h*t*5&owiiwQ4-cq*G8B8R^vjF>V{$i* zguT8-6s$1eWf0eYXYUn{g%$`NuJp@y9zD5>wgvCQ>uW^83KL!i@xh}`Uh$)F_hcyc zT$GxY94*zh+W5jcdKWM$mDKf(b8!Sa$KfD|QN3=uqsr(l0-L%%m=^z4$)7 zzDCe-i-HL+gE%GhFn$$!8ll*8rC%<8bz(P-YrVck&~b}`2`__q?K3Z|7$5GQgoi8r z@~l%PcGC>K*VhO-Zs+5V8Y8F*4=&V@Rm9fb|v(} z_uZI6n$V47S@x?DbllKGCc?`g4hwf@{&To{G8B8R^vg{rP3Wd^t=HEG zI&M)g;bjnO!sm33j)YwaBkWb!})i!j)Yz5mzzI7 zt{ca)>{lb`xJAK)mqFYU+L1pzwyu2VuJp@GuNoJ6OBjE$UyY#S76lVt2J!1pA3pr1 zz2ZpNm2lic#&zRZmi=l39XGrWBD@UZlc8N-74Du4#hxqu^6|eN*NtOY_Nx(e+|Vi! z;bjo-nSbo?svY7;*p+_y%*$iDXAgk9;E zw;nUL8^^NjS0m`S;S(Xk%OHLm`fv9h5l6zVg!6o#vE4MT_4*n?#|`H>5ncxIo6rwk zHX295uJp^VO&!~fV_EjA5p>+JlOhpb27&(cf9Ocqm43O;=3~2QToWv377Uk=iTq&=yq)FT+FIcJXku|S27{I3=h55iiaz9Js(V@>!5h(6e) znS+Tm9+YG0h*bzL7vWFG&f?*Ujh6=#XtCerv^j-@jN zLU_3de>#^T9W2oA((^r1=s#md@M=;pHOy>D-cd zxMK5HgNZcn6Qb}Z^Gqdv?OsN`&XI|SD>g4SmY+I=@o>fRYJ&+nZjtg|LTD~bJv4VG9C*g9vTn+>jp>4_87T?y70X4~mD^w-cccM}(I_91?cYd3)R?trB%dc#?U@ z4~oYdA;NE(2rt9qk6|aBKQ5Bp-YQX7E}D+~pm@9yBCJm)!prao*V?%uKPaD-EB$ic zx6MF)P&~Z8ohS+>ybR*AVJDq4C*g9!P-PRI|+_u)#v z+~9>BkRKEeuWu)cf(b8!2z}~K$PbE#EB$iI19n7yP&~Z8ohS+>ybNNCu#?U+ahJ_X z)RJX8B0ne|Z-gicCcF%fFvjVG{GhxKSNi3#Tg*g$P&~Z8ohS+>ybR*>4Q6yc7I!_Z zMD2R|Oymc}1ruHd5ysA)kRKEe zSNi3CGiD(_80y)tod|2viSROrFbB{H`9bk;CCtN}GYk1a@$mX~BIG}a@G^)nm(dCN zLGf^@7=SJ9~2L-ZzsYI0z`NjM3`IZ zg#4g*xY93=KMGGD9uW_(Zzqa^2`_^Pb7Y;6AH*D4CFw zeLE4(W+J={V!tph*z+%*L$0V2b>P}L$PbFg8zI7dIz)IG#|=5JPRI|6hb#S3*L8}A z*S8blzL2;QR0uDF(DkCo-BqHnUNo)|WxsX;iW6QY;=WMsxnjp%5&Kt(t`XsXy5cKZ zna1i?{jBZ};XRJh&qqAGzDA^X9-@j7CcF$nzjN_$#eP@f;q^5leb3^dzYHO~3_^dq zi0Zjwzt>@WR$gBt(l1dw^cOCKmqF+`C?2lZc|Mp(=Us>@M)XV-!prc`wnRK!vG!^( zky-}v&=yAsFT+FIMDcLN+TFoKY6rzbTTUUo3=eJF#lw|wH(0E*?yH86J9# z5)W7UrCyiB!|Q8Ax-N+a6J7?P*IMy##jfY#;q^5lT{*==ugF4p8HDy3#KV=)zl!~Y z!9?l-hzAp1hKKfj#KRTqUx|m;*ND{L5fAMl3E^cB+J{3_&lT$@4kl8MOgyxwCxn;b zp?y*DaK-w&gNfAt6c6pO3gKmVXrEd35MG9dj&a1p6&u%t2==QHX7Izke{%OG^DCLXSYIsG`g8%(6}S%@k|nD8<@ zbj&FpuGqL%JiNX}q;aNr=*UzEFN4srvv|1DFLk^;m`EdG@nFKs@X$E`@o>fF8N|cu zYeX9Ni-*n>2;pTAI+r0HuGoCZU?R;-h=eyQ`6gNZZ)8KR02CcF#}oqH7zSNf&Sw~B|?*N8OV zDjrOD8HCOui-#*VPc0r^UnA0tuz2W9vk+bep>yHl;fl?-4<^#gws`1_xe#84htBDX zhb!S8=a>Z;Or&{y@nFKs@X*|Zc(~FpH6I}!USA_pK0-X0@G=O^v51E&{ZjKP;^Fl* zB4td(g9$H#&|HytxY92*KO`PrUn5fHM?9GDG6>CiiH9qpEs1$9@$mW@kuq4~!NmWg z>|LO3DXM$#_KiS{B61=`ascJ))4S2QHj?WBr%GJs1P-p5w643h??so z8bt*GO_r}{eB%Su=viwUiHb-(Ad!2M&j*T+81uR~67lo%oBug$*8EpjcRcAa*4nje z&R@;yUj3+=HLE((Ao56@+6YM*9|Y~Aa!AXEh>=7`_@E_QNw4)^`AQ3Ak4Jnq&Fk#emPYe{;Y%WVlM#`c5D zVnTYan^mpYMk)95%kJY^k~boX4VKIhLffXbN_=$rxLtSMEq-*3NWSN+)ph&IanfVe zHH4V4J+CD}5G^(^TNY=EV6ydVxnl4e=v>>Mz7%Pjk!xv4u9WELzyFtbccyD$_UCG! zhyCXSm1}d6od_B>WOR3hD_4>!BsMGh_Scw=$R80p7um`cT;_{95or*J_>~BSQ(z+` zHdp((_c=xPBl1TCm1}duoxt2tOM}4dPl>cp8zHe->fd>z*@*lRp>xB%EX)^mBGMo* z`x8$DNv4q4T>W1-XrcQN`6EK-xLdh4SKkTD9ksL)*F1lPCmU>p#8wTs<_fbB`6EK- z>U&w3FX}|3L16Z$%mP&#A(5xEtXS}Y1AE<%$R829=75ze{s$r=4Fa=2B@#((gv3^H zxZ+Z?5&0v6%C&cAI)S;PmIi^@pJ*{jGKIv}vN(M|d!u~hj|g1@!pp*ZQ70k|LPmF2 zX!*fLNNi1x7rnx4ME;1-wJfY$Ta&{H%pJ8f2pQd7p#=*YA@Q|E2K_xEe?;h-9A1{q z7d0Z%ATawAEpgZgiLH_HhUfkaBCjn1En6eS3Cta}G$fe)i5`U{b&V9)!tBqx-C{Oo z30)(_%VHwZuz}g1=o!IANNm-agU@)l9;?V75xUlk)x_SN=>+DES{ejqf66RSwGk3q zd*|&}nT^OF5gkh~U(|_6gLvfc_pANr-I=b1*`Mbh^a$OLSwh#|F~Z)R=|s@5A)~u1 z^tdINLSkzZo%}+x5&0uR*ATLDZ7n1xFn83_ATawAo&(qjiLL4M{hQ53O`bLVD=|GQm_#cTPw`pu^#y&Lf6=`a&4_JCop%^(jYMV6P`8L2#KwE=I@G+ z{1KsRg?U++FX}|3L16YLJcO_jl4UOq%9X$KKJrI|u6btVLJ~xzk&oG*@N`Ntg~ZmN z`}W&U)$1ejM}++A<=Pr_PGIh+r9oi!Cp@;2Od+wg^tON9Y()Nu&^741EX)^mBGMpa zbaxj#&#(~^TNCie1AayKBl1UtuBB(?+M0k)VD6};LCEOtE_l#kBP6!A;U`Zu8<9UE zbWK1n3-d*th%^Yy{=`TCY=p$tXuRP$W+U=PM8^`$7j+`iATawABO0&~5?gEX%uCHi zCM5IAr_NTO~)ka9{-I*V|)oeumh|sk^tz28f)CtTT zwKNFK{*+muY9l1J7VEFxW;P;!MCcl(UKZwyIuU6QnEi>7OG&1X*t;|D{S&hh`6HrZ z3D)^>BGMo*`%`9ts*RAydG)Q+bAOrbG4be!rndwk=M@p$-&GqAg^hP!^{hi!OXyR) zR?`IRv4n|8LklC}`B-74+fuF^g;V_KM*ciuYZW^YGzj_4AC`Y}9Nkhbq6YjdiTruO z)?9WXXb^Jlo|4a9oF%1PIbRokwnzRvVeig#B4`kD4W5#(L0t*jwGhSOSM8n#@mmfJpPWt4KIRkQH+ zRpieTkOUEF(Tv`Djr@7S-UZ=A z&>#>oncLK8y_RyN9lh{Yc;wF$9opB0h%^X9e&)VGr6sNYh4&`*gs^vKIuSH%Ac8gb zanPG6e-h8uR$qS{1?4>Db%l#^XCci?-CJd5QwcAoaI`W_2OR6 zJt6GfnN9=^8{&IiWZx^ioTXgxxAyMejr@5+{kw$-8ie?e7ukmlZ*9>Mzj5zg=g6NY z?A@781PuZ+ow6@n-^k`#m`&y0^F1N#-I-1Vtu~}Dn0@;CW;xdqKfa9e+PJ}<5cW+XF3ry2(+j37>mB?&$VP+MMimT9A{4m>4p&z zY1qI_z&ut|Y03Cd@1sk5Lg;u@A%cbt8S`4?F)xfR6)jnlwWsl~oIg*MnpE44c?adRA1QBT>a>Q?F!CrUK$pc3FW(g|S_QQ#wVFT~Z#Ee-Bhh|piq%fgxAM5IAr_NPQB z?2;tL2a6WY*H`_+f7AVl{1KsNqLpjchZ8}A!0b;= z?A@79JI`!H{)o^gj+JZAK_~E3vowhOtW_H!v3F-){R7NKVtXS(pPXJ6p2$u_8boe0 zsEv^5_+bBs&o>*9KO(dRVC7o7#0j)AEDa*Jebh!s{N0&mBl1Utwq(34YatmCX%M*$ zw~{2r2m7uwEwtyJ`KlB3SVjJb$SpDu)=qRHXh?EfRBePr-vuG7wwjH|9}(KJv~sPz z>jc`nmIjgA)M_In){g$>l@HSWi2M9~0<%A{(v2ijNbKF2mwf94-H*s05!z$%ve0*OBGMpoUrlXBGMqTPeyHo#NM5G;5T;Yv5Nc=p&k}1*Ze+Cz>8yP z5ZSk+HbS!O;ZM5w3bPUUBSJkzQC1K^gUCKIwGk2>A6y)Gmf48>5h4G2x#ov+0$w#s zgUG%yO5uu(`FAE-8Cn60Z`;gT}NbKF2+h1)qB7a1vN7%|W zKeZF^I$Ih<_JymBkm&f};(h0tjmRGn>e=?PZWT|u6Ojgyefnx6B=+vi8%{GDkv}5T zLvQ8UxPcQG1+X*-%>I-aXlf%Q_U_F0Y&RQ`KO%Ib!OOx3h7*wnf!UujlTK}f#NK6j znykx#wol}b2puu8a%~*P35?2E8U$v4%8Wp@5fXd*K8HGP9V7NM{0LkZL0&Hty)Piu@5l$-Ccg}hQ!9t{cMl? z5uxMGeqPBLzH%bcAmkd{<=0?HEDpf0+Q=UfI)3ighg_*ECn60Z#~SEw9ukXZ@Vigs zj|hze@atUeI4dV24I;-(sEv?VT*mf%-;Mkcq45lUzmhxW%85vW$gv-4BP14I;!lIf z9}yatVdd)h;K~Vk8ss#H9K)hELSk_;{#1+n5ux!V{``<9*~*DXgUGQsY9k~T@8eJB z$R80JC*#jSc_Oczh%|^CQ=~RRVsT5}%82|Cq47TcJeQWm%85vWkhTwEqtr%7w0*Vm z_EqGM2#s6vc8Rou3K3}#ImSzEgv8>=yww-^BSQZ5alIVf5k+kLFBmr z?uRSoihpnI-oaTyl8 z%-V@agUEBqbgU>O_AW~wU5fk>fpMH%u8v2oosiL`oCbk+XZn~|NNnbukCH|Hh|u|J zJ{~0_V{0cO4I9iNI{Y6cU~R$o4>pqTbgnjhdim z+R5L3efed3mvqioH6@ZJM_QL%_Gp>^X!JZ0l73wieQ%}aS|#~UK9gE&+dn7HmtOE+ zztiSHo^jjLH}iZ)(K=6Nfa;t`PIuDwiTK^_r&}Jf>G8DEy32D$mwluK0HM*iNQXq$ z5&rIp6Et+D30X&&h)9F@D~iSq$+F*T_X(RGTO0ZFMAtD9X%K%%(YPUzyXYr(Y zkmo!Rk%olPI;2e;Hk9k{F0SYcr}Ut#_Yz@TSMs?g`O# zOhg(s-XhVsPsr=h%^X}#tq4`fA$0JyXmpDkv~s#9TSlT@otI6y(X`}8b>m{>Pj4-}GqQJt3rL zNkpV!so%fXrpMMs z{yfojOhg*Q^W?mJkIgKuv>yKcdv1C(?w$}`$3&!IW2;<$x8?PBL$d78d&$pldTedv z&lA#CA|lctI2t!3@=mo2?jfzEVZg{wm{vj@w1_eh6i+27;Vy*E7?H}dBRX&Dd^X%J{H?3dTy4au_q#Dn+V^r+d$ zpC`JGiAaOkE$yB!*~%1^)<@oY_f3zQ-4mkgn20oNTqo_f6Q8ClY*bpO9(MOlkFDJk zLauWnA`KfiN;~v8TPdW{`oJgl+VrT|Jt3qoN<^e#<8*0H|B1ZU0_l(}`$L|w*QQ6~ zM*cj}bxcGW#08j{`6FGqrPBKJ_PsVe8h1~Ku45w7uz?8EYvny7NQY$Ee`ue*a=&fa zNB%s~bxcGWg!Bg&-X9DJ+E;t!{vg|%Cm;zT(nREF+|YtO_W{fjRIcrZ6G6iUW@bvC zP`w`^vE$>ujL07mdVJh#fFtTeq(S80Ty2EJ&MWuHME;1-U(mfDI5V7xG>Bi5bN6>X zW6`)Fkr5L)+ugSm`6EKlL@U?Md?$hiv6gG_&DU5oZb;;LE?2Gl$RdA4=oRJOC?+Be zBHv5Ya~G0jkNb!F`XYZs=$*l%ahZrTh6a;v37}%0!03Z&=!Du&(X4QBGMo@ z8aE`~zOu22$R82f-tkcYYatmCX%HNZ8xm```4~&&kBHoEv(XH+^qhz^h};&{QJIh| zd$d1&bSd&jgtk9@RECL2gUD@awGk3)xBHk^kA97hK}PF{iR2w0&eyxuQNB)S=9;A=HqG#$vq(S7qv)TxW_0N55 zJMu?__LqGW89i(#A`OD0aYJH$1|Or3{1Ku3ejg2or@)CwgUG%N-H(u%zrTmTZBqkya zBKwflMo5-D{Kg*R75O7VJ;EMM#YCh*WM8=22+6XC|J!5LB7a1vXWOH~n20op?9*2p zAzAkD<9p0qjx>0b9utuU@iK|VeQA!y z4T+88cnoCZj|d$xv6|R8juRM_@kqz6+n{LNkl1*X$8ttKY!IO%KVB9_l$?k(i0?== z?sYjDHzYQ$<}s;}KO%IT%cDOrGUi02LFAD*{mnyy`xQp}EE+fRM}&^oS-Fq|5$Q~n zXxxx2dyFo6ts;L!P`R?&JQ0xwA;;=deyl>W?Eho?L(9>P{1HLrN-Q1`kp>~ZV2Q>J ziM%8C;iu#?gYAt7Dp%f-OGKnW$ho`A&)twL`)eQHm+K?)M+BAIbxcGWgj|Cq8aE`% z{!LFE%5@(3BZA89Iwm3w;x12p-mZU=XbwrHkSzP(eAXk%{VMWD1eM!$Ohg*QJ!J*6 z&q-7YY=mUl?|0#;<-QyFBZA89Iwm3wLhkLm#NVejLL%#IpMP3;enkF=pmOECuS7%| zggm2m$@rk!2#LI>;Wr;yo`aD;BB)&P?hp}a5b~_uCF6r?BP7fI(9<7Pp3ad!BB zB#1~OU)pdh86Q*|A(8&awT~_B#K<2JRIZHU5D{q*(iUCG_@LSd$+AD_WoMSwYvhjz zDp%f)K}4iMNSk^k)qemi?z5`&-3d z68R&7%I!KPA`L=(GAkJ$R2w0YNb>*ra zQIS6)s9bqV6cLdI!O^%OS@xH{?kUBq7WpHB%9S^@5fNz+;_F+<_@MgwLL$-X>8Zs# z82KZD%9Yv6L_`{d_$*g4KBzWAB7K}+Kd1ObBY#9txpH?UBGMql_quZ5Ye<&;za99r z;;oJR5kck3o7#woGzjq_uiS?m67j=*_G!iI9Qh-H%9U|7A|ee!eBmn@AJk(Nl4bv> zv(F8Gd!a`JmD_bpL>h$n^j9)Is5U|(*ZJR{TgD9{e?(BZa-9h#Qd98fRDd-7f<=TEY5j5g#5xJblQd3Cm_we!B$R829A08=- zBkDw?LFC^Y%+&-BY#Bbd1d8x zYnh#Q(Xa9teF}+P=N<#yU5qjUX za=SI208T_2gv79{atuofi9H8BPA2k4gg!s4+-{90nG=x)k)O4CtU_YXbC36l{1Ktg zK`Xagew4>qM*fJ<{)d&@tGhzQ5zvKzmLa-NB)RVe~Fdbt>L+GBGMqTZ%J*0#Qawt-yZoRLj68g zE+mgB5%G~me)f^6jgXih&g1kWe?)XFfhWz0NQ20}KD7}N^C$XzgUBBd>W8y(yEQz5 zPDC0+_F1ZpkeFZ8=S@WZh){o`mD{c1*>ob(AhPdOZG^=9yFULT@<)XFMXlU!4G*mo zkp_`{$Z8`b=BM^~ERjDV)W2)xc58T=orpAu>LAu)fu&&P@U5utu+E4N$2W9~$x zL1dr4+6ak_8~D7U$R82vZ?|&0H9Y@LL>h$5UD}oBF6p>|YhgUX=SR&FI&NS@w`L;J zupx7>cI7!(DI_+I!LgUw!chH;~U;TJYL5^%^q$I%ZS~ zlZ;EU+Iy76Ht;_2Yo3btgVtM;Rk5}XFZkTYRPw&_whp^L|M9G~b@=hW{^bPm(|z8u zp|e@FD7;$~wZT^2Oltq;Z@k;`y&H$^e2WapG0)&gH^x-&gALPg-DHHf-SN znvH8ef95+p%~V?Onn%0>k!kA;*8mc1uvWd&(CFx94*L-jCir(MM$`th@|mdXBIPrN zWJfeX?w!LyH~Fvj;NhhoxbG1~Jy|L( zSZn*$JBJqXWz1Ttky zvK}0l6~xWo+d6#VOIOu4lz8Emw{Bp~VDPsc^0p0``K@X3D2w*gc_lT;V`&^A1Rh71 zh=e@UiX(yQh@BB(fbMxnn5biMvbx$}NgYiSC8>TgDlJ&6j*S@+28?ROL>={#)#XoG zu%wP#8QDlir3Gu%Q79uKo55KU5+>^SlB_O&(gM8(S=XgU9$NRZ{)(pY#PPTj$b3tS zKY0Ak;euN}tLM*)9=~PS`LB5UsjSy{>dxV}PW)VbUM1LIts@WEIh=Uh=T)mAP>d2d zM_ucNUpi!X?ftJ+;#Y6mGGtE}bjv1J6kT^`Ub>U+yQ6C`86%%gIz;BL~Bane#5Nkgm-Q1}Y za$y6pjHa`NvCFQ-36vwq$W)_kSTlJHC%SZ0iI?iQU@OWVDQfM>;GG$8(mM{TdhO9QFwCO?} z1YaLaqem}mF7-t_C+a;%AJ8K~(dYEYQ&moeqy?_d+=ioB_~L~bzc(C&e9{7EMs8Ws zocamEObEec;T+3tUz#nSRSSXVxj$cV-_1QFnvp#wc&)j5O}Kc@7bampuKvN{!&&Q_ z^xA&fdE17^9`m=F{8n+e+;cZc7N0?2{I(_1^7UsqHgC0Fo;vBut!k;MUTL62-Em1xv2nXY25i z?|w>;6_*t1u)$hCxZ~F04!7-^Cj_l)H73Nln(1Oi2!7)5QwFW5>Zt}O!Nz^I9X8x} z(wDTXYhHZV@O%GZ>5tvIWym8bVE~XEE4&B5tfMy(`!V;7VlDJ{;#iG{Y{_hRE0qau z)pE6xyh$#eUO1PcZ8)-#j7#$Vw$Q?vc;VlDG#}9sFE_murn| zlv=SCuG%jj_~HLTt(f4Rp6)`i!CJVl{M*SNQX36X_M9b5O!gqfPLh?;4;^I1Kz$bB z9E+z+wBbvwlwd8KiQb;$enPI0fqKejliL=%p-M|{7S+V@7_v5;UePjcx zYeM|BcYSyRt6&yYBog)2Y)8_9wN5%UMdCa&M{j*Yjy)@iO)?mP9!LAdsk^Wha4DK7Ck0X6J&4)~FBoM3x|F^7A*h8TqkSSYh!|To^nJU!X zhHJs6>-*6ViaFtZeI}6hc_CR@|D*-aC8_6psBf_^+DTIKF%M)r{{wm>0$B+}ErFJK z9pPIRUuF+Q-n>6(^J_IK=*j1Ag9dtfJ||X*B;WFZjq^6Utc5`QMHpX=3B}mCLO#{d4%Ra=|Qp>RK_u{lro$shN4zyj=L?^7vQfxy{8Js6J#rR!ngJv)GV?`4jW_p#1Oac-dYgz7eqa3j!-wlmw;r;W zZ|4=-AGaOyS9<3}&+FEsKBH;wy(p1j05(_)?T71kTr*7oQ-b?7XdB*ii*Z8vg?C z322vM6?UYv$9s)**%E5ST4;-UyKRyXG%Z-d1X{1&W-K<8_?<6Yz2R+6ZcYB#cdy>S zNJr65P=^iH+IIWZ8@TqMHAw(kaGMjY7vFO(2_>L>Y-zz-fB!kO`0cnggaM;kF~Kca zE8LK@Kx+wWZR3Bmmarx^(v6LTT-1uS?(v!TZD8$dNE!l}ven0miKB0Q?*>-8RyF!c z3m)^h^{BUR__ICRIHf2jNy#TISPN|tf9f|xMoX=%611FT<>Vfs z#zvA%`J@GFp>-zfIrk!K31rGv*NO?W0A)?+@TiJmd*8eS>72JU>Va=j($$ZKJ*1I8!@wypV9a^pv5K6-EW8$9rhb+MF$iZ9#;J4TUzjVcD*{tUYp)pR_$a=TCi5V z*2jp*MsTb`!bH7_M^=|VX~B|u9gZkT^^;LHg5@J4^{N^p!T_2CuVzz)ItcCw=h4L; z8jTInHiESN=KhK3LTTU{$A z(3^<6glV?~esgIj^d=vjB}sDSlNPLnb4=PLy~t!65tbhW64;K1Do zqNYcmBvU?V!CIJ)fqSpWS^}A})t(6^FayK=jHYYfX@Rj#-&@3?`mvg?6>A}O)SuxE zkqzNkg%)B&{qEclNf7y@1#2PV(|_lNC^lHa1Y$Y;9Lvi3CoNclXiPtMxg=AS?}S>h z7Gf*?nrH~cK(K@f_8Mhn{gW0vvJNd@VTDKH3z1-hwP3^7eVHT#t;e>R!2bElG{uGz z_&t1mAN-pBRGYM+wPG!tG5$=PB$`?=!K3eWt#Ez#YKVx2@YNUDA5;jf6>Fg;z9!@( zp|xU3L)iNiiU}mdlUi2wv$b)3%{zHMt*4*oyk=g#w%v%xmT*Odgo%39I#)-n*i(Qp z1aH;M`x#gZ;|AXLX$Uv7U;dsGnm>OSJmC28?VzU5;*de<_4z;)U>YY4?a zu!M;Nzi~*3BFM^agCyu#cyt1nq=eMSYQJi!ts*pE`%U@i1g9{KFQ(LHYn z#jxirVS>lJvvS@K_SXF9eh(PF_Ac|>a7lHoSnHXudcbhq!@fLSt0bI!>RK_u{<7Kz zYjxe>!{2|-Y&3*ouu)5bnD@i+m?`{M5q~x6LCQYZey|pfn@4YP&oWm?|KO^PvY5az z^k;BQ;5YXOWt?L^Qq3h5B4N*23ukzYpNH*2NTRM46FgR26YLAiqlhbLu`8mDMz4zDXRJ#I1O2UH05% zf6~@r%l%%U;}oi$43`z%>2dxx|plZ4ia{i1*I)~h!VtB(pWtrbf8E&IV*XJ2sj2HxHZSwk2g z1WTCUD1xl4f6^j*>(=;}>Fl4=e8}+Y*)Pai*(bLaS=SKAl&y^FYu(|k_dTCH6B7v5 zVtbQ>+F%J2*_XK%CEJqxkxzZB_$V}laYC?%F8f=12(!I>=1WGhPg<~6_SW_yYYAk^ zR%)eXF_AsRy{gey@gb`ud!RKvUn|zS@uUxySl))ncIsL&@q+*O;6}vdM77c)pK)@` zx-OrInr>_)QIJnsuvR|vrwIYD)wNRX54EeClJBuP!~h4WSqamN3CFI$1f};0T)hOq{kM zHL_Z}47bg5U_4~s&9cO4PB^+8 zb7P}R7KO$~U5R8|TCf(zprR$SC$(Y%@mJAulJbiU_FyCS%6(*w*BOL-WUPp^5PRi5 zfQAqN8_uinE;GSCa?`bM85xzC9KI4X;s$-iW-E!j&dCYZLe!zJzuXYn5NfqvcrP9v z^XT12ZB@D0U@iFDeJx(zzg)b5)t)l}U%#)iTN6B20v|Q)x?;m)_V@kjn>MOQ4poN@mb~PYzW0bu!IS$ z!%{^}7J?;MNd;#)gj|v;C;66-#QTsI)h@k zY4w$Ns`0zeWLBd@3PpUGX&ZsQna_hmf74eRm#5mg^46+4Y_OKxc~CXqyezLci^WTRuHaC=@c;e<2d~oVDP& z^(g;ILQwxbtSlzrDL(p)_fMQ9yavQwFFb1S*6XYP;mE;f0GC>+4JNWbc@2&1jn*{& z_f6*4+T5Nsa`K!XO>;?*>6Wk`td-{&ts$KxBtI=!!bFaZT7lLr!0$W4QXXe6B#W%dM%5Io36ZaL;64KtVlMpH!4ds+Dy~)waOkZ z)ylDI(?n-mT`MMXoSf2GS^uO3`;c-i;aiIJGDf}asN9!IYdy#bwflS%b zf+bA+_Li5Cw*{*9k>8xk?Yh^ONXdo}09#trk|6H<{nwW$P1Ch+X<1%-X^ASm|ISy+ z9nE|)U-;4`Gx4IV^`NU>QD#xi6D(ok9gA1c46dkGTCn5;H@>{g4C9hQAA8PP|LeIg zFLT%C36?N{7{6+UTQ(%#T9P0t&}X=DNp-DQ>us-nS-C#u36?PNgtK2p*JD_*QL^9O z;xnhv@Aqe4TxqJG@a78^>i1YR6}B2U^#u)$gny#8{;g|AWOBq8~At(e&T z`O6R&t~5&UEiKqvhrYQ-P}(m!)e2`VL`M6{6b+G$;P=2;VP&<1pE07I3`q;t!g?GY zy<;U2VSt_`$Tdk#gr6}h>mQ5w^}aJaD&F&MY$W3>s@S#Q!HK?8*sg7GSxmrV6#cf$ zh@G@ROTy<)qfO$T2`Opq`!}|M>%)#Np6%|r#kf&;ZrKLT2JdI!EIIoE??K>6H1(UK z#}fVJ@YW$N!y};TT0Qify#_x%kGb`3gC94vcPn2Xu!KFYXXM39J)TQgY$#!IuU22s zJ~MEVfSCnL#zaJ87b`;WdMoe&xo3OQ!=klfE%=%IH<%=}RxDuxtH$`R8Fj*bumoN% ze>WtTR0ypVYr#k6Z>*drSi%H*MQR(Y1uvezd2^Bw6nBR3)-b`dD2ojxY_%TqOu*~t zZ(HS(3Xx!gwcxXic(|}#2(`gwF#&(6d%|i$dZ=r!iS$s{Zliw7F$%X&!u*1wB|X%& zm)j88P{P>I+I?Yo61c~!A&L#w!qdjD;D#tRaL4g8-0nDbb)i2MPX^luf1ZbbNAB7y ze;PEzqz&Bd{Q6*fSy_*l-4k6)#-`SBO@!@2pmKQPto=^Lgxp!zey!95OE9O*uMaM% z5D7L|3p3B+Y!BOokVIW8CZvzB_Bq3aP#d*>2P-+=EO+RxV}FnmqV2y&Xmx*dOz{rQ z6P1LBGcVmT5I65u?_fMW1Wc!LO@)#Az=dE!RfUuSOR}y ztd|ib)%(F(@L$H791}!SD<*KPVkOsNMfQXJhVaR~{B9r6dkODf(NEZO)`B1I*w6nb zL{lp!;JNd;*2P99VtrcN?YytXK0qZB)KM$ef-l_rY7L|@RT%QY0{J*ljfBj~0H6eC;l zS*m}R37%zcs`@Pi`&jc#<~3yVwPLM2LwcG(F|yUQVuB+@X)rtw6J#p{K>hi}t+b+Qw6ZgcCjbxO0&s_^=NsPpdh-{`lR!rc$icz4fE`QSE zS#N$-+1t1M@Q=%}${w9QbfFG{eXJM$-5bh0`r0RJ+D5Pz`~4as8>{`hOuY6%FRNqj zq()|gwb+N)5XA=Kf_)_>#05X$Z1*jWjxKD-W@{(77GjcL^Pm~R03rB{V*+=j@MUIo zwZRhHYybCM+(!5^RX;%;wQ99y2w+OEU)0i>FwbNU#j+*X7;BYU%@Zt66yW@AfAY(>@{`6ssX&g4f2*%Gn0`=UyxH?xR-dpHJ0_ zwcs`I<0jfQLA44A6Yy)`*k#4?$KovA(}-)u*Mpc`(IMeju@$HPq$O|6)~6E$Lzp(-EQY$Y9EB@L}GUnNc6wKPcEPd<4|@>f2#l8$Sk z4d<(wHH3rm3r1NLanU}5N9L-sly5dz3$09FC9Rtx0O{I0u7#GYugpD3h#hP1x)x#$ zN<`b(hLn#@eshvAG2FKI;4#Uj3Uv^yb=M2`9z4FeAru3_-cyOzS$lk9j{%?4|s zm*??`4N+{cgbDV^W@Y`8^m*a_R*VPwC<&KTh=l!ME%a%9Hu)qWsEj**Vy_a#$iyMf z*sIJ-uWhiF_OvfLSdLiJ0usNMfQWm^gtt~}#agIg+)E}1wPDW*yYDiABU0T63XyA;798=1GsYta<~>EM zg|pII%aereIZK#e-&tKN_H1RJ?iw0gQX!HbU5u?+u6l$uJxPdC?Z3)iXC<;XTGOIf zw&JH=BP;upH9ct~!3JyPdGzyylv>w{368lG#j=_A1CbWU%F&IQo{!RFt-NO9G?A?o z-;ze@F_BkaRJv4261E1m+!s}nS2Ultk)RHOweqUz(}V!n>RK_uGh9s<>L56d3@uBa z6UWhFN{F@*td(P9dT2BRGG$8(mM}5tlTm^tXj!^XA1%wcV`%aECHE_e(#bVkLo^xh zlTa(x%12?Ikdo>MAttb@fcxG>(Y6GFwX#QN4e=x)`T7pGQWg{0=cF`B@U6sIu91^_ zbef*Dkzj+ha({51kW$m)L7#qQSrOlUOJ}=(2KNH@T=$VdeBr{?@8P|fhC3?amVzO3D@JfuTTx{Ts z^Ee_&?{c42yEGF`iR$7&lA>z5S z)$ml3XJl%+Aq)^3EMY=gWS9-AbXL|s^_t{3R^G#g@5JZYnyP#!><4S%hz}m1Sb;~qV5}hGa^MTMUWTa}XX_!m7S^wbh@BCU4dJQ{2@_Ze!y|dJ zvY8U%y&FDn8+~=}*I*XD&;K!13GeXA7-jzdqPYWvWmI z!CDwS@#~`@6f+y)@nQl;cl!Fc{L*_4el~pYzMmtv-Jky6ordZfR0FWVT0gqqT?W63CJD8{5+=TR<(-GPf?>e6v_L!U zr!Re|)S&A=w9j6fo|fmwy5ltglPJh1Eov>yi8Q()1i*&hoXZMA+lbj~WUBhDL}VZBTN3i!(u~; z+P|}2`Tfz3A>FBgB|EyIg^?_ZZ(ld(6`=fkSXoS9?90zFQ7l_RTd+hGN~?11?=E4l zp{ghOmXD6B6)k>AXb|CHlhhmK<>DRUzT#p- zXw^Wlgb9A%WmeWd66r)7P?<493zuzKA_9HNjf& z2l$#!^8`znV1H0;gS{L%E@ur5^cnPtSE*yqSu4-AoF{~?JuFP*S({2%W)|!t$)oS{ zHWF;GRvzJBq0Gtsko>wN7NH9ewnl298gVS-~RP`q#Mxieo6W`N>p z4e6xcC!toXh1sAO%b6uaP~JDOh87c;8H#Zv}w4b|}_ zOh~JyM8lL?i5+>KTYVSE&HJHgY032Vfkd`sADb;J$49mDahoPU$)+ut-pgVl`{XjM z%4)~<+(-4eAB}zT7NF`U`Ib-J+s58{tFIvx1A((WW`;!H3D-@`H?i`~2KUL}jr6{H zL%>FY4P56wW{$grkBs7;`}V6IuI+g!>y|*U7CfmwGCEIKkKTHa+`Gpbd(oR@8?43s z{z*bWTT|A{VuJhaz7P0oZ=&&5Dpp1C_HIKc27)C_u>YahNFcaZjkN*%O=eC1T(s@? zU@fda;Jx2T0+6oQ>pglV5UUv8NGsoLuoj{l-GA8-0vW;ma70b|e(?DQWoR40TJTwi zZz0ZO0KVZG3<(qbz8Tjx8#w#?z3Lbd@O5#xBqfr3%g4qITnpnAzAjEfC>kzZM>bR+D<-bG{*FU)hl3gU&3{4m)VvY<|76SHUW3Lb zBQ?U77OaK!ggj2BAq-F(;oo7RnZ2A0NsD8@e!$>!IJw*-4%jmIOik4VAs_5V*!bkB zTLzCpY6!(ZeEZ-72Je$!_~rWyF#|A4%F6mjp0!uqdvO2m{m!^Id51=X)CgNzu-4sf z*{^t`xVENi-}QblQNLFzn6zL|+AkdR^MjA+G&YjkV6E@G@g9TU6B{C%scXf=^X_wx zp}OxDf+e@V=H~{#Yd1DZtypWdFcW2C&_IoYfH{y5Hnt(6NJ$LYt`8!$X3Dy$7`|5&oPSyMFBq7Gq zqLu`~QEzpv*l#FfkSiZin)E>Gp0k#W5AAaQ_avdUVhIz{TiO-A_fjv}5BA)hdf45| z`ibl{RDG!twzOcakG%EnWnIRGFhB^FFd?n~b>-zuhNJ~+ed57;)5?(}qS)ZFnBaHk zW@Y`87Kl&tc?^h?@)-(wHek=%NaHRVekyodeC0RxYblkW4uZAd(eW6sh5)7nOPIjC zWQpGDp{QGuZ~3GJYhmuQ%uwh>)=d(UZ~jD|?Zo!jAA}O(?!#Kw$b4sytZ4|vV1p%0 zunGuT!qYZH+X&V= z@_?O#M{n)fv0~zrr|ul!sgROwOY%oPa&ITe4bRy*pqCAm#)fDc!CGftx^qAueUdPm4R{LN z#|}?{&n4uNYJ#=krSL0wo?ruyTf_E@60m}zQ6x!au+RegoR4j z57y$EOcH{s4Js@47A<`lW9hkk`#rc^uKOgRHqbwl`_&3%Wnzsq`f5Hxga1*!*;u53Esb~tbcHHBU&}T(_{@%zB6bV|D#6OB(~PxkFv&p`MoKcZU`vIR_-Nh{KrIo z%eCf1=9|1--rktKMoxZ{wx$~!2^z4$TKR3=Ye*UbnX=WjVxpM^krWVuweowz*N`=Y z0Yb2ZiTuuTrL(gBNejLw<}+Ni_|9jl#-#;oWigTO)Jm&zG9)cnD__B? z)er`V4VEzR><8QzZ$VKyE9)PvRf$lRJGH#q^j8LmcqGL2f{%=HNrgxtSWE7r3m<)L2*t*=Vgh}0AIHtgW~$l`+ylRV z^CR?F;cj~J3oTs}=tud;D0)Q^@fjm@g-ECsYoYJtBLX~nRtQPpUJ_+7!K2oNP#dU~ zds5M_bx-R2xHD^^AMKvhNkVH?OM>80^14<$0**0A|NZNdGNb#!S{PCEXn{$hsTC6# zgRIU(H>30DJq{VO@O_psk6^2^)Cilrp_{a@f`G4`&=3X)!4f8TblD0w#MT_}a`C26 zAC+l{VuK}2@ThfGHdA>{+;!4t!WQQkqB{H?*(yr%EuZ>KM0|g|p6>H(X;_vish-|2?RZYBp!{64Om9q`pqg;YJ&UL5XG`;7g zR;-1%oU_(5#AL0Q;8=>fR#g__L38@?W2pu zh9oTNrHnyIq>Hxzn%NwsR)}tKE!;o61<(*`2sT*41nxx5eOK&YHN=Q1IAGhIhVu`y z=W7$4P-?|mpLy|}27e+qM5z@^n7HIycN+ZJo|W|v_G7C&@h$#}-*&_!rlu<23H!lX zh;4}395FtuME)`xK3}CKB9@{iuyTX17mf90eI4n^S_x`vEheOj>AA3p!CzQa-kNmJsH_9{18;)|NheGF9IoK^+8Zp||zO9W#Ug*y@-GCeUxI?mkHY zA>c#uXbQY7&ttsiYsFf4ho8reHH4WM)rtvz_hDAnKel48uQiAjVSKH@ypnIv+IFmX z4n|(fM75gP97$ODlod}@i%0SsLI7;_{0}BzyIFTIfnY6;9GE9~bn@}LcMj+o!}|Ql zC~JM})}4d+1ax*qL!cPh>XA_<9&_8yL3;Z!H^TrSFh1yeh<;6ZE8grHjjV-UQCT&6 zmf%$#nLsO}@>7>uq1ESOrf4(z%pe}k%*y)5dcv-Swy4iUnkQJo1dqzrHV};qzYKCQ zTNeHkq%i{E`S>4aAvTR$>fs5-e;AR0#}?^4(x_?t?^{~%dJ=i;PPOugSrEyXGIpnu zJXSbOWFz%hDii1lyRToBiw%~*e=PotH8kdH#ai%qU`5190-3VawPJ!tdrjBA%NV5Y zZ5~C`H2gvChc86Z-@`^Ho8vP{2x`71FN^mU9whhNs|_jN?mnyqPZ8qPpwSS>lr7~o zKh_KUhmk(`l#u4}X#B6|RRY0U`MjDY6a&F!F@cdj)GRBS4VZGDWe-XAcxJ89C_oYg z`4qpXYUL4(X+i*OXk|oMOyEfrGu||!hWdY!Z~55UZd^;woD4g7-s z_8A;$U!!rpR;-2fetpHohM24s6SW7a)Ju+TC6RVpyf+%Fd$^xTh-4qx^G56De5@u2 zK=KQ+1Zg9%9*FyyM3HSM5n5iWhENPPSc0?@ST!VkXKaHdnA_z?mrK&(lTqgJaxM6> z{1KQS%54Inyg;u8TM?;kTUl2uJrEoHM( zT!NaQT@BfMtyl{y+ju;6LzszCt(f3h9$7i>IeUuGI`eo@jN|#QsYH@*`B>k;wa_B- zv#%i(1Hlp|Fh1zNzbZ@lW`niZlhzQ$21}SgWJGh8h#hMux`&QEcMVZ&u#b%WVwjgM zJ>gYW)O|o&`_8@e$yI^~Uy1Y4bmJpS#%d3;c+#>b%2xZxn1B~VYPME2 z|4Ja>&qJROnNq72{C!AUByitr5?{$aTC1WZHdgRLicB^{7>@|a#q&HQE#a*JsM<&S z=cQcCyTnlynQRfoZ2#N0+pw}~A|mB$0#9dn3oKW)G~LA3Cee@&Y=l;}F--`7t&YZJ zA|Hjds;R1_(gN>La9?ru0qMDfHF4aZTqsG%T1Xe%W7Fr4;h8A=B{i+1W|c_tEgzeg z>RNbGySIhCJ4)oQI<}SxjBwtYjoHoSJ68R!y*0-rH$HG3*DI#RU7y zvU08!dxUU3$Zw*@s_`u);pAiM+_@I6KU`H-=7j$WkVr#P6LA%22~xh9Jh)*ZYm-dbkAmKE*rkdu_*xC0MiHLpPg%#f157!WrwPJ!-^3BTnCoQnn zi?73hm0}`>Wx_KdHIsKckrw;`9s$FCl-dSMn1I*7BW`K}$I5*#to7dQ-QaHws);N2 z>4w!l57QnU_SXARSdqB7q6D@5a0&PO*~g(a64XJk7OoG!mo$W8AZkev?5oMj*#;sj zJT?L`8XkdN+jax6!CHtM@hI;}Lcn@Im|$;9sg)AE*2}GLKY;vV=*z^rxC8hv9N$)!~gaJaZgbDHJ zl>U_!Zb-tqf2Fr2zkiQeZjff-sNcYC0?HABiuao(cC@aw~jS(N2~s z$AhYB7=L<4xGeeHoSHK8~j47-H7m1i@Ol=QT}~ zT1kt(cmFq9ufA>=TD8?$VTHgi6;Jx0aV}JCh9ro5v~SS64MYohyJVi=aVNx3`}%p! z2v)JdT9{+v>-9|%s8}@;#{|aPnn-fp57xpg7+)W7l298gVWMd#mi=HYyfMO8Eo=xW zA6wlDXM%efrV4fYJ)#GJ_Kwd`Xl#hK5v+x=DW3(=5CUMUYsCb{rmC413F;tNf;Wcv zY>vi8Ay^CV8}Ydy4Iw75)wN;*V|UH06eajQ24|gq=dyww$J}b+Y5+D^3z7C7Pd!ht zgb8k)*EU!Sk^K?nJ<&JN{ot~gz^sB8^DI_mKX{ZCYeM>+flDg-346|3SZgxwAA3?O zCb;iY+u*qiIMN>V(zL0iMs{AY7Jf}1OKpg3sBVQbf%jW9UIVd%cj|=%@6d41L}R1W zinS1@?LC%B0=qKm;{?I|lDrH0$GlPg9!_|_ZhwvS!r<46c^W9(KIZFlExgCV`)v)O z7EmjeFj2p=!_`4>OBjA8_pnU1sikJN5}Rwmx8(krNdmi4t#ii&yivY(pVmprx3eU- zEEmYdTWQ=o$n6!#;#jd(j;+;}OhYJ!TCs!)ZU<#${iAP8$D6p<_!sf0_#n+~BK#k< zVl9v|HnoOALm*SO+9S+F_S{7)!vG;zl6`%u)!0Zd02{28eT&mXvB70Ak$t2SwPH#3 zs?OWcTCo;d;L@(1C$KBkx*tq%yEN~D{;_o+B?eN<&ED*J8(J&Y;+7sCk=h1Jn8@*v zYOf}^&B<+1rfmm|D{DY#S$X{mO*cd~Wc_n*r82>-+S&%USo0Xdw2kDoVyztUIZaH~ zii!DS#VujP-?>kYTh6)oe73U|`fcI4i`H@>BvH4Jnc&v45((-cHT0W^nU%>K2NZOiN>oY$H|TrYl#)1*1|K<B zl8bAQB}DwuF@w*Q(*hFIgUIEIR{Zb;y zw|r`E6s|${);5GC`y?e5$VW<_kUgb5rGzt0yNlCU>U`QF+Sz>XD< zvDE}?;rZc5x*ck(mQwP3?X%o;*55G-K=N5LZ_vU0Y; z&s5yuynV&b;F@49+)=%CHc1Ft`v90gq*LR?QG$H{c??SKFSS1a|Ld8UV1u>fo`^B8 zX+kj&>@{FQ?xGkyQx8H`)<5;Tov;p1w5emhQ6Um+uol+(i8l2d!83JgBJQrW4c5Y{ zLvd%AAOx-N)J*VGqS#OZeH^bl?x?ZnBOA#$yYIS|JSqF|Y>tR*sIC(l*mMty*@s3@2`wZ6G@;fKr z`BXg_WUF$y7FN&l`(Q(4EA~!rZwbR=?rmzm{)-KHUoeO&d;XWWUE)%ipKa5U7<7M=-`nNhRiesGRlXDUoV74A=J)o7 zPz(f1n2_syot5lQl0WiEi&|^1%@4kR{SH$Z5tb=LT~-j;cH9%Cd~6^>E8A18hA<%Z zL$#QYdvHB_AQ@8jLy3IcG~E!z21}UWnG0DtA1l6RU?m;ze@xzeq-Nr$CM~S**XvkUtsF4)U}W4g;{kT4 z^L=Uv1Ef|gVFEpGf9|SsvB47b?)_QICDjCL!GqwwtcIAZ6%#U++Phz?w!soaX}ZU& zu~GJewGg@Lex`<)tQ8Y7w%xmDs;(7FaK5_#vawNW#ahirtTez*sUuQXGY?}T%gwQ$^gWV9g^1Hlp|@H=^nGb?8sxDNadhpWr))Hw4!t%TGl zu0faJTJfhrLu5l1U*gtrUirO*Yg^l3Eu6=GziNnLgC$Jhx|we8vIN(l?+2Gu*NU}x zZyRE=R!rc$YHF463$hj;-G(SO_)f-mIO}@WS+VS~k4F8dEZ?ug;C z->`gBH7+e!>zWrIHdt)s1d$D;1((IdD~>v1xbm)3HdyOE+YTFSP4Z>m5XA;dm^kIm zM+{H;z+dbB)%(F(S6zSTV6*6!eM1x*EMelCU)wf(=GUfdu-5L24jpXX-Lh|pVuK}2 zyz*1qhAsbo&BT7N)@zPFbglenaNJ3Dr8Y#d!4f8Z;~x(n`hLm=YwbR5>u~)JJHs2I z*kB10cm2lU!}!Z(gC$HHfAitPi_e;}!CI#sxOKSg5c|~{ zqS#;w6aUZd!-svoyPnt&*1B?^t-}kq*b!}rVuK}2-0S+oheLmN$_8uw;Er2|ZeQEm zhA1{z!o(M^J6!HWQ#M!&vnXAwA&QM!5(I32?Uk$gSS4!#gcj`G;kI3>)eyx7OPIhh z{Na`<8?1%n_LA>@N^LYmvB451a4x*??N&oomVL063~S-{-}kGZR2vOZY_Nn0oYU{$ zF=d0ba2_9Y(_gBMhA1{z!UV3(&6OPmRZj9PA9y*VTwISkuK$GEXb8nXu!ITRWB&1s zDI2VX`^xUme_U-eM6tmVCUCEO`q%78tFr8a?FVb&{`i8=!GB`+-HIqSxGW}c&p+=u zQ#M!&_xZP6d$rnVh+=~!OyJq|fV)iDU@bhazVM~1)J8)T8!TZ0&)^#_w=+hSlYGlZ z))A(1@!Y-e?>?$F8bUD;EMWp|iMKy+$_8tp{cxA>e?)CGM6tmVCeSAO;&pabsk;dU@i0$?ETl) z|EP#!gUez9eV2A9PI`f%sIW6B0=q2Ffj4Y&Sa zMHCxc78B@;?)Ug98?1%?r@g0q**8S7!4f9UeAf}f3-_9`!CFr`{r-ck*}v=?qS#;w z6MuTs5yNL!cDGaIB;WE8|1On#%a!*Z>>UBiz9AF?!4f8(f9E5IE&p@M25bH3eh(Pz z%>~Q8A&L!_FtK{jk;AJWGG&9cp82W=4E8?yW#16R21}TD`ng9A|NZ~7yS6GP`Ib*w zuvXU{o>xO$_6?yJh*}cF<1RaLc-CJ}+2C?t{QSf7nu*K4A&L!_F!78p9y#p$x+xp1 zb@dMp&nqr2`-UhsSi;1`cRXr%#5q$oSnFx$ZOdykF8hWkHdw;MM;?6CaO6X#Y_Qg2 zZ{3zxa$NQeQEae;i4R|R)NteeQ#M%Z4N+{cgo&^G!qLONpPsV8TJg@8 zW#16R21}SY<#9(3zx}}}8?1$uNh~%>o>60>*kB10x4-h};gfHhvcX!hmdUbjh+=~! zO#JgTM-PX-Y03s`VcvwzV_5bLQEae;3CxbT{IV$=1um*ulAmi@gR za?H$r#M}%ix6GlKA=E}y77=&--D75c4=y)i;FkR)p*C2;#HZhP%*=VkS`l-%>?aAe z!4f8p{LV2m*9U7wRN%6oB-92=nAp1Y*qQ5`wIWt=*-sK`gC$J7^4E`@xnHqX%n}m+ z?i8UmSi;1kCAx9?zROxMk7?OY5^94bOg!qd$Id)ISSw~%E&EAAZLoxiXaD5bndcyD z#md9Wev(idEMel(2X3Evp0if0jVz-lQ-s=J2@~%>cl%7cgtcPD=4C%gs124dartH2 zXWCb+6{}4z`$tnb-y!CDDC!1LT#{wiT6L@xS9S3YhgWX?|)1ZYJ(+AJn_ZH&Ge&K z3oB@QKWdUt8!Tbs(eFEMra#D9SZCY&gOh~XUZy9zWw}U@ffv?S6(yLT#{wiRTZ;&-hDN3#*E|zhsh7 z8!Tbs<4-w$#_z*g-#+-H;`f;()CNnK_&@3R8UGb)U2qO!OU!>YNvI8$Fmdghj-Tn9a|;v}IqSi;0tzj*wNUzD|uJYZ+>i%t@1 zgC$IS|CZxt{JX66$y0Y0|L!EAHdw;MB|kiV#!t;!H#}!&@l#I{YJ(+AeB~}XX8i4} zb>^izi@$x6P#Y{^;vM(iF*9z!T6puOj~h%9YJ(+A+m)mUr)pX@B- zYLkT8UsbFsl%`2Bs{d7fYi6F8@<@$+JXwQwH$`1w4+5+-nM zR&fBu25aGZ^f-Wdf+bAg9#h3L6dSCC`-;ai%o8kO0{6-)E~D6BE!-bHE@Pfx2@|;I zSMepq25aFy@9`z`1WTB}v#W}eDK=OO&nu6UnI~An1fIcFyic*gT6peyyw5zr5+=}= zsN$B24c0>Y!Q+*_(PD$O&~Nj2(RqR;OrS67v8pIuw}j^)YoY(?QLOU> zOPD~P`X&EPF{v=3HdqV&Xj{Wnd@{2HOPGLf;356zbVM1&>z1$|tOb97t){x{=LwcD z0UyWrUNU8awcyvV^kLEV9esShfUdFEsRsxn__MJW18Tyn84V}pZ)5T4c5YVi@llF#&MkLEU@YvbPo1*CS{VPbH}~4O+B8v>MFd9Z&OLX^2A6B& zcsJ*>Zi*aSPOAE{ycAp zVuK}2Al9gAWfU8%h4>!B|#wet7`QX8(c2p zy}X^+5XA;dm_Q6$)!r>OSPOA$-rjA9VuK}2AQrD`w-+0%h4?#fw>Lzw!4f7AQ&{ys ziVfC69HI9=8lu=>2@^c$PnC-e*5Y}7V46%T&s$B^7-4WRI-s!7HeI8+1-25TC0sQ zAp$&a#d?vThC$>tl7zO+_rCA*+L&uvl}*wmKdZ;_!VFMdO_K@H8WG0Hvv%v>K6&+m zoAB=LWgjc?E&GR^`OMX$-)H%%oD7k*EXo?V%Rbh|ogj)0E{loxp8fpQ6JI=KgSBGy z-eunq#Rf~5c=^A)X!ZUlOxa*9S-B&xDZK0(qS#;w6K}ZFOIA-kYRU#{VcmOMNoUzN zM6tmVCSH5S%T}-aG2Vr~>{U4#V(aO9xmX?F*4|n64Pk)%<}6|2kSF}{YU2x2Hdsq$ z+vm5JE&GNjHdw;MqYiq_>axqGY_OKh?qA!AS<)XI6U7Egm^kIK*R9@v?vxGIlJy7j zTi+x;aZD5&EMel|e{;#|(g#l2U@g20z}6pF_6<>Nu!Mx^_YsrcQ z`Hk|+z9EVYmN4=3v){CO)Muw`u$HWAkl%SP@zi6Y*kB10yFc`&t4HhmM#lTWT6lYa ztyr+^8=}}?2@|(|V!3+duTSjAiSdlPv5uJP=Dw@nP8S}z*&6f%emKM`Yo=h^3kL`YL(O*Mv?sRT8(cD;BLw2>eZ zf*lzoF$W2noaZ?RK@vjE8by)*4ehI_;Vu9By4Stdb?x=6b3W(ydHcGu*ZsY(^GtiM zdG$*~@z4?_4*B+(^L>7Z{Q&CsN~3Hah1gqt?3ak*p(RTE_pi^IfBZcy4~?>&7h;e2 zv0oyJhn6UD&7h>mn`<>TB@z4?_zP0n5`3>*Y^3W*T;~-AB8T%!o zcxZ_d#~gEx)kInz8fDMdMUGk`ipR8s1ib&_QtUt^pZQ?Vber+ZDEOt_bJFXW5XD1t zDS`L!H?L`VXcXSJv;)C?1+i34Eu&defGN zM&Wy$_Vh`=j|ovcG?xQF?w% zh~lBSl)$s=4c|IYEhvrfO zb%_U`*7DFO)F0CBNvU2kA&Q6QQUZ0NV~%NgXjG~PVNP7CUrmVOp}CYm-EMx@mWM{6 zK9_bRP4&bHQ9Lx45~!m-f0verMxkDs_ApKL-3d`VG?x;nYrpNwm=RO|J~Rro@U-)E zs<%&w;-R^eK%3#g=e9gF3hjinS9NNCOo-y4xs*WL=bbNYd1w^cJ82K>)Q*}E#Y1x` zfi~O+AKdcLD74$sPT8qFI3bFM=28M}(O2K8<)Kk%f2MO3ZTzDqiiegcaqN#CHecDL z<)Km7VgAA^@8aK#C8Bs}i4w0m_5SnkecNVNEq$*v3j5H1@x{qwi6|agqQrN;yE1>x zB`pt)!v6Lr?VCK7h~l9oN*w%!yUY)NYs*8U?8M{w&A)?LZDYSg6b~&?;+SLhobUOv zmWM`J$IATVwXu!g+D~|6}r4B8rEWC~?dCzI%P2-=rs;2M_lD z+yB`a3X=ExmmW5M&r_4f65$vKEm7hpfAYHZNB_9xp;4c>=brN~-YvLnb|S_4{cM~b->W5}cxZ_dx4GUm zm;B3BEf0;d-ILeTdCOzJL=+D#QQ{+qKJ}6tUfJ@{DC`yglRr$aV~HppTB5{B=bdo& z<(IcSH0mKo-TDrxAJ*z6Ey8@PA5Kb?Fz=o1*P&6^H(FlDGT|PYO9^`qceXzdjlyo$ z@_8&1?xDGqu9-2!Dt4qw<^%9M;`h%UnUFs#vgnMW%C9F;~YuB$d%IZNgsb4JRjc0Ez^T77ON^~7buJv5gRR!5z+>$@6d_0pNtcb5tG&|FGbUEB8MX?^AzW%cWs z)Z3Q{_t0EQSes$iZhvT$wG-?#)YAS~Cfq}FDPe7&S-TyjQP$q+r5&|QxQFIa!rE}Q zPwOV_sFK&(ZE9X{8Pb$CFc|to<2hJ9)cynQ#xyrG&MqXOq@; z@z5x1N5_d%-acO@+(UCIVSNL(FHiHmlDyU*5GP!DKf^NN9-2!D>*JVBdOynR&?xKI zh%;Zjzhs$k56z{7_0`NKy*R}~qpW`>PNMOCpJl>5G?x zzRcOAm$P_il=WZ6j_=+tx=gr-=2F7?WM`A!+Tx*6)(;!|(0l*xGT|PYO9|^+o=tk4 zi-$&8e{$@I@BP%vgnMW%C9IEpHt9Vt9vWr+;<0DH_qQ(-?xDGqu)hA;WE7xyXq5Hu z$4LS{Zm>+ahvrhk#w=!&(Tw7uQ8rEyXBznU$1>p_no9{Adzno}Wr~MJ*?3Ewy5QqD z%Y=JqE+uRX$>w=(GLBR7+PG1iO5x*C%Y=JqE+uR%%;u}MJT%J2zv5I1A6Hu@+(UCI zVPkqWN>_~!+WVFER?p*gY5q-$S|Tieda6xJ`ab7{_tH40duU$#RcXif^g1R)@z7jK z;60p-*A_yf@V=#U2-4@#CN!54_%2Mwor{M?;aif<1xVkkHlewcz;}8weqKB@3g6>& z7C`!avu*jqwsr_c>tRbno9}XV{JYHwEl~n(hROWI;-OJ!O{5d~Qv0J#Xf7qt_LeRgvER4Y@s-^P-iS&Vcms!A%Iwr3Bj4AOEe) z<%EfQXcXGf>72N+-<;4ACD1o;tK0Ve>q2_}H{f+>6#4_w$#QlU#HNInD1knX=dZOq zGz$G1>HIm{YjRUUOO!xg%}1Zu^3W*s&-~!lhxx1BoX`>_(C74xq2-}b=x2KNlaj~g z#I%G2`p!OkddoxeqQC41XC;r#2`y0qeSj~%u;rmq==agqHxBm8ryeWBXPH2e|=<7e{MlBDGLjV2&7bTC)2`y0qV-~-;b<0De zFi!E%tCGj&gqA3Qv6nCG)$-6NjJJH``^jT-LQ9mu7}6g5w>&fo<3@k+^W?EPp(RRS zEbON{S{@pO@vj^GPx9ED&=MsUuf6CFcRi@(p;6!ewyz(Q z@z5yy{MY4sH6@CN=2F7G)9aJpNAb`o`yS8b_c0}khvrhkew*u)-+A%SDEmFm<##?M ziihS>!tOEallxWi&?vjF%;kPHC5ngUQo`<)>y!I#@z5x{KhEX8J0*&T=2F7$`RkMC zNAb`oyU)+%`7tGmhvrhko?Yvc=V0;BD0^Pb!k)qN$@9E;Xp}v7=kh$C z62(JvDPeVq`J`S_JT%Jc4|A!POo`&5xs)9Iuhr+~Qcs)`#Y1x`VRh8`q`q4`G|K9wbE)r6iQ=KTl(4$?d{S>O9vWr!>$%k1 zr$q74TuNA*VLoYp6c3HEcEViRA5)@uXf7qJ?NiqLd2sR2C~NO5q#Y&1`!BrU;-~!Q z%Y23A?{~k~hV>9GERX%)J#1|!RxC`k{pZsy`l@$caPg%#J>txxe*P4kd2Z);k3H5z zKK$X2*)wadj|}3F2mF7B@1apauWU}3o&DolOC_ig^Pb~gHb3`guiR;JV2SmrT=kSV z$9?R1y&^g-QGy!8b6@;-^MikNwR^B+?7w}=Q#Meu!Rz4lis-aN32G2W?fSR#n_hYg z%he4mu~RAT`;-mT(BQ%A713#l64W3*dE=MN|NPR!-Ge1#|FLf!vw@l>Jb1k#IxSIx z8pK!6d*S>gPdd&$SYkcRk2z)oHD-A5dPQ_vq69UFOD}!?{0@hm=pHN?`@=r{Br6wd;MAN!IH86+0CE4fffurc)cPzEm49R#P8np?D@Z(^ilU< z$=ILqh$n5JB?b>(uZT`dl%NLjUk`fv{IPev(mhyWtA2;0H_)Pl2d`H|rzJ{IgLuYi zPo7_S+;`oBCAOQ<>z}xRmN7hdy&^g-QGy!8?VkJi`Tg(nOZQ;O*ni}tC)oXJ;U2tR z5uKJOK@H-6fAdlE2VS|0P?#7SZK+h38c)cPzEm49R#0lpd zKL6W8ZtET_8T-92{i_Z1fWd>;E27g9C8$B1|H6L$na}R+9xNIA^N)V?272<~!Rr;# zX^9flAWr-7J?3lI-r*iB8T+67=OZ`JZwU`xuZT`dl%NK&>$P{x|M|!Fa1WM@{X3ua zhz<0t!h_c1I4JAcVJ zhr0($>=d1QJZu9!-SFV`is-aN32G3#J%0E3e#af<9xNIATO9w84fNQH<;i1n-6slmW=&he)d5d7U+_k8%%|ptkhDjqmu( z7xk-%js!|bP~-ab?(@s_yFB;t?!gipaoy*r4U7cgb?|yc*nj4{U8e*!h;JPC-SwxQ z_GI^9iJdxp#E}~q(SirBSA^v4Iwhz}1Nv-hTrlbMWBxijcfk zM-_q^#KTYe==x1heYShBWbD_Ue!mTjFv5e^D?;*iof6a_&V2n@>(_qzvF^c=vHxGs zIcx(XrSRbOijcfrrvx>Kuiy8?^)FodeD`3<*gy7}_u0URFFbg?A|!9uDM1b52S*>b z{;%h~&^=f(_NO1cwtJ_hJ18M&RMW>lGn+ zyG{ve5RduPE!J0e{ag27$=F|W=*k9W62ODkD?;*iof6a_p8bofFM08c|IR&FGWNgP z|BwyLh=2#LSA^v4Iwhz>>s24;F^Qc{_OEy@j7DKMAs=n4Z_~5o$+2xqONn* zLFMz<4$*Z=P{YGM^PTaTPoi#m@s9Gn+78imN>IbYzPl^&-JL|;?fe7E?_)be*C{~_ z5Bm+S#BXpC^`z7HE5GyY5caeaf*Kw#Jo>nmAEtZBBMt|~Wr9HSEqU)5PhKIE|XVK=I zME&LIH!khk?GRn31T{RY?L3RN^CaqP_qtJOpKph-{bz-shKKb5%%Trq5_Q;*Zdm#m zwnKEC64dapzKmJ)WlW+Deea)^{*vtwU8e*!JgiS<7JV|4sHeW-PfEYfb_naS7J?cc z*0(f^zNJaj{hob;(toub!bY5hpoWL_k{j}zw?lND64dapzVKP}g-@bB^p5MYzrFZvPFQVF2x<`4 zr$386{YlhedtA4S8*GQL-?y+`2?GRn31T{QtjAa&MER(3) zJ?%PW9A`U({nCV>hKG$6&0?%*67})@uT#dOwnKEC64dapF|S#Sc}=1&xZZUzDrbG< zwi|o#+nne+C8$Bz*xk%V`woF-3EF4Zi5*bKp4SnTiEkbHx-+LGBtXCay^FIEUxlKlI zQ5IEx=T4ADN!&}^gC%yNe7gH=P2@X+dniE-kGLng2TN=`BHahwgV!q}-{IUt32G2= zZ+8!tjD6hC-GkRFBHyXqLkVgS@r-g0mW+Kom)wKbD;a50;F5JYU^| z*DE4FIo(4EY7kLpa1WM@ebf`&gV!q}*8to@32G2g_i+!FjD6I1+=JIEBG+WxLkVgS zQHMj+z>=|#dYgOjdPU?KnR_Tf4I=8I?!gjUS(@s*?!oI7k!zOjp#(LEs8hQKOYC=^ z>h12q>lKk}$nK#8HHc^%xCcwdKH3BB!Rr-~Yx?e?1T~0gYVN_3v5)qdd+>Ti-_i=(WN}_McJy?SJmG?$%P2`>; zi^4w=)VLmfWbVO|v5$VSMXFzAx+3g9S)v3ri0JEc50;F5^zSX;!Rr-~d+sc%^e38D z8YR(Z=^mOl`YE?2au1|Mm3~ntNTVeBUfqKwV;}vkTNAk_)uKxOt`nqD5`D<-!IH6$ ze&el)+#_sJrJvdf(kO|(aQ9$|&GAY7?OPMMXWODmf4dW;Q4)Rn?!l6=kAD2EiQGeP zQDxk~3DPKuu?hEJ$=Jtu#MVR}X|Sj={^0~^l*AZ|d$45eV_aoxB9E9@R2j!{f;38E ztjIlBGWIb(v^9}Oek`htM>#8LxE@UayEe&S_EI zB1T-Dpav0R!tTM6G7h{ok;iK-s$0a!u@ltrh_P+=U`ZLz-kQkc&KA`zVg%d?YIwvL zy?d~vjLUCLJ~AQ?*uhGVy=OEu%yf{*qX@m04%Co#Eb+dsNoTFCftK1WuC;= zM4r!JQQabDRyaWokC^-69xN&IJ+>zDybO!#7BNG_32J!692WOrNtw5@HIe6+SX8%& znJ!LH!z1S6xCcwh{F|+bJWs}=x<$;`ae^8iF{j8qSW@N@ZB69)J{Hw2V&;(()bNP8 zQSQMK+;M!?)7C_uw`5VsMS>dFV~&@5u%yiEvIzC72uq#wc8i$rlQYYIww)JNIBonP;~(k>|r%RJVxvcTP~lBjyge2TRI)!L5lrug{{o zMa&~~f*Kw%2hu%QQszBwP2~BB7S%0cKBN=W@QAsb?!l5We{*Xh&$G0sZV~f3ouGzC z%t>_*mXvv@TN53LZV~fSouGzC%&m0~mX!Ilc3u4{BF}rZJl!JZ**ZZDBIXFY2TRJl z;H`-~e;4#3<_kMP4Ud@X>>eyB^P9IO@;qeshU#B`PA+a z^S7O#hDXdjcMq17`Q}>_d0x1C#5{B-sNoTF=)I4OC1sxe)AOd)3vhxO9Fob^#<+{>l>V)hDWT;a1WN0^%z?ddEJD2 z#5xTpsNoT7Ox%MdWnIbEL|*^l9OUnAOt%;6Aw}^FRPEf-m*2K97OUgR9t%wMgez3z0pH zWUfsJqtm}(mj3s)$lF(X(RCleYl`buI@tdMVgFl*Mf`=mU0*B_b}@S}*CvF~&#=|9 zdz^8>#fEivJ!p@Ov=3mnpdS1C++&Z8w8J0#gc#aUHF1HheLeC&Uy0v&r@5%D4uAL_ z8)=6>cnC4HqiSNXwXa|LudCfdb5W1|#^d+cNIU$&Lx`arRTKN#+Sk)By9MqOo#vt* z`VRxp&eBd_p`OHk9yvB-9vLx+Zg0)@3@h6 z_=ATKLp!P_&i?Di&u?(pFWp0PQCl7U|J~8fGR9e^@DO5XN7cj;-+I*ix>xMtPfpE6 zJ@&VJ{+=6Yhd+1-F|?y<;;e5xbpD=uc{{4pT-0N~|1bC4NP7apLx`arRTGbX-cj>s zKX!M29h!@J?Em3qdu^mW0pTIU(2lB!BW&&K6}A?#vwxb4+WM3KbnlI{!=JxbB!+fW zO}yULzJAZvbizY(QIGu{&)<6^?eGT=A%=ETO+3ZczP`ZLrouyWQIGxQ_upqD?eGT= zA%=ETOUJ*k%5LZ#>F9 zG#B;QzxlNNHqxFo@DO5XN7ckBYrkAS&GrPakE7FE)He6$$@_1ly?5Xtgw@-#yGE%7 zf%`h{*6`3=)b?~f_<)VHhfqZf?Wmf-^9fHKcxWzan~SyEfg5QrBzOohw4-VQ&sjV@ z;i0*x?Ub?a9=MVAbb^NvLp!P_F0r+*e`tGVz(aFUkNp+vJ2ukZRPYdDXh+q=F-M%Z zex&XF0T0bZJ@#LH>s>a|9$WAbVrWOz1nO_7mBB-EQIGxKzwDrmv{x8Bgc#aUHF5UB z>Y+DziF;@+>aqW;qwl(r_B?}!5JNkvCZ77qTdY6K>eYB1nu~hue|^7$H`3m1@DO5X zN7cloyMFtURcjx>LvvA&{l6b@w~e$19Xx~>+EF!e$FIKfk{?<-2OgS>dh9RW{q7rS zFFkk&F|?y<;&uCe@ZyKWUPzjYdhF4gkoE+GhY&+MszDr*J*K&GUTfW5a}RkP=8=hk zghr{3SH3g9SDK63YOi0or+gmvUS(ovN7aOVf;;nPuDPhk{@NGaOTJe^4DG0zuy5i@ z{_binYP*Y`esB4G2r;yyYQla|EBQC5xv0nfWy2xzI~QVTN7aPg8CLSWL~~J({XS3J zDfcTOhIUj<{N{)gSMC<~M9oD#_IFubk^8O?Lp!P_ZenX+Zxi=+%|$)-J8m_T=Z6qO zJE|t^iL;WQQJRa|#t?onljooiLp!P_?8&*3pS7Bc+U}yC?d5qc#L$ka39B=#?SBRkaqXk!w#2rtq?;yswS)@Jj-oo%|&hV@BZU(X`c%*w4-Xm zKJQuX1JGR5V}IOmKj~)>VrWOzg!N3!a$kn#qPEuEb&rt#5+R0mR83e9%PjZFXfEop z|F>5kA^ko=4DG0zu%4n>?pxAa)Ha9dkM1x1S3(T!sG6`IuUYOR(_GXxx8b<^OFx_t zLp!P_?7lwBeSMmX+G?*~zrXY+3Nf^!YU17xe){Yd2cI>Ig)b@1V{YdF=7h-5f)r8gGW@zEzz0zFNcGBNbN6NT?5JNkvCTyf( zmd7SE7xmcx@Fhpe_=gZfJE|sZ#AKGoSTq;)*w5a6q>SSTF|?yhxEov(M1FYZDr!8brMEo%YrBzbfa#UzpES!#k4BaNC?n zpFuw9ZA!!^=pI@^oxUaMEIN3!35`+>BEE?$cpdnb!T)ga=|;2!wZ=3Lb2?vu_q+?>!T)ga;y=N`EG!T z)ga!T)ga=D;~sb#!T)ga=@=^l8h7330-JH-U)gYn<;2wB7=UmjOmXXdf-JH-U)gaEYeLtRMZNkoeAE;&IT-2$yl+I+` zoX{xMAZ};-m;5aD#zk!@=b}!vzI3+i=7dJ6_P;9CMQ3;&sP*Ms)T#EG&dA-I&?wa) zqK51qsJ-S~)TtJp&idV)&?wa)qNeX2sD4?9nDP zN;N#92hu$>7j^38y!~CWN1Mly9aumb1v%Cd%n+aaO(Kxghr_b5k2(of!_0+i#m-0Jo?Ak zqfKa(YIwv*gL_~UAm^e^qZ!xwPWEUM8l@T@F=FB#7|qDJsMDy-fnUoWZ9=0|!y`t1 z+ykRBITv*rUHX@+vPYZHDAn+I&aYp&^X;)WE=HGfF6uN&cEc;PN1M zb()LXYOgk4o8Lo!cQfJRoXK6IRKvqQL5vCGz4GzeoQrwWD02QTOb8#ZO@v0NhKGF< zF}Cd<7)8#xsO>Il7&$&PAPOC**s~gz$L)iO?w3@Q4`@?t$3}ITv-BWs&cd6T;^+BtoN9!y{&L zxCdrgSdDP*2{#DL}nN>-rSz)-_k(=6897M&12Uo;UKr5YYF zQ`S8&i#6w>PP1`yn|ea{yw^l%lxlcjJQ$jhwCuwKIfvg+N-TM$bEnl!sqEHLZei}BUUK5hvuSAs~~b;=7jL| z2FYEcRKp`yTDS*RLF8Q2X*EaglbsO0ZXyvHr5YZwV#GbLnj`0;PODOK-|~d;^&g4Q zDAn+Yl`rmrRVg_awLP6}Jx=Z;pAf!|B@r5>8Xi`E!YyQ&O*F4(Sj;e`gn#Z?JP5bY5-SM`1abf>wd)e%2`uZED$DSG` zSoQmfI0=&_WB-KRk6(T1?jPTpki1=|1T{RKWS`)7ew$9hWXaf{bl2loe}219xCgIS zgyiiyC8$9>!DcP*_la~8CQHWt;g30f_4{}FqGE?#a1WG<0MR$*zU$(I$`zT13u#(yj~HK*LMFFf*Qotw#s57PQqk~ zJu_ynUOnj!pLGvjuL#L&Eqx)VK^$i_fOo}7m@Kj1_Jyxr{eL(9oO|$kMMz#-Gb{u( zh<~%yfP3FJjrOr*?C)^**I53`-GkRFLh^Q<64W5xZ8fs%$7ml*>~(znHLLr6KY8$a zMMz$I9YRop_;;&W9+qmB150eDsfWLI^^ZS!MS2~Dt_aC%C(8*z?SGY>g!z~_36mxE zJO9ONSMPoLmF~go6(M=;cP<1qh!d=)pHISM$=E;ht^crk|7U&PJ$St$B(Jqzg`fs; zl&x;tVKYEY4lEh_eUJLb)i2%c3+}<|6(M=;sVxLGi0|5Jz+YS|orKAfu|MJ3C$9d@ zuaXC^SA^uXcSHzk5SD*#KK?pbGWK`=%!#XC{=ilKI(WSzB(LoZAOtlCd!Od^ez^xr zY|P{2*R8(ciC=UNUattr+jUA%gRswgZlAk*uw?8nJ^G~8$L#hc_u%!4ki6FWDFii$ zUp;R3`Mu&KOqPuOf8G1!)o-7hJb1k#B(Lq4BLp>wGi+C*hsQ~nEE)SR-~9Efm+$;% ze;vGD5t7$xoI+58u=~i|?kE0Uu>}3!Z&>}-WyyorD?;+3gakFN+x>9e?u+ihlCj_A zM{iiY{D?36>)`c@ki7OJ5`r3p-PhOc{_Y+u8T;pa^Np*IUL+4*uL#L&z3M_xgRtk* zx;>}dgC%4Cxi6fu`k*_1#a{=nSA^uXedC0n24TIx2&G`j^x4X6(M=;uN8tC#24)(%$;!(CQHWt`d6R6`q!UJ9=u)=lGlFC zLQsQv`OmMui5?>qr48%n-jL@ zp%By{&=!pMY7+I*-QQ6@kL?g$rvx=T>@(jPpZO%}=eIkve6O}c*xM!qH9YLQyAt2s zN!0i6bXNI&Y=^KB2qCE9@qLt9sIbri*g`fuUSUU;xmgyAmNtCtX zO8sg(1ags}#&xs>qYgKT+V}hKF7?Fi5Z3+>f*KxH7oA02bP{!gPrj$rceg{>iEKhp z!{h0;8t@0l9_61oOUC}*r@yz<+j)I+!sZSOK@9?J!Dt&yqKsn-g891T_f!{_s15W{Hi_?)*^c z_u=);3G0Uvf*Qn{wFUnv^({@JzIEA$tZtS1mbOE5of6dWIKu9SA3fCj$R<&rJL1Eo zA8tE@wWEZfh6mb$(bqSLdi3JMr9W{ygpJAyK@AVI1*6Y$67|44Us(D@w?o)o<3dow z1JBv$d!0nR=pQaD{kz*CY%QS>)bK!C(AtDPy2KLehx^`zrJtJDHz%wgP6%oc))zjD zzVJ!ZIs0G4{`Nv|PIR3T)F6Ig^|w==m`3|pV!!ieUsT2ocztuie&<3^gFss_#wI3F z=e^^iGXAk0qU)5Ph6n1?s8>U?WbFU?a~G9y9A4j?=sG2+L7-iL_5n0Y#{TWsTvW!R zcztuC>y)4df%Z*|c}=4B`prdUlx#ah*C{~_kEhtoPn>=N%@VW+u@5Ll<;I@Z5!EJ8 zLV{Wd>=rt(B<1~spRcDjXQ3;?{xj!Ie_5Pb1o&QL7**YZ9?~8N&21dxbkD}!Rr;_zo_(=q~Cca@T*N4#1HLWa@^6rvUp(0 z*yH|j)n`8H9=u)=erL$Jl%NK2mE9A+a9>{`J+LI*cVBQBzBTGs5q=*`e@VLUW&-!! zq(Pu9Xl+7&uUKMh?d)lA#%Jw!Xdb*?5q_u6xs;#=5zi?1V9D6yx%9a&T<9LWUJ?FW zN`Fau4rYQhhlNWo&XhMj&oe<9MARAFgC*9#YqgABe}wvv z`c;J208-vmFUbUH5K;GW50;F5s_!HZUattR$)vowew7H)AYN{DxCdFkzR7_lsh;@H zH~*l&4qmT_sF5LWswZXwwZ5cL5_M7cU`eX){_NftxCgISgx4%{F4R~vK@9?JL2DDb z2TM}D{nDecbGG_bL`Ndk+cSY$c+w!EZQvd(N$rn|PJX|8@Onjfdm!gR3nCNLAfk=q z9xO@isQo_kKKJ1Ditu(#%9~n9nLw*3X%Nv?a}So-{2OZzo^b8t!Rr;_Ew7wQ32G40 z=5!C1j6K?!`yTaPe;vGD5#EAKe@SZBW`Z<`Xgj+HOKd)^wYH!6*7vvvuUCY(gj3$s zKF&3b2$KU0zgV!s<`(e^wlKOozK^g?wg4QN<50;>Q_3qU@ z?w&k&y&}A)DCI>732I#b4_h5Qq}@UXmZW~TgD*VaUk9&Og#BmEoBH80fnK$wK}27l zzYdn9{=~Cq$%EG`!h7y=F7yayf*M5hS-J;H#vc8Y@B7ku{yKQQBD|k6Y+{~Vh3SoO3Bb z4Z`X@D^~w;50<3<_D5ZHuD@5jUJ>52o&J*4-<}Edo+k~$>TfGnk8=-}j6M4C&pau4 z@Onjf4}H$11T}~ln{W@7*on6`n(^?*BoAJ%2p^9~e@Pnu$OLH+F~;H^EE#)@tGw>6 z$%EG`!beO}-ZYMr3DO{9tjIlBGWHlBdcy9>gV!sYHs`{~aVDq{6=U1(!ICt7p1lNYS z=lS=6k^D?hgRp+3b?aYp50<3)4EgTE>lNYi0P^n~GZHdE4Z`}z)-h+)ez z2%le)pC6d%k_l=MF&D=@Sd!-ZE-c^w`?_&lK@B42+_?u!(!9Q03+MHU z@cD4LzKfZ8nV<#{a|hjnC24+QZcXrdMfkkFTyMt=!%R?vh&hn%!ICu3GPjC&y&`;m zVs3w6rer3lLBw26_h3nyFPhtfyj~GL&oZ~8Fyk{5)F5I`s(Y{`&3nzQR9>$LpD&u* zgP6IR32G2Ax7IyalIHK`);6zKgwK1;?OM#h%>*?F>jS_XVfSE3nunZw4S2mGeEx23 zpJOI*Ca6I?!sa@E-sX&&99WX(Q|I0fUattBhn)KvFe5q>)F5KcwtKK7%?r=HIJ{mF zKA$?}P4mJtf!W`=ucqsMY;D1Jq?2fTUU-g5^UYIl)TV^b3(vWfpvGSnbLhQ~j3sHF ze(qJ{^@@o3?Wz9?Gwm}$4Ibpgq;(Uy zmy_2k!q*$*{zR;N$OJVA>wCr84EJD3TK|#zcX_=ceBDIu7sU#WOi+W^VQWm@b#m%M zW{LH~*{YP>>&)vF;p;zg|E?0$AkY@fec>!g>v2kdd-1CXU&oUBsj;Fa6VxDVe%IXQ zdHH+A68oLoDxo|I!0Q#^>v2kdyAY&7*x1B8k4>;7t&hs%AG}@>zOE>b8(@V~Ca6Kg z8Z3VuEJ^FU@~8~2SA?&R%Htncsg((85V4lb$BI~z)~n^wC0?%xU+0y_aj@bn6VxDV z%nNJc+=C@)iO6mOHjW$-dcBQe2~{G!q?s9aWy5V zg}@l(z!F^nsD26vX8*lNV}-8mKR>ei=F@hI>zfcBm0pL*&4{Xm5ew@*x7PfP-f_XjfA;v3&%oNy#cMCRgQf8EAWu5)1Ur#5 ztup<{p-

m=;I{5;6zsG9hIecS&_&V$Uku;Mi7v|9Ey*SjV>gc#aUHG#G{+UWLI zbyzK%b5W;Nzvpi3w_+g+9}~`mp9h%;jZzI_e_H|i5IGMr=fXPSq|@r<8}0Ly@DRe+ z2`@+0#OLfTI!`0K9o9JKT-0e5_D}xgb>Sg|uXj#_MybZ@xX7LcFOR*Wu~s|hqE4&H zZ+YK$hldcpZaWbgr5YYLv-2Q-cqq?<%(<}sJn6J5{tt^90gzwLg2#r#Wzv?E|nt$PacphZVg?%QH&bwdi86HCTJ`>APHSr>=g+C#U z@Wy@_DOcJr13K;Eaqt)J5*|Xtei?OCP3-f{ht7XsE70&>VXu#zi#qK_@}2LlgohBm z??)muN;TfACt0g#o?1m6_AJS{sMD@0uR8Vq;UR?YUy=xoQVowaYu$Y%weI{p$eauN zuq2&!hdK5~4+{?=d>@wOsG5j9Yy7>!9x^!>b=u|TwqNm8aQ0UT;rq!XLZejUb$r8C zfd0-_Xm<7wd*S3<)M>Y#oez0Nybd9JUz|i}lxleV*z*6#eBgmSeR3}9wCm8jALFYS zriAbBlL(Dc?XSbm&3ucT2bptWpQ5DG?nx*7r|(l|9^WA0`xGrl)x?YK^M0*;?sy&8 zV=3pNPP;(8@sC~+@0Ad~-%=tpN;O``gKcKQujD+)oD2I#C7pJ&I_aq6!$Sz)H)=Vm zCf;kmzrV2GAzlaeyvn(#)2>{%d-!X^LkQphDiIo`8n5GVb{~0h8sYVQymBt=S1@O`|NqiW*1c0W8Q^>X@tWH}f1BTG8%lD2Z%>%&6`-;ZoLswQr4d$;|i zoCle6VPCbR?dfd$!yWqhQ^G?C-&bupswSRqD?ooL=RxLN%$s(t`|LlR79K+Q{&0!V zDAo8paQ27ouRh0Tj=k-2F6y-V-cufPdUy!o``jf$qg2B~PIvV4AagG4*OzqKMewQ% z-WDE0_J z!uRD&ghr{x_v#P+%U6K*=?4o)aEI`2M1a&?wdLxY-9UxcI4Q^wsxC z&AG5oYSLqm9aoPzCVL3s`=l;MHHbs9$23>YYppxmYc_lPUzLf0ghr{3_X;aO{k_s$ z)K+`7J#+JW=cAL)k7~6}Lgr5hQ^J2H@d|#o)du8V#t=JhL{+VkDb=oyM-zz7Cp9h)q zV%O|^f24+oobK3Z33b~2JKyssgr5hQ^J4e!e4nR=hdpst@-s?HsM9Xy`Pnrg{5;5< z7rU6}=M^K4>#SNU9*u-$A( z4DG0zu$s(DuKQr``J9V7?T(-8L|rF@p9h)iCDURjN7mg{g@LY;Q`&vm;A z;pai-yx8SG*XO9=VKvKHu8V33wYBc-OoCiToe+MKK+emkny?!3EZ3WoudKx~%WWJjp-!h@ zGYx0&qNKvdc0=2k4#Ib(PE!#7Sgr5hQ`*(55 zSnf}z#^>>QTkZ7SwA!iD5^8%o?|x+Ti&uo72buFSswS+5ewO?68D-D&k~f|DmizjB z6d)5rJE|sZq+yoFCU7=f&PAP0ughZ=wi<|pp9h)84RCs09;cwjE4LAoSsr8266$mc zUmkmz5PlwH&Wls{@^}k1JY+RsrzOCX$iHp z?(Dq7JQg+~{5;5lQK~`2cNgP8`CH<-;(KMf{64~?O=y&Ac*HNtJ>oavxv0ypHayydMyZBJ+)Lae ze%qdly4-!jqfKa(YIwvw(LLhsOSrfbrH`+UFuii(IzxXH9VpYH|y*-7V`9?|>Zxu{FOPk6KmjZzJd=v#7+=Z8> zU#RDzF8#aV(IzxXH9YFm9j&+4b4CBI>C#Uf9&JLSRKp|s!e^a5qoQxxb5WQ6_V8#E z8l@T@(L?VZ(Z}w&sLLooc(e(PQVow7X>gAiEAU*@Wi%r^+Jr`_hDVICxJQh6crNNP zjuRejLZejs>qsL%?h&Iho{PGSE`>*o6;*^rsfLG*_T^nq^XQW2it#AZWt1#D+Jr`_ zhKG&zVIFFe|WMyU=Dj6uS~{`r_-2j)qx#_?L>@nPj~K77G+u|@88FwtJs8z3 zsLSkx@DL);1Ms{tJE79>h#3&>!KiLQU1nK?hY)!_gXfJ|7L|raeIBHZ_IWNPVjf6% z2$APycwR=8`6WTbjFeet{}|ORsLQOEWg^cnagUhwQfa)7m|5c z&l|I;Dh-dAvE?3&>K4>xR#_7|-k23uX?R%85_8qugHhdr+FEyM4qJE#k>`K4>x)?|1Hk>@9R-k3F6X?Vn3PWNC`x1cVwKf^moRUcjk`?bd9PNYQL6D*#f)F~ zh&j8Si@MAz4i6#n{9X5mS;duxN6cKF;dL;oTTol;F3o`s4-k1Wq` z_gqTEeERSZBF}I4yo@UI^n-|*{qDi2Zb5Ce*R)1pnaK0>-Gfmz5i1njgHbmBs^l%J zAlB`r+A9|#uQzaySOsBGH4!T<+=Efwg1W5c2oE9hx(Ux4t2ru-zbaOYxCf)U1$9}K z5*|Y2^&g%$R;5%L965P2Po=Veq)#0nnwV3a-2OWv|dC_IG7 z>v7y8RtZ%aufs+fuy)Bk7}YJP%W9|a5F)QD^1QLysnYO>6;(#78qg3N{#M(ZL#C4jB+Il%<%^!)+{rC;HtE2KdzbWzR&pvnlF9)5A_otH;hl{Se z?b>huFLpics#T3jXq0HpWC<`I^$45$df>B9J_B=G^BP6y{8wQ{D92JWVX)2dYDL+; zlM@2-QFpgFyhe0dLOu4F5y~-PA%=ETO}yCVAfIeAi{YWUsK*{NO*ytL#L$kai9>BJ z^*wD)H9RyI_1I%ZD97l97}`-af%&MHS-TS+nv2@*i8k*%&kwLOCrJ$LsG7j;WiLp( z&~}=O+IAYV`SW>Qq3>IpiJ=`;6E>na&+{@g7q#tjWa|Jp_d|%G9aR%HqBzg1pSk9u9(&A3 z&GUe|PKco$RTD3s)^g% z8pWHYU1&SaMQt+&Y#kZr4hk`}qiW)n=NvwNd8|>?T-3I6kFAH}97rLCc2rGZJ}O#~ zc&{`UwT@*kk*keX0=cEcTw4-VQ^HD+Jb!aZ?vBzsbHVavF zoe)DiswSef?H-zodhGF8;9W@`LJaMwn!x9cPto{Jb5UDO-`2h2(@h>i4DG0z!1os4 zMtEp0>aoXf1K-l*A;i#*stL?T#jgq;nv2?YK(%$q__ZYuA%=ETP2fI)y8}El7d1u{ z_nhIbkvxPL+EF!u`yuXf@X%b;)`x8C!g2RY9zt0CD!XfxYJ3xMU&q}V9-51K?D6ct zT|9XRF|?y<0?#Krb>N}7sI9lw*6HJElstqO+EF!u=PaJL@X%b;V~=M!o~p@1h@l;| zMA&>()EnTTxv0k;brRGL!h^)nj;aaNdr+H!hvuTT{u0~&0kxduA;i#*stMHJVi(#@ zb5V~y>WHYVB@ZEnc2rHE9-7xjX)fxqM_m`S&g3D)(2lAJ)TdEPHontb)MJl2J8I9# zLx`arRTF3zptcVW%|$)-XnUX)kUWGK+EF!u_Dx=Qr@5$Y=78<%n)lxld`H*qC@ckNqJa#8!YeVxA# zA@IElLZei}!+ud^jiPg}c-WmG?`YlGueRi(_PftI?^i=4X^W4N5L*f2ytXIcU$QOyKzughr``hdnu0^0U^SY9$x7Kb_}%o(qBJ zU=SLm8Xi^ySjlw;dpeg~)LzS&vtA+up65YmlxlcbO=cz6eXN#Ia#4G2Y0mnU5U7^~ zp;4;gVKuT@uESYvspO*eTHl=YL?KYW3PPh)!vkXMFG)gr* zti@8+C|YZxJk6@*5q_SYe6 z6fIB5MeVKBIa+019)m1v6x&fXVJ+bqT6o5zU0ZTdduw}+R$1~80`1x$G)gsIhkf2N zwD90zpKHlQ?Y#zbw91l)5NMwVp;4;gVc**sT6plV?`O$H?Y$p!w91l)5a?$JLZei} z!+w8djiUX|N-k>e#hIg3mOO+&e@PG;r5YY~ADN+rXFU3SN-k>ejhdrXmOO+&zfTYv zr5YY~Kb)b32M@dNm0Z-`t2RfgEO`il{;MD~N;N#}zCJ?>4<2^^F1e_^cW{nYS@IA9 z{cu5Olxld`^J#__9z5(hRB};!FXtSsvg9EI`V)iDDAn+Y)g10&&(o5N+Iwr~Xq6=o zAvW8l@T@R-c}sg$EC-H^2fjZzH{Yp2c7!h?sk z$4V}0)RxYfbB&@97*`8Iqg0EBuQ=3P)a9?jYvo^65gMgh-YdKh`LFU^@fVsd?{0X+ zdsPt{r5Yab2|5w)uIHjI-x7THHYGGlHHi2o;(M9DC7vt3F{aD6Jv`ckMyZBJ{G!|= zzU`iiy8LRxqfKa(YIww*!9C(v>$#}Q-6uTSghr``N8I7uBkn$)i@MxJ!=p`Tlxldy zo!UL(F6z0c%hMn{+Jr`_hDSVc+#{X_o{PFX)xx7qXq0Mr#FNuK;;H7jsLRtCb(c*E zjZzIFY5?vLPiN0XU1}NO(IzxXH9Vpw;~r7V@LbgPt4%eW@Msenr5YYlBb#;h8`NCX zrPdc7Z9=0|!y{^z?h&;<&qZBoui?=qG)gr*qK51qQG4}V)TI_49&JLSRKp```tA|6 zaL+|uS`*>XCNxSlJfg+o9?_ccT-2pi6dr9tqg2Dg+Jb0#xkt2$JQsCo-GxV+&?wdL zh!&)KMC;CTQI}R~c(e(PQthup)+k0R)pJpo)^>PA+j-X6x4j)z6Vak~B3j#?i@Nk0 zgh!juDAjl!(KF#5(QDwjs7vohc(e(PQVoyjVR4V>{qS7Wr57hW+Jr`_hDY=ixkvQk zcrNPF8x~GBDocVP`UVnEnUK<`l zhs8Y@)h(#~sfKwn*@Hx$U*aCsmXc<^9Ux1jb~2Ieh=hY)$bk9(jeJ4Mw5`oYn{g9oE*?W+*zYe(D7LKa?I z%0!;G`!o%ypI7-e%?X_^s>kAJd@_ab=z(`MustJq}p@jzzM%kJl zAutw&wwr}4d_*x5d0wA;Fv{B>LSVcLEj)NIs#{Qds|fQf!$XKXKhZrf@|L1%!dhOK z%jq7B>K4@Ay2E_Y@DL);vvd!Oh^U&t_#;|)cpZ%D7S!HK#k|+>5F*bPbq{+D5mgiR zK4EUHdoarOPZYvF3(VgQ4mCfMs*8n@5RBq@bC~K&!=_| z`}IatP1t<|bI)h^%o)`!sJ%A|^V`Ei2#gPwymm*6sG6|*A?DDdj|}63B^R~#s$rgf zcnE2x1jdkL990j4=gHhdr+IwrU{v$ku$m=GoM59#Wud@0AR*blZ zJ@HE}YVUQ%I+pMdBCr2&539LER83gD2Ww^AgHhdr+I!Ej9w$76$m>|#!|GNMRTEZ! z!wMevU{trD_E7+=D+&)G@_HQiusUKy)r8eUv3AKl7-efMg|J#I)<=bh5P4mZdoaq! zKZLOQG}d6b2cxqt9REIAyCn}HhIUjalYcVA;i#*s)_TgF1nYs3E`o+sBOor zSDd?wwp;QLVrWOz#CPnBxMO3^o#vt*`+N51uA=RhJcJn9Q8f{}k@)M-T-0O#ivND+ zD%x(zLx`arRTH;(Q9r+5%z@Ng)MNkC^WV9Owp;QLVrWOzM6|s8b!aYX+Y9MY?_5RO zEqMqrw4-X`Xlrvm=O=0Xpyr|;`wv{}ovUcOB@ZEnc2rG7OW0qB=As_^N5Ai!RkYpW zb)?odh@l--6S3=%duT4|vH#>l&sjy=EqMqrw4-X`%l5rJHO@HHT-3JX$$y`{ind$w z5MpRY)kN$9<*!3?QIGx0PdR%Pt+M1H#L$kaiGRCdm-#1S{h;Qe9{Yn1I(rqZvg9Ge z(2lB!*phf z>ajoVwr8%Q?Up=*7}`-aVLOtp=kvTY7xmcR_yg})McXZT2r;yyY9e+K^!G}0QQHpu z{X16Cc1s>Y4DG0zIQvtFuYb_mgvNK8i+b!IeB~LdXuBm3A%=ETO~kH_?xDG;?TPc~ zGgi?mOCCZD?Wmggo}GRE(pW#Jxu|Uv;F@t2t+M1H#L$kaiIZ&1>)ml~pXQ<-``bTn zTt%xac?dDIqiW)j7jXTc=Ay=qq@&fZvWE~uJE|tW&eeeSXKJpjt#$XBx6A7gVj!VW zs?oZ8?$2Ji^S$w2X)fxq|M~83m(N3pp&eBdi(g*7^9AvlYcA@s|J$?PCf_R|hIUj< z*f+79aj3bdtyQ$+ZSwmNVrWOz#P4m-sLSFvsJW(@;et|Xh+qA-5JUmhnkCe z?0_&#L$ka35<7P6w4kSo#vt*`@i`0snU)TVrWOz#0##yWA>ET>qT=> zTQBF?r%HQJh@l--6V`&vs{uRBMQt-V9(JmxFx(OlGH|Bv^2ll1!tF|?y%aaK=}#15Xh+qA^+3+n4o>R_ zH5avwC_d>F=@%7ZXh+qA^`y=|dg4d@b!aZ?vA@&3PLcjyA%=ETO+4Xg$IhPjrgX-k z=AyPI=Z#O1erh3xc2rFq{i)~Aezba`zYfhsZLOl8zft|>P zRP$Wa_AN=zbJQg_B{WJkh^PU$hvuR#wT$p+6B?x&9#NBVkEmsMF6vTS3Xe9SQL5n) zHL_V}zrm<2c`oWw>kE%Ip;4;g5j9Kqh+3cLqAs=9@Msenr5YYlLw1j-y?QR{QVS1{ zHlb0f;Sn``_lR1!=b|pHiSTF>8l@T@(PD9rXia!7>e4C-k2axEs^JkWFZYO6k>{c= zt-J7O6B?x&9?^nyk7(U_F6z=s4UaaVQL6oQ$oj!(rFt&v(%KG>Xgkk3`?j~EY9dBYF)y7j^0V2#+?QQL5n)JuL1Ky&s;7y7c0NN1ME#TMHlb0f;SoKl?h(D5o{PHl)`mx$&?wdLh#q10h~8Sy zMQudtrw)%cp;4;g5k1?-^O zh*1E~MO{WS!lO-Slxldyh>3f|XolyaE~7Hx(IzxXH9TVE$30?H#&c1Z(WUTc6B?x& z9x;OD9x=M)xv0x1S$MPwjZzJd7>RR_7$x&u)Md0UJlcdtsfI_4D8j@3`Iunj%Gz3Y zX`C~z3o($;DAn+Ykx}>1T-0UsH9UmKjZ{m6%>jxRtEvT(kl*Z4)Lx`arRTDAdKI`nC=Atg6`r#o&9zXZLJ;v)Rjn`p! zhH}Osqq+rknVk?GLgaY>o;T(lR2m+3hr^tS8D0mYx&?KaWf2}iGkV?bDo;d5jebckugHhdry3BeB4^!Mm^l<4Lge{ARaBX` z6ol1e${B~6i@MCFS|;+mCHIJVQkBN*h#6b6&i*l~TTqu-Vc{V}o`23V;bAq) za>gN}x&^hh?$Ug?@DL);BlEnBs)?9EH^b{-l${w?@|Ib8;UPqx59b~+|E|(_9ahsX zXB;xBTTqwThT$PZp4aDjV;*6p;SqBnXLucq>K4>x)?|1Hk>@9R-k1+rX?VoUO!r_^ zx1cVwKf^>iA&iI{=y9*pW1)Mb`;cnFc_Q@cmZ->x*?E9)tmKOxo+GRoGz zrupVh#0>NB5F*bDucFHQ_8?+LJo?D;{B|#4-ZJZcnaK0o-6Q7HR~oOwdhX_*i1mYv z>K4>x^+0$Ck>}}q-dGnK4>x6~wx|)G3kI8+hJW-(XQSVLhpH8y|EJ zMs*A7vYI12gvjeAJa4Sis5Jg6Sq+%ie|Rn>VkJp<2$9!+cwR=8bu2;1YQT&h&uCSrw~doZe7P+RLRt-A{kA@X`P&&#Nqh?RQ2evnb!g4%jHWz8SY zIQ-?UUw6AYDz64?5*Od>@h6{g&_O%aZhN06?qzSA)vtD}9sl45m>&E8*s)`+y?(GA zRTDPaH_v0Knu~hu_t<~O8rKgBF|?yaqXEaNru(4+=4~qiW(=-+I*i%FA~_y{6M#)V7n(6AxVD z`avOvc2rH+Xx}`~RnuJ5WB>fM1J}5IP>7)&RTHuru+v=BV}GmL9=O(CKiH0{iKyxO zd!@Ok$NuBLJz%Z9ey|-?6E@m6&vPI(7qy)Z{N)4IxPDNGp&eBdKecszSMR#RUx((R z9{WFk&jD*(KPbe|j;aY8?VIO0shW#=>>v5R4_M>+K_P~AR82%n*k6a{qPAM!!w*<% zuODnj)kL)D-9vLxkNp$xbii7B{a`z)CN6vI?(>^H?Gm>akz_-2Q7^KPbe|j;aY8?VIPh=bDQev#Iu9Qa^@HuGnus1q_t0F_WB;uG z*>A1Aey|-?6Va3E9-52VcJcW1erxUZgYBrAc+wlrTK~b*()oj$i`woCuiI~p>j#Ax z+EFzTJ=^{|G#9mf+aIytT6_IqJE|t4hu%Fj7q#umb=&>c+Up0~Q8i(sed~GclIEfw z`+a_R=QXY$6k=#c)kKV#`0LPI)b_-A&z;xW>j&FWH6g13JIzHs_Sbseo!8py2is9K zVWWMQXX-FY=v*4DbabYFQLLJTA{N;TT&F*53(x#ps_R?%zrmCr+np&eBd_L=X@YeqE} zwe8CF;CWf+EF#}!9!16x$UQXPr*)eQIGuxpK~X?6-}A%=ETO~ec#_t0F_Hd1}sK2k3cVrWOz#Mkfp%asq=o-%eL=`FPGJB-83E`o+sK<@qIUefO)#L$kaiC28%QL~?a zKJ_hWF6y!0^JRNU|CJC!JE|sPM!fgKX)fxqzuVD!Nk5zrLp!P_VrIX4XfA5odH9IE zq(4!Jp&eBdvKp|{T+}uz>@Isrzo-yHJE|sPrG>u^%|$)-H@Veb(!VRj(2lAJ>qDMl zmvKBlG#B;QKYh2oq@P-dp&eBd*0Vj!ec_sm+FC`w*;D%4g&5jVH4!U#{B>w9>al;+ zkN1>u10jZXR882}#4PV^sJW=ERrH-bW&A^kp&eBdv7*XfhvuRl`vbqWr;OtWF|?y< z!bW~(d8|ltQIGwjyO# zHD;^tx%T6WpXFnE)AfVxs7(l84XC-O%U>1aoVtFn9aR(Y%6HmNaEQOkb5WOfH$2*e zMyW=dGd@B0h
QI~HCzI&Sz8l@UUd=poU&)*Wy72g=s<=Y+}Z9=0|!y|rC?h)U1 z&qZB+wc*hwG)gr*;?Ce6@vHS*)aC9I9&JLSRKp|gaPARzAJ0Wy?xNw*CNxSlJmOC6 z9&s1-T-4=h5FTwpqg2Bqo;dCiPXo_IU7l*;(IzxXH9X?U=^pV^^IX*B>5O{bri4bR z1`#y?_lT#n=b|pPjPPg^8l@T@QIm0xsAYIA>QY+@k2axEs^JkevRP-p!Kf{HF6vV2 z3y(ITQL5n)HB0x1TA$~lF16S2XcHQx8Xi$Yc8{pNdM@fx3lEPrp;4;g5jB1H_+DxQ zcrNPFnh1|Jp;4;g5iJ(?h}MMXqAsnX@Msenr5Ya5@^X)86?rb|(z*+eHlb0f;SnuJ z_lVY==b|pH)bMB%8l@T@(Gqr#Xr+2C>eAW{k2axEs^JkWdiRLdw&$WQy$0dYCNxSl zJfdg9J)+mZb5WPxkML*{8l@T@(Zk{%(fi@Ks7o(Sc(e(PQVoyjDRPhK#qnI!r8g=( z+Jr`_hDY>~xkvOyc`oYGs}>$@LZei}BYN)KBYM?57j@|!439RUQL5n)J&^7Zy@Q^M zy7Y2}N1MzR0M4laRM|(O*~OCC~BM-nn5qxh~SLcpu)TFsyHAZ;($>jDkAU`Nn&uq82`QY zu3dYbI(3uo?^Bnz*4pcxxoX$0bKsF?e$<0w1a0>BcWTsrjIgg#m4(I%oU28W2PwKbt5nDn zC$Aq&)gl@zaIShu9;ER45@}%;W9%z=a_04esp>^z1$96s^me6uFfhIsbWh#QZ<#v3Y@FLk_Rcg{z_Vy z#Tds!dX}hFQ;$>?rm+Ic*>3f4$%7PLN2VUZDix`MPCbIvECtS0ddY(nUJs`pss66O z*beFG=k(jWwDitzf$=@FgmaJpRadXvV@*qW5XO)UnnK{CF zm8vE+R$#d^SiNZSAVpVal?oX_q9#>6I96ckky+hq@*suRi%JW#7~^=zNEo%X>cO!B z=W5*KK?<*XRgY9>TVQy|h(50$43<2jtS(p;sS-GOkizSC3s$Z}P729P;9Dsp91o5a zSVnhNPd!w0bylfJ71-**u>$8R@8m&>uFfhIsghhhQkA#H3Y@FelLslhE?ioe#Tds! zGG3^mM~=+v+cj3ITvv6flusU{@cQY-(T8)mf!NGO2m}U|I#Cu>$AS9La+eU7b}bBqN-^KbTf?Xsp0_ zRZ8+8MOSB)3dw9^t<0S42VcjcvC;|^!7?hc^*G6c6kVNFDkMXn*AH^6z&3z2uZNr{bE>>)d1E3N~zap9g>1JxHO~`H)pA z9xwOAdujck$HM)}u-!%1ZvW-99i-6v)sR&x@Esw%AqLxlyQs$sY)^x8-{~Ht(EF|_ zn8g_T>Y4J4+Ui~Q4s1LPJXTzKj^X0zcOsSzBiuj9;DFz)sR&xc9L~V zFFC+!)zCNeSb?qgy6kuEK??0Bnu1x3u^r3gTNAsa?+>E)>ahY_FZ?S{`)b-(q|pAZ zDVW6=9;;<+aJ`HP8~KM`xW@`S*7bwOe$qWiq5XDKFpDuf(uhSpFy`=Bfo)Xu>5adZ zwu2Np{xAiz7{lYWGFE$rd>;_ofw7av3T&ghwa<1BQs_9!6wG1_4_Xb_U<~N70^2C{ zSC_d5DRew&3T82e2i93)>#-derFyKuHrjsk@7#kFI<7SZvlznz#~Vix9vE$VtiYCM z*uVXHIv%9Z@wq9O#TXu6e9p4TPiXz1$3mXLuw_5)e6xFyLh}qmR;j@ChpP(PfgFj) z3T#=NQ?79jQfR)!6wG3b?fA8gA|&-G6l03V>@tP$K4wHiem+~?BG2oy9X&W4`=SoVhj&F zpYYUy2eN}6E3jobuR7m7NTK;eQ!tA$Jg$H5=NI39&dbyTSx%1?*s`@ZU*jI6(7dQA zn8g?#DI=^N$mx2lz;b7h^@ESQ%RNY;`CU^mi!nUP^@AQO;>y`B`Swq4acw%UNTGRZ zQ!tA$JdS$qsf#NvdyQ@f#|mt-0Ea)?JxHPXc5`PIV|Z*U-Lgk}=&>-bX4q%@+=CQ4uQp_riXASx{6LI5u^l$s=dmz92rQ#JSwHCB^0t;xbfI7t zj!-w>fUvQt{?R62v(_(Be>F!d9a$Lz&48<=M^b*{h%KY%p&{o z4~*@QGjYz(U2X|1qas;9=;w4#q3Z`dZm>$lns2U}`&(K+=&@LV`Fg)LrE(w?x_;2F zk6>9HKq%zSFz5G@U^PpDrAH>~2jhN43SB?w*Lko?1+4~bg4HYqwkiw1SLP}UoQYkX zRVw68-CIBCu~3)ccU07Y_&q;Yi>ODPW%VVYkSETZKchHSV5@rZXO}+JT%qd+{rQ2a z7k^#_#(5=A&N+Y9a!X*V-tlK}Poe7vJua$u{J9$#9?}Dt^F9N&1hy)q=$DW}*AIGJ zR3Ul)Auv2nl{h+|`*zEd^MyqN4pvMZ9RfT!q zuBXuTgB}-EVa6&I(z6_SUo=?FQeYX~$@)R>qe_k}6uN%U;|8l#d_%rJ_?-0p!C*B@ zfvrl<``S%I3SB?w{asY)dH*^v_LcPXM?N;-mcUkR=wpVSLe~#^TvQwSI3X}RFyG~4 z9Bv70Rg*sU=_z#mpvOhkq>pz3!-G}>Hrx_e?hLYi(8q8+g{~j;xWOtFGJ+iWm@`<- zQedlM^|7dqQeC0z2Yozm4OXd;<2~{m zK(Lynz*bf4xdF`@xI)(t`uH4G#hwocjO~!j#K?0Q+!9!Nud;s7a~wT|t{?Qc!73Gx zlJ$eHToLOBJr*lazwNmishSLht{?P#NwBOgJQPz|Klm?mc&=Sv6N^MZD*)P<8M5vcNbVa$g@|gxAPFZV7Cw z2RsMZQ|S6ZkBijSHvxWZS|SYA@vlxGR)&*^_kBb1%}5RQvZ0?_hbE_#|oB=?qvO-&xQ3A zx_;2(2CGzHrJm2-1*=&KY^wo%PEY6VT%jxVd|nOf{Cu`AFt#Ik}EX-z;;Fw08>yvlzqUU^(XB-{=-q;23zUz;<4}e%)f) zj=F+bjNu_;!4bxU*bbaa9xJe&?Vs4wJ?aW(F@{IF2Gs-CgvSbOSM79ib=r=)f?15= zk?suYfot1i1-84-za8lwbp^8+!z0}j)dTk^j}_SNyC>dqRoafaf?15=k?!s4fqSjT z3T)4h7roLw>I!BthDUlvsRy1J9xJdt2Y0%kd(;)oVhoS;tW^&@`#e@)d!FBP-WSup zswn&Y>-51h!)D_HP43E?! z8#QVDpvOZ0%CPnN{^7;$QCBdFF+8r5p5>|gZK)pU8+xq3)_c8kQ}?JVn8g?#PnUOc z?EZYMxzpaO$3lPCu=U#y{OIS?zN#yj#TXuGY@pk5tMu+YR$v=VT>NDBs4JMo7#?Yi zqaGM@c&xxSj(XA`u1woeS1^k)Jl=TsiqSz<%c-LxkA-oRVH@48x!67G3T82eN4Xl% zV_`gK*v7Sgd9-`f70hA`kHh5qgYwM@-B%dPdaS@UK7akD?on4Ti!nS>4nRFHCihr@ zEzj_^$rb5%)D_HP3=f>QI2#+e29aCvSb;73vFvs3QCBdFF+A>m!j_{Qf21|rn*H!t z$d?$lEY3UkcaOS)S&ZS4a!a}$$n|)vz?Q#y;{U8q`>L*B7GrpxBj?&Pn!M_s`z#_+iH6+fTb;k*~B2Xb#7E3oAg@Bd!+s4JMo7#=BSsUFB7daS^f z7d`j|?on4Ti!nS>?o~aI3-wrmEnB8f#uF1`Q-0B*gfhB zW-*3Gxf;-8MO@3CA9c^?(s@-^FpDufWGpy`URfj8AhPEkE3nN1eC`MCQCBdFF+8^W z@~XL?%9s!ym@DvDfo(S9{$FyBx`J7Z;gRN8)B|%K9xJdsab$+(`JZx+x`J7Z;gM#3 z)PrLMw%MhtKI9&C1+y5#LuUIhgQXsrgYsB`ZIKXhV z(^F_2fGL>87#_45u;EyNt;)jhl|6;lGnhNG7{en~a_GK7Er!PmY}F!u&+jR;F2fYe zVhoQ|k)j@`De+i=t?I>}T|I@?mzaWCjNyU2D@J&Y{6lSw#|muKJN^vrDYQ<;6wG1_ z59t9crapt#`*#f&r9wuKlQibkdQp!RaivElwW>ZA)lsS|v|iLljln7vm`COH zgC2_&sI&Dkb*{$65!AX@AN>YPo>4u89BoMn+z*bf4xq)0&tR8h%sgSYYB;_)+ z4%uU&4%x7b?xY6Va~zueaD~<(4_T$+TT&}}vb^UP=Pt(zY*pT#tC5vKq0oA2&#Iux z+gPO{Rg$Ymu$ra7R;}(ir(CVB`>M_=6_W8n4Lx#Xx_;1Op}yVoSE#4=+*z)=*Q{Ed zWp(VdT@9xJenie%l4=g4~sUB_YyW-*3`^xv@NM?E-JU|S{Rx&EF)*W;Kwvlzo8 ztwd4}tR?bTfn`)AYnpt{qNmVxMW$dDV|bw6F3qtt94oM`+VZ)Vo!$W3% zCTXrn*AIFutn)H#tIvE6si)9&UPD%?K>Z^|c#ZtS8a0mtivxo=Ef3SYgG5)Hp7q;Htem9S# zkoAK#R;ft)>T2vOjulvDOqOrGu<>c`K?+$v=z0V8y~&( z!k0eo9;E2%tWxpGjsAY}gzwqx8-2P#^trvE^-91Rr)mf!N#)1=!39+v@R$yGU zTQ6+C{YpJf(q{-oS7()qbT3g4jujYppRE_pe5QMlLauXnXBJ}|kLSv_Cbn4c?+-?- zh$|zO-)yz;H}7%}Qpo+v70hA`4}5C^V?yjJjujYBgRK^h_?ml=qN}q?MS4c52geFL zZg07MtA&^S$vsFR&kuKJ7GrEjde*83#|n(6^HvMz>@}B;IVrk2t5l>ugL-hR!02Uc zweX2G?m-H9p1V7<7-KtDzx=q#{hs(+_25{6(OcSTVeMM?Acgcx+?`pB;W78G&z}74 zH#eHdA(#GD#0rdF-&PCr-*gXB$ofH7FpDufXfz0V(-yW`IP;J0K?+$v=jybjV2th_xbQb0 zcMno@bylfBtteI<;&^bZz~lCrZ+hUutH0+Sq>%BTyEBV1wu4p!HXJK3M%xcu_|hNU zgA`qzRVq>rK(~Wq1xD83feVk=zD?&9DP(-^?#yD0?U1qH1Y<(%D~=U-+`j#fTQ0n6 z!97SJc?Nf97Grpv_V_I)ul`qCKgh8HBa5@;!sm~74^nh>R;f7s#*HSA{h@ukhGPXr zHfqa-A9n6RimuKo6;eaL_|Q~C&#?j{tG4CBwHLStDI|a8?#yD0ef95>>)ZZ3Uq2YJ zBCd>B_S$mcwd>u36q1K?1+y5#W1AH>EIul&ALLkp$L-7h^nit*T<;#F=<2LevCBI? zzj%kN*O$|(;aGu@t$o14T|ajZQgn4zsYp3w_25{6<<9V~2P~ZZ8}}fE8l6F3XEBR2P}N}LGD3{uFfhI zX>LM2I96cHX54?_-tF9j6f$q%?#yD0?MQPh>cO!BkK5_T@4s;4quqlPGXLT3%wh}= z84F&GF`*oehGPXDxA!~k{tG)ScMno@bylhP?hj7C`WI>aAjb-fS+e^t+`XrJkfN)z zO2xN!`^;5O&FcpvR>U2*O>_T+efD+_Qpoy2S1^k)_LV3ObdP>4k1M0QYqp^6AVn7n zW-*3`Z23yxR~#$wxc%dqThQ?!g{&WRcV;n8$9$z9bB+~w+>Vagg3c>s43eU&vq}Z> z7|3Td@{eN$mQm3|wxH{S6kVNFD&&fq!w3%^94qj+{pl^6({)Y?SwHCR%wmjvg}f3* zc<|s@fl-~XIo+>F(bZX{Lhf*Leoy3Bfl+0#Io)?jAr%nr&Md~*4!Kj)`oV}5aZxR@ zIXyo}A>SW#1+y5#L!LNu{*2;Sfl>9cIXwqSA?pX-omq_GAy3XZf7WuWz)~rD{buw$ zCxxsZba!SkhKKY3=Dg3qu>zwCX*24VkfN)zN=1MDV8n{J<95xO&8UAx3Ryqs3T83J zc1VwGhF@GtFuZ)s-V+rkYfc# zmENY*Zzn}pXO#-f6Jdnc$Ulx1SdQRFHl^_gDWnq6-I>K0$Ai}oa;(6pn%tDeQKabV ztWqH(uaS?{I96b}GaR)kjR#2~>j&MPS&XqAGJ+iWn3H1#9=C7ZZBrW8l0w!Gx;wKN z!-Llka;(7PcI8H!()gSdU7b}bPWZ^G(eC@(JA^n^;BotlTQ;FQ11Y*Xt5jfK+jAKl zE3l02uHJ<5C8X%;tWqHvmJ!|%Bd2b|u>zyYdlSn0kfN)zO2yGXdiLl7d8Z6KI9A|s zyVDysq5KsoWc{GKGm9~fxr_xz7~#Q#V+BUl{U(%$BSlwdm5Nl^uO1vLFjfz2Lit2e z$ofHdXBJ~@2kKW)$AazPSb@jwBlp^b@}i`W^@HxtEXMFiD=pN6V+F=)j!h`PONy?} zDiwGiIYxNc4vrOADrGm{g!0s+koAM^&Md~*4#{kfJQvQf0?VlA-i;~WPKvJ1DizXy zqxFLkE8>pZWBzSpnl~VYtRHj*vlwGL_LExC<8QRN362#QtDQEc`43WbbylfJE2{K( zaIC;swY4$LjyWM9D~nCkwRALxjVBMV>{%1H6y7RP3s3E zR>ZZx>ff(9KzwE^n8ld(mClUfuku)dZSUTDrhBA)RVbLn7#`^essel0V+FReWbP>U zs4JMo7#`_NoRj^aXNkwc8DrSa_M0E#9(4t?7{eo7QR;!S-D3r|tM;e2?4OQDUBN8I z@JM$C^}to@u>#xO=T(=uM_s`z#_&jYIQ78Y$72PyyXa?L?jCgovlzo8-Ko_BcTtZO z*q#QTUEv;e1+y5#BRz4{15X2w71*9?@41hA)D_HP43G5WR1ZAWJXTxpJ@9n)Sb?pVanxG(s4JMo7#{K-y^*{fPd(7f@K}MZx3p%Bd(;)oVhj%% z3yv_tYvdY4Z^>f?wqD<4ANQy$n8g?#sb{Gk==FK5z}9x?J0L|q@KQdpcn430^4ZfsE@cuUBN8I@Zi;e7)^Mrz&0wnj}EZR8$x1+y5#BaP_Q1EXz^71*){x8AZ}I;NPY7gUEh(tiYDVS#_a%)D_HP43Fo@yQ#MM@w0V1kj3#>fh`-g z^Bdfwu3#2pc%+P%dLSF+u>#8xluX#;PjHXAf?15=kurC7%qdpHwd~+qR=Y=C!7Rq` zNEt}=Kz7h$1-2~bqxN!-x`J7Z;gK?_>VYh$#|muO+HD@;9(4t?7{eoFgw+GtT8|Z2 z?hKMCK529Js4JMo7#=CJtsWdJuw~D8z4!6y8mudr#TXtbL$4mlo_nmoHVbgfzqvjyErDvTl<{l~E!%jiyK8r@s}Dpz#j&Md}hUtOK{Rl~6Y+w80F zL*2Ws(0NYZTFk2&t5l>JUfqshHA{hQ7TM2*Jd3PnNu5#AeNM^A8 zoX)f1>QQHv3b~?a{b0n3xHhZr*JinX&=t&LjN>7923kM(fP9@}hTq~^b%NhxdJ3%r z7_v%*+~H6&p~nN&2_7r3RawM+mlRshUqgXF+AkSiCP@>K-G)K3T)Lo{tWIZv`)qp z%wh}==>edoNIg)!~fyYP+EZv9 znJJjX7#`9?M$Mh>D~=V|s`PHn{dQ7lJ)F5Si!nT;r|+u)wXV-&p<>Ul96_lN^f5zE zp>=&jR;iE?3%;RX$DCqCT&tS&u}`j=ghJ~R&7E0{u^lqyS;sEXLRl$*|y?FY3Xu0$Y{0=W2Qit*173W-*3`+(#xD;mKd6b>SWh72k%fTHSL_ zJ%!eV4_T#R)hmvhoFMO%fd{J9Jyu|=y7%0f%v6R#>)TDiEXLRl$=vyBKv_SyRnEf& zw$%fk1MDfZPT$;_#TXuvfu!|=TjhKrRuWiTTLs~{%$`Em8w^>cLNclNwv+BFtb*`Z zfycW3!*jCz^@DX*sgV8x)|jXVR&#i)z_u#IbIW;Eie@?MtWqJFZLF1153EY@Sb=3! zBr9S(N1j*Ls7IYuDkMWs>jxuN#I;pIp6f5y54wU`jB(7o zx~|9+%wi0Ww4zEqu-eIE1-4aNKKIg7==vyAFpDufWabBJ$uL*cVAYn#3T&&-d=9Cn z&~;uu+k$N0zbo0F zgFgv>6|>fNCrq#S6-L&?7=OpIO)EJ zPyH#;_h8nQ?|%MNRx0au3>4XeTUhanx2>M~)2{EqtaD#?-1H^y*jGIUitNEHthi~j z)l+|J_dS?(^;4cV{lg>7W1z?$+`@`eyThj5`{;Wx>kAKl?)27A@1xr>P-G8oVa2BZ zzG~{dsJ;iYcDd%*=`pL#W1z?$+`@_<9ldJmy}`Z*vo1T~nCaQS*ju+_pvWHF!is%9 zcj(l6wS5m}{pvrSHNECd<}pxY4{l+_@eeq3>b>*62eU4D=`*L>JlZ@4itNEHthnO2 zhfIBx(f451dw=-!>G~V?(tR~hWDjm(#Tl0#JoV91--B7NUUBsFrq`OsK#@JTg%!*1 zK4|KrzP<;u9(Kl4r|*7@c?=ZUgIic}-^U#^_0enJgIQ0%_9@eCf3~OYtAQeWa0@He ztXY`utaB{mw(r3#dB^AUJ?ERpK#@KAEupyby!okT6Z#$;_jkJ4XeTUhai?!c*MKl>icy5NL`=}m{3$3T%ixP=w#E;wLn zIpp&CVAi!qx6_X_FdxS$|%(|MXY)F^_>FdvFUYnr6k+=2*&o zRkE7KJgN%u=_J>{u~tZr%oJBG+i%8pK;f*vxMSbE9aV*Ta0@H$-2L%0jt8?g{r2AZ zcvKbY!7Z%#!(sc*IIo!XkgN90=T%jq9^Ar;V^7#;#`VFh$6vO4zCNl7_23p({No$; zo^hQs>jf7)E??(Wg?excD{j7UuNn6%W?l5&$K?A}RiPf-!iwt`_ndLxW!ByA+BM&I zs|xkt7FK-g=X=a}elTm{tViePM^&L7+`@{(H{WB%bC6kQU$j$x4ptTF!7Z#p_UG67V73#q)thj0G$Ij^QGV8X#eR%HgRu$^OEv$IW(;qXV z-_ESJeQn#^Z?7uUgIid!`l8)tj6az5(w!cf#~)RNdTx}UrvmW%ozslpmszN=ug%vwpw#$rhEwi3}!GrU-wyIDMZehjmx7uaK z_?%fk*#AL!d|p+k2e+`|9dCH_j64Ig4!vvZoM)&i)Pq}CvHZ6?&&ZcB>!43;mGdQ4 zg?excD<1x;ooD2InDwGJKQQNgstWbs7FL||-#g97Uoq>jmu;EzS5<|2a0@Gb@b;Z% z-q4u8Y_b3U=EP!Dcl#aq6<yA0MEJV$_TJDuuUs$nu&N^2W>cK6n zSa-(`Q=4Nc`|Zs7><2fS-uVm5Y*!WP!7Z$K$)|Ui`YZ=FBXZ%)I&_E4rVl+4)#Kx~ zs!$JZVZ}q=yu;LIIr<*V`s5cjoxbD$nMYNj9^Ar;>2W(ueU_u|!K_EVc+=^|x`IP$ zqiPEE;1*WAdesh7pFQb&FzZXpH=QorgVhyM16fn32e+`|;1xSeeU_u|!K}--*mT;w z7OQr~ZB?Nj+`@`|_TEA6L|B70Zu=h0Y8vrKtbqcu4&%XoODN!N?`SMNI4=DDe7gN5 z14Z`W7FJ*%+B+JPM^-Qk`)#rX-iBw#qpsjstiZWo?`SMNn1$niuf93Z&a1kDW3d9~ zw7sLT^k5dw<5RZ58{Wq4Yz4Ql0@tR!qp|d07OuzJ&oz(P3T|Nq?lJa`#?pgXxUW3q zVR)n1xSg%w7FOV1Y42z(J(z|2<2C1-$7}_+umbmddq-pG!7SY8Ke;X5$~10gE4YOf zcy`%48cPpm;dyobIp#52!7Z%7GuYnISb8uE&)wC3i8u6&+t~_kVFmgU_KwEVgIVZ5 z{KMPKW43}@Sb;u~y`!=8V3zfR7IZsiE4YOf=-b&l8cPpmp+9%lDdsU-!7Z#nAJyK` zSb8uE{nAZ-ZXUB0+`|^g}EIpWo@yn9F8cPpm zVf=a556ok>f?HUDF}1y;vGiaT#?goGd5G?-*$Qr91#$!Sj>gi1S;zHc*$Qr91#*D)j>gi1S;+e>|EYP*R&Wa|kju1p zG?pIBLjH2szgo3`XVh#3x3B^^S$jug>A@`IVXr#WJZ3Ang%!vx+dCRd4`v~seA6q< zW43}@Sb-e5y`!=8U>5S?Pd&#xW-GXb70C75I~q$5W+A`7`xWLfTfr@?z?_A>qp|d0 z7Un6Q_HFZ+t>6|`VD81<(O7yg3-c{k-ew-N72LuK%puu38cPpmVczIT_n60Q1-GyQ zb7A(5#?pgXnE!gvpUh*nf?HUD89IAMW9d<{r1EwF*WheLzXdaYroh}}Z#!i4Xd_6Q zA2b%`BYist3XJaLUpL|wR$z{`cRV^3h=N&|SM}pDP?$gz+`4@N{rVUvvIn=Y0(1Ah>pXif3-k4Uoevb*gIidE8id~cDtj;s zbq9XG8Yr>{x3B`W6utXy_Fxw3C;YxUP-G8oVFhYJde4vS!7S8)`150+$R6Cn3e>jr zo`czgS*U06=ioq*J-CGxsL|;?&$9=!P?zJ+^MN9Ja0@F?Yt-wPWDjPczR3F}14Z`W z7FM8Us@K2D9?U|Wl=rU&itN#E2?c7udi})g!EsUV<^9BgB71NPD^SDM>+fa{W}$A) z`?~{0_TUy)pcb#!Z_gggLj9fh+Xss5!7Z#nO<`~Rkv*7&Izk_R3>4XeTUdeG$lf?A zdoT<2kUowYD6$8)umUxnz42i7U>52+eLOf&WDjm(1!`4$ zMfTtpR-l%?7=OpKuvltf0aF$Wp(J5_ZcX%2e+^Swe`I`T=rlV z>ghcXH&A2`Zea!12=wxa*@IbF7vTBCfg*cw3oEeJp_doU9?Zh}2G5HQ6xoAYSb;Sg zz5H(WU>4SCcz$=F$R6Cn3amZp<*Bm=v#{R8^V9=H_TUy)9J}m@e!e|>FzblttjYQI zfg*cw3oFh#@`(PtLH1zQ7k<1Z&l?OB*@IhHar^6z=+A#-4`v;8$ccIWW1z?$+`@{{ z2af2^<75wJ-E#Jcc^+q=$R6Cninm>PM1MXidoXM6+b8DvsDUDTa0@H0`q~l0c{NdW zBW4|W&xv_nZJ@{=+`@|Mt~(;n{3*FJNjGAayd5I528!&_ZwUpw>+_r(7k)m^IZ$K| zZea!XVST=qS=etrUpr7_4{l)v&V~BCGqZ5~ecpMX$R6Cn3Y^pR`EzFBJofqXfg*cw z3oCGK*6RS6h3nDl00xTe!7Z%7J!VEd1I5LC#p@XcitNEHtl%|&O77&pW1g*?fF|kQ7~=RVwZy-3M_Ap*y6JJ`u7LxtWt5Ue18Yu zq=yH`3OsHfch{x!@%=$kbahs#NNdB@gJT6Ax8J|!()s%L2kWd-k=D4Y2geFLZm&N7 z()s%L2kWd-k=E*~2geFLZhv#~rStXg57t?wBE54!Jvdh2ar?d}TsmL>{$QO|D)y8& zA*^3z?^fqnfyeFV{^HX4`2HX%x;m>=td@5`Y$orN!Fk280*~8MuKCD(e1DJ>U7b}b z)+@y+cSnI9A|s`<17Cc;0ekc!K~bx;m>=q&FL>2geF5l{LS+c)tGq!8)r{ zoVwqZlk0wL-yh^yfyeC|&%Ss*zCTEcuFfhI@A}q8lWF??Ajb-fw=G;eZ@E|OD^hfI zR;iG0(J!t|-yh^yfyeE!*RPw8?+=nfzVGbr%wmkcO1?$Ei2J*ox(&w)JZ_i2aNT@- ze~=ViomDFEtqDA*;K8v1kJ}&J`=R;x{vav3I;&L3yJQyeyoCqH3OsJledmYf@Zea1$L-qfKQtfTA0$OrXO)WdW<2%aSb@jwgFpSjd7CT35hO)d zXO)WdPC)hGSb^m&o9zeZ>)#)&vr5HlrmGh5O?vDrjulwmbbG@^^YQ&bQgn4zsYvf= zR1c07Se`h?Tr^+*{$QO|D$=_q)q`UN9=BWEF`ln~f3VIf6`#BL^s9fFzCXyZ0?Qj{ zP8-k1_XkPQ)mf#2z9!gktiYJ59?#dmKUim#il;o5zdy*a9LwnL%n#6ZkfIBBW--Ru ze%AL-UwKE`R~#$wxV>lD2k3Z^qN}q?#b-9YW#wG@<|M}oJZ}Gf-TUdhB1Kncm5TJH zTRpEhR$v(w?fHJXK1k8kS*3!$CfIPS!1C7Y$%S;ClcKA$N=16}ux3_jZmISQM|kfSwz0Vo6b9*p68_K>a0>BJ%BmyGjOcHQmww% z`P45VMOSB)3hBwrdEbX)1;*EI&ZGVnDY`nVRM6K18;%ut+`i$(=TSeA6kVNFDx_yQ z^1dj?3M`|$P0yqLE-AV?t5ocA+_KR!c~7G}Y8#Ffc-$WN(Y4fXCq-9hm5THw0rlWm zf#nE3c`c1UNYT|8rPDdtFuZ4eNC|8Sb@jw>o+}@#^a0>BIe-yHcsQ>( zR^V~_)yX-OXCOsaXO)VdoOa~si_cl69vmyMjP71{4&_To(bZX{g1#o$aIC=N_MQ8m zLwO%kbahs#kWA6Yb4wg6uw+vI=WNPfk)o@!N(FsQu;EyN$L+~qJ)81yr0D9bQX%*C z5k`18<{T^VxV`^-&!&7LDY`nVRLJuwe}9l;1s=Btz2I!hi;|+Nvr2_LXGa*}VLLch z;BmX#{%2EumlR!{RVwD>edP1!+V=-JR$zH@KKN|PQlJ5_0`*r*NAjb+UXUUh&qWKR}bahs# zpsxuw94qj+eg3D;qIn!rbahs#keQ#6&lPd3z~lCdA3BTXqe#)!S*3!$CfIPSz%shK z;4GR~BSlwdl?wWrV8gKj<8AC`0H7B=3J=;AN&U~LU$Cc*q{+*?;YujhQ`-*gDP!DbiY_RH})(A zvlzo8Jvr3_Pc@GfSk4l8p2z#b>k4KuhDYiFs0YUiY`u(l?|EIpEXMHQuL+`;;jsc+ zZ^_@eK1;zY#_)Kgd_(%zH`w0L|@Ye*<>+@KFt@j%5)2}O- z#TXu`hdgTJI!Eu-V+FQexWCJPmV#M~;gNd!>VaOk#|mttiTJ)jUBN8I@ZhfrVl?5g z0^6v_zpXG!!7Rq`NFy)Z4vdOCR$v?5#rG!a3T82e2Y*cvqdSik*hZ=Tt&3R-W-*3G z8VT!mV3g{y0^4XizW-5IFpDuf(uiI?FxvK5fh}ub@5Y_2U>0L2Qf5LukTvjFfi3$H z-(#sOn8g?#C-1-I=v(ql`bMq~WIsGsV9Vn8w_s)|n8g?#{53&jaXeOF%SPF|ac3)- z#Tbf|@zU);Hp*iKmLn*6IR7@!ECsU|!y{$x?3h!mh$~M{$tU_ZhGr?4#TXtb1F0Sy zE3job{aZ=16wG1_kCaJO4`ew#R$$B4`Zu3uDVW6=9w{TN9>~^utiYm>JhgwjYL<8>%p1%id#u1RDw6qgKd1HF^)D87bylfJGw$lau>#wy zzF(V7LyE4>Div~P$lo8ttiHzzY}E;VkI}o2E3^*46wG3bb2n8$=ysqw!D9usDvP-9 zlA^1#N=2&VP!CjDc&xxyE#mily|<%U1PZOo@He8P4#eNU9vIt!d?m(&qR{#hj}cK66t$HV(=cLd&8IOy)9DgHzV0a*Zj1eBTgIfYy z6;kv|NTKyU9vAgR{$~Hc@JN+T>cK66t(waFL_LMpEqPqjNg1nDyyUu#CYRbbq?=$h zOM$H_%=>ndBMXJrUwK^Ad-<0Z0%JR*FFHwm(S}7gpsxuw z!D^NQTb16e)$b41S)~H=L>S@Wn4?P1V+FQqLmxBb+CeC~I;&L3h$Vl25Y>hrE3j2f z`q-!c{lPk`RHVvG-40YudaS@!{pn*knO(5zPu-3>t5nDc5;dvnf$C3>71*j+eJrY@ zR99%ds41Am80S^0lvNK@v3jh)^2Cw)T_02T6k7Lc3T82ehaB$-#)NVNwSL!QMO>>Y z_S`^Eq4m3_U>0L|@b?E%RqU|>%jiz(sXfQhQ*?D!sYn&rx*Z%VuvK|`uBK^7(bZX{ zLUK!!lv~oeaF2zGZ^Krt?l~vTExAJL!iTIkQ``-8!1mIB*q zC!e$Ee}AyfDivu(mF_F7cJf$(ZPk{~y)+Fex;m>=q?KX%Z9uHr@>qdw^_kBh$-~c9 zpXuyUomDE*3ODt@>NAfOSVniUR?g?bc6mMkZ&`Rjjwu+AzK zFOv0x&$|5bt8nhFS@U7J|Kjbo%~IfT`{R`#9>w}WQgn4zsrZC!`73{I>jybjVEGF8 zS1umK`ax23bylf(y&SRUBofxSb@jw zZC@CVV*MZ~x;m>=&}zVjV+9_!-@g3)qx$;6I;&Lh`azBrSTc9dxnNXZKUim#ia(z7 zvdO={+iF-iR$%!$@E6yPV*MZ~x;m>=+%3=ASIPPe91o5aSY{Nzb@nLM50av*vr5I& zrO)uFR8z#U0*~9dweKCp`ax23bylhPtgIjWmqTp*Ajb+USM9^zHH!6vr0D9bQt>QV zKlmRq!o$AeSb@jwBcJj1QLG;%MOSB)igofW?2pTs5FQ*W@VI^Vk!Orz{U9m2I;&JX z^t2-=q_MMZ2geF5BbK|49@W)kNzv6=rQ($1mQ8+kiq$%Etia>;XFs1C#ri=~bahs#xJ=d$UXs=ia;(7P zcHbNK8pZlSQgn4zskleh5576AALLkp(OcSi6zc~`(bZX{;zn6N_|~+3kYfcNxBvLj zhmKO}OYcAFglA^1#O2zq0(huFn)(>*5z*5Pv>xpx*evlMhomDFS`YR7xe1`O^ zu^k*M@VNcR^l@{sevlMhomDE{a=%-yUPx=nI9A|s``26Cu`<>VlA^1#O2q-Pe(?6R zCXQnT9=BH>^rDrqevlMhomDE99`l*2o+{%t>?@8HSY~+Ne#MTlevlMhomEjB=pGy^ zu>Mt7$99N^E4n(XRLGXE^nE3NRgM){_wLnkJV=40L|$Q3o`*Pxv3IaXl3Y8T@= zCk3vLq+k|fc*vb$&hI61)#g}%_3pD6_bXE1I!_8_F@}fS;pY6FD0iP6E3n>07vsK5 z3f!-ff?15=A$RIIzqiX>G{*|8PlLsHevkt9-K1a^V|d6DXU?Bd@-)b?0_#(4F`k2@ z!1E(1n8g?#^5mTJXRSQda;(7mbe_cXoD_HtCIzz?!$W!ibKYl=r*n=KSbG_h=$DWJ z&-0{U7GrowPiD^hKGMs`u>xyvX%hV_QlMXw6wG1_59yJOybmY6r5r1;_WCB#Pb3BU zS4qJv#_*7y<;eS@((B8y0&DMe68&9Lpr4o&%wh}==^>B2Pc6OI94oN)!Y9#hCk6Vu zNx>|}@Q|MV$j1iK3(v6v>u6#U;}24x-<}lAVhoQ|(WuWT8BOF^fpt_giE$JuF#bpi zW-*3`jJ!rZR+CXtjulu(cas0L|NQPzPIT^`*>pY1(H7StaO$uf)hKJ=NQQpoIep2V=U9Pt7GM(d2BhfftWqH}4I`hMkXe8nE3nRH zOk)0n6qq+i3T83JzLFV}kF^@wE%zq>WvlzoeW`0IKS0uACIaXk~ zYQJ*vB<70L|$PCuV=e#&pV4WqK#Jn0QFdvoNnZ+0$G7~rQxjUI9%drBZ zxAb9ohS{86Pl0*0q+k|fc$_F6&;H!y2R1TE%CQ35UlsG5bp^8+)4tM~QT$aNE3oZd zpJUB?w@@&PF+9={R0Z~~#|ms`iO&_!QZS1#Jkptnxotg5JQmIv!*;g&ocAmRvlzo8 zT~X?Rv)y9_wyQSk0O|^6F@{IFGpGlyT8|aj?mkh^P**UEF+9>8PCan<@mPWFF6y-u zvlPr?43BiDRu9}oJyu|Q8hA~}ECsU|!y`R$)B{fgj}_RSYF^tiOTjG0@JLTi^}tij zV+FRSv)Aa%QZS1#JW>xpJ@9n)Sb?pV;k8Dy6wG1_kIP?q+-QZ22^+aS(97^xf#s@| z9*);c%~CLnF+BE=^@IPC)(>*5z}D;Y+OJs(W-*3G>RFDk9q9FWtiaZLje5Acf?15= zk$TALf!?df3T(Y_uf?0CU>0L|q@KQdpcn430^4Z9YYJy6n8g?#X~d!)7)^Mrz&0xK z+Q?Z7W-*3G8hNP)MnxVgu#N7##&ec}S&ZS4Mv&@((VfQ%Y@<}KRh^|^7Grp%k+6DT zlI$rUO4ARbT*iUPw zW+^OZWh}<b}-f()D_HP43Ct7R1aha zJyu}La>lxex`J7Z;gK?_>VYh$#|muOT3@pdLZlUu>xE6+}F^|QZS1#JW_^UJ&-;3Sb=R8z}EuJQZS1#Jkm^qdSDj7V+FR^ zj94F4S1^k)JkpGbdSEugV+FQZ8DE<Va7qj}_Qvmwb)cECsU|!{hWn zoWAk{Y5gE(mpoQrntD6fz4fnhMOSB)3fWgzr+uaKoE}TIBgNIdyVCce?kiX5Jf|s`#W)>v%n9R|H*ySe ztiXDf%=x*X$J`Y`9yF6CH(^=zN>bGoO{d1rHH7GrqG6@@u^^^j{K z#|o@h?VMkmJ%!Gnn>(`@!y{D=sE1tJIaXl3`^@=0rl-(40AD{Scb~*66{!M3J%ZIN z1=hRhoZl<;o`@<7D72oz+?mA~+mR|c)I;vIIaXkO8qE1Uzo*c;3|~JePlLoN6{#Xc zJ%ZIN1=gq9oIktt8HK7B-Htk|RLGMPwK(b_&%PWhus)qf{tVWqvn#Yt#@7$Z(>bw9 zh4cVWQ=}fjYL)_PFJt6=iCl%G+fiqg3hBw9HcCCDFOp*g*51-6`d6gTx+PyfD7~e` zDizX)o1{Km6D-uXheG;uBk$X3AI=q$@v5=3pGXSnSx!=4wBcBRwf8#mKC1R!U7>Yk z-kX%(YhslO=^>-$PWM%?nx(+n3mhJ*2OmV+GdH#K^}C zJ%!fwnLD!>!z0x|s)vj@a;(5QDjNCNr>D^RL~~~rV|b*>O!bhlQ;ro_M|UG1!}S!H zA502nF@{H~NmUOS1LjzPb(A{tv1m`B^`gFhP)4bVRVq@Yta=2iSqiM9?U9eEb?l64 zTqrOitLx^Po4i!nSTM>a`0GOcg-Sdza=aW$(p^4wWZq4n*)eo(S%iB&36Wk2$8 zO|Y7!z?vN#c@9u>eONu!Zw_S&ZS4R)%4& zsFAsw94oL~wX$B#=a6~|UFYSqJ;5p!X@#451glvJtg~bzp9|ADFRY^T8LZ^aEXLRl znTeaExw}T@(sHc8=q<&Xzn((Z-I+VH7{lXa@%Zt%IzK3T>kNNaY4b1lJ7fOOr(@o6 z+y)j(^GT_az4kwCJEBG2#kuT^`NG_`Ots3hbg~+&=r;XUsq3VI$p+ z_`Oh2TzTgRDFQ?BZK;O8@esRTMa#H-&cok2f6e*k5x*A-irX}-2n@wTq^kcwsQ?w& zMa#JTr&HcK@83m^-wOrBZ5mbthGGXYceniW-{p5GvI`7|ij^7If#g(go6oH}G z=%|w>Tc_t>w8*`7^tO5bPIdfVC@8M1?IcBDC{C5tA|I6sP=Q^vjN5(Izir;Xw;jJ1 z3X0n_tOyLnFJv{~E{E7`U$l(d9rrs^?h*@nUd8W)g5t`X9!L=wij$>B_Ubg-7cH_K zUpjN%zkeRT7Yd3i+d+!JP~0g!%R{Ya*+q-I^XeIIpZD*$$M1!L;x-K{0z>gJ`EtZ_ zo@f2tXp!suH*cT!@6pHag@WSBbxw-FP&`&vh5cvhw?~V-~&HEhGIMUn&2U6{1GkV_Ay7kbN-}<9jqSld!eAXO~Z=7P`pCk+;XzLxuuI18P{y` z&+`Yo-aO*>LP2qxh82OKI7Plz_!9YogupIZ#_eOj@z3*j{lGlp_d-E&Wv`PWFcg=` zs>y4l0u&z6BJXv6&%5Ri-}4aNSMhtHptw!Lioj6(y{ra&tGyAZidBpF9g5ov}D*{7tk$lbb89%bO zg+|M`{oc0ko&V)_hw8qH-wOrBmA90TA}|#9zhR@v$E12dU>7apwrSos|FRdDNBmwW zC@xw;5g5PA{cut4i|P?A<94IF-Z%ftb>^Iq{;EUGBYrOw6j#n3QUr$LtFjvKFVg$rqGjCv?bpwpzv-3c5x*A- zirX}-2n@xOf&#t0#slZE#r2t z8_t{G{R;Dl-wOrBZ5mbthGOF{ty;WWDnQ{8E#vlK-#dT)Y2P-F_`Oh2TzShCDFQ=r zle}GHrBr~zBUt0TBYrOw6j!chQUr$Ljq;X|f3TUKE?VThT6bJH|D=1& zBYrOw6j$E2MT)>sd|BRh^6@m=7cFuxx##`!5BigN#P5ZI;z|oC0z+~7cQ3!{c&W}5 z*hLHOS7Yg49j4b{{9Y(1E?P*DaZ((ZJbJ7@Z*fuHj!@55$QwRM5f}>DS1Z%L>akwG z?1TAuY=}Ze;iL!*4>{&5(=qR{?s?>g@_Dr(3fXO>2n-K7cjwZ%+hg6f+q!&xY>1+1 zSP>W=Pnxcp`<-2bJ=P6-UYxJ<4N=G}2Pp!><5bBK-EQ}i9&7imT-Hbl`htOyJb zj0I&(h;z5cdh33dKuahB<9F%9 zjZz=3$9l|dAIts34N=JWgA{?`A$`$N>WlVRTYlx^xxc$1il$*jV0fG)s{wzRX8WRL z+#YbjCvv|%exI#q8dd~`LdFK8G&bn5R=@ODFVYo#yF!i#_6%X^Y~BY zanyz=Boju8!0?c<+9-|HdaPIf{!@88xFL$BVMSng{Nb(@qdRTP*<*e0)1S`c+6__2 z_=6OI;qkt|Ye$RU(7C%F>wU*xp2z1KqL4_W2n-L&0gO@(pvQX7=AX%Vh7D0j9*z`& z;eoNBj0yF=8!hAZmXCZU=S$-E*$R2*Iw=A}f$I;~A#k*e+v`?-Hs^if_t}c3VMSml z?jvKton&<}aI{E{{p+92`K$PSwxVfR5g3ZqazFh1LH4%LXpwQ$>d)moT>L&;A>$}g z1cm}*!IbOkv5r~#T+SzMh(a>nqzDWT$ytt4&a%gP@?+QMyy%7~WVA$z!0?dV>nP=3 zd#t~E$NHS#-4I37up%%#z9s#IJEY$L94(TEyLEleQ^)VK6_SS|MPMk?HK_t^@$&Pfp%3YnW2rMZb7>(UQik>@`) zMA0;?2n>(?WGwjnujw31kM)XgUXkZ|x1Tv3npfjh3q^HCe3 zXc|@ohKI~~jnbS~kM-z#ugJ4x8=`0$Rs@Cz*4=$-z0Jf$3;I`Ardhdh8^6z1pd}Q6 zNrAV8cF|&So7Wy-W6rED6!L#Pu5E`a@K+gz0%Jjpp9OZ&GH$Vd7VgvI5q5H>U zu_7=O>6oiWw2WIE=Z#-(9`Spj&?9JniJe!j2sIQ7a_%nJ+d{i&8MioJ-|_#RpxY6@ z7YaQSEv{W3t_U?0OL7ffc#Xa-w2KzI&L4WBdBpF9La!)`YuC9eaMc=yBHc?C1$NOg zZgKy(^A{_0JL303p?3z4#frdCqb4|suj#P5Yd?{M~)*nQU(xbGT<0(m~< z`vi8;GH!7{fAVcu!NGooLhsZbixq*PxJ_29ANL-8TWA+8;}*}Q7rw|m;`c(KPaOM8 z>^bO)P(zWPwYnYABJb&!r}GuRdc1B&{9Y*Z$!T%zdG3l(Ly`In>Jcs0FL~pu%p-m; z6xsu@xYjRm1$r5Vp-6on^@tYlUztbzUMRFD7acPkhNc_SJnA zzZZ(sZ$n(`0lEUcKEr59eNpv@7VGc+;SuH$zZVMaS$Zt=SX~hqiqxl8k7$wWTzcWR zetI9>j`+P$G~B|9z);*SV}niYZJ}MX$h+rdG;z#o^N8OIg^ma8FR}55D?$wg#)6pl z64*tH%;U(Y=)Nxgyk1q_LWMM9a9v`0ScDnMeFyD0Jjyacw;4 zicmw5#+>RAE#nsB%xxZR9`Spj&=I7?wQ;R0LJdV4JF7>uj9ZMC*Wa+0?yLB{Q0Pe5 z;@bG!6`_VA&BNGVVtF4|gc^#JTT+i`8MnwMz2|)M zh~Eo^W{NB>T0#*Rzo#6TdPIxm;kG@-JmU94L2)e)=L%%i3`3D}ed-Y{mQVc7UzLZSIqi);B^S0Gz!7>blbR*z_rS_8>CFMp?b#P5YdGr}H=6@j5hxp4J}mT`;x z_s3sk9`Spj(9E{|C6-BdMW~@jIeqnrmT`+b{!NFONBmwWG(&H3ZQj5Yp@!n`zrJej z0;yLM*hP!fq00QnN0*yN{9Y(@rorOc{D&(-4aFIghs~XCZwu|BMZVQ1voeQmYaa1? zq0ku694D6oqb`7W-^E`4eX^N8OIMZ+zu2n@yTx1PT8I(u7a z7cJu!^IX5Wk9oxJg+gbr>@Tr-HCKch3Yj0o+?{SmwBUY)**^1#-wTD##93Ulgd%WK zU=C6}qD4Gp*3$o~_`Oh2T!E~}7z)`}SNpzV7Uoa=c*O68g5uhItt&zeg&gy%{g_9K z%{%*962BJ;ov-!dfth1h1cpM+-9Cf^l-p-8m`dd#E6>KXj*6TcSAoAk7YeOs@cR`iD_jv6id6fd9?@d;CH^#s-wTD-WmsIRFL4E`Mf{$h zYgp7HTC7gSpK9?tJW|yQ6k1>6u~6yaiojr{S{(I=7OVI1r*r&XD6~$-pM$8_aYbM# zQcaP1M2poec`qY=FBDquq zk7%(vGVk@p?}bACum2@hN9GDtg+<>k)vBpSv{*fy_jluWc#uNt$UGJ*+FTJBid1u_ z9?@cTeclU?-wTD-!+C!fm3giR3`MFPRF7z}`a~a1#P5Yd>-xOkjtWCp1coBjK&nTy zSe>PhisJV|q4kMA{y?RqD*{82YB|*-TC85wM|bgiq0l-@A4j3$(-ncCNHwYI5iM5t z>Z8>7y-;YqsE-Fxx$26*P#h^=+SpURz9>-ZUY&({S|4rCRA}9+k84>G7#@-Xn0O8# zTC5J)^9=EOq0stWAD^Sb*cE}HNVU$o9noU-)Smr_-wTD-A$y(y716E;3`MHhR*z`0 zx^U0p#P5Yd>!~fS)rGqPRoKQr5bw8 zkwuHu>3dc!elHZMzTNUysI+%QU?|dB0QHC#TW{dm!T7yUXq~?2;jm)B6@j5hYZ}xe zT5R2fXF22dLZRyoJfDb_53UFdh2&l*o_mcJTmRwt-T1vw=(-8di(&N`9-kg z-wZ|3vi$-p5?+Gd|8*mIm&F9@k!2j)ZoT@0lbi3eyamSFv#??sSlONachilSb=8wT zJvsKs-Got5m_QU9ixu+zi3wJI4?UPAyJhmTLw8n>fg*eKTS9@inPCO{(1YWC=BOJc z$KCx%^%y9!2e+^SZ)L+u{GkW4e$@VW^4minp&kQ8_TUy)$XhBVcvryCgIS;a@|~00 zk9vrD3>4XeTUdd&%#SavGkF5 zK0rMNitNEHtiW3f@urHQ2ea0Hd6Omik9rIg*@IhHA=@y)yEKL#%#v+b5>NFQD6$8) zutJW-1aA%*dN50l#ggnhWepVBgIic3=hQ^bhl&TYpki*P-G8oVFlhojCV>6J(zXPOZHj%ucP0j9s@=8;1*Wk zZOV9q*3g4l4|&9XOON@_HR>@?WDjm(1>OpcH-Qa3n6<~Np0IS=HHWIlK#@JTg%x2?eh*@IhHfwzt0 z4Rb>eW_8ERE&ccF?WheD*@IhHA#bUe;7xf$4`%)L;L*}%x16qj$v}}kxP=vX`#awF zH}qiEif@mWKJn-KsmDN(J-CGxc#FNflW?b@2eYJ4x@4jB?H7GT_UOk7Me>&M1N9R- z>BY+N4Oa471Z$wk9^Ar;v=1vD%u4%BJqC*G!7Z#v=Yp!0EZcx8z;48>bo`YyP^b(F zZec|_rz;-JO6Tze`)Z)b9^Ar;bZu5Vn3b+a^%y9!2e+^y-D4^q%u4qa^%y9!2e+^y z-76~|%u4r1^%y9!2e+^y-SaCR%u4rp^%y9!2e+^yJ-aF%%u3HI^%y9!2e+^yJ%d%P zOfSp!A(;1*V-K5E5-S*c&DtbrnXa0@F^U%TSLtkl0&){x3B_lu}433=)o)*3r^5C1#6(l9^AqTyu}{{x3B_lvB&sl=)o)*3oc^J1J*#1 zJ-CGxct5>;*{mF^G3(lId`Cu%7`sW;Y)v6P-H2OQfiZ1;JD7zrEp5k8p&lHI6&Rb> zj|a0bHmBn;RHz5XVg+&x_4A5Z$T84)HB_hv$6^I?CH3orS;&>p^)Xba2ghOsaz6Fz zoLR{E&~-jks0YVl1#(yQ`xUd~zA~cw)li`x9E%mm!PW1(%t8*1?z=;UdT=aOAeUHw zelQEUM0$P<73#sUSb>~q{W-`i+y$6^I?yBNm}?!yib6g5Eup}i0mgAd4~~mD z1B~6ksw&ijTUdd)4~*l69?Zhr2gYt-RTb*NEv&#C4#sgq4`yKw2V*y|stWbs7FJ*` z3gft;2eU92g|Qo0RfT$R3o9_EhH>1`gISnU!`Kb1szN=ug%vV}8(|zb^k9~Z+ggm> zz^W?LgIic3+c3g7Zs@@**@hNlH?XP-_23p($gvn<95?h}mK=)~V>hs>3iaR?R>(Ou z!Z>c|!7MqaT8!Pmsw&ijTUa62#t7rMp$D_%+GsI$1FNb~4{l+FT;n5*_hVx7hDo@nDwRt6GfR;89hm2e+_7?zvh|G29Mj$vwBl*bS_zLOr;J z74q!Rx{#pcK6nkUq%>hs>3iaR?R>;_6gmK)^gIO~6XfbvJtEx~BZefLtp+*?T4Lz78W2hEm zH?XP-_23p(;O+Pr#|=H0g_^Zz-2DEX!5SzezRfiBTSAe%R}MWmZt|O>?FdEo;8?6k z`>>*5R@!gsFM>ivEv!h-U{$9xH(j;NO3z(o%~o&=D^g#g;=!!ce^AzJ1-Gyw z^@%DT%u4+rWzAM_3oBCJuHwP0)Spwm`St>6|`q%mB@gIQ_ZrXI5u+`@`9 z7Oi+ND~&(ZW43}@Sdqrm6%S^makP5OR&Wa|Qf{E)!K{=IP>NW~IEJddyaE3oBACv*N+5l)qGu*$Qr9Mas!mJeZa8u<9{e!7Z#vx#fxnvr;}; zJ!UJog%v4BUh!a-j0KTzSC82WZec~r^;bNYmGb-QF6|` zq`8-h2eZs45^DaSJOjro}iedq{lqU>3%-7`uTrP>2BkIvpQ-ELLD_ zj&WSiLlw-z*c@Xwum%bk$iGg<`5ucE$T46XH}qf@ats)|fi+O513b8e708uf95?h} z7IGyRyMZ-OWDjm(1#&(Z#|=H0g`5w@ZeR@**@IhHf!r0waYGMg$$bU&4C*mZWDjm( z1#)m0#|=H0g&Z8lZeR@**@IhHfm|ZSaYGMgA(x1;8(0HH_TUy)ASa4(+|Ywr$cbX? z2G&54J-CGx@(j*v{*>IAq#H3yp1XN9;7rBjQ5T#w|ESZJboJtSYtNGZHGKVb@0>qx z?dA&-dC8(DkI8v!H(QGJj%^Ru6^C!W$JD0(JbS1Rc{kyf%T73EYTxr}mae<*h-uT{OONECihq2= z-qR01XkJ^6Jz<~ez1taXniZnJ7fO<%105dB`om%SPH%kl421~rubXfzR@}M!8P6{8OvF^w;iIvpNw=nkA7 z^KZIVe`(zX2TV8qnc;zl{6+ZJO`iSzCr6y>OcP*PGJ~l?x{}#oS z=gm+3d+i)|&6bn6>TZCv|rJ4>#+&RVWowqIt=zCM_RbIJdzszU!N zZeaz^O5Y3pzlvLM=KC?{NLkTg%bA6%%g>mqV(?e7;^qtYn(lgUZC`QA^^1E>Pul$d zx|cBPTR-1py3Hg07scSOVg=vF@|LUO_gn3f?^o}5!=tDEJ@V?7ci2~at=;~*Bc}e< zVLtQKL)doiGV81(kC^(mkOvBtm1iO=a6QJ?niCy1y*tC-?f1l~fB*Wr>_-`jQr zD1Py_)l>h{_)VLwp88kP2Y*!u11OkvYIj)PR|AFH^!_SV@KYj@lLtRD_W9hQQ~R2I zvo!FKzsUY7W*z^4L#J=s4excXD3VcsU$Nqf=N>Yh+sM?3oIJSYj7txm-g=AQuZpKy zCp!60H(}QDyAPV4dG!oMGV1?Ttl;}&A}0^N?;d+?o1f0J_Z73&|7Mh*?E^*iuVTfX zj~M0aG5=Kpx(Q!J%YVCbKCfn9QOtVyt9H(3WmTab+`@`;{(C3sW#IkfWuF0efS+97 zY76cRcm3QjA`SWs>cK4BiO&Ab|E1tqtl++cgw~^HX9=@#f4upA-m@rrGAhH~!fOC++;q2N0i zSpJ>+!I>y*Q!oo2pIw3X>2K(D&I-OiN(B4Y;jiMmu_csy{} z3zz2}AYYqV(LvE?JudeRs|xktmh;wz;!ig{Huo8`$3U_AqTTZS{QbY)H9r}K3cmxO zH}HvP;Je|?(oUD{GJV#Y46C9uot?YhE5_4#`|W33A5h4Dx(Tz;8`$-B8`to4W6|xu z`&Sez(EIq($7xg~@$t|4CEkLu!N#Y}@aRB?f>{`gY`y;sg$VGk|5ves$3Dij|L!Jy zq;A^!vH3a3M>Z=ucrfcVPk&5))>aiF?POdVqfu7y@y{Nr;IrYn!*|WS433l)9XyzY zGsDNVRfT$R3oE$CnLSkTmap%a`)yAj}G=VsO=VqLBY|6K0{e zeC8kRFBvGzLKNJ>3Oo&Z+W`;xXZ?0>!SloS6-P2E=uj{V&nrJ31BJ?<;1*VJUm}r{ z$Mm=zat4CW*N47&hde@3h5SYKS261)pWY#liUx{g)J^!Fi$OEZm7+{k<8AWYj-*S;6OVBAeBO&uZLJ zU$yXm^%w56SXYUybIH-dA?ZB@1^RoS?_T}a>XUQyN zp!}~ID6$8)u;Ta251iT;s7nuKA>-wl&4D6&a0@H$IB0HaU(zl;n1!62=UxYj?7=Op zxc2CFYF`8|J(z_|p=X2#itNEHthnHWg{ghny!2oedc~fB9w@R0x3J>5Cm%euFSM5) z%t9~R$Abe!_TUy){N>9Jo!Xb?OAlsYoZ#cyfg*cw3o8~+I&6B?p{umF3^LAiJKLFs z(Tk6^2a2TXCfve`lb(C{bl1PCc`yr^2_M}L6xoAYSn;UUM@*Oh^w7$7Fbla8zxxan z*@IhH@w;7*oc?lM&4XFU==j}kpvWHF!U}o6{q$uosCh68Irg|a7mDn`u~_l+Yo9Xx z<#sg>W+7+g&yRs3dvFUY9(Kl4r?2?#A(i97Eab@isWwn#4{l+_t5+O7-Tm~M2eXjH z^S?>v=%jvz0fg*cw z3oCy0AJ3W|@cNnuvyg}NUd=#}J-CGx+~Wi}?j_7ZcG$<{1BJ>&*z3Kr0$FG8&nL3} zkBy2vpM)`$XQR-EtIu;XYuz0?(VVgX6GEkTx9YK%93XE7hqm#(`Kiz~|aGX6;H1Oz5*G-s(v&8dE z14T0Gj}2JCxq(EM&Bm5r{gmfTH~IO3-ZMBOc<$?to1S%w{jLgOn}S(azWe#IM~yX5 zs0FU3<9`gUE>|Nk4DXMetmcR^m7;Zx#aEL|_l*<4DqRiWG z2SJj62KCb;=Az=D#-MUB`IJbVC`Q3}mpf*wAcz4aCU^||) zGQlZK8cOh~;dzgZoHLyoXFo*H=t@=3mxrc;I3i zHTa$1Teo5NJ*{t;Ql%R5wzX6aPI~CH4Zl3kM(#MKLrZY|OGrs0OPa z_l1{kxb-qiNs~|w_WECYymZ6I_OSEcBvgYfOmOZI$MgwvPW!zVp0?rPxKe>*%I?^6 z_B#3Lr)@Z6S39~*LeMf_F~R31X(U2c*Yxtw0{ej#LkQ!DV1*LG@=YJpZ~_`w^Cjj5 zQj0Za2q$+5*j3H$Snd|cS9WKy&3|}IN(AG=oV}2b?LOfKVL;q-kBbSE8@mH|oGP}U zHn4km8yYE9>}4f&p?i+=;o31l`cob&CQ#<>UfXf1_$VUBU}d00rnAU}MoJZXp{!uN zVw2D`c`os|m_XUIC$5ZB#py+Dhjm^}jg%_(LYcrSu_n<>6%(8*qqF{mIphx;fHuJToYKQu6xf)$|hkFIX=(uH{utV_jq`I<%mfjZp1F#mxSvSME} z34q0ZaN5y2mpgBCpTseJY;+L!vdE?d#`xP#yv7mw9?v27%`vsXMfZ6XSlsbV7L1*M~NOcmFh7(0=?J4dRxCQ>5EU-^bP zdtpRJ@@tz=3>EG0q#>3 z^F~T7dtnv;ch5G7sFG6E!;1;b8`!$=ajE5U5Nn^cpgD(X^g;g0*VX|@t)^bFwrdlL zf#A59h}SNqqjS{Y+z{&(J-XB7gS{}@CwHT@iIggiiwRrLVy%HPRcyiBracj6W95Ur zFf(e;sc8_+R55{BS-Im;_o+-3TVk7`z2`wV`P!VYv@Fyswm8~E6e>$C6Br4TJ5U$m zh_A+P8tfIXuc}cIiXl~OVS>wMsli?t#gkTsYE(qhU<(t?mP|mZxCX!|x0J!QhIrea zvlqtRrQEfNW~!LL?10=cqI7iDpL9J}OKk6GIJN*5;)bt%0``NwVryxd5H8gv3;Ack zL~N-wQpFa`B1@ZUT0>LCUYLWHw(m4irHTp6ZF`;;$MgwvwqQ2gOVRYPVlT|Td#P;_ zqEsF$CNSIYwM0r16TSSih{O`YQCq|Ezve0ZnaA9qmY7R4%(ZJt#QukR#T-6O1ndWU z#q!Z6R0ssCGf}mvC4PKT?W6I=x~r`b;0}VlVx8C~1i+_E6%(;OR@!{+udU1QGi77e zb_Hmj^8gL@!kD#RahimtiY-iV`=Lw~6Bw=ao*u@1i{4$t!W?7B-lM}vGw!4m<3?H; z>=kKky+-XGw0zSi<@R1SEtrU@QaZUyz}8daeti(JJZiYo2*#ySt6s63w+RD8gX3Z% z)-g&)XZ;CtZWUprwB4Pzv17$vSoduA3^s^ns+hpKXS=I$e014@714HoWkVyFNSL!1 z?t-zqJ{v?cRZQTn8@n%+uIED8y-OZ1X81i-T>drsU?R503(q!?{}-|4q~RtZl&$f? zlL|n@7FnAx2_ZNxCb%yeokai|d`-m+znsB2^tff9gm@dlURZY^XRS>r1`UpjiFn+U zj?VfM=G<$*>PFn(DJCzq3xwrsp8yT^!Ym2yIu&!95JM^-3wSYs`Ih!L16wes<6{|I zD@knj3D96K%p3W5Ns|z+OcfJc+eHQau{kfP`?QvcUfP4;@^7xjg*kggjW!X5QmT5{ zuwWwYpVHA;f6|_-B_6l7MleoFlpS~Visz$EM4>WOOvJpPbad9AluOhS^H^IW7?*OQ zdd2IKmci=iMxioQOvEdk($QIeY=#$43z2^p@haNZ2*#yrt$M{aRhuv%=c`^eESTW7 zmO2OhD+JeSvDB&t*D;9@D$Lm{))H;PB!u9&nBcZubQS?OSa?u1|C?tURuoBSYjcIS6k6J|6AO{7%u8Dt_Jb)}=T?tRjj%hp9q zp@#XWD-q1V)QUBJ zY)z`?pO|B&H3Br)E4E9f3DGH2#YAiq5b{lf3ecBzJ^^A&r= z_U<$x(UxbBiP+Xwx=a;YVjF&1BS3?_;<)HEQKgEBI40Xj6wvr~hdg%~!m^~wa+K+E%Ml$IFMC(PM`Rm}1PnuVBajbKoi zvlrGR%kyN~gaM!v;^u%KHu-yiBZH_qajkwin`uuMq*coxR?7#-W3k zsESYw1Y4NsxG-o)0GYxS6Z|6@t_I@jVV1yqs4W0RqrquUjuWc<}n8B1~eGDkk`d zMCYincJn6;K1zQ60Z$lwynR|@)gAi|GM=ct?b~nLcX;roKi*H`l-ANzZfCDZ-#kf( zLHbb-?>oo{g!VaK@Zi3K&n`xd9<+Sz6F_j%KIJNO7~r6JyS&e`jbd-ffCe77Q+sbXTqxAz@aPO(+Hpj*E%7f0}!ubKG-IZ%pBO@z_YdVy~EE+Qc|j z3&hLBE4JQm@bR+f98<;T_WgG~Ver*k)%gg*$ye4bk=NOq??3n&uZoC5=~yjf!-9$V z;rkE1wjny}Pnhqs&w+!Cw`%L|g6AJN_z2`H_B?zj){((KAXV&jqSWm^$~jHE_<)1c z-m=#Pj~tZt$&%w5?6v&mgHqZn0$4z*__*)7*M5VKa#qJmyp3S5#~!-h;43RCLI8Zq zqszpbPuOqpH5%p%cMxnj;wAeHK95srh_?~!wePw64Kik}=cXbAz^6y1Y6#{*#U#k zZC4uNZ3KJ$?NJ8|KA&9?0^n1oiiuCW>VTAw%@^(<*z($|4@l*s(hzSW*z4Q(9*{~` zMF@aTnJOmk-u;P#kI9)Y+(G>K)+Y`!8l^dd%Sxpo-bS$3RW}|sc zHDCK1=3E>6&KC|$=YzEq5um|dfBcIB(>ZSvf=W53dWngP4n3&OS4yzu`gI4Tyvs3_ zsba57FF7cck0w#2iV3c}l7N&a8Nc94c+F6psdzD5L`5B7>Jz&4>62#$-1 z@7%lJ;PbfZEb-$L=CM}Ocw_z8)(CJ1!CtWrZW99FQ>KcESkE_(6hMW4#s8OcfJcSEf`+psYo^?n!d3t!vao1Q6`C>gXpm z>)=GF2Gn>x}6Dbqb3a{xMg|$^A1jZr=~`L27CSYHy)h& zYE7a_6%$WA=kTFepNOQX278@&-NC5`*(6khElm9Ip2G*fp90bACtyF=>$P_soO;_$ zLa;Dr3lqP!=E;NKD`f(32f<#qJaTaA-8TubYo8{e z8f;&Cxju`w7 zu5v%v>vcCClKM_fLN(aJ#QwV-Iru$ar3QO_^Y%kh@2*Lx23wf8>9`{YzhAM`V6PwE zcS!1UHVM^W3lm>?&5=WOA7s!{OYvU#(?inOLX%JpwlMMRi;f)p-nDW+*z4{s)?mDB zy?88|gle#biGx0QSA4;?x9eV65auvcvL>nLZFPz|;)vCA)x9Q;nr zQiHu>Uqm&Ugle#b3GQX6Mu0nx6?+|a*qULVV_zKmHJj37VS;;0suBOB>!7xG;&oTU zNLBl8K=z8Qfi{seVo6;q8y2z5Yq-)#L~Oliys;hB)(D1#IeW#nR+~r~tj z%a7z;Ye%bvdnvJnoQVK;5bPD(zUoyG0^pO%haR6;9@DXE_iNcJ))J3GaE==j?Q_mv zv9?PZ1!21(`@u(-3C;`AS$|~i&RQ>ed}6C69?_|s$X>Cn)h3#$Vj{K%Bc0Qg+Pi9r zt>v~xFe=R1D~`9eiDs&ph@&5kRIw$Fm$Wrfs@N-z&$NkVs+fr5K{-`PBaR5FC5|m> zxGV)xKz_oUYlGP0Xs0S^uvcscwTUQG=0ql9OD)ozDz?NnV_PGoioIe>woNos#RQjv zoF*JAKJIbkuC0+$#a?lwuuU{m#Y7yLjC4*{8naYOoY`n=q*Sq2?3uQSW~!LrtAsiy z4X&x<+&d=s-j+Tw53f5fKOSsGZ9Ci<37O^{vhIflv?6!R$C*$9Rz#D zdCoQ=06t}^nBb8~bJf2>aC+m|ds`zw02=HS$M@TWNsLm(1lJhqEb-$L=3IZonT@ta zfIA5GiZdo{LI8ZqW5qY!fCiN);2Fd!n=c$Z9I- zXI^>e-!IF*3)GKaxzxhA2FoVhUJ@t={-!33g+6%F&FY0Q($ns}=}`!bQ(pC~PpcQk zub=tzPc;Z!^*t`MA6%oEs(@p~>KN;N*=sB%oLbvu`KttbVLbWqTTBp&L4)IB0%O+s zxVbwBwqRV`k2J@m{*od~6?n#-l9!?(}ygKbME;q5t6bn$BGosqgbPH z?*;Sru@Y}Py6lBD3_o2xK}4bQoHK#d5a(REzRbItDz;!X#Pw^;t2$OGRqTb;5F6%J zqAH@9Dkiu*MrZx8mW&@ov^a9k7?tysD)vIF#&cq`42p_r`1xRh>zF!KPN3)QM-)9| zKQ|@8#{^f-ZEvw$f@|=LKJGatG6AV#3$E>+uQ(?47jMfY?1kQz=gNvu3>s`<0{ym2 zFBzo@GIO+wU-|hPHUFS}{oDU#;pyDYUTDL={pe4|+}9`{s=;wFfqug3*E=0|LJ78@ zFY<-Cdo?ry_Jh69qd#X$ug@Dql`1AMHn7uko#s@r1--3xSGiY1LsP|G=&R+cOoOOW z#RU3^e!a?R!k)7QEpM+A`KTvCQ^j6rw|l+YB&t*~!DTaPD8bio^pO0j1`RK1N(8uL zKiCUBY`=0=gkm7r!USKnqqF{mIbXvu=HN9P$7HVZH$a2EFz)BIXhkSCP8AbeuSDml z!R-&UaXnvgX;wl~WT|2=w2(c&RzwskYX&CJI?rXr-LW5RLA%Y%V5N~##a?LjdD*TA zmnrHiCeY%{^@_VAReW{EIq+-AbPdPXaE!3!+L>wAU@!E~ylyY`A|XHJRgDSs^#1Oi zR=ta>^BYguklG3UZc$u=pM8gISA_rpXy7Qi7p}E^e~Z#h0??c_&}P`?`__);n8Z=z zHx2ee8^zz9S`mtkQ^f?giK4UWSZ~75E&3vU#i?>hu#{Pk#l6tS@#|GZ6shu@!36qO z+rG!IaPE%%U<>+f$DV3ll}1Vxd!Y}w|IrhK%M`ht3G^nvx=SlnY(bCpz z&@1-bR}sxrF~O~x=&V1sUex2oNQkGZSv~@eE_-1dChu*d42nuwqL{#ljvwhVRcyhi zk)OfoRIwLErgF~MlvFXnttdN4mNr}ObMf0ht0fhE!%OzDFwTdU=0pVSIeVcUy~_<& z&MU$sgkTF3TuVe}lbUn87V|3JW5Ka%U!B;*lq zeWnSvFoC(Sb5`4Nvt71i*?g48i=*Im;xxe)CNQV>(68IsEH&5*SADPNrwO(&fw{^1 z5BOYcU*jP8ey|r>8Gg-}CfLFR=2-7ob8AC`z0eNwE6y~*7A7!PeDD#UZ)mU=T4$cy zrwO(&fjRHD9{Gia2794x=w)!4U<(uHKKIDs^!rG|PKV@OwxC7+!jIYBq78q;iWb4~ zqV?*v1jnS&r*qC;Xf1!^Vat6L(M%N+Xq_MQQp#6}U<>-oFTCBnDvgvX_Cjy_u){1b zRYcNY3lr!~{P~5H6BEG}^gmYr=Y&Q|6?>t-^SS5P`C#oBz5bMEkO@AUCBf$wJ-tg_ zVCT8gNU35k^d|rP+D9WeE+&rq&i)hE5B5U8_D%n38Wjra@o1!E3>_n0p}N~+ikSLF9TWrAp?iV0lX zA9|(HWvbAdc=`*!RHX!chQE5IZMPkezX8XJ_Z)qLhmJ9?iikqC&eAo|-}&ZCYQ0i} zy=;ztf=C*iDkd;$;Y@Z)Rw6$)!Y~p+b2tb3q(4M>d z)(Jut#z&V4v>6ZlVe1UC1?|$0Z8LGKQmWVsJ-Xl8Z-Qv1iU~gd(OG}WqsvDWV}PC) z%+)v<%b;_BcDtvF=|lt^EA~P^!S}o(OhO2@FoAwaadahqeC%Esx1f*XXOLquSGa>< zFZ8KAmsEseAlSkL`f#4#k_Ke-4h6poW8~kj&Ky%B0toiPyn$aoDnhYws+ho>g;wK9jr70+(EDx#>@OFS`h-^QywcOFh1v3ZFAMXLa+s6ecsBbGy(*m z!Cn|!^p;FTn8YYmOkgb2OPV@M{P>i!WQf;Kym2D;sx$G+ zKlv5uu^u8{x_3!a#n(HoYs>2+T?UGCJ?^7->Z=-_Tscxgh`0T zr(e9|FhAVh#QycLqpS?>M}BGdrR`yl=c6?@%&+X^|~_THt6kbSV)hrK}i`KXAPG@sb?GJB5Br|G5kjKH-5j|#_|oM&4*rI`X$|&z-HkgA{)W6Jp&D#q zg7dUErVqy9a=AO~uvICSR3$1Hgwet51=@3BMMRY_XA2W3|DLB)k|ZF{DIyE%6@T9y z$D~9s&T1d`LVe}$xT^>QM1w6%psw_H-$iFh5>mzaXa9#+q&k@Mn-bz}1be-F>y@cy zs0hWN!4@WV-D_p4iK4Uq;CV|q_bq>U`{DR2Hj)zqG}!BHk8D3&aPvk8Q7P*yCSH8N z4#RiuHM&d{TdsfJ4#V2bH*!_eRI%6d-?+nY{s9{ys#F!kWZll!*I(Ob$Km~VZA3#; z#a?F(I}T@W{%F^8E`v;P%OD*q)!=jc>xZsPS0By`N{F}REB1Qx2`f|0P!Woa^A!_E zykupniK27VV9VprU71=kl}1VxdmVqp%G3_3h-Rvoc-ze@(~(wZXvjy#WaJ9qWgAxp zFZ0mw_g$JV+(B?$-@SKbI_FiY#M=n=I%e}NQ;V!31i+^(wM@MAfGtzo&V1nx;_ltI z8CHB7cNcbxrIWWA4!Os|(;D#d_mOwqwn9Eb=|?WuX7G2RtA@mH8tnDsTelhft?U&6 zOsFvD^nT*xEmI4rN|ksU!Cu##vt=r^6(ImV<*{Po!ueQr#{?k&K4q$y z;5x=!;SPemaQ<(*%`_@PF%YFC6RVEiHl;8+>krm`WXl$3ZJYMIjL8L{!Co7#+cxF) zCLv&%Dkk=SVB1t~%2csspMAC)PI+)6dmf;{Ugtl5yJ7!_H$qgYDu{P(H@sr&)^+ei zvi!~$wi|ZcYa`cMO%;2c{)_E~#~!*7qDmDL+^QAF^s)Y+w{g(t@Hh8zn@HV*L0GYs zz0hMhF}}-mnqUhPHyyWn@VBj&8tjEW)$e@4-upUDu!V^y?6!LFH~N+u?1fhG>Ax_I zX@V_G9Qdu>27gm(`maG{F`oPCs=w zxsKR7l1mNtLht30OH5;$U<(u9+k3a6dRw!IS+B_BMGI;9%ce0+u!V_NeQnpl-xOW$ z2YaDKcEKa2F-@?AiG$ADb@2Bvmm2JaHsebUu+fNVf-Ov(ux8i6-`rekuoqgg{(ksr zf-Ow^+daDsuh{cgZ9kM6?1ixte}nxr!4@W-cFr!tQ_pE>uouQ*PQ1>J)il8tCSI}U zF2fJ+X=$(*`UbDP%QU75wlHzkjXMv&wdU!KW5r(Rz1;GMX-pGrVPdb7b{-Bsucg6W z=u_>rkG-dQnqUhPEAQKBc=gv>8tjGM-Pwa_OcQKj;=(g_8osypagAfeUg&>*`o*R( zO|XTDuG?ui{nVBQd!bkS^{dPJuQwlML) z#oG@Df3l^)UTBwocxTg?CfLHnnY(U3Jm=1q2795k{P5nUF-@?AiHGG#f9n3027961 z?mgCNf-Ov}-)6hvnGdxz*b6-i@BK~_Y+<5%^R~mzzi4T&7y3Kicb+ELQV`TvPuJRj zw$Iq>@WbqUaKBv%{86H`Y&$r?z57G}((yzeDL`-AuY>5f`*pV@FgoNdR`i#h#(0po zGL;Ar7;9h*$lG&G0+7s9XAO*Hc`Kat#8Kln4feu#nfDDULa}kGn82v2_g<0)q~>hF z$gTH^Dvbbl5bTA~VeeB_gaG)I=Yt6z*D_zYgWwT}b?dfDGY!xvW`4xm2=+SplC9Eg zMnwpKPdU!O#4B#!D$R?SFWf<}<=vZYoqDO2hIkvnUVnSk)~P345dz>-rizJAylU&Z zw;e#R<+WFDoqF_@hIm`5*y~&OZk5 z!>s3f>1!}z85Seit@8DuYv)_OmxBGP`ag$axldrz-S74IR+inrmaVD&93&)g*0D`?R*6aPK zicoBvDkk^}moy|GZ>gj+g&6@K1E@44MRu&%3v&}bGEosKG)@&0d`*nb`h!xtM1PV@nah9#RS56<&gXP zemH@nz~MI0b#GbDmbWZBarnUheH%q)xQdTI3Lb274i#_hX8{(e=1W0`ZfE z3b}?KQP3U+opYt7$Wp~#re`a`ngl@Ij~o|LXax2rZy#&8m!*4xNc&O7g+0xL?~^(Q z`72+~CFTVU_nJO~r6m)fJuj$6`~!_or6YRSVK<~OwtEWISyE)FVlRaA@fi_?hR4N( z)o{Ll?v6bld$~rFK*Hkn!{UOM6TF%(D#ZO@FPEVL$S5|5OTNJI<9v zyO6J@$j^E9vU6Z%q9PRYW0m8=IWPkIm$$n+2#(i|=tc-6PLHm~#e}U}r2T+QaKcl9 zwVWPq5~@*JN+KUai{Fn`_JW3cAtn!tfBM+k+HA=LXkTrb+$CT&gQR^S|14sCrD2>8 z-!3-$1SjNJEo9Rop0yON2ywF9?iMEEkyct9?Gv1Ejd-3HVqP=}F?ji~{a^ye%C*JO zKEVmsi05V@W_?C{MTo(Uu3MPE{U*L$9L3eXzScRu+(k=axZ5YpZ@%m!%ksV&eTL;v zU-^+`dHc+g*gTK*2+P;@96xjRdhb&{vh43j-n6=eiNAZyN2ErzH>s;e{1fIcy#2~$ zc{7Zr9 z{=Q{@SH|Ce=zYunri~^MaIDztv6sJZIlrTfTQzy#t!9uj*vqy>gIHj@eC>P$Xt39% zm%MNJtGjQruh@%v1%Q8&#zMA8j?6@iNuS>9-uSh;#8dT@{+eZfyT+UT^XhcmN`fsv zy7uaHq^n#Kj0{)+VA*nJOk$|L0Z9@{Tg4qqF{m`I}Dpz_PsaLoM5Uf41yz>z>Y6?Dg2QX6c+) zL^D-PaPG0>7$SH5zWmZIYk1n$lk7t007Y<*n1?^|X&(l8#kHn1m2)VdBbX zU6Rg?I!pZcg!xx?xo}zDAg6Wv$q&76+23BsF_|meLBu_j-*g37ARNnzZkPYn+XyZP zG2VsP+XTQl$Hl}$tN#jTv!TIWe|F{jasJh-A|!r%%KeCEu-Yf{g*yoLiaBPQPz~O5 zCSnfF`w@j?+8x9-~I4Y zm;V=d0+C;xD?%Lbk$2uxE%WCWUX@C4RWk$ygebkPT9)_SEs4#~M~|?4(vldeeTpdy;7V&b%WFHh$`X-Ghxe?^wl zUUPZMSCxjO$VwD@J${SJQ=7UXR0tYuVd5*7UY6SM>I@C}$Tf;AR~~vt)OxK56&k0C3GSDu zGc@EQ^B;5#zww^;E&CgYD~$km5bU+>E$>_QclA|-0Qi(=kO}Vlm@nKxaIYcuceK45 zH5THBuX-E7UNK&6Usr@;l&XbnSTGS&sC0DJpVStegNQ9z4f9pIB=}kzuhhqYp1vBe zS8VmSi6~Uoa7@HrhPKqyIT#Y=+%x_B{G!zJs?Hz?`Gz@rt$zJQsc%pbCNVnaOuYT* zi&9@CI_pnrh3gTGHTCq-)l{)pyfRD^qLPl)LjGAW5wAo_i!FW9HA*eYN9-gJ7>$e*VHVic=8+;8WHNOl7+dY-2> z*ef30HlazwvEsOxh-bEuuQ-p!@iO(Q@>SXo_KGdmX#$5#=U99MvLv+a+ej7H&T$lH zS|dP%z2d0RG*P9Bi8xBtNEMg6-`?+9Tx<1gP9H1w`j2C-#kF>ts8YoQk2#5B`h+=O zCnB*{%p18zu~$rCn}{mu4EBhZiFibmj?VfccavKkrIuKCwKalqVa{Iv->n}><-EGq zMxioQOz`-1bk>raYB)W&v3}Grmm4L5{FQI2Mb#@_2it^VAUG~2;x$<5=o~fJ60hxT z4M~xuioIgnuuU{m#YAjnmZ^e_l-gW6V;@(&rgJ-c#eVcO5jAvnav}dLn3%o}a_NlY zl+zjk`@vpulyjP>QpH3ZVO3fj(jOXT)VeFOE1J&QI0NWOOvL_Yd908ypTSZ~tUq+mr*k`d#oA|@Pz{cY32xiPU5LkuOK0p&w)Z?h0Q8thZH<&F_KM>( zZK9bfCU^uoI>$ZdqZr5c+ZriV>=j2N+C(!|C6P;7nJSqB?(Lgu1NncvLQJ*<`=(sd z%l}3Fff+!b1r%HQlZqqF{mIYzjAq#1MdK36Cy>hTq~ zg}UNTfCisu%s=@IZ*@Mz+X(i;T$IlbSA+oglt-5dNhwmS*AnxEI|$AhGRq)2bKmx{ z67QHQ@{+m8xy&NB2?6jaQ^f@5Y4f$eVU9UYj~89PELH^1&rK*?z7cnL3RT1KVPf5h1yH*T~c%F1jPF>X<1Rr;q$(VcZt~!H35c$e8 z2gpliNaj8!QxVXRPfFE7{#h^~vomua-GQfm0tmLqtj}CVKQw1l8scrKVlP?oGMAM+ zZ9+xHsbYd_rRc0b0jXFE9r<^Gl|rBpmQ+og^GN7f!~C<)M@6CsE#LIfW0m4Ujg2xX z<^|^PiaFuPNGn`c>-dTUtVZ#*29-uIMDE%mFRYjF^#v7?G&t>;JNKEfibxvlh0%GR zC98;}!4@XC9#iL}!6hoz5_+U1COs$Oy-0*msV-5kc%IvYVw6jI*|1$Q?D3rn@|iIl2+_tFB`DuD78u~-uB7g@Ksjo z9Q3acY>7v~H8f?2NqvL-m2Wy$>J`sTn@}vKD#gV_%nM4Zv&4^2YRRZ2wtXH&BOa@{ z;EUMG&~Q8=3v8FKeF8MtE0*nPLb!Bv7xK@7iC9Z0Ew=OtxQe01QA@0erZoaI*elj{ z(}XCMsbYe!5-CYaa9t~E9!vKQ8eqNUL!qEJdz4=*OLHr3aWs&ml4c0N!u zXuN2Fd7BaC&+~L5gwmE}@{%LHp6d3JFbO+W$-;yj_4R%&Ng5K6_t)ArT}WC`bAiYAb;f>w5R1>=z-zNCbpW8jreH3N^voPc9yq;%opw;*n;+(x16R^#a>dP z*5jN=Y@3)WCStx)x=a<;IaB|vM{1xETTz(^vQ@sRL@nh1MQk~#S4D^eK5}2GtPe#W zP5xP+HHH=e!lIS*;HjSgg1yihLyJJHZ9)uXs+d5Xf))X2`KC|OSdvYPm_iN5RQ1>{ zUx{4*=KWAFIc7^Zc4G5X^$5#1eKcRCS_bRqC116PV30g#o4jJ1x=lotwCBBS@K(4I z+}2j-pnqjQ_)3PJHqIRAm=k-1Xc2+P;bAbv1Xgd?h6@kqA`#VA$1Y*;W6YagZ6Iq2V< zuhbIjMAy)iAtv<=@>jk=`{3R)jdgIFP%Ne@#l=Ld^Bbv(y&|=sZp68k=nzYaNu!q( zS*qAe_8g_SO(-@_6%%sA^~j6kB0B4jUZYYkKGsBYcr|lLfChWTHq|sCQI+|MiP$<* zT9Xt1VC+>}dTNO+z-bLl6??^2<}^{IiV42LX@VqveA4xNN&Z=&G*R6?aR%8dwo8<* z&bca#&ma@Ag`>1O2SfB&p~tHhT=%F=J&`K*!gUr`Pl*lQC1DbF29t#e&ePFZf3)?Q z>I`Z3ETN14UhKAQP0jLl#@#&mZh6)y-?4m@&{nHe z1T^G>Qp<6bgwy5U)ooWj>(lbo1DnX-%^Qt`+PqtLQ;f}%#x88?j`i2P!R?Q z!4@X$9!z^Tq(yFst=RInCu6;rzpc4Cx=DjAxYJt>a&@GWM!CSjur1A?n*i5%Jq+OblD4M@cK0qL`+(l+nK-`zYX)7%cHBQVhdL3J$RCN zRcBDVZ9muxYxz#Q_onuKG*iU{R?5HZHAYA0sKMnNYf_*2b39X~Eb~eP`72);ZznIT zjazrs1fduR-a{s^PHv~?8XcYW2UmmHvR|W61|NI5U9XU@JWnSgK!d$d=5PAYMhHPI zCwg2=ASb@)<9>ZiDnj7SATK$%$H>cImD?pncC6S7_c3`nuZSp9mJcQnlfT(MrwRLk zm5ct)bF66eH*8iKNR@oToV~Du(%>a|MABdj z6Ii9|Z$gdE`eRR~@V8MijrGa?4p?)QzX5yBURaat?|rQZU`lYw!96CA-(sQ+inkH$ zg}X<-a;d%7l1qX3rcYTun84j5R~~9~cE^6O1^1QQew$ruD~%wWd~Maedtuf68(uy^ zM4>WOOz^cmI!6tx5q{<8Z`Aq&D}J|qkAv^dhDqa1cUKn@x}+lF&XhF+R>6N^{z=^@+%a~}maY1VEx2#SYc=FIuVZ5LaX;7#_sw`M+9a^^ zns+@eCUD=3*V;*=BCv+uTVz;6@8`cH*n)EBIi{JafK;&;O0DPDCQ+q|3DhfIR?1Xy zT&V5*I*9vQ{3@!1q{wm!Kj#i%KW>Q0djK`TUK}n6V8PFaTR4S$l_)jX3wI28yQCr% zg9g|7@Y?44)=q5h2NI^&DEETK8&BDwdAA~x23wfG9ZKGkjn4WL=4`>8NZ$74n9S8U zseQ-`XKj}oZu!4R6%%~5D^tbS3FKpc-}ZE>*bC*u-_~6bQK-CrFu~W7GF2#@evLw@ z^>;5<8o@Ye>5~^~34gzHMKn{z1Zt)BJEXY}h#J-VRHzd@Piyo@m3*zX9Hw%``rN#OlKj>%l%4uZXKhl2MeD?+hxs+hpt5&ky&=&V2G ze&7n{?VPe8r(j|T`7L;gNE0S8ohX1s@My6UHFx=A{6uU;c+p6J1|zi-mbgRIcl&4 zcUrvtX!EKxQmRU?OP7E9zc$j!z^)WM7My1%xP?=uid!$pOZy)^p^;L>UdV}G-DQG^ zLS?F$Kq)x+p;3=TbgX>11?BGV?lG_FW5r%5wcFk@K{Qjv1h>?pv;J7`&PTbB5+BR5 z8g4XWqWi&Koc4-Hsbb5R@cd@Uk-tg9E!<8-OujuvZ(z|PV}g6HCBbbq^f`Qlt*N1@ zVlP}}eC(}Bh*;T9WP)3OWvaO4g`S@Gahe*MD)vHe(#IB>M3pKgxII^S56QD z;8R|4nBc3Ax$0jf^0f%H-5Iz3!=t2%y-=h6;7t>RNsLm(1ZwT0d!x%#u?1HKZ;MPH zEB3Y1p3b2%8btX zV^41Jel5mDz20r+T}>5xVYJrk_9h`JWzE0@#(n)NQKpJ57_IkfR8vD!#a?(0i(dzu zM3pKg@Kg*R4=7W`?OOEDJ@-MQYQ3rkd*L2;&+Qcvh02yb6S%+LOIMjHJd?xAHq!1j zL!}XnvnR^A7xvuSpB2$e6%#y@Ql^U2i>C>Ai?z~7sbViYDa6~m712x;6MRI}IcZ@0 z%0~n-;^iZSRfz&2UwdYadtrpl$1E#C0DQ_?lnIRJ`53AB+Fv^#p5u^qAHTw$S1o`5 z4fevG`{-Ab&{VOdB(6%WOiho(kB>YJk?IVL!+F29+VcQ+5bTA~K_5M>2m$aZj};Sq zp3GJM3c*JaGYvihU16d!Yl&iaE=n~x%LzV{9Is3#&I zRqTaw?tP9XA!u2PGQlH-NkfUQdzsAY9wtvk$9#64gU0r%z6#J_FP>4Zh$w_Mb&hLH z6nR(TxAVbXrspm1mu)DBLc=X%!rSobTxev=%Qk%Ji(l0{y)Ct_=K|Ps%whW*%<*(| zf73Yh{1}!R?1dS3_o@h&(WC2LOxS#Vs}09q@umpuhbRy?B4y zW<|uL+4aNK(MvhvCH8iC^j_Y4LhB9oXtDUa;n2$Tx5;5Yic}>HwqTCdQ-!%(Pi=J8 zyk*bwzTjq4$DSX5g@v&no?0b>{FSdgFFbo)y1ehX6NF+QI4&G%C-^8tXZ^A3hpS^h z4!P$DJ{@cfHi&e0V8H zL_n(83**UNGgO302*DO6FtY7+Owy2mjcmIG=h?3%98)3!2=+oQ@ncmHih*DY6I{nc zXK@F?7Ucb_1lP?_7AK(FXq_a5D7GhjbFSEJwdw?~;5dd2VF z?9m8}U%mgXqcmQOmz{i#g=2!^esEdCS@ZJ2+DZiZD_=WiV1uEuF++x*n+W>`QZ~9DOK!+@tLzXpCFp4VuDLo znJO-87_+|m94mLzXOO)x{{4xQCx~XMn7~N-`3H>3xllHD=Y4Xlx%3>~%)0>ud!eoF zC8|lN23wfm)^gkh{joP~csl`CPH$y!Oo<3c6?@^j>%EjFA!yldX9DeO@9!iHCD?)% zx%Um48k#Eh!pM~OMVdsFDkd;8<$a$rRhWJA_uOM1@AO|Bqh$~pUdJdQDZ-G_R`_k&|HSGa>coajKX=ZFk~3?YKqfsKF%%vsr65pD2TpB1;u}VaDt`_fE8si&XjboC(azwa+=` zHoawmxlM1EH1n0D%${iNUg&dr>%K`~SF~m6sbT`XSHIfnE=c_Ng!v)&tQfra^UXU~ z4BkVs_gX$9w`2m`L5#gzZ<=5W!cH`EyK0QRCJ9NDrHbR?^>GBC`Bq0wr;5GMX543=3Bn{sXOIaVrHIb@W4UDA zI=gcUDe+NNTH?XMTm_RA;Hc?6N zXdUWZukD~w~0SC!kTUG ze^f*>RZL)&uIKzRRor61T$*18p;4U=Nm-b)7uE#$wYEu!Sb2?N0;^`*?OnEDWv;iW zn;M!b_QHBEZ?`vzDpgEi?N`;?Rsv_u`%XBU-ivQ)XsXx?EkGXwXcASbn81oH?;DC^ z`q-UFZo%p;?{hXa0?r3}A;0?gMUxPv@(eP;Eu54jCAb_w&+9~Jw96oSVQ;-gt%xX8 zmO&=CtzD*y%K_G*`<0>62*%m_4crTB`MgzJ5zSOFfmMOtA}>>g66IG*lt;hTRvIZ) z?1lb^&n{I&GgT##=PcAYY4BAT?d#XxwbZ_Hf{?F0f#1E*uRZa)2|@sT%6178=u>;& z$9(Ottk|N`i6iP`WZ3g|eZ^ilA3kc(Bs5iQVFEeEM=8ow@wr6`y{}fCkHGukUZ{P1 zZ!01SmARb>)O>!V%T#fCk@MHBv+)w%zeEI_5B9?K!^eG^grH^3zy#NoNka)vFY0;E zG1Z<+itw>_FS{46AKo^s2m@lOyp~~tOImam0chY^J3c>vC+GMWDQ4oUe5I+vlj?lL z15bqVu?(ySXcMq_s_+CvpM2q#~x9LQdvy}w)$QAqb=;pdhKJOjl0>d`rB;0c>v zisTtfqG@HY(vTG4qkBI05h(V;Q>Th?h5&aE?1kr1c^j@G1TcbgIG*R^vj7|uoZ)Q* zd*OLbKJs4?pyX4giV4os=4*e;=OH6r`SxPdUk|HqkiYUZ4Yz>swIH zaE(zCT%P5euccg4YXqD@_QG?QC@0p0h}jwRR52lWdac*mWvbXB_550|=W%pBrbK9} z*bC1T^-=C7QKgCrzDgtwCHR_wX9D_Yc2h%B#a^frePp{yRH^%+cg|q21 z)fEwiEMIx5m_Y9FIq&GKKlZ$Ew;(6_jC-XKjI(EwyBBi4&+1o16e?521WKB>AELAV z1br5jwA{D&xne(f}b}dn1B-$n+PBp&D#q0?#V;k-{=nY{AoweMFFBN<_eZuos@B?4yHCqDmDL zc%HD26sm^AkB>ba-}5NW4fQ`3MQ#sp2f|>?3C{WEs(*z*55mWB z(X;Ro;YuSo!CvxI$GMLuHwmF+zLvc3RDYl0tq7AC?FSR`Jj=Py_NueQkB>gjGFjva zm~$WNt26@KL9iFzz~JMF6(ImV<)d=8-^ zOk$KOCQy(0Ol)+H8hCQG=WsmHn#xC6Gf0XoRqTZ)XnVOss=OXc8i0x(Boo}5Ohf>| zwG6HwJ`z%Ch_|JRy>RuRHuWZ?iV0ldybWKbifd$?a~}(zP8EA0kNHS?MMRBk%O zFTB&hM^Y=InJOmmb_5@}EmOr7yn(@IVk(W4D)y54eD3vmMKn{z1edgwDhbFKnLPd3 zNB;5jXCKEGjlQ@VBn@2Ee4LWKaP9K3OmzNWa2W8mX;@y2Mi`8VldQM1;5>$qRLtAD@a)EFP;A z7ZW&xe%z9V1njL=ZoxVC@%Bn1z#Rm8A&>cJeMJa>kCj2+Lne@?J;#`<{uP2PC?B53 zDvbaEXs{Q`qt8uMgh`B2#RRt{qO<B?_U03>YjMu0rk?0cuorTSUjdM>{5+K!Y+-`WW=Y^l%svYsZK@@2Q&o947-!F+ zcQ0v?Em0e;Z|8Q7iwS8nrgBrJijSg{yCrYKb4*GE`Yu*YrixlO!J!D~C*Q|&o45dr68?B(@G zlZdIxaltDSjUJ?GjJ-BWM2#Gm9G`^~a&FQ*t~kmL*tcw7aeuiahF_ks^x&_4VC^k; z9Q%|zU$c6+^)g+B(!JritA`_hV&R*PTRnVi56mdf`mQ_gYk%{!7yr+5mqe%Q-n{Lw z^DmCql`dVkt^E3m=oA*Ge|-5FOW%L*m3X^G$8lx7S)ar3y7Shvm;UML?@%IJX8p4- zT0QK(CsMU(MAtEq!_au(BY(Pd=1b00jcl3q2Yqt&@W91b_sV+HMAtEq!yvBO<@HOS z|HARAku9_SId`re&e+v7^7d(>>zK%45JztDXG<^o!k(&;Ewlbp_pcrv*7g6aH%-Vh zXo<*S5U+pT8oTnPuGV6Ew z#p>ag=i&M>>+|+$qU)H*VGysBeETmK|IO17&X!r4CJBdZ zvHj>?hdU=(Z$!wy9e9M4iZC z5b>O=Mz+{_UZMBhvEGQ#^K9{2j&TC{%EBN9$-Ben_gpW*kS&&9|MK6k_Jj3Cgyuw# z3pwA390u_oDT9Z7@p#q97Axn!dYWnE?IS|VoyBYA+zFIg3xkMtiE3nv)gM3jF7B>j zy%C}HhsTAQ$cY>V5$ip_cGVv>5^i5v#;m{**!^!fK(sT$cb z>rrbz>wetx!+Ilv;Mg+y%bxhC#8fyiYZ`-q@;yN-z*266ps{&4BHhM%cMw#@p|Pu)%S!8G#r5kc{G9TPbW;^MEr zVCk#>xVfwV>q557`tR+%+wez!`D8s-dHaZr~T5kUwVRSWXr7ow|jOOF8nT@ z(8YQqg5vEuCUO|W_a8iJ>3^z{VcF2k*FG>yD{L{PkP%_Jg+K|H)-&Cc*Xi8}B$&k5%42A}C&I zsS%OGAmn^6$$3|eY?<|YowW1tmDia@-aaBI-mYUJhe71FEfq2eMC^auw){KvHb~8|JmB_zWNVUBU@(u8_r)f>~V@|uaTcSB-3$_0QO8)$rB-W*T|>h@g0-KSV?hgOKafTDeZCMz+lQOE21S zxcdi(==sRoM+C*&bxhgS>pyqd4#PojH;ue~L{Pk4$3zZ;xbwJoto`d-&sL3Wnf1Hxxx;YX%SUeB~LYk++WsidU`@MC33CX@{|*mLc^7auy@k$L&L=J;E zW3zjYIq`LGP>pPv_3O9UZus~%rjfUg2#UAsn8;xe4}9mmV{SY1T-C@HsY_(c;omni zjl6wCP`qLxB8Nf5u?*G77SvZ5zc7uweMC^aun>{Lk+@05OH3nKMB{bar2WYBh@f~S z$V3W*kYjbTA1n469@;vckGy?EP`uJ3BO-@E$T`2+&v~}Y`W3I*I_0apeMC^aUB^TY zgOI$t-t%s@%=)+g+g7Q3v`TjA}C%N%OE0$L7*?_ZH8=_^?!c$iqtO2+eZY&+jUIjFbHY;toOE0 zwxGURk=j>z`-q@;VaY@eW4pBB=H7b z=X-6D+PiuCh@g18j)@!wA#Lipx2dyb)_>=Q%~QKQZyym9Z`U!A!ywQX^u9s1%=%MK z*gW+=^7auy@pc^(ISc}QLGR;ai?rLn`zxs*mA8)widWk0MC33C>8s7Xua+&+hI`|$ zr2b&uJ|ZYyX~Pkb!yu&3Irlziw#@q7_WPB=`?Y!dh@g18j)@!wanGOh^G|)*`p(%h z>uZ6&pK&-%kSG* zMz+lQcRg{lG+vUoj|hsl>zK%45U>0CbLI~oZDTUoGVAyF_G8kxPu@NvDBiAPB8Ne| zQu>0gy~DE94>Dk5frcN z2N5|8V$G#5oqzPzHrAIdv;M39?J;RQF>fCc6mQotk;5QxeeyBOY?<}<{GdzYqIvs> zpm?Pe5Rtf$9}p?! z#cTDh6R1UfO^B}Kn8%eIAzSSF;VVS)c4)}j4=1$V^|){aa3Y66oF&(&bKmi4-H&Xs z>)>S<^^*HpZ$#+z!{W8;pcA;NSr|mT)~ZIf*!BE`o$w4g)*BIe9rUGLBuwL zYGjMGOWtt4Y2@uALa*l*ueD2@Kr6$-AY$7`HL}IqSA*_H-aaC%>Ww4La2p~dP%4ugno zYSqXVYq#%x(r@aq%G*bTws$RFYqvXrR=9;hJW2WnKau$&35IO3{>PO!nnvC}BDCG^ zaiIs{L=J7r_7S1|bBou;8JxhVfrUZDu?*G7 z78@^l_18=zZyyml&fsxj#KVak1`)?(R3lq#+~<3HAE(DEZyymlUSjduxQ`PU#j!Am zIJTr3*)r=fo^<-DrjfUg2p#vyab+UYAmSLAYGjLz!+q~c)5zOLg#7FAb~;|>1V+^? z3?h#8sYbTgc;Z3dGL5`_L{Pjop6CQd2Q3UDj#;Wkw%EAn{<|Ho=Ob?)5jvjeabaZB zi5vzI$6i$j?gU29Ees-#>8nPz*u25PpEQlUeMIPZ zyT^r*eCX-}`mno($E zi_PPF>VDJ6+ed`Xe|TJ&iE$!_L44vrzIpTikTs*w$d*};`Jrb%WEy$gOZV(?qvmB8Nf9IX@Z17DqL*#n$`y)j4mU zCb|Vy>^PCbAmW-L)yNiGx8$viynUMJ7Fc=YL=J<9Yok;nTTp-Ol-gH$`!oSdCUO|t z;~Fp3$QD~i=B>WGeVXVNSPAAt4ugnm)l?%}Y(1Q}Ui0>8qFZ1^n-e(Z1c2G64#nvZ!Zz6A>Cb|Vy7&?)|AmSQG)yNiGXX(A7ynUMJ z7Fa3iL=J<9YdKXTTWr0k_wMrcX`)+T#itWF3?i;cRgG-1b+6t_&D*DmZh@7nPUJ9% z_x`{A()urI-&t3&x);{jdT)DEh;G3|4nsr60G8qyfUd^%c(E?nM-4WG=oU=mFf`&? zXFXQgV(Y1Gl)~0M$I*mIqFZ1^v=ccDjkso8HL}Ilh5IN@-abuq3#{yRB8Nf5wdbml zExx|p#(nbkX`)-$3UwoL7(`q{k1?{iTHU;`Zr(@LHihUGOyn>$;=KT>ku7$=fsYR6 z?bAfJz#RilrAA^r_=Izr&x4<0{PUJ8M8GBudW3PG_gnQwB3?HrC z6rx)&k;BkfI_Nb^!(V??_aj^6I@rA9aGH?oAQ2Q6jr<8qi^I1X?AaUTSjJhKZ#CEx zJ#c-LPtd?CK+q6 zSDsOt^%apc*uuoGAG&g|C!vfr*o$Y(Dk5pHg^6AFS~=L0TgDpf#WQ~uku=!C#LKr{ zIoPvh#v1IEXDVlXMI;TjFtPu`D+YU(%~*rIcqXlKkS*un(b682oAu?Bmg{or@3 zS47fa3lnG)+0&ZF8ti55AY1WU5lMqBOrULNPlp<7uov2Me#d%6Bn`GOfi|i=^KPuc zUTBy49qSd5G}yuf+S>LUx3LC$p?&RltXD+RU<(uIGuYGR#v1H}euCezUJ*%yEli;A zV^6aiYp@skJHE2NB9aDMm_Q%Sp5!~$U@!FB{EqdCNE&Qm0)0_?Lhx9Fz0m*kJJu^A zX|RO}^r`Kc!eb5gLOOuY+(Xp9QF+Ku?Bl# zT*L2JuZX0<7A7!OW6xY4Yp@r_XZ()!ibxu4VPf67tplN*U<(tUkd+Gd4D7K6dtrr$-?3g1 zNrNp+y!Ps?2YaK=ScARt9htMfB9aDMnE2McTMzcmpRopeVTFj_v0f2LgDp(lz56zU zy@_b7!Cv_e*;!u^NrNp+ES2|%#URWXG^=^|;4Yn}xJ73st;`+f}SRvw1JZTcD!4@V?|HXC_ z*FpBe3K72!HVM^W3lkR}y8XoUoV~C@#GgRZBvgYfOkBTi`-yf5dtrr$KS`%as0Le@ zxb%|kC)!u+g%u*+zG@PxQCc#w{N?Q@+KC)5R)}~zu}P=~TbOv;Bim23ci9UoM7+J* zBvgYfOuYDj9VXiC?1dE~-fnLas=*c}u7BPR6a5eN!U_@Ze>4fzU<(t^f8!1l{V4Xr z3K8!|H3`*V3lk?^x5Gq#kiD=%#QTFyLN(aJ#Gl-?!$iN9z4DXMW_^=T4Yn|G%Og8X z^v~G~D@441-Xv6mElm8{K08i~Gq4v{j`%o3lTZz|FmcwfknwbA!ujkP7cbkN2u!V_#+HcjwJPv#D6M~zBYOsZg#~!q5Vm^w! z_({i2LN(aJ#E;jknwVE(FMeWklTZz|Fmc#ntA=WRFratGUimrFv%VrEeyny1OQpr1 zJU#27UCnbU!SO=R??11Iq`?*@a18D37_ncQ2=>Bp^ZU=I3AQkSykKuA8Edc?&cEM( zK25NN3FPTw{ygmmdm$hD{pZsJTbMxEEY<-e4faBL^!v}J3AQkSI;L39kTlo}^@`tr zK25NN3DlLvx{Rd3UU$m#sr~-*X@V_Gpw2JWmn04L;+2Qf1Y4NEwX0YslQh^Xuauni z(*#?Xz%{s7?~^pxE3f#R_0t4fm_S>iShtik*ekDGo%PcMTbMwbs91lMG}tSzz_s>O zo8Y*ZK-;cZN0v0$E3YJ;_0t4fm_Qq~SPz#p*ekDyp7qlNTbMvwyI9wkG}wz*d`}Z> zVFG=IVtr!LV6VJFeb!GCY+(X@pJJV5(qON=(%$+}ZGz)s0)4n*y=c;4uYAYAte+;> z!UX!F#k$v|!Cv{!hgm;Ou!RZqsf+cyNrS!e9UQZMnqUhP7#k?oAtw#?%6Fp7`e}kK zOkj+oSWlfa*el;rBkM&c3AQkSu^L~?jp+3g(2`-Vd}q+CpC;JC1jd}~{l()p1AFB= zoa9clNuspmJE|~tX75WLYjC{zPAxg-lLT9sz!;#tb$qPBUipqQxr1wxU<(r%%e1$g zk2TmU-#I6Dc1#j%VFF{a_Ez?>27Bc@0B8L)!4@VkwruZ>A8W8zzLQbvl1YLsOkj-M z-ey16V6S{f=B%G4*un(H`ait0JzFN0j@Z&?uY70ete+;>!UX0l9^Sj9!Cv_e*;zkL zu!RZCz5LUDEe-a{clyryX@V_GU=HbV2emZVE8np^>!%5}FoC(SAFXL=uvfnGTGoqB z5``t*-Hp7o?Qr;EEe(#>=JD`$u8k5!T=|Z5%uN>iA$6|xAd7hEKKhD?*)hnw=O`{B zFvnV)4`|3oW-ZB!@AR(-1B74;6PPP5@>MV-EU{O9GQq5`h@`<5CNSq+l#isrUik?N zHh*3aNrU5J0(198IZqnwm7f$b>nkE@u!RY%K`830q`_YKi5Iq>p&*h5$HfHJQWW)W z(qOOrq%oX|Pv*B8;u~DTt)OaWR3lMn$_MX|Pv*vW=}x?`Z5NY#LMGTNg~f#l zJO}c7@m+LX_m*Y3%lh$%=AXBC%kuTV+(Pb;ob@>j3!Z>^jXcRif+1UG{fkz=WqGT6 z&)Yab@yc^Fh{$1RoGMT9{O%+AroWIa@+7vy-?IGwpYso@k++WsidUXIOhgWY_(OTB zW) zKl_w@RU>a75fpFNF_FU{ZjvX&u3e{ZkPO)}>tAr^TbA#?^*GhY+eZY&+jUIjFo;{_ zNw>ctZ$FV>$d+0Ed%yP9%dG#4Gv2!V zAJ2WGYUJ%Bg5vEuCUO|We_eF?{9oT?Pj$?eS^u%GzIFLo|M70s$lFH*#VgM?B_fAG z{D(Y2`S%akJETLl$kP^<&R<@2!Ut6&Zyym9uRIf!h#Us-NAgynJLK&^5)9cg>kq&2 z{NiG^z9?IVKX?K&oM7{sUK z$=v^2-qr+-Y?1xA<$~o;oP39BE~%dCImNpD}i;>O4H zs1x({5kc{G9TPbW;%o8*{>@je(PNb@a*y-McP!ud*_Eo1w~q*lSB?k~ISgWpm22jr zqZ-*V>!0++cPwA?_U%+7Zyym9uRKSCh#Us-OL-&0>*XzZ5)9cQPuYC;JD0E6W#=Bp zDsLYV6t6txpNJd=@eX;j!|UZq9uf@MGV5=B$-9;xIC=LT8hQJOpm?PQCnASId_~?? z`2WaT3ndt`W!C@4Q{TP(v*Y&ap^>+b2#Qx~J|c1$#Fynw8&8$DFG?_E%dEd^kM}J9 z;g5d3heqB$A}HRjVoau~$xG+JImW*B^a_r z#_|8*;^p1qWau~#)$`k(a_Ff5wY?<|k-f`*j_s)1~4~@KiL{Pk4$3zZ;*zxnnumAh_RL5+Y z^?TlR+49qOJw`S1_7Oqxb{!Kr4C43XEy~OBsgBt)>$m;p<;&rewW^V~j|hra#&d|s zVGyUw6aHTppX!(`v;Ixrzhe1k$1bTx-aaBI-mYUJhe6!+lk;xIo4_R)vPH`FL+@Wc z>Q2+h+eZY&D;6Sh7{teK{F|Fj^QStpS2vUP6?%89HzFurScpjBNIWfS6kfmF<^yRz zGCfVm)sBc91|i4ln0TxTuX9#^FrAN0A-ax<9EOIR^JC&UFT5W5^$(?dwJC%gHX?Eu z8j^R{#=Kj2-G9K9seEh-A#YM9B8Q>z-=!}oeM01`!t0JTSEX{kDMZ&Xk;91hIj5ev z_MfdTDZCCo;=`%F+7v>bz)wUDL*tUCzhmt`Tb)>Vz4geeQ@y(>gtXy^$YE$aC~x$9 z_~lx+7hZqxr3M|Q0( zyx#R2*QV?FrVuigK|~Hi4#W+=QK+2y0DU9u@e*D;a9(75_Hf424{Yx@*l z@=UPQzS4nsrwYD=-NR(QSke}6pn2RDW2Iwo=$8owuf z!T(`>&cf@i8*cbNjh%0-rB!vtk8LG{F{EiRlN8fhti`t07X1QK=AQS^611j35Tb#B zi0B~c#0p}o(dv$6KH1VHFqgT*2ru)8nYkwAkIsz9%-jpkj35kcFs-Jvl4wbxRMW~J zg%7mrS$nO$o_EilH}@v$LtVWWq#f5Esi@aF<+9pkt)({`Il1 zm-WgnWXD2n`R+Lv3$j5VdF9{<8nE5@Ir8A~ZbCm$l%3%Dfsn zM*8lPPwX%IIPv(&38|wH5gNo7WG%Syxb77VqV9fvf7y>(2{D;45gH!&)_U9X8bqD_ z+WxXjwi048VInj@%nyF(UhF`BSSN@pwh} zCrYBq=Uj=PF=E#e^@x$av+Kt=;a3LrU?Ma;?3$<^F(UgP`8uc`@pwh}6;3^v2o1un z?dlODeP`Em^@ztS!mrfo!9-{fc8^kz7?Hn3lkaNk5sz1d-*MD~iO?YIUaKB4BHx*q z@6PHGk5`1>In{%S&>(EipdK+&<|XP8k5`1x0Mx@~7D|K$VRIk#h>#|fWVs)x;3l?V+Fn^UVtjL7Fa z&%(!vNf2d5u0+uAu(g4D#7N)SdSIOJnLcP=Stt=SMr@6v9x)>ODtT43jB8>%UJ;bH ztfQ0&8icLY)FVcuuPd(y#|d9~NmN-6DiJhBY|W`2F(Q9?F|Sg`312}JcM-XZ4G5 z!YdOJRq7>51dS1^$*4z+$i8!~;*1ksVUeg(_faBfj96_+Jz_*^?712>PI#qAqVS{j ztK~dfa*fBWMy4JdWp%M}LiotVL}++etxr8-M0%BSbx=Lx@rv-uokW#-qG+ZuVl_+k z;Jj9+94EX2DN&^^szlHjvD&M8#7N&+y>*=MN~%Pa`mPc|W5jC6>JcN-YmlqX^at{fKeGcN!$B>})6zG)8QXMLlAq?`&UXobVkJi7NXzN(7A&+bdF!80kCP z9~vio=SQN-ev}eHW5o8n)FVdv&i1*+3E#nzsIsr7M9>(K{Xy*AsYi_9dZoL4W4^lm1L_G3-5V58GeXDBI5-Cw$*oqRRfc5@&Dl(1cWeZ2G!KJ4%F}$dC0DsYi^IKB95L`+X#;^eri2T}b+P>2y+$ z7{T>JyPn1g?_085K?FUKAM5c_j~FR^UFs2!SA_gu&ns7@+9ZRrC~xWOQ^LCRMB~SL2h}4+O26PTu5j^qMR;GIM3w$T z(M)5+dLY%q`VckB`X0v#?@yGd(r2ke&=|2^PW6b9(l0trc%P+2$s8{Ciz*QsBi56u z9x+n-UdIW_Tl!v=ur5~7__5wv^@x$uPb-hJUqyJ|>oOj<4qPQdW5jxd)gwkqAM!Xs zc}pL%64q6Wtny>M&gu~(rJs77@IGYCWgXE|> zUp?%^fD)nMAvH^!X;6+hkq{-e(uh4`8hw#&Ri3LJ;)RzCGQ-5AMrQ{37qEt#eaA5Efl9+AYwUp zu>O9n5fnr^2_Z3Ex3KUh(x-t;H8GiJUU|Ih@_!I>5~3Oz5=Jk}Ra92m+qXT4S9h|0 z{USO<)IGHPrKal^XJ_4cfy|6?QGB@@mSy6-Mrw>Vq%yn7Il+EFzj zU9wB}ONTT(I9KSt>n~ZH{nb^E*sDuKYDd+?>2h*%;}d7*}mf7;!#n}g*at|U> zJE|sLmXnj8dE_GX;9Q~m?)_&k&bsbVdmcojc2rG#LrzZKwEk1-!MQ@qH=e9ooSpH2 zdk~S@Q8n?MBcERSc{xFV-v{RkEq|Z&#XYlyw|>i>2N9_qRTIA^Cnw)5Cn4a$xkC5d zKOfmM+kC5g5RuwZHSwX%pIG|Ezk5hMI9KStJ9y`w*)y-X2N9_qRTKXtvy2z=EMvmC zLigRv8}`iJ^|8bDS`m@jQ8n>iIXQXd%|F!V!MQ@q4%T^lX6uf*2N9_qRTKBi$;sy~ z{F!=iuF!qA_YHey?|IJ=dmcojc2rI5m6MaNANvKp_i?V!eRtE5-Lo&vy9W`e9aR&* z@yz8*KarDLcwcd@(0%v9ExTu{UvUp2Qah?9R?ErBcYJuYdT_4LeRp2Bdv^HpqxM=6 zk=ju;@jf{@c}z~y;dyYb&{7?IW!G%oeeOX-YDd+?nV;>J-YX{p;la5=_uWqxcg-F+ z<=gf=h)C_Inz&w0PX4)^Y=j5r3N7CPb>*(v!j_K36?BSLnWb z;FMjnA1}HG5vd(j6JLDd9ZRRlNmD!z&J|j^A?~|(cFQa7K}2dt)dYUu_$|VNbA|4^ z!67MefGU0?md?81pHUCa z6mm&-b$n*SQA~sU1}l|M%*~ zgLla~2OgX&v{VXj?q@%^&OL}o?Wme~+dU5+z$OE_2PzI*ZFuh8|1h}4d%3Aw_}`8APqh3>oSpWRB=T_RFDswU)0 zJ?GbU&J|jS8@JN^gNW3QstLK{%=tZvbA^__VE@LgbRQ%lwWDf6?woUeujO2!`|jy2 zchdcwh}4d%37G-R`J91sh3>l@@4l1fB}AllR87cCX3pn6oGWzS9eZ*M&98_^?Wmgg zsho8Bb(_O+uF!q=#T&NJJdudhj;aZnSx$W}%DFh9DnG~Xp6wWDg{(Q8&ufA!`( zr{-Lt`|kX&F3`N4h}4d%37P3neQm(GLd$RP(gj+75RuwZH6bgOsjqQ3SLnXGW&Uomm*56^>hg_iEEQ#aH4oQTwpstNghPqD&-2j>dicSo1*pgIE)sU1}l^1hwQyHPzj zS7=$?eeMpbmk^QKQ8n@Qf4O}6r+<)ZGMp=P-`%?A4yyYQk=ju;A#1^@*OoX}XsM*W zK2P;4B2qi5CggfJ#R?C<56%@@cE*p+Qyq?o)Q+kNxvo#K!h;9r3N1Zex6M;Mk%-ie zstLJ2O|im*2j>dicYpZNd8&&Nk=ju;A(hmr*IqeS=)U{yHS<*8B_g$>YT_^C+g?WmfNwcr#hJp9f%S7>>cJi3YYKZr=}sG7J|PENk%TX~O#bA^^2%=H@$)uQ`RoGY}f?zV2CeKjIdJE|sR zoi_EoJI)mv-;TdYY7D-wMnq~yorKVxQO*@Q|Er$;@{-ju%%dVWiZ#}Q_RQDH+e-gc zo(uoNtn;h;@@n^J6CA}F9I)7>(SvqLXqfKxWYk1g|K|S!P^<1Iz)#tx1 zc8@l}QLN!%S2*>+)yH#%&R5avpFLpDqfKxWYk1g|T0L+T^<1Iz-QeRlx<{MfDAw?> zJC1tbZs55>=eye5-{>A~f}>c&!|t5wfxDXL3N7yvxt~A18QF9qpFzx)JXh#E>-)kD z?$IVViZwiBEjYyr4<4BHd9KiT_WHu9?$IVViZwiBe`PAWChCFNtLF-xXW{36^&xw$ z+5|_jhKJ4c)dRC|&lNhaCU#!x9&Li7Si{3sEb4*Pgy#yKS4Ee+`VD&?ZGxj%!$bD% zrm`ES9#|E5uF!dPw|=L4vh)zcvz)Kp9iWqo-1^&M!o;_ zefCD?rmH0H>+~4&~oRL zdg7aIbB{K`QLN!%6-a#^oGWy$a{kdr-J?x#6l-``B~?98<@8*kbG7!j*0@KT;3(Gc zu!^vHpjzv>LJJ{v>hGT69&Li7Si{3A+u4J1Mc!OJzwG#4dtbE)j$#cDSqsi#RyL7) z6sqT*D|Frk*!z9=XcHX88XiwCT{L&voAp~Abr-;MVMieAyqoc+N8O`Ma1?8J*p7)l z5A0@muF!c`=Gyz+qfKxWYk1hsk9uHN#&d9W3?0?vm#Uop;I3 z+Ug!{f}>c&!*=4-1G{9ND|FuN+p^#uZGxj%!^3tI;UPc$EONP))t&5fy7z!cL2wjn zc-YRUdT_4LdH2;{!vUfDoY|eDSi{41c+~^DubwM(-bMEJ!hq2I+Dvd1Yk0^z5qsO} zfn8+J6ehp&Y9pS*6={DsC0m;2j>c%clG_VIUscZJiBugYj~ipWY-ey z1Mpnf;rGuuItu(6Ga$4N;KZoh&k%%M;m|Xo&x3P?&RrI9-6cZ%8FDU;VvXk^S8DWr zs0X?%JXh%4E#lYw0ik^vncyha@Q^zWdRWv0-6EbVbnbfbd)I)_{*p{^6l-{(?ur%O zM1Iiq;<-ZS?wz=w6QO-Fncyha@Q@k6A)7O3zmMlaCr{S73n}I$L}UUMuv9+M08M?oZDZI(M=9 zT692Yzi1{niZwi}Q&yh`x>!9|Xu0D^|E{m82ZZ*$W`d(w!$W?1=n+;A&J{X$6?<)9 zKxqGNcIPP8@R0ZIlDr$$16{?QE3~Zcq@UVr90Nl8kTbzitl=S_za^~jCi26%Lgy}T zuhk3)?WfM}9K{+QQYk|3xq6_>+jE7^-RfR*8W7qSo(Ya(4G-&xM~!TPZgtNUI(OZB z?QB43e|si4iZwi>a)+}3>Vd9%&lNhK9*BA(5!$Dp365e754k_#OoMvh^nm9Iolik{ zEptHVd4o)F6l-`$B^75g)B~p=JXh#^n!{_d147SDWP+nu!^2LDs0U7Sc&^a-REpP@ z2ZWyg$OK2RhKHSeQ4gF-@m!&0RV3$eyhc7C^c+hjIEpnqWd4RTKkC7`LQ5r8&J}sB ze?aJYob1j~tl?oNk<^28h0dp)e9vM)=((co&QYx4@pIBE`j1cMZ&t-=C(ji+pW5=h zmjR*YqcXu!tl@!PQQIq;;MA7q3Y|}%`5w}M&~sjy;3(GcuoG_BkJ9sMo(m_@vX<4I ooV)YAumPdx)lQ763G{Jdg$EDL6 Date: Mon, 20 Jan 2025 21:16:34 -0800 Subject: [PATCH 67/94] content --- F-Microcontrollers_and_Circuitpython.ipynb | 122 +++++++++++++++--- .../pico_proto_bracket_rev0.stl | Bin 2 files changed, 105 insertions(+), 17 deletions(-) rename pico_proto_bracket_rev0.stl => images/pico_proto_bracket_rev0.stl (100%) diff --git a/F-Microcontrollers_and_Circuitpython.ipynb b/F-Microcontrollers_and_Circuitpython.ipynb index 26a977c..db55f3f 100644 --- a/F-Microcontrollers_and_Circuitpython.ipynb +++ b/F-Microcontrollers_and_Circuitpython.ipynb @@ -12,7 +12,7 @@ "\n", "We'll look at circuitpython here - circuitpython is a version of micropython customized by Adafruit. They have a ton of guides, libraries, etc available and circuitpython is the best place to start. \n", "\n", - "\n", + "\n", "\n", "## Circuitpython vs. Micropython vs. Standard Python\n", "Regular/standard pything runs as software on windows, mac, linux, etc. It interprets code and runs it, and includes libraries like sys, os, fsutil to interact with the operating system of the computer it's running on. \n", @@ -35,9 +35,11 @@ "* Pin Reference: https://www.adafruit.com/product/4901\n", "* 3D printed jig: https://raw.githubusercontent.com/a8ksh4/python_workshop/refs/heads/main/images/pico_proto_bracket_rev0.stl\n", "\n", - "Adafruit has an option for USPS shipping at around $5 usually, so it's a much better place to by raspberry pi boards than amazon, but they have high pricese on a lot of other components. \n", + "Total cost for this setup is about $8 each if you're making five of them at a time.\n", "\n", - "The SSD1306 and ADXL345 can be found cheaper on Ali Express if you don't mind waiting a couple of weeks for shipping. \n", + "Adafruit has an option for USPS shipping at around $5 usually, so it's a much better place to by raspberry pi boards than amazon, but they have high pricese on some other components. \n", + "\n", + "The SSD1306 and ADXL345 can be found cheaper on Ali Express than amazon if you don't mind waiting a couple of weeks for shipping. \n", "\n", "\n", "\n", @@ -87,12 +89,18 @@ "\n", "You can check the version of circuitpython on your device by restarting the board and checking output ` + `, ` + `, ` + `, or looking at the boot_out.txt on the CIRCUITPY drive. \n", "\n", - "We're interested in the ssd1306 and adxl345 libraries - you'll find them in the library bundle inside the lib directory:\n", + "We're interested in the ssd1306 and adxl345 libraries - you'll find them in the library bundle inside the lib directory. The framebuf lib is a depency of ssd1306.\n", "* adafruit_adxl34x.mpy\n", "* adafruit_ssd1306.mpy\n", + "* adafruit_framebuf.mpy\n", "\n", - "Copy them into your CIRCUITPY/lib directory. When you import and start using them, they may complain about additional libraries you need to copy from the bundle.\n", - "\n", + "Copy them into your CIRCUITPY/lib directory. When you import and start using them, they may complain about additional libraries you need to copy from the bundle." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ "## Basics\n", "\n", "For most things here, we'll use the board library to refer to the GPIO pins and LED on our board. E.g:\n", @@ -102,9 +110,12 @@ " ['__class__', '__name__', 'A0', 'A1', 'A2', 'A3', 'GP0', 'GP1', 'GP10', 'GP11', 'GP12', 'GP13', 'GP14', 'GP15', 'GP16', 'GP17', 'GP18', 'GP19', 'GP2', 'GP20', 'GP21', 'GP22', 'GP26', 'GP26_A0', 'GP27', 'GP27_A1', 'GP28', 'GP28_A2', 'GP3', 'GP4', 'GP5', 'GP6', 'GP7', 'GP8', 'GP9', 'LED', 'SMPS_MODE', 'STEMMA_I2C', 'VBUS_SENSE', 'VOLTAGE_MONITOR', '__dict__', 'board_id']\n", "\n", "It's also helpful to use the time library to measure elapsed time or to \"sleep\", or wait for some period of time. We can use:\n", + "\n", "* time.monotonic() to get the number of seconds since the board was powered up\n", "* time.monotonic_ns() to get the number of nanoseconds since the board was powered up\n", - "* time.sleep(seconds) to sleep for some number of seconds. \n", + "* time.sleep(seconds) to sleep for some number of seconds. \n", + "\n", + "Example:\n", "\n", " >>> import time\n", " >>> time.sleep(2)\n", @@ -113,27 +124,41 @@ " >>> time.monotonic_ns()\n", " 47260617889414\n", "\n", + "\n", "### Digital pins\n", "Digital pins can either be inputs or outputs. An LED would be an output, or if you needed to drive a pin low/high on another device, you would use an output to do that. An input could be a button.\n", "\n", " import board\n", " import digitalio\n", "\n", + " led = digitalio.DigitalInOut(board.LED)\n", + " led.direction = digitalio.Direction.OUTPUT\n", + "\n", + " button = digitalio.DigitalInOut(board.GP20)\n", + " button.direction = digitalio.Direction.INPUT\n", + " button.pull = digitalio.Pull.UP\n", + "\n", + "\"led\" in this example is the LED built into the Pico board. We can turn it on and off with:\n", + "\n", + " led.value = True # on\n", + " time.sleep(2)\n", + " led.value = False # off\n", + "\n", + "The button in this example has one leg wired to ground and the other leg wired to pin GP20. We set GP20 to pull UP, so the board internally connects the pin to 3.3v through a resistor. Whe the button is not pressed, we measure 3.3v on the pin and button.value is True. Whe the button is pressed, it shorts the pin to ground so the voltage measured is zero (0) so button.value is False:\n", + "\n", + " if not button.value: # voltage is zero\n", + " print(\"button is pressed\")\n", + " else:\n", + " #print(\"button is not pressed\")\n", + " pass\n", "\n", "#### *Exercise:*\n", - "* Make the LED blink once every second.\n", + "* Use a while loop to make the LED blink once every second.\n", "* Check the button and print a message when it's pressed. \n", "* Check the button and print a message whenever its states changes between pressed and unpressed. \n", "* Check the button and turn the LED on if the button is pressed, and turn it off when the button is released. Print a message when changing the states of the LED." ] }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, { "cell_type": "markdown", "metadata": {}, @@ -141,7 +166,7 @@ "## I2C Devices\n", "https://learn.adafruit.com/circuitpython-essentials/circuitpython-i2c\n", "\n", - "\n", + "### Scanning for Devices\n", "The first thing we want to do is initialize i2c and scan for devices to ensure that our hadware is connected to and communicating on the bus:" ] }, @@ -164,13 +189,76 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "You should see something like this: \n", + "You should see something like this:\n", + "\n", " [60, 83]\n", " ['0x3c', '0x53']\n", + "\n", "* 60 is the display - this is hex value 0x3c\n", "* 83 is the adxl345 - this is hex value 0x53\n", "\n" ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### The SSD1306 Display\n", + "\n", + "I don't have this working just yet... it should be simple. :D\n", + "\n", + "Example code to start with below:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import adafruit_ssd1306\n", + "i2c = busio.I2C(board.GP27, board.GP26)\n", + "\n", + "display = adafruit_ssd1306.SSD1306_I2C(128, 64, i2c) #, addr=0x3c) #, addr=83)\n", + "\n", + "# Blank the display\n", + "display.fill(0)\n", + "display.show()\n", + "\n", + "# Set a pixel in the origin 0,0 position.\n", + "display.pixel(0, 0, 1)\n", + "# Set a pixel in the middle 64, 16 position.\n", + "display.pixel(64, 16, 1)\n", + "# Set a pixel in the opposite 127, 31 position.\n", + "display.pixel(127, 31, 1)\n", + "display.show()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### The ADXL345 Accelerometer\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import adafruit_adxl34x\n", + "import time\n", + "i2c = busio.I2C(board.GP27, board.GP26)\n", + "accelerometer = adafruit_adxl34x.ADXL345(i2c)\n", + "print(dir(accelerometer))\n", + "accelerometer.data_rate = 20\n", + "print(accelerometer.data_rate)\n", + "for _ in range(5):\n", + " print(accelerometer.raw_x,accelerometer.raw_y, accelerometer.raw_z)\n", + " print(accelerometer.acceleration)\n", + " time.sleep(2)" + ] } ], "metadata": { diff --git a/pico_proto_bracket_rev0.stl b/images/pico_proto_bracket_rev0.stl similarity index 100% rename from pico_proto_bracket_rev0.stl rename to images/pico_proto_bracket_rev0.stl From 7799212f60f3c8c9afd8fa2cf851a4fd71eacdee Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Wed, 22 Jan 2025 19:27:50 -0800 Subject: [PATCH 68/94] circuitpython notebook ready to go --- F-Microcontrollers_and_Circuitpython.ipynb | 110 ++++++++++++++++++--- circuitpy/font5x8.bin | Bin 0 -> 1282 bytes 2 files changed, 97 insertions(+), 13 deletions(-) create mode 100644 circuitpy/font5x8.bin diff --git a/F-Microcontrollers_and_Circuitpython.ipynb b/F-Microcontrollers_and_Circuitpython.ipynb index db55f3f..f6281b3 100644 --- a/F-Microcontrollers_and_Circuitpython.ipynb +++ b/F-Microcontrollers_and_Circuitpython.ipynb @@ -166,6 +166,10 @@ "## I2C Devices\n", "https://learn.adafruit.com/circuitpython-essentials/circuitpython-i2c\n", "\n", + "I2C is a bus protocol enabling communication and control of multiple devices with a single pair of wires (in addition to power and groud). Each I2C device has an address on the bus that it will reply with when we scan the bus and which is used when sending a command to the device. \n", + "\n", + "Many devices have resistors that can be moved/changed to tell them to use a different address if you want to have multiple on teh same bus. And some microcontroller boards, like the Pi Pico, have multile I2C buses that can be used if there are address conflicts or perhaps if you need more bandwidth for devices than one bus can provide.\n", + "\n", "### Scanning for Devices\n", "The first thing we want to do is initialize i2c and scan for devices to ensure that our hadware is connected to and communicating on the bus:" ] @@ -196,7 +200,8 @@ "\n", "* 60 is the display - this is hex value 0x3c\n", "* 83 is the adxl345 - this is hex value 0x53\n", - "\n" + "\n", + "NOTE - **comment out this i2c try_lock and scan code when done**. It will break other i2c stuff in your code." ] }, { @@ -204,10 +209,17 @@ "metadata": {}, "source": [ "### The SSD1306 Display\n", + "These little displays are very common on custom keyboards and are cheap and easy to work with. They typically use i2c address 0x3c, and this can be changed by fiddling with the surface mount resistors on the board if you wanted more than one on your project. \n", + "\n", + "Ensure you have a couple of libraries in you lib folder:\n", + "* adafruit_ssd1306.mpy\n", + "* adafruit_framebuf.mpy\n", "\n", - "I don't have this working just yet... it should be simple. :D\n", + "And copy this font file to the main CIRCUITPY folder:\n", + "* https://raw.githubusercontent.com/a8ksh4/python_workshop/refs/heads/main/circuitpy/font5x8.bin\n", + "* You can also google for adafruit font5x8.bin to find it online. \n", "\n", - "Example code to start with below:" + "Example code to start with:" ] }, { @@ -219,26 +231,62 @@ "import adafruit_ssd1306\n", "i2c = busio.I2C(board.GP27, board.GP26)\n", "\n", - "display = adafruit_ssd1306.SSD1306_I2C(128, 64, i2c) #, addr=0x3c) #, addr=83)\n", + "display = adafruit_ssd1306.SSD1306_I2C(128, 64, i2c)\n", "\n", "# Blank the display\n", "display.fill(0)\n", "display.show()\n", "\n", - "# Set a pixel in the origin 0,0 position.\n", - "display.pixel(0, 0, 1)\n", - "# Set a pixel in the middle 64, 16 position.\n", - "display.pixel(64, 16, 1)\n", - "# Set a pixel in the opposite 127, 31 position.\n", - "display.pixel(127, 31, 1)\n", - "display.show()\n" + "# Draw three pixeles on a diagonal line:\n", + "display.pixel(0, 31, 1)\n", + "display.pixel(64, 47, 1)\n", + "display.pixel(127, 63, 1)\n", + "# And draw some text in the corner:\n", + "display.text('Hello', 0, 0, 1)\n", + "display.text('World', 0, 10, 1)\n", + "display.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We Start by initializing the i2c bus and using that to initialize the display. \n", + "* You can optionally pas a specific i2c address here.\n", + "* And you can specify 128x32 if you're using the smaller version of this display.\n", + "\n", + "Any time we call fill, pixel, or text, we can use '0' or '1' for the color. \n", + "* display.fill takes (color)\n", + "* display.pixel takes (xloc, yloc, color)\n", + "* display.text takes (text, xloc, yloc, color)\n", + "\n", + "And if you're updating the display with new content, be sure to call .fill first to wipe previous content. \n", + "\n", + "There are a few other control and draw functoins for shapes, etc:\n", + "\n", + "`['__class__', '__init__', '__module__', '__qualname__', 'format', '__dict__', 'blit', 'buffer', 'fill', 'height', 'i2c_device', 'invert', 'rotation', 'show', 'width', 'pixel', 'text', 'addr', 'external_vcc', 'page_addressing', 'reset_pin', 'pages', '_power', 'pagebuffer', 'page_column_start', 'poweron', 'init_display', 'power', 'write_cmd', 'poweroff', 'contrast', 'rotate', 'write_framebuf', 'temp', 'stride', 'buf', 'rect', 'fill_rect', '_font', '_rotation', 'hline', 'vline', 'circle', 'line', 'scroll', 'image']`\n", + "\n", + "#### *Exercise*:\n", + "* use print(dir(display)) in your code to see all of it's built in functions. \n", + "* Test a few of the draw functions to make a square, circle, and line. \n", + "* Rotate the display 90 degrees and write some text to it. \n", + "* Basically just draw some fun stuff on the display! \n", + "* Draw a box and put your name in the middle of it. \n", + "* Store a paragraph of text in a string. Figure out how many characters you can put on the display at one time and write one \"page\" at a time, changing to the next page each time the button is pressed!" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### The ADXL345 Accelerometer\n" + "### The ADXL345 Accelerometer\n", + "The ADXL345 is a cheap and easy to use I2C accelerometer. The library provides raw values for force in the x, y, z directions as well as helpers for motoin, freefall, and tap detection. I've only used the raw values so far YMMV on the other stuff!\n", + "\n", + "Ensure you have the adafruit_adxl34x.mpy library in your lib folder. \n", + "\n", + "Ensure that you set the accelerometer.data_rate or you'll see very slow changes. You might want a higher rate than 20!\n", + "\n", + "Example code to start with:" ] }, { @@ -251,7 +299,7 @@ "import time\n", "i2c = busio.I2C(board.GP27, board.GP26)\n", "accelerometer = adafruit_adxl34x.ADXL345(i2c)\n", - "print(dir(accelerometer))\n", + "\n", "accelerometer.data_rate = 20\n", "print(accelerometer.data_rate)\n", "for _ in range(5):\n", @@ -259,6 +307,42 @@ " print(accelerometer.acceleration)\n", " time.sleep(2)" ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here are the built-in functions in the library we're using. You've seen raw_x, raw_y, raw_z so far.\n", + "\n", + "`['__class__', '__init__', '__module__', '__qualname__', 'range', '__dict__', 'events', 'offset', 'data_rate', 'raw_x', 'raw_y', 'raw_z', 'acceleration', '_i2c', '_buffer', '_write_register_byte', '_enabled_interrupts', '_event_status', '_read_register', '_read_clear_interrupt_source', 'enable_motion_detection', '_read_register_unpacked', 'disable_motion_detection', 'enable_freefall_detection', 'disable_freefall_detection', 'enable_tap_detection', 'disable_tap_detection']`\n", + "\n", + "#### *Exercise*:\n", + "* Write a functoin that uses the pythagorean theorem to convert raw_x, raw_y, raw_z into a single value showing the magnitude of acceleration at any time. \n", + "* Write a function that converts raw_x, raw_y, raw_z to an angular value indicating which direction is down. Gravity is always pulling on the sensor, so as you rotate it, the x, y, z values will change to point down. \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Putting it all together:\n", + "We should be able to do some fun things with a button, display, and accelerometer. A few project ideas to work on might be:\n", + "\n", + "* Make a game where you have to balance the device to keep a ball/pixel centered on the display. Add walls to the display and make the player tilt the device to roll the ball through a course. \n", + "\n", + "* Make a pedometer that tracks cadence by recording periodic acceleration and counting the bumps. Press the button to reset the counter. \n", + "\n", + "* You could really get crazy with the pixel graphics and do something like make a pinball game or something where you tap the device on one side or the other to activate a flipper. \n", + "\n", + "* Make a computer mouse by using the following libraries to make a usb mouse device. You should be able to plug the device into the computer, set it on the desk to zero the accelerometer, and then tilt it to move the cursor. Click the button to left click the mouse. https://learn.adafruit.com/circuitpython-essentials/circuitpython-hid-keyboard-and-mouse\n", + " * usb_hid\n", + " * adafruit_hid.mouse\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] } ], "metadata": { diff --git a/circuitpy/font5x8.bin b/circuitpy/font5x8.bin new file mode 100644 index 0000000000000000000000000000000000000000..9a0563ba2dae1dc1d0b1b7ecb2e54e5113f3f540 GIT binary patch literal 1282 zcmXw3F>l*e5I$10{Ai>OqY^L;uo9&xs-z5NTtlD*ih5KiLlo?$F36^GP|Jyf4E0jD zLuHrZ%h+xn(jh<#Btfzi{RKsb0$utax^(lZ!Ki^k0DC8(cjWQCyLaDxJf5_~fW&+B z;F0H@JUH=8FY!#nObZw6zn4 zjUs@K#rYN*rdNEO1Pkd*mPTsc^S>BBnV1y6d{|k5ZDVrxgKR8=zjT7sOycL8lr6GBq8Oxc(z-zxK-+Mhj)*4rXS~& ziIRIf3is{<)s(5DfD56>lB^Iqhuks)D~cvu)Pulrf*`1)sS78HA_G{e%EsHbKTZTw zlnDe=j{JBBgjNr*o!F)XYfKV~Qm!*Ms#SyTIr-QCQL2j44XQ5ZR$?MQ)8#gIgE}JY zUR+!x!P96r0M^3K1K;57w-^vT*{$8Kxy9G79~at~dya(SQ8|v!{0h?Tm1E>=Me!NG zQT+6@upP(oXdA1Iw&N)J9H5{0Aor&|kopOq;s=<{>UZk1B#Qg=zDbmK zdviD#*lpi0pSOG5n!r!5UQIi_Ua!-^E_K{$R;>=w@cy&A8}p63ncDcr`u)39%^}no zG7qM{Js1o(9nLG~aK5r~I(={b-n7R#eXjlxWKa*xLD)u7-ocauKs%Vu#rfD;6hTA#%t}%>Prt4SAT-VpMl7?3aqa{k4 zVLqUXoV3*lk5&uG7F(QN1fXMU0CVMvP}T_ViUQXNMRL7Zt?B>6U*QUAP+Ey<&~IRl z27O3ULqd9nM;1YJW+XEbeBx1r&Tf+6&^W<-I2>-JvYgM$De7??`o|b>6`oo}i=6Vy zcbD&8n$56j?w(4gyY_Hz&$b7Xf&JT)gPo3tpAk|?lF}wg5R8L>?+*jcgW*2MVp8t! r=UA7qlM~h|w5qNAP4y=Jc^C##(KN7mCP`3|q#~?;uvP#Ug;>IW4$UpB literal 0 HcmV?d00001 From b1331ae9bdb4d1fad1c5b457c3785b375b2b1064 Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Wed, 22 Jan 2025 19:28:56 -0800 Subject: [PATCH 69/94] cleanup --- ...cuitpython.ipynb => M-Microcontrollers_and_Circuitpython.ipynb | 0 1 file changed, 0 insertions(+), 0 deletions(-) rename F-Microcontrollers_and_Circuitpython.ipynb => M-Microcontrollers_and_Circuitpython.ipynb (100%) diff --git a/F-Microcontrollers_and_Circuitpython.ipynb b/M-Microcontrollers_and_Circuitpython.ipynb similarity index 100% rename from F-Microcontrollers_and_Circuitpython.ipynb rename to M-Microcontrollers_and_Circuitpython.ipynb From a004dc7edf5d2e7f83cb9b1dc490cdf30cbd754f Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Thu, 30 Jan 2025 16:34:17 -0800 Subject: [PATCH 70/94] add llm stutt --- L-LLM.ipynb | 948 ++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 948 insertions(+) create mode 100644 L-LLM.ipynb diff --git a/L-LLM.ipynb b/L-LLM.ipynb new file mode 100644 index 0000000..e31f950 --- /dev/null +++ b/L-LLM.ipynb @@ -0,0 +1,948 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Let's build a Language Model like Chat GPT!\n", + "We'll follow along with this youtube video:\n", + "https://www.youtube.com/watch?v=l-CjXFmcVzY&t=2197s\n", + "\n", + "## Starting out with inputs and weights\n", + "Is the light on or off? x# represent the switches on the wall and w# represent training data. We can cross the inputs with training data to find if the light is on:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "off\n" + ] + } + ], + "source": [ + "x1 = 0\n", + "x2 = 1\n", + "x3 = 0\n", + "\n", + "w1 = 1\n", + "w2 = 0\n", + "w3 = 1\n", + "\n", + "y = (x1 * w1) + (x2 * w2) + (x3 * w3)\n", + "if y > 0:\n", + " light = 'on'\n", + "else:\n", + " light = 'off'\n", + "print(light)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can use numpy arrays instead of having loads of variables for inputs and weights:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "on\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "\n", + "xs = np.asarray([0, 1, 0, 1, 0])\n", + "ws = np.asarray([1, 0, 1, 0, -1])\n", + "y = np.dot(xs, ws) # y = xs @ ws\n", + "\n", + "if y > 0:\n", + " light = 'on'\n", + "else:\n", + " light = 'off'\n", + "print(light)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We need to automatically adjust the weights if we want our model to learn, so let's add additional events to xs and some known outputs ys. Our weights are unknown/hidden. \n", + "\n", + "We'll start with a random guess at the weights and track our error over 5k tries at guessing propper weights. Do we even find a solution over 5k tries?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAGdCAYAAACyzRGfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABZtUlEQVR4nO3dd3gU1foH8O+mJ5AChCQEQm/Se4wUUSLFiqIXkavI5eoPBa+IFQsqFiz3KhYEr17AhlgBRUR6EOklkFBCJ6EkAUIqpM/vj5Bld7NlZnfa7nw/z5NH2Z2dOTs7c+adM+85xyQIggAiIiIilfhpXQAiIiIyFgYfREREpCoGH0RERKQqBh9ERESkKgYfREREpCoGH0RERKQqBh9ERESkKgYfREREpKoArQtgq7q6GmfOnEF4eDhMJpPWxSEiIiIRBEFAUVER4uPj4efnvG1Dd8HHmTNnkJCQoHUxiIiIyA1ZWVlo1qyZ02V0F3yEh4cDqCl8RESExqUhIiIiMQoLC5GQkGC+jjuju+Cj9lFLREQEgw8iIiIvIyZlggmnREREpCoGH0RERKQqBh9ERESkKgYfREREpCoGH0RERKQqBh9ERESkKgYfREREpCoGH0RERKQqBh9ERESkKgYfREREpCoGH0RERKQqBh9ERESkKknBx8yZM9G3b1+Eh4cjJiYGI0eOREZGhtUygwcPhslksvqbOHGirIUmcY7kFuOzDcdQWlGldVGIiIjMJM1qm5KSgkmTJqFv376orKzE888/j6FDh2L//v2oV6+eebmHHnoIM2bMMP87LCxMvhKTaMnvpQAACksr8OTQDhqXhoiIqIak4GPFihVW/16wYAFiYmKwc+dODBo0yPx6WFgY4uLi5CkheWx3Zr7WRSAiIjLzKOejoKAAANCwYUOr17/55htER0ejS5cumDZtGi5duuTJZoiIiMiHSGr5sFRdXY0pU6agf//+6NKli/n1++67Dy1atEB8fDz27t2LZ599FhkZGfj555/trqesrAxlZWXmfxcWFrpbJCIiIvICbgcfkyZNQnp6OjZu3Gj1+sMPP2z+/65du6JJkyYYMmQIjh49ijZt2tRZz8yZM/Hqq6+6WwwiIiLyMm49dpk8eTKWLVuGdevWoVmzZk6XTUxMBAAcOXLE7vvTpk1DQUGB+S8rK8udIpETAgSti0BERGQmqeVDEAQ89thjWLx4MdavX49WrVq5/ExqaioAoEmTJnbfDw4ORnBwsJRiEBERkReTFHxMmjQJCxcuxNKlSxEeHo7s7GwAQGRkJEJDQ3H06FEsXLgQN998Mxo1aoS9e/fiiSeewKBBg9CtWzdFvgARERF5F0nBx5w5cwDUDCRmaf78+XjwwQcRFBSE1atXY9asWSgpKUFCQgJGjRqFF198UbYCExERkXeT/NjFmYSEBKSkpHhUICIiIvJtnNvFAFzEjERERKpi8EFERESqYvBBREREqmLwQURERKpi8EFERESqYvBBREREqmLwQURERKpi8EFERESqYvBBREREqmLwYQAcZIyIiPSEwQf5vAvFZfh47WGcLbisdVGIiAgMPsgAJi/cjX+vPIS/f75V66IQEREYfJABbD52AQBw9FyJxiUhIiKAwQcRERGpjMGHAQhgxikREekHgw8iIiJSFYMPIiIiUhWDDyISZcFfx/H2ioNaF4OIfECA1gUg5Zlg0roI5ANe+XU/AOD27vG4pkmExqUhIm/Glg8DYMIpyamkrFLrIhCRl2PwQURERKpi8EFERESqYvBBRES6UlpRpXURSGEMPoiISDe+356Fji+twA87srQuCimIwYcBCMw3JSIv8cxPewEAT/+4V+OSuOdSeSUEVrouMfggIiKSwbFzxeg0/Q88+s0urYuieww+iIiIZPDl5pMAgN/TszUuif4x+CAiIiJVMfggIiIiVTH4MACmPhERkZ4w+CAiIiJVMfgwAE4rR0REesLgg4iISAYm3umJxuDDAJjzQUREesLgg4iIiFTF4IOIiIhUxeCDiIiIVMXgg4gkYQ4REXmKwYcR8GpBGhEEAa/8sg+LtmVqXRQi0pEArQtARL5r45HzWLDpBADg3n7NtS0MEekGWz6ISBIpQxnkX6pQrBy+5KM1h3HLh3+iqJT7i4yBwQcRkcb+s+oQ9p0pNE/JTuTrGHwQkWI44qM0FVXVWheBPGDiZBaiMfgwAIEZp0REpCMMPohIMbwTJCJ7GHwYAC8ARN6B5yoZBYMPIlIMcz6k4SNSMgoGH0QkCS+PRPYx2BaPwYcB8G6KyDvwsQsZBYMPIiIiGQi8zxONwQcRScJ7cyLyFIMPIlIMAxVpmDNARsHgg4hIJ9hs790YPIpnqODjcE4RFm3LRHW1sc5wVmikFVbGRGRPgNYFUNNN728AAPiZTPhb3wSNS0NEZI3BGhmFoVo+au05la91EXxKJSfDIod4NSWiugwZfJB8Nh4+j7Yv/I4vN5/QuihEROQlJAUfM2fORN++fREeHo6YmBiMHDkSGRkZVsuUlpZi0qRJaNSoEerXr49Ro0YhJydH1kKTfkz+dhcAYPrSfRqXhNQiJYWIjxGIyB5JwUdKSgomTZqELVu2YNWqVaioqMDQoUNRUlJiXuaJJ57Ar7/+ih9++AEpKSk4c+YM7rrrLtkLTkREpCeMtcWTlHC6YsUKq38vWLAAMTEx2LlzJwYNGoSCggL873//w8KFC3HjjTcCAObPn49rrrkGW7ZswbXXXitfyYmIiMgreZTzUVBQAABo2LAhAGDnzp2oqKhAcnKyeZmOHTuiefPm2Lx5s911lJWVobCw0OqPiPSLd3fK4b4lo3A7+KiursaUKVPQv39/dOnSBQCQnZ2NoKAgREVFWS0bGxuL7Oxsu+uZOXMmIiMjzX8JCewCS+QreDElI+GQSuK5HXxMmjQJ6enpWLRokUcFmDZtGgoKCsx/WVlZHq1PDCbBERERacetQcYmT56MZcuWYcOGDWjWrJn59bi4OJSXlyM/P9+q9SMnJwdxcXF21xUcHIzg4GB3iuE2o434qfev+/2OLMRGhOD69o21LgrJzMRInwyER7t4klo+BEHA5MmTsXjxYqxduxatWrWyer93794IDAzEmjVrzK9lZGQgMzMTSUlJ8pSYdMXTQO5QThGe+XEvxs3bJk+BiIhI9yS1fEyaNAkLFy7E0qVLER4ebs7jiIyMRGhoKCIjIzFhwgRMnToVDRs2REREBB577DEkJSWxpwvZlVNYqnURiIhIZZKCjzlz5gAABg8ebPX6/Pnz8eCDDwIA3n//ffj5+WHUqFEoKyvDsGHD8Mknn8hSWNIftqqTMzw8pOH5REYhKfgQRLSxh4SEYPbs2Zg9e7bbhSJ5ifndiMTi0UREnuLcLkRERDJgy5V4hgw+eIAQERFpx5DBBxnbjhN5eOjLHcjKu6R1UXyerwT66zNy8bdPN+PE+RLXCxORS4YMPpgCYWx3z92MVftz8Ni3u7UuilfykXhCkgfnb8e243l4fBGPGSI5GDL4IPl4cyB3Ov+y1kXQhbyScpRWVCmybl9p+ah1oaRc0fVzUDYyCgYfRAZ2vrgMvV5bhWtnrnG9MBGRTBh8EBnY9uN5AID8SxWKrN9kyIc0ROQKgw/yCFuJiYhIKkMGH7xgEmDMxEkiIj0wZPBhNF6cE0o65Oh4yi0qxa7Mi6qWhYi8E4MPL/DXkfO465O/kJFdpHVRiBzq98Ya3PXJJusAhM1LhsApHGqwt5J4DD68wNjPt2JXZj4mfLFd66LI5sT5EhRcVibJkcRToq7ceixP/pWSbs1NOYrr3lqLUxeVGbSvqlpAYSnrCl9jyODDW4P0iwqPMeAOd/blsXPFGPzv9ej92ir5CyQBb1KUIfBBn6G89ftBnC0oxdsrMhRZ/z1zN6HbKys5IrGPMWTwQdrafOwCAKCyWtuLlLcGoVqTErMxvjOOaoVOqF2Z+QCAZXvPKrJ+0gaDDwPgRZYcUeLY4PFGRK4YMvhgczuROvSYgJeVd0mx4eSJSBxDBh8kHx1eW0Tz5rLLxWj7YE9WPga+sw5D39+gdVFIIuYS+ZYArQtAytPLBWbnyYuYsWw/2sXU17oopBKdHHpmv6XV5A1kMnmRSFMMPkg1o+ZsAlBz96mWsko2r8vN3ftPQRB0+RhGCi8vPpFuMPgwAD0nACo58dgHqw/j/dWHFFs/GY+ezyUib8KcD/KInitjV4EHZ1xVhqPRLvV8rOgFW1bIKBh8kKaYRKY1Za92vJiSkfBwF4/BBxHJSs8tHJyDhEgfGHx4udKKKixPO8t5UshNvn8x5pgevoFxo29h8OHlZizbj0e/2YWHvtjhcBklz1k2qxuPq5/c0fGmxbXjryPn0fGlFXhvZc28I97e24bIVxg2+Phqy0kMfncdMi94d3//n3aeAgBsO8GZREm8ssoqlFdWK7Juy5YGrZN6py9NBwB8uPaIpuUgImuGDT5eWpKOExcu4dVf92ldFEPT+uIk1rmiMnyachQXisu0LorHKquq0WvGKvR+fRWUmNvvk/VH5V+pTijdcGKCCdUaT7hIHvCO6kwXDBt81Eo5dA7rDuZqXQzSuX9+sR0zfz+IR77epXVRPJZXUo6S8ioUlVaiuLRS0W35Wm8mpfMO0s8UoPurKzFv43FlN0SkMcMHH5XVAsYv2I68knKti6IcBWtMoySB7TlVAICPtwDvSlG1zfHQe2+X3/aeRVFZJWYs2691UcgdFodXYWkFNhw6h8oqZR5vunIktwjFZcreXHjCkMGHvab+c0VluP9/WzE3xXebjPVIyp3xnqx8HDtXLNu2mXuoLr1f+InkdN9nW/DAvG3475/HVN/29hN5SH5vA4b8Z73q2xbLkMGHvQve4t2n8efh83jr94MalEhhV66yf+zLxn83eGdwlV1Qijtm/4Ub/5OidVFIAm/J6SGSW/rpQgDA4l2nVd/272nZAICcQv3mqHFulyuMMBbA/321EwDQp2VD9GreQOPSSHPiQonWRfAdjAfIA5VV1fgt7Sz6tWqIJpGhWhdHX3huiWbIlg+jO1+k32iY1OVrCaGucJwPzy3YdAKPL0rFDf9er3VRvIIWZ1h5lf5vphl8GIGCz9q9uS734qLLRuyhIUe+hi+EOd58vMsl5dA5AEBphTaJlOTcG7/tx9dbMrUuhksMPgxITxcBLXMC1NwPO09exIr0bNW2tycrH//6djdO5192upw7F1MpH+HFmoxO7UTrz/70jm7azPkgUsGoOZsAAGufvB6tG9dXfHt3zP4LAHA6/zJ+euQ6h8v5ekKo7bfz9ELADjtE8jBky4e7Fe66jFzc9clfOCpjd09vp1Zl7CuXSFctEXI7fl7bRF1erMlI7F1bmGdknyGDD3eNn78duzJrmrO9mZ4uCFomPLJKUHf/6+m4I/dpdTH11nFivLXcSjNk8OFphZt/ybumr+ehrx96qIc8fdQi5Svwpk8/sgtKMWHBdmy4kjBKpCVDBh9GxwsCGZUWd+3ppwvw6Dc7NX8E9uKSNKw5mIsH5m3TtBy+zN6NrQ7uN3SJwQcpKiO7CDf+Zz2W7T2jdVGINHHrRxuxPC0bExZs17Qc2YWlsqyH9y4kBwYfBqRm0//ji3bj2LkSTF5oP09Gzt4W035Ow6Rvdol+xspEMN9XaTM9vafP3z05ZI5p3PIhFyPcyX+95SQGvrMWJ3zgN/vzsD4fszH4IABA2qkCzPz9gORZEF1VxpfK1Rlpr6pawLfbMvFb2lnNm7fJPrWTi19cksZjQUW2VUF5ZbXqvbvk8uKSdGTlXcb0X/ZJ+pweu67f/z99PmYzZPChxwNEa7d9vBGfphzDf1ZmaF0Utxw4W2j+/2pB0O1U0mWV1Vi8+xRyi+RpApdi3sbjmPZzmqpBgJZnmhKjPOohYVivbHfN7R9vRP+31iI1K1+L4siisoqjuCqFg4x5OffqQsefysgukrYmFwWQ68mGs0ckx8+X4NaPNlq99uOOLHk2LLP3Vx3C/rOFaBoVir+eu1GVbZ7Ov4wdJ/IwY9l+AED/to0kr4MXXe8n128o9pQ+eKUuWbL7NHokRMmzcW/Ec8cuBh+kKTnuwvfYubOq1ukJv/9KC42azdED315rtT88fRTGdkP3MMXIM94cAO/KvAgTgJ5eNpu4khh8eDnWZ8YjCAIEAfDzE/fr6yUQ08PFQ8skYz18f1JfSXkl7vqkZnqFg68NR0igv8Yl0gdD5nwYbRpxLbmq6j9ac8TzbdhsxJcreUEQcM/czRg2awOqZIgqfHlf2WPk0SblewTq/mczsotw95xN2HT0vDyF0Rl7+6bw8tX8szLOBGxmyODDaLSsb11tetuJPFXK4SuqBWDHyYs4nFuMExfc68nh6TXIuJdvPjrx1D+/3I4dJy/ivs+2al0U0hiDDyID48VUPVrva2c3IduO52F9Rq5H6xHTqnS+qFzUNnyJ1r+7Xhky58Nbutq+vDRdkfU6qyOkniilFc6TF7XY0yaT753wR3KL8dQPe/Do4DZaF4V80N8+3QwA2PbCEMSEh7i1juVp2SitqHKa0+Br56UYBn7S5xRbPlzIvHAJD8zbhk1H1HlGufNkHj7/8xjySsrxxeaT+GLzSafLy31cSz1Ryir1+QzT1074x77djdSsfDz81U7za3LU44rvJx+72Hiyv7zhmMwrcd0y4SyA2HzsgsP3yiurVRt00Ch+3HkKs1Yf0roYbjFky4cUU77bjV2Z+bLOBHmxpBw/7TqF23vE17nLGDWn5g4kQGRPBvKsB4MgCKisFhDo734c/s3Wk9h+PA//vqc7AjxYjyP//iPDahA1MgZBEHxqCoDr313n0ee9IHaz67JF67DcnR2e+mEPACD5mlh0aRop67qVxpaPKxw9r8wpLJN9W49/l4rXfzuA8fMdTzQldh4IMVWTlr175Ko8na3G9i1BEN+8e///tqH3a6tQ4sGIqC8sTseS1DP4Le2s2+twJLewFB+v87xHEGkj/XSB+f+lngqTv7U/H5KSlGydOVug/qi+rrz1+0GMn79Nlp5jWiq4XKF1ESRj8HGFo8cbSnTNq21F2XdGn3ezYk/E5QpcbOUi5mczmYCNR86jsLQSfx72/LFaYan8Q7o7e6w176/j+MuNx4HuBITeXTXLL7eo1GXdsOHQuToj70rx2155zy/ZutrKsxpdmJtyFOsyzjns+it3w5PS+YYXRTw20wsGHzql1Qm+6egFXDN9BbY6eXZb69FvdqlQItfcrSC84Rm8M19vycTYz9Xpsnj0XLH5/909Nr19fwM1x9of+7LR7401ePL7PU6X/T09W6VSieML+18pFQ7mcPG2cTk+33hM6yKIZsjgQ6+DjFlOYuROCQ+cLUTim6vx/XbP5jUpr6zGlO9SPVqH1jR5VO7DtfvtH1vfwZ+8UIJpP6f5xJTjUn209jAA4OfdpzUuiXfw5oHddpy8iKy8S1oXw6XaXexNT48kBx8bNmzAbbfdhvj4eJhMJixZssTq/QcffBAmk8nqb/jw4XKVV3Xu/pazVh/C+PnbJM2KOPT9DW5urcbU7/cgp7AMz/y01+lyXnR8mkmJJXwoR09xYvdVaYV1YDz28634dpt6LS/kHbz11HP2OOSrLc57HFqvh8SSHHyUlJSge/fumD17tsNlhg8fjrNnz5r/vv32W48KKTc1xvmYtfow1mWcw+oDOaI/IzbJ1JJlIOHL0z87C5jc/T2NEKS4uut096b01MWaifHUnCDPGxzOKcLI2X9hfUauIY4vI8opdJ3v44heW921ILmr7YgRIzBixAinywQHByMuLs7tQilNzUjW3XEwfKXeUuN7yDO3i3EqBa2OLT1UvJ42S7s6th75ZheO5BbjwfnbcV9ic882Rlb08PTmq80n8NLSffi/61tj2ohrVN9+aUUVvt2WiRs6xKBldL0674s5twtLK2ACEB4SKHv5pFAk52P9+vWIiYlBhw4d8Mgjj+DCBcfJi2VlZSgsLLT60xMdHO9OKXUh8ZXgh7TlbqvUwexCFJa6131w3sbjuP9/dR8HPfn9Hvxv43G31ilW/iXv6W1gjx4u8Hr26q/7AQCfplgndmZkF2H60nScK5J/aAZLH645jFd/3Y/B/17v1ufLK6vR7ZWV6PrKSs27F8s+yNjw4cNx1113oVWrVjh69Cief/55jBgxAps3b4a/f91hd2fOnIlXX31V7mKQh7ypDpJpJBFZ1qI3rrrV6vF33n4iD/fM3YwGYYHYPX2o5M/PWLbf7us/7TrladEAiA+obJfylSPMlwY+E0PMtx02y7N8PbG2ezgRp+UItiXllYjQsPVD9uDj3nvvNf9/165d0a1bN7Rp0wbr16/HkCFD6iw/bdo0TJ061fzvwsJCJCQkyF0st/nCnYC3fIdzRWVoHB5s9z0lqju561Av2c26UFRagdSsfFzXJhr+NqP5rtpfkyd18ZL3DZzkLeeaJW/pjaJVzCM4+H+gJhiQMhq1t8wrpgbFh1dv3bo1oqOjceTIEbvBR3BwMIKD7V9wSBmiBuBSvhh1HM4pwqmLl9A2pr7mzyN9mWUlrubvbHnc3ffZVqSdLsCzwzviES+aLM+TC6B3XOL1S9EYyY3ftbC0AvfM3Sx/Wdygh3wqqRQf5+PUqVO4cOECmjRpovSmDEn3h5yEk/q3tLO485NNkkeFtL0gmEy+08StNMt9N2HBdux3Y9Tdz/90PLCRo4t12pVhx3+2eBRSXS14xZgK3mDZ3jNIzcpXfDta5w1oqcCNljlvDBKUIjn4KC4uRmpqKlJTUwEAx48fR2pqKjIzM1FcXIynn34aW7ZswYkTJ7BmzRrccccdaNu2LYYNGyZ32cnH/LLnDADg5AXXF6DdmRfx0Jc77A5yJQjuBGWeVwpe0nptVU7L/19zMBf3zN3k8vO28cTrvx0QtS1XXlyajoHvrMMXm06I/xDVkXaqAJMX7sbI2X9ZvS7X8Wn5+5fb9ObzxXwQX/pGegp+JD922bFjB2644Qbzv2vzNcaNG4c5c+Zg7969+OKLL5Cfn4/4+HgMHToUr732Gh+tSOSLJ7FLTs4L291x5yc1F8nMC5fwxE3tFSxUXacuXkKDsCDUC9b/pNBSn+eXqDzluWXpFm7NBOB+93S9qdMip9J2j50vdr2QByx/MzHVlFyXOz1dOPXKmy4bkmvPwYMHO63Q/vjjD48K5A1O51/GZxuOYdx1LREUoMyTK7EXDVGz2tqsSs2TWK5zwdHuyMy7ZPeEU/IcHPD2OoQHByDtVevWPK1O/OpqAbuzLuKaJhEIC3J9SluW050jwd5nsj2YsXTexuOIjwp1+/OemLn8APafLcSC8f3qJL7ao/fWLUEQPCqj1LrBmy52ZE3rn07/t24ac3QyvrH8ACqqq/Ho4LYql4jEKJc82qu0U7GorO4MtlpdmEZ+8hf2nipAq+h6WPfUYJfLK3HBuHbmGpfL2Ns9R3KLHXaNVcOnG2ryVf48fA6DO8R4vD6tY5MH5m1zOEOzUWa1raoWsPX4BXRtGik6cb2sogqCICje4iy9XlKO1seqISeWk0v6laQ5JYg9CZx1A3O4bp1WH9UyXr3fXH5QtnXp3d5TNcfhcTv5L1o/vvOWO+PKKvHHnp6/k6PAwxlXp13+pXJ8/ucx5Ba537olB7HJ0F9sOoH7PtuK0Z9uEb3uiV/vwpM/OJ+lGPC8W/JbGtdLeqr7GXx4QA9NsLYJX2KIaVp1ddGq9tIsd8vKQ08nopqM+r1tudNbwWSS97wvrajC0yIuenJwt9yPL0rF678dwLh522VbpztW7s/BGRFzCf28u6YH1f6z0npu/bxL+VmKORPyVQw+VHCpvBJz1h/F0XPyJoJZjlYHOG4OtRdHXC6vwvSl6dh0xP6dkqsIf/2hXDFFlEVGdhGWpNo/aaV2q13s8OS3/31Lyirx5nLHvTms1qCHaFQEJu7VeH5JmtZFwBebTuCHnfKMvKqUlEPnAAAHJF7MlSB3HWpPhY4ejYglturR07nP4EMF//7jEN5ecRBD/pMi63r/+UXdOxF77B2Yn6w/gi83n8R9bk6JXlRaN+fBU45Oi2GzNuDrLZkOPyfl0cI3Wx2vx55Zqw/hvxscj2NB4uktONt18qJbnxN7uIlpYcopVHYuECVIfeyks5/dqReXpKHjSyu0LobbpLRqat3+yeDDBTlOnJ2ZVyu50gr3uzLaXmR3Zea7tR5BqOklImVb7pKyHnf2tdIV26Ec8XdaWudXKKG4rBJD33c/aNbzHvGmiyLVUPo3+3pLpuYDp1VWVWPDoXOSJlasrXouetHEhgw+VOZJVK23O0e9KKsUH9BZXgxln9tFh7+PqzK52gXfb8+SFIDVWpp6GtXVemrkrUvp0tUdebfu3tZbvKrEIay37+gJNY7nz/48jgfmbcN9n4lPmBWEmkdSUlp2a8dK0gq72npAzImq5vXIclOezn6oBXcvBtN+sn52n35GXC8k6941PlRDSuBqj7t7F/j4olRUVAlo1kCb8TuU4up8dhbs6TE4BeS9oBrzLJJX7ZQD6ael5dgskZjMWnhZ24kb2fLhgj6rC9c8GfRJDCXqUXfWaTLVHXPjie/E9R7IyrPMnNf+ly6rrELaqQJVL1Ju7XORy207fsF6W9I3VUdlVTUqZUoI1EMs4O0Xa73dgClN7d/rUE6RYuvWukWKwYcHxHVZheZnnw+d+wA8u4NU8oTzdD8//OVO3PbxRlnnNvE0D8XeMS7le8q5u6uqBQx6Zx2uf3e9Zl29OWmhsal91A19fwMOyxCA5BSWYtX+HFieNlp3uWfwIYNV+3Pw7h8H7VaIasYdlofSbjeTUUVvS4Hj1teCJKlquzR+ufmkattUMhg7lFMs62+aV1KOMwWlOJ1/GQUyNBnnFqnb08QXE5INQeOfbZuIR+iuzrOBb6/DQ1/uwOJd+unWzeBDBg99uQOz1x3Fyv3ZWhfFbN5fxx2+V1JW6fH5JDaokrQdL48+ZJvHRqb1aC01Kx+fphxVZN0bDp8z/39uUanHYzOoERdUVQuYs/4ocgqvPhL1znjkaqH1nVIsEx/4irXDum+wGAFX62OPwYeHLJvIHeZZaP0r23ju5zQsST2jdTE0IWdTo21Ll20dVV5Zje93ZIkalVFN4p7TC6iuFjzeX+syzrleyA2PL0oFUDPwVb831uD2j/9y/gE3CYKAUxedd0t3xN6ee3vFQdz/P/fG1iFyRF9XGHHY28UFVxX1y7/sc/q+HnI+vIW33UVN+GI75o/v5/D9OeuP4v3VhxAW5K9iqTyXV1KOO2ZvhJ/JhLt7NZNtvZ6eBvZi+NqRbz0dfdNR2T5YcxizVh8Wvx4Ry7jTdVkOjsqm1144RuXsXtXTm4Ftx68+wtE6YGHw4QHbc9beM10xXfPEPgt2tZyalYvYQEGR3BCd1JWu7uprHw1cKnd/YDlPufrt7b3d743VqLzSqmP5eMOIbAMPR7vzUnklggO8K8h0l+U5LaoVTcabCjFrkj2RUuL3lZvlNh3tS51UiZIw+HCipKwS54uVTUpLP12Irs0iRS3rTXco763MgJ+ftEpAla+nZG8XL/l5XAWElV4yaeDRc8WyXWg8CZILLlWg+4yV6BgXbrNO1yuVIwn1pSXpMJmAGXd0cb4tj7dUw9lxbjIBO0/m4dmflJ835+i5YuSVlCOvpBzDOsddLZ9XXoqNh8GHE8/8tFfS8rX1iJRnxPf+dzNu6BiDu3vL17xtS+0s+4sl5fhw7REAQHxkiOjP2Q6StmT3aTw7oqPTz2jddOjtdJaOJMmQ/6Rg4vVttC4GNh2tSeI7mF2EqLBA1babU1iKIf9JQfGVcW6m3tRe8jpKK6oQIPEmwZUx/91qTnAElOnSufdUvlWez7LHBqBLU3E3cVRD695XDD6c+G3vWafvr9yfY/Xv2juC6Uud54FYKimvwrK9Z7HMxbbEcHYoWT7rU5IgCLhkMX9NlZvNAffM3QwA8FP5BFm8+xRmrzuK/97fG60b1/doXXK0VHnai+Oii2njVW2t8TTnQ55SeOTUxcs4dVG+BGJPvtOs1YfNgQcgfTTa9NMFuPWjjbi3b4Loz5RWVGH1gav1nr0tltscs0q0RKyyqXuP5BY7DD6Kyypx8GwhejVvYG6Nzcq75DWz13rzDYIzDD5k9s6Kg1h7UL3p5sUQBAG/7lGnd8vo/26xSWry7Mw5caGkzmueVGWuSlM7OupzP6Xh+4lJHmzJc8vTzuLRb3ZpWgZ7tKoL7f3ueqiYtWrkr6qWdvG0LeeHa2ryWRZtzxK9ji83n5C0TT24e84mHMwuwpt3dsV9ic1RXS1g4DvrtC6WaJc1zBlTErvayshkAj5ZL8+4BnqoVJ1xdMds28Ii5Xu401Ig9RNiy1MqYbI6x9vy7EdUKvDwtLWDT9Qd85a8H0dcld9VS5pWnJ1qB7NrRghdvLtmgK0KiUGb1l7/7QB2uBho7PvtWZKPPa2vMQw+dMqdFgMvr/egpzxHTy4ics09QtbsnRFy1Z+eTKOuWUuQAl2XpZdB2ZO2xGbeJjHbc1V3emOA+O+VGQAcf7ff0s5i45Hzdt9zhMGHDgmCgIPZ0scNkPO39JWMbU/3yZ+HnZ9QemsgmrX6EDpN/8PjcSf0Qs6KWs/H9MNf7XT7s46+lahJwfR2ALug9oV73xn755E7u81bgg5nwZOzcyg1K1+B0iiHOR92rMvIxT8W7JBtfe4c81qfKK6iYi3L59HEcgrW9gKujgvx5vIDXtU1Ws+kjIWjJ5uOXnC9kAfWSMwts92D9s6F2t3s7j5/b9UhyZ+RQkyZ9Bzk0lVs+bBj8W43kzNlrCDtrUrNCliu66a3VgNppwskz5yafrpAodLI6+N1R8z/bznPiB7NXH4AA99Zh/xL5VoXRRGeBMN5JdL2iZijWRCAT9YfQd831iDzQt0hA2yrINt12pvQsqTM/fypOtvT6YzWniirrJJlokRvw+BDYbKO7ufixFPz3BJ7Iuv0fBfFtiu1K7+nW3eXdhUslsmQ1OqOY+eu9iD6YI3zocO1rrA/3XAMpy5exhebTrrcn7mFpT4bpKjpnRUZOF9chrdWHKjznjvX/sW7T8tQKvf884urLdh6bYgc9M46dH91JfJKypGalY8MMY/rZKBkK7AYfOyiAnd+Yq0PDLkeuyjdWlMisRualOLkFklrFZBauaWfLkTvFg2kfcigHAXxlr9nvzfXqFQamzJoslXlaXGxtg3Ixe7biioBK/dl49o2jaxetxyTRK9yCmtG0f7z8DnzhIm2lLgeaH1jweDDS/2861Sd13Qa2HstQZDYVbjO573/F5E14VSB3aF1kA5Y/+7e8pu/9ftBnCmoO1ia1JZaub/u3PXH3Prc2ysO4lxRGfq2bCD7MaHWMeZsPA9fzGPhYxc73K1A7HcFNLmXcOrkU9XVAqZ+v0fS+rSOcuWk6qCcUjZmsawnLT7ecgGTanfWRa2L4FR5pfpdpLU6L+emHMXeU85zlLQ4DHdlijxGbHbcuaKa1oPtJ1x/Xk+nl+UxJ+ZYkDMQ0vqSwOBDYQIElye53c85OUH0cO7ooQzucHSCX7xUgReXyDcZVlGpNglkkxfu0m3wImcPslruDt9vT+eXVyg+kaQtrS8AtvTQkqQ3SrY6LNt7tXODs32/5VgejuQWYZuLwca8CYMPO7yxW58rntTR6w7m4u+fb8XpfPnmtNCbGb/ux9dbMq1ek3oRt6ykdmfma3IcLdt7Vtb+/no6FewVZW6KPCMKAzV5A4t3aZccqUeuRtaU+7p89Fyx1b9d9a6xJ81FrzM9PcIos2j5cFWu5Pc2yLptra9zDD68kNRDxtObw/ELtmPjkfN49kfns/wuT/N8cjylObq7uFxh/3mrni6+YlVU6adyVZrcjTx6ujBpwfb7331lgkexy3tKzkn75OKoznC3bnB0U2O0VicGH3a422wtZ3O3swPb0VYcfUSurluumqTtzUWixMVbzacKnmxL6jgMeqSXJzhLU9WZGNGSko+vLnrBsSEmsHjr94OybMtxF2mTk3+5R+uL/IgP/tTFFAxahzoMPmT00tJ9iq7fk2YyqR+1t/zB7CLJj170PoiVnGyvVcfP152R1xdoEZAcP1+CA25MeeCJ/3NjyPXC0krXCwE4duXYEHNefrc9E8/9tFfyoHdqkDIjriNfbTmJHjNWYY6ISTnl2ANat24dzC7CXi8ZkFBJDD50yl4F7+pOTM5TytGmHvl6p6iy1NLbIwB9PUbR176xx14JT1zQJqg6laduk7zUQeaU8uxPaVi0PQsr92c7XU6WC7Ng//+V9NKSdAA13WXF0sNp7Mn+sVt+PXwpFTH4sEPORBy9NFs787+Nx0Uvu9/BRE++KO10IVIOnRO9fKUO70w9Ze9MqNCoyVjOni3e6OKlCrzyyz78uLPuGD/A1e6mjsjxGEntVgM5bxZqS67Xw0j12IODjJFUcj+Lfm3Z/jqvOTrp9dByoFYF+JOdgdzkpYOd6YIefu9ankx7rzcnzpegVXQ9SZ9ZdzDX3Bpzd+9mdd4f8cGfHpdLT783+TYGH3aolTjqjbRO1iLjUmP8ErXuip/8oWaQwMk3tBX9mfxLno0dI2pGWJ3Fd3LWNrXrkusrylG3W/6mWnd9VRsfu/gQYx26vkBnNb0deroY+VLLhzvUfuRhb2vefPOht6PnUE6RpDwXuVlOMKkFtnwoTM7Ku7SyGpO+2YXr2zeWb6VSeW/dQ27QU4Wts9xlAMCw9zegQb1Atz8vae4gHXx/rXuKaEGR4QIAfLX5pPwr9iIMPnTKXhNzVbWA39LO4jcHg3mpUS3I3XTpDo+yzHXVtKlMWZT+ilpdBKuqlU90lfrV1Jr+HPD8dxXz2ErNLqCbj15wMr6HfZ6Mj+Lu7lPieL/rk011XtNTzaQGBh8K09W1jnRFEATc+9/NaFgvCJ+M7X31dY/X6+EKLNg7fC+VixvLQm4Gf+qiitpur2oY89kWl8uUVlgHnFO/34O7etVNthVD7sNHDy1R3ozBh8L0coDKFQMxmJLPwq2Z2HKsZu6M//tK/knXlPLuHxlaF8GQLOuS73d4PriXlO3VOpxTXPdFBYkJUKTS68SLRqtbmXBqEFJPN4fzGdS+rs/z1yU9nd8/7746idkf++Qb0ErpSkyrgeN0es3wiJSfyvLrP+NiniWlbDuuj1lV1bxQ63nYAW/G4EOntM5NcJRYxhPOWPR0vTdisqOcpNcpvrm/9fqtfDG4dobBh0650zRolLigpEybnAMj0msTtVJ8+evKMsKpL+8gjdWO/WIUDD50SuwEVZbkrBbKKuz3LNBDgNP79dVuf9ZbWm7ETLKlhl2Z+VoXwUyNoDPlUC5eWJyG0ooqxbeltosSe5b4KsZP+sCEU52S2gXNFanX3FwH80Ro/TjICE5euKTp4EN6NXud8gHZlmN52HIsD00iQxTfFgBVo+GcQudzv9jiRZqUxJYPndLDRf58sePKis/fa7AZ2jedzi9VZTuSEk55rMnDR3ajt4/4y+BDp9YezJV1fe4cpn3sPN7QPiTyjNzlv/E/KTKvkcg+d29I8krKXc54a4+eL23ePMy7XG56z7vrHj52sWPZXvsjiBK8P/qQ2fHz2s6PYM89czdrXQSntBqkTI+kDa8uPRyorhbQ67VVkj9H+ndMh3WPFAw+DIIxQ40Nh89rXQRDe3zRbixNPaN1MUTQ832/eOVV8g5JX1LuXiJupczlcEdt8Cb1kTHrTmXwsYsPOeEkEi6XaWAobz8Rvf05qbfzjsBDn7z5yF25X75B9NTmzftdzxh8KEzNHLFKJxfWb7dlyrINPSTCEpHy5ExwXZp62vVCKmHerj4w+FBYZt4lrYvgkcsOmlkLL/O5PZGnjJI4Kef0AQDw4y7l57ZxRatpBnwFgw+FfbDmsNZF8Mg101dY/bu24eON5Qc0KA2ROqpVSlHILhTfpVftO3Y9X1qz8i67/Vnp81zZN2HBdrfLQAw+SCJj3KeR0X2nwqyxgHyPQ8m1/EsVsq7P23ubaI3BBxER+bzaYEFqLoueW4C8meTgY8OGDbjtttsQHx8Pk8mEJUuWWL0vCAKmT5+OJk2aIDQ0FMnJyTh82LsfPdBVTDgl0kaFDrqrEslFcvBRUlKC7t27Y/bs2Xbff+edd/Dhhx9i7ty52Lp1K+rVq4dhw4ahtFSd4YpJWSYAuUX8LYnUtu9Moarb89VeIXLlfJBnJA8yNmLECIwYMcLue4IgYNasWXjxxRdxxx13AAC+/PJLxMbGYsmSJbj33ns9Ky1pzmQC3vqdk54REZH7ZM35OH78OLKzs5GcnGx+LTIyEomJidi82f6Qz2VlZSgsLLT6I31jN1siIvKErMFHdnY2ACA2Ntbq9djYWPN7tmbOnInIyEjzX0JCgpxFItmZ1JwFnIg8sOaAvBNUertXftmHH3ac0roYBB30dpk2bRoKCgrMf1lZ2g8eQ44x8CBSj6dJppMW7nL7s76Y8rFg0wm8vYKPjfVA1uAjLi4OAJCTYz2aXU5Ojvk9W8HBwYiIiLD6IyIi4OO1R7QuApEiZA0+WrVqhbi4OKxZs8b8WmFhIbZu3YqkpCQ5N0UaYcMHkXoW79ZuThQ553bxZp+sP4oV6We1LobPkRx8FBcXIzU1FampqQBqkkxTU1ORmZkJk8mEKVOm4PXXX8cvv/yCtLQ0PPDAA4iPj8fIkSNlLjppwWRiAEJExjLxa/cfX5F9krva7tixAzfccIP531OnTgUAjBs3DgsWLMAzzzyDkpISPPzww8jPz8eAAQOwYsUKhISEyFdqIiIi8lqSg4/Bgwc7bY4zmUyYMWMGZsyY4VHBSJ+MMgsnkdFxRFVSkua9XYiIyL7MvEuabXvr8TzNtq1HGw6d07oIPoXBB0nG7rZEvo/5ptYemLdN6yL4FAYfJAkDDyIi8pTknA8ytrMFpThbwInliIjIfWz5ICIir1FdzedBvoDBBxEReY3J33LMDV/A4IOIiLzG8jT7k5SSd2HwQURERKpi8EFERESqYvBBREREqmLwQURERKpi8EFERESqYvBBREREqmLwQURERKpi8EFERESqYvBBREREqmLwQURERKpi8EFERESqYvBBREREqmLwQURERKpi8EFERESqYvBBREREqmLwQURERKpi8EFERESqYvBBREREqmLwQURERKpi8EFERESqYvBBREREqmLwQURERKpi8EFERESqYvBBREREqmLwQURERKpi8EFERESqYvBBREREqmLwQURERKpi8EFERESqYvBBREREqmLwQURERKpi8EFERESqYvBBREREqmLwQURERKpi8EFERESqYvBBRERkMP/o30rT7TP4ICIiMpjmDUM13T6DDyIiIlIVgw8iIiJSFYMPIiIiUhWDDyIiIoMxmUyabt8wwceF4jKti0BERKQLgiBoun3DBB/5lyu0LgIRERHBQMGHtg1MRERE+nE4t1jT7Rsn+ND4+RYREZFebD52QdPtGyb4ICIiohpa344bJvjQekcTERHphbbppkYKPhh9EBER6YJxgg+2fRAREemC7MHHK6+8ApPJZPXXsWNHuTcjGVs+iIiI9CFAiZV27twZq1evvrqRAEU2Q0RERG7Q+n5ckaggICAAcXFxSqyaiIiIPOSTCaeHDx9GfHw8WrdujbFjxyIzM1OJzUjCxy5ERET6IHvLR2JiIhYsWIAOHTrg7NmzePXVVzFw4ECkp6cjPDy8zvJlZWUoK7s670phYaHcRQLAQcaIiIj0QvbgY8SIEeb/79atGxITE9GiRQt8//33mDBhQp3lZ86ciVdffVXuYtTB0IOIiEgfFO9qGxUVhfbt2+PIkSN23582bRoKCgrMf1lZWUoXiYiIiDSkePBRXFyMo0ePokmTJnbfDw4ORkREhNWfEvjUhYiISB9kDz6eeuoppKSk4MSJE9i0aRPuvPNO+Pv7Y8yYMXJvShIOMkZERKQPsud8nDp1CmPGjMGFCxfQuHFjDBgwAFu2bEHjxo3l3pQkbPkgIiLSB9mDj0WLFsm9Slkw9iAiItIHw8ztwuiDiIiohtaXROMEH0RERKQLhgk+mHBKRERUwyeHV9cjJpwSERFdoXH0YZzgQ+sCEBER6YXGF0XDBB9aNzERERFRDcMEH9UCww8iIiI9MEzwwaYPIiIifTBM8FHN4IOIiEgXDBN8CGz6ICIi0gXDBB9s+SAiItIHwwQfTSJCtC4CERGRIkID/TEuqQV+eiQJia0aal0clwwTfPj5GWekj/uvbaF1EYhIQXPG9tK6CKQz7WPr49U7uqB3i4ZeMaimYYIPW9H1g7QugkciQhxPSOwNBx55j5l3ddW6CGSDj5GVd337xloXwW3eMJ2IYYOPa5pEaF0Ej7SLDde6CGQQ/oxmRWkbU1+1bTGBXnktGoXJur7I0EBZ11eHxXnqDaesYYMPLTWNClV0/VqOp5Z8Tax2G1dZBxcBYI+EKHUKojQvqMj04NXbO6u2LY6Z6H3G92+p7AYsDorhXeKU3ZYMGHxoQI6DsG1jx3dZWka9Q66J0W7jKnN19/l4cjuVSuLdJgxopXURZNGpSQTm/l2dXIxrmsjf8tmoXhB+mdxf9vVq7bMH+mhdBMwa3QO3dmui2vbGJrrO+9P6nsJQwcebd159dq3lnYMgAE8kt3f7808P64DgQMc/ndYHlVG4OoYa1w9WpyAKC/T37Iga2C7a4XtfT0jEi7dc49H69cJkAm7sqHzL35M3tUfbGOfBR4OwQHRvFilpvaFB/ujWLMqDkrnHX+HOAL2aRym6fjEiwwLRNiYcq6der9xGLO46/f1MuLa18x4vWjeeGSr4aFhPH0mmN3SM8eiuODjAj82uOuDqJ2gVXc8nkjVDAvw9+nyXpo4vgs0ahMLkDQ+oRTDBpEqr4129mzl9f+FDidjy/BAsnTzA5briI68OQdAqup7HZSPnYiLkuyEZl2TdumH5W9rKeH143Rc1voYYKvjQg7+eu9HjxDQ/HVfW9YId98JRU4iTliG5CC4iQD+TCWP6NVe8HEprH+dZE79+j1b5KfldP3+gDz64t4fLnLHr2kQj2I2AsfZwDgqwPneiwpRNlBQEwePhATxtnRMj5enBHq9DzlK+ekcXm387zjly53hQmsGCD+2bC+RINjWZnOd1BPpr97MGB/hhxZSBeHpYhzrvrXlSwSZHG3poGdJxjCjal//ohzZO8os8pbd95CqJ2CkTFG3FSe4Uizt6NFVs/X1aNgAARNn0ynhjpLytd2MTm6ORTSv0dW0amf/fnUTt+5wE+XJ1S27RyPOWIXvHR4+EKKyeOsij9Q5q3xgx4dYtH67qwFtUzEGxx2DBh779+57uuMdFkyrgOnqOjwrFmH4J8hTKDR3jIjDphrZ1XlfyImbL9sR7fEg72XviuKrT9NxCJdYgGcY6UGo3xITLn1Pz9T8T7b5+Z0/XF31v/7kfGdwGADDvwb5Wr8t9L/PGnV1xfQfr42pwhxjER4ZgWOdYLJkkb9JrZXW1rOvzhO0h0qdFAyyZ1N9lDo8rrlphAdTJAerf1nEulhoMFnxc/en11k8+un4Q7u7dDG/e1RWLH73O6bJi7q5m3tVNrqJp4oN7e3j0+ck3Wgc/UWGB+HycvFnv1S5uqQw0qK6q7ktsjrt6NVU1OfLRKxdmV/xMQLSXJhrXNs13aRqJekGWzfTiD+R+LcUN6207CFZokD/+fPZGzP177zrLrnrCs1aByir36nolTl/bqluugLWswnWAtfCha/Hdw9de3bY8m3aboYKPxhLulLo6SZJTRs2hEOjvh57NGzhd0ggXNWdNnGKy4yfbaXmRW5WInA8lvXmn60B1ig66+8o92uKU5HZ47289ZF2nK2IvXyaTCZun3ejw/R8nJtl9vZ2KA5TVctYb4k03E6WbRIXYfeRaa8SV8SfGXXc1x6P2Zsrfz2T3xirQ389pTscPDvZprUgJOStP3uR+L0RnTOb/mmxe9+zcaHDlu4lpxagXHIDE1lcfb2md6G2o4KN3C+cXdUv/d31rBUtij4ToXAftu9H1g9A+tm6F2ayBPAOoOQv+6otIavXzM2HB+KvNx2JzQKQkvrlqzVX6ZwoNch2oNmsgzyiNjnrteJrY61nlq6/Wy9pv4ijn6s6eTdHHQcuAmj1NFv4zEVumDcHXE+w/YrIl5Tju66TlY9ljA/DhmJ4AYNVq5eqRQWCAH359bECdxNe/X9sch14f4XSbABAR4jr4aBVdD8dn3ozHhlwN1pUYsVauOqG2e/rvjw/Cu3d3w8TB0q9XSicSu2Ko4EOM9U8NxrqnBiNIhaTN5g3luTCIrUTktHnaELw96uqjne8evhbvj+6OzvFXgwZ3807euLOLLH3/B3eQPuDZXb3EJ/RVu6g0pdxZhAZKz0YXc+EW8yxYjDH9mttNigtxo9yjernOa7L09LAOVr2GxFxM5CYIwPDOzkeN9ORO0tWxJKfr2kYjLjIEASLrOCnfylnvri5NIyUnw0eGBqJpVCg6xkXgvb91r/O+bc8cKZ6/uaP5/024+vv9/Oh1eGpoe3V6qjnYud8+dK3d1/9zT3dse34I/jmwJtiIiwzBPX0SJPVmmTW6B54b0RHtNZ6iw7DBh6NzvWV0PcXuQpb/a6DVv101FzriZ7I+Zge0i7YambBVY+XvogL9/aweKyS2boQ7e1pfVF65vTNG99Eu8dWeRQ/bP6lrSbmAVMk4u5dSAy3ZlnBUr2bY9JzjxwLO1S2jmGum5S5d9tgAq0pfjJaNasZLWTFlIH5/fKBbAY89/7Qzsqqju0EBAub8vRcOvmY9XoKrgZzseSCpbutaqZ1n9s4mj1Sau4GUv59JtoAXsB4YUi63dY/Hkkn98fAg+3k8vZo3wOQb24kOzgD354Gxt5efHd4RSRa9f2p1bRqJUb2bISbC8XgeYozs2RQTrxeXw6QkBh8qCrepTGIjQswtLN2dJM/ZRvf27ni7NYvCT48k4bU7OmOwSrMxusppCA7wr5PVLpd+raRX+gBwbetGTi/0UipOOe9WB6iUeX5TpxjEKzy3kC3Lvd2laaTd/V/7TL9VdD3c5aBnSce4CKsJIT3Z/bNG98DDg6ybqrdMG+LwzjwqNAgmk8lp4OPqcn33lZ5sM+7ogvRXh1m9Z+9xpZSLXy25WmwtzwOpgYicM+62triRctbSN8qml2Csk8G8PhrTs253Xg9j/18muR7QDfAs4VRqoKuvh5J1GTb4cMXd1o+wIGl3ZcsfH4j/G9Qa79xtv3fKLd2aIOO14fjVYrRCkwnobqcvfO8WDXF/UktzZdHpSkXdt6X4XBcplMppEHNR8eRi7SxokHLCyjEz8usju2DPy0MlJUPXErP/b/KSif42PnsjFozvi7VPXi9L915nosICMbJnU8REhOBdi/MuLNjxuRtnMXqk5e/uKBj57V9Xz9cdLyYj5enBVkmBtnlLzw7viHv7Jlj1qnGnBSH15Zskf8aVjhIHmesqcVh3e3771wB89kAfq33trG7t1iwKW6YNweE3RuDwGyMwtJO0idUcnUq1gbCrIRAiwwLxPxG96TxJONXD2EVyYvCBmr7WttrFhmPeg9K7Zq6U2C2sbUx9TLv5GjSy6Z63ZFJ/3JfYHK/d0QUmk8nqhDYBGNmjKd4Z1c1pN7Slk/tj6/NDrPIw5OTOo4LrHVxY/nt/3S52jjSNCsW9EvNJxJ63UuZjeSCpJaaN6Gh1oZEq0N8kaaptqWMgNKgXZPOowGRez2AHrVK1wartYwl7wY6oC6TJdYUbGxGCwR1iJN1lN6rv+XQJPUXM+2H7KKZm4LV6aNEozGqOJsuid46PROr0m3D4jRGIrh/scoCqBvWC8Naobi6TJ10JC7IOauY/2Be3dGuC27vHAxB/92z5OyQ0DMOvkwfgz2duEPXZwe0b4+P7errsIntjx5qcLHtJ3p3jI3FTJ+vAuV+rhlZ1ju2hFxcZcqVnjJ/koRQcHXdv3tUVX09IxOt31owmOsLJbLFDRAT6Ulo+bINwezec3kwfY2FrzNFh6mySqIHtonFrtyZ49qc082vBAX5o1iAMz9/cEW8uP1jnM1JaCnokRDkc6c/PZIKfnwl/6+v8Ahzo74fYiBA8NKg1Fm7NxKjezfDttsw6y0WEBKCwtFJ84a7oEBuOvi0bOB3XwPYr/+dv3fFpylGM7tscye+lmF8f6iKZz1K72Pp1RvOTwtn1MlbC89QAPxP+z8Gz058eEZfPI/VuxvKYqK0w5z3YB/9YsMPhZ+zdnfdIiMJrd3TBwHfWmV97f3R3DG4fg/CQAOw7U+h0ThZnwkMCUCTyeLIb0Ii8cDw34hqcKypDg7AgtIyuh1X7c5B2ukBKUa3L4uB129+ocXgw1jw5GACQlXfJ4fqiwtwIjmRuTbyhYwxu6BiD0ooq3Nqtid1cAntsg8ram58mkSE4W1Dq9LMmkwm3dot3uY2P7+uJ7ScuIqm1uDKZTCYcffNmtHzuN5fLij2vXh/ZBe/+kWE3mRWoOXcGWEyMaBvcSSXl5/1ifF/884sdWHMwFwAkz4qb2Kohth3Pk/QZNbHlAzWjXwJXn8mKYTKZMLqvdTZ07fH+8KA2dh+juFUZ2dEmRtojoaZRodg3Y5jd7pKv3dEZv0+xvkOxl4hnj5+fCT9MvA5z7AwMVMu2DoiuH4wXbunkUTc22+Gf5RQU4Ie9rwxF2itDXS7r7CJpecGffmsnDGwXLVs35Fq1FdmNHWNxW3fXlb0rfiYTGtQLQoC/H7onRNVp2bJXcd5qs92/9WlWZ+jsOmS6wDasF4T54/vhvdE98K8h1uOZ2OZzOCJnU7Yc45lYrkHOVvaQQH8M7RyHcJE9hdx5DChVWFAArm/f2O0eKx2dPPYUu+/+fm0L7H7pJtUGrLNtYXF2Q2oyWU9UKDX3ZtINbfHybZ2w/qnBkj6nFsMGH5YXjkHtG2P3SzdZPf91xd5hYDmuhK2hnWJFjU/hzC+T++ODe3ugdwvpTbOOEunuT2pZZ76ZF2/tZP5/e2N5yCX5mppm13sdtOA4moX4CYUGAqq9gEWEBIqqpHskiMul+ceAVvhqQiKC7VSytfWJO/kzcn/GVe8de5XfS7d0svq3XkbWdfRIyZblN3aUQK3mbNiW+1jLZ/xJrRvhhZuvwcKHxHfj3zJtiIIluurXyQPwws3XYIyTll/bfbfwoUQ0axCKryb0q7Osn4qjNtpuyTJgrX3ceVv3qy0cnhwDIYH+GN+/FVrqdLZiwz526Z4QhS3HrjZJNXCzgvnruRvx0pJ0TLqhrdNBzDrFe56c2K1ZlGIRenCAH8oqr3b3WzqpP77ZehJPDeuAfWcKMX7+drfW6+y0/nBMT2w6csGqWdPS8n8NxH2fb8GxcyVWr7vTguQoN+GHiUk4eLYQo3o3q9Ok+u97uuOpH/Y4XKfUi5LUO5cAPxMq5ew64II7mwq1SAJs2SjM4SiVllQZI8/Jd7HcvGXysaPgo4mTqcqbNQhF/7aNEBrob7Uv3GXV8qFh9GEymfCQyNajWnFO9pOcujaLFJHUar3vrmsTjY3PutvFXD7Ocj6+ezgJJeWVolunvJ1hg4/W0fWw7LEBHs/D0DQqtM5ETADQzeLkiI8Mwbiklh5tR2k3dozB7+nZ5n93T4gyJzjFdAhBh9hwZOQUybrNsKAAJHdynFcTFxmCCQNa4YXF6ZLW++B1Leu85qhpt2/Lhg6T/Oy1VIgltQne3tL1ggNQcLnC4WcsZ2CV43ru6mLn7jbUaMK3JfaybfmVHQVFrprGv/mn87Fj3KXHzg0RIYEucz70QKm4zd6xIKbhpDYgtw3MG1jcSPn5meoEHk1lflSrJ4YNPgC4nVAHuL576xgXgR8mJiEuIgTNGoRqPo5+re0vJKPvG6vrvK7UyepOi49lUdx5jv7ybVcfBTw+pB3WHzqHe3rLO9iZq14SUocuHnddS3yx+SQGtovGn4fP212mzZUxD9Y8eT1yCkrRzsUIhbWPtSw5G5vF1TEgthu57Rb6t2mEfw1pZw6W1DgTxN6Fi2n5UEr94AAUl1kn5uqkmnDo4/t64onvU9G/bTQ+TTnmcvl7+yZg0fYsyaPaekqp+szeeve+Mqzuizbs5UFFhQWah0l35MmhHVBcWomRImZV9jaGCz46xoXjYHYRbnBj6G1LYuoIT7vNKaFxeDCuaRKBA2cLrV531cPA8v1nh4sfobJFo3r4dfIANHSzW6Q7sw9bBnpP3NRelhyRzvERGN03AdOX7gPgePhjoOZxjdSBvFo3ro8DM4ajvLIa3WesBGDdEvHxfT1xXZuax1NtGtdHm8bWuTi2yaFzxvay6qp3b98E7D1V4LCrMwAM7ug8TyImIsRhTy7AIq/IzskxVcJv4O6Fw/LC3aZxfcwa3QNRYYF4c/kBdGoSgSWpZ64sZz+vQu0JG3skRGHjEetA0zLYjgkPFt1rSC3tYsOx7LGakZrbNq6PyNBAvL3iIO52ENzPuKMLbu8RL2leLTmoOWu5q1y+6bd2snuj+/WERJejlUaGBuK90T08KZ5uGS74WPbYAFyqqPJ4fgi9tGTIRUqF/4jI6cVrSR10yJ15TpRgWY7f/jUQuzIvmv/taHCpqLBASb2mrLYX5I/yqqt5N5a/iauui08ObY/Fu08DqBnlckRX6255b42qmwjarEEoBrSNRnCAHz4Y01NUQvTDg9rUCT5mje6Bf6/MwAf39rT7mboZ/sqcOz0TorD31NWutrV3i9e3bwyTyYSosCAs2HQCz1kEz9bBh/bntGUA1D0hCmfyS3G5osruso/d2BZ/7MvGoZxilUpn7Z4rUyc46yYfFOBnDprVpKcBuf7hoPegnsqoBcMFHwH+foiQMATxr5MHYNneM3hsSDt0efkPBUumLT2cB8/f3BFbjuWZB0QCrO8E/35tc/Sx6OmjdELmDR1jMKxzrHmGXTGVhdQKpc4docXno+oFoqhM3J2vO7PXmkwmfP1PzyclHNmzqdNmYbUu6Xf0bIovNp+su/0rQcXLt3XCI4PbWI3lYvnYRe3Yw972+tpMG/DQoNb4cM1hu59/cmgHPDm0A3aevIinf9yD6bd2srucESlVK8h5jMRGqp8LpSeGCz6kssys7tOiAXacrLn71f4eyX1B/nVLr4co/OFBbRxO9gQAr4+0Hqfkh4lJmL50H1685RqM/u8W2cvj72fCp/dfHeXW8+njr9rxYjLOFZWhbYzjvI33/tYDM5cfwCOD23q0XbVpdW642q7JZKoziJx18KH9WV2nS7yIE7N3iwZYe2XQM6n08J2VoEZ9Fh8ZUqfVx9/PhKpqAbERwcgpLLP7uWWPDUBxWaVHAyX6AgYfEvz3gT7o9doqrYvhsXfv6Y4H522zGphJy259zjirG3s2b4BfH5M+tPldvZri512ncafEJK5OTSJwX2JzxLk5q6TlHo6uH+yyp1XzhmH4+VFpw6kD8KrI2N7v6+4w0rbj1Ygh5qiXY/AwUpca9dlfz91YJ3j7Y8og/LTrFHo1b4CHvrQ/6rAnHR18CYMPCSzHdfDmG4b2seHYZDMgkD5DD2W8eWdX3N49HteKHNa5lslkUmSKb1/jahRHVxeGNo3rY9ljA3DrRxsBXJ3x1pWYiBD8MDFJ0mB+Yi5SMU5mSPXExOvb4M/D53GLTX5ObS+YGzvGaJbP4e2Uqs+aN7z6eNNeq1HbmPp4dnhHXQ9rrhcMPghAzYiGa6/MIWCPVg0j9ib981RIoD8Ge9jbyRFnFzOp8arU5a9t3RBbjuVhdB95uxVLFV0/CEccH0qidGkaiUcHt8HeUwXmCcjEkNrDzFXK0PDOcXjhZufdId3Vv200dr6YXGewupSnByMjuwhJbRrhUI79fA+5PDK4DV5cki553hC9G9+/JRbvPo2hTsYRcsfDg1ojr6S8zqR3tiJCeWl1hXvIbV7c9GHHg/1bIjIsUPQkT2ppFxuO5f8aqMlAVd7mswf6YNPRC06706rh3bu7Y+LXO7HvTE13bncD12ckdOl2V9vGzqcPmCthtmV32M5mXfvadW3VOd7HJjbHta0boZVOh+B2V7dmUdgzfajsQUBIoD9eub2zy+U6xkXg8SHtVBv11RsZdm4XT3nzYxd7Av398Lc+CUhoKL3XhNI6xUeIDj4iQvQbT9uOzWGP5RDdERIn0AsPCcSwznEOuwHL5amhNWN22E7mViuhYRh+mXw1F6faWWuQxidSg3pB2PjsDdj10k2alkMrJpMJbWPq1xknxhdEhgVqenw9cVN7jOnX3PWCBqXfmppIgpl3dcW8jcftDnWvF6/f2QWRoYG4t5/jxyJBAX7Y8PQNECAoHkS4a9INbXFnr2aId3JX5+9nwnMjOuJs/mXd31W7002ZiDzD4EOixuHBOFdUhmFOBtbxRdH1g3E4V7/Jb2P6NdfFXYazgCG6fjDeFjFzcvNG+r4YmkwmUT1LJl4vbTA6IjIOPnaRaOWUQfjmn4m4ywfH2nfmnbu74bo2jTBfxy0LWpr7995o0SgMnz3Qx/XCBmeknlUe02kXeCJPseVDogb1gtC/rfrDBWstoWEYFjqZz8TohneJw/AuxmoNk4OeMw2kdNklIml4dhGRqsKDA9CpSQTKq6rrjDhKNnwts53oCgYfRKQqk8mEZVdGpvXzwV4WcqofrM+kYyJPMfggItUx6BDn/mtb4s/D510OakXkbRh8EBHpVGiQP76a4PnMw0R6w94uRER26HWyRSJfwOCDiIiIVMXgg4jIQusrI7IOuYZ5FkRKYc4HEZGFRf93Lf5Iz8ZIgw0kSKQmxVo+Zs+ejZYtWyIkJASJiYnYtm2bUpsiIpJNTHgI7k9qifAQaRP7EZF4igQf3333HaZOnYqXX34Zu3btQvfu3TFs2DDk5uYqsTkiIiLyIooEH++99x4eeughjB8/Hp06dcLcuXMRFhaGefPmKbE5IiIi8iKyBx/l5eXYuXMnkpOTr27Ezw/JycnYvHlzneXLyspQWFho9UdERES+S/bg4/z586iqqkJsrHWmeGxsLLKzs+ssP3PmTERGRpr/EhIS5C4SERER6YjmXW2nTZuGgoIC819WVpbWRSIiIiIFyd7VNjo6Gv7+/sjJybF6PScnB3FxdaccDw4ORnBwsNzFICIiIp2SveUjKCgIvXv3xpo1a8yvVVdXY82aNUhKSpJ7c0RERORlFBlkbOrUqRg3bhz69OmDfv36YdasWSgpKcH48eOV2BwRERF5EUWCj9GjR+PcuXOYPn06srOz0aNHD6xYsaJOEioREREZj0nQ2dSNhYWFiIyMREFBASIiIrQuDhEREYkg5fqteW8XIiIiMhYGH0RERKQqBh9ERESkKkUSTj1Rm4LCYdaJiIi8R+11W0wqqe6Cj6KiIgDgMOtEREReqKioCJGRkU6X0V1vl+rqapw5cwbh4eEwmUyyrruwsBAJCQnIyspiTxoFcT+rg/tZHdzP6uG+VodS+1kQBBQVFSE+Ph5+fs6zOnTX8uHn54dmzZopuo2IiAge2CrgflYH97M6uJ/Vw32tDiX2s6sWj1pMOCUiIiJVMfggIiIiVRkq+AgODsbLL7/MWXQVxv2sDu5ndXA/q4f7Wh162M+6SzglIiIi32aolg8iIiLSHoMPIiIiUhWDDyIiIlIVgw8iIiJSlWGCj9mzZ6Nly5YICQlBYmIitm3bpnWRdG3Dhg247bbbEB8fD5PJhCVLlli9LwgCpk+fjiZNmiA0NBTJyck4fPiw1TJ5eXkYO3YsIiIiEBUVhQkTJqC4uNhqmb1792LgwIEICQlBQkIC3nnnHaW/mq7MnDkTffv2RXh4OGJiYjBy5EhkZGRYLVNaWopJkyahUaNGqF+/PkaNGoWcnByrZTIzM3HLLbcgLCwMMTExePrpp1FZWWm1zPr169GrVy8EBwejbdu2WLBggdJfTzfmzJmDbt26mQdVSkpKwu+//25+n/tYGW+99RZMJhOmTJlifo372nOvvPIKTCaT1V/Hjh3N73vFPhYMYNGiRUJQUJAwb948Yd++fcJDDz0kREVFCTk5OVoXTbeWL18uvPDCC8LPP/8sABAWL15s9f5bb70lREZGCkuWLBH27Nkj3H777UKrVq2Ey5cvm5cZPny40L17d2HLli3Cn3/+KbRt21YYM2aM+f2CggIhNjZWGDt2rJCeni58++23QmhoqPDpp5+q9TU1N2zYMGH+/PlCenq6kJqaKtx8881C8+bNheLiYvMyEydOFBISEoQ1a9YIO3bsEK699lrhuuuuM79fWVkpdOnSRUhOThZ2794tLF++XIiOjhamTZtmXubYsWNCWFiYMHXqVGH//v3CRx99JPj7+wsrVqxQ9ftq5ZdffhF+++034dChQ0JGRobw/PPPC4GBgUJ6erogCNzHSti2bZvQsmVLoVu3bsLjjz9ufp372nMvv/yy0LlzZ+Hs2bPmv3Pnzpnf94Z9bIjgo1+/fsKkSZPM/66qqhLi4+OFmTNnalgq72EbfFRXVwtxcXHCu+++a34tPz9fCA4OFr799ltBEARh//79AgBh+/bt5mV+//13wWQyCadPnxYEQRA++eQToUGDBkJZWZl5mWeffVbo0KGDwt9Iv3JzcwUAQkpKiiAINfs1MDBQ+OGHH8zLHDhwQAAgbN68WRCEmkDRz89PyM7ONi8zZ84cISIiwrxvn3nmGaFz585W2xo9erQwbNgwpb+SbjVo0ED4/PPPuY8VUFRUJLRr105YtWqVcP3115uDD+5rebz88stC9+7d7b7nLfvY5x+7lJeXY+fOnUhOTja/5ufnh+TkZGzevFnDknmv48ePIzs722qfRkZGIjEx0bxPN2/ejKioKPTp08e8THJyMvz8/LB161bzMoMGDUJQUJB5mWHDhiEjIwMXL15U6dvoS0FBAQCgYcOGAICdO3eioqLCal937NgRzZs3t9rXXbt2RWxsrHmZYcOGobCwEPv27TMvY7mO2mWMeA5UVVVh0aJFKCkpQVJSEvexAiZNmoRbbrmlzv7gvpbP4cOHER8fj9atW2Ps2LHIzMwE4D372OeDj/Pnz6OqqspqJwNAbGwssrOzNSqVd6vdb872aXZ2NmJiYqzeDwgIQMOGDa2WsbcOy20YSXV1NaZMmYL+/fujS5cuAGr2Q1BQEKKioqyWtd3Xrvajo2UKCwtx+fJlJb6O7qSlpaF+/foIDg7GxIkTsXjxYnTq1In7WGaLFi3Crl27MHPmzDrvcV/LIzExEQsWLMCKFSswZ84cHD9+HAMHDkRRUZHX7GPdzWpLZFSTJk1Ceno6Nm7cqHVRfFKHDh2QmpqKgoIC/Pjjjxg3bhxSUlK0LpZPycrKwuOPP45Vq1YhJCRE6+L4rBEjRpj/v1u3bkhMTESLFi3w/fffIzQ0VMOSiefzLR/R0dHw9/evk+mbk5ODuLg4jUrl3Wr3m7N9GhcXh9zcXKv3KysrkZeXZ7WMvXVYbsMoJk+ejGXLlmHdunVo1qyZ+fW4uDiUl5cjPz/fannbfe1qPzpaJiIiwmsqK08FBQWhbdu26N27N2bOnInu3bvjgw8+4D6W0c6dO5Gbm4tevXohICAAAQEBSElJwYcffoiAgADExsZyXysgKioK7du3x5EjR7zmePb54CMoKAi9e/fGmjVrzK9VV1djzZo1SEpK0rBk3qtVq1aIi4uz2qeFhYXYunWreZ8mJSUhPz8fO3fuNC+zdu1aVFdXIzEx0bzMhg0bUFFRYV5m1apV6NChAxo0aKDSt9GWIAiYPHkyFi9ejLVr16JVq1ZW7/fu3RuBgYFW+zojIwOZmZlW+zotLc0q2Fu1ahUiIiLQqVMn8zKW66hdxsjnQHV1NcrKyriPZTRkyBCkpaUhNTXV/NenTx+MHTvW/P/c1/IrLi7G0aNH0aRJE+85nmVJW9W5RYsWCcHBwcKCBQuE/fv3Cw8//LAQFRVllelL1oqKioTdu3cLu3fvFgAI7733nrB7927h5MmTgiDUdLWNiooSli5dKuzdu1e444477Ha17dmzp7B161Zh48aNQrt27ay62ubn5wuxsbHC/fffL6SnpwuLFi0SwsLCDNXV9pFHHhEiIyOF9evXW3Wbu3TpknmZiRMnCs2bNxfWrl0r7NixQ0hKShKSkpLM79d2mxs6dKiQmpoqrFixQmjcuLHdbnNPP/20cODAAWH27NmG6pr43HPPCSkpKcLx48eFvXv3Cs8995xgMpmElStXCoLAfawky94ugsB9LYcnn3xSWL9+vXD8+HHhr7/+EpKTk4Xo6GghNzdXEATv2MeGCD4EQRA++ugjoXnz5kJQUJDQr18/YcuWLVoXSdfWrVsnAKjzN27cOEEQarrbvvTSS0JsbKwQHBwsDBkyRMjIyLBax4ULF4QxY8YI9evXFyIiIoTx48cLRUVFVsvs2bNHGDBggBAcHCw0bdpUeOutt9T6irpgbx8DEObPn29e5vLly8Kjjz4qNGjQQAgLCxPuvPNO4ezZs1brOXHihDBixAghNDRUiI6OFp588kmhoqLCapl169YJPXr0EIKCgoTWrVtbbcPX/eMf/xBatGghBAUFCY0bNxaGDBliDjwEgftYSbbBB/e150aPHi00adJECAoKEpo2bSqMHj1aOHLkiPl9b9jHJkEQBHnaUIiIiIhc8/mcDyIiItIXBh9ERESkKgYfREREpCoGH0RERKQqBh9ERESkKgYfREREpCoGH0RERKQqBh9ERESkKgYfREREpCoGH0RERKQqBh9ERESkKgYfREREpKr/B3I/p9LIKYEcAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np\n", + "import matplotlib.pylab as plt\n", + "\n", + "xs = np.asarray([[0, 1, 0, 1, 0],\n", + " [0, 0, 1, 1, 0],\n", + " [1, 1, 0, 1, 0],\n", + " [1, 1, 1, 0, 1],\n", + " [0, 0, 0, 1, 0]])\n", + "\n", + "# ws is now hidden\n", + "ys = np.asarray([[0],\n", + " [1],\n", + " [1],\n", + " [1],\n", + " [0]])\n", + "\n", + "ins = 5\n", + "outs = 1\n", + "\n", + "def weights(ins, outs):\n", + " ws = np.random.randn(ins, outs)\n", + " return ws\n", + "\n", + "ws = weights(ins, outs)\n", + "\n", + "ers = []\n", + "for i in range(5000):\n", + " yh = xs @ ws\n", + " e = yh - ys\n", + " e = np.sum(np.abs(e))\n", + " if e < 0.05:\n", + " print(\"found solution\")\n", + " print(ws)\n", + " else:\n", + " ws = weights(ins, outs)\n", + " ers.append(e)\n", + "\n", + "plt.figure(1)\n", + "plt.plot(ers)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "No Solution! We need better learning! we'll adopt a strategy where instead of guessing all new eights, we make changes to our weights and if our changes make an improvement, we keep them. We'll iterate like this. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "found solution\n", + "[[ 1.0280221 ]\n", + " [ 0.01183635]\n", + " [ 1.01485508]\n", + " [-0.01320741]\n", + " [-1.05673078]]\n" + ] + }, + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAAGdCAYAAABO2DpVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAApyElEQVR4nO3de3RU9b338c/MZGaSkBsQkhCSIArihUsjCqXWSyUVqEexntNay6qX02OPFltdWB8O7VM9+pzTsOpZtj3WQ3m6qvY82mI9j5f1WC9HUUQroCAoeEkBEaLkwsXcyWSS+T1/TGZgJBAm2Xt2Zvb7tdasNbNnz8z3l50wH377t38/jzHGCAAAwAJepwsAAACZg2ABAAAsQ7AAAACWIVgAAADLECwAAIBlCBYAAMAyBAsAAGAZggUAALBMVqo/MBKJaN++fcrPz5fH40n1xwMAgCEwxqi9vV3l5eXyeo/fL5HyYLFv3z5VVlam+mMBAIAF6uvrVVFRcdznUx4s8vPzJUULKygoSPXHAwCAIWhra1NlZWX8e/x4Uh4sYqc/CgoKCBYAAKSZwYYxMHgTAABYhmABAAAsQ7AAAACWIVgAAADLECwAAIBlCBYAAMAyBAsAAGAZggUAALAMwQIAAFiGYAEAACxDsAAAAJYhWAAAAMukfBEyu9z333VqD/Wq5sxSnT+52OlyAABwpYwJFr99bbcOh/v07LYGbfxxjdPlAADgShlzKuQb51ZIkg519jhcCQAA7pUxweL2S6dKksJ9Rj29EYerAQDAnTImWOQGfPH7XT29DlYCAIB7ZUyw8Pu8CmRFm/Npy2GHqwEAwJ0yJlhI0qj+XovL/v11tXQx1gIAgFTLqGDxnS9OjN/fc7DLwUoAAHCnjAoWSy+dqikleZKkTsZZAACQchkVLCQpNxidmqMr1OdwJQAAuE/GBYvYOIuuMMECAIBUy7hgEbvstCvEqRAAAFIt44LFuPxsSdI/PbFN3fRaAACQUhkXLL5ePSF+/6P9nQ5WAgCA+2RcsJg9aYwKc/ySpN4IU3sDAJBKGRcsJKkoNxoswn3G4UoAAHCXjAwWWV6PJCncR48FAACplJHBwu+LNquXHgsAAFIqo4MFPRYAAKRWhgaL6KmQHoIFAAAplZHBIotTIQAAOCIjg0WAUyEAADgiI4NFlo+rQgAAcEJGBovY4M3m9pDDlQAA4C4ZGSxM/9CKVz5sdrYQAABcJiODxSljcyVJucEshysBAMBdMjJYnHvKGElSR3fY4UoAAHCXjAwWef09FZ0hlk0HACCVMjNYZEeDRV1Tu7Z90upwNQAAuEdGBovxhdnx+//7tY8crAQAAHfJyGBRWpCtb8yqkCR1hnodrgYAAPfIyGAhSV+eUixJCvUyzgIAgFTJ2GARzIo2LRRm9k0AAFIlg4OFT5IU6iVYAACQKhkcLPp7LDgVAgBAymRusPDTYwEAQKplbrDo77HYc7BLJrZ4CAAAsNWwgsWKFSvk8Xh02223WVSOdUoKgvH7u/Z3OlgJAADuMeRg8dZbb2nVqlWaMWOGlfVYpiT/yCRZzGUBAEBqDClYdHR0aPHixfrtb3+r0aNHW12TZU4dN0qS1B1mACcAAKkwpGCxZMkSXXbZZaqpqRl031AopLa2toRbqsQuOe1mACcAACmRlewLVq9erbfffltvvfXWSe1fW1uru+++O+nCrJDtj02SRY8FAACpkFSPRX19vW699VY9+uijys7OHvwFkpYvX67W1tb4rb6+fkiFDkU2PRYAAKRUUj0WmzdvVnNzs84555z4tr6+Pq1bt06//vWvFQqF5PP5El4TDAYVDAY//1YpEezvsfjksy5HPh8AALdJKljMmzdP27ZtS9h2ww036IwzztCyZcuOCRUjxbq/7tf3L57sdBkAAGS8pIJFfn6+pk2blrBt1KhRGjt27DHbR4KpZflaW7dfgayRGXgAAMg0GTvzpiRVV0Yvhe3oDjtcCQAA7pD0VSGft3btWgvKsEd+drR5HUyQBQBASmR0j0U8WHQTLAAASIWMDhZ5wWiwaKfHAgCAlMjsYHHUqRBWOAUAwH4ZHSwKsv2SJGOkzh5m3wQAwG4ZHSyCWV5leT2SpAPtIYerAQAg82V0sPB4PPL7ok1c82Gzw9UAAJD5MjpYSNKk4ujS6Yc66bEAAMBuGR8svja9TJL0wCu7HK4EAIDMl/HBYuLYaI9FYY7f4UoAAMh8GR8sqquKJEndYa4KAQDAbhkfLLL90QXIQr0RRSLMZQEAgJ1cEyykaLgAAAD2yfxgkXWkiZwOAQDAXhkfLLJ8Xvl90UmyunsJFgAA2Cnjg4UkZWdFT4d0hzkVAgCAnVwRLIL+WLCgxwIAADu5Ilhk+6PNJFgAAGAvVwSLHD+nQgAASAVXBItsToUAAJASLgkWnAoBACAVXBIsoj0WrYfDDlcCAEBmc1Ww+KcntjlcCQAAmc0VwSK2dLok7W8POVgJAACZzRXB4uvVFRqdG102vaWrx+FqAADIXK4IFpLk80ab2ssKpwAA2MY1wSLLG10vpI9gAQCAbVwTLHwECwAAbOe6YMGpEAAA7OOaYMGpEAAA7OeaYOElWAAAYDvXBAt6LAAAsJ9rgsWRMRascAoAgF1cFywihh4LAADs4rpg0dtHsAAAwC6uCRaMsQAAwH6uCRZeD/NYAABgN9cEiywfYywAALCba4JFfBEyxlgAAGAb9wSLaIcFYywAALCRe4JFf4/FSx80OVwJAACZyzXBoiMUliT1j+EEAAA2cE2w+Oa5lZKkrp4+hysBACBzuSZYjApmSZI6Qr0OVwIAQOZyTbDI6w8WXSF6LAAAsItrggU9FgAA2M81wSLbH21qqJceCwAA7OKaYJHVf7lpmAmyAACwjWuChd8XW9004nAlAABkLtcEi9iy6WFm3gQAwDauCRZ+X7SpTOkNAIB9XBMssvp7LPoiRoYVTgEAsIV7goXvSFMZwAkAgD1cEyxigzclqTfCAE4AAOzgmmARG7wp0WMBAIBdXBMs/N4jTWUAJwAA9nBNsPB6PYp1WjCXBQAA9nBNsJCODOBkLgsAAOzhqmDh9zL7JgAAdnJVsIjPvsngTQAAbOGqYMHsmwAA2MtVwSLLF+ux4FQIAAB2cFew6L/ktJceCwAAbOGqYMHS6QAA2MtVwYLBmwAA2CupYLFy5UrNmDFDBQUFKigo0Ny5c/Xcc8/ZVZvlGLwJAIC9kgoWFRUVWrFihTZv3qxNmzbpkksu0aJFi/Tee+/ZVZ+l4oM3WYQMAABbZCWz8+WXX57w+F//9V+1cuVKbdiwQWeffbalhdkhPniTUyEAANgiqWBxtL6+Pj3++OPq7OzU3Llzj7tfKBRSKBSKP25raxvqRw4bgzcBALBX0oM3t23bpry8PAWDQd1000168sknddZZZx13/9raWhUWFsZvlZWVwyp4OOKDNxljAQCALZIOFlOnTtXWrVu1ceNG3Xzzzbruuuv0/vvvH3f/5cuXq7W1NX6rr68fVsHDcWTwJj0WAADYIelTIYFAQJMnT5YkzZo1S2+99ZZ+9atfadWqVQPuHwwGFQwGh1elRbK43BQAAFsNex6LSCSSMIZiJIsvm84YCwAAbJFUj8Xy5cu1cOFCVVVVqb29XX/4wx+0du1avfDCC3bVZ6lRAZ8kqSvU53AlAABkpqSCRXNzs6699lo1NDSosLBQM2bM0AsvvKCvfvWrdtVnqfxsvySpvTvscCUAAGSmpILF7373O7vqSIn87Ghz27p7Ha4EAIDM5Kq1Qo70WBAsAACwg8uCRbTHglMhAADYw6XBgh4LAADs4KpgURA7FRKixwIAADu4KljEeiy2f9rGXBYAANjAVcFi4thR8fv/9t91DlYCAEBmclWwGJcf1KTiaLjYe7DL4WoAAMg8rgoWknTLV6LrnHT2MPsmAABWc12wGBWMTevNlSEAAFjNdcEiNxAdwNlFjwUAAJZzYbDo77HooccCAACruS5Y5MSDBT0WAABYzXXBIpgVbTLzWAAAYD3XBQu/L9rknl6CBQAAVnNtsAj3GYcrAQAg87guWAT6T4X09EVkDOECAAAruS5YxHosJHotAACwmuuCReCoYNHDAE4AACzlvmCRdVSPBQM4AQCwlOuChc/rkdcTvc8lpwAAWMt1wUI60msRoscCAABLuTJYZPujs28eDjP7JgAAVnJlsCjOC0qS9reHHK4EAIDM4spgUZJPsAAAwA6uDBbjCBYAANjCncEidiqkg2ABAICVXBksSgqiwaK5rdvhSgAAyCyuDBbxUyH0WAAAYCl3Bou8bEnSX3YeVCTCeiEAAFjFlcHi9NK8+P09h7ocrAQAgMziymBRUpAdvx/qZZIsAACs4spgIUkTinIkSaEw03oDAGAV1waL2HohLJ0OAIB13BssfP3BgoXIAACwjHuDRRbBAgAAq7k2WATjS6czeBMAAKu4NlgE4sGCHgsAAKzi+mDBqRAAAKzj3mDh46oQAACs5t5gETsVwjwWAABYxrXBIpjlk0SPBQAAVnJtsGCMBQAA1nNtsAgSLAAAsJxrg0WAeSwAALCca4MFPRYAAFjPtcEidrnppy2HHa4EAIDM4dpgEfRHm/7SB83avOeQw9UAAJAZXBssLjq9JH7/w8Z2BysBACBzuDZYTC3L19/MGC+JcRYAAFjFtcFCOjLOIswkWQAAWMLdwYIrQwAAsJSrg4U/vhCZcbgSAAAyg6uDBT0WAABYy9XBws8YCwAALOXqYEGPBQAA1nJ3sPB5JNFjAQCAVdwdLOILkREsAACwgquDxahgliSpI9TrcCUAAGQGVweL/Gy/JKm9O+xwJQAAZAaXB4toj0V7Nz0WAABYwdXBoiDeY0GwAADACi4PFtEeizZOhQAAYAlXB4v8o3osjGFabwAAhsvVwaIgJ9pj0RcxOhzuc7gaAADSn6uDRY7fJ583OknW79/Y43A1AACkv6SCRW1trc477zzl5+erpKREV155perq6uyqzXYej0c5fp8k6fn3Gh2uBgCA9JdUsHj11Ve1ZMkSbdiwQS+++KLC4bAuvfRSdXZ22lWf7VZ9Z5Yk6Z36FibKAgBgmLKS2fn5559PePzwww+rpKREmzdv1oUXXmhpYaly7imj4/eb2rqVNy7PwWoAAEhvSQWLz2ttbZUkjRkz5rj7hEIhhUKh+OO2trbhfKTlglk+jcsPan97SKEwa4YAADAcQx68GYlEdNttt+n888/XtGnTjrtfbW2tCgsL47fKysqhfqRtgvHFyLgyBACA4RhysFiyZIm2b9+u1atXn3C/5cuXq7W1NX6rr68f6kfaJsgqpwAAWGJIp0JuueUWPfPMM1q3bp0qKipOuG8wGFQwGBxScakSzIpeGUKwAABgeJIKFsYY/eAHP9CTTz6ptWvXatKkSXbVlVJBf3+PBZNkAQAwLEkFiyVLlugPf/iDnn76aeXn56uxMTr3Q2FhoXJycmwpMBVip0JYjAwAgOFJaozFypUr1draqosvvljjx4+P3x577DG76ksJvy/6Y/jp09sdrgQAgPSW9KmQTFRdWaTXdhxQXnBYV98CAOB6rl4rJObymeWSpJ4+Bm8CADAcBAtJgf4xFj1cFQIAwLAQLESwAADAKgQLSYH+wZu9EaNIJDPHkQAAkAoECx3psZAYZwEAwHAQLESwAADAKgQLHTkVIjHOAgCA4SBYSPJ4PPFwQbAAAGDoCBb9svvXC+nqYVpvAACGimDRryDHL0lqY70QAACGjGDRrzAWLA6HHa4EAID0RbDoV5AdDRbXP/QW4ywAABgigkW/L502Nn5/Z3OHg5UAAJC+CBb9fjBviirH5EiSPm057HA1AACkJ4LFUWZWFEmSVr26y9lCAABIUwSLo5w5vkCS1NDa7XAlAACkJ4LFUS45o0QS03oDADBUBIuj+Ptn3wwTLAAAGBKCxVGY1hsAgOEhWBzFn+WRRI8FAABDRbA4ypFTIUbGGIerAQAg/RAsjhLIOvLjCPcRLAAASBbB4iixMRYSp0MAABgKgsVR/AQLAACGhWBxFJ/XI290/CZXhgAAMAQEi8/JDWRJki67/3U1tLJmCAAAySBYfM7CaWWSpP3tIa37636HqwEAIL0QLD7nZ1dN1+mleZKk9u5eh6sBACC9ECw+x+/zas6ksZKktsNhh6sBACC9ECwGUJATHWfRRo8FAABJIVgMID/bL0lq66bHAgCAZBAsBpCfHe2xYIwFAADJIVgMoCDWY8EYCwAAkkKwGAA9FgAADA3BYgAFOYyxAABgKAgWAyigxwIAgCEhWAwgdlVIe3dYxrB8OgAAJ4tgMYDY4M2IkeoPsV4IAAAni2AxgGy/V4Gs6I/mqpVv0GsBAMBJIlgMwOPx6NuzqyRJBzpCWlvHYmQAAJwMgsVx3Pk3Zyk/GB3E+clnXQ5XAwBAeiBYHIfX69FlM8ZLklq6uOwUAICTQbA4gcLc6CDOJ7Z86nAlAACkB4LFCZQVZEuSdh/o1IaPDjpcDQAAIx/B4gS+Pacqfv+Jtz9xsBIAANIDweIEglk+/fCSyZKkrp4+h6sBAGDkI1gMorwoR5LUHSZYAAAwGILFIHICPknSYYIFAACDIlgMItvfHyw4FQIAwKAIFoPI6Q8Wb+9tUUeI1U4BADgRgsUg8vqXUJek+1/e4WAlAACMfASLQcysKFJxXlCStOrVj1iQDACAEyBYDMLn9ejB68+NP55336tqZYpvAAAGRLA4CTMqilRdVSRJ+mh/p1a+usvZggAAGKEIFifpv276kgJZ0R/XgY6Qw9UAADAyESxOks/r0bIFZ0iSenojDlcDAMDIRLBIQrC/xyLUy5wWAAAMhGCRhNipEHosAAAYGMEiCUd6LAgWAAAMhGCRhGBWdBZOggUAAAMjWCQhyKkQAABOiGCRBAZvAgBwYgSLJAT9LKEOAMCJECySkN+/IFlniGABAMBAkg4W69at0+WXX67y8nJ5PB499dRTNpQ1MuUFo8Gio5vl0wEAGEjSwaKzs1MzZ87UAw88YEc9I9qo/mDR0xdRZ4hwAQDA52Ul+4KFCxdq4cKFdtQy4uUFs+TxSMZIP3/+Q929aJrTJQEAMKLYPsYiFAqpra0t4ZaufF6PLplaIkla/9FBh6sBAGDksT1Y1NbWqrCwMH6rrKy0+yNt9cN5UyQxgBMAgIHYHiyWL1+u1tbW+K2+vt7uj7RVToBLTgEAOJ6kx1gkKxgMKhgM2v0xKZMTm8uih2ABAMDnMY9FkoL+6I+su7dPxhiHqwEAYGRJuseio6NDO3fujD/evXu3tm7dqjFjxqiqqsrS4kaiWI+FMdHFyLL7HwMAgCH0WGzatEnV1dWqrq6WJC1dulTV1dW68847LS9uJDo6SBzoCDlYCQAAI0/SPRYXX3yxq08B+H1eTRybqz0Hu7Rlb4sqRuc6XRIAACMGYyyG4MyyAklSS1ePw5UAADCyECyGoDDHL0lqPRx2uBIAAEYWgsUQFOREzyD923//VQcZZwEAQBzBYghOL82P3//R4+84WAkAACMLwWII/m5Whb4ydZwk6ZW6/ZwSAQCgH8FiCDwej+775hfij/e3czoEAACJYDFko0cFNHFs9FLTz7g6BAAASQSLYRmdG5AkvVPf4mwhAACMEASLYZhckidJ+pc/f6BHNuxxuBoAAJxHsBiGa2ZXxu9/0NDmYCUAAIwMBIthmDVxjO6YP1WSFO6LOFwNAADOI1gMU8AX/RGG+9y7fgoAADEEi2Hy+zySpB56LAAAIFgMVyAruox6uJdgAQAAwWKYYj0WjLEAAIBgMWyBLMZYAAAQQ7AYJn//4E3GWAAAQLAYtniwYIwFAAAEi+GKjbH4aH+Hbv/TO/r4QKfDFQEA4ByCxTCV5GdLktq6e/V/3/5E/7meqb0BAO5FsBims8oL9NAN52n+2aWSpNbDYYcrAgDAOQQLC3xlaom+PLlYktQZ6nW4GgAAnEOwsMioYJYkqbOHYAEAcC+ChUViweK1HQf0acthh6sBAMAZBAuLlBVkx+//5xsfO1cIAAAOIlhYZEZFoaaW5kuS2roZwAkAcCeChUU8Ho/+blaFJKk7zGRZAAB3IlhYKOiP/jhDvX0OVwIAgDMIFhbK7l9CnR4LAIBbESwsRI8FAMDtCBYWCtJjAQBwOYKFhbL7eywO99BjAQBwJ4KFhYrzgpKk9xva9H827FFfxDhcEQAAqUWwsNCp40bFl1H/6VPb9cauAw5XBABAahEsLJQbyNL911THHze0dDtYDQAAqUewsNiCaeP19eoJkqSWwz0OVwMAQGoRLGxQlOuXJH3WxdTeAAB3IVjYoCgnIElqIVgAAFyGYGGDWI9FK6dCAAAuQ7CwQSxYPLutUf+1+ROHqwEAIHUIFjaoGJ0Tv/8//usdllEHALgGwcIG51SN1i+v/oIkKWKkplYuOwUAuAPBwgYej0dXVk/QlJI8SVJTW8jhigAASA2ChY1KCqJTfDe302MBAHAHgoWNSvKzJUnN7fRYAADcgWBho1iPRVMbPRYAAHcgWNhoXP9qpwc6mM8CAOAOWU4XkMnG5UeDxfPbGzTrfx1/pdMvnjpWv/52tTweT6pKAwDAFgQLG82oKJLf51G4z+hg5/F7Lf68rUEFT2ap5sxSzTuzNIUVAgBgLY8xxqTyA9va2lRYWKjW1lYVFBSk8qMdcaizRwc6jj9481cv7dCftzXEH187d6Lys63Pe+VFOfrWeVXyeekVAQAk72S/v+mxsNmYUQGNGRU47vN3XXGWTivJ07+v2SFJ+s/1e2yrJeDz6hvnVtr2/gAAECwcVpKfraVfPV1fmTpOz7zboIgNHUgP/eVjSdK+Fq5OAQDYi2AxQlRXjVZ11Whb3juY5dNvXt2l1sOsWQIAsBfBwgViq60+8+4+fdjYZvvnjc0L6l+unKbCHL/tnwUAGFkIFi4wqXiUpOgMoKmaBfT/vbNPk0vy9D8vO1OlBdnK8ft0Sn8dAIDMxVUhLhCJGL2x66AOddk/Udfjm+r12o6B5+y4Z9HZunbuKbbXAACwHleFIM7r9ejLU4pT8lmXzxivuqZ2rfvrfj30l4/VGzHq7ulTe6hXr9bt10Wnj1Pl6Fx5uewVADISPRaw3XPbGnTzo2/HH19VPUH3Xf0F5woCACTtZL+/WSsEtpt72lhNLc1XbsAnSdq4+5DDFQEA7EKPBVLm05bDOn/Fy/J6pAumjLP1s+xcdmXMqIDu/JuzVJR7/InPACDTMMYCI05JflCFOX61Hg7r1b/ud7qcYTmzrEDXzKlyugzANTySRgX5ykoH9FggpXY0teudT1qdLmPInt/eqJc+aHK6DMCVSguCKi/KOeE+J9NZeTIrSZ/c+5zEPifzToPsMtg7eD0efePcCl11TsXgnzUM9FhgRJpSmq8ppflOlzFkp4zN1Ru7Dqirp8/pUgDXaWoLqaktNXPxpJv1Hx3U+l0Hle33KZjl1Q/mTXFskkJ6LIAkhfsi6ouk9M8GcL2DnT16f9+JZw4+ma+zk/nLPblvxZP4rJN4n8F2Gew9wn0R3fbY1mO2v/mTeSrJzx68gCTQYwHYxO/zyu9zugrAXSYU5WjCIKdB3GpySZ42fHRQod6IQr0R9fRGlB90bkmFIQWLBx54QPfee68aGxs1c+ZM3X///Zo9e7bVtQEAgEFMm1CoaRMKnS4jLul5LB577DEtXbpUd911l95++23NnDlT8+fPV3Nzsx31AQCANJJ0sLjvvvt044036oYbbtBZZ52l3/zmN8rNzdWDDz5oR30AACCNJBUsenp6tHnzZtXU1Bx5A69XNTU1Wr9+/YCvCYVCamtrS7gBAIDMlFSwOHDggPr6+lRaWpqwvbS0VI2NjQO+pra2VoWFhfFbZWXl0KsFAAAjmu1rhSxfvlytra3xW319vd0fCQAAHJLUVSHFxcXy+XxqakqcebCpqUllZWUDviYYDCoYDA69QgAAkDaS6rEIBAKaNWuW1qxZE98WiUS0Zs0azZ071/LiAABAekl6HoulS5fquuuu07nnnqvZs2frl7/8pTo7O3XDDTfYUR8AAEgjSQeLq6++Wvv379edd96pxsZGfeELX9Dzzz9/zIBOAADgPqwVAgAABnWy39+2XxUCAADcg2ABAAAsQ7AAAACWSfmy6bEhHUztDQBA+oh9bw82NDPlwaK9vV2SmNobAIA01N7ersLC4y/TnvKrQiKRiPbt26f8/Hx5PB7L3retrU2VlZWqr6931dUmbm235N620253tVtyb9tp98hqtzFG7e3tKi8vl9d7/JEUKe+x8Hq9qqiosO39CwoKRtSBSBW3tltyb9tpt/u4te20e+Q4UU9FDIM3AQCAZQgWAADAMhkTLILBoO666y7XraTq1nZL7m077XZXuyX3tp12p2e7Uz54EwAAZK6M6bEAAADOI1gAAADLECwAAIBlCBYAAMAyGRMsHnjgAZ1yyinKzs7WnDlz9Oabbzpd0pDV1tbqvPPOU35+vkpKSnTllVeqrq4uYZ+LL75YHo8n4XbTTTcl7LN3715ddtllys3NVUlJie644w719vamsilJ++d//udj2nXGGWfEn+/u7taSJUs0duxY5eXl6W//9m/V1NSU8B7p2O5TTjnlmHZ7PB4tWbJEUuYc73Xr1unyyy9XeXm5PB6PnnrqqYTnjTG68847NX78eOXk5KimpkY7duxI2OfQoUNavHixCgoKVFRUpO9+97vq6OhI2Ofdd9/VBRdcoOzsbFVWVurnP/+53U0b1InaHg6HtWzZMk2fPl2jRo1SeXm5rr32Wu3bty/hPQb6PVmxYkXCPiOt7YMd8+uvv/6YNi1YsCBhn3Q85oO1e6C/d4/Ho3vvvTe+Tzoeb0mSyQCrV682gUDAPPjgg+a9994zN954oykqKjJNTU1OlzYk8+fPNw899JDZvn272bp1q/na175mqqqqTEdHR3yfiy66yNx4442moaEhfmttbY0/39vba6ZNm2ZqamrMli1bzLPPPmuKi4vN8uXLnWjSSbvrrrvM2WefndCu/fv3x5+/6aabTGVlpVmzZo3ZtGmT+eIXv2i+9KUvxZ9P13Y3NzcntPnFF180kswrr7xijMmc4/3ss8+an/zkJ+aJJ54wksyTTz6Z8PyKFStMYWGheeqpp8w777xjrrjiCjNp0iRz+PDh+D4LFiwwM2fONBs2bDCvvfaamTx5srnmmmviz7e2tprS0lKzePFis337dvPHP/7R5OTkmFWrVqWqmQM6UdtbWlpMTU2Neeyxx8yHH35o1q9fb2bPnm1mzZqV8B4TJ04099xzT8LvwdH/LozEtg92zK+77jqzYMGChDYdOnQoYZ90POaDtfvo9jY0NJgHH3zQeDwes2vXrvg+6Xi8jTEmI4LF7NmzzZIlS+KP+/r6THl5uamtrXWwKus0NzcbSebVV1+Nb7vooovMrbfeetzXPPvss8br9ZrGxsb4tpUrV5qCggITCoXsLHdY7rrrLjNz5swBn2tpaTF+v988/vjj8W0ffPCBkWTWr19vjEnfdn/erbfeak477TQTiUSMMZl5vD//j20kEjFlZWXm3nvvjW9raWkxwWDQ/PGPfzTGGPP+++8bSeatt96K7/Pcc88Zj8djPv30U2OMMf/xH/9hRo8endDuZcuWmalTp9rcopM30BfN57355ptGktmzZ09828SJE80vfvGL475mpLf9eMFi0aJFx31NJhzzkzneixYtMpdccknCtnQ93ml/KqSnp0ebN29WTU1NfJvX61VNTY3Wr1/vYGXWaW1tlSSNGTMmYfujjz6q4uJiTZs2TcuXL1dXV1f8ufXr12v69OkqLS2Nb5s/f77a2tr03nvvpabwIdqxY4fKy8t16qmnavHixdq7d68kafPmzQqHwwnH+owzzlBVVVX8WKdzu2N6enr0yCOP6O///u8TFurL1OMds3v3bjU2NiYc38LCQs2ZMyfh+BYVFencc8+N71NTUyOv16uNGzfG97nwwgsVCATi+8yfP191dXX67LPPUtSa4WttbZXH41FRUVHC9hUrVmjs2LGqrq7Wvffem3C6K13bvnbtWpWUlGjq1Km6+eabdfDgwfhzbjjmTU1N+vOf/6zvfve7xzyXjsc75YuQWe3AgQPq6+tL+AdVkkpLS/Xhhx86VJV1IpGIbrvtNp1//vmaNm1afPu3v/1tTZw4UeXl5Xr33Xe1bNky1dXV6YknnpAkNTY2DvgziT03Us2ZM0cPP/ywpk6dqoaGBt1999264IILtH37djU2NioQCBzzD21paWm8Tena7qM99dRTamlp0fXXXx/flqnH+2ixOgdqx9HHt6SkJOH5rKwsjRkzJmGfSZMmHfMesedGjx5tS/1W6u7u1rJly3TNNdckLEL1wx/+UOecc47GjBmjN954Q8uXL1dDQ4Puu+8+SenZ9gULFuiqq67SpEmTtGvXLv34xz/WwoULtX79evl8Plcc89///vfKz8/XVVddlbA9XY932geLTLdkyRJt375dr7/+esL2733ve/H706dP1/jx4zVv3jzt2rVLp512WqrLtMzChQvj92fMmKE5c+Zo4sSJ+tOf/qScnBwHK0ud3/3ud1q4cKHKy8vj2zL1eONY4XBY3/zmN2WM0cqVKxOeW7p0afz+jBkzFAgE9I//+I+qra1N2+mfv/Wtb8XvT58+XTNmzNBpp52mtWvXat68eQ5WljoPPvigFi9erOzs7ITt6Xq80/5USHFxsXw+3zFXBjQ1NamsrMyhqqxxyy236JlnntErr7wy6FLzc+bMkSTt3LlTklRWVjbgzyT2XLooKirS6aefrp07d6qsrEw9PT1qaWlJ2OfoY53u7d6zZ49eeukl/cM//MMJ98vE4x2r80R/y2VlZWpubk54vre3V4cOHcqI34FYqNizZ49efPHFQZfMnjNnjnp7e/Xxxx9LSu+2x5x66qkqLi5O+N3O5GP+2muvqa6ubtC/eSl9jnfaB4tAIKBZs2ZpzZo18W2RSERr1qzR3LlzHaxs6IwxuuWWW/Tkk0/q5ZdfPqarayBbt26VJI0fP16SNHfuXG3bti3hDzL2D9VZZ51lS9126Ojo0K5duzR+/HjNmjVLfr8/4VjX1dVp79698WOd7u1+6KGHVFJSossuu+yE+2Xi8Z40aZLKysoSjm9bW5s2btyYcHxbWlq0efPm+D4vv/yyIpFIPGzNnTtX69atUzgcju/z4osvaurUqSO6SzwWKnbs2KGXXnpJY8eOHfQ1W7duldfrjZ8qSNe2H+2TTz7RwYMHE363M/WYS9EeylmzZmnmzJmD7ps2x9vRoaMWWb16tQkGg+bhhx8277//vvne975nioqKEkbIp5Obb77ZFBYWmrVr1yZcZtTV1WWMMWbnzp3mnnvuMZs2bTK7d+82Tz/9tDn11FPNhRdeGH+P2OWHl156qdm6dat5/vnnzbhx40bc5Yefd/vtt5u1a9ea3bt3m7/85S+mpqbGFBcXm+bmZmNM9HLTqqoq8/LLL5tNmzaZuXPnmrlz58Zfn67tNiZ6NVNVVZVZtmxZwvZMOt7t7e1my5YtZsuWLUaSue+++8yWLVviVz6sWLHCFBUVmaefftq8++67ZtGiRQNeblpdXW02btxoXn/9dTNlypSESw9bWlpMaWmp+c53vmO2b99uVq9ebXJzcx2/BO9Ebe/p6TFXXHGFqaioMFu3bk34u4+N+H/jjTfML37xC7N161aza9cu88gjj5hx48aZa6+9Nv4ZI7HtJ2p3e3u7+dGPfmTWr19vdu/ebV566SVzzjnnmClTppju7u74e6TjMR/sd92Y6OWiubm5ZuXKlce8Pl2PtzEZcrmpMcbcf//9pqqqygQCATN79myzYcMGp0saMkkD3h566CFjjDF79+41F154oRkzZowJBoNm8uTJ5o477kiY18AYYz7++GOzcOFCk5OTY4qLi83tt99uwuGwAy06eVdffbUZP368CQQCZsKECebqq682O3fujD9/+PBh8/3vf9+MHj3a5Obmmq9//eumoaEh4T3Ssd3GGPPCCy8YSaauri5heyYd71deeWXA3+3rrrvOGBO95PSnP/2pKS0tNcFg0MybN++Yn8fBgwfNNddcY/Ly8kxBQYG54YYbTHt7e8I+77zzjvnyl79sgsGgmTBhglmxYkWqmnhcJ2r77t27j/t3H5vLZPPmzWbOnDmmsLDQZGdnmzPPPNP87Gc/S/gCNmbktf1E7e7q6jKXXnqpGTdunPH7/WbixInmxhtvPOY/hel4zAf7XTfGmFWrVpmcnBzT0tJyzOvT9XgbYwzLpgMAAMuk/RgLAAAwchAsAACAZQgWAADAMgQLAABgGYIFAACwDMECAABYhmABAAAsQ7AAAACWIVgAAADLECwAAIBlCBYAAMAyBAsAAGCZ/w/CEs80iZFpmAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np\n", + "import matplotlib.pylab as plt\n", + "\n", + "xs = np.asarray([[0, 1, 0, 1, 0],\n", + " [0, 0, 1, 1, 0],\n", + " [1, 1, 0, 1, 0],\n", + " [1, 1, 1, 0, 1],\n", + " [0, 0, 0, 1, 0]])\n", + "\n", + "# ws = np.asarray([1, 0, 1, 0, -1]) # hidden!\n", + "\n", + "ys = np.asarray([[0],\n", + " [1],\n", + " [1],\n", + " [1],\n", + " [0]])\n", + "\n", + "ins = 5\n", + "outs = 1\n", + "\n", + "def weights(ins, outs):\n", + " ws = np.random.randn(ins, outs)\n", + " return ws\n", + "\n", + "ws = weights(ins, outs)\n", + "\n", + "ers = []\n", + "for i in range(5000):\n", + " yh = xs @ ws\n", + " e = yh - ys\n", + " e = np.sum(np.abs(e))\n", + " if e < 0.05:\n", + " print(\"found solution\")\n", + " print(ws)\n", + " break\n", + " else:\n", + " # mutation = weights(ins, outs) * 0.1\n", + " mutation = weights(ins, outs) * 0.03\n", + " cw = ws + mutation\n", + "\n", + " yh = xs @ cw\n", + " ce = yh - ys\n", + " ce = np.sum(np.abs(ce))\n", + "\n", + " if ce < e:\n", + " ws = cw\n", + " ers.append(e)\n", + "\n", + "plt.figure(1)\n", + "plt.plot(ers)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "That looks better, but it still doesn't find a solution. \n", + "\n", + "**Exercise**\n", + "Reduce the scaling factor on the mutation from 0.1 to 0.03 and re-run it. It should find a solution now! So we can add a break after our print statements. \n", + "\n", + "Verify that the identified weights are close to our commented out hidden weights!\n", + "\n", + "Change ys to 0, 0, 0, 3, 3 and re-run. No solution found, right? Even if we increase our number of tries? Might take a long time. \n", + "\n", + "## Non-liner stuff\n", + "\n", + "For these output values, we need to add a bias term because our data is not centered on zero. These are additional ones added on the end of the inputs and are necessare to model the shifts in the data. " + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "found solution\n", + "[[ 3.79725462e-03]\n", + " [-2.97033251e+00]\n", + " [-2.96683902e+00]\n", + " [-5.54670775e-01]\n", + " [ 5.41157497e+00]\n", + " [ 3.52382778e+00]]\n" + ] + }, + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAAGdCAYAAABO2DpVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAzrUlEQVR4nO3deXxU9b3/8fcsmcmeQEISAmETBAVEdhFra6Wixa211lpqXXpdcfficq1aaxW1/ixWvVTtldKHCmqr1boWEUWQfUdkUbawhAAhezKZzHx/f0wyMEKAwMwccub1fDzycHLOmZnPN0Dm7fd8F4cxxggAACAKnFYXAAAA7INgAQAAooZgAQAAooZgAQAAooZgAQAAooZgAQAAooZgAQAAooZgAQAAosYd7zcMBoPavn27MjIy5HA44v32AADgKBhjVFVVpcLCQjmdLfdLxD1YbN++XUVFRfF+WwAAEAXFxcXq3Llzi+fjHiwyMjIkhQrLzMyM99sDAICjUFlZqaKiovDneEviHiyab39kZmYSLAAAaGMON4yBwZsAACBqCBYAACBqCBYAACBqCBYAACBqCBYAACBqCBYAACBqCBYAACBqCBYAACBqCBYAACBqCBYAACBqCBYAACBqCBYAACBq4r4JWaw8/Z+1qqjza9xZPZWXmWx1OQAAJCTb9FhMXVisKXM3a3d1g9WlAACQsGwTLDyuUFP8gaDFlQAAkLhsEyySXKH94RuDBAsAAKxim2DhbuqxaGg0FlcCAEDisk2wSOJWCAAAlrNNsPBwKwQAAMvZJlgkcSsEAADL2SZYuJt6LLgVAgCAdWwTLJp7LL4prba4EgAAEpdtgsWGXTWSpIxk2ywmCgBAm2ObYDG8R3tJUiDIGAsAAKxim2DhcoTGWAQMwQIAAKvYJlg0D94MBAgWAABYxTbBwkmPBQAAlrNNsHA5m4IFYywAALAMwQIAAESNfYIFt0IAALCcfYIFgzcBALCcfYIFPRYAAFjOPsGCMRYAAFiOYAEAAKLGPsGi6VZIkFshAABYxjbBwtnUY7F6e6XFlQAAkLhsEywq6vySpIzkJIsrAQAgcdkmWPTITZO0r+cCAADEn22CRarXLUnyNwYtrgQAgMRlm2DhaVogyx8gWAAAYBXbBIskV6gpBAsAAKxjm2DhcYea4uNWCAAAlrFPsGjqsWigxwIAAMvYJ1g09Vg00GMBAIBlCBYAACBqbBMsvE3BorTKZ3ElAAAkLtsEi+QklySJ9bEAALCObYJFSlOwCBopyA6nAABYolXBIhAI6IEHHlD37t2VkpKiE044QY888ojMcbCjqNu1ryn+IOMsAACwgrs1Fz/xxBOaNGmSpkyZor59+2rRokW6+uqrlZWVpVtvvTVWNR4Rz37BojFg5G1VywAAQDS06uP3yy+/1EUXXaQxY8ZIkrp166apU6dqwYIFMSmuNdyufYMrGgPW96AAAJCIWnUr5PTTT9eMGTO0bt06SdLy5cs1e/ZsnXfeeTEprjXc+43aZJEsAACs0aoei3vvvVeVlZXq06ePXC6XAoGAHn30UY0dO7bF5/h8Pvl8+6aAVlZWHn21h+Bw7AsW1b5GdcjwxuR9AABAy1rVY/HGG2/o1Vdf1WuvvaYlS5ZoypQpeuqppzRlypQWnzNhwgRlZWWFv4qKio656Ja4mnotjofBpAAAJCKHacWncFFRke69916NGzcufOwPf/iDXnnlFa1Zs+agzzlYj0VRUZEqKiqUmZl5DKUfaODv/6O9tX5Nv+NM9crPiOprAwCQyCorK5WVlXXYz+9W3Qqpra2V0xnZyeFyuRQ8xPROr9crrzc+tyWaeywC9FgAAGCJVgWLCy64QI8++qi6dOmivn37aunSpXr66ad1zTXXxKq+VmkOFswKAQDAGq0KFs8++6weeOAB3XTTTSotLVVhYaGuv/56Pfjgg7Gqr1VcTQM4g/RYAABgiVYFi4yMDE2cOFETJ06MUTnHxtW0lkUjS3oDAGAJ2+wVIu3XY0GwAADAErYKFk4nPRYAAFjJVsGiefVNeiwAALCGrYKF00GPBQAAVrJVsGjeiIx1LAAAsIatgkXz4M0A61gAAGAJWwULJytvAgBgKVsFCwZvAgBgLVsFCwZvAgBgLVsFi/DgTYIFAACWsFewaNp51R9oebdVAAAQO7YKFkmuUHO4FQIAgDVsFixCt0LosQAAwBo2CxbNt0LosQAAwAq2ChbNgzcb6bEAAMAStgoWHheDNwEAsJKtgkVzj0UDt0IAALCErYJFstslSfI1BiyuBACAxGSrYJHqdUuSan0ECwAArGCrYJHmCfVY1DQ0WlwJAACJyVbBgh4LAACsZatgke4N9ViU1TZYXAkAAInJVsEiO8UjSaqu51YIAABWsFWw8LpDzWF3UwAArGGrYOFyNu0VEmSBLAAArGCrYOF20WMBAICV7BUsnM17hRAsAACwgr2CRfMmZNwKAQDAEvYKFs5Qc+ixAADAGvYKFuEeC4IFAABWsFewCI+x4FYIAABWsFewaJoVQo8FAADWsFewcHIrBAAAK9kyWASCRsYQLgAAiDebBYt9zaHXAgCA+LNXsGiaFSIx5RQAACvYKlg07xUisUgWAABWsFWwSHLta06dP2BhJQAAJCZbBYv9Oiy0cmuFdYUAAJCgbBUsHA6HPO5QkzbtqbW4GgAAEo+tgoUkndu3QJLka+RWCAAA8Wa7YJGR7JYkNTQyeBMAgHizXbBovhVCsAAAIP4IFgAAIGpsFyy8TVNOfQQLAADiznbBItnjkiTVs44FAABxZ7tg4WnqsWgI0GMBAEC82S9YNI2x8BMsAACIO9sFi+ZlvRsa2YQMAIB4s12waL4VsqOizuJKAABIPLYLFo6m/UKKy1jSGwCAeLNdsMhJ90qSslM9FlcCAEDisV2w6JiVLEmqqvdbXAkAAInHdsGiea+QqvpGGcMATgAA4sl2wSIzOUmS1Bg0qmORLAAA4sp2wSLV45LLGRrBWVXfaHE1AAAkFtsFC4fDEb4dUlbTYHE1AAAkFtsFC0nKSgndDllWXG5tIQAAJBhbBovahtDYihoft0IAAIgnWwaLUSflSZLqGhi8CQBAPNkyWCQnhbZO38zqmwAAxJUtg0XzfiE7K+strgQAgMRiy2CRkx5aztvRvHEIAACIC1sGi155GZKkUnosAACIq1YHi23btulXv/qVcnJylJKSov79+2vRokWxqO2oFbVPlcQOpwAAxJu7NRfv3btXI0eO1FlnnaUPP/xQHTp00Pr169WuXbtY1XdUOmSEdjitaQio3h8ID+YEAACx1apg8cQTT6ioqEiTJ08OH+vevXvUizpWmclueVxONQSC2ri7Rid1zLS6JAAAEkKrboW8++67GjJkiC699FLl5eVp4MCBeumll2JV21FzOBxqCAQlSSu3VlhcDQAAiaNVwWLDhg2aNGmSevXqpY8//lg33nijbr31Vk2ZMqXF5/h8PlVWVkZ8xcPgrqHbM1vL6+LyfgAAoJXBIhgMatCgQXrsscc0cOBAXXfddbr22mv1l7/8pcXnTJgwQVlZWeGvoqKiYy76SHTPTZMkLd5cFpf3AwAArQwWHTt21Mknnxxx7KSTTtKWLVtafM59992nioqK8FdxcfHRVdpK6d7Q8JHsFE9c3g8AALRy8ObIkSO1du3aiGPr1q1T165dW3yO1+uV1+s9uuqOQZ+C0FoWvkb2CwEAIF5a1WNxxx13aN68eXrsscf0zTff6LXXXtOLL76ocePGxaq+o+ZNCjXN1xi0uBIAABJHq4LF0KFD9fbbb2vq1Knq16+fHnnkEU2cOFFjx46NVX1HLdkdWrvC5ydYAAAQL626FSJJ559/vs4///xY1BJVzT0W9dwKAQAgbmy5V4gkeZt6LFjWGwCA+LFtsEhq2jp9b63f4koAAEgctg0W3XJSw48DQWNhJQAAJA7bBous1KTw42pfo4WVAACQOGwbLLxul1KadjWt4HYIAABxYdtgIUlpTatv0mMBAEB82DpYpHtDPRa1DQQLAADiwdbBItUT6rHYwpRTAADiwtbBYmdlvSSprKbB4koAAEgMtg4WZ/TKlSR9sHKHxZUAAJAYbB0sTswP7XC6ZEu5tYUAAJAgbB0sLjq1MPy4sp4ppwAAxJqtg0Wn7JTw4+p6ZoYAABBrtg4WDodD7dM8kqQqggUAADFn62AhSRnJoSmn35RWW1wJAAD2Z/tg4XI6JElvLCq2uBIAAOzP9sHizF4dJEnLt5ZbWwgAAAnA9sHi9BNyJLF1OgAA8WD7YNGnIFNSaPAm4QIAgNiyfbDokOENP164qczCSgAAsD/bB4sUj0vdc9MkSb94cZ78gaDFFQEAYF+2DxaSdM0Z3cOPmzcmAwAA0ZcQweKK07oqJcklSdq4u8biagAAsK+ECBaS1KldaHnv3dU+iysBAMC+EiZY9G7a6bSils3IAACIlYQJFpkpSZKkijr2DAEAIFYSJlhkhYMFPRYAAMRKwgWLl+dstLgSAADsK2GCRZ+CjPBjdjoFACA2EiZYnNUnL/z4m9IqCysBAMC+EiZYSNJZvUM7nS7evNfiSgAAsKeEChb1/tBy3m5XQjUbAIC4SahP2KHd2kmSquuZcgoAQCwkVLDISA7NDPnnkq0WVwIAgD0lVLBIT3ZLkjKbAgYAAIiuhAoWzbdC6vwBiysBAMCeEipYJDftcFpZz+qbAADEQkIFi+at042RfI30WgAAEG0JFSzap3nCj8tqGiysBAAAe0qoYOFwOJTRNICztoEeCwAAoi2hgoUkpXpCt0PqCBYAAERdAgYLeiwAAIiVhAsWzQM4axtYfRMAgGhLuGDBrRAAAGIn4YJFSlOwqKhjLQsAAKIt4YJFZkpoOe89TDcFACDqEi5YdEj3SpKqfYyxAAAg2hIuWDT3WFSxrDcAAFGXcMEiwxuablpVT48FAADRlnjBomnlzWqCBQAAUZeAwSJ0K4QdTgEAiL6ECxaZKaEei4Wb9lpcCQAA9pNwwaK5xwIAAERfwgWLwuxkSZLDYXEhAADYUMIFC48r1GRjpEDQWFwNAAD2knDBwu3a12R/IGhhJQAA2E/CBYsk1757IAQLAACiK/GChXNfk2t87HAKAEA0JVywcDr39Vhs3F1jYSUAANhPwgULSTqpY6YkqYwdTgEAiKqEDBYFmaEdTpcVs0gWAADRlJDBwtcYGrTpciZk8wEAiJmE/GQd2q29JLZOBwAg2hIyWKR4XJKkej/TTQEAiKZjChaPP/64HA6Hbr/99iiVEx/J7lCzZ3+zy+JKAACwl6MOFgsXLtQLL7ygU045JZr1xIWrafVNVvQGACC6jipYVFdXa+zYsXrppZfUrl27aNcUc4O7hGpuZOVNAACi6qiCxbhx4zRmzBiNGjXqsNf6fD5VVlZGfFktOzW0dfreWr+ModsCAIBocbf2CdOmTdOSJUu0cOHCI7p+woQJevjhh1tdWCx1yPCGH++q8ikvM9nCagAAsI9W9VgUFxfrtttu06uvvqrk5CP7ML7vvvtUUVER/iouLj6qQqMpyeWUt2kA55qSKourAQDAPlrVY7F48WKVlpZq0KBB4WOBQECzZs3Sc889J5/PJ5fLFfEcr9crr9f73ZeyXPMNkE++3qkzT+xgaS0AANhFq4LF2WefrZUrV0Ycu/rqq9WnTx/dc889B4SK49l5/Qr0zrLtbJ0OAEAUtSpYZGRkqF+/fhHH0tLSlJOTc8Dx413/Tll6Z9l21TawdToAANGSkCtvSlKqJ5Sp2DodAIDoafWskO/67LPPolBG/GWmhJq+bW+dxZUAAGAfCdtjkZcRmtXicSfsjwAAgKhL2E/Vdk2LZNX7GWMBAEC0JGywSE4KzWDZW+vXn2esV21Do8UVAQDQ9iVssMhMSZLL6ZAkPT19na77+2KLKwIAoO1L2GCRlZKk53+5b6Gv2d/sZt8QAACOUcIGC0k6t1+B5v/P2eHvfY0slgUAwLFI6GAhSR3S9y03/qu/zmcrdQAAjkHCBwun06H2aR5J0qLNe/XRVyUWVwQAQNuV8MFCkr6894fhxxt2sRInAABHi2Ch0NTTcWedICk0Q6Sq3m9xRQAAtE0EiyZF7VLDj99YtNXCSgAAaLsIFk0uOrWTvE3Le3+yeqfF1QAA0DYRLJqkeFy6/vuh2yFB1rMAAOCoECz2c0qnLEnS/I1lFlcCAEDbRLDYT4eM0JoWzRuUAQCA1iFY7Kddamg9C1bgBADg6BAs9pOcFPpx1DYE2E4dAICjQLDYT2bKvlsgP/rT52xKBgBAKxEs9pOc5FK/TpmSpOKyOj3879UWVwQAQNtCsPiO1649Lfz4b19uUm1Do4XVAADQthAsviMzOUkrfndO+Pvx/1hhYTUAALQtBIuDyExO0pCu7SRJe6p9FlcDAEDbQbBowbgf9pQkzdvAYlkAABwpgkULOqR7w49302sBAMARIVi0oG9hZvjx5j01FlYCAEDbQbBogcPhUJ+CDEnSJZPmatyrS/Thyh2qrPdbXBkAAMcvgsUhjO5bEH78/soduvHVJfrVX+dbWBEAAMc3gsUh3PGjE/XeLWfotB7tldW0KufGXdwWAQCgJQSLw+jXKUvTrhuhOff+UJJU5WtUtY9FswAAOBiCxRFK97qV6nFJkuZv2GNxNQAAHJ8IFq1Q2xDa8XRNSZXFlQAAcHwiWLTCFad1lSRt2FWjHRV1FlcDAMDxx211AW1JbtOiWf9cslX/XLJVP+jdQb3zM5SZkqTh3dtHXNctN82qMgEAsAzBohVG98vXh6t2hG+FfLZ2lz5bu+ug1065Zpi+f2KHeJYHAIDlHMYYE883rKysVFZWlioqKpSZmXn4JxyHtuyp1euLtsgfMJrx9U4F9/sJbty9bzrqpsfHWFAdAADRd6Sf3wSLKPto1Q7d8MoSSVJWSpJ+3L9AyUmug177g955+l7PXDmdjniWCABAqx3p5ze3QqLs3H4dVZiVrO0V9aqo82vqguIWr508Z5MkKTs1SWket4b3CI3TCASN+hRkKsnl0KiT8hmvAQBoM+ixiIG6hoDeXb5Nm/fUHvR8WU2Dpi1sOXB81/KHzlGGd18GdDhCe5kAABAv3AppA8pqGlRW49PcDWWqawit5rmjol67qxtUXe/XzBYGhkpS/05Zcjkd6pqTquHdc+RwSCNPyFWXnNR4lQ8ASCAECxu4760Vh7yV8l0dMryafseZSnI55XE7leRimRIAQHQQLGyivLYhYtZJeW2DNuyqka8xqH8sLlaSy6mte+u0ekdlxPOcDumJS07RpUOK4lwxAMCOCBYJJBg0+uVf52n+xjJ9909z9e9HK9XDGF0AwLEhWCSoQNBobUmVfvznLyRJ7dM8euP608LnM5OTlJeZbFV5AIA2iummCcrldOjkwkyd27dAH31VorKaBo16elbENY9c1Fc/HdRZaV7++AEA0UWPhU0ZY/TLl+ZrTcm+sRd7a/0R16R73erSPlXjR/fWWX3y4l0iAKANocciwTkcDk297rSIY4s379Vt05Zq697QzqzVvkat3lGpZ2asVyBo1C7No0FdslkjAwBw1OixSEDBoNHKbRWa8+1uPfnR2ohzFwwo1B9/dkqLy5ADABITPRZokdPp0ICibJ2Yn6GvtldqR3mdlmwplyT9e/l2bdhVrf8+p7d6dEhT1xyWEwcAHDl6LCBJKi6r1ff/ODNizQxJ+v1FfZWVknTErzOoSzsVtWf1TwCwG6abotX2VPv0328u156aBq3YWnHUr1OYlSyHwyF/IKiTCzOV3RRM8jOTddc5veVxsyIoALQ1BAsck/dX7NC0hVsOWHCrJQ2BoBZsLDuia0edlKcbf9BTg7u2O4YKAQDxRLBA3FXW+7Vpd40kqaLOrzU7qtQ8weSp/6xVvT8Ycf3//LiPrv1eD2ahAEAbQLDAcSUYNHp/5Q4t3FSmv8/dHHEuM/nQY4idTodu+sEJuvZ7PQ56nmACALFHsMBxa+aaUv3X3xcp8N2RokehW06q3rh+BMuUA0CMESxwXDPGaEtZrRoPEy6q6xt18f/OOexYjycvOUU/H8pOrgAQKwQL2IY/EFRVfeMBx3/37ld6d/l2SVJR+xT17ZjV4muked3q0SFyTY78zGQN6Jyl9GS3nA6HHA7J6XA0fYVusTgdUpLLyYJhABIewQIJ4YOVO3TTq0ti/j7pXre65kSuz9HQGNSw7u314/4ddVqPHLmcjPUAYF8ECySExkBQ/1m9U3tqGg563hijlVsr5NxvgKc/GNSyLeXyNQa1q9onY4yCRgoac8TTaw/mmV+cqh656eqQ4VVBFmM+ANgLwQI4CqYpXAT3Cxtfba844FbMjop6Ld2yV28s2nrQ1+nRIU2nds5Wqtelm37QU4XZKfEoHwBihmABxIExRtNX79TT09epzh/Q5j21B71u/aPnKcnFiqMA2i42IQPiwOFw6Jy+BTqnb4EkqaLWr3eXb1O9P6g53+7WZ2t3SZJenr1Rlw0tUnaqx8pyASDm6LEAYmjk459qW3mdJGlgl2y9fdNIiysCgKNzpJ/f9M0CMfSHn/RThjfUMbh0S7kefX+1xRUBQGwRLIAYOqt3npY++KNwuHjpi40KRmHFUQA4XrUqWEyYMEFDhw5VRkaG8vLydPHFF2vt2rWxqg2wBbfLqVl3nxX+vvnWCADYUauCxeeff65x48Zp3rx5mj59uvx+v8455xzV1NTEqj7AFtqleZTmCa3eeecby6wtBgBi6JgGb+7atUt5eXn6/PPPdeaZZx7Rcxi8iUQ19q/zNOebPZKkEzqkyet2yeV0yOl0yO10KNXjktMRelzUPlV5mV6N7lugTtkp8rqd7OIKwFJxmW5aUVEhSWrfvn2L1/h8Pvl8vojCgEQ05eph6nn/h5Kkb3cdWS/fkx+FbjWeWpStf954OsuGAzjuHXWPRTAY1IUXXqjy8nLNnj27xet+97vf6eGHHz7gOD0WSER7axr09Y5KBYxRIGgUNEaBoBQIBlXjCyhojIr31qm4rFZvL912wPP/fs0wndEzV04CBoA4i/nKmzfeeKM+/PBDzZ49W507d27xuoP1WBQVFREsgMMIBo1qGhp1wyuLw7dQmnXMStand/1AKR52XQUQHzFdx+Lmm2/We++9p5kzZx4yVEiS1+tVZmZmxBeAw3M6HcpITtIrvxmuu8/tHR78KYX2KjnvmVn6dle16v0BC6sEgEit6rEwxuiWW27R22+/rc8++0y9evVq9RsyeBM4euW1Dbry5QVavrUi4vii345SbrrXoqoAJIKY9FiMGzdOr7zyil577TVlZGSopKREJSUlqqtjXj4QD9mpHk297jQN7dZOuen79h254/Vl1hUFAPtpVY9FS9PdJk+erKuuuuqIXoMeCyB67nxjmd5asm+QZ266R69fP0IndEi3sCoAdhSTHgtjzEG/jjRUAIiux37SX+nefbPGd1c36Oz/97lWfudWCQDEC3uFAG1YcpJLyx86RwvvH6W7fnRi+Pj/zd6gXVW+QzwTAGKDYAG0cS6nQx0yvLrl7F666vRukqR/LduuoY9+op9N+lLHsLguALQawQKwkatO76YBnbPC3y/avFe3TlumxkDQwqoAJJJj2ivkaDB4E4i9xkAwvHy4JA0oytbovvlyyCGnQ3I4JKfDIYfDIYfUdCx0Tg6HTu6YqUFdstmfBEBYzFfePFoECyA+1pZUafTEWcf0Gm6nQ5OvHqrv9eoQpaoAtFUECwDatLtGf/tyk+r9oX1IgkYyJjTDK2iMjKSgkYLGSE3//XBVyQGvc+ePTpTL6dBJHTP0wz758W8IAMsRLAAcFWOMKur8emfZdj307lcHnJ942ak6t1+BkpPYpwRIJAQLAMfEHwjqhc+/VUllvQJBaeqCLRHnPe59Y78dkorap+qV3wxXQVZynCsFEA8ECwBR9cHKHZr02bdaua3lxbeSXA59eNuZcjpC02DzMpLZgRWwCYIFgJio8TWqos4fceyef67QF+t3H/T6SwZ11sMX9Y1YIRRA2xPTbdMBJK40r1uF2SkRX/935VCd1DFT7dM8yk5NUkbyvhDxzyVb9eyn6y2sGEA80WMBICZKK+s18olP5Q+EfsWs+8N5EeMyALQt9FgAsFReZrL+ccPp4e/fX7ndwmoAxAvBAkDMDCjKVl6GV5J0x+vLtWhTmcUVAYg1RlMBiKkHzj9Zt0xdKkn62V/m6qSOoS5UX2NAY4d31U8HdlK7NI+VJQKIIsZYAIi5GV/v1G+mLGrxfPfcNF02tEg3fP+EOFYFoDWYbgrguLKjok7flFZLkhZt2qsvv92thZv2RlyT7nXrytO7SpJSklzKy0yW27lvIzSX06GRPXOVm+6NX+EAJBEsALQBxWW1Ki6r1S//Ov+InzOwS7YmXzU0/L3T6VBmclIsygOwH4IFgDYjEDSaPGejtpXXSZJqfQHtrvbJH9z362np5r2q8jUe9Plet1MPXnCyfjmsC1u9AzFCsABgK7UNjTr/2dnasKumxWsGdM7S7aNCO7EO6dZOqR7GpwPRQrAAYDvGGAX268UwCm2O9uA7B+7CKkmzxp+lLjmpcaoOsDeCBYCEUVHn19WTF6gxaLRia+QmaT8b3LnF5wWCRj/sk6cOGZGDQU/Mz1B7psACEQgWABKSMUY3T12q91fsOKbX6ZSdor9eOSS87gaQ6AgWABKWMUbvLNuuHRX1LV7z7a5qLdxUFjGd1UgHjOFY9NtRTG8FRLAAgKNS1xDQm4uLI8ZtPHXpAF0yqBMzTpDQCBYAcAye/s9a/fnTb8Lfe9xODe/eXicXZurec/sQMpBw2N0UAI7Bnef01nO/HBj+vqExqC/W79YLn2/QbdOWqa4hYGF1wPGLHgsAOISqer9mrdstX2NAd76xPOKcx3Xk/2/WEAjqkkGd1XW/6a8up0O/GFqkHMZwoA3gVggARNm3u6o17tUlWlNSFdXXHdK1nR6+qK/6FmZF9XWBaCJYAECMVNb7VV1/8OXFD2bznlr9e8V27f/bdvWOSi0vLo+47icDOyk33aPLhnZRz7z0KFULRAfBAgCOc1X1fv3u3dX655KtB5zrW5ipO0adqKzUJPXvlKXkJJcFFQL7ECwAoI1YsLFMCzbu0YJNezVr3a6DXpOb7tHr149QSlPAaJfqUYqHsIH4IVgAQBu0o6JOT/9nndaUVGnTnhpVHeKWyyMX99OJeeka3LWd3K0YSAocDYIFANhAQ2NQ9/5zhd5buSPi2P7O6JmrV/5reLxLQ4IhWACATc3fsEeTPv9W8zbsUb0/FDLWPHIu4zAQUwQLALC5xkBQPe//MPz9Twd2UmZKkvZfFNShfd80H/9hnzyN7JkbrzJhE0f6+e2OY00AgChyu5z66cBOemvpNkkK//dw/m/2RuWkeQ65LHmSy6H2aR6led36zRndNbpvQVRqhv3RYwEAbdzSLXv16ZpSGSMZhX6lN/9mb/4Fb4wUNEYvztpwVO/xh4v76WeDO3O7JYFxKwQAcIDahkZt3lN7yGuMkXZX+1RSWa+7/7Ei4hxjORIXt0IAAAdI9bh1Uscj/5+6jlnJumryQgWCof8H/firEl10aqdYlQcbYOIzAKBF3+vVQev/cJ565KZJkm6btkz//ebyFhfyAggWAIBDcjodmvDT/uHv/7F4q3798gINffQTzVxTamFlOB4RLAAAhzW8R44+vv1MXX9mj/CxXVU+TZyx3sKqcDxi8CYAoFX8gaBem79FD737ldxOh3p0SDvsczxup37YJ1+ZyW6NHd6VfU7aIGaFAABipsbXqNMem6Eq35FvH7+/SwZ1VocMr07pnCWv+8g7z3vmpatrzuGDDKKPYAEAiKmSinpt2FV92Os+X7dLdf6AZnxdqm3ldcf8vlec1lX/Pbq3slKSjvm1cOQIFgCA487SLXv1zrLt2l5ep5LK+kOu/vldy4vLw49H9szRq/91WgwqREsIFgAAW/l6R6Uuem6OGgKhjdd65aXrqUsHaEBRtrWFJQiCBQDAdsprG3Tq76dHHLvq9G5yfqfnIyfdozH9OyrJ7ZTL4VBKkktZqdw6ORYECwCALZVW1uvvczfruZnftOp5Tod07Zk9dN95J8WoMnsjWAAAbO2L9bs0b8Me7f8p5g8E9emaUu2s9MkYo8Zg6Kt5SXJJ2jjhx60a24EQggUAAE12Vfk09NFPJEmj++brhSuGWFxR23Okn9+svAkAsL0OGV51b9rv5OOvdqqhMWhxRfZFjwUAICEEgkYn/M8HkqQ+BRkadVK+HA5pUNd2ykpJUlZKkorapcrTigW7EgnbpgMAsB9X0/LjG3bVaE1JldaUVB30uqtO76a+hZm6dEhRnCu0B3osAAAJo7SqXq8vKNaemgbtqKjTriqfahsC2lXl056ahohre+dnqHO7FEmhvU5u+kFP9e+cZUXZxwUGbwIA0ApzvtmtL7/drednftviNe3TPGqeTxKaWOLY73Hou32P953b95x9s1HC1zmk9qkePffLQSpqnxqVtsQCwQIAgKOwo6JOX6zfreaPx7Ul1Xp5zsa4vPeY/h317OUD5XQef9NhCRYAAETJ7mqfymoawmtmGJl9jw9yrJkxoeOR1ykcWoykv3+5Sf9atj38nH/cMEJDurWPUUuOHsECAIA2wBijb0qr9Zspi7SlrFaSdM7J+ZKkNK9bFwzoqLN651m+qBfBAgCANuTNRcUa/48VBz035pSOev6Xg+JcUSSmmwIA0IZcOqRI3XLTtH5ntSTpk6936tM1pZKk91fsUEnFl3I7Hbp/zElK8+77+M7PTFa69/j5OKfHAgCA41RFrV8Dfv+fw143smeO/vrroUrxuGJWC0t6AwDQxmWlJmnGXd/XC1cM1vmndFRmsjviq9mcb/boxVkbLKx0n6PqsXj++ef1xz/+USUlJRowYICeffZZDRs27IieS48FAADRUe8PqM8DH4W/P6VzlgZ3bac7f3SiMpKTovpeMeuxeP3113XnnXfqoYce0pIlSzRgwACNHj1apaWlx1QwAABoneQklz6+/czw9yu2VmjynE2q8wcsq6nVPRbDhw/X0KFD9dxzz0mSgsGgioqKdMstt+jee+897PPpsQAAILoq6vx6efZGNQZDu7be+IOeUR/QGZNZIQ0NDVq8eLHuu+++8DGn06lRo0Zp7ty5B32Oz+eTz+eLKAwAAERPVkqS7vjRiVaXIamVt0J2796tQCCg/Pz8iOP5+fkqKSk56HMmTJigrKys8FdREbvFAQBgVzGfFXLfffepoqIi/FVcXBzrtwQAABZp1a2Q3NxcuVwu7dy5M+L4zp07VVBQcNDneL1eeb3eo68QAAC0Ga3qsfB4PBo8eLBmzJgRPhYMBjVjxgyNGDEi6sUBAIC2pdVDRu+8805deeWVGjJkiIYNG6aJEyeqpqZGV199dSzqAwAAbUirg8Vll12mXbt26cEHH1RJSYlOPfVUffTRRwcM6AQAAImHvUIAAMBhsVcIAACIO4IFAACIGoIFAACIGoIFAACIGoIFAACIGoIFAACImujuqXoEmme3ssspAABtR/Pn9uFWqYh7sKiqqpIkdjkFAKANqqqqUlZWVovn475AVjAY1Pbt25WRkSGHwxG1162srFRRUZGKi4sTbuGtRG67lNjtp+20PdHaLiV2+61suzFGVVVVKiwslNPZ8kiKuPdYOJ1Ode7cOWavn5mZmXB/0ZolctulxG4/baftiSiR229V2w/VU9GMwZsAACBqCBYAACBqbBMsvF6vHnroIXm9XqtLibtEbruU2O2n7bQ9ESVy+9tC2+M+eBMAANiXbXosAACA9QgWAAAgaggWAAAgaggWAAAgamwTLJ5//nl169ZNycnJGj58uBYsWGB1Sa0yYcIEDR06VBkZGcrLy9PFF1+stWvXRlxTX1+vcePGKScnR+np6brkkku0c+fOiGu2bNmiMWPGKDU1VXl5eRo/frwaGxsjrvnss880aNAgeb1e9ezZU3/7299i3bxWefzxx+VwOHT77beHj9m57du2bdOvfvUr5eTkKCUlRf3799eiRYvC540xevDBB9WxY0elpKRo1KhRWr9+fcRrlJWVaezYscrMzFR2drZ+85vfqLq6OuKaFStW6Hvf+56Sk5NVVFSkJ598Mi7tO5RAIKAHHnhA3bt3V0pKik444QQ98sgjEXsR2KX9s2bN0gUXXKDCwkI5HA7961//ijgfz3a++eab6tOnj5KTk9W/f3998MEHUW/v/g7Vdr/fr3vuuUf9+/dXWlqaCgsL9etf/1rbt2+PeI222nbp8H/2+7vhhhvkcDg0ceLEiONtqv3GBqZNm2Y8Ho95+eWXzVdffWWuvfZak52dbXbu3Gl1aUds9OjRZvLkyWbVqlVm2bJl5sc//rHp0qWLqa6uDl9zww03mKKiIjNjxgyzaNEic9ppp5nTTz89fL6xsdH069fPjBo1yixdutR88MEHJjc319x3333hazZs2GBSU1PNnXfeaVavXm2effZZ43K5zEcffRTX9rZkwYIFplu3buaUU04xt912W/i4XdteVlZmunbtaq666iozf/58s2HDBvPxxx+bb775JnzN448/brKyssy//vUvs3z5cnPhhRea7t27m7q6uvA15557rhkwYICZN2+e+eKLL0zPnj3N5ZdfHj5fUVFh8vPzzdixY82qVavM1KlTTUpKinnhhRfi2t7vevTRR01OTo557733zMaNG82bb75p0tPTzTPPPBO+xi7t/+CDD8z9999v3nrrLSPJvP322xHn49XOOXPmGJfLZZ588kmzevVq89vf/tYkJSWZlStXWtL28vJyM2rUKPP666+bNWvWmLlz55phw4aZwYMHR7xGW2374dq/v7feessMGDDAFBYWmj/96U8R59pS+20RLIYNG2bGjRsX/j4QCJjCwkIzYcIEC6s6NqWlpUaS+fzzz40xoX98SUlJ5s033wxf8/XXXxtJZu7cucaY0F9ep9NpSkpKwtdMmjTJZGZmGp/PZ4wx5u677zZ9+/aNeK/LLrvMjB49OtZNOqyqqirTq1cvM336dPP9738/HCzs3PZ77rnHnHHGGS2eDwaDpqCgwPzxj38MHysvLzder9dMnTrVGGPM6tWrjSSzcOHC8DUffvihcTgcZtu2bcYYY/73f//XtGvXLvyzaH7v3r17R7tJrTJmzBhzzTXXRBz76U9/asaOHWuMsW/7v/vhEs92/vznPzdjxoyJqGf48OHm+uuvj2obW3KoD9ZmCxYsMJLM5s2bjTH2absxLbd/69atplOnTmbVqlWma9euEcGirbW/zd8KaWho0OLFizVq1KjwMafTqVGjRmnu3LkWVnZsKioqJEnt27eXJC1evFh+vz+inX369FGXLl3C7Zw7d6769++v/Pz88DWjR49WZWWlvvrqq/A1+79G8zXHw89q3LhxGjNmzAH12bnt7777roYMGaJLL71UeXl5GjhwoF566aXw+Y0bN6qkpCSi7qysLA0fPjyi7dnZ2RoyZEj4mlGjRsnpdGr+/Pnha84880x5PJ7wNaNHj9batWu1d+/eWDezRaeffrpmzJihdevWSZKWL1+u2bNn67zzzpNk//Y3i2c7j8d/B99VUVEhh8Oh7OxsSfZvezAY1BVXXKHx48erb9++B5xva+1v88Fi9+7dCgQCER8okpSfn6+SkhKLqjo2wWBQt99+u0aOHKl+/fpJkkpKSuTxeML/0Jrt386SkpKD/hyazx3qmsrKStXV1cWiOUdk2rRpWrJkiSZMmHDAOTu3fcOGDZo0aZJ69eqljz/+WDfeeKNuvfVWTZkyRdK+2g/197ukpER5eXkR591ut9q3b9+qn48V7r33Xv3iF79Qnz59lJSUpIEDB+r222/X2LFjI2qza/ubxbOdLV1zPPwcpNB4qnvuuUeXX355eJMtu7f9iSeekNvt1q233nrQ822t/XHf3RSHN27cOK1atUqzZ8+2upS4KC4u1m233abp06crOTnZ6nLiKhgMasiQIXrsscckSQMHDtSqVav0l7/8RVdeeaXF1cXeG2+8oVdffVWvvfaa+vbtq2XLlun2229XYWFhQrQfkfx+v37+85/LGKNJkyZZXU5cLF68WM8884yWLFkih8NhdTlR0eZ7LHJzc+VyuQ6YIbBz504VFBRYVNXRu/nmm/Xee+9p5syZEdvLFxQUqKGhQeXl5RHX79/OgoKCg/4cms8d6prMzEylpKREuzlHZPHixSotLdWgQYPkdrvldrv1+eef689//rPcbrfy8/Nt2/aOHTvq5JNPjjh20kknacuWLZL21X6ov98FBQUqLS2NON/Y2KiysrJW/XysMH78+HCvRf/+/XXFFVfojjvuCPdc2b39zeLZzpausfrn0BwqNm/erOnTp0dsCW7ntn/xxRcqLS1Vly5dwr//Nm/erLvuukvdunWT1Pba3+aDhcfj0eDBgzVjxozwsWAwqBkzZmjEiBEWVtY6xhjdfPPNevvtt/Xpp5+qe/fuEecHDx6spKSkiHauXbtWW7ZsCbdzxIgRWrlyZcRfwOZ/oM0fXiNGjIh4jeZrrPxZnX322Vq5cqWWLVsW/hoyZIjGjh0bfmzXto8cOfKAacXr1q1T165dJUndu3dXQUFBRN2VlZWaP39+RNvLy8u1ePHi8DWffvqpgsGghg8fHr5m1qxZ8vv94WumT5+u3r17q127djFr3+HU1tbK6Yz8NeRyuRQMBiXZv/3N4tnO4/HfQXOoWL9+vT755BPl5OREnLdz26+44gqtWLEi4vdfYWGhxo8fr48//lhSG2x/VIeCWmTatGnG6/Wav/3tb2b16tXmuuuuM9nZ2REzBI53N954o8nKyjKfffaZ2bFjR/irtrY2fM0NN9xgunTpYj799FOzaNEiM2LECDNixIjw+eYpl+ecc45ZtmyZ+eijj0yHDh0OOuVy/Pjx5uuvvzbPP/+85VMuD2b/WSHG2LftCxYsMG632zz66KNm/fr15tVXXzWpqanmlVdeCV/z+OOPm+zsbPPOO++YFStWmIsuuuig0xAHDhxo5s+fb2bPnm169eoVMRWtvLzc5OfnmyuuuMKsWrXKTJs2zaSmplo+3fTKK680nTp1Ck83feutt0xubq65++67w9fYpf1VVVVm6dKlZunSpUaSefrpp83SpUvDMx/i1c45c+YYt9ttnnrqKfP111+bhx56KOZTLg/V9oaGBnPhhReazp07m2XLlkX8/tt/hkNbbfvh2n8w350VYkzbar8tgoUxxjz77LOmS5cuxuPxmGHDhpl58+ZZXVKrSDro1+TJk8PX1NXVmZtuusm0a9fOpKammp/85Cdmx44dEa+zadMmc95555mUlBSTm5tr7rrrLuP3+yOumTlzpjn11FONx+MxPXr0iHiP48V3g4Wd2/7vf//b9OvXz3i9XtOnTx/z4osvRpwPBoPmgQceMPn5+cbr9Zqzzz7brF27NuKaPXv2mMsvv9ykp6ebzMxMc/XVV5uqqqqIa5YvX27OOOMM4/V6TadOnczjjz8e87YdTmVlpbnttttMly5dTHJysunRo4e5//77Iz5Q7NL+mTNnHvTf+JVXXmmMiW8733jjDXPiiScaj8dj+vbta95///2YtduYQ7d948aNLf7+mzlzZptvuzGH/7P/roMFi7bUfrZNBwAAUdPmx1gAAIDjB8ECAABEDcECAABEDcECAABEDcECAABEDcECAABEDcECAABEDcECAABEDcECAABEDcECAABEDcECAABEDcECAABEzf8HcnzHRSCLWyIAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np\n", + "import matplotlib.pylab as plt\n", + "\n", + "xs = np.asarray([[0, 1, 0, 1, 0],\n", + " [0, 0, 1, 1, 0],\n", + " [1, 1, 0, 1, 0],\n", + " [1, 1, 1, 0, 1],\n", + " [0, 0, 0, 1, 0]])\n", + "\n", + "# ws = np.asarray([1, 0, 1, 0, -1]) # hidden!\n", + "\n", + "ys = np.asarray([[0],\n", + " [0],\n", + " [0],\n", + " [3],\n", + " [3]])\n", + "\n", + "xs = np.hstack((xs, np.ones([xs.shape[0], 1])))\n", + "\n", + "ins = 5\n", + "outs = 1\n", + "\n", + "def weights(ins, outs):\n", + " ws = np.random.randn(ins, outs)\n", + " return ws\n", + "\n", + "ws = weights(ins+1, outs)\n", + "\n", + "ers = []\n", + "for i in range(15000):\n", + " yh = xs @ ws\n", + " e = yh - ys\n", + " e = np.sum(np.abs(e))\n", + " if e < 0.05:\n", + " print(\"found solution\")\n", + " print(ws)\n", + " break\n", + " else:\n", + " # mutation = weights(ins, outs) * 0.1\n", + " mutation = weights(ins+1, outs) * 0.03\n", + " cw = ws + mutation\n", + "\n", + " yh = xs @ cw\n", + " ce = yh - ys\n", + " ce = np.sum(np.abs(ce))\n", + "\n", + " if ce < e:\n", + " ws = cw\n", + " ers.append(e)\n", + "\n", + "plt.figure(1)\n", + "plt.plot(ers)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We're still not narrowing in on a solution. Our simple network can only find linear solutions, but if our problem is non-linear, we can't find a solutin because we cannot fit a line to a curve, no matter what slope we give it. \n", + "\n", + "To solve this, we add two things:\n", + "* Another layer of weights connected to some middle nodes\n", + "* Apply an non-linear activation function to the middle neurons. Sigmoid, tanh, ReLU, Leaky ReLU, Maxout, ELU, \n", + "\n", + "We'll use a sin wave. We know from forie transform that we can approximate any signal by adding together sin waves. " + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAAGdCAYAAABO2DpVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAsCElEQVR4nO3deZSU9Z3v8U8tXdX7Qm/Q0CwKiuyCSpBokrEjMWg0k5urGZLjkFwTEzxqzDWRyVUz16utSa5jdAwx5rjcmQiajJhMRkkICi4BURYBFxBBaIGm2bqq1+qlfvePqi5p6La7uuupp/t53q9z6uSh6ldd3/oF6c/5Pb/FY4wxAgAASAGv3QUAAADnIFgAAICUIVgAAICUIVgAAICUIVgAAICUIVgAAICUIVgAAICUIVgAAICU8af7A6PRqA4ePKi8vDx5PJ50fzwAABgAY4waGhpUUVEhr7f3cYm0B4uDBw+qsrIy3R8LAABSoKamRmPGjOn19bQHi7y8PEmxwvLz89P98QAAYADC4bAqKysTv8d7k/Zg0XX7Iz8/n2ABAMAw09c0BiZvAgCAlCFYAACAlCFYAACAlCFYAACAlCFYAACAlCFYAACAlCFYAACAlCFYAACAlCFYAACAlCFYAACAlCFYAACAlCFYAACAlEn7IWRWuf8vOxU10rUXjldpXtDucgAAcCXHBIsHX9wtSfJ6Pbrl82fZXA0AAO7kmFshAV/sq9Q3t9lcCQAA7uWYYHFT1SRJUmt7p82VAADgXo4JFkF/7Ku0tkdtrgQAAPdyTLDIzPBJkprbOmyuBAAA93JMsMiKB4s179XZXAkAAO7lmGAxIjcgSSpjqSkAALZxTLCYPrpAknQ4HNGW/SdsrgYAAHdyTLAozgkkrv+07ZCNlQAA4F6OCRYej0f/49MTJElNESZwAgBgB8cEC0kaU5QlSWogWAAAYAtHBYvczAxJUmMrwQIAADs4K1gEY0efNDJiAQCALRwVLEriS04P1rfYXAkAAO7kqGBxRmmuJOlQqFXLN+63uRoAANzHUcGiKDtDI+LLTl/YUWtzNQAAuI+jgoXH49FPvzJDkhTi+HQAANLOUcFCkgqzYytD6lvaba4EAAD3cVywKMiKBYt9x5ptrgQAAPdxXLAYWZCZuD7exO0QAADSyXHBIi++SZYknWCeBQAAaeW4YCFJlSNiW3vXNzPPAgCAdHJksOiaZxFqYcQCAIB0cmSwKMyK7WURYmUIAABp5chg0TViwa0QAADSy5HBIjvgkyS1tHfaXAkAAO7iyGCRFQ8Wre1RmysBAMBdnBksMrqCBSMWAACkkyODRWY8WDz+2l6bKwEAwF0cGSwmlceOT2/vNKwMAQAgjRwZLC6fUZG4bm7rsLESAADcxZHBQpLygn5JTOAEACCdHBssMruWnLYxgRMAgHRxbLDoWhny8vtHbK4EAAD3cGywiHTERipe233U5koAAHAPxwaLGy+ZJEnatO+EzZUAAOAejg0WnzmrVJIU6WDyJgAA6eLYYJETiK0K6YwadUaNzdUAAOAOjg0Wfp8ncd3eyagFAADp4NhgkeH7+KsRLAAASA9XBIuOTm6FAACQDo4NFj6vRz5v7HYIIxYAAKSHY4OFJPnjwaKNYAEAQFo4OlgE/LGvx5JTAADSw9HBomvJaXOE80IAAEgHRweL3MxYsGiMcHQ6AADp4OhgkRMkWAAAkE6ODhZ58WDRRLAAACAtHB0scuPBooFgAQBAWjg6WHTdCtmw55jNlQAA4A6ODhZd+1c0tDJiAQBAOiQVLDo7O3X77bdrwoQJysrK0plnnqm77rpLxgzNLbMvnlQiSYq0s9wUAIB08CfT+L777tOyZcv05JNPaurUqXrzzTe1ePFiFRQU6MYbb7SqxgErzQtKkt6rbbC5EgAA3CGpYPG3v/1NV155pRYuXChJGj9+vJYvX66NGzdaUtxgZWX4JEmhlnabKwEAwB2SuhVy4YUXas2aNdq1a5ck6a233tKrr76qyy67rNf3RCIRhcPhbo90GTMiW5KU4fOk7TMBAHCzpEYsbrvtNoXDYU2ePFk+n0+dnZ26++67tWjRol7fU11drX/+538edKEDEYgfnd7eaWSMkcdDwAAAwEpJjVg888wz+u1vf6unnnpKmzdv1pNPPqmf//znevLJJ3t9z9KlSxUKhRKPmpqaQRfdXyePVHRGh+YEUwAAnCSpEYtbb71Vt912m6655hpJ0vTp07Vv3z5VV1fr2muv7fE9wWBQwWBw8JUOQIbv49zU3mnk99lSBgAArpHUiEVzc7O83u5v8fl8ikaH5rHk/pNGLNqHaI0AADhJUiMWV1xxhe6++26NHTtWU6dO1ZYtW3T//ffrm9/8plX1DUrGSSGoo5NbIQAAWC2pYPHQQw/p9ttv1/e+9z3V1dWpoqJC3/nOd3THHXdYVd+geL0e+bwedUaN2jsZsQAAwGpJBYu8vDw98MADeuCBBywqJ/X8BAsAANLG0WeFSFLAH/uKkQ6CBQAAVnN8sMgJxAZlWto4LwQAAKs5PlhkB2JrTJsinHAKAIDVnB8sgrFg0cwJpwAAWM75wSIjdiukOUKwAADAao4PFlnxWyF/ffewzZUAAOB8jg8WXdti1TW02loHAABu4Phg8Q8XVEqSGrkVAgCA5RwfLLLiy03b2ccCAADLOT5YdB2d3sbOmwAAWM7xwSIY33mTLb0BALCe44NFwBdbFdLGrRAAACzn+GCR4Y/dCmHEAgAA6zk+WAR8HEIGAEC6OD5YBDNit0IIFgAAWM/xwSI74+M5Fp1R00drAAAwGI4PFl1bektSCweRAQBgKccHi6DfK09s/qaa2zg6HQAAKzk+WHg8HmXFb4e0tjHPAgAAKzk+WEhKBIvmdkYsAACwkjuCRXyeRUsbcywAALCSO4JFfMSCyZsAAFjLHcGCEQsAANLCHcGCEQsAANLCHcEiPmIRbmHyJgAAVnJFsBiZnylJevqN/TZXAgCAs7kiWJxZmiuJ80IAALCaK4LFhROLJUlHG9tsrgQAAGdzRbAoyQ1Kko43RRTlIDIAACzjimCRn5khSYoaqZmVIQAAWMYVwSLo//hrthIsAACwjCuChdfrSYQLNskCAMA6rggWkpQZ3yQr0kGwAADAKq4JFomj09tZcgoAgFVcEywyM+K3QphjAQCAZVwULLpGLAgWAABYxTXBouu8kGYmbwIAYBnXBIvcoF+S1BThIDIAAKzimmCRlxkLFo0ECwAALOOaYNE1YtHQSrAAAMAqrgkWefFtvTfsOWZzJQAAOJdrgkXXpM2u1SEAACD1XBMszh9fJIktvQEAsJJrgkXXCacNTN4EAMAyrgkWuV2rQlrbba4EAADnck+wiK8K+eBIk82VAADgXK4JFhWFWYnrUAujFgAAWME1wWJETkBeT+z6YH2LvcUAAOBQrgkWkjR2RLYkdt8EAMAqrgoWnHAKAIC1XBosojZXAgCAM7kqWGTFg0VtuNXmSgAAcCZXBYvMjNjX/f2mj2yuBAAAZ3JVsJg9NrattzHG5koAAHAmVwWLeWcWS5LC7GMBAIAlXBUs8rNi54WwQRYAANZwV7CIH0RW39KuaJTbIQAApJqrgkVxbkABv1fGSPuON9tdDgAAjuOqYJHh82pcfPfNj04QLAAASDVXBQtJGlMUO4zswAnOCwEAINVcFyxGx4PF5v0nbK4EAADnSTpYHDhwQF//+tdVXFysrKwsTZ8+XW+++aYVtVliRHZAkrSztsHmSgAAcB5/Mo1PnDih+fPn63Of+5xeeOEFlZaW6v3331dRUZFV9aXcmPgcC4/HY3MlAAA4T1LB4r777lNlZaUef/zxxHMTJkxIeVFWGlMYuxXS3MbR6QAApFpSt0L++Mc/6rzzztNXv/pVlZWV6dxzz9Wjjz5qVW2WyA7GslR9M5tkAQCQakkFiz179mjZsmWaNGmS/vznP+u73/2ubrzxRj355JO9vicSiSgcDnd72KkgvvtmXUNEq3bU2loLAABOk1SwiEajmj17tu655x6de+65+va3v63rrrtOv/rVr3p9T3V1tQoKChKPysrKQRc9GOOLsxPXG/Ycs7ESAACcJ6lgMWrUKE2ZMqXbc+ecc47279/f63uWLl2qUCiUeNTU1Ays0hTxeDy6dcHZkqSWtk5bawEAwGmSmrw5f/587dy5s9tzu3bt0rhx43p9TzAYVDAYHFh1FsnK8EmSWtoJFgAApFJSIxbf//73tWHDBt1zzz3avXu3nnrqKf3617/WkiVLrKrPElmBWLBoZsQCAICUSipYnH/++Vq5cqWWL1+uadOm6a677tIDDzygRYsWWVWfJbpGLFoZsQAAIKWSuhUiSZdffrkuv/xyK2pJm64Ri71Hm2yuBAAAZ3HdWSGSFPDFvvaBeg4iAwAglVwZLLpOOM2Jj1wAAIDUcGWw6Nokq7m9U8YYm6sBAMA5XBksuuZYGCNFOqI2VwMAgHO4MlhkBz6es8qSUwAAUseVwcLn9Sjoj311TjkFACB1XBksJCk7fjuEbb0BAEgdFweL2O0QboUAAJA6rg0WXRM4m7gVAgBAyrg2WORnxkYswi3tNlcCAIBzuDZYjMiJnbh6rKnN5koAAHAO1waL4pyAJOl4I8ECAIBUcW2wGJEbCxb/d/Uubfuo3t5iAABwCNcGizNLcxPXj7/2oX2FAADgIK4NFlfNqtCVsyokSUcaIjZXAwCAM7g2WPh9Xv397DGSpFd3H1WI1SEAAAyaa4OFJI0dkZ24Xrn5IxsrAQDAGVwdLCaU5Gh8cSxcPPrKXpurAQBg+HN1sJCkf7xwvCSpvpllpwAADJbrg8VV546WJDW1dXIgGQAAg+T6YFGQlSG/1yNJqm9h1AIAgMFwfbDweDwqzM6QJL13qMHmagAAGN5cHywkaVRBliTpmTdrbK4EAIDhjWAh6QvTRkqSjnMgGQAAg0KwkDRzTKEkqb6ZTbIAABgMgoWUmGOx83CDjDE2VwMAwPBFsJA0siAzcb2lpt6+QgAAGOYIFpJKcoOJ6wMnWmysBACA4Y1gEbdwxihJnHQKAMBgECziyvJioxZHGgkWAAAMFMEirjgnIEk63siSUwAABopgEZcV8EuSWjs4LwQAgIEiWMRlZfgkiYPIAAAYBIJFXGZGrCtCLWySBQDAQBEs4rpGLF7fe1yLfrNBdQ2tNlcEAMDwQ7CIm1lZqOxALFy8tvuY/vz2YZsrAgBg+CFYxFUUZmn7TxbonFH5kqRQM6tDAABIFsHiJD6vR5+eWCxJCrd22FwNAADDD8HiFPmZsQPJGlqZxAkAQLIIFqfIz4oFi3ALIxYAACSLYHGK/KzYRllhRiwAAEgaweIUXbdCwuxnAQBA0ggWp8jrChZM3gQAIGkEi1MkboUwYgEAQNIIFqcozokdn36sqU0RDiQDACApBItTlOQGEtdvHwzbWAkAAMMPweIUHo9HAV+sWxqYZwEAQFIIFj2YNbZQEptkAQCQLIJFD7qWnHKEOgAAySFY9KA8PzaBszbE0ekAACSDYNGDisIsSdKB+habKwEAYHghWPRgTFEsWBwkWAAAkBSCRQ8YsQAAYGAIFj0ozY1vktXYZnMlAAAMLwSLHmRm+CRJbR1RmysBAGB4IVj0IOiPdUtH1Kijk3ABAEB/ESx60DViIUkRRi0AAOg3gkUPukYsJKkxwrbeAAD0F8GiB16vRx5P7Pq5LQfsLQYAgGGEYNGLruPT69nWGwCAfiNY9OIf5o6VxEFkAAAkg2DRi/xMvySOTgcAIBmDChb33nuvPB6Pbr755hSVM3TkESwAAEjagIPFG2+8oUceeUQzZsxIZT1DRl786HRuhQAA0H8DChaNjY1atGiRHn30URUVFaW6piGBEQsAAJI3oGCxZMkSLVy4UFVVVX22jUQiCofD3R7DQdeIxXu1DRxGBgBAPyUdLFasWKHNmzerurq6X+2rq6tVUFCQeFRWViZdpB1GFWQmrr+/Yqt9hQAAMIwkFSxqamp000036be//a0yMzP7foOkpUuXKhQKJR41NTUDKjTdyvMz9T8vPUuStPHD4zZXAwDA8JBUsNi0aZPq6uo0e/Zs+f1++f1+rVu3Tg8++KD8fr86OztPe08wGFR+fn63x3BxzQVjE9ds7Q0AQN/8yTS+5JJLtH379m7PLV68WJMnT9aPfvQj+Xy+Xt45PJXkBhPXJ5ralBtMqrsAAHCdpH5T5uXladq0ad2ey8nJUXFx8WnPO0VBVoZCLe2ccgoAQD+w82YfAvGTTtsIFgAA9GnQY/tr165NQRlDV9cR6pGO0+ePAACA7hix6AMjFgAA9B/Bog9ZGbEJqWySBQBA3wgWfZhWUSBJ2l3XaHMlAAAMfQSLPpTnx5accmYIAAB9I1j0IRi/FdLazuRNAAD6QrDoQ2Y8WLCPBQAAfSNY9KFruSkjFgAA9I1g0YeuEYu/vHNYxhibqwEAYGgjWPRhVmVB4vrDY802VgIAwNBHsOjDxLI8VRTEjoivb26zuRoAAIY2gkU/ZMdPNW1hngUAAJ+IYNEPmRnx80LaWRkCAMAnIVj0Q6afvSwAAOgPgkU/ZAXiwYITTgEA+EQEi34IJkYsuBUCAMAnIVj0Q9ccC26FAADwyQgW/ZCXmSFJen3PcZsrAQBgaCNY9EPXPhZrd9XZXAkAAEMbwaIfvjhjlKTYHIsIEzgBAOgVwaIfzijJScyz2FXbaHM1AAAMXQSLfvB4PCrJDUqSHn1lj83VAAAwdBEs+mnmmEJJUri13d5CAAAYwggW/fSlWRWSpLU7j9hcCQAAQxfBop/GFWdLkgI+r6JRY3M1AAAMTQSLfppYmiuf16O2zqh+t6nG7nIAABiSCBb95Pd51RkfqVj/wTGbqwEAYGgiWCThrqumSZIaWjtsrgQAgKGJYJGEouzY1t5r3qtTRycHkgEAcCqCRRLGFGUnrjfu5dwQAABORbBIwswxBfJ6Ytf/ue2QvcUAADAEESyS4PF49HeTyyRJH51otrkaAACGHoJFkr4xb7wk6bXdR9XWwTwLAABORrBI0oVnFkuSokY60dxmczUAAAwtBIskZfi8ys/0S5IaIyw7BQDgZASLAcgNxoLFr9dx0ikAACcjWAxAZsAnSXppZ53NlQAAMLQQLAbgX/77LElSa3unvYUAADDEECwGoCw/KElqIVgAANANwWIAsgOxORbtnYYlpwAAnIRgMQA5AV9iB856lpwCAJBAsBgAv8+r0rzY7ZBfrv3A5moAABg6CBYDVJwTCxYb9hyzuRIAAIYOgsUA3XjJREnSe7UN2nesyeZqAAAYGggWA/SZs8oS1/+x6SMbKwEAYOggWAxQVsCna86vlCQdDkdsrgYAgKGBYDEIM8YUSpKONhIsAACQCBaDUpIbkCStea9OrzOJEwAAgsVgnFGam7i++tcbtPcokzgBAO5GsBiEiWW5+vlXZyb+/MybNTZWAwCA/QgWg/Tf5ozR9NEFkqT65nabqwEAwF4EixS4claFJKm5rcPmSgAAsBfBIgVygrFDyV7bzQROAIC7ESxSID8zQ1Js2emOAyGbqwEAwD4EixS4+KySxDUrQwAAbkawSIG8zAxVnRPb4rsxwjwLAIB7ESxSJCsQm2fR0tZpcyUAANiHYJEi2Rk+SVJLO8ECAOBeBIsUyQrEgsV/vnVQ7Z1Rm6sBAMAeBIsUycuM3Qp5r7aBY9QBAK5FsEiRr86pTFwvf4OtvQEA7kSwSJGxxdm67bLJkqQP6hptrgYAAHskFSyqq6t1/vnnKy8vT2VlZbrqqqu0c+dOq2obdqrOKZcUW3J636r3bK4GAID0SypYrFu3TkuWLNGGDRu0evVqtbe369JLL1VTE5tCSdKEkhzlx+da/J55FgAAF/IYY8xA33zkyBGVlZVp3bp1uvjii/v1nnA4rIKCAoVCIeXn5w/0o4esIw0RnX/3XyVJj/3jefq7yeU2VwQAwOD19/f3oOZYhEKxczFGjBjRa5tIJKJwONzt4WSlecHE9bObD9hYCQAA6TfgYBGNRnXzzTdr/vz5mjZtWq/tqqurVVBQkHhUVlb22tYp7roq1h9rdx6xuRIAANJrwMFiyZIl2rFjh1asWPGJ7ZYuXapQKJR41NQ4fynmjNEFkmKTOE80tdlcDQAA6eMfyJtuuOEG/elPf9LLL7+sMWPGfGLbYDCoYDD4iW2cZno8WEjSvuPNKsoJ2FgNAADpk9SIhTFGN9xwg1auXKkXX3xREyZMsKquYc3r9WjyyDxJUmMrp50CANwjqWCxZMkS/fu//7ueeuop5eXlqba2VrW1tWppabGqvmErNxgbDPrbB0dtrgQAgPRJKlgsW7ZMoVBIn/3sZzVq1KjE4+mnn7aqvmHrWHxuRaSDA8kAAO6R1ByLQWx54TpXzRqtf/nrLjW3cYw6AMA9OCvEItnxY9Rb2phjAQBwD4KFRbLiweKV95ljAQBwD4KFRYL+WNdmB302VwIAQPoQLCxywYTYNud14QhzUwAArkGwsMiI+KZYkY4oK0MAAK5BsLBITsAvjyd2HW5pt7cYAADShGBhEa/Xo4KsDEnS0me321wNAADpQbCw0PyJJZKk9+saba4EAID0IFhY6MdfPEeSdLC+RW3MswAAuADBwkKjCjKVF/SrI2q05yijFgAA5yNYWMjj8eis+Cmnu7kdAgBwAYKFxUpzg5KkE/FDyQAAcDKChcUKs2MrQ9btYmtvAIDzESws1jVpM4etvQEALkCwsNinziyWJIXYJAsA4AIEC4vlZ8ZuhRAsAABuQLCwWNfum1v216uhlXABAHA2goXFJpXnJq5XbKyxsRIAAKxHsLBYSW5QX5pZIUmqDbfaXA0AANYiWKTB2fFNsrgVAgBwOoJFGuQG/ZKkxkiHzZUAAGAtgkUadAWLNz48YXMlAABYi2CRBkU5sZUhRxoiam5j1AIA4FwEizSYP7Ekcb3to5CNlQAAYC2CRRoE/T6NL86WJIXZKAsA4GAEizQZW5wjSbr7+Xf165c/sLkaAACsQbBIkzNLY8Fi37Fm3fP8e6prYE8LAIDzECzS5LbLJuvfvnVB4s9/3lGr7R+FWIIKAHAUv90FuEXQ79NFk0p10aQSvfL+Ud3+h7clSWOKsrTu1s/J5/XYXCEAAIPHiEWaXXP+WI0dka2yvKAk6aMTLfpfz223uSoAAFKDEYs0WzhjlBbOGCVJ+uzPXtKHx5r1tw+O2VwVAACpQbCw0W+uPU9V97+sw+FW3fP8u4nnPZIunTpSc8YV2VccAAADQLCwUWlepnxej1rbo/r1y3u6vfbnt2u19tbP2VQZAAAD4zHGmHR+YDgcVkFBgUKhkPLz89P50UPSqh2HtGV/feLPre2denL9PkmSz+uRz+PRTVWTtORzE22qEACA/v/+JlgMMdGo0cKHXtW7h8Ldns/weZSfmaHfXT9PZ5Tm2lQdAMCtCBbDWGfU6FhjRI2RDl32i1cU6Yh2e/3mqkm6ueosm6oDALgRwcIhIh2dOt7Upue2HNR9q95LPD+pLFeleUEF/D2vGPZIKs0LKjsQm0bjiW+T4fd6dOWs0Zo2usDq0gEADkKwcKAjDRFdeO8atXcO/v+yr84Z0692Ab9XZ5bm6u9nj1ZhdmDQnwsAGJ4IFg5VG2rV/uPNOtoYUXNbZ6/t6pvbFGpplzGSUez/4kOhVj27+cCAP/sbnxrX62s+r0efn1KuWZWFyg745PGwkygAOAnBAj1au7NO7x5q6Ffbto6o/nPbQe2ua0zqM3ICPt3z99O7PTd2RLbOHcu+HAAwXBEskDL/sekj7T/e3OvroZZ2/b/1Hyrax9+kz55dqvHx4+PxsYKsDH1uclm35yoKMlWWn2lTRQBwOoIF0i4aNXrstb1au/NIt+df3X3UpoqGt5LcoCpHZOknV0zVWeV5ygr47C4JgIsRLDBk7DvWpGc3H1BnX0MaLvTK7qM63hTRyf8VfnSi5bR2xTkBPfu9CyVJHsXmr3RNY8kN+lWUw8RaANYiWADDVKSjU+8fbtSytR/otQ+Oqr65vc/3zDujWHPPGNEtdHRNn+0KIKdOqI216R5SPL28lpnh0xUzK1SQlTGo7wZg+CJYAA5xyzNb9Ze3D0uSuv5z7fqP9pNWBqVa1Tlluv3yKYk/e/RxUOltEdCInIByghxJBDgBwQJwgeNNbXpk3QdqjHQkwkbsv2hz0vVJ/3vS893bf/yaur1m9Nd369QY6RhwjfMnFmtETvAT23g9sVGXqRUfb9xWOSKLvVOAIYRgASAlQi3tuvqR9ao5ZWXQqf9wnPovSUv74EdTfF6PvCeNhpw8SnLSk30+1dOISk8/69R2PQ3E9LRHy2nP9K/MHm9P9fW+fn1+jz+r7+/b8+f11CZ1fdfXzynMztCD15zLGUlDAMECgK3qwq1a9XatOvrYKTbU0q7lG/fLd1KCONbUprZTzsiBu10wYYR+8PmzNGdckfy+no8ygLUIFgCGtSMNEXVEu4eLU/+16ukfr57+Sevvv3I9tTOnfErPbfpZR78+s3/19+9nnV5/T+0G+r7enP7/08C+01/fOax/fWn3ae3Gjsju9mePJ7ZyalZl0WkTlz2e2PhKVsCn0YVZyvB5VZQT0JRR+ae0jbXrGjHJ8HmZH3QKggUAYNirDbVq2drdenbzATUMYq7PQFx30QT9eOGUvhu6BMECAOAotaFWHQydvs/Lhj3H1Ngam8DcbTJyfCJya3unDta3KNIR1e66Rh0Ot/a5U3AXwsXHCBYAAPTBGHNSGIn9OdTSrjn/56+JNm/dcakKstnDpb+/v5kBAwBwLY/HI6839vB5PfL7vCrODeqtOy5NtJn5v/+iK//1VT3+2l4bKx0+mJkCAMApCrIz9I1PjdO/bdgnSXrro5De+iikp9+oUdU55SrIytCssYUaX5yj0rxP3qfFbbgVAgBAD4wx2vZRSLXhVn3n3zb12m766AIV5/a9mdulU0bqmvMrE6tVhhvmWAAAkCItbZ361boPFGppV1OkQzsOhvXuofCgf+7J5/ScvOTVo4/Xwp783KlLZAN+r84uz1N+ll9leZm65fNnWXYoIcECAAALnWhq09pddX1uAmck/fD329JTlGI71m694/PKy0zthNP+/v5mjgUAAANQlBPQl88d06+2X50zRvXN7YmVJ70tjY2d43P6SpWezv0xRtp7tEkH6lv01Ov79U58BKUzatTS3pnyYNFfBAsAACzm8XgsuUUxviRHkvT1T41TZ9Toz2/X6u2DIWUH7Pv1TrAAAMABfF6Pvjh9lL44fZStdbCPBQAASJkBBYuHH35Y48ePV2ZmpubOnauNGzemui4AADAMJR0snn76ad1yyy268847tXnzZs2cOVMLFixQXV2dFfUBAIBhJOlgcf/99+u6667T4sWLNWXKFP3qV79Sdna2HnvsMSvqAwAAw0hSwaKtrU2bNm1SVVXVxz/A61VVVZXWr1/f43sikYjC4XC3BwAAcKakgsXRo0fV2dmp8vLybs+Xl5ertra2x/dUV1eroKAg8aisrBx4tQAAYEizfFXI0qVLFQqFEo+amhqrPxIAANgkqX0sSkpK5PP5dPjw4W7PHz58WCNHjuzxPcFgUMEgJ78BAOAGSY1YBAIBzZkzR2vWrEk8F41GtWbNGs2bNy/lxQEAgOEl6Z03b7nlFl177bU677zzdMEFF+iBBx5QU1OTFi9ebEV9AABgGEk6WFx99dU6cuSI7rjjDtXW1mrWrFlatWrVaRM6AQCA+3BsOgAA6FN/f39zVggAAEiZtJ9u2jVAwkZZAAAMH12/t/u60ZH2YNHQ0CBJbJQFAMAw1NDQoIKCgl5fT/sci2g0qoMHDyovL08ejydlPzccDquyslI1NTXM3bAQ/Zw+9HV60M/pQT+nh5X9bIxRQ0ODKioq5PX2PpMi7SMWXq9XY8aMsezn5+fn85c2Dejn9KGv04N+Tg/6OT2s6udPGqnowuRNAACQMgQLAACQMo4JFsFgUHfeeSfnkliMfk4f+jo96Of0oJ/TYyj0c9onbwIAAOdyzIgFAACwH8ECAACkDMECAACkDMECAACkjGOCxcMPP6zx48crMzNTc+fO1caNG+0uach6+eWXdcUVV6iiokIej0fPPfdct9eNMbrjjjs0atQoZWVlqaqqSu+//363NsePH9eiRYuUn5+vwsJCfetb31JjY2O3Ntu2bdNFF12kzMxMVVZW6qc//anVX21Iqa6u1vnnn6+8vDyVlZXpqquu0s6dO7u1aW1t1ZIlS1RcXKzc3Fx95Stf0eHDh7u12b9/vxYuXKjs7GyVlZXp1ltvVUdHR7c2a9eu1ezZsxUMBjVx4kQ98cQTVn+9IWPZsmWaMWNGYkOgefPm6YUXXki8Th9b495775XH49HNN9+ceI6+To2f/OQn8ng83R6TJ09OvD7k+9k4wIoVK0wgEDCPPfaYefvtt811111nCgsLzeHDh+0ubUh6/vnnzY9//GPz7LPPGklm5cqV3V6/9957TUFBgXnuuefMW2+9Zb70pS+ZCRMmmJaWlkSbL3zhC2bmzJlmw4YN5pVXXjETJ040X/va1xKvh0IhU15ebhYtWmR27Nhhli9fbrKysswjjzySrq9puwULFpjHH3/c7Nixw2zdutV88YtfNGPHjjWNjY2JNtdff72prKw0a9asMW+++ab51Kc+ZS688MLE6x0dHWbatGmmqqrKbNmyxTz//POmpKTELF26NNFmz549Jjs729xyyy3mnXfeMQ899JDx+Xxm1apVaf2+dvnjH/9o/uu//svs2rXL7Ny50/zTP/2TycjIMDt27DDG0MdW2Lhxoxk/fryZMWOGuemmmxLP09epceedd5qpU6eaQ4cOJR5HjhxJvD7U+9kRweKCCy4wS5YsSfy5s7PTVFRUmOrqahurGh5ODRbRaNSMHDnS/OxnP0s8V19fb4LBoFm+fLkxxph33nnHSDJvvPFGos0LL7xgPB6POXDggDHGmF/+8pemqKjIRCKRRJsf/ehH5uyzz7b4Gw1ddXV1RpJZt26dMSbWrxkZGeZ3v/tdos27775rJJn169cbY2Ih0Ov1mtra2kSbZcuWmfz8/ETf/vCHPzRTp07t9llXX321WbBggdVfacgqKioyv/nNb+hjCzQ0NJhJkyaZ1atXm8985jOJYEFfp86dd95pZs6c2eNrw6Gfh/2tkLa2Nm3atElVVVWJ57xer6qqqrR+/XobKxue9u7dq9ra2m79WVBQoLlz5yb6c/369SosLNR5552XaFNVVSWv16vXX3890ebiiy9WIBBItFmwYIF27typEydOpOnbDC2hUEiSNGLECEnSpk2b1N7e3q2vJ0+erLFjx3br6+nTp6u8vDzRZsGCBQqHw3r77bcTbU7+GV1t3Pj3v7OzUytWrFBTU5PmzZtHH1tgyZIlWrhw4Wn9QV+n1vvvv6+KigqdccYZWrRokfbv3y9pePTzsA8WR48eVWdnZ7cOlKTy8nLV1tbaVNXw1dVnn9SftbW1Kisr6/a63+/XiBEjurXp6Wec/BluEo1GdfPNN2v+/PmaNm2apFg/BAIBFRYWdmt7al/31Y+9tQmHw2ppabHi6ww527dvV25uroLBoK6//nqtXLlSU6ZMoY9TbMWKFdq8ebOqq6tPe42+Tp25c+fqiSee0KpVq7Rs2TLt3btXF110kRoaGoZFP6f9dFPAjZYsWaIdO3bo1VdftbsURzr77LO1detWhUIh/f73v9e1116rdevW2V2Wo9TU1Oimm27S6tWrlZmZaXc5jnbZZZclrmfMmKG5c+dq3LhxeuaZZ5SVlWVjZf0z7EcsSkpK5PP5TpsRe/jwYY0cOdKmqoavrj77pP4cOXKk6urqur3e0dGh48ePd2vT0884+TPc4oYbbtCf/vQnvfTSSxozZkzi+ZEjR6qtrU319fXd2p/a1331Y29t8vPzh8U/QqkQCAQ0ceJEzZkzR9XV1Zo5c6Z+8Ytf0McptGnTJtXV1Wn27Nny+/3y+/1at26dHnzwQfn9fpWXl9PXFiksLNRZZ52l3bt3D4u/08M+WAQCAc2ZM0dr1qxJPBeNRrVmzRrNmzfPxsqGpwkTJmjkyJHd+jMcDuv1119P9Oe8efNUX1+vTZs2Jdq8+OKLikajmjt3bqLNyy+/rPb29kSb1atX6+yzz1ZRUVGavo29jDG64YYbtHLlSr344ouaMGFCt9fnzJmjjIyMbn29c+dO7d+/v1tfb9++vVuQW716tfLz8zVlypREm5N/RlcbN//9j0ajikQi9HEKXXLJJdq+fbu2bt2aeJx33nlatGhR4pq+tkZjY6M++OADjRo1anj8nR709M8hYMWKFSYYDJonnnjCvPPOO+bb3/62KSws7DYjFh9raGgwW7ZsMVu2bDGSzP3332+2bNli9u3bZ4yJLTctLCw0f/jDH8y2bdvMlVde2eNy03PPPde8/vrr5tVXXzWTJk3qtty0vr7elJeXm2984xtmx44dZsWKFSY7O9tVy02/+93vmoKCArN27dpuy8aam5sTba6//nozduxY8+KLL5o333zTzJs3z8ybNy/xeteysUsvvdRs3brVrFq1ypSWlva4bOzWW2817777rnn44YddtTzvtttuM+vWrTN79+4127ZtM7fddpvxeDzmL3/5izGGPrbSyatCjKGvU+UHP/iBWbt2rdm7d6957bXXTFVVlSkpKTF1dXXGmKHfz44IFsYY89BDD5mxY8eaQCBgLrjgArNhwwa7SxqyXnrpJSPptMe1115rjIktOb399ttNeXm5CQaD5pJLLjE7d+7s9jOOHTtmvva1r5nc3FyTn59vFi9ebBoaGrq1eeutt8ynP/1pEwwGzejRo829996brq84JPTUx5LM448/nmjT0tJivve975mioiKTnZ1tvvzlL5tDhw51+zkffvihueyyy0xWVpYpKSkxP/jBD0x7e3u3Ni+99JKZNWuWCQQC5owzzuj2GU73zW9+04wbN84EAgFTWlpqLrnkkkSoMIY+ttKpwYK+To2rr77ajBo1ygQCATN69Ghz9dVXm927dydeH+r9zLHpAAAgZYb9HAsAADB0ECwAAEDKECwAAEDKECwAAEDKECwAAEDKECwAAEDKECwAAEDKECwAAEDKECwAAEDKECwAAEDKECwAAEDKECwAAEDK/H+Z24z3yzNRHQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np\n", + "import matplotlib.pylab as plt\n", + "\n", + "xs = np.asarray([[0, 1, 0, 1, 0],\n", + " [0, 0, 1, 1, 0],\n", + " [1, 1, 0, 1, 0],\n", + " [1, 1, 1, 0, 1],\n", + " [0, 0, 0, 1, 0]])\n", + "\n", + "# ws = np.asarray([1, 0, 1, 0, -1]) # hidden!\n", + "\n", + "ys = np.asarray([[0],\n", + " [0],\n", + " [0],\n", + " [3],\n", + " [3]])\n", + "\n", + "xs = np.hstack((xs, np.ones([xs.shape[0], 1])))\n", + "\n", + "ins = 5\n", + "outs = 1\n", + "nodes = 15\n", + "\n", + "def weights(ins, outs):\n", + " ws = np.random.randn(ins, outs)\n", + " return ws\n", + "\n", + "wi = weights(ins+1, nodes)\n", + "ws = weights(nodes, outs)\n", + "\n", + "ers = []\n", + "for i in range(5000):\n", + " x = xs @ wi\n", + " x = np.sin(x)\n", + " yh = x @ ws\n", + " e = yh - ys\n", + " e = np.sum(np.abs(e))\n", + " if e < 0.05:\n", + " print(\"found solution\")\n", + " print(ws)\n", + " break\n", + " else:\n", + " # mutation = weights(ins, outs) * 0.1\n", + " mutation = weights(nodes, outs) * 0.03\n", + " cw = ws + mutation\n", + "\n", + " x = xs @ wi\n", + " x = np.sin(x)\n", + " yh = x @ cw\n", + " ce = yh - ys\n", + " ce = np.sum(np.abs(ce))\n", + "\n", + " if ce < e:\n", + " ws = cw\n", + " ers.append(e)\n", + "\n", + "plt.figure(1)\n", + "plt.plot(ers)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Yay, we found a solution. \n", + "\n", + "**Exercise**:\n", + "Reduce the number of intermediary nodes to 5. What happens? \n", + "\n", + "Five is not enough if we want to find a solutino in 5k attempts, but if we use a better search algorithm. \n", + "\n", + "E.g. we can do a bredth first search where we make multiple children and then explore multiple childrens family lines at a time in parallel. \n", + "\n", + "This sacrifices many children. There is another way - we can check explore the optoin which has the steepest slope toward our goal. We take the derivative " + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "found solution\n", + "[[ 1.84319933]\n", + " [ 0.36640227]\n", + " [-0.45447801]\n", + " [ 0.1995179 ]\n", + " [ 0.20053693]\n", + " [-1.12094583]\n", + " [ 0.56073044]\n", + " [ 0.73116379]\n", + " [-1.00306465]\n", + " [ 1.20739363]\n", + " [ 1.63687894]\n", + " [-0.39957122]\n", + " [ 1.22854594]\n", + " [ 0.36304141]\n", + " [-1.53689375]]\n" + ] + }, + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAzFElEQVR4nO3deZxU5Z3v8e+pqq7qfaGb7qahGxpkUxBBkCBm8cpEjXGJuZnoJYYxc+MkwSialwszg7kZo6iZGII6mnjnGue6xnvFGI3mIijKCMjijuwNNEt30zRd1Wut5/5RCzQ0S3dX1amu+rxfr/OqqnNOV/3qeUn31+c8z3MM0zRNAQAAWMRmdQEAACCzEUYAAIClCCMAAMBShBEAAGApwggAALAUYQQAAFiKMAIAACxFGAEAAJZyWF3A8UKhkA4cOKCCggIZhmF1OQAA4AyYpqm2tjZVVVXJZutbX0fKhZEDBw6ourra6jIAAEA/1NfXa8SIEX36mZQLIwUFBZLCX6awsNDiagAAwJnweDyqrq6O/R3vi5QLI9FLM4WFhYQRAAAGmf4MsWAAKwAAsBRhBAAAWIowAgAALEUYAQAAliKMAAAASxFGAACApQgjAADAUoQRAABgKcIIAACwFGEEAABYijACAAAsRRgBAACWSrkb5SXKgdYuPbdur/zBkBZ+Y6LV5QAAgIiM6Rnp8Ab06Ns79MzaPQqFTKvLAQAAERkTRkaV5clpt6nDF9T+1i6rywEAABEZE0ay7DaNHponSdra0GZxNQAAICpjwogkTagskCRtbSSMAACQKjIqjIyLhhF6RgAASBkZFUYmEEYAAEg5GRVGxlWEw8jOQ+3yBUIWVwMAAKQMCyPDi3OU73IoEDJV19xhdTkAAEAZFkYMw9C4inxJDGIFACBVZFQYkaTxlYWSpK0NHosrAQAAUiaGkWjPSEO7xZUAAAApE8NItGekkZ4RAABSQQaGkfCMmvqWLnV4AxZXAwAAMi6MDMlzamiBS5K0jUGsAABYLuPCiCSNj6w3QhgBAMB6mRlGIpdqtrASKwAAlsvMMELPCAAAKSMzwwj3qAEAIGVkZBgZW5Evw5Ca231qbvdaXQ4AABktI8NIrtOhmiG5krhUAwCA1TIyjEhSbVmeJGnv4U6LKwEAILNlbBgZGekZ2U0YAQDAUpkbRkrDPSN7DndYXAkAAJktg8NIuGdkDz0jAABYKoPDyNGeEdM0La4GAIDMlbFhpHpIjgxD6vAFdbjDZ3U5AABkrIwNIy6HXVVFOZIYNwIAgJUyNoxIR8eN7G5m3AgAAFYhjEja00IYAQDAKhkeRpjeCwCA1TI6jIxiei8AAJbL6DBSM4SeEQAArJbRYSQ6ZuRIp1/uLr/F1QAAkJkyOozkuRwqy3dJ4oZ5AABYJaPDiHR03MhuLtUAAGCJjA8j0Rk1e5neCwCAJQgjsYXP6BkBAMAKhBGm9wIAYKk+h5F3331XV155paqqqmQYhl555ZUex03T1D333KNhw4YpJydHc+bM0fbt2+NVb9zFFj5roWcEAAAr9DmMdHR0aMqUKXrsscd6Pf7QQw9p6dKleuKJJ7Ru3Trl5eXp0ksvVXd394CLTYToANZGj1ddvqDF1QAAkHkcff2Byy+/XJdffnmvx0zT1JIlS/TP//zPuvrqqyVJ//Ef/6GKigq98soruu666wZWbQIU5zpVlJMld5dfe1s6Nb6ywOqSAADIKHEdM1JXV6eGhgbNmTMntq+oqEgzZ87UmjVrev0Zr9crj8fTY0u2kUzvBQDAMnENIw0NDZKkioqKHvsrKipix463ePFiFRUVxbbq6up4lnRGYtN7GcQKAEDSWT6bZuHChXK73bGtvr4+6TWMHELPCAAAVolrGKmsrJQkNTY29tjf2NgYO3Y8l8ulwsLCHluyMb0XAADrxDWM1NbWqrKyUitWrIjt83g8WrdunWbNmhXPj4qrUWVM7wUAwCp9nk3T3t6uHTt2xF7X1dXpo48+0pAhQ1RTU6MFCxbol7/8pcaOHava2lotWrRIVVVVuuaaa+JZd1xFL9PsP9IlXyAkp8Pyq1cAAGSMPoeRDRs26OKLL469vv322yVJ8+bN0x/+8Afdeeed6ujo0E033aTW1lZddNFFevPNN5WdnR2/quNsaIFLOVl2dfmD2t/apdpITwkAAEg8wzRN0+oijuXxeFRUVCS3253U8SOXLXlXWxra9NSNM3Tx+PKkfS4AAOlgIH+/uR4RERvEyg3zAABIKsJIxKjYPWqYUQMAQDIRRiJqmN4LAIAlCCMRsZ4RFj4DACCpCCMRNZHpvfUtXQqGUmpMLwAAaY0wElFVnKMsuyFfMKSD7i6rywEAIGMQRiLsNkPVkd4RbpgHAEDyEEaOcfSGeYQRAACShTByjJGl3KMGAIBkI4wc4+jCZ/SMAACQLISRY0Sn9+5mei8AAElDGDlGtGdkb0unUuyWPQAApC3CyDFGlOTKZkidvqAOtXutLgcAgIxAGDmG02FTVXGOJKb3AgCQLISR40Qv1TC9FwCA5CCMHCc6vXcvg1gBAEgKwshxRtEzAgBAUhFGjlMzhLv3AgCQTISR44wqiyx81kLPCAAAyUAYOU5N5P40rZ1+uTv9FlcDAED6I4wcJ9fpUHmBSxL3qAEAIBkII704uiw8l2oAAEg0wkgvamI3zKNnBACARCOM9CI6vZdBrAAAJB5hpBc1pUzvBQAgWQgjvYj1jDBmBACAhCOM9GJkZOGzpjavOn0Bi6sBACC9EUZ6UZSbpeLcLEn0jgAAkGiEkZMYGRs3QhgBACCRCCMnMXJIdNwIg1gBAEgkwshJML0XAIDkIIycxEim9wIAkBSEkZMYGekZ2d1MzwgAAIlEGDmJaM/IQXeXvIGgxdUAAJC+CCMnUZbvVK7TrpAp7TvSZXU5AACkLcLISRiGEesd2cv0XgAAEoYwcgrRGTW7GcQKAEDCEEZOoYZ71AAAkHCEkVMYxfReAAASjjByCiPpGQEAIOEII6cQHcBaf6RTwZBpcTUAAKQnwsgpDCvMltNhkz9o6kAr03sBAEgEwsgp2GyGaiI3zKtrZtwIAACJQBg5jdFl4Us1uw61W1wJAADpiTByGqOH5kuSdtEzAgBAQhBGTmP00GjPCGEEAIBEIIycxpihXKYBACCRCCOnMbosfJnmgLtbnb6AxdUAAJB+4h5GgsGgFi1apNraWuXk5GjMmDG69957ZZqDc52OkjynhuQ5JXGpBgCARHDE+w0ffPBBPf7443r66ad1zjnnaMOGDbrxxhtVVFSkW265Jd4flxSjy/LU0uHTruYOTRpeZHU5AACklbiHkffff19XX321rrjiCknSqFGj9Pzzz+uDDz6I90clzeihedqw5wjjRgAASIC4X6a58MILtWLFCm3btk2S9PHHH2v16tW6/PLL4/1RSROb3stlGgAA4i7uPSN33323PB6PJkyYILvdrmAwqPvuu09z587t9Xyv1yuv1xt77fF44l3SgMUWPmumZwQAgHiLe8/IH//4Rz377LN67rnntGnTJj399NP613/9Vz399NO9nr948WIVFRXFturq6niXNGDRnpG6Qx2DdiAuAACpyjDj/Ne1urpad999t+bPnx/b98tf/lLPPPOMtmzZcsL5vfWMVFdXy+12q7CwMJ6l9ZsvENLEe95UMGRq7cJLVFmUbXVJAACkFI/Ho6Kion79/Y77ZZrOzk7ZbD07XOx2u0KhUK/nu1wuuVyueJcRV06HTTVDclXX3KGdh9oJIwAAxFHcL9NceeWVuu+++/T6669r9+7dWrZsmR5++GF961vfivdHJRU3zAMAIDHi3jPyyCOPaNGiRfrJT36ipqYmVVVV6R/+4R90zz33xPujkmr00Dyt2CLtZEYNAABxFfcwUlBQoCVLlmjJkiXxfmtLcfdeAAASg3vTnKExsbVGuEwDAEA8EUbO0OjI3Xv3t3ap2x+0uBoAANIHYeQMleY5VZjtkGlKuw9zqQYAgHghjJwhwzBi40Z2NhFGAACIF8JIH0Qv1TBuBACA+CGM9MFZ5eGeke1NhBEAAOKFMNIH48oLJEnbGtssrgQAgPRBGOmDcRXhMLKruUOBYO/L2wMAgL4hjPTBiJIcZWfZ5AuEtLel0+pyAABIC4SRPrDZjNi4kW2NjBsBACAeCCN9FB03sqOJcSMAAMQDYaSPzqqgZwQAgHgijPQRM2oAAIgvwkgfMaMGAID4Ioz0ETNqAACIL8JIHzGjBgCA+CKM9AMzagAAiB/CSD8wowYAgPghjPQDM2oAAIgfwkg/MKMGAID4IYz0AzNqAACIH8JIPzCjBgCA+CGM9BMzagAAiA/CSD8xowYAgPggjPQTM2oAAIgPwkg/ja8Mh5Gdh9rlCzCjBgCA/iKM9NOIkhwVZDvkD5ra0cSlGgAA+osw0k+GYWhiZaEk6YuDHourAQBg8CKMDMDEYeFLNYQRAAD6jzAyABOHhXtGtjQwiBUAgP4ijAxANIx8cdAj0zQtrgYAgMGJMDIA4ysLZDOkwx0+HWrzWl0OAACDEmFkALKz7Koty5MkbWbcCAAA/UIYGaCjl2oYNwIAQH8QRgbo2HEjAACg7wgjA8T0XgAABoYwMkDRnpFdzR3q9gctrgYAgMGHMDJAlYXZKs7NUjBkajt38AUAoM8IIwPEsvAAAAwMYSQOopdqmN4LAEDfEUbigEGsAAD0H2EkDo69Rw3LwgMA0DeEkTgYW5Evh82Qu8uvA+5uq8sBAGBQIYzEgcth19iK8KWaT/e5La4GAIDBhTASJ+cOL5IkfbafMAIAQF8QRuJk0ohwGPmEMAIAQJ8QRuIk2jPy6b5WBrECANAHhJE4mTCsQFl2Q0c6/drf2mV1OQAADBoJCSP79+/X9773PZWWlionJ0eTJ0/Whg0bEvFRKcPlsGscg1gBAOizuIeRI0eOaPbs2crKytIbb7yhzZs369e//rVKSkri/VEp51zGjQAA0GeOeL/hgw8+qOrqaj311FOxfbW1tfH+mJQ0eXixnlc9PSMAAPRB3HtGXn31VU2fPl3f+c53VF5erqlTp+rJJ5+M98ekpGjPyKf73QxiBQDgDMU9jOzatUuPP/64xo4dq7/+9a/68Y9/rFtuuUVPP/10r+d7vV55PJ4e22A1rqJATrtN7i6/6lsYxAoAwJmIexgJhUKaNm2a7r//fk2dOlU33XSTfvjDH+qJJ57o9fzFixerqKgotlVXV8e7pKRxOmyaELlp3if7W60tBgCAQSLuYWTYsGE6++yze+ybOHGi9u7d2+v5CxculNvtjm319fXxLimpJsfWG2HcCAAAZyLuA1hnz56trVu39ti3bds2jRw5stfzXS6XXC5XvMuwzLkjivTsuvC4EQAAcHpx7xm57bbbtHbtWt1///3asWOHnnvuOf3+97/X/Pnz4/1RKWnS8KODWEMhBrECAHA6cQ8jM2bM0LJly/T8889r0qRJuvfee7VkyRLNnTs33h+VksZVFMjpsKmtO6A9LZ1WlwMAQMqL+2UaSfrmN7+pb37zm4l465SXZbfp7GGF+qi+VZ/sa1VtWZ7VJQEAkNK4N00CRNcb+biecSMAAJwOYSQBptWEl77ftPeIxZUAAJD6CCMJEA0jnx9wq9sftLgaAABSG2EkAaqH5Kgs3yl/0NRnTPEFAOCUCCMJYBiGpnKpBgCAM0IYSZDYuJE9rdYWAgBAiiOMJMi0mmJJ4Z4R7uALAMDJEUYS5NwRxXLYDDW1ebW/lTv4AgBwMoSRBMlx2jVxWKEkadPeVmuLAQAghRFGEih2qWYPg1gBADgZwkgCTRsZHsT6ITNqAAA4KcJIAh1d/MzD4mcAAJwEYSSBRpTkaGiBS4GQqU9Z/AwAgF4RRhLIMAzGjQAAcBqEkQTjpnkAAJwaYSTBpo8Kh5ENu1n8DACA3hBGEmzy8GJlZ9l0uMOnHU3tVpcDAEDKIYwkmNNhi12qWVvXYnE1AACkHsJIEsysLZUkrdt12OJKAABIPYSRJJg5eogkaV1dC+NGAAA4DmEkCc6rLpbTYdOhNq/qmjusLgcAgJRCGEmC7Cy7zqsulhTuHQEAAEcRRpLkS7WRSzWMGwEAoAfCSJLMHB0ZxMq4EQAAeiCMJMm0mhJl2Q0ddHervqXL6nIAAEgZhJEkyXHade6IYknS2jou1QAAEEUYSaKZsXEjDGIFACCKMJJER8eN0DMCAEAUYSSJpo8skcNmaN+RLtW3dFpdDgAAKYEwkkR5Loem1hRLkt7b3mxtMQAApAjCSJJddNZQSdLqHYcsrgQAgNRAGEmyL48rkyT9547DCoZYbwQAAMJIkp07vEiF2Q65u/z6dL/b6nIAALAcYSTJHHabLhwT7h15bxuXagAAIIxYIHqphkGsAAAQRizxlbHhQayb9h5RuzdgcTUAAFiLMGKB6iG5Glmaq0DI1NqdLIAGAMhshBGLfHls+FLN6h1cqgEAZDbCiEW+HLlU8+52BrECADIbYcQis8aUym4ztOtQh/a3dlldDgAAliGMWKQwO0vnVRdLkt5lii8AIIMRRiz0tXHhSzUrvmiyuBIAAKxDGLHQJRMrJIXvU9PtD1pcDQAA1iCMWGjisAJVFWWr2x/S+zuZVQMAyEyEEQsZhhHrHXmLSzUAgAxFGLHYf5lYLkla+UWTTJO7+AIAMg9hxGKzRpcq12lXg6dbnx/wWF0OAABJRxixWHaWXRedFV6N9a0vGi2uBgCA5COMpIA5kXEjTPEFAGSihIeRBx54QIZhaMGCBYn+qEHr4gnhcSOf7ner0dNtcTUAACRXQsPI+vXr9bvf/U7nnntuIj9m0Bta4NKUyGqsK7fQOwIAyCwJCyPt7e2aO3eunnzySZWUlCTqY9LGnEjvyPLNjBsBAGSWhIWR+fPn64orrtCcOXNOeZ7X65XH4+mxZaJLJ1VKklZvb5an229xNQAAJE9CwsgLL7ygTZs2afHixac9d/HixSoqKopt1dXViSgp5Y0tz9eYoXnyBUN6i94RAEAGiXsYqa+v16233qpnn31W2dnZpz1/4cKFcrvdsa2+vj7eJQ0KhmHoisnDJEl/+bTB4moAAEieuIeRjRs3qqmpSdOmTZPD4ZDD4dCqVau0dOlSORwOBYM9bwjncrlUWFjYY8tU3zg3HEbe3X5IbVyqAQBkCEe83/CSSy7Rp59+2mPfjTfeqAkTJuiuu+6S3W6P90emjfEVBRo9NE+7DnVoxRdNumbqcKtLAgAg4eIeRgoKCjRp0qQe+/Ly8lRaWnrCfvQUvVTzyModev3Tg4QRAEBGYAXWFPONyLiRVdu4VAMAyAxx7xnpzTvvvJOMj0kLEyoLNLosT7uaO7RyS5OuPo/eEQBAeqNnJMUYhhHrHXn9k4MWVwMAQOIRRlJQNIy8s+0QC6ABANIeYSQFTRxWoLPK8+ULhPQma44AANIcYSQFGYaha6eFx4r83037LK4GAIDEIoykqGvOGy7DkNbVtWjfkU6rywEAIGEIIymqqjhHs0aXSpJe+XC/xdUAAJA4hJEUdu20EZKklzftl2maFlcDAEBiEEZS2GWTKpWdZdOu5g59vM9tdTkAACQEYSSF5bscuuycSknSywxkBQCkKcJIioteqnn14wPyBUIWVwMAQPwRRlLc7LPKVF7gUmunXyu3NFpdDgAAcUcYSXF2mxHrHXnug3qLqwEAIP4II4PA9RdUS5Le235Iew+z5ggAIL0QRgaBkaV5+vLYMpmm9Pz6vVaXAwBAXBFGBom5M2skSS9tqGcgKwAgrRBGBolLJlaovMCl5naflm9mICsAIH0QRgaJLLtN350RHjvy7Lo9FlcDAED8EEYGkesuqJHNkN7feVi7DrVbXQ4AAHFBGBlEhhfn6GvjyyVJz61jICsAID0QRgaZ730pPJD1xQ31avcGLK4GAICBI4wMMl8bV67RQ/PU1h3QSxtYBA0AMPgRRgYZm83QD2bXSpL+13/WKRgyLa4IAICBIYwMQt+eNkLFuVmqb+nS8s0NVpcDAMCAEEYGoRynXd+bOVKS9D/fq7O4GgAABoYwMkh9f9ZIZdkNbdhzRB/Vt1pdDgAA/UYYGaTKC7N11ZThkqR/X03vCABg8CKMDGJ/f1F4IOvrnxzQ7uYOi6sBAKB/CCOD2NlVhfra+KEKmdK/vbPD6nIAAOgXwsgg99P/MlaS9PKm/apv6bS4GgAA+o4wMsidP7JEXx5bpkDI1OOrdlpdDgAAfUYYSQO3XBLuHXlpQ70OtHZZXA0AAH1DGEkDM0YN0ZdGD5E/aOp39I4AAAYZwkiaiPaOPL++Xg3ubourAQDgzBFG0sSs0aWaMapEvkBIS1dut7ocAADOGGEkTRiGoTsvmyBJenF9vXYeare4IgAAzgxhJI3MGDVEcyZWKBgy9as3t1pdDgAAZ4QwkmbuvGy8bIb05ucN2rT3iNXlAABwWoSRNDOuokD/9fwRkqQH/rJFpmlaXBEAAKdGGElDt/3NOLkcNn2wu0UrtzRZXQ4AAKdEGElDw4pydOPs8E30fvn6F/IGghZXBADAyRFG0tT8i8eoLN+luuYO/fvqOqvLAQDgpAgjaaogO0v/+I3wVN9HVuzQQTfLxAMAUhNhJI19a+pwzRhVoi5/UPe9/oXV5QAA0CvCSBozDEO/uGqSbIb02icH9f7OZqtLAgDgBISRNHd2VaFu+NJISdI9f/qcwawAgJRDGMkAt//NeJXlu7SjqV2PrtxhdTkAAPRAGMkARblZuvfqcyRJ//bOTn1+wG1xRQAAHEUYyRCXTx6mb0yuVDBk6s7/84n8wZDVJQEAICkBYWTx4sWaMWOGCgoKVF5ermuuuUZbt3LTtlTwi6smqTg3S58f8Oj37+6yuhwAACQlIIysWrVK8+fP19q1a7V8+XL5/X59/etfV0dHR7w/Cn00tMCln195tiTpt29t15YGj8UVAQAgGWaC76R26NAhlZeXa9WqVfrKV75y2vM9Ho+KiorkdrtVWFiYyNIykmma+u9Pb9CKLU0aV5GvV2++SNlZdqvLAgAMcgP5+53wMSNud3iw5JAhQ3o97vV65fF4emxIHMMw9OB/PVdl+S5ta2xnMTQAgOUSGkZCoZAWLFig2bNna9KkSb2es3jxYhUVFcW26urqRJYESWX5Lv36b6dIkv732j1avrnR4ooAAJksoWFk/vz5+uyzz/TCCy+c9JyFCxfK7XbHtvr6+kSWhIivjhuq/35R+M6+d/6fj9Xg7ra4IgBApkpYGLn55pv12muv6e2339aIESNOep7L5VJhYWGPDclxx2XjdU5VoY50+vXT5zfJF2C6LwAg+eIeRkzT1M0336xly5Zp5cqVqq2tjfdHIE5cDrseuX6qClwOrd99RPf/hfEjAIDki3sYmT9/vp555hk999xzKigoUENDgxoaGtTVxS3sU9Hoofl6+LvnSZL+8P5uvbxpn7UFAQAyTtyn9hqG0ev+p556Sn/3d3932p9naq81Hv5/W7V05Q65HDb93x9fqEnDi6wuCQAwiKTU1F7TNHvdziSIwDoL5ozTxeOHyhsI6ab/2KAmDwNaAQDJwb1pIEmy2Qwt+e5UjS7L0wF3t37w9Hp1eANWlwUAyACEEcQU5WbpqRtnqDTPqc/2e/TT5z9UgBvqAQASjDCCHkaW5unJedPlcti0ckuTfvHnzUrwHQMAABmOMIITTKsp0W+vO0+GEV6h9Tdvbbe6JABAGiOMoFeXTRqm/3HlOZKkpSu264lVOy2uCACQrggjOKl5F47SnZeNlyQ98MYW/e81u60tCACQlggjOKWffO0s3XzxWZKkRX/6XM9/sNfiigAA6YYwgtP62dfH6Qezw8v6L3z5U/2v1XUWVwQASCeEEZyWYRha9M2JuukroyVJ//LaZj329g6LqwIApAvCCM6IYRhaePkELZgzVpL0q79u1X2vb1YwxLRfAMDAEEZwxgzD0II54/RP35goSXryvTr93VMf6EiHz+LKAACDGWEEffbDr4zW0uunKifLrve2N+vKR1frs/1uq8sCAAxShBH0y1VTqvTyTy7UyNJc7TvSpWv/7X39Zvk2dfuDVpcGABhkCCPot4nDCvXq/Is0Z2KFfMGQfrtiuy7/7Xt6f0ez1aUBAAYRwggGpCg3S09+/3w99t+mqbzApbrmDv23/7lO85/dpPqWTqvLAwAMAoQRDJhhGLri3GF662df1bxZI2UzpNc/PahLHl6lX/+/rerwBqwuEQCQwgwzxW7J6vF4VFRUJLfbrcLCQqvLQT98cdCjf/nzZq3ZdViSVJbv0i2XnKXrZtTI6SD/AkA6Gsjfb8IIEsI0Tf3180YtfuML7TkcvlxTMyRXt/3NWF15bpUcdkIJAKQTwghSli8Q0osb6rV0xXYdavNKCoeSH311jL59/nC5HHaLKwQAxANhBCmv0xfQU/+5W/++uk4tkUXSKgpd+uGXR+v6C2qU53JYXCEAYCAIIxg0On0BvfBBvX7/7i41eLolSSW5Wbpxdq1u+NJIleQ5La4QANAfhBEMOt5AUMs27dfjq3bGxpQ4HTZdeW6Vbpg1UlNGFMkwDIurBACcKcIIBq1AMKS/fNag363aqc8PeGL7Jw8v0g1fGqkrp1Qpx8m4EgBIdYQRDHqmaerD+lY9s2aPXvvkoHzBkCSpMNuha6eN0MUTyjVjVIlynYwtAYBURBhBWjnc7tVLG/fp2XV7VN/SFdufZTc0ZUSxJo8o0viKAo2vLNC4igIGvwJACiCMIC0FQ6be3XZIf/n0oN7feVj7W7t6Pa96SI7GVxRqfGW+xlcWanxFgUYPzVMWa5kAQNIQRpAR6ls6tXbXYW1paNO2xjZtaWiLrV1yvCy7oTFD8zUu0oMS7UkZXpwjm42BsQAQbwP5+03/NgaN6iG5qh6S22NfS4dPWxvatLXBo62N7dra4NG2xna1ewPa0hAOLPr46Pl5TrvGVRZoQuQSTzSolOa7kvxtAABR9Iwg7Zimqf2tXbHek62RbeehdvmDvf/nXpbvigWUCZUFGldZoHEV+QyYBYAzxGUa4Az4gyHtbu7ocZlna0Ob9rZ09nq+YUjVJbmx3pOxFfkaMzRfo4fmEVIA4DiEEWAAOrwBbW9q17bIZZ1oUGlu7308iiQNL87RWeX5sW3M0PDjEFaQBZChCCNAAhxu92prY7j3ZFtjm3Y2dWjHofbYvXV6MyTPqbOG5mtMeb7GDM2LhZWqIgbOAkhvhBEgiVo6fNrR1K4dTe3aeag99vxkU48lKSfLrtqyPNWW5WlUWa5GlUaf56k0z8nS9wAGPcIIkAI6fQHtOtTRI6DsaGrX7sMdJx04K0kFLodGRYJJbWnuMc/zuHEggEGDMAKkMH8wpL0tnao71KHdhztU1xx+3N3cqQPuLp3qX2BRTlaPkFITmd48oiRHFQXZXPoBkDIII8Ag1e0PhoNKc4d2HxNSdh/u0EF39yl/1mm3aXhJjkaU5ITXYCnJVfWQnMhjrkpys7j8AyBpWPQMGKSys+waVxFe3+R4Xb6g9rSEQ0pdc6d2N3eo/kin6o906kBrt3zBkOqawz0tvclz2mO9KCNKjvaoVBXlaFhxNmNVAKQMwgiQonKcdk2oLNSEyhP/DyMQDOmgu1v7jnSp/kin9rV0qv5Il+pbwmGl0eNVhy94dBXaXrgcNg0rytawSDipOu5xWFGOCrMdBBYACUcYAQYhh90WWx5/lkpPON7tD2p/azScdGnfkU7tawk/HnB3q7ndK28gpN2HO7X7cO+Lvknh3pVhxTkaVnQ0pFQWZqu80KXygvBjaZ5LdsauABgAwgiQhrKz7BozNLwYW298gZAaPd060Nqlg+5uHXB36WBrtw66u3Qg8nik068OXzA2K+hk7DZDZflOVRRmq7zApaEF2aqIhJWKHqHFKQd3UgbQC8IIkIGcDluvNx48VpcvqIPuSFiJhJaD7i41erxq9HSrqc2r5navgiEzsu/kK9ZKks2QSvNdKi9wqSzfpdJ8Z/gxz9nzdb5TpXkuOR0EFyBTEEYA9CrHadfoofkafZLeFSk8duVwhy8cTjxeNbaFH5vaer5ubvcqZEqH2rw61Hbq0BJVmO3oEU7KCiKP+U6V5DlVkhvZ8rJUkutUdpY9Xl8dQJIRRgD0m8NuU0VhtioKs095XjBk6nB7uPekqa1bhzt8am736nC7T4fbvZHXR58HQ6Y83QF5ugPadZLZQsfLzrKpJNep4lynSnKzIs97PpbkZUWOOzUk16mCbAdrtQApgDACIOHsNkPlhdkqL8yWVHTKc0MhU+4uvw53eCMBJRpcvGru8Km5zasjnT4d6fSrtdOn1k6/AiFT3f5Q5FLSqddnOZbNkIpznSrKyVJhtkOFOVkqzM5SYY4j8hjZjjlWdMwxl8PGbCMgDggjAFKKzWaEL8PkOXVW+enPN01Tbd6AWjv8kZASDijHBpajjz4d6Qg/7/AFFTLD9xo61c0PT8Vpt8WCS8ExoaXA5VCey6H8yJbncijPZVdBtkN5zvDrguyj5xBqkOkIIwAGNcMwwj0V2VmqKT35gNzjeQNBuTv9OtLpl7vLL0+XX57u6GPgmNeB8GPkubvLr7Zuv0Km5AuG1NwevsQ0EA6bcVx4sR8NLMeFlzynXTlOh3KdduU47crJsivXaY+8dig3K7yfgIPBhDACICO5HHaVF9ojl476JhQy1eELHA0txwQYd5dfHd6A2n0BtXcHws+9QbV7/erwBtXhDajNG97f6QtKkgKRS1PuLn/cvp/NkHKdDuVEg0okpISfO44JMNEw41B2ll3ZWTZlO+xyRR5j+7LCASc7K3Is8tppJ/Rg4AgjANBHNpuhguwsFWRnaXhxTr/fJxgJNR3eY0JLd0DtsdcnPu/0BtXpD6rLFw4zXf6gunzB8HNfUL5gSJIUMhX7mUSyGeFgd2JgsSvb0XPfsee4HHY5HTZl2W1yOsKb65jnsf2RR9ep9tttDEQe5BIWRh577DH96le/UkNDg6ZMmaJHHnlEF1xwQaI+DgAGHbvt6CWmeAkEQ5GwEg4onb6Auv3R5z33d/mCx5wbUJc/JK8/qO5ASN3+oLz+oLyR593+kLoDwfD+QCh2t+mQqXAg8gclxa9np6/sNiMWUKJhxXVc2HHabXLYDWXZbXLYwo9ZdkOO6KPt5Mejrx12Q1nHnNfbz0Xf70yOO2wGPUtKUBh58cUXdfvtt+uJJ57QzJkztWTJEl166aXaunWrysvPYEQaAKBfHHabCu22uAac45mmKV8wpO5IeOk1sMSeh2IBJhpwugMh+QIheSOP/mD40Rd9DITkDYbkP26f77jzjhUMmeoKRUPR4GIzJIfNJrvNkMNmyG43ZDeMHq8dNlvP8+xHj9uM6OtwuLHbIj9vN2Kvw4822W3h9xha4NL8i8+y+qvHGKYZzbfxM3PmTM2YMUOPPvqoJCkUCqm6ulo//elPdffdd5/yZwdyC2IAQGYwTVP+oNkjrPiDRwNOr/uDIQWCIQWCpvyhcNgJhMLvEwiG5A+FH8P7wj8XCEaOh6LPezke/bnI+0bP6+3ngqG4/8ntl9FD87TyZ1+L63sO5O933HtGfD6fNm7cqIULF8b22Ww2zZkzR2vWrDnhfK/XK6/36IqMHo8n3iUBANKMYRhyOozwbQNcVldz5kIhMxZmApGwEgyZCpqmAsFwWImGlugWPefE/aaCoVCP/YFjH4MhBU0dPSd49HhxbuJ6zvoj7mGkublZwWBQFRUVPfZXVFRoy5YtJ5y/ePFi/eIXv4h3GQAApBybzZDTZnDvpeNY3hoLFy6U2+2ObfX19VaXBAAAkijuPSNlZWWy2+1qbGzssb+xsVGVlZUnnO9yueRyDaI+NgAAEFdx7xlxOp06//zztWLFiti+UCikFStWaNasWfH+OAAAMMglZGrv7bffrnnz5mn69Om64IILtGTJEnV0dOjGG29MxMcBAIBBLCFh5Lvf/a4OHTqke+65Rw0NDTrvvPP05ptvnjCoFQAAICHrjAwE64wAADD4DOTvt+WzaQAAQGYjjAAAAEsRRgAAgKUIIwAAwFKEEQAAYCnCCAAAsBRhBAAAWCohi54NRHTZE4/HY3ElAADgTEX/bvdn+bKUCyNtbW2SpOrqaosrAQAAfdXW1qaioqI+/UzKrcAaCoV04MABFRQUyDCMuL63x+NRdXW16uvrM3p1V9rhKNoijHYIox3CaIejaIuwM2kH0zTV1tamqqoq2Wx9GwWScj0jNptNI0aMSOhnFBYWZvR/VFG0w1G0RRjtEEY7hNEOR9EWYadrh772iEQxgBUAAFiKMAIAACyVUWHE5XLp5z//uVwul9WlWIp2OIq2CKMdwmiHMNrhKNoiLNHtkHIDWAEAQGbJqJ4RAACQeggjAADAUoQRAABgKcIIAACwVMaEkccee0yjRo1Sdna2Zs6cqQ8++MDqkhJq8eLFmjFjhgoKClReXq5rrrlGW7du7XFOd3e35s+fr9LSUuXn5+vb3/62GhsbLao4OR544AEZhqEFCxbE9mVSO+zfv1/f+973VFpaqpycHE2ePFkbNmyIHTdNU/fcc4+GDRumnJwczZkzR9u3b7ew4vgLBoNatGiRamtrlZOTozFjxujee+/tcT+NdG2Hd999V1deeaWqqqpkGIZeeeWVHsfP5Hu3tLRo7ty5KiwsVHFxsf7+7/9e7e3tSfwWA3eqdvD7/brrrrs0efJk5eXlqaqqSt///vd14MCBHu+R7u1wvB/96EcyDENLlizpsT9e7ZARYeTFF1/U7bffrp///OfatGmTpkyZoksvvVRNTU1Wl5Ywq1at0vz587V27VotX75cfr9fX//619XR0RE757bbbtOf//xnvfTSS1q1apUOHDiga6+91sKqE2v9+vX63e9+p3PPPbfH/kxphyNHjmj27NnKysrSG2+8oc2bN+vXv/61SkpKYuc89NBDWrp0qZ544gmtW7dOeXl5uvTSS9Xd3W1h5fH14IMP6vHHH9ejjz6qL774Qg8++KAeeughPfLII7Fz0rUdOjo6NGXKFD322GO9Hj+T7z137lx9/vnnWr58uV577TW9++67uummm5L1FeLiVO3Q2dmpTZs2adGiRdq0aZNefvllbd26VVdddVWP89K9HY61bNkyrV27VlVVVScci1s7mBngggsuMOfPnx97HQwGzaqqKnPx4sUWVpVcTU1NpiRz1apVpmmaZmtrq5mVlWW+9NJLsXO++OILU5K5Zs0aq8pMmLa2NnPs2LHm8uXLza9+9avmrbfeappmZrXDXXfdZV500UUnPR4KhczKykrzV7/6VWxfa2ur6XK5zOeffz4ZJSbFFVdcYf7gBz/ose/aa681586da5pm5rSDJHPZsmWx12fyvTdv3mxKMtevXx8754033jANwzD379+ftNrj6fh26M0HH3xgSjL37NljmmZmtcO+ffvM4cOHm5999pk5cuRI8ze/+U3sWDzbIe17Rnw+nzZu3Kg5c+bE9tlsNs2ZM0dr1qyxsLLkcrvdkqQhQ4ZIkjZu3Ci/39+jXSZMmKCampq0bJf58+friiuu6PF9pcxqh1dffVXTp0/Xd77zHZWXl2vq1Kl68sknY8fr6urU0NDQoy2Kioo0c+bMtGqLCy+8UCtWrNC2bdskSR9//LFWr16tyy+/XFLmtMPxzuR7r1mzRsXFxZo+fXrsnDlz5shms2ndunVJrzlZ3G63DMNQcXGxpMxph1AopBtuuEF33HGHzjnnnBOOx7MdUu5GefHW3NysYDCoioqKHvsrKiq0ZcsWi6pKrlAopAULFmj27NmaNGmSJKmhoUFOpzP2jyuqoqJCDQ0NFlSZOC+88II2bdqk9evXn3Ask9ph165devzxx3X77bfrH//xH7V+/XrdcsstcjqdmjdvXuz79vZvJZ3a4u6775bH49GECRNkt9sVDAZ13333ae7cuZKUMe1wvDP53g0NDSovL+9x3OFwaMiQIWnbNt3d3brrrrt0/fXXx24Qlynt8OCDD8rhcOiWW27p9Xg82yHtwwjCvQKfffaZVq9ebXUpSVdfX69bb71Vy5cvV3Z2ttXlWCoUCmn69Om6//77JUlTp07VZ599pieeeELz5s2zuLrk+eMf/6hnn31Wzz33nM455xx99NFHWrBggaqqqjKqHXB6fr9ff/u3fyvTNPX4449bXU5Sbdy4Ub/97W+1adMmGYaR8M9L+8s0ZWVlstvtJ8yOaGxsVGVlpUVVJc/NN9+s1157TW+//bZGjBgR219ZWSmfz6fW1tYe56dbu2zcuFFNTU2aNm2aHA6HHA6HVq1apaVLl8rhcKiioiIj2kGShg0bprPPPrvHvokTJ2rv3r2SFPu+6f5v5Y477tDdd9+t6667TpMnT9YNN9yg2267TYsXL5aUOe1wvDP53pWVlScM/A8EAmppaUm7tokGkT179mj58uWxXhEpM9rhvffeU1NTk2pqamK/O/fs2aOf/exnGjVqlKT4tkPahxGn06nzzz9fK1asiO0LhUJasWKFZs2aZWFliWWapm6++WYtW7ZMK1euVG1tbY/j559/vrKysnq0y9atW7V37960apdLLrlEn376qT766KPYNn36dM2dOzf2PBPaQZJmz559wvTubdu2aeTIkZKk2tpaVVZW9mgLj8ejdevWpVVbdHZ2ymbr+avPbrcrFApJypx2ON6ZfO9Zs2aptbVVGzdujJ2zcuVKhUIhzZw5M+k1J0o0iGzfvl1vvfWWSktLexzPhHa44YYb9Mknn/T43VlVVaU77rhDf/3rXyXFuR36N+52cHnhhRdMl8tl/uEPfzA3b95s3nTTTWZxcbHZ0NBgdWkJ8+Mf/9gsKioy33nnHfPgwYOxrbOzM3bOj370I7OmpsZcuXKluWHDBnPWrFnmrFmzLKw6OY6dTWOamdMOH3zwgelwOMz77rvP3L59u/nss8+aubm55jPPPBM754EHHjCLi4vNP/3pT+Ynn3xiXn311WZtba3Z1dVlYeXxNW/ePHP48OHma6+9ZtbV1Zkvv/yyWVZWZt55552xc9K1Hdra2swPP/zQ/PDDD01J5sMPP2x++OGHsVkiZ/K9L7vsMnPq1KnmunXrzNWrV5tjx441r7/+equ+Ur+cqh18Pp951VVXmSNGjDA/+uijHr8/vV5v7D3SvR16c/xsGtOMXztkRBgxTdN85JFHzJqaGtPpdJoXXHCBuXbtWqtLSihJvW5PPfVU7Jyuri7zJz/5iVlSUmLm5uaa3/rWt8yDBw9aV3SSHB9GMqkd/vznP5uTJk0yXS6XOWHCBPP3v/99j+OhUMhctGiRWVFRYbpcLvOSSy4xt27dalG1ieHxeMxbb73VrKmpMbOzs83Ro0eb//RP/9TjD026tsPbb7/d6++FefPmmaZ5Zt/78OHD5vXXX2/m5+ebhYWF5o033mi2tbVZ8G3671TtUFdXd9Lfn2+//XbsPdK9HXrTWxiJVzsYpnnMsoMAAABJlvZjRgAAQGojjAAAAEsRRgAAgKUIIwAAwFKEEQAAYCnCCAAAsBRhBAAAWIowAgAALEUYAQAAliKMAAAASxFGAACApQgjAADAUv8f+cKOgWP+bhYAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np\n", + "import matplotlib.pylab as plt\n", + "\n", + "xs = np.asarray([[0, 1, 0, 1, 0],\n", + " [0, 0, 1, 1, 0],\n", + " [1, 1, 0, 1, 0],\n", + " [1, 1, 1, 0, 1],\n", + " [0, 0, 0, 1, 0]])\n", + "\n", + "# ws = np.asarray([1, 0, 1, 0, -1]) # hidden!\n", + "\n", + "ys = np.asarray([[0],\n", + " [0],\n", + " [0],\n", + " [3],\n", + " [3]])\n", + "\n", + "xs = np.hstack((xs, np.ones([xs.shape[0], 1])))\n", + "\n", + "ins = 5\n", + "outs = 1\n", + "nodes = 15\n", + "\n", + "def weights(ins, outs):\n", + " ws = np.random.randn(ins, outs)\n", + " return ws\n", + "\n", + "wi = weights(ins+1, nodes)\n", + "ws = weights(nodes, outs)\n", + "\n", + "ers = []\n", + "for i in range(5000):\n", + " x = xs @ wi\n", + " x = np.sin(x)\n", + " yh = x @ ws\n", + " e = (yh - ys) * 1\n", + " ws -= (x.T @ e) * 0.03\n", + " e = np.sum(np.abs(e))\n", + " if e < 0.05:\n", + " print(\"found solution\")\n", + " print(ws)\n", + " break\n", + "\n", + " ers.append(e)\n", + "\n", + "plt.figure(1)\n", + "plt.plot(ers)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Wow we found a solution in just a couple hundred iterations. \n", + "\n", + "**Exercise**:\n", + "* Remove the break and see how close we get to the actual solution.\n", + "* Try using 5 nodes. Do we find a solution? \n", + "* How about 2 nodes?\n", + "\n", + "Two nodes doesn't work because we can get stuck on a local maximum. We need additoinal dimensionality from more nodes. \n", + "\n", + "So far we've only fine-tuned the outer layer of nodes. If we tune the inner layer, we might capture hierarchical structures and be able to model with fewer parameters. \n", + "\n", + "Example, we need 15 parameters to model 5 trippel leters, but with middle layers to model repeated patters across the tripples, we can use fewer parameters. \n", + "\n", + "We need to train the middle layers with back propagation!" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 54, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAzj0lEQVR4nO3de3yU1YH/8e9cMpPrTBJCEgIJgiiIXFRUmLbabkmJSlut+Kq2rKWtq1s2+lNprdJaXN19/XBxf7WXRe1ut+Lvtypbu6VWq7YUBKpGBCrKzYgKBiQXIGQm98vM+f0xmWEmhEsg5HmSfN6v17xm5nnOzJznzEC+r/Occx6HMcYIAADARpxWVwAAAKAnAgoAALAdAgoAALAdAgoAALAdAgoAALAdAgoAALAdAgoAALAdAgoAALAdt9UVOB2RSEQHDhxQVlaWHA6H1dUBAACnwBijxsZGFRUVyek8cR/JoAwoBw4cUHFxsdXVAAAAp2Hfvn0aM2bMCcsMyoCSlZUlKXqAPp/P4toAAIBTEQqFVFxcHP87fiKDMqDETuv4fD4CCgAAg8ypDM9gkCwAALAdAgoAALAdAgoAALAdAgoAALAdAgoAALAdAgoAALAdAgoAALAdAgoAALAdAgoAALAdAgoAALAdAgoAALAdAgoAALCdQXmxwLNly8f1euGdak0qzNJNl5dYXR0AAIYtelASVNY0acUbe7X2vTqrqwIAwLBGQAEAALZDQOmFsboCAAAMcwSUBA6H1TUAAAASAQUAANgQAQUAANgOAaUXhkEoAABYioCSgCEoAADYAwEFAADYDgGlV5zjAQDASgQUAABgOwSUBKyDAgCAPRBQAACA7RBQesE0YwAArEVASeBgojEAALZAQAEAALZDQOkFZ3gAALAWAQUAANgOASURQ1AAALAFAgoAALAdAkovDPOMAQCwFAElAWd4AACwBwIKAACwHQJKLzjBAwCAtQgoAADAdggoCRxczhgAAFsgoAAAANshoPSCWcYAAFiLgJKAEzwAANgDAQUAANgOAaUXnOEBAMBaBBQAAGA7BJQEzDIGAMAeCCgAAMB2CCi94GrGAABYi4ACAABsh4CSgDEoAADYAwEFAADYDgEFAADYzhkFlIcfflgOh0N33XVXfFtbW5vKy8s1YsQIZWZmat68eaqtrU16XVVVlebOnav09HTl5+frnnvuUVdX15lUpV84WOweAABbOO2AsmnTJv3iF7/QtGnTkrbffffdeuGFF/Tcc89p/fr1OnDggK6//vr4/nA4rLlz56qjo0NvvPGGnnrqKa1YsUJLliw5/aMAAABDymkFlKamJs2fP1//8R//oZycnPj2YDCo//zP/9SPf/xjff7zn9eMGTP05JNP6o033tCbb74pSfrTn/6knTt36r/+67900UUX6eqrr9Y//dM/afny5ero6OifozpDzDIGAMBapxVQysvLNXfuXJWWliZt37Jlizo7O5O2T5o0SSUlJaqoqJAkVVRUaOrUqSooKIiXKSsrUygU0o4dO3r9vPb2doVCoaQbAAAYutx9fcHKlSv117/+VZs2bTpmX01NjTwej7Kzs5O2FxQUqKamJl4mMZzE9sf29Wbp0qV68MEH+1rVPmOaMQAA9tCnHpR9+/bpzjvv1NNPP63U1NSzVadjLF68WMFgMH7bt2/fWf08w/WMAQCwVJ8CypYtW1RXV6dLLrlEbrdbbrdb69ev189+9jO53W4VFBSoo6NDDQ0NSa+rra1VYWGhJKmwsPCYWT2x57EyPXm9Xvl8vqQbAAAYuvoUUGbPnq1t27Zp69at8dull16q+fPnxx+npKRozZo18ddUVlaqqqpKgUBAkhQIBLRt2zbV1dXFy6xevVo+n0+TJ0/up8MCAACDWZ/GoGRlZWnKlClJ2zIyMjRixIj49ltuuUWLFi1Sbm6ufD6f7rjjDgUCAc2aNUuSNGfOHE2ePFk333yzli1bppqaGt1///0qLy+X1+vtp8MCAACDWZ8HyZ7Mo48+KqfTqXnz5qm9vV1lZWV67LHH4vtdLpdefPFFLVy4UIFAQBkZGVqwYIEeeuih/q7KaWOaMQAA1nIYM/j+HIdCIfn9fgWDwX4dj/L81k9058qt+tS5I/TMrbP67X0BAEDf/n5zLZ4EDuYZAwBgCwSUXgy+PiUAAIYWAgoAALAdAkoCTvAAAGAPBJResJIsAADWIqAAAADbIaAAAADbIaAkYJYxAAD2QEDpBdOMAQCwFgEFAADYDgElgYOJxgAA2AIBpRec4QEAwFoEFAAAYDsEFAAAYDsElARMMwYAwB4IKL1hEAoAAJYioAAAANshoAAAANshoCSIDUHhasYAAFiLgAIAAGyHgAIAAGyHgJKAacYAANgDAaUXXM0YAABrEVAAAIDtEFAAAIDtEFCSRAehcIYHAABrEVAAAIDtEFAAAIDtEFASMM0YAAB7IKD0wjDPGAAASxFQAACA7RBQAACA7RBQEhy9mjEAALASAQUAANgOAQUAANgOASWBg3nGAADYAgGlF8wyBgDAWgQUAABgOwQUAABgOwSUBEwzBgDAHggoAADAdggoAADAdggoCZhlDACAPRBQesM8YwAALEVAAQAAtkNAAQAAtkNASRAbg8IJHgAArEVAAQAAtkNAAQAAtkNAAQAAtkNASeDoXuyeWcYAAFiLgAIAAGyHgAIAAGyHgJIoPs2YczwAAFiJgAIAAGyHgAIAAGyHgNILZvEAAGAtAkoCh9UVAAAAkggoAADAhggoAADAdggoCRwOVpIFAMAOCCgAAMB2+hRQHn/8cU2bNk0+n08+n0+BQEAvv/xyfH9bW5vKy8s1YsQIZWZmat68eaqtrU16j6qqKs2dO1fp6enKz8/XPffco66urv45GgAAMCT0KaCMGTNGDz/8sLZs2aLNmzfr85//vK699lrt2LFDknT33XfrhRde0HPPPaf169frwIEDuv766+OvD4fDmjt3rjo6OvTGG2/oqaee0ooVK7RkyZL+PaozxBkeAACs5TDmzEZc5Obm6pFHHtENN9ygkSNH6plnntENN9wgSXrvvfd0wQUXqKKiQrNmzdLLL7+sL37xizpw4IAKCgokSU888YTuvfdeHTx4UB6P55Q+MxQKye/3KxgMyufznUn1k2x4/6C+8au3dMEon16+84p+e18AANC3v9+nPQYlHA5r5cqVam5uViAQ0JYtW9TZ2anS0tJ4mUmTJqmkpEQVFRWSpIqKCk2dOjUeTiSprKxMoVAo3gsDAADg7usLtm3bpkAgoLa2NmVmZmrVqlWaPHmytm7dKo/Ho+zs7KTyBQUFqqmpkSTV1NQkhZPY/ti+42lvb1d7e3v8eSgU6mu1AQDAINLnHpSJEydq69at2rhxoxYuXKgFCxZo586dZ6NucUuXLpXf74/fiouLz8rnOGJXM2aeMQAAlupzQPF4PJowYYJmzJihpUuXavr06frpT3+qwsJCdXR0qKGhIal8bW2tCgsLJUmFhYXHzOqJPY+V6c3ixYsVDAbjt3379vW12gAAYBA543VQIpGI2tvbNWPGDKWkpGjNmjXxfZWVlaqqqlIgEJAkBQIBbdu2TXV1dfEyq1evls/n0+TJk4/7GV6vNz61OXYDAABDV5/GoCxevFhXX321SkpK1NjYqGeeeUbr1q3TH//4R/n9ft1yyy1atGiRcnNz5fP5dMcddygQCGjWrFmSpDlz5mjy5Mm6+eabtWzZMtXU1Oj+++9XeXm5vF7vWTlAAAAw+PQpoNTV1ekb3/iGqqur5ff7NW3aNP3xj3/UF77wBUnSo48+KqfTqXnz5qm9vV1lZWV67LHH4q93uVx68cUXtXDhQgUCAWVkZGjBggV66KGH+veoTpOD6xkDAGALZ7wOihXO1joor+0+pL/9z42aVJilV+66st/eFwAADNA6KAAAAGcLASXB0WnG1tYDAIDhjoACAABsh4ACAABsh4DSC8P1jAEAsBQBJQGTjAEAsAcCCgAAsB0CCgAAsB0CSi+YZgwAgLUIKIkYhAIAgC0QUAAAgO0QUHrBGR4AAKxFQEnA1YwBALAHAgoAALAdAgoAALAdAkqC2NWMI8wzBgDAUgSUBM5YQiGfAABgKQJKAnpQAACwBwJKAicdKAAA2AIBJYGjuwuFHhQAAKxFQEkQWwUlErG0GgAADHsElATxQbIAAMBSBJQETk7xAABgCwSUBMziAQDAHggoCY4GFGvrAQDAcEdASRA7xUMHCgAA1iKgJDgaUEgoAABYiYCSgDEoAADYAwElASvJAgBgDwSUBPGVZBklCwCApQgoCRgkCwCAPRBQEsSXuiehAABgKQJKgngPisX1AABguCOgJGAWDwAA9kBAScBKsgAA2AMBJUH8asYEFAAALEVAScDVjAEAsAcCSgInY1AAALAFAkoixqAAAGALBJQE8TEo4oKBAABYiYCSIDmgWFgRAACGOQJKAkfCY8ahAABgHQJKgqQeFAvrAQDAcEdASeBIaA16UAAAsA4BJQFjUAAAsAcCSgLGoAAAYA8ElAQu59GIEmYxFAAALENASeAmoAAAYAsElASJPSidYQIKAABWIaAkcDgc8V6UrkjE4toAADB8EVB6cLu6Awo9KAAAWIaA0oPbGW2SLsagAABgGQJKD0d7UDjFAwCAVQgoPdCDAgCA9QgoPaQwBgUAAMsRUHqITTXuZBYPAACWIaD0kOKKNgkLtQEAYB0CSg+xdVA6GSQLAIBlCCg9xE7xMAYFAADrEFB64BQPAADWI6D0EFsHhVM8AABYh4DSw9Fr8dCDAgCAVQgoPbBQGwAA1utTQFm6dKkuu+wyZWVlKT8/X9ddd50qKyuTyrS1tam8vFwjRoxQZmam5s2bp9ra2qQyVVVVmjt3rtLT05Wfn6977rlHXV1dZ340/YCl7gEAsF6fAsr69etVXl6uN998U6tXr1ZnZ6fmzJmj5ubmeJm7775bL7zwgp577jmtX79eBw4c0PXXXx/fHw6HNXfuXHV0dOiNN97QU089pRUrVmjJkiX9d1RnIDZIllk8AABYx2GMOe2/xAcPHlR+fr7Wr1+vK6+8UsFgUCNHjtQzzzyjG264QZL03nvv6YILLlBFRYVmzZqll19+WV/84hd14MABFRQUSJKeeOIJ3XvvvTp48KA8Hs9JPzcUCsnv9ysYDMrn851u9Xt16//drNU7a/W/vzJVX59Z0q/vDQDAcNaXv99nNAYlGAxKknJzcyVJW7ZsUWdnp0pLS+NlJk2apJKSElVUVEiSKioqNHXq1Hg4kaSysjKFQiHt2LGj189pb29XKBRKup0t8WvxsNQ9AACWOe2AEolEdNddd+nTn/60pkyZIkmqqamRx+NRdnZ2UtmCggLV1NTEyySGk9j+2L7eLF26VH6/P34rLi4+3WqfVOwUT0cXAQUAAKucdkApLy/X9u3btXLlyv6sT68WL16sYDAYv+3bt++sfZbX3R1QGCQLAIBl3Kfzottvv10vvviiNmzYoDFjxsS3FxYWqqOjQw0NDUm9KLW1tSosLIyXeeutt5LeLzbLJ1amJ6/XK6/XezpV7TNPd0Bp7ySgAABglT71oBhjdPvtt2vVqlVau3atxo0bl7R/xowZSklJ0Zo1a+LbKisrVVVVpUAgIEkKBALatm2b6urq4mVWr14tn8+nyZMnn8mx9Auv2yVJaucUDwAAlulTD0p5ebmeeeYZPf/888rKyoqPGfH7/UpLS5Pf79ctt9yiRYsWKTc3Vz6fT3fccYcCgYBmzZolSZozZ44mT56sm2++WcuWLVNNTY3uv/9+lZeXD1gvyYnET/EQUAAAsEyfAsrjjz8uSfrc5z6XtP3JJ5/UN7/5TUnSo48+KqfTqXnz5qm9vV1lZWV67LHH4mVdLpdefPFFLVy4UIFAQBkZGVqwYIEeeuihMzuSfhI/xdMVtrgmAAAMX30KKKeyZEpqaqqWL1+u5cuXH7fM2LFj9dJLL/XlowcMp3gAALAe1+LpwRvvQSGgAABgFQJKD574GBRO8QAAYBUCSg/0oAAAYD0CSg/elO4xKKyDAgCAZQgoPXhcrCQLAIDVCCg9eFOYZgwAgNUIKD14WeoeAADLEVB6YB0UAACsR0DpgaXuAQCwHgGlBy9L3QMAYDkCSg+c4gEAwHoElB48nOIBAMByBJQeYqd4uiJGXayFAgCAJQgoPcTWQZFYrA0AAKsQUHqIrSQrsRYKAABWIaD04HY55XI6JNGDAgCAVQgovWA1WQAArEVA6UW6xy1JamzvtLgmAAAMTwSUXuRmpEiSGloIKAAAWIGA0oucdI8k6XBzh8U1AQBgeCKg9GJEZjSgHCGgAABgCQJKL+hBAQDAWgSUXuRleiVJBxvbLK4JAADDEwGlF6Oz0yRJBxoIKAAAWIGA0ouieEBptbgmAAAMTwSUXozKTpUUDSjGGItrAwDA8ENA6UWRP9qD0twRVqity+LaAAAw/BBQepHmcSk3IzqTh9M8AAAMPALKcYzyHz3NAwAABhYB5TjG5ERP8+yrb7G4JgAADD8ElOM4Z0SGJGnvYQIKAAADjYByHGO7A8rHh5strgkAAMMPAeU4zhmRLkn6mB4UAAAGHAHlOMbmRXtQ9h1pUVc4YnFtAAAYXggoxzHKlyqP26nOsFF1kCXvAQAYSASU43A6HSrJjZ7m2cs4FAAABhQB5QSYyQMAgDUIKCcQGyi79xA9KAAADCQCygmMGxntQfnwYJPFNQEAYHghoJzA+QVZkqTdtQQUAAAGEgHlBM7Lz5QkfdLQqqZ2rmoMAMBAIaCcQHa6RyOzvJKk3bWNFtcGAIDhg4ByEucXRHtROM0DAMDAIaCcxHn50XEo79ODAgDAgCGgnERsoOz7dfSgAAAwUAgoJ3H0FA89KAAADBQCykmc192DUh1sU7Cl0+LaAAAwPBBQTsKflqLi3DRJ0vYDQYtrAwDA8EBAOQVTR/slSds+IaAAADAQCCinYEp3QNlOQAEAYEAQUE7BlCICCgAAA4mAcgpip3j2Hm5RqI2BsgAAnG0ElFOQk+HR6OzoQNkdn4Qsrg0AAEMfAeUUTRntkyS9u7/B2ooAADAMEFBO0SUlOZKkLR8fsbgmAAAMfQSUU3TpOUcDijHG4toAADC0EVBO0ZTRfnncTh1u7tCeQ81WVwcAgCGNgHKKvG6Xpo+JzubZvJfTPAAAnE0ElD6YMTZXkrT543qLawIAwNBGQOmDy7rHodCDAgDA2UVA6YNLx+bK4ZA+OtSs6mCr1dUBAGDIIqD0gT89RdO6V5V9bfchi2sDAMDQRUDpoyvOGylJeu0DAgoAAGdLnwPKhg0b9KUvfUlFRUVyOBz63e9+l7TfGKMlS5Zo1KhRSktLU2lpqXbv3p1Upr6+XvPnz5fP51N2drZuueUWNTU1ndGBDJTPnJcnSXr9g0OKRFgPBQCAs6HPAaW5uVnTp0/X8uXLe92/bNky/exnP9MTTzyhjRs3KiMjQ2VlZWpra4uXmT9/vnbs2KHVq1frxRdf1IYNG3Tbbbed/lEMoEtKcpTucelQU4d21XBdHgAAzgaHOYNlUR0Oh1atWqXrrrtOUrT3pKioSN/97nf1ve99T5IUDAZVUFCgFStW6KabbtKuXbs0efJkbdq0SZdeeqkk6ZVXXtE111yj/fv3q6io6KSfGwqF5Pf7FQwG5fP5Trf6p+3bKzZp7Xt1uu/qSfrOZ88d8M8HAGAw6svf734dg7Jnzx7V1NSotLQ0vs3v92vmzJmqqKiQJFVUVCg7OzseTiSptLRUTqdTGzdu7PV929vbFQqFkm5W+puJ0XEoq3fWWloPAACGqn4NKDU1NZKkgoKCpO0FBQXxfTU1NcrPz0/a73a7lZubGy/T09KlS+X3++O34uLi/qx2n31hcqEk6a9VR1TX2HaS0gAAoK8GxSyexYsXKxgMxm/79u2ztD6F/lRNL86WMdKfd9ZZWhcAAIaifg0ohYXRnoXa2uRTH7W1tfF9hYWFqqtL/qPe1dWl+vr6eJmevF6vfD5f0s1qcyZHe4n+uKP3Xh8AAHD6+jWgjBs3ToWFhVqzZk18WygU0saNGxUIBCRJgUBADQ0N2rJlS7zM2rVrFYlENHPmzP6szllVdmE0TL3x4SEFWzstrg0AAENLnwNKU1OTtm7dqq1bt0qKDozdunWrqqqq5HA4dNddd+mf//mf9fvf/17btm3TN77xDRUVFcVn+lxwwQW66qqrdOutt+qtt97S66+/rttvv1033XTTKc3gsYsJ+Zk6Lz9TnWGjV7ZXW10dAACGlD4HlM2bN+viiy/WxRdfLElatGiRLr74Yi1ZskSS9P3vf1933HGHbrvtNl122WVqamrSK6+8otTU1Ph7PP3005o0aZJmz56ta665Rp/5zGf07//+7/10SAPnK5eMliT99q+fWFwTAACGljNaB8UqVq+DEnOgoVWf/pe1Mkb6y/f/RsW56ZbVBQAAu7NsHZThpig7TbPGjZAkPb+VXhQAAPoLAeUMXd99muc3W/ZzbR4AAPoJAeUMXTN1lLK8bu093KK/cIVjAAD6BQHlDGV43brh0jGSpP/7xl5rKwMAwBBBQOkHN88aK0laW1mnffUtFtcGAIDBj4DSD8aPzNSV54+UMdIKelEAADhjBJR+8u1PnyNJemZjleqbO6ytDAAAgxwBpZ989vyRmjrar9bOsH712h6rqwMAwKBGQOknDodD5X8zQZL01Bt7uT4PAABngIDSj+ZMLtD5BZlqbO/Sf2z4yOrqAAAwaBFQ+pHT6dCiL0yUJP3ytY9UHWy1uEYAAAxOBJR+VnZhgS47J0dtnRH9nz+9b3V1AAAYlAgo/czhcOgH11wgSfqfv+7Xtv1Bi2sEAMDgQ0A5Cy4uydG1FxXJGGnxqnfVFY5YXSUAAAYVAspZ8sO5F8iX6tb2T0J68vW9VlcHAIBBhYByluRnpeqHc6Onen68+n19fLjZ4hoBADB4EFDOoq9eWqzA+BFq7Qzrfz37tjq6ONUDAMCpIKCcRQ6HQ//61enyp6Xonf1B/Z/VlVZXCQCAQYGAcpaNzk7Tv8ybJkn6xfqP9OedtRbXCAAA+yOgDICrphTqG4GxkqQ7V76tXdUhi2sEAIC9EVAGyI++OFmfOneEmjvC+runNquusc3qKgEAYFsElAGS4nLq8fkzND4vQ580tGrBrzapoaXD6moBAGBLBJQB5E9P0a++eZnyMr3aVR3Sgic3qbGNqx4DANATAWWAnZOXoaf/bqZy0lP0zr4GfXvFJoUIKQAAJCGgWGBiYZb+3y0zlZXq1qa9R3TTL97UwcZ2q6sFAIBtEFAsMmW0Xytvm6W8TK92Vod0wxNvaO8hVpsFAEAioFjqwiK//mdhQMW5afr4cIu+/G+vaV1lndXVAgDAcgQUi40dkaH/WfgpXVKSrVBbl761YpOWv/qBIhFjddUAALAMAcUG8rNS9exts/S1y4tljPTIHyv19V++qQMNrVZXDQAASxBQbMLrdmnp9dO0bN40pXtcevOjepX9ZINWvb1fxtCbAgAYXggoNvPVy4r10v+6QhcVZ6uxrUt3//c7+sav3tIeBtACAIYRAooNnZOXod98J6DvzTlfHrdTf9l9SGU/2aBHV7+vlo4uq6sHAMBZ5zCD8PxBKBSS3+9XMBiUz+ezujpn1d5DzfrR89v1l92HJEkjs7y6c/Z5uvGyYqW4yJcAgMGjL3+/CSiDgDFGL22r0b+88p6q6lskSeeMSNdtV56r6y8ZrdQUl8U1BADg5AgoQ1RHV0TPvlWln63ZrcPN0QsN5mV6tCBwjv521ljlZHgsriEAAMdHQBnimtu79OxbVfrVa3t0INgmSUpNcWru1CJ97fJizRibI4fDYXEtAQBIRkAZJjrDEb20rVq/WP+RdlaH4tvPy8/UTZeX6LqLijQi02thDQEAOIqAMswYY/T2vgY9u7FKL7x7QG2dEUmSy+nQZybk6cvTizTnwgJlpaZYXFMAwHBGQBnGQm2den7rAf160z5t+yQY3+51O/X5Sfm6akqhPjcxX/40wgoAYGARUCBJ+uhgk154p1rPv/OJPjp4dKE3t9OhmeNzVXpBgUovKFBxbrqFtQQADBcEFCQxxmjHgZD+sK1af95Zq911TUn7zy/I1BXnjdRnJuRp5vhcpXvcFtUUADCUEVBwQnsPNevPu2r151212rT3iMIJV05OcTl0cUmOrpiQp0+fl6epo/0sCAcA6BcEFJyyhpYOvfbBIb3+wSH9Zfch7T+SfAXltBSXLi7J1qXn5Oqyc3J0cUmOMr30sAAA+o6AgtNijFFVfYv+sjsaWCo+OqyGls6kMk6HNLnIp0vH5urikmxNH5OtsSPSWXcFAHBSBBT0i0jE6MODTXprb7027z2iTXvrj+lhkSRfqlvTxmRr2hh//H6UP5XQAgBIQkDBWVMdbNXmvUe0eW+93tkf1M7qkDq6IseUy8v0asponyYV+nTBqCxdMMqn8XkZcjOeBQCGLQIKBkxHV0Tv1zbqnf0N2rY/qHf2B/V+bWPSwNsYj9up8/IzdcEonyYVRkPLxMIsjcjw0NsCAMMAAQWWau0Ia2d1UDurG/VedUi7qkOqrGlUc0e41/LZ6SmaMDJT547M1IT86O3ckZkanZMml5PgAgBDBQEFthOJGO0/0qqd1SG9VxMNLbuqG7XvSIuO9wv0up0al5ehCfmZGp+XoZIRGRo7Il1jc9M1MstLrwsADDIEFAwarR1hfXSoSR/UNenDg836sC76eM+hZnWEjx3bEpOW4tLYEekqyU2P3o/I0NjcdI3OSdPo7DSlprgG8CgAAKeCgIJBLxwx2lffog8PRgPL3sMt+vhwsz4+3KLqYKt6GeKSJC/To9E56RqTnRYPLWNyjj7mwokAMPAIKBjSOroi2n+kRR/Xt6jqcIs+PtyiqvpmVdW36JMjrccd65LIl+qOBpicNBX5U1XoT9Mof6oK/akq9EXv6YUBgP7Vl7/fLAmKQcfjdmr8yEyNH5l5zD5jjIKtndp/pFX7j7Tqk4ZWfXKkVfuPtEQfN7SqoaVTobYuhboH8B5PTnqKCv1pKvR5jwaY7vASCzP0xADA2UFAwZDicDiUne5RdrpHU0b7ey3T1N6lAw3doeVIq6qDbaoJtqk62KbaUPS+tTOsIy2dOtLSqV3Vx/+8DI9LBb5U5WV5NTLLq/zu+5GZ3ffdtxEZXmYkAUAfEFAw7GR63Tq/IEvnF2T1ut8Yo1Brl2pCbaoOtqom2Kaa0LEhJtjaqeaOsD461KyPDjWf8DOdDmlE5rHBJfZ8RIZHORme+D0XaAQw3BFQgB4cDof86Snyp6doYmHvIUaKzkCqDrbqYGO76hrbdbCxXQebuu+7b3WN7Trc3K6IUXybTtAjE+NLdWtEple5GZ7oLd2j3MxogIltG5HhVW5mdF+ah/EyAIYWAgpwmtI8ruOOhUnUFY6ovqUjKbgcbGpXXSh6f6ixXfXNHapv7tCRlg5FjKJjZNq6tOckPTPxuqS4lJvhkT8tRdnpKQn3HmWnpyg74XlsX3Z6itJSXKwnA8CWCCjAWeZ2OZWflar8rNSTlg1HooN865vbdbgpGlrqWzpU39Shw90hpr459jgabDrDRq2d4fgg4L7wuJzyJwWYoyEmK9WtrFS3fKmxx0e3xR4z0wnA2UJAAWzE5XTET+FMyD95eWOMGtu7VN/UoYbWTjW0dCjY2qlga6caWrpvrR0KtnSqIWF7sDUabDrCkaOnnk6Dx+U8GmRiocZ7bKDxpaYoM9WtdI9LmV63MrxuZXjcyvC6lOF1y+t20pMDIAkBBRjEHA6HfKkp8vVxurMxRi0d4eRQ0x1iogGmU41tnWps60q4T3jc3iVJ6ghHdLi7R+dMuJyOeHhJDDHpHrcyvS6le9297IuVjwadtBSXUlNcSve4lOZxKdXtkpOZU8CgRUABhiGHwxHtxfC6NTo7rc+vD0eMmtqPE17aouvMJG4LtXWqub1Lze1hNXd037d3qbUzHH+/2Pv0p9QUp9JSouElrTu4pKe4lepxKS3FqXRP9DRVWmKwiT2OvSbhPjXFJa/bGb1PccrrdsrjovcHOBsIKAD6zOV0dI9XObOF6sIRo5aOxOByNLzEgkxLR5ea2rv3dYSTysT2tXaE1doZVktHWO1dR6/h1NYZUVtnREfUeaaHfFwOR/TCll53QnhxO+VNcSrVHQsyLqWm9FLG7ZQ3Xt6l1ITnsTKe7hDkdTuV4oo+j917uu9ZYwdDkaUBZfny5XrkkUdUU1Oj6dOn6+c//7kuv/xyK6sEYAC5nI7usSr9tyJvJGLU1hUNK60dYbV1B5fWzu5b9/b44+79bd3PWzoTX9el1s5I/HFbZ0TtXWG1dR4NQcYcDUJWcTkdSnE54oHF0yPI9Aw0HpdTKfHnjl7Lx8JRisspt9MRvXc55HY6leJyyO1yKsXpUIr7xPvd3dtTnLH9DnqccEosCyj//d//rUWLFumJJ57QzJkz9ZOf/ERlZWWqrKxUfv4pjA4EgF44nQ6le6JjU84WY6IDjNu7ImrvDjDtXUfDS3tX9/PY9s6I2rrCau88tkzbccrE9nWEI+roikQHNXdFH/e80nc4YhSOGEtDUl+4nY7k0HK8MBPf7ogHJberOwA5o8+dzmjocSXckrc75XJE38PldMjl6C7Ty3OnI/q+ie9z/PdNLBP9DJcrYV/Cc6fj6DbGRZ06yy4WOHPmTF122WX6t3/7N0lSJBJRcXGx7rjjDt13330nfC0XCwQwnBlj1Bk26gwfDSyx+854oIkGqMRwE9vXHo6oM1Y+9vrYe3QlvodRe/fzrkj0eVc4oq6I6fE4oq6wSSrTGYnen+zK48OR0xHt9XI4jgYkR/c2pyMWaJTw2CGnIxq+nY6jQSf5fZLf09n9+l7fM/4+Pd8z+TUzxuboS9OL+vXYbX+xwI6ODm3ZskWLFy+Ob3M6nSotLVVFRYUVVQKAQcPhcERPzbidyvBaXZsTi0SMOiPdASZ89HFnd7jpCneHmmMCUI/QE99/9HEkYtQVMYqY6PZwJKKwiW4LhxP2dT8Pm2hPU1ck9tpIvPepq/s+8fnR9018beSY90p6Tff9CdvESJGwkWTv9NYRjvR7QOkLSwLKoUOHFA6HVVBQkLS9oKBA77333jHl29vb1d5+dJ2GUOj4V6AFANiH0+mQ1+mSdxhNyTDGKGKUEFwiikSksImGnkh34ImYaICLdIedSI/XGaN4EDLxMupR3igc0Sm/79FyCWVM92dFEj7LGE0fk21pOw6Kn8zSpUv14IMPWl0NAABOKvGUSxQrLp8OSy6ZmpeXJ5fLpdra2qTttbW1KiwsPKb84sWLFQwG47d9+/YNVFUBAIAFLAkoHo9HM2bM0Jo1a+LbIpGI1qxZo0AgcEx5r9crn8+XdAMAAEOXZad4Fi1apAULFujSSy/V5Zdfrp/85Cdqbm7Wt771LauqBAAAbMKygHLjjTfq4MGDWrJkiWpqanTRRRfplVdeOWbgLAAAGH4sWwflTLAOCgAAg09f/n5bMgYFAADgRAgoAADAdggoAADAdggoAADAdggoAADAdggoAADAdggoAADAdggoAADAdgbF1Yx7iq0tFwqFLK4JAAA4VbG/26eyRuygDCiNjY2SpOLiYotrAgAA+qqxsVF+v/+EZQblUveRSEQHDhxQVlaWHA5Hv753KBRScXGx9u3bNyyX0ef4h/fxS7TBcD9+iTYY7scvnb02MMaosbFRRUVFcjpPPMpkUPagOJ1OjRkz5qx+hs/nG7Y/TInjH+7HL9EGw/34JdpguB+/dHba4GQ9JzEMkgUAALZDQAEAALZDQOnB6/XqgQcekNfrtboqluD4h/fxS7TBcD9+iTYY7scv2aMNBuUgWQAAMLTRgwIAAGyHgAIAAGyHgAIAAGyHgAIAAGyHgJJg+fLlOuecc5SamqqZM2fqrbfesrpKp+Uf//Ef5XA4km6TJk2K729ra1N5eblGjBihzMxMzZs3T7W1tUnvUVVVpblz5yo9PV35+fm655571NXVlVRm3bp1uuSSS+T1ejVhwgStWLFiIA7vGBs2bNCXvvQlFRUVyeFw6He/+13SfmOMlixZolGjRiktLU2lpaXavXt3Upn6+nrNnz9fPp9P2dnZuuWWW9TU1JRU5t1339UVV1yh1NRUFRcXa9myZcfU5bnnntOkSZOUmpqqqVOn6qWXXur34+3Nydrgm9/85jG/iauuuiqpzGBtg6VLl+qyyy5TVlaW8vPzdd1116mysjKpzED+5q34f+RU2uBzn/vcMb+B73znO0llBmsbPP7445o2bVp8UbFAIKCXX345vn+of//SydtgUH7/BsYYY1auXGk8Ho/51a9+ZXbs2GFuvfVWk52dbWpra62uWp898MAD5sILLzTV1dXx28GDB+P7v/Od75ji4mKzZs0as3nzZjNr1izzqU99Kr6/q6vLTJkyxZSWlpq3337bvPTSSyYvL88sXrw4Xuajjz4y6enpZtGiRWbnzp3m5z//uXG5XOaVV14Z0GM1xpiXXnrJ/PCHPzS//e1vjSSzatWqpP0PP/yw8fv95ne/+5155513zJe//GUzbtw409raGi9z1VVXmenTp5s333zT/OUvfzETJkwwX/va1+L7g8GgKSgoMPPnzzfbt283zz77rElLSzO/+MUv4mVef/1143K5zLJly8zOnTvN/fffb1JSUsy2bdssb4MFCxaYq666Kuk3UV9fn1RmsLZBWVmZefLJJ8327dvN1q1bzTXXXGNKSkpMU1NTvMxA/eat+n/kVNrgs5/9rLn11luTfgPBYHBItMHvf/9784c//MG8//77prKy0vzgBz8wKSkpZvv27caYof/9n0obDMbvn4DS7fLLLzfl5eXx5+Fw2BQVFZmlS5daWKvT88ADD5jp06f3uq+hocGkpKSY5557Lr5t165dRpKpqKgwxkT/2DmdTlNTUxMv8/jjjxufz2fa29uNMcZ8//vfNxdeeGHSe994442mrKysn4+mb3r+cY5EIqawsNA88sgj8W0NDQ3G6/WaZ5991hhjzM6dO40ks2nTpniZl19+2TgcDvPJJ58YY4x57LHHTE5OTvz4jTHm3nvvNRMnTow//+pXv2rmzp2bVJ+ZM2eav//7v+/XYzyZ4wWUa6+99rivGUptUFdXZySZ9evXG2MG9jdvl/9HeraBMdE/UHfeeedxXzPU2iAnJ8f88pe/HJbff0ysDYwZnN8/p3gkdXR0aMuWLSotLY1vczqdKi0tVUVFhYU1O327d+9WUVGRxo8fr/nz56uqqkqStGXLFnV2diYd66RJk1RSUhI/1oqKCk2dOlUFBQXxMmVlZQqFQtqxY0e8TOJ7xMrYrb327NmjmpqapLr6/X7NnDkz6Xizs7N16aWXxsuUlpbK6XRq48aN8TJXXnmlPB5PvExZWZkqKyt15MiReBk7t8m6deuUn5+viRMnauHChTp8+HB831Bqg2AwKEnKzc2VNHC/eTv9P9KzDWKefvpp5eXlacqUKVq8eLFaWlri+4ZKG4TDYa1cuVLNzc0KBALD8vvv2QYxg+37H5QXC+xvhw4dUjgcTvpiJKmgoEDvvfeeRbU6fTNnztSKFSs0ceJEVVdX68EHH9QVV1yh7du3q6amRh6PR9nZ2UmvKSgoUE1NjSSppqam17aI7TtRmVAopNbWVqWlpZ2lo+ubWH17q2viseTn5yftd7vdys3NTSozbty4Y94jti8nJ+e4bRJ7DytdddVVuv766zVu3Dh9+OGH+sEPfqCrr75aFRUVcrlcQ6YNIpGI7rrrLn3605/WlClT4nUbiN/8kSNHbPH/SG9tIElf//rXNXbsWBUVFendd9/Vvffeq8rKSv32t7+VNPjbYNu2bQoEAmpra1NmZqZWrVqlyZMna+vWrcPm+z9eG0iD8/snoAxBV199dfzxtGnTNHPmTI0dO1a//vWvbRMcMLBuuumm+OOpU6dq2rRpOvfcc7Vu3TrNnj3bwpr1r/Lycm3fvl2vvfaa1VWxzPHa4Lbbbos/njp1qkaNGqXZs2frww8/1LnnnjvQ1ex3EydO1NatWxUMBvWb3/xGCxYs0Pr1662u1oA6XhtMnjx5UH7/nOKRlJeXJ5fLdcyo7traWhUWFlpUq/6TnZ2t888/Xx988IEKCwvV0dGhhoaGpDKJx1pYWNhrW8T2naiMz+ezVQiK1fdE321hYaHq6uqS9nd1dam+vr5f2sSOv6Hx48crLy9PH3zwgaSh0Qa33367XnzxRb366qsaM2ZMfPtA/ebt8P/I8dqgNzNnzpSkpN/AYG4Dj8ejCRMmaMaMGVq6dKmmT5+un/70p8Pq+z9eG/RmMHz/BBRFv9QZM2ZozZo18W2RSERr1qxJOn83WDU1NenDDz/UqFGjNGPGDKWkpCQda2VlpaqqquLHGggEtG3btqQ/WKtXr5bP54t3FwYCgaT3iJWxW3uNGzdOhYWFSXUNhULauHFj0vE2NDRoy5Yt8TJr165VJBKJ/yMOBALasGGDOjs742VWr16tiRMnKicnJ15mMLSJJO3fv1+HDx/WqFGjJA3uNjDG6Pbbb9eqVau0du3aY05DDdRv3sr/R07WBr3ZunWrJCX9BgZzG/QUiUTU3t4+LL7/44m1QW8Gxfff52G1Q9TKlSuN1+s1K1asMDt37jS33Xabyc7OThrRPFh897vfNevWrTN79uwxr7/+uiktLTV5eXmmrq7OGBOdcldSUmLWrl1rNm/ebAKBgAkEAvHXx6abzZkzx2zdutW88sorZuTIkb1ON7vnnnvMrl27zPLlyy2bZtzY2Gjefvtt8/bbbxtJ5sc//rF5++23zccff2yMiU4zzs7ONs8//7x59913zbXXXtvrNOOLL77YbNy40bz22mvmvPPOS5pi29DQYAoKCszNN99stm/fblauXGnS09OPmWLrdrvNv/7rv5pdu3aZBx54YMCmGZ+oDRobG833vvc9U1FRYfbs2WP+/Oc/m0suucScd955pq2tbdC3wcKFC43f7zfr1q1LmkLZ0tISLzNQv3mr/h85WRt88MEH5qGHHjKbN282e/bsMc8//7wZP368ufLKK4dEG9x3331m/fr1Zs+ePebdd9819913n3E4HOZPf/qTMWbof/8na4PB+v0TUBL8/Oc/NyUlJcbj8ZjLL7/cvPnmm1ZX6bTceOONZtSoUcbj8ZjRo0ebG2+80XzwwQfx/a2treYf/uEfTE5OjklPTzdf+cpXTHV1ddJ77N2711x99dUmLS3N5OXlme9+97ums7Mzqcyrr75qLrroIuPxeMz48ePNk08+ORCHd4xXX33VSDrmtmDBAmNMdKrxj370I1NQUGC8Xq+ZPXu2qaysTHqPw4cPm6997WsmMzPT+Hw+861vfcs0NjYmlXnnnXfMZz7zGeP1es3o0aPNww8/fExdfv3rX5vzzz/feDwec+GFF5o//OEPZ+24E52oDVpaWsycOXPMyJEjTUpKihk7dqy59dZbj/kPY7C2QW/HLSnp9ziQv3kr/h85WRtUVVWZK6+80uTm5hqv12smTJhg7rnnnqR1MIwZvG3w7W9/24wdO9Z4PB4zcuRIM3v27Hg4MWbof//GnLgNBuv37zDGmL73uwAAAJw9jEEBAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC2Q0ABAAC28/8BcyqS8RVbKfYAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABOrElEQVR4nO3deXjU5aH28e9vJishCwSSEBIg7HsSIEBA0QqCqAjuWBS1nlorLkBbK2319LytRWnrbkU9PS6t+8KqosgqAiEEwr4TIBASCJBMFrLO7/0jNjUWlWWSZ2Zyf64r1yUzIXyJyNzO8oxl27aNiIiIiBdxmA4QERER+TYNFBEREfE6GigiIiLidTRQRERExOtooIiIiIjX0UARERERr6OBIiIiIl5HA0VERES8ToDpgPPhdrvJy8sjPDwcy7JM54iIiMhZsG2bkpIS4uPjcTi+/z4SnxwoeXl5JCYmms4QERGR85Cbm0tCQsL3fo5PDpTw8HCg7jcYERFhuEZERETOhsvlIjExsf52/Pv45ED518M6ERERGigiIiI+5myenqEnyYqIiIjX0UARERERr6OBIiIiIl5HA0VERES8jgaKiIiIeB0NFBEREfE6GigiIiLidTRQRERExOtooIiIiIjXOeeBsnLlSsaNG0d8fDyWZTF37twG19u2zaOPPkq7du0IDQ1l1KhR7Nmzp8HnnDx5kkmTJhEREUFUVBR33XUXpaWlF/QbEREREf9xzgOlrKyM5ORkXnjhhTNeP2vWLJ599llmz55NRkYGYWFhjBkzhoqKivrPmTRpEtu2bWPx4sUsXLiQlStXcvfdd5//70JERET8imXbtn3eP9mymDNnDhMmTADq7j2Jj4/nF7/4Bb/85S8BKC4uJjY2ltdee42JEyeyY8cOevfuTWZmJoMGDQJg0aJFXHnllRw+fJj4+Pgf/HVdLheRkZEUFxfrvXhERER8xLncfnv0OSg5OTnk5+czatSo+ssiIyMZMmQIa9asAWDNmjVERUXVjxOAUaNG4XA4yMjIOOPXraysxOVyNfhoDNvzXDwydyvzso80ytcXERHxdluPFHPfWxtYtafQaIdHB0p+fj4AsbGxDS6PjY2tvy4/P5+YmJgG1wcEBNC6dev6z/m2mTNnEhkZWf+RmJjoyex6K/cc5x9rD/LPtQcb5euLiIh4uw+yDrNw81HeXZ9rtMMnXsUzY8YMiouL6z9ycxvnm3ZtansirXL2HTjIgcKyRvk1REREvFVVjZvPNu4n0Srg+gHtjbZ4dKDExcUBUFBQ0ODygoKC+uvi4uI4duxYg+tramo4efJk/ed8W3BwMBEREQ0+GkPs9tdYFzKFewIW8NGGw43ya4iIiHirpTuPMaxyFV8GT2PEjt8bbfHoQElKSiIuLo4lS5bUX+ZyucjIyCA9PR2A9PR0ioqKyMrKqv+cpUuX4na7GTJkiCdzzl1UB4LtSq51fsncrIO43ef9/GERERGf8+GGw9wYsAIAR+skoy0B5/oTSktL2bt3b/2Pc3JyyM7OpnXr1nTo0IGpU6fyxz/+kW7dupGUlMQjjzxCfHx8/St9evXqxRVXXMFPf/pTZs+eTXV1Nffddx8TJ048q1fwNKpul2OHxdC27Bg9StawNmcAw7q0MdskIiLSBE6UVrJv5xaGBu3AxsJK/rHRnnO+B2X9+vWkpqaSmpoKwPTp00lNTeXRRx8F4KGHHuL+++/n7rvvJi0tjdLSUhYtWkRISEj913jzzTfp2bMnI0eO5Morr+Siiy7i5Zdf9tBv6QI4A7GSbwbgJucKPszSq3lERKR5mJedxwTHcgCsLpdBpNnnoFzQOSimNOo5KMd2wt+GUGM7uMx+kU9/ewNhwed8R5OIiIhPGffMcl46eSfx1km44VXoe53Hfw1j56D4hZie2O0HEWC5GVO7gk+3nvmlzyIiIv5ix1EXUQVriLdO4g6Jgh5Xmk7SQDkTK/VWAG50ruBDw68DFxERaWwfZh3mJudyABz9b4LAkO/9/KaggXImfa/DHRBKd8cRTh9YR+7JctNFIiIijaK61s3SjTsZ7fj61bUpk8wGfU0D5UxCInH0vgaAm5zLmbNRT5YVERH/tHL3cYZXrCDYqsaO7Qvtkk0nARoo3+3rBXm1cw0Ls/bhg88lFhER+UEfZB3mRmfd2SdW6q1gWYaL6migfJdOF+OO7ECEdZreRStYf/CU6SIRERGPOlVWxeEdmfR35GA7AqHfTaaT6mmgfBeHA0dq3b0oNzpX8GGWjr4XERH/smBzHhOs5QBYPcZCWLTZoG/QQPk+KT/GxmK4cxsbN2/idFWt6SIRERGPmbc+hwnOVXU/SL3NbMy3aKB8n6gOkDQCgLG1S/l8u85EERER/7CnoIQ2R5cTbZXgDouFLpeZTmpAA+UHWF8vyhucK/lw/SHDNSIiIp7xwYbD3PT1k2MdqT8Gp3edmq6B8kN6XY07KIIEq5Da/Ss5WnzadJGIiMgFqXXbfLlhK5c6susuSLnVaM+ZaKD8kMBQHP1vAOBG53I+2qAzUURExLd9uec4F5cvwWnZuBOGQJuuppP+gwbK2fh6WV7hyGRR1k6diSIiIj6twdH2A7zv3hPQQDk77QdQ26YnIVY1/U8tITu3yHSRiIjIeSk+XU3B9i/p4jiKOyAU+lxrOumMNFDOhmXhHPDvNxD8QGeiiIiIj/p481GuZRkAVp8JEBxuNug7aKCcrf4347YCSHHsY/umDCqqdSaKiIj4noVZe7nauRb49ytVvZEGytlqGYPVfTQAY2uW8sWOAsNBIiIi52b/8VLiDn9GuHWamshO0HGY6aTvpIFyDv61NK91fsnc9QfMxoiIiJyjjzYc4UbnSgACBnrPGwOeiQbKueh2OTWhbWhruXDsW8wxV4XpIhERkbPidtuszVpPunM7NhYk32I66XtpoJwLZyABqXX/Qm90rGButs5EERER37Bm/wkuLl8MgLvzjyAywXDR99NAOVdfn4nyI8dGlmZu1ZkoIiLiEz5cf5Abvn54x+mlZ598kwbKuYrpSU27gQRYbvqdXMTWIy7TRSIiIt+rpKKaom1f0N46QU1QBPS4ynTSD9JAOQ8BA+ueLHujcwUfZuUarhEREfl+n27JZ8LXZ584k2+GwBDDRT9MA+V89L2OWmcI3R1H2Je9gqoat+kiERGR7/Tp+h2McawHwEqdZLjm7GignI+QSKze1wBwRfUSlu48ZjhIRETkzA6dKKf94U8ItqqpbtMb2qWYTjorGijnyZFa9wSjcc7VzM/ca7hGRETkzD7ccJgbnSsACBx4m1efffJNGijnq9PFVIcnEmGdJmTfJ5worTRdJCIi0oDbbZOd9RXJjv24rQDof5PppLOmgXK+HA4CB9bdi3K9tZx52XmGg0RERBpad+AkF5d+BoDd/QoIa2O46OxpoFyIlB9jYzHcuY2V67JM14iIiDQwNzOHa52rAHAOnGy45txooFyIqA7UdLwYgJSTH7M9T2eiiIiIdyivqqF82ydEWyVUhcZAl5Gmk86JBsoFCvx6kd7gXMmHWYcM14iIiNRZtDWfa+ylAAQO+DE4AwwXnRsNlAvV62qqA8NJsArJ2/gZ1bU6E0VERMxbkrmJSx2bALBSvf9o+2/TQLlQgaE4+t8AwOjqJazYddxwkIiINHdHik6TmLuAAMtNZbs0aNPNdNI500DxAGdq3dH3Yx3r+CRzp+EaERFp7uZk5XKDo+7sk+BBtxmuOT8aKJ7QfgAVrboTYlUTtnc+p8qqTBeJiEgzZds229cvo6sjjxpnKPS51nTSedFA8QTLIiSt7smy11vLWLBZZ6KIiIgZGw6d4qKSTwGwe10DIRGGi86PBoqn9L8ZtxVAimMf6zK+Ml0jIiLN1LzMvYxzrgUgcJBvnX3yTRoontIyhpouowDoX/gxewpKDAeJiEhzU1FdS/WWeYRbp6lo2QE6DjeddN40UDwoaNDtAFzr/JKP1h8wGyMiIs3O59sLGOeuO/skaJDvvDHgmWigeFK3y6kMjqat5eL4hgXU6EwUERFpQisyMhnm3I6NhSP1x6ZzLogGiic5AwlIvQWA0VVfsGpvoeEgERFpLvKLK+h4aC4AFR1GQGSC2aALpIHiYc4Bda83v8yxkc/XbTFcIyIizcWcDblc51wJQGia7z459l80UDwtpiflMakEWG4idn9E8elq00UiIuLnbNsmJ/MTEqxCqgLCoefVppMumAZKI/jXcr3OWsbHm3QmioiINK5Nh4sZXrKo7gf9b4TAELNBHqCB0gisftdT4wimu+MI2RlLTOeIiIif+zhjO1c4MgEI8uGzT75JA6UxhERS073u7rXk4wvZf7zUcJCIiPiryppa7K0fEmxVUxbVA9qlmE7yCA2URhIyuO5MlHHO1czP3Ge4RkRE/NWSHce4+uuzT0IHT/bps0++SQOlsXS6mPIW7YmwTlO04UPcbtt0kYiI+KG1a74kxbGfWsuJI3mi6RyP0UBpLA4HgQNvBWBU5Res2X/CcJCIiPib4yWVdMidA8DppNEQ1sZwkedooDSiwIG34sbiIuc2lqzJNJ0jIiJ+Zv6GA0xwrAKg5ZA7zMZ4mAZKY4rqQFm7YQC02vMBJRU6E0VERDzDtm0OZ8yljeXidHAb6DrKdJJHaaA0spbpdwBwrbWcTzfrTBQREfGMbXkuhn199okj+RZwBhgu8iwNlEZm9RpHpbMlCVYhO9Z+YjpHRET8xKK1m/iRIxuAYD842v7bNFAaW2AoNX2uA6D/8QUcOlFuOEhERHxdVY2bgK3vEWC5KY5OhbbdTSd5nAZKEwgbfAcAYx3rWLBup9kYERHxect3FnBVbd3ZJy2H3m64pnFooDSF9gNwhXclxKqmfMO7OhNFREQuSNbqL+jmOEK1Ixhnv+tN5zQKjw+U2tpaHnnkEZKSkggNDaVLly784Q9/wLb/faNs2zaPPvoo7dq1IzQ0lFGjRrFnzx5Pp3gPy6o73Y+6M1HWHThpOEhERHzVidJKOn199kl516shJMJwUePw+EB54oknePHFF3n++efZsWMHTzzxBLNmzeK5556r/5xZs2bx7LPPMnv2bDIyMggLC2PMmDFUVFR4OsdrBKbeQi1OUh17+fKrVaZzRETER328YR9XOVYDEJl+p+GaxuPxgbJ69WrGjx/PVVddRadOnbjhhhsYPXo069atA+ruPXn66af53e9+x/jx4+nfvz9vvPEGeXl5zJ0719M53qNlDK7EywCI3vs+5VU1hoNERMQXHVv3ARHWaUpC20PH4aZzGo3HB8qwYcNYsmQJu3fvBmDTpk2sWrWKsWPHApCTk0N+fj6jRv37QJnIyEiGDBnCmjVrPJ3jVaKG1y3dcazgs825hmtERMTX7Mx3kV5cd/aJc8Bt4PDfp5J6/FSXhx9+GJfLRc+ePXE6ndTW1vLYY48xadIkAPLz8wGIjY1t8PNiY2Prr/u2yspKKisr63/scrk8nd0krG6jKQ9sTdvqk+SsmQODpptOEhERH/LF6nXc59yGG4sWabeazmlUHp9e7733Hm+++SZvvfUWGzZs4PXXX+cvf/kLr7/++nl/zZkzZxIZGVn/kZiY6MHiJuQMpLbfzQD0PbaQI0WnDQeJiIivqKl1E7TlXQBOxQ6DKB+9LTxLHh8ov/rVr3j44YeZOHEi/fr147bbbmPatGnMnDkTgLi4OAAKCgoa/LyCgoL6675txowZFBcX13/k5vruwyPhQ+8A4DLHRhat3WQ2RkREfMbK3QVc6a47+yRy2B1mY5qAxwdKeXk5jm89JuZ0OnG73QAkJSURFxfHkiVL6q93uVxkZGSQnp5+xq8ZHBxMREREgw+fFdOTE1H9CbDcVG54p8HLr0VERL7L1lULSbAKOe0MJ6D3ONM5jc7jA2XcuHE89thjfPzxxxw4cIA5c+bw5JNPcu211wJgWRZTp07lj3/8I/Pnz2fLli1MnjyZ+Ph4JkyY4Okcr/SvU/9GVXzOhoM6E0VERL5fUXlV/dknp3tMgMBQs0FNwONPkn3uued45JFHuPfeezl27Bjx8fH87Gc/49FHH63/nIceeoiysjLuvvtuioqKuOiii1i0aBEhISGezvFKwSk3Uv3ZDLo7jvDCqsUM7DTRdJKIiHixRVm7mGDVHdfRevhPDNc0Dcv2wccYXC4XkZGRFBcX++zDPcdfn0zbnHm8Z4/imt+9R0ig03SSiIh4qRf/8ht+XvoCJ8O60vqX68GyTCedl3O5/fbfF1B7ueiL6hbwFXzFks0HzMaIiIjX2nushHRX3dknQWmTfXacnCsNFEMcSSMoDo4nwjrNodXvmc4REREvtfzLL0lx7KMGJy3TJpnOaTIaKKY4HNjJtwDQ//gC8ov9932IRETk/NS6bUK3vQ1AYfxlENbGcFHT0UAxKCq97tU8wx3b+GJ1puEaERHxNqt3H2V07XIAoi/y3zcGPBMNFJNadSQ/eggAtdlv6kwUERFpYOfKD2lruSgJaE1gjzGmc5qUBoph/zoNcGTFYjblnjIbIyIiXsNVUU3nw1+ffdLrRnB6/GQQr6aBYlho/2s57QgjwSpkw4oFpnNERMRLLMncwiXWRgDaXtw8zj75Jg0U0wJDKep8DQCx+96nsqbWcJCIiHiDkox/EmC5yY/ohxXT03ROk9NA8QIxl/wXACPttazYvM9wjYiImJZzvJShX5990mLwZMM1ZmigeAFnwkAKQ5MIsarJ/+pN0zkiImLY6pWf091xhEormIhBN5vOMUIDxRtYFqTeCkC/4ws5XlJpOEhERExxu23CttedfXI8YTSERBouMkMDxUu0GTaZGpykOvayYtVK0zkiImLIut2HuazmSwBiRvyX4RpzNFC8RcsYjsaMqPtnnYkiItJs7f3yHSKs05wMbEdQlxGmc4zRQPEi/3oL7UsqlrDt8AnDNSIi0tRKK2vocnguABV9J4Kj+d5MN9/fuRcK6zsWl7MVbS0XW5Z/YDpHRESa2IqM9aRbW3Fj0W5E8zra/ts0ULyJM5CibtcBELfvA6pq3IaDRESkKZWv+wcAR6IGY7XqaLjGLA0ULxN/ad0Toi6yN7B603bDNSIi0lRyT5SSXlJ39knLobcbrjFPA8XLBMT15khYHwKtWo5/9YbpHBERaSLrls0nwSqkzAqj1cDrTOcYp4HihQIG3gZASuFCTpRUGK4REZHGZts24TveAaCg49UQGGq4yDwNFC8UO+zHVBJEN8cRVn/5uekcERFpZBt2H2REzWrg3w/1N3caKN4oJJLD7UYB4Nz0luEYERFpbAdWvFH3difBSYR0TDOd4xU0ULxUzMVfP1m2YgW7DhcYrhERkcZSXlVD1yPzAajsd0vd25+IBoq3Cu/5IwoD4oiwytmxVPeiiIj4q9VrVpFs7aEGJ4mXNO+zT75JA8VbORwU97gRgHY5H1JTqzNRRET8UWVm3dknB1pfjCM8xnCN99BA8WIdLqt7mCfNvZV1GzcarhEREU/LO+FiSEndiyEih91hNsbLaKB4scDoTuwPH4TDsjm1WmeiiIj4m41L36eN5aLI0Yq2qVebzvEqGiheLmjQZAD6n/iYojKdiSIi4i9s2yZy57sAFHQaD85Aw0XeRQPFyyUMu4lSK4xE6ziZy+ebzhEREQ/ZvGsPQ2rWA5Aw8qeGa7yPBoq3CwwlN/6Kun/crFfziIj4iyMrXiPQquVgSG/C2vc1neN1NFB8QLtL65b10IpV7M/NM1wjIiIXqqKqhm5H6+4Vr+l/i+Ea76SB4gOiug7lSGBHQqxqdi993XSOiIhcoHWrl9CNXCoJIunSyaZzvJIGii+wLEp63QxAwoEPqXXbhoNERORC1Kyve2XmvjaX4WgRZTbGS2mg+Iiky35CDQ762nvYmLXGdI6IiJynghOnGFSyFIBWF/3EcI330kDxEcFR7dgTORyA4tWvmY0REZHztnXJm0RY5RQ4YmnX/3LTOV5LA8WHhA7++kyUk4twlZUbrhERkXNl2zZRu94D4FiX68Ghm+Hvou+MD+k4ZAKnrEjaWsVkL33fdI6IiJyjnTu3kVqzGYBOI//LcI1300DxIVZAEIcSrgEgeOvbhmtERORcHV3xfzgsm10tBhAe18V0jlfTQPExCT+qW9wDKtZx6NBBwzUiInK2Kqur6ZFfd/aJO3mS4Rrvp4HiY6I7p7AvqCeBVi37l/7ddI6IiJyl7JULac9xSmhB90t/bDrH62mg+KCy3hMB6HDwI9y1bsM1IiJyNtwb/gnA3pgxOINbGK7xfhooPqj7yDuoIJDOdi5bM5ebzhERkR9QWHiclNKVALS5WGefnA0NFB8UEt6KHVE/AqAk41XDNSIi8kN2fPEaoVYVh5wdSOx7sekcn6CB4qPChtwBQL+TX1BWWmI2RkREvlebPXVHQxzregNYluEa36CB4qO6DbmCo1YMEVY5W5a8aTpHRES+w55t6+lVu4sa20G3UXeZzvEZGig+ynI4ye1wLQAttr1juEZERL7L8ZX/B8C2lulEtk0wXOM7NFB8WMfL6pZ438ps8g7sMlwjIiLfVl1VSfeCjwGwUnX2ybnQQPFhsR17sDU4FYdlc1BnooiIeJ2tKz+iDUWcIJLeI24wneNTNFB8XEXfWwDoeug9Kiv0BoIiIt4kMPMlAHbHXklAULDhGt+igeLj+o2eTAHRtOUUmxb+zXSOiIh8bfeG5fSt3Ei17aTj2Gmmc3yOBoqPCw4OZX/3uueiJGx7mZrqKsNFIiICUPbFEwBsjBpNfKcehmt8jwaKH0gefz8niSDeLmDTIj0XRUTEtJxt60gtX43btoi98mHTOT5JA8UPtAiLYFfSbQBEb3wBd22t4SIRkebt5GePA7AxfAQde6SYjfFRGih+ovf4X+CyW9DJncumL3Rwm4iIKYf3biWleCkAkaN178n50kDxE5FR0WxNuBmAlpnPYLv1LsciIibkfTITp2WTHTqErv2Hmc7xWRoofqTn+Icot4PpVrOXrV/OMZ0jItLsFBzeS8qJTwEI+dGvDNf4Ng0UP9I6Jp5NsRMACPjqSbMxIiLNUM78JwiyatkW1J+egy83nePTNFD8TOfxD1NlB9Crais7MxaZzhERaTZOFBwmuWAuAO6LfmE2xg80ykA5cuQIt956K9HR0YSGhtKvXz/Wr19ff71t2zz66KO0a9eO0NBQRo0axZ49exojpdmJbd+ZjdFXAlC17C+Ga0REmo8982cRalWxO6A7fS+6xnSOz/P4QDl16hTDhw8nMDCQTz/9lO3bt/PXv/6VVq1a1X/OrFmzePbZZ5k9ezYZGRmEhYUxZswYKioqPJ3TLLW/agY1toP+FZnszf7SdI6IiN8rPlVIn8PvAVA6+EEshx6guFABnv6CTzzxBImJibz66qv1lyUlJdX/s23bPP300/zud79j/PjxALzxxhvExsYyd+5cJk6c6OmkZiehS28yI0eS5lqM64tZkHKx6SQREb+2fd5fSLdOk+PoSMrIW0zn+AWPT7z58+czaNAgbrzxRmJiYkhNTeWVV16pvz4nJ4f8/HxGjRpVf1lkZCRDhgxhzZo1Z/yalZWVuFyuBh/y/dpcUffa+5SSLzm4c6PhGhER/1VeWkzPA/8E4MSA+3A4nYaL/IPHB8r+/ft58cUX6datG5999hk///nPeeCBB3j99dcByM/PByA2NrbBz4uNja2/7ttmzpxJZGRk/UdiYqKns/1OUu9BbGhxEQ7L5vinM03niIj4rc3znqEVJRy24kgZc4fpHL/h8YHidrsZMGAAf/rTn0hNTeXuu+/mpz/9KbNnzz7vrzljxgyKi4vrP3Jzcz1Y7L9ajvo1AClFi8nL2Wm4RkTE/1RWlNN5T91TGo70vYeAwCDDRf7D4wOlXbt29O7du8FlvXr14tChQwDExcUBUFBQ0OBzCgoK6q/7tuDgYCIiIhp8yA/rPmAEm0MGEmC5yV2oe1FERDxt08IXieEkBUSTcvU9pnP8iscHyvDhw9m1a1eDy3bv3k3Hjh2BuifMxsXFsWTJkvrrXS4XGRkZpKenezqn2XNeUneSYWrhQgrzDpiNERHxIzXVVbTf9hIAOd1/QnBwqOEi/+LxgTJt2jTWrl3Ln/70J/bu3ctbb73Fyy+/zJQpUwCwLIupU6fyxz/+kfnz57NlyxYmT55MfHw8EyZM8HROs9d76BVsD+xDkFXD3vlPmM4REfEb2Z/+H+3tAk4SQf/xD5jO8TseHyhpaWnMmTOHt99+m759+/KHP/yBp59+mkmTJtV/zkMPPcT999/P3XffTVpaGqWlpSxatIiQkBBP5zR7lmVRnT4NgP5HP6So8MxPRBYRkbPnrq2lTfbzAOxKuo0WYXrqgadZtm3bpiPOlcvlIjIykuLiYj0f5SzYbjd7HxtEt9p9rE24i6H/pffpERG5EBs//wepq+/DZbeAaVuJiIo2neQTzuX2W0fdNQOWw4FrUN3dj70Pv0Op66ThIhER32W73bRc9zQA2xJu1jhpJBoozUTK6Ns46EgggjK2zn3KdI6IiM/a+uVcutXspdwOpsf4h0zn+C0NlGbC6XRS0P9eALrtf52K8lLDRSIivsn5Vd3D5Jtjr6V1TLzhGv+lgdKMpF75X+RZMURTzKb5z5nOERHxOTszPqN31Raq7ACSxv/adI5f00BpRgKDgsnt+VMAOu78X6qr9O7RIiLnonLZnwHYGH0lse07G67xbxoozUzyNVM4TiviKCR74Uumc0REfMbeTatIrsik1rZIuHqG6Ry/p4HSzISEhrG36x0AxG2ZTW1NjdkgEREf4Vpcd9jlxsiRtO/c+wc+Wy6UBkoz1G/8VIpoSaKdR/bnr5nOERHxegd3biCl5EsAoq/QvSdNQQOlGWoZHsWODj8GoFXWc9hut+EiERHvduzTx3FYNhtaXERS70Gmc5oFDZRmqveEX1Fmh9C59gCbl71rOkdExGvl5ewktWgxAC1H6ZU7TUUDpZmKbB3D5vgbAAhd85TuRRER+Q65C2cSYLnZHDKQ7gNGmM5pNjRQmrGu439NhR1I95pdbFu90HSOiIjXKcw7SGph3d+Pzkt+ZbimedFAacbaxnUgu+01AFhf/tVwjYiI99k7/3GCrBp2BPam95AxpnOaFQ2UZq7juIeptp30qcxmd9ZS0zkiIl6jqDCf/kc/BKAqfTqWQzeZTUnf7WauXcfubGxV938F5UtmGa4REfEeO+f9mRZWJXudXeh/6fWmc5odDRQh7qqHqbUtUsrXkLMtw3SOiIhxpa6T9M59GwBX2gO698QAfceFDt2S2RhxKQAnFz1uNkZExAtsnfsUEZRx0JFA8uW3mc5pljRQBICo0XWv7U9xLePw3i2Ga0REzKkoL6Xb/tcBKOh/L06n03BR86SBIgB07ZdOduhQnJbN0YUzTeeIiBizaf5zRFNMnhVD6pX/ZTqn2dJAkXohlz0EQMqpRRQc2mO4RkSk6VVXVdBx5/8CkNvzpwQGBRsuar40UKRez7SRbA1KJtCq5cACPRdFRJqf7IUvEUchx2lF8jVTTOc0axoo0oB98S8ASD42jxMFuYZrRESaTm1NDXFbZgOwt+sdhISGGS5q3jRQpIG+w8exK6AHIVY1e+bpXBQRaT6yP3+NRDuPIlrSb/xU0znNngaKNGA5HJweMhWAvkfep/jUcbNBIiJNwHa7aZX1HAA7OvyYluFRZoNEA0X+U//Lbma/oxMtrdPsmPsX0zkiIo1u87L36Fx7gFI7lN4T9KaA3kADRf6Dw+nk5ID7AOh58J+UlRSZDRIRaUS2203ImqcA2BJ/A5GtYwwXCWigyHdIveJODlvtiKKULfOfMZ0jItJotq1eSI+anVTYgXQd/5DpHPmaBoqckTMggLy+9wDQZc+rVFaUGS4SEWkkXz4JQHbba2gb18FwjPyLBop8p5Sr76GAaNpyiuwFL5rOERHxuN1Zy+hbuZFq20nHcQ+bzpFv0ECR7xQUHEJOj7sASNz+MjXVVYaLREQ8q3zJEwBsbDWGdh27G66Rb9JAke+VfM0DnCSCeLuA7E//13SOiIjH5GzLIKV8DbW2RdxVuvfE22igyPcKDQtnV9JkANpm/w13ba3hIhERzzi5qO4tPTZGXEqHbsmGa+TbNFDkB/UZPx0XLejozmXTF2+azhERuWCH924hxbUMgKjRvzZcI2eigSI/KCIqmm0JEwEIX/c0ttttuEhE5MIcXTgTp2WTHTqUrv3STefIGWigyFnpOf4hyu1gutbuY8vKOaZzRETOW8GhPaScWgRAyGU698RbaaDIWWnVth2b464FIOCrJw3XiIicvwMLHifQqmVrUAo900aazpHvoIEiZ63zNTOosgPoXb2V7WsXmc4RETlnJwpyST42DwD74umGa+T7aKDIWYtp34mN0VcBULNcbyIoIr5nz7xZhFjV7AroQd/h40znyPfQQJFzknD1DGpsB/0rMtmT/aXpHBGRs1Z86jh9j7wPQPmQqVgO3QR6M/3bkXPSvnMvsiPrHrMtXfyE4RoRkbO3Y+5faGmdZr+jE8mX3Ww6R36ABoqcszZjZwCQWvYlB3dmGa4REflh5aVF9Dz4TwBODrgPh9NpuEh+iAaKnLNOvQayMewiAI59+rjhGhGRH7Z53jNEUcphqx2pV9xpOkfOggaKnJeWl9e9b0Vq0Rfk5ewwXCMi8t0qK8rosudVAPL63oMzIMBwkZwNDRQ5L91SLmZzyCACLDe5C3Uvioh4r00LXqQtp8inDSlX32M6R86SBoqct4BLfglAauFCjucdMBsjInIGNdVVJG5/CYADPe4iKDjEcJGcLQ0UOW+908eyI7APQVYN++bpXhQR8T7Zn/4v7exjnCCS5GseMJ0j50ADRS5I9bC6kxj7539EUWG+4RoRkX9z19bSNvtvAOxOuo3QsJaGi+RcaKDIBel3yXXsdXahhVXJzrmzTOeIiNTb9MWbdHTn4iKMPhN+YTpHzpEGilwQy+HAlVZ3t2nvw+9QUnzScJGICNhuN+HrngZgW/uJRES2Nhsk50wDRS5YyuW3cdCRSARlbJ33lOkcERG2rPyIrrX7KLeD6TnhV6Zz5DxooMgFczidHEu+F4Du+1+norzUcJGINHeBXz0JwKa462jVtp3hGjkfGijiESlj7yLPiiGaYrLnPWs6R0SasR0Zi+hVvY0qO4Au1zxsOkfOkwaKeERgUDC5ve4GIGnX/1JVWWG4SESaq+plfwZgY/RVxLTvZDZGzpsGinhM8rh7OU4rYjnBpo9fMp0jIs3Q3uyV9K9YT43tIOHq35jOkQuggSIeExIaxr6udwAQt2U2tTU1ZoNEpNkpWVx33MHGqFG079zTcI1cCA0U8ah+46dSREsS7Tw2fvaq6RwRaUYO7switexL3LZF27EzTOfIBWr0gfL4449jWRZTp06tv6yiooIpU6YQHR1Ny5Ytuf766ykoKGjsFGkCYeFR7Oh4KwDRWc9ju92Gi0SkuTj+6UwAslteRKeeAwzXyIVq1IGSmZnJSy+9RP/+/RtcPm3aNBYsWMD777/PihUryMvL47rrrmvMFGlCvcf/klI7lCT3ATYtfdd0jog0A3k5O0gpWgJA+OW/NlwjntBoA6W0tJRJkybxyiuv0KpVq/rLi4uL+fvf/86TTz7JZZddxsCBA3n11VdZvXo1a9eubawcaUKRrduyJf5GAELXPqV7UUSk0R1eOJMAy82mkEF0S7nYdI54QKMNlClTpnDVVVcxatSoBpdnZWVRXV3d4PKePXvSoUMH1qxZc8avVVlZicvlavAh3q3b+IeosAPpUbOLbasXms4RET92/EgOKYUfAxB4yS8N14inNMpAeeedd9iwYQMzZ878j+vy8/MJCgoiKiqqweWxsbHk55/53XBnzpxJZGRk/UdiYmJjZIsHtYlLZFPM+LoffPlXszEi4tf2z3+cIKuG7YF96Z0+1nSOeIjHB0pubi4PPvggb775JiEhIR75mjNmzKC4uLj+Izc31yNfVxpXx3EPU2076VuZzc71S0zniIgfKjp+lH75cwCoHj7dcI14kscHSlZWFseOHWPAgAEEBAQQEBDAihUrePbZZwkICCA2NpaqqiqKiooa/LyCggLi4uLO+DWDg4OJiIho8CHeL65DNza2GgNAxdI/G64REX+0c94sWliV7HF2pf+Ia03niAd5fKCMHDmSLVu2kJ2dXf8xaNAgJk2aVP/PgYGBLFny7/+j3rVrF4cOHSI9Pd3TOWJYu6tmUGtbpJSvYf/WDNM5IuJHSopO0PvwO3X/nPYAlkNHe/mTAE9/wfDwcPr27dvgsrCwMKKjo+svv+uuu5g+fTqtW7cmIiKC+++/n/T0dIYOHerpHDEssVt/siIuZWDJMk59NhP6zjWdJCJ+Ytu8pxhKOQcdCaRcfqvpHPEwI3Pzqaee4uqrr+b6669nxIgRxMXF8dFHH5lIkSbQakzdiY6pruXk7tlkuEZE/EFFeQndc14H4Fj/KTicTsNF4mmWbdu26Yhz5XK5iIyMpLi4WM9H8RGbnhhD8um1rIu6ksFT3zadIyI+LuPtxxiyaxZ5Vixtf7OVwMAg00lyFs7l9lsP2EmTCB75EACppz4j/9AewzUi4suqKivotOvvABzqdbfGiZ/SQJEm0XPQSLYGpxBo1XJgweOmc0TEh21aOJtYTnCcVqSMu9d0jjQSDRRpMtZFdWcUpBybR2G+zrIRkXNXW1NNu62zAdjX9U5CQlsYLpLGooEiTab38HHsCuhBiFXNnnmzTOeIiA/KXvQaCfZRThFOv/FTTedII9JAkSZjORycHjoNgH5571N88rjhIhHxJba7ltYbngNgR4dJhIVHGi6SxqSBIk0q+bKbyHF0oqV1mu1z/2I6R0R8yOal75LkPkipHUqfCXpTQH+ngSJNynI4OTnwPgD6HXydowd3GS4SEV9QUV5K66/+AMDm+BuJbN3WcJE0Ng0UaXIpY+5kR2BvWlqnKXzrZ9hut+kkEfFym974JYl2HsdoTZ8b/9t0jjQBDRRpcs6AAFre9BKn7SD6VW5k3QdPmk4SES+2c91npB2te8+dvBFPENm6jeEiaQoaKGJEYrf+bO75IAD9ts0iL2en4SIR8UanS120/PRBHJZNRtSVpFx2k+kkaSIaKGJM2k0z2B7UlxZWJSffvht3ba3pJBHxMpvf+AUJ9lEKiKbnHc+bzpEmpIEixjicTqImvkK5HUzfqk1kfvBn00ki4kV2rPmEIcfeAyD/0j8TGRVtuEiakgaKGBXfuTdben19Nsr2Jzmyf5vhIhHxBuWlRUR8PhWAjFbjSL70erNB0uQ0UMS4tBsfYltQf1pYlRS//TM91CMibH19Ou3tAvJpQ687njWdIwZooIhxDqeTVrfUPdTTu3oL697VmwmKNGfbVi1g8PEPATh+2V+JiGxtuEhM0EARrxCf1JOtfX8FQPKup8ndu8VwkYiYUOY6RasldW8sujZ6Av1GTDAbJMZooIjXSLv+F2wJTiXUqqL03buprakxnSQiTWzb61OJt4+RZ8XQ945nTOeIQRoo4jUsh4M2P36JUjuUXtXbyXz3MdNJItKEtn45l8En5gJwcuSTtAyPMtojZmmgiFdp17EH2/s9BEDK7uc4uCvbbJCINImS4pO0WfILANa2uZ6+F40zXCSmaaCI10m7bipbQgYSYlVT8f7P9FCPSDOw4/UHiKOQI1Ys/W5/ynSOeAENFPE6lsNBzK0vU0IoPWp2kvn2/zOdJCKNaMvyDxl8cgEARaOfISw80nCReAMNFPFKsQld2ZH8GwBS9/6NgzuyDBeJSGNwFRUSu/yXAKxtexN90scaLhJvoYEiXitt/H1sCh1MsFVN5Yf3UFNdZTpJRDxs12v3E8NJDlvt6H/HX03niBfRQBGvZTkctLv1ZVy0oHvNbjLf+r3pJBHxoM1L3yWt6BPctoXrimdpERZhOkm8iAaKeLWY9knsTv0dAAP3v0TO9kzDRSLiCcWnjhO38mEAMuIm0nvIaMNF4m00UMTrDRz3c7JbpBNk1VDz4T1UV1WaThKRC7TntSnEcJJDVjwpk/9iOke8kAaKeD3L4SDh1pcoJoxutXtZ/+ajppNE5AJs+uItBhV/Rq1tUX7l84SGtTSdJF5IA0V8Qpv4juwdWDdMBh54hX1b1houEpHzUXyigParZgCwLn4SPdNGGi4Sb6WBIj5jwFV3szFsOEFWLcz9uR7qEfFBe16fQhuKOOhIIHXyLNM54sU0UMRnWA4Hibe9xCnC6VK7n/X//J3pJBE5B9mf/4NBrsXU2hYVVz1PSGiY6STxYhoo4lPaxCWyP+33AAw6+Hf2bvrKbJCInJWi40dJXP1bADLaT6bHwB8ZLhJvp4EiPmfA2J+woeUIAq1anPPupaqywnSSiPyAfW/8nGiKyXF0YMBtj5vOER+ggSI+x3I46DR5NieJIMl9gKx/zDCdJCLfY+OnrzKwZBk1toPqcX8jJLSF6STxARoo4pNax7Tn4JC6NxFMy32NPRtXGi4SkTM5WXCYThl1r8DLTLiD7qkXGy4SX6GBIj4rdeydZIX/iADLTeCCKVRWlJtOEpFvsm0O/uPntMLFfkcnBkz+k+ki8SEaKOLTOk9+kRNE0sl9iA1vPGw6R0S+IevTv5NaupJq24l7/N8IDg41nSQ+RANFfFqrtu04mP4YAIOPvMHuDcvNBokIAIX5uXRe93sAMjvcRdfk4WaDxOdooIjPGzDmNtZHjMJp2QQvnELF6TLTSSLNmu12k/uPe2hFCfucnRl06x9NJ4kP0kARv9Dt9r9RSBQd3YfJfuNXpnNEmrUNn/wvqWWrqLKd2BP+RlBwsOkk8UEaKOIXIqNjOTx8JgCD895iZ+YXhotEmqfCowfpuv73AKzv+FO69ks3GyQ+SwNF/EbK5T8mM3IMDssm7JP7qSgvNZ0k0qzYbjeH//EzIiljj7Mrabf+P9NJ4sM0UMSvdL/9BY7RmkQ7j+zXf2k6R6RZyVo4m5TyNVTZATivf5HAID20I+dPA0X8SmTrthwd8QQAg/PfYUfGZ4aLRJqH40dy6L6h7smwWZ1/Rufegw0Xia/TQBG/k3zZTayLuhKHZRO+6EFOl7pMJ4n4Ndvt5ug/7yaCMnYHdCftx783nSR+QANF/FKP25+jgGgS7KNsfmO66RwRv7Z+3gv0P72OSjuQoOtnExAYZDpJ/IAGivilyFZtKLj0zwAMOfY+21Z/YrhIxD8VHN5Lz011hyVu6PJzOvUaaLhI/IUGivit/pdez7rW4wCIWjyVspIis0EifsZ2uyn4588I5zQ7A3qSdsujppPEj2igiF/rdfuz5NOW9nYBW1+fZjpHxK+sn/MM/SvWU2EHEnrjSwQEBppOEj+igSJ+LTyyNccv+ysAQwo/Yuuq+YaLRPxD/qHd9Npc94q5jd3up2OPFLNB4nc0UMTv9RsxnozoCQBEL5lOqeuU2SARH2e73RS+eTctrdPsCOzN4Im/NZ0kfkgDRZqFPrc/TZ4VQzv7ONten2o6R8SnZX74JH0rN3LaDiLsppdwBgSYThI/pIEizULLiFacHPUkAENOzGXryrlmg0R8VF7OTvpunQXAph4P0qFbf8NF4q80UKTZ6Dt8HGvbXA9Am6W/oKT4pOEiEd/irq3l1Nt308KqZHtgXwbfPMN0kvgxDRRpVvrd/hRHrFjiKGTH6/ebzhHxKZkf/IU+VZsot4OJmPgyDqfTdJL4MQ0UaVbCwiMpHv0MAINPLmTz8g8MF4n4hrz92+m3ve4VcZt7TiOhSx/DReLvNFCk2emdPpa1MTcBELf8VxSfKjRcJOLd3LW1FL1T99DOtqD+DL7pIdNJ0gx4fKDMnDmTtLQ0wsPDiYmJYcKECezatavB51RUVDBlyhSio6Np2bIl119/PQUFBZ5OEflOybc/yWGrHTGcZJce6hH5XpnvPU7vqi2U28FETXxFD+1Ik/D4QFmxYgVTpkxh7dq1LF68mOrqakaPHk1ZWVn950ybNo0FCxbw/vvvs2LFCvLy8rjuuus8nSLynULDwim54lnctsXgok/YvPRd00kiXunw3i303/k0AJv7/JL2nXuaDZJmw7Jt227MX+D48ePExMSwYsUKRowYQXFxMW3btuWtt97ihhtuAGDnzp306tWLNWvWMHTo0B/8mi6Xi8jISIqLi4mIiGjMfPFza168h/SCtzlOK4IeyCSydVvTSSJew11Tw+4nLqZn9Xa2BqfQ+6FlOJx6ZoCcv3O5/W70P2nFxcUAtG7dGoCsrCyqq6sZNWpU/ef07NmTDh06sGbNmjN+jcrKSlwuV4MPEU9Ivf0vHLLa05ZT7H79XtM5Il5l3bt/omf1dsrsEFrf8rLGiTSpRv3T5na7mTp1KsOHD6dv374A5OfnExQURFRUVIPPjY2NJT8//4xfZ+bMmURGRtZ/JCYmNma2NCMhLVpSfuVz1NoWacWfk734LdNJIl4hd3c2KbufBWBLv4eI79TDcJE0N406UKZMmcLWrVt55513LujrzJgxg+Li4vqP3NxcDxWKQM+0kayLnwRAwlczKD5x5qEs0lzU1tRQ/v7PCLGq2Rw8kCHX6Z3Apek12kC57777WLhwIcuWLSMhIaH+8ri4OKqqqigqKmrw+QUFBcTFxZ3xawUHBxMREdHgQ8STUifP4qAjgTYUsef1KaZzRIxa//Yf6FG9kxI7lJhbX8Zy6KEdaXoe/1Nn2zb33Xcfc+bMYenSpSQlJTW4fuDAgQQGBrJkyZL6y3bt2sWhQ4dIT0/3dI7IWQkJDaPi6r9RYzsY5PqCjZ+9YTpJxIiDOzeSsvcFAHYkzyAusavhImmuPD5QpkyZwj//+U/eeustwsPDyc/PJz8/n9OnTwMQGRnJXXfdxfTp01m2bBlZWVnceeedpKenn9UreEQaS48Bl5DZfjIAHdf8llPH8wwXiTStmuoqKj+4m2Crmk0haaRN0BlBYo7HB8qLL75IcXExl156Ke3atav/ePfdf58z8dRTT3H11Vdz/fXXM2LECOLi4vjoo488nSJyzgZMnkmOoyOtcbH/9Z+bzhFpUuvf+n90r9mNixbE3aaHdsSsRj8HpTHoHBRpTHuyvyRpzjUEWG42DHmaAWPvNJ0k0ugObs+k3btXEGTVsC7lMQZPuM90kvghrzoHRcTXdEu5mMzEulGSlPEoJwoOGy4SaVw1VZVUfXQPQVYN2aFDSbtGZwKJeRooImcw8LY/sd/RiVa4OPjGz7HdbtNJIo1m/Vu/p1vNXooJo/1tL+mhHfEK+lMocgZBwSG4J7xIte1kQNlKNnz6d9NJIo0iZ1sGA3JeAmD3gEdpG9/JbJDI1zRQRL5D1/7DWN/hLgC6ZP6ewvxDhotEPKu6qhL3R/cQZNWyocVwBl19t+kkkXoaKCLfY+Ctf2SfszNRlHL4jZ/poR7xK1n//B1davdTREs6TJ6th3bEq+hPo8j3CAoOhgmzqbKdpJSvZsPHL5tOEvGIfZtXM/Bg3UOXewf9njZxHQwXiTSkgSLyA7r0G0JWp7q7vnutf5RNy94zXCRyYQ7uWE/Lj24l0KplQ9gIBl55l+kkkf+ggSJyFgbd+v/YFJJGC6uSPst/RuacZ00niZyXHRmLaPXuNcRygoOOBDrerod2xDvpT6XIWQgMDKLXtI/JjBxDgOUmbdMjrH3tYT0nRXzKxkWv0/mTW4mgjJ2BvYi8dwnRMe1NZ4mckQaKyFkKCg5m0IPvsDr+DgCGHniRzBfupLamxmyYyFlY985Mktc8SLBVzcYWw+g49Qui2pz5HeRFvIEGisg5sBwOht39DGt7Pozbthh8Yi5bnrqGivJS02kiZ2S73ax95QEG73wch2WT0Xo8/abNIzSspek0ke+lgSJyHoZOnEF2+tNU2oGklH3Fgacux3XimOkskQaqqyrJevYWhh55HYA1He9h8H2vERAYZLhM5IdpoIicpwFX3MHeK/6BizB6Vm/n1AuXkX9oj+ksEQDKSorY8eRVDCpaRI3tYF2//yH9zif0hFjxGfqTKnIB+qSP5cRN8ykgmo7uXBz/N5qcbRmms6SZO1FwmLxnRtG/IpPTdhBbR7zI4Ounms4SOScaKCIXKKn3IOy7FpPj6EgMJ2nz/ni2r/7YdJY0U0f2baVi9ki61ezhFOEcGvcuKSMnms4SOWcaKCIeEJfYhdb3LWV7YD/COU3Xzyaz4RO9waA0rT0bVxL6j7G0t/PJs2IpnfQxPQZdZjpL5LxooIh4SGTrNnSe/hkbwkYQZNUwYN10Mt76g+ksaSY2L/+A9nNvoDUu9jq7EPSzL0jslmw6S+S8aaCIeFBIaBjJ0+awts31AAzZ/RfWvnQv7tpaw2XizzLnPk+vZXfTwqpkS/AAYh/4Qu+tIz5PA0XEw5wBAQy5939ZnXQ/AEOPvsmGZ26mqrLCcJn4G9vtZu3rvyEt+7cEWrWsjxhFj+mfEh7Z2nSayAXTQBFpBJbDwbDb/8i6lJlU204GuRaz+8krKHWdNJ0mfqK2pobMv93F0JwXAFjT7lYGPPgeQcEhhstEPEMDRaQRDZ5wL9t/9ArldjB9KzdS8MxICvMPmc4SH1dxuozNT01gcOFHuG2Ltd0fIv1nL+BwOk2niXiMBopII0u+9HqOXPshJ4ikS+1+ql4aSe6ezaazxEcVnzzO/qdGk1r2JVV2ABuH/JWhP/6t6SwRj9NAEWkC3VIu5vRtn3LYake8fYyWb17J7qxlprPEx+Tn7uXU85fRu2orJXYoe0a/wcAr7zKdJdIoNFBEmkhClz6E3vMFuwO604oSEuffxKYl75jOEh+Rsz0Tx98vp5P7EMdozfEb59Fn+FWms0QajQaKSBOKjk2g/YOL2RSSRqhVRd+V95D54VOms8TLbV/9CdHvXUMMJznoSMT9k8/p3HeI6SyRRqWBItLEwsKj6D39Y9ZFXYnTsknb8nvW/t9D2G636TTxQhs/fZWun91GBOXsCOxN1JQlxHXoZjpLpNFpoIgYEBgUTNoDb7Km/Z0ADD30EpnP305tTbXhMvEmGe/MJHntNIKsGja2GE7StMVERseazhJpEhooIoZYDgfpP32atb1+i9u2GHxyPluevIaK8hLTaWKY7Xaz5uX7GbLzcRyWTUb0BPpPn09Ii5am00SajAaKiGFDb36I7GHPUmkHklK+mgNPXU7xiXzTWWJIdVUl65+ZSHreGwCs6fRzBk95FWdAgOEykaalgSLiBQaMmcy+sW9STBg9q3dQ/MJlHD24y3SWNLFS1yl2PjmWtOLPqLEdrEv+A+l3PI7l0F/V0vzoT72Il+g9dAynbl5APm3o4D5CwKtj2LdlreksaSKF+bkcfWYU/SqyKLeD2XbJSwy+9gHTWSLGaKCIeJFOvQZi/XQx+x2daMspYj+YwNZV801nSSM7vHcrlS+NpFvtXk4RweHx75F82U2ms0SM0kAR8TKx7TsTff8StgX1o6V1mu6L7yDr41dMZ0kj2b1hOS3+OZb2dgFHrFjKbv2E7gMuNZ0lYpwGiogXimzVhi7TPiOr5SUEWbUMzPwla9/8H9NZ4mGblr1PwrybaI2Lvc4uBP9sCQld+5nOEvEKGigiXiokNIyUaXNY27burv6he55k7Yv34K6tNVwmnrBuznP0WX43LaxKtoQMJO7BJbSJSzSdJeI1NFBEvJjT6WTIz19iTZcHARha8DYbn7mRqorThsvkfNluN2tee5jBm35HgOUmM3I0Pad/QsuIVqbTRLyKBoqIl7McDtJv+39kpj5Ote1koGsJu5+6gpLik6bT5BzV1tSw7m93kX7gRQDWxE9m0IPvEhgUYrhMxPtooIj4iLTxP2fHZX+nzA6hb2U2x569jMK8g6az5CxVlJey+anxDCn8CLdtkdHzYdLvfk5nnIh8B/2XIeJD+l9yLXnXfkghUXSpzaH6lZEc2p1tOkt+QPGJAnKeupzUslVU2QFkD32KIRNnmM4S8WoaKCI+plvKRVROXkSuFU87+zgRb13FrvVfmM6S75B/aA9FL4ykV/V2XLRg75h/MGDsnaazRLyeBoqID2rfuRdhP/+C3QHdiaKUDgtuIXvxW6az5FtytmXg+L/RdHTncozWnLhxHr2HXWk6S8QnaKCI+KjWMe1JmPoF2aFDCLWq6LfqXtZ98KTpLPnattWfEP3eBGI4yQFHIu67FpPUZ7DpLBGfoYEi4sNatIykz/SFrIu6EqdlM3jr/7D277/EdrtNpzVrWZ+8SrfPbiPCKmd7YF9a3beMuMSuprNEfIoGioiPCwwMIu2BN1mTcBcAQ3NfIfP526iprjJc1jytffsxUjOmEWTVsDHsYjpP/5zI1m1NZ4n4HA0UET9gORyk/9eTZPR+hFrbYvDJhWx7chyny0pMpzUb7tpa1rw0haG7ZuGwbDLaXEf/aXMJCQ0znSbikzRQRPzIkJt+yabhz1NhB5J8ei2HnhrFqeNHTWf5varKCrKeuZn0o/8EYG3SFAbf+3ecAQGGy0R8l2Xbtm064ly5XC4iIyMpLi4mIiLCdI6I19mxbjHtPrmDKEo5SQT7Wl1MQK8r6THsalq0jDKd5xeqqyrZvX4Jrk3zSTy2nAT7KDW2g42pfyBtwn2m80S80rncfmugiPipgzs3EPjuROLtgvrLKu1AdoWmcDppFB2GXku7jj0MFvqeosIC9qyeg7XnM7qXZBBBWf11pXYo+y99jv4/utFgoYh300AREQAqK0+zO+MzyrYspEPhygZjBSDH0YmCdpcQlXwN3QZcqockvsV2uzm4O5uj6+YQmbuUHlXbcFr//ivzFBHsjUzH2XMs3YaNJzyytcFaEe+ngSIi/0E3tmenbtQtomzLxyQWrqT9d426lGvolqpRJ3IuNFBE5AcVFRawd/Uc2PMZ3UvWEkF5/XXVtpNdIf0p7TiSxKHX0b5zH4Olje9EwWH2rZ5DwN7P6V6aSUvrdP11VXYAO0NTOZ00io7p1xHXobvBUhHfpoEiIuekuqqS3Zlf4Nq8gPbHVtLBPtLg+oOOBI7GXEJE8ji6DxpJQGCQoVLPsN1u9m9bx7GsubQ6vIzu1btwfOPepEKiyGk1XE8sFvEwDRQRuSCH9mwmb91cWh5cQo/KLQRatfXXuQhjT8RQ7O5X0G3YtT5zCFnF6TJ2rfmYim0f0/HEKuIobHD9XmcXCuN/RPSA8XTpPxyH02moVMR/aaCIiMcUnypkz+p52LsX0bV4Da349+FvNbaD3cF9cHUYSbu0a+nQrT+Ww3uOVzqed4Cc1R8RuP9zepRtoIVVWX/daTuIXWEDqep8OZ3SryOmfZLBUpHmQQNFRBpFbU0Nu7OWUpS9gHYFy+nkPtTg+iNWHLltL6Flv6voPngMQcEhTdrnrq1l3+avKNwwnzZ5y+hWu7fB9QVEcyD6YkL6XEWPoVcS0qJlk/aJNHcaKCLSJPJydnJo7RxaHFxMz9ObCLJq6q8rsUPZEz6Y2q5j6Dr8Wlq1jW+UhvLSYnatXkD1jk9JOvUVbTlVf53bttgT2J1T7X9E20HX0rnPYK+6h0ekufGZgfLCCy/w5z//mfz8fJKTk3nuuecYPPiH345cA0XE+5S6TrF7zQJqdnxKl6KviKa4/jq3bbE7qBenEn5E3KAJdOo16IKGwtGDuzi0di4hOYvpeTqbYKu6/royO4TdLdOo6TqapPRraROXeEG/LxHxHJ8YKO+++y6TJ09m9uzZDBkyhKeffpr333+fXbt2ERMT870/VwNFxLu5a2vZu+lLTmyYT8zRZXSp3d/g+qO05VCbiwntcxXdh479wTfUq62pYc/G5ZzKXkDc0eUkuQ80uD7PiiG3zQha9Lua7oPHEBzSwtO/JRHxAJ8YKEOGDCEtLY3nn38eALfbTWJiIvfffz8PP/zw9/5cDRQR35Kfu4+Daz4iJGcxPco3EPKNezzK7WB2hQ2iustoOg+/jjZxHQAoKT7JntXzqN25iC7Fq2mNq/7n1NoWu4N6U5w4knZpE+jQI1UP3Yj4AK8fKFVVVbRo0YIPPviACRMm1F9+++23U1RUxLx58xp8fmVlJZWV/372vcvlIjExUQNFxAedLith15qFVG7/hKSTq4jhZIPrdwd0p8rZgu4VWwhq8PLmFuwJH4Ld7Qq6DptAVJu4pk4XkQt0LgPFyBnNhYWF1NbWEhsb2+Dy2NhYdu7c+R+fP3PmTP7nf/6nqfJEpBGFhoWTMuoWGHULttvN3i2rOZ41n+i8ZXSv2U33mt1QA1iQa8VzJOYSwvuPo3vaKAYGBZvOF5Em4hNvIjFjxgymT59e/+N/3YMiIr7NcjjomnwRXZMvAqAw7yA5a+firionfuCVJHZLRv+lizRPRgZKmzZtcDqdFBQ0fBOugoIC4uL+827b4OBggoP1f04i/q5NfEfaXPeg6QwR8QJGnlUWFBTEwIEDWbJkSf1lbrebJUuWkJ6ebiJJREREvIixh3imT5/O7bffzqBBgxg8eDBPP/00ZWVl3HnnnaaSRERExEsYGyg333wzx48f59FHHyU/P5+UlBQWLVr0H0+cFRERkeZHR92LiIhIkziX22+dbCQiIiJeRwNFREREvI4GioiIiHgdDRQRERHxOhooIiIi4nU0UERERMTraKCIiIiI19FAEREREa+jgSIiIiJex9hR9xfiX4ffulwuwyUiIiJytv51u302h9j75EApKSkBIDEx0XCJiIiInKuSkhIiIyO/93N88r143G43eXl5hIeHY1mWR7+2y+UiMTGR3Nxcvc9PI9L3uWno+9w09H1uGvo+N53G+l7btk1JSQnx8fE4HN//LBOfvAfF4XCQkJDQqL9GRESE/gNoAvo+Nw19n5uGvs9NQ9/nptMY3+sfuufkX/QkWREREfE6GigiIiLidTRQviU4OJj//u//Jjg42HSKX9P3uWno+9w09H1uGvo+Nx1v+F775JNkRURExL/pHhQRERHxOhooIiIi4nU0UERERMTraKCIiIiI19FA+YYXXniBTp06ERISwpAhQ1i3bp3pJL8yc+ZM0tLSCA8PJyYmhgkTJrBr1y7TWX7v8ccfx7Ispk6dajrFLx05coRbb72V6OhoQkND6devH+vXrzed5Vdqa2t55JFHSEpKIjQ0lC5duvCHP/zhrN7PRb7bypUrGTduHPHx8ViWxdy5cxtcb9s2jz76KO3atSM0NJRRo0axZ8+eJuvTQPnau+++y/Tp0/nv//5vNmzYQHJyMmPGjOHYsWOm0/zGihUrmDJlCmvXrmXx4sVUV1czevRoysrKTKf5rczMTF566SX69+9vOsUvnTp1iuHDhxMYGMinn37K9u3b+etf/0qrVq1Mp/mVJ554ghdffJHnn3+eHTt28MQTTzBr1iyee+4502k+raysjOTkZF544YUzXj9r1iyeffZZZs+eTUZGBmFhYYwZM4aKioqmCbTFtm3bHjx4sD1lypT6H9fW1trx8fH2zJkzDVb5t2PHjtmAvWLFCtMpfqmkpMTu1q2bvXjxYvuSSy6xH3zwQdNJfufXv/61fdFFF5nO8HtXXXWV/ZOf/KTBZdddd509adIkQ0X+B7DnzJlT/2O3223HxcXZf/7zn+svKyoqsoODg+233367SZp0DwpQVVVFVlYWo0aNqr/M4XAwatQo1qxZY7DMvxUXFwPQunVrwyX+acqUKVx11VUN/lyLZ82fP59BgwZx4403EhMTQ2pqKq+88orpLL8zbNgwlixZwu7duwHYtGkTq1atYuzYsYbL/FdOTg75+fkN/v6IjIxkyJAhTXa76JNvFuhphYWF1NbWEhsb2+Dy2NhYdu7caajKv7ndbqZOncrw4cPp27ev6Ry/884777BhwwYyMzNNp/i1/fv38+KLLzJ9+nR+85vfkJmZyQMPPEBQUBC333676Ty/8fDDD+NyuejZsydOp5Pa2loee+wxJk2aZDrNb+Xn5wOc8XbxX9c1Ng0UMWLKlCls3bqVVatWmU7xO7m5uTz44IMsXryYkJAQ0zl+ze12M2jQIP70pz8BkJqaytatW5k9e7YGige99957vPnmm7z11lv06dOH7Oxspk6dSnx8vL7PfkwP8QBt2rTB6XRSUFDQ4PKCggLi4uIMVfmv++67j4ULF7Js2TISEhJM5/idrKwsjh07xoABAwgICCAgIIAVK1bw7LPPEhAQQG1trelEv9GuXTt69+7d4LJevXpx6NAhQ0X+6Ve/+hUPP/wwEydOpF+/ftx2221MmzaNmTNnmk7zW/+67TN5u6iBAgQFBTFw4ECWLFlSf5nb7WbJkiWkp6cbLPMvtm1z3333MWfOHJYuXUpSUpLpJL80cuRItmzZQnZ2dv3HoEGDmDRpEtnZ2TidTtOJfmP48OH/8VL53bt307FjR0NF/qm8vByHo+HNldPpxO12Gyryf0lJScTFxTW4XXS5XGRkZDTZ7aIe4vna9OnTuf322xk0aBCDBw/m6aefpqysjDvvvNN0mt+YMmUKb731FvPmzSM8PLz+cczIyEhCQ0MN1/mP8PDw/3heT1hYGNHR0Xq+j4dNmzaNYcOG8ac//YmbbrqJdevW8fLLL/Pyyy+bTvMr48aN47HHHqNDhw706dOHjRs38uSTT/KTn/zEdJpPKy0tZe/evfU/zsnJITs7m9atW9OhQwemTp3KH//4R7p160ZSUhKPPPII8fHxTJgwoWkCm+S1Qj7iueeeszt06GAHBQXZgwcPtteuXWs6ya8AZ/x49dVXTaf5Pb3MuPEsWLDA7tu3rx0cHGz37NnTfvnll00n+R2Xy2U/+OCDdocOHeyQkBC7c+fO9m9/+1u7srLSdJpPW7Zs2Rn/Tr799ttt2657qfEjjzxix8bG2sHBwfbIkSPtXbt2NVmfZds6ik9ERES8i56DIiIiIl5HA0VERES8jgaKiIiIeB0NFBEREfE6GigiIiLidTRQRERExOtooIiIiIjX0UARERERr6OBIiIiIl5HA0VERES8jgaKiIiIeB0NFBEREfE6/x9rIoShDfi3zgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np\n", + "import matplotlib.pylab as plt\n", + "\n", + "# Problem 0\n", + "# xs = np.asarray([[0, 1, 0, 1, 0],\n", + "# [0, 0, 1, 1, 0],\n", + "# [1, 1, 0, 1, 0],\n", + "# [1, 1, 1, 0, 1],\n", + "# [0, 0, 0, 1, 0]])\n", + "\n", + "# ys = np.asarray([[0],\n", + "# [0],\n", + "# [0],\n", + "# [3],\n", + "# [3]])\n", + "\n", + "# Problem 1\n", + "# xs = np.asarray([[1, 0], [0, 1], [1, 1], [0, 0]])\n", + "# ys = np.asarray([[1], [1], [0], [0]])\n", + "\n", + "# Problem 2\n", + "xs = np.asarray([[-10], [-8], [-6], [-4], [-2], [0], [2], [4], [6], [8], [10]])\n", + "# ys = 0.5 * xs + 7\n", + "ys = xs ** 2\n", + "\n", + "xs = np.hstack((xs, np.ones([xs.shape[0], 1])))\n", + "\n", + "ins = 1 # 2 # 5\n", + "outs = 1\n", + "nodes = 100 # 20 # 2\n", + "lr = 0.0000005 # 0.03\n", + "\n", + "def weights(ins, outs):\n", + " ws = np.random.randn(ins, outs)\n", + " return ws\n", + "\n", + "w0 = weights(ins+1, nodes)\n", + "w1 = weights(nodes, nodes)\n", + "w2 = weights(nodes, outs)\n", + "\n", + "ers = []\n", + "for i in range(35000):\n", + " x0 = xs\n", + "\n", + " z0 = (x0 @ w0); x1 = np.sin(z0)\n", + " z1 = (x1 @ w1); x2 = np.sin(z1)\n", + " yh = (x2 @ w2)\n", + "\n", + " e = (yh - ys)\n", + "\n", + " e2 = (e) * 1\n", + " e1 = (e @ w2.T) * np.cos(z1)\n", + " e0 = (e1 @ w1.T) * np.cos(z0)\n", + "\n", + " w2 -= (x2.T @ e) * lr\n", + " w1 -= (x1.T @ e1) * lr\n", + " w0 -= (x0.T @ e0) * lr\n", + "\n", + " e = np.sum(np.abs(e))\n", + "\n", + " ers.append(e)\n", + "\n", + "plt.figure(1)\n", + "plt.plot(ers)\n", + "\n", + "plt.figure(2)\n", + "plt.plot(ys, label='ys')\n", + "plt.plot(yh, label='yh')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Yadda yadda, lots of work to approximate a simple function. Like using a tank to kill a fly. Anyway, we're going to do stuff with more layers and need to install pytorch.\n", + "\n", + "https://pytorch.org/get-started/locally/" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "loss: 246631.640625\n", + "loss: 69992.8046875\n", + "loss: 31578.111328125\n", + "loss: 13223.3251953125\n", + "loss: 5160.99169921875\n", + "loss: 2281.835693359375\n", + "loss: 782.9633178710938\n", + "loss: 201.0695343017578\n", + "loss: 47.200313568115234\n", + "loss: 4.3181257247924805\n" + ] + }, + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 62, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGdCAYAAAD+JxxnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABBbElEQVR4nO3dfXxU9Z3//fdMkpkkJJMEQu4gCSAC5UYQkBhvUGsuAmVV1N0ipS1rUWsN/Unxh8juCnavXouL292qRd1ur4q73YrSX/EGkTYb7lQCSCRyH0HAoJCEu8zkhtzNfH9/JDkygkAkyUkyr+dj55GZcz5z5jPflc77cc73nOMwxhgBAACEIKfdDQAAANiFIAQAAEIWQQgAAIQsghAAAAhZBCEAABCyCEIAACBkEYQAAEDIIggBAICQFW53A11ZIBDQsWPHFBsbK4fDYXc7AADgMhhjVFVVpbS0NDmdF9/nQxC6iGPHjik9Pd3uNgAAwDdw9OhR9e/f/6I1BKGLiI2NldQ8kB6Px+ZuAADA5fD5fEpPT7d+xy+GIHQRrYfDPB4PQQgAgG7mcqa1MFkaAACELIIQAAAIWQQhAAAQsghCAAAgZBGEAABAyGpTEFqyZImuu+46xcbGKikpSdOmTVNJSUlQza233iqHwxH0ePjhh4NqSktLNXXqVEVHRyspKUnz589XU1NTUM2GDRs0duxYud1uDR48WMuXLz+vn2XLlmnAgAGKjIxUVlaWtm3bFrS+rq5OeXl56tOnj2JiYnTvvfeqvLy8LV8ZAAD0YG0KQhs3blReXp62bNmi/Px8NTY2atKkSaqpqQmqe/DBB3X8+HHrsXTpUmud3+/X1KlT1dDQoM2bN+uVV17R8uXLtWjRIqvm8OHDmjp1qm677TYVFxdr7ty5euCBB/TnP//Zqnnttdc0b948LV68WB999JFGjx6t3NxcVVRUWDU/+9nP9Pbbb2vlypXauHGjjh07pnvuuafNgwQAAHoocwUqKiqMJLNx40Zr2S233GIeffTRr33PmjVrjNPpNGVlZdayF1980Xg8HlNfX2+MMebxxx83I0aMCHrf9OnTTW5urvV6woQJJi8vz3rt9/tNWlqaWbJkiTHGmMrKShMREWFWrlxp1ezbt89IMoWFhZf1/bxer5FkvF7vZdUDAAD7teX3+4rmCHm9XklS7969g5b/93//txITEzVy5EgtXLhQtbW11rrCwkKNGjVKycnJ1rLc3Fz5fD7t2bPHqsnJyQnaZm5urgoLCyVJDQ0NKioqCqpxOp3KycmxaoqKitTY2BhUM2zYMGVkZFg1X1VfXy+fzxf0AAAAPdc3vrJ0IBDQ3LlzdeONN2rkyJHW8u9973vKzMxUWlqadu7cqQULFqikpER/+tOfJEllZWVBIUiS9bqsrOyiNT6fT2fPntWZM2fk9/svWLN//35rGy6XS/Hx8efVtH7OVy1ZskQ///nP2zgSAACgu/rGQSgvL0+7d+/W+++/H7T8oYcesp6PGjVKqampuv322/Xpp5/qqquu+uaddoKFCxdq3rx51uvWe5UAAICe6RsdGpszZ45Wr16t9evXX/KurllZWZKkgwcPSpJSUlLOO3Or9XVKSspFazwej6KiopSYmKiwsLAL1py7jYaGBlVWVn5tzVe53W7rvmLcXwwAgJ6vTUHIGKM5c+Zo1apVWrdunQYOHHjJ9xQXF0uSUlNTJUnZ2dnatWtX0Nld+fn58ng8Gj58uFVTUFAQtJ38/HxlZ2dLklwul8aNGxdUEwgEVFBQYNWMGzdOERERQTUlJSUqLS21auxysrpeT721R0+/u9/WPgAACHltmYX9k5/8xMTFxZkNGzaY48ePW4/a2lpjjDEHDx40//iP/2i2b99uDh8+bN58800zaNAgM3HiRGsbTU1NZuTIkWbSpEmmuLjYrF271vTt29csXLjQqjl06JCJjo428+fPN/v27TPLli0zYWFhZu3atVbNihUrjNvtNsuXLzd79+41Dz30kImPjw86G+3hhx82GRkZZt26dWb79u0mOzvbZGdnX/b37aizxg5WVJnMBavNqMVrL10MAADapC2/320KQpIu+Hj55ZeNMcaUlpaaiRMnmt69exu3220GDx5s5s+ff14jR44cMVOmTDFRUVEmMTHRPPbYY6axsTGoZv369WbMmDHG5XKZQYMGWZ9xrueff95kZGQYl8tlJkyYYLZs2RK0/uzZs+aRRx4xCQkJJjo62tx9993m+PHjl/19OyoIHTpRbTIXrDYjCUIAALS7tvx+O4wxxq69UV2dz+dTXFycvF5vu84XOnKyRrf+ywbFuMO1++e57bZdAADQtt9v7jVmA4ej+S8ZFAAAexGEbOBQcxIiBgEAYC+CkA2+3CNkbx8AAIQ6gpANWoNQgCQEAICtCEI2cDg4NAYAQFdAELKBo/UJSQgAAFsRhGxgzREiCQEAYCuCkA2cLUkoQA4CAMBWBCEbtB4a4zpCAADYiyBkB+vQGAAAsBNByAbWBRVJQgAA2IogZAOn48vnHB4DAMA+BCEbtF5HSGKvEAAAdiII2eCcHULMEwIAwEYEIRs4ODQGAECXQBCyQdChMRv7AAAg1BGEbHDuHiFuvAoAgH0IQjYImiNEDgIAwDYEIRuce2gMAADYhyBkA/YIAQDQNRCEbOAMmixNEgIAwC4EIRsET5a2rw8AAEIdQchmXEcIAAD7EIRsEHRBRfvaAAAg5BGEbODkXmMAAHQJBCEbBJ81RhICAMAuBCEbcPd5AAC6BoKQDbj7PAAAXQNByAbcfR4AgK6BIGSDcw+NcR0hAADsQxCySWsW4srSAADYhyBkE2ufEDkIAADbEIRs0np4jBwEAIB9CEI2cbYeGiMJAQBgG4KQTRwtB8cCJCEAAGxDELKLNVkaAADYhSBkk9bJ0lxHCAAA+xCEbNJ641VyEAAA9iEI2cTBZGkAAGxHELKJdWiMWUIAANiGIGQTB4fGAACwHUHIJg7OGgMAwHYEIZu0HhrjOkIAANiHIGQTDo0BAGA/gpBNHNx1FQAA2xGEbPLlBRVtbQMAgJBGELKJk7vPAwBgO4KQTVoPjTFZGgAA+xCEbMNkaQAA7EYQsgm32AAAwH4EIZs4rQsqkoQAALALQcgmDg6NAQBgO4KQTTg0BgCA/QhCNmk9fZ6zxgAAsA9ByCZhLZOE/AQhAABsQxCyiRWEAgQhAADsQhCySWsQavIThAAAsEubgtCSJUt03XXXKTY2VklJSZo2bZpKSkqCaurq6pSXl6c+ffooJiZG9957r8rLy4NqSktLNXXqVEVHRyspKUnz589XU1NTUM2GDRs0duxYud1uDR48WMuXLz+vn2XLlmnAgAGKjIxUVlaWtm3b1uZe7BLuZI4QAAB2a1MQ2rhxo/Ly8rRlyxbl5+ersbFRkyZNUk1NjVXzs5/9TG+//bZWrlypjRs36tixY7rnnnus9X6/X1OnTlVDQ4M2b96sV155RcuXL9eiRYusmsOHD2vq1Km67bbbVFxcrLlz5+qBBx7Qn//8Z6vmtdde07x587R48WJ99NFHGj16tHJzc1VRUXHZvdjJ2iPEoTEAAOxjrkBFRYWRZDZu3GiMMaaystJERESYlStXWjX79u0zkkxhYaExxpg1a9YYp9NpysrKrJoXX3zReDweU19fb4wx5vHHHzcjRowI+qzp06eb3Nxc6/WECRNMXl6e9drv95u0tDSzZMmSy+7lUrxer5FkvF7vZdW3xR3Pv2cyF6w2BfvKLl0MAAAuW1t+v69ojpDX65Uk9e7dW5JUVFSkxsZG5eTkWDXDhg1TRkaGCgsLJUmFhYUaNWqUkpOTrZrc3Fz5fD7t2bPHqjl3G601rdtoaGhQUVFRUI3T6VROTo5Vczm9fFV9fb18Pl/Qo6MwRwgAAPt94yAUCAQ0d+5c3XjjjRo5cqQkqaysTC6XS/Hx8UG1ycnJKisrs2rODUGt61vXXazG5/Pp7NmzOnnypPx+/wVrzt3GpXr5qiVLliguLs56pKenX+ZotB1zhAAAsN83DkJ5eXnavXu3VqxY0Z792GrhwoXyer3W4+jRox32WcwRAgDAfuHf5E1z5szR6tWrtWnTJvXv399anpKSooaGBlVWVgbtiSkvL1dKSopV89Wzu1rP5Dq35qtnd5WXl8vj8SgqKkphYWEKCwu7YM2527hUL1/ldrvldrvbMBLfXLizOYNyHSEAAOzTpj1CxhjNmTNHq1at0rp16zRw4MCg9ePGjVNERIQKCgqsZSUlJSotLVV2drYkKTs7W7t27Qo6uys/P18ej0fDhw+3as7dRmtN6zZcLpfGjRsXVBMIBFRQUGDVXE4vdnIyRwgAANu1aY9QXl6e/vCHP+jNN99UbGysNdcmLi5OUVFRiouL0+zZszVv3jz17t1bHo9HP/3pT5Wdna3rr79ekjRp0iQNHz5cP/jBD7R06VKVlZXpH/7hH5SXl2ftjXn44Yf161//Wo8//rh+9KMfad26dXr99df1zjvvWL3MmzdPs2bN0vjx4zVhwgT96le/Uk1Nje6//36rp0v1YqdwbrEBAID92nI6mqQLPl5++WWr5uzZs+aRRx4xCQkJJjo62tx9993m+PHjQds5cuSImTJliomKijKJiYnmscceM42NjUE169evN2PGjDEul8sMGjQo6DNaPf/88yYjI8O4XC4zYcIEs2XLlqD1l9PLxXTk6fMPvPKhyVyw2vxh62ftvm0AAEJZW36/HcawS+Lr+Hw+xcXFyev1yuPxtOu2f/L7Ir27u0z/77SR+sH1me26bQAAQllbfr+515hNWucI+f0BmzsBACB0EYRs8uUcIZsbAQAghBGEbNJ6HSF/gD1CAADYhSBkk3AuqAgAgO0IQjax9ghxbAwAANsQhGzCLTYAALAfQcgmrbfY4KarAADYhyBkE/YIAQBgP4KQTb48a4wgBACAXQhCNgnjpqsAANiOIGSTCOvQGNcRAgDALgQhm7jCm4e+oYkgBACAXQhCNnGHh0mS6glCAADYhiBkE/YIAQBgP4KQTVqDEHuEAACwD0HIJm4rCPlt7gQAgNBFELIJh8YAALAfQcgmrrCWIOQnCAEAYBeCkE2sOUKNBCEAAOxCELJJ6+nz7BECAMA+BCGbMEcIAAD7EYRswlljAADYjyBkEzd7hAAAsB1ByCYcGgMAwH4EIZtYQYjJ0gAA2IYgZJPWs8Ya/Ub+gLG5GwAAQhNByCZREWHW87pGJkwDAGAHgpBNIiOccjqan9c0NNnbDAAAIYogZBOHw6FernBJUk09e4QAALADQchG0e7mw2M19ewRAgDADgQhG7XuEaptYI8QAAB2IAjZyNojxBwhAABsQRCyUXTrHiHmCAEAYAuCkI16udgjBACAnQhCNurlbj1rjCAEAIAdCEI2io1sDkK+swQhAADsQBCyUe9eLknS6Zp6mzsBACA0EYRslBjjliSdrGmwuRMAAEITQchGfVqDUBV7hAAAsANByEaJMc2Hxk6xRwgAAFsQhGxkHRqrZo8QAAB2IAjZqDUIVdY2qtEfsLkbAABCD0HIRvFREXI6mp+f5vAYAACdjiBkI6fTod69ODwGAIBdCEI2a50wXcGZYwAAdDqCkM3Se0dLko6errW5EwAAQg9ByGaZLUHos1MEIQAAOhtByGaZfQhCAADYhSBks8w+vSRJn52qsbkTAABCD0HIZq17hEpP1yoQMDZ3AwBAaCEI2axffJTCnQ7VNwV03FdndzsAAIQUgpDNwsOcGtS3+fDYJ2VVNncDAEBoIQh1AUOSYyVJJeUEIQAAOhNBqAsY2hKE2CMEAEDnIgh1AUNT2CMEAIAdCEJdQGsQOlBRrSbuQg8AQKchCHUB6QnRioxwqqEpoM+41QYAAJ2mzUFo06ZNuuOOO5SWliaHw6E33ngjaP3f/u3fyuFwBD0mT54cVHP69GnNnDlTHo9H8fHxmj17tqqrq4Nqdu7cqZtvvlmRkZFKT0/X0qVLz+tl5cqVGjZsmCIjIzVq1CitWbMmaL0xRosWLVJqaqqioqKUk5OjAwcOtPUrdzin06GhKR5J0u4vvDZ3AwBA6GhzEKqpqdHo0aO1bNmyr62ZPHmyjh8/bj1effXVoPUzZ87Unj17lJ+fr9WrV2vTpk166KGHrPU+n0+TJk1SZmamioqK9Mwzz+ipp57Sb37zG6tm8+bNmjFjhmbPnq0dO3Zo2rRpmjZtmnbv3m3VLF26VM8995xeeuklbd26Vb169VJubq7q6rre9XrGZsRLkj767Iy9jQAAEErMFZBkVq1aFbRs1qxZ5q677vra9+zdu9dIMh9++KG17N133zUOh8N88cUXxhhjXnjhBZOQkGDq6+utmgULFpihQ4dar7/73e+aqVOnBm07KyvL/PjHPzbGGBMIBExKSop55plnrPWVlZXG7XabV1999bK+n9frNZKM1+u9rPor8fbHX5jMBavN1Oc2dfhnAQDQk7Xl97tD5ght2LBBSUlJGjp0qH7yk5/o1KlT1rrCwkLFx8dr/Pjx1rKcnBw5nU5t3brVqpk4caJcLpdVk5ubq5KSEp05c8aqycnJCfrc3NxcFRYWSpIOHz6ssrKyoJq4uDhlZWVZNV9VX18vn88X9Ogs4zITJEn7jleppr6p0z4XAIBQ1u5BaPLkyfrP//xPFRQU6J//+Z+1ceNGTZkyRX6/X5JUVlampKSkoPeEh4erd+/eKisrs2qSk5ODalpfX6rm3PXnvu9CNV+1ZMkSxcXFWY/09PQ2f/9vKjUuSmlxkfIHjD7+vLLTPhcAgFDW7kHovvvu05133qlRo0Zp2rRpWr16tT788ENt2LChvT+q3S1cuFBer9d6HD16tFM//9qWvUI7Sis79XMBAAhVHX76/KBBg5SYmKiDBw9KklJSUlRRURFU09TUpNOnTyslJcWqKS8vD6ppfX2pmnPXn/u+C9V8ldvtlsfjCXp0pnEZzUGoiAnTAAB0ig4PQp9//rlOnTql1NRUSVJ2drYqKytVVFRk1axbt06BQEBZWVlWzaZNm9TY2GjV5Ofna+jQoUpISLBqCgoKgj4rPz9f2dnZkqSBAwcqJSUlqMbn82nr1q1WTVfTOk/oo9IzCgSMzd0AANDztTkIVVdXq7i4WMXFxZKaJyUXFxertLRU1dXVmj9/vrZs2aIjR46ooKBAd911lwYPHqzc3FxJ0re+9S1NnjxZDz74oLZt26YPPvhAc+bM0X333ae0tDRJ0ve+9z25XC7Nnj1be/bs0WuvvaZnn31W8+bNs/p49NFHtXbtWv3yl7/U/v379dRTT2n79u2aM2eOJMnhcGju3Ln6xS9+obfeeku7du3SD3/4Q6WlpWnatGlXOGwdY3iaR5ERTlXWNurQyRq72wEAoOdr6ylp69evN5LOe8yaNcvU1taaSZMmmb59+5qIiAiTmZlpHnzwQVNWVha0jVOnTpkZM2aYmJgY4/F4zP3332+qqqqCaj7++GNz0003Gbfbbfr162eefvrp83p5/fXXzZAhQ4zL5TIjRoww77zzTtD6QCBgnnzySZOcnGzcbre5/fbbTUlJyWV/1848fb7V37y02WQuWG3+sPWzTvtMAAB6krb8fjuMMRyD+Ro+n09xcXHyer2dNl/oX/M/0XMFB3Tn6DQ9N+PaTvlMAAB6krb8fnOvsS7mhqv6SJIKD50SGRUAgI5FEOpirs2IlzvcqRNV9fr0RPWl3wAAAL4xglAX4w4P0/gBzWePFX566hLVAADgShCEuqDsQc2HxzYThAAA6FAEoS4o+6pESdKWQ6e4nhAAAB2IINQFXdM/TtGuMJ2pbdT+siq72wEAoMciCHVBEWFOTRjYW5K0+dOTNncDAEDPRRDqolrnCTFhGgCAjkMQ6qJuHPzlPKGGpoDN3QAA0DMRhLqo4akeJca4VNPg5270AAB0EIJQF+V0OnTz1X0lSZsOnLC5GwAAeiaCUBc2cUjz4bGNJQQhAAA6AkGoC2vdI7T3uE8nqupt7gYAgJ6HINSFJca4NbJf811z3+PwGAAA7Y4g1MVNbJ0n9AlBCACA9kYQ6uImDmmdMH2S220AANDOCEJd3NiMBPVyhel0TYP2HPPZ3Q4AAD0KQaiLc4U7rZuwcho9AADtiyDUDdwytPnw2IaSCps7AQCgZyEIdQO3tswTKvrsjCprG2zuBgCAnoMg1A2k947W0ORYBYy0gYsrAgDQbghC3cTt30qSJBXs5/AYAADthSDUTbQGoY0lFWr0czd6AADaA0GomxiTnqDevVzy1TVp+xHuRg8AQHsgCHUTYU6Hbm05e2zd/nKbuwEAoGcgCHUjtw9LlsQ8IQAA2gtBqBuZOCRR4U6HDp2o0eGTNXa3AwBAt0cQ6kZiIyOUNai3JKlgH4fHAAC4UgShbubbLYfH1nF4DACAK0YQ6mZyWk6j33b4tLy1jTZ3AwBA90YQ6mYy+/TS0ORYNQWM/ofDYwAAXBGCUDc0eWSKJGntnjKbOwEAoHsjCHVDrUFo0ycnVFPfZHM3AAB0XwShbmhYSqwG9IlWfVOAm7ACAHAFCELdkMPhUG7LXqF3dx+3uRsAALovglA3NXlEcxBav79CdY1+m7sBAKB7Igh1U6P7xys1LlI1DX69f+Ck3e0AANAtEYS6KafTodwRnD0GAMCVIAh1Y61nj+XvLVejP2BzNwAAdD8EoW7sugG91aeXS96zjdr86Sm72wEAoNshCHVjYU6HvjMqVZL0VvExm7sBAKD7IQh1c3eMTpMk/WVPGWePAQDQRgShbm58ZoJS4yJVVd/ExRUBAGgjglA353Q6rL1Cb3/M4TEAANqCINQD3NkShP5nX7mqufcYAACXjSDUA4xI82hgYi/VNwX0P3vL7W4HAIBugyDUAzgcXx4ee4vDYwAAXDaCUA/Renhs0ycndKamweZuAADoHghCPcTgpBgNT/WoKWD07m5uuQEAwOUgCPUgd41p3iu0asfnNncCAED3QBDqQaZd209Oh/ThkTP67FSN3e0AANDlEYR6kGRPpG4cnChJWrXjC5u7AQCg6yMI9TD3ju0vSfrTR1/IGGNzNwAAdG0EoR5m0ohk9XKFqfR0rYo+O2N3OwAAdGkEoR4m2hWuKS13pP8/H3F4DACAiyEI9UD3jO0nSVq98xh3pAcA4CIIQj3Q9QP7KC0uUlV1TSrYV2F3OwAAdFltDkKbNm3SHXfcobS0NDkcDr3xxhtB640xWrRokVJTUxUVFaWcnBwdOHAgqOb06dOaOXOmPB6P4uPjNXv2bFVXVwfV7Ny5UzfffLMiIyOVnp6upUuXntfLypUrNWzYMEVGRmrUqFFas2ZNm3vpiZxOh+5u2SvENYUAAPh6bQ5CNTU1Gj16tJYtW3bB9UuXLtVzzz2nl156SVu3blWvXr2Um5ururo6q2bmzJnas2eP8vPztXr1am3atEkPPfSQtd7n82nSpEnKzMxUUVGRnnnmGT311FP6zW9+Y9Vs3rxZM2bM0OzZs7Vjxw5NmzZN06ZN0+7du9vUS09197XNZ4+tLzmhiqqe/30BAPhGzBWQZFatWmW9DgQCJiUlxTzzzDPWssrKSuN2u82rr75qjDFm7969RpL58MMPrZp3333XOBwO88UXXxhjjHnhhRdMQkKCqa+vt2oWLFhghg4dar3+7ne/a6ZOnRrUT1ZWlvnxj3982b1citfrNZKM1+u9rPqu5p4XPjCZC1abF9YftLsVAAA6TVt+v9t1jtDhw4dVVlamnJwca1lcXJyysrJUWFgoSSosLFR8fLzGjx9v1eTk5MjpdGrr1q1WzcSJE+Vyuaya3NxclZSU6MyZM1bNuZ/TWtP6OZfTy1fV19fL5/MFPbqz6delS5Je+7CUawoBAHAB7RqEysqab/aZnJwctDw5OdlaV1ZWpqSkpKD14eHh6t27d1DNhbZx7md8Xc256y/Vy1ctWbJEcXFx1iM9Pf0yvnXXNXVUqmLc4TpyqlZbD5+2ux0AALoczho7x8KFC+X1eq3H0aNH7W7pivRyh+uO0c03Yn3tw+79XQAA6AjtGoRSUlIkSeXl5UHLy8vLrXUpKSmqqAg+pbupqUmnT58OqrnQNs79jK+rOXf9pXr5KrfbLY/HE/To7u5rOTy2ZtdxeWsbbe4GAICupV2D0MCBA5WSkqKCggJrmc/n09atW5WdnS1Jys7OVmVlpYqKiqyadevWKRAIKCsry6rZtGmTGhu//OHOz8/X0KFDlZCQYNWc+zmtNa2fczm9hIJr+sdpWEqs6psCeqOYK00DAHCuNgeh6upqFRcXq7i4WFLzpOTi4mKVlpbK4XBo7ty5+sUvfqG33npLu3bt0g9/+EOlpaVp2rRpkqRvfetbmjx5sh588EFt27ZNH3zwgebMmaP77rtPaWnNh3G+973vyeVyafbs2dqzZ49ee+01Pfvss5o3b57Vx6OPPqq1a9fql7/8pfbv36+nnnpK27dv15w5cyTpsnoJBQ6HQzMmZEiSXt3GpGkAAIK09ZS09evXG0nnPWbNmmWMaT5t/cknnzTJycnG7Xab22+/3ZSUlARt49SpU2bGjBkmJibGeDwec//995uqqqqgmo8//tjcdNNNxu12m379+pmnn376vF5ef/11M2TIEONyucyIESPMO++8E7T+cnq5mO5++nyrypoGc/XfrzGZC1ab4tIzdrcDAECHasvvt8MYdhF8HZ/Pp7i4OHm93m4/X2juih16o/iYvju+v5b+9Wi72wEAoMO05febs8ZCxA+yMyVJbxYfU2Vtg83dAADQNRCEQsTYjAQNT/Wovimg17dzKj0AABJBKGQ4HA79sGWv0O+3lCoQ4IgoAAAEoRBy15h+8kSGq/R0rTZ+csLudgAAsB1BKIREucL03fHNF1h8pfCIvc0AANAFEIRCzPevbz48tvGTEzpyssbmbgAAsBdBKMQMSOylW4b0lTHS77d8Znc7AADYiiAUglonTb++/ahq6pts7gYAAPsQhELQrUOTNKBPtHx1Tfpj0ed2twMAgG0IQiEozOnQj24aKEn6/98/LD+n0gMAQhRBKET99bj+iouKUOnpWuXvLbe7HQAAbEEQClHRrnB9//rmu9L/9r1DNncDAIA9CEIh7IfZAxQR5tD2z85oR+kZu9sBAKDTEYRCWLInUneO7idJ+u37h23uBgCAzkcQCnGzWyZNv7vruI6errW5GwAAOhdBKMQNT/Po5qsTFTDSSxs/tbsdAAA6FUEIyrttsCRp5fbPVe6rs7kbAAA6D0EIyhrYW+MzE9TgD3AGGQAgpBCEIIfDobxvN+8V+u+tpTpT02BzRwAAdA6CECRJtw7pq5H9PKpt8OvlDziDDAAQGghCkNSyV+jW5r1CyzcfUVVdo80dAQDQ8QhCsOSOSNHgpBj56pr0X1s+s7sdAAA6HEEIFqfToUduvUqS9JtNh9grBADo8QhCCHLn6DQN6ttLlbWN+t37R+xuBwCADkUQQpDwMKfm/T9DJDXfjLWyljPIAAA9F0EI5/nOyFR9K9WjqvomvbSR6woBAHoughDO43Q69FjLXqHlmw+rooqrTQMAeiaCEC7o9m8laUx6vOoaA1q27qDd7QAA0CEIQrggh8Ohx3OHSpL+sK1Un52qsbkjAADaH0EIX+uGwYmaOKSvGv1Gz/y5xO52AABodwQhXNQTk4fJ4ZBW7zyuj49W2t0OAADtiiCEixqe5tHdY/pJkp5+d7+MMTZ3BABA+yEI4ZLmTRoiV5hThYdOacMnJ+xuBwCAdkMQwiX1T4jWrBsyJUn/9M4+NfoDNncEAED7IAjhssy57WolREfoQEW1/quQG7ICAHoGghAuS1x0hObnDpMk/dv/fKKT1fU2dwQAwJUjCOGyTb8uXSP7eVRV16Sla/fb3Q4AAFeMIITLFuZ06Od3jpQkvb79cxVzOj0AoJsjCKFNxmUm6J6xzafTL35ztwIBTqcHAHRfBCG02RNThinGHa6PP/fq91uZOA0A6L4IQmizpNhIPT65+T5kS9eW6Lj3rM0dAQDwzRCE8I18PytTYzPiVV3fpEVv7uGK0wCAbokghG/E6XRoyT3XKCLMofy95Vq7u8zulgAAaDOCEL6xoSmxeviWqyRJi97aI+/ZRps7AgCgbQhCuCJ5tw3WoL69dKKqXv/0zj672wEAoE0IQrgikRFhevqea+RwSK9tP6pN3JQVANCNEIRwxSYM7K1Z2QMkSQv+z055azlEBgDoHghCaBePTx6qAX2iddxbp4WrdnIWGQCgWyAIoV1Eu8L17H3XKtzp0JpdZVq5/XO7WwIA4JIIQmg3o9Pj9dik5gstLn5rjz49UW1zRwAAXBxBCO3qxxMH6Yar+uhso1+PrtihhqaA3S0BAPC1CEJoV06nQ//63TGKj47Q7i98+uVfSuxuCQCAr0UQQrtLiYvUP997jSTp3zcd0vsHTtrcEQAAF0YQQofIHZGimVkZkqSfvV6sCl+dzR0BAHA+ghA6zD9MHa4hyTE6UVWvOX/YoUY/84UAAF0LQQgdJsoVphe/P04x7nBtO3JaS9bst7slAACCEITQoa7qG6N/+ZvRkqTffXBYb318zOaOAAD4UrsHoaeeekoOhyPoMWzYMGt9XV2d8vLy1KdPH8XExOjee+9VeXl50DZKS0s1depURUdHKykpSfPnz1dTU1NQzYYNGzR27Fi53W4NHjxYy5cvP6+XZcuWacCAAYqMjFRWVpa2bdvW3l8Xl2HyyBT95Nbmu9Qv+ONOlZRV2dwRAADNOmSP0IgRI3T8+HHr8f7771vrfvazn+ntt9/WypUrtXHjRh07dkz33HOPtd7v92vq1KlqaGjQ5s2b9corr2j58uVatGiRVXP48GFNnTpVt912m4qLizV37lw98MAD+vOf/2zVvPbaa5o3b54WL16sjz76SKNHj1Zubq4qKio64ivjEv73pKG6aXCizjb69fDvi+Sr435kAIAuwLSzxYsXm9GjR19wXWVlpYmIiDArV660lu3bt89IMoWFhcYYY9asWWOcTqcpKyuzal588UXj8XhMfX29McaYxx9/3IwYMSJo29OnTze5ubnW6wkTJpi8vDzrtd/vN2lpaWbJkiWX/V28Xq+RZLxe72W/B1/vZFWdyf6n/zGZC1abB1750Pj9AbtbAgD0QG35/e6QPUIHDhxQWlqaBg0apJkzZ6q0tFSSVFRUpMbGRuXk5Fi1w4YNU0ZGhgoLCyVJhYWFGjVqlJKTk62a3Nxc+Xw+7dmzx6o5dxutNa3baGhoUFFRUVCN0+lUTk6OVXMh9fX18vl8QQ+0nz4xbr34/XFyhTmVv7dcL2w4aHdLAIAQ1+5BKCsrS8uXL9fatWv14osv6vDhw7r55ptVVVWlsrIyuVwuxcfHB70nOTlZZWVlkqSysrKgENS6vnXdxWp8Pp/Onj2rkydPyu/3X7CmdRsXsmTJEsXFxVmP9PT0bzQG+Hqj0+P187tGSJL+5S+faM2u4zZ3BAAIZeHtvcEpU6ZYz6+55hplZWUpMzNTr7/+uqKiotr749rVwoULNW/ePOu1z+cjDHWAGRMyVFJWpeWbj+hnrxUrLT5KY9Lj7W4LABCCOvz0+fj4eA0ZMkQHDx5USkqKGhoaVFlZGVRTXl6ulJQUSVJKSsp5Z5G1vr5UjcfjUVRUlBITExUWFnbBmtZtXIjb7ZbH4wl6oGM8+VfD9e1hSapvCuiBV7bri8qzdrcEAAhBHR6Eqqur9emnnyo1NVXjxo1TRESECgoKrPUlJSUqLS1Vdna2JCk7O1u7du0KOrsrPz9fHo9Hw4cPt2rO3UZrTes2XC6Xxo0bF1QTCARUUFBg1cBeYU6HnptxrYalxOpkdb1mL/9QVZxJBgDobO09U/uxxx4zGzZsMIcPHzYffPCBycnJMYmJiaaiosIYY8zDDz9sMjIyzLp168z27dtNdna2yc7Ott7f1NRkRo4caSZNmmSKi4vN2rVrTd++fc3ChQutmkOHDpno6Ggzf/58s2/fPrNs2TITFhZm1q5da9WsWLHCuN1us3z5crN3717z0EMPmfj4+KCz0S6Fs8Y63udnas34X+SbzAWrzX3/XmjONjTZ3RIAoJtry+93uweh6dOnm9TUVONyuUy/fv3M9OnTzcGDB631Z8+eNY888ohJSEgw0dHR5u677zbHjx8P2saRI0fMlClTTFRUlElMTDSPPfaYaWxsDKpZv369GTNmjHG5XGbQoEHm5ZdfPq+X559/3mRkZBiXy2UmTJhgtmzZ0qbvQhDqHLs+rzQjFq01mQtWmx//53bTxGn1AIAr0Jbfb4cxxti7T6rr8vl8iouLk9frZb5QB9v86Un97e8+VIM/oBkT0vVPd4+Sw+Gwuy0AQDfUlt9v7jWGLuGGqxL13IwxcjqkV7cd1S//8ondLQEAQgBBCF3G5JGp+v/uHiVJ+vX6g/rte4ds7ggA0NMRhNClzJiQofm5QyVJv3hnn17ZfMTehgAAPRpBCF3OI7depbzbmu9Wv/itPfqvLZ/Z3BEAoKciCKHLcTgc+t+ThurHtwySJD35xm69uq3U5q4AAD0RQQhdksPh0BOTh+mBmwZKkhb+aRd7hgAA7Y4ghC7L4XDo76d+Sz+6sTkMPfnGbu5YDwBoVwQhdGkOh0NP/tW39NNvD5YkLV1boqff3S8ufwUAaA8EIXR5DodDj00aqr/7zjBJ0ksbP9WTb+5WIEAYAgBcGYIQuo2HJl7VcsVp6fdbSvXTFTtU3+S3uy0AQDdGEEK38r2sDD1737WKCHPonZ3HNet32+Q9y13rAQDfDEEI3c6do9O0/P4JinGHa8uh07r7hQ90+GSN3W0BALohghC6pRsHJ+r1H2crNS5Sh07UaNqyD7T54Em72wIAdDMEIXRbw9M8enPOjRqTHi/v2Ub94HfbuNYQAKBNCELo1pJiI7Xioes1bUya/AGjJ9/Yrcf/+LHqGplEDQC4NIIQur3IiDD92/QxenzyUDkd0uvbP9e0ZcwbAgBcGkEIPYLD4dAjtw7W72dnKTHGpf1lVbrj+fe1Ztdxu1sDAHRhBCH0KDcMTtQ7/+tmXTcgQdX1TXrkvz/SU2/tUaM/YHdrAIAuiCCEHifZE6k/PHi9Hr7lKknS8s1H9L3/2KIyb53NnQEAuhqCEHqkiDCnnpgyTC99f5xi3eH68MgZfee597Ruf7ndrQEAuhCCEHq0ySNT9PZPb9LwVI9O1zToR8u36+9W7VJNfZPdrQEAugCCEHq8AYm99KdHbtADNw2UJP1ha6mmPveePio9Y3NnAAC7EYQQEiIjwvQPfzVcf3ggS2lxkTpyqlZ//eJm/fIvJVxzCABCGEEIIeWGwYl6d+5ETRuTpoCRnl93UHe/sFmfnqi2uzUAgA0IQgg5cVER+tV91+qFmWPVp5dL+477NPW59/S79w/LHzB2twcA6EQEIYSs74xK1Tv/62bdfHWi6hoD+sfVe/XXL23WJ+VVdrcGAOgkBCGEtJS4SL1y/wT9YtpIxbjDtaO0UlOfe0//lv+J6puYOwQAPR1BCCHP6XTo+9dnKn/eRN0+LEmNfqNnCw7or557X4WfnrK7PQBAByIIAS1S46L021nj9dyMa9Wnl0sHKqo14z+26H+9ukPlPq5KDQA9EUEIOIfD4dCdo9NU8NgtmpmVIYdDeuvjY/r2v2zQf2w6xD3LAKCHcRhjOE3ma/h8PsXFxcnr9crj8djdDmyw63Ovnnxzt4qPVkqSrk6K0aI7huvmq/va2xgA4Gu15febIHQRBCFIUiBg9Meiz/X02v06XdMgSZo4pK8WThmmb6Xy3wUAdDUEoXZCEMK5vLWNerbggP5ryxE1+o0cDumvx/bXY5OGKiUu0u72AAAtCELthCCEC/nsVI2Wri3RO7uOS5Lc4U797Y0D9JNbrlJ8tMvm7gAABKF2QhDCxXxUekb/9M4+bf+s+eatsZHh+vHEQZp1wwDFRkbY3B0AhC6CUDshCOFSjDFat79Cz/y5RPvLmq9IHR8dodk3DtSsGwfIQyACgE5HEGonBCFcrkDA6O2dx/RswQEdOlEjSfJEhuv+Gwfqb28YoIReHDIDgM5CEGonBCG0lT9gtHrnMT2/7qAOVjTf0T4ywqnvjk/XAzcNUkafaJs7BICejyDUTghC+Kb8AaM1u47rpY2fas8xnyTJ6ZAmj0zRQxOv0pj0eHsbBIAejCDUTghCuFLGGBV+ekq/ee+QNpScsJaPz0zQD7IzNXlkitzhYTZ2CAA9D0GonRCE0J5Kyqr0m02H9NbHX6jR3/zPLjHGpenXpet7WZnqFx9lc4cA0DMQhNoJQQgdodxXpxXbjuoP2z5Tua9eUvNhs28PS9LfjE/XbUOT5ArnNoAA8E0RhNoJQQgdqdEfUMG+cv3Xls/0wcFT1vLevVy6a0ya/npcf41Ii7OxQwDonghC7YQghM5ysKJaK7cf1Z92fKETVfXW8mEpsbpnbD/91TVpSuPQGQBcFoJQOyEIobM1+QN67+BJ/bHoc+XvKVeDP2CtmzCgt74zKkWTR6ZybzMAuAiCUDshCMFO3tpGrd51TG8WH9O2w6eD1o3PTNDkkSn69rAkDeobY1OHANA1EYTaCUEIXcWxyrN6d3eZ1uw6rqKWe5u1GpjYS98elqTbhyVp/IDeTLQGEPIIQu2EIISuqMxbp7W7j+t/9lVo6+FT1qn4khTjDteNg/vo2owE5Y5I0cDEXjZ2CgD2IAi1E4IQurrq+ia9f+CECvZVaH1JhU5WNwStT+8dpRuvStT1g/rouoG9uVYRgJBAEGonBCF0J4GA0c4vvNpy6JQ+OHhShZ+eUlMg+J93WlykrhvYW9cNaH5cnRQjp9NhU8cA0DEIQu2EIITurKa+SduOnNYHB07qwyOntfuYT/6vBCNPZLhG9Y/TqH7xuqZ/nEb1i1P/hCg5HIQjAN0XQaidEITQk9Q2NGlHaaU+PHJa24+c0UelZ1Tb4D+vLiE6QqP6x2tEmkdXJ8Xo6qRYXZXUS9GucBu6BoC2Iwi1E4IQerJGf0CflFdp1+de7fzCq12fe7W/zBc0+fpc/ROiNKpfnIYkx+rq5BgNSY5VRu9oRUZw01gAXQtBqJ0QhBBq6pv8Kimr0sefe7X/uE8HK6p1sKJap2oaLljvcEipnkhl9umlzD7R1t+M3tHK7BOt2MiITv4GAEAQajcEIaDZqep6lZRVae9xnz4pr9In5c0Bqbq+6aLvi3WHKyUusvnhiVRqXKRS4qKU3jtKKZ5IJcVGyhMVzpwkAO2KINROCELA1zPG6FRNgz47VavS0zU6crJWpadrdeRUjUpP1X7tXqSvcoU71TfGrSSPW7GREYpxhykpNlL9E6KUGONW714u9e7lsp5zwUgAl9KW329mPwL4RhwOhxJj3EqMcWtcZsJ562vqm1Tmq1OZt07HvXUq857VcW+djlWe1ednzqrcVydfXZMamgL6ovKsvqg8e1mfG+sOV5+Y5nAUH+1SfFSE4qIjFB/lUnx0RMujeXl8y/LYyHAuEwDggkIiCC1btkzPPPOMysrKNHr0aD3//POaMGGC3W0BPVovd7iu6hujqy5yL7S6Rr9OVNWroqpeJ6rqVVPfpJqGJn12qlYVVfU6VV2v0zUNOlXToNM1DfIHjKrqm1RV36Qjp2ovuxeHQ4qLimgJTc0hKTYyXLGRzX9j3OFBf5v3TIUrJrLltTtCkRFODuEBPVCPD0Kvvfaa5s2bp5deeklZWVn61a9+pdzcXJWUlCgpKcnu9oCQFhkRpvTe0UrvHX3J2kDAyFfXqFM1DTpV3aDTNfXynm1UZW2jKlv+es82NL+ubWxZ16CaBr+MkbVcbQhQ5wp3OhTTEpZi3OHq5Q5XtCtMURFhzX9dza+bn4cpOiJM0a7w5uety1xfvifKFabIiDC5w50KdzoIWYBNevwcoaysLF133XX69a9/LUkKBAJKT0/XT3/6Uz3xxBMXfS9zhIDur6EpIO/Z4JB0prZB1fVNqqpravnbeM7zJlXXtSyrb17W0f8r6XRI7vAwuSOccoc75Qp3Nr8Od7Y8vlzXutx1znJXmFMRYQ5FhDkV3vI83OlUeJjjy+XOluVhTkU4HYpoCWDN72mud7U+D3MowumU0+lQmNMhp0NyOpqfhzkccjhEcEOXxhyhFg0NDSoqKtLChQutZU6nUzk5OSosLDyvvr6+XvX19dZrn8/XKX0C6DiucKf6xrrVN9b9jd4fCBjVNvqDwlFVXZPONjSptsGv2ga/zrb8rW1ssp43/22uqWv0f1nb2Ly8rjHw5WcY6Wxj87ruwulQS0hyWCEpaFlLaApzNgen1hDlPCdYhYedu6x5uUMOtfxfc+BSa/D68rnUHMScVp3Dqldr/de8Xxd4z7mvde571NznuZkvOP8Fh8Gguq9dfuEAeaW58kpjqZ3Btm+sW3m3Dbbt83t0EDp58qT8fr+Sk5ODlicnJ2v//v3n1S9ZskQ///nPO6s9AN2A0+mwDoelxEW223YDAaMGf0D1jQHVN/lV39T8t64xcIHlAdU3nvO8yd+yvvl5Q1NATX6jRn9AjQGjJn9AjX6jpsCXy5sCLev9zetbXze11DU0NS9r8hs1BgKX3AsWMFLAbyT16IMK6ASD+vYiCHUVCxcu1Lx586zXPp9P6enpNnYEoKdyOh2KdIa1XJm761140h8w8geMAqb54Q8YBQKSv+V1IGDkb1luTEt9y/JAy2vrfdY21FJv1NSyfX/AyOjL5QEjGTVv06j5Mg2SWl63LD9nnZGk894T/Fotdc3vPef5123/K69bnTuT5KtB8dyXQe/Rhd8T9PYOOvbaEVvtiFYTernaf6Nt0KODUGJiosLCwlReXh60vLy8XCkpKefVu91uud3fbPc5APQkYS3zg4CerkdfmczlcmncuHEqKCiwlgUCARUUFCg7O9vGzgAAQFfQo/cISdK8efM0a9YsjR8/XhMmTNCvfvUr1dTU6P7777e7NQAAYLMeH4SmT5+uEydOaNGiRSorK9OYMWO0du3a8yZQAwCA0NPjryN0JbiOEAAA3U9bfr979BwhAACAiyEIAQCAkEUQAgAAIYsgBAAAQhZBCAAAhCyCEAAACFkEIQAAELIIQgAAIGQRhAAAQMjq8bfYuBKtF932+Xw2dwIAAC5X6+/25dw8gyB0EVVVVZKk9PR0mzsBAABtVVVVpbi4uIvWcK+xiwgEAjp27JhiY2PlcDjadds+n0/p6ek6evQo9zHrQIxz52CcOwfj3HkY687RUeNsjFFVVZXS0tLkdF58FhB7hC7C6XSqf//+HfoZHo+Hf2SdgHHuHIxz52CcOw9j3Tk6YpwvtSeoFZOlAQBAyCIIAQCAkEUQsonb7dbixYvldrvtbqVHY5w7B+PcORjnzsNYd46uMM5MlgYAACGLPUIAACBkEYQAAEDIIggBAICQRRACAAAhiyBkg2XLlmnAgAGKjIxUVlaWtm3bZndLXdqmTZt0xx13KC0tTQ6HQ2+88UbQemOMFi1apNTUVEVFRSknJ0cHDhwIqjl9+rRmzpwpj8ej+Ph4zZ49W9XV1UE1O3fu1M0336zIyEilp6dr6dKlHf3VupQlS5bouuuuU2xsrJKSkjRt2jSVlJQE1dTV1SkvL099+vRRTEyM7r33XpWXlwfVlJaWaurUqYqOjlZSUpLmz5+vpqamoJoNGzZo7NixcrvdGjx4sJYvX97RX6/LePHFF3XNNddYF5DLzs7Wu+++a61njDvG008/LYfDoblz51rLGOsr99RTT8nhcAQ9hg0bZq3vFmNs0KlWrFhhXC6X+d3vfmf27NljHnzwQRMfH2/Ky8vtbq3LWrNmjfn7v/9786c//clIMqtWrQpa//TTT5u4uDjzxhtvmI8//tjceeedZuDAgebs2bNWzeTJk83o0aPNli1bzHvvvWcGDx5sZsyYYa33er0mOTnZzJw50+zevdu8+uqrJioqyvz7v/97Z31N2+Xm5pqXX37Z7N692xQXF5vvfOc7JiMjw1RXV1s1Dz/8sElPTzcFBQVm+/bt5vrrrzc33HCDtb6pqcmMHDnS5OTkmB07dpg1a9aYxMREs3DhQqvm0KFDJjo62sybN8/s3bvXPP/88yYsLMysXbu2U7+vXd566y3zzjvvmE8++cSUlJSYv/u7vzMRERFm9+7dxhjGuCNs27bNDBgwwFxzzTXm0UcftZYz1ldu8eLFZsSIEeb48ePW48SJE9b67jDGBKFONmHCBJOXl2e99vv9Ji0tzSxZssTGrrqPrwahQCBgUlJSzDPPPGMtq6ysNG6327z66qvGGGP27t1rJJkPP/zQqnn33XeNw+EwX3zxhTHGmBdeeMEkJCSY+vp6q2bBggVm6NChHfyNuq6KigojyWzcuNEY0zyuERERZuXKlVbNvn37jCRTWFhojGkOrU6n05SVlVk1L774ovF4PNbYPv7442bEiBFBnzV9+nSTm5vb0V+py0pISDC//e1vGeMOUFVVZa6++mqTn59vbrnlFisIMdbtY/HixWb06NEXXNddxphDY52ooaFBRUVFysnJsZY5nU7l5OSosLDQxs66r8OHD6usrCxoTOPi4pSVlWWNaWFhoeLj4zV+/HirJicnR06nU1u3brVqJk6cKJfLZdXk5uaqpKREZ86c6aRv07V4vV5JUu/evSVJRUVFamxsDBrrYcOGKSMjI2isR40apeTkZKsmNzdXPp9Pe/bssWrO3UZrTSj+G/D7/VqxYoVqamqUnZ3NGHeAvLw8TZ069bzxYKzbz4EDB5SWlqZBgwZp5syZKi0tldR9xpgg1IlOnjwpv98f9P9wSUpOTlZZWZlNXXVvreN2sTEtKytTUlJS0Prw8HD17t07qOZC2zj3M0JJIBDQ3LlzdeONN2rkyJGSmsfB5XIpPj4+qParY32pcfy6Gp/Pp7Nnz3bE1+lydu3apZiYGLndbj388MNatWqVhg8fzhi3sxUrVuijjz7SkiVLzlvHWLePrKwsLV++XGvXrtWLL76ow4cP6+abb1ZVVVW3GWPuPg/gPHl5edq9e7fef/99u1vpkYYOHari4mJ5vV798Y9/1KxZs7Rx40a72+pRjh49qkcffVT5+fmKjIy0u50ea8qUKdbza665RllZWcrMzNTrr7+uqKgoGzu7fOwR6kSJiYkKCws7b8Z8eXm5UlJSbOqqe2sdt4uNaUpKiioqKoLWNzU16fTp00E1F9rGuZ8RKubMmaPVq1dr/fr16t+/v7U8JSVFDQ0NqqysDKr/6lhfahy/rsbj8XSb/+G8Ui6XS4MHD9a4ceO0ZMkSjR49Ws8++yxj3I6KiopUUVGhsWPHKjw8XOHh4dq4caOee+45hYeHKzk5mbHuAPHx8RoyZIgOHjzYbf57Jgh1IpfLpXHjxqmgoMBaFggEVFBQoOzsbBs7674GDhyolJSUoDH1+XzaunWrNabZ2dmqrKxUUVGRVbNu3ToFAgFlZWVZNZs2bVJjY6NVk5+fr6FDhyohIaGTvo29jDGaM2eOVq1apXXr1mngwIFB68eNG6eIiIigsS4pKVFpaWnQWO/atSsoeObn58vj8Wj48OFWzbnbaK0J5X8DgUBA9fX1jHE7uv3227Vr1y4VFxdbj/Hjx2vmzJnWc8a6/VVXV+vTTz9Vampq9/nvuV2mXOOyrVixwrjdbrN8+XKzd+9e89BDD5n4+PigGfMIVlVVZXbs2GF27NhhJJl//dd/NTt27DCfffaZMab59Pn4+Hjz5ptvmp07d5q77rrrgqfPX3vttWbr1q3m/fffN1dffXXQ6fOVlZUmOTnZ/OAHPzC7d+82K1asMNHR0SF1+vxPfvITExcXZzZs2BB0Kmxtba1V8/DDD5uMjAyzbt06s337dpOdnW2ys7Ot9a2nwk6aNMkUFxebtWvXmr59+17wVNj58+ebffv2mWXLloXU6cZPPPGE2bhxozl8+LDZuXOneeKJJ4zD4TB/+ctfjDGMcUc696wxYxjr9vDYY4+ZDRs2mMOHD5sPPvjA5OTkmMTERFNRUWGM6R5jTBCywfPPP28yMjKMy+UyEyZMMFu2bLG7pS5t/fr1RtJ5j1mzZhljmk+hf/LJJ01ycrJxu93m9ttvNyUlJUHbOHXqlJkxY4aJiYkxHo/H3H///aaqqiqo5uOPPzY33XSTcbvdpl+/fubpp5/urK/YJVxojCWZl19+2ao5e/aseeSRR0xCQoKJjo42d999tzl+/HjQdo4cOWKmTJlioqKiTGJionnsscdMY2NjUM369evNmDFjjMvlMoMGDQr6jJ7uRz/6kcnMzDQul8v07dvX3H777VYIMoYx7khfDUKM9ZWbPn26SU1NNS6Xy/Tr189Mnz7dHDx40FrfHcbYYYwx7bNvCQAAoHthjhAAAAhZBCEAABCyCEIAACBkEYQAAEDIIggBAICQRRACAAAhiyAEAABCFkEIAACELIIQAAAIWQQhAAAQsghCAAAgZBGEAABAyPq/d6lqeMA9dpcAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAGhCAYAAABlH26aAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABIUUlEQVR4nO3deXwU9eH/8dfk2M0dIJCEQIBwCYFAgIQQRLwoUVG/qLWCgqCoPy0oEEoBRUVRQSjeVkpr0baiSFVQVDQgnoSbAAHCDeFKuLMhIdfu/P5AV1JQQZPMZvN+Ph7zMDPzyc57FmXezszOGqZpmoiIiIh4MR+rA4iIiIhUNxUeERER8XoqPCIiIuL1VHhERETE66nwiIiIiNdT4RERERGvp8IjIiIiXk+FR0RERLyeCo+IiIh4PRUeERER8XrVWni+/vprbrjhBmJiYjAMg/nz51dab5omjz32GI0bNyYwMJA+ffqwffv2SmOOHz/OHXfcQVhYGPXq1WPYsGGcOnWq0pgNGzZw2WWXERAQQGxsLNOmTavO3RIREZFaploLT1FREZ07d+bVV1897/pp06bx0ksvMXPmTFasWEFwcDBpaWmUlJS4x9xxxx1s2rSJjIwMFi5cyNdff819993nXu9wOOjbty/NmzdnzZo1TJ8+nUmTJjFr1qzq3DURERGpRYya+vJQwzD44IMP6N+/P3Dm7E5MTAxjxozhT3/6EwAFBQVERUXxxhtvMGDAALZs2UJ8fDyrVq0iKSkJgEWLFnHdddexf/9+YmJieO2113jkkUfIy8vDZrMBMH78eObPn09OTs4FZXO5XBw8eJDQ0FAMw6j6nRcREZEqZ5omhYWFxMTE4OPz8+dw/Goo0zl2795NXl4effr0cS8LDw8nJSWFzMxMBgwYQGZmJvXq1XOXHYA+ffrg4+PDihUruOmmm8jMzKR3797usgOQlpbGs88+y4kTJ6hfv/452y4tLaW0tNQ9f+DAAeLj46tpT0VERKQ67du3j6ZNm/7sGMsKT15eHgBRUVGVlkdFRbnX5eXlERkZWWm9n58fDRo0qDQmLi7unNf4Yd35Cs+UKVN44oknzlm+b98+wsLCfuUeiYiISE1yOBzExsYSGhr6i2MtKzxWmjBhAunp6e75H96wsLAwFR4REZFa5kJuR7HsY+nR0dEA5OfnV1qen5/vXhcdHc3hw4crra+oqOD48eOVxpzvNc7exv+y2+3ucqOSIyIi4v0sKzxxcXFER0ezZMkS9zKHw8GKFStITU0FIDU1lZMnT7JmzRr3mC+++AKXy0VKSop7zNdff015ebl7TEZGBpdccsl5L2eJiIhI3VOthefUqVNkZWWRlZUFnLlROSsri9zcXAzDYNSoUTz11FN8+OGHbNy4kTvvvJOYmBj3J7nat2/PNddcw7333svKlSv57rvvGDFiBAMGDCAmJgaA22+/HZvNxrBhw9i0aRNz587lxRdfrHTJSkREROo4sxotXbrUBM6ZhgwZYpqmabpcLvPRRx81o6KiTLvdbl599dXm1q1bK73GsWPHzIEDB5ohISFmWFiYedddd5mFhYWVxqxfv97s1auXabfbzSZNmphTp069qJwFBQUmYBYUFPym/RUREZGaczHH7xp7Do8nczgchIeHU1BQoPt5REREaomLOX7ru7RERETE66nwiIiIiNdT4RERERGvp8IjIiIiXk+FR0RERLyeCo+IiIh4PRUeERER8XoqPCIiIlJtTJeLVc//gZX/fQ6X02lZDhUeERERqTbrv5hLcsFnJG58ikN7cyzLocIjIiIi1aKk+BSR3z0OwJqYO2jSsoNlWVR4REREpFqse+cJYsx88omg0+2TLc2iwiMiIiJV7uDuHLrsnQ3A/u6PEBxaz9I8KjwiIiJS5fLnjSbAKCfbnkjXa+6yOo4Kj4iIiFSt9V+8S5fiZZSbvoTe9DyGj/V1w/oEIiIi4jVKThcR8c2jAKxpPIDm7bpanOgMFR4RERGpMuvemUxTM48j1Kfj7U9bHcdNhUdERESqxKG9W0nc8zoAe7tNICSsvsWJfqTCIyIiIlXi0LtjCDTK2GRLoFu/e62OU4kKj4iIiPxmG796n65F31Bh+hDU3zNuVD6bZ6URERGRWqe0pJh6Xz4CwOqoW4mLT7Y40blUeEREROQ3WfvuM8SaBzlKPeJvn2J1nPNS4REREZFfLW/fTjrtnAXAni5/JqxehMWJzk+FR0RERH61A3PTCTZKyfGPp9sND1gd5yep8IiIiMivkv3NArqd+hKnaeB/o+fdqHw2z00mIiIiHqustITQpd/fqNzoZlol9LA40c9T4REREZGLtnbeFJq79nGcMNrdMc3qOL9IhUdEREQuypGDe0jYPhOAHZ3HEl6/ocWJfpkKj4iIiFyUvW+PIdgoYavfJSTdONzqOBdEhUdEREQu2KZln5BUuBiXaeB7/Qx8fH2tjnRBVHhERETkgpSXlRK0eDwAqxr+H60TL7M40YVT4REREZELsua/04hz7eUEobS73fNvVD6b5YWnRYsWGIZxzjR8+JlrgldcccU56+6///5Kr5Gbm0u/fv0ICgoiMjKSsWPHUlFRYcXuiIiIeKWjebl02PoqANs7phMeEWVxoovjZ3WAVatW4XQ63fPZ2dn87ne/49Zbb3Uvu/fee3nyySfd80FBQe6fnU4n/fr1Izo6mmXLlnHo0CHuvPNO/P39eeaZZ2pmJ0RERLzc7rfHkGycZptfW5JuGml1nItmeeFp1KhRpfmpU6fSqlUrLr/8cveyoKAgoqOjz/v7n3/+OZs3b2bx4sVERUWRmJjI5MmTGTduHJMmTcJms1VrfhEREW+3ZcVnJBd8jss04LrpteZG5bNZfknrbGVlZfznP//h7rvvxjAM9/K33nqLhg0b0rFjRyZMmEBxcbF7XWZmJgkJCURF/XhqLS0tDYfDwaZNm867ndLSUhwOR6VJREREzlVRXobts3EArI7oR9uuV1gb6Fey/AzP2ebPn8/JkycZOnSoe9ntt99O8+bNiYmJYcOGDYwbN46tW7fy/vvvA5CXl1ep7ADu+by8vPNuZ8qUKTzxxBPVsxMiIiJeZPV/Z9DDtZsCgmkz8C9Wx/nVPKrwvP7661x77bXExMS4l913333unxMSEmjcuDFXX301O3fupFWrVr9qOxMmTCA9Pd0973A4iI2N/fXBRUREvNDR/P3Eb30JgJz4UaQ0amxxol/PYy5p7d27l8WLF3PPPff87LiUlBQAduzYAUB0dDT5+fmVxvww/1P3/djtdsLCwipNIiIiUtmut8cSRjE7fFuRdHP6L/+CB/OYwjN79mwiIyPp16/fz47LysoCoHHjMy0zNTWVjRs3cvjwYfeYjIwMwsLCiI+Pr7a8IiIi3ixn1WK6n/wEgIprpuHr51EXhS6aR6R3uVzMnj2bIUOG4HfWG7pz507mzJnDddddR0REBBs2bGD06NH07t2bTp06AdC3b1/i4+MZPHgw06ZNIy8vj4kTJzJ8+HDsdrtVuyQiIlJrOSsq8Fv0ZwBW1buW5OQ+Fif67TziDM/ixYvJzc3l7rvvrrTcZrOxePFi+vbtS7t27RgzZgy33HILH330kXuMr68vCxcuxNfXl9TUVAYNGsSdd95Z6bk9IiIicuFWvf88rZ07cRBEy1p8o/LZDNM0TatDWM3hcBAeHk5BQYHu5xERkTrtxJFD+LzajXCKWNFuHCkDHrY60k+6mOO3R5zhEREREc+wbc5Ywilil28Lut3yJ6vjVBkVHhEREQFg69qvSD6+EICyvtPw8/eebytQ4RERERGcTifGJ3/CxzBZFd6XdilpVkeqUio8IiIiwur5L9G2YhunzEDiBs6wOk6VU+ERERGp4wqO5dN245mSk932jzSMbmZxoqqnwiMiIlLH5cz5M/UpZI9PM5JuHWd1nGqhwiMiIlKHbc/6luSjCwAo7vMsfjbvfGivCo+IiEgd5XI6cS4cg49hsibsauJ7Xmd1pGqjwiMiIlJHrV7wKu0qcigyA2g24Dmr41QrFR4REZE6qOD4EVpvmA7AxjYP0CimhbWBqpkKj4iISB205e3xNMDBXp+mdPvDeKvjVDsVHhERkTpmx8ZMkg+/B8CpK5/B3xZgcaLqp8IjIiJSh5guF+UfjsHXMFkbcjkdLvs/qyPVCBUeERGROmT1hzNpX76JYtNOEy+/UflsKjwiIiJ1hOPkMeKyngVgQ8v7iGra2uJENUeFR0REpI7YPGcCDTnJPiOGrrc9YnWcGqXCIyIiUgfs2rySpPx5AJy8/ClsAYEWJ6pZKjwiIiJeznS5OD0/HT/DxbrgXiRccYvVkWqcCo+IiIiXW/PJP+hQtpHTpo3Gtz1vdRxLqPCIiIh4scKC4zRbPQWA9S3uJrpZW4sTWUOFR0RExItlv/0IkRzngBFNl4GPWR3HMio8IiIiXmrvljUkHZoLwNHek7EHBFucyDoqPCIiIl7IdLlwfJCOv+EkKyiVzlf+wepIllLhERER8UJrFr1BQlkWpaY/kbfWzRuVz6bCIyIi4mWKCk8Su/IpANY1G0pMXHuLE1lPhUdERMTLbJjzKFEc46ARReLASVbH8QgqPCIiIl4kd1sW3Q6+BcDhnpMICAqxOJFnUOERERHxEqbLxcn307EZTtYHdiexz0CrI3kMFR4REREvse7z/9CpZA1lph8Nf/88GIbVkTyGCo+IiIgXKC5yELP8CQDWxg6mSauOFifyLJYXnkmTJmEYRqWpXbt27vUlJSUMHz6ciIgIQkJCuOWWW8jPz6/0Grm5ufTr14+goCAiIyMZO3YsFRUVNb0rIiIilsma8xjRHCWPRnQeONnqOB7Hz+oAAB06dGDx4sXueT+/H2ONHj2ajz/+mHnz5hEeHs6IESO4+eab+e677wBwOp3069eP6Oholi1bxqFDh7jzzjvx9/fnmWeeqfF9ERERqWn7dmSTtP/fYMCh1MeIDg61OpLH8YjC4+fnR3R09DnLCwoKeP3115kzZw5XXXUVALNnz6Z9+/YsX76cHj168Pnnn7N582YWL15MVFQUiYmJTJ48mXHjxjFp0iRsNltN746IiEiNMV0ujv13NLFGBRsDupH4u0FWR/JIll/SAti+fTsxMTG0bNmSO+64g9zcXADWrFlDeXk5ffr0cY9t164dzZo1IzMzE4DMzEwSEhKIiopyj0lLS8PhcLBp06bzbq+0tBSHw1FpEhERqY2ylrxNYslKykxf6t38HIaPRxzaPY7l70pKSgpvvPEGixYt4rXXXmP37t1cdtllFBYWkpeXh81mo169epV+Jyoqiry8PADy8vIqlZ0f1v+w7nymTJlCeHi4e4qNja36HRMREalmJcWniFo2CYC1Te4gtm2ipXk8meWXtK699lr3z506dSIlJYXmzZvz7rvvEhgYWC3bnDBhAunp6e55h8Oh0iMiIrXO2refoKd5mHwi6HS7blT+OZaf4flf9erVo23btuzYsYPo6GjKyso4efJkpTH5+fnue36io6PP+dTWD/Pnuy8IwG63ExYWVmkSERGpTQ7s2kLX3Nlnfk6ZSFBIPWsDeTiPKzynTp1i586dNG7cmG7duuHv78+SJUvc67du3Upubi6pqakApKamsnHjRg4fPuwek5GRQVhYGPHx8TWeX0REpCYcnjeaAKOcTfZEuqQNtTqOx7P8ktaf/vQnbrjhBpo3b87Bgwd5/PHH8fX1ZeDAgYSHhzNs2DDS09Np0KABYWFhPPjgg6SmptKjRw8A+vbtS3x8PIMHD2batGnk5eUxceJEhg8fjt1ut3jvREREql7Wkrl0OZ1JuelLyE3P60blC2B54dm/fz8DBw7k2LFjNGrUiF69erF8+XIaNWoEwPPPP4+Pjw+33HILpaWlpKWl8de//tX9+76+vixcuJAHHniA1NRUgoODGTJkCE8++aRVuyQiIlJtSk4X0fDbxwBY03gAPdp1tThR7WCYpmlaHcJqDoeD8PBwCgoKdD+PiIh4tMzZ40jdO5Mj1CcwfR0hYfWtjmSZizl+6xyYiIhILbF17dck7vknALlJD9fpsnOxVHhERERqga1rvqTxgtsINMrYGNCVrtfdY3WkWkWFR0RExMPlrFlK4w8HEmYUs8W/Ay3/+L5uVL5Ilt+0LCIiIj8tZ81Smnw4kFDjNJttHWn+4McEh9azOlato3ooIiLiobas/uKsspNAi4dUdn4tFR4REREPlLNqCU0/uv2ssrNQT1P+DXRJS0RExMPkrFpC04V3EGKcZrOt0/dlJ9zqWLWazvCIiIh4kC0rF7vLziZbJ+Ie+lhlpwqo8IiIiHiILSsziP140PdlpzMtH/qYwBA9ELcq6JKWiIiIB9iyMoNmHw8i2Chhk/37shMcanUsr6EzPCIiIhbbvOLzs8pOospONVDhERERsdCmzEU0/2QwwUYJ2fYutBq5UGWnGuiSloiIiEU2ZS4ibtGdBBmlZNu70HrkRwQEqexUB53hERERsUD2sk9pUansLFTZqUYqPCIiIjUse9mnxH02hGCjlOyArt+XnRCrY3k1FR4REZEalL3sE3fZ2RjQldYPfaSyUwNUeERERGpI9ncf0/Kzod+XnW60UdmpMSo8IiIiNWDjtwtp+fldBBmlbAxIos1DH6rs1CB9SktERKSabfx2Ia0y7v6x7Iz8kIDAYKtj1SkqPCIiItVo4zcf0Xrx3QQaZWwISOaSUQuwB6js1DRd0hIREakmG7758MeyE9hdZcdCKjwiIiLVYMPXC2izeNiPZWfkfJUdC+mSloiISBXb8PUC2i4ZRoBR/n3ZWYA9IMjqWHWazvCIiIhUofVfz3eXnfWBKSo7HkJneERERKrI+i/f55Kl931fdnrQfuR8bAGBVscSdIZHRESkSqz/8j132ckKSlXZ8TAqPCIiIr9R1pfv0W7p/ztzZicolfiHPlDZ8TC6pCUiIvIbrF/6Hu2//H/YjXKygnoSP/IDbPYAq2PJ/9AZHhERkV8pa+k82p1VdjqMUtnxVCo8IiIiv8K6L+bR/ssHzpSd4EvpMOoD/G0qO55KhUdEROQiZX3xLh2+uh+7Uc664F50GPm+yo6Hs7zwTJkyheTkZEJDQ4mMjKR///5s3bq10pgrrrgCwzAqTffff3+lMbm5ufTr14+goCAiIyMZO3YsFRUVNbkrIiJSB6xbMpf4rx7AZlSQFdyLjio7tYLlNy1/9dVXDB8+nOTkZCoqKnj44Yfp27cvmzdvJjj4x0dw33vvvTz55JPu+aCgHx/i5HQ66devH9HR0SxbtoxDhw5x55134u/vzzPPPFOj+yMiIt5r3eJ36PDNcGxGBeuCL6PjyPfwt9mtjiUXwDBN07Q6xNmOHDlCZGQkX331Fb179wbOnOFJTEzkhRdeOO/vfPrpp1x//fUcPHiQqKgoAGbOnMm4ceM4cuQINpvtZ7fpcDgIDw+noKCAsLCwKt0fERHxDmsz3qbjtyPOlJ2Q3iQ89F/8VHYsdTHHb8svaf2vgoICABo0aFBp+VtvvUXDhg3p2LEjEyZMoLi42L0uMzOThIQEd9kBSEtLw+FwsGnTpnO2UVpaisPhqDSJiIj8lDNl58yZnbUhl6vs1EKWX9I6m8vlYtSoUVx66aV07NjRvfz222+nefPmxMTEsGHDBsaNG8fWrVt5//33AcjLy6tUdgD3fF5e3jnbmTJlCk888UQ17omIiHiLtRlzvj+z42Rt6BV0evBdlZ1ayKMKz/Dhw8nOzubbb7+ttPy+++5z/5yQkEDjxo25+uqr2blzJ61atbro7UyYMIH09HT3vMPhIDY29tcHFxERr7Tm87dI+O5BbIaTdSo7tZrHXNIaMWIECxcuZOnSpTRt2vRnx6akpACwY8cOAKKjo8nPz6805of56Ojoc37fbrcTFhZWaRIRETnb2s//4y47a0OvJOGheSo7tZjlhcc0TUaMGMEHH3zAF198QVxc3C/+TlZWFgCNGzcGIDU1lY0bN3L48GH3mIyMDMLCwoiPj6+W3CIi4r3WfPYfOn73kLvsdHroXfz8f/4DMOLZLL+kNXz4cObMmcOCBQsIDQ1133MTHh5OYGAgO3fuZM6cOVx33XVERESwYcMGRo8eTe/evenUqRMAffv2JT4+nsGDBzNt2jTy8vKYOHEiw4cPx25XGxcRkQu3ZtG/6ZQ5En/DydrQq+g88l18/fytjiW/keUfSzcM47zLZ8+ezdChQ9m3bx+DBg0iOzuboqIiYmNjuemmm5g4cWKlS1F79+7lgQce4MsvvyQ4OJghQ4YwdepU/Px+udPpY+kiIgKwZtG/6JQ5Cn/DyZqwq0l8aK7Kjge7mOO35YXHE6jwiIjImk/fpNPy0d+XnT4kPvSOyo6Hq9XP4REREalpqz99Q2XHy1l+D4+IiIiVVn/yBokrRuNnuFgT/jsSH3wH3wu4HUJqF53hERGROmv1J7PPKjt9VXa8mP5URUSkztm7bT35C5+mW8Hn+Boma8LTSHxwjsqOF9OfrIiI1Bm7t6zlyCdP082xhOaGCQasanAD3f74Bj4qO15Nf7oiIuL1dm5axfFPn6Zb4ZfEfV901gelEtL3YZITe1sdT2qACo+IiHit7RuW4/jsaboVfU0rAAOygi8lLO0ROne61Op4UoNUeERExOtsX7+Mws+epmvxj19GvS6kN/WveYTEjj0sTCZWUeERERGvsXXdNxR//jRdTmcC4DINssKuIOLah+kS393idGIlFR4REan1tqxeSuniKSSWrADOFJ114VfR6LpH6Nqum8XpxBOo8IiISK21eeViyr+YQueS1QA4TYN19X5H9PWP0K1NorXhxKOo8IiISK2zKXMRzi+fpVPpWgAqTB+y6vel8Q0TSWqVYHE68UQqPCIiUiuYpsmmzE8wv5xGQlkWAOWmL1kNrqHJDRNJahlvbUDxaCo8IiLi0UyXi+zvPsbn62fpWL4RgDLTl/UR19H0xokkt2hncUKpDVR4RETEI5kuFxu+/RD/b6aRUL4JgDLTj3UNb6DF/z1McrO2FieU2kSFR0REPIrpcrHhq/exf/cXOldsAc4UnazI/6PF/z1CStNWFieU2kiFR0REPILpcpH1xbsELZ9B54ptAJSY/qyPuolW//cw3ZvEWZxQajMVHhERsZTpcrFuyduELn+OLs4dAJw2bayPvoXW/SeQ0ri5xQnFG6jwiIiIJVxOJ1kZbxG+6nm6OncBUGza2RDze9r0n0CPqFiLE4o3UeEREZEa5XI6Wff5v6i/6gW6uvYAUGQGsLHJH7jkpgn0aBRjbUDxSio8IiJSI5wVFaxd9AYN175IN1cuAKfMQLJjB9D+pvH0iIi2OKF4MxUeERGpVhXl5axb9DqN1r1Msms/AA6C2Bx7O/H9x9EjItLihFIXqPCIiEi1qCgvY+3H/yB6/cskmwcBcBDM5maDaH/Tn+lRv6HFCaUuUeEREZEqVV5WyrqPZxGz4VW6m4cAOEkIOS3upMNNY+kR3sDihFIXqfCIiEiVKCstJWvhazTJ/ivdzXwAThDK1rihdLxpDD3C6lucUOoyFR4REblo5eVlHNiZzbHd6yk7uBnb8Rxii7LpznEAjhPGtlZ3kdA/nR6h9awNK4IKj4iI/AxnRQUH9+RwdFcWJQey8T++jQZFO2nq3E8Lo4IW/zP+GPXY3uZuOv/faHqEhFkRWeS8VHhERASX00nevh0c3rmO0wc24Xcsh/qndtK0IpdYo5xzHgFonHlI4H7/5pwMaY2rUTuCmnSkbfc0egSFWLELIj9LhUdEpA4xXS4OH9pD/vZ1FB/IxudIDvVO7aBJeS4xRgnnPPLPOPN9Vvv9mnEipBUVEe0IbNKByFZdiI5tTVtfXyt2Q+SiqfCIiHgh0zQ5dvgAedvXcmpfNsaRLYQV7qBJ+R6iKCbqf3/BgDLTl/2+sZwIbklZg0sIaNKRhi07E9OiPa39dLiQ2s2r/g1+9dVXmT59Onl5eXTu3JmXX36Z7t27Wx1LRKRanTyaz8HtaynctxHz8BZCHduJKdtLQxyc70k3FaYPB3xjOBp4ptjYGncgomVnmrTsQEubvcbzi9QEryk8c+fOJT09nZkzZ5KSksILL7xAWloaW7duJTJST/EUkdqvsOA4B7atpSB3I2b+ZoILttO4dDcNOUm984x3mQYHfaI5EhhHSf22+DfuQIMWnWnSOoHmAUHoO8ilLjFM0zStDlEVUlJSSE5O5pVXXgHA5XIRGxvLgw8+yPjx43/2dx0OB+Hh4RQUFBAWpk8ViEj1Ml0uKirKKC8rpbysjIryEirKy6goK8NZUYqzvJTS06dw7NuMK38LQSe3EVmym2iO/uRrHqIRhwPjKK7XFr+oeOq16EzTNp0JDA6twT0TqVkXc/z2ijM8ZWVlrFmzhgkTJriX+fj40KdPHzIzM88ZX1paSmlpqXve4XDUSE4RqRmmy0nxKQenTxVQfOokZUUOKsrLcFX8MJXirCjH/P5nl7McKsownWWYznKoKAdnGaarHMN55mfDVX7WVIGPqxyf7+d9zQp8zHJ8XRX4mmfmfanAz6zAzyzHFyf+P8xTgc1w4g/4/4p9O0wD8gLiKA5vg09UPGHNEmjSJpHG4Q1oXNVvpIgX8YrCc/ToUZxOJ1FRlW/Di4qKIicn55zxU6ZM4YknnqipeCJyASrKSikuLKC46CSnTxVQWlRAeVEBFacdVJQU4iwpxCwtxCg9hVF2Ct/yU/hWFGGrKMLmKsbuKibAdZpgs5hASgk2TIKt3qn/Zfz0qjLTlwr8KDf8zvwTf47amnAqvA1Go/aENe9ETJsuRDZohC7Si1w8ryg8F2vChAmkp6e75x0OB7Gx5zxlQkR+hulyUVpSTFHhSUqKCig5dZLSIgflpwsoP12I67QDV0kh5vcFxaf8TEnxqyjCv+KHglJEoHmaIPM0AUY5YcBvvqh8VqmoMH0oNgI5TQDlhj9Oww8nfjgNf5w+fjgNP1yGP04ff0zDD5ePP6aPHy4fG6aPP/j44fK1gY8/hq8/pq8/+NowfP0x/Gzun338bBh+Nnx8/fHxt+PjZ8PXz4aPvw1fPzt+/v74+tvx9QvAz+aPn78dP/8A/G3++NsC8PPzx+bjg+1/diX6t74XIuLmFYWnYcOG+Pr6kp+fX2l5fn4+0dHn/pVht9ux2/VJBJELYbpc5G7LIm/95/jnfkt08VaCzSKCzdMEGC4CqmIjZ5WUUtOfYiOQYiOQEiOIMt8zU7l/CC6/YFz+IZi2EIyAEAx7GL6BofgFhOEfFIY9OBx7cDgBIWEEh9YjMDCEMB+f316iRKTW84rCY7PZ6NatG0uWLKF///7AmZuWlyxZwogRI6wNJ1ILHdyzlf1rF+Gz52taOFbTnJPnfqLnrJJSZAZ8X1ACKfEJotQ3mHK/YJx+QTj9Q3DZQsAWgmEPxTcgFJ/AMPwCw7AHhWEPDsMeXI+gkHoEhdY78z8kgL5mUkSqklcUHoD09HSGDBlCUlIS3bt354UXXqCoqIi77rrL6mgiHu/IoVz2rF6EuetLmp5cTYyZX+mJuyWmPzsCOlIY05PwS3oTXD+awJBwAkPCCQ4JJ9jX1/PulxEROYvXFJ7bbruNI0eO8Nhjj5GXl0diYiKLFi0650ZmEYGC44fZueozyrYvJfr4Slq49tHorPXlpi87bJdQEJVKaPuradX1CjoGqtKISO3lNc/h+S30HB7xdqcKC9i5ejHFW5fQ8MgKWlXsxMf48T99l2mwy68lRxv1IOiSK2nVrQ/BYbqoJCKerc49h0dEKis5XcyOdV9SuHkJ4fmZtC7LobPh/HGAAXt9YslrkIytzZW0SkqjdUQUra2LLCJSrVR4RLxAeXk5O9Z/x4nsDEIOLaNNSTYdjbIfBxhwyGjE/nrd8WnZm+ZJ19K8cXN9tYCI1BkqPCK1kMvpYteWVRxZn0HA/m9pVbye9kbxjwMMOEY99oR1w9XiMpp0uZaYuHZ6Eq+I1FkqPCK1gOlykbtzE4fWfYZf7re0PLWG1jh+vARlgINgdgUnUhbbi6jEa2jWNpEIHx8rY4uIeAwVHhEPdXDfTvatXgR7vqZZwWqac7TSJahi087OwARON72UiITfEdchlUQ//SctInI++ttRxEMcOXyQ3asW4dz5FTEnVtHcPFDpWThlpi877fE4GvckvEMfWiX2JsFWJc85FhHxeio8IhY5XVzE5u8+onTbUiKPraC1a3elZ+E4TYNd/m04HpVKSLuraNXtatoHhVqWV0SkNlPhEbHA+q8/JGLpWLqZeZWW7/FtzuGGKQS0vYqWSX1pEx5hUUIREe+iwiNSg04czWfbv0eRUvAJcOaTVLsiLse/9eW06JZGi8imtLA2ooiIV1LhEakBpsvF6k9nE7fqSVI4ics0WB15Mx0G/4XksAZWxxMR8XoqPCLV7NC+neTNGU7y6UzgzBOOS699nu7Jv7M4mYhI3aHCI1JNnE4nq/47g46bn6OxcZoy05es5neTePtkbAGBVscTEalTVHhEqsHunHWcfm84Pco3gQHb/C8h4Oa/0r19ktXRRETqJBUekSpUWnqa1W9NInnvP7AZFRSbdrLjR5N0y1h89FBAERHL6G9gkSqyZfUXBHwyiktde8GAjYHdibz9r3SPbWN1NBGROk+FR+Q3OlV4ko3/+hMph/+Lj2FygjB2Jz9Gl2uHYei7rEREPIIKj8hvsH7pf4n6ahypHAUDVoen0Wbwi3RtqO8lFxHxJCo8Ir/C8cMH2fnvB0kuXAzAIaMRx66YRtLlN1ucTEREzkeFR+QimC4XqxfOovXap0imEKdpsDr6NhIGP0vjkHpWxxMRkZ+gwiNygQ7u2cqRd/5IcslqAHb7tqCi34ukdL3C2mAiIvKLVHhEfoGzooJV704lYetLxBillJl+rGt5H10HPo6/LcDqeCIicgFUeER+xq7NKyl/fwQ9KraCAZttHQn9/auktE20OpqIiFwEFR6R8yg5Xcy6tyaStO8N/A0nhWYgWzr+iaSbR+Pj62t1PBERuUgqPCL/Y8uKzwj6LJ1U134wICuoJ03u+Cvdm8RZHU1ERH4lFR6R7xUWHGfzv0aTcmw+AMeoR26PSXRJGwqGYWk2ERH5bVR4RICsjDnEfPcIKRwHYFX9frQd/CJdGjSyOJmIiFQFFR6p047m5ZL7nxF0PfUVAAeMaE5cPZ3kXjdanExERKqSCo/USabLxer5L3PJhmfpShEVpg+rYgbRZfAUmgSFWB1PRESqmAqP1DkHd23m+NwHSC7NAmCHbyu48SVSO/eyNpiIiFQbFR6pMyrKy1jzztN02vFXYowySkx/slr/kaQBE/Hzt1kdT0REqpEKj9QJOzd8h7ngQVKcO8GAbHsi9f7wV3q06mB1NBERqQE+Vm14z549DBs2jLi4OAIDA2nVqhWPP/44ZWVllcYYhnHOtHz58kqvNW/ePNq1a0dAQAAJCQl88sknNb074qFKik+x/G8jaP7e9bR27sRBMCs7TabDuKU0VdkREakzLDvDk5OTg8vl4m9/+xutW7cmOzube++9l6KiIv7yl79UGrt48WI6dPjx4BQREeH+edmyZQwcOJApU6Zw/fXXM2fOHPr378/atWvp2LFjje2PeJ7NyxYSnjGGHmYeGLA25HKaDXqF7tHNrI4mIiI1zDBN07Q6xA+mT5/Oa6+9xq5du4AzZ3ji4uJYt24diYmJ5/2d2267jaKiIhYuXOhe1qNHDxITE5k5c+YFbdfhcBAeHk5BQQFhYWG/eT/EWgUnjrDtXyNJPvExAIdpwIGek+nSd5DFyUREpCpdzPHbskta51NQUECDBg3OWX7jjTcSGRlJr169+PDDDyuty8zMpE+fPpWWpaWlkZmZ+ZPbKS0txeFwVJrEC5gm6xa9QcWLSe6ysyKiPwGjVqvsiIjUcR5z0/KOHTt4+eWXK13OCgkJYcaMGVx66aX4+Pjw3nvv0b9/f+bPn8+NN555MFxeXh5RUVGVXisqKoq8vLyf3NaUKVN44oknqmdHxBJHD+1h/7//SJfi7wDINZpwKu15UnqkWZxMREQ8QZWf4Rk/fvx5bzQ+e8rJyan0OwcOHOCaa67h1ltv5d5773Uvb9iwIenp6aSkpJCcnMzUqVMZNGgQ06dP/00ZJ0yYQEFBgXvat2/fb3o9sdaJIwcpn/U7Eou/o9z0JbPJ3UT+eRXxKjsiIvK9Kj/DM2bMGIYOHfqzY1q2bOn++eDBg1x55ZX07NmTWbNm/eLrp6SkkJGR4Z6Pjo4mPz+/0pj8/Hyio6N/8jXsdjt2u/0XtyWer6zkNHmzfk978zAHjChKfv9vUjumWB1LREQ8TJUXnkaNGtGo0YV94eKBAwe48sor6datG7Nnz8bH55dPOGVlZdG4cWP3fGpqKkuWLGHUqFHuZRkZGaSmpl50dqldTJeLDX+7m6TyTRSagZQPeIdW7bpaHUtERDyQZffwHDhwgCuuuILmzZvzl7/8hSNHjrjX/XB25s0338Rms9GlSxcA3n//ff75z3/yj3/8wz125MiRXH755cyYMYN+/frxzjvvsHr16gs6WyS128q3J5Ny4hOcpsGuK16hs8qOiIj8BMsKT0ZGBjt27GDHjh00bdq00rqzPyk/efJk9u7di5+fH+3atWPu3Ln8/ve/d6/v2bMnc+bMYeLEiTz88MO0adOG+fPn6xk8Xm790ndJ3vY8GLCy7RhSr/z9L/+SiIjUWR71HB6r6Dk8tUtuzmoavH09IcZpVta/nuQH/41xAZdDRUTEu9Ta5/CI/JKTRw7hN/d2QozTbPJPIPH+11V2RETkF+lIIbVGeVkJB/9+KzFmPgeMKBrf+y42e4DVsUREpBZQ4ZFawXS5yJp5D/FlGzllBlJ26xwaRMZYHUtERGoJFR6pFVa98zTJxz/CaRrs6P0icfFJVkcSEZFaRIVHPN7GL/9Lt60zAFjZZjSJV99mcSIREaltVHjEo+3NWUeLL0fga5isrHcdPW5/1OpIIiJSC6nwiMcqOJaH39wBhHKaLf4d6KxPZImIyK+ko4d4pPKyUvb/7VaamHkcNCKJvHce9oAgq2OJiEgtpcIjnsc0Wfe3e+lQtoEiM4CSW98iIrKJ1alERKQWU+ERj7Ny7hS6H1uAyzTYdtmLtIzvbnUkERGp5VR4xKNkf/0B3bZMA2BFq4fo0meAxYlERMQbqPCIx9i3LYtmX/zxzCeywq+hx6BJVkcSEREvocIjHsFx7DDG2wMIo5gt/vF0un+2PpElIiJVRkcUsVxFWSm5s/5AU/MQh2hEo3vmERCoT2SJiEjVUeERy62ddT8dS9dRbNopvuUtGkY1tTqSiIh4GRUesdTKd5+l+9H3cZkGOZc+R6uEFKsjiYiIF1LhEcts+mYBXTdNBWBFy+F07TvI4kQiIuKtVHjEEvu3byB2yQP4GS5WhfWlx+DJVkcSEREvpsIjNa7gxBHMObcRRhE5fu1IeOANfSJLRESqlY4yUqMqysvY97c/EGseJI+GRNwzj4DAYKtjiYiIl1PhkRq1ZtYDdCxZS7Fp59TN/6ZRdDOrI4mISB2gwiM1ZuV//0LKkf8CkNPzL7Tu1NPiRCIiUleo8EiN2PTdQrpsfAaAzOZ/pGvanRYnEhGRukSFR6rdgZ3ZNM24D3/DyerQPvQY8rTVkUREpI5R4ZFqVXjyKBVv3UY4RWzza0vHB97UJ7JERKTG6cgj1cZZUc6embfR3LWffCJocPd/CQgKsTqWiIjUQSo8Um1Wz/ojCSWrOW3acPT/Fw1jmlsdSURE6igVHqkWq957jpTD7wKwucd02iT2sjiRiIjUZSo8UuU2L/uExA1PAbCs2f+j27VDrQ0kIiJ1ngqPVKmDu7fQ+PMfPpF1FalDp1odSURERIVHqk5hwXHK/n0r9Slkm19bOtz/b30iS0REPIKlR6MWLVpgGEalaerUymcENmzYwGWXXUZAQACxsbFMmzbtnNeZN28e7dq1IyAggISEBD755JOa2gX5nrOigt0zb6OFax+HaUC9u+YRGKxPZImIiGew/H+/n3zySQ4dOuSeHnzwQfc6h8NB3759ad68OWvWrGH69OlMmjSJWbNmuccsW7aMgQMHMmzYMNatW0f//v3p378/2dnZVuxOnbX6HyPodHolp00bJ298k8gmLayOJCIi4uZndYDQ0FCio6PPu+6tt96irKyMf/7zn9hsNjp06EBWVhbPPfcc9913HwAvvvgi11xzDWPHjgVg8uTJZGRk8MorrzBz5swa24+6bNX7L5CS9zYAm7pPJalrb4sTiYiIVGb5GZ6pU6cSERFBly5dmD59OhUVFe51mZmZ9O7dG5vN5l6WlpbG1q1bOXHihHtMnz59Kr1mWloamZmZP7nN0tJSHA5HpUl+nZzln9J5/ZMAZMbeS1K/YRYnEhEROZelZ3geeughunbtSoMGDVi2bBkTJkzg0KFDPPfccwDk5eURFxdX6XeioqLc6+rXr09eXp572dlj8vLyfnK7U6ZM4Yknnqjival7Du7OIWrRfdgMJ2tCLidl6LNWRxIRETmvKj/DM378+HNuRP7fKScnB4D09HSuuOIKOnXqxP3338+MGTN4+eWXKS0trepYlUyYMIGCggL3tG/fvmrdnjc65ThB6b//QH0cbPdtTfsH/oOPr6/VsURERM6rys/wjBkzhqFDh/7smJYtW553eUpKChUVFezZs4dLLrmE6Oho8vPzK435Yf6H+35+asxP3RcEYLfbsdvtv7Qr8hNcFRXsfG0AnV17OUJ9wu6eR1BwmNWxREREflKVF55GjRrRqFGjX/W7WVlZ+Pj4EBkZCUBqaiqPPPII5eXl+Pv7A5CRkcEll1xC/fr13WOWLFnCqFGj3K+TkZFBamrqb9sR+UkrXx9Jj9PLKTH9OX7jG1zS5PwFVkRExFNYdtNyZmYmL7zwAuvXr2fXrl289dZbjB49mkGDBrnLzO23347NZmPYsGFs2rSJuXPn8uKLL5Kenu5+nZEjR7Jo0SJmzJhBTk4OkyZNYvXq1YwYMcKqXfNqq+e/TI9D/wEgO3kKl3S7wtpAIiIiF8AwTdO0YsNr167lj3/8Izk5OZSWlhIXF8fgwYNJT0+vdLlpw4YNDB8+nFWrVtGwYUMefPBBxo0bV+m15s2bx8SJE9mzZw9t2rRh2rRpXHfddRecxeFwEB4eTkFBAWFhujTzU3JWZtDy4wHYjAoym9xN6r3PWx1JRETqsIs5fltWeDyJCs8vy9u7FdvsPjTAwZrgy+iSvkA3KYuIiKUu5vht+XN4xPMVFZ7k9L/+QAMc7PBtRfsH3lLZERGRWkWFR36Wy+lk+2sDiXPu4Sj1CBn6LkEh4VbHEhERuSgqPPKzVr4+isTiZZSa/hy5fjbRsa2tjiQiInLRVHjkJ6358DV6HPwXABuSnqJ90lUWJxIREfl1VHjkvLauXkzCmokALIsZSvIN91ucSERE5NdT4ZFz5Odup+HCu7EZFawN6kWPYc9ZHUlEROQ3UeGRSlxOJwX/up0ICtjpE8cl+kSWiIh4ARUeqSTr8zdpW7GNQjOQoCHvEhxaz+pIIiIiv5kKj7g5K8ppuOovAGQ3H0zj5m0tTiQiIlI1VHjELevjv9HMdYAThNLhlglWxxEREakyKjwCQHlZCY2zXgIgp+XdhIU3sDiRiIhI1VHhEQCyPnyFGDOfo9Sj8y1/sjqOiIhIlVLhEUpLimie/SoA2y+5n6BgfYGqiIh4FxUeYf0HzxPJcfJoSJf+I62OIyIiUuVUeOq406cKaLV1FgB7Og4nIDDI4kQiIiJVT4Wnjtvw/nQiKGC/EU3XG4ZbHUdERKRaqPDUYacKjtFu1z8BOJA4GpvdbnEiERGR6qHCU4dtfm8K4RSxxyeWbtcNszqOiIhItVHhqaMcR/OIz/0PAEeS/oSfv7/FiURERKqPCk8dlfP+U4Rwmu0+LemWNtjqOCIiItVKhacOOp6XS8KBuQA4eo7Xt6GLiIjXU+Gpg3a+/ySBRhlb/NrR9apbrY4jIiJS7VR46pgj+3fQOf8DAEovexjDR/8KiIiI99PRro7Z+8EkbEYFG22d6dz7RqvjiIiI1AgVnjrk0O5NJB79+MzMlRMxDMPaQCIiIjVEhacOObRgEn6Gi3UB3UlI7Wt1HBERkRqjwlNHHNi2jsQTGQDYf/eYxWlERERqlgpPHXH0o8fxMUxWB11GfLfLrI4jIiJSo1R46oDc7GV0LvwKl2kQfq3O7oiISN2jwlMHFHzyBACrQq+mTUJ3i9OIiIjUPMsKz5dffolhGOedVq1aBcCePXvOu3758uWVXmvevHm0a9eOgIAAEhIS+OSTT6zYJY+0c+0XJBQvp8L0IfLGx62OIyIiYgnLCk/Pnj05dOhQpemee+4hLi6OpKSkSmMXL15caVy3bt3c65YtW8bAgQMZNmwY69ato3///vTv35/s7Oya3iWPVPb5kwCsqnctcW07WZxGRETEGn5WbdhmsxEdHe2eLy8vZ8GCBTz44IPnPB8mIiKi0tizvfjii1xzzTWMHTsWgMmTJ5ORkcErr7zCzJkzq28HaoFtyz+mfck6Sk0/mvTX2R0REam7POYeng8//JBjx45x1113nbPuxhtvJDIykl69evHhhx9WWpeZmUmfPn0qLUtLSyMzM/Mnt1VaWorD4ag0eR3ThC+eAmB1xI00i7vE4kAiIiLW8ZjC8/rrr5OWlkbTpk3dy0JCQpgxYwbz5s3j448/plevXvTv379S6cnLyyMqKqrSa0VFRZGXl/eT25oyZQrh4eHuKTY2tup3yGJbvnmPtmWbOW3aaHGTPpklIiJ1W5UXnvHjx//kzcg/TDk5OZV+Z//+/Xz22WcMGzas0vKGDRuSnp5OSkoKycnJTJ06lUGDBjF9+vTflHHChAkUFBS4p3379v2m1/M0psuF/etnAFgd9XuaxMZZnEhERMRaVX4Pz5gxYxg6dOjPjmnZsmWl+dmzZxMREcGNN/7yl1mmpKSQkZHhno+OjiY/P7/SmPz8/J+85wfAbrdjt9t/cVu11ealc+hQsZNTZiCX3DLR6jgiIiKWq/LC06hRIxo1anTB403TZPbs2dx55534+/v/4visrCwaN27snk9NTWXJkiWMGjXKvSwjI4PU1NSLyu0tTGcFocueBWBtzEB6RzWxOJGIiIj1LPuU1g+++OILdu/ezT333HPOujfffBObzUaXLl0AeP/99/nnP//JP/7xD/eYkSNHcvnllzNjxgz69evHO++8w+rVq5k1a1aN7YMn2fjZP+nkzKXADKbDLROsjiMiIuIRLC88r7/+Oj179qRdu3bnXT958mT27t2Ln58f7dq1Y+7cufz+9793r+/Zsydz5sxh4sSJPPzww7Rp04b58+fTsWPHmtoFj+EqLyNi9XMArG9+J70bRlqcSERExDMYpmmaVoewmsPhIDw8nIKCAsLCwqyO86utX/Aindc9xjHC8Ru1nvB69a2OJCIiUm0u5vjtMR9Ll9+movQ00VkvAbCp5TCVHRERkbOo8HiJ7I9eIso8Sj4N6HJzutVxREREPIoKjxcoLzlFbPZrAGxtez+hIaEWJxIREfEsKjxeIPuDGURwggNEknzTQ1bHERER8TgqPLVcyakTxG39OwC7OowgMDDQ4kQiIiKeR4Wnltv8wTTqUcheownJN95vdRwRERGPpMJTixUXHKHtzjcA2Nd5FAFe/HUZIiIiv4UKTy2W897ThFDMDqMFKdffbXUcERERj6XCU0udOnaQ9rlzADicNAZ/P8sfmi0iIuKxVHhqqe3vPUkgpeT4tCHlmkFWxxEREfFoKjy1UEH+HuIP/BeAk6nj8PXVH6OIiMjP0ZGyFtr13hPYjXI2+Hag+1W3WB1HRETE46nw1DLH92+jY/4CAEp7P4yPzu6IiIj8Ih0ta5l9HzyOv+FknX9Xknr3szqOiIhIraDCU4sc2b2Rjkc/BcC8aiKGYVicSEREpHZQ4alFDi14HF/DZJU9lS49rrI6joiISK2hwlNL5G1dRaeTSwCw99XZHRERkYuhwlNLHFv4OADLAy+nU7deFqcRERGpXVR4aoED2d/QofA7nKZB2HWPWR1HRESk1lHhqQUcnz4BQGZoX+ITkixOIyIiUvuo8Hi43LUZtC9aRZnpS6N+j1odR0REpFZS4fFkpknp52fO7iyv149L2idYHEhERKR2UuHxYLtXLKRNyUZKTX+a3qizOyIiIr+WCo+nMk344kkAMiP607JVW4sDiYiI1F4qPB5qxzdziSvbRpFpp2V/nd0RERH5LVR4PJHLhe3rqQCsiPwDzZo1tziQiIhI7abC44G2fvEvmlXsxmEG0e6WR6yOIyIiUuup8HgY01lOSOY0AFbH3E5MdGOLE4mIiNR+KjweJufzf9DEeYATZigJN4+3Oo6IiIhXUOHxIGZFKfVXPQ/A2mZDadSokcWJREREvIMKjwfZ/PGrRLvyOWLWI/HmMVbHERER8RrVVniefvppevbsSVBQEPXq1TvvmNzcXPr160dQUBCRkZGMHTuWioqKSmO+/PJLunbtit1up3Xr1rzxxhvnvM6rr75KixYtCAgIICUlhZUrV1bDHlUvZ2kxUVkvA7Ch5T1E1K9vcSIRERHvUW2Fp6ysjFtvvZUHHnjgvOudTif9+vWjrKyMZcuW8eabb/LGG2/w2GM/fhv47t276devH1deeSVZWVmMGjWKe+65h88++8w9Zu7cuaSnp/P444+zdu1aOnfuTFpaGocPH66uXasWmz96gYbmcQ7SkKSbR1sdR0RExKsYpmma1bmBN954g1GjRnHy5MlKyz/99FOuv/56Dh48SFRUFAAzZ85k3LhxHDlyBJvNxrhx4/j444/Jzs52/96AAQM4efIkixYtAiAlJYXk5GReeeUVAFwuF7GxsTz44IOMH39hN/06HA7Cw8MpKCggLCysCvb64lScdlA4rSP1zQKWtJnI1XeMrfEMIiIitc3FHL8tu4cnMzOThIQEd9kBSEtLw+FwsGnTJveYPn36VPq9tLQ0MjMzgTNnkdasWVNpjI+PD3369HGPOZ/S0lIcDkelyUpb5k+nvllALtGk3DTC0iwiIiLeyLLCk5eXV6nsAO75vLy8nx3jcDg4ffo0R48exel0nnfMD69xPlOmTCE8PNw9xcbGVsUu/Splp07QYuvrAOyIH0FIUKBlWURERLzVRRWe8ePHYxjGz045OTnVlbXKTJgwgYKCAve0b98+y7LkfDCFUIrYSSypN/4/y3KIiIh4M7+LGTxmzBiGDh36s2Natmx5Qa8VHR19zqep8vPz3et++OcPy84eExYWRmBgIL6+vvj6+p53zA+vcT52ux273X5BOatTycl8Wu18E4DczqNoFWCzOJGIiIh3uqjC06hRoyp7GF5qaipPP/00hw8fJjIyEoCMjAzCwsKIj493j/nkk08q/V5GRgapqakA2Gw2unXrxpIlS+jfvz9w5qblJUuWMGKE598Ls+2Dp+hECTlGS3peP9TqOCIiIl6r2u7hyc3NJSsri9zcXJxOJ1lZWWRlZXHq1CkA+vbtS3x8PIMHD2b9+vV89tlnTJw4keHDh7vPvtx///3s2rWLP//5z+Tk5PDXv/6Vd999l9Gjf/zYdnp6On//+99588032bJlCw888ABFRUXcdddd1bVrVaL42H7a7n0HgPxuf8Luf1HdU0RERC6GWU2GDBliAudMS5cudY/Zs2ePee2115qBgYFmw4YNzTFjxpjl5eWVXmfp0qVmYmKiabPZzJYtW5qzZ88+Z1svv/yy2axZM9Nms5ndu3c3ly9fflFZCwoKTMAsKCj4Nbv6q2z42z2m+XiYueGJ7mZZeUWNbVdERMRbXMzxu9qfw1Mb1PRzeArzdxHwWhL+OPmm5z+5rO8t1b5NERERb1MrnsNTl+15bxL+OFnr24mefW62Oo6IiIjXU+GpYQX7t9A+/yMASi6bgK+PYXEiERER76fCU8P2f/A4foaLlf7J9Oh9rdVxRERE6gQVnhp0bPc62h/9HADzykfw0dkdERGRGqHCU4PyF0zCxzD5ztaL7qlXWB1HRESkzlDhqSFHti4n/uSXuEyDgL6PYBg6uyMiIlJTVHhqyPGFjwPwbdCVdO2WanEaERGRukWFpwbkbfySSwqXU2H6EJY2UWd3REREapgKTw0o/HQSAN+EpJGY2M3aMCIiInWQCk81O7j2U9oUr6PU9CPy+ketjiMiIlInqfBUJ9Ok9PMnAfg2/AY6tO9gcSAREZG6SV/RXY32bFpJs9NbOI2NpjdOtDqOiIhInaXCU42atk/m8ysWcDp3HTe3bm11HBERkTpLhaca+fn6cO2VlwOXWx1FRESkTtM9PCIiIuL1VHhERETE66nwiIiIiNdT4RERERGvp8IjIiIiXk+FR0RERLyeCo+IiIh4PRUeERER8XoqPCIiIuL1VHhERETE66nwiIiIiNdT4RERERGvp8IjIiIiXk/flg6YpgmAw+GwOImIiIhcqB+O2z8cx3+OCg9QWFgIQGxsrMVJRERE5GIVFhYSHh7+s2MM80JqkZdzuVwcPHiQ0NBQDMOo0td2OBzExsayb98+wsLCqvS15Ud6n2uG3ueao/e6Zuh9rhnV9T6bpklhYSExMTH4+Pz8XTo6wwP4+PjQtGnTat1GWFiY/mOqAXqfa4be55qj97pm6H2uGdXxPv/SmZ0f6KZlERER8XoqPCIiIuL1VHiqmd1u5/HHH8dut1sdxavpfa4Zep9rjt7rmqH3uWZ4wvusm5ZFRETE6+kMj4iIiHg9FR4RERHxeio8IiIi4vVUeERERMTrqfBUs1dffZUWLVoQEBBASkoKK1eutDqSV5kyZQrJycmEhoYSGRlJ//792bp1q9WxvN7UqVMxDINRo0ZZHcXrHDhwgEGDBhEREUFgYCAJCQmsXr3a6lhexel08uijjxIXF0dgYCCtWrVi8uTJF/R9TPLzvv76a2644QZiYmIwDIP58+dXWm+aJo899hiNGzcmMDCQPn36sH379hrJpsJTjebOnUt6ejqPP/44a9eupXPnzqSlpXH48GGro3mNr776iuHDh7N8+XIyMjIoLy+nb9++FBUVWR3Na61atYq//e1vdOrUyeooXufEiRNceuml+Pv78+mnn7J582ZmzJhB/fr1rY7mVZ599llee+01XnnlFbZs2cKzzz7LtGnTePnll62OVusVFRXRuXNnXn311fOunzZtGi+99BIzZ85kxYoVBAcHk5aWRklJSfWHM6XadO/e3Rw+fLh73ul0mjExMeaUKVMsTOXdDh8+bALmV199ZXUUr1RYWGi2adPGzMjIMC+//HJz5MiRVkfyKuPGjTN79epldQyv169fP/Puu++utOzmm28277jjDosSeSfA/OCDD9zzLpfLjI6ONqdPn+5edvLkSdNut5tvv/12tefRGZ5qUlZWxpo1a+jTp497mY+PD3369CEzM9PCZN6toKAAgAYNGlicxDsNHz6cfv36Vfr3WqrOhx9+SFJSErfeeiuRkZF06dKFv//971bH8jo9e/ZkyZIlbNu2DYD169fz7bffcu2111qczLvt3r2bvLy8Sn9/hIeHk5KSUiPHRX15aDU5evQoTqeTqKioSsujoqLIycmxKJV3c7lcjBo1iksvvZSOHTtaHcfrvPPOO6xdu5ZVq1ZZHcVr7dq1i9dee4309HQefvhhVq1axUMPPYTNZmPIkCFWx/Ma48ePx+Fw0K5dO3x9fXE6nTz99NPccccdVkfzanl5eQDnPS7+sK46qfCI1xg+fDjZ2dl8++23VkfxOvv27WPkyJFkZGQQEBBgdRyv5XK5SEpK4plnngGgS5cuZGdnM3PmTBWeKvTuu+/y1ltvMWfOHDp06EBWVhajRo0iJiZG77MX0yWtatKwYUN8fX3Jz8+vtDw/P5/o6GiLUnmvESNGsHDhQpYuXUrTpk2tjuN11qxZw+HDh+natSt+fn74+fnx1Vdf8dJLL+Hn54fT6bQ6oldo3Lgx8fHxlZa1b9+e3NxcixJ5p7FjxzJ+/HgGDBhAQkICgwcPZvTo0UyZMsXqaF7th2OfVcdFFZ5qYrPZ6NatG0uWLHEvc7lcLFmyhNTUVAuTeRfTNBkxYgQffPABX3zxBXFxcVZH8kpXX301GzduJCsryz0lJSVxxx13kJWVha+vr9URvcKll156zmMVtm3bRvPmzS1K5J2Ki4vx8al8+PP19cXlclmUqG6Ii4sjOjq60nHR4XCwYsWKGjku6pJWNUpPT2fIkCEkJSXRvXt3XnjhBYqKirjrrrusjuY1hg8fzpw5c1iwYAGhoaHu68Dh4eEEBgZanM57hIaGnnNfVHBwMBEREbpfqgqNHj2anj178swzz/CHP/yBlStXMmvWLGbNmmV1NK9yww038PTTT9OsWTM6dOjAunXreO6557j77rutjlbrnTp1ih07drjnd+/eTVZWFg0aNKBZs2aMGjWKp556ijZt2hAXF8ejjz5KTEwM/fv3r/5w1f45sDru5ZdfNps1a2babDaze/fu5vLly62O5FWA806zZ8+2OprX08fSq8dHH31kduzY0bTb7Wa7du3MWbNmWR3J6zgcDnPkyJFms2bNzICAALNly5bmI488YpaWllodrdZbunTpef9OHjJkiGmaZz6a/uijj5pRUVGm3W43r776anPr1q01ks0wTT1aUkRERLyb7uERERERr6fCIyIiIl5PhUdERES8ngqPiIiIeD0VHhEREfF6KjwiIiLi9VR4RERExOup8IiIiIjXU+ERERERr6fCIyIiIl5PhUdERES8ngqPiIiIeL3/D7Y7HRsIyeA8AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np\n", + "import matplotlib.pylab as plt\n", + "import torch\n", + "from torch.nn import functional as F\n", + "\n", + "# Problem 0\n", + "# xs = np.asarray([[0, 1, 0, 1, 0],\n", + "# [0, 0, 1, 1, 0],\n", + "# [1, 1, 0, 1, 0],\n", + "# [1, 1, 1, 0, 1],\n", + "# [0, 0, 0, 1, 0]])\n", + "\n", + "# ys = np.asarray([[0],\n", + "# [0],\n", + "# [0],\n", + "# [3],\n", + "# [3]])\n", + "\n", + "# Problem 1\n", + "# xs = np.asarray([[1, 0], [0, 1], [1, 1], [0, 0]])\n", + "# ys = np.asarray([[1], [1], [0], [0]])\n", + "\n", + "# Problem 2\n", + "xs = np.asarray([[-10], [-8], [-6], [-4], [-2], [0], [2], [4], [6], [8], [10]])\n", + "# ys = 0.5 * xs + 7\n", + "# ys = xs ** 2\n", + "ys = xs ** 3 - xs**2 + xs - 3\n", + "\n", + "xs = np.hstack((xs, np.ones([xs.shape[0], 1])))\n", + "\n", + "xs = torch.tensor(xs).float()\n", + "ys = torch.tensor(ys).float()\n", + "\n", + "ins = 1\n", + "outs = 1\n", + "nodes = 200\n", + "lr = 0.003\n", + "\n", + "def weights(ins, outs):\n", + " ws = torch.randn(ins, outs)\n", + " ws = ws.requires_grad_(True)\n", + " return ws\n", + "\n", + "w0 = weights(ins+1, nodes)\n", + "w1 = weights(nodes, nodes)\n", + "w2 = weights(nodes, outs)\n", + "\n", + "optimizer = torch.optim.Adam([w0, w1, w2], lr)\n", + "\n", + "ers = []\n", + "for i in range(5000):\n", + " x0 = xs\n", + "\n", + " z0 = (x0 @ w0); x1 = torch.sin(z0)\n", + " z1 = (x1 @ w1); x2 = torch.sin(z1)\n", + " yh = (x2 @ w2)\n", + "\n", + " loss = F.mse_loss(yh, ys)\n", + " optimizer.zero_grad()\n", + " loss.backward()\n", + " optimizer.step()\n", + "\n", + " e = loss.item()\n", + "\n", + " if i % 500 == 0:\n", + " print('loss:', e)\n", + "\n", + " ers.append(e)\n", + "\n", + "plt.figure(1)\n", + "plt.plot(ers)\n", + "\n", + "plt.figure(2)\n", + "plt.plot(ys, label='ys')\n", + "plt.plot(yh.detach(), label='yh')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import matplotlib.pylab as plt\n", + "import torch\n", + "from torch.nn import functional as F\n", + "\n", + "\n", + "xs = np.asarray([[-10], [-8], [-6], [-4], [-2], [0], [2], [4], [6], [8], [10]])\n", + "ys = xs ** 3 - xs**2 + xs - 3\n", + "\n", + "xs = np.hstack((xs, np.ones([xs.shape[0], 1])))\n", + "\n", + "xs = torch.tensor(xs).float()\n", + "ys = torch.tensor(ys).float()\n", + "\n", + "ins = 1\n", + "outs = 1\n", + "nodes = 200\n", + "lr = 0.003\n", + "\n", + "params = []\n", + "def weights(ins, outs):\n", + " ws = torch.randn(ins, outs)\n", + " ws = ws.requires_grad_(True)\n", + " params.append(ws)\n", + " return ws\n", + "\n", + "class Model():\n", + " def __init__(self):\n", + " self.w0 = weights(ins+1, nodes)\n", + " self.w1 = weights(nodes, nodes)\n", + " self.w2 = weights(nodes, outs)\n", + "\n", + " def forward(self, x):\n", + " x = torch.sin(x @ self.w0)\n", + " x = torch.sin(x @ self.w1)\n", + " yh = (x @ self.w2)\n", + " return yh\n", + "\n", + "model = Model()\n", + "optimizer = torch.optim.Adam(params, lr)\n", + "\n", + "ers = []\n", + "for i in range(5000):\n", + " x0 = xs\n", + "\n", + " z0 = (x0 @ w0); x1 = torch.sin(z0)\n", + " z1 = (x1 @ w1); x2 = torch.sin(z1)\n", + " yh = (x2 @ w2)\n", + "\n", + " loss = F.mse_loss(yh, ys)\n", + " optimizer.zero_grad()\n", + " loss.backward()\n", + " optimizer.step()\n", + "\n", + " e = loss.item()\n", + "\n", + " if i % 500 == 0:\n", + " print('loss:', e)\n", + "\n", + " ers.append(e)\n", + "\n", + "plt.figure(1)\n", + "plt.plot(ers)\n", + "\n", + "plt.figure(2)\n", + "plt.plot(ys, label='ys')\n", + "plt.plot(yh.detach(), label='yh')" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.3" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From 58bef85f3e5eba32cbffc56b46fae70fbf4c7db9 Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Thu, 13 Feb 2025 16:46:09 -0800 Subject: [PATCH 71/94] cleanup --- M-Microcontrollers_and_Circuitpython.ipynb | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/M-Microcontrollers_and_Circuitpython.ipynb b/M-Microcontrollers_and_Circuitpython.ipynb index f6281b3..68553cd 100644 --- a/M-Microcontrollers_and_Circuitpython.ipynb +++ b/M-Microcontrollers_and_Circuitpython.ipynb @@ -4,7 +4,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Section F - Microcontrollers\n", + "# Section M - Microcontrollers\n", "\n", "Feedback: https://forms.gle/Le3RAsMEcYqEyswEA\n", "\n", @@ -47,6 +47,8 @@ "## Getting Started\n", "Download and install the \"Mu\" editor. There are other options, but mu just works - it knows where to look for code on the circuitpython microcontroller and has a button to open a serial terminal. https://codewith.mu/\n", "\n", + "You can also use https://code.circuitpython.org/ to program circuitpython just like with mu. Most browsers now support serial passthrough specifically for this type of use.\n", + "\n", "Flash micropython onto your microcontroller board. If you have a new board, it will present a storage device called UF2 something when you plug it into the computer. If it doesn't, then hold the boot button on the board while you plug it into the computer and it should go into uf2 flash mode.\n", "\n", "**Download a uf2 file from circuitpython for your board**\n", From c3f692f26df38f2f08a30864ad9fe5506a974c5f Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Thu, 20 Feb 2025 16:35:59 -0800 Subject: [PATCH 72/94] content --- C1-Classes.ipynb | 122 ++++++++++++ L-LLM.ipynb | 507 +++++++++++++++++++++++++++++++++++++++++++++-- 2 files changed, 616 insertions(+), 13 deletions(-) create mode 100644 C1-Classes.ipynb diff --git a/C1-Classes.ipynb b/C1-Classes.ipynb new file mode 100644 index 0000000..9c3c5a3 --- /dev/null +++ b/C1-Classes.ipynb @@ -0,0 +1,122 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Section C1 - Classes\n", + "\n", + "Feedback: https://forms.gle/Le3RAsMEcYqEyswEA\n", + "\n", + "**Topics**: Introducing classes.\n", + "\n", + "## Classes\n", + "Everything in python is an object, and creating a class is how we define a new type object. We can encapsulate any behavior and data into a class that we want, and classes can inherit other classes in order to expand on their functionality. \n", + "\n", + "This is a classic example. We are at a school and need to keep records of people at the school. There are properties that all people have and properties that only specific people, students, teachers, administrators, will have. So weu can create a generic people class and inherit that into separate student and teacher classes. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "class Person:\n", + " def __init__(self, name, age):\n", + " self.name = name\n", + " self.age = age\n", + "\n", + " def introduce(self):\n", + " return f\"Hi, I'm {self.name} and I'm {self.age} years old.\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "And we can extend the person class into separate Student and Teacher classes:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "class Student(Person):\n", + " def __init__(self, name, age, grade):\n", + " super().__init__(name, age) # Call the parent constructor\n", + " self.grade = grade\n", + "\n", + " def introduce(self):\n", + " return f\"Hi, I'm {self.name}, a student in grade {self.grade}.\"" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "class Teacher(Person):\n", + " def __init__(self, name, age, subject):\n", + " super().__init__(name, age)\n", + " self.subject = subject\n", + "\n", + " def introduce(self):\n", + " return f\"Hello, I'm {self.name}, and I teach {self.subject}.\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "And using them to create new objects:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Creating objects\n", + "s1 = Student(\"Alice\", 14, \"8th\")\n", + "t1 = Teacher(\"Mr. Smith\", 40, \"Math\")\n", + "\n", + "# Calling methods\n", + "print(s1.introduce()) # Output: Hi, I'm Alice, a student in grade 8th.\n", + "print(t1.introduce()) # Output: Hello, I'm Mr. Smith, and I teach Math." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Data validation/consistency\n", + "In the __init__ function, we have the opportunity to look at the values being passed in and raise an error if they don't meet our criteria. For example, we might want to make sure the name passd in is:\n", + "\n", + "* a string\n", + "* at least two words long (first and last name)\n", + "\n", + "And we might want to capitalize it automatically for consistency. \n", + "\n", + "**Exercise** " + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "name": "python", + "version": "3.11.6" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/L-LLM.ipynb b/L-LLM.ipynb index e31f950..51f8336 100644 --- a/L-LLM.ipynb +++ b/L-LLM.ipynb @@ -850,9 +850,56 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 76, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "loss: 2859.491943359375\n", + "loss: 0.0003213828313164413\n", + "loss: 1.1633167559921276e-05\n", + "loss: 0.0007853857823647559\n", + "loss: 0.10190165787935257\n", + "loss: 8.44282767502591e-05\n", + "loss: 0.00013280313578434289\n", + "loss: 1.0274457054038066e-05\n", + "loss: 3.554864917987288e-07\n", + "loss: 1.3268711427372182e-06\n" + ] + }, + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 76, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGiCAYAAAD5t/y6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAxhElEQVR4nO3de3RUVZ728acqoYpwqYRbUkQCQqNc5KKihhqV1iZNwHgb8X1FaWFa1Bcn+DbGQWTGQdReHQdbba84vRyNvUa80K/YCgrEIMFLAEkTuahp0TjBhkpoMSlAyPW8f9h1oBSFc1LJTsj3s1atldTZObXPFsnDPr99tseyLEsAAAAdiNd0BwAAAJwiwAAAgA6HAAMAADocAgwAAOhwCDAAAKDDIcAAAIAOhwADAAA6HAIMAADocAgwAACgwyHAAACADsdRgFmyZInGjBmjQCCgQCCgUCikN9980z5++PBh5ebmqk+fPurRo4emTp2qqqqqmHNUVlYqJydH3bp1U2pqqubNm6fGxsaYNuvWrdPZZ58tv9+voUOHqqCgwP0VAgCAk46jADNgwADdf//9Ki0t1ebNm/Wzn/1MV1xxhXbs2CFJuu222/T6669r2bJlKi4u1u7du3XVVVfZP9/U1KScnBzV19fr/fff13PPPaeCggItXLjQblNRUaGcnBxdfPHFKisr09y5c3XjjTdq9erVcbpkAADQ0Xlauplj79699cADD+jqq69Wv379tHTpUl199dWSpE8++UQjRoxQSUmJxo8frzfffFOXXnqpdu/erbS0NEnSU089pfnz52vv3r3y+XyaP3++Vq5cqe3bt9ufMW3aNNXU1GjVqlUt6SoAADhJJLr9waamJi1btkwHDx5UKBRSaWmpGhoalJWVZbcZPny4Bg4caAeYkpISjR492g4vkpSdna1bbrlFO3bs0FlnnaWSkpKYc0TbzJ0790f7U1dXp7q6Ovv75uZm7du3T3369JHH43F7mQAAoA1ZlqX9+/crPT1dXu8P3yhyHGC2bdumUCikw4cPq0ePHlq+fLlGjhypsrIy+Xw+paSkxLRPS0tTOByWJIXD4ZjwEj0ePfZjbSKRiA4dOqSkpKRj9is/P1/33HOP08sBAADt0K5duzRgwIAfPO44wAwbNkxlZWWqra3VH//4R82cOVPFxcUt6mQ8LFiwQHl5efb3tbW1GjhwoHbt2qVAIGCwZwAA4ERFIhFlZGSoZ8+eP9rOcYDx+XwaOnSoJGncuHH64IMP9Mgjj+iaa65RfX29ampqYmZhqqqqFAwGJUnBYFCbNm2KOV90ldLRbb67cqmqqkqBQOAHZ18kye/3y+/3f+/96IopAADQcRyv/KPFz4Fpbm5WXV2dxo0bpy5duqioqMg+Vl5ersrKSoVCIUlSKBTStm3bVF1dbbcpLCxUIBDQyJEj7TZHnyPaJnoOAAAARzMwCxYs0JQpUzRw4EDt379fS5cu1bp167R69WolJydr1qxZysvLU+/evRUIBHTrrbcqFApp/PjxkqRJkyZp5MiRuv7667V48WKFw2Hdddddys3NtWdPZs+erccff1x33HGHbrjhBq1du1Yvv/yyVq5cGf+rBwAAHZKjAFNdXa0ZM2Zoz549Sk5O1pgxY7R69Wr9/Oc/lyQ9/PDD8nq9mjp1qurq6pSdna0nn3zS/vmEhAStWLFCt9xyi0KhkLp3766ZM2fq3nvvtdsMHjxYK1eu1G233aZHHnlEAwYM0NNPP63s7Ow4XTIAAOjoWvwcmPYqEokoOTlZtbW11MAAANBBnOjvb/ZCAgAAHQ4BBgAAdDgEGAAA0OEQYAAAQIdDgAEAAB0OAQYAAHQ4BBgAANDhEGAAAECH43gzx87uj6VfavtfazV5VFDjh/Qx3R0AADolZmAcKv7LXhW8/4U+2h0x3RUAADotAoxD0c29m0/OHRgAAOgQCDAOeT3HbwMAAFoXAcYhj+fbBMMMDAAA5hBgHIpOwJBfAAAwhwDjUHQGhvwCAIA5BBiH/p5fuIUEAIBBBBiHokW85BcAAMwhwDjk+XsVjEWCAQDAGAKMQx5mYAAAMI4A4xBFvAAAmEeAcYgiXgAAzCPAOEQRLwAA5hFgHKKIFwAA8wgwDtlFvGa7AQBAp0aAccgbLeIlwQAAYAwBxiWKeAEAMIcA45CXZdQAABhHgHGIZdQAAJhHgHHIE/2C/AIAgDEEGIe8Xm4hAQBgGgHGoegMTHMzEQYAAFMIMA6xFxIAAOYRYByiiBcAAPMIMA6xFxIAAOYRYBzyHFmHBAAADCHAOMQtJAAAzCPAOORhLyQAAIwjwDhkL6MmwQAAYAwBxiH2QgIAwDwCjEMeViEBAGAcAcah6C0kiwQDAIAxBBiH7L2QyC8AABhDgHGJIl4AAMwhwDhEES8AAOYRYByiiBcAAPMIMA5RxAsAgHkEGIe4hQQAgHkEGIfYCwkAAPMcBZj8/Hyde+656tmzp1JTU3XllVeqvLw8ps1FF10kj8cT85o9e3ZMm8rKSuXk5Khbt25KTU3VvHnz1NjYGNNm3bp1Ovvss+X3+zV06FAVFBS4u8I4Yy8kAADMcxRgiouLlZubqw0bNqiwsFANDQ2aNGmSDh48GNPupptu0p49e+zX4sWL7WNNTU3KyclRfX293n//fT333HMqKCjQwoUL7TYVFRXKycnRxRdfrLKyMs2dO1c33nijVq9e3cLLbTm7BsZoLwAA6NwSnTRetWpVzPcFBQVKTU1VaWmpJkyYYL/frVs3BYPBY55jzZo1+uijj/TWW28pLS1NZ555pu677z7Nnz9fixYtks/n01NPPaXBgwfrwQcflCSNGDFC7777rh5++GFlZ2c7vca44hYSAADmtagGpra2VpLUu3fvmPeff/559e3bV6NGjdKCBQv0zTff2MdKSko0evRopaWl2e9lZ2crEolox44ddpusrKyYc2ZnZ6ukpOQH+1JXV6dIJBLzag1eex11q5weAACcAEczMEdrbm7W3Llzdf7552vUqFH2+9ddd50GDRqk9PR0bd26VfPnz1d5ebleeeUVSVI4HI4JL5Ls78Ph8I+2iUQiOnTokJKSkr7Xn/z8fN1zzz1uL+eEMQMDAIB5rgNMbm6utm/frnfffTfm/Ztvvtn+evTo0erfv78mTpyozz77TD/5yU/c9/Q4FixYoLy8PPv7SCSijIyMuH8ORbwAAJjn6hbSnDlztGLFCr399tsaMGDAj7bNzMyUJO3cuVOSFAwGVVVVFdMm+n20buaH2gQCgWPOvkiS3+9XIBCIebWGI0W8JBgAAExxFGAsy9KcOXO0fPlyrV27VoMHDz7uz5SVlUmS+vfvL0kKhULatm2bqqur7TaFhYUKBAIaOXKk3aaoqCjmPIWFhQqFQk662yqiNTDN5BcAAIxxFGByc3P13//931q6dKl69uypcDiscDisQ4cOSZI+++wz3XfffSotLdUXX3yh1157TTNmzNCECRM0ZswYSdKkSZM0cuRIXX/99frwww+1evVq3XXXXcrNzZXf75ckzZ49W59//rnuuOMOffLJJ3ryySf18ssv67bbbovz5TvHXkgAAJjnKMAsWbJEtbW1uuiii9S/f3/79dJLL0mSfD6f3nrrLU2aNEnDhw/X7bffrqlTp+r111+3z5GQkKAVK1YoISFBoVBIv/jFLzRjxgzde++9dpvBgwdr5cqVKiws1NixY/Xggw/q6aefNr6EWmIvJAAA2gNHRbzH+6WdkZGh4uLi455n0KBBeuONN360zUUXXaQtW7Y46V6bYC8kAADMYy8kp+xbSEQYAABMIcA4RBEvAADmEWAcYi8kAADMI8A45OEWEgAAxhFgHPLyJF4AAIwjwDh0ZC9HEgwAAKYQYByK7oXU3Gy4IwAAdGIEGIfYCwkAAPMIMA5FbyGxjBoAAHMIMA55jxTBAAAAQwgwDnELCQAA8wgwDnl4Ei8AAMYRYBziQXYAAJhHgHEoeguJGRgAAMwhwDhkP4nXcD8AAOjMCDAOeewqXiIMAACmEGAc8lLECwCAcQQYp9gLCQAA4wgwDnnZCwkAAOMIMA4deZAdAAAwhQDjEM+BAQDAPAKMQ/YyavILAADGEGAcYi8kAADMI8A4xF5IAACYR4BxiBoYAADMI8A4xCokAADMI8A45PVSxAsAgGkEGIeObIVEggEAwBQCjEMU8QIAYB4BxiEPeyEBAGAcAcahI7eQjHYDAIBOjQDjEE/iBQDAPAKMQzwHBgAA8wgwDnkp4gUAwDgCjEsU8QIAYA4BxqEjt5DM9gMAgM6MAOMQt5AAADCPAONQdAaG3ZAAADCHAOMQMzAAAJhHgHGIvZAAADCPAONQdC8k4gsAAOYQYByK1sA0cw8JAABjCDAO2beQjPYCAIDOjQDjEHshAQBgHgHGIfZCAgDAPAKMQ16KeAEAMI4A41IzMzAAABhDgHGIvZAAADDPUYDJz8/Xueeeq549eyo1NVVXXnmlysvLY9ocPnxYubm56tOnj3r06KGpU6eqqqoqpk1lZaVycnLUrVs3paamat68eWpsbIxps27dOp199tny+/0aOnSoCgoK3F1hnFHECwCAeY4CTHFxsXJzc7VhwwYVFhaqoaFBkyZN0sGDB+02t912m15//XUtW7ZMxcXF2r17t6666ir7eFNTk3JyclRfX6/3339fzz33nAoKCrRw4UK7TUVFhXJycnTxxRerrKxMc+fO1Y033qjVq1fH4ZJbxp6BoQoGAABjPFYLltPs3btXqampKi4u1oQJE1RbW6t+/fpp6dKluvrqqyVJn3zyiUaMGKGSkhKNHz9eb775pi699FLt3r1baWlpkqSnnnpK8+fP1969e+Xz+TR//nytXLlS27dvtz9r2rRpqqmp0apVq47Zl7q6OtXV1dnfRyIRZWRkqLa2VoFAwO0lfk9V5LAyf1OkRK9HO39zSdzOCwAAvv39nZycfNzf3y2qgamtrZUk9e7dW5JUWlqqhoYGZWVl2W2GDx+ugQMHqqSkRJJUUlKi0aNH2+FFkrKzsxWJRLRjxw67zdHniLaJnuNY8vPzlZycbL8yMjJacmk/KPogO4p4AQAwx3WAaW5u1ty5c3X++edr1KhRkqRwOCyfz6eUlJSYtmlpaQqHw3abo8NL9Hj02I+1iUQiOnTo0DH7s2DBAtXW1tqvXbt2ub20H2ffQgIAAKYkuv3B3Nxcbd++Xe+++248++Oa3++X3+9v9c+hiBcAAPNczcDMmTNHK1as0Ntvv60BAwbY7weDQdXX16umpiamfVVVlYLBoN3mu6uSot8fr00gEFBSUpKbLseN56iveRovAABmOAowlmVpzpw5Wr58udauXavBgwfHHB83bpy6dOmioqIi+73y8nJVVlYqFApJkkKhkLZt26bq6mq7TWFhoQKBgEaOHGm3Ofoc0TbRc5gUnYGRmIUBAMAUR7eQcnNztXTpUv3pT39Sz5497ZqV5ORkJSUlKTk5WbNmzVJeXp569+6tQCCgW2+9VaFQSOPHj5ckTZo0SSNHjtT111+vxYsXKxwO66677lJubq59C2j27Nl6/PHHdccdd+iGG27Q2rVr9fLLL2vlypVxvnznjsovarYseWPmZAAAQFtwNAOzZMkS1dbW6qKLLlL//v3t10svvWS3efjhh3XppZdq6tSpmjBhgoLBoF555RX7eEJCglasWKGEhASFQiH94he/0IwZM3TvvffabQYPHqyVK1eqsLBQY8eO1YMPPqinn35a2dnZcbjklvEcFViYgAEAwIwWPQemPTvRdeSOz3u4QWMWrZEklf96svyJCXE7NwAAnV2bPAemM4ot4jXWDQAAOjUCjENHF/ECAAAzCDAOfbeIFwAAtD0CjEMsowYAwDwCTAswAwMAgBkEGIeOvoVEfAEAwAwCjEPcQgIAwDwCjEPshQQAgHkEGIeYgQEAwDwCjEMsowYAwDwCjEMeD3shAQBgGgHGhWiGYQIGAAAzCDAuROdgKOIFAMAMAowL0UJe4gsAAGYQYFyI3kKiiBcAADMIMC54/n4TifwCAIAZBBgX7CJes90AAKDTIsC4YN9CaibCAABgAgHGhaOfxgsAANoeAcaFaHyhiBcAADMIMC5En8ZLfgEAwAwCjAssowYAwCwCjAv2k3iN9gIAgM6LAOOC1xu9hUSEAQDABAKMC0f2QjLaDQAAOi0CjAvshQQAgFkEGBco4gUAwCwCjAssowYAwCwCjAs8yA4AALMIMC54mYEBAMAoAowL3uhu1AQYAACMIMC4EK2B4RYSAABmEGBciK5CIr4AAGAGAcYFllEDAGAWAcYFingBADCLAOPCka0ESDAAAJhAgHGBrQQAADCLAONGtAammQgDAIAJBBgXmIEBAMAsAowLbCUAAIBZBBgXvDwIBgAAowgwLhx5DozZfgAA0FkRYFzw2DUwJBgAAEwgwLjgZQYGAACjCDAusJUAAABmEWBcoIgXAACzCDAusIwaAACzHAeY9evX67LLLlN6ero8Ho9effXVmOP/9E//JI/HE/OaPHlyTJt9+/Zp+vTpCgQCSklJ0axZs3TgwIGYNlu3btWFF16orl27KiMjQ4sXL3Z+da3Ew2aOAAAY5TjAHDx4UGPHjtUTTzzxg20mT56sPXv22K8XXngh5vj06dO1Y8cOFRYWasWKFVq/fr1uvvlm+3gkEtGkSZM0aNAglZaW6oEHHtCiRYv0+9//3ml3WwU1MAAAmJXo9AemTJmiKVOm/Ggbv9+vYDB4zGMff/yxVq1apQ8++EDnnHOOJOmxxx7TJZdcot/+9rdKT0/X888/r/r6ej3zzDPy+Xw644wzVFZWpoceeigm6JjCVgIAAJjVKjUw69atU2pqqoYNG6ZbbrlFX331lX2spKREKSkpdniRpKysLHm9Xm3cuNFuM2HCBPl8PrtNdna2ysvL9fXXXx/zM+vq6hSJRGJerSVaA2MxAwMAgBFxDzCTJ0/WH/7wBxUVFek//uM/VFxcrClTpqipqUmSFA6HlZqaGvMziYmJ6t27t8LhsN0mLS0tpk30+2ib78rPz1dycrL9ysjIiPel2bzUwAAAYJTjW0jHM23aNPvr0aNHa8yYMfrJT36idevWaeLEifH+ONuCBQuUl5dnfx+JRFovxPAgOwAAjGr1ZdRDhgxR3759tXPnTklSMBhUdXV1TJvGxkbt27fPrpsJBoOqqqqKaRP9/odqa/x+vwKBQMyrtXjtx8CQYAAAMKHVA8yXX36pr776Sv3795ckhUIh1dTUqLS01G6zdu1aNTc3KzMz026zfv16NTQ02G0KCws1bNgw9erVq7W7fFyev0/BMAMDAIAZjgPMgQMHVFZWprKyMklSRUWFysrKVFlZqQMHDmjevHnasGGDvvjiCxUVFemKK67Q0KFDlZ2dLUkaMWKEJk+erJtuukmbNm3Se++9pzlz5mjatGlKT0+XJF133XXy+XyaNWuWduzYoZdeekmPPPJIzC0ik7x/HzWKeAEAMMNxgNm8ebPOOussnXXWWZKkvLw8nXXWWVq4cKESEhK0detWXX755Tr99NM1a9YsjRs3Tu+88478fr99jueff17Dhw/XxIkTdckll+iCCy6IecZLcnKy1qxZo4qKCo0bN0633367Fi5c2C6WUEtHZmDILwAAmOG4iPeiiy760ZmH1atXH/ccvXv31tKlS3+0zZgxY/TOO+847V6b4EF2AACYxV5ILrCMGgAAswgwLjADAwCAWQQYF9hKAAAAswgwLrCVAAAAZhFgXPBQAwMAgFEEGBc8bCUAAIBRBBgX2EoAAACzCDAusJUAAABmEWBciG4lQBEMAABmEGBcYAYGAACzCDAuRIt4WUYNAIAZBBgXosuomYEBAMAMAowLR1YhAQAAEwgwLhzZzJEIAwCACQQYF6JbCbCZIwAAZhBgXGArAQAAzCLAuMBWAgAAmEWAcYGtBAAAMIsA40L0QXbcQgIAwAwCjAvRrQRYhQQAgBkEGFd4kB0AACYRYFywa2AIMAAAGEGAceHIKiQSDAAAJhBgXLCfxGu4HwAAdFYEGBeiT+KliBcAADMIMC7wJF4AAMwiwLhADQwAAGYRYFyI1sCwjBoAADMIMC6wlQAAAGYRYFygBgYAALMIMC547AfZkWAAADCBAOOCh60EAAAwigDjAlsJAABgFgHGBZZRAwBgFgHGhegyagAAYAYBxoVofGEGBgAAMwgwLrCMGgAAswgwLlADAwCAWQQYF6I1MMQXAADMIMC4EK2B4UF2AACYQYBxweulBgYAAJMIMC5QAwMAgFkEGBfYSgAAALMIMC6wlQAAAGYRYFxgN2oAAMwiwLjAMmoAAMwiwLQARbwAAJhBgHHBy1YCAAAY5TjArF+/XpdddpnS09Pl8Xj06quvxhy3LEsLFy5U//79lZSUpKysLH366acxbfbt26fp06crEAgoJSVFs2bN0oEDB2LabN26VRdeeKG6du2qjIwMLV682PnVtRKWUQMAYJbjAHPw4EGNHTtWTzzxxDGPL168WI8++qieeuopbdy4Ud27d1d2drYOHz5st5k+fbp27NihwsJCrVixQuvXr9fNN99sH49EIpo0aZIGDRqk0tJSPfDAA1q0aJF+//vfu7jE+KMGBgAAsxKd/sCUKVM0ZcqUYx6zLEu/+93vdNddd+mKK66QJP3hD39QWlqaXn31VU2bNk0ff/yxVq1apQ8++EDnnHOOJOmxxx7TJZdcot/+9rdKT0/X888/r/r6ej3zzDPy+Xw644wzVFZWpoceeigm6JjCKiQAAMyKaw1MRUWFwuGwsrKy7PeSk5OVmZmpkpISSVJJSYlSUlLs8CJJWVlZ8nq92rhxo91mwoQJ8vl8dpvs7GyVl5fr66+/PuZn19XVKRKJxLxai4caGAAAjIprgAmHw5KktLS0mPfT0tLsY+FwWKmpqTHHExMT1bt375g2xzrH0Z/xXfn5+UpOTrZfGRkZLb+gHxDdzJEaGAAAzDhpViEtWLBAtbW19mvXrl2t9lmsQgIAwKy4BphgMChJqqqqinm/qqrKPhYMBlVdXR1zvLGxUfv27Ytpc6xzHP0Z3+X3+xUIBGJereXIKqRW+wgAAPAj4hpgBg8erGAwqKKiIvu9SCSijRs3KhQKSZJCoZBqampUWlpqt1m7dq2am5uVmZlpt1m/fr0aGhrsNoWFhRo2bJh69eoVzy67Et0LiXVIAACY4TjAHDhwQGVlZSorK5P0beFuWVmZKisr5fF4NHfuXP3617/Wa6+9pm3btmnGjBlKT0/XlVdeKUkaMWKEJk+erJtuukmbNm3Se++9pzlz5mjatGlKT0+XJF133XXy+XyaNWuWduzYoZdeekmPPPKI8vLy4nbhLREt4mUGBgAAMxwvo968ebMuvvhi+/toqJg5c6YKCgp0xx136ODBg7r55ptVU1OjCy64QKtWrVLXrl3tn3n++ec1Z84cTZw4UV6vV1OnTtWjjz5qH09OTtaaNWuUm5urcePGqW/fvlq4cGG7WEItUcQLAIBpHuskfZhJJBJRcnKyamtr414P8/9Kv9Ttyz7UT0/vp+duOC+u5wYAoDM70d/fJ80qpLbEVgIAAJhFgHEhuowaAACYQYBxgRkYAADMIsC4wFYCAACYRYBxgVVIAACYRYBxga0EAAAwiwDjQrQGhgADAIAZBBgXolsJWGwlAACAEQQYV9hKAAAAkwgwLtgzMNxDAgDACAKMC2zmCACAWQQYF5iBAQDALAKMC/YyasP9AACgsyLAuMFWAgAAGEWAcYEH2QEAYBYBxoUjWwkY7QYAAJ0WAcaFIzMwJBgAAEwgwLjAVgIAAJhFgHHBw1YCAAAYRYBxwcNWAgAAGEWAcYEH2QEAYBYBxgUPy6gBADCKAOOCPQNjthsAAHRaBBgXPDyJFwAAowgwLnALCQAAswgwLkQfZMcMDAAAZhBgXIhuJUB+AQDADAKMC2wlAACAWQQYF44U8ZrtBwAAnRUBxgW2EgAAwCwCjAtsJQAAgFkEGBe8fx81SmAAADCDAONCdAaGIl4AAMwgwLjAVgIAAJhFgHGBrQQAADCLAOMCWwkAAGAWAcaF6JN4mYEBAMAMAowLXg9FMAAAmESAcYEaGAAAzCLAuHBkN2rDHQEAoJMiwLjAVgIAAJhFgHHBwwwMAABGEWBciD7IjgkYAADMIMC4cGQzRxIMAAAmEGBcYCsBAADMIsC4wTJqAACMIsC44GUrAQAAjCLAuOA56muLFAMAQJuLe4BZtGiRPB5PzGv48OH28cOHDys3N1d9+vRRjx49NHXqVFVVVcWco7KyUjk5OerWrZtSU1M1b948NTY2xrurrtlbCYhZGAAATEhsjZOeccYZeuutt458SOKRj7ntttu0cuVKLVu2TMnJyZozZ46uuuoqvffee5KkpqYm5eTkKBgM6v3339eePXs0Y8YMdenSRb/5zW9ao7uOHZVf1GxZ8sbMyQAAgNbWKgEmMTFRwWDwe+/X1tbqv/7rv7R06VL97Gc/kyQ9++yzGjFihDZs2KDx48drzZo1+uijj/TWW28pLS1NZ555pu677z7Nnz9fixYtks/na40uO+I5egbGYD8AAOisWqUG5tNPP1V6erqGDBmi6dOnq7KyUpJUWlqqhoYGZWVl2W2HDx+ugQMHqqSkRJJUUlKi0aNHKy0tzW6TnZ2tSCSiHTt2/OBn1tXVKRKJxLxay3dnYAAAQNuKe4DJzMxUQUGBVq1apSVLlqiiokIXXnih9u/fr3A4LJ/Pp5SUlJifSUtLUzgcliSFw+GY8BI9Hj32Q/Lz85WcnGy/MjIy4nthR6EGBgAAs+J+C2nKlCn212PGjFFmZqYGDRqkl19+WUlJSfH+ONuCBQuUl5dnfx+JRFotxHiPmoEhwAAA0PZafRl1SkqKTj/9dO3cuVPBYFD19fWqqamJaVNVVWXXzASDwe+tSop+f6y6mii/369AIBDzai2eo4p2uYUEAEDba/UAc+DAAX322Wfq37+/xo0bpy5duqioqMg+Xl5ersrKSoVCIUlSKBTStm3bVF1dbbcpLCxUIBDQyJEjW7u7J+ToGhjiCwAAbS/ut5D+5V/+RZdddpkGDRqk3bt36+6771ZCQoKuvfZaJScna9asWcrLy1Pv3r0VCAR06623KhQKafz48ZKkSZMmaeTIkbr++uu1ePFihcNh3XXXXcrNzZXf7493d12hiBcAALPiHmC+/PJLXXvttfrqq6/Ur18/XXDBBdqwYYP69esnSXr44Yfl9Xo1depU1dXVKTs7W08++aT98wkJCVqxYoVuueUWhUIhde/eXTNnztS9994b7666RhEvAABmeayT9Fn4kUhEycnJqq2tjXs9TGNTs4b+25uSpLKFP1dKN/PPpgEA4GRwor+/2QvJBWZgAAAwiwDjAjUwAACYRYBxga0EAAAwiwDjUjTDMAMDAEDbI8C4ZNfBkF8AAGhzBBiXojeRmgkwAAC0OQKMS9EZGIspGAAA2hwBxi27BsZsNwAA6IwIMC5Fd6RuJsEAANDmCDAu2beQyC8AALQ5AoxL39Q3SZJ+9dIWwz0BAKDzIcC00JbKGtNdAACg0yHAxMFJuh8mAADtFgEmDqK3kwAAQNsgwMQBAQYAgLZFgImDQwQYAADaFAEmDr5paDTdBQAAOhUCTBxwCwkAgLZFgImDb+oIMAAAtCUCjEtXnJluf/1NPbeQAABoSwQYlxZfPUbBQFdJ0qEGZmAAAGhLBBiX/IkJGnVKQBI1MAAAtDUCTAsk+RIlEWAAAGhrBJgW6NYlQZJ0iBoYAADaFAGmBZJ83waY3675iw5TBwMAQJshwLTA0Zs4rvmoymBPAADoXAgwLdC7u9/+esdfaw32BACAzoUA0wL/56dD5Ev8dgg/Ce833BsAADoPAkwLdO2SoBduypQkbf2yxmxnAADoRAgwLXR6Wk9J0tffNGjJus8M9wYAgM6BANNCPbt2UWhIH0nSk+t2av/hBsM9AgDg5EeAiYPnb8zUkL7dtf9wox5bu9N0dwAAOOkRYOLA6/Xo9knDJEm/X/+53t/5N8M9AgDg5EaAiZOcMf31i/EDJUnzX9nKDtUAALQiAkwc3TllhE5JSdKufYf0SNGnprsDAMBJiwATRz38ibr3ijMkSf/1ToU+CUcM9wgAgJMTASbOJo5I0+QzgmpstvSvr2xTc7N1/B8CAACOEGBawd2Xj1R3X4L+XFmjZaW7THcHAICTDgGmFfRPTtLcrNMlSQ8V/kWH6tmpGgCAeCLAtJIZ/zBIp6QkqSpSp+dKvjDdHQAATioEmFbiT0zQbT//dhbmybd3KsITegEAiBsCTCv6x7NO0dDUHoocbtQf3v/CdHcAADhpEGBaUYLXo1t/NlSS9PS7FTpQx8PtAACIBwJMK7t0TLqG9O2umm8a9ByzMAAAxAUBppUleD36vxNPkyQ9VfyZvj5Yb7hHAAB0fASYNnD52HSN6B/Q/sONeuJtdqsGAKClCDBtwOv16M4pwyVJz77/hTZ/sc9wjwAA6NgIMG1kwml9dfnYdDU1W5qzdIs+33vAdJcAAOiw2nWAeeKJJ3Tqqaeqa9euyszM1KZNm0x3yTWPx6PfXDVaP+nXXeHIYV3++Hv6/frPdJCVSQAAONZuA8xLL72kvLw83X333frzn/+ssWPHKjs7W9XV1aa75loPf6JevDmkcwb10oG6Rv3mjU+U+Zsi5b1cpmWbd2nXvm9kWWz+CADA8XisdvobMzMzU+eee64ef/xxSVJzc7MyMjJ066236s477/xe+7q6OtXV1dnfRyIRZWRkqLa2VoFAoM36fSKami39vz9/qafWfabP/3Yw5ljXLl6l9uyqnl0T1d2fqJ7+RPXomqikLgnyeDzyeiSPR/J6PPJ6PIau4IiW/vFp6R++lv7ptVrYg5Z/fgt/vsX/95q7fv7btfTzW/5Xtz8xQV7775NvZ4rbwV8r6ECmnj1Ao05Jjus5I5GIkpOTj/v7OzGunxon9fX1Ki0t1YIFC+z3vF6vsrKyVFJScsyfyc/P1z333NNWXWyRBK9H//ucDP2vcQO0sWKf3vl0r0o++0pbv6zV4YZmVe77xnQXAQA4rrMG9op7gDlR7TLA/O1vf1NTU5PS0tJi3k9LS9Mnn3xyzJ9ZsGCB8vLy7O+jMzDtmcfj0fghfTR+SB9J0uGGJoVrD2vvgTodqGvUwbpGHTjcqAN1jTpU36Rm69t/dVnWtzMflqRmy5JHLf8nUzz+1RWXf7jFoSPx6Ed8xuPk+e/S0n542sk/6/nvekSzJTU0Ncuyvv17JPoCnDgttYexz26XAcYNv98vv99vuhst0rVLgk7t212n9u1uuisAALRr7bKIt2/fvkpISFBVVVXM+1VVVQoGg4Z6BQAA2ot2GWB8Pp/GjRunoqIi+73m5mYVFRUpFAoZ7BkAAGgP2u0tpLy8PM2cOVPnnHOOzjvvPP3ud7/TwYMH9ctf/tJ01wAAgGHtNsBcc8012rt3rxYuXKhwOKwzzzxTq1at+l5hLwAA6Hza7XNgWupE15EDAID240R/f7fLGhgAAIAfQ4ABAAAdDgEGAAB0OAQYAADQ4RBgAABAh0OAAQAAHQ4BBgAAdDgEGAAA0OG02yfxtlT0+XyRSMRwTwAAwImK/t4+3nN2T9oAs3//fklSRkaG4Z4AAACn9u/fr+Tk5B88ftJuJdDc3Kzdu3erZ8+e8ng8cTtvJBJRRkaGdu3axRYFrYyxbhuMc9tgnNsG49w2WnOcLcvS/v37lZ6eLq/3hytdTtoZGK/XqwEDBrTa+QOBAP9ztBHGum0wzm2DcW4bjHPbaK1x/rGZlyiKeAEAQIdDgAEAAB0OAcYhv9+vu+++W36/33RXTnqMddtgnNsG49w2GOe20R7G+aQt4gUAACcvZmAAAECHQ4ABAAAdDgEGAAB0OAQYAADQ4RBgAABAh0OAceiJJ57Qqaeeqq5duyozM1ObNm0y3aV2bf369brsssuUnp4uj8ejV199Nea4ZVlauHCh+vfvr6SkJGVlZenTTz+NabNv3z5Nnz5dgUBAKSkpmjVrlg4cOBDTZuvWrbrwwgvVtWtXZWRkaPHixa19ae1Gfn6+zj33XPXs2VOpqam68sorVV5eHtPm8OHDys3NVZ8+fdSjRw9NnTpVVVVVMW0qKyuVk5Ojbt26KTU1VfPmzVNjY2NMm3Xr1unss8+W3+/X0KFDVVBQ0NqX164sWbJEY8aMsZ8+GgqF9Oabb9rHGef4u//+++XxeDR37lz7PcY5PhYtWiSPxxPzGj58uH283Y+zhRP24osvWj6fz3rmmWesHTt2WDfddJOVkpJiVVVVme5au/XGG29Y//Zv/2a98sorliRr+fLlMcfvv/9+Kzk52Xr11VetDz/80Lr88sutwYMHW4cOHbLbTJ482Ro7dqy1YcMG65133rGGDh1qXXvttfbx2tpaKy0tzZo+fbq1fft264UXXrCSkpKs//zP/2yryzQqOzvbevbZZ63t27dbZWVl1iWXXGINHDjQOnDggN1m9uzZVkZGhlVUVGRt3rzZGj9+vPUP//AP9vHGxkZr1KhRVlZWlrVlyxbrjTfesPr27WstWLDAbvP5559b3bp1s/Ly8qyPPvrIeuyxx6yEhARr1apVbXq9Jr322mvWypUrrb/85S9WeXm59a//+q9Wly5drO3bt1uWxTjH26ZNm6xTTz3VGjNmjPWrX/3Kfp9xjo+7777bOuOMM6w9e/bYr71799rH2/s4E2AcOO+886zc3Fz7+6amJis9Pd3Kz8832KuO47sBprm52QoGg9YDDzxgv1dTU2P5/X7rhRdesCzLsj766CNLkvXBBx/Ybd58803L4/FYf/3rXy3Lsqwnn3zS6tWrl1VXV2e3mT9/vjVs2LBWvqL2qbq62pJkFRcXW5b17Zh26dLFWrZsmd3m448/tiRZJSUllmV9GzS9Xq8VDoftNkuWLLECgYA9rnfccYd1xhlnxHzWNddcY2VnZ7f2JbVrvXr1sp5++mnGOc72799vnXbaaVZhYaH105/+1A4wjHP83H333dbYsWOPeawjjDO3kE5QfX29SktLlZWVZb/n9XqVlZWlkpISgz3ruCoqKhQOh2PGNDk5WZmZmfaYlpSUKCUlReecc47dJisrS16vVxs3brTbTJgwQT6fz26TnZ2t8vJyff311210Ne1HbW2tJKl3796SpNLSUjU0NMSM8/DhwzVw4MCYcR49erTS0tLsNtnZ2YpEItqxY4fd5uhzRNt01j//TU1NevHFF3Xw4EGFQiHGOc5yc3OVk5PzvbFgnOPr008/VXp6uoYMGaLp06ersrJSUscYZwLMCfrb3/6mpqammP9QkpSWlqZwOGyoVx1bdNx+bEzD4bBSU1NjjicmJqp3794xbY51jqM/o7Nobm7W3Llzdf7552vUqFGSvh0Dn8+nlJSUmLbfHefjjeEPtYlEIjp06FBrXE67tG3bNvXo0UN+v1+zZ8/W8uXLNXLkSMY5jl588UX9+c9/Vn5+/veOMc7xk5mZqYKCAq1atUpLlixRRUWFLrzwQu3fv79DjHNii34aQLuSm5ur7du369133zXdlZPWsGHDVFZWptraWv3xj3/UzJkzVVxcbLpbJ41du3bpV7/6lQoLC9W1a1fT3TmpTZkyxf56zJgxyszM1KBBg/Tyyy8rKSnJYM9ODDMwJ6hv375KSEj4XgV2VVWVgsGgoV51bNFx+7ExDQaDqq6ujjne2Nioffv2xbQ51jmO/ozOYM6cOVqxYoXefvttDRgwwH4/GAyqvr5eNTU1Me2/O87HG8MfahMIBDrEX3bx4vP5NHToUI0bN075+fkaO3asHnnkEcY5TkpLS1VdXa2zzz5biYmJSkxMVHFxsR599FElJiYqLS2NcW4lKSkpOv3007Vz584O8eeZAHOCfD6fxo0bp6KiIvu95uZmFRUVKRQKGexZxzV48GAFg8GYMY1EItq4caM9pqFQSDU1NSotLbXbrF27Vs3NzcrMzLTbrF+/Xg0NDXabwsJCDRs2TL169WqjqzHHsizNmTNHy5cv19q1azV48OCY4+PGjVOXLl1ixrm8vFyVlZUx47xt27aYsFhYWKhAIKCRI0fabY4+R7RNZ//z39zcrLq6OsY5TiZOnKht27aprKzMfp1zzjmaPn26/TXj3DoOHDigzz77TP379+8Yf55bXAbcibz44ouW3++3CgoKrI8++si6+eabrZSUlJgKbMTav3+/tWXLFmvLli2WJOuhhx6ytmzZYv3P//yPZVnfLqNOSUmx/vSnP1lbt261rrjiimMuoz7rrLOsjRs3Wu+++6512mmnxSyjrqmpsdLS0qzrr7/e2r59u/Xiiy9a3bp16zTLqG+55RYrOTnZWrduXcxyyG+++cZuM3v2bGvgwIHW2rVrrc2bN1uhUMgKhUL28ehyyEmTJlllZWXWqlWrrH79+h1zOeS8efOsjz/+2HriiSc63bLTO++80youLrYqKiqsrVu3Wnfeeafl8XisNWvWWJbFOLeWo1chWRbjHC+33367tW7dOquiosJ67733rKysLKtv375WdXW1ZVntf5wJMA499thj1sCBAy2fz2edd9551oYNG0x3qV17++23LUnfe82cOdOyrG+XUv/7v/+7lZaWZvn9fmvixIlWeXl5zDm++uor69prr7V69OhhBQIB65e//KW1f//+mDYffvihdcEFF1h+v9865ZRTrPvvv7+tLtG4Y42vJOvZZ5+12xw6dMj653/+Z6tXr15Wt27drH/8x3+09uzZE3OeL774wpoyZYqVlJRk9e3b17r99tuthoaGmDZvv/22deaZZ1o+n88aMmRIzGd0BjfccIM1aNAgy+fzWf369bMmTpxohxfLYpxby3cDDOMcH9dcc43Vv39/y+fzWaeccop1zTXXWDt37rSPt/dx9liWZbV8HgcAAKDtUAMDAAA6HAIMAADocAgwAACgwyHAAACADocAAwAAOhwCDAAA6HAIMAAAoMMhwAAAgA6HAAMAADocAgwAAOhwCDAAAKDD+f8vnQ6SuXHeZgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABNf0lEQVR4nO3deVjVdcL//+fnsIuAKAKiqLgioIjigrYqZVmm7c1Y2nLXTNmizkxjc0/NfH812TIt0zJZ3S02k20zubRZRmqLiiuKqCiuKIGiAgKynfP5/cEME5OVy4H3OYfX47rOdY3nAD5lLF6d5X0s27ZtRERERDyIw3SAiIiIyH/TQBERERGPo4EiIiIiHkcDRURERDyOBoqIiIh4HA0UERER8TgaKCIiIuJxNFBERETE4/ibDjgdLpeLoqIiwsLCsCzLdI6IiIicBNu2OXbsGHFxcTgcP34fiVcOlKKiIuLj401niIiIyGkoLCykW7duP/oxXjlQwsLCgMY/YHh4uOEaERERORkVFRXEx8c3/Rz/MV45UP79sE54eLgGioiIiJc5madn6EmyIiIi4nE0UERERMTjaKCIiIiIx9FAEREREY+jgSIiIiIeRwNFREREPI4GioiIiHgcDRQRERHxOBooIiIi4nFOeaB8+eWXTJgwgbi4OCzLYsGCBc1ut22bBx54gC5duhASEkJmZiY7duxo9jFHjhxh8uTJhIeH06FDB2655RYqKyvP6A8iIiIivuOUB0pVVRWpqak8//zzJ7z9scce45lnnmHOnDlkZ2cTGhrKuHHjqKmpafqYyZMnk5eXx5IlS/jwww/58ssvue22207/TyEiIiI+xbJt2z7tT7Ys5s+fz6RJk4DGe0/i4uL41a9+xa9//WsAysvLiYmJ4fXXX+e6665j69atJCUlsWbNGtLT0wFYvHgx48ePZ//+/cTFxf3k71tRUUFERATl5eV6Lx4REREvcSo/v936HJTdu3dTXFxMZmZm03URERGMGDGClStXArBy5Uo6dOjQNE4AMjMzcTgcZGdnn/Dr1tbWUlFR0ezSEnbmriL7uZtY++FLLfL1RUREPF3Bxm9Y98Qkcr9caLTDrQOluLgYgJiYmGbXx8TENN1WXFxMdHR0s9v9/f3p2LFj08f8t9mzZxMREdF0iY+Pd2d2k0MbPmJE6fuEbny9Rb6+iIiIpzv89asMPbaUujWvG+3wilfx3HfffZSXlzddCgsLW+T36Z15C07bYkB9HvsLNrfI7yEiIuKp6mpr6HfoUwAChkw22uLWgRIbGwtASUlJs+tLSkqabouNjeXgwYPNbm9oaODIkSNNH/PfgoKCCA8Pb3ZpCZ3jepIXMhSA/ctebZHfQ0RExFNtXvYekRzjEJEknz3JaItbB0pCQgKxsbFkZWU1XVdRUUF2djYZGRkAZGRkUFZWxrp165o+5osvvsDlcjFixAh35pyWuoHXAdBj/yJcTqfhGhERkdZjbZwHQEGXS/Dz9zfacsoDpbKykpycHHJycoDGJ8bm5OSwb98+LMti+vTpPPTQQyxatIjc3FymTJlCXFxc0yt9BgwYwEUXXcStt97K6tWr+eabb7jzzju57rrrTuoVPC0t5fyfUUE7unCILas+Np0jIiLSKo4cPEBKVeOLVeLOudlwzWkMlLVr15KWlkZaWhoAM2fOJC0tjQceeACAe++9l7vuuovbbruNYcOGUVlZyeLFiwkODm76Gm+++SaJiYmMHTuW8ePHc9ZZZ/HSS57xypngdu3Z2rHxVUjHV//dcI2IiEjr2P75awRYTrb796PHgKGmc87sHBRTWvoclG2rl5D48VVU20HYv95OaFgHt/8eIiIinqTgwSH0ce4ke8B9jLh2Vov8HsbOQfEV/dPHUmjF0c6qZUuW7kURERHftmtzNn2cO6mz/ek/9kbTOYAGyglZDgf7e0wEoN2Wdw3XiIiItKyDX70GwOb2o+gQdeJX1LY2DZQfkDDmFly2RXLdRor25JvOERERaRH1dbX0LWl8UYgj7eeGa/5DA+UHxHbvy5bgVAD2LtWZKCIi4pvyvppPJ8o5TATJ51xhOqeJBsqPOJ50LQDx+xZgu1yGa0RERNzPtf5NAHbEXExAYJDhmv/QQPkRyWMnU2UH080uZtuaJaZzRERE3KqstJiUyhUARJ9t/uyT79JA+RHt2keQFzkGgGOr3jBcIyIi4l75Wa8TaDWw068XvVLMn+b+XRooP6H9iCkAJB3J4njVMcM1IiIi7hO5458AHOp9peGS79NA+QmJwy+kyIqhvXWcvC/mmc4RERFxi71b19GvYTv1th/9Mm8ynfM9Gig/weHnx95ulwEQtPltwzUiIiLuUfRl4ytUN4eOoGN0V8M136eBchK6n38LAMk1GyjZv9NwjYiIyJlxNjTQ+9vGs0/sVM85++S7NFBOQtdeA9gSOBCHZbMr6xXTOSIiImck76sFRHOEo4SRct7VpnNOSAPlJFUOuAaArnt1JoqIiHi3+n+dfbK98zgCg4IN15yYBspJShp7A9V2EN1dB9i+fpnpHBERkdNSfrSUlIqvAOg4+kazMT9CA+UktQ+PJK/DuQCUrZxruEZEROT0bPt8LkFWPbsdPegzaLTpnB+kgXIKQtKvB2DA4SXUHK8yXCMiInLqIrb/A4CSXpdjOTx3BnhumQdKGnUpxUQRThV5S/WSYxER8S6FOzaSWL8Fp23RZ4xnHW3/3zRQToHDz4/dXScA4J+rgSIiIt5l/7LXANjcbhhRcT0M1/w4DZRT1O28xtP2UqrXUFq013CNiIjIyXE5nSQc+ACAhoHXGa75aRoopyi+byrbApLws2wKvnjVdI6IiMhJ2bLiQ2IppYJQks/XQPFJ5f2uAiBm13ydiSIiIl6hZs3fANja6QKCQ0IN1/w0DZTTkJg5lRo7gATXXgo2fWM6R0RE5EcdKz9CcvlyADpkTDVcc3I0UE5DRGQUeeFnA3Dkm9fNxoiIiPyEbVl/I8SqY5+jK/2GnGc656RooJymgCGTAeh36FPqamsM14iIiPyw0G3vAXCgxySPPvvku7yj0gMlnz2Jg3QkkmNsXvae6RwREZETOrBrK0l1ubhsi15jbzGdc9I0UE6Tn78/O7uMB8DaOM9wjYiIyIntW/oKAHnBacR062245uRpoJyBuHMaT+FLqcrmyMEDhmtERESaczmd9Ni/CIDaFM9/afF3aaCcgR4DhrLdvx8BlpPtn79mOkdERKSZrdmfEmeXUGmHkDzm56ZzTokGyhk62rfxTJTOO/9puERERKS5qtWNZ59s6TiWkNAwwzWnRgPlDCVm3kid7U9v5y525q4ynSMiIgJAdWU5yUe/ACBs5BTDNadOA+UMRXSKYXP7UQAc+loP84iIiGfIy3qTUKuG/VYsicMuMJ1zyjRQ3MDxrzNR+pZ8Qn1dreEaERERCNnyDgCF3b3n7JPv8r5iD5R89uUcJoJOlJP35fumc0REpI0r3reDpJqNAPQ4/2bDNadHA8UNAgKD2BHTeCaKa4PORBEREbN2f/EKDssmLzCVuJ79TeecFg0UN4k++yYAUipXUFZabLhGRETaKtvlotvehQBUJ11juOb0aaC4Sa+UERT49SbQaiA/63XTOSIi0kblr80i3i6i2g4iaez1pnNOmwaKG5X2vgKAyB06E0VERMyoWDUXgLwO5xMa1sFszBnQQHGjfpk3UW/70a9hO3u3rjOdIyIibUxNdSUDDn8OQMhw7733BDRQ3KpjdFc2h44AoOjLVw3XiIhIW7N56VuEWcf5ls4kjRxvOueMaKC4mZ3a+F4Hfb79iIb6OsM1IiLSlgTmvg3A3m6X4fDzM1xzZjRQ3CzlvKs5ShidOcqWrxeZzhERkTbi4IHdJB9vfHpB/JhbDNecOQ0UNwsMCmZ753EA1K9/03CNiIi0FTuzXsXPstkakEzXXsmmc86YBkoL6HTWv85EqfiK8qOlhmtERMTX2S4XcXvmA3As0XvPPvkuDZQW0HvgKHY7ehBk1bPt87mmc0RExMftyPmSHq5CjtuBDMj0vncuPhENlBZgORyU9LocgIj89wzXiIiIrzu64l9nn0ScQ1hER8M17qGB0kL6jLmZBttBYsNWCndsNJ0jIiI+qrammsTSTwEISvfus0++SwOlhUTF9SCvXToA+5e9ZrhGRER8Vd7Sd4igioN0JGnUBNM5bqOB0oIaBjaeiZJw4ANcTqfhGhER8UWOTY1nn+yMm4Cfv7/hGvfRQGlByedfQwWhxFLKlhUfms4REREfU1pcSEr1agC6nnez4Rr30kBpQcEhoWztdAEANWv+ZrhGRER8TUHWq/hbLvL9E+neb7DpHLfSQGlhHTKmApBcvpxj5UcM14iIiK+wXS5idr4PQFm/qwzXuJ8GSgvrN+Q89jm6EmLVsS1L96KIiIh77MxdSYJrD7V2AImZN5rOcTsNlBZmORwc6NF4JkroNp2JIiIi7lH6deMrRDeHjSaiY2fDNe6ngdIKeo29GZdtkVSXy4FdW03niIiIl6urraH/ocazT/yHTDZc0zI0UFpBTLfebA4ZAsC+pa8YrhEREW+Xt/wfRFJBKR1IPnuS6ZwWoYHSSuqSrwWgx/5FOhNFRETOTM48AApiL8E/INBwTMvQQGklyWN+zjE7hDi7hK3Zn5rOERERL3Xk4AFSqlYBEHPOTYZrWo7bB4rT6eT+++8nISGBkJAQevfuzYMPPoht200fY9s2DzzwAF26dCEkJITMzEx27Njh7hSPEhIaxtaOYwGoWq1X84iIyOnZnvU6AZaTHX59SEgaZjqnxbh9oDz66KO88MILPPfcc2zdupVHH32Uxx57jGeffbbpYx577DGeeeYZ5syZQ3Z2NqGhoYwbN46amhp353iUsJGNb4GdfPQLqivLDdeIiIg3iir4JwCH+1xpuKRluX2grFixgokTJ3LJJZfQs2dPrrrqKi688EJWr248ite2bZ5++ml+//vfM3HiRAYNGsQbb7xBUVERCxYscHeOR0kcdgH7rVhCrRryst40nSMiIl5md142fZw7qbP96J/puw/vQAsMlFGjRpGVlcX27dsB2LhxI19//TUXX3wxALt376a4uJjMzMymz4mIiGDEiBGsXLnyhF+ztraWioqKZhdvZDkcFHafBEDIlnfMxoiIiNcp+bLx7JO89hlEdu5iuKZluX2gzJo1i+uuu47ExEQCAgJIS0tj+vTpTJ7c+Drt4uJiAGJiYpp9XkxMTNNt/2327NlEREQ0XeLj492d3Wp6jml8M6ekmo0U7/Pt592IiIj7NNTX0afkEwCswb559sl3uX2gvPvuu7z55pvMmzeP9evXM3fuXP785z8zd+7c0/6a9913H+Xl5U2XwsJCNxa3ri49+pMXmIrDstn9hc5EERGRk5P31ftEUcYRwkk+17effwItMFB+85vfNN2LMnDgQG644QZmzJjB7NmzAYiNjQWgpKSk2eeVlJQ03fbfgoKCCA8Pb3bxZtVJjWeidNu7ENvlMlwjIiLewLm+8eyT7dEXExAYZLim5bl9oFRXV+NwNP+yfn5+uP71gzghIYHY2FiysrKabq+oqCA7O5uMjAx353ikpLGTqbaDiLeLyF+b9dOfICIibVr54RJSjn0DQOezbjQb00rcPlAmTJjAn/70Jz766CP27NnD/PnzefLJJ7n88sY3zLMsi+nTp/PQQw+xaNEicnNzmTJlCnFxcUyaNMndOR4pNKwDeR3OB6Bi1ek/9CUiIm3Dtqy5BFoN7HL0pPegUaZzWoW/u7/gs88+y/33388dd9zBwYMHiYuL4xe/+AUPPPBA08fce++9VFVVcdttt1FWVsZZZ53F4sWLCQ4OdneOx2o3fAosWcyAw59TU11JcLv2ppNERMRDRW5/D4CDva+kl+GW1mLZ3z3i1UtUVFQQERFBeXm51z4fxeV0UvJgf7pwiLXD/kz6JbeaThIREQ+0d9t6erx9Pg22g7LbNxEV672vZD2Vn996Lx5DHH5+7ImfCEBg7tuGa0RExFMVLW88+2Rz6AivHienSgPFoO7nN56Jknx8HQcP7DZcIyIinsbZ0EDvbz8EwDXoOsM1rUsDxaCuvZLZEpCCn2WzM+tV0zkiIuJhtnyziGiOUEZ7ks+7xnROq9JAMawy8WoA4vbM15koIiLSTO3avwOQH3UhQcHtDNe0Lg0UwwZkTuG4HUgPVyE7cr40nSMiIh6iouwwKRWNPxciR91oNsYADRTDwiI6khdxDgBHV+hMFBERabTt87kEW/XsccTTd/DZpnNanQaKBwhKvx6AxNJPqa2pNlwjIiKeICy/8eyT4p6XYzna3o/rtvcn9kBJoyZQQiciqCJv6Tumc0RExLDCglwG1G/BaVv0zrzFdI4RGigewM/fn11xlwLg2KQzUURE2rr9yxpf2ZkXkk7nuJ5mYwzRQPEQXc9rPBMlpXo1pcWFhmtERMQUl9NJwv4PAKgf2LbOPvkuDRQP0b3fYPL9E/G3XBToTBQRkTZry8qPiOUQFbQjeczPTOcYo4HiQcr6XQVAzM73dSaKiEgbdXxN49knWztmEhwSarjGHA0UD5KYeSO1dgAJrj3szF1pOkdERFpZZcVRksuWARCRMdVsjGEaKB4komNnNoeNBqD0m9fNxoiISKvbkvV32lm1FFpx9B86xnSOURooHsZ/aOOZKP0PLqautsZwjYiItKbQrY1HTRzo0TbPPvmutv2n90DJZ02klA5EUkHe8n+YzhERkVZStHsbyXW5uGyLnmNvNp1jnAaKh/EPCKQg9pLGX+TMMxsjIiKtZu/Sf519EjyY2Pg+hmvM00DxQLHn/utMlKpVHDl4wHCNiIi0NNvlonvhAgBqk681G+MhNFA8UM8B6ezw60OA5WR71uumc0REpIVtXf0ZXe0Squxgksb83HSOR9BA8VBH+jaeiRJV8E/DJSIi0tIqVzW+m31e5BjatY8wXOMZNFA8VP/Mm6iz/ejj3MnuvGzTOSIi0kKqK8tJOroUgPYjphiu8RwaKB6qQ1Qsm9uPAqDky9cM14iISEvZ8sU82lvHOWDFkDj8QtM5HkMDxYM5Bjc+Dtmn5BMa6usM14iISEsIyms8+2Rf/EQcfn6GazyHBooHSz73So4QThRl5H31vukcERFxs+LCApJrcgDocf4tZmM8jAaKBwsIDGJ79MUAONfrTBQREV+zJ+tVHJZNXuBA4hISTed4FA0UD9f57H+diXLsG8oPlxiuERERd7FdLrrunQ9A1QCdffLfNFA8XO+BI9npl0Cg1cC2rLmmc0RExE3y131BvF1EtR1E0tjrTed4HA0UL3Co1xUAdNiu9+YREfEV5aveACCvw7m0D480XON5NFC8QN/Mm6m3/ejfkM/e/BzTOSIicoZqqisZcHgJACHDbjBc45k0ULxAp5hu5IUOB6Bo+SuGa0RE5EzlLX2bcKoppjNJGZeYzvFIGihewk79GQC9iz7E2dBguEZERM5EQO7bAOzuNkFnn/wADRQvkXTu1ZTRnmiOsOWbRaZzRETkNB0q2kPy8bUAdDvvZsM1nksDxUsEBbcjP2ocALVr/264RkRETtfOrFfxs2y2BiQR32eg6RyPpYHiRTqOvhGAlIovqSg7bDZGREROme1yEbu78WTwY/2vNlzj2TRQvEif1LPY44gn2KpnW9YbpnNEROQUFWz8mp6uQmrsABIzp5rO8WgaKF7EcjgoTmg8EyVs27uGa0RE5FQd+abx3ek3h59DeIdOhms8mwaKl+kz9hactsWA+i3sL9hsOkdERE5SbU01/Us/AyBw6GTDNZ5PA8XLRMX1YHNIOgCFy3QmioiIt8hb9i4dqOQgHUk+a6LpHI+ngeKFGgZeB0DC/g9wOZ2Ga0RE5GQ4NjWefbKzy6X4+fsbrvF8GiheKHnMz6igHbEcYsvKj0zniIjITygtLiSlKhuAuHNvMlzjHTRQvFBwSChbO10AwPE1OhNFRMTTFWS9hr/lYrt/P3okDjGd4xU0ULxUxMgpACSXLaPqWJnZGBER+VGddzWefXK071WGS7yHBoqX6j90DIVWHO2sWvI+/5vpHBER+QE7N62gt3M3dbY/iZk3ms7xGhooXspyODjQ43IAQrfqTBQREU916OvXAdgcNoqITjFmY7yIBooX6zn2Zly2RXLdJop2bzOdIyIi/6W+rpZ+Bz8BwG+Izj45FRooXiw2vg95wYMB2Lv0VbMxIiLyPXnL/0lHKiilA8lnX2E6x6tooHi52uTGM1F673uP2ppqwzUiIvJdfmtfBqAg5mL8AwIN13gXDRQvN/DCKRykI9EcYeOHc0zniIjIv2xfv5yBtetpsB10v3iG6Ryvo4Hi5YKC27Gr380AdM2bQ0N9neEiEREBqPr8EQA2dLiQuJ79Ddd4Hw0UHzDosrs5Sjhd7RJyFr9mOkdEpM3bvWUNadUrcNkW0ePvM53jlTRQfEC79hHk97wBgKgNz+n9eUREDDu8uPHek5yws+nRf7DZGC+lgeIjBkycyTE7hJ6ufWzMest0johIm7W/YDNp5VkAhF8wy3CN99JA8RERkVFs7nYtAO1XP43tchkuEhFpm4o+fgQ/y2ZjyHD6pI42neO1NFB8SP+J93LcDqRvww42f73QdI6ISJtTsn8ngw9/DEDQ+fcarvFuGig+pGN0VzbGTALA8fUTZmNERNqg3YseIdBykhc4kMThF5jO8WoaKD4m4bJZ1Nl+JNflsi37M9M5IiJtxuGS/aSWLADAddavzMb4gBYZKAcOHOD666+nU6dOhISEMHDgQNauXdt0u23bPPDAA3Tp0oWQkBAyMzPZsWNHS6S0OTHdepPTaTwAtcseN1wjItJ2bF/0OCFWHdv9+5Fy1kTTOV7P7QPl6NGjjB49moCAAD755BO2bNnCE088QWRkZNPHPPbYYzzzzDPMmTOH7OxsQkNDGTduHDU1Ne7OaZPixs/CaVukHl9NwcZvTOeIiPi88qOlpOx/B4Cq4fdgOfQAxZnyd/cXfPTRR4mPj+e11/5zYFhCQkLT/7Ztm6effprf//73TJzYuDDfeOMNYmJiWLBgAdddd527k9qcbn1SWBsxlvSKz6lY8gikfmA6SUTEp21Z+GcyrOPscXQndezPTOf4BLdPvEWLFpGens7VV19NdHQ0aWlpvPzyy0237969m+LiYjIzM5uui4iIYMSIEaxcufKEX7O2tpaKiopmF/lxnS5qfO394GNfsTc/x2yMiIgPq64sJ3HPmwCUpt2Jw8/PcJFvcPtA2bVrFy+88AJ9+/bl008/5fbbb+fuu+9m7ty5ABQXFwMQExPT7PNiYmKabvtvs2fPJiIioukSHx/v7myfk5A0jA3tRuOwbA5+PNt0joiIz9q06BkiqeCAFcPgi24yneMz3D5QXC4XQ4YM4eGHHyYtLY3bbruNW2+9lTlzTv+ddu+77z7Ky8ubLoWFhW4s9l2hmb8FIK3sM4r25BuuERHxPbU11fTa/ioAB5J/iX9AoOEi3+H2gdKlSxeSkpKaXTdgwAD27dsHQGxsLAAlJSXNPqakpKTptv8WFBREeHh4s4v8tH5DziU3aAj+lovCDx42nSMi4nM2fjiHaI5wkI6kXvpL0zk+xe0DZfTo0eTnN/+v9e3bt9OjRw+g8QmzsbGxZGVlNd1eUVFBdnY2GRkZ7s5p8xzn/gaAwaUfUVq013CNiIjvaKivo2te46MDu/rdTFBwO8NFvsXtA2XGjBmsWrWKhx9+mIKCAubNm8dLL73EtGnTALAsi+nTp/PQQw+xaNEicnNzmTJlCnFxcUyaNMndOW1e0siL2BaQRJBVT8GiR03niIj4jJxPXqWrXcJRwhl02d2mc3yO2wfKsGHDmD9/Pm+99RYpKSk8+OCDPP3000yePLnpY+69917uuusubrvtNoYNG0ZlZSWLFy8mODjY3TltnuVwUJsxA4BB3/6DstITPxFZREROnsvpJCrneQDye95Au/YRhot8j2Xbtm064lRVVFQQERFBeXm5no9yEmyXi11/Gkpv5y5Wxt9Kxi1/Np0kIuLVNnz2d9JWTOOYHYI9I4/wDp1MJ3mFU/n5raPu2gDL4aBsaOPdj0mF86isOGq4SETEe9kuF+1XPw3A5m7Xapy0EA2UNmLwhTewz9GVCKrYvOBJ0zkiIl5r81cL6Nuwg2o7iP4T7zWd47M0UNoIP39/SgbdAUCfXW9QU11puEhExDs5vmn8j7xNMZPoGN3VcI3v0kBpQwaPv5Vv6UwUZWz84DnTOSIiXmdb9mck1+VSZ/uRcNlvTef4NA2UNiQgMIh9A24FoMfW/6O+rtZwkYiId6ld+hgAOZ3GE9Ott+Ea36aB0sakXnYnpXQglkNs+OhF0zkiIl6jYOM3pNaswWlbdL30PtM5Pk8DpY0JDgmloM+NAHTZ9ALOhgazQSIiXqJiySMAbIgYS9deyYZrfJ8GShuUctl0ygkl3i4i57O5pnNERDze3m3rGXzsKwA6XTTLcE3boIHSBrUPj2RL98aTfTusexbb5TJcJCLi2Q5+8igOy2ZDu9EkJA0zndMmaKC0UUkTf02VHUxv5242LXvXdI6IiMcq2pNPWtlnAIRm6pU7rUUDpY2K6BRDbpcrAQha8bTuRRER+QGFHzyMv+UiN2gI/YacazqnzdBAacP6TJpFrR1AYsNW8lZ+ZDpHRMTjlBbtZXBp478fHef+xnBN26KB0oZFxXYnp/MEAOwvnzBcIyLieQoWPUqQVc/WgCSSRl5kOqdN0UBp47pPmEW97cfA2g1sX7/MdI6IiMcoKy1m0Lf/AKAuYwaWQz8yW5O+221clx79yYm8EICqzx81XCMi4jm2Lvwz7axaCvx6M+i8q0zntDkaKELM+Fm4bIu06hXszss2nSMiYlxlxVGSCucBUJF+l+49MUDfcaF7v8FsCGt8ZvrhxboXRURk84IniaCKfY6upF5wg+mcNkkDRQDocGHja/vTKr5gf8FmwzUiIubUVFfSZ9cbAJQMugM/f3/DRW2TBooA0HvQKDaGjMDPsin66GHTOSIixmz84DmiKONbOjN4/K2mc9osDRRpEjTmXgAGH1lMcWGB4RoRkdZXX1dLj63/B8C+AbcSEBhkuKjt0kCRJonDMskLHESg5WTPokdM54iItLoNH71ILIcopQOpl91pOqdN00CRZlxn/RqA1IMLOVyy33CNiEjrcTY00GXTCwAU9LmR4JBQw0VtmwaKNJNy1gS2+/cjxKpj+8LHTOeIiLSanM/mEm8XUU4oKZdNN53T5mmgSDOWw0H1iBkApBx4l/KjpYaLRERanu1y0WHdswBs6T6Z9uGRhotEA0W+Z9CYa9nt6EGYdZwtCx43nSMi0uI2LXuX3s7dVNnBJE38tekcQQNFTsDh58fhIY1PDkvc+yZVx8rMBomItCDb5SJoxdMA5Ha5kohOMWaDBNBAkR+QdtHN7Le6EMkxchc9YzpHRKTF5K38iMSGrdTaAfSZNMt0jvyLBoqckJ+/P0UpvwCg147XqK2pNlwkItIy7C+fACCn8wSiYrsbrpF/00CRHzT40tspoRPRHCHng7+azhERcbvt65cxsHYD9bYf3Sfo3hNPooEiPygwKJjd/W8BIH7LSzTU1xkuEhFxr6rPG98gNSfyQrr06G+4Rr5LA0V+VOpld3OEcOLsEnI+ecV0joiI2+zOyyategUu2yJmvO498TQaKPKjQkLDyE9ofKvxqJzncTmdhotERNzj8OLGe082hJ1L936DzcbI92igyE9KnvgrKmhHT1chOZ/PM50jInLG9hdsJq3iCwA6XPhbwzVyIhoo8pPCO3Qir9t1AIStfhrb5TJcJCJyZoo+ehg/y2ZjyAh6DxplOkdOQANFTkrixHuptoPo6ywg98v5pnNERE5bcWEBg48sBiBozL2Ga+SHaKDISYns3IVNsZcD4P/Nk4ZrRERO355FjxBoOckLHETisEzTOfIDNFDkpPW6bBZ1tj9J9ZvZsmqx6RwRkVN2uGQ/qQcXAuA6S++548k0UOSkRXdNYEOn8QA0LPuz4RoRkVO3feFjhFh1bPfvR8pZE0znyI/QQJFT0u3S39FgOxhUs4YdOV+ZzhEROWnlR0tJOfAuAFXD78Fy6EegJ9P/O3JKuvYaQE7EWACOLXnMcI2IyMnbsuBxwqzj7Hb0IHXsz0znyE/QQJFTFnVx44mLgyu/Yu+29YZrRER+WnVlOYl73wTg8JA7cfj5GS6Sn6KBIqes54B0NoSehcOyOfjJbNM5IiI/adPCvxDJMfZbXUi76GbTOXISNFDktLS/oPFelLSyzynavc1wjYjID6utqabXjtcAKEr5BX7+/oaL5GRooMhp6Tv4bDYFp+NvuSj8UPeiiIjnyvngBaI5QgmdGHzp7aZz5CRpoMhp8z+38QyBtNIPOVS0x2yMiMgJNNTX0W3LiwDs7n8LgUHBhovkZGmgyGlLyriYrQHJBFoN7Fz4iOkcEZHvyfnkFbraJRwhnNTL7jadI6dAA0XOSP2omQAMKn6fstJiwzUiIv/hcjqJynkegPyEGwgJDTNcJKdCA0XOyMBzr6DArzftrFq2LdC5KCLiOXI+n0dPVyEVtCN54q9M58gp0kCRM2I5HFQMa7zbNGn/2xwrP2K4SEQEbJeLsNVPA5DX9VrCO3QyGySnTANFztjgC25gryOecKrYvPAp0zkiIuR+OZ++zgKq7SASJ/3WdI6cBg0UOWMOPz8Opt4BQL9dc6mprjRcJCJtnf+Kxv9Y2hR7OZGduxiukdOhgSJuMfjiWyiyoulEOTkLnzGdIyJt2NbsT0mqy6XO9qfXZbNM58hp0kARtwgIDKJwwG0A9Mx/hbraGsNFItJW1S99HIANncYT3TXBcI2cLg0UcZvUCXdwiEhiKWXjRy+azhGRNqhg49cMqllDg+2g26W/M50jZ0ADRdwmOCSUnX1uBCA2dw7OhgazQSLS5lR89igAORFj6dprgOEaORMaKOJWAydOp4z2xNtFbPj0NdM5ItKG7N22nsGVXwEQdbGee+LtWnygPPLII1iWxfTp05uuq6mpYdq0aXTq1In27dtz5ZVXUlJS0tIp0gpCwzqwtcf1AHRa9xy2y2W4SETaioOfPILDstkQehY9B6SbzpEz1KIDZc2aNbz44osMGjSo2fUzZszggw8+4L333mP58uUUFRVxxRVXtGSKtKKkib+m0g4hwbWHjV+8YzpHRNqAot3bSCtbAkD7TJ174gtabKBUVlYyefJkXn75ZSIjI5uuLy8v55VXXuHJJ59kzJgxDB06lNdee40VK1awatWqlsqRVhTRsTO5cVcDELLqKd2LIiItrvDD2fhbLjYFD6Vv2jmmc8QNWmygTJs2jUsuuYTMzMxm169bt476+vpm1ycmJtK9e3dWrlx5wq9VW1tLRUVFs4t4tr4T76XGDqB/Qz55Kz40nSMiPuxQ0R7SShv/PeN/7m8M14i7tMhAefvtt1m/fj2zZ8/+3m3FxcUEBgbSoUOHZtfHxMRQXHzid8OdPXs2ERERTZf4+PiWyBY3ioqNZ2P0xMZffPWE2RgR8Wk7Fz5CoNXA1oBkkjIuNp0jbuL2gVJYWMg999zDm2++SXBwsFu+5n333Ud5eXnTpbCw0C1fV1pWjwmzqLf9SKnNYdvaLNM5IuKDykqLGVT8PgB1o2YYrhF3cvtAWbduHQcPHmTIkCH4+/vj7+/P8uXLeeaZZ/D39ycmJoa6ujrKysqafV5JSQmxsbEn/JpBQUGEh4c3u4jni+3elw2R4wCo+eJxwzUi4ou2LXiMdlYtBX69GXTulaZzxI3cPlDGjh1Lbm4uOTk5TZf09HQmT57c9L8DAgLIyvrPf1Hn5+ezb98+MjIy3J0jhnW59Hc4bYvB1SvZtTnbdI6I+JBj5UdI2v82ABXD7sZy6GgvX+Lv7i8YFhZGSkpKs+tCQ0Pp1KlT0/W33HILM2fOpGPHjoSHh3PXXXeRkZHByJEj3Z0jhsX3Gci68PMYemwpRz+dDSkLTCeJiI/YvPApMqhir6Mbgy+4wXSOuJmRufnUU09x6aWXcuWVV3LOOecQGxvL+++/byJFWkHkuPsASKtYRuGOjYZrRMQX1FRX0m/XXAAODroDh5+f4SJxN8u2bdt0xKmqqKggIiKC8vJyPR/FS+Q8dhGDq1eyusN4hk9/y3SOiHi57LdnM2LbIxRZ0XS+bzMBgUGmk+QknMrPbz1gJ60ieEzj2QRpRz+leN8OwzUi4s3qamvose3/ACgccKvGiY/SQJFWkZg+ls1BgwmwnOxd9P3zcURETtbGj14kllIOEUnqhGmmc6SFaKBI6zn7VwCkHlpEabHOshGRU+dsaCA2dw4AO/vcSHBIqOEiaSkaKNJqkkddSr5/IsFWPTsWPmY6R0S8UM6nrxNvF1FGewZOnG46R1qQBoq0Gsvh4PjI6QAMLHqP8iOHzAaJiFexXS4i1z0LwNbukwkN62A2SFqUBoq0qtQx17LL0ZP21nG2LNDpsiJy8jYufZderj1U2iEkTdKbAvo6DRRpVZbDwdGhdwEwaO9cvt2bb7hIRLxBTXUlkd88CEBu3JVEdOxsuEhamgaKtLrB425ka0ASoVYNh+fdhu1ymU4SEQ+X88a99HDt5xCRJF39R9M50go0UKTV+fn70/7alzhuB5JSm8PqfzxhOklEPNi21UsY/u08AA6c/YjuPWkjNFDEiPg+A9mYOB2AgXmPU7R7m9kgEfFIx6uOEfrJ3TgsmzUdLmbw2OtMJ0kr0UARY4ZfM4stgQNpZ9Vy9K1bcTmdppNExMNsnPsr4u0iDtKRflOfM50jrUgDRYxx+PkRcd3LVNtBJNdtYs0/9KoeEfmPLasWM7zkXQCKz32ciMgow0XSmjRQxKiuvQaQmzQTgIFbnuTArjzDRSLiCaorywn/9B4cls3qyEsYdP5VppOklWmgiHHDrvoNeYGptLNqKX/rNj3UIyLkzp1JN7uYYqJInPqs6RwxQANFjHP4+RH585epsoNJqt/M6nf0ZoIibVneNx8x4tA/ADg05s+Ed+hkuEhM0EARjxDXsz+bUxpPhkzN/wuFBbmGi0TEhKpjZUR+Ph2A7E4TGXjO5WaDxBgNFPEYw6+cSW5QGiFWHZXv3IazocF0koi0ss1zZxBnH+RbOpM89S+mc8QgDRTxGJbDQdTPX6TSDmFA/RbWvPMn00ki0oo2f7WQEaXvA3B47BO0D480XCQmaaCIR+nSoz9bBv0WgMHbn2Vvfo7ZIBFpFcfKjxCV9SsAsqOuIOXsiYaLxDQNFPE4wy6/h03B6QRb9dS89ws91CPSBmyZew+xHKLIiiFl6lOmc8QDaKCIx7EcDmKuf4kK2tG/YRtr3vr/TCeJSAvKXf4+I44sAuDoBU8TGtbBbJB4BA0U8Ugx3XqzLfU+ANIK/sreresMF4lIS6goO0znpY2v4MvufBXJo8YbLhJPoYEiHmvYxDvZGDKcIKue2n/+kob6OtNJIuJm2+beRSyl7LdiGTj1SdM54kE0UMRjWQ4HXa5/iQpC6dewnTXz/mg6SUTcaOPS9xh+9CNctkXFuL/Qrn2E6STxIBoo4tGiuyaQn/Z7AIbumsPuLWsMF4mIO5QfLaXL8nsBWB17LUkjLzJcJJ5GA0U8XvqEX5LTLoNAy0nDP39JfV2t6SQROUPb595JNEcotOJInfJn0znigTRQxONZDgfdrn+RckLp6yxg7ZsPmE4SkTOQk/U2w8o+wWVbVF38DCGhYaaTxANpoIhXiIrrwY6hfwBg6J6X2Zm7ynCRiJyO8sMldP1qFgCru/ycxOEXGC4ST6WBIl5j6CW3siH0LAItJyy4XQ/1iHihHXOn0Zmj7HV0Y/CUx0zniAfTQBGvYTkcxN8wh6OE0du5i7V//73pJBE5BRs++zvpFUtw2hY1458luF1700niwTRQxKtExcaza9gfAUjf+woFG78xGyQiJ6WstJj4Ff8LwOq4G+ifPsZwkXg6DRTxOkMuvpn17c8hwHLit/AO6mprTCeJyE8omHsHUZSxxxFP2pRHTOeIF9BAEa9jORz0nDKHI4ST4NrDur/dZzpJRH7E+sWvk34siwbbQd2lzxMcEmo6SbyABop4pY7RXdkz8kEAhhW+zo4NXxouEpETOXLwAD1X3Q/Amm5T6TfkXMNF4i00UMRrDbnoRtaFnY+/5SLgg2nU1lSbThKR/7L7jTvoSAW7HT0YcsPDpnPEi2igiFfrNeUFDhNBT9c+1r8xy3SOiHzHuo9fYWjlMhpsB86JfyUouJ3pJPEiGiji1SI7d2Fvxp8AGH7gDbavX2Y2SEQAKC0upNfqxsMV13S/mT6pZxkuEm+jgSJeb8i4G1gbnomfZRP04TRqjleZThJp02yXi31/u51IjrHTL4Gh1//JdJJ4IQ0U8Ql9p/6VUjrQw7WfDW/cazpHpE1b98krDKn6inrbDyb+lcCgYNNJ4oU0UMQnRHSKYf/o2QAML3qTbWs+N1wk0jaVFu+jz5o/ArC2x//Qe9Aos0HitTRQxGcMvuDnrIkYh59lE/rxXdRUV5pOEmlTbJeLwjd+QQcqKfDrTfr1D5pOEi+mgSI+pd/U5zlIR+LtInLm/tp0jkibsu7DF0mrXkGd7YffFS8QEBhkOkm8mAaK+JSIjp359pxHARhe/DZbsz81XCTSNhwq2kO/9Y33mKxP+CUJySMMF4m300ARn5M65hpWdxiPw7IJW3wPx6uOmU4S8Wm2y8WBv/2CcKrY4d+X9Ml/NJ0kPkADRXxS/6nPUkInutnfsnHuTNM5Ij5t7aK/Mvj4KupsfwKunIN/QKDpJPEBGijikyIioyg573EARh58l7wVHxsuEvFNJft30j+n8ZyTdb3voOeAdMNF4is0UMRnDTrvSlZ3nABAhyXTqTpWZjZIxMfYLhclf/8F4VST79+fYT+733SS+BANFPFpA6Y+QzGd6WqXsHnuDNM5Ij5lzfxnGFSzhlo7gOCrX9JDO+JWGiji08IiOnJozBMAjCh9n83ffGC4SMQ3FO/bwYBNjwCwoe80evQfbDZIfI4Givi8gedMJLvTJAA6fj6TyoqjZoNEvJztcnHozdsIs46zzX8Aw67TQzvifhoo0iYkT32aIiuaOPsgeXOnm84R8Wqr//kUA2vXU2MHEHrti/j5+5tOEh+kgSJtQvvwSI5kPgnAiMMLyP1yoeEiEe9UtCeflM2PAZDT/x7i+6YaLhJfpYEibUbK6AlkR10BQOcvfsWx8iOGi0S8i8vp5MhbtxFq1bA1IJnh1/7OdJL4MA0UaVNSpj7FASuGWA6xde7dpnNEvMqafz5BSm0Ox+1Awq59CYefn+kk8WEaKNKmhIZ1oPzCvwAw/MgHbFr2T8NFIt7hwK6tDMz7MwAbE2fQrU+K4SLxdRoo0uYkZVzMquhrAIhd9mvKj5YaLhLxbC6nk7K3b6WdVUte4ECGX/Nb00nSBrh9oMyePZthw4YRFhZGdHQ0kyZNIj8/v9nH1NTUMG3aNDp16kT79u258sorKSkpcXeKyA9Knfok+60uRHOE/Ll3mc4R8Wir332U5Lpcqu0gOlz3sh7akVbh9oGyfPlypk2bxqpVq1iyZAn19fVceOGFVFVVNX3MjBkz+OCDD3jvvfdYvnw5RUVFXHHFFe5OEflBIaFhHLvoL7hsi+FlH7Pxi3dNJ4l4pP0Fmxm07WkAcpN+RddeA8wGSZth2bZtt+RvcOjQIaKjo1m+fDnnnHMO5eXldO7cmXnz5nHVVVcBsG3bNgYMGMDKlSsZOXLkT37NiooKIiIiKC8vJzw8vCXzxceteuGXjCx5i4N0JOju1UR07Gw6ScRjuJxO8h85mwH1eWwOGkzSvV/o3hM5I6fy87vFn4NSXl4OQMeOHQFYt24d9fX1ZGZmNn1MYmIi3bt3Z+XKlSf8GrW1tVRUVDS7iLjD4Kl/ptCKI5ojbJ87zXSOiEdZ/c7DDKjPo8oOpuPP9KodaV0tOlBcLhfTp09n9OjRpKQ0PuO7uLiYwMBAOnTo0OxjY2JiKC4uPuHXmT17NhEREU2X+Pj4lsyWNiS4XXuqxj+L07YYVv4pOZ+/ZTpJxCMU7tjI4PzGV7xtTvkNcT37Gy6StqZFB8q0adPYvHkzb7/99hl9nfvuu4/y8vKmS2FhoZsKRSBxWCZruvwcgG5fz6L8sJ6wLW2bs6GBqnd/SbBVT25QGsOvnGk6SdqgFhsod955Jx9++CFLly6lW7duTdfHxsZSV1dHWVlZs48vKSkhNjb2hF8rKCiI8PDwZhcRdxo89XH2OroRRRk75t5hOkfEqDVvP0Ri/RYq7RA6T34Zy6ETKaT1uf1vnW3b3HnnncyfP58vvviChISEZrcPHTqUgIAAsrKymq7Lz89n3759ZGRkuDtH5KQEh4RSe+nzOG2L9IrPWf/p30wniRixNz+HtB3PAbBl0Cxiu/c1XCRtldsHyrRp0/j73//OvHnzCAsLo7i4mOLiYo4fPw5AREQEt9xyCzNnzmTp0qWsW7eOm266iYyMjJN6BY9IS+k35DxWd50CQI+V/8vRQ98aLhJpXQ31ddS+dytBVj2bgocx7HK9HYSY4/aB8sILL1BeXs55551Hly5dmi7vvPNO08c89dRTXHrppVx55ZWcc845xMbG8v7777s7ReSUDZnyCHsc3elEObveuN10jkirWvPWg/Rr2E4F7Yi5/kU9tCNGtfg5KC1B56BIS9qx4UsSFkzE33KxfsTTDLn4JtNJIi1u79Z1dHn7QgKtBlanPsTwy3XCsrifR52DIuJt+qadw5r4GwFIyH6AwyX7zQaJtLCG+jrq/vkLAq0GNoaMYNhEnQkk5mmgiJzA0Btms8vRk0gq2PvG7dgul+kkkRaz9s0/0rdhBxWEEnfDS3poRzyC/haKnEBgUDCuiX+l3vZjSNWXrP/kVdNJIi1id142Q3bPASA/7fd0jutpNkjkXzRQRH5An9TRrO1+MwC91vyR0mIdECi+pb6uFuf7txNoOdnQbhTpE35pOkmkiQaKyI8Yev1D7PTrRSTHKPzbL/VQj/iUtW8+QB/nTspoT/wUvWpHPIv+Nor8iMCgYJj0AnW2H2lVX7Puo5dNJ4m4xc5NK0jf0/j3uSD9D0TFdjdcJNKcBorIT+g9cCTret4KQNLa+9m49D3DRSJnZu/WdYS+fwMBlpP1oWczdPz/mE4S+R4NFJGTkD75/2NTcDrtrFqSl93G6vnPmk4SOS1bsz+lwzsTiKWUfY6u9JgyRw/tiEfS30qRkxAQGETijI9YG34B/paL4Rt/z6rXf6fnpIhXWf/p30j4eDIRVJHvn0j4HV/QKabbT3+iiAEaKCInKTAomCH3vMPKLtcDMHLP86z+6y04GxoMl4n8tOx3HmXwirsIturJaZdB9xmf0yHqxO8gL+IJNFBEToHDz4+MXzzPqv734rItRpS+z8anJlFTXWk6TeSEbJeLlS/fw4itD+OwbFZ3nEDKjEWEhIaZThP5URooIqdh5M/+lw0jnqLO9mdI1VfsfupCyo8cMp0l0kx9XS1rnplMxoHXAVjZ/RcMu/MN/AMCzYaJnAQNFJHTNHT8Tey48A0qaMeA+jyOPnc+xft2mM4SAaDqWBlbnryE4WUf47QtVg/8Ixk3P6YnxIrX0N9UkTOQPPoSDl+9gIN0pKerEMerF7I7L9t0lrRxh0v2U/SXTFJr1nDcDiT3nDkMv3KG6SyRU6KBInKGEpJH4LplCXsc8URzhE7vTSJvxcems6SNOrArj+NzMunbsIOjhLF3wtsMHnud6SyRU6aBIuIGsfF9iJyWxdaAZMKppu+nN7Du49dMZ0kbs2PDlwS/cTHd7G8psqI59vMPSUwfazpL5LRooIi4SUSnGBJmfMb60LMJtBpIy57Bqrf+ZDpL2ohNy/5J1wVX0Ylydvr1IvDWz+neb7DpLJHTpoEi4kbB7dqTOmMB2VFX4LBsRuY/xsoXp+FyOk2niQ9bs+B5Biy9lXZWLblBaUTfnUVUXA/TWSJnRANFxM38/P0ZfscrrOo5DYCMb//O+r9cS11tjeEy8TW2y8XKuf/LsJzfEWA5WRueSf+ZiwmL6Gg6TeSMaaCItADL4WDkjQ+zOvUhGmwH6RVL2PbUeCorjppOEx/hbGhg9V//h4zdzwGwKnYyQ+55t/EduEV8gAaKSAsafvld5J33EtV2EINq1lH8l7GUFu8znSVeruZ4FRufupwRpf/EZVus6vdrRv7yrzj8/EynibiNBopIC0s9/2r2T3yPI4TTx7mTuhczKSzINZ0lXqr8yCF2PTWOIVVfUmf7s2HEE4z8+f2ms0TcTgNFpBX0G3Iu1dd/wgErhji7hPZ/H8/29ctMZ4mXKS4s4OhzY0iqy+WYHcL2C19n6PhbTGeJtAgNFJFW0q1PCkG/yGKHf18iqaDbwmvY+MXbprPES+zesgbHKxfQ07WPg3Tk0NULSRk9wXSWSIvRQBFpRVGx8cTd8zmbgtNpZ9WSvPx21rz/F9NZ4uG2rPyETu9OJJoj7HXE47r5M3qljDCdJdKiNFBEWlloWAcGzPyYNRHj8LdcDNv0ACtf+y22y2U6TTzQ+sWv03vxDYRTxbaAJDpMyyK2e1/TWSItTgNFxICAwCDS73mblV1vBCBj7xxWP38TzoYGs2HiUbLfns3gldMJsurZ0G40PWcsIaJTjOkskVahgSJiiOVwkHHrX8gecB8u22LE4QVsenICNdWVptPEMNvlYuVLdzFi2yM4LJvsTpMYNHMRwe3am04TaTUaKCKGjbh2FjkZT1NrB5BWvYI9T11A+eES01liSH1dLWv/ch0ZRW8AsLLn7Qyf9hp+/v6Gy0RalwaKiAcYctGN7Lz471QQSmL9FsqeH8O3e/NNZ0krq6w4ytYnxzOs/FMabAerUx8k48ZHsBz6V7W0PfpbL+IhkkZexJFrF1FCJ3q49uP/2jh25q4ynSWtpLS4kG//ksmgmrVU20Hknfsiwy+/23SWiDEaKCIepOeAdPifJex29KAzR4n+xyQ2f/OB6SxpYfsLNlP74lj6Ogs4Sjj7J75L6phrTGeJGKWBIuJhYrr1puNdX7AlcCBh1nH6fXYj6z76P9NZ0kK2r19Gu79fTFe7hANWDJXXf0y/IeeZzhIxTgNFxANFREbRa8anrG9/DoFWA0PX/IpVb/5/prPEzTYufY9uC6+hIxUU+PUm6BdZxPcZaDpLxCNooIh4qOCQUFKnzye781UAjNzxBKte+CUup9NwmbjD6vnPkrzsNtpZtWwKHkrsPVlExcabzhLxGBooIh7Mz9+f4be/zMpejU+WHFnyFuv/cg11tTWGy+R02S4XK1+fxfCNv8ffcrEm4kISZ3xM+/BI02kiHkUDRcTDWQ4HGVMeZE3abOptP9IrPmf7k+M4Vn7EdJqcImdDA6v/egsZe14AYGXcFNLveYfAoGDDZSKeRwNFxEsMm3gH28b8H9V2ECm1ORx8ZiylRXtNZ8lJqqmuZNNTExlR+j4u2yI7cRYZtz2rM05EfoD+yRDxIgPPvYIDl/+Tw0TQ27mLupcz2bc9x3SW/ITywyXsfuoC0qq+ps72J2fkU4y47j7TWSIeTQNFxMv0HXw2NVM+Zb/VhTj7IGHzLmXb2izTWfIDivftoOz5sQyo30IF7dgx7m8Mufgm01kiHk8DRcQLde01gHa3Z7Hdvx+RHKPHB9eR8/lbprPkv+zOy8bx6oX0cBVykI4cvmYRyaPGm84S8QoaKCJeqmN0V7pN/5yNIcMJseoY+NXtrP7nU6az5F/yvvmIqHcnEs0R9jjicd2yhISkYaazRLyGBoqIF2vXPoKkGR+yusN4/Cyb4bl/ZOWrv8F2uUyntWnrPn6Nvp9NIcw6zpaAFCLvXEpsfB/TWSJeRQNFxMsFBAYx7O43WdntZgAy9r3Emuem0FBfZ7isbVr11p9Iy55BoNXA+tBz6DXzMyI6djadJeJ1NFBEfIDlcJDxP0+RnfR7nLbF8CMfsPmpyzhedcx0WpvhcjpZNecORuY/hsOyyY66gtQZ8wkOCTWdJuKVNFBEfMiIa37DptHPUWMHMLh6JfueyuTooW9NZ/m8utoa1v/lGkYWvwnAyoQ7GX7HK/j5+xsuE/Felm3btumIU1VRUUFERATl5eWEh4ebzhHxONuyP6PLJzcSQRVHCKcg8hwCBlxM/1ETaNc+wnSeT6ivq2X7ms85tukDuh1cSje7mHrbj5y0Bxk2aZrpPBGPdCo/vzVQRHzU3m3rCXjnOuLskqbrau0AtoUMpibhArqPnESXHv0NFnqfstJiClbMx9rxKX2PZRNOddNtx+wQdp/3HIPOv8pgoYhn00AREQBqa6rZvvpTqnM/JL70S+Lsg81u3+3oSXGX84gcPIG+aefpIYn/Yrtc7MvfQNGaBXQozKJf3Rb8rP/8K/Mo4RREjMIv8SL6jppIWERHg7Uink8DRUS+56d+2B4hnJ36Yds06qpyP6J76ZfN7oEC2OXoSYlGnchp0UARkZ/U+HDFAqwdi7/3cEWd7Ud+8CCqemQSP/JyuvZKNlja8g6X7Gfnivn4F3xK/8o1hFo1Tbd992GxHhlXENu9r8FSEe+mgSIip+S7T/jsenA58XZRs9v3OuL5NvocwlMn0C99LP4BgYZK3cN2udiVt5qD6xbQcf8X9K3fjuM79yaV0oFdkWfpicUibqaBIiJnpHDHRg6sXkjY3s/pV7uZAMvZdFs5oewIz4B+4+g76nKvOYSsprqS/FUfU5P3ET0Pf0UMh5vdvsOvD6Vx5xM15DJ6DxqNw8/PUKmI79JAERG3KT9aSsGKBdj5i+lTsZIOVDbd1mA7yA9K5lj3sXQZdjnd+w7CcnjO8UqHivawe8X7BO76jP5V6wix/nO67nE7kG2h6dT3uoCeGZcT3TXBYKlI26CBIiItwtnQwPZ1WZTlfEiXkmX0dO1rdvt+qwv7O59D+4GX0G/4OAKDglu1z+V0snPTN5SuX0Tnoi/o49zZ7PZiotjb6SyCky+h/8jxBLdr36p9Im2dBoqItIqi3dvYt+p92u39nMTjGwm0GppuO2aHsCNsOM4+4+gz+goiO3dpkYbqynLyV3xA/daP6XX0G6Ioa7rNZVvsCOjHkW5jiB46iV7Jwz3qHh6RtsZrBsrzzz/P448/TnFxMampqTz77LMMHz78Jz9PA0XE81RWHGXHykXUb11M77Jv6ER5020u22J74ACOdjuf2GGX0zNx6BkNhW/35rNv1QKCdy8h8XgOQVZ9021VdjD57YfT0OdCemVMIio2/oz+XCLiPl4xUN555x2mTJnCnDlzGDFiBE8//TTvvfce+fn5REdH/+jnaqCIeDaX00nBxq84vH4h0d8uo7dzV7Pbv6Uz+6LOJiT5EvqNvPgn31DP2dDAjg3LOJrzAbHfLiPBtafZ7UVWDPuiziH0Xw8tBQW3c/cfSUTcwCsGyogRIxg2bBjPPfccAC6Xi/j4eO666y5mzZr1o5+rgSLiXYoLC9i7cj7Bu5fQv3o9wd+5x6PaDiI/NJ363hfSa/QVRMV2B+BY+RF2rFiIc9tiepevoCMVTZ/jtC22ByZRHj+WLsMm0b1/mh66EfECHj9Q6urqaNeuHf/4xz+YNGlS0/VTp06lrKyMhQsXNvv42tpaamtrm35dUVFBfHy8BoqIFzpedYz8lR9Su+VjEo58TTRHmt2+3b8fdX7t6FeTS+B3Xt5cQTt2hI3A7nsRfUZNokNUbGuni8gZOpWBYuSM5tLSUpxOJzExMc2uj4mJYdu2bd/7+NmzZ/P//t//a608EWlBIaFhDM78GWT+DNvloiB3BYfWLaJT0VL6NWynX8N2aAAsKLTiOBB9LmGDJtBvWCZDA4NM54tIK/GKN5G47777mDlzZtOv/30Pioh4N8vhoE/qWfRJPQuA0qK97F61AFddNXFDxxPfNxX9ky7SNhkZKFFRUfj5+VFS0vxNuEpKSoiN/f7dtkFBQQQF6b+cRHxdVFwPoq64x3SGiHgAI88qCwwMZOjQoWRlZTVd53K5yMrKIiMjw0SSiIiIeBBjD/HMnDmTqVOnkp6ezvDhw3n66aepqqripptuMpUkIiIiHsLYQLn22ms5dOgQDzzwAMXFxQwePJjFixd/74mzIiIi0vboqHsRERFpFafy81snG4mIiIjH0UARERERj6OBIiIiIh5HA0VEREQ8jgaKiIiIeBwNFBEREfE4GigiIiLicTRQRERExONooIiIiIjHMXbU/Zn49+G3FRUVhktERETkZP375/bJHGLvlQPl2LFjAMTHxxsuERERkVN17NgxIiIifvRjvPK9eFwuF0VFRYSFhWFZllu/dkVFBfHx8RQWFup9flqQvs+tQ9/n1qHvc+vQ97n1tNT32rZtjh07RlxcHA7Hjz/LxCvvQXE4HHTr1q1Ff4/w8HD9A9AK9H1uHfo+tw59n1uHvs+tpyW+1z91z8m/6UmyIiIi4nE0UERERMTjaKD8l6CgIP7whz8QFBRkOsWn6fvcOvR9bh36PrcOfZ9bjyd8r73ySbIiIiLi23QPioiIiHgcDRQRERHxOBooIiIi4nE0UERERMTjaKB8x/PPP0/Pnj0JDg5mxIgRrF692nSST5k9ezbDhg0jLCyM6OhoJk2aRH5+vuksn/fII49gWRbTp083neKTDhw4wPXXX0+nTp0ICQlh4MCBrF271nSWT3E6ndx///0kJCQQEhJC7969efDBB0/q/Vzkh3355ZdMmDCBuLg4LMtiwYIFzW63bZsHHniALl26EBISQmZmJjt27Gi1Pg2Uf3nnnXeYOXMmf/jDH1i/fj2pqamMGzeOgwcPmk7zGcuXL2fatGmsWrWKJUuWUF9fz4UXXkhVVZXpNJ+1Zs0aXnzxRQYNGmQ6xScdPXqU0aNHExAQwCeffMKWLVt44okniIyMNJ3mUx599FFeeOEFnnvuObZu3cqjjz7KY489xrPPPms6zatVVVWRmprK888/f8LbH3vsMZ555hnmzJlDdnY2oaGhjBs3jpqamtYJtMW2bdsePny4PW3atKZfO51OOy4uzp49e7bBKt928OBBG7CXL19uOsUnHTt2zO7bt6+9ZMkS+9xzz7Xvuece00k+57e//a191llnmc7weZdccol98803N7vuiiuusCdPnmyoyPcA9vz585t+7XK57NjYWPvxxx9vuq6srMwOCgqy33rrrVZp0j0oQF1dHevWrSMzM7PpOofDQWZmJitXrjRY5tvKy8sB6Nixo+ES3zRt2jQuueSSZn+vxb0WLVpEeno6V199NdHR0aSlpfHyyy+bzvI5o0aNIisri+3btwOwceNGvv76ay6++GLDZb5r9+7dFBcXN/v3R0REBCNGjGi1n4te+WaB7lZaWorT6SQmJqbZ9TExMWzbts1QlW9zuVxMnz6d0aNHk5KSYjrH57z99tusX7+eNWvWmE7xabt27eKFF15g5syZ/O53v2PNmjXcfffdBAYGMnXqVNN5PmPWrFlUVFSQmJiIn58fTqeTP/3pT0yePNl0ms8qLi4GOOHPxX/f1tI0UMSIadOmsXnzZr7++mvTKT6nsLCQe+65hyVLlhAcHGw6x6e5XC7S09N5+OGHAUhLS2Pz5s3MmTNHA8WN3n33Xd58803mzZtHcnIyOTk5TJ8+nbi4OH2ffZge4gGioqLw8/OjpKSk2fUlJSXExsYaqvJdd955Jx9++CFLly6lW7dupnN8zrp16zh48CBDhgzB398ff39/li9fzjPPPIO/vz9Op9N0os/o0qULSUlJza4bMGAA+/btM1Tkm37zm98wa9YsrrvuOgYOHMgNN9zAjBkzmD17tuk0n/Xvn30mfy5qoACBgYEMHTqUrKysputcLhdZWVlkZGQYLPMttm1z5513Mn/+fL744gsSEhJMJ/mksWPHkpubS05OTtMlPT2dyZMnk5OTg5+fn+lEnzF69OjvvVR++/bt9OjRw1CRb6qursbhaP7jys/PD5fLZajI9yUkJBAbG9vs52JFRQXZ2dmt9nNRD/H8y8yZM5k6dSrp6ekMHz6cp59+mqqqKm666SbTaT5j2rRpzJs3j4ULFxIWFtb0OGZERAQhISGG63xHWFjY957XExoaSqdOnfR8HzebMWMGo0aN4uGHH+aaa65h9erVvPTSS7z00kum03zKhAkT+NOf/kT37t1JTk5mw4YNPPnkk9x8882m07xaZWUlBQUFTb/evXs3OTk5dOzYke7duzN9+nQeeugh+vbtS0JCAvfffz9xcXFMmjSpdQJb5bVCXuLZZ5+1u3fvbgcGBtrDhw+3V61aZTrJpwAnvLz22mum03yeXmbccj744AM7JSXFDgoKshMTE+2XXnrJdJLPqaiosO+55x67e/fudnBwsN2rVy/7f//3f+3a2lrTaV5t6dKlJ/x38tSpU23bbnyp8f3332/HxMTYQUFB9tixY+38/PxW67NsW0fxiYiIiGfRc1BERETE42igiIiIiMfRQBERERGPo4EiIiIiHkcDRURERDyOBoqIiIh4HA0UERER8TgaKCIiIuJxNFBERETE42igiIiIiMfRQBERERGPo4EiIiIiHuf/B7NYF8Rogdw6AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "import numpy as np\n", "import matplotlib.pylab as plt\n", @@ -861,7 +908,8 @@ "\n", "\n", "xs = np.asarray([[-10], [-8], [-6], [-4], [-2], [0], [2], [4], [6], [8], [10]])\n", - "ys = xs ** 3 - xs**2 + xs - 3\n", + "# ys = xs ** 3 - xs**2 + xs - 3\n", + "ys = xs ** 2\n", "\n", "xs = np.hstack((xs, np.ones([xs.shape[0], 1])))\n", "\n", @@ -875,7 +923,7 @@ "\n", "params = []\n", "def weights(ins, outs):\n", - " ws = torch.randn(ins, outs)\n", + " ws = torch.randn(ins, outs) * 0.1\n", " ws = ws.requires_grad_(True)\n", " params.append(ws)\n", " return ws\n", @@ -887,8 +935,8 @@ " self.w2 = weights(nodes, outs)\n", "\n", " def forward(self, x):\n", - " x = torch.sin(x @ self.w0)\n", - " x = torch.sin(x @ self.w1)\n", + " x = torch.relu(x @ self.w0)\n", + " x = torch.relu(x @ self.w1)\n", " yh = (x @ self.w2)\n", " return yh\n", "\n", @@ -897,11 +945,7 @@ "\n", "ers = []\n", "for i in range(5000):\n", - " x0 = xs\n", - "\n", - " z0 = (x0 @ w0); x1 = torch.sin(z0)\n", - " z1 = (x1 @ w1); x2 = torch.sin(z1)\n", - " yh = (x2 @ w2)\n", + " yh = model.forward(xs)\n", "\n", " loss = F.mse_loss(yh, ys)\n", " optimizer.zero_grad()\n", @@ -920,8 +964,445 @@ "\n", "plt.figure(2)\n", "plt.plot(ys, label='ys')\n", - "plt.plot(yh.detach(), label='yh')" + "plt.plot(yh.detach(), label='yh')\n" + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "tensor([1444.6680], grad_fn=)\n" + ] + } + ], + "source": [ + "value = 100\n", + "value = torch.tensor([value, 1]).float()\n", + "result = model.forward(value)\n", + "print(result)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can fit any data with enough nodes. \n", + "Poor interpolation, but we can mitigate this with more data, more training, and more constraints. \n", + "Experiment and see what works!\n", + "\n", + "we can use anything as input and output. Images, medical data, dogs, text. " + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "text = '''\n", + "Cats, cats, everywhere\n", + "Furry balls without a care\n", + "Purring, meowing, licking fur\n", + "Hunting mice, they always purr\n", + "\n", + "Cats, cats, on the prowl\n", + "Jumping high, never a scowl\n", + "Whiskers twitching, eyes alert\n", + "Tail in air, ready to assert\n", + "\n", + "Cats, cats, so much fun\n", + "Cuddling close in the sun\n", + "Stretching out, napping long\n", + "Playing with string, never wrong\n", + "\n", + "Cats, cats, always cool\n", + "Lapping milk, acting like a fool\n", + "Mysterious, charming, full of grace\n", + "Cats are simply ace\n", + "\n", + "Cats, cats, with silky fur\n", + "Making biscuits, they always purr\n", + "Sitting high, looking down\n", + "Claiming everything as their crown\n", + "\n", + "Cats, cats, with eyes so bright\n", + "Chasing shadows, day or night\n", + "Curled up warm, on your lap\n", + "Purring gently, taking a nap\n", + "\n", + "Cats, cats, with playful paws\n", + "Hiding, stalking, never pause\n", + "Jumping, leaping, so agile\n", + "Graceful creatures, never fragile\n", + "\n", + "Cats, cats, our feline friends\n", + "Bringing joy that never ends\n", + "Loving us, without a doubt\n", + "Cats are what life's all about\n", + "\n", + "Cats, cats, everywhere I see\n", + "Furry creatures, cute as can be\n", + "Rubbing against our legs\n", + "Asking for treats, without begs\n", + "\n", + "Cats, cats, with their regal stance\n", + "Graceful movements, they enhance\n", + "But we love them all the same\n", + "Our little friends, never tame\n", + "\n", + "Cats, cats, so full of love\n", + "Watching over us from above\n", + "Protecting us from any harm\n", + "Always there, with their charm\n", + "\n", + "Cats, cats, with their curious ways\n", + "Exploring nooks, and hiding in bays\n", + "Living life with style and grace\n", + "Cats are always in first place\n", + "\n", + "Cats, cats, so full of fun\n", + "Chasing toys, never done\n", + "Hiding in boxes, or paper bags\n", + "Making us laugh, never drags\n", + "\n", + "Cats, cats, with their own minds\n", + "Sitting in the sun, never blinds\n", + "Chasing strings, and balls of yarn\n", + "They never tire, oh what a charm\n", + "\n", + "Cats, cats, with calming purrs\n", + "Cuddling close, to be yours\n", + "Giving love, without any fuss\n", + "Their presence, a comfort to us\n", + "\n", + "Cats, cats, always at ease\n", + "Living life, as they please\n", + "Bringing joy, to all they meet\n", + "Cats, our furry friends, so sweet\n", + "\n", + "Cats, cats, with eyes so bright\n", + "Guiding us through the darkest night\n", + "Purring softly, by our side\n", + "Comforting us, as we hide\n", + "\n", + "Cats, cats, with softest fur\n", + "Nuzzling close, making a purr\n", + "In our lap, they take a rest\n", + "We're lucky to have, such a guest\n", + "\n", + "Cats, cats, with their playful ways\n", + "Entertaining us, on the laziest days\n", + "Chasing shadows, or a feather\n", + "Making us smile, always together\n", + "\n", + "Cats, cats, with hearts so pure\n", + "Bringing love, that will endure\n", + "Their presence, a blessing indeed\n", + "Cats, our friends, we shall never need\n", + "\n", + "Cats, cats, with their little quirks\n", + "Scratching posts, and tiny perks\n", + "Licking paws, cleaning their face\n", + "Chasing tails, all over the place\n", + "\n", + "Cats, cats, with their playful hearts\n", + "Chasing toys, and little carts\n", + "Their antics, bringing us joy\n", + "Cats, our little angels, oh so coy\n", + "\n", + "Cats, cats, with their gentle souls\n", + "Lifting spirits, making us whole\n", + "In their eyes, we see the light\n", + "Bringing peace, that feels so right\n", + "\n", + "Cats, cats, with their gentle purr\n", + "Calming us, when we're feeling a stir\n", + "Snuggling close, to keep us warm\n", + "Cats, our little cuddle storm\n", + "\n", + "Cats, cats, with their playful heart\n", + "Jumping high, right from the start\n", + "Bouncing around, like little springs\n", + "Cats, our little entertainers, with wings\n", + "\n", + "Cats, cats, with their loving grace\n", + "Their soft purrs, caress our face\n", + "In their embrace, we feel at peace\n", + "Cats, our little comfort, never to cease\n", + "\n", + "Cats, cats, with their loving ways\n", + "Cuddling close, on the darkest days\n", + "In the garden, or up in a tree\n", + "Cats, our little explorers, always free'''" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "loss: 15.538918495178223\n", + "loss: 0.6973809003829956\n", + "loss: 0.009146902710199356\n", + "loss: 0.0025379888247698545\n", + "loss: 0.001624523545615375\n", + "loss: 0.000958576041739434\n", + "loss: 0.0005740119377151132\n", + "loss: 0.00047716841800138354\n", + "loss: 0.00028826287598349154\n", + "loss: 0.0002343075757380575\n" + ] + }, + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import numpy as np\n", + "import matplotlib.pylab as plt\n", + "import torch\n", + "from torch.nn import functional as F\n", + "\n", + "%matplotlib widget\n", + "\n", + "text = text.lower()\n", + "chars = sorted(list(set(text)))\n", + "stoi = {ch:i for i, ch in enumerate(chars)}\n", + "itos = {i:ch for i, ch in enumerate(chars)}\n", + "data = [stoi[c] for c in text]\n", + "vocab_size = len(chars)\n", + "\n", + "ins = 64\n", + "outs = vocab_size\n", + "nodes = 200\n", + "lr = 0.003\n", + "\n", + "data = torch.tensor(data).float()\n", + "\n", + "params = []\n", + "def weights(ins, outs):\n", + " ws = torch.randn(ins, outs) * 0.1\n", + " ws = ws.requires_grad_(True)\n", + " params.append(ws)\n", + " return ws\n", + "\n", + "class Model():\n", + " def __init__(self):\n", + " self.w0 = weights(ins, nodes)\n", + " self.w1 = weights(nodes, nodes)\n", + " self.w2 = weights(nodes, outs)\n", + "\n", + " def forward(self, x):\n", + " x = torch.relu(x @ self.w0)\n", + " x = torch.relu(x @ self.w1)\n", + " yh = (x @ self.w2)\n", + " return yh\n", + "\n", + "model = Model()\n", + "optimizer = torch.optim.Adam(params, lr)\n", + "\n", + "ers = []\n", + "for i in range(5000):\n", + " # Take 100 random samples from the data:\n", + " b = torch.randint(len(data)-ins, (100, ))\n", + " xs = torch.stack([data[i:i+ins] for i in b])\n", + " ys = torch.stack([data[i+ins:i+ins+1] for i in b])\n", + "\n", + " yh = model.forward(xs)\n", + "\n", + " # loss = F.mse_loss(yh, ys)\n", + " loss = F.cross_entropy(yh.view(-1, vocab_size), ys.long().view(-1))\n", + " optimizer.zero_grad()\n", + " loss.backward()\n", + " optimizer.step()\n", + "\n", + " e = loss.item()\n", + "\n", + " if i % 500 == 0:\n", + " print('loss:', e)\n", + "\n", + " ers.append(e)\n", + "\n", + "plt.figure(1)\n", + "plt.plot(ers)\n", + "\n", + "plt.figure(2)\n", + "plt.plot(ys)\n", + "yh = torch.argmax(yh, dim=-1)\n", + "plt.plot(yh.detach())\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "l\n", + "lapping milk, acting like a fool\n", + "mysterious, charming, full of grace\n", + "cats are simply ace\n", + "\n", + "cats, cats, with silky fur\n", + "making biscuits, they always purr\n", + "sitting high, looking down\n", + "claiming everything as their crown\n", + "\n", + "cats, cats, with eyes so bright\n", + "chasing shadows, day or night\n", + "curled up warm, on your lap\n", + "purring gently, taking a nap\n", + "\n", + "cats, cats, with playful paws\n", + "hiding, stalking, never pause\n", + "jumping, leaping, so agile\n", + "graceful creatures, never fragile\n", + "\n", + "cats, cats, our feline friends\n", + "bringing joy that never ends\n", + "loving us, without a doubt\n", + "cats are what life's all about\n", + "\n", + "cats, cats, everywhere i see\n", + "furry creatures, cute as can be\n", + "rubbing against our legs\n", + "asking for treats, without begs\n", + "\n", + "cats, cats, with their regal stance\n", + "graceful movements, they enhance\n", + "but we love them all the same\n", + "our little friends, never tame\n", + "\n", + "cats, cats, so full of love\n", + "watching over us from above\n", + "protecting us from any harm\n", + "always there, with their charm\n", + "\n", + "cats, cats, with their curious ways\n", + "exploring nooks, and hiding in bays\n", + "living life with style and grace\n", + "cats are always in first place\n", + "\n", + "cats, cats, so full of fun\n", + "chasing toys, never done\n", + "hiding in boxes, or paper bags\n", + "making us laugh, never drags\n", + "\n", + "cats, cats, with their own minds\n", + "sitting in the sun, never blinds\n", + "chasing strings, and balls of yarn\n", + "they never tire, oh what a charm\n", + "\n", + "cats, cats, with calming purrs\n", + "cuddling close, to be yours\n", + "giving love, without any fuss\n", + "their presence, a comfort to us\n", + "\n", + "cats, cats, always at ease\n", + "living life, as they please\n", + "bringing joy, to all they meet\n", + "cats, our furry friends, so sweet\n", + "\n", + "cats, cats, with eyes so bright\n", + "guiding us through the darkest night\n", + "purring softly, by our side\n", + "comforting us, as we hide\n", + "\n", + "cats, cats, with softest fur\n", + "nuzzling close, making a purr\n", + "in our lap, they take a rest\n", + "we're lucky to have, such a guest\n", + "\n", + "cats, cats, with their playful ways\n", + "entertaining us, on the laziest days\n", + "chasing shadows, or a feather\n", + "making us smile, always together\n", + "\n", + "cats, cats, with hearts so pure\n", + "bringing love, that will endure\n", + "their presence, a blessing indeed\n", + "cats, our friends, we shall never need\n", + "\n", + "cats, cats, with their little quirks\n", + "scratching posts, and tiny perks\n", + "licking paws, cleaning their face\n", + "chasing tails, all over the place\n", + "\n", + "cats, cats, with their playful hearts\n", + "chasing toys, and little carts\n", + "their antics, bringing us joy\n", + "cats, our little angels, oh so coy\n", + "\n", + "cats, cats, with their gentle souls\n", + "lifting spirits, making us whole\n", + "in their eyes, we see the light\n", + "bringing peace, that feels so right\n", + "\n", + "cats, cats, with their gentle purr\n", + "calming us, when we're feeling a stir\n", + "snuggling close, to keep us warm\n", + "cats, our little cuddle storm\n", + "\n", + "cats, cats, with their playful heart\n", + "jumping high, right from the start\n", + "bouncing around, like little springs\n", + "cats, our little entertainers, with wings\n", + "\n", + "cats, cats, with their loving grace\n", + "their soft purrs, caress our face\n", + "in their embrace, we feel at peace\n", + "cats, our little comfort, never to cease\n", + "\n", + "cats, cats, with their loving ways\n", + "cuddling close, on the d\n" + ] + } + ], + "source": [ + "\n", + "s = xs[0]\n", + "\n", + "gen_text = \"\"\n", + "for i in range(3000):\n", + " yh = model.forward(s)\n", + " prob = F.softmax(yh, dim=0)\n", + " # pred = torch.argmax(yh).item()\n", + " pred = torch.multinomial(prob, num_samples=1).item()\n", + "\n", + " s = torch.roll(s, -1)\n", + " s[-1] = pred\n", + " \n", + " gen_text += itos[pred]\n", + "\n", + "print(gen_text)" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { @@ -940,7 +1421,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.3" + "version": "3.11.6" } }, "nbformat": 4, From ec5107f1e3769320b818c8c4fb3cc0115091fc99 Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Thu, 13 Mar 2025 16:22:29 -0700 Subject: [PATCH 73/94] experimenting --- W-Web_Scraping.ipynb | 389 ++++++++++++++++++++++++++++++++++++++++++- 1 file changed, 387 insertions(+), 2 deletions(-) diff --git a/W-Web_Scraping.ipynb b/W-Web_Scraping.ipynb index 7b94c67..8ce8141 100644 --- a/W-Web_Scraping.ipynb +++ b/W-Web_Scraping.ipynb @@ -6,7 +6,378 @@ "source": [ "# Section G - Web Scraping\n", "\n", - "Feedback: https://forms.gle/Le3RAsMEcYqEyswEA" + "Feedback: https://forms.gle/Le3RAsMEcYqEyswEA\n", + "\n", + "\n", + "Scraping modules\n", + "Javascript or no javascript\n", + "Navigating a page\n", + "Interaction - clicking elements or entering text data\n" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "['ASCII_SPACES', 'DEFAULT_BUILDER_FEATURES', 'DEFAULT_INTERESTING_STRING_TYPES', 'EMPTY_ELEMENT_EVENT', 'END_ELEMENT_EVENT', 'NO_PARSER_SPECIFIED_WARNING', 'ROOT_TAG_NAME', 'START_ELEMENT_EVENT', 'STRING_ELEMENT_EVENT', '__bool__', '__call__', '__class__', '__contains__', '__copy__', '__deepcopy__', '__delattr__', '__delitem__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattr__', '__getattribute__', '__getitem__', '__getstate__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__iter__', '__le__', '__len__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__setitem__', '__setstate__', '__sizeof__', '__str__', '__subclasshook__', '__unicode__', '__weakref__', '_all_strings', '_clone', '_decode_markup', '_event_stream', '_feed', '_find_all', '_find_one', '_format_tag', '_indent_string', '_is_xml', '_lastRecursiveChild', '_last_descendant', '_linkage_fixer', '_markup_is_url', '_markup_resembles_filename', '_most_recent_element', '_namespaces', '_popToTag', '_should_pretty_print', 'append', 'attrs', 'builder', 'can_be_empty_element', 'cdata_list_attributes', 'childGenerator', 'children', 'clear', 'contains_replacement_characters', 'contents', 'css', 'currentTag', 'current_data', 'declared_html_encoding', 'decode', 'decode_contents', 'decompose', 'decomposed', 'default', 'descendants', 'element_classes', 'encode', 'encode_contents', 'endData', 'extend', 'extract', 'fetchNextSiblings', 'fetchParents', 'fetchPrevious', 'fetchPreviousSiblings', 'find', 'findAll', 'findAllNext', 'findAllPrevious', 'findChild', 'findChildren', 'findNext', 'findNextSibling', 'findNextSiblings', 'findParent', 'findParents', 'findPrevious', 'findPreviousSibling', 'findPreviousSiblings', 'find_all', 'find_all_next', 'find_all_previous', 'find_next', 'find_next_sibling', 'find_next_siblings', 'find_parent', 'find_parents', 'find_previous', 'find_previous_sibling', 'find_previous_siblings', 'format_string', 'formatter_for_name', 'get', 'getText', 'get_attribute_list', 'get_text', 'handle_data', 'handle_endtag', 'handle_starttag', 'has_attr', 'has_key', 'hidden', 'index', 'insert', 'insert_after', 'insert_before', 'interesting_string_types', 'isSelfClosing', 'is_empty_element', 'is_xml', 'known_xml', 'markup', 'name', 'namespace', 'new_string', 'new_tag', 'next', 'nextGenerator', 'nextSibling', 'nextSiblingGenerator', 'next_element', 'next_elements', 'next_sibling', 'next_siblings', 'object_was_parsed', 'open_tag_counter', 'original_encoding', 'parent', 'parentGenerator', 'parents', 'parse_only', 'parserClass', 'parser_class', 'popTag', 'prefix', 'preserve_whitespace_tag_stack', 'preserve_whitespace_tags', 'prettify', 'previous', 'previousGenerator', 'previousSibling', 'previousSiblingGenerator', 'previous_element', 'previous_elements', 'previous_sibling', 'previous_siblings', 'pushTag', 'recursiveChildGenerator', 'renderContents', 'replaceWith', 'replaceWithChildren', 'replace_with', 'replace_with_children', 'reset', 'select', 'select_one', 'self_and_descendants', 'setup', 'smooth', 'string', 'string_container', 'string_container_stack', 'strings', 'stripped_strings', 'tagStack', 'text', 'unwrap', 'wrap']\n", + "Python (programming language) - Wikipedia\n" + ] + } + ], + "source": [ + "from bs4 import BeautifulSoup\n", + "from urllib.request import urlopen\n", + "\n", + "# url = \"http://wikipedia.org\"\n", + "url = \"https://en.wikipedia.org/wiki/Python_(programming_language)\"\n", + "page = urlopen(url)\n", + "html = page.read().decode('utf-8')\n", + "soup = BeautifulSoup(html, 'html.parser')\n", + "# print(soup.get_text())\n", + "print(dir(soup))\n", + "print(soup.title)\n", + "# print(soup.body.get_text())\n", + "# xpath = '//*[@id=\"mw-content-text\"]/div[1]/p[2]'\n", + "xpath = '/html/body/div[2]/div/div[3]/main/div[3]/div[3]/div[1]/p[2]'\n", + "# print(soup.select_one(xpath).get_text())" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "# %pip install lxml\n", + "\n", + "try:\n", + " # Python 2\n", + " from urllib2 import urlopen\n", + "except ImportError:\n", + " from urllib.request import urlopen\n", + "from lxml import etree\n", + "\n", + "response = urlopen(url)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "None\n" + ] + } + ], + "source": [ + "htmlparser = etree.HTMLParser()\n", + "tree = etree.parse(response, htmlparser)\n", + "section = tree.xpath(xpath)\n", + "for item in section:\n", + " print(item.text)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "Following along with:\n", + "https://zperzan.github.io/projects/scrape-weather-underground/\n", + "Requires chromedriver from https://googlechromelabs.github.io/chrome-for-testing/\n", + "* set it in the chromedriver_path variable once installed." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "\"\"\"Module to scrape 5-min personal weather station data from Weather Underground.\n", + "\n", + "Usage is:\n", + ">>> python scrape_wunderground.py STATION DATE\n", + "\n", + "where station is a personal weather station (e.g., KCAJAMES3) and date is in the \n", + "format YYYY-MM-DD. \n", + "\n", + "Alternatively, each function below can be imported and used in a separate python\n", + "script. Note that a working version of chromedriver must be installed and the absolute \n", + "path to executable has to be updated below (\"chromedriver_path\").\n", + "\n", + "Zach Perzan, 2021-07-28\"\"\"\n", + "\n", + "import time\n", + "import sys\n", + "\n", + "import numpy as np\n", + "import pandas as pd\n", + "from bs4 import BeautifulSoup as BS\n", + "from selenium import webdriver\n", + "\n", + "\n", + "# Set the absolute path to chromedriver\n", + "# chromedriver_path = '/home/_snap/bin/chromium.chromedriver'\n", + "# chromedriver_path = '/home/dan/opt/chrome-linux64'\n", + "chromedriver_path = '/home/dan/opt/geckodriver-v0.36.0-linux64/geckodriver'\n", + "\n", + "\n", + "def render_page(url):\n", + " \n", + " # driver = webdriver.Chrome(chromedriver_path)\n", + " driver = webdriver.Firefox(chromedriver_path)\n", + " driver.get(url)\n", + " time.sleep(3) # Could potentially decrease the sleep time\n", + " r = driver.page_source\n", + " driver.quit()\n", + "\n", + " return r\n", + "\n", + "\n", + "def scrape_wunderground(station, date):\n", + " \n", + " # Render the url and open the page source as BS object\n", + " # url = 'https://www.wunderground.com/dashboard/pws/%s/table/%s/%s/daily' % (station, date, date)\n", + " url = f'https://www.wunderground.com/history/weekly/us/ca/sacramento/KSMF/date/2025-3-1'\n", + " \n", + " print(\"Working on url:\", url)\n", + " r = render_page(url)\n", + " soup = BS(r, \"html.parser\",)\n", + "\n", + " # container = soup.find('lib-history-table')\n", + " container = soup.find('lib-city-history-observation')\n", + " \n", + " # Check that lib-history-table is found\n", + " if container is None:\n", + " print('error finding the container...')\n", + " raise ValueError(\"could not find lib-history-table in html source for %s\" % url)\n", + " \n", + " print(container.contents)\n", + " # Get the timestamps and data from two separate 'tbody' tags\n", + " all_checks = container.find_all('tbody')\n", + " time_check = all_checks[0]\n", + " data_check = all_checks[1]\n", + " print(time_check)\n", + " print(data_check)\n", + "\n", + " # Iterate through 'tr' tags and get the timestamps\n", + " hours = []\n", + " for i in time_check.find_all('tr'):\n", + " trial = i.get_text()\n", + " hours.append(trial)\n", + "\n", + " # For data, locate both value and no-value (\"--\") classes\n", + " # classes = ['wu-value wu-value-to', 'wu-unit-no-value ng-star-inserted']\n", + " classes = ['observation-table', 'ng-star-inserted']\n", + "\n", + " # Iterate through span tags and get data\n", + " data = []\n", + " for i in data_check.find_all('span', class_=classes):\n", + " trial = i.get_text()\n", + " data.append(trial)\n", + "\n", + " columns = ['Time', 'Temperature', 'Dew Point', 'Humidity', 'Wind Speed', \n", + " 'Wind Gust', 'Pressure', 'Precip.', 'Condition']\n", + "\n", + " # Convert NaN values (stings of '--') to np.nan\n", + " data_nan = [np.nan if x == '--' else x for x in data]\n", + "\n", + " # Convert list of data to an array\n", + " data_array = np.array(data_nan, dtype=float)\n", + " data_array = data_array.reshape(-1, len(columns))\n", + "\n", + " # Prepend date to HH:MM strings\n", + " timestamps = ['%s %s' % (date, t) for t in hours]\n", + "\n", + " # Convert to dataframe\n", + " df = pd.DataFrame(index=timestamps, data=data_array, columns=columns)\n", + " df.index = pd.to_datetime(df.index)\n", + " \n", + " return df\n", + "\n", + "\n", + "def scrape_multiattempt(station, date, attempts=4, wait_time=5.0):\n", + " \"\"\"Try to scrape data from Weather Underground. If there is an error on the \n", + " first attempt, try again.\n", + " \n", + " Parameters\n", + " ----------\n", + " station : str\n", + " The personal weather station ID\n", + " date : str\n", + " The date for which to acquire data, formatted as 'YYYY-MM-DD'\n", + " attempts : int, default 4\n", + " Maximum number of times to try accessing before failuer\n", + " wait_time : float, default 5.0\n", + " Amount of time to wait in between attempts\n", + " \n", + " Returns\n", + " -------\n", + " df : dataframe or None\n", + " A dataframe of weather observations, with index as pd.DateTimeIndex \n", + " and columns as the observed data\n", + " \"\"\"\n", + " \n", + " # Try to download data limited number of attempts\n", + " for n in range(attempts):\n", + " try:\n", + " df = scrape_wunderground(station, date)\n", + " print('success')\n", + " except:\n", + " print('exception')\n", + " # if unsuccessful, pause and retry\n", + " if attempts > 1:\n", + " time.sleep(wait_time)\n", + " else: \n", + " # if successful, then break\n", + " break\n", + " # If all attempts failed, return empty df\n", + " else:\n", + " df = pd.DataFrame()\n", + " \n", + " return df" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Working on url: https://www.wunderground.com/history/weekly/us/ca/sacramento/KSMF/date/2025-3-1\n" + ] + }, + { + "ename": "AttributeError", + "evalue": "'str' object has no attribute 'capabilities'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[59], line 3\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;66;03m# data = scrape_multiattempt('KSMF', '2025-03-01', 1)\u001b[39;00m\n\u001b[1;32m 2\u001b[0m \u001b[38;5;66;03m# data = scrape_multiattempt('KCAJAMES3', '2025-03-01')\u001b[39;00m\n\u001b[0;32m----> 3\u001b[0m data \u001b[38;5;241m=\u001b[39m \u001b[43mscrape_wunderground\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mKSMF\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43m2025-03-01\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m)\u001b[49m\n", + "Cell \u001b[0;32mIn[58], line 77\u001b[0m, in \u001b[0;36mscrape_wunderground\u001b[0;34m(station, date)\u001b[0m\n\u001b[1;32m 74\u001b[0m url \u001b[38;5;241m=\u001b[39m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mhttps://www.wunderground.com/history/weekly/us/ca/sacramento/KSMF/date/2025-3-1\u001b[39m\u001b[38;5;124m'\u001b[39m\n\u001b[1;32m 76\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mWorking on url:\u001b[39m\u001b[38;5;124m\"\u001b[39m, url)\n\u001b[0;32m---> 77\u001b[0m r \u001b[38;5;241m=\u001b[39m \u001b[43mrender_page\u001b[49m\u001b[43m(\u001b[49m\u001b[43murl\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 78\u001b[0m soup \u001b[38;5;241m=\u001b[39m BS(r, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mhtml.parser\u001b[39m\u001b[38;5;124m\"\u001b[39m,)\n\u001b[1;32m 80\u001b[0m \u001b[38;5;66;03m# container = soup.find('lib-history-table')\u001b[39;00m\n", + "Cell \u001b[0;32mIn[58], line 45\u001b[0m, in \u001b[0;36mrender_page\u001b[0;34m(url)\u001b[0m\n\u001b[1;32m 31\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"Given a url, render it with chromedriver and return the html source\u001b[39;00m\n\u001b[1;32m 32\u001b[0m \u001b[38;5;124;03m\u001b[39;00m\n\u001b[1;32m 33\u001b[0m \u001b[38;5;124;03mParameters\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 41\u001b[0m \u001b[38;5;124;03m rendered page source\u001b[39;00m\n\u001b[1;32m 42\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 44\u001b[0m \u001b[38;5;66;03m# driver = webdriver.Chrome(chromedriver_path)\u001b[39;00m\n\u001b[0;32m---> 45\u001b[0m driver \u001b[38;5;241m=\u001b[39m \u001b[43mwebdriver\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mFirefox\u001b[49m\u001b[43m(\u001b[49m\u001b[43mchromedriver_path\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 46\u001b[0m driver\u001b[38;5;241m.\u001b[39mget(url)\n\u001b[1;32m 47\u001b[0m time\u001b[38;5;241m.\u001b[39msleep(\u001b[38;5;241m3\u001b[39m) \u001b[38;5;66;03m# Could potentially decrease the sleep time\u001b[39;00m\n", + "File \u001b[0;32m~/venv/lib/python3.12/site-packages/selenium/webdriver/firefox/webdriver.py:57\u001b[0m, in \u001b[0;36mWebDriver.__init__\u001b[0;34m(self, options, service, keep_alive)\u001b[0m\n\u001b[1;32m 54\u001b[0m options \u001b[38;5;241m=\u001b[39m options \u001b[38;5;28;01mif\u001b[39;00m options \u001b[38;5;28;01melse\u001b[39;00m Options()\n\u001b[1;32m 56\u001b[0m finder \u001b[38;5;241m=\u001b[39m DriverFinder(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mservice, options)\n\u001b[0;32m---> 57\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[43mfinder\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_browser_path\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m:\n\u001b[1;32m 58\u001b[0m options\u001b[38;5;241m.\u001b[39mbinary_location \u001b[38;5;241m=\u001b[39m finder\u001b[38;5;241m.\u001b[39mget_browser_path()\n\u001b[1;32m 59\u001b[0m options\u001b[38;5;241m.\u001b[39mbrowser_version \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n", + "File \u001b[0;32m~/venv/lib/python3.12/site-packages/selenium/webdriver/common/driver_finder.py:47\u001b[0m, in \u001b[0;36mDriverFinder.get_browser_path\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 46\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mget_browser_path\u001b[39m(\u001b[38;5;28mself\u001b[39m) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m \u001b[38;5;28mstr\u001b[39m:\n\u001b[0;32m---> 47\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_binary_paths\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mbrowser_path\u001b[39m\u001b[38;5;124m\"\u001b[39m]\n", + "File \u001b[0;32m~/venv/lib/python3.12/site-packages/selenium/webdriver/common/driver_finder.py:56\u001b[0m, in \u001b[0;36mDriverFinder._binary_paths\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 53\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_paths[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdriver_path\u001b[39m\u001b[38;5;124m\"\u001b[39m]:\n\u001b[1;32m 54\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_paths\n\u001b[0;32m---> 56\u001b[0m browser \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_options\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcapabilities\u001b[49m[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mbrowserName\u001b[39m\u001b[38;5;124m\"\u001b[39m]\n\u001b[1;32m 57\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 58\u001b[0m path \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_service\u001b[38;5;241m.\u001b[39mpath\n", + "\u001b[0;31mAttributeError\u001b[0m: 'str' object has no attribute 'capabilities'" + ] + } + ], + "source": [ + "# data = scrape_multiattempt('KSMF', '2025-03-01', 1)\n", + "# data = scrape_multiattempt('KCAJAMES3', '2025-03-01')\n", + "data = scrape_wunderground('KSMF', '2025-03-01')" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Empty DataFrame\n", + "Columns: []\n", + "Index: []\n" + ] + } + ], + "source": [ + "print(data)" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": {}, + "outputs": [], + "source": [ + "import time\n", + "import sys\n", + "\n", + "import numpy as np\n", + "import pandas as pd\n", + "from bs4 import BeautifulSoup as BS\n", + "from selenium import webdriver\n", + "from selenium.webdriver.chrome.service import Service\n", + "\n", + "\n", + "# Set the absolute path to chromedriver\n", + "# chromedriver_path = '/home/_snap/bin/chromium.chromedriver'\n", + "# chromedriver_path = '/home/dan/opt/chrome-linux64/chrome'\n", + "chromedriver_path = '/home/dan/opt/chromedriver-linux64/chromedriver'\n", + "# chromedriver_path = '/home/dan/opt/geckodriver-v0.36.0-linux64/geckodriver'\n", + "\n", + "url = f'https://www.wunderground.com/history/weekly/us/ca/sacramento/KSMF/date/2025-3-1'\n", + "\n", + "# driver = webdriver.Chrome(chromedriver_path)\n", + "# driver = webdriver.Firefox(chromedriver_path)\n", + "service = Service(chromedriver_path)\n", + "driver = webdriver.Chrome(service=service)\n", + "\n", + "driver.get(url)\n", + "time.sleep(3) # Could potentially decrease the sleep time\n", + "r = driver.page_source\n", + "driver.quit()\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[
Daily Observations
TimeTemperature (°F)Dew Point (°F)Humidity (%)Wind Speed (mph)Pressure (in)Precipitation (in)
Feb
23
24
25
26
27
28
1
Max Avg Min
68 59.9 54
67 56.2 49
67 52.9 41
71 54.2 40
73 57.5 44
71 58.5 46
71 56.0 43
Max Avg Min
52 47.5 43
54 50.7 46
51 43.8 38
46 41.5 36
53 46.5 41
49 45.7 41
52 46.8 40
Max Avg Min
81 64.6 47
93 83.2 59
100 74.4 37
86 65.3 32
89 69.5 35
83 64.6 41
89 72.0 49
Max Avg Min
14 7.6 3
14 8.0 0
15 7.1 0
8 2.8 0
9 4.8 0
8 4.0 0
20 9.4 0
Max Avg Min
30.3 30.2 30.1
30.2 30.1 30.1
30.2 30.1 30.0
30.1 30.0 30.0
30.1 30.0 29.9
29.9 29.9 29.8
29.9 29.9 29.8
Total
0.00
0.00
0.00
0.00
0.00
0.00
0.00
]\n", + "TimeTemperature (°F)Dew Point (°F)Humidity (%)Wind Speed (mph)Pressure (in)Precipitation (in)\n" + ] + } + ], + "source": [ + "soup = BS(r, \"html.parser\",)\n", + "\n", + "# container = soup.find('lib-history-table')\n", + "container = soup.find('lib-city-history-observation')\n", + "print(container.contents)\n", + "\n", + "# column names are in thead\n", + "columns = ['Time', 'Temperature', 'Dew Point', 'Humidity', 'Wind Speed', \n", + " 'Wind Gust', 'Pressure', 'Precip.', 'Condition']\n", + "# confirm that our columns are correct:\n", + "column_headers = container.find_all('thead')\n", + "# break it up by column:\n", + "for header in column_headers:\n", + " for item in header:\n", + " print(item.get_text())\n", + "\n", + "# data rows are in tbody\n" ] }, { @@ -18,8 +389,22 @@ } ], "metadata": { + "kernelspec": { + "display_name": "venv", + "language": "python", + "name": "python3" + }, "language_info": { - "name": "python" + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.6" } }, "nbformat": 4, From 8094f111eceac5fab3f977cf5a69c142b82f6a2e Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Thu, 13 Mar 2025 16:22:51 -0700 Subject: [PATCH 74/94] small change --- C1-Classes.ipynb | 61 +++++++++++++++++++++++++++++++++++++++++++++--- 1 file changed, 58 insertions(+), 3 deletions(-) diff --git a/C1-Classes.ipynb b/C1-Classes.ipynb index 9c3c5a3..9919278 100644 --- a/C1-Classes.ipynb +++ b/C1-Classes.ipynb @@ -44,13 +44,14 @@ "metadata": {}, "outputs": [], "source": [ - "class Student(Person):\n", - " def __init__(self, name, age, grade):\n", + "class Student(Personef __init__(self, name, age, grade):\n", " super().__init__(name, age) # Call the parent constructor\n", " self.grade = grade\n", "\n", " def introduce(self):\n", - " return f\"Hi, I'm {self.name}, a student in grade {self.grade}.\"" + " \n", + " return f\"Hi, I'm {self.name}, a student in grade {self.grade}.\"):\n", + " d" ] }, { @@ -104,6 +105,52 @@ "\n", "**Exercise** " ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "v1 line one\n", + "v1 line two\n", + "v1 line three\n", + "line one\n", + "line two\n", + "line three\n", + "v2 line one\n", + "v2 line two\n", + "v2 line three\n", + "line one\n", + "line two\n", + "line three\n" + ] + } + ], + "source": [ + "import time\n", + "chorus = ['line one', 'line two', 'line three']\n", + "verses = {\n", + " 'verse1': [ 'v1 line one', 'v1 line two', 'v1 line three'],\n", + " 'verse2': [ 'v2 line one', 'v2 line two', 'v2 line three'] \n", + "}\n", + "\n", + "for verse, vlines in verses.items():\n", + " for line in vlines:\n", + " print(line)\n", + " time.sleep(1)\n", + " for line in chorus:\n", + " print(line)\n", + " time.sleep(1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] } ], "metadata": { @@ -113,7 +160,15 @@ "name": "python3" }, "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", "version": "3.11.6" } }, From 3351fffb1e8c239fa1643415e43795ef8e58a653 Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Thu, 27 Mar 2025 16:08:31 -0700 Subject: [PATCH 75/94] Initial draft --- F-Flask_Web_Server.ipynb | 0 1 file changed, 0 insertions(+), 0 deletions(-) create mode 100644 F-Flask_Web_Server.ipynb diff --git a/F-Flask_Web_Server.ipynb b/F-Flask_Web_Server.ipynb new file mode 100644 index 0000000..e69de29 From f87c3b13af2155520a271f4455b32084f5408c02 Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Thu, 27 Mar 2025 17:07:40 -0700 Subject: [PATCH 76/94] fix json? --- W-Web_Scraping.ipynb | 26 ++++++++++---------------- 1 file changed, 10 insertions(+), 16 deletions(-) diff --git a/W-Web_Scraping.ipynb b/W-Web_Scraping.ipynb index 8ce8141..aec77f2 100644 --- a/W-Web_Scraping.ipynb +++ b/W-Web_Scraping.ipynb @@ -17,7 +17,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -43,7 +43,7 @@ "print(soup.title)\n", "# print(soup.body.get_text())\n", "# xpath = '//*[@id=\"mw-content-text\"]/div[1]/p[2]'\n", - "xpath = '/html/body/div[2]/div/div[3]/main/div[3]/div[3]/div[1]/p[2]'\n", + "# xpath = '/html/body/div[2]/div/div[3]/main/div[3]/div[3]/div[1]/p[2]'\n", "# print(soup.select_one(xpath).get_text())" ] }, @@ -312,7 +312,7 @@ }, { "cell_type": "code", - "execution_count": 63, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -327,15 +327,10 @@ "\n", "\n", "# Set the absolute path to chromedriver\n", - "# chromedriver_path = '/home/_snap/bin/chromium.chromedriver'\n", - "# chromedriver_path = '/home/dan/opt/chrome-linux64/chrome'\n", "chromedriver_path = '/home/dan/opt/chromedriver-linux64/chromedriver'\n", - "# chromedriver_path = '/home/dan/opt/geckodriver-v0.36.0-linux64/geckodriver'\n", "\n", "url = f'https://www.wunderground.com/history/weekly/us/ca/sacramento/KSMF/date/2025-3-1'\n", "\n", - "# driver = webdriver.Chrome(chromedriver_path)\n", - "# driver = webdriver.Firefox(chromedriver_path)\n", "service = Service(chromedriver_path)\n", "driver = webdriver.Chrome(service=service)\n", "\n", @@ -348,15 +343,15 @@ }, { "cell_type": "code", - "execution_count": 73, + "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "[
Daily Observations
TimeTemperature (°F)Dew Point (°F)Humidity (%)Wind Speed (mph)Pressure (in)Precipitation (in)
Feb
23
24
25
26
27
28
1
Max Avg Min
68 59.9 54
67 56.2 49
67 52.9 41
71 54.2 40
73 57.5 44
71 58.5 46
71 56.0 43
Max Avg Min
52 47.5 43
54 50.7 46
51 43.8 38
46 41.5 36
53 46.5 41
49 45.7 41
52 46.8 40
Max Avg Min
81 64.6 47
93 83.2 59
100 74.4 37
86 65.3 32
89 69.5 35
83 64.6 41
89 72.0 49
Max Avg Min
14 7.6 3
14 8.0 0
15 7.1 0
8 2.8 0
9 4.8 0
8 4.0 0
20 9.4 0
Max Avg Min
30.3 30.2 30.1
30.2 30.1 30.1
30.2 30.1 30.0
30.1 30.0 30.0
30.1 30.0 29.9
29.9 29.9 29.8
29.9 29.9 29.8
Total
0.00
0.00
0.00
0.00
0.00
0.00
0.00
]\n", - "TimeTemperature (°F)Dew Point (°F)Humidity (%)Wind Speed (mph)Pressure (in)Precipitation (in)\n" + "[
Daily Observations
TimeTemperature (°F)Dew Point (°F)Humidity (%)Wind Speed (mph)Pressure (in)Precipitation (in)
Feb
23
24
25
26
27
28
1
Max Avg Min
68 59.9 54
67 56.2 49
67 52.9 41
71 54.2 40
73 57.5 44
71 58.5 46
71 56.0 43
Max Avg Min
52 47.5 43
54 50.7 46
51 43.8 38
46 41.5 36
53 46.5 41
49 45.7 41
52 46.8 40
Max Avg Min
81 64.6 47
93 83.2 59
100 74.4 37
86 65.3 32
89 69.5 35
83 64.6 41
89 72.0 49
Max Avg Min
14 7.6 3
14 8.0 0
15 7.1 0
8 2.8 0
9 4.8 0
8 4.0 0
20 9.4 0
Max Avg Min
30.3 30.2 30.1
30.2 30.1 30.1
30.2 30.1 30.0
30.1 30.0 30.0
30.1 30.0 29.9
29.9 29.9 29.8
29.9 29.9 29.8
Total
0.00
0.00
0.00
0.00
0.00
0.00
0.00
]\n", + " Feb 23 24 25 26 27 28 1 Max Avg Min 68 59.9 54 67 56.2 49 67 52.9 41 71 54.2 40 73 57.5 44 71 58.5 46 71 56.0 43 Max Avg Min 52 47.5 43 54 50.7 46 51 43.8 38 46 41.5 36 53 46.5 41 49 45.7 41 52 46.8 40 Max Avg Min 81 64.6 47 93 83.2 59 100 74.4 37 86 65.3 32 89 69.5 35 83 64.6 41 89 72.0 49 Max Avg Min 14 7.6 3 14 8.0 0 15 7.1 0 8 2.8 0 9 4.8 0 8 4.0 0 20 9.4 0 Max Avg Min 30.3 30.2 30.1 30.2 30.1 30.1 30.2 30.1 30.0 30.1 30.0 30.0 30.1 30.0 29.9 29.9 29.9 29.8 29.9 29.9 29.8 Total 0.00 0.00 0.00 0.00 0.00 0.00 0.00 \n" ] } ], @@ -371,11 +366,10 @@ "columns = ['Time', 'Temperature', 'Dew Point', 'Humidity', 'Wind Speed', \n", " 'Wind Gust', 'Pressure', 'Precip.', 'Condition']\n", "# confirm that our columns are correct:\n", - "column_headers = container.find_all('thead')\n", + "tbody = container.find_all('tbody')\n", "# break it up by column:\n", - "for header in column_headers:\n", - " for item in header:\n", - " print(item.get_text())\n", + "for foo in tbody:\n", + " print(foo.get_text())\n", "\n", "# data rows are in tbody\n" ] @@ -404,7 +398,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.6" + "version": "3.12.3" } }, "nbformat": 4, From 180885352dd9dd09ebd2548e3e14d0e19fe8fee8 Mon Sep 17 00:00:00 2001 From: Dan Date: Thu, 3 Apr 2025 09:30:57 -0700 Subject: [PATCH 77/94] Update README.md --- README.md | 18 ++++++++++++------ 1 file changed, 12 insertions(+), 6 deletions(-) diff --git a/README.md b/README.md index 0fb43d7..8fcb217 100644 --- a/README.md +++ b/README.md @@ -12,12 +12,18 @@ See the Notebooks list below for a more detailed list. ## Current Schedule: We were meeting on wednesdays during October, but due to a scheduling conflict, we'll bo moving to Thursdays. -* Thursday Dec 12 - 4:30PM to 5:30PM -* Thursday Dec 19 - NO MEETING Library Winter Wonderland Event -* Thursday Dec 26 - 4:30PM to 5:30PM -* Thursday Jan 02 - NO MEETING Vacation -* Thursday Jan 09 - 4:30PM to 5:30PM -* Thursdays ongoing. +* Thursday Apr 03 - 4:30PM +* Thursday Apr 10 - 4:30PM +* Thursday Apr 17 - 4:30PM +* Thursday APr 24 - NO MEETING +* Thursday May 01 - 5:30PM New Time! +* Thursday May 08 - 5:30PM +* Thursday May 15 - NO MEETING (writers group) +* Thursday May 22 - 5:30PM +* Thursday May 29 - NO MEETING (special event) +* Thursday Jun 05 - 5:30PM +* Thursday Jun 12 - 5:30PM +* Thursdays ongoing at 5:30PM except third thursday of each month and special events. Please check the library calendar here to confirm dates/times: **https://engagedpatrons.org/EventsCalendar.cfm?SiteID=7839** * Set "limit by location" to "Cameron Park Library". From 531b57e1d639a54ca1ae40bdc66ebd8946265c2a Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Thu, 17 Apr 2025 16:58:51 -0700 Subject: [PATCH 78/94] new --- G-Databases_Working_With.ipynb | 173 +++++++++++++++++++++++++++++++++ 1 file changed, 173 insertions(+) create mode 100644 G-Databases_Working_With.ipynb diff --git a/G-Databases_Working_With.ipynb b/G-Databases_Working_With.ipynb new file mode 100644 index 0000000..64bc695 --- /dev/null +++ b/G-Databases_Working_With.ipynb @@ -0,0 +1,173 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "2685a53c", + "metadata": {}, + "source": [ + "# Section G - Working with Databasese\n", + "\n", + "Feedback: https://forms.gle/Le3RAsMEcYqEyswEA\n", + "\n", + "**Topics**:\n", + "* Sqlite\n", + " * Pandas DB Functions\n", + "* Create Table\n", + "* Drop Table\n", + "* Update Rows\n", + "\n", + "There are\n", + "\n", + "## Mathematical Operations\n", + "These are the basic mathematical functoins that are included in python without importing any libraries." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "3afc46da", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " sepal_length sepal_width petal_length petal_width species\n", + "0 5.1 3.5 1.4 0.2 setosa\n", + "1 4.9 3.0 1.4 0.2 setosa\n", + "2 4.7 3.2 1.3 0.2 setosa\n", + "3 4.6 3.1 1.5 0.2 setosa\n", + "4 5.0 3.6 1.4 0.2 setosa\n" + ] + } + ], + "source": [ + "import pandas as pd\n", + "import sqlite3\n", + "iris_web = pd.read_csv('https://raw.githubusercontent.com/mwaskom/seaborn-data/master/iris.csv')\n", + "\n", + "print(iris_web.head())\n", + "\n", + "# Save the DataFrame to a SQLite database\n", + "with sqlite3.connect('iris_web.db') as conn:\n", + " iris_web.to_sql('iris', conn, if_exists='replace', index=False)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "715d6f0d", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " sepal_length sepal_width petal_length petal_width species\n", + "0 5.1 3.5 1.4 0.2 setosa\n", + "1 4.9 3.0 1.4 0.2 setosa\n", + "2 4.7 3.2 1.3 0.2 setosa\n", + "3 4.6 3.1 1.5 0.2 setosa\n", + "4 5.0 3.6 1.4 0.2 setosa\n" + ] + } + ], + "source": [ + "import pandas as pd\n", + "\n", + "with sqlite3.connect('iris_web.db') as conn:\n", + " query = \"SELECT * FROM iris\"\n", + " df = pd.read_sql_query(query, conn)\n", + "\n", + "print(df.head())\n", + "\n", + "# Without the \"with\" statemen:\n", + "# conn = sqlite3.connect('your_database.db')\n", + "# query = \"SELECT * FROM your_table\"\n", + "# df = pd.read_sql_query(query, conn)\n", + "# conn.close()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "7d5b02b1", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(5.1, 3.5, 1.4, 0.2, 'setosa')\n", + "(4.9, 3.0, 1.4, 0.2, 'setosa')\n", + "(4.7, 3.2, 1.3, 0.2, 'setosa')\n", + "(4.6, 3.1, 1.5, 0.2, 'setosa')\n", + "(5.0, 3.6, 1.4, 0.2, 'setosa')\n", + "(5.4, 3.9, 1.7, 0.4, 'setosa')\n", + "(4.6, 3.4, 1.4, 0.3, 'setosa')\n", + "(5.0, 3.4, 1.5, 0.2, 'setosa')\n", + "(4.4, 2.9, 1.4, 0.2, 'setosa')\n", + "(4.9, 3.1, 1.5, 0.1, 'setosa')\n" + ] + } + ], + "source": [ + "# Without pandas, query the database directly\n", + "with sqlite3.connect('iris_web.db') as conn:\n", + " cursor = conn.cursor()\n", + " cursor.execute(\"SELECT * FROM iris\")\n", + " rows = cursor.fetchall()\n", + "for row in rows[:10]:\n", + " print(row)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "fa0e5146", + "metadata": {}, + "outputs": [], + "source": [ + "# Update 2nd row in the df and update it in the database\n", + "df.loc[1, 'sepal_length'] = 99999\n", + "df.head()\n", + "\n", + "with sqlite3.connect('iris_web.db') as conn:\n", + " df.to_sql('iris', conn, if_exists='replace', index=False)\n", + "# Verify the update\n", + "with sqlite3.connect('iris_web.db') as conn:\n", + " query = \"SELECT * FROM iris\"\n", + " updated_df = pd.read_sql_query(query, conn)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "9412e892", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.3" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} From bcab708818d39991ff976aceae424e28b03c4ee3 Mon Sep 17 00:00:00 2001 From: Dan Date: Thu, 1 May 2025 17:15:48 -0700 Subject: [PATCH 79/94] Update README.md --- README.md | 4 ---- 1 file changed, 4 deletions(-) diff --git a/README.md b/README.md index 8fcb217..4d80280 100644 --- a/README.md +++ b/README.md @@ -12,10 +12,6 @@ See the Notebooks list below for a more detailed list. ## Current Schedule: We were meeting on wednesdays during October, but due to a scheduling conflict, we'll bo moving to Thursdays. -* Thursday Apr 03 - 4:30PM -* Thursday Apr 10 - 4:30PM -* Thursday Apr 17 - 4:30PM -* Thursday APr 24 - NO MEETING * Thursday May 01 - 5:30PM New Time! * Thursday May 08 - 5:30PM * Thursday May 15 - NO MEETING (writers group) From 49fb3dd1fba618d522faeeca307bbb7451de4643 Mon Sep 17 00:00:00 2001 From: Dan Date: Thu, 8 May 2025 17:22:47 -0700 Subject: [PATCH 80/94] Update README.md --- README.md | 7 +++++++ 1 file changed, 7 insertions(+) diff --git a/README.md b/README.md index 4d80280..15a85e7 100644 --- a/README.md +++ b/README.md @@ -19,6 +19,10 @@ We were meeting on wednesdays during October, but due to a scheduling conflict, * Thursday May 29 - NO MEETING (special event) * Thursday Jun 05 - 5:30PM * Thursday Jun 12 - 5:30PM +* Thursday Jun 19 - NO MEETING (writers group) +* Thursday Jun 26 - NO MEETING (schedule conflict) +* Thursday Jul 03 - 5:30PM +* Thursday Jul 10 - 5:30PM * Thursdays ongoing at 5:30PM except third thursday of each month and special events. Please check the library calendar here to confirm dates/times: **https://engagedpatrons.org/EventsCalendar.cfm?SiteID=7839** @@ -80,6 +84,9 @@ We have a series of python notebooks ready to work through to learn from. They **Online Programming Tools** * https://replit.com/ +**Online Classes, videos, etc*** +There are sooo many good resources online. This course is assembled by a great instructor at GATech and is recommended pre-cursor to their online Masters in Comp Sci program: https://www.edx.org/certificates/professional-certificate/the-georgia-institute-of-technology-introduction-to-python-programming + ### Notes on AI like ChatGPT These tools are **very** helpful for learning. For this course, use them to explain how things work, but don't ask them to write code for you. If you don't experiment and learn for yourself, you won't retain as much. Keep all of your code and use your past code as the start for each more complicated problem. You'll build a toolkit of libraries and code bits that you understand and make all kinds of things from. From 79c95fa2950ed107395b7f2f46a455211b0eef21 Mon Sep 17 00:00:00 2001 From: Dan Date: Thu, 22 May 2025 18:00:12 -0700 Subject: [PATCH 81/94] Add files via upload --- SAMPLE_DATA/y77d-th95.json | 1000 ++++++++++++++++++++++++++++++++++++ 1 file changed, 1000 insertions(+) create mode 100644 SAMPLE_DATA/y77d-th95.json diff --git a/SAMPLE_DATA/y77d-th95.json b/SAMPLE_DATA/y77d-th95.json new file mode 100644 index 0000000..1638f49 --- /dev/null +++ b/SAMPLE_DATA/y77d-th95.json @@ -0,0 +1,1000 @@ +[{"name":"Aachen","id":"1","nametype":"Valid","recclass":"L5","mass":"21","fall":"Fell","year":"1880-01-01T00:00:00.000","reclat":"50.775000","reclong":"6.083330","geolocation":{"type":"Point","coordinates":[6.08333,50.775]}} +,{"name":"Aarhus","id":"2","nametype":"Valid","recclass":"H6","mass":"720","fall":"Fell","year":"1951-01-01T00:00:00.000","reclat":"56.183330","reclong":"10.233330","geolocation":{"type":"Point","coordinates":[10.23333,56.18333]}} +,{"name":"Abee","id":"6","nametype":"Valid","recclass":"EH4","mass":"107000","fall":"Fell","year":"1952-01-01T00:00:00.000","reclat":"54.216670","reclong":"-113.000000","geolocation":{"type":"Point","coordinates":[-113,54.21667]}} +,{"name":"Acapulco","id":"10","nametype":"Valid","recclass":"Acapulcoite","mass":"1914","fall":"Fell","year":"1976-01-01T00:00:00.000","reclat":"16.883330","reclong":"-99.900000","geolocation":{"type":"Point","coordinates":[-99.9,16.88333]}} +,{"name":"Achiras","id":"370","nametype":"Valid","recclass":"L6","mass":"780","fall":"Fell","year":"1902-01-01T00:00:00.000","reclat":"-33.166670","reclong":"-64.950000","geolocation":{"type":"Point","coordinates":[-64.95,-33.16667]}} +,{"name":"Adhi Kot","id":"379","nametype":"Valid","recclass":"EH4","mass":"4239","fall":"Fell","year":"1919-01-01T00:00:00.000","reclat":"32.100000","reclong":"71.800000","geolocation":{"type":"Point","coordinates":[71.8,32.1]}} +,{"name":"Adzhi-Bogdo (stone)","id":"390","nametype":"Valid","recclass":"LL3-6","mass":"910","fall":"Fell","year":"1949-01-01T00:00:00.000","reclat":"44.833330","reclong":"95.166670","geolocation":{"type":"Point","coordinates":[95.16667,44.83333]}} +,{"name":"Agen","id":"392","nametype":"Valid","recclass":"H5","mass":"30000","fall":"Fell","year":"1814-01-01T00:00:00.000","reclat":"44.216670","reclong":"0.616670","geolocation":{"type":"Point","coordinates":[0.61667,44.21667]}} +,{"name":"Aguada","id":"398","nametype":"Valid","recclass":"L6","mass":"1620","fall":"Fell","year":"1930-01-01T00:00:00.000","reclat":"-31.600000","reclong":"-65.233330","geolocation":{"type":"Point","coordinates":[-65.23333,-31.6]}} +,{"name":"Aguila Blanca","id":"417","nametype":"Valid","recclass":"L","mass":"1440","fall":"Fell","year":"1920-01-01T00:00:00.000","reclat":"-30.866670","reclong":"-64.550000","geolocation":{"type":"Point","coordinates":[-64.55,-30.86667]}} +,{"name":"Aioun el Atrouss","id":"423","nametype":"Valid","recclass":"Diogenite-pm","mass":"1000","fall":"Fell","year":"1974-01-01T00:00:00.000","reclat":"16.398060","reclong":"-9.570280","geolocation":{"type":"Point","coordinates":[-9.57028,16.39806]}} +,{"name":"Aïr","id":"424","nametype":"Valid","recclass":"L6","mass":"24000","fall":"Fell","year":"1925-01-01T00:00:00.000","reclat":"19.083330","reclong":"8.383330","geolocation":{"type":"Point","coordinates":[8.38333,19.08333]}} +,{"name":"Aire-sur-la-Lys","id":"425","nametype":"Valid","recclass":"Unknown","fall":"Fell","year":"1769-01-01T00:00:00.000","reclat":"50.666670","reclong":"2.333330","geolocation":{"type":"Point","coordinates":[2.33333,50.66667]}} +,{"name":"Akaba","id":"426","nametype":"Valid","recclass":"L6","mass":"779","fall":"Fell","year":"1949-01-01T00:00:00.000","reclat":"29.516670","reclong":"35.050000","geolocation":{"type":"Point","coordinates":[35.05,29.51667]}} +,{"name":"Akbarpur","id":"427","nametype":"Valid","recclass":"H4","mass":"1800","fall":"Fell","year":"1838-01-01T00:00:00.000","reclat":"29.716670","reclong":"77.950000","geolocation":{"type":"Point","coordinates":[77.95,29.71667]}} +,{"name":"Akwanga","id":"432","nametype":"Valid","recclass":"H","mass":"3000","fall":"Fell","year":"1959-01-01T00:00:00.000","reclat":"8.916670","reclong":"8.433330","geolocation":{"type":"Point","coordinates":[8.43333,8.91667]}} +,{"name":"Akyumak","id":"433","nametype":"Valid","recclass":"Iron, IVA","mass":"50000","fall":"Fell","year":"1981-01-01T00:00:00.000","reclat":"39.916670","reclong":"42.816670","geolocation":{"type":"Point","coordinates":[42.81667,39.91667]}} +,{"name":"Al Rais","id":"446","nametype":"Valid","recclass":"CR2-an","mass":"160","fall":"Fell","year":"1957-01-01T00:00:00.000","reclat":"24.416670","reclong":"39.516670","geolocation":{"type":"Point","coordinates":[39.51667,24.41667]}} +,{"name":"Al Zarnkh","id":"447","nametype":"Valid","recclass":"LL5","mass":"700","fall":"Fell","year":"2001-01-01T00:00:00.000","reclat":"13.660330","reclong":"28.960000","geolocation":{"type":"Point","coordinates":[28.96,13.66033]}} +,{"name":"Alais","id":"448","nametype":"Valid","recclass":"CI1","mass":"6000","fall":"Fell","year":"1806-01-01T00:00:00.000","reclat":"44.116670","reclong":"4.083330","geolocation":{"type":"Point","coordinates":[4.08333,44.11667]}} +,{"name":"Albareto","id":"453","nametype":"Valid","recclass":"L/LL4","mass":"2000","fall":"Fell","year":"1766-01-01T00:00:00.000","reclat":"44.650000","reclong":"11.016670","geolocation":{"type":"Point","coordinates":[11.01667,44.65]}} +,{"name":"Alberta","id":"454","nametype":"Valid","recclass":"L","mass":"625","fall":"Fell","year":"1949-01-01T00:00:00.000","reclat":"2.000000","reclong":"22.666670","geolocation":{"type":"Point","coordinates":[22.66667,2]}} +,{"name":"Alby sur Chéran","id":"458","nametype":"Valid","recclass":"Eucrite-mmict","mass":"252","fall":"Fell","year":"2002-01-01T00:00:00.000","reclat":"45.821330","reclong":"6.015330","geolocation":{"type":"Point","coordinates":[6.01533,45.82133]}} +,{"name":"Aldsworth","id":"461","nametype":"Valid","recclass":"LL5","mass":"700","fall":"Fell","year":"1835-01-01T00:00:00.000","reclat":"51.783330","reclong":"-1.783330","geolocation":{"type":"Point","coordinates":[-1.78333,51.78333]}} +,{"name":"Aleppo","id":"462","nametype":"Valid","recclass":"L6","mass":"3200","fall":"Fell","year":"1873-01-01T00:00:00.000","reclat":"36.233330","reclong":"37.133330","geolocation":{"type":"Point","coordinates":[37.13333,36.23333]}} +,{"name":"Alessandria","id":"463","nametype":"Valid","recclass":"H5","mass":"908","fall":"Fell","year":"1860-01-01T00:00:00.000","reclat":"44.883330","reclong":"8.750000","geolocation":{"type":"Point","coordinates":[8.75,44.88333]}} +,{"name":"Alexandrovsky","id":"465","nametype":"Valid","recclass":"H4","mass":"9251","fall":"Fell","year":"1900-01-01T00:00:00.000","reclat":"50.950000","reclong":"31.816670","geolocation":{"type":"Point","coordinates":[31.81667,50.95]}} +,{"name":"Alfianello","id":"466","nametype":"Valid","recclass":"L6","mass":"228000","fall":"Fell","year":"1883-01-01T00:00:00.000","reclat":"45.266670","reclong":"10.150000","geolocation":{"type":"Point","coordinates":[10.15,45.26667]}} +,{"name":"Allegan","id":"2276","nametype":"Valid","recclass":"H5","mass":"32000","fall":"Fell","year":"1899-01-01T00:00:00.000","reclat":"42.533330","reclong":"-85.883330","geolocation":{"type":"Point","coordinates":[-85.88333,42.53333]},":@computed_region_cbhk_fwbd":"50",":@computed_region_nnqa_25f4":"429"} +,{"name":"Allende","id":"2278","nametype":"Valid","recclass":"CV3","mass":"2000000","fall":"Fell","year":"1969-01-01T00:00:00.000","reclat":"26.966670","reclong":"-105.316670","geolocation":{"type":"Point","coordinates":[-105.31667,26.96667]}} +,{"name":"Almahata Sitta","id":"48915","nametype":"Valid","recclass":"Ureilite-an","mass":"3950","fall":"Fell","year":"2008-01-01T00:00:00.000","reclat":"20.745750","reclong":"32.412750","geolocation":{"type":"Point","coordinates":[32.41275,20.74575]}} +,{"name":"Alta'ameem","id":"2284","nametype":"Valid","recclass":"LL5","mass":"6000","fall":"Fell","year":"1977-01-01T00:00:00.000","reclat":"35.273330","reclong":"44.215560","geolocation":{"type":"Point","coordinates":[44.21556,35.27333]}} +,{"name":"Ambapur Nagla","id":"2290","nametype":"Valid","recclass":"H5","mass":"6400","fall":"Fell","year":"1895-01-01T00:00:00.000","reclat":"27.666670","reclong":"78.250000","geolocation":{"type":"Point","coordinates":[78.25,27.66667]}} +,{"name":"Andhara","id":"2294","nametype":"Valid","recclass":"Stone-uncl","mass":"2700","fall":"Fell","year":"1880-01-01T00:00:00.000","reclat":"26.583330","reclong":"85.566670","geolocation":{"type":"Point","coordinates":[85.56667,26.58333]}} +,{"name":"Andover","id":"2295","nametype":"Valid","recclass":"L6","mass":"3200","fall":"Fell","year":"1898-01-01T00:00:00.000","reclat":"44.616670","reclong":"-70.750000","geolocation":{"type":"Point","coordinates":[-70.75,44.61667]},":@computed_region_cbhk_fwbd":"49",":@computed_region_nnqa_25f4":"1723"} +,{"name":"Andreevka","id":"2296","nametype":"Valid","recclass":"L3","mass":"600","fall":"Fell","year":"1969-01-01T00:00:00.000","reclat":"48.700000","reclong":"37.500000","geolocation":{"type":"Point","coordinates":[37.5,48.7]}} +,{"name":"Andura","id":"2298","nametype":"Valid","recclass":"H6","mass":"17900","fall":"Fell","year":"1939-01-01T00:00:00.000","reclat":"20.883330","reclong":"76.866670","geolocation":{"type":"Point","coordinates":[76.86667,20.88333]}} +,{"name":"Northwest Africa 5815","id":"50693","nametype":"Valid","recclass":"L5","mass":"256.8","fall":"Found","reclat":"0.000000","reclong":"0.000000","geolocation":{"type":"Point","coordinates":[0,0]}} +,{"name":"Angers","id":"2301","nametype":"Valid","recclass":"L6","fall":"Fell","year":"1822-01-01T00:00:00.000","reclat":"47.466670","reclong":"-0.550000","geolocation":{"type":"Point","coordinates":[-0.55,47.46667]}} +,{"name":"Angra dos Reis (stone)","id":"2302","nametype":"Valid","recclass":"Angrite","mass":"1500","fall":"Fell","year":"1869-01-01T00:00:00.000","reclat":"-22.966670","reclong":"-44.316670","geolocation":{"type":"Point","coordinates":[-44.31667,-22.96667]}} +,{"name":"Ankober","id":"2304","nametype":"Valid","recclass":"H4","mass":"6500","fall":"Fell","year":"1942-01-01T00:00:00.000","reclat":"9.533330","reclong":"39.716670","geolocation":{"type":"Point","coordinates":[39.71667,9.53333]}} +,{"name":"Anlong","id":"2305","nametype":"Valid","recclass":"H5","mass":"2500","fall":"Fell","year":"1971-01-01T00:00:00.000","reclat":"25.150000","reclong":"105.183330","geolocation":{"type":"Point","coordinates":[105.18333,25.15]}} +,{"name":"Aomori","id":"2313","nametype":"Valid","recclass":"L6","mass":"320","fall":"Fell","year":"1984-01-01T00:00:00.000","reclat":"40.810560","reclong":"140.785560","geolocation":{"type":"Point","coordinates":[140.78556,40.81056]}} +,{"name":"Appley Bridge","id":"2318","nametype":"Valid","recclass":"LL6","mass":"15000","fall":"Fell","year":"1914-01-01T00:00:00.000","reclat":"53.583330","reclong":"-2.716670","geolocation":{"type":"Point","coordinates":[-2.71667,53.58333]}} +,{"name":"Apt","id":"2320","nametype":"Valid","recclass":"L6","mass":"3200","fall":"Fell","year":"1803-01-01T00:00:00.000","reclat":"43.866670","reclong":"5.383330","geolocation":{"type":"Point","coordinates":[5.38333,43.86667]}} +,{"name":"Arbol Solo","id":"2325","nametype":"Valid","recclass":"H5","mass":"810","fall":"Fell","year":"1954-01-01T00:00:00.000","reclat":"-33.000000","reclong":"-66.000000","geolocation":{"type":"Point","coordinates":[-66,-33]}} +,{"name":"Archie","id":"2329","nametype":"Valid","recclass":"H6","mass":"5070","fall":"Fell","year":"1932-01-01T00:00:00.000","reclat":"38.500000","reclong":"-94.300000","geolocation":{"type":"Point","coordinates":[-94.3,38.5]},":@computed_region_cbhk_fwbd":"18",":@computed_region_nnqa_25f4":"2697"} +,{"name":"Arroyo Aguiar","id":"2340","nametype":"Valid","recclass":"H5","mass":"7450","fall":"Fell","year":"1950-01-01T00:00:00.000","reclat":"-31.416670","reclong":"-60.666670","geolocation":{"type":"Point","coordinates":[-60.66667,-31.41667]}} +,{"name":"Asco","id":"2345","nametype":"Valid","recclass":"H6","mass":"41","fall":"Fell","year":"1805-01-01T00:00:00.000","reclat":"42.450000","reclong":"9.033330","geolocation":{"type":"Point","coordinates":[9.03333,42.45]}} +,{"name":"Ash Creek","id":"48954","nametype":"Valid","recclass":"L6","mass":"9500","fall":"Fell","year":"2009-01-01T00:00:00.000","reclat":"31.805000","reclong":"-97.010000","geolocation":{"type":"Point","coordinates":[-97.01,31.805]},":@computed_region_cbhk_fwbd":"23",":@computed_region_nnqa_25f4":"774"} +,{"name":"Ashdon","id":"2346","nametype":"Valid","recclass":"L6","mass":"1300","fall":"Fell","year":"1923-01-01T00:00:00.000","reclat":"52.050000","reclong":"0.300000","geolocation":{"type":"Point","coordinates":[0.3,52.05]}} +,{"name":"Assisi","id":"2353","nametype":"Valid","recclass":"H5","mass":"2000","fall":"Fell","year":"1886-01-01T00:00:00.000","reclat":"43.033330","reclong":"12.550000","geolocation":{"type":"Point","coordinates":[12.55,43.03333]}} +,{"name":"Atarra","id":"4883","nametype":"Valid","recclass":"L4","mass":"1280","fall":"Fell","year":"1920-01-01T00:00:00.000","reclat":"25.254170","reclong":"80.625000","geolocation":{"type":"Point","coordinates":[80.625,25.25417]}} +,{"name":"Atemajac","id":"4884","nametype":"Valid","recclass":"L6","mass":"94.2","fall":"Fell","year":"1896-01-01T00:00:00.000","reclat":"20.066670","reclong":"-103.666670","geolocation":{"type":"Point","coordinates":[-103.66667,20.06667]}} +,{"name":"Athens","id":"4885","nametype":"Valid","recclass":"LL6","mass":"265","fall":"Fell","year":"1933-01-01T00:00:00.000","reclat":"34.750000","reclong":"-87.000000","geolocation":{"type":"Point","coordinates":[-87,34.75]},":@computed_region_cbhk_fwbd":"29",":@computed_region_nnqa_25f4":"3134"} +,{"name":"Atoka","id":"4888","nametype":"Valid","recclass":"L6","mass":"1384.2","fall":"Fell","year":"1945-01-01T00:00:00.000","reclat":"34.316670","reclong":"-96.150000","geolocation":{"type":"Point","coordinates":[-96.15,34.31667]},":@computed_region_cbhk_fwbd":"20",":@computed_region_nnqa_25f4":"602"} +,{"name":"Aubres","id":"4893","nametype":"Valid","recclass":"Aubrite","mass":"800","fall":"Fell","year":"1836-01-01T00:00:00.000","reclat":"44.383330","reclong":"5.166670","geolocation":{"type":"Point","coordinates":[5.16667,44.38333]}} +,{"name":"Aumale","id":"4899","nametype":"Valid","recclass":"L6","mass":"50000","fall":"Fell","year":"1865-01-01T00:00:00.000","reclat":"36.166670","reclong":"3.666670","geolocation":{"type":"Point","coordinates":[3.66667,36.16667]}} +,{"name":"Aumieres","id":"4900","nametype":"Valid","recclass":"L6","mass":"2000","fall":"Fell","year":"1842-01-01T00:00:00.000","reclat":"44.333330","reclong":"3.233330","geolocation":{"type":"Point","coordinates":[3.23333,44.33333]}} +,{"name":"Ausson","id":"4903","nametype":"Valid","recclass":"L5","mass":"50000","fall":"Fell","year":"1858-01-01T00:00:00.000","reclat":"43.083330","reclong":"0.583330","geolocation":{"type":"Point","coordinates":[0.58333,43.08333]}} +,{"name":"Avanhandava","id":"4905","nametype":"Valid","recclass":"H4","mass":"9330","fall":"Fell","year":"1952-01-01T00:00:00.000","reclat":"-21.460280","reclong":"-49.950830","geolocation":{"type":"Point","coordinates":[-49.95083,-21.46028]}} +,{"name":"Avce","id":"4906","nametype":"Valid","recclass":"Iron, IIAB","mass":"1230","fall":"Fell","year":"1908-01-01T00:00:00.000","reclat":"46.000000","reclong":"13.500000","geolocation":{"type":"Point","coordinates":[13.5,46]}} +,{"name":"Avilez","id":"4907","nametype":"Valid","recclass":"H","mass":"146","fall":"Fell","year":"1855-01-01T00:00:00.000","reclat":"25.000000","reclong":"-103.500000","geolocation":{"type":"Point","coordinates":[-103.5,25]}} +,{"name":"Awere","id":"4910","nametype":"Valid","recclass":"L4","mass":"134","fall":"Fell","year":"1968-01-01T00:00:00.000","reclat":"2.716670","reclong":"32.833330","geolocation":{"type":"Point","coordinates":[32.83333,2.71667]}} +,{"name":"Aztec","id":"4913","nametype":"Valid","recclass":"L6","mass":"2830","fall":"Fell","year":"1938-01-01T00:00:00.000","reclat":"36.800000","reclong":"-108.000000","geolocation":{"type":"Point","coordinates":[-108,36.8]},":@computed_region_cbhk_fwbd":"11",":@computed_region_nnqa_25f4":"1989"} +,{"name":"Bachmut","id":"4917","nametype":"Valid","recclass":"L6","mass":"18000","fall":"Fell","year":"1814-01-01T00:00:00.000","reclat":"48.600000","reclong":"38.000000","geolocation":{"type":"Point","coordinates":[38,48.6]}} +,{"name":"Bahjoi","id":"4922","nametype":"Valid","recclass":"Iron, IAB-sLL","mass":"10322","fall":"Fell","year":"1934-01-01T00:00:00.000","reclat":"28.483330","reclong":"78.500000","geolocation":{"type":"Point","coordinates":[78.5,28.48333]}} +,{"name":"Bald Mountain","id":"4925","nametype":"Valid","recclass":"L4","mass":"3700","fall":"Fell","year":"1929-01-01T00:00:00.000","reclat":"35.966670","reclong":"-82.483330","geolocation":{"type":"Point","coordinates":[-82.48333,35.96667]},":@computed_region_cbhk_fwbd":"37",":@computed_region_nnqa_25f4":"2373"} +,{"name":"Baldwyn","id":"4926","nametype":"Valid","recclass":"L6","mass":"345","fall":"Fell","year":"1922-01-01T00:00:00.000","reclat":"34.500000","reclong":"-88.666670","geolocation":{"type":"Point","coordinates":[-88.66667,34.5]},":@computed_region_cbhk_fwbd":"32",":@computed_region_nnqa_25f4":"495"} +,{"name":"Bali","id":"4928","nametype":"Valid","recclass":"CV3","mass":"1000","fall":"Fell","year":"1907-01-01T00:00:00.000","reclat":"5.383330","reclong":"16.383330","geolocation":{"type":"Point","coordinates":[16.38333,5.38333]}} +,{"name":"Ban Rong Du","id":"4934","nametype":"Valid","recclass":"Iron, ungrouped","mass":"16700","fall":"Fell","year":"1993-01-01T00:00:00.000","reclat":"16.666670","reclong":"101.183330","geolocation":{"type":"Point","coordinates":[101.18333,16.66667]}} +,{"name":"Bandong","id":"4935","nametype":"Valid","recclass":"LL6","mass":"11500","fall":"Fell","year":"1871-01-01T00:00:00.000","reclat":"-6.916670","reclong":"107.600000","geolocation":{"type":"Point","coordinates":[107.6,-6.91667]}} +,{"name":"Bansur","id":"4936","nametype":"Valid","recclass":"L6","mass":"15000","fall":"Fell","year":"1892-01-01T00:00:00.000","reclat":"27.700000","reclong":"76.333330","geolocation":{"type":"Point","coordinates":[76.33333,27.7]}} +,{"name":"Banswal","id":"4937","nametype":"Valid","recclass":"L5","mass":"14","fall":"Fell","year":"1913-01-01T00:00:00.000","reclat":"30.400000","reclong":"78.200000","geolocation":{"type":"Point","coordinates":[78.2,30.4]}} +,{"name":"Banten","id":"4938","nametype":"Valid","recclass":"CM2","mass":"629","fall":"Fell","year":"1933-01-01T00:00:00.000","reclat":"-6.333330","reclong":"106.000000","geolocation":{"type":"Point","coordinates":[106,-6.33333]}} +,{"name":"Barbotan","id":"4942","nametype":"Valid","recclass":"H5","mass":"6400","fall":"Fell","year":"1790-01-01T00:00:00.000","reclat":"43.950000","reclong":"-0.050000","geolocation":{"type":"Point","coordinates":[-0.05,43.95]}} +,{"name":"Barcelona (stone)","id":"4944","nametype":"Valid","recclass":"OC","fall":"Fell","year":"1704-01-01T00:00:00.000","reclat":"41.366670","reclong":"2.166670","geolocation":{"type":"Point","coordinates":[2.16667,41.36667]}} +,{"name":"Barea","id":"4946","nametype":"Valid","recclass":"Mesosiderite-A1","mass":"3200","fall":"Fell","year":"1842-01-01T00:00:00.000","reclat":"42.383330","reclong":"-2.500000","geolocation":{"type":"Point","coordinates":[-2.5,42.38333]}} +,{"name":"Barnaul","id":"4947","nametype":"Valid","recclass":"H5","mass":"23.2","fall":"Fell","year":"1904-01-01T00:00:00.000","reclat":"52.733330","reclong":"84.083330","geolocation":{"type":"Point","coordinates":[84.08333,52.73333]}} +,{"name":"Barntrup","id":"4948","nametype":"Valid","recclass":"LL4","mass":"17","fall":"Fell","year":"1886-01-01T00:00:00.000","reclat":"52.000000","reclong":"9.100000","geolocation":{"type":"Point","coordinates":[9.1,52]}} +,{"name":"Baroti","id":"4949","nametype":"Valid","recclass":"L6","mass":"4500","fall":"Fell","year":"1910-01-01T00:00:00.000","reclat":"31.616670","reclong":"76.800000","geolocation":{"type":"Point","coordinates":[76.8,31.61667]}} +,{"name":"Barwell","id":"4954","nametype":"Valid","recclass":"L5","mass":"44000","fall":"Fell","year":"1965-01-01T00:00:00.000","reclat":"52.565280","reclong":"-1.339720","geolocation":{"type":"Point","coordinates":[-1.33972,52.56528]}} +,{"name":"Bassikounou","id":"44876","nametype":"Valid","recclass":"H5","mass":"29560","fall":"Fell","year":"2006-01-01T00:00:00.000","reclat":"15.783330","reclong":"-5.900000","geolocation":{"type":"Point","coordinates":[-5.9,15.78333]}} +,{"name":"Baszkówka","id":"4957","nametype":"Valid","recclass":"L5","mass":"15500","fall":"Fell","year":"1994-01-01T00:00:00.000","reclat":"52.033330","reclong":"20.935830","geolocation":{"type":"Point","coordinates":[20.93583,52.03333]}} +,{"name":"Bath","id":"4974","nametype":"Valid","recclass":"H4","mass":"21000","fall":"Fell","year":"1892-01-01T00:00:00.000","reclat":"45.416670","reclong":"-98.316670","geolocation":{"type":"Point","coordinates":[-98.31667,45.41667]},":@computed_region_cbhk_fwbd":"21",":@computed_region_nnqa_25f4":"662"} +,{"name":"Bath Furnace","id":"4975","nametype":"Valid","recclass":"L6","mass":"86000","fall":"Fell","year":"1902-01-01T00:00:00.000","reclat":"38.250000","reclong":"-83.750000","geolocation":{"type":"Point","coordinates":[-83.75,38.25]},":@computed_region_cbhk_fwbd":"36",":@computed_region_nnqa_25f4":"1921"} +,{"name":"Battle Mountain","id":"56133","nametype":"Valid","recclass":"L6","mass":"2900","fall":"Fell","year":"2012-01-01T00:00:00.000","reclat":"40.668130","reclong":"-117.189130","geolocation":{"type":"Point","coordinates":[-117.18913,40.66813]},":@computed_region_cbhk_fwbd":"10",":@computed_region_nnqa_25f4":"2397"} +,{"name":"Bawku","id":"4976","nametype":"Valid","recclass":"LL5","mass":"1557","fall":"Fell","year":"1989-01-01T00:00:00.000","reclat":"11.083330","reclong":"-0.183330","geolocation":{"type":"Point","coordinates":[-0.18333,11.08333]}} +,{"name":"Baxter","id":"4977","nametype":"Valid","recclass":"L6","mass":"611","fall":"Fell","year":"1916-01-01T00:00:00.000","reclat":"36.750000","reclong":"-93.500000","geolocation":{"type":"Point","coordinates":[-93.5,36.75]},":@computed_region_cbhk_fwbd":"18",":@computed_region_nnqa_25f4":"2216"} +,{"name":"Beardsley","id":"4984","nametype":"Valid","recclass":"H5","mass":"16000","fall":"Fell","year":"1929-01-01T00:00:00.000","reclat":"39.800000","reclong":"-101.200000","geolocation":{"type":"Point","coordinates":[-101.2,39.8]},":@computed_region_cbhk_fwbd":"17",":@computed_region_nnqa_25f4":"1285"} +,{"name":"Beaver Creek","id":"4986","nametype":"Valid","recclass":"H5","mass":"14000","fall":"Fell","year":"1893-01-01T00:00:00.000","reclat":"51.166670","reclong":"-117.333330","geolocation":{"type":"Point","coordinates":[-117.33333,51.16667]}} +,{"name":"Beddgelert","id":"4993","nametype":"Valid","recclass":"H5","mass":"794","fall":"Fell","year":"1949-01-01T00:00:00.000","reclat":"53.016670","reclong":"-4.100000","geolocation":{"type":"Point","coordinates":[-4.1,53.01667]}} +,{"name":"Bells","id":"5005","nametype":"Valid","recclass":"C2-ung","mass":"375","fall":"Fell","year":"1961-01-01T00:00:00.000","reclat":"33.600000","reclong":"-96.466670","geolocation":{"type":"Point","coordinates":[-96.46667,33.6]},":@computed_region_cbhk_fwbd":"23",":@computed_region_nnqa_25f4":"1978"} +,{"name":"Belville","id":"5009","nametype":"Valid","recclass":"OC","fall":"Fell","year":"1937-01-01T00:00:00.000","reclat":"-32.333330","reclong":"-64.866670","geolocation":{"type":"Point","coordinates":[-64.86667,-32.33333]}} +,{"name":"Benares (a)","id":"5011","nametype":"Valid","recclass":"LL4","mass":"3700","fall":"Fell","year":"1798-01-01T00:00:00.000","reclat":"25.366670","reclong":"82.916670","geolocation":{"type":"Point","coordinates":[82.91667,25.36667]}} +,{"name":"Benguerir","id":"30443","nametype":"Valid","recclass":"LL6","mass":"25000","fall":"Fell","year":"2004-01-01T00:00:00.000","reclat":"32.250000","reclong":"-8.150000","geolocation":{"type":"Point","coordinates":[-8.15,32.25]}} +,{"name":"Beni M'hira","id":"5018","nametype":"Valid","recclass":"L6","mass":"19000","fall":"Fell","year":"2001-01-01T00:00:00.000","reclat":"32.866670","reclong":"10.800000","geolocation":{"type":"Point","coordinates":[10.8,32.86667]}} +,{"name":"Benld","id":"5021","nametype":"Valid","recclass":"H6","mass":"1770.5","fall":"Fell","year":"1938-01-01T00:00:00.000","reclat":"39.083330","reclong":"-89.150000","geolocation":{"type":"Point","coordinates":[-89.15,39.08333]},":@computed_region_cbhk_fwbd":"34",":@computed_region_nnqa_25f4":"1869"} +,{"name":"Benoni","id":"5023","nametype":"Valid","recclass":"H6","mass":"3880","fall":"Fell","year":"1943-01-01T00:00:00.000","reclat":"-26.166670","reclong":"28.416670","geolocation":{"type":"Point","coordinates":[28.41667,-26.16667]}} +,{"name":"Bensour","id":"5024","nametype":"Valid","recclass":"LL6","mass":"45000","fall":"Fell","year":"2002-01-01T00:00:00.000","reclat":"30.000000","reclong":"-7.000000","geolocation":{"type":"Point","coordinates":[-7,30]}} +,{"name":"Benton","id":"5026","nametype":"Valid","recclass":"LL6","mass":"2840","fall":"Fell","year":"1949-01-01T00:00:00.000","reclat":"45.950000","reclong":"-67.550000","geolocation":{"type":"Point","coordinates":[-67.55,45.95]}} +,{"name":"Berduc","id":"48975","nametype":"Valid","recclass":"L6","mass":"270","fall":"Fell","year":"2008-01-01T00:00:00.000","reclat":"-31.910000","reclong":"-58.328330","geolocation":{"type":"Point","coordinates":[-58.32833,-31.91]}} +,{"name":"Béréba","id":"5028","nametype":"Valid","recclass":"Eucrite-mmict","mass":"18000","fall":"Fell","year":"1924-01-01T00:00:00.000","reclat":"11.650000","reclong":"-3.650000","geolocation":{"type":"Point","coordinates":[-3.65,11.65]}} +,{"name":"Berlanguillas","id":"5029","nametype":"Valid","recclass":"L6","mass":"1440","fall":"Fell","year":"1811-01-01T00:00:00.000","reclat":"41.683330","reclong":"-3.800000","geolocation":{"type":"Point","coordinates":[-3.8,41.68333]}} +,{"name":"Berthoud","id":"47355","nametype":"Valid","recclass":"Eucrite-mmict","mass":"960","fall":"Fell","year":"2004-01-01T00:00:00.000","reclat":"40.305830","reclong":"-105.023250","geolocation":{"type":"Point","coordinates":[-105.02325,40.30583]},":@computed_region_cbhk_fwbd":"9",":@computed_region_nnqa_25f4":"1072"} +,{"name":"Bethlehem","id":"5032","nametype":"Valid","recclass":"H","mass":"13.9","fall":"Fell","year":"1859-01-01T00:00:00.000","reclat":"42.533330","reclong":"-73.833330","geolocation":{"type":"Point","coordinates":[-73.83333,42.53333]},":@computed_region_cbhk_fwbd":"47",":@computed_region_nnqa_25f4":"2030"} +,{"name":"Beuste","id":"5034","nametype":"Valid","recclass":"L5","mass":"2000","fall":"Fell","year":"1859-01-01T00:00:00.000","reclat":"43.216670","reclong":"-0.233330","geolocation":{"type":"Point","coordinates":[-0.23333,43.21667]}} +,{"name":"Beyrout","id":"5035","nametype":"Valid","recclass":"LL3.8","mass":"1100","fall":"Fell","year":"1921-01-01T00:00:00.000","reclat":"33.883330","reclong":"35.500000","geolocation":{"type":"Point","coordinates":[35.5,33.88333]}} +,{"name":"Bhagur","id":"5037","nametype":"Valid","recclass":"L6","mass":"18","fall":"Fell","year":"1877-01-01T00:00:00.000","reclat":"20.883330","reclong":"74.833330","geolocation":{"type":"Point","coordinates":[74.83333,20.88333]}} +,{"name":"Bhawad","id":"36591","nametype":"Valid","recclass":"LL6","mass":"678","fall":"Fell","year":"2002-01-01T00:00:00.000","reclat":"26.508330","reclong":"73.115280","geolocation":{"type":"Point","coordinates":[73.11528,26.50833]}} +,{"name":"Bherai","id":"5039","nametype":"Valid","recclass":"L6","mass":"100","fall":"Fell","year":"1893-01-01T00:00:00.000","reclat":"20.833330","reclong":"71.466670","geolocation":{"type":"Point","coordinates":[71.46667,20.83333]}} +,{"name":"Bhola","id":"5040","nametype":"Valid","recclass":"LL3-6","mass":"1047","fall":"Fell","year":"1940-01-01T00:00:00.000","reclat":"22.683330","reclong":"90.650000","geolocation":{"type":"Point","coordinates":[90.65,22.68333]}} +,{"name":"Bholghati","id":"5041","nametype":"Valid","recclass":"Howardite","mass":"2500","fall":"Fell","year":"1905-01-01T00:00:00.000","reclat":"22.083330","reclong":"86.900000","geolocation":{"type":"Point","coordinates":[86.9,22.08333]}} +,{"name":"Bialystok","id":"5042","nametype":"Valid","recclass":"Eucrite-pmict","mass":"4000","fall":"Fell","year":"1827-01-01T00:00:00.000","reclat":"53.100000","reclong":"23.200000","geolocation":{"type":"Point","coordinates":[23.2,53.1]}} +,{"name":"Bielokrynitschie","id":"5043","nametype":"Valid","recclass":"H4","mass":"1900","fall":"Fell","year":"1887-01-01T00:00:00.000","reclat":"50.133330","reclong":"27.166670","geolocation":{"type":"Point","coordinates":[27.16667,50.13333]}} +,{"name":"Bilanga","id":"5045","nametype":"Valid","recclass":"Diogenite","mass":"25000","fall":"Fell","year":"1999-01-01T00:00:00.000","reclat":"12.450000","reclong":"-0.083330","geolocation":{"type":"Point","coordinates":[-0.08333,12.45]}} +,{"name":"Binningup","id":"5051","nametype":"Valid","recclass":"H5","mass":"488.1","fall":"Fell","year":"1984-01-01T00:00:00.000","reclat":"-33.156390","reclong":"115.676390","geolocation":{"type":"Point","coordinates":[115.67639,-33.15639]}} +,{"name":"Birni N'konni","id":"5056","nametype":"Valid","recclass":"H4","mass":"560","fall":"Fell","year":"1923-01-01T00:00:00.000","reclat":"13.766670","reclong":"5.300000","geolocation":{"type":"Point","coordinates":[5.3,13.76667]}} +,{"name":"Bishopville","id":"5059","nametype":"Valid","recclass":"Aubrite","mass":"6000","fall":"Fell","year":"1843-01-01T00:00:00.000","reclat":"34.166670","reclong":"-80.283330","geolocation":{"type":"Point","coordinates":[-80.28333,34.16667]},":@computed_region_cbhk_fwbd":"33",":@computed_region_nnqa_25f4":"657"} +,{"name":"Bishunpur","id":"5060","nametype":"Valid","recclass":"LL3.15","mass":"1039","fall":"Fell","year":"1895-01-01T00:00:00.000","reclat":"25.383330","reclong":"82.600000","geolocation":{"type":"Point","coordinates":[82.6,25.38333]}} +,{"name":"Bjelaja Zerkov","id":"5063","nametype":"Valid","recclass":"H6","mass":"1850","fall":"Fell","year":"1796-01-01T00:00:00.000","reclat":"49.783330","reclong":"30.166670","geolocation":{"type":"Point","coordinates":[30.16667,49.78333]}} +,{"name":"Bjurböle","id":"5064","nametype":"Valid","recclass":"L/LL4","mass":"330000","fall":"Fell","year":"1899-01-01T00:00:00.000","reclat":"60.400000","reclong":"25.800000","geolocation":{"type":"Point","coordinates":[25.8,60.4]}} +,{"name":"Black Moshannan Park","id":"5065","nametype":"Valid","recclass":"L5","mass":"705","fall":"Fell","year":"1941-01-01T00:00:00.000","reclat":"40.916670","reclong":"-78.083330","geolocation":{"type":"Point","coordinates":[-78.08333,40.91667]},":@computed_region_cbhk_fwbd":"48",":@computed_region_nnqa_25f4":"2495"} +,{"name":"Blackwell","id":"5068","nametype":"Valid","recclass":"L5","mass":"2381","fall":"Fell","year":"1906-01-01T00:00:00.000","reclat":"36.833330","reclong":"-97.333330","geolocation":{"type":"Point","coordinates":[-97.33333,36.83333]},":@computed_region_cbhk_fwbd":"20",":@computed_region_nnqa_25f4":"2164"} +,{"name":"Blanket","id":"5071","nametype":"Valid","recclass":"L6","mass":"5100","fall":"Fell","year":"1909-01-01T00:00:00.000","reclat":"31.833330","reclong":"-98.833330","geolocation":{"type":"Point","coordinates":[-98.83333,31.83333]},":@computed_region_cbhk_fwbd":"23",":@computed_region_nnqa_25f4":"3063"} +,{"name":"Blansko","id":"5072","nametype":"Valid","recclass":"H6","mass":"470","fall":"Fell","year":"1833-01-01T00:00:00.000","reclat":"49.366670","reclong":"16.633330","geolocation":{"type":"Point","coordinates":[16.63333,49.36667]}} +,{"name":"Bloomington","id":"5076","nametype":"Valid","recclass":"LL6","mass":"67.8","fall":"Fell","year":"1938-01-01T00:00:00.000","reclat":"40.480000","reclong":"-89.004170","geolocation":{"type":"Point","coordinates":[-89.00417,40.48]},":@computed_region_cbhk_fwbd":"34",":@computed_region_nnqa_25f4":"1795"} +,{"name":"Bo Xian","id":"5090","nametype":"Valid","recclass":"LL3.9","mass":"7500","fall":"Fell","year":"1977-01-01T00:00:00.000","reclat":"33.833330","reclong":"115.833330","geolocation":{"type":"Point","coordinates":[115.83333,33.83333]}} +,{"name":"Bocas","id":"5093","nametype":"Valid","recclass":"L6","mass":"56","fall":"Fell","year":"1804-01-01T00:00:00.000","reclat":"23.000000","reclong":"-102.000000","geolocation":{"type":"Point","coordinates":[-102,23]}} +,{"name":"Bogou","id":"5097","nametype":"Valid","recclass":"Iron, IAB-MG","mass":"8800","fall":"Fell","year":"1962-01-01T00:00:00.000","reclat":"12.500000","reclong":"0.700000","geolocation":{"type":"Point","coordinates":[0.7,12.5]}} +,{"name":"Boguslavka","id":"5098","nametype":"Valid","recclass":"Iron, IIAB","mass":"256000","fall":"Fell","year":"1916-01-01T00:00:00.000","reclat":"44.550000","reclong":"131.633330","geolocation":{"type":"Point","coordinates":[131.63333,44.55]}} +,{"name":"Borgo San Donino","id":"5110","nametype":"Valid","recclass":"LL6","mass":"1676","fall":"Fell","year":"1808-01-01T00:00:00.000","reclat":"44.866670","reclong":"10.050000","geolocation":{"type":"Point","coordinates":[10.05,44.86667]}} +,{"name":"Bori","id":"5111","nametype":"Valid","recclass":"L6","mass":"8600","fall":"Fell","year":"1894-01-01T00:00:00.000","reclat":"21.950000","reclong":"78.033330","geolocation":{"type":"Point","coordinates":[78.03333,21.95]}} +,{"name":"Boriskino","id":"5112","nametype":"Valid","recclass":"CM2","mass":"1342","fall":"Fell","year":"1930-01-01T00:00:00.000","reclat":"54.233330","reclong":"52.483330","geolocation":{"type":"Point","coordinates":[52.48333,54.23333]}} +,{"name":"Borkut","id":"5113","nametype":"Valid","recclass":"L5","mass":"7000","fall":"Fell","year":"1852-01-01T00:00:00.000","reclat":"48.150000","reclong":"24.283330","geolocation":{"type":"Point","coordinates":[24.28333,48.15]}} +,{"name":"Borodino","id":"5114","nametype":"Valid","recclass":"H5","mass":"500","fall":"Fell","year":"1812-01-01T00:00:00.000","reclat":"55.466670","reclong":"35.866670","geolocation":{"type":"Point","coordinates":[35.86667,55.46667]}} +,{"name":"Botschetschki","id":"5117","nametype":"Valid","recclass":"L4","mass":"614","fall":"Fell","year":"1823-01-01T00:00:00.000","reclat":"51.333330","reclong":"33.883330","geolocation":{"type":"Point","coordinates":[33.88333,51.33333]}} +,{"name":"Boumdeid (2003)","id":"57168","nametype":"Valid","recclass":"L6","mass":"190","fall":"Fell","year":"2003-01-01T00:00:00.000","reclat":"17.710670","reclong":"-11.371500","geolocation":{"type":"Point","coordinates":[-11.3715,17.71067]}} +,{"name":"Boumdeid (2011)","id":"57167","nametype":"Valid","recclass":"L6","mass":"3599","fall":"Fell","year":"2011-01-01T00:00:00.000","reclat":"17.174930","reclong":"-11.341330","geolocation":{"type":"Point","coordinates":[-11.34133,17.17493]}} +,{"name":"Bovedy","id":"5121","nametype":"Valid","recclass":"L3","mass":"5460","fall":"Fell","year":"1969-01-01T00:00:00.000","reclat":"54.566670","reclong":"-6.333330","geolocation":{"type":"Point","coordinates":[-6.33333,54.56667]}} +,{"name":"Bradford Woods","id":"5128","nametype":"Valid","recclass":"L","mass":"762","fall":"Fell","year":"1886-01-01T00:00:00.000","reclat":"40.500000","reclong":"-80.083330","geolocation":{"type":"Point","coordinates":[-80.08333,40.5]},":@computed_region_cbhk_fwbd":"48",":@computed_region_nnqa_25f4":"2455"} +,{"name":"Braunau","id":"5133","nametype":"Valid","recclass":"Iron, IIAB","mass":"39000","fall":"Fell","year":"1847-01-01T00:00:00.000","reclat":"50.600000","reclong":"16.300000","geolocation":{"type":"Point","coordinates":[16.3,50.6]}} +,{"name":"Breitscheid","id":"5134","nametype":"Valid","recclass":"H5","mass":"1500","fall":"Fell","year":"1956-01-01T00:00:00.000","reclat":"50.666940","reclong":"8.183610","geolocation":{"type":"Point","coordinates":[8.18361,50.66694]}} +,{"name":"Bremervörde","id":"5135","nametype":"Valid","recclass":"H/L3.9","mass":"7250","fall":"Fell","year":"1855-01-01T00:00:00.000","reclat":"53.400000","reclong":"9.100000","geolocation":{"type":"Point","coordinates":[9.1,53.4]}} +,{"name":"Brient","id":"5140","nametype":"Valid","recclass":"Eucrite-pmict","mass":"219","fall":"Fell","year":"1933-01-01T00:00:00.000","reclat":"52.133330","reclong":"59.316670","geolocation":{"type":"Point","coordinates":[59.31667,52.13333]}} +,{"name":"Bruderheim","id":"5156","nametype":"Valid","recclass":"L6","mass":"303000","fall":"Fell","year":"1960-01-01T00:00:00.000","reclat":"53.900000","reclong":"-112.883330","geolocation":{"type":"Point","coordinates":[-112.88333,53.9]}} +,{"name":"Bukhara","id":"30448","nametype":"Valid","recclass":"CV3","mass":"5300","fall":"Fell","year":"2001-01-01T00:00:00.000","reclat":"39.779780","reclong":"64.600350","geolocation":{"type":"Point","coordinates":[64.60035,39.77978]}} +,{"name":"Bulls Run","id":"5163","nametype":"Valid","recclass":"Iron?","mass":"2250","fall":"Fell","year":"1964-01-01T00:00:00.000"} +,{"name":"Bunburra Rockhole","id":"48653","nametype":"Valid","recclass":"Eucrite","mass":"324","fall":"Fell","year":"2007-01-01T00:00:00.000","reclat":"-31.350000","reclong":"129.190000","geolocation":{"type":"Point","coordinates":[129.19,-31.35]}} +,{"name":"Bununu","id":"5165","nametype":"Valid","recclass":"Howardite","mass":"357","fall":"Fell","year":"1942-01-01T00:00:00.000","reclat":"10.016670","reclong":"9.583330","geolocation":{"type":"Point","coordinates":[9.58333,10.01667]}} +,{"name":"Bur-Gheluai","id":"5169","nametype":"Valid","recclass":"H5","mass":"120000","fall":"Fell","year":"1919-01-01T00:00:00.000","reclat":"5.000000","reclong":"48.000000","geolocation":{"type":"Point","coordinates":[48,5]}} +,{"name":"Burnwell","id":"5175","nametype":"Valid","recclass":"H4-an","mass":"1504","fall":"Fell","year":"1990-01-01T00:00:00.000","reclat":"37.621940","reclong":"-82.237220","geolocation":{"type":"Point","coordinates":[-82.23722,37.62194]},":@computed_region_cbhk_fwbd":"36",":@computed_region_nnqa_25f4":"256"} +,{"name":"Bursa","id":"5177","nametype":"Valid","recclass":"L6","mass":"25000","fall":"Fell","year":"1946-01-01T00:00:00.000","reclat":"40.200000","reclong":"29.233330","geolocation":{"type":"Point","coordinates":[29.23333,40.2]}} +,{"name":"Buschhof","id":"5178","nametype":"Valid","recclass":"L6","mass":"5000","fall":"Fell","year":"1863-01-01T00:00:00.000","reclat":"46.450000","reclong":"25.783330","geolocation":{"type":"Point","coordinates":[25.78333,46.45]}} +,{"name":"Bustee","id":"5181","nametype":"Valid","recclass":"Aubrite","mass":"1500","fall":"Fell","year":"1852-01-01T00:00:00.000","reclat":"26.783330","reclong":"82.833330","geolocation":{"type":"Point","coordinates":[82.83333,26.78333]}} +,{"name":"Butsura","id":"5183","nametype":"Valid","recclass":"H6","mass":"29000","fall":"Fell","year":"1861-01-01T00:00:00.000","reclat":"27.083330","reclong":"84.083330","geolocation":{"type":"Point","coordinates":[84.08333,27.08333]}} +,{"name":"Buzzard Coulee","id":"48654","nametype":"Valid","recclass":"H4","mass":"41000","fall":"Fell","year":"2008-01-01T00:00:00.000","reclat":"52.996000","reclong":"-109.848170","geolocation":{"type":"Point","coordinates":[-109.84817,52.996]}} +,{"name":"Cabezo de Mayo","id":"5185","nametype":"Valid","recclass":"L/LL6","mass":"25000","fall":"Fell","year":"1870-01-01T00:00:00.000","reclat":"37.983330","reclong":"-1.166670","geolocation":{"type":"Point","coordinates":[-1.16667,37.98333]}} +,{"name":"Cabin Creek","id":"5186","nametype":"Valid","recclass":"Iron, IIIAB","mass":"48500","fall":"Fell","year":"1886-01-01T00:00:00.000","reclat":"35.500000","reclong":"-93.500000","geolocation":{"type":"Point","coordinates":[-93.5,35.5]},":@computed_region_cbhk_fwbd":"15",":@computed_region_nnqa_25f4":"1029"} +,{"name":"Cacak","id":"5187","nametype":"Valid","recclass":"OC","mass":"212","fall":"Fell","year":"1919-01-01T00:00:00.000","reclat":"43.838890","reclong":"20.333330","geolocation":{"type":"Point","coordinates":[20.33333,43.83889]}} +,{"name":"Cali","id":"45976","nametype":"Valid","recclass":"H/L4","mass":"478","fall":"Fell","year":"2007-01-01T00:00:00.000","reclat":"3.405000","reclong":"-76.510000","geolocation":{"type":"Point","coordinates":[-76.51,3.405]}} +,{"name":"Calivo","id":"5200","nametype":"Valid","recclass":"Stone-uncl","mass":"2400","fall":"Fell","year":"1916-01-01T00:00:00.000","reclat":"11.750000","reclong":"122.333330","geolocation":{"type":"Point","coordinates":[122.33333,11.75]}} +,{"name":"Campos Sales","id":"5249","nametype":"Valid","recclass":"L5","mass":"23680","fall":"Fell","year":"1991-01-01T00:00:00.000","reclat":"-7.033330","reclong":"-40.166670","geolocation":{"type":"Point","coordinates":[-40.16667,-7.03333]}} +,{"name":"Çanakkale","id":"5250","nametype":"Valid","recclass":"L6","mass":"4000","fall":"Fell","year":"1964-01-01T00:00:00.000","reclat":"39.800000","reclong":"26.600000","geolocation":{"type":"Point","coordinates":[26.6,39.8]}} +,{"name":"Cañellas","id":"5251","nametype":"Valid","recclass":"H4","mass":"945","fall":"Fell","year":"1861-01-01T00:00:00.000","reclat":"41.250000","reclong":"1.666670","geolocation":{"type":"Point","coordinates":[1.66667,41.25]}} +,{"name":"Cangas de Onis","id":"5252","nametype":"Valid","recclass":"H5","mass":"34000","fall":"Fell","year":"1866-01-01T00:00:00.000","reclat":"43.383330","reclong":"-5.150000","geolocation":{"type":"Point","coordinates":[-5.15,43.38333]}} +,{"name":"Canon City","id":"5253","nametype":"Valid","recclass":"H6","mass":"1400","fall":"Fell","year":"1973-01-01T00:00:00.000","reclat":"38.470280","reclong":"-105.241390","geolocation":{"type":"Point","coordinates":[-105.24139,38.47028]},":@computed_region_cbhk_fwbd":"9",":@computed_region_nnqa_25f4":"1448"} +,{"name":"Cape Girardeau","id":"5260","nametype":"Valid","recclass":"H6","mass":"2300","fall":"Fell","year":"1846-01-01T00:00:00.000","reclat":"37.266670","reclong":"-89.583330","geolocation":{"type":"Point","coordinates":[-89.58333,37.26667]},":@computed_region_cbhk_fwbd":"18",":@computed_region_nnqa_25f4":"2695"} +,{"name":"Capilla del Monte","id":"5264","nametype":"Valid","recclass":"H6","mass":"750","fall":"Fell","year":"1934-01-01T00:00:00.000","reclat":"-30.883330","reclong":"-64.550000","geolocation":{"type":"Point","coordinates":[-64.55,-30.88333]}} +,{"name":"Carancas","id":"45817","nametype":"Valid","recclass":"H4-5","mass":"342","fall":"Fell","year":"2007-01-01T00:00:00.000","reclat":"-16.664440","reclong":"-69.043890","geolocation":{"type":"Point","coordinates":[-69.04389,-16.66444]}} +,{"name":"Caratash","id":"5265","nametype":"Valid","recclass":"LL6","mass":"8","fall":"Fell","year":"1902-01-01T00:00:00.000","reclat":"38.500000","reclong":"27.000000","geolocation":{"type":"Point","coordinates":[27,38.5]}} +,{"name":"Castalia","id":"5291","nametype":"Valid","recclass":"H5","mass":"7300","fall":"Fell","year":"1874-01-01T00:00:00.000","reclat":"36.083330","reclong":"-78.066670","geolocation":{"type":"Point","coordinates":[-78.06667,36.08333]},":@computed_region_cbhk_fwbd":"37",":@computed_region_nnqa_25f4":"648"} +,{"name":"Castel Berardenga","id":"5292","nametype":"Valid","recclass":"Stone-uncl","fall":"Fell","year":"1791-01-01T00:00:00.000","reclat":"43.350000","reclong":"11.500000","geolocation":{"type":"Point","coordinates":[11.5,43.35]}} +,{"name":"Castine","id":"5293","nametype":"Valid","recclass":"L6","mass":"94","fall":"Fell","year":"1848-01-01T00:00:00.000","reclat":"44.383330","reclong":"-68.750000","geolocation":{"type":"Point","coordinates":[-68.75,44.38333]},":@computed_region_cbhk_fwbd":"49",":@computed_region_nnqa_25f4":"414"} +,{"name":"Castrovillari","id":"5295","nametype":"Valid","recclass":"Stone-uncl","mass":"15000","fall":"Fell","year":"1583-01-01T00:00:00.000","reclat":"39.800000","reclong":"16.200000","geolocation":{"type":"Point","coordinates":[16.2,39.8]}} +,{"name":"Caswell County","id":"5296","nametype":"Valid","recclass":"OC","mass":"1360","fall":"Fell","year":"1810-01-01T00:00:00.000","reclat":"36.500000","reclong":"-79.250000","geolocation":{"type":"Point","coordinates":[-79.25,36.5]},":@computed_region_cbhk_fwbd":"37",":@computed_region_nnqa_25f4":"637"} +,{"name":"Ceniceros","id":"5306","nametype":"Valid","recclass":"L3.7","mass":"1025","fall":"Fell","year":"1988-01-01T00:00:00.000","reclat":"26.466670","reclong":"-105.233330","geolocation":{"type":"Point","coordinates":[-105.23333,26.46667]}} +,{"name":"Centerville","id":"5307","nametype":"Valid","recclass":"H5","mass":"45.6","fall":"Fell","year":"1956-01-01T00:00:00.000","reclat":"43.200000","reclong":"-96.916670","geolocation":{"type":"Point","coordinates":[-96.91667,43.2]},":@computed_region_cbhk_fwbd":"21",":@computed_region_nnqa_25f4":"2684"} +,{"name":"Cereseto","id":"5308","nametype":"Valid","recclass":"H5","mass":"6460","fall":"Fell","year":"1840-01-01T00:00:00.000","reclat":"45.083330","reclong":"8.300000","geolocation":{"type":"Point","coordinates":[8.3,45.08333]}} +,{"name":"Chadong","id":"5313","nametype":"Valid","recclass":"L6","mass":"3700","fall":"Fell","year":"1998-01-01T00:00:00.000","reclat":"28.533330","reclong":"109.316670","geolocation":{"type":"Point","coordinates":[109.31667,28.53333]}} +,{"name":"Chail","id":"5314","nametype":"Valid","recclass":"H6","mass":"0.5","fall":"Fell","year":"1814-01-01T00:00:00.000","reclat":"25.366670","reclong":"81.666670","geolocation":{"type":"Point","coordinates":[81.66667,25.36667]}} +,{"name":"Chainpur","id":"5315","nametype":"Valid","recclass":"LL3.4","mass":"8200","fall":"Fell","year":"1907-01-01T00:00:00.000","reclat":"25.850000","reclong":"83.483330","geolocation":{"type":"Point","coordinates":[83.48333,25.85]}} +,{"name":"Chajari","id":"5316","nametype":"Valid","recclass":"L5","mass":"18300","fall":"Fell","year":"1933-01-01T00:00:00.000","reclat":"-30.783330","reclong":"-58.050000","geolocation":{"type":"Point","coordinates":[-58.05,-30.78333]}} +,{"name":"Chandakapur","id":"5320","nametype":"Valid","recclass":"L5","mass":"8800","fall":"Fell","year":"1838-01-01T00:00:00.000","reclat":"20.266670","reclong":"76.016670","geolocation":{"type":"Point","coordinates":[76.01667,20.26667]}} +,{"name":"Chandpur","id":"5321","nametype":"Valid","recclass":"L6","mass":"1100","fall":"Fell","year":"1885-01-01T00:00:00.000","reclat":"27.283330","reclong":"79.050000","geolocation":{"type":"Point","coordinates":[79.05,27.28333]}} +,{"name":"Changde","id":"5322","nametype":"Valid","recclass":"H5","mass":"1810","fall":"Fell","year":"1977-01-01T00:00:00.000","reclat":"29.083330","reclong":"111.750000","geolocation":{"type":"Point","coordinates":[111.75,29.08333]}} +,{"name":"Chantonnay","id":"5325","nametype":"Valid","recclass":"L6","mass":"31500","fall":"Fell","year":"1812-01-01T00:00:00.000","reclat":"46.683330","reclong":"1.050000","geolocation":{"type":"Point","coordinates":[1.05,46.68333]}} +,{"name":"Charlotte","id":"5328","nametype":"Valid","recclass":"Iron, IVA","mass":"4300","fall":"Fell","year":"1835-01-01T00:00:00.000","reclat":"36.166670","reclong":"-87.333330","geolocation":{"type":"Point","coordinates":[-87.33333,36.16667]},":@computed_region_cbhk_fwbd":"39",":@computed_region_nnqa_25f4":"2007"} +,{"name":"Charsonville","id":"5329","nametype":"Valid","recclass":"H6","mass":"27000","fall":"Fell","year":"1810-01-01T00:00:00.000","reclat":"47.933330","reclong":"1.566670","geolocation":{"type":"Point","coordinates":[1.56667,47.93333]}} +,{"name":"Charwallas","id":"5330","nametype":"Valid","recclass":"H6","mass":"12000","fall":"Fell","year":"1834-01-01T00:00:00.000","reclat":"29.483330","reclong":"75.500000","geolocation":{"type":"Point","coordinates":[75.5,29.48333]}} +,{"name":"Chassigny","id":"5331","nametype":"Valid","recclass":"Martian (chassignite)","mass":"4000","fall":"Fell","year":"1815-01-01T00:00:00.000","reclat":"47.716670","reclong":"5.366670","geolocation":{"type":"Point","coordinates":[5.36667,47.71667]}} +,{"name":"Château-Renard","id":"5332","nametype":"Valid","recclass":"L6","mass":"30000","fall":"Fell","year":"1841-01-01T00:00:00.000","reclat":"47.933330","reclong":"2.916670","geolocation":{"type":"Point","coordinates":[2.91667,47.93333]}} +,{"name":"Chaves","id":"5334","nametype":"Valid","recclass":"Howardite","mass":"2945","fall":"Fell","year":"1925-01-01T00:00:00.000","reclat":"41.933330","reclong":"-7.466670","geolocation":{"type":"Point","coordinates":[-7.46667,41.93333]}} +,{"name":"Chela","id":"5338","nametype":"Valid","recclass":"H4","mass":"2936","fall":"Fell","year":"1988-01-01T00:00:00.000","reclat":"-3.666670","reclong":"32.500000","geolocation":{"type":"Point","coordinates":[32.5,-3.66667]}} +,{"name":"Chelyabinsk","id":"57165","nametype":"Valid","recclass":"LL5","mass":"100000","fall":"Fell","year":"2013-01-01T00:00:00.000","reclat":"54.816670","reclong":"61.116670","geolocation":{"type":"Point","coordinates":[61.11667,54.81667]}} +,{"name":"Chergach ","id":"47347","nametype":"Valid","recclass":"H5","mass":"100000","fall":"Fell","year":"2007-01-01T00:00:00.000","reclat":"23.696390","reclong":"-5.014720","geolocation":{"type":"Point","coordinates":[-5.01472,23.69639]}} +,{"name":"Chernyi Bor","id":"5339","nametype":"Valid","recclass":"H4","mass":"6000","fall":"Fell","year":"1964-01-01T00:00:00.000","reclat":"53.700000","reclong":"30.100000","geolocation":{"type":"Point","coordinates":[30.1,53.7]}} +,{"name":"Cherokee Springs","id":"5340","nametype":"Valid","recclass":"LL6","mass":"8400","fall":"Fell","year":"1933-01-01T00:00:00.000","reclat":"35.033330","reclong":"-81.883330","geolocation":{"type":"Point","coordinates":[-81.88333,35.03333]},":@computed_region_cbhk_fwbd":"33",":@computed_region_nnqa_25f4":"2582"} +,{"name":"Chervettaz","id":"5341","nametype":"Valid","recclass":"L5","mass":"705","fall":"Fell","year":"1901-01-01T00:00:00.000","reclat":"46.550000","reclong":"6.816670","geolocation":{"type":"Point","coordinates":[6.81667,46.55]}} +,{"name":"Chervony Kut","id":"5342","nametype":"Valid","recclass":"Eucrite-mmict","mass":"1700","fall":"Fell","year":"1939-01-01T00:00:00.000","reclat":"50.833330","reclong":"34.000000","geolocation":{"type":"Point","coordinates":[34,50.83333]}} +,{"name":"Chetrinahatti","id":"5344","nametype":"Valid","recclass":"Stone-uncl","mass":"72","fall":"Fell","year":"1880-01-01T00:00:00.000","reclat":"14.500000","reclong":"76.500000","geolocation":{"type":"Point","coordinates":[76.5,14.5]}} +,{"name":"Chiang Khan","id":"5345","nametype":"Valid","recclass":"H6","mass":"367","fall":"Fell","year":"1981-01-01T00:00:00.000","reclat":"17.900000","reclong":"101.633330","geolocation":{"type":"Point","coordinates":[101.63333,17.9]}} +,{"name":"Chicora","id":"5349","nametype":"Valid","recclass":"LL6","mass":"303","fall":"Fell","year":"1938-01-01T00:00:00.000","reclat":"40.933330","reclong":"-79.733330","geolocation":{"type":"Point","coordinates":[-79.73333,40.93333]},":@computed_region_cbhk_fwbd":"48",":@computed_region_nnqa_25f4":"2459"} +,{"name":"Chisenga","id":"5355","nametype":"Valid","recclass":"Iron, IIIAB","mass":"3920","fall":"Fell","year":"1988-01-01T00:00:00.000","reclat":"-10.059440","reclong":"33.395000","geolocation":{"type":"Point","coordinates":[33.395,-10.05944]}} +,{"name":"Chitado","id":"5356","nametype":"Valid","recclass":"L6","fall":"Fell","year":"1966-01-01T00:00:00.000","reclat":"-17.350000","reclong":"13.966670","geolocation":{"type":"Point","coordinates":[13.96667,-17.35]}} +,{"name":"Chitenay","id":"5357","nametype":"Valid","recclass":"L6","mass":"4000","fall":"Fell","year":"1978-01-01T00:00:00.000","reclat":"47.470830","reclong":"0.976670","geolocation":{"type":"Point","coordinates":[0.97667,47.47083]}} +,{"name":"Cilimus","id":"5364","nametype":"Valid","recclass":"L5","mass":"1600","fall":"Fell","year":"1979-01-01T00:00:00.000","reclat":"-6.950000","reclong":"108.100000","geolocation":{"type":"Point","coordinates":[108.1,-6.95]}} +,{"name":"Claxton","id":"5374","nametype":"Valid","recclass":"L6","mass":"1455","fall":"Fell","year":"1984-01-01T00:00:00.000","reclat":"32.102500","reclong":"-81.872780","geolocation":{"type":"Point","coordinates":[-81.87278,32.1025]},":@computed_region_cbhk_fwbd":"31",":@computed_region_nnqa_25f4":"67"} +,{"name":"Clohars","id":"5383","nametype":"Valid","recclass":"L4","mass":"48.6","fall":"Fell","year":"1822-01-01T00:00:00.000"} +,{"name":"Colby (Wisconsin)","id":"5395","nametype":"Valid","recclass":"L6","mass":"104000","fall":"Fell","year":"1917-01-01T00:00:00.000","reclat":"44.900000","reclong":"-90.283330","geolocation":{"type":"Point","coordinates":[-90.28333,44.9]},":@computed_region_cbhk_fwbd":"41",":@computed_region_nnqa_25f4":"877"} +,{"name":"Cold Bokkeveld","id":"5397","nametype":"Valid","recclass":"CM2","mass":"5200","fall":"Fell","year":"1838-01-01T00:00:00.000","reclat":"-33.133330","reclong":"19.383330","geolocation":{"type":"Point","coordinates":[19.38333,-33.13333]}} +,{"name":"Coleman","id":"5401","nametype":"Valid","recclass":"L6","mass":"469","fall":"Fell","year":"1994-01-01T00:00:00.000","reclat":"43.761110","reclong":"-84.507780","geolocation":{"type":"Point","coordinates":[-84.50778,43.76111]},":@computed_region_cbhk_fwbd":"50",":@computed_region_nnqa_25f4":"356"} +,{"name":"Collescipoli","id":"5403","nametype":"Valid","recclass":"H5","mass":"5000","fall":"Fell","year":"1890-01-01T00:00:00.000","reclat":"42.533330","reclong":"12.616670","geolocation":{"type":"Point","coordinates":[12.61667,42.53333]}} +,{"name":"Conquista","id":"5418","nametype":"Valid","recclass":"H4","mass":"20350","fall":"Fell","year":"1965-01-01T00:00:00.000","reclat":"-19.850000","reclong":"-47.550000","geolocation":{"type":"Point","coordinates":[-47.55,-19.85]}} +,{"name":"Cosina","id":"5451","nametype":"Valid","recclass":"H5","mass":"1200","fall":"Fell","year":"1844-01-01T00:00:00.000","reclat":"21.166670","reclong":"-100.866670","geolocation":{"type":"Point","coordinates":[-100.86667,21.16667]}} +,{"name":"Cranganore","id":"5465","nametype":"Valid","recclass":"L6","mass":"1460","fall":"Fell","year":"1917-01-01T00:00:00.000","reclat":"10.200000","reclong":"76.266670","geolocation":{"type":"Point","coordinates":[76.26667,10.2]}} +,{"name":"Crescent","id":"5470","nametype":"Valid","recclass":"CM2","mass":"78.400000000000006","fall":"Fell","year":"1936-01-01T00:00:00.000","reclat":"35.950000","reclong":"-97.583330","geolocation":{"type":"Point","coordinates":[-97.58333,35.95]},":@computed_region_cbhk_fwbd":"20",":@computed_region_nnqa_25f4":"2201"} +,{"name":"Cronstad","id":"5474","nametype":"Valid","recclass":"H5","mass":"3650","fall":"Fell","year":"1877-01-01T00:00:00.000","reclat":"-27.700000","reclong":"27.300000","geolocation":{"type":"Point","coordinates":[27.3,-27.7]}} +,{"name":"Cross Roads","id":"5476","nametype":"Valid","recclass":"H5","mass":"167","fall":"Fell","year":"1892-01-01T00:00:00.000","reclat":"35.633330","reclong":"-78.133330","geolocation":{"type":"Point","coordinates":[-78.13333,35.63333]},":@computed_region_cbhk_fwbd":"37",":@computed_region_nnqa_25f4":"2332"} +,{"name":"Crumlin","id":"5477","nametype":"Valid","recclass":"L5","mass":"4255","fall":"Fell","year":"1902-01-01T00:00:00.000","reclat":"54.616670","reclong":"-6.216670","geolocation":{"type":"Point","coordinates":[-6.21667,54.61667]}} +,{"name":"Cumberland Falls","id":"5496","nametype":"Valid","recclass":"Aubrite","mass":"17000","fall":"Fell","year":"1919-01-01T00:00:00.000","reclat":"36.833330","reclong":"-84.350000","geolocation":{"type":"Point","coordinates":[-84.35,36.83333]},":@computed_region_cbhk_fwbd":"36",":@computed_region_nnqa_25f4":"1426"} +,{"name":"Cynthiana","id":"5500","nametype":"Valid","recclass":"L/LL4","mass":"6000","fall":"Fell","year":"1877-01-01T00:00:00.000","reclat":"38.400000","reclong":"-84.250000","geolocation":{"type":"Point","coordinates":[-84.25,38.4]},":@computed_region_cbhk_fwbd":"36",":@computed_region_nnqa_25f4":"244"} +,{"name":"Dahmani","id":"5504","nametype":"Valid","recclass":"LL6","mass":"18000","fall":"Fell","year":"1981-01-01T00:00:00.000","reclat":"35.616670","reclong":"8.833330","geolocation":{"type":"Point","coordinates":[8.83333,35.61667]}} +,{"name":"Dandapur","id":"5511","nametype":"Valid","recclass":"L6","mass":"5650","fall":"Fell","year":"1878-01-01T00:00:00.000","reclat":"26.916670","reclong":"83.966670","geolocation":{"type":"Point","coordinates":[83.96667,26.91667]}} +,{"name":"Daniel's Kuil","id":"5513","nametype":"Valid","recclass":"EL6","mass":"1064","fall":"Fell","year":"1868-01-01T00:00:00.000","reclat":"-28.200000","reclong":"24.566670","geolocation":{"type":"Point","coordinates":[24.56667,-28.2]}} +,{"name":"Danville","id":"5514","nametype":"Valid","recclass":"L6","mass":"2000","fall":"Fell","year":"1868-01-01T00:00:00.000","reclat":"34.400000","reclong":"-87.066670","geolocation":{"type":"Point","coordinates":[-87.06667,34.4]},":@computed_region_cbhk_fwbd":"29",":@computed_region_nnqa_25f4":"103"} +,{"name":"Darmstadt","id":"6603","nametype":"Valid","recclass":"H5","mass":"100","fall":"Fell","year":"1804-01-01T00:00:00.000","reclat":"49.866670","reclong":"8.650000","geolocation":{"type":"Point","coordinates":[8.65,49.86667]}} +,{"name":"Dashoguz","id":"6604","nametype":"Valid","recclass":"H5","mass":"7000","fall":"Fell","year":"1998-01-01T00:00:00.000","reclat":"41.984440","reclong":"59.685000","geolocation":{"type":"Point","coordinates":[59.685,41.98444]}} +,{"name":"Daule","id":"51559","nametype":"Valid","recclass":"L5","mass":"6580","fall":"Fell","year":"2008-01-01T00:00:00.000","reclat":"-1.870890","reclong":"-79.957560","geolocation":{"type":"Point","coordinates":[-79.95756,-1.87089]}} +,{"name":"De Cewsville","id":"6621","nametype":"Valid","recclass":"H6","mass":"340","fall":"Fell","year":"1887-01-01T00:00:00.000","reclat":"43.000000","reclong":"-80.000000","geolocation":{"type":"Point","coordinates":[-80,43]}} +,{"name":"Deal","id":"6634","nametype":"Valid","recclass":"L6","mass":"28","fall":"Fell","year":"1829-01-01T00:00:00.000","reclat":"40.250000","reclong":"-74.000000","geolocation":{"type":"Point","coordinates":[-74,40.25]},":@computed_region_nnqa_25f4":"2491"} +,{"name":"Delhi","id":"6642","nametype":"Valid","recclass":"L5","mass":"0.8","fall":"Fell","year":"1897-01-01T00:00:00.000","reclat":"28.566670","reclong":"77.250000","geolocation":{"type":"Point","coordinates":[77.25,28.56667]}} +,{"name":"Demina","id":"6649","nametype":"Valid","recclass":"L6","mass":"16400","fall":"Fell","year":"1911-01-01T00:00:00.000","reclat":"51.466670","reclong":"84.766670","geolocation":{"type":"Point","coordinates":[84.76667,51.46667]}} +,{"name":"Denver","id":"6660","nametype":"Valid","recclass":"L6","mass":"230","fall":"Fell","year":"1967-01-01T00:00:00.000","reclat":"39.782500","reclong":"-104.930560","geolocation":{"type":"Point","coordinates":[-104.93056,39.7825]},":@computed_region_cbhk_fwbd":"9",":@computed_region_nnqa_25f4":"1444"} +,{"name":"Dergaon","id":"6664","nametype":"Valid","recclass":"H5","mass":"12500","fall":"Fell","year":"2001-01-01T00:00:00.000","reclat":"26.683330","reclong":"93.866670","geolocation":{"type":"Point","coordinates":[93.86667,26.68333]}} +,{"name":"Desuri","id":"6693","nametype":"Valid","recclass":"H6","mass":"25400","fall":"Fell","year":"1962-01-01T00:00:00.000","reclat":"25.733330","reclong":"73.616670","geolocation":{"type":"Point","coordinates":[73.61667,25.73333]}} +,{"name":"Devgaon","id":"6694","nametype":"Valid","recclass":"H3.8","mass":"12000","fall":"Fell","year":"2001-01-01T00:00:00.000","reclat":"19.000000","reclong":"81.000000","geolocation":{"type":"Point","coordinates":[81,19]}} +,{"name":"Devri-Khera","id":"6696","nametype":"Valid","recclass":"L6","mass":"1140","fall":"Fell","year":"1994-01-01T00:00:00.000","reclat":"24.225000","reclong":"76.525000","geolocation":{"type":"Point","coordinates":[76.525,24.225]}} +,{"name":"Dhajala","id":"6698","nametype":"Valid","recclass":"H3.8","mass":"45000","fall":"Fell","year":"1976-01-01T00:00:00.000","reclat":"22.377780","reclong":"71.427220","geolocation":{"type":"Point","coordinates":[71.42722,22.37778]}} +,{"name":"Dharwar","id":"6699","nametype":"Valid","recclass":"OC","mass":"1800","fall":"Fell","year":"1848-01-01T00:00:00.000","reclat":"14.883330","reclong":"75.600000","geolocation":{"type":"Point","coordinates":[75.6,14.88333]}} +,{"name":"Dhurmsala","id":"7640","nametype":"Valid","recclass":"LL6","mass":"32000","fall":"Fell","year":"1860-01-01T00:00:00.000","reclat":"32.233330","reclong":"76.466670","geolocation":{"type":"Point","coordinates":[76.46667,32.23333]}} +,{"name":"Didim","id":"47350","nametype":"Valid","recclass":"H3-5","mass":"3396","fall":"Fell","year":"2007-01-01T00:00:00.000","reclat":"37.351720","reclong":"27.329970","geolocation":{"type":"Point","coordinates":[27.32997,37.35172]}} +,{"name":"Diep River","id":"7642","nametype":"Valid","recclass":"L6","mass":"1000","fall":"Fell","year":"1906-01-01T00:00:00.000","reclat":"-33.750000","reclong":"18.566670","geolocation":{"type":"Point","coordinates":[18.56667,-33.75]}} +,{"name":"Distrito Quebracho","id":"7649","nametype":"Valid","recclass":"H4","mass":"400","fall":"Fell","year":"1957-01-01T00:00:00.000","reclat":"-31.883330","reclong":"-60.466670","geolocation":{"type":"Point","coordinates":[-60.46667,-31.88333]}} +,{"name":"Djati-Pengilon","id":"7652","nametype":"Valid","recclass":"H6","mass":"166000","fall":"Fell","year":"1884-01-01T00:00:00.000","reclat":"-7.500000","reclong":"111.500000","geolocation":{"type":"Point","coordinates":[111.5,-7.5]}} +,{"name":"Djermaia","id":"7656","nametype":"Valid","recclass":"H","mass":"3950","fall":"Fell","year":"1961-01-01T00:00:00.000","reclat":"12.733330","reclong":"15.050000","geolocation":{"type":"Point","coordinates":[15.05,12.73333]}} +,{"name":"Djoumine","id":"7657","nametype":"Valid","recclass":"H5-6","mass":"10000","fall":"Fell","year":"1999-01-01T00:00:00.000","reclat":"36.950000","reclong":"9.550000","geolocation":{"type":"Point","coordinates":[9.55,36.95]}} +,{"name":"Dokachi","id":"7658","nametype":"Valid","recclass":"H5","mass":"3840","fall":"Fell","year":"1903-01-01T00:00:00.000","reclat":"23.500000","reclong":"90.333330","geolocation":{"type":"Point","coordinates":[90.33333,23.5]}} +,{"name":"Dolgovoli","id":"7659","nametype":"Valid","recclass":"L6","mass":"1600","fall":"Fell","year":"1864-01-01T00:00:00.000","reclat":"50.750000","reclong":"25.300000","geolocation":{"type":"Point","coordinates":[25.3,50.75]}} +,{"name":"Domanitch","id":"7661","nametype":"Valid","recclass":"L5","mass":"438","fall":"Fell","year":"1907-01-01T00:00:00.000","reclat":"40.000000","reclong":"29.000000","geolocation":{"type":"Point","coordinates":[29,40]}} +,{"name":"Dong Ujimqin Qi","id":"7706","nametype":"Valid","recclass":"Mesosiderite","mass":"128800","fall":"Fell","year":"1995-01-01T00:00:00.000","reclat":"45.500000","reclong":"119.033330","geolocation":{"type":"Point","coordinates":[119.03333,45.5]}} +,{"name":"Donga Kohrod","id":"7707","nametype":"Valid","recclass":"H6","mass":"230","fall":"Fell","year":"1899-01-01T00:00:00.000","reclat":"21.866670","reclong":"82.450000","geolocation":{"type":"Point","coordinates":[82.45,21.86667]}} +,{"name":"Dongtai","id":"7708","nametype":"Valid","recclass":"LL6","mass":"5500","fall":"Fell","year":"1970-01-01T00:00:00.000","reclat":"32.916670","reclong":"120.783330","geolocation":{"type":"Point","coordinates":[120.78333,32.91667]}} +,{"name":"Doroninsk","id":"7718","nametype":"Valid","recclass":"H5-7","mass":"3891","fall":"Fell","year":"1805-01-01T00:00:00.000","reclat":"51.200000","reclong":"112.300000","geolocation":{"type":"Point","coordinates":[112.3,51.2]}} +,{"name":"Dosso","id":"7722","nametype":"Valid","recclass":"L6","mass":"1250","fall":"Fell","year":"1962-01-01T00:00:00.000","reclat":"13.050000","reclong":"3.166670","geolocation":{"type":"Point","coordinates":[3.16667,13.05]}} +,{"name":"Douar Mghila","id":"7723","nametype":"Valid","recclass":"LL6","mass":"1161","fall":"Fell","year":"1932-01-01T00:00:00.000","reclat":"32.333330","reclong":"-6.300000","geolocation":{"type":"Point","coordinates":[-6.3,32.33333]}} +,{"name":"Dowa","id":"7725","nametype":"Valid","recclass":"Stone-uncl","mass":"642","fall":"Fell","year":"1976-01-01T00:00:00.000","reclat":"-13.666670","reclong":"33.916670","geolocation":{"type":"Point","coordinates":[33.91667,-13.66667]}} +,{"name":"Drake Creek","id":"7728","nametype":"Valid","recclass":"L6","mass":"5000","fall":"Fell","year":"1827-01-01T00:00:00.000","reclat":"36.400000","reclong":"-86.500000","geolocation":{"type":"Point","coordinates":[-86.5,36.4]},":@computed_region_cbhk_fwbd":"39",":@computed_region_nnqa_25f4":"2115"} +,{"name":"Dresden (Ontario)","id":"7731","nametype":"Valid","recclass":"H6","mass":"47700","fall":"Fell","year":"1939-01-01T00:00:00.000","reclat":"42.520000","reclong":"-82.260000","geolocation":{"type":"Point","coordinates":[-82.26,42.52]}} +,{"name":"Dubrovnik","id":"7736","nametype":"Valid","recclass":"L3-6","mass":"1900","fall":"Fell","year":"1951-01-01T00:00:00.000","reclat":"42.458330","reclong":"18.441670","geolocation":{"type":"Point","coordinates":[18.44167,42.45833]}} +,{"name":"Dunbogan","id":"7743","nametype":"Valid","recclass":"L6","mass":"30","fall":"Fell","year":"1999-01-01T00:00:00.000","reclat":"-31.666670","reclong":"152.833330","geolocation":{"type":"Point","coordinates":[152.83333,-31.66667]}} +,{"name":"Dundrum","id":"7745","nametype":"Valid","recclass":"H5","mass":"2270","fall":"Fell","year":"1865-01-01T00:00:00.000","reclat":"52.550000","reclong":"-8.033330","geolocation":{"type":"Point","coordinates":[-8.03333,52.55]}} +,{"name":"Dunhua","id":"7749","nametype":"Valid","recclass":"Stone-uncl","fall":"Fell","year":"1976-01-01T00:00:00.000","reclat":"43.333330","reclong":"128.250000","geolocation":{"type":"Point","coordinates":[128.25,43.33333]}} +,{"name":"Durala","id":"7750","nametype":"Valid","recclass":"L6","mass":"13200","fall":"Fell","year":"1815-01-01T00:00:00.000","reclat":"30.300000","reclong":"76.633330","geolocation":{"type":"Point","coordinates":[76.63333,30.3]}} +,{"name":"Duruma","id":"7752","nametype":"Valid","recclass":"L6","mass":"577","fall":"Fell","year":"1853-01-01T00:00:00.000","reclat":"-4.000000","reclong":"39.500000","geolocation":{"type":"Point","coordinates":[39.5,-4]}} +,{"name":"Duwun","id":"7754","nametype":"Valid","recclass":"L6","mass":"2117","fall":"Fell","year":"1943-01-01T00:00:00.000","reclat":"33.433330","reclong":"127.266670","geolocation":{"type":"Point","coordinates":[127.26667,33.43333]}} +,{"name":"Dwaleni","id":"7755","nametype":"Valid","recclass":"H4-6","mass":"3230","fall":"Fell","year":"1970-01-01T00:00:00.000","reclat":"-27.200000","reclong":"31.316670","geolocation":{"type":"Point","coordinates":[31.31667,-27.2]}} +,{"name":"Dyalpur","id":"7757","nametype":"Valid","recclass":"Ureilite","mass":"300","fall":"Fell","year":"1872-01-01T00:00:00.000","reclat":"26.250000","reclong":"82.000000","geolocation":{"type":"Point","coordinates":[82,26.25]}} +,{"name":"Dyarrl Island","id":"7758","nametype":"Valid","recclass":"Mesosiderite-A1","mass":"188","fall":"Fell","year":"1933-01-01T00:00:00.000","reclat":"-3.000000","reclong":"151.000000","geolocation":{"type":"Point","coordinates":[151,-3]}} +,{"name":"Eagle","id":"7760","nametype":"Valid","recclass":"EL6","mass":"10000","fall":"Fell","year":"1947-01-01T00:00:00.000","reclat":"40.781670","reclong":"-96.471670","geolocation":{"type":"Point","coordinates":[-96.47167,40.78167]},":@computed_region_cbhk_fwbd":"19",":@computed_region_nnqa_25f4":"462"} +,{"name":"Ehole","id":"7774","nametype":"Valid","recclass":"H5","mass":"2400","fall":"Fell","year":"1961-01-01T00:00:00.000","reclat":"-17.300000","reclong":"15.833330","geolocation":{"type":"Point","coordinates":[15.83333,-17.3]}} +,{"name":"Eichstädt","id":"7775","nametype":"Valid","recclass":"H5","mass":"3000","fall":"Fell","year":"1785-01-01T00:00:00.000","reclat":"48.900000","reclong":"11.216670","geolocation":{"type":"Point","coordinates":[11.21667,48.9]}} +,{"name":"Ekeby","id":"7776","nametype":"Valid","recclass":"H4","mass":"3336","fall":"Fell","year":"1939-01-01T00:00:00.000","reclat":"56.033330","reclong":"13.000000","geolocation":{"type":"Point","coordinates":[13,56.03333]}} +,{"name":"Ekh Khera","id":"7777","nametype":"Valid","recclass":"H6","mass":"840","fall":"Fell","year":"1916-01-01T00:00:00.000","reclat":"28.266670","reclong":"78.783330","geolocation":{"type":"Point","coordinates":[78.78333,28.26667]}} +,{"name":"El Idrissia","id":"7807","nametype":"Valid","recclass":"L6","mass":"10000","fall":"Fell","year":"1989-01-01T00:00:00.000","reclat":"34.416670","reclong":"3.250000","geolocation":{"type":"Point","coordinates":[3.25,34.41667]}} +,{"name":"El Paso de Aguila","id":"45977","nametype":"Valid","recclass":"H5","mass":"17226","fall":"Fell","year":"1977-01-01T00:00:00.000","reclat":"25.370000","reclong":"-97.370000","geolocation":{"type":"Point","coordinates":[-97.37,25.37]}} +,{"name":"El Tigre","id":"7819","nametype":"Valid","recclass":"L6","mass":"5000","fall":"Fell","year":"1993-01-01T00:00:00.000","reclat":"19.967220","reclong":"-103.051670","geolocation":{"type":"Point","coordinates":[-103.05167,19.96722]}} +,{"name":"Elbert","id":"7822","nametype":"Valid","recclass":"LL6","mass":"680.5","fall":"Fell","year":"1998-01-01T00:00:00.000","reclat":"39.246670","reclong":"-104.588170","geolocation":{"type":"Point","coordinates":[-104.58817,39.24667]},":@computed_region_cbhk_fwbd":"9",":@computed_region_nnqa_25f4":"88"} +,{"name":"Elbogen","id":"7823","nametype":"Valid","recclass":"Iron, IID","mass":"107000","fall":"Fell","year":"1400-01-01T00:00:00.000","reclat":"50.183330","reclong":"12.733330","geolocation":{"type":"Point","coordinates":[12.73333,50.18333]}} +,{"name":"Elenovka","id":"7824","nametype":"Valid","recclass":"L5","mass":"54640","fall":"Fell","year":"1951-01-01T00:00:00.000","reclat":"47.833330","reclong":"37.666670","geolocation":{"type":"Point","coordinates":[37.66667,47.83333]}} +,{"name":"Ellemeet","id":"10019","nametype":"Valid","recclass":"Diogenite","mass":"1470","fall":"Fell","year":"1925-01-01T00:00:00.000","reclat":"51.750000","reclong":"4.000000","geolocation":{"type":"Point","coordinates":[4,51.75]}} +,{"name":"Emmaville","id":"10033","nametype":"Valid","recclass":"Eucrite-mmict","mass":"127","fall":"Fell","year":"1900-01-01T00:00:00.000","reclat":"-29.466670","reclong":"151.616670","geolocation":{"type":"Point","coordinates":[151.61667,-29.46667]}} +,{"name":"Enshi","id":"10038","nametype":"Valid","recclass":"H5","mass":"8000","fall":"Fell","year":"1974-01-01T00:00:00.000","reclat":"30.300000","reclong":"109.500000","geolocation":{"type":"Point","coordinates":[109.5,30.3]}} +,{"name":"Ensisheim","id":"10039","nametype":"Valid","recclass":"LL6","mass":"127000","fall":"Fell","year":"1492-01-01T00:00:00.000","reclat":"47.866670","reclong":"7.350000","geolocation":{"type":"Point","coordinates":[7.35,47.86667]}} +,{"name":"Épinal","id":"10041","nametype":"Valid","recclass":"H5","mass":"277","fall":"Fell","year":"1822-01-01T00:00:00.000","reclat":"48.183330","reclong":"6.466670","geolocation":{"type":"Point","coordinates":[6.46667,48.18333]}} +,{"name":"Erakot","id":"10042","nametype":"Valid","recclass":"CM2","mass":"113","fall":"Fell","year":"1940-01-01T00:00:00.000","reclat":"19.033330","reclong":"81.891670","geolocation":{"type":"Point","coordinates":[81.89167,19.03333]}} +,{"name":"Erevan","id":"10043","nametype":"Valid","recclass":"Howardite","mass":"107.2","fall":"Fell","year":"1911-01-01T00:00:00.000","reclat":"40.300000","reclong":"44.500000","geolocation":{"type":"Point","coordinates":[44.5,40.3]}} +,{"name":"Ergheo","id":"10044","nametype":"Valid","recclass":"L5","mass":"20000","fall":"Fell","year":"1889-01-01T00:00:00.000","reclat":"1.166670","reclong":"44.166670","geolocation":{"type":"Point","coordinates":[44.16667,1.16667]}} +,{"name":"Erxleben","id":"10049","nametype":"Valid","recclass":"H6","mass":"2250","fall":"Fell","year":"1812-01-01T00:00:00.000","reclat":"52.216670","reclong":"11.250000","geolocation":{"type":"Point","coordinates":[11.25,52.21667]}} +,{"name":"Esnandes","id":"10051","nametype":"Valid","recclass":"L6","mass":"1500","fall":"Fell","year":"1837-01-01T00:00:00.000","reclat":"46.250000","reclong":"-1.100000","geolocation":{"type":"Point","coordinates":[-1.1,46.25]}} +,{"name":"Essebi","id":"10055","nametype":"Valid","recclass":"C2-ung","mass":"500","fall":"Fell","year":"1957-01-01T00:00:00.000","reclat":"2.883330","reclong":"30.833330","geolocation":{"type":"Point","coordinates":[30.83333,2.88333]}} +,{"name":"Estherville","id":"10059","nametype":"Valid","recclass":"Mesosiderite-A3/4","mass":"320000","fall":"Fell","year":"1879-01-01T00:00:00.000","reclat":"43.416670","reclong":"-94.833330","geolocation":{"type":"Point","coordinates":[-94.83333,43.41667]},":@computed_region_cbhk_fwbd":"16",":@computed_region_nnqa_25f4":"277"} +,{"name":"Farmington","id":"10074","nametype":"Valid","recclass":"L5","mass":"89400","fall":"Fell","year":"1890-01-01T00:00:00.000","reclat":"39.750000","reclong":"-97.033330","geolocation":{"type":"Point","coordinates":[-97.03333,39.75]},":@computed_region_cbhk_fwbd":"17",":@computed_region_nnqa_25f4":"1300"} +,{"name":"Farmville","id":"10075","nametype":"Valid","recclass":"H4","mass":"56000","fall":"Fell","year":"1934-01-01T00:00:00.000","reclat":"35.550000","reclong":"-77.533330","geolocation":{"type":"Point","coordinates":[-77.53333,35.55]},":@computed_region_cbhk_fwbd":"37",":@computed_region_nnqa_25f4":"2439"} +,{"name":"Favars","id":"10078","nametype":"Valid","recclass":"H5","mass":"1500","fall":"Fell","year":"1844-01-01T00:00:00.000","reclat":"44.383330","reclong":"2.816670","geolocation":{"type":"Point","coordinates":[2.81667,44.38333]}} +,{"name":"Fayetteville","id":"10079","nametype":"Valid","recclass":"H4","mass":"2360","fall":"Fell","year":"1934-01-01T00:00:00.000","reclat":"36.050000","reclong":"-94.166670","geolocation":{"type":"Point","coordinates":[-94.16667,36.05]},":@computed_region_cbhk_fwbd":"15",":@computed_region_nnqa_25f4":"70"} +,{"name":"Feid Chair","id":"10080","nametype":"Valid","recclass":"H4","mass":"380","fall":"Fell","year":"1875-01-01T00:00:00.000","reclat":"36.883330","reclong":"8.450000","geolocation":{"type":"Point","coordinates":[8.45,36.88333]}} +,{"name":"Felix","id":"10081","nametype":"Valid","recclass":"CO3.3","mass":"3200","fall":"Fell","year":"1900-01-01T00:00:00.000","reclat":"32.533330","reclong":"-87.166670","geolocation":{"type":"Point","coordinates":[-87.16667,32.53333]},":@computed_region_cbhk_fwbd":"29",":@computed_region_nnqa_25f4":"1631"} +,{"name":"Fenghsien-Ku","id":"10086","nametype":"Valid","recclass":"H5","mass":"82","fall":"Fell","year":"1924-01-01T00:00:00.000","reclat":"34.600000","reclong":"116.750000","geolocation":{"type":"Point","coordinates":[116.75,34.6]}} +,{"name":"Ferguson","id":"10088","nametype":"Valid","recclass":"OC","mass":"220","fall":"Fell","year":"1889-01-01T00:00:00.000","reclat":"36.100000","reclong":"-81.416670","geolocation":{"type":"Point","coordinates":[-81.41667,36.1]},":@computed_region_cbhk_fwbd":"37",":@computed_region_nnqa_25f4":"2331"} +,{"name":"Fermo","id":"10091","nametype":"Valid","recclass":"H3-5","mass":"10200","fall":"Fell","year":"1996-01-01T00:00:00.000","reclat":"43.181110","reclong":"13.753330","geolocation":{"type":"Point","coordinates":[13.75333,43.18111]}} +,{"name":"Fisher","id":"10107","nametype":"Valid","recclass":"L6","mass":"17600","fall":"Fell","year":"1894-01-01T00:00:00.000","reclat":"47.816670","reclong":"-96.850000","geolocation":{"type":"Point","coordinates":[-96.85,47.81667]},":@computed_region_cbhk_fwbd":"1",":@computed_region_nnqa_25f4":"385"} +,{"name":"Florence","id":"10111","nametype":"Valid","recclass":"H3","mass":"3640","fall":"Fell","year":"1922-01-01T00:00:00.000","reclat":"30.833330","reclong":"-97.766670","geolocation":{"type":"Point","coordinates":[-97.76667,30.83333]},":@computed_region_cbhk_fwbd":"23",":@computed_region_nnqa_25f4":"807"} +,{"name":"Forest City","id":"10119","nametype":"Valid","recclass":"H5","mass":"152000","fall":"Fell","year":"1890-01-01T00:00:00.000","reclat":"43.250000","reclong":"-93.666670","geolocation":{"type":"Point","coordinates":[-93.66667,43.25]},":@computed_region_cbhk_fwbd":"16",":@computed_region_nnqa_25f4":"1785"} +,{"name":"Forest Vale","id":"10120","nametype":"Valid","recclass":"H4","mass":"26000","fall":"Fell","year":"1942-01-01T00:00:00.000","reclat":"-33.350000","reclong":"146.858330","geolocation":{"type":"Point","coordinates":[146.85833,-33.35]}} +,{"name":"Forksville","id":"10123","nametype":"Valid","recclass":"L6","mass":"6067","fall":"Fell","year":"1924-01-01T00:00:00.000","reclat":"36.783330","reclong":"-78.083330","geolocation":{"type":"Point","coordinates":[-78.08333,36.78333]},":@computed_region_cbhk_fwbd":"40",":@computed_region_nnqa_25f4":"2839"} +,{"name":"Forsbach","id":"10163","nametype":"Valid","recclass":"H6","mass":"240","fall":"Fell","year":"1900-01-01T00:00:00.000","reclat":"50.950000","reclong":"7.316670","geolocation":{"type":"Point","coordinates":[7.31667,50.95]}} +,{"name":"Forsyth","id":"10164","nametype":"Valid","recclass":"L6","mass":"16300","fall":"Fell","year":"1829-01-01T00:00:00.000","reclat":"33.016670","reclong":"-83.966670","geolocation":{"type":"Point","coordinates":[-83.96667,33.01667]},":@computed_region_cbhk_fwbd":"31",":@computed_region_nnqa_25f4":"1470"} +,{"name":"Fort Flatters","id":"10166","nametype":"Valid","recclass":"Stone-uncl","fall":"Fell","year":"1944-01-01T00:00:00.000","reclat":"28.250000","reclong":"7.000000","geolocation":{"type":"Point","coordinates":[7,28.25]}} +,{"name":"Frankfort (stone)","id":"10177","nametype":"Valid","recclass":"Howardite","mass":"650","fall":"Fell","year":"1868-01-01T00:00:00.000","reclat":"34.483330","reclong":"-87.833330","geolocation":{"type":"Point","coordinates":[-87.83333,34.48333]},":@computed_region_cbhk_fwbd":"29",":@computed_region_nnqa_25f4":"99"} +,{"name":"Fuhe","id":"52412","nametype":"Valid","recclass":"L5","mass":"23000","fall":"Fell","year":"1945-01-01T00:00:00.000","reclat":"31.475560","reclong":"113.566940","geolocation":{"type":"Point","coordinates":[113.56694,31.47556]}} +,{"name":"Fukutomi","id":"10836","nametype":"Valid","recclass":"L5","mass":"11620","fall":"Fell","year":"1882-01-01T00:00:00.000","reclat":"33.183330","reclong":"130.200000","geolocation":{"type":"Point","coordinates":[130.2,33.18333]}} +,{"name":"Fünen","id":"10838","nametype":"Valid","recclass":"Stone-uncl","fall":"Fell","year":"1654-01-01T00:00:00.000","reclat":"55.333330","reclong":"10.333330","geolocation":{"type":"Point","coordinates":[10.33333,55.33333]}} +,{"name":"Futtehpur","id":"10839","nametype":"Valid","recclass":"L6","mass":"4000","fall":"Fell","year":"1822-01-01T00:00:00.000","reclat":"25.950000","reclong":"80.816670","geolocation":{"type":"Point","coordinates":[80.81667,25.95]}} +,{"name":"Fuyang","id":"10840","nametype":"Valid","recclass":"Stone-uncl","mass":"2500","fall":"Fell","year":"1977-01-01T00:00:00.000","reclat":"32.900000","reclong":"115.900000","geolocation":{"type":"Point","coordinates":[115.9,32.9]}} +,{"name":"Galapian","id":"10846","nametype":"Valid","recclass":"H6","mass":"132.69999999999999","fall":"Fell","year":"1826-01-01T00:00:00.000","reclat":"44.300000","reclong":"0.400000","geolocation":{"type":"Point","coordinates":[0.4,44.3]}} +,{"name":"Galim (a)","id":"10848","nametype":"Valid","recclass":"LL6","mass":"36.1","fall":"Fell","year":"1952-01-01T00:00:00.000","reclat":"7.050000","reclong":"12.433330","geolocation":{"type":"Point","coordinates":[12.43333,7.05]}} +,{"name":"Galim (b)","id":"10849","nametype":"Valid","recclass":"EH3/4-an","mass":"28","fall":"Fell","year":"1952-01-01T00:00:00.000","reclat":"7.050000","reclong":"12.433330","geolocation":{"type":"Point","coordinates":[12.43333,7.05]}} +,{"name":"Galkiv","id":"10850","nametype":"Valid","recclass":"H4","mass":"5000","fall":"Fell","year":"1995-01-01T00:00:00.000","reclat":"51.683330","reclong":"30.783330","geolocation":{"type":"Point","coordinates":[30.78333,51.68333]}} +,{"name":"Gambat","id":"10851","nametype":"Valid","recclass":"L6","mass":"6400","fall":"Fell","year":"1897-01-01T00:00:00.000","reclat":"27.350000","reclong":"68.533330","geolocation":{"type":"Point","coordinates":[68.53333,27.35]}} +,{"name":"Gao-Guenie","id":"10854","nametype":"Valid","recclass":"H5","fall":"Fell","year":"1960-01-01T00:00:00.000","reclat":"11.650000","reclong":"-2.183330","geolocation":{"type":"Point","coordinates":[-2.18333,11.65]}} +,{"name":"Garhi Yasin","id":"10860","nametype":"Valid","recclass":"Iron, IIE","mass":"380","fall":"Fell","year":"1917-01-01T00:00:00.000","reclat":"27.883330","reclong":"68.533330","geolocation":{"type":"Point","coordinates":[68.53333,27.88333]}} +,{"name":"Garland","id":"10861","nametype":"Valid","recclass":"Diogenite-pm","mass":"102","fall":"Fell","year":"1950-01-01T00:00:00.000","reclat":"41.683330","reclong":"-112.133330","geolocation":{"type":"Point","coordinates":[-112.13333,41.68333]},":@computed_region_cbhk_fwbd":"13",":@computed_region_nnqa_25f4":"2985"} +,{"name":"Gashua","id":"44882","nametype":"Valid","recclass":"L6","mass":"4162","fall":"Fell","year":"1984-01-01T00:00:00.000","reclat":"12.850000","reclong":"11.033330","geolocation":{"type":"Point","coordinates":[11.03333,12.85]}} +,{"name":"Gasseltepaoua","id":"10866","nametype":"Valid","recclass":"H5","fall":"Fell","year":"2000-01-01T00:00:00.000","reclat":"14.150830","reclong":"-2.041670","geolocation":{"type":"Point","coordinates":[-2.04167,14.15083]}} +,{"name":"Geidam","id":"10870","nametype":"Valid","recclass":"H5","mass":"725","fall":"Fell","year":"1950-01-01T00:00:00.000","reclat":"12.916670","reclong":"11.916670","geolocation":{"type":"Point","coordinates":[11.91667,12.91667]}} +,{"name":"Gifu","id":"10914","nametype":"Valid","recclass":"L6","mass":"14290","fall":"Fell","year":"1909-01-01T00:00:00.000","reclat":"35.533330","reclong":"136.883330","geolocation":{"type":"Point","coordinates":[136.88333,35.53333]}} +,{"name":"Girgenti","id":"10917","nametype":"Valid","recclass":"L6","mass":"18000","fall":"Fell","year":"1853-01-01T00:00:00.000","reclat":"37.316670","reclong":"13.566670","geolocation":{"type":"Point","coordinates":[13.56667,37.31667]}} +,{"name":"Git-Git","id":"10919","nametype":"Valid","recclass":"L6","mass":"480","fall":"Fell","year":"1947-01-01T00:00:00.000","reclat":"9.600000","reclong":"9.916670","geolocation":{"type":"Point","coordinates":[9.91667,9.6]}} +,{"name":"Glanerbrug","id":"10923","nametype":"Valid","recclass":"L/LL5","mass":"670","fall":"Fell","year":"1990-01-01T00:00:00.000","reclat":"52.200000","reclong":"6.866670","geolocation":{"type":"Point","coordinates":[6.86667,52.2]}} +,{"name":"Glanggang","id":"10924","nametype":"Valid","recclass":"H5-6","mass":"1303","fall":"Fell","year":"1939-01-01T00:00:00.000","reclat":"-7.250000","reclong":"107.700000","geolocation":{"type":"Point","coordinates":[107.7,-7.25]}} +,{"name":"Glasatovo","id":"10926","nametype":"Valid","recclass":"H4","mass":"152000","fall":"Fell","year":"1918-01-01T00:00:00.000","reclat":"57.350000","reclong":"37.616670","geolocation":{"type":"Point","coordinates":[37.61667,57.35]}} +,{"name":"Glatton","id":"10930","nametype":"Valid","recclass":"L6","mass":"767","fall":"Fell","year":"1991-01-01T00:00:00.000","reclat":"52.459720","reclong":"-0.300000","geolocation":{"type":"Point","coordinates":[-0.3,52.45972]}} +,{"name":"Gnadenfrei","id":"10936","nametype":"Valid","recclass":"H5","mass":"1750","fall":"Fell","year":"1879-01-01T00:00:00.000","reclat":"50.666670","reclong":"16.766670","geolocation":{"type":"Point","coordinates":[16.76667,50.66667]}} +,{"name":"Gopalpur","id":"10948","nametype":"Valid","recclass":"H6","mass":"1600","fall":"Fell","year":"1865-01-01T00:00:00.000","reclat":"24.233330","reclong":"89.050000","geolocation":{"type":"Point","coordinates":[89.05,24.23333]}} +,{"name":"Gorlovka","id":"10949","nametype":"Valid","recclass":"H3.7","mass":"3618","fall":"Fell","year":"1974-01-01T00:00:00.000","reclat":"48.283330","reclong":"38.083330","geolocation":{"type":"Point","coordinates":[38.08333,48.28333]}} +,{"name":"Granes","id":"10956","nametype":"Valid","recclass":"L6","mass":"9000","fall":"Fell","year":"1964-01-01T00:00:00.000","reclat":"42.900000","reclong":"2.250000","geolocation":{"type":"Point","coordinates":[2.25,42.9]}} +,{"name":"Grefsheim","id":"11196","nametype":"Valid","recclass":"L5","mass":"45.5","fall":"Fell","year":"1976-01-01T00:00:00.000","reclat":"60.666670","reclong":"11.000000","geolocation":{"type":"Point","coordinates":[11,60.66667]}} +,{"name":"Grimsby","id":"50911","nametype":"Valid","recclass":"H5","mass":"215","fall":"Fell","year":"2009-01-01T00:00:00.000","reclat":"43.200000","reclong":"-79.616670","geolocation":{"type":"Point","coordinates":[-79.61667,43.2]}} +,{"name":"Grosnaja","id":"11206","nametype":"Valid","recclass":"CV3","mass":"3500","fall":"Fell","year":"1861-01-01T00:00:00.000","reclat":"43.666670","reclong":"45.383330","geolocation":{"type":"Point","coordinates":[45.38333,43.66667]}} +,{"name":"Gross-Divina","id":"11207","nametype":"Valid","recclass":"H5","mass":"10500","fall":"Fell","year":"1837-01-01T00:00:00.000","reclat":"49.266670","reclong":"18.716670","geolocation":{"type":"Point","coordinates":[18.71667,49.26667]}} +,{"name":"Grossliebenthal","id":"11208","nametype":"Valid","recclass":"L6","mass":"8000","fall":"Fell","year":"1881-01-01T00:00:00.000","reclat":"46.350000","reclong":"30.583330","geolocation":{"type":"Point","coordinates":[30.58333,46.35]}} +,{"name":"Grüneberg","id":"11426","nametype":"Valid","recclass":"H4","mass":"1000","fall":"Fell","year":"1841-01-01T00:00:00.000","reclat":"51.933330","reclong":"15.500000","geolocation":{"type":"Point","coordinates":[15.5,51.93333]}} +,{"name":"Grzempach","id":"11429","nametype":"Valid","recclass":"H5","mass":"690","fall":"Fell","year":"1910-01-01T00:00:00.000","reclat":"52.866670","reclong":"16.633330","geolocation":{"type":"Point","coordinates":[16.63333,52.86667]}} +,{"name":"Gualeguaychú","id":"11432","nametype":"Valid","recclass":"H6","mass":"22000","fall":"Fell","year":"1932-01-01T00:00:00.000","reclat":"-33.000000","reclong":"-58.616670","geolocation":{"type":"Point","coordinates":[-58.61667,-33]}} +,{"name":"Guangmingshan","id":"11435","nametype":"Valid","recclass":"H5","mass":"2910","fall":"Fell","year":"1996-01-01T00:00:00.000","reclat":"39.804170","reclong":"122.763890","geolocation":{"type":"Point","coordinates":[122.76389,39.80417]}} +,{"name":"Guangnan","id":"11436","nametype":"Valid","recclass":"L6","fall":"Fell","year":"1983-01-01T00:00:00.000","reclat":"24.100000","reclong":"105.000000","geolocation":{"type":"Point","coordinates":[105,24.1]}} +,{"name":"Guangrao","id":"11437","nametype":"Valid","recclass":"L6","mass":"1900","fall":"Fell","year":"1980-01-01T00:00:00.000","reclat":"37.100000","reclong":"118.400000","geolocation":{"type":"Point","coordinates":[118.4,37.1]}} +,{"name":"Guareña","id":"11439","nametype":"Valid","recclass":"H6","mass":"39000","fall":"Fell","year":"1892-01-01T00:00:00.000","reclat":"38.733330","reclong":"-6.016670","geolocation":{"type":"Point","coordinates":[-6.01667,38.73333]}} +,{"name":"Guêa","id":"11440","nametype":"Valid","recclass":"Stone-uncl","mass":"1915","fall":"Fell","year":"1891-01-01T00:00:00.000","reclat":"43.766670","reclong":"20.233330","geolocation":{"type":"Point","coordinates":[20.23333,43.76667]}} +,{"name":"Guibga","id":"11442","nametype":"Valid","recclass":"L5","mass":"288","fall":"Fell","year":"1972-01-01T00:00:00.000","reclat":"13.500000","reclong":"-0.683330","geolocation":{"type":"Point","coordinates":[-0.68333,13.5]}} +,{"name":"Guidder","id":"11443","nametype":"Valid","recclass":"LL5","mass":"968","fall":"Fell","year":"1949-01-01T00:00:00.000","reclat":"9.916670","reclong":"13.983330","geolocation":{"type":"Point","coordinates":[13.98333,9.91667]}} +,{"name":"Gujargaon","id":"11448","nametype":"Valid","recclass":"H5","mass":"2449","fall":"Fell","year":"1982-01-01T00:00:00.000","reclat":"22.983330","reclong":"76.050000","geolocation":{"type":"Point","coordinates":[76.05,22.98333]}} +,{"name":"Gujba","id":"11449","nametype":"Valid","recclass":"CBa","mass":"100000","fall":"Fell","year":"1984-01-01T00:00:00.000","reclat":"11.491670","reclong":"11.658330","geolocation":{"type":"Point","coordinates":[11.65833,11.49167]}} +,{"name":"Gumoschnik","id":"11450","nametype":"Valid","recclass":"H5","mass":"5700","fall":"Fell","year":"1904-01-01T00:00:00.000","reclat":"42.900000","reclong":"24.700000","geolocation":{"type":"Point","coordinates":[24.7,42.9]}} +,{"name":"Gurram Konda","id":"11464","nametype":"Valid","recclass":"L6","mass":"28","fall":"Fell","year":"1814-01-01T00:00:00.000","reclat":"13.783330","reclong":"78.566670","geolocation":{"type":"Point","coordinates":[78.56667,13.78333]}} +,{"name":"Gursum","id":"11465","nametype":"Valid","recclass":"H4/5","mass":"34650","fall":"Fell","year":"1981-01-01T00:00:00.000","reclat":"9.366670","reclong":"42.416670","geolocation":{"type":"Point","coordinates":[42.41667,9.36667]}} +,{"name":"Gütersloh","id":"11466","nametype":"Valid","recclass":"H3/4","mass":"1000","fall":"Fell","year":"1851-01-01T00:00:00.000","reclat":"51.916670","reclong":"8.383330","geolocation":{"type":"Point","coordinates":[8.38333,51.91667]}} +,{"name":"Gyokukei","id":"11467","nametype":"Valid","recclass":"OC","mass":"1320","fall":"Fell","year":"1930-01-01T00:00:00.000","reclat":"35.000000","reclong":"127.500000","geolocation":{"type":"Point","coordinates":[127.5,35]}} +,{"name":"Hachi-oji","id":"11468","nametype":"Valid","recclass":"H?","mass":"0.2","fall":"Fell","year":"1817-01-01T00:00:00.000","reclat":"35.650000","reclong":"139.333330","geolocation":{"type":"Point","coordinates":[139.33333,35.65]}} +,{"name":"Hainaut","id":"11472","nametype":"Valid","recclass":"H3-6","mass":"9000","fall":"Fell","year":"1934-01-01T00:00:00.000","reclat":"50.316670","reclong":"3.733330","geolocation":{"type":"Point","coordinates":[3.73333,50.31667]}} +,{"name":"Hallingeberg","id":"11479","nametype":"Valid","recclass":"L3.4","mass":"1456","fall":"Fell","year":"1944-01-01T00:00:00.000","reclat":"57.816670","reclong":"16.233330","geolocation":{"type":"Point","coordinates":[16.23333,57.81667]}} +,{"name":"Hamlet","id":"11485","nametype":"Valid","recclass":"LL4","mass":"3710","fall":"Fell","year":"1959-01-01T00:00:00.000","reclat":"41.383330","reclong":"-86.600000","geolocation":{"type":"Point","coordinates":[-86.6,41.38333]},":@computed_region_cbhk_fwbd":"35",":@computed_region_nnqa_25f4":"1205"} +,{"name":"Haraiya","id":"11824","nametype":"Valid","recclass":"Eucrite-mmict","mass":"1000","fall":"Fell","year":"1878-01-01T00:00:00.000","reclat":"26.800000","reclong":"82.533330","geolocation":{"type":"Point","coordinates":[82.53333,26.8]}} +,{"name":"Haripura","id":"11829","nametype":"Valid","recclass":"CM2","mass":"315","fall":"Fell","year":"1921-01-01T00:00:00.000","reclat":"28.383330","reclong":"75.783330","geolocation":{"type":"Point","coordinates":[75.78333,28.38333]}} +,{"name":"Harleton","id":"11830","nametype":"Valid","recclass":"L6","mass":"8360","fall":"Fell","year":"1961-01-01T00:00:00.000","reclat":"32.675000","reclong":"-94.511670","geolocation":{"type":"Point","coordinates":[-94.51167,32.675]},":@computed_region_cbhk_fwbd":"23",":@computed_region_nnqa_25f4":"2025"} +,{"name":"Harrison County","id":"11842","nametype":"Valid","recclass":"L6","mass":"680","fall":"Fell","year":"1859-01-01T00:00:00.000","reclat":"38.250000","reclong":"-86.166670","geolocation":{"type":"Point","coordinates":[-86.16667,38.25]},":@computed_region_cbhk_fwbd":"35",":@computed_region_nnqa_25f4":"1855"} +,{"name":"Hashima","id":"11848","nametype":"Valid","recclass":"H4","mass":"1110.5999999999999","fall":"Fell","year":"1910-01-01T00:00:00.000","reclat":"35.294500","reclong":"136.700330","geolocation":{"type":"Point","coordinates":[136.70033,35.2945]}} +,{"name":"Hassi-Jekna","id":"11852","nametype":"Valid","recclass":"Iron, IAB-sHL","mass":"1250","fall":"Fell","year":"1890-01-01T00:00:00.000","reclat":"28.950000","reclong":"0.816670","geolocation":{"type":"Point","coordinates":[0.81667,28.95]}} +,{"name":"Hatford","id":"11855","nametype":"Valid","recclass":"Stone-uncl","mass":"29000","fall":"Fell","year":"1628-01-01T00:00:00.000","reclat":"51.650000","reclong":"-1.516670","geolocation":{"type":"Point","coordinates":[-1.51667,51.65]}} +,{"name":"Haverö","id":"11859","nametype":"Valid","recclass":"Ureilite","mass":"1544","fall":"Fell","year":"1971-01-01T00:00:00.000","reclat":"60.245560","reclong":"22.061940","geolocation":{"type":"Point","coordinates":[22.06194,60.24556]}} +,{"name":"Hedeskoga","id":"11869","nametype":"Valid","recclass":"H5","mass":"3500","fall":"Fell","year":"1922-01-01T00:00:00.000","reclat":"55.466670","reclong":"13.783330","geolocation":{"type":"Point","coordinates":[13.78333,55.46667]}} +,{"name":"Hedjaz","id":"11870","nametype":"Valid","recclass":"L3.7-6","mass":"6100","fall":"Fell","year":"1910-01-01T00:00:00.000","reclat":"27.333330","reclong":"35.666670","geolocation":{"type":"Point","coordinates":[35.66667,27.33333]}} +,{"name":"Heredia","id":"11875","nametype":"Valid","recclass":"H5","mass":"1000","fall":"Fell","year":"1857-01-01T00:00:00.000","reclat":"10.000000","reclong":"-84.100000","geolocation":{"type":"Point","coordinates":[-84.1,10]}} +,{"name":"Hessle","id":"11878","nametype":"Valid","recclass":"H5","mass":"20000","fall":"Fell","year":"1869-01-01T00:00:00.000","reclat":"59.850000","reclong":"17.666670","geolocation":{"type":"Point","coordinates":[17.66667,59.85]}} +,{"name":"Higashi-koen","id":"11883","nametype":"Valid","recclass":"H5","mass":"750","fall":"Fell","year":"1897-01-01T00:00:00.000","reclat":"33.600000","reclong":"130.433330","geolocation":{"type":"Point","coordinates":[130.43333,33.6]}} +,{"name":"High Possil","id":"11884","nametype":"Valid","recclass":"L6","mass":"4500","fall":"Fell","year":"1804-01-01T00:00:00.000","reclat":"55.900000","reclong":"-4.233330","geolocation":{"type":"Point","coordinates":[-4.23333,55.9]}} +,{"name":"Hiroshima","id":"11889","nametype":"Valid","recclass":"H5","mass":"414","fall":"Fell","year":"2003-01-01T00:00:00.000","reclat":"34.450000","reclong":"132.383330","geolocation":{"type":"Point","coordinates":[132.38333,34.45]}} +,{"name":"Hoima","id":"44714","nametype":"Valid","recclass":"H6","mass":"167.7","fall":"Fell","year":"2003-01-01T00:00:00.000","reclat":"1.345000","reclong":"31.472780","geolocation":{"type":"Point","coordinates":[31.47278,1.345]}} +,{"name":"Hökmark","id":"11893","nametype":"Valid","recclass":"L4","mass":"305.5","fall":"Fell","year":"1954-01-01T00:00:00.000","reclat":"64.433330","reclong":"21.200000","geolocation":{"type":"Point","coordinates":[21.2,64.43333]}} +,{"name":"Holbrook","id":"11894","nametype":"Valid","recclass":"L/LL6","mass":"220000","fall":"Fell","year":"1912-01-01T00:00:00.000","reclat":"34.900000","reclong":"-110.183330","geolocation":{"type":"Point","coordinates":[-110.18333,34.9]},":@computed_region_cbhk_fwbd":"7",":@computed_region_nnqa_25f4":"990"} +,{"name":"Holetta","id":"11895","nametype":"Valid","recclass":"Stone-uncl","mass":"1415","fall":"Fell","year":"1923-01-01T00:00:00.000","reclat":"9.066670","reclong":"38.416670","geolocation":{"type":"Point","coordinates":[38.41667,9.06667]}} +,{"name":"Homestead","id":"11901","nametype":"Valid","recclass":"L5","mass":"230000","fall":"Fell","year":"1875-01-01T00:00:00.000","reclat":"41.800000","reclong":"-91.866670","geolocation":{"type":"Point","coordinates":[-91.86667,41.8]},":@computed_region_cbhk_fwbd":"16",":@computed_region_nnqa_25f4":"284"} +,{"name":"Honolulu","id":"11904","nametype":"Valid","recclass":"L5","mass":"2420","fall":"Fell","year":"1825-01-01T00:00:00.000","reclat":"21.300000","reclong":"-157.866670","geolocation":{"type":"Point","coordinates":[-157.86667,21.3]},":@computed_region_cbhk_fwbd":"4",":@computed_region_nnqa_25f4":"1657"} +,{"name":"Hotse","id":"11913","nametype":"Valid","recclass":"L6","mass":"180","fall":"Fell","year":"1956-01-01T00:00:00.000","reclat":"35.666670","reclong":"115.500000","geolocation":{"type":"Point","coordinates":[115.5,35.66667]}} +,{"name":"Hoxie","id":"11915","nametype":"Valid","recclass":"OC","mass":"266.10000000000002","fall":"Fell","year":"1963-01-01T00:00:00.000","reclat":"39.350000","reclong":"-100.450000","geolocation":{"type":"Point","coordinates":[-100.45,39.35]},":@computed_region_cbhk_fwbd":"17",":@computed_region_nnqa_25f4":"1293"} +,{"name":"Hraschina","id":"11916","nametype":"Valid","recclass":"Iron, IID","mass":"49000","fall":"Fell","year":"1751-01-01T00:00:00.000","reclat":"46.100000","reclong":"16.333330","geolocation":{"type":"Point","coordinates":[16.33333,46.1]}} +,{"name":"Huaxi","id":"54719","nametype":"Valid","recclass":"H5","mass":"1600","fall":"Fell","year":"2010-01-01T00:00:00.000","reclat":"26.464690","reclong":"106.632410","geolocation":{"type":"Point","coordinates":[106.63241,26.46469]}} +,{"name":"Hungen","id":"11986","nametype":"Valid","recclass":"H6","mass":"112","fall":"Fell","year":"1877-01-01T00:00:00.000","reclat":"50.300000","reclong":"8.916670","geolocation":{"type":"Point","coordinates":[8.91667,50.3]}} +,{"name":"Hvittis","id":"11989","nametype":"Valid","recclass":"EL6","mass":"14000","fall":"Fell","year":"1901-01-01T00:00:00.000","reclat":"61.183330","reclong":"22.683330","geolocation":{"type":"Point","coordinates":[22.68333,61.18333]}} +,{"name":"Ibbenbüren","id":"11992","nametype":"Valid","recclass":"Diogenite","mass":"2000","fall":"Fell","year":"1870-01-01T00:00:00.000","reclat":"52.283330","reclong":"7.700000","geolocation":{"type":"Point","coordinates":[7.7,52.28333]}} +,{"name":"Ibitira","id":"11993","nametype":"Valid","recclass":"Eucrite-mmict","mass":"2500","fall":"Fell","year":"1957-01-01T00:00:00.000","reclat":"-20.000000","reclong":"-45.000000","geolocation":{"type":"Point","coordinates":[-45,-20]}} +,{"name":"Ibrisim","id":"11994","nametype":"Valid","recclass":"OC","fall":"Fell","year":"1949-01-01T00:00:00.000","reclat":"38.000000","reclong":"35.000000","geolocation":{"type":"Point","coordinates":[35,38]}} +,{"name":"Ichkala","id":"11995","nametype":"Valid","recclass":"H6","mass":"3973","fall":"Fell","year":"1936-01-01T00:00:00.000","reclat":"58.200000","reclong":"82.933330","geolocation":{"type":"Point","coordinates":[82.93333,58.2]}} +,{"name":"Idutywa","id":"12000","nametype":"Valid","recclass":"H5","mass":"3457","fall":"Fell","year":"1956-01-01T00:00:00.000","reclat":"-32.100000","reclong":"28.333330","geolocation":{"type":"Point","coordinates":[28.33333,-32.1]}} +,{"name":"Iguaracu","id":"12003","nametype":"Valid","recclass":"H5","mass":"1200","fall":"Fell","year":"1977-01-01T00:00:00.000","reclat":"-23.200000","reclong":"-51.833330","geolocation":{"type":"Point","coordinates":[-51.83333,-23.2]}} +,{"name":"Ijopega","id":"12004","nametype":"Valid","recclass":"H6","mass":"7330","fall":"Fell","year":"1975-01-01T00:00:00.000","reclat":"-6.033330","reclong":"145.366670","geolocation":{"type":"Point","coordinates":[145.36667,-6.03333]}} +,{"name":"Indarch","id":"12027","nametype":"Valid","recclass":"EH4","mass":"27000","fall":"Fell","year":"1891-01-01T00:00:00.000","reclat":"39.750000","reclong":"46.666670","geolocation":{"type":"Point","coordinates":[46.66667,39.75]}} +,{"name":"Independence","id":"12028","nametype":"Valid","recclass":"L6","mass":"880","fall":"Fell","year":"1917-01-01T00:00:00.000","reclat":"39.083330","reclong":"-94.400000","geolocation":{"type":"Point","coordinates":[-94.4,39.08333]},":@computed_region_cbhk_fwbd":"18",":@computed_region_nnqa_25f4":"525"} +,{"name":"Inner Mongolia","id":"12037","nametype":"Valid","recclass":"L6","mass":"3000","fall":"Fell","year":"1963-01-01T00:00:00.000","reclat":"41.000000","reclong":"112.000000","geolocation":{"type":"Point","coordinates":[112,41]}} +,{"name":"Innisfree","id":"12039","nametype":"Valid","recclass":"L5","mass":"4576","fall":"Fell","year":"1977-01-01T00:00:00.000","reclat":"53.415000","reclong":"-111.337500","geolocation":{"type":"Point","coordinates":[-111.3375,53.415]}} +,{"name":"Ipiranga","id":"12043","nametype":"Valid","recclass":"H6","mass":"7000","fall":"Fell","year":"1972-01-01T00:00:00.000","reclat":"-25.500000","reclong":"-54.500000","geolocation":{"type":"Point","coordinates":[-54.5,-25.5]}} +,{"name":"Ishinga","id":"12049","nametype":"Valid","recclass":"H","mass":"1300","fall":"Fell","year":"1954-01-01T00:00:00.000","reclat":"-8.933330","reclong":"33.800000","geolocation":{"type":"Point","coordinates":[33.8,-8.93333]}} +,{"name":"Isthilart","id":"12053","nametype":"Valid","recclass":"H5","mass":"3050","fall":"Fell","year":"1928-01-01T00:00:00.000","reclat":"-31.183330","reclong":"-57.950000","geolocation":{"type":"Point","coordinates":[-57.95,-31.18333]}} +,{"name":"Itapicuru-Mirim","id":"12056","nametype":"Valid","recclass":"H5","mass":"2024","fall":"Fell","year":"1879-01-01T00:00:00.000","reclat":"-3.400000","reclong":"-44.333330","geolocation":{"type":"Point","coordinates":[-44.33333,-3.4]}} +,{"name":"Itqiy","id":"12058","nametype":"Valid","recclass":"EH7-an","mass":"4720","fall":"Fell","year":"1990-01-01T00:00:00.000","reclat":"26.590830","reclong":"-12.952170","geolocation":{"type":"Point","coordinates":[-12.95217,26.59083]}} +,{"name":"Ivuna","id":"12063","nametype":"Valid","recclass":"CI1","mass":"704.5","fall":"Fell","year":"1938-01-01T00:00:00.000","reclat":"-8.416670","reclong":"32.433330","geolocation":{"type":"Point","coordinates":[32.43333,-8.41667]}} +,{"name":"Jackalsfontein","id":"12065","nametype":"Valid","recclass":"L6","mass":"48000","fall":"Fell","year":"1903-01-01T00:00:00.000","reclat":"-32.500000","reclong":"21.900000","geolocation":{"type":"Point","coordinates":[21.9,-32.5]}} +,{"name":"Jajh deh Kot Lalu","id":"12067","nametype":"Valid","recclass":"EL6","mass":"973","fall":"Fell","year":"1926-01-01T00:00:00.000","reclat":"26.750000","reclong":"68.416670","geolocation":{"type":"Point","coordinates":[68.41667,26.75]}} +,{"name":"Jalanash","id":"12068","nametype":"Valid","recclass":"Ureilite","mass":"700","fall":"Fell","year":"1990-01-01T00:00:00.000"} +,{"name":"Jalandhar","id":"12069","nametype":"Valid","recclass":"Iron","mass":"1967","fall":"Fell","year":"1621-01-01T00:00:00.000","reclat":"31.000000","reclong":"75.000000","geolocation":{"type":"Point","coordinates":[75,31]}} +,{"name":"Jamkheir","id":"12072","nametype":"Valid","recclass":"H6","mass":"22","fall":"Fell","year":"1866-01-01T00:00:00.000","reclat":"18.750000","reclong":"75.333330","geolocation":{"type":"Point","coordinates":[75.33333,18.75]}} +,{"name":"Jartai","id":"12074","nametype":"Valid","recclass":"L6","mass":"20500","fall":"Fell","year":"1979-01-01T00:00:00.000","reclat":"39.700000","reclong":"105.800000","geolocation":{"type":"Point","coordinates":[105.8,39.7]}} +,{"name":"Jelica","id":"12078","nametype":"Valid","recclass":"LL6","mass":"34000","fall":"Fell","year":"1889-01-01T00:00:00.000","reclat":"43.833330","reclong":"20.441670","geolocation":{"type":"Point","coordinates":[20.44167,43.83333]}} +,{"name":"Jemlapur","id":"12079","nametype":"Valid","recclass":"L6","mass":"450","fall":"Fell","year":"1901-01-01T00:00:00.000"} +,{"name":"Jesenice","id":"51589","nametype":"Valid","recclass":"L6","mass":"3667","fall":"Fell","year":"2009-01-01T00:00:00.000","reclat":"46.421370","reclong":"14.052170","geolocation":{"type":"Point","coordinates":[14.05217,46.42137]}} +,{"name":"Jhung","id":"12085","nametype":"Valid","recclass":"L5","mass":"5900","fall":"Fell","year":"1873-01-01T00:00:00.000","reclat":"31.300000","reclong":"72.383330","geolocation":{"type":"Point","coordinates":[72.38333,31.3]}} +,{"name":"Jiange","id":"12086","nametype":"Valid","recclass":"H5","mass":"222","fall":"Fell","year":"1964-01-01T00:00:00.000","reclat":"31.916670","reclong":"104.916670","geolocation":{"type":"Point","coordinates":[104.91667,31.91667]}} +,{"name":"Jianshi","id":"12087","nametype":"Valid","recclass":"Iron, IIIAB","mass":"600000","fall":"Fell","year":"1890-01-01T00:00:00.000","reclat":"30.808330","reclong":"109.500000","geolocation":{"type":"Point","coordinates":[109.5,30.80833]}} +,{"name":"Jilin","id":"12171","nametype":"Valid","recclass":"H5","mass":"4000000","fall":"Fell","year":"1976-01-01T00:00:00.000","reclat":"44.050000","reclong":"126.166670","geolocation":{"type":"Point","coordinates":[126.16667,44.05]}} +,{"name":"Jodiya","id":"47362","nametype":"Valid","recclass":"L5","mass":"100","fall":"Fell","year":"2006-01-01T00:00:00.000","reclat":"22.680000","reclong":"70.313330","geolocation":{"type":"Point","coordinates":[70.31333,22.68]}} +,{"name":"Jodzie","id":"12173","nametype":"Valid","recclass":"Howardite","mass":"30","fall":"Fell","year":"1877-01-01T00:00:00.000","reclat":"55.700000","reclong":"24.400000","geolocation":{"type":"Point","coordinates":[24.4,55.7]}} +,{"name":"Johnstown","id":"12198","nametype":"Valid","recclass":"Diogenite","mass":"40300","fall":"Fell","year":"1924-01-01T00:00:00.000","reclat":"40.350000","reclong":"-104.900000","geolocation":{"type":"Point","coordinates":[-104.9,40.35]},":@computed_region_cbhk_fwbd":"9",":@computed_region_nnqa_25f4":"1072"} +,{"name":"Jolomba","id":"12199","nametype":"Valid","recclass":"LL6","mass":"483","fall":"Fell","year":"1974-01-01T00:00:00.000","reclat":"-11.850000","reclong":"15.833330","geolocation":{"type":"Point","coordinates":[15.83333,-11.85]}} +,{"name":"Jonzac","id":"12202","nametype":"Valid","recclass":"Eucrite-mmict","mass":"5000","fall":"Fell","year":"1819-01-01T00:00:00.000","reclat":"45.433330","reclong":"-0.450000","geolocation":{"type":"Point","coordinates":[-0.45,45.43333]}} +,{"name":"Juancheng","id":"12203","nametype":"Valid","recclass":"H5","mass":"100000","fall":"Fell","year":"1997-01-01T00:00:00.000","reclat":"35.500000","reclong":"115.416670","geolocation":{"type":"Point","coordinates":[115.41667,35.5]}} +,{"name":"Judesegeri","id":"12207","nametype":"Valid","recclass":"H6","mass":"680","fall":"Fell","year":"1876-01-01T00:00:00.000","reclat":"12.850000","reclong":"76.800000","geolocation":{"type":"Point","coordinates":[76.8,12.85]}} +,{"name":"Jumapalo","id":"12209","nametype":"Valid","recclass":"L6","mass":"32490","fall":"Fell","year":"1984-01-01T00:00:00.000","reclat":"-7.716670","reclong":"111.200000","geolocation":{"type":"Point","coordinates":[111.2,-7.71667]}} +,{"name":"Junan","id":"12210","nametype":"Valid","recclass":"L6","mass":"950","fall":"Fell","year":"1976-01-01T00:00:00.000","reclat":"35.200000","reclong":"118.800000","geolocation":{"type":"Point","coordinates":[118.8,35.2]}} +,{"name":"Juromenha","id":"12213","nametype":"Valid","recclass":"Iron, IIIAB","mass":"25250","fall":"Fell","year":"1968-01-01T00:00:00.000","reclat":"38.740280","reclong":"-7.270000","geolocation":{"type":"Point","coordinates":[-7.27,38.74028]}} +,{"name":"Juvinas","id":"12214","nametype":"Valid","recclass":"Eucrite-mmict","mass":"91000","fall":"Fell","year":"1821-01-01T00:00:00.000","reclat":"44.716670","reclong":"4.300000","geolocation":{"type":"Point","coordinates":[4.3,44.71667]}} +,{"name":"Kaba","id":"12218","nametype":"Valid","recclass":"CV3","mass":"3000","fall":"Fell","year":"1857-01-01T00:00:00.000","reclat":"47.350000","reclong":"21.300000","geolocation":{"type":"Point","coordinates":[21.3,47.35]}} +,{"name":"Kabo","id":"12220","nametype":"Valid","recclass":"H4","mass":"13400","fall":"Fell","year":"1971-01-01T00:00:00.000","reclat":"11.850000","reclong":"8.216670","geolocation":{"type":"Point","coordinates":[8.21667,11.85]}} +,{"name":"Kadonah","id":"12221","nametype":"Valid","recclass":"H6","mass":"89","fall":"Fell","year":"1822-01-01T00:00:00.000","reclat":"27.083330","reclong":"78.333330","geolocation":{"type":"Point","coordinates":[78.33333,27.08333]}} +,{"name":"Kaee","id":"12222","nametype":"Valid","recclass":"H5","mass":"230","fall":"Fell","year":"1838-01-01T00:00:00.000","reclat":"27.250000","reclong":"79.966670","geolocation":{"type":"Point","coordinates":[79.96667,27.25]}} +,{"name":"Kagarlyk","id":"12227","nametype":"Valid","recclass":"L6","mass":"1900","fall":"Fell","year":"1908-01-01T00:00:00.000","reclat":"49.866670","reclong":"30.833330","geolocation":{"type":"Point","coordinates":[30.83333,49.86667]}} +,{"name":"Kaidun","id":"12228","nametype":"Valid","recclass":"CR2","mass":"2000","fall":"Fell","year":"1980-01-01T00:00:00.000","reclat":"15.000000","reclong":"48.300000","geolocation":{"type":"Point","coordinates":[48.3,15]}} +,{"name":"Kainsaz","id":"12229","nametype":"Valid","recclass":"CO3.2","mass":"200000","fall":"Fell","year":"1937-01-01T00:00:00.000","reclat":"55.433330","reclong":"53.250000","geolocation":{"type":"Point","coordinates":[53.25,55.43333]}} +,{"name":"Kakangari","id":"12230","nametype":"Valid","recclass":"K3","mass":"350","fall":"Fell","year":"1890-01-01T00:00:00.000","reclat":"12.383330","reclong":"78.516670","geolocation":{"type":"Point","coordinates":[78.51667,12.38333]}} +,{"name":"Kakowa","id":"12231","nametype":"Valid","recclass":"L6","mass":"577","fall":"Fell","year":"1858-01-01T00:00:00.000","reclat":"45.133330","reclong":"21.666670","geolocation":{"type":"Point","coordinates":[21.66667,45.13333]}} +,{"name":"Kalaba","id":"12232","nametype":"Valid","recclass":"H4","mass":"950","fall":"Fell","year":"1951-01-01T00:00:00.000","reclat":"-6.833330","reclong":"29.500000","geolocation":{"type":"Point","coordinates":[29.5,-6.83333]}} +,{"name":"Kalumbi","id":"12236","nametype":"Valid","recclass":"L6","mass":"4500","fall":"Fell","year":"1879-01-01T00:00:00.000","reclat":"17.833330","reclong":"73.983330","geolocation":{"type":"Point","coordinates":[73.98333,17.83333]}} +,{"name":"Kamalpur","id":"12238","nametype":"Valid","recclass":"L6","mass":"2770","fall":"Fell","year":"1942-01-01T00:00:00.000","reclat":"26.033330","reclong":"81.466670","geolocation":{"type":"Point","coordinates":[81.46667,26.03333]}} +,{"name":"Kamiomi","id":"12240","nametype":"Valid","recclass":"H5","mass":"448","fall":"Fell","year":"1913-01-01T00:00:00.000","reclat":"36.041670","reclong":"139.956670","geolocation":{"type":"Point","coordinates":[139.95667,36.04167]}} +,{"name":"Kamsagar","id":"12241","nametype":"Valid","recclass":"L6","mass":"1293","fall":"Fell","year":"1902-01-01T00:00:00.000","reclat":"14.183330","reclong":"75.800000","geolocation":{"type":"Point","coordinates":[75.8,14.18333]}} +,{"name":"Kandahar (Afghanistan)","id":"12243","nametype":"Valid","recclass":"L6","mass":"299","fall":"Fell","year":"1959-01-01T00:00:00.000","reclat":"31.600000","reclong":"65.783330","geolocation":{"type":"Point","coordinates":[65.78333,31.6]}} +,{"name":"Kangean","id":"12245","nametype":"Valid","recclass":"H5","mass":"1630","fall":"Fell","year":"1908-01-01T00:00:00.000","reclat":"-7.000000","reclong":"115.500000","geolocation":{"type":"Point","coordinates":[115.5,-7]}} +,{"name":"Kangra Valley","id":"12246","nametype":"Valid","recclass":"H5","mass":"400","fall":"Fell","year":"1897-01-01T00:00:00.000","reclat":"32.083330","reclong":"76.300000","geolocation":{"type":"Point","coordinates":[76.3,32.08333]}} +,{"name":"Kapoeta","id":"12251","nametype":"Valid","recclass":"Howardite","mass":"11355","fall":"Fell","year":"1942-01-01T00:00:00.000","reclat":"4.700000","reclong":"33.633330","geolocation":{"type":"Point","coordinates":[33.63333,4.7]}} +,{"name":"Kaprada","id":"47357","nametype":"Valid","recclass":"L5/6","mass":"1600","fall":"Fell","year":"2004-01-01T00:00:00.000","reclat":"20.339160","reclong":"73.223290","geolocation":{"type":"Point","coordinates":[73.22329,20.33916]}} +,{"name":"Kaptal-Aryk","id":"12253","nametype":"Valid","recclass":"L6","mass":"3500","fall":"Fell","year":"1937-01-01T00:00:00.000","reclat":"42.450000","reclong":"73.366670","geolocation":{"type":"Point","coordinates":[73.36667,42.45]}} +,{"name":"Karakol","id":"12256","nametype":"Valid","recclass":"LL6","mass":"3000","fall":"Fell","year":"1840-01-01T00:00:00.000","reclat":"47.216670","reclong":"81.016670","geolocation":{"type":"Point","coordinates":[81.01667,47.21667]}} +,{"name":"Karatu","id":"12258","nametype":"Valid","recclass":"LL6","mass":"2220","fall":"Fell","year":"1963-01-01T00:00:00.000","reclat":"-3.500000","reclong":"35.583330","geolocation":{"type":"Point","coordinates":[35.58333,-3.5]}} +,{"name":"Karewar","id":"12260","nametype":"Valid","recclass":"L6","mass":"180","fall":"Fell","year":"1949-01-01T00:00:00.000","reclat":"12.900000","reclong":"7.150000","geolocation":{"type":"Point","coordinates":[7.15,12.9]}} +,{"name":"Karkh","id":"12262","nametype":"Valid","recclass":"L6","mass":"22000","fall":"Fell","year":"1905-01-01T00:00:00.000","reclat":"27.800000","reclong":"67.166670","geolocation":{"type":"Point","coordinates":[67.16667,27.8]}} +,{"name":"Karloowala","id":"12263","nametype":"Valid","recclass":"L6","mass":"2950","fall":"Fell","year":"1955-01-01T00:00:00.000","reclat":"31.583330","reclong":"71.600000","geolocation":{"type":"Point","coordinates":[71.6,31.58333]}} +,{"name":"Karoonda","id":"12264","nametype":"Valid","recclass":"CK4","mass":"41730","fall":"Fell","year":"1930-01-01T00:00:00.000","reclat":"-35.083330","reclong":"139.916670","geolocation":{"type":"Point","coordinates":[139.91667,-35.08333]}} +,{"name":"Kasamatsu","id":"12266","nametype":"Valid","recclass":"H","mass":"710","fall":"Fell","year":"1938-01-01T00:00:00.000","reclat":"35.366670","reclong":"136.766670","geolocation":{"type":"Point","coordinates":[136.76667,35.36667]}} +,{"name":"Kasauli","id":"30740","nametype":"Valid","recclass":"H4","mass":"16820","fall":"Fell","year":"2003-01-01T00:00:00.000","reclat":"29.583330","reclong":"77.583330","geolocation":{"type":"Point","coordinates":[77.58333,29.58333]}} +,{"name":"Katagum","id":"35465","nametype":"Valid","recclass":"L6","mass":"1500","fall":"Fell","year":"1999-01-01T00:00:00.000","reclat":"11.333330","reclong":"10.083330","geolocation":{"type":"Point","coordinates":[10.08333,11.33333]}} +,{"name":"Kavarpura","id":"47351","nametype":"Valid","recclass":"Iron, IIE-an","mass":"6800","fall":"Fell","year":"2006-01-01T00:00:00.000","reclat":"25.143330","reclong":"75.813330","geolocation":{"type":"Point","coordinates":[75.81333,25.14333]}} +,{"name":"Kayakent","id":"12268","nametype":"Valid","recclass":"Iron, IIIAB","mass":"85000","fall":"Fell","year":"1961-01-01T00:00:00.000","reclat":"39.263330","reclong":"31.780000","geolocation":{"type":"Point","coordinates":[31.78,39.26333]}} +,{"name":"Kediri","id":"12270","nametype":"Valid","recclass":"L4","mass":"3300","fall":"Fell","year":"1940-01-01T00:00:00.000","reclat":"-7.750000","reclong":"112.016670","geolocation":{"type":"Point","coordinates":[112.01667,-7.75]}} +,{"name":"Kemer","id":"53654","nametype":"Valid","recclass":"L4","mass":"5760","fall":"Fell","year":"2008-01-01T00:00:00.000","reclat":"36.541940","reclong":"29.418220","geolocation":{"type":"Point","coordinates":[29.41822,36.54194]}} +,{"name":"Kendleton","id":"12275","nametype":"Valid","recclass":"L4","mass":"6937","fall":"Fell","year":"1939-01-01T00:00:00.000","reclat":"29.450000","reclong":"-96.000000","geolocation":{"type":"Point","coordinates":[-96,29.45]},":@computed_region_cbhk_fwbd":"23",":@computed_region_nnqa_25f4":"3190"} +,{"name":"Kendrapara","id":"12276","nametype":"Valid","recclass":"H4-5","mass":"6669.2","fall":"Fell","year":"2003-01-01T00:00:00.000","reclat":"20.462500","reclong":"86.702780","geolocation":{"type":"Point","coordinates":[86.70278,20.4625]}} +,{"name":"Kerilis","id":"12282","nametype":"Valid","recclass":"H5","mass":"5000","fall":"Fell","year":"1874-01-01T00:00:00.000","reclat":"48.400000","reclong":"-3.300000","geolocation":{"type":"Point","coordinates":[-3.3,48.4]}} +,{"name":"Kernouve","id":"12284","nametype":"Valid","recclass":"H6","mass":"80000","fall":"Fell","year":"1869-01-01T00:00:00.000","reclat":"48.116670","reclong":"-3.083330","geolocation":{"type":"Point","coordinates":[-3.08333,48.11667]}} +,{"name":"Kesen","id":"12286","nametype":"Valid","recclass":"H4","mass":"135000","fall":"Fell","year":"1850-01-01T00:00:00.000","reclat":"38.983330","reclong":"141.616670","geolocation":{"type":"Point","coordinates":[141.61667,38.98333]}} +,{"name":"Khairpur","id":"12288","nametype":"Valid","recclass":"EL6","mass":"13600","fall":"Fell","year":"1873-01-01T00:00:00.000","reclat":"29.533330","reclong":"72.300000","geolocation":{"type":"Point","coordinates":[72.3,29.53333]}} +,{"name":"Khanpur","id":"12289","nametype":"Valid","recclass":"LL5","mass":"3698","fall":"Fell","year":"1932-01-01T00:00:00.000","reclat":"25.550000","reclong":"83.116670","geolocation":{"type":"Point","coordinates":[83.11667,25.55]}} +,{"name":"Kharkov","id":"12291","nametype":"Valid","recclass":"L6","mass":"1500","fall":"Fell","year":"1787-01-01T00:00:00.000","reclat":"50.625000","reclong":"35.075000","geolocation":{"type":"Point","coordinates":[35.075,50.625]}} +,{"name":"Kheragur","id":"12294","nametype":"Valid","recclass":"L6","mass":"450","fall":"Fell","year":"1860-01-01T00:00:00.000","reclat":"26.950000","reclong":"77.883330","geolocation":{"type":"Point","coordinates":[77.88333,26.95]}} +,{"name":"Khetri","id":"12296","nametype":"Valid","recclass":"H6","mass":"100","fall":"Fell","year":"1867-01-01T00:00:00.000","reclat":"28.016670","reclong":"75.816670","geolocation":{"type":"Point","coordinates":[75.81667,28.01667]}} +,{"name":"Khmelevka","id":"12297","nametype":"Valid","recclass":"L5","mass":"6109","fall":"Fell","year":"1929-01-01T00:00:00.000","reclat":"56.750000","reclong":"75.333330","geolocation":{"type":"Point","coordinates":[75.33333,56.75]}} +,{"name":"Khohar","id":"12298","nametype":"Valid","recclass":"L3.6","mass":"9700","fall":"Fell","year":"1910-01-01T00:00:00.000","reclat":"25.100000","reclong":"81.533330","geolocation":{"type":"Point","coordinates":[81.53333,25.1]}} +,{"name":"Khor Temiki","id":"12299","nametype":"Valid","recclass":"Aubrite","mass":"3200","fall":"Fell","year":"1932-01-01T00:00:00.000","reclat":"16.000000","reclong":"36.000000","geolocation":{"type":"Point","coordinates":[36,16]}} +,{"name":"Kidairat","id":"12300","nametype":"Valid","recclass":"H6","mass":"100000","fall":"Fell","year":"1983-01-01T00:00:00.000","reclat":"14.000000","reclong":"28.000000","geolocation":{"type":"Point","coordinates":[28,14]}} +,{"name":"Kiel","id":"12301","nametype":"Valid","recclass":"L6","mass":"737.6","fall":"Fell","year":"1962-01-01T00:00:00.000","reclat":"54.400000","reclong":"10.150000","geolocation":{"type":"Point","coordinates":[10.15,54.4]}} +,{"name":"Kiffa","id":"12303","nametype":"Valid","recclass":"H5","mass":"1500","fall":"Fell","year":"1970-01-01T00:00:00.000","reclat":"16.583330","reclong":"-11.333330","geolocation":{"type":"Point","coordinates":[-11.33333,16.58333]}} +,{"name":"Kijima (1906)","id":"12305","nametype":"Valid","recclass":"Stone-uncl","mass":"331","fall":"Fell","year":"1906-01-01T00:00:00.000","reclat":"36.850000","reclong":"138.383330","geolocation":{"type":"Point","coordinates":[138.38333,36.85]}} +,{"name":"Kikino","id":"12306","nametype":"Valid","recclass":"H6","mass":"195","fall":"Fell","year":"1809-01-01T00:00:00.000","reclat":"55.000000","reclong":"34.000000","geolocation":{"type":"Point","coordinates":[34,55]}} +,{"name":"Kilabo","id":"12307","nametype":"Valid","recclass":"LL6","mass":"19000","fall":"Fell","year":"2002-01-01T00:00:00.000","reclat":"12.766670","reclong":"9.800000","geolocation":{"type":"Point","coordinates":[9.8,12.76667]}} +,{"name":"Kilbourn","id":"12308","nametype":"Valid","recclass":"H5","mass":"772","fall":"Fell","year":"1911-01-01T00:00:00.000","reclat":"43.583330","reclong":"-89.600000","geolocation":{"type":"Point","coordinates":[-89.6,43.58333]},":@computed_region_cbhk_fwbd":"41",":@computed_region_nnqa_25f4":"2971"} +,{"name":"Killeter","id":"12309","nametype":"Valid","recclass":"H6","mass":"140","fall":"Fell","year":"1844-01-01T00:00:00.000","reclat":"54.666670","reclong":"-7.666670","geolocation":{"type":"Point","coordinates":[-7.66667,54.66667]}} +,{"name":"Kingai","id":"12316","nametype":"Valid","recclass":"H6","mass":"67.400000000000006","fall":"Fell","year":"1967-01-01T00:00:00.000","reclat":"11.633330","reclong":"24.683330","geolocation":{"type":"Point","coordinates":[24.68333,11.63333]}} +,{"name":"Kirbyville","id":"12321","nametype":"Valid","recclass":"Eucrite-mmict","mass":"97.7","fall":"Fell","year":"1906-01-01T00:00:00.000","reclat":"30.750000","reclong":"-95.950000","geolocation":{"type":"Point","coordinates":[-95.95,30.75]},":@computed_region_cbhk_fwbd":"23",":@computed_region_nnqa_25f4":"2018"} +,{"name":"Kisvarsány","id":"12325","nametype":"Valid","recclass":"L6","mass":"1550","fall":"Fell","year":"1914-01-01T00:00:00.000","reclat":"48.166670","reclong":"22.308330","geolocation":{"type":"Point","coordinates":[22.30833,48.16667]}} +,{"name":"Kitchener","id":"12326","nametype":"Valid","recclass":"L6","mass":"202.6","fall":"Fell","year":"1998-01-01T00:00:00.000","reclat":"43.383330","reclong":"-80.383330","geolocation":{"type":"Point","coordinates":[-80.38333,43.38333]}} +,{"name":"Klein-Wenden","id":"12332","nametype":"Valid","recclass":"H6","mass":"3250","fall":"Fell","year":"1843-01-01T00:00:00.000","reclat":"51.600000","reclong":"10.800000","geolocation":{"type":"Point","coordinates":[10.8,51.6]}} +,{"name":"Knyahinya","id":"12335","nametype":"Valid","recclass":"L/LL5","mass":"500000","fall":"Fell","year":"1866-01-01T00:00:00.000","reclat":"48.900000","reclong":"22.400000","geolocation":{"type":"Point","coordinates":[22.4,48.9]}} +,{"name":"Kobe","id":"12336","nametype":"Valid","recclass":"CK4","mass":"136","fall":"Fell","year":"1999-01-01T00:00:00.000","reclat":"34.733330","reclong":"135.166670","geolocation":{"type":"Point","coordinates":[135.16667,34.73333]}} +,{"name":"Kokubunji","id":"12342","nametype":"Valid","recclass":"L6","mass":"11510","fall":"Fell","year":"1986-01-01T00:00:00.000","reclat":"34.300000","reclong":"133.950000","geolocation":{"type":"Point","coordinates":[133.95,34.3]}} +,{"name":"Komagome","id":"12343","nametype":"Valid","recclass":"Iron","mass":"238","fall":"Fell","year":"1926-01-01T00:00:00.000","reclat":"35.733330","reclong":"139.750000","geolocation":{"type":"Point","coordinates":[139.75,35.73333]}} +,{"name":"Konovo","id":"12344","nametype":"Valid","recclass":"LL5","mass":"90","fall":"Fell","year":"1931-01-01T00:00:00.000","reclat":"42.516670","reclong":"26.166670","geolocation":{"type":"Point","coordinates":[26.16667,42.51667]}} +,{"name":"Košice","id":"53810","nametype":"Valid","recclass":"H5","mass":"4300","fall":"Fell","year":"2010-01-01T00:00:00.000","reclat":"48.763670","reclong":"21.176330","geolocation":{"type":"Point","coordinates":[21.17633,48.76367]}} +,{"name":"Krähenberg","id":"12353","nametype":"Valid","recclass":"LL5","mass":"16500","fall":"Fell","year":"1869-01-01T00:00:00.000","reclat":"49.326940","reclong":"7.464720","geolocation":{"type":"Point","coordinates":[7.46472,49.32694]}} +,{"name":"Krasnoi-Ugol","id":"12355","nametype":"Valid","recclass":"L6","mass":"2440","fall":"Fell","year":"1829-01-01T00:00:00.000","reclat":"54.033330","reclong":"40.900000","geolocation":{"type":"Point","coordinates":[40.9,54.03333]}} +,{"name":"Krasnyi Klyuch","id":"12357","nametype":"Valid","recclass":"H5","mass":"4000","fall":"Fell","year":"1946-01-01T00:00:00.000","reclat":"54.333330","reclong":"56.083330","geolocation":{"type":"Point","coordinates":[56.08333,54.33333]}} +,{"name":"Krutikha","id":"12363","nametype":"Valid","recclass":"OC","mass":"845.2","fall":"Fell","year":"1906-01-01T00:00:00.000","reclat":"56.800000","reclong":"77.000000","geolocation":{"type":"Point","coordinates":[77,56.8]}} +,{"name":"Krymka","id":"12364","nametype":"Valid","recclass":"LL3.2","mass":"50000","fall":"Fell","year":"1946-01-01T00:00:00.000","reclat":"47.833330","reclong":"30.766670","geolocation":{"type":"Point","coordinates":[30.76667,47.83333]}} +,{"name":"Kukschin","id":"12368","nametype":"Valid","recclass":"L6","mass":"2250","fall":"Fell","year":"1938-01-01T00:00:00.000","reclat":"51.150000","reclong":"31.700000","geolocation":{"type":"Point","coordinates":[31.7,51.15]}} +,{"name":"Kulak","id":"12369","nametype":"Valid","recclass":"L5","mass":"453.6","fall":"Fell","year":"1961-01-01T00:00:00.000","reclat":"30.731110","reclong":"66.802220","geolocation":{"type":"Point","coordinates":[66.80222,30.73111]}} +,{"name":"Kuleschovka","id":"12370","nametype":"Valid","recclass":"L6","mass":"6000","fall":"Fell","year":"1811-01-01T00:00:00.000","reclat":"50.750000","reclong":"33.500000","geolocation":{"type":"Point","coordinates":[33.5,50.75]}} +,{"name":"Kulp","id":"12373","nametype":"Valid","recclass":"H6","mass":"3719","fall":"Fell","year":"1906-01-01T00:00:00.000","reclat":"41.116670","reclong":"45.000000","geolocation":{"type":"Point","coordinates":[45,41.11667]}} +,{"name":"Kunashak","id":"12377","nametype":"Valid","recclass":"L6","mass":"200000","fall":"Fell","year":"1949-01-01T00:00:00.000","reclat":"55.783330","reclong":"61.366670","geolocation":{"type":"Point","coordinates":[61.36667,55.78333]}} +,{"name":"Kunya-Urgench","id":"12379","nametype":"Valid","recclass":"H5","mass":"1100000","fall":"Fell","year":"1998-01-01T00:00:00.000","reclat":"42.250000","reclong":"59.200000","geolocation":{"type":"Point","coordinates":[59.2,42.25]}} +,{"name":"Kushiike","id":"12381","nametype":"Valid","recclass":"OC","mass":"4460","fall":"Fell","year":"1920-01-01T00:00:00.000","reclat":"37.050000","reclong":"138.383330","geolocation":{"type":"Point","coordinates":[138.38333,37.05]}} +,{"name":"Kusiali","id":"12382","nametype":"Valid","recclass":"L6","mass":"5","fall":"Fell","year":"1860-01-01T00:00:00.000","reclat":"29.683330","reclong":"78.383330","geolocation":{"type":"Point","coordinates":[78.38333,29.68333]}} +,{"name":"Kutais","id":"12383","nametype":"Valid","recclass":"H5","mass":"23","fall":"Fell","year":"1977-01-01T00:00:00.000","reclat":"44.516670","reclong":"39.300000","geolocation":{"type":"Point","coordinates":[39.3,44.51667]}} +,{"name":"Kuttippuram","id":"12384","nametype":"Valid","recclass":"L6","mass":"45000","fall":"Fell","year":"1914-01-01T00:00:00.000","reclat":"10.833330","reclong":"76.033330","geolocation":{"type":"Point","coordinates":[76.03333,10.83333]}} +,{"name":"Kuznetzovo","id":"12385","nametype":"Valid","recclass":"L6","mass":"4047","fall":"Fell","year":"1932-01-01T00:00:00.000","reclat":"55.200000","reclong":"75.333330","geolocation":{"type":"Point","coordinates":[75.33333,55.2]}} +,{"name":"Kyushu","id":"12390","nametype":"Valid","recclass":"L6","mass":"45000","fall":"Fell","year":"1886-01-01T00:00:00.000","reclat":"32.033330","reclong":"130.633330","geolocation":{"type":"Point","coordinates":[130.63333,32.03333]}} +,{"name":"La Bécasse","id":"12392","nametype":"Valid","recclass":"L6","mass":"2800","fall":"Fell","year":"1879-01-01T00:00:00.000","reclat":"47.083330","reclong":"1.750000","geolocation":{"type":"Point","coordinates":[1.75,47.08333]}} +,{"name":"La Charca","id":"12394","nametype":"Valid","recclass":"OC","mass":"399","fall":"Fell","year":"1878-01-01T00:00:00.000","reclat":"20.666670","reclong":"-101.283330","geolocation":{"type":"Point","coordinates":[-101.28333,20.66667]}} +,{"name":"La Colina","id":"12395","nametype":"Valid","recclass":"H5","mass":"2000","fall":"Fell","year":"1924-01-01T00:00:00.000","reclat":"-37.333330","reclong":"-61.533330","geolocation":{"type":"Point","coordinates":[-61.53333,-37.33333]}} +,{"name":"La Criolla","id":"12396","nametype":"Valid","recclass":"L6","mass":"45000","fall":"Fell","year":"1985-01-01T00:00:00.000","reclat":"-31.233330","reclong":"-58.166670","geolocation":{"type":"Point","coordinates":[-58.16667,-31.23333]}} +,{"name":"Laborel","id":"12408","nametype":"Valid","recclass":"H5","mass":"3833","fall":"Fell","year":"1871-01-01T00:00:00.000","reclat":"44.283330","reclong":"5.583330","geolocation":{"type":"Point","coordinates":[5.58333,44.28333]}} +,{"name":"Lahrauli","id":"12433","nametype":"Valid","recclass":"Ureilite","mass":"900","fall":"Fell","year":"1955-01-01T00:00:00.000","reclat":"26.783330","reclong":"82.716670","geolocation":{"type":"Point","coordinates":[82.71667,26.78333]}} +,{"name":"L'Aigle","id":"12434","nametype":"Valid","recclass":"L6","mass":"37000","fall":"Fell","year":"1803-01-01T00:00:00.000","reclat":"48.766670","reclong":"0.633330","geolocation":{"type":"Point","coordinates":[0.63333,48.76667]}} +,{"name":"Cumulus Hills 04075","id":"32531","nametype":"Valid","recclass":"Pallasite","mass":"9.6","fall":"Found","year":"2003-01-01T00:00:00.000"} +,{"name":"Lakangaon","id":"12435","nametype":"Valid","recclass":"Eucrite-mmict","mass":"212.5","fall":"Fell","year":"1910-01-01T00:00:00.000","reclat":"21.866670","reclong":"76.033330","geolocation":{"type":"Point","coordinates":[76.03333,21.86667]}} +,{"name":"Lalitpur","id":"12451","nametype":"Valid","recclass":"L6","mass":"372","fall":"Fell","year":"1887-01-01T00:00:00.000","reclat":"24.450000","reclong":"78.566670","geolocation":{"type":"Point","coordinates":[78.56667,24.45]}} +,{"name":"Lancé","id":"12455","nametype":"Valid","recclass":"CO3.5","mass":"51700","fall":"Fell","year":"1872-01-01T00:00:00.000","reclat":"47.700000","reclong":"1.066670","geolocation":{"type":"Point","coordinates":[1.06667,47.7]}} +,{"name":"Lancon","id":"12456","nametype":"Valid","recclass":"H6","mass":"7000","fall":"Fell","year":"1897-01-01T00:00:00.000","reclat":"43.750000","reclong":"5.116670","geolocation":{"type":"Point","coordinates":[5.11667,43.75]}} +,{"name":"Långhalsen","id":"12461","nametype":"Valid","recclass":"L6","mass":"2300","fall":"Fell","year":"1947-01-01T00:00:00.000","reclat":"58.850000","reclong":"16.733330","geolocation":{"type":"Point","coordinates":[16.73333,58.85]}} +,{"name":"Lanxi","id":"12464","nametype":"Valid","recclass":"L6","mass":"1282","fall":"Fell","year":"1986-01-01T00:00:00.000","reclat":"46.241670","reclong":"126.196110","geolocation":{"type":"Point","coordinates":[126.19611,46.24167]}} +,{"name":"Lanzenkirchen","id":"12465","nametype":"Valid","recclass":"L4","mass":"7000","fall":"Fell","year":"1925-01-01T00:00:00.000","reclat":"47.750000","reclong":"16.233330","geolocation":{"type":"Point","coordinates":[16.23333,47.75]}} +,{"name":"Laochenzhen","id":"12466","nametype":"Valid","recclass":"H5","mass":"14250","fall":"Fell","year":"1987-01-01T00:00:00.000","reclat":"33.133330","reclong":"115.166670","geolocation":{"type":"Point","coordinates":[115.16667,33.13333]}} +,{"name":"Launton","id":"12740","nametype":"Valid","recclass":"L6","mass":"1060","fall":"Fell","year":"1830-01-01T00:00:00.000","reclat":"51.900000","reclong":"-1.116670","geolocation":{"type":"Point","coordinates":[-1.11667,51.9]}} +,{"name":"Lavrentievka","id":"12743","nametype":"Valid","recclass":"L6","mass":"800","fall":"Fell","year":"1938-01-01T00:00:00.000","reclat":"52.450000","reclong":"51.566670","geolocation":{"type":"Point","coordinates":[51.56667,52.45]}} +,{"name":"Le Pressoir","id":"12748","nametype":"Valid","recclass":"H5","mass":"3000","fall":"Fell","year":"1845-01-01T00:00:00.000","reclat":"47.166670","reclong":"0.433330","geolocation":{"type":"Point","coordinates":[0.43333,47.16667]}} +,{"name":"Le Teilleul","id":"12749","nametype":"Valid","recclass":"Howardite","mass":"780","fall":"Fell","year":"1845-01-01T00:00:00.000","reclat":"48.533330","reclong":"-0.866670","geolocation":{"type":"Point","coordinates":[-0.86667,48.53333]}} +,{"name":"Leedey","id":"12755","nametype":"Valid","recclass":"L6","mass":"51500","fall":"Fell","year":"1943-01-01T00:00:00.000","reclat":"35.883330","reclong":"-99.333330","geolocation":{"type":"Point","coordinates":[-99.33333,35.88333]},":@computed_region_cbhk_fwbd":"20",":@computed_region_nnqa_25f4":"608"} +,{"name":"Leeuwfontein","id":"12756","nametype":"Valid","recclass":"L6","mass":"460","fall":"Fell","year":"1912-01-01T00:00:00.000","reclat":"-25.666670","reclong":"28.366670","geolocation":{"type":"Point","coordinates":[28.36667,-25.66667]}} +,{"name":"Leighlinbridge","id":"12759","nametype":"Valid","recclass":"L6","mass":"271.39999999999998","fall":"Fell","year":"1999-01-01T00:00:00.000","reclat":"52.666670","reclong":"-6.966670","geolocation":{"type":"Point","coordinates":[-6.96667,52.66667]}} +,{"name":"Leighton","id":"12760","nametype":"Valid","recclass":"H5","mass":"877","fall":"Fell","year":"1907-01-01T00:00:00.000","reclat":"34.583330","reclong":"-87.500000","geolocation":{"type":"Point","coordinates":[-87.5,34.58333]},":@computed_region_cbhk_fwbd":"29",":@computed_region_nnqa_25f4":"1585"} +,{"name":"Leonovka","id":"12765","nametype":"Valid","recclass":"L6","mass":"700","fall":"Fell","year":"1900-01-01T00:00:00.000","reclat":"52.266670","reclong":"32.850000","geolocation":{"type":"Point","coordinates":[32.85,52.26667]}} +,{"name":"Les Ormes","id":"12769","nametype":"Valid","recclass":"L6","mass":"125","fall":"Fell","year":"1857-01-01T00:00:00.000","reclat":"48.350000","reclong":"3.250000","geolocation":{"type":"Point","coordinates":[3.25,48.35]}} +,{"name":"Lesves","id":"12772","nametype":"Valid","recclass":"L6","mass":"2000","fall":"Fell","year":"1896-01-01T00:00:00.000","reclat":"50.366670","reclong":"4.733330","geolocation":{"type":"Point","coordinates":[4.73333,50.36667]}} +,{"name":"Lichtenberg","id":"14646","nametype":"Valid","recclass":"H6","mass":"4000","fall":"Fell","year":"1973-01-01T00:00:00.000","reclat":"-26.150000","reclong":"26.183330","geolocation":{"type":"Point","coordinates":[26.18333,-26.15]}} +,{"name":"Lillaverke","id":"14650","nametype":"Valid","recclass":"H5","mass":"6862","fall":"Fell","year":"1930-01-01T00:00:00.000","reclat":"56.650000","reclong":"15.866670","geolocation":{"type":"Point","coordinates":[15.86667,56.65]}} +,{"name":"Limerick","id":"14652","nametype":"Valid","recclass":"H5","mass":"50000","fall":"Fell","year":"1813-01-01T00:00:00.000","reclat":"52.566670","reclong":"-8.783330","geolocation":{"type":"Point","coordinates":[-8.78333,52.56667]}} +,{"name":"Linum","id":"14655","nametype":"Valid","recclass":"L6","mass":"1862","fall":"Fell","year":"1854-01-01T00:00:00.000","reclat":"52.750000","reclong":"12.900000","geolocation":{"type":"Point","coordinates":[12.9,52.75]}} +,{"name":"Lishui","id":"14659","nametype":"Valid","recclass":"L5","mass":"498","fall":"Fell","year":"1978-01-01T00:00:00.000","reclat":"31.633330","reclong":"118.983330","geolocation":{"type":"Point","coordinates":[118.98333,31.63333]}} +,{"name":"Lissa","id":"14661","nametype":"Valid","recclass":"L6","mass":"12800","fall":"Fell","year":"1808-01-01T00:00:00.000","reclat":"50.200000","reclong":"14.850000","geolocation":{"type":"Point","coordinates":[14.85,50.2]}} +,{"name":"Little Piney","id":"14664","nametype":"Valid","recclass":"L5","mass":"491","fall":"Fell","year":"1839-01-01T00:00:00.000","reclat":"37.916670","reclong":"-92.083330","geolocation":{"type":"Point","coordinates":[-92.08333,37.91667]},":@computed_region_cbhk_fwbd":"18",":@computed_region_nnqa_25f4":"2171"} +,{"name":"Lixna","id":"14670","nametype":"Valid","recclass":"H4","mass":"5213","fall":"Fell","year":"1820-01-01T00:00:00.000","reclat":"56.000000","reclong":"26.433330","geolocation":{"type":"Point","coordinates":[26.43333,56]}} +,{"name":"Lodran","id":"14675","nametype":"Valid","recclass":"Lodranite","mass":"1000","fall":"Fell","year":"1868-01-01T00:00:00.000","reclat":"29.533330","reclong":"71.800000","geolocation":{"type":"Point","coordinates":[71.8,29.53333]}} +,{"name":"Lohawat","id":"14678","nametype":"Valid","recclass":"Howardite","mass":"40000","fall":"Fell","year":"1994-01-01T00:00:00.000","reclat":"26.965560","reclong":"72.626670","geolocation":{"type":"Point","coordinates":[72.62667,26.96556]}} +,{"name":"Lorton","id":"52843","nametype":"Valid","recclass":"L6","mass":"329.7","fall":"Fell","year":"2010-01-01T00:00:00.000","reclat":"38.700660","reclong":"-77.211630","geolocation":{"type":"Point","coordinates":[-77.21163,38.70066]},":@computed_region_cbhk_fwbd":"40",":@computed_region_nnqa_25f4":"2770"} +,{"name":"Los Martinez","id":"14708","nametype":"Valid","recclass":"L6","mass":"25","fall":"Fell","year":"1894-01-01T00:00:00.000","reclat":"38.000000","reclong":"-0.833330","geolocation":{"type":"Point","coordinates":[-0.83333,38]}} +,{"name":"Lost City","id":"14711","nametype":"Valid","recclass":"H5","mass":"17000","fall":"Fell","year":"1970-01-01T00:00:00.000","reclat":"36.008330","reclong":"-95.150000","geolocation":{"type":"Point","coordinates":[-95.15,36.00833]},":@computed_region_cbhk_fwbd":"20",":@computed_region_nnqa_25f4":"2711"} +,{"name":"Louisville","id":"14716","nametype":"Valid","recclass":"L6","mass":"1300","fall":"Fell","year":"1977-01-01T00:00:00.000","reclat":"38.250000","reclong":"-85.750000","geolocation":{"type":"Point","coordinates":[-85.75,38.25]},":@computed_region_cbhk_fwbd":"36",":@computed_region_nnqa_25f4":"1327"} +,{"name":"Łowicz","id":"14718","nametype":"Valid","recclass":"Mesosiderite-A3","mass":"59000","fall":"Fell","year":"1935-01-01T00:00:00.000","reclat":"52.000000","reclong":"19.916670","geolocation":{"type":"Point","coordinates":[19.91667,52]}} +,{"name":"Lua","id":"14721","nametype":"Valid","recclass":"L5","mass":"9241","fall":"Fell","year":"1926-01-01T00:00:00.000","reclat":"24.950000","reclong":"75.150000","geolocation":{"type":"Point","coordinates":[75.15,24.95]}} +,{"name":"Lucé","id":"14724","nametype":"Valid","recclass":"L6","mass":"3500","fall":"Fell","year":"1768-01-01T00:00:00.000","reclat":"47.850000","reclong":"0.483330","geolocation":{"type":"Point","coordinates":[0.48333,47.85]}} +,{"name":"Lumpkin","id":"14753","nametype":"Valid","recclass":"L6","mass":"340","fall":"Fell","year":"1869-01-01T00:00:00.000","reclat":"32.033330","reclong":"-84.766670","geolocation":{"type":"Point","coordinates":[-84.76667,32.03333]},":@computed_region_cbhk_fwbd":"31",":@computed_region_nnqa_25f4":"1567"} +,{"name":"Lunan","id":"14754","nametype":"Valid","recclass":"H6","mass":"2520","fall":"Fell","year":"1980-01-01T00:00:00.000","reclat":"24.800000","reclong":"103.300000","geolocation":{"type":"Point","coordinates":[103.3,24.8]}} +,{"name":"Lundsgård","id":"14755","nametype":"Valid","recclass":"L6","mass":"11000","fall":"Fell","year":"1889-01-01T00:00:00.000","reclat":"56.216670","reclong":"13.033330","geolocation":{"type":"Point","coordinates":[13.03333,56.21667]}} +,{"name":"Luotolax","id":"14756","nametype":"Valid","recclass":"Howardite","mass":"885","fall":"Fell","year":"1813-01-01T00:00:00.000","reclat":"61.200000","reclong":"27.700000","geolocation":{"type":"Point","coordinates":[27.7,61.2]}} +,{"name":"Luponnas","id":"14757","nametype":"Valid","recclass":"H3-5","mass":"14000","fall":"Fell","year":"1753-01-01T00:00:00.000","reclat":"46.216670","reclong":"5.000000","geolocation":{"type":"Point","coordinates":[5,46.21667]}} +,{"name":"Lusaka","id":"14759","nametype":"Valid","recclass":"Unknown","fall":"Fell","year":"1951-01-01T00:00:00.000","reclat":"-7.216670","reclong":"29.433330","geolocation":{"type":"Point","coordinates":[29.43333,-7.21667]}} +,{"name":"Mabwe-Khoywa","id":"14764","nametype":"Valid","recclass":"L5","mass":"540","fall":"Fell","year":"1937-01-01T00:00:00.000","reclat":"19.000000","reclong":"97.000000","geolocation":{"type":"Point","coordinates":[97,19]}} +,{"name":"Macau","id":"15370","nametype":"Valid","recclass":"H5","mass":"1500","fall":"Fell","year":"1836-01-01T00:00:00.000","reclat":"-5.200000","reclong":"-36.666670","geolocation":{"type":"Point","coordinates":[-36.66667,-5.2]}} +,{"name":"Machinga","id":"15371","nametype":"Valid","recclass":"L6","mass":"93200","fall":"Fell","year":"1981-01-01T00:00:00.000","reclat":"-15.212220","reclong":"35.242220","geolocation":{"type":"Point","coordinates":[35.24222,-15.21222]}} +,{"name":"Macibini","id":"15372","nametype":"Valid","recclass":"Eucrite-pmict","mass":"1995","fall":"Fell","year":"1936-01-01T00:00:00.000","reclat":"-28.833330","reclong":"31.950000","geolocation":{"type":"Point","coordinates":[31.95,-28.83333]}} +,{"name":"Madhipura","id":"15379","nametype":"Valid","recclass":"L","mass":"1000","fall":"Fell","year":"1950-01-01T00:00:00.000","reclat":"25.916670","reclong":"86.366670","geolocation":{"type":"Point","coordinates":[86.36667,25.91667]}} +,{"name":"Madiun","id":"15380","nametype":"Valid","recclass":"L6","mass":"400","fall":"Fell","year":"1935-01-01T00:00:00.000","reclat":"-7.750000","reclong":"111.533330","geolocation":{"type":"Point","coordinates":[111.53333,-7.75]}} +,{"name":"Madrid","id":"15382","nametype":"Valid","recclass":"L6","mass":"400","fall":"Fell","year":"1896-01-01T00:00:00.000","reclat":"40.416670","reclong":"-3.716670","geolocation":{"type":"Point","coordinates":[-3.71667,40.41667]}} +,{"name":"Mafra","id":"15383","nametype":"Valid","recclass":"L3-4","mass":"600","fall":"Fell","year":"1941-01-01T00:00:00.000","reclat":"-26.166670","reclong":"-49.933330","geolocation":{"type":"Point","coordinates":[-49.93333,-26.16667]}} +,{"name":"Magnesia","id":"15386","nametype":"Valid","recclass":"Iron, IAB-sHL","mass":"5000","fall":"Fell","year":"1899-01-01T00:00:00.000","reclat":"37.866670","reclong":"27.516670","geolocation":{"type":"Point","coordinates":[27.51667,37.86667]}} +,{"name":"Magombedze","id":"15387","nametype":"Valid","recclass":"H3-5","mass":"666.6","fall":"Fell","year":"1990-01-01T00:00:00.000","reclat":"-19.483330","reclong":"31.650000","geolocation":{"type":"Point","coordinates":[31.65,-19.48333]}} +,{"name":"Mahadevpur","id":"47361","nametype":"Valid","recclass":"H4/5","mass":"70500","fall":"Fell","year":"2007-01-01T00:00:00.000","reclat":"27.666670","reclong":"95.783330","geolocation":{"type":"Point","coordinates":[95.78333,27.66667]}} +,{"name":"Maigatari-Danduma","id":"30751","nametype":"Valid","recclass":"H5/6","mass":"4629","fall":"Fell","year":"2004-01-01T00:00:00.000","reclat":"12.833330","reclong":"9.383330","geolocation":{"type":"Point","coordinates":[9.38333,12.83333]}} +,{"name":"Malaga","id":"15393","nametype":"Valid","recclass":"OC","mass":"150","fall":"Fell","year":"1933-01-01T00:00:00.000","reclat":"32.216670","reclong":"-104.000000","geolocation":{"type":"Point","coordinates":[-104,32.21667]},":@computed_region_cbhk_fwbd":"11",":@computed_region_nnqa_25f4":"611"} +,{"name":"Malakal","id":"15394","nametype":"Valid","recclass":"L5","mass":"2000","fall":"Fell","year":"1970-01-01T00:00:00.000","reclat":"9.500000","reclong":"31.750000","geolocation":{"type":"Point","coordinates":[31.75,9.5]}} +,{"name":"Malampaka","id":"15395","nametype":"Valid","recclass":"H","mass":"470","fall":"Fell","year":"1930-01-01T00:00:00.000","reclat":"-3.133330","reclong":"33.516670","geolocation":{"type":"Point","coordinates":[33.51667,-3.13333]}} +,{"name":"Malotas","id":"15397","nametype":"Valid","recclass":"H5","fall":"Fell","year":"1931-01-01T00:00:00.000","reclat":"-28.933330","reclong":"-63.233330","geolocation":{"type":"Point","coordinates":[-63.23333,-28.93333]}} +,{"name":"Malvern","id":"15400","nametype":"Valid","recclass":"Eucrite-pmict","mass":"807","fall":"Fell","year":"1933-01-01T00:00:00.000","reclat":"-29.450000","reclong":"26.766670","geolocation":{"type":"Point","coordinates":[26.76667,-29.45]}} +,{"name":"Mamra Springs","id":"15401","nametype":"Valid","recclass":"L6","mass":"1000","fall":"Fell","year":"1927-01-01T00:00:00.000","reclat":"45.216670","reclong":"62.083330","geolocation":{"type":"Point","coordinates":[62.08333,45.21667]}} +,{"name":"Manbhoom","id":"15402","nametype":"Valid","recclass":"LL6","mass":"1700","fall":"Fell","year":"1863-01-01T00:00:00.000","reclat":"23.050000","reclong":"86.700000","geolocation":{"type":"Point","coordinates":[86.7,23.05]}} +,{"name":"Manegaon","id":"15403","nametype":"Valid","recclass":"Diogenite","mass":"50","fall":"Fell","year":"1843-01-01T00:00:00.000","reclat":"20.966670","reclong":"76.100000","geolocation":{"type":"Point","coordinates":[76.1,20.96667]}} +,{"name":"Mangwendi","id":"15405","nametype":"Valid","recclass":"LL6","mass":"22300","fall":"Fell","year":"1934-01-01T00:00:00.000","reclat":"-17.650000","reclong":"31.600000","geolocation":{"type":"Point","coordinates":[31.6,-17.65]}} +,{"name":"Manych","id":"15409","nametype":"Valid","recclass":"LL3.4","mass":"3555","fall":"Fell","year":"1951-01-01T00:00:00.000","reclat":"45.816670","reclong":"44.633330","geolocation":{"type":"Point","coordinates":[44.63333,45.81667]}} +,{"name":"Mardan","id":"15414","nametype":"Valid","recclass":"H5","mass":"4500","fall":"Fell","year":"1948-01-01T00:00:00.000","reclat":"34.233330","reclong":"72.083330","geolocation":{"type":"Point","coordinates":[72.08333,34.23333]}} +,{"name":"Maria Linden","id":"15418","nametype":"Valid","recclass":"L4","mass":"114","fall":"Fell","year":"1925-01-01T00:00:00.000"} +,{"name":"Mariaville","id":"15419","nametype":"Valid","recclass":"Iron","mass":"340","fall":"Fell","year":"1898-01-01T00:00:00.000","reclat":"42.716670","reclong":"-99.383330","geolocation":{"type":"Point","coordinates":[-99.38333,42.71667]},":@computed_region_cbhk_fwbd":"19",":@computed_region_nnqa_25f4":"471"} +,{"name":"Maribo","id":"48973","nametype":"Valid","recclass":"CM2","mass":"25.81","fall":"Fell","year":"2009-01-01T00:00:00.000","reclat":"54.761830","reclong":"11.467450","geolocation":{"type":"Point","coordinates":[11.46745,54.76183]}} +,{"name":"Maridi","id":"15421","nametype":"Valid","recclass":"H6","mass":"3200","fall":"Fell","year":"1941-01-01T00:00:00.000","reclat":"4.666670","reclong":"29.250000","geolocation":{"type":"Point","coordinates":[29.25,4.66667]}} +,{"name":"Marilia","id":"15422","nametype":"Valid","recclass":"H4","mass":"2500","fall":"Fell","year":"1971-01-01T00:00:00.000","reclat":"-22.250000","reclong":"-49.933330","geolocation":{"type":"Point","coordinates":[-49.93333,-22.25]}} +,{"name":"Marion (Iowa)","id":"15424","nametype":"Valid","recclass":"L6","mass":"28400","fall":"Fell","year":"1847-01-01T00:00:00.000","reclat":"41.900000","reclong":"-91.600000","geolocation":{"type":"Point","coordinates":[-91.6,41.9]},":@computed_region_cbhk_fwbd":"16",":@computed_region_nnqa_25f4":"287"} +,{"name":"Marjalahti","id":"15426","nametype":"Valid","recclass":"Pallasite, PMG","mass":"45000","fall":"Fell","year":"1902-01-01T00:00:00.000","reclat":"61.500000","reclong":"30.500000","geolocation":{"type":"Point","coordinates":[30.5,61.5]}} +,{"name":"Marmande","id":"15429","nametype":"Valid","recclass":"L5","mass":"3000","fall":"Fell","year":"1848-01-01T00:00:00.000","reclat":"44.500000","reclong":"0.150000","geolocation":{"type":"Point","coordinates":[0.15,44.5]}} +,{"name":"Maromandia","id":"15430","nametype":"Valid","recclass":"L6","mass":"6000","fall":"Fell","year":"2002-01-01T00:00:00.000","reclat":"-14.200000","reclong":"48.100000","geolocation":{"type":"Point","coordinates":[48.1,-14.2]}} +,{"name":"Maryville","id":"15436","nametype":"Valid","recclass":"L6","mass":"1443","fall":"Fell","year":"1983-01-01T00:00:00.000","reclat":"35.800000","reclong":"-84.100000","geolocation":{"type":"Point","coordinates":[-84.1,35.8]},":@computed_region_cbhk_fwbd":"39",":@computed_region_nnqa_25f4":"2740"} +,{"name":"Mascombes","id":"15438","nametype":"Valid","recclass":"L6","mass":"1000","fall":"Fell","year":"1836-01-01T00:00:00.000","reclat":"45.366670","reclong":"1.866670","geolocation":{"type":"Point","coordinates":[1.86667,45.36667]}} +,{"name":"Mason Gully","id":"53653","nametype":"Valid","recclass":"H5","mass":"24.54","fall":"Fell","year":"2010-01-01T00:00:00.000","reclat":"0.000000","reclong":"0.000000","geolocation":{"type":"Point","coordinates":[0,0]}} +,{"name":"Mässing","id":"15443","nametype":"Valid","recclass":"Howardite","mass":"1600","fall":"Fell","year":"1803-01-01T00:00:00.000","reclat":"48.133330","reclong":"12.616670","geolocation":{"type":"Point","coordinates":[12.61667,48.13333]}} +,{"name":"Mauerkirchen","id":"15446","nametype":"Valid","recclass":"L6","mass":"19000","fall":"Fell","year":"1768-01-01T00:00:00.000","reclat":"48.183330","reclong":"13.133330","geolocation":{"type":"Point","coordinates":[13.13333,48.18333]}} +,{"name":"Mauritius","id":"15447","nametype":"Valid","recclass":"L6","mass":"220","fall":"Fell","year":"1801-01-01T00:00:00.000","reclat":"-20.000000","reclong":"57.000000","geolocation":{"type":"Point","coordinates":[57,-20]}} +,{"name":"Mayo Belwa","id":"15451","nametype":"Valid","recclass":"Aubrite","mass":"4850","fall":"Fell","year":"1974-01-01T00:00:00.000","reclat":"8.966670","reclong":"12.083330","geolocation":{"type":"Point","coordinates":[12.08333,8.96667]}} +,{"name":"Mazapil","id":"15453","nametype":"Valid","recclass":"Iron, IAB-sLL","mass":"4000","fall":"Fell","year":"1885-01-01T00:00:00.000","reclat":"24.683330","reclong":"-101.683330","geolocation":{"type":"Point","coordinates":[-101.68333,24.68333]}} +,{"name":"Maziba","id":"15454","nametype":"Valid","recclass":"L6","mass":"4975","fall":"Fell","year":"1942-01-01T00:00:00.000","reclat":"-1.216670","reclong":"30.000000","geolocation":{"type":"Point","coordinates":[30,-1.21667]}} +,{"name":"Mbale","id":"15455","nametype":"Valid","recclass":"L5/6","mass":"150000","fall":"Fell","year":"1992-01-01T00:00:00.000","reclat":"1.066670","reclong":"34.166670","geolocation":{"type":"Point","coordinates":[34.16667,1.06667]}} +,{"name":"Medanitos","id":"15467","nametype":"Valid","recclass":"Eucrite-cm","mass":"31","fall":"Fell","year":"1953-01-01T00:00:00.000","reclat":"-27.250000","reclong":"-67.500000","geolocation":{"type":"Point","coordinates":[-67.5,-27.25]}} +,{"name":"Meerut","id":"15469","nametype":"Valid","recclass":"H5","mass":"22","fall":"Fell","year":"1861-01-01T00:00:00.000","reclat":"29.016670","reclong":"77.800000","geolocation":{"type":"Point","coordinates":[77.8,29.01667]}} +,{"name":"Meester-Cornelis","id":"15470","nametype":"Valid","recclass":"H5","mass":"24750","fall":"Fell","year":"1915-01-01T00:00:00.000","reclat":"-6.233330","reclong":"106.883330","geolocation":{"type":"Point","coordinates":[106.88333,-6.23333]}} +,{"name":"Menow","id":"15485","nametype":"Valid","recclass":"H4","mass":"10500","fall":"Fell","year":"1862-01-01T00:00:00.000","reclat":"53.183330","reclong":"13.150000","geolocation":{"type":"Point","coordinates":[13.15,53.18333]}} +,{"name":"Menziswyl","id":"15486","nametype":"Valid","recclass":"L5","mass":"28.9","fall":"Fell","year":"1903-01-01T00:00:00.000","reclat":"46.818670","reclong":"7.218170","geolocation":{"type":"Point","coordinates":[7.21817,46.81867]}} +,{"name":"Mern","id":"15489","nametype":"Valid","recclass":"L6","mass":"4000","fall":"Fell","year":"1878-01-01T00:00:00.000","reclat":"55.050000","reclong":"12.066670","geolocation":{"type":"Point","coordinates":[12.06667,55.05]}} +,{"name":"Meru","id":"15491","nametype":"Valid","recclass":"LL6","mass":"6000","fall":"Fell","year":"1945-01-01T00:00:00.000","reclat":"0.000000","reclong":"37.666670","geolocation":{"type":"Point","coordinates":[37.66667,0]}} +,{"name":"Merua","id":"15492","nametype":"Valid","recclass":"H5","mass":"71400","fall":"Fell","year":"1920-01-01T00:00:00.000","reclat":"25.483330","reclong":"81.983330","geolocation":{"type":"Point","coordinates":[81.98333,25.48333]}} +,{"name":"Messina","id":"15495","nametype":"Valid","recclass":"L5","mass":"2405","fall":"Fell","year":"1955-01-01T00:00:00.000","reclat":"38.183330","reclong":"15.566670","geolocation":{"type":"Point","coordinates":[15.56667,38.18333]}} +,{"name":"Meuselbach","id":"16626","nametype":"Valid","recclass":"L6","mass":"870","fall":"Fell","year":"1897-01-01T00:00:00.000","reclat":"50.583330","reclong":"11.100000","geolocation":{"type":"Point","coordinates":[11.1,50.58333]}} +,{"name":"Mezel","id":"16627","nametype":"Valid","recclass":"L6","mass":"1300","fall":"Fell","year":"1949-01-01T00:00:00.000","reclat":"45.766670","reclong":"3.250000","geolocation":{"type":"Point","coordinates":[3.25,45.76667]}} +,{"name":"Mezö-Madaras","id":"16628","nametype":"Valid","recclass":"L3.7","mass":"22700","fall":"Fell","year":"1852-01-01T00:00:00.000","reclat":"46.500000","reclong":"25.733330","geolocation":{"type":"Point","coordinates":[25.73333,46.5]}} +,{"name":"Mhow","id":"16629","nametype":"Valid","recclass":"L6","mass":"350","fall":"Fell","year":"1827-01-01T00:00:00.000","reclat":"25.900000","reclong":"83.616670","geolocation":{"type":"Point","coordinates":[83.61667,25.9]}} +,{"name":"Mianchi","id":"16631","nametype":"Valid","recclass":"H5","mass":"1100","fall":"Fell","year":"1980-01-01T00:00:00.000","reclat":"34.800000","reclong":"111.700000","geolocation":{"type":"Point","coordinates":[111.7,34.8]}} +,{"name":"Middlesbrough","id":"16632","nametype":"Valid","recclass":"L6","mass":"1600","fall":"Fell","year":"1881-01-01T00:00:00.000","reclat":"54.566670","reclong":"-1.166670","geolocation":{"type":"Point","coordinates":[-1.16667,54.56667]}} +,{"name":"Mifflin","id":"52090","nametype":"Valid","recclass":"L5","mass":"3584","fall":"Fell","year":"2010-01-01T00:00:00.000","reclat":"42.907500","reclong":"-90.365560","geolocation":{"type":"Point","coordinates":[-90.36556,42.9075]},":@computed_region_cbhk_fwbd":"41",":@computed_region_nnqa_25f4":"2996"} +,{"name":"Mighei","id":"16634","nametype":"Valid","recclass":"CM2","mass":"8000","fall":"Fell","year":"1889-01-01T00:00:00.000","reclat":"48.066670","reclong":"30.966670","geolocation":{"type":"Point","coordinates":[30.96667,48.06667]}} +,{"name":"Mihonoseki","id":"16635","nametype":"Valid","recclass":"L6","mass":"6380","fall":"Fell","year":"1992-01-01T00:00:00.000","reclat":"35.568330","reclong":"133.220000","geolocation":{"type":"Point","coordinates":[133.22,35.56833]}} +,{"name":"Mike","id":"16636","nametype":"Valid","recclass":"L6","mass":"224.2","fall":"Fell","year":"1944-01-01T00:00:00.000","reclat":"46.233330","reclong":"17.533330","geolocation":{"type":"Point","coordinates":[17.53333,46.23333]}} +,{"name":"Milena","id":"16640","nametype":"Valid","recclass":"L6","mass":"10000","fall":"Fell","year":"1842-01-01T00:00:00.000","reclat":"46.183330","reclong":"16.100000","geolocation":{"type":"Point","coordinates":[16.1,46.18333]}} +,{"name":"Millbillillie","id":"16643","nametype":"Valid","recclass":"Eucrite-mmict","mass":"330000","fall":"Fell","year":"1960-01-01T00:00:00.000","reclat":"-26.450000","reclong":"120.366670","geolocation":{"type":"Point","coordinates":[120.36667,-26.45]}} +,{"name":"Miller (Arkansas)","id":"16645","nametype":"Valid","recclass":"H5","mass":"16700","fall":"Fell","year":"1930-01-01T00:00:00.000","reclat":"35.400000","reclong":"-92.050000","geolocation":{"type":"Point","coordinates":[-92.05,35.4]},":@computed_region_cbhk_fwbd":"15",":@computed_region_nnqa_25f4":"11"} +,{"name":"Minamino","id":"16692","nametype":"Valid","recclass":"L","mass":"1040","fall":"Fell","year":"1632-01-01T00:00:00.000","reclat":"35.078330","reclong":"136.933330","geolocation":{"type":"Point","coordinates":[136.93333,35.07833]}} +,{"name":"Mineo","id":"16696","nametype":"Valid","recclass":"Pallasite","mass":"42","fall":"Fell","year":"1826-01-01T00:00:00.000","reclat":"37.283330","reclong":"14.700000","geolocation":{"type":"Point","coordinates":[14.7,37.28333]}} +,{"name":"Min-Fan-Zhun","id":"16697","nametype":"Valid","recclass":"LL6","mass":"5500","fall":"Fell","year":"1952-01-01T00:00:00.000","reclat":"32.333330","reclong":"120.666670","geolocation":{"type":"Point","coordinates":[120.66667,32.33333]}} +,{"name":"Minnichhof","id":"16700","nametype":"Valid","recclass":"OC","mass":"550","fall":"Fell","year":"1905-01-01T00:00:00.000","reclat":"47.700000","reclong":"16.600000","geolocation":{"type":"Point","coordinates":[16.6,47.7]}} +,{"name":"Mirzapur","id":"16701","nametype":"Valid","recclass":"L5","mass":"8510","fall":"Fell","year":"1910-01-01T00:00:00.000","reclat":"25.683330","reclong":"83.250000","geolocation":{"type":"Point","coordinates":[83.25,25.68333]}} +,{"name":"Misshof","id":"16703","nametype":"Valid","recclass":"H5","mass":"5800","fall":"Fell","year":"1890-01-01T00:00:00.000","reclat":"56.666670","reclong":"23.000000","geolocation":{"type":"Point","coordinates":[23,56.66667]}} +,{"name":"Mjelleim","id":"16707","nametype":"Valid","recclass":"H","mass":"100.7","fall":"Fell","year":"1898-01-01T00:00:00.000","reclat":"61.733330","reclong":"5.933330","geolocation":{"type":"Point","coordinates":[5.93333,61.73333]}} +,{"name":"Mocs","id":"16709","nametype":"Valid","recclass":"L5-6","mass":"300000","fall":"Fell","year":"1882-01-01T00:00:00.000","reclat":"46.800000","reclong":"24.033330","geolocation":{"type":"Point","coordinates":[24.03333,46.8]}} +,{"name":"Modoc (1905)","id":"16711","nametype":"Valid","recclass":"L6","mass":"35000","fall":"Fell","year":"1905-01-01T00:00:00.000","reclat":"38.500000","reclong":"-101.100000","geolocation":{"type":"Point","coordinates":[-101.1,38.5]},":@computed_region_cbhk_fwbd":"17",":@computed_region_nnqa_25f4":"1290"} +,{"name":"Mokoia","id":"16713","nametype":"Valid","recclass":"CV3","mass":"4500","fall":"Fell","year":"1908-01-01T00:00:00.000","reclat":"-39.633330","reclong":"174.400000","geolocation":{"type":"Point","coordinates":[174.4,-39.63333]}} +,{"name":"Molina","id":"16715","nametype":"Valid","recclass":"H5","mass":"144000","fall":"Fell","year":"1858-01-01T00:00:00.000","reclat":"38.116670","reclong":"-1.166670","geolocation":{"type":"Point","coordinates":[-1.16667,38.11667]}} +,{"name":"Molteno","id":"16717","nametype":"Valid","recclass":"Howardite","mass":"150","fall":"Fell","year":"1953-01-01T00:00:00.000","reclat":"-31.250000","reclong":"26.466670","geolocation":{"type":"Point","coordinates":[26.46667,-31.25]}} +,{"name":"Monahans (1998)","id":"16719","nametype":"Valid","recclass":"H5","mass":"2587","fall":"Fell","year":"1998-01-01T00:00:00.000","reclat":"31.608330","reclong":"-102.858330","geolocation":{"type":"Point","coordinates":[-102.85833,31.60833]},":@computed_region_cbhk_fwbd":"23",":@computed_region_nnqa_25f4":"2957"} +,{"name":"Monroe","id":"16720","nametype":"Valid","recclass":"H4","mass":"8600","fall":"Fell","year":"1849-01-01T00:00:00.000","reclat":"35.250000","reclong":"-80.500000","geolocation":{"type":"Point","coordinates":[-80.5,35.25]},":@computed_region_cbhk_fwbd":"37",":@computed_region_nnqa_25f4":"636"} +,{"name":"Monte das Fortes","id":"16725","nametype":"Valid","recclass":"L5","mass":"4885","fall":"Fell","year":"1950-01-01T00:00:00.000","reclat":"38.016670","reclong":"-8.250000","geolocation":{"type":"Point","coordinates":[-8.25,38.01667]}} +,{"name":"Monte Milone","id":"16726","nametype":"Valid","recclass":"L5","mass":"3130","fall":"Fell","year":"1846-01-01T00:00:00.000","reclat":"43.266670","reclong":"13.350000","geolocation":{"type":"Point","coordinates":[13.35,43.26667]}} +,{"name":"Montferré","id":"16727","nametype":"Valid","recclass":"H5","mass":"149000","fall":"Fell","year":"1923-01-01T00:00:00.000","reclat":"43.390560","reclong":"1.962500","geolocation":{"type":"Point","coordinates":[1.9625,43.39056]}} +,{"name":"Montlivault","id":"16729","nametype":"Valid","recclass":"L6","mass":"500","fall":"Fell","year":"1838-01-01T00:00:00.000","reclat":"47.633330","reclong":"1.583330","geolocation":{"type":"Point","coordinates":[1.58333,47.63333]}} +,{"name":"Monze","id":"16733","nametype":"Valid","recclass":"L6","fall":"Fell","year":"1950-01-01T00:00:00.000","reclat":"-15.966670","reclong":"27.350000","geolocation":{"type":"Point","coordinates":[27.35,-15.96667]}} +,{"name":"Moore County","id":"16736","nametype":"Valid","recclass":"Eucrite-cm","mass":"1880","fall":"Fell","year":"1913-01-01T00:00:00.000","reclat":"35.416670","reclong":"-79.383330","geolocation":{"type":"Point","coordinates":[-79.38333,35.41667]},":@computed_region_cbhk_fwbd":"37",":@computed_region_nnqa_25f4":"2431"} +,{"name":"Mooresfort","id":"16737","nametype":"Valid","recclass":"H5","mass":"3520","fall":"Fell","year":"1810-01-01T00:00:00.000","reclat":"52.450000","reclong":"-8.333330","geolocation":{"type":"Point","coordinates":[-8.33333,52.45]}} +,{"name":"Moorleah","id":"16738","nametype":"Valid","recclass":"L6","mass":"8887.5","fall":"Fell","year":"1930-01-01T00:00:00.000","reclat":"-40.975000","reclong":"145.600000","geolocation":{"type":"Point","coordinates":[145.6,-40.975]}} +,{"name":"Moradabad","id":"16740","nametype":"Valid","recclass":"L6","mass":"70","fall":"Fell","year":"1808-01-01T00:00:00.000","reclat":"28.783330","reclong":"78.833330","geolocation":{"type":"Point","coordinates":[78.83333,28.78333]}} +,{"name":"Morávka","id":"16742","nametype":"Valid","recclass":"H5","mass":"633","fall":"Fell","year":"2000-01-01T00:00:00.000","reclat":"49.600000","reclong":"18.533330","geolocation":{"type":"Point","coordinates":[18.53333,49.6]}} +,{"name":"Mornans","id":"16747","nametype":"Valid","recclass":"H5","mass":"1300","fall":"Fell","year":"1875-01-01T00:00:00.000","reclat":"44.600000","reclong":"5.133330","geolocation":{"type":"Point","coordinates":[5.13333,44.6]}} +,{"name":"Moss","id":"36592","nametype":"Valid","recclass":"CO3.6","mass":"3763","fall":"Fell","year":"2006-01-01T00:00:00.000","reclat":"59.433330","reclong":"10.700000","geolocation":{"type":"Point","coordinates":[10.7,59.43333]}} +,{"name":"Moti-ka-nagla","id":"16759","nametype":"Valid","recclass":"H6","mass":"1500","fall":"Fell","year":"1868-01-01T00:00:00.000","reclat":"26.833330","reclong":"77.333330","geolocation":{"type":"Point","coordinates":[77.33333,26.83333]}} +,{"name":"Motta di Conti","id":"16762","nametype":"Valid","recclass":"H4","mass":"9150","fall":"Fell","year":"1868-01-01T00:00:00.000","reclat":"45.200000","reclong":"8.500000","geolocation":{"type":"Point","coordinates":[8.5,45.2]}} +,{"name":"Mount Browne","id":"16766","nametype":"Valid","recclass":"H6","mass":"11300","fall":"Fell","year":"1902-01-01T00:00:00.000","reclat":"-29.800000","reclong":"141.700000","geolocation":{"type":"Point","coordinates":[141.7,-29.8]}} +,{"name":"Mount Tazerzait","id":"16804","nametype":"Valid","recclass":"L5","mass":"110000","fall":"Fell","year":"1991-01-01T00:00:00.000","reclat":"18.700000","reclong":"4.800000","geolocation":{"type":"Point","coordinates":[4.8,18.7]}} +,{"name":"Mount Vaisi","id":"16805","nametype":"Valid","recclass":"Stone-uncl","mass":"17000","fall":"Fell","year":"1637-01-01T00:00:00.000","reclat":"44.083330","reclong":"6.866670","geolocation":{"type":"Point","coordinates":[6.86667,44.08333]}} +,{"name":"Mtola","id":"16820","nametype":"Valid","recclass":"Stone-uncl","mass":"1100","fall":"Fell","year":"1944-01-01T00:00:00.000","reclat":"-11.500000","reclong":"33.500000","geolocation":{"type":"Point","coordinates":[33.5,-11.5]}} +,{"name":"Muddoor","id":"16841","nametype":"Valid","recclass":"L5","mass":"4400","fall":"Fell","year":"1865-01-01T00:00:00.000","reclat":"12.633330","reclong":"77.016670","geolocation":{"type":"Point","coordinates":[77.01667,12.63333]}} +,{"name":"Mulletiwu","id":"16851","nametype":"Valid","recclass":"L","mass":"25.5","fall":"Fell","year":"1795-01-01T00:00:00.000","reclat":"9.333330","reclong":"80.833330","geolocation":{"type":"Point","coordinates":[80.83333,9.33333]}} +,{"name":"Muraid","id":"16874","nametype":"Valid","recclass":"L6","mass":"4703","fall":"Fell","year":"1924-01-01T00:00:00.000","reclat":"24.500000","reclong":"90.216670","geolocation":{"type":"Point","coordinates":[90.21667,24.5]}} +,{"name":"Murchison","id":"16875","nametype":"Valid","recclass":"CM2","mass":"100000","fall":"Fell","year":"1969-01-01T00:00:00.000","reclat":"-36.616670","reclong":"145.200000","geolocation":{"type":"Point","coordinates":[145.2,-36.61667]}} +,{"name":"Murray","id":"16882","nametype":"Valid","recclass":"CM2","mass":"12600","fall":"Fell","year":"1950-01-01T00:00:00.000","reclat":"36.600000","reclong":"-88.100000","geolocation":{"type":"Point","coordinates":[-88.1,36.6]},":@computed_region_cbhk_fwbd":"36",":@computed_region_nnqa_25f4":"237"} +,{"name":"Muzaffarpur","id":"16885","nametype":"Valid","recclass":"Iron, IAB-sHL","mass":"1245","fall":"Fell","year":"1964-01-01T00:00:00.000","reclat":"26.133330","reclong":"85.533330","geolocation":{"type":"Point","coordinates":[85.53333,26.13333]}} +,{"name":"Myhee Caunta","id":"16887","nametype":"Valid","recclass":"OC","fall":"Fell","year":"1842-01-01T00:00:00.000","reclat":"23.050000","reclong":"72.633330","geolocation":{"type":"Point","coordinates":[72.63333,23.05]}} +,{"name":"Nadiabondi","id":"16889","nametype":"Valid","recclass":"H5","mass":"8165","fall":"Fell","year":"1956-01-01T00:00:00.000","reclat":"12.000000","reclong":"1.000000","geolocation":{"type":"Point","coordinates":[1,12]}} +,{"name":"Nagai","id":"16890","nametype":"Valid","recclass":"L6","mass":"1810","fall":"Fell","year":"1922-01-01T00:00:00.000","reclat":"38.121670","reclong":"140.061670","geolocation":{"type":"Point","coordinates":[140.06167,38.12167]}} +,{"name":"Nagaria","id":"16892","nametype":"Valid","recclass":"Eucrite-cm","mass":"20","fall":"Fell","year":"1875-01-01T00:00:00.000","reclat":"26.983330","reclong":"78.216670","geolocation":{"type":"Point","coordinates":[78.21667,26.98333]}} +,{"name":"Nagy-Borové","id":"16893","nametype":"Valid","recclass":"L5","mass":"6100","fall":"Fell","year":"1895-01-01T00:00:00.000","reclat":"49.166670","reclong":"19.500000","geolocation":{"type":"Point","coordinates":[19.5,49.16667]}} +,{"name":"Nakhla","id":"16898","nametype":"Valid","recclass":"Martian (nakhlite)","mass":"10000","fall":"Fell","year":"1911-01-01T00:00:00.000","reclat":"31.316670","reclong":"30.350000","geolocation":{"type":"Point","coordinates":[30.35,31.31667]}} +,{"name":"Nakhon Pathom","id":"16899","nametype":"Valid","recclass":"L6","mass":"23200","fall":"Fell","year":"1923-01-01T00:00:00.000","reclat":"13.733330","reclong":"100.083330","geolocation":{"type":"Point","coordinates":[100.08333,13.73333]}} +,{"name":"Nammianthal","id":"16902","nametype":"Valid","recclass":"H5","mass":"4500","fall":"Fell","year":"1886-01-01T00:00:00.000","reclat":"12.283330","reclong":"79.200000","geolocation":{"type":"Point","coordinates":[79.2,12.28333]}} +,{"name":"Nan Yang Pao","id":"16903","nametype":"Valid","recclass":"L6","mass":"52900","fall":"Fell","year":"1917-01-01T00:00:00.000","reclat":"35.666670","reclong":"103.500000","geolocation":{"type":"Point","coordinates":[103.5,35.66667]}} +,{"name":"Nanjemoy","id":"16904","nametype":"Valid","recclass":"H6","mass":"7500","fall":"Fell","year":"1825-01-01T00:00:00.000","reclat":"38.416670","reclong":"-77.166670","geolocation":{"type":"Point","coordinates":[-77.16667,38.41667]},":@computed_region_cbhk_fwbd":"45",":@computed_region_nnqa_25f4":"419"} +,{"name":"Nantong","id":"16907","nametype":"Valid","recclass":"H6","mass":"529","fall":"Fell","year":"1984-01-01T00:00:00.000","reclat":"32.116670","reclong":"121.800000","geolocation":{"type":"Point","coordinates":[121.8,32.11667]}} +,{"name":"Naoki","id":"16908","nametype":"Valid","recclass":"H6","mass":"17000","fall":"Fell","year":"1928-01-01T00:00:00.000","reclat":"19.250000","reclong":"77.000000","geolocation":{"type":"Point","coordinates":[77,19.25]}} +,{"name":"Naragh","id":"16909","nametype":"Valid","recclass":"H6","mass":"2700","fall":"Fell","year":"1974-01-01T00:00:00.000","reclat":"33.750000","reclong":"51.500000","geolocation":{"type":"Point","coordinates":[51.5,33.75]}} +,{"name":"Narellan","id":"16912","nametype":"Valid","recclass":"L6","mass":"367.5","fall":"Fell","year":"1928-01-01T00:00:00.000","reclat":"-34.050000","reclong":"150.688890","geolocation":{"type":"Point","coordinates":[150.68889,-34.05]}} +,{"name":"Narni","id":"16914","nametype":"Valid","recclass":"Stone-uncl","fall":"Fell","year":"0921-01-01T00:00:00.000","reclat":"42.516670","reclong":"12.516670","geolocation":{"type":"Point","coordinates":[12.51667,42.51667]}} +,{"name":"Nassirah","id":"16922","nametype":"Valid","recclass":"H4","mass":"347","fall":"Fell","year":"1936-01-01T00:00:00.000","reclat":"-21.733330","reclong":"165.900000","geolocation":{"type":"Point","coordinates":[165.9,-21.73333]}} +,{"name":"Natal","id":"16923","nametype":"Valid","recclass":"Stone-uncl","mass":"1.4","fall":"Fell","year":"1973-01-01T00:00:00.000"} +,{"name":"Nawapali","id":"16927","nametype":"Valid","recclass":"CM2","mass":"105","fall":"Fell","year":"1890-01-01T00:00:00.000","reclat":"21.250000","reclong":"83.666670","geolocation":{"type":"Point","coordinates":[83.66667,21.25]}} +,{"name":"Neagari","id":"16934","nametype":"Valid","recclass":"L6","mass":"420","fall":"Fell","year":"1995-01-01T00:00:00.000","reclat":"36.449170","reclong":"136.465280","geolocation":{"type":"Point","coordinates":[136.46528,36.44917]}} +,{"name":"Nedagolla","id":"16935","nametype":"Valid","recclass":"Iron, ungrouped","mass":"4500","fall":"Fell","year":"1870-01-01T00:00:00.000","reclat":"18.683330","reclong":"83.483330","geolocation":{"type":"Point","coordinates":[83.48333,18.68333]}} +,{"name":"Nejo","id":"16941","nametype":"Valid","recclass":"L6","mass":"2450","fall":"Fell","year":"1970-01-01T00:00:00.000","reclat":"9.500000","reclong":"35.333330","geolocation":{"type":"Point","coordinates":[35.33333,9.5]}} +,{"name":"Nerft","id":"16945","nametype":"Valid","recclass":"L6","mass":"10250","fall":"Fell","year":"1864-01-01T00:00:00.000","reclat":"56.500000","reclong":"21.500000","geolocation":{"type":"Point","coordinates":[21.5,56.5]}} +,{"name":"Neuschwanstein","id":"16950","nametype":"Valid","recclass":"EL6","mass":"6189","fall":"Fell","year":"2002-01-01T00:00:00.000","reclat":"47.525000","reclong":"10.808330","geolocation":{"type":"Point","coordinates":[10.80833,47.525]}} +,{"name":"New Concord","id":"16953","nametype":"Valid","recclass":"L6","mass":"230000","fall":"Fell","year":"1860-01-01T00:00:00.000","reclat":"40.000000","reclong":"-81.766670","geolocation":{"type":"Point","coordinates":[-81.76667,40]},":@computed_region_cbhk_fwbd":"38",":@computed_region_nnqa_25f4":"2615"} +,{"name":"New Halfa","id":"16954","nametype":"Valid","recclass":"L4","mass":"12000","fall":"Fell","year":"1994-01-01T00:00:00.000","reclat":"15.366670","reclong":"35.683330","geolocation":{"type":"Point","coordinates":[35.68333,15.36667]}} +,{"name":"New Orleans","id":"16960","nametype":"Valid","recclass":"H5","mass":"19256","fall":"Fell","year":"2003-01-01T00:00:00.000","reclat":"29.947180","reclong":"-90.109760","geolocation":{"type":"Point","coordinates":[-90.10976,29.94718]},":@computed_region_cbhk_fwbd":"22",":@computed_region_nnqa_25f4":"1667"} +,{"name":"Ngawi","id":"16966","nametype":"Valid","recclass":"LL3.6","mass":"1393","fall":"Fell","year":"1883-01-01T00:00:00.000","reclat":"-7.450000","reclong":"111.416670","geolocation":{"type":"Point","coordinates":[111.41667,-7.45]}} +,{"name":"N'Goureyma","id":"16968","nametype":"Valid","recclass":"Iron, ungrouped","mass":"37500","fall":"Fell","year":"1900-01-01T00:00:00.000","reclat":"13.850000","reclong":"-4.383330","geolocation":{"type":"Point","coordinates":[-4.38333,13.85]}} +,{"name":"Nicorps","id":"16970","nametype":"Valid","recclass":"Stone-uncl","fall":"Fell","year":"1750-01-01T00:00:00.000","reclat":"49.033330","reclong":"-1.433330","geolocation":{"type":"Point","coordinates":[-1.43333,49.03333]}} +,{"name":"Niger (L6)","id":"16974","nametype":"Valid","recclass":"L6","mass":"3.3","fall":"Fell","year":"1967-01-01T00:00:00.000"} +,{"name":"Niger (LL6)","id":"16975","nametype":"Valid","recclass":"LL6","mass":"3.3","fall":"Fell","year":"1967-01-01T00:00:00.000"} +,{"name":"Nikolaevka","id":"16976","nametype":"Valid","recclass":"H4","mass":"3996","fall":"Fell","year":"1935-01-01T00:00:00.000","reclat":"52.450000","reclong":"78.633330","geolocation":{"type":"Point","coordinates":[78.63333,52.45]}} +,{"name":"Nikolskoe","id":"16977","nametype":"Valid","recclass":"L4","mass":"6000","fall":"Fell","year":"1954-01-01T00:00:00.000","reclat":"56.116670","reclong":"37.333330","geolocation":{"type":"Point","coordinates":[37.33333,56.11667]}} +,{"name":"Ningbo","id":"16980","nametype":"Valid","recclass":"Iron, IVA","mass":"14250","fall":"Fell","year":"1975-01-01T00:00:00.000","reclat":"29.866670","reclong":"121.483330","geolocation":{"type":"Point","coordinates":[121.48333,29.86667]}} +,{"name":"Ningqiang","id":"16981","nametype":"Valid","recclass":"C3-ung","mass":"4610","fall":"Fell","year":"1983-01-01T00:00:00.000","reclat":"32.925000","reclong":"105.906670","geolocation":{"type":"Point","coordinates":[105.90667,32.925]}} +,{"name":"Nio","id":"16982","nametype":"Valid","recclass":"H3-4","mass":"467","fall":"Fell","year":"1897-01-01T00:00:00.000","reclat":"34.200000","reclong":"131.566670","geolocation":{"type":"Point","coordinates":[131.56667,34.2]}} +,{"name":"N'Kandhla","id":"16983","nametype":"Valid","recclass":"Iron, IID","mass":"17200","fall":"Fell","year":"1912-01-01T00:00:00.000","reclat":"-28.566670","reclong":"30.700000","geolocation":{"type":"Point","coordinates":[30.7,-28.56667]}} +,{"name":"Nobleborough","id":"16984","nametype":"Valid","recclass":"Eucrite-pmict","mass":"2300","fall":"Fell","year":"1823-01-01T00:00:00.000","reclat":"44.083330","reclong":"-69.483330","geolocation":{"type":"Point","coordinates":[-69.48333,44.08333]},":@computed_region_cbhk_fwbd":"49",":@computed_region_nnqa_25f4":"1683"} +,{"name":"Noblesville","id":"16985","nametype":"Valid","recclass":"H4-6","mass":"483.7","fall":"Fell","year":"1991-01-01T00:00:00.000","reclat":"40.085280","reclong":"-86.055000","geolocation":{"type":"Point","coordinates":[-86.055,40.08528]},":@computed_region_cbhk_fwbd":"35",":@computed_region_nnqa_25f4":"2238"} +,{"name":"Nogata","id":"16988","nametype":"Valid","recclass":"L6","mass":"472","fall":"Fell","year":"0861-01-01T00:00:00.000","reclat":"33.725000","reclong":"130.750000","geolocation":{"type":"Point","coordinates":[130.75,33.725]}} +,{"name":"Nogoya","id":"16989","nametype":"Valid","recclass":"CM2","mass":"4000","fall":"Fell","year":"1879-01-01T00:00:00.000","reclat":"-32.366670","reclong":"-59.833330","geolocation":{"type":"Point","coordinates":[-59.83333,-32.36667]}} +,{"name":"Norfork","id":"16994","nametype":"Valid","recclass":"Iron, IIIAB","mass":"1050","fall":"Fell","year":"1918-01-01T00:00:00.000","reclat":"36.216670","reclong":"-92.266670","geolocation":{"type":"Point","coordinates":[-92.26667,36.21667]},":@computed_region_cbhk_fwbd":"15",":@computed_region_nnqa_25f4":"10"} +,{"name":"Norton County","id":"17922","nametype":"Valid","recclass":"Aubrite","mass":"1100000","fall":"Fell","year":"1948-01-01T00:00:00.000","reclat":"39.683330","reclong":"-99.866670","geolocation":{"type":"Point","coordinates":[-99.86667,39.68333]},":@computed_region_cbhk_fwbd":"17",":@computed_region_nnqa_25f4":"1252"} +,{"name":"Noventa Vicentina","id":"17930","nametype":"Valid","recclass":"H4","mass":"177","fall":"Fell","year":"1971-01-01T00:00:00.000","reclat":"45.291670","reclong":"11.527220","geolocation":{"type":"Point","coordinates":[11.52722,45.29167]}} +,{"name":"Novo-Urei","id":"17933","nametype":"Valid","recclass":"Ureilite","mass":"1900","fall":"Fell","year":"1886-01-01T00:00:00.000","reclat":"54.816670","reclong":"46.000000","geolocation":{"type":"Point","coordinates":[46,54.81667]}} +,{"name":"Novy-Ergi","id":"17934","nametype":"Valid","recclass":"Stone-uncl","fall":"Fell","year":"1662-01-01T00:00:00.000","reclat":"58.550000","reclong":"31.333330","geolocation":{"type":"Point","coordinates":[31.33333,58.55]}} +,{"name":"Novy-Projekt","id":"17935","nametype":"Valid","recclass":"OC","mass":"1001","fall":"Fell","year":"1908-01-01T00:00:00.000","reclat":"56.000000","reclong":"22.000000","geolocation":{"type":"Point","coordinates":[22,56]}} +,{"name":"Noyan-Bogdo","id":"17936","nametype":"Valid","recclass":"L6","mass":"250","fall":"Fell","year":"1933-01-01T00:00:00.000","reclat":"42.916670","reclong":"102.466670","geolocation":{"type":"Point","coordinates":[102.46667,42.91667]}} +,{"name":"Nuevo Mercurio","id":"17938","nametype":"Valid","recclass":"H5","mass":"50000","fall":"Fell","year":"1978-01-01T00:00:00.000","reclat":"24.300000","reclong":"-102.133330","geolocation":{"type":"Point","coordinates":[-102.13333,24.3]}} +,{"name":"Nulles","id":"17959","nametype":"Valid","recclass":"H6","mass":"5000","fall":"Fell","year":"1851-01-01T00:00:00.000","reclat":"41.633330","reclong":"0.750000","geolocation":{"type":"Point","coordinates":[0.75,41.63333]}} +,{"name":"Numakai","id":"17960","nametype":"Valid","recclass":"H4","mass":"363","fall":"Fell","year":"1925-01-01T00:00:00.000","reclat":"43.333330","reclong":"141.866670","geolocation":{"type":"Point","coordinates":[141.86667,43.33333]}} +,{"name":"Nyaung","id":"17969","nametype":"Valid","recclass":"Iron, IIIAB","mass":"737.6","fall":"Fell","year":"1939-01-01T00:00:00.000","reclat":"21.208330","reclong":"94.916670","geolocation":{"type":"Point","coordinates":[94.91667,21.20833]}} +,{"name":"Nyirábrany","id":"17970","nametype":"Valid","recclass":"LL5","mass":"1100","fall":"Fell","year":"1914-01-01T00:00:00.000","reclat":"47.550000","reclong":"22.025000","geolocation":{"type":"Point","coordinates":[22.025,47.55]}} +,{"name":"Ochansk","id":"17979","nametype":"Valid","recclass":"H4","mass":"500000","fall":"Fell","year":"1887-01-01T00:00:00.000","reclat":"57.783330","reclong":"55.266670","geolocation":{"type":"Point","coordinates":[55.26667,57.78333]}} +,{"name":"Oesede","id":"17988","nametype":"Valid","recclass":"H5","mass":"1400","fall":"Fell","year":"1927-01-01T00:00:00.000","reclat":"52.283330","reclong":"8.050000","geolocation":{"type":"Point","coordinates":[8.05,52.28333]}} +,{"name":"Oesel","id":"17989","nametype":"Valid","recclass":"L6","mass":"6000","fall":"Fell","year":"1855-01-01T00:00:00.000","reclat":"58.500000","reclong":"23.000000","geolocation":{"type":"Point","coordinates":[23,58.5]}} +,{"name":"Ofehértó","id":"17990","nametype":"Valid","recclass":"L6","mass":"3750","fall":"Fell","year":"1900-01-01T00:00:00.000","reclat":"47.883330","reclong":"22.033330","geolocation":{"type":"Point","coordinates":[22.03333,47.88333]}} +,{"name":"Ogi","id":"17994","nametype":"Valid","recclass":"H6","mass":"14360","fall":"Fell","year":"1741-01-01T00:00:00.000","reclat":"33.283330","reclong":"130.200000","geolocation":{"type":"Point","coordinates":[130.2,33.28333]}} +,{"name":"Ohaba","id":"17995","nametype":"Valid","recclass":"H5","mass":"16250","fall":"Fell","year":"1857-01-01T00:00:00.000","reclat":"46.066670","reclong":"23.583330","geolocation":{"type":"Point","coordinates":[23.58333,46.06667]}} +,{"name":"Ohuma","id":"17996","nametype":"Valid","recclass":"L5","mass":"7700","fall":"Fell","year":"1963-01-01T00:00:00.000","reclat":"6.750000","reclong":"8.500000","geolocation":{"type":"Point","coordinates":[8.5,6.75]}} +,{"name":"Ojuelos Altos","id":"17997","nametype":"Valid","recclass":"L6","mass":"5850","fall":"Fell","year":"1926-01-01T00:00:00.000","reclat":"38.183330","reclong":"-5.400000","geolocation":{"type":"Point","coordinates":[-5.4,38.18333]}} +,{"name":"Okabe","id":"17998","nametype":"Valid","recclass":"H5","mass":"194","fall":"Fell","year":"1958-01-01T00:00:00.000","reclat":"36.183330","reclong":"139.216670","geolocation":{"type":"Point","coordinates":[139.21667,36.18333]}} +,{"name":"Okano","id":"18000","nametype":"Valid","recclass":"Iron, IIAB","mass":"4742","fall":"Fell","year":"1904-01-01T00:00:00.000","reclat":"35.083330","reclong":"135.200000","geolocation":{"type":"Point","coordinates":[135.2,35.08333]}} +,{"name":"Okniny","id":"18002","nametype":"Valid","recclass":"LL6","mass":"12000","fall":"Fell","year":"1834-01-01T00:00:00.000","reclat":"50.833330","reclong":"25.500000","geolocation":{"type":"Point","coordinates":[25.5,50.83333]}} +,{"name":"Oldenburg (1930)","id":"18009","nametype":"Valid","recclass":"L6","mass":"16570","fall":"Fell","year":"1930-01-01T00:00:00.000","reclat":"52.950000","reclong":"8.166670","geolocation":{"type":"Point","coordinates":[8.16667,52.95]}} +,{"name":"Oliva-Gandia","id":"18012","nametype":"Valid","recclass":"Stone-uncl","fall":"Fell","year":"1520-01-01T00:00:00.000","reclat":"39.000000","reclong":"-0.033330","geolocation":{"type":"Point","coordinates":[-0.03333,39]}} +,{"name":"Olivenza","id":"18013","nametype":"Valid","recclass":"LL5","mass":"150000","fall":"Fell","year":"1924-01-01T00:00:00.000","reclat":"38.716670","reclong":"-7.066670","geolocation":{"type":"Point","coordinates":[-7.06667,38.71667]}} +,{"name":"Olmedilla de Alarcón","id":"18015","nametype":"Valid","recclass":"H5","mass":"40000","fall":"Fell","year":"1929-01-01T00:00:00.000","reclat":"39.566670","reclong":"-2.100000","geolocation":{"type":"Point","coordinates":[-2.1,39.56667]}} +,{"name":"Omolon","id":"18019","nametype":"Valid","recclass":"Pallasite, PMG","mass":"250000","fall":"Fell","year":"1981-01-01T00:00:00.000","reclat":"64.020000","reclong":"161.808330","geolocation":{"type":"Point","coordinates":[161.80833,64.02]}} +,{"name":"Orgueil","id":"18026","nametype":"Valid","recclass":"CI1","mass":"14000","fall":"Fell","year":"1864-01-01T00:00:00.000","reclat":"43.883330","reclong":"1.383330","geolocation":{"type":"Point","coordinates":[1.38333,43.88333]}} +,{"name":"Orlando","id":"34489","nametype":"Valid","recclass":"Eucrite","mass":"180","fall":"Fell","year":"2004-01-01T00:00:00.000","reclat":"28.547500","reclong":"-81.362220","geolocation":{"type":"Point","coordinates":[-81.36222,28.5475]},":@computed_region_cbhk_fwbd":"30",":@computed_region_nnqa_25f4":"1078"} +,{"name":"Ornans","id":"18030","nametype":"Valid","recclass":"CO3.4","mass":"6000","fall":"Fell","year":"1868-01-01T00:00:00.000","reclat":"47.116670","reclong":"6.150000","geolocation":{"type":"Point","coordinates":[6.15,47.11667]}} +,{"name":"Ortenau","id":"18033","nametype":"Valid","recclass":"Stone-uncl","mass":"4500","fall":"Fell","year":"1671-01-01T00:00:00.000","reclat":"48.500000","reclong":"8.000000","geolocation":{"type":"Point","coordinates":[8,48.5]}} +,{"name":"Orvinio","id":"18034","nametype":"Valid","recclass":"H6","mass":"3400","fall":"Fell","year":"1872-01-01T00:00:00.000","reclat":"42.133330","reclong":"12.933330","geolocation":{"type":"Point","coordinates":[12.93333,42.13333]}} +,{"name":"Oterøy","id":"18042","nametype":"Valid","recclass":"L6","mass":"246","fall":"Fell","year":"1928-01-01T00:00:00.000","reclat":"58.883330","reclong":"9.400000","geolocation":{"type":"Point","coordinates":[9.4,58.88333]}} +,{"name":"Otomi","id":"18045","nametype":"Valid","recclass":"H","mass":"6510","fall":"Fell","year":"1867-01-01T00:00:00.000","reclat":"38.400000","reclong":"140.350000","geolocation":{"type":"Point","coordinates":[140.35,38.4]}} +,{"name":"Ottawa","id":"18046","nametype":"Valid","recclass":"LL6","mass":"840","fall":"Fell","year":"1896-01-01T00:00:00.000","reclat":"38.600000","reclong":"-95.216670","geolocation":{"type":"Point","coordinates":[-95.21667,38.6]},":@computed_region_cbhk_fwbd":"17",":@computed_region_nnqa_25f4":"1947"} +,{"name":"Ouadangou","id":"56729","nametype":"Valid","recclass":"L5","mass":"4440","fall":"Fell","year":"2003-01-01T00:00:00.000","reclat":"12.900000","reclong":"0.080000","geolocation":{"type":"Point","coordinates":[0.08,12.9]}} +,{"name":"Oued el Hadjar","id":"18050","nametype":"Valid","recclass":"LL6","mass":"1215.5","fall":"Fell","year":"1986-01-01T00:00:00.000","reclat":"30.180000","reclong":"-6.577170","geolocation":{"type":"Point","coordinates":[-6.57717,30.18]}} +,{"name":"Oum Dreyga","id":"31282","nametype":"Valid","recclass":"H3-5","mass":"17000","fall":"Fell","year":"2003-01-01T00:00:00.000","reclat":"24.300000","reclong":"-13.100000","geolocation":{"type":"Point","coordinates":[-13.1,24.3]}} +,{"name":"Ourique","id":"18052","nametype":"Valid","recclass":"H4","mass":"20000","fall":"Fell","year":"1998-01-01T00:00:00.000","reclat":"37.608330","reclong":"-8.280000","geolocation":{"type":"Point","coordinates":[-8.28,37.60833]}} +,{"name":"Ovambo","id":"18055","nametype":"Valid","recclass":"L6","mass":"121.5","fall":"Fell","year":"1900-01-01T00:00:00.000","reclat":"-18.000000","reclong":"16.000000","geolocation":{"type":"Point","coordinates":[16,-18]}} +,{"name":"Oviedo","id":"18058","nametype":"Valid","recclass":"H5","mass":"205","fall":"Fell","year":"1856-01-01T00:00:00.000","reclat":"43.400000","reclong":"-5.866670","geolocation":{"type":"Point","coordinates":[-5.86667,43.4]}} +,{"name":"Owrucz","id":"18062","nametype":"Valid","recclass":"OC","fall":"Fell","year":"1775-01-01T00:00:00.000","reclat":"51.333330","reclong":"28.833330","geolocation":{"type":"Point","coordinates":[28.83333,51.33333]}} +,{"name":"Pacula","id":"18068","nametype":"Valid","recclass":"L6","mass":"3400","fall":"Fell","year":"1881-01-01T00:00:00.000","reclat":"21.050000","reclong":"-99.300000","geolocation":{"type":"Point","coordinates":[-99.3,21.05]}} +,{"name":"Padvarninkai","id":"18069","nametype":"Valid","recclass":"Eucrite-mmict","mass":"3858","fall":"Fell","year":"1929-01-01T00:00:00.000","reclat":"55.666670","reclong":"25.000000","geolocation":{"type":"Point","coordinates":[25,55.66667]}} +,{"name":"Paitan","id":"18072","nametype":"Valid","recclass":"H6","mass":"515","fall":"Fell","year":"1910-01-01T00:00:00.000","reclat":"17.743330","reclong":"120.455830","geolocation":{"type":"Point","coordinates":[120.45583,17.74333]}} +,{"name":"Palahatchie","id":"18073","nametype":"Valid","recclass":"OC","fall":"Fell","year":"1910-01-01T00:00:00.000","reclat":"32.316670","reclong":"-89.716670","geolocation":{"type":"Point","coordinates":[-89.71667,32.31667]},":@computed_region_cbhk_fwbd":"32",":@computed_region_nnqa_25f4":"503"} +,{"name":"Palca de Aparzo","id":"18074","nametype":"Valid","recclass":"L5","mass":"1430","fall":"Fell","year":"1988-01-01T00:00:00.000","reclat":"-23.116670","reclong":"-65.100000","geolocation":{"type":"Point","coordinates":[-65.1,-23.11667]}} +,{"name":"Palinshih","id":"18077","nametype":"Valid","recclass":"Iron","mass":"18000","fall":"Fell","year":"1914-01-01T00:00:00.000","reclat":"43.483330","reclong":"118.616670","geolocation":{"type":"Point","coordinates":[118.61667,43.48333]}} +,{"name":"Palmyra","id":"18079","nametype":"Valid","recclass":"L3","mass":"135","fall":"Fell","year":"1926-01-01T00:00:00.000","reclat":"39.800000","reclong":"-91.500000","geolocation":{"type":"Point","coordinates":[-91.5,39.8]},":@computed_region_cbhk_fwbd":"18",":@computed_region_nnqa_25f4":"2122"} +,{"name":"Palolo Valley","id":"18082","nametype":"Valid","recclass":"H5","mass":"682","fall":"Fell","year":"1949-01-01T00:00:00.000","reclat":"21.300000","reclong":"-157.783330","geolocation":{"type":"Point","coordinates":[-157.78333,21.3]},":@computed_region_cbhk_fwbd":"4",":@computed_region_nnqa_25f4":"1657"} +,{"name":"Dominion Range 03239","id":"32591","nametype":"Valid","recclass":"L6","mass":"69.5","fall":"Found","year":"2002-01-01T00:00:00.000"} +,{"name":"Pampanga","id":"18093","nametype":"Valid","recclass":"L5","mass":"10500","fall":"Fell","year":"1859-01-01T00:00:00.000","reclat":"15.083330","reclong":"120.700000","geolocation":{"type":"Point","coordinates":[120.7,15.08333]}} +,{"name":"Pantar","id":"18098","nametype":"Valid","recclass":"H5","mass":"2130","fall":"Fell","year":"1938-01-01T00:00:00.000","reclat":"8.066670","reclong":"124.283330","geolocation":{"type":"Point","coordinates":[124.28333,8.06667]}} +,{"name":"Paragould","id":"18101","nametype":"Valid","recclass":"LL5","mass":"408000","fall":"Fell","year":"1930-01-01T00:00:00.000","reclat":"36.066670","reclong":"-90.500000","geolocation":{"type":"Point","coordinates":[-90.5,36.06667]},":@computed_region_cbhk_fwbd":"15",":@computed_region_nnqa_25f4":"1023"} +,{"name":"Parambu","id":"18102","nametype":"Valid","recclass":"LL5","mass":"2000","fall":"Fell","year":"1967-01-01T00:00:00.000","reclat":"-6.233330","reclong":"-40.700000","geolocation":{"type":"Point","coordinates":[-40.7,-6.23333]}} +,{"name":"Paranaiba","id":"18103","nametype":"Valid","recclass":"L6","mass":"100000","fall":"Fell","year":"1956-01-01T00:00:00.000","reclat":"-19.133330","reclong":"-51.666670","geolocation":{"type":"Point","coordinates":[-51.66667,-19.13333]}} +,{"name":"Park Forest","id":"18106","nametype":"Valid","recclass":"L5","mass":"18000","fall":"Fell","year":"2003-01-01T00:00:00.000","reclat":"41.484720","reclong":"-87.679170","geolocation":{"type":"Point","coordinates":[-87.67917,41.48472]},":@computed_region_cbhk_fwbd":"34",":@computed_region_nnqa_25f4":"1863"} +,{"name":"Parnallee","id":"18108","nametype":"Valid","recclass":"LL3.6","mass":"77600","fall":"Fell","year":"1857-01-01T00:00:00.000","reclat":"9.233330","reclong":"78.350000","geolocation":{"type":"Point","coordinates":[78.35,9.23333]}} +,{"name":"Parsa","id":"18109","nametype":"Valid","recclass":"EH3","mass":"800","fall":"Fell","year":"1942-01-01T00:00:00.000","reclat":"26.200000","reclong":"85.400000","geolocation":{"type":"Point","coordinates":[85.4,26.2]}} +,{"name":"Pasamonte","id":"18110","nametype":"Valid","recclass":"Eucrite-pmict","mass":"5100","fall":"Fell","year":"1933-01-01T00:00:00.000","reclat":"36.216670","reclong":"-103.400000","geolocation":{"type":"Point","coordinates":[-103.4,36.21667]},":@computed_region_cbhk_fwbd":"11",":@computed_region_nnqa_25f4":"1994"} +,{"name":"Patora","id":"18112","nametype":"Valid","recclass":"H6","mass":"4375","fall":"Fell","year":"1969-01-01T00:00:00.000","reclat":"20.936940","reclong":"82.050000","geolocation":{"type":"Point","coordinates":[82.05,20.93694]}} +,{"name":"Patrimonio","id":"18116","nametype":"Valid","recclass":"L6","mass":"2121","fall":"Fell","year":"1950-01-01T00:00:00.000","reclat":"-19.533330","reclong":"-48.566670","geolocation":{"type":"Point","coordinates":[-48.56667,-19.53333]}} +,{"name":"Patti","id":"18118","nametype":"Valid","recclass":"Iron","mass":"12","fall":"Fell","year":"1922-01-01T00:00:00.000","reclat":"38.133330","reclong":"14.966670","geolocation":{"type":"Point","coordinates":[14.96667,38.13333]}} +,{"name":"Patwar","id":"18171","nametype":"Valid","recclass":"Mesosiderite-A1","mass":"37350","fall":"Fell","year":"1935-01-01T00:00:00.000","reclat":"23.150000","reclong":"91.183330","geolocation":{"type":"Point","coordinates":[91.18333,23.15]}} +,{"name":"Pavel","id":"18173","nametype":"Valid","recclass":"H5","mass":"2968","fall":"Fell","year":"1966-01-01T00:00:00.000","reclat":"43.466670","reclong":"25.516670","geolocation":{"type":"Point","coordinates":[25.51667,43.46667]}} +,{"name":"Pavlodar (stone)","id":"18175","nametype":"Valid","recclass":"H5","mass":"142.5","fall":"Fell","year":"1938-01-01T00:00:00.000","reclat":"52.300000","reclong":"77.033330","geolocation":{"type":"Point","coordinates":[77.03333,52.3]}} +,{"name":"Pavlograd","id":"18176","nametype":"Valid","recclass":"L6","mass":"40000","fall":"Fell","year":"1826-01-01T00:00:00.000","reclat":"48.533330","reclong":"35.983330","geolocation":{"type":"Point","coordinates":[35.98333,48.53333]}} +,{"name":"Pavlovka","id":"18177","nametype":"Valid","recclass":"Howardite","mass":"2000","fall":"Fell","year":"1882-01-01T00:00:00.000","reclat":"52.033330","reclong":"43.000000","geolocation":{"type":"Point","coordinates":[43,52.03333]}} +,{"name":"Pê","id":"18179","nametype":"Valid","recclass":"L6","fall":"Fell","year":"1989-01-01T00:00:00.000","reclat":"11.333670","reclong":"-3.542170","geolocation":{"type":"Point","coordinates":[-3.54217,11.33367]}} +,{"name":"Peace River","id":"18180","nametype":"Valid","recclass":"L6","mass":"45760","fall":"Fell","year":"1963-01-01T00:00:00.000","reclat":"56.133330","reclong":"-117.933330","geolocation":{"type":"Point","coordinates":[-117.93333,56.13333]}} +,{"name":"Peckelsheim","id":"18181","nametype":"Valid","recclass":"Diogenite-pm","mass":"117.8","fall":"Fell","year":"1953-01-01T00:00:00.000","reclat":"51.666670","reclong":"9.250000","geolocation":{"type":"Point","coordinates":[9.25,51.66667]}} +,{"name":"Peekskill","id":"18782","nametype":"Valid","recclass":"H6","mass":"12570","fall":"Fell","year":"1992-01-01T00:00:00.000","reclat":"41.283330","reclong":"-73.916670","geolocation":{"type":"Point","coordinates":[-73.91667,41.28333]},":@computed_region_cbhk_fwbd":"47",":@computed_region_nnqa_25f4":"2185"} +,{"name":"Peña Blanca Spring","id":"18786","nametype":"Valid","recclass":"Aubrite","mass":"70000","fall":"Fell","year":"1946-01-01T00:00:00.000","reclat":"30.125000","reclong":"-103.116670","geolocation":{"type":"Point","coordinates":[-103.11667,30.125]},":@computed_region_cbhk_fwbd":"23",":@computed_region_nnqa_25f4":"3062"} +,{"name":"Peramiho","id":"18792","nametype":"Valid","recclass":"Eucrite-mmict","mass":"165","fall":"Fell","year":"1899-01-01T00:00:00.000","reclat":"-10.666670","reclong":"35.500000","geolocation":{"type":"Point","coordinates":[35.5,-10.66667]}} +,{"name":"Perpeti","id":"18793","nametype":"Valid","recclass":"L6","mass":"23474","fall":"Fell","year":"1935-01-01T00:00:00.000","reclat":"23.325000","reclong":"91.000000","geolocation":{"type":"Point","coordinates":[91,23.325]}} +,{"name":"Perth","id":"18797","nametype":"Valid","recclass":"LL5","mass":"2","fall":"Fell","year":"1830-01-01T00:00:00.000","reclat":"56.400000","reclong":"-3.433330","geolocation":{"type":"Point","coordinates":[-3.43333,56.4]}} +,{"name":"Pervomaisky","id":"18798","nametype":"Valid","recclass":"L6","mass":"66000","fall":"Fell","year":"1933-01-01T00:00:00.000","reclat":"56.633330","reclong":"39.433330","geolocation":{"type":"Point","coordinates":[39.43333,56.63333]}} +,{"name":"Pesyanoe","id":"18799","nametype":"Valid","recclass":"Aubrite","mass":"3393","fall":"Fell","year":"1933-01-01T00:00:00.000","reclat":"55.500000","reclong":"66.083330","geolocation":{"type":"Point","coordinates":[66.08333,55.5]}} +,{"name":"Pétèlkolé","id":"18800","nametype":"Valid","recclass":"H5","mass":"189","fall":"Fell","year":"1995-01-01T00:00:00.000","reclat":"14.052000","reclong":"0.420000","geolocation":{"type":"Point","coordinates":[0.42,14.052]}} +,{"name":"Petersburg","id":"18801","nametype":"Valid","recclass":"Eucrite-pmict","mass":"1800","fall":"Fell","year":"1855-01-01T00:00:00.000","reclat":"35.300000","reclong":"-86.633330","geolocation":{"type":"Point","coordinates":[-86.63333,35.3]},":@computed_region_cbhk_fwbd":"39",":@computed_region_nnqa_25f4":"2017"} +,{"name":"Pettiswood","id":"18804","nametype":"Valid","recclass":"Stone-uncl","fall":"Fell","year":"1779-01-01T00:00:00.000","reclat":"53.533330","reclong":"-7.333330","geolocation":{"type":"Point","coordinates":[-7.33333,53.53333]}} +,{"name":"Phillips County (stone)","id":"18808","nametype":"Valid","recclass":"L6","mass":"57900","fall":"Fell","year":"1901-01-01T00:00:00.000","reclat":"40.000000","reclong":"-99.250000","geolocation":{"type":"Point","coordinates":[-99.25,40]},":@computed_region_cbhk_fwbd":"17",":@computed_region_nnqa_25f4":"1255"} +,{"name":"Phu Hong","id":"18809","nametype":"Valid","recclass":"H4","mass":"500","fall":"Fell","year":"1887-01-01T00:00:00.000","reclat":"11.250000","reclong":"108.583330","geolocation":{"type":"Point","coordinates":[108.58333,11.25]}} +,{"name":"Phum Sambo","id":"18811","nametype":"Valid","recclass":"H4","mass":"7800","fall":"Fell","year":"1933-01-01T00:00:00.000","reclat":"12.000000","reclong":"105.483330","geolocation":{"type":"Point","coordinates":[105.48333,12]}} +,{"name":"Phuoc-Binh","id":"18812","nametype":"Valid","recclass":"L5","mass":"11000","fall":"Fell","year":"1941-01-01T00:00:00.000","reclat":"15.716670","reclong":"108.100000","geolocation":{"type":"Point","coordinates":[108.1,15.71667]}} +,{"name":"Piancaldoli","id":"18813","nametype":"Valid","recclass":"LL3.4","mass":"13.1","fall":"Fell","year":"1968-01-01T00:00:00.000","reclat":"44.244170","reclong":"11.502220","geolocation":{"type":"Point","coordinates":[11.50222,44.24417]}} +,{"name":"Picote","id":"18816","nametype":"Valid","recclass":"Stone-uncl","fall":"Fell","year":"1843-01-01T00:00:00.000","reclat":"41.366670","reclong":"-6.233330","geolocation":{"type":"Point","coordinates":[-6.23333,41.36667]}} +,{"name":"Pillistfer","id":"18822","nametype":"Valid","recclass":"EL6","mass":"23250","fall":"Fell","year":"1863-01-01T00:00:00.000","reclat":"58.666670","reclong":"25.733330","geolocation":{"type":"Point","coordinates":[25.73333,58.66667]}} +,{"name":"Piplia Kalan","id":"18831","nametype":"Valid","recclass":"Eucrite-mmict","mass":"42000","fall":"Fell","year":"1996-01-01T00:00:00.000","reclat":"26.034720","reclong":"73.941670","geolocation":{"type":"Point","coordinates":[73.94167,26.03472]}} +,{"name":"Piquetberg","id":"18832","nametype":"Valid","recclass":"H","mass":"37","fall":"Fell","year":"1881-01-01T00:00:00.000","reclat":"-32.866670","reclong":"18.716670","geolocation":{"type":"Point","coordinates":[18.71667,-32.86667]}} +,{"name":"Pirgunje","id":"18834","nametype":"Valid","recclass":"L6","mass":"842","fall":"Fell","year":"1882-01-01T00:00:00.000","reclat":"25.800000","reclong":"88.450000","geolocation":{"type":"Point","coordinates":[88.45,25.8]}} +,{"name":"Pirthalla","id":"18835","nametype":"Valid","recclass":"H6","mass":"1161","fall":"Fell","year":"1884-01-01T00:00:00.000","reclat":"29.583330","reclong":"76.000000","geolocation":{"type":"Point","coordinates":[76,29.58333]}} +,{"name":"Pitts","id":"18837","nametype":"Valid","recclass":"Iron, IAB-ung","mass":"3760","fall":"Fell","year":"1921-01-01T00:00:00.000","reclat":"31.950000","reclong":"-83.516670","geolocation":{"type":"Point","coordinates":[-83.51667,31.95]},":@computed_region_cbhk_fwbd":"31",":@computed_region_nnqa_25f4":"207"} +,{"name":"Plantersville","id":"18846","nametype":"Valid","recclass":"H6","mass":"2085","fall":"Fell","year":"1930-01-01T00:00:00.000","reclat":"30.700000","reclong":"-96.116670","geolocation":{"type":"Point","coordinates":[-96.11667,30.7]},":@computed_region_cbhk_fwbd":"23",":@computed_region_nnqa_25f4":"2018"} +,{"name":"Pleşcoi","id":"51706","nametype":"Valid","recclass":"L5-6","mass":"6913","fall":"Fell","year":"2008-01-01T00:00:00.000","reclat":"45.275000","reclong":"26.709720","geolocation":{"type":"Point","coordinates":[26.70972,45.275]}} +,{"name":"Ploschkovitz","id":"18849","nametype":"Valid","recclass":"L5","mass":"39","fall":"Fell","year":"1723-01-01T00:00:00.000","reclat":"50.533330","reclong":"14.116670","geolocation":{"type":"Point","coordinates":[14.11667,50.53333]}} +,{"name":"Pnompehn","id":"18851","nametype":"Valid","recclass":"L6","mass":"96","fall":"Fell","year":"1868-01-01T00:00:00.000","reclat":"11.583330","reclong":"104.916670","geolocation":{"type":"Point","coordinates":[104.91667,11.58333]}} +,{"name":"Dominion Range 03240","id":"32592","nametype":"Valid","recclass":"LL5","mass":"290.89999999999998","fall":"Found","year":"2002-01-01T00:00:00.000"} +,{"name":"Pohlitz","id":"18853","nametype":"Valid","recclass":"L5","mass":"3000","fall":"Fell","year":"1819-01-01T00:00:00.000","reclat":"50.933330","reclong":"12.133330","geolocation":{"type":"Point","coordinates":[12.13333,50.93333]}} +,{"name":"Pokhra","id":"18858","nametype":"Valid","recclass":"H5","mass":"350","fall":"Fell","year":"1866-01-01T00:00:00.000","reclat":"26.716670","reclong":"82.666670","geolocation":{"type":"Point","coordinates":[82.66667,26.71667]}} +,{"name":"Pollen","id":"18860","nametype":"Valid","recclass":"CM2","mass":"253.6","fall":"Fell","year":"1942-01-01T00:00:00.000","reclat":"66.348330","reclong":"14.015000","geolocation":{"type":"Point","coordinates":[14.015,66.34833]}} +,{"name":"Pontlyfni","id":"18865","nametype":"Valid","recclass":"Winonaite","mass":"157","fall":"Fell","year":"1931-01-01T00:00:00.000","reclat":"53.036390","reclong":"-4.319440","geolocation":{"type":"Point","coordinates":[-4.31944,53.03639]}} +,{"name":"Portales Valley","id":"18874","nametype":"Valid","recclass":"H6","mass":"71400","fall":"Fell","year":"1998-01-01T00:00:00.000","reclat":"34.175000","reclong":"-103.295000","geolocation":{"type":"Point","coordinates":[-103.295,34.175]},":@computed_region_cbhk_fwbd":"11",":@computed_region_nnqa_25f4":"1987"} +,{"name":"Portugal","id":"18876","nametype":"Valid","recclass":"Stone-uncl","mass":"4500","fall":"Fell","year":"1796-01-01T00:00:00.000","reclat":"38.500000","reclong":"-8.000000","geolocation":{"type":"Point","coordinates":[-8,38.5]}} +,{"name":"Po-wang Chen","id":"18879","nametype":"Valid","recclass":"LL","mass":"665","fall":"Fell","year":"1933-01-01T00:00:00.000","reclat":"31.416670","reclong":"118.500000","geolocation":{"type":"Point","coordinates":[118.5,31.41667]}} +,{"name":"Prambachkirchen","id":"18883","nametype":"Valid","recclass":"L6","mass":"2125","fall":"Fell","year":"1932-01-01T00:00:00.000","reclat":"48.302500","reclong":"13.940830","geolocation":{"type":"Point","coordinates":[13.94083,48.3025]}} +,{"name":"Pribram","id":"18887","nametype":"Valid","recclass":"H5","mass":"5555","fall":"Fell","year":"1959-01-01T00:00:00.000","reclat":"49.666670","reclong":"14.033330","geolocation":{"type":"Point","coordinates":[14.03333,49.66667]}} +,{"name":"Pricetown","id":"18888","nametype":"Valid","recclass":"L6","mass":"900","fall":"Fell","year":"1893-01-01T00:00:00.000","reclat":"39.116670","reclong":"-83.850000","geolocation":{"type":"Point","coordinates":[-83.85,39.11667]},":@computed_region_cbhk_fwbd":"38",":@computed_region_nnqa_25f4":"2566"} +,{"name":"Puerto Lápice","id":"45984","nametype":"Valid","recclass":"Eucrite-br","mass":"500","fall":"Fell","year":"2007-01-01T00:00:00.000","reclat":"39.350000","reclong":"-3.516670","geolocation":{"type":"Point","coordinates":[-3.51667,39.35]}} +,{"name":"Pulsora","id":"18899","nametype":"Valid","recclass":"H5","mass":"560","fall":"Fell","year":"1863-01-01T00:00:00.000","reclat":"23.366670","reclong":"75.183330","geolocation":{"type":"Point","coordinates":[75.18333,23.36667]}} +,{"name":"Pultusk","id":"18901","nametype":"Valid","recclass":"H5","mass":"250000","fall":"Fell","year":"1868-01-01T00:00:00.000","reclat":"52.766670","reclong":"21.266670","geolocation":{"type":"Point","coordinates":[21.26667,52.76667]}} +,{"name":"Punganaru","id":"18902","nametype":"Valid","recclass":"Stone-uncl","mass":"100","fall":"Fell","year":"1811-01-01T00:00:00.000","reclat":"13.333330","reclong":"78.950000","geolocation":{"type":"Point","coordinates":[78.95,13.33333]}} +,{"name":"Putinga","id":"18905","nametype":"Valid","recclass":"L6","mass":"300000","fall":"Fell","year":"1937-01-01T00:00:00.000","reclat":"-29.033330","reclong":"-53.050000","geolocation":{"type":"Point","coordinates":[-53.05,-29.03333]}} +,{"name":"Qidong","id":"18907","nametype":"Valid","recclass":"L/LL5","mass":"1275","fall":"Fell","year":"1982-01-01T00:00:00.000","reclat":"32.083330","reclong":"121.500000","geolocation":{"type":"Point","coordinates":[121.5,32.08333]}} +,{"name":"Qingzhen","id":"18908","nametype":"Valid","recclass":"EH3","mass":"2600","fall":"Fell","year":"1976-01-01T00:00:00.000","reclat":"26.533330","reclong":"106.466670","geolocation":{"type":"Point","coordinates":[106.46667,26.53333]}} +,{"name":"Queen's Mercy","id":"22357","nametype":"Valid","recclass":"H6","mass":"7000","fall":"Fell","year":"1925-01-01T00:00:00.000","reclat":"-30.116670","reclong":"28.700000","geolocation":{"type":"Point","coordinates":[28.7,-30.11667]}} +,{"name":"Quenggouk","id":"22358","nametype":"Valid","recclass":"H4","mass":"6045","fall":"Fell","year":"1857-01-01T00:00:00.000","reclat":"17.766670","reclong":"95.183330","geolocation":{"type":"Point","coordinates":[95.18333,17.76667]}} +,{"name":"Quesa","id":"22360","nametype":"Valid","recclass":"Iron, IAB-ung","mass":"10750","fall":"Fell","year":"1898-01-01T00:00:00.000","reclat":"39.000000","reclong":"-0.666670","geolocation":{"type":"Point","coordinates":[-0.66667,39]}} +,{"name":"Quija","id":"22361","nametype":"Valid","recclass":"H","mass":"17450","fall":"Fell","year":"1990-01-01T00:00:00.000","reclat":"44.616670","reclong":"126.133330","geolocation":{"type":"Point","coordinates":[126.13333,44.61667]}} +,{"name":"Quincay","id":"22363","nametype":"Valid","recclass":"L6","mass":"65","fall":"Fell","year":"1851-01-01T00:00:00.000","reclat":"46.600000","reclong":"0.250000","geolocation":{"type":"Point","coordinates":[0.25,46.6]}} +,{"name":"Raco","id":"22368","nametype":"Valid","recclass":"H5","mass":"5000","fall":"Fell","year":"1957-01-01T00:00:00.000","reclat":"-26.666670","reclong":"-65.450000","geolocation":{"type":"Point","coordinates":[-65.45,-26.66667]}} +,{"name":"Raghunathpura","id":"22371","nametype":"Valid","recclass":"Iron, IIAB","mass":"10200","fall":"Fell","year":"1986-01-01T00:00:00.000","reclat":"27.725280","reclong":"76.465000","geolocation":{"type":"Point","coordinates":[76.465,27.72528]}} +,{"name":"Rahimyar Khan","id":"31302","nametype":"Valid","recclass":"L5","mass":"67225","fall":"Fell","year":"1983-01-01T00:00:00.000","reclat":"28.225000","reclong":"70.200000","geolocation":{"type":"Point","coordinates":[70.2,28.225]}} +,{"name":"Rakovka","id":"22376","nametype":"Valid","recclass":"L6","mass":"9000","fall":"Fell","year":"1878-01-01T00:00:00.000","reclat":"52.983330","reclong":"37.033330","geolocation":{"type":"Point","coordinates":[37.03333,52.98333]}} +,{"name":"Ramnagar","id":"22384","nametype":"Valid","recclass":"L6","mass":"3766","fall":"Fell","year":"1940-01-01T00:00:00.000","reclat":"26.450000","reclong":"82.900000","geolocation":{"type":"Point","coordinates":[82.9,26.45]}} +,{"name":"Rampurhat","id":"22385","nametype":"Valid","recclass":"LL","mass":"100","fall":"Fell","year":"1916-01-01T00:00:00.000","reclat":"24.166670","reclong":"87.766670","geolocation":{"type":"Point","coordinates":[87.76667,24.16667]}} +,{"name":"Ramsdorf","id":"22386","nametype":"Valid","recclass":"L6","mass":"4682","fall":"Fell","year":"1958-01-01T00:00:00.000","reclat":"51.883330","reclong":"6.933330","geolocation":{"type":"Point","coordinates":[6.93333,51.88333]}} +,{"name":"Ranchapur","id":"22387","nametype":"Valid","recclass":"H4","mass":"290.39999999999998","fall":"Fell","year":"1917-01-01T00:00:00.000","reclat":"23.983330","reclong":"87.083330","geolocation":{"type":"Point","coordinates":[87.08333,23.98333]}} +,{"name":"Rancho de la Presa","id":"22390","nametype":"Valid","recclass":"H5","mass":"300","fall":"Fell","year":"1899-01-01T00:00:00.000","reclat":"19.866670","reclong":"-100.816670","geolocation":{"type":"Point","coordinates":[-100.81667,19.86667]}} +,{"name":"Rangala","id":"22392","nametype":"Valid","recclass":"L6","mass":"3224.5","fall":"Fell","year":"1937-01-01T00:00:00.000","reclat":"25.383330","reclong":"72.016670","geolocation":{"type":"Point","coordinates":[72.01667,25.38333]}} +,{"name":"Raoyang","id":"22394","nametype":"Valid","recclass":"L6","mass":"4910","fall":"Fell","year":"1919-01-01T00:00:00.000","reclat":"38.200000","reclong":"115.700000","geolocation":{"type":"Point","coordinates":[115.7,38.2]}} +,{"name":"Ras Tanura","id":"22395","nametype":"Valid","recclass":"H6","mass":"6.1","fall":"Fell","year":"1961-01-01T00:00:00.000","reclat":"26.666670","reclong":"50.150000","geolocation":{"type":"Point","coordinates":[50.15,26.66667]}} +,{"name":"Rasgrad","id":"22396","nametype":"Valid","recclass":"Stone-uncl","mass":"24700","fall":"Fell","year":"1740-01-01T00:00:00.000","reclat":"43.500000","reclong":"26.533330","geolocation":{"type":"Point","coordinates":[26.53333,43.5]}} +,{"name":"Ratyn","id":"22398","nametype":"Valid","recclass":"Stone-uncl","mass":"910","fall":"Fell","year":"1880-01-01T00:00:00.000","reclat":"52.200000","reclong":"17.983330","geolocation":{"type":"Point","coordinates":[17.98333,52.2]}} +,{"name":"Red Canyon Lake","id":"53502","nametype":"Valid","recclass":"H5","mass":"18.41","fall":"Fell","year":"2007-01-01T00:00:00.000","reclat":"38.137420","reclong":"-119.758120","geolocation":{"type":"Point","coordinates":[-119.75812,38.13742]},":@computed_region_cbhk_fwbd":"8",":@computed_region_nnqa_25f4":"1391"} +,{"name":"Reliegos","id":"22584","nametype":"Valid","recclass":"L5","mass":"17300","fall":"Fell","year":"1947-01-01T00:00:00.000","reclat":"42.475000","reclong":"-5.333330","geolocation":{"type":"Point","coordinates":[-5.33333,42.475]}} +,{"name":"Rembang","id":"22585","nametype":"Valid","recclass":"Iron, IVA","mass":"10000","fall":"Fell","year":"1919-01-01T00:00:00.000","reclat":"-6.733330","reclong":"111.366670","geolocation":{"type":"Point","coordinates":[111.36667,-6.73333]}} +,{"name":"Renazzo","id":"22586","nametype":"Valid","recclass":"CR2","mass":"1000","fall":"Fell","year":"1824-01-01T00:00:00.000","reclat":"44.766670","reclong":"11.283330","geolocation":{"type":"Point","coordinates":[11.28333,44.76667]}} +,{"name":"Renca","id":"22587","nametype":"Valid","recclass":"L5","mass":"300","fall":"Fell","year":"1925-01-01T00:00:00.000","reclat":"-32.750000","reclong":"-65.283330","geolocation":{"type":"Point","coordinates":[-65.28333,-32.75]}} +,{"name":"Renqiu","id":"22589","nametype":"Valid","recclass":"L6","mass":"355","fall":"Fell","year":"1916-01-01T00:00:00.000","reclat":"38.666670","reclong":"116.133330","geolocation":{"type":"Point","coordinates":[116.13333,38.66667]}} +,{"name":"Repeev Khutor","id":"22590","nametype":"Valid","recclass":"Iron, IIF","mass":"7000","fall":"Fell","year":"1933-01-01T00:00:00.000","reclat":"48.600000","reclong":"45.666670","geolocation":{"type":"Point","coordinates":[45.66667,48.6]}} +,{"name":"Revelstoke","id":"22592","nametype":"Valid","recclass":"CI1","mass":"1","fall":"Fell","year":"1965-01-01T00:00:00.000","reclat":"51.333330","reclong":"-118.950000","geolocation":{"type":"Point","coordinates":[-118.95,51.33333]}} +,{"name":"Rewari","id":"22593","nametype":"Valid","recclass":"L6","mass":"3332","fall":"Fell","year":"1929-01-01T00:00:00.000","reclat":"28.200000","reclong":"76.666670","geolocation":{"type":"Point","coordinates":[76.66667,28.2]}} +,{"name":"Rich Mountain","id":"22597","nametype":"Valid","recclass":"L6","mass":"668","fall":"Fell","year":"1903-01-01T00:00:00.000","reclat":"35.033330","reclong":"-83.033330","geolocation":{"type":"Point","coordinates":[-83.03333,35.03333]},":@computed_region_cbhk_fwbd":"37",":@computed_region_nnqa_25f4":"2388"} +,{"name":"Uzcudun","id":"24140","nametype":"Valid","recclass":"L","mass":"20000","fall":"Fell","year":"1948-01-01T00:00:00.000","reclat":"-44.116670","reclong":"-66.150000","geolocation":{"type":"Point","coordinates":[-66.15,-44.11667]}} +,{"name":"Richardton","id":"22599","nametype":"Valid","recclass":"H5","mass":"90000","fall":"Fell","year":"1918-01-01T00:00:00.000","reclat":"46.883330","reclong":"-102.316670","geolocation":{"type":"Point","coordinates":[-102.31667,46.88333]},":@computed_region_cbhk_fwbd":"3",":@computed_region_nnqa_25f4":"569"} +,{"name":"Richland Springs","id":"22602","nametype":"Valid","recclass":"OC","mass":"1900","fall":"Fell","year":"1980-01-01T00:00:00.000","reclat":"31.250000","reclong":"-99.033330","geolocation":{"type":"Point","coordinates":[-99.03333,31.25]},":@computed_region_cbhk_fwbd":"23",":@computed_region_nnqa_25f4":"2885"} +,{"name":"Richmond","id":"22603","nametype":"Valid","recclass":"LL5","mass":"1800","fall":"Fell","year":"1828-01-01T00:00:00.000","reclat":"37.466670","reclong":"-77.500000","geolocation":{"type":"Point","coordinates":[-77.5,37.46667]},":@computed_region_cbhk_fwbd":"40",":@computed_region_nnqa_25f4":"2764"} +,{"name":"Rio Negro","id":"22611","nametype":"Valid","recclass":"L4","mass":"1310","fall":"Fell","year":"1934-01-01T00:00:00.000","reclat":"-26.100000","reclong":"-49.800000","geolocation":{"type":"Point","coordinates":[-49.8,-26.1]}} +,{"name":"Rivolta de Bassi","id":"22614","nametype":"Valid","recclass":"Stone-uncl","mass":"103.3","fall":"Fell","year":"1491-01-01T00:00:00.000","reclat":"45.483330","reclong":"9.516670","geolocation":{"type":"Point","coordinates":[9.51667,45.48333]}} +,{"name":"Rochester","id":"22637","nametype":"Valid","recclass":"H6","mass":"340","fall":"Fell","year":"1876-01-01T00:00:00.000","reclat":"41.083330","reclong":"-86.283330","geolocation":{"type":"Point","coordinates":[-86.28333,41.08333]},":@computed_region_cbhk_fwbd":"35",":@computed_region_nnqa_25f4":"150"} +,{"name":"Rockhampton","id":"22640","nametype":"Valid","recclass":"Stone-uncl","mass":"1641","fall":"Fell","year":"1895-01-01T00:00:00.000","reclat":"-23.383330","reclong":"150.516670","geolocation":{"type":"Point","coordinates":[150.51667,-23.38333]}} +,{"name":"Roda","id":"22641","nametype":"Valid","recclass":"Diogenite","mass":"400","fall":"Fell","year":"1871-01-01T00:00:00.000","reclat":"42.300000","reclong":"0.550000","geolocation":{"type":"Point","coordinates":[0.55,42.3]}} +,{"name":"Rodach","id":"22642","nametype":"Valid","recclass":"Stone-uncl","mass":"2900","fall":"Fell","year":"1775-01-01T00:00:00.000","reclat":"50.350000","reclong":"10.800000","geolocation":{"type":"Point","coordinates":[10.8,50.35]}} +,{"name":"Rose City","id":"22766","nametype":"Valid","recclass":"H5","mass":"10600","fall":"Fell","year":"1921-01-01T00:00:00.000","reclat":"44.516670","reclong":"-83.950000","geolocation":{"type":"Point","coordinates":[-83.95,44.51667]},":@computed_region_cbhk_fwbd":"50",":@computed_region_nnqa_25f4":"361"} +,{"name":"Rowton","id":"22773","nametype":"Valid","recclass":"Iron, IIIAB","mass":"3500","fall":"Fell","year":"1876-01-01T00:00:00.000","reclat":"52.766670","reclong":"-2.516670","geolocation":{"type":"Point","coordinates":[-2.51667,52.76667]}} +,{"name":"Ruhobobo","id":"22780","nametype":"Valid","recclass":"L6","mass":"465.5","fall":"Fell","year":"1976-01-01T00:00:00.000","reclat":"-1.450000","reclong":"29.833330","geolocation":{"type":"Point","coordinates":[29.83333,-1.45]}} +,{"name":"Rumuruti","id":"22782","nametype":"Valid","recclass":"R3.8-6","mass":"67","fall":"Fell","year":"1934-01-01T00:00:00.000","reclat":"0.266670","reclong":"36.533330","geolocation":{"type":"Point","coordinates":[36.53333,0.26667]}} +,{"name":"Rupota","id":"22783","nametype":"Valid","recclass":"L4-6","mass":"6000","fall":"Fell","year":"1949-01-01T00:00:00.000","reclat":"-10.266670","reclong":"38.766670","geolocation":{"type":"Point","coordinates":[38.76667,-10.26667]}} +,{"name":"Ryechki","id":"22791","nametype":"Valid","recclass":"L5","mass":"13000","fall":"Fell","year":"1914-01-01T00:00:00.000","reclat":"51.133330","reclong":"34.500000","geolocation":{"type":"Point","coordinates":[34.5,51.13333]}} +,{"name":"Sabetmahet","id":"22792","nametype":"Valid","recclass":"H5","mass":"1250","fall":"Fell","year":"1855-01-01T00:00:00.000","reclat":"27.433330","reclong":"82.083330","geolocation":{"type":"Point","coordinates":[82.08333,27.43333]}} +,{"name":"Sabrum","id":"22793","nametype":"Valid","recclass":"LL6","mass":"478","fall":"Fell","year":"1999-01-01T00:00:00.000","reclat":"23.083330","reclong":"91.666670","geolocation":{"type":"Point","coordinates":[91.66667,23.08333]}} +,{"name":"Sagan","id":"22796","nametype":"Valid","recclass":"Stone-uncl","fall":"Fell","year":"1636-01-01T00:00:00.000","reclat":"51.533330","reclong":"14.883330","geolocation":{"type":"Point","coordinates":[14.88333,51.53333]}} +,{"name":"Saint-Sauveur","id":"23101","nametype":"Valid","recclass":"EH5","mass":"14000","fall":"Fell","year":"1914-01-01T00:00:00.000","reclat":"43.733330","reclong":"1.383330","geolocation":{"type":"Point","coordinates":[1.38333,43.73333]}} +,{"name":"Saint-Séverin","id":"23102","nametype":"Valid","recclass":"LL6","mass":"271000","fall":"Fell","year":"1966-01-01T00:00:00.000","reclat":"45.300000","reclong":"0.233330","geolocation":{"type":"Point","coordinates":[0.23333,45.3]}} +,{"name":"Sakauchi","id":"23103","nametype":"Valid","recclass":"Iron","mass":"4180","fall":"Fell","year":"1913-01-01T00:00:00.000","reclat":"35.666670","reclong":"136.300000","geolocation":{"type":"Point","coordinates":[136.3,35.66667]}} +,{"name":"Salem","id":"23107","nametype":"Valid","recclass":"L6","mass":"61.4","fall":"Fell","year":"1981-01-01T00:00:00.000","reclat":"44.979170","reclong":"-122.969440","geolocation":{"type":"Point","coordinates":[-122.96944,44.97917]},":@computed_region_cbhk_fwbd":"12",":@computed_region_nnqa_25f4":"2409"} +,{"name":"Salles","id":"23111","nametype":"Valid","recclass":"L5","mass":"9000","fall":"Fell","year":"1798-01-01T00:00:00.000","reclat":"46.050000","reclong":"4.633330","geolocation":{"type":"Point","coordinates":[4.63333,46.05]}} +,{"name":"Salzwedel","id":"23114","nametype":"Valid","recclass":"LL5","mass":"43","fall":"Fell","year":"1985-01-01T00:00:00.000","reclat":"52.750000","reclong":"11.050000","geolocation":{"type":"Point","coordinates":[11.05,52.75]}} +,{"name":"Samelia","id":"23115","nametype":"Valid","recclass":"Iron, IIIAB","mass":"2462","fall":"Fell","year":"1921-01-01T00:00:00.000","reclat":"25.666670","reclong":"74.866670","geolocation":{"type":"Point","coordinates":[74.86667,25.66667]}} +,{"name":"San Juan Capistrano","id":"23128","nametype":"Valid","recclass":"H6","mass":"56","fall":"Fell","year":"1973-01-01T00:00:00.000","reclat":"33.484720","reclong":"-117.662500","geolocation":{"type":"Point","coordinates":[-117.6625,33.48472]},":@computed_region_cbhk_fwbd":"8",":@computed_region_nnqa_25f4":"1174"} +,{"name":"San Michele","id":"31315","nametype":"Valid","recclass":"L6","mass":"237","fall":"Fell","year":"2002-01-01T00:00:00.000","reclat":"43.666670","reclong":"13.000000","geolocation":{"type":"Point","coordinates":[13,43.66667]}} +,{"name":"San Pedro de Quiles","id":"23130","nametype":"Valid","recclass":"L6","mass":"282","fall":"Fell","year":"1956-01-01T00:00:00.000","reclat":"-31.016670","reclong":"-71.400000","geolocation":{"type":"Point","coordinates":[-71.4,-31.01667]}} +,{"name":"San Pedro Jacuaro","id":"34063","nametype":"Valid","recclass":"LL6","mass":"460","fall":"Fell","year":"1968-01-01T00:00:00.000","reclat":"19.766670","reclong":"-100.650000","geolocation":{"type":"Point","coordinates":[-100.65,19.76667]}} +,{"name":"Santa Barbara","id":"23161","nametype":"Valid","recclass":"L4","mass":"400","fall":"Fell","year":"1873-01-01T00:00:00.000","reclat":"-29.200000","reclong":"-51.866670","geolocation":{"type":"Point","coordinates":[-51.86667,-29.2]}} +,{"name":"Santa Cruz","id":"23164","nametype":"Valid","recclass":"CM2","mass":"60","fall":"Fell","year":"1939-01-01T00:00:00.000","reclat":"24.166670","reclong":"-99.333330","geolocation":{"type":"Point","coordinates":[-99.33333,24.16667]}} +,{"name":"Santa Isabel","id":"23165","nametype":"Valid","recclass":"L6","mass":"5500","fall":"Fell","year":"1924-01-01T00:00:00.000","reclat":"-33.900000","reclong":"-61.700000","geolocation":{"type":"Point","coordinates":[-61.7,-33.9]}} +,{"name":"Santa Lucia (2008)","id":"50909","nametype":"Valid","recclass":"L6","mass":"4000","fall":"Fell","year":"2008-01-01T00:00:00.000","reclat":"-31.535556","reclong":"-68.489444","geolocation":{"type":"Point","coordinates":[-68.489444,-31.535556]}} +,{"name":"São Jose do Rio Preto","id":"23171","nametype":"Valid","recclass":"H4","mass":"927","fall":"Fell","year":"1962-01-01T00:00:00.000","reclat":"-20.810000","reclong":"-49.380560","geolocation":{"type":"Point","coordinates":[-49.38056,-20.81]}} +,{"name":"Saratov","id":"23176","nametype":"Valid","recclass":"L4","mass":"200000","fall":"Fell","year":"1918-01-01T00:00:00.000","reclat":"52.550000","reclong":"46.550000","geolocation":{"type":"Point","coordinates":[46.55,52.55]}} +,{"name":"Sasagase","id":"23187","nametype":"Valid","recclass":"H","mass":"695","fall":"Fell","year":"1688-01-01T00:00:00.000","reclat":"34.716670","reclong":"137.783330","geolocation":{"type":"Point","coordinates":[137.78333,34.71667]}} +,{"name":"Sauguis","id":"23188","nametype":"Valid","recclass":"L6","mass":"4000","fall":"Fell","year":"1868-01-01T00:00:00.000","reclat":"43.150000","reclong":"-0.850000","geolocation":{"type":"Point","coordinates":[-0.85,43.15]}} +,{"name":"Savtschenskoje","id":"23190","nametype":"Valid","recclass":"LL4","mass":"2500","fall":"Fell","year":"1894-01-01T00:00:00.000","reclat":"47.216670","reclong":"29.866670","geolocation":{"type":"Point","coordinates":[29.86667,47.21667]}} +,{"name":"Sayama","id":"23192","nametype":"Valid","recclass":"CM2","mass":"430","fall":"Fell","year":"1986-01-01T00:00:00.000","reclat":"35.866670","reclong":"139.400000","geolocation":{"type":"Point","coordinates":[139.4,35.86667]}} +,{"name":"Sazovice","id":"23455","nametype":"Valid","recclass":"L5","mass":"412","fall":"Fell","year":"1934-01-01T00:00:00.000","reclat":"49.233330","reclong":"17.566670","geolocation":{"type":"Point","coordinates":[17.56667,49.23333]}} +,{"name":"Schellin","id":"23457","nametype":"Valid","recclass":"L","mass":"7000","fall":"Fell","year":"1715-01-01T00:00:00.000","reclat":"53.350000","reclong":"15.050000","geolocation":{"type":"Point","coordinates":[15.05,53.35]}} +,{"name":"Schenectady","id":"23458","nametype":"Valid","recclass":"H5","mass":"283.3","fall":"Fell","year":"1968-01-01T00:00:00.000","reclat":"42.860830","reclong":"-73.950280","geolocation":{"type":"Point","coordinates":[-73.95028,42.86083]},":@computed_region_cbhk_fwbd":"47",":@computed_region_nnqa_25f4":"2142"} +,{"name":"Schönenberg","id":"23460","nametype":"Valid","recclass":"L6","mass":"8000","fall":"Fell","year":"1846-01-01T00:00:00.000","reclat":"48.116670","reclong":"10.466670","geolocation":{"type":"Point","coordinates":[10.46667,48.11667]}} +,{"name":"Searsmont","id":"23472","nametype":"Valid","recclass":"H5","mass":"5400","fall":"Fell","year":"1871-01-01T00:00:00.000","reclat":"44.366670","reclong":"-69.200000","geolocation":{"type":"Point","coordinates":[-69.2,44.36667]},":@computed_region_cbhk_fwbd":"49",":@computed_region_nnqa_25f4":"1727"} +,{"name":"Sediköy","id":"23473","nametype":"Valid","recclass":"L6","mass":"240","fall":"Fell","year":"1917-01-01T00:00:00.000","reclat":"38.300000","reclong":"27.133330","geolocation":{"type":"Point","coordinates":[27.13333,38.3]}} +,{"name":"Segowlie","id":"23476","nametype":"Valid","recclass":"LL6","mass":"6930","fall":"Fell","year":"1853-01-01T00:00:00.000","reclat":"26.750000","reclong":"84.783330","geolocation":{"type":"Point","coordinates":[84.78333,26.75]}} +,{"name":"Selakopi","id":"23481","nametype":"Valid","recclass":"H5","mass":"1590","fall":"Fell","year":"1939-01-01T00:00:00.000","reclat":"-7.233330","reclong":"107.333330","geolocation":{"type":"Point","coordinates":[107.33333,-7.23333]}} +,{"name":"Seldebourak","id":"23483","nametype":"Valid","recclass":"H5","mass":"150","fall":"Fell","year":"1947-01-01T00:00:00.000","reclat":"22.833330","reclong":"4.983330","geolocation":{"type":"Point","coordinates":[4.98333,22.83333]}} +,{"name":"Semarkona","id":"23487","nametype":"Valid","recclass":"LL3.00","mass":"691","fall":"Fell","year":"1940-01-01T00:00:00.000","reclat":"22.250000","reclong":"79.000000","geolocation":{"type":"Point","coordinates":[79,22.25]}} +,{"name":"Sena","id":"23495","nametype":"Valid","recclass":"H4","mass":"4000","fall":"Fell","year":"1773-01-01T00:00:00.000","reclat":"41.716670","reclong":"-0.050000","geolocation":{"type":"Point","coordinates":[-0.05,41.71667]}} +,{"name":"Senboku","id":"23496","nametype":"Valid","recclass":"H6","mass":"866","fall":"Fell","year":"1993-01-01T00:00:00.000","reclat":"39.438330","reclong":"140.511670","geolocation":{"type":"Point","coordinates":[140.51167,39.43833]}} +,{"name":"Seoni","id":"23500","nametype":"Valid","recclass":"H6","mass":"20000","fall":"Fell","year":"1966-01-01T00:00:00.000","reclat":"21.683890","reclong":"79.500830","geolocation":{"type":"Point","coordinates":[79.50083,21.68389]}} +,{"name":"Seres","id":"23501","nametype":"Valid","recclass":"H4","mass":"8500","fall":"Fell","year":"1818-01-01T00:00:00.000","reclat":"41.050000","reclong":"23.566670","geolocation":{"type":"Point","coordinates":[23.56667,41.05]}} +,{"name":"Serra de Magé","id":"23502","nametype":"Valid","recclass":"Eucrite-cm","mass":"1800","fall":"Fell","year":"1923-01-01T00:00:00.000","reclat":"-8.383330","reclong":"-36.766670","geolocation":{"type":"Point","coordinates":[-36.76667,-8.38333]}} +,{"name":"Sete Lagoas","id":"23504","nametype":"Valid","recclass":"H4","mass":"350","fall":"Fell","year":"1908-01-01T00:00:00.000","reclat":"-19.466670","reclong":"-44.216670","geolocation":{"type":"Point","coordinates":[-44.21667,-19.46667]}} +,{"name":"Sevilla","id":"23508","nametype":"Valid","recclass":"LL4","mass":"180","fall":"Fell","year":"1862-01-01T00:00:00.000","reclat":"37.416670","reclong":"-6.000000","geolocation":{"type":"Point","coordinates":[-6,37.41667]}} +,{"name":"Sevrukovo","id":"23509","nametype":"Valid","recclass":"L5","mass":"101000","fall":"Fell","year":"1874-01-01T00:00:00.000","reclat":"50.616670","reclong":"36.600000","geolocation":{"type":"Point","coordinates":[36.6,50.61667]}} +,{"name":"Sfax","id":"23512","nametype":"Valid","recclass":"L6","mass":"7000","fall":"Fell","year":"1989-01-01T00:00:00.000","reclat":"34.750000","reclong":"10.716670","geolocation":{"type":"Point","coordinates":[10.71667,34.75]}} +,{"name":"Shalka","id":"23521","nametype":"Valid","recclass":"Diogenite","mass":"4000","fall":"Fell","year":"1850-01-01T00:00:00.000","reclat":"23.100000","reclong":"87.300000","geolocation":{"type":"Point","coordinates":[87.3,23.1]}} +,{"name":"Sharps","id":"23525","nametype":"Valid","recclass":"H3.4","mass":"1265","fall":"Fell","year":"1921-01-01T00:00:00.000","reclat":"37.833330","reclong":"-76.700000","geolocation":{"type":"Point","coordinates":[-76.7,37.83333]},":@computed_region_cbhk_fwbd":"40",":@computed_region_nnqa_25f4":"921"} +,{"name":"Shelburne","id":"23529","nametype":"Valid","recclass":"L5","mass":"18600","fall":"Fell","year":"1904-01-01T00:00:00.000","reclat":"44.050000","reclong":"-80.166670","geolocation":{"type":"Point","coordinates":[-80.16667,44.05]}} +,{"name":"Shergotty","id":"23530","nametype":"Valid","recclass":"Martian (shergottite)","mass":"5000","fall":"Fell","year":"1865-01-01T00:00:00.000","reclat":"24.550000","reclong":"84.833330","geolocation":{"type":"Point","coordinates":[84.83333,24.55]}} +,{"name":"Sheyang","id":"23531","nametype":"Valid","recclass":"L6","mass":"605","fall":"Fell","year":"1976-01-01T00:00:00.000","reclat":"33.650000","reclong":"120.066670","geolocation":{"type":"Point","coordinates":[120.06667,33.65]}} +,{"name":"Shikarpur","id":"23534","nametype":"Valid","recclass":"L6","mass":"3679.7","fall":"Fell","year":"1921-01-01T00:00:00.000","reclat":"25.850000","reclong":"87.577500","geolocation":{"type":"Point","coordinates":[87.5775,25.85]}} +,{"name":"Shuangyang","id":"23582","nametype":"Valid","recclass":"H5","mass":"3900","fall":"Fell","year":"1971-01-01T00:00:00.000","reclat":"43.500000","reclong":"125.666670","geolocation":{"type":"Point","coordinates":[125.66667,43.5]}} +,{"name":"Shupiyan","id":"23583","nametype":"Valid","recclass":"H6","mass":"5000","fall":"Fell","year":"1912-01-01T00:00:00.000","reclat":"33.716670","reclong":"74.833330","geolocation":{"type":"Point","coordinates":[74.83333,33.71667]}} +,{"name":"Shytal","id":"23584","nametype":"Valid","recclass":"L6","mass":"3200","fall":"Fell","year":"1863-01-01T00:00:00.000","reclat":"24.333330","reclong":"90.166670","geolocation":{"type":"Point","coordinates":[90.16667,24.33333]}} +,{"name":"Siena","id":"23586","nametype":"Valid","recclass":"LL5","mass":"3700","fall":"Fell","year":"1794-01-01T00:00:00.000","reclat":"43.116670","reclong":"11.600000","geolocation":{"type":"Point","coordinates":[11.6,43.11667]}} +,{"name":"Sikhote-Alin","id":"23593","nametype":"Valid","recclass":"Iron, IIAB","mass":"23000000","fall":"Fell","year":"1947-01-01T00:00:00.000","reclat":"46.160000","reclong":"134.653330","geolocation":{"type":"Point","coordinates":[134.65333,46.16]}} +,{"name":"Silao","id":"23594","nametype":"Valid","recclass":"H5","mass":"1710","fall":"Fell","year":"1995-01-01T00:00:00.000","reclat":"20.933330","reclong":"-101.383330","geolocation":{"type":"Point","coordinates":[-101.38333,20.93333]}} +,{"name":"Silistra","id":"55584","nametype":"Valid","recclass":"Achondrite-ung","mass":"0.15","fall":"Fell","year":"1917-01-01T00:00:00.000","reclat":"44.116670","reclong":"27.266670","geolocation":{"type":"Point","coordinates":[27.26667,44.11667]}} +,{"name":"Simmern","id":"23603","nametype":"Valid","recclass":"H5","mass":"1222","fall":"Fell","year":"1920-01-01T00:00:00.000","reclat":"49.983330","reclong":"7.533330","geolocation":{"type":"Point","coordinates":[7.53333,49.98333]}} +,{"name":"Sinai","id":"23606","nametype":"Valid","recclass":"L6","mass":"1455","fall":"Fell","year":"1916-01-01T00:00:00.000","reclat":"30.900000","reclong":"32.483330","geolocation":{"type":"Point","coordinates":[32.48333,30.9]}} +,{"name":"Sindhri","id":"23611","nametype":"Valid","recclass":"H5","mass":"8400","fall":"Fell","year":"1901-01-01T00:00:00.000","reclat":"26.216670","reclong":"69.550000","geolocation":{"type":"Point","coordinates":[69.55,26.21667]}} +,{"name":"Sinnai","id":"23613","nametype":"Valid","recclass":"H6","mass":"2000","fall":"Fell","year":"1956-01-01T00:00:00.000","reclat":"39.300000","reclong":"9.200000","geolocation":{"type":"Point","coordinates":[9.2,39.3]}} +,{"name":"Sioux County","id":"23614","nametype":"Valid","recclass":"Eucrite-mmict","mass":"4100","fall":"Fell","year":"1933-01-01T00:00:00.000","reclat":"42.583330","reclong":"-103.666670","geolocation":{"type":"Point","coordinates":[-103.66667,42.58333]},":@computed_region_cbhk_fwbd":"19",":@computed_region_nnqa_25f4":"2351"} +,{"name":"Sitathali","id":"23616","nametype":"Valid","recclass":"H5","mass":"1600","fall":"Fell","year":"1875-01-01T00:00:00.000","reclat":"20.916670","reclong":"82.583330","geolocation":{"type":"Point","coordinates":[82.58333,20.91667]}} +,{"name":"Sivas","id":"23617","nametype":"Valid","recclass":"H6","mass":"40000","fall":"Fell","year":"1989-01-01T00:00:00.000","reclat":"39.824670","reclong":"36.135830","geolocation":{"type":"Point","coordinates":[36.13583,39.82467]}} +,{"name":"Sixiangkou","id":"23619","nametype":"Valid","recclass":"L5","mass":"630","fall":"Fell","year":"1989-01-01T00:00:00.000","reclat":"32.433330","reclong":"119.866670","geolocation":{"type":"Point","coordinates":[119.86667,32.43333]}} +,{"name":"Ski","id":"23621","nametype":"Valid","recclass":"L6","mass":"850","fall":"Fell","year":"1848-01-01T00:00:00.000","reclat":"59.733330","reclong":"10.866670","geolocation":{"type":"Point","coordinates":[10.86667,59.73333]}} +,{"name":"Slavetic","id":"23626","nametype":"Valid","recclass":"H5","mass":"1708","fall":"Fell","year":"1868-01-01T00:00:00.000","reclat":"45.683330","reclong":"15.600000","geolocation":{"type":"Point","coordinates":[15.6,45.68333]}} +,{"name":"Slobodka","id":"23645","nametype":"Valid","recclass":"L4","mass":"2750","fall":"Fell","year":"1818-01-01T00:00:00.000","reclat":"55.000000","reclong":"35.000000","geolocation":{"type":"Point","coordinates":[35,55]}} +,{"name":"Soheria","id":"23660","nametype":"Valid","recclass":"OC","mass":"72.900000000000006","fall":"Fell","year":"1960-01-01T00:00:00.000","reclat":"27.133330","reclong":"84.066670","geolocation":{"type":"Point","coordinates":[84.06667,27.13333]}} +,{"name":"Soko-Banja","id":"23661","nametype":"Valid","recclass":"LL4","mass":"80000","fall":"Fell","year":"1877-01-01T00:00:00.000","reclat":"43.666670","reclong":"21.866670","geolocation":{"type":"Point","coordinates":[21.86667,43.66667]}} +,{"name":"Sologne","id":"23663","nametype":"Valid","recclass":"H5","mass":"54","fall":"Fell","year":"1860-01-01T00:00:00.000","reclat":"47.366670","reclong":"1.733330","geolocation":{"type":"Point","coordinates":[1.73333,47.36667]}} +,{"name":"Sołtmany","id":"53829","nametype":"Valid","recclass":"L6","mass":"1066","fall":"Fell","year":"2011-01-01T00:00:00.000","reclat":"54.008830","reclong":"22.005000","geolocation":{"type":"Point","coordinates":[22.005,54.00883]}} +,{"name":"Sone","id":"23667","nametype":"Valid","recclass":"H5","mass":"17100","fall":"Fell","year":"1866-01-01T00:00:00.000","reclat":"35.166670","reclong":"135.333330","geolocation":{"type":"Point","coordinates":[135.33333,35.16667]}} +,{"name":"Songyuan","id":"23668","nametype":"Valid","recclass":"L6","mass":"36900","fall":"Fell","year":"1993-01-01T00:00:00.000","reclat":"45.250000","reclong":"125.000000","geolocation":{"type":"Point","coordinates":[125,45.25]}} +,{"name":"Sopot","id":"23670","nametype":"Valid","recclass":"OC","mass":"958","fall":"Fell","year":"1927-01-01T00:00:00.000","reclat":"44.416670","reclong":"23.500000","geolocation":{"type":"Point","coordinates":[23.5,44.41667]}} +,{"name":"Soroti","id":"23671","nametype":"Valid","recclass":"Iron, ungrouped","mass":"2050","fall":"Fell","year":"1945-01-01T00:00:00.000","reclat":"1.700000","reclong":"33.633330","geolocation":{"type":"Point","coordinates":[33.63333,1.7]}} +,{"name":"St. Caprais-de-Quinsac","id":"23081","nametype":"Valid","recclass":"L6","mass":"360","fall":"Fell","year":"1883-01-01T00:00:00.000","reclat":"44.750000","reclong":"0.050000","geolocation":{"type":"Point","coordinates":[0.05,44.75]}} +,{"name":"St. Christophe-la-Chartreuse","id":"23082","nametype":"Valid","recclass":"L6","mass":"5500","fall":"Fell","year":"1841-01-01T00:00:00.000","reclat":"46.950000","reclong":"-1.500000","geolocation":{"type":"Point","coordinates":[-1.5,46.95]}} +,{"name":"St. Denis Westrem","id":"23083","nametype":"Valid","recclass":"L6","mass":"700","fall":"Fell","year":"1855-01-01T00:00:00.000","reclat":"51.050000","reclong":"3.750000","geolocation":{"type":"Point","coordinates":[3.75,51.05]}} +,{"name":"St. Germain-du-Pinel","id":"23087","nametype":"Valid","recclass":"H6","mass":"4000","fall":"Fell","year":"1890-01-01T00:00:00.000","reclat":"48.016670","reclong":"-1.150000","geolocation":{"type":"Point","coordinates":[-1.15,48.01667]}} +,{"name":"St. Louis","id":"23089","nametype":"Valid","recclass":"H4","mass":"1000","fall":"Fell","year":"1950-01-01T00:00:00.000","reclat":"38.700000","reclong":"-90.233330","geolocation":{"type":"Point","coordinates":[-90.23333,38.7]},":@computed_region_cbhk_fwbd":"18",":@computed_region_nnqa_25f4":"2223"} +,{"name":"St. Mark's","id":"23090","nametype":"Valid","recclass":"EH5","mass":"13780","fall":"Fell","year":"1903-01-01T00:00:00.000","reclat":"-32.016670","reclong":"27.416670","geolocation":{"type":"Point","coordinates":[27.41667,-32.01667]}} +,{"name":"St. Mary's County","id":"23091","nametype":"Valid","recclass":"LL3.3","mass":"24.3","fall":"Fell","year":"1919-01-01T00:00:00.000","reclat":"38.166670","reclong":"-76.383330","geolocation":{"type":"Point","coordinates":[-76.38333,38.16667]},":@computed_region_cbhk_fwbd":"45",":@computed_region_nnqa_25f4":"424"} +,{"name":"St. Mesmin","id":"23092","nametype":"Valid","recclass":"LL6","mass":"8300","fall":"Fell","year":"1866-01-01T00:00:00.000","reclat":"48.450000","reclong":"3.933330","geolocation":{"type":"Point","coordinates":[3.93333,48.45]}} +,{"name":"St. Michel","id":"23093","nametype":"Valid","recclass":"L6","mass":"17000","fall":"Fell","year":"1910-01-01T00:00:00.000","reclat":"61.650000","reclong":"27.200000","geolocation":{"type":"Point","coordinates":[27.2,61.65]}} +,{"name":"St.-Chinian","id":"23097","nametype":"Valid","recclass":"L6","mass":"134.30000000000001","fall":"Fell","year":"1959-01-01T00:00:00.000","reclat":"43.433330","reclong":"2.950000","geolocation":{"type":"Point","coordinates":[2.95,43.43333]}} +,{"name":"Ställdalen","id":"23712","nametype":"Valid","recclass":"H5","mass":"34000","fall":"Fell","year":"1876-01-01T00:00:00.000","reclat":"59.933330","reclong":"14.950000","geolocation":{"type":"Point","coordinates":[14.95,59.93333]}} +,{"name":"Stannern","id":"23713","nametype":"Valid","recclass":"Eucrite-mmict","mass":"52000","fall":"Fell","year":"1808-01-01T00:00:00.000","reclat":"49.283330","reclong":"15.566670","geolocation":{"type":"Point","coordinates":[15.56667,49.28333]}} +,{"name":"Stavropol","id":"23717","nametype":"Valid","recclass":"L6","mass":"1500","fall":"Fell","year":"1857-01-01T00:00:00.000","reclat":"45.050000","reclong":"41.983330","geolocation":{"type":"Point","coordinates":[41.98333,45.05]}} +,{"name":"Ste. Marguerite","id":"23099","nametype":"Valid","recclass":"H4","mass":"4960","fall":"Fell","year":"1962-01-01T00:00:00.000","reclat":"50.766670","reclong":"3.000000","geolocation":{"type":"Point","coordinates":[3,50.76667]}} +,{"name":"Sterlitamak","id":"23724","nametype":"Valid","recclass":"Iron, IIIAB","mass":"325000","fall":"Fell","year":"1990-01-01T00:00:00.000","reclat":"53.666670","reclong":"55.983330","geolocation":{"type":"Point","coordinates":[55.98333,53.66667]}} +,{"name":"Stolzenau","id":"23726","nametype":"Valid","recclass":"Stone-uncl","fall":"Fell","year":"1647-01-01T00:00:00.000","reclat":"52.533330","reclong":"9.050000","geolocation":{"type":"Point","coordinates":[9.05,52.53333]}} +,{"name":"Stratford","id":"23728","nametype":"Valid","recclass":"L6","mass":"50","fall":"Fell","year":"1974-01-01T00:00:00.000","reclat":"41.200000","reclong":"-73.133330","geolocation":{"type":"Point","coordinates":[-73.13333,41.2]},":@computed_region_cbhk_fwbd":"24",":@computed_region_nnqa_25f4":"1040"} +,{"name":"Strathmore","id":"23729","nametype":"Valid","recclass":"L6","mass":"13400","fall":"Fell","year":"1917-01-01T00:00:00.000","reclat":"56.583330","reclong":"-3.250000","geolocation":{"type":"Point","coordinates":[-3.25,56.58333]}} +,{"name":"Stretchleigh","id":"23732","nametype":"Valid","recclass":"Stone-uncl","mass":"10400","fall":"Fell","year":"1623-01-01T00:00:00.000","reclat":"50.383330","reclong":"-3.950000","geolocation":{"type":"Point","coordinates":[-3.95,50.38333]}} +,{"name":"St-Robert","id":"23733","nametype":"Valid","recclass":"H5","mass":"25400","fall":"Fell","year":"1994-01-01T00:00:00.000","reclat":"45.968610","reclong":"-72.978060","geolocation":{"type":"Point","coordinates":[-72.97806,45.96861]}} +,{"name":"Success","id":"23736","nametype":"Valid","recclass":"L6","mass":"3500","fall":"Fell","year":"1924-01-01T00:00:00.000","reclat":"36.483330","reclong":"-90.666670","geolocation":{"type":"Point","coordinates":[-90.66667,36.48333]},":@computed_region_cbhk_fwbd":"15",":@computed_region_nnqa_25f4":"955"} +,{"name":"Suchy Dul","id":"23737","nametype":"Valid","recclass":"L6","mass":"815.3","fall":"Fell","year":"1969-01-01T00:00:00.000","reclat":"50.538060","reclong":"16.263330","geolocation":{"type":"Point","coordinates":[16.26333,50.53806]}} +,{"name":"Suizhou","id":"23738","nametype":"Valid","recclass":"L6","mass":"260000","fall":"Fell","year":"1986-01-01T00:00:00.000","reclat":"31.616670","reclong":"113.466670","geolocation":{"type":"Point","coordinates":[113.46667,31.61667]}} +,{"name":"Sulagiri","id":"48951","nametype":"Valid","recclass":"LL6","mass":"110000","fall":"Fell","year":"2008-01-01T00:00:00.000","reclat":"12.666670","reclong":"78.033330","geolocation":{"type":"Point","coordinates":[78.03333,12.66667]}} +,{"name":"Sultanpur","id":"23741","nametype":"Valid","recclass":"L/LL6","mass":"1710.5","fall":"Fell","year":"1916-01-01T00:00:00.000","reclat":"25.933330","reclong":"84.283330","geolocation":{"type":"Point","coordinates":[84.28333,25.93333]}} +,{"name":"Sungach","id":"23745","nametype":"Valid","recclass":"H5","mass":"637","fall":"Fell","year":"1935-01-01T00:00:00.000","reclat":"44.866670","reclong":"133.166670","geolocation":{"type":"Point","coordinates":[133.16667,44.86667]}} +,{"name":"Supuhee","id":"23760","nametype":"Valid","recclass":"H6","mass":"7235","fall":"Fell","year":"1865-01-01T00:00:00.000","reclat":"26.716670","reclong":"84.216670","geolocation":{"type":"Point","coordinates":[84.21667,26.71667]}} +,{"name":"Sutter's Mill","id":"55529","nametype":"Valid","recclass":"C","mass":"992.5","fall":"Fell","year":"2012-01-01T00:00:00.000","reclat":"38.803890","reclong":"-120.908060","geolocation":{"type":"Point","coordinates":[-120.90806,38.80389]},":@computed_region_cbhk_fwbd":"8",":@computed_region_nnqa_25f4":"1187"} +,{"name":"Sylacauga","id":"23773","nametype":"Valid","recclass":"H4","mass":"5560","fall":"Fell","year":"1954-01-01T00:00:00.000","reclat":"33.188360","reclong":"-86.294500","geolocation":{"type":"Point","coordinates":[-86.2945,33.18836]},":@computed_region_cbhk_fwbd":"29",":@computed_region_nnqa_25f4":"1637"} +,{"name":"Tabor","id":"23776","nametype":"Valid","recclass":"H5","mass":"7540","fall":"Fell","year":"1753-01-01T00:00:00.000","reclat":"49.400000","reclong":"14.650000","geolocation":{"type":"Point","coordinates":[14.65,49.4]}} +,{"name":"Tadjera","id":"23778","nametype":"Valid","recclass":"L5","mass":"9000","fall":"Fell","year":"1867-01-01T00:00:00.000","reclat":"36.183330","reclong":"5.416670","geolocation":{"type":"Point","coordinates":[5.41667,36.18333]}} +,{"name":"Tagish Lake","id":"23782","nametype":"Valid","recclass":"C2-ung","mass":"10000","fall":"Fell","year":"2000-01-01T00:00:00.000","reclat":"59.704440","reclong":"-134.201390","geolocation":{"type":"Point","coordinates":[-134.20139,59.70444]}} +,{"name":"Tahara","id":"23784","nametype":"Valid","recclass":"H4/5","mass":"1000","fall":"Fell","year":"1991-01-01T00:00:00.000","reclat":"34.720000","reclong":"137.305000","geolocation":{"type":"Point","coordinates":[137.305,34.72]}} +,{"name":"Takenouchi","id":"23789","nametype":"Valid","recclass":"H5","mass":"720","fall":"Fell","year":"1880-01-01T00:00:00.000","reclat":"35.383330","reclong":"134.900000","geolocation":{"type":"Point","coordinates":[134.9,35.38333]}} +,{"name":"Talampaya","id":"23791","nametype":"Valid","recclass":"Eucrite-cm","mass":"1421","fall":"Fell","year":"1995-01-01T00:00:00.000"} +,{"name":"Tambakwatu","id":"23795","nametype":"Valid","recclass":"L6","mass":"10500","fall":"Fell","year":"1975-01-01T00:00:00.000","reclat":"-7.750000","reclong":"112.766670","geolocation":{"type":"Point","coordinates":[112.76667,-7.75]}} +,{"name":"Tamdakht","id":"48691","nametype":"Valid","recclass":"H5","mass":"100000","fall":"Fell","year":"2008-01-01T00:00:00.000","reclat":"31.163330","reclong":"-7.015000","geolocation":{"type":"Point","coordinates":[-7.015,31.16333]}} +,{"name":"Tané","id":"23801","nametype":"Valid","recclass":"L5","mass":"905","fall":"Fell","year":"1918-01-01T00:00:00.000","reclat":"35.433330","reclong":"136.233330","geolocation":{"type":"Point","coordinates":[136.23333,35.43333]}} +,{"name":"Taonan","id":"23873","nametype":"Valid","recclass":"L5","mass":"3850","fall":"Fell","year":"1965-01-01T00:00:00.000","reclat":"45.400000","reclong":"122.900000","geolocation":{"type":"Point","coordinates":[122.9,45.4]}} +,{"name":"Tatahouine","id":"23884","nametype":"Valid","recclass":"Diogenite","mass":"12000","fall":"Fell","year":"1931-01-01T00:00:00.000","reclat":"32.950000","reclong":"10.416670","geolocation":{"type":"Point","coordinates":[10.41667,32.95]}} +,{"name":"Tathlith","id":"23885","nametype":"Valid","recclass":"L6","mass":"2500","fall":"Fell","year":"1967-01-01T00:00:00.000","reclat":"19.383330","reclong":"43.733330","geolocation":{"type":"Point","coordinates":[43.73333,19.38333]}} +,{"name":"Tauk","id":"23887","nametype":"Valid","recclass":"L6","mass":"6000","fall":"Fell","year":"1929-01-01T00:00:00.000","reclat":"35.133330","reclong":"44.450000","geolocation":{"type":"Point","coordinates":[44.45,35.13333]}} +,{"name":"Tauti","id":"23888","nametype":"Valid","recclass":"L6","mass":"21000","fall":"Fell","year":"1937-01-01T00:00:00.000","reclat":"46.716670","reclong":"23.500000","geolocation":{"type":"Point","coordinates":[23.5,46.71667]}} +,{"name":"Tenham","id":"23897","nametype":"Valid","recclass":"L6","mass":"160000","fall":"Fell","year":"1879-01-01T00:00:00.000","reclat":"-25.733330","reclong":"142.950000","geolocation":{"type":"Point","coordinates":[142.95,-25.73333]}} +,{"name":"Tennasilm","id":"23898","nametype":"Valid","recclass":"L4","mass":"28500","fall":"Fell","year":"1872-01-01T00:00:00.000","reclat":"58.033330","reclong":"26.950000","geolocation":{"type":"Point","coordinates":[26.95,58.03333]}} +,{"name":"Thal","id":"23908","nametype":"Valid","recclass":"H6","mass":"342","fall":"Fell","year":"1950-01-01T00:00:00.000","reclat":"33.400000","reclong":"70.600000","geolocation":{"type":"Point","coordinates":[70.6,33.4]}} +,{"name":"Thika","id":"54493","nametype":"Valid","recclass":"L6","mass":"14200","fall":"Fell","year":"2011-01-01T00:00:00.000","reclat":"-1.002780","reclong":"37.150280","geolocation":{"type":"Point","coordinates":[37.15028,-1.00278]}} +,{"name":"Thuathe","id":"23976","nametype":"Valid","recclass":"H4/5","mass":"45300","fall":"Fell","year":"2002-01-01T00:00:00.000","reclat":"-29.333330","reclong":"27.583330","geolocation":{"type":"Point","coordinates":[27.58333,-29.33333]}} +,{"name":"Tianzhang","id":"23984","nametype":"Valid","recclass":"H5","mass":"2232","fall":"Fell","year":"1986-01-01T00:00:00.000","reclat":"32.946670","reclong":"118.990000","geolocation":{"type":"Point","coordinates":[118.99,32.94667]}} +,{"name":"Tieschitz","id":"23989","nametype":"Valid","recclass":"H/L3.6","mass":"28000","fall":"Fell","year":"1878-01-01T00:00:00.000","reclat":"49.600000","reclong":"17.116670","geolocation":{"type":"Point","coordinates":[17.11667,49.6]}} +,{"name":"Tilden","id":"23998","nametype":"Valid","recclass":"L6","mass":"74800","fall":"Fell","year":"1927-01-01T00:00:00.000","reclat":"38.200000","reclong":"-89.683330","geolocation":{"type":"Point","coordinates":[-89.68333,38.2]},":@computed_region_cbhk_fwbd":"34",":@computed_region_nnqa_25f4":"1762"} +,{"name":"Tillaberi","id":"23999","nametype":"Valid","recclass":"L6","mass":"3000","fall":"Fell","year":"1970-01-01T00:00:00.000","reclat":"14.250000","reclong":"1.533330","geolocation":{"type":"Point","coordinates":[1.53333,14.25]}} +,{"name":"Timochin","id":"24004","nametype":"Valid","recclass":"H5","mass":"65500","fall":"Fell","year":"1807-01-01T00:00:00.000","reclat":"54.500000","reclong":"35.200000","geolocation":{"type":"Point","coordinates":[35.2,54.5]}} +,{"name":"Tirupati","id":"24009","nametype":"Valid","recclass":"H6","mass":"230","fall":"Fell","year":"1934-01-01T00:00:00.000","reclat":"13.633330","reclong":"79.416670","geolocation":{"type":"Point","coordinates":[79.41667,13.63333]}} +,{"name":"Tissint","id":"54823","nametype":"Valid","recclass":"Martian (shergottite)","mass":"7000","fall":"Fell","year":"2011-01-01T00:00:00.000","reclat":"29.481950","reclong":"-7.611230","geolocation":{"type":"Point","coordinates":[-7.61123,29.48195]}} +,{"name":"Tjabe","id":"24011","nametype":"Valid","recclass":"H6","mass":"20000","fall":"Fell","year":"1869-01-01T00:00:00.000","reclat":"-7.083330","reclong":"111.533330","geolocation":{"type":"Point","coordinates":[111.53333,-7.08333]}} +,{"name":"Tjerebon","id":"24012","nametype":"Valid","recclass":"L5","mass":"16500","fall":"Fell","year":"1922-01-01T00:00:00.000","reclat":"-6.666670","reclong":"106.583330","geolocation":{"type":"Point","coordinates":[106.58333,-6.66667]}} +,{"name":"Tomakovka","id":"24019","nametype":"Valid","recclass":"LL6","mass":"600","fall":"Fell","year":"1905-01-01T00:00:00.000","reclat":"47.850000","reclong":"34.766670","geolocation":{"type":"Point","coordinates":[34.76667,47.85]}}] From 1175bb39272dbdbcde684dc157bbc48dd94f5f30 Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Thu, 22 May 2025 18:02:45 -0700 Subject: [PATCH 82/94] added new asteroids link --- D0-Pandas_Example.ipynb | 5 +++-- 1 file changed, 3 insertions(+), 2 deletions(-) diff --git a/D0-Pandas_Example.ipynb b/D0-Pandas_Example.ipynb index d24e187..d61e7f0 100644 --- a/D0-Pandas_Example.ipynb +++ b/D0-Pandas_Example.ipynb @@ -35,7 +35,8 @@ "source": [ "import requests\n", "import pandas as pd\n", - "meteorites = requests.get('https://data.nasa.gov/resource/y77d-th95.json').json()\n", + "# meteorites = requests.get('https://data.nasa.gov/resource/y77d-th95.json').json()\n", + "meteorites = requests.get('https://raw.githubusercontent.com/a8ksh4/python_workshop/refs/heads/main/SAMPLE_DATA/y77d-th95.json').json()\n", "mets = pd.DataFrame(meteorites)\n", "mets.head()" ] @@ -201,7 +202,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.6" + "version": "3.12.3" } }, "nbformat": 4, From beaa4bc1c85b008fb0357fa7c6d0f83e3c5d6569 Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Thu, 12 Jun 2025 17:12:38 -0700 Subject: [PATCH 83/94] updates --- F-Flask_Web_Server.ipynb | 142 +++++++++++++++++++++++++++++++++++++++ 1 file changed, 142 insertions(+) diff --git a/F-Flask_Web_Server.ipynb b/F-Flask_Web_Server.ipynb index e69de29..bce260c 100644 --- a/F-Flask_Web_Server.ipynb +++ b/F-Flask_Web_Server.ipynb @@ -0,0 +1,142 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Section F - Flask Web Server\n", + "\n", + "Feedback: https://forms.gle/Le3RAsMEcYqEyswEA\n", + "\n", + "Flask is a lightweight WSGI web application framework. It is designed to make getting started quick and easy, with the ability to scale up to complex applications.\n", + "\n", + "We'll make a simple web page mixing flask and dash to make a dashboard and render some cool graphs! See the Plotly_Express notebook for some info on generating nice graphs.\n", + "\n", + "**Our Plan**:\n", + "* We'll dive into Plotly Express to learn about how to make and customize plots\n", + "* We'll look at a simple Dash app\n", + "* And we'll make a more complex Dash app\n", + "\n", + "**References**: \n", + "* [Flask User Guide](https://flask.palletsprojects.com/en/stable/)\n", + "\n", + "## A Minimal First Flask Page:\n", + "Put the following code into a python file and run it:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from flask import Flask\n", + "\n", + "app = Flask(__name__)\n", + "\n", + "@app.route(\"/\")\n", + "def hello_world():\n", + " return \"

Hello, World!

\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Routing\n", + "Using the route decorator lets us specify which function is used to generate a page at each URL path. E.g. below for mypage.com/ and mypage.com/hello:\n", + "\n", + " @app.route('/')\n", + " def index():\n", + " return 'Index Page'\n", + "\n", + " @app.route('/hello')\n", + " def hello():\n", + " return 'Hello, World'\n", + "\n", + "\n", + "## Templates\n", + "We can create an html file with our page content and propagate each part of using labels like \"plot0_html\" and \"plot1_html\". Then use matching arguments in the render_template function in your script to pass in the needed code for each graph.\n", + "\n", + "Create ./templates/index.html with the following contents:\n", + "\n", + " \n", + " \n", + " \n", + " Plotly Example\n", + " \n", + " \n", + "

Plotly Graph

\n", + " {{ plot0_html | safe }}\n", + "\n", + "

Another Plotly Graph

\n", + " {{ plot1_html | safe }}\n", + " \n", + " \n", + "\n", + "And a python script with the following code:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#!/usr/bin/env python3\n", + "\n", + "from flask import Flask, render_template\n", + "import plotly.offline as pyo\n", + "import plotly.graph_objs as go\n", + "\n", + "app = Flask(__name__)\n", + "\n", + "@app.route('/')\n", + "def index():\n", + " # Create a Plotly figure\n", + " data0 = [go.Scatter(x=[1, 2, 3], y=[4, 2, 7])]\n", + " fig0 = go.Figure(data=data0)\n", + "\n", + " data1 = [go.Line(x=[1, 2, 3], y=[4, 5, 7])]\n", + " fig1 = go.Figure(data=data1)\n", + "\n", + " # Generate HTML representation of the plot\n", + " plot0_html = pyo.plot(fig0, output_type='div')\n", + " plot1_html = pyo.plot(fig1, output_type='div')\n", + "\n", + " # Render the template with the plot\n", + " return render_template('index.html',\n", + " plot0_html=plot0_html,\n", + " plot1_html=plot1_html)\n", + "\n", + "if __name__ == '__main__':\n", + " app.run(debug=True)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Run the script and open the printed URL with your browser and you should see two graphs. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "name": "python", + "version": "3.12.3" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From 31ec74f4a3187c49553c870a699f00f76ec4d44e Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Thu, 12 Jun 2025 17:13:14 -0700 Subject: [PATCH 84/94] updates --- G-Databases_Working_With.ipynb | 46 ++++++++++++++++++++++++++++++++-- 1 file changed, 44 insertions(+), 2 deletions(-) diff --git a/G-Databases_Working_With.ipynb b/G-Databases_Working_With.ipynb index 64bc695..b3a6418 100644 --- a/G-Databases_Working_With.ipynb +++ b/G-Databases_Working_With.ipynb @@ -10,13 +10,55 @@ "Feedback: https://forms.gle/Le3RAsMEcYqEyswEA\n", "\n", "**Topics**:\n", + "* Basics\n", "* Sqlite\n", " * Pandas DB Functions\n", "* Create Table\n", "* Drop Table\n", "* Update Rows\n", "\n", - "There are\n", + "There are many types of database: \n", + "* SQl Flavors - Sqlite, MariaDB, PosgreSQL, MySQL, MS SQL, ...\n", + "* NoSQL Flavors - Mongo DB, Elastic, Redis, ...\n", + "\n", + "**Why use databases?**\n", + "* In a business enveronment, a database hosted on a server can be shared by multiple people with updates and queries happenning in parallel. Databases are disigned to host and interacte with large volumes of data and can provide baked-in solutions like [ACID transactions](https://www.mongodb.com/resources/basics/databases/acid-transactions#what-are-acid-transactions).\n", + "* You may need to save your own data when not working with it and storing it in sqlite is one of many ways to serialize it and save it in a file. Pandas dataframes can contain datasets so large they cannot be exported as xlxs (or csv?) files. \n", + "\n", + "## Basics\n", + "To work with a database from python, we do a couple of things:\n", + "* import database library\n", + "* Create a connection to the database - this could be a file path for sqlite, or a server name with login and password for a hosted database like Postgres. \n", + "* Create a cursor from the connection - The cursor is what we use to run commands, inserts, updates, queries and retreive results. \n", + "* Alternatively, pass the connection to a tool like pandas and let it generate queries/updates/inserts for you. \n", + "\n", + "A couple examples:\n", + "\n", + "**Sqlite**\n", + "\n", + " import sqlite3\n", + " \n", + " with sqlite3.connect('example.db') as conn:\n", + " cursor = conn.cursor()\n", + " cursor.execute('SELECT name FROM sqlite_master WHERE type=\"table\";')\n", + " print(cursor.fetchall())\n", + "\n", + "**Postgres**\n", + "\n", + " import psycopg2\n", + "\n", + " with psycopg2.connect(\n", + " dbname=\"your_db\",\n", + " user=\"your_user\",\n", + " password=\"your_password\",\n", + " host=\"localhost\",\n", + " port=\"5432\"\n", + " ) as conn:\n", + " with conn.cursor() as cursor:\n", + " cursor.execute(\"SELECT * FROM your_table LIMIT 5;\")\n", + " print(cursor.fetchall())\n", + "\n", + "\n", "\n", "## Mathematical Operations\n", "These are the basic mathematical functoins that are included in python without importing any libraries." @@ -24,7 +66,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "id": "3afc46da", "metadata": {}, "outputs": [ From b1d6c5e9b74095b46c6f503c6cc6b132987e63f3 Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Thu, 12 Jun 2025 17:14:28 -0700 Subject: [PATCH 85/94] new --- R-Regex.ipynb | 275 ++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 275 insertions(+) create mode 100644 R-Regex.ipynb diff --git a/R-Regex.ipynb b/R-Regex.ipynb new file mode 100644 index 0000000..a863b80 --- /dev/null +++ b/R-Regex.ipynb @@ -0,0 +1,275 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "c48fc4fb", + "metadata": {}, + "source": [ + "# Section R - Regex\n", + "\n", + "Regex is a text matching language that can be used with python\n", + "* Advanced pattern matching when looking for a fixed set of characters won't help\n", + "* Matching repeating groups with specific permutations\n", + "* Matching sub-groups of patterns in a string\n", + "* Input validation - use regex to facilitate pass-lists of options/input\n", + " * email address validation\n", + " * phone number validation\n", + " * ...\n", + "* Advanced text replacement.\n", + "\n", + "Resources for learning:\n", + "* http://regex101.com – live testing with explanation\n", + "* http://pythex.org – Python-flavored regex testing\n", + "\n", + "Let's do an email input validation example:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "79184851", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "<>:3: SyntaxWarning: invalid escape sequence '\\-'\n", + "<>:3: SyntaxWarning: invalid escape sequence '\\-'\n", + "/tmp/ipykernel_1063836/1384070319.py:3: SyntaxWarning: invalid escape sequence '\\-'\n", + " valid_email = '[a-zA-Z0-9_\\-\\.]+\\.[a-zA-Z0-9\\-]+\\.(com|org|net|us|cn)'\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "What's your email address?\n" + ] + } + ], + "source": [ + "import re\n", + "\n", + "valid_email = r'[a-zA-Z0-9_\\-.]+@[a-zA-Z0-9\\-]+.(com|org)'\n", + "print(\"What's your email address?\")\n", + "email = input()\n", + "print(\"You entered:\", email)\n", + "if re.match(valid_email, email):\n", + " print(\"This is a valid email address!\")\n", + "else:\n", + " print(\"This is NOT a valid email address!\")\n" + ] + }, + { + "cell_type": "markdown", + "id": "9c2e04ba", + "metadata": {}, + "source": [ + "## Example regex patterns/characters\n", + "Regex uses special characters or patterns to match types of characters, whitespace, boundaries, and groups.\n", + "\n", + "```\n", + "Pattern\t Meaning Example Match \n", + ". Any character except newline a.b → acb, a7b \n", + "^ / $\t Start / end of line ^Hi matches lines starting with \"Hi\" \n", + "\\d / \\w\t Digit / Word char \\d = 0–9, \\w = a–z, A–Z, _ \n", + "\\s Whitespace (space, tab, etc.)\t\n", + "+, *, ?\t 1+ / 0+ / 0 or 1 repeats a+, a*, a? \n", + "{n} / {m,n} Exactly n / Between m and n \\d{4} → 4 digits \n", + "[abc]\t a, b, or c gr[ae]y → gray, grey \n", + "[^abc]\t Not a, b, or c\n", + "( ) Grouping\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2b90e4b2", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "hello\n" + ] + } + ], + "source": [ + "# Search for a pattern in a string\n", + "m = re.search(r'\\d+', 'There are 15 cats')\n", + "print(m.group()) # '15'\n", + "\n", + "# Find all occurrences of a pattern in a string\n", + "nums = re.findall(r'\\d+', 'There are 15 cats and 7 dogs')\n", + "print(nums) # ['15', '7']\n", + "\n", + "# Substitute a pattern in a string\n", + "clean = re.sub(r'\\s+', ' ', 'Too many spaces')\n", + "print(clean) # 'Too many spaces'\n", + "\n", + "# Grouping data to pick out specific parts\n", + "m = re.match(r'(\\w+): (\\d+)', 'Age: 30')\n", + "print(m.group(1)) # 'Age'\n", + "print(m.group(2)) # '30'\n", + "\n", + "# Using flags to modify regex behavior\n", + "re.findall(r'dog', 'Dog DOG dog', flags=re.IGNORECASE)\n", + "# ['Dog', 'DOG', 'dog']" + ] + }, + { + "cell_type": "markdown", + "id": "de24bfee", + "metadata": {}, + "source": [ + "## Problem Set\n", + "It can help to copy the text to the regex101 site and play with regex there to get things to match and then move the working regex to your code here." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ec3b252e", + "metadata": {}, + "outputs": [], + "source": [ + "# Extract All Numbers From a String\n", + "text = \"In 2023, there were 150 cats and 30 dogs.\"\n", + "\n", + "# your solution here\n", + "# hint \\d+\n", + "\n", + "print(\"The numbers are:\", all_numbers)\n", + "if set(all_numbers) == {'2023', '150', '30'}:\n", + " print(\"All numbers extracted correctly!\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e65cc4fe", + "metadata": {}, + "outputs": [], + "source": [ + "# Extract All Words Starting with a Capital Letter\n", + "text = \"Alice went to Wonderland with Bob and Charlie.\"\n", + "\n", + "# your solution here\n", + "# hint \\b[A-Z][a-z]*\\b\n", + "\n", + "print(\"The capitalized words are:\", capitalized_words)\n", + "if set(capitalized_words) == {'Alice', 'Bob', 'Charlie', 'Wonderland'}:\n", + " print(\"All capitalized words extracted correctly!\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e05aafe2", + "metadata": {}, + "outputs": [], + "source": [ + "# Find all words ending with 'ing'\n", + "text = \"I am singing while walking and then running.\"\n", + "\n", + "# your solution here\n", + "# hint \\b\\w+ing\\b\n", + "\n", + "print(\"The words ending with 'ing' are:\", ing_words)\n", + "if set(ing_words) == {'singing', 'walking', 'running'}:\n", + " print(\"All 'ing' words extracted correctly!\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b45f29ae", + "metadata": {}, + "outputs": [], + "source": [ + "# Replace all dashes with underscores\n", + "text = \"this-is_some-kind_of-text\"\n", + "\n", + "# your solution here\n", + "# hint re.sub\n", + "\n", + "print(\"The modified text is:\", modified_text)\n", + "if modified_text == \"this_is_some_kind_of_text\":\n", + " print(\"Dashes replaced with underscores correctly!\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e480a88d", + "metadata": {}, + "outputs": [], + "source": [ + "# Validate US zip codes\n", + "codes = [\"12345\", \"9876\", \"123456\"]\n", + "\n", + "# your solution here\n", + "\n", + "print(\"Valid zip codes are:\", valid_zip_codes)\n", + "if set(valid_zip_codes) == {'12345'}:\n", + " print(\"All valid zip codes extracted correctly!\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "dd17ef9f", + "metadata": {}, + "outputs": [], + "source": [ + "# Use regex to pick the email addresses out from the following text\n", + "text = \"Contact me at test@example.com or foo.bar99@domain.co\"\n", + "\n", + "# your soultion here\n", + "\n", + "print(\"The emails are:\", emails)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0f5e0ff6", + "metadata": {}, + "outputs": [], + "source": [ + "# Replace dates like MM/DD/YYYY with YYYY-MM-DD.\n", + "dates = (\"01/15/2020, 12/31/2019, 07/04/2021\")\n", + "\n", + "# your solution here\n", + "\n", + "print(\"The reformatted dates are:\", reformatted_dates)\n", + "if set(reformatted_dates) == {'2020-01-15', '2019-12-31', '2021-07-04'}:\n", + " print(\"The dates were reformatted correctly!\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.3" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} From 3454621dc3ae39965f21fe0daa0a82bf3f24343d Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Thu, 12 Jun 2025 17:29:29 -0700 Subject: [PATCH 86/94] cleanup formatting --- R-Regex.ipynb | 59 ++++++++++++++++++++++++--------------------------- 1 file changed, 28 insertions(+), 31 deletions(-) diff --git a/R-Regex.ipynb b/R-Regex.ipynb index a863b80..7752b8b 100644 --- a/R-Regex.ipynb +++ b/R-Regex.ipynb @@ -29,25 +29,7 @@ "execution_count": null, "id": "79184851", "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "<>:3: SyntaxWarning: invalid escape sequence '\\-'\n", - "<>:3: SyntaxWarning: invalid escape sequence '\\-'\n", - "/tmp/ipykernel_1063836/1384070319.py:3: SyntaxWarning: invalid escape sequence '\\-'\n", - " valid_email = '[a-zA-Z0-9_\\-\\.]+\\.[a-zA-Z0-9\\-]+\\.(com|org|net|us|cn)'\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "What's your email address?\n" - ] - } - ], + "outputs": [], "source": [ "import re\n", "\n", @@ -69,18 +51,33 @@ "## Example regex patterns/characters\n", "Regex uses special characters or patterns to match types of characters, whitespace, boundaries, and groups.\n", "\n", - "```\n", - "Pattern\t Meaning Example Match \n", - ". Any character except newline a.b → acb, a7b \n", - "^ / $\t Start / end of line ^Hi matches lines starting with \"Hi\" \n", - "\\d / \\w\t Digit / Word char \\d = 0–9, \\w = a–z, A–Z, _ \n", - "\\s Whitespace (space, tab, etc.)\t\n", - "+, *, ?\t 1+ / 0+ / 0 or 1 repeats a+, a*, a? \n", - "{n} / {m,n} Exactly n / Between m and n \\d{4} → 4 digits \n", - "[abc]\t a, b, or c gr[ae]y → gray, grey \n", - "[^abc]\t Not a, b, or c\n", - "( ) Grouping\n", - "```" + "* **Pattern**\n", + " * Meaning\n", + " * Example Match \n", + "* **.**\n", + " * Any character except newline\n", + " * a.b → acb, a7b \n", + "* **^ / $**\n", + " * Start / end of line\n", + " * ^Hi matches lines starting with \"Hi\" \n", + "* **\\d / \\w**\n", + " * Digit / Word char\n", + " * \\d = 0–9, \\w = a–z, A–Z, _ \n", + "* **\\s**\n", + " * Whitespace (space, tab, etc.)\t\n", + "* **+**, **\\***, **?**\n", + " * 1+ / 0+ / 0 or 1 repeats \n", + " * a+, a*, a? \n", + "* **{n}** / **{m,n}**\n", + " * Exactly n / Between m and n\n", + " * \\d{4} → 4 digits \n", + "* **[abc]**\n", + " * a, b, or c\n", + " * gr[ae]y → gray, grey \n", + "* **[^abc]**\n", + " * Not a, b, or c\n", + "* **( )**\n", + " * Grouping\n" ] }, { From 983704d5f85b1212baae651f002d010c50a043d1 Mon Sep 17 00:00:00 2001 From: Dan Date: Thu, 12 Jun 2025 17:38:27 -0700 Subject: [PATCH 87/94] Update README.md --- README.md | 11 +++++------ 1 file changed, 5 insertions(+), 6 deletions(-) diff --git a/README.md b/README.md index 15a85e7..e87ab61 100644 --- a/README.md +++ b/README.md @@ -12,17 +12,16 @@ See the Notebooks list below for a more detailed list. ## Current Schedule: We were meeting on wednesdays during October, but due to a scheduling conflict, we'll bo moving to Thursdays. -* Thursday May 01 - 5:30PM New Time! -* Thursday May 08 - 5:30PM -* Thursday May 15 - NO MEETING (writers group) -* Thursday May 22 - 5:30PM -* Thursday May 29 - NO MEETING (special event) -* Thursday Jun 05 - 5:30PM * Thursday Jun 12 - 5:30PM * Thursday Jun 19 - NO MEETING (writers group) * Thursday Jun 26 - NO MEETING (schedule conflict) * Thursday Jul 03 - 5:30PM * Thursday Jul 10 - 5:30PM +* Thursday Jul 17 - NO MEETING (writers group) +* Thursday Jul 24 - NO MEETING (schedule conflict) +* Thursday Jul 30 - NO MEETING (schedule conflict) +* Thursday Aug 07 - 5:30PM +* Thursday Aug 14 - 5:30PM * Thursdays ongoing at 5:30PM except third thursday of each month and special events. Please check the library calendar here to confirm dates/times: **https://engagedpatrons.org/EventsCalendar.cfm?SiteID=7839** From 48d32d9cc68b4a97080e9646a410dfa9846542b6 Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Thu, 26 Jun 2025 16:40:39 -0700 Subject: [PATCH 88/94] Adding threading Images --- images/multithreading-comparison.png | Bin 0 -> 69163 bytes images/multithreading-example1.png | Bin 0 -> 25590 bytes images/multithreading-example2.png | Bin 0 -> 26318 bytes images/multithreading-gil.png | Bin 0 -> 13034 bytes images/threading_vs_processes.png | Bin 0 -> 113090 bytes 5 files changed, 0 insertions(+), 0 deletions(-) create mode 100644 images/multithreading-comparison.png create mode 100644 images/multithreading-example1.png create mode 100644 images/multithreading-example2.png create mode 100644 images/multithreading-gil.png create mode 100644 images/threading_vs_processes.png diff --git a/images/multithreading-comparison.png b/images/multithreading-comparison.png new file mode 100644 index 0000000000000000000000000000000000000000..354b6c7b14372e1622827c02796774d7db1838c2 GIT binary patch literal 69163 zcmeFZcTiN@wmymh1A?faD2RY$5D>{Av?z*5&KU$$l$>)=L_rZjaz-WFM9HxQBxlL7 z$w+K6-O$i);6C@gbI#r8uUGZz{$AaxZMCkwdak+V9N`<^H)g+6QjjJip(Y_BA|jJ{ zD5XL~bUd4g=;-RHqi}^c^IJH4oVIzWZBImWhT`zg5u%v5%S1%a{;?RrAN1w>@-H)8fo-H7oOy*uT3$$9J7S(qFopUtXq#S?HIZ9Xkadv9r{1H6;~o zHK}vjPwbEUWWImD>CJtO!DumzX^DXR=ZD+V;@$YF#0}|o(psC9u9YA@SqgEO1ksNg ze&yXGhkqlo5>PpJ_<7?j`>DgvOMaBc4?hF$ksMC@WgP?Y;f+5ggMAJ!Kel}+dH9(t zoJ@cCsde>#%GZC;zZhWMLwiP6lj_-@_(fI9ez3zdvzQ|y+WKSb+4v7ClW>DCyP;!? z!gmfY(68Myl}S@|`*hUtlMfMT$Xm}4L8qnr9Rj4!KDU!HkzZwdNOBF2HTig!Ps#hl z+42t;n20G(ZlZpd#+dvh?TLP6qM91wbB==j)Sm~ZQQhdId-&|;F~?`)tBs$0lE*)- zO$m#(-r2t*%xnLap55i~s`OR*XP*y9pJZu0Ah|0C>vv2gxI1#OjflN*=$yxihmv*V zN0KJ4&=WJhn(q4N;Uksn-3+U*#CF< z{~s@oHO-)UOgo>x9r<2yf;m-dJBR&{>Y=Go41%H#7_n3Qx72`!yx}MK=BpRxy z7<(9`E2PQF%NOS5MT^)!b959qIeUqbSR|Z*So_#B(PPP|nw7U9BNlD28)yi09xjIrKBO~K#li}uc4uV)XbUHe`3X}60CYfC0O8bD&HLv4zE*}lj&P2+5L4t z`A~7|<$nKO=CbzHAcugPOH}7jzk9bv0HqX?JW=bX7$>Zp)@^HH#rz)!=<4cfZ*Lb6 z5OAxM;Np@`QAtTj(cd`3EMw>BNGoU&A$V24|NfJ3-7T?ACG|9Z6!Joxt3eoy`dVD;2T#fZ7 zCt>wqJ>5S*er-d17Q@5L%yIBITjXre)#$25`J95V9F)W@ueiy4+rUq84!7w)w_gyS zo(ipcq3WuaxlWGB30&~SnjAUs^YA#kxBJ9mlw+2Inb=zRzG<;F5+xO6F{1RHXMrwP z%A9bNI^uWJk2~?fvi#t3d;bmKAvJ$<% zt0Sf9Tpo`PTPKpA*1(?^yt&P7ScDsPC5xx?_4UB7lotz`3w~F$Hfo8Wv~clCPX3vv zKv(d5tfH-3u}OBbt`7#;?9$j7-LaZ$Z@}+gMEH<>phTck3>8Yo3J1$;C2So$mcE=E zmPpb-tYK9NyZt*R4>VVTRPjdrSCYrcQrSda;HG8dV+DKhdooiO)DZ_*#+|X@LjCgn zgoO8W)hFtsmxrHui{4F)b7(W?@mt>g*|ql0kIrhZm9Ik_m%Q*vI`!2957>^lRw{yIW4hqa!v)a z-Cd=;x}9)O+d|IqZpCem$;le=2p#eL%?3=B?nRX0+DX^SwYrnXMyjxQw|7QIIHuO}V4veH@{Xl>j$7rgv{tR+H z$bJ1FbiA-gl%eW2cc1-k0ik?<+mln1?I3rNR3(>}9jmg~r~QQ?RhHkg`$1aqnAy%! zK9$pw5}w|``Z$lB`)FCMfT~htn6T|Q{W4!i@-D6kp*-$mjj5XY*tS8lOB{C{vUKi4 zNj#UCnc25*-=?RL-@cWN&DF_2V-QIxG7H~Yw~p_&GXv&nk#auWhzcW zcxlnzcCLLFF;tvb3NM9J@TbFW4<~;vO?%9vJG|?DzB*vUs(iVKkw&P;^_K4Y93$F< zGiS5&rFd3GjI_R1RYglm_MTpo7PJz+QgZ*`8yH;oa8b-y&_qaGJ@*bq-;o+7Jdi8a|NX3eA> zM~e-733)ta;)dvJN((uXB6TDf-8Xx6pZ=jsZLt{bS*r@E$S{{%HUSmE3f9QIuyIcJ z8dw+=4^KX?-3)klt(OF4g8VwQ?C`j=am%xAb<>h3_Alp|>)qQ2cDw0TL`3EzJA-?M zm}APSd00J)JtpAx{0F3%&#o)EK@&}hj@LZ21QRyzBpqp# zkmkYE;OFJaa!2zGjQ5Uvl6$|?vY|@xSkbCG?sn>R?iFN^UxC+BS3*${#&LdVH?LuA zc?73tqvZATT4WUl;en~-DSp9Mljpn?)4S!(e@~<*At%^}&_mfude-b$vdk*E)jAz4 zE%o|JdB^QFsl`fHxyWlX7yVb2*w@xs*&-gUZsXFoFc4#}#yVhf7|@AW2u?y3+%a}N{C z4V+yKpW^MY%Bhyh^2%)74ywG++WW~={ri%ECOR^+{Q(o02KH3LPEk2m=3WvrD|qap zm%Gb)v~%S4auxRR%Sn3!(_kN=cpuz(_m$GAkLrf<;RG$pLg!zfgL;Axvz;j|V(|v5 z5W;p$>ecYuA^jh+5S81%WDf^EX%M0prSyGy+FM%tSQCuXiZLN(A_2AEI@3?p&BBW7h~2AERdnn!Ll@_FOYF%t%q60W z?cQ+nP7HVG4Td z1MpIT(`&91<>>j%p*UqmN11oT=g;R9V^;U)Ow2A&B%koUFHdrys(N#^+&Wg!(yhYD zB$>mD@cUqY?0X)LnZF=)yU9W_;F3ho_otJhwU}GY#$VCPBc+PP{bv{%%`Z?q+Fsr( zD4wD%Mjx~_Dq2VRz#~oKC0uIDOf(+mdUSjVpc3!-o`R>&l`VG~^WGW#65t&i`Mjwr zeF7tL*3l+i!Jj7}5SQLBmMAQIIpR6vn8g%0u(UEeNywihCTaTGHRNPCavSj1{D#VKz zV?CWm1uC2|G^wA%!mza^c^Zlc#~VKktLANc`5)l z`2@Q#JZJ&yQp@9J-q8EovkR#qL6{Cr+S>}JSc5my=hC^VhZ@7aA^vner*bm{zghHp zu`*W3+{vc0cx|Xez&vKmDHbCnq)?q$Y*B^0A22<%;pj@a9Jn-;JxV@RzYrSwRU@+` z|9(JbFgo#(4mAZAA{qSAi8hnQCF`>-IC&f;-tt{UL*2FQt@%vL#eqU3K5nALsC=b- zF(84!g?n&i`>EU;C=I)`H%}6 zjN7-tTq2wLMpE>}=t|}i>XRQsFzyZ#Ul3VFqA?=uYY_Q1J!UTI8`toB`Lcud>|aTd z^(G+m5ZSl9;B{mkJ&Idv%IzO6wswiM?zk0{kW;a{5THSD-Rh0%MN%L1#{MHm6Fm#| zAuqNV%<^fn;(>8EMnGBM$fq1`&zTfg$*;Ldv46~p4^W4CRWhtv=V*JLcN z%4pQqf#3y(&Z(a^29EZW7nNA^?1ZH^w#uC*)JG!URM5KbMs;`hW`cXgdUK-$Mw9iY zDdwy@n5C$B;gO9wTJ+V&Wjs9x~2h=f-CGx`KlBh7?!Vwb5T)H`+GlqHi#v1`|I%-&x`lnJA~|cO3=j z0vP>+vo0+iVf_pbKMS!c-UDOSW!ya?lDcyn{j^6mE3y6b8KjIH7QzH1fHiPGKn{&( z$c6S>dZQ@i&;?EIv;Fyg-p1XtZ_aX6+g3gjp>Q6_*jbAk<#^a7AB@#y3!|+T`Hi z@cF(|?#52^>;sLI9{4YQ8l?*1k-y)HpdC7&pQym4Ry^ejs%(iAvhK@tZ-`vHkxbZL za(&U?-uSd-rDT5_pc=KcVf;D5Y>Qx^O!aSdqz=FJ0W6&84t~P>z}_frqD@wI`+ioU zKvJY-n)FI}&c1zz0xkX%Ua#*#>gP3Uz>bPd`Ur?Ti&pqoiH@odn zXAq!|s>kaIiRM*ym3tq>-fuskMsw(2TR&YL!oxb^-mjkuW>v8NX%RyLXweL!svU`& zr}%#RrQ%pGg_rZ<1UC|uJqu(HnHOiOoQC+iKVC;trPI!kGb)ZL$9L)o3gv0sNFD(3 zC+6Y>6=w$K%a?vdU}oW!TQ^hmga$5tc<-jMF_PBh7#!Z(`!>@NnC@RfT)hN5l=@j`Od-!IoLo|fl19fjD5ZnzeTrqzl2YXPk?@OXSrPtW@L`l5c_ z90^C=2bJ7y0giG}2?GA-D}q4662Se@v5M%mQK=cDfuHH(ul)7$Dzv*(*J&yn8ExYu z*9v{WTIsy8MmVk~UX{gUUTrag;i@-1yX$A$VtR3uvlZx-QakUFaB&nOUM4Y)-~6Y| z;+(+KJl^EbGpUc4higS0R@SR^t($az?jCDGEuFHob+^aS3d=>N&f7^!TVryNj=cs$OXDk`+MQf_2t3u-T zW>V0s?{b+D2?RiE!iYWEYgUC}tf4vftja2jN-ltj^c^(jmxei>DwE9&1AbY&z^U1t z!!<&afz*Gf&A`Bgsjy$%K@qI4vwG~j=JNK=8ei8g>*SE89t^WAodnY@~#Pb<3uF>@?+)Q#_@d-dwNt@HRQ7BQCDMYPP>a zeC;RC7Zl;ElJ8$Tk}Vs;gg_upp7aA&C&s{Qwlz9I-2JVuZ%^r(5Am4?A1-&THXOTl z+eImkuIJqPWj`5|eO*%?FXt3cjoHt|zb&565x?IUoD!FQVS#t040ZSO3%Cz|Ku5GUGx=q=gkP%$~KdX<|tn~og!JKp&Nk5$Hd zGy(VWpt9TvIY6fguqEpwPX{$G{w=0WI5%y=o_HoLmPGg;tjHQFYBt;l_I=H~{}6yd z#n~*|v&zCN?zXwo*M^OLVOnGfmK=(|gsa>8YB5xB1uF6TaSUY~lg16+zn_404_t1@ zew$X=)FGS&fJzjbB&J&coAPyA-uSAhvtWW^BH7Tvig`{}ws@K$uj3;gUEL{`cYuxe zIvOh0Yt8^*|2DZp?%pwh5_dl^BCG~wjBjd?f7&@VBS|tgBIbW^wPfa<^tA*5V{DF0 zMAXd}op&Hcen8IHX+_z0By8wEXv#B%xGQexs(uieE6U)thRx%$Lg_11$Nco|*xg#} z*-n{ct3~~Qw0td;MZ#uh)Q)5!~2RqxRxk@76RdxaIZv%{*H`;CyE95NdlUCvht#&cSWC@1tb` zVLYptdgEhBv0bpwxl8Q+Z?6j5+(}WP6|wudS(BTa%OW2mmvCD@jLIMvjc=Dsq?sHQ2%%gQ3XFItJ`%T@#Qzc=PtTx;KP1fJ77Rd!t8^)w=IE zEe*BhnHPJHdJ`zf5lfvZ0Ve%c-EYq#33*qV!TV=ba#?tdc5}ZdB6ibl#dd#2v;kj} z>p5QsBo--VbT6gvZO}RVmZx4wXpx5);g$Q!K?gGD;|dys$f??eazd=g)j&cs!qCj6 zBi^~Hd%m#a z;J}kN2fJsR0Pc&!TImlL(v70f?)qg4w70PEIvi=A@hY_^S4xMoleXrL?TR@q7CmnL z4Ko!6ke9R3wn&08kx3k~1zc*O$q8o~3JNt+_sURB<%o}flJ1~VnV%hwN zwJ!2n;@x>?*i194TeY`MutHS=yjHw|SKhCzKDJnymDpdPUc54zH4Ia@jdc5JUhcGR zdg`>mA5C75Vr-Kw1XTIpU~?uqj1Yu(~AwK#A(;1RnUILGNaF+o!mz07AmYh;KP zB|qfyyvMF$qWKm+EL))iw%?xo2esKSNhjEmXu8Y7yUsR3Q|i_Cp|dXFgF7X2*PhSF zCF)DRGNUK1t)RSqZd=Rl|8TQT9L)E4*7iZavW)&#%`OhDnw#o$Bqvdz+qAFsp2Q;O zq_I#(BGts&o-|%RaEz+pcfb2srNax?CCrZAHJbdXhB}Et*&gq)I3OObME(YBaIi6( z3E$roFj;RTAcsBf(u%s%*^E^+1b~|cef<+$qX;&yQw?k z59o{EK*3IpsxbD}TSnxsid8>0xNzZvyC*w4`}X$s;NT$W5x={Vq(fQcEi5gUmzM(q z0#sF1XONq2o;o@)uV3E-ImyEVAH{33yS==)vXT%QYJztX5fN#LJ-T%D};mX=V0%hCWZCnpl%S%zxb?(S|g)uRx8tC13! zP?mXzvhUx&R~KGqWCZgUv>Hk8dR|jgGp&1w3bHf|t2}TEy+~eOUXE}MVPRoL#-y?` zovKG(S&!kBbh6;Zw^vsmf(~-#%;I4FT#4<}bn*>u?iDnO5X^9I@&|>u(tq^=Oihtr zyN%uIH!LqNNA@n9q2jg?wx(upbR}hH>!GG6ra@>X)3dW-|Jn_q;7^~vXdppnnL(U5 zapEJbm_}MRF)?xAW!}4ETsPR*K!h5q@+>#VL3khF0nI4Hi!!4P(z?0yN^G#J6YE@o z>}+V2q^`@wm*iD%ii=l*GzJSTWX1Z{&kw1_QTh-hFr7lP@aSlELv58pL{3$1&@db*7I`N-AF?her)^K&j^&&N8A3gH$@Bqu0NjLW(>2ococ1^s= z$EO;?L{3f)dStgy)M*lu>%@fXva;29fAKLsQ>L7~<=&Sc7CZjz^vw!?^X*IoKBXYxVU~!e`I+0 z;LuQW`5Ord3BW_?nVDf?t3O^H17)fxKYvk2HmPf1U;sZzsfO&GYmeuXAjO4%vI&-A zIaC046I10qU;X-|I>*IwAMZCQDfCHeAPs)kIiC2JH2>TMqgk{e`W#jVJa;vi}Bj^0J$(eK3)Tv zmFT0btxX*`yE;+p%|RSUr>Cr?#b&6kuP^@M7n8~=&-K3*c%O&;`0)c^`nTSNP*z21 zp3L<0-28ld2ZyWTZUuS!M~@wY7X`(|%ggJ*gZfPEd=F1gb&lSqP*zS34ms7EtgO;W zT`sP!`Xx4BDk>`0*j*0ruHgM3NCCzd5fdBk=&%NX>bB(Of1JToLl9E!TYJ1%WMm`_ zPZ-mSiJCWDxNZt$8GqXrM)FD8Tdezl~{l}FwQ50sjjY$jG8~)ey;uAThhT&`#De*aeDu0 zcfTr6lly_fmTvC~xYE_NbS?bV_n4TN_d4}0AUSbxa5#wSL+FJ6gFnGnuL~;nqmUyEmp2hTGkB!i?#+-yOO7x3+L< zBQ!A)4Xy#E87J;8C?@7kIM@d_qo@B-GUy-s_q{Ae5$$mzQws}2mF_#)`sJcxVtadg z`OH|VPk-Cu62*ygd<$~*x-40^m+-Tozn%5boAiHcLPVs0-_UT_oAWoS{;3}?|9AL5 zjZ6OrFV1UU#kb6x80Y5$N+i^vfd%%93)Bk07EY@R~f3mk<0EL|k%0CM1GOSJ2^iC$!b$sihAxAJW5eP_C`lXKSEp@rv{`{pks;D$T~|a`t$gan^ej4kLRbk zs#yvl+znioq6L%yy)5soPdCek1xog4>gnkzDSgI9e6Elhye#Dj$s5vQE9r45lA{p{ zV;8~{jp19KQ}uzd2=6K%KKtFx7lk@pJj#VSo+~3F#B`*`r&m@aJg_#zbax=PYaqiT zpC3M+P9k&s^{baoO9MvM)*aS54D>4Ja-Uzkc=6cDvtb>N2QL2%rBi02m>cWqeIHf-x$sp&O=Nw>p$j{aHeFLK4lNF0Wz5eZ6VJ?Cyn1y6F=uoweU}I-*f*f`ERVtHAncd9$v@}!b-Epa-2QaRztZZw$ z#+C3MGWgE&u+Yt$op9eY{Ze-tInC?N#VuxLW@vUPcHsb2K}$<3&)BJ^tvv|o@FeNw z;E<3S-n)?4C4m_wI`YZqWgXNFO-)UX*KGhcLGzWP&nlDwk8a=be+sLO_S##{!hZ~5 zVrFISfA<5jSX9*IZrS$%0f2@Z(*$d4YfXOopD%W~_UqTL1*vg>ShY1Za@MMVujArc zFVw+fX|G<@I(@h;KR!zbT{AE+XeE}~)00esVnY%5mwD+U=h^p4eI8u9cJ1TGkB<-} z{{G~lFQGN#uu(GGkJ5J>klDvS*!AzOfaRYdC4IuJg#K&53~Xy_B7)#Y=cTl(d`Bux zF;PKLQFB-M_dXuaq7aw9ne@`1+n}P6=9J`N!{_Vw@82&hn9Uxo`IeconM9Ng+4kGl zuRf=bK7Q~weYKszu$$&y?PB!)z)D`ac#(ad?d2kL5b@l&@x+H7eCTEM%4j(tiKsI@ zLPj;dn5sR6wdi;7W>8NZPN*eNWVwC0M?fls~t?ZLYGPs{V8cmjCX`MN``K3yYDDi zDHEdsp_G-D!bIu60-u$Vn#!@ywpmqG1vm-T<&G5e#0fk64*nH%wB!WLU((eTkjh2- zBSyf2t-_41(D9Q0So)i03~dKYxCH ze!lh1n@}cpK|w(T0==0O47Db9e+L~q#=^?V%D^yj2~h++fLJV67cbB785$dxmMprN z%RF#)R8&;m!%)2b{P}ZaQgKrOV(*6!72)Xf#-d($EN)}Y+|2Alr0<(ITg$`!4w4aJ zVL$8ZW5!M>9Y0(iu%jh_?%>fnD6dN1Q-O3W3^FQKRx9r>a=L9TgvZBw2AEoG{_cXv zK6`VbIh+$JLWm>+C%(-4$-rYRMoRKDa}0_PEUm?F-@ZyqD{_a8i)$I`!#EN950cM! zjV{0veEIU_?AfzWX0~3Wl!m4gr~#1~8Mcm&me9Y^pRGSbe^u1s_vU=}%&CIHLb%xU z71Uz;7~OZ2zH%YS(8ehE;up-jesokE@L07E@&4XUBxA1o&Wd~t{}mxCJ&3AmEQr`FPF=EbE8XA32e-!FiDl31w`s(o3n~(3@zfa6}qVBMP`l00IcoF*tSsFqa zy@lqQaNpCX%+imc!iRRynU+ZFeTPpzHxJ`WU|?Vcy`_akW>%IuNBEzilrz-cdt6{) zKa~WY4a{iMnO_jB+S{|AwnV@ptuq5i{_yeRvoiXlU^A}*0$OI%MydI6ym z^6Z7oY&^;dio{736}PAAKeMM49p7?0OnR=aA`Pdu;Fdh*Q(wRqU)EcZauhP3>S2)i z1-tok@WOHGQeNT5KZv}Z5`nf(^zwlvDMtzODgI|BO4VGFpLuCsTb#bj4=(>%ndY^X zl@{lBinf z#6|Q4IayiItrLC7iF~X{VE_oFM5Nf8r+YM^Ms!?IgA{+p23i>p-d@r$Bx380%n;I zuaR|ZMjmbca*FLpSWYeHI!EZsW0-~}BTS0qu17NcacPpfHh*=0J-SZJ06@Zrk(fdF zFFe5vfs^j9_z7Xu2qqTtP|`o>pL5I|nPmE(e~ocC6tqcxW>Psf`PUeSL%~S^r3>t* z)?ldrClvqhbYO-5->lB0_vh5qS!fFfw=%47$%~C0F0vfv)+cIN0E?a

owt-ZBuV0U|@Fb#N%Ky_b`jX#u=~S)toZbGT@{f`VlDBS<=y z_`C56&I>*4=H`n)Y%~T+lU(c2u=}8W2_>+=eecROakmRou zHiro0FApklh3E{V1pqq`^EI+`o<4gPv7efo+lfXSrl{P1@SwSvfmr4+y8RQ98>xVz z33#2u+{Z#3%m2dI)U+|165>4J%6}V29Uu}IW?kJOm`YBb2F4n2GA;0B zfr0XFZe?qNLUNKaAr+OCz(1i--awtbc<};isi2^sKOA<|M9cX$%Kv8bk3y0+H#cF| zv~_iX>Vv9~h9(x|qbJXvQCoLMQHG)YSlHOo0p93j6#Ft+EPONA00oPh-kQg7o{72paqLA+LiBMQR}L-MhEtwm;vU2Fx#r zLl6)5b}-)azW{DP?fcZyQXCc)SYxP^+J}Zj>FMu$6qN~qRyqKrdiwg2T)KV55w@>+ zSy<{JD);s}Zp^m9fBAWNgLx)?_)$3C6c-%Y;q~g+m?8sgVh~%p17RMjFR&+w^kZw?W`(a_y-Hn9(?EjV zWc4rd=$AdQw4}Xo;X2yX);150Q^m%{GReUG5cM3Zl#sm!B{q^d{eFIa!$U(*$utIi z$;@o+?G?CjLoTOZT1u*?)C?%=b@fzsYzq%6y?5agqja-wB%DM7b4gKwz}s95`bYix zjT<+v@;_GslL7F)X$7!)XA#Y zFLB?o%F^J(h&K0A6Buvb9%*h~h|%m-tPT!7H??p2?3o#V%ss!eO*=U%8FF-5eZw7;hN!1&x=9KLWSnP#H2$Y_aYkM;OJflm3(A67;Se|}P2w+h3<(P}bCWj^{1AQ) zMWKug-mxHsG|22)-=DlwNZSBLW-vc(zVHFODo40kQwZ}4O1sP<<3W-(NM}qkz@)uC zLAC%V&thYBfoOvUqP3^Kz`%j_BWR$mr1ZGrn*s?aB(8j_EQTR*aTdae)$NsDWaK>S zxdc(iM_C%7K7i-{ZLZZ&mnP!nLExwhpaMQ&!6Fm7PNWW!m}FK~Ry_B%1w6~C;uYqW zmMR`sABDe6OiYZAD*{N3YwPOZ5P)Dlp~+LdNSfVWZmHVzep5eog7l{6v$(i;-h|KKsfh_AVyQmub5M|C&^2*6y6v^81`ycTACi1s`)6ccAS@K=lb4sr z5&q}^e_{~ivmUc8*hwI>JUlAa;&q=3$0i?;Uxy+#NO&EI z2t)8R0uquEoDg+fo2(PHW>D4Ejt&oZT%T?N)hWg+*EcTpka1F9{FNe`nzL9wrk+Zk z17Qe;OQoY?FucB#jNf=>YMLnO$N}gA+y|T(gh)89>c+cT`fqs#%Zkj-mT=$BoNr(N zHVK5kx3XA`e=q#j6yY3Y50D^JvR5}YHl*QPEgYrou9SZI?*$>&PgX`|9->BNWo1Bs zEUf0+v$Sq&lWniYQ~s+L;C>|>+5R^~xdBWya6+>`-%&u8$w^P|4DkIo=<&Z5>i?L6 zS%Nq%M+_K=d)0Yvn)PY2lSL2Wp9p-eDy=%%kRzw&^v-Ri8HkF51}^ri^gVNx8w2Sn zdlwDAhKh%#Wy|~**TM5qKWp>Cemzg!(-(0HthOH>gD3-mYJam(W-6i~;HHlW-ywbS ziC|Pmm3CXh5^+dz(9|ljRSD1VHp~$Lk8+<*GzU8w){xwLI+-3$NWZLMk_kJKD`k{Q zN!SVXepr3sjR*)K@VgHG^MCIFCK-iYA<5iKG^G7>huCA_vwg#!*ak1~b?_m-n zBB}!t^?9RpnZvx@T)eZWh)9$7RiH)<490-A1E&_b`{xmT#nxz+!c%woul;!f69uF> z@9ja;{QP`*9)1Z)wY2Wuo}NaRSLmUqDs-8$Xc3D8jxqa2AJ> z3BZSDL+BQvIDft?O_2`D{76GDS7=*+xXc^J$3%I$3{U^ItCkwHy==rO%FAL1VsiVvPXMutcXO-m*V8H#fhX2-~4s?z9Z8 zIn#&-Qc{iVT3T9ISkuyyk{h@rS}`ZKO_L)f7jNCVwXj4oG&FSL`0;bE4mX472ZEIt z>N$SuK)@erL3a_CUZUdR6g|RQ;=Dfs){1C6G1MnKJe|zq1B5Ory1Ujux3jh;;<(TQxE;jDt$G^kRVLo?#7gFe$0u111(s7# zu9HFL{I*f*Lo4bKjL_`t=*R)~1~BQmI$#hdC#QPK4<9~&(wL7g6pgn6m_X-+oq&1( z-^`gK7sEdfIs?hR9MORj7}N0gr)N+r)$$-s6P@$HpG|b+?wNO3Z^19<4X@J4qhq2p zPah>%Y!OC@4v#(_{(Q{;albM{bnb3*7vE_=Mf@nbuBkUaG@x7|m)?#bz>>!}Pi@?@lE?mj8nG2QThN{`xpZ)wDX5L}XX zMzBiUsx%ZiH(hrGDR}?t?GR-h4F>dQI3pe!;Lb|5gRe2(N57-20HvGg1{qjPgq3sa zgaY@<9{Dwbs$uxSMk)Lw_O7v&OUram=;#BQTRG^kUcQlID2EMiOiQ>OHsz`~BlZ2EE^B6^@ziEijf8a2_F+^%xiK)n;yDG^K# z4cNm4h>(r2pgv;*d9RH=D5rZU2Cw!Z(y+aWJV^ez+y zkUq2uKKm!byw<$!WIG*9Y%IsePFUp=#%*hnbwy~Gjn1ow{ZIQPUaagc;&8wJVHj)y z_G8p}-E8kPXEP_qqFy*ow!MCQz!ptoFuF4q$!S`0vYv@nV6?A$aZ5m;jDfGOlD9tT z71foM(Zs%{I`P|rGc4EJntJUsFx-^}gpK(#vi%slgXWE8+m;4z6g%7Xj7)q#)s+}g zkIl`RLIyfHeMZDykHhh0nX)nGPXXM#Gjk%G#aqz@-#U`j(U}7=Hdv{6x}qvZ)?0}9 zDb+a|&$al(c_E;21~M}1#>C?E$jA?5g$SLMCl@-3U=!a5PJj#UJepW|d1@}__MW`9 z=TZ+2v3H8bz6YuhZP)t`pR8jsLY3lHxCXv{SF4XDVV*M<8ruTs$&^p%UByw;eLC-G z!>HRSXZqi6#(pn@iR4FG2O=CQ4us5F^=Kc8&CFip;ECd?+Bh?E(NIatuFcxAV$C}( zYgxdnt^^~LJyO8B5gCWrnu^rp8ZN|i_RAIvm%44oSGcWD5}}s68Wf%i9GoEfeClw+ z`!n*XL`zFrOea#?<4_|_b^C2R5pDW~ZO*!z&GPQMayq?Db)Nf*dkZ6Wst@JB9$!n} zq8<~8D>f^4ND3@5PyO7Yhh7~BgS`%=I_YBd5!+>&rsrnJJ)$<(l(Novg|MGG%Ijwm z8iXTmsKV9VD!unHu93frMt&coqOQJQTSgnNHv+4h-|XG-o^0Y+TF&zHWL1x|X03qB zbwMGU0Zu*_NmL5 z9l8lAF6irO^)9YL_%noqecy{|?FN|}o}3)WOPOR5td{M~mWa&ZwZYqHSRhsf!Y?cx z0`*x-A~QddP~bIOrGDU^dhi_kaYMt>dYX*r4*Q|+aEqvIvs}%vFJ+REVP_4r#;~JA z-fw6oY@sJMly>LeCK9yO^|=~C<{}#3qQ7j$u)|X9SMq4aB>apFS8v@smAN4ygwktY zoSr=B4T?pYn|+|V*3tNlu51e>JD!b&sUY6e_4nZ2>sUAz4>4y7NDQPES` zt-lsZHB=Vkmf*Z-a`?C_X77RI?Md zfiPIUQ4+O*I6JP}w`RYrGfmx3?|V+UefnWYT%L$o%au35oE$q@Y7X@J$qwkq>{3>a z#R&6AM=OR=f&FXUewcOzzwf`~Hrym6yq|wmMB^S==V0dca2|3N;_qdDYMPDOvpl>} z)Vr?RpV7hbDX3!{eaRg^Z$Gi0(z4^Cc0iN4t~XP$chf2>boC)e*1cHxVS~}0F2sB0 z^~n)i^Z1A*Q9~`Qt)cscc&sUR{kK@rgZTZbGR2)bDk36&N-6k-x52`LT*c+$b;kUI zpDV=7dq)&TZOUeMpa-RakIy^5^v>INay#xDw^rWC4E~2NLLrokoU;bnyCEZq}#w-S}ml0#Eg04d6ZY%hMm=~;lJd6 z2{*+5ZVG7LCp0ip?&&fjvB&FkkuJ=0&UphGE!O&J5=beDgW+#A7jWk<(%wN%=-KkE ze2R7CM1=408jkj?3B{i2VXSyhby7;xcEE8L%k<=$2px;y^h4a_86qNTlCShcFPCD9 z)v<^nj>yNZYYUk4Wb^F=<=7w`^@>ws;o#E|oivU#Vg~7C5G!EYE!g=-HuWlAcxhEp67D_spqui#0OmlkWY01mpyswJS)HcRkVcs>!!(6z~ zkX2Ft;ki3Jg>Zp5z}$AVCjfah;am54uQh8fwumIFg~pBw!_iEIuK#*Fwb4>Qbz+7QRz8Z+hRJrwyR@G zj3E(Gr_wnM7^kJB?m&L8Bm`@2; z$eH47)kO8(%{3&+!-VQ4*nA<3ct%_4b=i~Zu1q~di~|0TB=jA5viBQUzbD{l9C+Uz zx2Dh~-`)~4-pTP=BPJq3)BUx7g@gA;dz3Af$?WoHK5ZBoC%yS}(Y#gdqmR1N`h6Zl zLKbYyzyiMby$?WpCc#$pte|7VC>KLNJb%YEdHn(XxvQcy978o1 zT+m!3eY2;`3B{K#GwPjWUao)LEIyJI^^=Wy*bJAo*kc+lLAJT?E~7PB;_hpswz{@4 z6vz4f@e3|#;wGd1n;cp#K|Blleicz+4z~sjW^^7IdK@A8vE$2jiip0v@fXfmH+xxx zBHd~MyIG3Wxh27%zC@#}cRh|%xT!TG8y!Ph7^u6~Ayq}VOiZ`GX1BiE-O9g~BK^~U zt4RjMIby}2d>Vd8&wr#`o?3 z{tDJ-s`sBc8IV*JPB1jk(=#p^uC$|U^x;zZuD*qMUH7#|!k5jx8q?NCqs}ID z8Run1pvx3IHQssPn{}OoCF=zCD$KO7(mf3oKBpIbU31p)D!0rQsH)HDqSBhF2s?>n zx6G9tZsuq65D{U|{xNha?aTKp$WMI#d0)zydh6jzgU79zOqgrQ*25Ch&jeJ_gL8E< zD0j?+eV*ls1MK3Kg1dK~^*&wFI2cZ7Yg~eaxB5oR)$qN|fOA&Gx!q%i7XGunu}hh( zld&P1m$dS>;(l`_8QQK2{EXGPc4*dT%ifUqwSOJ_%KARDQdyfJW9bjv(HU|>9JamK|_bwY*vYq5}bE9d8k zU3^($ARd4B*2SVS=6fjYQKFZaW6I}^mhQ$7kGqTUymx!ylcO zKMT7h;ewCLeER7BV(%^gs%pZ&Q43U3T0lD7gmkA!tE7Z9(kapn3JOR_iF8Oe(hULv z($Wng-Q9JregB^4oaYZXFV2gzKfbv2hPBt4HFM3(x2F7ba>_|iTXt>+Unj1_E*WUx zEYFYO=1}{lvDD?ye{I;`=P4oFa-Snh*lV>vS=y|H_c6Owo5vrVp5e;kf*wUssjO5B1qwi!``DO$~YVK3=c6_0Le(T=$>|yU~%A%0Rg$^x>56ln`6` zyYRy28C*&uUgwwEhRY%SWGk;1blz3czI@RQJp3*ktSFBY1R*1c%w%qy2xd)emQq}w zt|>okS^FwF{!d}D+4b@bMc>~Ae}&fLPv@*kY{!NT&hI+&dsrqnFE@m!H-)GbbOWaB z=>sm3&;N}7Au*wi;5Ub&W?S>nuxipXB6jf63-!ELS2&-|qnuIl2Ppbvq?IEb@XpjPq!XAAu2({%7cti+wl$y%VR#K&`qQ&)_^%r=I^+A4j7M%(rdz0`==hx98Trkc;UxVzyL1Yu0Tmkmk0+zdBLa)ggRp zhkVOi_mB$}4RuXT6UR>PE1pUybLAc{lx#b4J#{nB>(SBk#t1J2YhM*F{)84EP~I&U zFPin>d!sXa{^GoJp~(L`@SeDpdqcah|$G zvkP1Y?9b$oHHYL5%tAM0>Olr%*=RZr1#sNaDhcOq&wD(@3v~vhcZXY-B7d}M&phzUf|zL_^{S{!+SB%@9O?1Z+MeK z8fPN~qiXpl>r)zB2{(&5!-_}n;Z++=Ilkyx&yF}zc&2JfX^wcNH*&Ozc))i%s_*H@oOpl_E)3$7-Uld3Gr5Adk^LyZ zCp%&|@uq~BEOb6a(*PfY9rB-t#qcGfB=Ely!e1Qy5CPQw&@~mwB*au8j@tag{|i4F z@)&KVW+Q%MC^k>kskz7&(uq{-_0=y!zP`c*oY1nswfUGNi~upm);fN~>j z3h{e6!_`HFPWLr=EO`um-cY7fjY7rBJl+~AoTep+aTP&;8y5sSsxkM@geG0A|<+L~A-&3}m99mn!IOem4pRiep=F zhn#$Bt`S3YhvJHs`UDaYgB@8dIBd9rC>VI>&M4!Rq}7DBq8u zo{(tacgqJ5xnD>+d~NO%rC`^R7FKRsoH{s^1IM(ZW6!}Z!`u%^z2w9PeM0U$t;35o z(dzg86X)i8?44N`?ckln`L}Z`VE31}^$gPVwD{IoW(0RtJD%F*=2-^jS^9+@H*P7- z?I-ztV(+cVsH$O`nj%NN8}2+^YE zYigb#$1QEY(07W(F+I;6?du)KquuCS7c#f$`lSn9-6E2}X!Ut;5_(4K9=l*M(0 zIN4eoZaSEm#E1@OMUTPg%6M_+u*#t>K0lf>c;>KP<8Z=h(}8%a_lT*Etr&untM@h8cfPl20sNi$F#i9@_Jj1f}_eap2u>j zw|us&xbvS*=i=9_T^wXXCUZ$OwNo{TUhIf}oR-~NOvahp=jM)bJJJ^Ntl6rvt*>zq zsUME0v5H$;nus2ebNu;qUZb=Pn{27XaPsvc)d*)uzLpH$fA#Ewnj?J6~K#9jFUc%z!MPY2J>Pl}C|`ZAaED`+fV9xgYgMV-;2-8e zWB#fwpV}3xr&-ys=21gUCsl6VPu<(`J-D4t*yeTFyYXP+Rx35CAoKjZTB|mUxd#Rz zpKz5Ptlfb+T`Vbvn=Qj+z;1JP#*)Bc{5rXTH8o9EE{@G=j0MlIpLgr;1KaTbtp(61 zS2jG^!S0aVj>Pq6I+{F<$2lDGPyeL^nlpN|rHss%F7ji)Z7x;E^PG1b9GH>N68H)ERI>oj4|NpGWzxw(;g+q4{^`Y2XXIDcIsbj z(F?YZGwv>pUg?oI-`_Qw zm^uHI2L*GBFjiK^1Umxpx^potm6t4C9UU;^Dk@B)S5dRFDx~Ve7d;U0?8}WBDphEC77roapM8o9Q?*5v>R*g*f{!*BPW)!8{oByhFY?%t!Y{4UW`}s%jyV5;6s@75KiRYnH`XLlz zQ*Uq@CUPL!($aZar;K&}Z$?kCqToKO%1hVfeOT`>j}B^8>U%Nx zCvMFP|1j;tS0^eti+$fNXX|JUsY}9Gm^kwGdNv{{(%5sCJgO|gYW-UL$>i04ua zySJotxSf6btj)h4b6X>|vSY6(I9zfnoJ43;t3;eE0$1y*hf3ICv}$99oJMkWl%D1= z5TZ6#yzTeV6mw{0uFs)S&3Wb|N~zx&5Y8g_F{{gZ`OAHAf8l!=lnPOH{Qjc_WWq9^ zwF`APowqJzBR{IETQYxb@9v?`$*xm){b36AUyW+H+YwFi zDq^%dakSJvi*7Ir-UAj)s{97D8e;L<+mHGiui@>&vXT04{i@w*nN=PiFJpKx<8ig8Y*>4G074eG&TWCx;fS$J1FQUI$H zi~Kx6CF2v6_320z6|4eox;~NnnEhnDZ|~Jt!j)PzH9gJCj3+o}9;0O)G%7sT&dW%4oozw)rXVH$De(awlqhtF0)7(?6G$UBmmP z3E7v6vhL&r#BZEA4o-?`)lKIbq|gs@5Qqz5@`n$-lux8as_io#@yzFI`9$Jz_kI7^ zvZVX&v2c5`6aJHD8QStSmAtMtCmnc=dNnd~G|Y>35jqLtp%k@lXJspL>FKttRsQ6n znmJ^6I#|-rNRVjvFR3Ow5!Q~=m%+aEE7a`io-*>dYQmyCkjD%6x^_r})=4 zQC>>@i{(r=T^cWyTu35QE*j5QQ6K$**ZwS&BB-p=orJ#buD_f55JT-By!MZkGZ*K7 zyQ-!F#R*uyraJ1u4W^{S4%AFY>4!+%`*wmLA2aR**ki&9E5zq;&@M7kB8^fL)AWXt zB66QLM4U>w_6Q#8sUz%6>2OdoP++G7fKlpia_{IQkB=?GIPb7@mk z%FL{k*ccftz>B^;+n7a;bMH=OW+q6}hiJh1bsrOR8dO4HuKw@=>Ev_~(gl_BZ88oS zYy6A4L?)8n8;+=3o5gZkm1>mMowkw~w69;j>^|9@pRIS77N&l1ue-Y&jFq{08=wT1 zG`2ZG1e^tMDz0J}k>S2&57ngShy5D{Hg;COSt`o>cH=b|oxDzVs7@og7QrXJwzdXB zB_2?~BM@fWkT51NJutu_C|Em(^(eigyg)0qrnKq|{m(npU%fZ96hgTz37uD!S1ruf zdASZ68Q)ugJ8HnJEFt01S~ysq2?(MCFS~$gVQi-^X zj2&L8T-x5B#|2QOM&>$Abhxh&E}IkFPo6yCSOHNp7>LSjW*erawAbE7LL<+5UqiTz zHRzc^`-SPeLCM{`xoHqe?ukoCFB#J4MgT^P$5>ha-Qm-=nsOn-dA}=l6h(hTOj42v z7+ICaAp`=BhbRO27&e7SfZ9uJj`?Kum>aZ>e>x48lalZz8u4qR&piAYP^2TNb4%}W^>MMXs!1%>N| zcJzU)>}<2vKmuswfy3FL?s|95(Rjn7TfI*gId@i8lqAH$3K1)FbGG2v295fMr}~zb zc?AVe1lT`D#KdH$q`cdlDBpIkD=7r`+1Qv1JT<82X6yD3bZWh3>+UypWE^88OqRcr z)~Oe9^K$riC-two*@6Ui%-!0I#xH&Uflne3cii>8I3GG!T=P@{|%82Ic5T z=j;br8jVXzV$jbaHH#YUnYG`YjJN;iL!~0%ULY3DajBbFdAyO2(agjIu7gU9o1cZe zd`=Nxlh|l|{aS{p#D7=U2lqy1CVhMly}~7g3vhQ6fYkk!lG68F^rt=IKFYjo0sqfy zQ^IFvWE>b8GUA9`U?@TR`3apUH-8%ZATX+9n8ql@eGa+)`*}KXc+G!D&AXMtnAza6 z-jP}GodKz1UP?a1vKNOy*36+%?7XYh9dBZP05GG(bl8bywCMKCxuZbQl=xUH;HffR4aw`)vj-==OnmJAJnV-l(9Z(IkzbQ zAd2R~L3edV7yH)jPM0ZE(ezGCrJZ%I353kI54%T4g!SeUln)@=U;yF?@gl)y51q}# z$Ow+H0%Ht#Th4moc`@BKC_Ui~aj_wam3H!nv0zsNr*km%yGM=`2^NS?Rxkzzh95cI z`kc?3PEZn4k*C)1qE2(Ml+XZf}=XRds|)Q>54U_K#uoAyt!&2=dDne=cjVXiSyK zMt%@>kI>}FcHY+2sX<&E3}SE}&a&!Q?9k+YpN3e$F}KpSq#j5w9M$_%?s+Z-xmX$f zkZ)>MYbSX#a@TQoUBl?tG}G1LE(7w7(ggc}P!?v0uAUyy1?Sc2W`^%NL zQ&HuatUFqaZhdLg^QCy>xcQ}V_D_SSUi&YV(+yb7dcPeW7#zubAFkPLQrw%kIbOZL z)cS(t;s+BiRE>Ax;o%Mfmv9OS^wLLyPFCPG9Yeo!s|j*JAhSh+$=$_;kMaDN0@rFV zvj;4Lki4;$^ZdCBegcPqk<&9F)vmyC<}H+CSdnK1KRj)STlb6j)4N?VkStW)nbleK zXnm0h^=Kpf->ul*XdEuBKz8WhoSbN_N=G)7Xl$q(7t{9Mo2`2 z&KM@Datf7Q5$x95H(&T6>w@e(7^UF6fu;bb94KL-P^S;cUj0k~^b#OngV4q=L7P*B zi9LafLo~O@w{2zK`Gq?BRUX$fT|pOFSr^Tuovm_UhoJy11>hgbpP=@xGoyY8x>Pi3_1;GL%8<|~rM`)`-m8l(@?2L+`xT&w&hl)P~JQKQO%{uENDW=7D9G-QhKDTnzzuED}iip5al%S|y z-&Sz*dPG9~U^O<^0R|{9i*C29%maF1^5f$dM5C-j$wGEUHI<`je<_Q7S@k*mj@F%B zrUlk0(PM*cJ3HHIYV@2_e-x#pn_DS8_#5BV-K|~k#(n?80*;}fAvlWnOqJI#Ffr*o z^cB}q{{mwWej7EWH~s}dFJSRU8IJL(0v5d=KOYq8^bmGm$3(nL@+2TF)!#GHZ2tn# zXjb-@5{+tu$&w7W`F5g`m<;V+dS5-vOu4kq*RX@BcIasCc=dZaE9248F6KIcd07XI z>heqcqdJqVDePoR{`HIMxxh;)tcPqi1L?prpdPHi4!iMvUu~65=vi1(fmYe;eC}zd z#lX(wAZ^^MWgL<1g|@?aKSZN6{+;)2bTl-EJ#pMHo5g)IH!_0djqcvEkB`sEiHo>+ z3)rB#Oz5^CJHfpl8!2kTU?c7lR0kTbMwO5#mUM= zxODJa|Z}Loe z-pt4Qu$SC=vFJ7KVu1{9A4Z~h7ftNKcn zvdy>IrrWCDN;z2k&q@MX6L{Rp!h5@m1eF4O{#$(0-}>+ujO;4+@*kmmhKB;v=JUOr zuQiAhbrqxY3Txy}PS0(#cy+kiKBCnAzQ0cAo7tmUA-kXNZ(GWBoeJGduAFt~c~36< z_FRW$@kh{W<|1L9P0h-rtnW(QCZ6nQx*|Us{e7OnwrcfshQOOUL#)}MeHm&qXZsiK zQ9Z?db5qGX`L?GkGr09dam@PQA=7HIX>a#H{bgm4jcPGoy(|?eoA6D zPC`|ct*puW5hvDp>42t(8A?Nf;HSz|m0yfOdYD{(*x)72FZ+izAmd)EH&ON`$&p6< zojo^~Np_y;<6qHs{Lt7Y=u4GWBUV|vHhRH6(50|wTG)N>ielYoDX2n1$tN%3c|Nn4 zemvzADTHa|gEUt7^XTX}gTh8d@4W?}48mHu5_z2)GEEqwU&WuEV*B2LBFeb&YZn?9 zmNOQHL9Vg@lPa2mV-T!v1CIY_VetkrP~9>F1qOxsI}?E~;zPxKJ`IOA#qc}j$2K&W zeGzDA()RrGHzDu-X->}kSO3C9(PTFsR&L|qy)eL*n&Z?B@tKX-mtQ7S+4Vl^Pa>b?_Q3je^z~xs^2^OG4O|Tj9W!ak0!U4O-@Ax z3^a-dJBE?;LZRqGr6@1`-u(dS*Wd)*};pqE=<%_hghdpfAY?`W+d_Q9N- z{7|{;N9%?9fAlF>lVK6RDqtJ&2xZahM9lLKWyoBMENNE$%WZHizP}0Bsmw~Joc!9! zpu)Eo(MD${ikm=$UgKAr0b*P2eY{ov*{6er1z?(Rr^k}+6(^4UAK$dhJfE2JCuH`hKkl$%`SQGyuWU` z4Rq8Xnc&-qz|PrSTNRfsIr+0<*~q!TKo|=WlXbF@x)Rch^pCkAQpz&4N0ctMefl(B z=}DSC97N-Pw60ZcsvHb^b{Jnoa*4S+`+d)a-3w!c&u5lZe^}z70GuDYx}Jyi&}Du= z@_rrn!K+gVU_lwE=9Jzk7U`1njHD;Hj%gmRkMwxVH9uPtjqf}o6QX?lm=})C%U_A< z9&k_ox&mNlkck{%_liY*FXV{X^`Ba&>i^zNYfh5R`+R7{Wlw+K3t(H*0w=(*`ggOE zr4F_mfymkTcrqc~boawez?;5VST=t9{U`u&G7Q+Ykq>?k!OQ&vv)Rm^)_Qk|G<|@m zHhDDy-tz65>kx{t^75YoOkQg>dsL*c#9- z?V-Jce;#t{Q&v-+wIWWSvKNmySaWmF)uds1CRs8j0|rG&mu_B2ne04bAw7DuDXAX& z#pws+$$H~5YLlpxMX529;@Mq{h04VV;eGZ2(2&4=h>MXgMO^_Gr6@_{2`lS0C0j~h zQjT5Qa@3DcOjdeRwbB`l|A1M3MxVx`v{Nx_yx8DbK}u4u@bc@_e>)^SIBnm2}#axBri7+9&3viPL@H5cFETTshv{j#hx>qCEH4ZNLD&m+(Fx zz(--~9Gn8DtGU@iMrN2a^f+#tiLaV+U&}T=x|HYwvFi-YC{)M`pwN5^FXUnn-By zLtz>7%FnhpX$~8cvq2mn>D+kotsFz?N56#Fho|o#=YfnY5nRiGB3CE7h7es2JJDhy z3Sl<~$lT%HR*y_dD$LGCZjkpDVIG7){ol!)92|hE=y_kNVpE`yWTm8}KzOuW4z(l_ z{k-0?Xoj&0v<;PZS_X9lzt#9q?F*v0hL;59JBH8qGFwqI_m`9{KYk&}mOz~ag8pxK z%YWEA><~EtLx238YGGWaHWH~g_z!e9Zm%FmLu>9hAP`>8$h6|suFzH}is`9YT^BTX zdac4cs(|yg4>oS*cAvNs#7Wsbr{rk%ewdE^B+*SnNY(dFeR9m07VRpSHH7TD$85^+22ORdE!eO@NVN|KpC_ae!UN?_$|Zqc-|PBH_;b*$ z5BlJVgdCEn4ov4MZjdymmUC7$0sXkY&P3q^f?+A%N_WiX#t1VY_5CszO7wlricMEK`&0) zo7}@aK(uFSrb)#<`IF_uM_Ulqk-+9K##*4&_efCQ=HgCn&tMGg2i_oRwC3ad4dg4u zhOPP~JU_%6;N)$dDK)p|ZIcI-yvZo0Ayn*Csav1+O|n<)-Mf|$5rOqkzpzn%c&Zu*$YD~^IY*?TSafy z|DRPLH(@!~8=KvqXK#wFWod_b&|Ohb5YG!u=L)2+LGpTEzz)w7&3ng;_<PWVp!8 zV^TY@7)Ne0!v7#*A|unXvys6qYd9d7Hti!vM@NEM$J?{7LIJM@l*P7sYQkCG0z;MU z#u}Q^4(T_Aqf`4No{??5qCjEYZWA4Thn;^7^(w^-CZz!7gH*v~Lh~-UFf(%k^>NS@ zG0s-4cXC#N&4%`_Fa{-HZHI>t{pgoWX{9Bu9#brIsM}+x15EA2SD$_)&=!e z)&^wqpJ!Yc{_YRd*Vi45xs6ZI)>Z-I^+Uv>o7suT6$3|11 zyt+858~O_J5Fu-8_>;Q1xi2~!qiGuwfiwTEvumVnux-Nmy1`w&P|=rm%*7a;sd+BdR z8z>Ml%y(>0DSw6x-<1l^W)qe$a>ZSItqcS#19`@O;&8ekw;KC`-g`;FHYFK*c#%PrJBynVXu;^^aF>>ik;P* zmJ97$bTq{N46Yu)uST!}fM1ZF4i@Zs!*(pdgY59QNI9a!w*9D!ViYlgP0?@qO`O$ zc_-f73a!~0Ebd}igR^z6;th57%UC%Z0Nz6;l#21J$_EuExD4dggmrGM zujgfFKg7Y=T^-dlp=X$dj9J)v%V*t1K?(2lns37-36WYtn*lIV#p&+dyDZV9L_}F> zX@(Hw#dr?8@n{u&j#$8(E6d9vkR^3+6*84tvD?%I;n0fcXm!s7P!gHj9N)gpx3#>U zX39)DIF|Ysn50z)0Y`5cef^Z`YF9{2b8$I=u+ZP{z^J_qAt$gk?(FJ9J|mdugHTCz0lgLA#V}#beJadF(Qr{*Z zF#yiPaRs}O4a5w=DkH$BB(v;UwTc+N)y~=DVt`#6?2SzUZthA+p@cOaY<~dkgS_zE z5{QPmd*_Z~)FlKNEF1!!4!gJCzXR$bfJk3l1WrI5qIKUsAPDg>qW)Z8FU*|~1BXul zB>eXDP3bs%7Z5YF3IO1el8^vwxD+aS^%L9gj+*TMjVY6AA@S}w0FogFA;qV<`V?{$ zA5|+_gSGpO%@aHi|&-GZKOiusX$T!5W;(SaPa*3b6{q`f8XJgYGlDzow)+{o0FrVq9T#o3R5HSdR$yw zZR(0DDk@4!RE@Ki6ey4!w1RQd&aeae1#E(55g8?vj#gH zjY_B!&5Rpe_vu5VTC!7&BFYf~YW|vjo+zXm__USQVJVK#S%BgLZch0jlqiUQ($>_p zu(GnUu~9G~(yn!qQ&NJww@V0(0wMx(i6H4uj|fFF`U6gg4-6|PN_aXuXTU)Kf(0B@ zfKMReUc~#Bxv-R|q$C#2aj2Bu|FI>IfhJ=N^`Is-^&cSmIh|gx7PcWpf#Owf+(p=r zklDh1hX3_tfX{$#mu{Pc=viI;T%~n@574s>uKQ9-O1n^A;9X4=8{Um-GB7m6#K3^s zmIGBOF7A0Q1Rh8OT_mx+%Lh>tU_XIw3WJnrvP*=H4uv&1Sb&zdl}a0b+DoYnQ{G{kd<|1 zot6SYJfA;*Ua5ovP$hOCiiU+HFC&8}%0g6`+xuQmNSxbfb%zp6qpwYVK^v(fW{}aq zXJ%sJl&p=C&?W*u?K~+_0N3%XXgPk7tFERWr&JpyC@*rY1 zno|U(S0K@Adq#Mz37!QL6H{1N7@oo+n1ziEIwZuaL3Wab zwFW5<4UFW^t*x7qiG1|qq;x{%7%5m}(G5l*GN6b;XLCPhIn;+7Y6x+K7^IPW4RO^Y zD0BjeN#WsQjOPG!!;y^XK+(e0AxQ;bJ|M+lYJyxd<#8CC$)etnz2yN(AVjRXbzYYf zeSM)SPE(YOu}W;6y(|M0H6n~yeMbD-qmn1aTC=A5*HirStM#Q=p65vlE9;>f@_C_2 zoFj2O{{m@NfvdZKoO3lr#iznZ7BPXZKU0phBona<+a)OVX7DjLhq+PM<78)ZvJ$o! za3Tw=wt=Pv_Ee$?fT{l)(HKr%f1au_aZ&{(Wnlbml>ewHD^)BVvz17IN=wL)d{pY7nk3_wu;1nlq zH{_hE_F=+Rl93YapD104Mht1afa(#@>Tyhhst`lXq<+-tShv(EulB$b!e=~_e5JM^ z=nGa5hYmO&CjPBYKEuBdAy@{Cd8xYeu;0F>()nk&_+kJ4pp=d+tuWg2uL%hW+1Ut= zGMSUJGYd1bFzzBTCz#u1`U&@qWOn?K%n~q*0f+zuBK{L`LlzW4c!S});{Sltg27sp zpz{4q9xX90ZF#;3lI&Kp?KCd=M~OBfCNB@tl3q|>K*SF$xR|i~)1Z$+tXbPx%gvD6 z@GFb2{^Q4$VvI}KT8=_gm#7A2X_KzIaE2UD#I#P_;UJ&$0U_l4(US)e2F*TdYUn2$07a= z^4z!~KL&n@RkQ4Od;4A9a~YC;swOuQyIkncFiu@A>|AFicfPgs?l9PKKuBn4N!Uz&+xGT0Q;e+r;7s%XXa#7P~V*7F0VnU45(g^rIe*rS-3e#+WW_q zlxXs=zfLtMmVV3N=f9QNiO0rx{uX~>KR-I2D?EA|h}PxQ!Hj*@MhBpzt4TnFYF~5EQ zLjeb;7;+*RfF)c&jHPOn)?QtGdWkw*0`acvt4RJgb2|f!Fl!U={(!f>ASTysE%lgb z^>i1!yx3p7eZEhe1KP5{ycgIgpD=?6N7^rWu8aTY?(xZRwad)H0|Pr@*e&)N(@(Z$A3F&m%3D1cqD#$-n}Bcz*9XAb zAk0{7C+h-;YZmD6#qRNC?3H?0er4p!1hGLB~OcSDjgVShJ1g%zkBnh!ZYy~{8s&=L>$D}zCK%b z?+9VtXIT89Cn0T&f&$bhFt^EbbI`;R=cmBjy;1xlniJgTPKeZv~wXR?@>Z{xNT?&ED1Pd{YDmD;y?N4`pY*Zx=SJF&TRQfg&Q3 zA|0FDBP*plAo#G&VuY=8T9 z*w&(Mk@GUK?Sy)Z?r||6G-V~xTn~df!$Fji5}v|SId$jIV+I8O)AVh4s(!QBReQ|T zK6NL+aOcKb0x|a(lB`5zwBR<>VZ$ zj##&(eyV2ZSQrPrzj|Nn^l7wS+3*mzU*1@urt2@OO>k*>NLdhvT9z7A_r|af<=?*< zS_?S;YT9roqaCOe>-Fp1UpF>b_#!c;W4Pe7&nZQO2nui`4J0k9sE1n_1(_oGdZHj= zy}%}Wu;U7(T_`zM_IRl1S_nns?xK>fO0wJkXRAEBODjzOl?=(Ytx@Y7EG4o&_P$R?PH##Cel08mYc5@d8=s-ylFJLir z^1a3H&+1mKvl0>7_T4)#A40@tbZ==}2!)`^`1VgPYwq$x^h02HL8%NQpg=t);9Duq z<@q+(Rfxwa6@&S*jTDI6GqZE$AM$u8ZtE5bRzxPDc+9|P^gmn`v`85^=uZPX0t~C} zon4l>AC;sm>!Sr)?a5voF+4rfZt9DDs=o~Y)ElA!@)zz$ttWAEXIV(jj}hFdPYr1v z+=H0SoMzdLLdr84Sj~YNi1ykdvIY^8_+Yj`+#j&Yj_5a!L!D0-qr>K<(KWiM3HL{g z^@eZWJ}T6utBdJe=C_%AzCQNBy{SH+m06zyU?YdkKVE^k7C1qtt%!%4`m@zKweMT} z(PEpEw$ILUFv-i@t7Z9<)tldtnwdX|Exe>+P#WW;8E$E-0fqt;?=Pw!VUwybFPJcJqEfQI@F1+)Sy_RMUXmK3Fkbo!i`o_h2jk1*kG}@@Azb z4wiP4#Xy|fXS20-8E{)h9M2RUSn?|HMk7y%78uSWRI*TX!!-zwMSm2J8rmm9Tx)m63_~+L(NM4D^Oeqj^{t4 zH=IxX1bz?vQjKO(U5kqtl;EMCY5uhr17GI78s_?3<1kc_X5m;6m=!|+?f>uu!R?+n zWaX2;((P-Vcv;UQYAjPS${lJdRv0;YCo6Ihj18Ydo*1wLiGo>Hmi==hhBJ2A>st)nR@-`mjtvrzsd71m;|`m*+C5O!{nQKwWBD?NG8&GO>k~ zLE~Kwl`KLPyG5V&s@BPWBu?2A`urqj^e{aV0H}wf9U2w&%1ohGRa~FXf}-aZ`Eg9O z28@#uo$`Mbvx~gN#i^VE7I-LnZNK>5j@Nbla!J_xqn9Ng*}b?*;`|2n{kB4LntnXt z6A&CJN}Bq`Y4*t{!pKxckIJa2?(FKIOX3$F{sg2W5NE>=MJ~jZ4M2wte6D0x3K5&~ z-Geoac*Jj8(OC&yk&z~`GShg1u3=Q{&gwYDUk1H{G3lw)8=wa5%4E$TL1UlSj&3RL3|WPOA6$r>|64>B;w*2q6f{mYw= z)^L6djC+UJAop9r%G%ATtrEj{Fb{$?Rl;-t?gVTkNGAqJ`uj5rGOrM{Rqs2@#`9yl zzHF)_gTD)8NnpKtM!28#?a8@gmg?3i6#GC1@9r0Ok9rcb`wJZ{2_z*;QT9PC1bZ%7 zrg>YCM#Vq*Lm}$00&Ftob@F#_(1zWRB_t+}1r-v7aQm-cw6wIp_3<~RGlDMZ(Ulz% zm@EI(Isu#Fq`M}H2f1MsNW&7FRm^Mi*IbSkPR~4ciqnvMSkNyIM&*}&6Mvh43kC{3uBs^JZymTmLNuYv_PJlp;|wUE{1Y5Kq;8(&p|%gIkuvwqn-=3&ZHc1Fg$IYob%hv3V@6o94MfSQk4?x_e25dM=}3L zkf30#O$TY7)W~C=|F=@S5ep!WOd!}kLfwB^=`_Bb{$2HmI4)j9vqwhSKhQq?AmWl1 zE%s&9Rbb}+mB!2Cp zOY+bI7F>;)a<@Y-N_lNHiFOY?~SgEW;!Do z5Q|(_t1qM*`4Sw>rKFXlFN^lSyf{ess>ak&SiS< zWF^+tG^x^#J8~hzDbcho9td*JM+T{#J77#fd5Owkj$Gbt3^7bk2Gym6b?}vqI2-GYDvbFI z+dynuNx*9z@xwGFW6`KOLntJxv5m~}DWzpx(2Gp@AhSXl2o7NSlKD%GUFZD6n zmR~FSNuq$o*OjmMhw-c@hjT$&?|8y=?f`uN4Plm$66Y$WFj*C)W>>lOZcG`?dHHSZFN0Yxlh^BF zsTI|TNWcFG!RO*va|Vhwj7)Rl)$T{44u}H7_ItH>hwO*{L_tLlYkSCVhjUPdrTc(P z7KDR4VN7fGcUDbZ=BXd9q`zz59{i_!TzI1Jh({YdzhqK=@G#_@E&(IiO3filOak`> z+)kkKnkvNn=y^8|rd=LZT@HDTSP8L+m8;RZaUskQ_@zeq#2TBPHR3hH3R2<-Qz*rc zLm%$rd*2AUX$6?#s(x)(o~`kQ?xcn-+f?0cUp`0vo*5JFxr* zm8(Rwx1X?*t;K!VnBlx-*VEAb1dEztr7+j64Y)L`s2)WIc(gp5+>Xt=o@|TEK6&-q zppBoO&uZMkBC-{@`aYU#4Rxs))8=P76*hw99nCEx0)kXmNaH#_v%)-R2|Xt4y5L$M zR_b~oD=TClH!%<$e21Qopa1Q+2VA6DNAMHfseK=v72$k-eB>hGxg06z-auu;dNE~6 z91ZH4*R5LlA|bk0wTl^%8XXu?hSkxGTaC zt{p_%2XhS=%04z;@M>v0is<|{(*7~C>AiB}@M!AmLf73RboUvfIp>|9=fAvJ=$AN^ zeZPw(FyR4B99JdEFR<%m_7~(Z+NFN>;wK%k5ZvH)woI<=71x>(%5FfL}5={VzZW`U< zi3~ds@JGCk9vrSh=e*(J9pHnhcbBf5dke6hdz5$(aZwMZEwYh{5K;o7<+ zHCwl+Ek`*?@40`3j4_e8Os*FU4a(KN;Oi}_v6h;C`^hnli?OD^-how8>^ZTlU%Etg ztQc+p9oqdZ^uoVB==WM!va_uM5ve`_8|MvQd`kM>r{;6s#^~MQe;Ka$J_4+0>X=IYaB_Wwhn;1nc?dV9e!xo{9?*yj%) zZbD=^92TMf>!z_U{vAcMvf7wCL9O6|fpdKt;Vd4BMnaTP_!|&rsZlE{W&mYE?&)s{ z@N2cD#Kn=+Wu&Mezx9JIgUrkOxfrRVzw`mW*V3AlXhduE2bJKs{C!*+EPB+%g4$Xw z`7~Ppmhi#2|BJb|j;eaw;zuzM-3AC-M5Uy+G$gc35cYWAV@bTCEXxM zOCu%S4bly7ZqL2v-gAF%yuaRf<2lYb!?W4!y}oPBHP@P-`I(| z>XkllPc#=vk#^D7{gWo1Cxouh#su%=0g?pPs}&a)7cRv!d2{vk^)MDksegSUJq3k+ zcard?vJGT$;QZm)#plfJ@}_{b44cx$Rq+&hMT&EIcV$R0ptUfX09s!`@+W#hDRF<$ z%nmBdVTc$BCk+$;Y!sUfk?~Dw>&oRo7i1pOemci2&W8_we*5;AxE4SAU!O^aX)NR{ z5p0L&`ASOQVD;Grj8&As;=had>_g}=mtNluP3Fsh29~9&=eL9 zIic-OxDQ!aRH5M>q(eV{M!{H&y#rAWkRXDjk}$6i2}Yy)epo_Yo)z@zftmO9y+Uh4Q%b~%%N>iYpdV)Nmw}?==Ubz2x*q!UYSRm$%FGY7cd;j z(=USSgU%oz+b%pZHabdl>z44v`+)=(4c?&b@u#c+zCUy^5)mTZpgx7+HJff*am2ux z3_a}Pr|>*S;a7-={$(l{#KIaHv5>TJxaddj(KRwsnU;2Gy}-(e@nihmR3c#ia4tVV0fWYM-lmWg(_`JvQ$q96vqB?v|!v|I$ zPDw@8x+qZ$Qv8q<3M$1-lmkJ2(wpwkBN-s0sghUr_Ve@e3Xb)O$pGD}DJwVYwSzW( z6u(<_3SL*i(_DfzZ@;^>+F;zHnoE`g};BpS3<_P z1}YyMv+mTxnzSrhufhUZb6LJ=(7kp0wm%XHJMzix&hYp+0hskSehZNvJjB@CMdxWI zX@=N+G)*rhu%OM!@(x8(I5gf$NlEc_z2z4ah$6Um&lC`;4D`Zd5Rjms>hX!c__asd zy11m+&`PI}`yMp|73i(~UO@Ylb0`kJQgw6iP#nCUa0Q`ixGUsXM4UK?y5^Dnt5-hg zp=h^3Cqy7HEbcUdCl`JE_)T{9>c8GDr($hw4fz_L{+K_hJXFvl*pTU|sV#c#q-#*| z3u&ND2U(eTzADSfCys<1I50ry>yYvHG66jV)|N~as@BFpN5n^Q!GZY-7qpUttY6fE z(m9Op-y0~jDM}+R_Mxqx40916;M|fDB_Z0sJ;W8%WpV+8{B`tLgFO<&Pz3n+FLZR6 z|8fSZ}Uk>Ga)oM??_e_K)O9B-IRy`ZKxEPNOIyyR_=LBqha1hYkkS6F+ zMOoSESd|*F=_RX2j~-c4RK?sNG=hQA(INlZ|2w<8J!?-2t31JcF>ZA;V>-Ql z{Z)bX4Q^nlwFaw*xZD%;0(>=va|gPDE6B_LF>|goZ8Ni#}HXg7TUbvXfP z$$W)C{N+pfRXdm31`2qYm`EPyF^Uw<&Y-5{wKd{&Y6V^RI1H|-4F@$jl6R_9fAq0=6ia0QR+OJ`33BC%gSYjF=+n)+Nu$ zl@+=qXy3;M^cz`OS(eKUj8xs--8YGe&7tRQq||mM#+%7WUEIeD z3k#8~h8@u2yoD556Db4<;%Cpo^71wWV-yNAGoe7Lt-byIwL0J*!{h4Gtt~BaL0=+Y z-xfi$&yr-gK};t z8GYdS3f}hW)z6cZSXB{N&$N>qo%DUM(y<^S;`SIfPCNl2{!aQuKoBH>p*l1X2IMmxkJXk&K0x_uq?eBwTy=admMrC2X= zWp%aTlj^xJ%doKVsLyU<9=cN3{G7s20#B5b1_JJ|zSGzuk1O>dXJe+3sZF~GeMnk$ zJ4tV5&&Jz5^ zj6Mug-ZF;z(jp6`m;!o>{^xBhpKuB7bmcbw3=JC=)zhwk27PxSNa+qEm4-$=8Fak7 z8Zt_!V8>v{;Z0HCX$$i6;fhWQyY>T~XMPkeAs2H7)L4I)y)0^`D|bKr&vRNc`(~n# zxY^kvt7(y&(mt}+bS31*?%usSvpr9W!Na94bzUT%AgnKJqRUs{j?5JascR2r!brjH zRsOPjN1iwzKDaRalD@LLy=}=61BVDk0!Oe1Q)_*KS^C8W>PrUPlwz=nL_|dVxF~&) z7agD@BY}agC6vf+b4f6fk=3=fnj~pqV$j@3Aq`+*rWr;FShs_*v&7?4Kx0ywr|7{- z&`+oj)%uXpVQ<`U-t6-r;Ha*qN*^y{^zE9CITvi{NI{aj2 z18-z1UcZP_nZfji)TyJ(8=n4S9RD^qvIi_$9GBtutEuETo0?FtDcJ5k3VG7Odbh~(pssF%B1LwHG%P8jkM&w6$! z*Nit0CT^MYDw5{P?l6~St1LCN@HhS9m7e3jnUb)nN))_`=M?KGNz=Yrp~Xf%7ZrxB zxNqQMS$#Gne=~b!xTLeaU0R41ZhUa_B2(qO*{MDoPaY&2Yv1-Lg>(@%yFWgCXcOg} z0^+XgR$GSIO|dP(E3(G0`BTlVwQ?fcV}3sk4g9f-Cwx?QmHH4XV?QZ0hkO5p?0!&m zprnv0xjc^k6;#GEl#jo705(_J1Z-p@xEmj6NS#MrE_{b{UKq~Mimj0eD4}7+kiYvoXziln*k6BZXAnk^&AWo%@&}9!T$h|FT55 zhtefqquH)RLFf~8yBqNWE*5a80cU}yKY&Qcz5mY_2qIWQJRaW^6G)X1;96Q-OdOz` zGmi2AYMMHO60vC-c?xOQ-T(Q{i=UG95MZyr1_$9hLk~+;5J85Cx`ApILU>H2YMa|S z?e0{N(_Ar%|uqJxIO0mKv8|9L2Z4S7pI82XoojaxPT;1hq zt)x6|9W+~PeLuT$dPPhC|7_V}p7F$GTI`cj;}mP4NX^b#ji$><`*9S5mz2P10{Sv1 z+ltIGBEHNWzma!(yOS^dZoI~OBw;2xtXTc&_kTQ9e-ZcME&BTW&iNU=Ab#ST5rSi( zZUrA&p`X=o)vH;m)u8Q~!#QqDnc53jH&#FcMu--)27q4d7vV8Wclwcc%)->j=8(R*2x}NT73?9ELQ1on=W$BS2qiyw5jN&xBd6hcL%Fo<9}D&m z*tu=Ktj#?u3V*okvmT=&*ZaI$7{)q(V5o+emavWmR*d=4#&n|Gu13r*_(2UcufRg{W9<9hZy_y|<%esZKhU ze6T!nr`*GU&K2xz@6?df${m3c6aD8d5HMEw?ea2~a(7ulLgiE2u)EG}YTms%;#|G@ zm2oM(0@<`X9VK6R<5lCH4SuVnd}WLMdS{3I!V^Y)4byi0;Oz`o%AvjcHajtTseYHyJ#?X|4!(@3w2t-%+Bh`s=6C5ZUGT?bj|>J+nG%{yvk` zsC0JlE>o0g>myV0X1^1O^FpaHd)beL@XEVIN?J;r$V%q}YiLR8qX_IZ=&nYabSq_I zKO;N4y}22JC97Wq3E<=Yw!xPORfdDAfClPQl_9eI*1@($b9yVXJLGs%1#+3K<^phcV z8J0+}Y^+;>!nzGPr7Q%38xDmP+nhuSUvqPVnx-L~`CnJkla^3_N64__^z?ScquCWF zD=*9@1r|O1 z{ffuT>J03_qb0@h3B#7hF}nUQXN!lrj1(wB7TPMyjyZ9z&*8Zp4WFy&$}-J%(^z{} zd``m@CEpe~kL`6nw?F~)`VZGHPjn62JJM!u-fukPl zr)=%+t{s39z!^ec*qJ+Lt*57^<~q^+VQJ+h#036(apW$BD=>ZjI{9el^YGr0e{N#o z=LnADbqUROJlSJM_Z%eM#!HvGLj2}VX&sAX`M0t}wJEHWbY7Os;(DjYy9AaZgu%(c zmSgy;uKKK#h=<1N+j_lM6N%fC7KN_w-@lKJY6#H+Z5{Z@fDO1J{DhJqi~$O8xBy(j zf&K{*mC!{X9cFy_BJU>g8+xolzwt)OxpM%N{paAzi1C0UXRxrTj}sA@E`uQEjTLjAnd>NUKHi|ta#_C>qf^#hSB)~`?=skAXRfv*mBta& zj#ig-#TiW0s~TQbH}o9f7sIH^RDV9!Bq94;y20Mm4j;0)l^baIL4r0KOQvC-{_C-A z!>`rU_f_CFe=pXPWUtJr(P`9t=UrCKJo!bmY)6Qcm9|!ytsHRf#`QIDpUs8yTddYM zHDllw5Av1Cf~fhJY_Za&NfR|DCDo;dZe8?!o(cEA9ETm^!FLap+Kt2v)V`&^nSy1C zuYjr)I{E;7;O~d@dyIJS9HDs^kQL}BnFHE^05pi#>ioIh)8P8TO3N!K03;p5cIhAc z&K>#e3o?bAA>zlRrBLCMWF!*d1(0I$bXbD={r|C2w43@80 z!etmVP8bg++`l0Rf-BsAT{O^FFStFG)*tUDC?P`eJPV_7XSNQ&6akz3hbN#Bgm~7B zjhl*U4z5|yF5M?E(A>o2E&%~43Fy4!D+Kua`{(9b*x42DkK@2i0Ae1vR_V?<^SMF6 z!p6qNW~m=DKzQK~FnO_jjZ%SX2gNT!w1tuay1K!33Le0i1qivczVgZIiDpez)d$S^ zNBjF?0V@E=lD}UuH#Y}T`LmxPM1OlH8d`ORy>IRp04oALIS_Mza2YyDcK`gz^J)Qy zlb8Zp34i$li00}yQg-%|TeON0{wu4gf%C%+f^q~1Z`YTWLY3VtEOLP&3|eNlY`+nh zBDf9>Dulyyto&(?+G)SHFw!!m1&I7mvY`XqQn>I*ufO>5YZ{ka!c$qR?H?aS(ffBl zVA+)5iuK_HQN=S<&_IA>8|?#z2&dl@0sy5zftydz3UEMqh=UxYOiZBua|x<(C`Ig` zXvkW>#&XglDoWMRFunc|AOeWM0aZrY>Wlt;(QFlRb32110bGy4ceYHrH%(JgPyl#z zcz6g(d}Nr=3>8@2&5X#)7un56y1Kiq?Cq&V&Zi`Vp%x}$%chn2-hWK>?s3~{RlXhO zZJ;4HcJ|`b2T6#itA6mvGu!b6vF zSQfc@l`*C?s3!k0JdOc5Kfji=^y=p958RTgUUfb`K5&7=!SfVU2zCev3JL;cEjKrQ zdAUQC+Gg4T;llhKqp?$kSve#NT} zvM$j5)O4`-k`KvKCNuPk0uK~cVrr0}4I#00a5T!uO?DF{Ha$D=$b7kEg!(vyr!AehYZpU6r?VCdK@O zeRNY8aVk!V1Mp30SsAaT)|rliB~*H!9PR*{yuQl=88)}&jZ8VpUv=oNy&ScAST|`| zUQq!+3=JPwTEg+fwIn=YQk=F(W<5|9t0#_2CSb$Fx^#&R;7Dl2s|yw+v!5VXfeEl| zut%Hsi4Pg(+0WkIq;~E~9Q8mF0^B_J z-Bl>W!wnbV1rq}MdkPCXfQ1$yd^tA~|Ax>~^NY;d0I-QU(+4$y)FP+#j89UW_3NzL zAHL;z6l(qfZwJT68Pl)cC&Q%nlcOnw2DT+7ZWGNiZHT$q+4n5@O$`kI7#Ee4NdEbd zzP{%ZKZF1CGf{P(nxJ$(2~P%t?$QD?y$^ie^1$aC-^M~|^yJs?9+SPjU#_{iAE z2u#x*JUnuFIS4aVA(90IPFUEw%=vs5FXr_0G~jFyhG631ZWUp3u14C&}OaX z7!f;6Oj`lIjK>xY5|9P1C$D`&Vw09M36UQSSxKdB=?(UAwBaU+UPiSu-OoN2`_we8#oJCN-WDI?!0b}Om z?Cb9j4GN*c^iA#qkoFI|peS8BIt_|@&CHxnj}IVL51EqRL`u=?QO^zB{Bf>^=~npJ zRlZoUvCx)E=~?79-(B9tgPL6B0^a+3bK#Xy;rHx$ceYuH-9y9#f)x;P)#?emOZ@X{ zgPN_SamvaiO|&y*w>6=qVT7Y;;i6F+qD~onp`RZDl)*MaM!UP8IupxAAt^+5uij>e zjEsas46<*2ys%0CeG4_ntf@htOxHbC)zm0&u&=MIK)v>d%{@Nv?>c$PJ3BjOY|(>P zh4WC32tUTAq|j%l>t_rpN)jWk{Fq06%Vluyf`6u1Exc@Fl3tq&Z#~v|X>Y|F5yOKj zKbx3(om1}`y+^FxbbpQhuC)bcw3fqJjy0QG3X<;2d`A@PSp`X!#9gNrwE(HMnzQb- zS2Ml>Tx+D|7UO)PqD^SzW8EF4+&xm`ywi_;dSoT@{GQ_v7V3FyzGI5@7xQmZw86>i z>L#rW`1dx-2?FX4YNS~rc5KlafPEib#Xb5r7l4AC`ybd4jWk4#R+l+HY#%5Uj7KJI z^w55|&1l<3ay(oT(|)#l6u+YQ($)(5waV%vbhKL&GHPu$}D_x$u$Of1Zd?n|{@hqDtBMv_1& zF$QCa2j*a4dw?KlwUvrwy=?DyG0Ckawq~O&3WyDM>aA-$?Hd>;G{$=BOSvxM9aq~1 zAciQX<251$92%!f-7JdZbqzoG;tyUPWK_tKLk1Yq75@bb!ZK8I?hsjzC1(V(em4r- z*?d$lG``2LdUnzf(egR;I4WmR>n@{8^~Zn`7W}g#lI;18v$B-D`7sstjp3Qrc43afO?Kle7I*Zw7k`*woWlKMmVbj+X-GQ zzI^`s6dD!6V_r<=$A$QyM5jh zkrJ36ahX(K7hqVe+2)30xN*`Cn2#H`v+c*voYPveIJatI3=RQ!z(GYSjvWJ5aqu<< z&y?p>tO;@Y$-jsYaGjs&)h-lEOBWb7MVgQx1__0YXc9pDHcGkwXG!OLJ?#fAn=L-R z!v;zHXb(6~;jEmB*!2wxI$JFnueVrSUWT*cBS%fM;QtxK1jTvyyQ;{n{r)81dN@2D zH&Q*$pBhG)2L~L?s594SSH0O&T^$WL#Q>yP{uR5&w?7__+TWj!t9?3y7tXfpdUPV2 zoT7c&-l65HwsY!sYQJl;aUqvcwij7XIfn}O0Ce%5-RsKJ#-HCOH?U){!(JlnUcG`U zdlF9Tx7X_aqS{Q=!1V`8I$-Pu)-q53fhY%818oJ;Hw-t1`s7b#1Q2yFdf}~a9iHwMQjSM62Lau=lr%x;xN&lF60T$Lf=RZ0Fq{hltqyJHkzsu01_<1(gYGX2@j&7pBzZsCZw7 z@0lX_MX1q-_)Pw?n7~k)_MOai*j3l7qoh}ENUTVgyjVW13JA8gb5k|m>g|-W-r|!f zju~CbmgQ${(HWJQqt_9Tj;K{CkiJbvm2=5zosgB;*v)D4bBO%!H(G3P7wfRFkcYEG4gYVBM|z`l4fH#IfIWdwENfa!x6iBgVwVnbx@tTo6eaC319 zAm>74Su89H&a^x(lnyY*Ss3!#8}~W{OvK z#2=Uu#3L!FFL_gDLgF;xn&|G^w-;3dR(ObI|7-0iWow~6+9&8boCR3e#6Np_bPI;2 zcO~AuK~kKpb2;*TZ?5NISRN}n*Kk|S`}*#(osSmh%fUVE-V0FLUs=&bnS8{iUyD{zRd#N@`e7#;0>o32M zD9noTa^&1Pt7^Koio&=(zw-5yW|x!I%E71UX$Ei#0BC5fD;EQCb2zP%{uW{6Ekg2u zm1mxR11({LQo!m;&&fd-yM~C>zbLqKO$34w02LlTe(dDLoyQ#6pc~6+(>O4|&cc#k zT&zfn6RgF6L=2hjequF*NO5X<8b(pSUJk??DX9R^HUKRc$bZ(?1b?3dC;k2hD$712?8L(3laPI>(|oiD(J@ptcp)Ww7R?u5-3fRmd)Xi z_eSF5U&6xj_VzAN&g$rp0g@%y?M(xKL`)#wI&T2(d6sM#NocGq_f7#aVnc9))U3cI zcLJRnDG@t<{u&+8T^(-* zV7@bcd}M?UiGaWbSOLW^hoNA6c5W^$IT@`ObG&pL;RQPgWN}8n>UahPbpi_ocq1xw z_<3^>(m>fg5EX?)MAm@%qNK#m#`e)+7cTOu*SJ7K9+du}26?XSlVF=vaZwRC6jf#A zx7Wzl$of&PS=tH;A3lCmbap<@H~0ahF0f=60mR!rf}NP>1wac1MhOvkU0oe$Z-5^I zY5~Ze2*HEJ{N@4X(XB2@Oz&8NuvJJ=%PFE9<~w3xhp~?Q#)2pjrUL4WAAk3#4%P;$letH+b{h@O|dA{cO|8!_6-gK)ChV`@cO{$ zsC4Be;vf(%ff{(>L^-qyO=hN~x#!B_qLrOpHGok9ygcr)EBqcKw69p)6uM<_5m<>HKJ1-+G z-PhfHpZW?AYCx)8BA|N;H3$KAYN~;rp3UBx##G3iJ9hv;t&b;!a0#MGVE@#!5BK%K z&y&A=k#LSi{@cty&!7Nh0S)n9?hIh86c_gc(Ey030LYD`QgCra9e)A*2uyx6f@R}} z5(MAdi@jtaKFv=ycppbaN8h`5&o}8qssE2z++=?-3bOp*K{oLb$e3REjLc9XGeKafVva_<*IXsuQt>Wr0z6prPJuFXH^>Ho zD{D{2vXh9*!YK)Lbbo-k^dTB?$RwsgAPvCCqD#Sxc5qypdAgX69R#|=_sep<1sBZ816WP4J(@`~P8s3>8=jMsbA}bS1m{9y%Li&uCa=#`c&4BLAd5Qy z>u-@MPKYVot!Yn96b&CU%@+E^;}O|CJbVocWnBsvo7&pi?|~}-AAnTyLU%Ht#MCk| z1a|s{OaxC7za}St|Mlzj;ABNXK`#I#-@a*&SG(ZaUze_JYm?f%qo%4_SX2Zi0S5ku zmUTa`AY)$(6OGaV@YQo!J{ZiV)M;<+%Mk!-wJ!?1PZcQ{N2rmAJJ;R;abiE16p3hY z5q5TQ0Z!Gs8}OY>OiXfWYTTgtv62g_AHFZ$A+ttHYq~Yp4pRZREGGcd2h^BW5x|18 z0=Y0OtAQ>gk_4k(fr*0ytXrK26KoBX_}u|X1&D00N;^T07+1>$L3@`{p@ zy{-^AWUPS<1u945<8Ff?8Wgxhe9p>XxgbcA9Iyfi{LJswwKbWzZLd;Oz**`w;3`0| z7AhtHcT-(Lk|+;Q76aIPYW!DM%|$9gI~*4Pn&4ms+zkw3qKh0+e>0o1T5=GCD!>dI zqD|n^)fjN6y1M$jJ1HHV6hP6(d--xS6l^=fLPAESrvBrP=)nIB4SkA_&&|xd2N>hV zF93AFF#`+>`c`n1q{@Om&sQjN^{D|J#0PDNKvr~q0?C5u3tVG#{$!RpUowT1Ie!_n z%K}y)8wOA_d?62yb4thwh{^%$4M?@v&N}tKv(wXW6A*B`(r2Wj16*@!Z;#}4)&vd8 z;c(j+(iI!G?Y8Em!B|ofbm{&LJvD`SfZKqkFEE!g^l)6k5f57QWFa)%+-e#cRmH_0 zE725uATz?ZGBU~nKbhlaG}!*28Czar9$;HVMbD2v14a+$DqO064G)9X8@;O%P+6<0 zPQHD6vyBoXd`em!2f92{%C%O-J4SKITEzpLRQS0zZMVi$WL#Brt_&CzwjB-CHa6N- z^0T+jn@RNb2rkB1@ADf7%Ej@>{~o)Nw3S0|vm4TsZr<5aH_pQfa9mG7|0L@AAF|MO zh7_64$hOv2c_k(4oHilAk|6N`82W8rA;_4(1J-j6UWP0OJP6DMDDIdeypyq&u=)u7r+Lur^MnUgfa!2nAli2{U8j26ASiqATjR)B*Kwr45aB4 zvsL?GHOI%thlkM`cjySOYYQ>}aAtu6+QhnPm_YU7E*$oNd6|z_OOF)+j%{JF&fJc` zO&7g-?HVxn;7fCJa^UR{i8S3vnr`9EH*(RwQH4%$L=a2ZZ~v&BT8P*xFwH7huj0Qh zki%fm-@Hy<#Y&+?jEW3aFm)jv>Sk1%J4>hAY6Z{Bjp-XQ+R)%dI8;?x39|#;Oh9AF zKWL?1;kN@1$X9}#FC=N;HdS0~2dBIo4I!7anu-cD!8P~C6N`(+1_qR_5k*Ch@+OrJ zkrXm7m*(e116I(YgCcfq2pNY49mQY~G~;C=Qa+et(hp8RxF{)Qs}^b3dH|EqPb=eO zu00wkS5PyNUswp1jBc-jeGP64`FVMt9+`dwyQ=fL3YHAACoRi}9QCpuaA%7>sj#tG zA3g-xF?#09qg74=AZu6o17w6i6~F$@_Y_$)h&ow^si83nf@IvBoY^V`X(=fen-Fyu zR00orSQb2SVX z_*MSnw0!v$rKNxd!XiwOJITxAI%)_|Q>W{Aufr?PGZjHK5mpq}9v;!JRPqoVgTh4| zJONtI{}** zJPdq?f5Tk^{o6JAKQD;F)sgqGStek*2Mi;X$|oS@GNf$(08wec-H=}dtIW*At1*%X z{Va$D{2OqeUXl;?KqErIm*jD%O!Og(cEeFpMded@`D;Bra$8rR`~RCEW6%ZH79*ol z(2Bg_-3uFJY|NZr%=zlvYF%VDlx&+j;WxtPo+TR8f)qxzIK_>aF74D8qLcU zmx*u;U}HIKBk4?+$oZ@(-}8pkU%+ppvW*%sXoWf#G9dc&|ZT$tZA8NJ|zWwjhP4syj z4i-x24z1t*0(yP6GuIp?<#jHED|C@FZK6STU{Q@_N@su7syO+a9?!Wz68I<8ps&8> z&nT-|`IDI{_4o-_Zv*cFXW#7@wpHSjOeR`1Q}Q3rdZ=9c^{NVhIo-a(xFy(W3D03x zjTN-S1!dtM&ZEv);q_6zQo|SGdO;2hq1eQg8;ou=*nFjXola+mhOYo#7oVQccwcpE z#4&6nlkuRwODnpfbptnMT?rN zjkW7h)!EFztNWM&Pyb_VXcmEAl*fy!ZoUDX(I=x%cG$S4SRX1O4q*yBneW^Pa(qrsc>E>Rv53 zJpf&#V%hXQ$~JRuzR8?=y_TjCr!ekl@#S3_U`Q9fGpI6XaGD`L7926ok4T{me9uzN ztDM`F8ec#b3qT|uOt3EB16w78NrT16`n|)ncQ0Nvyad9;gMUL^DWq~2<>j6#{MI__ zXV&<--xi)!nq@LR&HN$G$@RnX{iz_mtHa}GncS<26 zs$*bc@CUSFs*VkMZ2~bkH1sT zj6iw@?B(jcqmpqKw-h2F%2O#>l!43d@gP7-2xfI6Z(UT06)4OX4z^F$n_F3*?dDeJ>=vzO>vRjepHV=SIkj*+~_? z=j_-485W}9BMmFs3~6eRc%-gr}eQiI#t?5*p?7jjEnCY^Nhp2ibm_Z6-iuEL{qdo zs*ujQ@ts#TeOr}}NwPk^5Az78Kkv&wVo!M40a&2MsqJuN_1a=m5?datFQv@KVb?^y zM_v^EFYXr5n&i7U(kH6)&c+TRz8}U;nG*1PZmi-@D99amnHv(XxIuJ(y|vtKzHeZx zG~VN-$%nJWLPu;z3!RsH+l)1L*f0T>HyfOEoih8f|9p# z7LVgw{3~y<|MvM1`$FSrIzb402ovUyp_B18jf9gBSCLtgh(N&VOIEkgr-E+i4>%4o z{&^fA?#}h6`Tu3h8UEMD5n$brF!dmB0F`Ey+k8_#&@C0N3dt*Y( zj`tSTaS1z7M0oWOlyz)~hn8fdEZ4k#(L7yJQpdnhTY27f7WxPZR&Wtb#Tb}wG_7AT%e>5+_XNX zcthsEGX~`rLBza%q!%$B0PL9{tc2nIV;1l>Vs5*D!@oW$2XKsqYK;oJldbqODJdz6 zQ$XNb=eN8(e}BMODs?`{hp;Lz@P-F`Yj$<@>G5R-&C0=^9)OddD=YhuTzp^O&~Vf9 za)T$tCK%HX{?MbQfz>!e5A0Eh%Ia?P zg2CVcfP6WnL&T6EN8ob!3hI&} zI0dy{afpZ8+gB%QJ)tclluo*CwWAv!`HrUmBEf&UpA02uuqf~}XFIuWMBH{#q&O2z zSMp;CC@xuFypPcwBqs$$kpM;wnF0S|=0*}UFVWV1GiVU@I7?tEo?_E3APDafa|Rik zj~vrws3Uxwh~#nHoWYajvD#fxsZBUJ+T%Z%`2gPoX;&H~3jsRW02u+0SJD z93W`R@4U}cR#gD{8;9HIegyzO?T2_sLBmjpP2~+ZW|aBXYRb;(ziXOqXlj}sz`O-> z9vJ5V*ge2ffV=^=*BXWb>;R}=QdBmey&vy-_}SA_5ahdIgrI~z*AXj8C?4|hV_IV3 zO+36_sLy@=94ZwXb8Ak^!KxAxw3BKy3~t`Lw>&Yy)JpoqE7mo{qjec7umPL;g|SJ^ zm%_`02{>kpRv_fH&h~1~T#j~MPQ`;&!gQNMZwQ$9%-m`&gVwOKvAs!elIop);0l|M z*0}MzrjXLYXuk(eLF@&H1Z0zz*Vjq*w8k*F8EI8OD9i%Az=R1mRSG;Q`$M02MMT(4ZkM=Cz51h1=e!eQ!?>@S&*=ho6&~ zkYkfUj@#eY_tS5Ii>QpBJ}$p8W~7f5sHG8*IN5VY?RUDJvT|^gZshv>*q^{cuyp@n z=yvFk{|1W$3!Xl@dhhY>?+OpH`n_Au+KAJ6{j-2 z-Wzi=9muJ27#}Jy1k<06<+j%iBV-3K1@f9Cb~v0ahYy7>-2^p-0NPI}q!B+(Hh(a} zW@#7*_`%?A_FPFx(yUAP;`uj~==pv1s##|P>J^~NHs67^Zn_-4f5W6Dm26xkXd-vk zZ~@2D)nhvC%NLUc(kHQ((ZU~ZT+yVtz13lM*qKoItUC4t?VpdniHz+_(TU|Ya&>a%}7+s8*zPW&w9V{dV*@1}mi}onc z*dGT0>)c#yewpCau!OicO?`a|%q9yAIWZP-paj(DHXvZ#Avre!&7UK}!hUvlGv6Hl zATN7m>FH7AdGs>_f&9zNj6U=R8S5Dyj*f|ux@HD-%P@m8wlk1mhBEwSEJ$sFHoOf7 z;Z(dcAG-N7$lycktjbE~g`F@A;y}=KDKfoHhJ#@g$N_wckrCSB zlmNN!z>DdIg2(HhfsfCl&$$Ukz-u$gsIf6*na~#az0Syj7JK3(ilve=ACMP8sfeS$& zV5d)}3QIsQ;2p>J^!oQRDk79?L?`i6)V`_BnC;>97%p}SP~QLNn57|tsX+gE(*uQy zfByFW&zHWvMdf6)FqBiR8>*Bti;V}~$3fhh^VOdfAyOL;w1Oa_Vc^Op=#;=S$Z3Mp zjHqeC-0s$Z(TZ{`BCc2KC|Leoxl1qN$pYS))YBR|`Uy+ve9)=WpJ@iBp!d z^Zc<)N&IboZ+Vz`dzIiNkp`LL6GR~FRJ2%xkWoqE+S6(;(eY-9iju3IcQC#Qmc}Ti zSTr@$X-gdJZ!Yf~+6DX`EX3kt$xT_>y0yn*F?RSZJ0PPEi)=1um%1*uH0hl~fE>-p zElczET1&nftsH*7PuM0Jqa#k3!wf2433!=l#mJ$kE~!06{?v}Rm#Xu_e6R1*RbA`a zg&_51S3ifDqI>U?yg_t`^uzlsf;Oheb8qTQ*B4HE#+-KCeV8BhoK7gaaEn|x+NB9H zHeEmL89Um#6>!{R;{N#Y*qC(%{rxKCR&n7wp$7>cmE^sUgjeivQbBx)ru&7=qW8H) zc1K(khfCQW<8YuKwk_`6!4hBZ79LFR(FdGq@3RJTI1$%gU?dFc;@a%25~#p-@(T*B zeJY;JLsjs`aos4-2Af!XG13FFc5=;>DHCE$uX`||M#YGAKJwi;V>ZW7)B@36x7-bL zw)fj#VY2v1sCt1Hk(sjnRl^2J(1!8YedFL{Zuz{l;=#`LuJ{Ng&gD(XOl-ok-@S9% zder<)E;^@^N=s3v1bA4NE-I=8xf-wYwoZD9e@cbvf4e>9P4Elf{MshhO=?JtkLx>n z)zkk%Zof~??XCVDS+B0yNrH99kM>Jx89&Fa_jPYyUfueLNZK-T-m4og=a5?V8~mol zY~RdYev_$LSV=NXHXEc2)5tvPn=P%!JE`7F*~bGWZR?UqklyXv=9PO>N+dp|!D0N{ zE}Esx&5U%A=Pnvsy&NE=UWhV+^>1Bzmsed^o;IvA-%GSN%1vdnW^x8bQ8?n4h&{ct z-Kg1a^XvBM`{Z?)@=LK2X4SSO#T)%!(;Y%KKQ|S2B#u{iwm3}DkCG5_Teu{ENfT9f zt9Z2~%2KpD2|FA4Vz;e3$%-@>6xqMRKKhyLRwvx!ax_Y)sV*^zpWAzt{nDr0tLpPN z9XHiY3~ZCPu_G=2GO!s7LzS1C6bfGxR^C+;dG23-^h}Gy4F(tM+T9&d035btv+yw7 zV$;AIa1BIcm48gNXd*quzdbPAWPg<}*P>~E$)4o)S;3kpBg44u6J3AmJl}$ZmBxkd z3psCWunFzFr3JVL@UAR2z{1!PhX|zOViVN}g^ewpOyY7!;O5pFYwgb#CT&-?f|b`C zj(RTy=bPHjxZ?`Odv&hc^S^#N9=MVDW8;kvt!v^H{Epf~yKA|4R>=bsunBw@DTS`b zRmH?cYKBH?J~?g4v(yW2c~B$Sf(c)@%J-DIBkjbUS=ENZ|}NMa?s0N&t#rlM$* zc~JgXkGck)GZS0rAzMk{;;sINg*g0l18)k@zvZpPtadNKq6rwlWT)z}8Y8zVWN}To z@nfwi9vC0w;A#DG(h_SWiFzr|w-edVxf0~MbNYKQ)3M&^7Gd~|)k;!#s}nz8V~c}t zeBHwOb1jmyZy`?iHrfX;Uwb!V#a5Shkjsw;>g2cPmVe~!m*vp%v#80g^54%}`^}37 z^jXrW)^~z?aaKy-I8h{zLAC|$4`3l(syzf^~QDpeDs|H_} zeAnr0=~QAW=d4T&YGKUoFR8HqDl|CZ*`N?S(3@$|^wox!c{|hm#_0?G*HkJ~YNVnp z#>EnWe3*W#QBz+vKJ*ViIyZ42rz|u~gUaft#pW~2qhJ%GRVnYxd+>!*dImZN?cIB4 zGkbe@p3k}#Gn0c-zNaNr6X~s)xNY!HIaZFn9D9oE?fS52q`O4VjO*1GH|;l-A&$vb zMpHLjK4z5Cxo|gr+Rt)#=daEk)8xx@e}pP{woS@#YA8A+@YC$&Cqg7gng&Vr z;vm@IFa?G52dC4Mswx@tT{C(!|k5+-nqCNgE)>(7nas_4&qljAux6eFK0 zvft%C_>_HpVPS>1mzqby&*JQ7!!>xX&Vlp>NE=zHuG@(nU_5w?@W6dJM{(-+-lsjX zdc?_IyRF5>7+ld@HkkVKhlkNTEyzlj^b-@s#V#$ix3EiXl#cdxHUvA;0A?a7eZJ|A z@>z|VQFC97dNrPN1q0ii1No#<*@v7ijd8Eo^2XXK(P|rm{V%SD68;;@il)Q)wF0e1 zshuGiDNCxmUs>Nmy^-z<-+FS|%=Jf_+WKUUlB(tnUp?1H`cAUmeQ2JItcwOW6c=skPZhj#`e z*8rO=I3cLf+N3zo?VL=RFWs6>+{@)H?0mH77>-*qP_VYDRj%KZm&jkMGoHB{n6vn! zYP~A-e!7@g$AjJyy_oVa)CqN^BvAC(xAUusrp?vn#l}Z3{B6TCjnw@oqgQ+ghKUGR zR~~PElaA9zjG4S#UYe89T3an-RG&ImqB`8n+C|9wf$lpp>;+Be+&3|^fqFY>%t7>& zP3~1ud&ik_mF$;S6Olh)kc?7zelL6b&WVnT%Q5X8${I6n2`RjxvbbjYY6fOD06cj0vc*8#2T%18HuZzbP z33eOSISE;}YaiLR3l5z5eI%eYUPg!B{HT&?#LF?QcKaHK#_1(Ah z!+w}tsl@3?@~a@Cz%Y7*`cgM^{a8do1e^U=PA<&#j%|+pj=Wwh0P|k zMo2!N^27StM4Ghkds%t&O$zz1vv$#96uL2$_KK00^7I0Q$-0N$5^ip@f{fLlsZcc= zxcJ6fyLxSGya<{3VN@-+Dq0nB^Wr6*2duL8q@;YG*)FR`}7gGhO`8`O%jBCsJMT*!>o`oT8PVW z;xa6nGQQ}DZ)wI79fbP`kxeo2Z`z!GlilZBtUhr+C!jr31&y@)oDBUlvdqIGg`FoZ zWMH5!x8{Gc3Cj)uiq_!d>e+C`RyYV}c&XWOk(Kkw|i>#CTtB>29MYE++ zAHj>@!Rr&z+w(j&M;!1_d}#@2Jz; z*G^;)=4+t}kfV%r?0qW%)ok+L9y7aye*HiDw{gR#k&P^4&B?VwM~At+jh3)w`y4CX zgmJe?Y*K2X$i;+gD|zC?XyZo7N7gs{7OE8?j8-v*(F<=X*>kJ*T4Gisb!m)!Er*>M z2p?`I9nl3TEcCnVgaDNQc9?D_>g%~k%lJ&+JW-peMpGMva4-oWbb&YO} z*JQ5U$~U6od@L)yH$Oc!%QG*tGfgl5)-Dq}!fij2vvcRvZuTqF2KxzB#c>-rAv0&T z5Bu5yiHXYbQAf_}RokT0=reWL)$rsdvkH2`faX|H8uGL*qvwl@B(J))sPT(+Y^SCl zk+ou0(Tj7gyz_M};&ekVltVy_)#1Y5DJmlz2LJwv%y_dxZ0EnOTi~q3M_s zvfdBUUB!rh4%m_Oo4WVSXOb<&OID`5@91?S)|u!>TD+lCx0ix+kA#W}hlSpDTdAwY z=Wolo`8x)*$Gn`neivnpQjC%IvHsK9_S3R+xV4jG80&`)3sHAIW&Y2D(uUDPzQPJz z{e3+AoE~d3%ph>i&JO(exhd`qI;m|&WP6+jM1-*3nEBH9H2dS?$T9bN#$wEp>Qs2Z zk|{>|SD1B&%OeN zySva%Dg|3C3)hF^H2Jr(-cdJ&X#UP=+Dj0qHZpE>a<&oX{X9dHofI!2l@;p@Gc_>N z6V4hm)coRnClik985!N%>uGtC@`TWjc7^T-Xkkmw6PjzKt!zQHlICs=6OOLtF|GS3 z{sL<{Y)?RP5!%3v@Pqt*)z)5DQ z7^T(H3^q@tjPx;^#=J$Ahm=%lMb=(DrO59Kp};K+45~z!Ty0Ss#e>qMZmOd~z8Qbc zH}bNJWpI3XjE{4k!N}-l3e1%B4#l?Dq1yB9*f;*;Gso_FC%J8s1S8D}$HS*V zY5o0NUp@pt@yoh=*5$_R7lR+UIQEpd#zrg+3$FwUQFI)J=C6yE!_zG-^g8Y3#`7nZ z$HF?V+#-&=rcn4Xa|{Zj&Q1I6Q!PnFM8wQbIzBh(mCG~vE;L|)=am{kM=sAxlD$7B zON$?5La0D;2(|CYOa~#S?cT~A+HUbYwaoNFZHVX}%f0^Ba<^3Cv^X$LrC+_B5Kr}W zqn+#7fo=brmvOFN@;eDjh}#1_I@?u!nJ8cSY+8)VX}^U|zY~n6b156oO@|~?1Jgd= z3F(e|aq`s3fGWYOdVNTF*U1ATtgE9FXRGB;5Xipxe24v(5X5Hb8xgjSeCh{tZm|f? zjh*-Ng-dtc9&*phT<9f_ymXQT^{IH%V;M-iUmu%&Q+^4OJoD1b%fDXJCyT<82jb#V zUfGS3i^v-f+#+6jSu0+pDIBRh6H64PDn*?Jama>_%0Gitpw+fgN!Wu|Mr+;F$Z0Uv zA-cMd@8EZUFe#OiAQMxwngw&!X-4OPB^nLB#^%o&GBjYOX6)U5+3W%XX@4-3i*%V z4~dynTS@L$OsV|yy&6*A`?G=WVWZZ#^Y;8dzCZC?AYXm0m#WgS|=lsVCg_T8|ioeRm*2wM%vJnpGFE?mG}S3xhJB zT}V$AdYh&pzeL=X!9~|{de_!tTc@%I6_bkzG-R8@h0nE&7TFAMO8@%QwwqXxZ18r| z^)#Ru4>)t)Ps;nS)O1c#@-#tDH_OqOh7(z>Jp?6wkmL10c1D4(Q=bFU6qQa9--KVvwez>QFT^PTPDbC(r z4)cUt3il88`q9e09OO@MWdjQX;peUKGTYj`H>a4vkO3)n7m&O`YSkc11Bv}8V#HvCR1bo3u%_DC92`!Bvv}{ve z2tT-65L&CbFue67aqVKZlLt1lscu3Xs%r<$bM)*lMeft0h!|U~-maVAk6+E8w^QGa z6RkGuCh_?PorJeg-{nIURd>p2IzKWnu${-_?oWB$k-@xVV@!;ID5#kZsz!}xNRY9R z1IEU0bvN>($T&R%)W3HS(7 z?ttb1$lxBZOBb03?o;VK`CDsVkM)P|R?!sk6gYMJU}<~KUY{VKk3iK`*|?W;Lp`> zvHuoRb8YmRz!fFrB+6KfP{s=wa^l8w4pgrhUi5L=pwcg(dk%}^ug&7EPxixy}8q72JHD1WJ00dD}d-=TYw&Znn{43w{ zGtk1pE6Z(<)Ml4Kp9R>J!m*?z?Y>gv**8s0*sk2p0x-3p0DjD;8k@V#!xm)+2X|&i zb%9^)d{PNl>o0t>W+ccpgjK)g_pn}T{J!UTKZrjIZw~R{rL{|OQ`k&`m@%7_6vI3R zpN9!vA|TLQux;hTFu~BAR2)O$m={;(XY*Q-o!}Ki+6&>1QlrUNS8Hhq!&KG#;8h02 zzK$VU6$Snhy*oCehe!aPgXChc6Ma@LuRZ+B;fvKSl=Yb}q9=CpTsE#tMRdayaU7OQ z_jGRsjoHU&RS0h3Z2;L;d0N{$+pK=K=4x}cS2xwd5oRoqg#|1Q-Zl|US~Cp;CO0#% z@qr4#8YM#2Ac6@nlZWxUQ*}TYz!nHoz3FRx^d+uAqQ2m2{v8ot-F-Boyx7>Kr z+m)EZ=2TTFCxe-hi=_xy->QPKFMtb86n)?g5XV`C2}aC7PcUxYpL5g6OZpr&gN(zWwY)rZCPT~T3LWp}Md@(xMa4i9srTLr# zghLx1-Ys8Lc{CLjIQ-bU&V)V}FF4S5Xg)$`MPmL`a9<3*OI+xvZe{xW=neHSf z_l)HgDbimFriSYtC8mzfED0E(Y86yGv{nIHs$@0@5U{4QM5S&)hoGIHXYV3 zPk5hZ*FO~%qPkmfa_$q{eK3+K!v`TzRqMMJ$R5eKw&Gz6J_wXl8Y?o{w0}}9YWSgO zG!rY4v6rpM=K#SVi6nkQ8{rF;F^yqPOY4e`=OYK7uQ`?|v^*o{Z{wyq=!n=uNd?)e ze+;*o4wT?ajEAta1&=%YdbKRJNK>W9d032n71#7}jpwz)t?-t^T*L`k~LaANFymqM!d7pBrLC#r?nHF>y&aVU*A5A6}h+sq}s@Hv(|#cTcmx zi9^IP1I)Xcd&$%v3$N+?^dxM^_RW@+-gbBRmAA0~ep&6bO#dmQJ2?F6@Y$Ot`b&*o zdo)|>c1-Ct6iztA-JD-vL%-C6m)7;Qs3|3_4NaF&>{Rxeii%Z#FGc=3QTbGTd*cQO zdM?(*wM!3bZC%%Wi;wlBA?5?tiS}3y|EH_rHXOql55umQLngAgl(0kL^s+oult-S;Qz1;bE!sRf$;m?mH?9J~Eb56v(zr_%!NSG) z;Uw>04?E=YxyBVAm#N65gpG@Lacs*-&niVBevTh43wh=}x)?gI+IIUCuyb9iw|a1D zcA(TqbwmIYrMS}vYPrI(X&e6#s%g_f1!>RdVVg>*`EKj$uyQopFGSz0tvoDZHICUW z-)W*i7b0VPh$5VHVr=`4(dOUkK5ocJjIN8Koi|D|q>pc`w83emCW zBEDA>YgKh87v|t|`ZI;w6FW4U4VJdGD}A^9m=+6K*0u4*sQ?( zE1*a!$PFA3_9&s;l6ZO005N7qdhroHr}Z%L{3u8ej-unj!_!vdso4X8l0S#qQ} zFQY)sK{K7Zqb@{*Iw6%1s)>BZUK7Va*y_$*+_*;Ldb<1tIaQ)Sn#Fm!f6C3~^o#SZ zr*hJ;LXR)Ts(o@8EPagw`TTg!t{WG4P5V5)J&oMA%EGd}imCIW zf5$=i949(3PrvflY}2>c=9|;c^?7O`Z?>>}UQDa7KvGI&~n; z^7+V3!kgTGD2S^<2O|0ALidJcUhpW#tYGfo)$ylQVXINU7joxT|%N)nLqj3ft z^{Kw@E&$8~ORkZb>Ab?~K4FYBHG3QeXLGj&{%}|`^-9xQgFz~u7o^^XFqkPZam6{u zG9u0NL(CELW$9vMK(bnu@6DQG_YxFAuP$Rwgt$dqT9f_Jdm%2a8CXPS<$h&|W+@P{ zRBiKaZuhzIw0Svx59`UR&0L~yCl4`)sP&2z9SNr7s#;W^B1Wr+`EZt15p$jG4%vW| z0Un-C;o)RQ5h!s(3$J%;?5mqL!BqqM)txkEPhJe`?77hBztmrgUtEYgsOGlh|N1Fd z?Uz`E3sF{h;1X+1so5tStXWoRl~e+wzC9!>(cK6QTt~xg_RtjZY1#5d=4pU6!e#i_ zt{l?|aOQRwlH56^prF19B9cO(HC(F{{#R##+W}&aVy}Lb%2}BI%BrY8>0)5@SRfM% zc(5puiz2QG=BD#XJDgbPem-So zHL-qw!Y|xXioAe2C|eb{8XU$tO|PbkJYG>}gN=?|ZTT<9?29ORmcGLc{eyS+6yA%1 zfMf+~;AMryY}d_{jUUZw_`$n8YU6RJcoCv-D^KSQ{sT`RfEdhc+YuSb!>h2<9)LSu zl2(I`Xub+ zPt%?Y=PMHgG-g8jIXY8Nj$d$p0gG9sLH$G>KO}f8Y@!tCk|;dkspNz&RxrMZ3;zmCG@!ne`jAI$+Lsr+yWr!@_949xQxBxdllaJ5yLUY$3ABbwumaToGIqC0jv z1>m9EWVoP+ODJB8V1DC?tPoR@b6$vL@^e^rucc$ih@%QF|Blq-b1jtSTD)!EFCcdH4Pws0R#d86aVBTt!L(A?e?*K|L?& z@7KA-Q;-Tc3gKu!N{X)p!eDCq39qa)L@ON)#z4@&+p~CYURyI-4_zO}y8%cKx?on; zf5%9`_pNxxB>|HVeTXVr2@8@}euVLL7-kFnfN-}*V(wJ^iexK(( zMe60kQc(eaZsXN}D))N`#* MIW<|hj9I|{0I(7)UH||9 literal 0 HcmV?d00001 diff --git a/images/multithreading-example1.png b/images/multithreading-example1.png new file mode 100644 index 0000000000000000000000000000000000000000..114fef5e9cec7a5733f2b81b495a8bc41d961891 GIT binary patch literal 25590 zcma&O2RPOL9|w9;KOtn4?2-`~*)xg|*+h26u{pA58uk`tOZFyY9V?scopH$CyAm4r zeboQn=icW&&%Mv{d-~OJ&i8!g`}0~K!K%vli3q3(5C{a3yqvT;0)f+sK%5E0!-ZFh zlrrH3(|UPn$%pQfTlJ3>^>i9mPQ>55KBs)`>9r=*6STvBT*JaH#KO`cLWxv~aWRUj z5qB>$rN;Dhd)y^C7?5{g%@1+Tbk+=)zIi}${&k?w1N5tC_3C{2JVzI1Kiw9VM3NS@ z^RoK6*DY|^lFn_PBlGPma>kt3X1B4or#ZOwd1f~9VgB=~s;b7#UwX6O^cpM19{>6} zta9fCi4-1#9|;b^J(BG2U!{B%v9Czs5%He>kAc4v`!5E+fotTa@BROJLsZe?_@Axu zAB%H0*yw6M(6*%P>=>;ck^FmJmtj6Zfx0MayZ5&2vMhInu*|{G`E zDIKE|qfSXTYKHpsyVtr04j2?Um78K#UQJ8|%*Vug@kKVRzT+>{^w-=K`}JhUfo5jv zB=b?jcGtnXL-|`0zjnzNmxZ}`g>Y2f-fyrt{>G2)KrfvX5EKlkdXpg*cfJKhsL=bo zRJo(i)?0nJndCSA&d_To#_$O3i9rl#PX;BP75LY4q+K>e&Vaxq^E1>zrLnUEVZDlH z+I?qBE+S9qK>EQmcd19jW@lgR4C^P((K@|3c+$c!tKswxSD~9Hc}t8v@=-sVVwrWa zzvK?}*30D~1i~Q0fHHwb(#DK^+G~2Bdi2mG(xrPgxc>|yuEmV|@PA*cBrV@+IE#5J6|&@$}YdsKIdOcU>SvvT|k}3qzQ%<=dQo<__pW~m9!wYRtG3Oc=U>cs@;gUNq9>lWkQe%cIL$O-YaB|E&$dK<>Dk>&S+0@PLmw zSAAX%4)MTx=&~)RA9N`HZJwN9xIsaEwi!qzTWRh86uyq1&dGjAu0 z-QUq~IXFAG56$UeG6-?ie;U5NQ%%d&!UH`$^Klog?fb+0ml8ag=c{+;``^1mj)WPZ zru%$_eN@3Rggc~-3a&)!J3Zr^Js#+IQ)=YtKywI;Hl7?}CF2Utd>MeJIVtn|w5(^Y!r1)Y&`Pge3Y5ZAnST;G`~r z@fBb1#*&L^szLCiGnR<~)~S)WA{Tz3OmKv}Jl}1Iwq0Yo=Y9p(!%8He^DAFnkgP*) zUGkn!4q@5k?yK975+p9c1NeKK&2yq>X>yn>6PZ8{t zNWB=xWssikm&xE}KbtMtXX4~7NOD)hi4UGnRO5ZLU)esJwL}?9VVKs~cn9^6P3YOJ zKL|0qe><#J5*ZfQV%+V>4t=_TJM?#02PiKP$G%qO_%}J5g6+W%*m^7zWt#-?g$Pb- zyS$rka=Hk`rkg0+B#Y7C;biJ%W4$S5U_h7uRDv+Dg_7>7O0`r#|4K{4Pw$Xed|VG7 zSBhI#C~O%w;f2NJ9gOpfI*jvKL|kn=dMgUWbVBki#MR`n&+qJUpDYy3xSiG9o2|(c zw~DbRl4_&`At7Jb*js{^D2tta61bCkE_3jHyw=~}H-8*XgBRFRNjkQ2FsHB3olV$1 zlf{_*BX8jsxRr-A?~04JQ+y1O z$5axHj{l*H87T?p6|cck@*hcI*G2|OYT@Jh?rJ?m7QM?@SeP234DLnb(zx(#v>WWp z<@dkrU+G@|QEQ-QZ{bxdgBdEo=!U||o7Vl6WR=Jg^WbFvpvF^%g$8LaBjdXB!};WU z<+sgpohsk6XQz0X;xV4mx%BoOC*>XLeEG8AIJk*P1t-sX% z)Ari)mizf<3P*0F5}o4~mFR;p9=w)w;a-0r9Jkmbpc3Pj>LVTw)$FJ89XNy78qeST z)L}98biV5Vfq;^iiGnw4QNO5rFy={G*7sup4xQz@L{o1s5e`l#c}%rom*ckh2`=J` z+wsD70-S%POX6Q)z>^=76XL2pdSqewto7y<{U(!x&yIA9@NUo4ujw`)x?`VxmE(9> zJjg{TdtSq*-^iH+V~VM?>1=z-3vGkCi9H#aD9#|hO03Cr_!5V4MeszEKof>fGRI?Q zpIJLt8`$+j8=NCuO4to8&O%vQrQVVnw~U*6tD_rn<~iq1T3(m@^v*_1)@2Kv7u6oh zCjOyrBF5Z$bE2J0%m6yx-FJrKXB)#A-giAp&Cy_^y?V#7A^sp!D>U{j%?F}|bIg6g-LKi{=8~|x>2st{@Rv-MLqk8x3aHW5D zEie`Foc8yFY_II=WgQ4;-O(>W$C7+z%JmKN6#Oo~A8GAv59hOw5)i-VB-m3cmL*$hX7y1qUk(+t2_Gv7PSXAp+ zhc3f9mp+cw)Ho|n=g_vta+Q?s?d`}Vah_kE)G&Jvx>X)infO|dAMKR)NBFc`N)Hhi zd=}vqGFfH15tiw_u^jGhd8aYS)&ccyD;N3J@$%M{Hz zis%OzQ@)zpa36R9U4x_6WV^S{`#rS+jhVe3k=#7x-uqnhT$mlxz>2XU6#*YD>Ij&w zzfj;4StvjyK#KGHmse7BlRpvoZq6*o0$|#V!Y7Jmp!O(_0JO$V6*Yda?=2t{SfjYp<1m=?h)pcyIw~Kxed&oY5+&_Q&{k^w6NV=m*8`9=b_dn)xA4r@ zbRi2T-vCe!*m(ocC#g!Qolqc_CFEYQ5SKIk27oE4xni7}W|_+NsfWwnctik691in$ zad6bi0J;K_&HR>3R=|v@*1Jhm#{V&Wyhwt(`FXHeWsm;}AbZ%GfNQ%EcH5d4$T`hh zLkj&_XAv{RO~{tk56JNy$7*g$I{oo5qsHOL?NZcKpR|f|Nn&}^dOv`g#iu#31cTRN zoTVuR1|29Iq+dS@vUvOy^HVYCL_fT7S=Xn4^wM6fBK<2eyU2;>UFRawJ3O`UZcb}H z$GaYI`1$Fj2hOs9w+R`a=5wXDWVg@eH|Kv4>|AEXC?{JR8Kp}qM`*_g>8N-y<}Pdh zOtw^)uY3r2ZuK--_e@QC$kLw8p0~>P%TqTNHOtL!ko@MGR_Xp} zzrVJq3~}KL3W%^(MN=rCOSj{3b<$%+a$CmIR|>}-=lP$^FW;KhyyiOslqn&YB#Y)c zV><2!;7o{X7UoHjT};pxLP}TySw7Ym^*Bw{0)=CU>_gHXReX>ssw!ukH@qwwqW;>e zzu}c*aY{%DnwnACEm3&Wel@vqr zY@{`SQj>H~ADPkS6w{?}li-&$XX%?)ml;*8IW9A11V@u!e~VWSYuctSveWgaa%0+e zgAaD=lY=JA1uA!bN{=~)Hg@PQ-JX_9b)C_7>tV)NMlGlYX3E?p`DO#P*a`u}4Ulxp z#`V>Z^EnHWfrRVJM%N?Mh~9Q?=MhO}Gbknw*cWX|Gf}`P!o$Hn0)W{n!e937?Thd6 z?&bNXj6I+LSj)Mi`D%?vC}Q6Jl_h0tREli8CaIXX2mMiU=wz>SX+{3~Pf_ny={I5z z>uPWxrBn-Q3NuGeSbi75d?lY%8to6$U+0JUKP;-tHw_B|@3A+=_k=zM{45nuty*j?N&?Xb-f5oIYm#I5Z(U^@kg5 z6%hv6rv|jc;$z|1u@H2oyD0huR*M;D(GN_0v%PJNf7P3@W)4^q3)WGiCyM9XrH0si zwA*A#9qyHl%LqPfRdMp>84pN|R8w-TT+8u!W^cHZSUR%vwZo<1TM$ZHLb;AB%r(3C zXQ@t6uh?R~;YWR64#Se0g%1h_Ybz?FS@=82j9<(1!hWvQVbmDlF;iroXq-xhm6sWa@vHO&MjMF_mC>wLC9A5l!?B_|C+9Goqm7 z<8o?|GwEUMq%mnpsA3=;p9B-1s%cJj&ghBeZN^|jw;hM>&&HRZ^>pO+D+%7d55)6?dE9}0}PraQ7F&e{=W86IwyG{ z>O}#iw_cHAbGFMBhL4m&j-GCat7Io43wH9qH`q8@&o{W0nUYz(QF8e(FLq;y=T&i1 z{UdyNp_n+Bbg#*uv^s6U(mbq5Up3V3e^w99TGlpw!_ZeLLg+9%k*Sg{D6X+k z!dhg6aX8+kXFjDf6C(6?sAX-u#1Lb2ITv55D z`vZR|uf(oW5aL#G@+pX?drTkjr45;(t6Th>XPK3 z)Y2AlVT7ai%T0_VLZ=P&mQdYX`$ zB6ClJ{P`R7LPkZ!CI7!nrM2Pb@OrC?nw#Q3;%BQMOlyvDz%BJ+|Fau+>v1+PDk~$F ziQwXm-6L;Gv!BdNMZmy1FyqD0Yh~PoT7FWg&c2Uy-FRJuFPp9OsqzKb7TFCvg3$QtqOND(s8rB=ev1u^ki*_8O!e+55L<{FLKBX^SiU( zjDPds6@X8xuYI^UBb+iL6&l~Igm%Jfw;yr>GF_^!jRhAI zQ&ZZ2-b~@u-nw)3KN*?27S|vE-GG~HT^g5`ca{jPOpZ7>fFWuAbg2my`o-~Ct*Xef zYO`?a=O#y=n{($-NGRPE${4GtalwvXzkXFu44cvzKb5%JSMgzhX@_Li=V`y|;nd!- zCv8#D($!Q-_n(%Ou!LsU$#}jvrt*G=9_ILOoNB~ z_Ur#nwu0kr?W=O9mZ!XUOsEKPg;M-)2nuxSG%m!H*$_{7cuPFinzbJ-sC`KqO<;j@ z#{JW$vdQT$X@9f zfGR)OR>~d+3L+<=ny2kNw+hS4%)A>IvVCxQ3sg zoBWb~kOy>A9#~8WZMLG^??=$CFpSvI931OBlyrVK`hD}-*x-YI;qdM2r9u4H=MUF= zg+R^OMRRk5G{|YMzNdrZpp4i*^px%ZjrPkw6%fl=`1FadV718u&4tXjkw~uK?U)*& zgR-*%r-JHvf%Dd6^r@?c{~-Vu>@f1VH8h?@;P049xxNG@_+oY~&Ov87)dn-A)gK7F zF`U!6+&Xn^s5k#tX*o*jYQafY;r;9OPmXVJ77C@W)k>cZF7hssKaPOa} zdeF8~=`m#)RsNASX@|Tw>r7S@9qZm7Kv9UG+KU=BkM1wa4gfTmU=2Fan(pw+Jo{Ia zeRWtmyLNx^h*Ff^nKFX>u#%fkt3M_v$(7sF`Xn|V1)A=(*Z1(WU!?`8>ocDFw}V=* z$L>`gXy=Sbx2m#NPF*9XUbK^>R0KK+xSt9ScnHjuKM-D+<09mWD%(}EJ$eU4-UU;a zK4>{G1AchV(nhM!4}4e_i)SabCoQ?90R9G?SJDrhU9)Jv35YT#hzZEgZJ`N9JF1cK`81VP!;GdvXhN4Dj?%gLTqdf(%qPQ37!+-PG_3 z4g%V!=JZbXJ7KMC?c)1jcRA_UzNAMr#UH0sy@$AwOODlqC87PK}Y2sQkNzwz10iFS9BC^560*a$Pfa}{nb40kV;HCvzBPbo zz~9NlIjEml7ui-Xj-|P~!CpFrJ?TJ-e%W@o=hg6E+P=xX8Z9T}QtXRac)mP@%u!g) zzVG~#IJIpp+qH93^`+Dd(T>?rOWEL;M4(QvYO!){ah}bG3&5y1bceMlZK6{~Xmej3 z2IDn!ZIe5t808x|$g!BD9laF$}zsjvb%uchIGz7-YC~*iiG^9T@Gl_p|$B{GkgYX8h&&#_pP!))09RQp!fU z3zKTX;E$sf+YzN!^>P%Bak3b_GuF-uczZF;t5A%K)N$oR%uz%sE$K%B$s5d?tK>Y( zm6()sCR7#Ew1LTKH|ZlP0<`_qNCi6AMcT?l=f6Q!6X`)U;FkWR=#uCW=)8&DCIE!T z+pJmU>DNGy*^%7ygico9G=N=EcET#u@dEq?P-!)+`E4ECpP$p~l?G4TJPfSq@Q2uF~_LnuOefqR8eiF++I7|w? zBBw}Vpre133;|Fuz6Pe;-t{MXm#o~Ac&ZJ#gjlCCqXExN0MuyJ01eD-%3+W}TQ@?-^SowNv%!D+)8-h<2yELA>8s4b z-~6c8RB^WwVX+Y&rB6+4J3D{nKVTU*iZ=Kg-@;B)QdVl75w=M#i>&y)tW~0i$yq*8 zG$%dgZJ6CStA~HhRovuE_oNJ~vuSEra zkpC{eGSjnQJF5d)$Lo%Gg;8n3el3g~1=V8jwE+2%nRM--6!5?LTm@fLWq7X3GH__> z(P#=G%5W1H6@p3ao`JlXz^rwsd5vj{Xn*yG@RO78*?q70-kyEfHhz7J`WSz9ekOuI z6cpUro8cgiSJ!r(aHh=tk{xR)dP@&*bEeB;3+K6hYwxelnpEFEJXs6RY=;jTmdrKB zK_S1WVqrcrF`MU8NB>mwDK2LH{`y{HY(vMN=0mEqDXoe_nn5MZCoeG<)1O(AGwM=l z1C=SYm$!a~Mpw5hjn~AGF|6%#gc)-ze3(?9Efw!{b%U(IVz+jp$f*M8sY=2{b4 zwMe_7t81Gz)$sGDQps{uQsa0my0kt=a^|)CGLiJmmN#8p|UXX9B^i0RF> zIg}+$5Tor5)iZ#~R8Oi+sTlm~yoQWB$`l2_xy+?un6i!%P%6i4i})c4=AOh8=~93s z&en`8ddap*km7zW&B86BeNkW})y`{Vmzlxg@j4Ma>l~YIMO}CKvZXaDo05$i1RkR9 ziM!9ySzu%lJ`!zw%`9%aqp`BT)E(AHg?D3(^#7L`Pf{l7s(}Nr(hv};wywKb!A^2g z;}saI^~$s83ANgyq3}~<-{Zb?cIup#N~E3Z0oLv?d>jc>Ys4-E$mWyzhb`GXGe8uM zPfi>Fz-ysLM@Q3O*3JZCshAuKH!bm$b&h!H%%(Zf{wZp|{SUSG?Kv8s0kh1uYTF)6 zC0`;er;Ad&x9PK7l-oJEQ*F@BK}o1CwEn%%nemkL%rN{z;oncfBO>idnyLy=TCyAT&-%RTc4m0MzDud-db$Jmpo( zzfZ6Mf1w$?aewU_a3~Bg(#Fo_q9$fYudSW6!8&lQf0cep5V8>n(3!v??(B8=GE;7k zK>T0OnlsW3pb(UKC*{VsvP=}OIsmi+PI&+GC#dl8fa+)0gpwI!u*W1*ufuhWAJ@8@ zva>QfbkP*Z!)4&&_ebrZCvc*vt7r-V!UP0yqfQG0&`vpGvcKUaE}lTnF2CbiN92q2DDCU0Nn%n)PFHDv%*c~ zXHTd>a2#Mn^K(1dFE8!E$q1k^v#IE2Ve{HWWd$c&i5mzw7Wc~;OM|@aS4#WBc-f_d zj9YJe(8H`nng4(mG(8JRel4p^De=v{90kZS79HH@`v%o~&OAiK5PbAFo11qf)&DVUZF`(9aJ%pvtJ68s3(#j0?L9Q zsj%y5NR1W0vAhp>MM77yk2q&}-*vuxV*k)IJBPZ&u5Rga0EHsSvw(WRT-x_K&5Xq9 z>><&dfL*^o995!}yKKxV5EtvfqB3&10G)Oz_hunhHE(fq5YZCVfB^vQOS<<3bxW)G zU@$qk9Du)1UP=P(TIiz`pG4EsCEA(@2jNgBJ|t_vkAsy4%Z&Ge@$|@{tO===)QBU# znr}gL7y0LhnASt3Y?|l7n8L7(0d0`T zM&;4*XbKHZEcnSs;}x4o;xV*BX*~;bToK0ElEDenVz1ByfrHV;4%C3xPD=wwPgCbp@9fS2TRc~J9D(UX`I%`^*+HZy| z%wkYTFXPjCl00|0;6GqSAB@R{E!X1HxU>s{ZHwpX!0<{)aT3uV^1~8>3Dr{SfX+)H z#wfK~2>%G7n8OqYVDTwnU>ty3__q(WSMNXsh9V~kZQ`r@DScfKEgS&L94jZ5RB2Uy zQml^`POw6I?BB*_I)LJ;SLLHHCN_lvl_0-kk;cw|&&J;BXPdXk=HwQL>bf%P%AXH|4%U2d~uMg1bm} zJuJ4SSR-Yrq@lQY>>WLOEHgRoxVN&)0&Z!dFDpBiL2SGtw_}M8M(2@#CvdyWG)nX_ z5iJla_-T~Bb#Fd7-T4~1b9rKCZftP83!lxr+c9ad%;KVi+IV4c15TX*&1B39PoW1m zb+NkUA*j=`*D2Os-w_Vpw(`-p#N@>4Nu>ivR9BzXw-aQl3g(&^+47;@FRm$PrxsGT zI-M$j=2;CBnKTm;+W#U(K{$L6bTc7Gef#=RPwiF3>@8Yi`y&w-gN|Pf5+F;Zp*E1t z-n7+E#cW(?=&o9*p2COdu2nR#!AdqB4Z|e@wR7vTr&1*H!g+-UknpJDREUqTm5KGn z%C7wu1zu+C&Qo!z_F@>&2MPI4k2~IAFzZ2dXr-bNm_HSCiQ{T1;Ru{sW6_%W%vy8g z`CZJLicQyWFco{yWWe{C{WmX#5Jaqdpi} zJCc3;H1r_Jz&waV>>ttr-IQ`;(Ol)C+daMWCY)POgu}Y)X2*(Xpupm8~TsEnN_DI=~nooE-kGHnorCWWdr)OU$oN-z?urPkYK0IH($%AIQe zkb$CUT*00I(I8KP*4qxF+pYMBo3a%vElQ~O?h{A}8b$Qu;s`tBzc9(X3t0=0C-08C ztXIAjZrCLlx1Ww;7QZ6KrTY3(&Cn4u5idN6cR& zcKsBa{d)`Ld0$Daau{}+hVxb2YyliqJX>wd-QGj_zh@B_I1&`gL3#Bfp+=f0wD!3b zZEX!vI_=Y8n_w9gY}Z?=tKQ^D@VBAli3^%eJr)0Zq%A~cdW<4!OAJiqPZxk~uh;93 zGu|iP#NmMW`%s+1*IIyH&%9UHf^^1xr_+!pHS&ScAWfJanTFQToEgMeATm9BQ$4j3C-d*U~7@IJ&xm_|hoSEqOSVT zulxl9aqSWTz{-o+EH?lqWeES9gzt;3dAR3%C9R_S-JHKnmFyV%xWXcWPq)TC$skFJ zft+7WECp~J5RA`5TgF}B-SAJt=%vE zp9{d)MFW~8_&BWRaL9#0j4Ggz_jzVOf=jm_Nz+g3z>~EeLTJJn#M~3@_HYO|nYL4- z&qVQPueQ^v#w5+nX%;=iAilun%ENBEB*wp+9b!qAmvvZB0@Kt!U8*h52<0>)4}qk48c zu8fKTpGIs0>RgwYR4+$Cz>y69O(G}OOT3EvXP?7_mw)m@2A3+d5f-$Ant=cDtw2ZK zYIdUWdaQPp^kMR3Fz`bh#OEF7vgLT#a$k9RMq^@lYdOXqQAjEc^HZBiK}_&8jaOn7 zRHTUcn=-3d>Kv@IO6PN#(#5pmK58bMGQb`;yyuK#FW%~aMbX8;Q$YwT(c63Py233y zdA=T{2FQHNNh^Pu*Bj(lYnH=O&Z~0-$$ba&RXpb`qCC zW@q7kOF+b?ZhJ&Ohs#tL>Tf}~hk=?^Dr6F!+HDYKoq7>Me8?1D1lKp|PGYJz_Kgh| zto~#yOSaeU`j(x+w6-G6gEV$jbF-@_SHKE`QgHE=ro{LV4lF%XF|}DDQfh`1vVMY; zx65l5NGb&`p2yuidc%(IVrp@{6a{M;S$F=q5w|6G+X$AQO=9>S!fl)J>S>dZ9!T<;t3>j5Bx@(5vHgIMq?qaH2`%Tj zf1UbGLLFo%S#HTd)j_;hk8s4U)2vRguHb|K@t$OncL0$AJl2#(YtDR6XviS?hf-? zegDm{8|g00eb-ohK*`ntf?vBToSg8&N8)yBcrQr~jhH#~E$UM59uzC(>1&I0kSF!K z^Zln}B89>D;J}Dqd%G-koPcxfXNNOjJ9hED3CL#odGE_r2e1vzWy!I5<}8J{Cp+5) zc}c7B1`Xa+FrJr!Va|E)h=q2?-O7M8n^6S#NS(DpoELF%31w?4>glo?zkUHJpc<3| z|FVIiyc(*;Mh8aas>e@%Fo;pf3+w8I&dyf9fLX~zrK#d|SleWwHj&uFMGS-h?8koR zWwpJ>-2hLPzr$~n1ja`n?ToMT+vNfE6(cj&I`|UhoS5admr%!i0h`KfAytKJFyN8y zEk4dc%1-3RFz|M7T1KV3?5=y|W)gPw4t2y-;k%FGOSSf9TX;T498u% z?cQ9xnisp1g|c_K5ZI#5mzE@lr&?8orYkCvvA466!t{uVkByEp2t6y=s(@K#x)5G! z$)v3=DR+Fm>=R^UA9U3XaMQS))e=Nf5eE`Yu?I>qtjDIKAZ%&lI#8`70Lz@pEF_M? zaIQ8OUje%jzDVu)A#**>Xt9jX>})7l#>>QxY%jNIXyF2Sg5Km!$vU3}GdD}XMWd=X zTL&T#Oq}5k$YUM-cE9%csLgpxyCRNoFj!@tJ!>?JeTY1+u6SaCf%2WTr%~R`-#vy7 zR+BF`Mp;^?W4C%{92>>N{K?a&ywwHm@mZJrkhe^lH8q@^qz=dk{4Mp#)+&$7MHKQ~ zc}FJoYByNcWBrW<Fp)Jvun6{`)dkX@ig zmI<^At5N-TmY)GxAFyN6@gKyh<5ITzOZ3y^m78`G#3<3l88k+Oh8a#{Bhye-Ro2HQ zXOyu$n$R`vvE^YvvMY8&U-Vr>v#gGOe!8r`wTaZ1PxHkB;*XymFo3QEN55YZC!BP~ z(QW%)SP(}FUo8FLde!SXpm2C)~Z8SPzra(~y&!RO8gd z!K)K`$a)4625nG4gl7j|jD2?%$zyl?c*#mOI6?@!E9*lG_W)obHsxyC z;b;J22Z91tJ23@T3ic`j0UAdN#j}`GZ&lo`I528!`yHgmPfvgF)n(*)BJ$}jtjC^~ z@5O#NF#h#!k~?p?`eafd*~V%@(CIcTg21z9S9f+g+{nqrzSl!A3;6B~!Y@-2lpawk z?P30hC*H~2Z%jDqAqp`4W*0D-i^2=Q{U9SQS*~H#P39LFMeN+Zwk>xZ6m+so#I7i( zrl!0R+X+@29PR6)JDLIajZtYIi1SCdwNXL@Bzk225(54q37W_e39;HkU3d3UG zLeV#l20NYz@dHdzE0IZ2Fr~&V$15LSBr5BLoP&1aC=^oFM~|wOmOtBujq*mMSmTZM z>~&5D@n`;(u)cOqg{y+4kq&ORH(uMusejF^!0-?R6|A%X1PyB#9m?BJ^T5R&wU}~~ zh8>t^Tso=EA(3bB9VpEbl(2O42214z#j-FZAxdGhZ@DjiU<4Z}q=Byp zx0cK(bk2psEh|vVz(C8=(V86=n5>9?+L!lgS-bAOcuD8o3r-vnrMx44$QU)XaqSgU za^4LZn63rq1@u>&Dw%b`;e3&7RF|5<6$y_Y_`2+RXX=zVvUn#65RfSt7np=B>Pt|= zj%JXIWl&Z&eA}DZTQcK|2rhMnm3|7fymTvl(Cz!vL$MTIQ%=t&h_rg_8uoXmj#Foo zc0g8W;3V_P|L$M$-USuT80HpqPVAK|=nKSJIs1hu>CWv6Y7ikH1p70mQ+_6ssetG$ z_f6Q1HD~ohcr*>nf~FixdRtzcxu@6K_xV_kU**2im!M~%f*fR_t>Kl&DLx_u1w#<( zo?Q!s+!*SE<}X6yXg9|XZ*V7MgYX^oYFfi{Llw-!&H(ZB_F4KQ_NyUpL@b0??_y5SzkUl zsuui(8^$yK_3<5$9)lIfw8JaGj)u+o!0Ll${4(@y0u?f-bx7|vZOM+nO3)xVLp*<1 z)aQd{SSMWSh-Lu!5Q5kG%F18UWmMDlm|gE8!|r!bFn54)2~E+0opP)iWTDGs_m4uq?1nCl9ZT;EJH?gIB@Q-7mKx9)ZGHbf1H@ z@l7q>oUDd& z0UENR@FY0=Iwyoi%t^Mq^E>JFnUa;HP>BGSL&XGNY~9?ViYW+E+D|@IQb0YrA@Ips zX;(Sz{#T-smH4EEsO3tSisVcoNT)!a;2_=szZQxBcmI6aq1Z3%?ErAvTA0M8c!Q-U z#MH>{`o>W@i6C62s!{yyJGd3J4jDmenre<|5tSha1sNq`L_}rbSP35rR`VP;7-O*) zC7Jm?p^F!Q$#NN>KbX!Md=&+4ZRsr9P+FxD?llbf+8tDO8K*;3#oOTa>U{b63}4vz zY>_}X3L%N`JdqO@zV~`?*;`2VnbCB~>dEl3z8Tcw@noM=n$w)o6qEP0CUbG@@vWg?P&G-wm!+8S*;rlhEwi5lU=kaQ)2`w;Nm zUY!0eo!#ZFL`pl&DV@D?>$hz?tri!Ce-_`@vx>5lMMc~zzK;dKKvJeE&nf@C%9E+) zBg*G{WpFj()O|IU7dqHSfw!bX&Jl5?UiZKQGDHEv=kw}Nzi+!FR7-b|l*MF5b1DZ8 zhTxZ zc{&sd(b#iPLI?NWnckPhHZCZqu*WFc#o)fsd%JIXFk*%g##VEe|G-HkVl(PFl*zQM zI=#LopZE`QO&Z1>6?8Q&Yurel0OT4E(- zjFkt6_8_5Q1D0>$<6XTD+U7AX27zP4En&RakLmN;*kM{1#nxj*VV8n3R9_vAggY#+ z=t|uzLyFex;GUiQ8J>jg!=pMv)~@Ft+n3GojP_F zqrrouXhggFd8JYhI;-DsD9MM&9s&G>84L(y2f%oVpbOEle?f{jw6@B=dnEza-ZX`P zx-Q(U9pY^nC@Yf?9Rg`zMZqA}+9x%kphyMou&@wjT|pP0-P-E8Nggc;1*V=3vFOx| z>-dx<5^YzfQJTWeGm`M%gFlhD?^g38$Q>u+6ku3IS z(L^Q6zeo6qK!IJC)qq&)=8Mjosn`fCTJ)ZlPRhuQfYFGtF?D_^*C1#!@~kINSaW6> z0NW(QfoBk~j@K)RvGm{!!Xkmy<3{!m#cR)DVzG^2!h|`N6*>Yf4F?M-D;qfRS0OTq0Ie*rlwC%D+hn~`Qsd_nBSd(3IP0&h^PnaM2xI`srza%* z5-I)+%Q@j5UX1)rtccRdaTQCz>~FzODZ}QZ*OICrdFu+d)1=0Kdd3s_(BP$VEhq0hPFlc#G@cHTbr%7mLo;C>K%C6lKx3sh_ z<8Q04ugBGZtgbu-eDyth`x1r>Y(*)!c&8P@(rhFQJI_I&gETOkQYhsh))W^j*cjQm zit{H3crYIyT6X%+FSsR$>x*~}ApQ04p%@o5rv9lHra$Tpo0gDTDQ_Fn!U)TUhqFquxdQ;e7M+2)aNTBTaAR)WRHvxRnw*-7z15a#_-lp953gtu9o z5}yQ;gkigPDF^HOGKwlt#6~4j3$uEeFsljIO9XT zpLSJ+vZjkGwNN5-h6Xsw(>7Yz+_s};fb)nF#(Bj^US3M$CtR$ndxU6pk+TYc`>~}x z9H4|QO8Xtq(eZcr)!l>j2rQM8%T+&$sD}GiIztujvu5G5-0@W9q&-^X@rpueR4$<% z8d?Dgaa_h$BC%zt`~=1GnAUZ&X4<63db;lZ*zK47`KQ6>zCl15>axp5^1-w|wWGr= zju)g{zvx`bR)JE0fJh14D5SSADGV#0IHyaMV9V#Dg%0L?CX_MN6irsMAB1ty>lVH- zY*(Ok@K>7Rr+n-{w4N(<-RUZU|Ca;EszMj!#c7;e&1H#eJlJmzj7%#U<4w%1?6W>+ zS#molFNX`Z%|^*ZJ+r!E-ev`RXSK>QL7(tNT{nGz87t949w+ekAqXe4(x-fKoD>8H z-t%_Mm(wIBa@={$nOg0A#Oq4{+StYlR$~UCm%ty|9D$zDF@J?G&)2GTV7^cni?45^ zu2(s}@F^_MA9dHea^``MaUIw)j_OHt&gHy)T4?-(Iyy8nZ--5S3G9;2*mF{F&y&y* z>J6AYT{z^dm0g;FeWSq-AP_S$Iy!Oep%Pnk#RZ*jrR7q7FxI>=N~EnLa&Pl)TnGv} z(qlbIdzkn%v!e-l~`H|x#Cz9FAxQ&Rl!cv$tiH80dcsm)!)j#XLxfbUMfXZjC= zT@AG{>*xq9;YP`mFw%g4(mdLy3_^O|lrBvy=*Bqjqg}@Mm6SUb%%f{O6kVGLc_$p4 zer}B)EeMxP}CkUo>@@xki( z_hpmqp_cr`-*w`V#jQ}^J7bOLQAD`Dj>b=+g>GSt!~Ix2A8|iotRRWo0`Y!!Et8wA zQV1(}dVG>~CXd1Gt>~ZM0i`f&08~9&uFfPkN-~$AO%L+uU$}6uB9_inY52!xj^*x% z600;3?}p)c${9L8dk}NO z_sm=Sew{kp#y%ITtXoli88wK8?0>}g_`>ch>nScx=^(n)r(AoLK2G;B>f>8$Jz=zI zBxLkSe=UfcgF~CLJ|-H^XFP3%(+YjbhS)G31*I%R>x2iO&YgTvs2i zdx7mM>fBahUH*1IOip%AV5*SLpQ(<3+G8fU={t7D+Ni1g-kC+t~DiV~p z*~j25Z;HC;HKGvFi6&T6QGQY|ET7H1J&44MQY`VcJ7z?!Lb^TTZ_0(Y+JS$^E|pc4 zj)SeqCnu&UB#MKt%|`rildz;HX&?e^r!RznL{GnK09J9grR{z33H*zra|}9@R9Zwl zL=Q|b2&VA39@hq$!obuAVvNqFV)vj25$6h!3cNfUl5*b@FR?q_h;28y@9wl0-QL$Z zvdA<=g*`k9UVN~orOL&db5aRw|DmPQpO}Jg9$XY&>haXXjgr+S&+Cg1q} zV~`ublmDJ$%57Ro?$vD6rBgj#zINv4HyRI_>j^oW{n-iKg31Dna7hNv0Bqd3#V&`8%Y9%q292mEukRjxir-8i2jaUfmua zYUaRW@ZOfk!NBhekdJ|-U<#YfWtcxag(tccBLX}q2Po)>sX9u(t=3fr<4;r&JQpk;HXAjnutriCG>+tPlg;ua3~QBV6!jB zpl|(k(0)vlUw|V#Z>sk#J@oe-D;tE}t^lq;u+#LP%7jCAo-7GJVIhIs9q8gKVxrj6 zjMc;M$x+-n1R8uaZO?1y1KtK!{l=&d6hYXo$q0;DYGkwsq~xAdlxyJr0%cHt?PoL* z3xiG%+&GBs7ccM1Yf~`(4$27CEsb{oLf}C6Mg1Z9asPCHmd`y!;Q33zac+WOWKzJw zOo>C#mK~1v%_I(OTD!p@1@(_8F`LH_r7ASYa}xOR&iwY)6c(n)F%`}6+6xjJVnGZ=@NVto@{$2&J^bn>Q@4J*Gva>2TywW$fcyuG0n zYRZ>xX%2UA)-QxR8Wf@&?T^35ndfi?Ct$Pec)DP@t*^g+;%gpShndpyIC`Tp)|eRAm%khP2$hyK zHg?~fLPEIxg+PEGuT0shU8N}ZopKqF%h7a_*e9*!wr%r?cT?6co2CcBR@!)%M@Ljj zaKVL9k7!(yMQ>>14!8{fEYhl~u7H0)0C%?_*Zq3qab;!I!lSD`LEwRG=S$1Q-adpQ z1JF>1_#sZ|n4_sF<2Ydek3wQTDlBdfZ2M2n{Ro^4!aem>*$mt80VQPYsOvJcR}QN{%Rg@2{e0Ey zH%Zm6)i-^&Cc1Ahb*Fk6>$f^RgTYw*L zZT$Bak15RtyBmELaKQipaI15ST?gS_+g9Jz`Mj-7B*Plisup1{&WoD=85wFmty4YR zpR7&6lh&Y=vfZD)P(D68t75D^vIXLM)fgEhha>L*SlP8{82@z^2I43xO}%-D?X~uY%v6!A1ZlABfaGfFj{n z88p+1=w5-q3es*X)bjPq%ub&i4f9v2P^qx#hoK}8Y){z?Fbv42un{om^nt<*FF{}= z^~9yU8-8Pk-TS;Q+p2=OiQ;Z##Y?^ zUr@Ifm6J|ORSBaZtdz5eKF9Iu*S&in!^7pXvqsFMe~bLo-9MPtb5Je1?4%To~* zOlos)8h*FMqE<6gO_PSp1zg{-IJVV)chGP#VBe|IVw=vc&B<98VslMEsRc#?mN@1t-0W=jG zbde&B&SH^yy6vwf(z5?Nb8laUKLmIfUddQ5uOUibNNE^5%vjSl=BpJg`G4$iD-&zN zdS@oq19BL-bWk&!=*||# zgP0d3KYbiFt;1{8Vo9t82DXSsN)!hV>wL}msDVsuEaK6lj+GhY<`{1q7BqGi-xwy+ zPT1Ayy?hgEr*s97eoV}cmwX%5b7PdF^muwWQ?+Vqq<6aSukFO4tuuNl(QAiL%kT5X z|54kOM?=~E{V64$C@P^ylz1X*$X-H=y|PTUEK#;B*)>zyM%hC4B~fTBQ4FFXgeXsz zBilI~u)yr12%V5@>C;uhrn(migk0ey0ug#w<{2NJ5X!nZHU-v1O3 z%!Qkqn<27))pBtGqV=J0mmvC9WRb}>!>mC4fXf5fhDjy4zu&oaU!jlFzHKuuN9&Fn zTufA>B96lwktuTnW;MBgIw1APrNm#8J=!unY@Tuag7PxW7Dt?ytEI4fl%Z4MDw}_$;?&!Kp}^aBr(fL8v0g%)yEduSFWIVC^A0CutP! zA11&0U{F4AK2p92{Vv!FbTngLA!3lPgchN8tX ztVfY%932e6M6eskqUr$e_L2HFV(4Ern-HoYm`<6hgT}hA{^;%9I^r(vpu|so3A_P} zDM|q~fHqPGoZyHJ6W${D8hU$o!SRII1|t?bcEg+=ac`!&2uJ5BA0XSH_&_s?^}mnB zJw!qd;=lZj&VuYm!blUxuD1jPIMNM>v9+wk1_o3Hq5r5Za9;Q9Bb4hcK{|)KFXVkS zO2+pyl73GCy4n&@Z7AAU$SEiVTESFsG=4al~i-tDYe%b^+uX0-(e!&TOQTeBYl-H_mv$b`vn%daBu+_dIaD= zq<;XtOjSn%&pQyE%26iKC0=nrKVc1;{@t?267||XwxSDs`h&0F>L# z{wMEQV+gCD@#zz?+CA8)Nea2y3M=)zFV6#SsO9?AC~?E6$r>Vw-vS|rzf&kJut8x9;qhzLW8E6EsC2M@cZ6NGu%#s7Wvr+?wR zO;Q#k@`eBGgn53spt$oa@v$5O-~4&IZvLSqvhscUcA_p$wRRpx?QDhrvy`&&}P zI0=yAmD%CAq(CPz5$6u4J`~X-!g~k~gvKChz3J^b&?o()u|s|#*T3}(3R~o_|4e1u zsyY5opAZ{)gKCl?3gQF^gou%bmtP={1^sBt?ti9bHEkbq{yTPh>sS)p&xm6k0*Pu^ zO&6C~5cPtE-q1*+vs?4YEX2Q3&Y`;HvxA5=r%yh3cFWOpEiU%7wn~m#R*bDZ>qdtD zrmDi43J3X@g!i(^HN!}@(Gmf+sC{_%X+!@za1!g{fyK zg@QJY@Pfp@HYdWv7~KtLz>TbeNJXq*@W5<^#f(D<#UM}LmCOeT4|zr;?bm*_2O+U~ zi+NY`*h(8uhN)pri(`?jxkQ3Q&t8&ue&h5~zkxizT@&?kUPW-Mt{s7&__mAEJRcYL zwx%L$@19~>PF0Gph+v3|OqddVv$7YvyDWSc(8&!0p-dVVc@(Y4DuKIa+SC z{MzU{<4DVyEjocIKA9>u7c33a%Hr=DHZ` zdpG?$=3~@80Hz?*5`|q14H_h`Ll?wZg&A~@&SJu)ZYQj%G>|&RpxFglH_plN%WOVr z|MBWg*fBR((`r|jbRY@Dyi3Fl$GnnMi?8n?E6;6C9rM2fVq5fk3AJ7tW|5aXe7Q0{GAq+13?9kZ~p=yf${zsE%t(&*auqgji{b$Wbk;XCg!b8vH_otG_3JqC&< z-tgza!FAl$H>ei`wxKXIvRI@Djxp)?GpWaGg-R8val@P0sY#*$gTXzHn)GSpi`NW% z`O!1m_4#tL-7K;KIIXliE8<^zLCyE9v9A87u%$TaWW|Mag|9PCk>!uFB@-xVh4)14 z#agQmjYF7NTS$QWu<5y}f@)MXbZBfaTbfAftb&oyqNtB(+9ev@|+|}nk!myRj`7ZKniJxvZ;H31Vx_NEj$#MCrtBd#&4j3r{9;EEKD|SCS zKj7I3ln|-lNW%FgWbZ;aMbv0Vk`hLy+jTpsige5>V+LzEy{4QYM&#pb46@`$?kLKy z|6OrW)5sl6yc7%KxvGon+diRM9J;ejFdH&(-?F6W$+!n5wH0eio^|%oP145JLCh%6 z508G}F<@kcwFYlv15}it5BCe$R5?i|BWN6a{-TI5li>DDL1p*cLkv?(dOxLV;iSZ4 ziDJosl~?E95o^7598NTr=XT=c(H6uuOYs;^QU-{ddWGJUYb@hUA51#*jTBVlh~=Ui za3?=bhxMS|U$Z)rw1_*Cv06`QhBlo1_s@;Lm)1r+x$PK5<~)1Cd2h3zCw379^gzje zT3PJE$41dF30)CWBO{mj7Yo9?vy_e4xFC!v)JWJq?4pEY<-$}gqUewZ-LLsmtiNQ1 z6RUUuDWuWXz0bBr9@**6efB5Wn0FYvu;Jk@r;n<;;;;BTProRLaD1^PRxwI@%(gS3 zgZk~7Qid2w=dW+Mo!J}|gqwSAS|TJv2fzZo(&V^6Is*{o(fI(9Da>NCz8Cu9SdSk_ z1E>iVOH)p4bhw@4`7dwj(D7MX&>xQ&e)@<0`wPzs7hgx>nhsB5W7-d{}k%cZYC-XoPdvG zDrA=9tkiT@3(7qN3EQ82)O)3tvJH?#``ch!YlzJ-EV15UAU22Mc@NCde&+ z_^_S4B3ZO~Dg#4g%OAboJ;PO9qi_ZX2bMRzC;JQ(To%?rVF0Mfh~0T{7zI;LEft4* z@b24Jfx{Xyhaz)Aj`d#H)4&)x&yYfQckhR9{Z6Fg`E_k>_*0er~W! zpFnTqVlHqJP{6$J!Bz(tTM<|`5T82U+7i~I52OLVAzrZS@^pkfQ={dNT z>LCWR+TC)CwriME2FwzFqIi@*e2V@?Ew*Z6yD#vRZRVYj(wStbi_jfO*&AhLs%QOm zlo6Yo+0IvE+~~V&=vyakgxcKm0NryCzb)`ocZX5%%N}Ap-Azo&ngWzxp#tH?i?k7l zaNkZ7hW@Im$uRzeZg&MmwQKlB5l?F2J(9{^jo|bhPg1z{K2|c? z+IA{gul{}{y0^MYA)`GvqLp=0JTJNYok4-@(4NbHghq_~1hM%Glu%%{{x2Td=R2d3 z6Od0?qcU1{nBR+jWqDUFSnNxVgKC_&ME8{goEEVEjc#%#G?gcpmJQ4@PlaAsEaNikE>ya5IA~rjf2^!RXDSD*oWx8~NSdk|W%tWRH$e0R zyjt8%A95psvHV>+_?%qxvD-Cz(qd@cbq~4dmp{~48*ioi#Z+SOUo=2gQ^D%Q8m2@L zGOCGzWDI3$N7_Y&uk!a4q-}87wr;KSJ!5g@lr-K@;o}nML|5yJx`rE23wd@$3&=ky zI&ki??ypoB2?Z$3fP2cC>IYgaP8+c|08P0tW@=q4=c2d=JWjluSDD7OeXr~*zaw<< zQAe}|Fji8&-?;poSs6Tpt0nQ#6rx3e1`xeDjx?7X{$Y^OJ1M~UJCqU4%MP} z4YK$PW@kv`mhUgL>#LhxvAr#$)l6zGdH(?zAuxwctUR*$0Nw2T_3l=Aq5Jq@N8s$h z?OLNTzV5AAY~2j-o?q4L8@F`fU6ZTa&t(qNlmzYXZ~fW{UN|b~=Ca4zB-tBolG~>S_?r8jjecH!@jzA}&k8H_xyLy|l;WGA zETVU}@pOavz~OLH=W)ziKYn}z-icj?c^7;0{N_{+ftuOmE7z;NU*ns$yh|VU}32%JH@qpDc9{_DVEq30rC{{AMf|a zMOrdw9q`llGt`qhTOV`tX5HR9d1kY!ejHpx`l%%-4&r)X?35jjox#jjFTtl6Cr$sReShpFj?`d;FcaS zn6S$PV>4P$$wE@8w14yxkr6l&F5tefy2y2m_Sl*yx-W3yDCSq%a7%=UN$(PJF>6?= zuU|>o6^vvG+Mj;Ni$N#aQR;)uT-+*ZFesk34(qQ?%Q`j04SGoLm0#AIkNJE8vDA(4 z)>Hv0BSRkFA=*84oqY4PVTLMLw*25B_akTS3phKCm|2_-8V0`a36bLHK~b<~67-qq zfp6^RzbXY5n>Mo*cbjb`dyXV{?0>iU$Nrt6t21`ZhSz9bl~^l2?z|<&JY`{N!G=b@ zvuBJxNEu`B^EW}M9f$Nui46L1Nzi05@xx=H#CgM^|1%ky9tDBqi)Ui<_l=qdXsrLmiv85e+F`6!S#U(~Z7RO{x(9N#y z=MLA>{d28JQoKJkDSU6v4^sTFPE;x5M^`X0T|Fj?h8fp0Xgg!FF~blYD?s;BeTgxh z=Z}bER~1-GgpF#b{E81@NgAxV4-~$0{SmnEO#CVukJQC$_$=t6MLxyyNM|EdyN%pK z5R8r0;!Ug0t{u#AJMbaG6(;7bNdJN+kvFOFI80ke+gJD*!225Cm6PkGSKh-s?{gB4 zcA0%!mPRNg-W>8`FS~9~v5^yFM%6?xh`5_T*naysA(1G1JLgl#8$bv7GKG-NxmD)B l`+pI9;(vD8EvYodaU2KxLGO51_IxcO!B4JO91U z^_kHb{Ju9%?7j9{Yo9L)auV2>B$y~DDA9^3}Cn=TEMJOnS;gX_4 zubsy>Ctb7#l`mU%?@hRs-z%##(7k!%9uev_G1N${zKK_b^sKMiiCFE-qteZLBc8RK zhtG3q@RS>vMoTkBmCb}ajHbJeiFy6^Ht)pd@h5y%xtQD3Gt1mK6hUZ=k#61G$DQ2E zZZ*qlKROLrg>TuAs!QSCqI_)Za~F?I_!gxQl}~UYuJFsATa-RG1MdoZiU0q<#2}&k z?=RV|wJq&D%KG)|Z+G`oLBWKzHB^sHLqV>dlarR7j#jNBudS`!s1LtkU|~I`rw{1q zQK+h}-re1;@9e}*Q+mcA{CT`CInx|pk0pwRmi7@hca(G_qs`U?Hy$3|%a<<`%gTtK zK7D%q`gLnt+lHYbq8yd+o$mVjq}keVsVCv#;jdr6R?yLrGcYh{to`+i7Jj{ym3{K$ z32L#1>~dEe#+^Iq`Yqp1{{8FE)#lYGHuZ(?6y2fJkm`Zq#k_rcwANGb`Sa(oJPuz6 z244Tl$}*X(VE_2><4rU)yt{W_WXQ!?J2|z$jnUCRk&?exR#knaruNd-mPJxh^6}HB zp|PLMkof^XFS=Sj2U~ zlp@Cc>DZXQ!W#Z}JD(YM7_!1cXX{i)H-5qijffDRuJO3fYKV31+O?Cjv$@4ZUyYng z5uKo3US-G`)P1-H<94MtyJv=lb|We(>H)W{4^?CS?N^xrvCa{ef?`c_*_`#TY@sQD;;HXOBFOVr8P82Djhf9uJ)z9 zd-rZ;d%JtTTd;efHS~$OkFlxHD`n+B%L$%SJ0GjBF8@Vw+fkG8*w>AYmP_7K5QCk? zsQq@aEu3Dr=7E`+nI8^CSCz~DJDMk=uP~xJI%EXScSJZWCtf-@u-h$n862$imQ_}A z#^`(;HBYaqiuFdv+1n`WR)UoRGpbhQ{5&Zssqd>#**BbCi_jlGjLG?3i_|k;NAvUZ zcbX07va717M90v1*S`^PSPL8N?(WWhP22hY{re?&!x-PYwVNfVotdvPIz;@ip3{X( z+5J1(?5uR!=2$;GBT_UzJw08@)vk;Vmr5ILX=$l4>8CDieHSwHxQT+04b8jWec>;z zUG4je4ym-h2ZV$M0?s>$qsD9{KfUM}7%WzDPESsLsAj9_<>uu@5c9Y#JSn zs;hfZZY1^js@GUZpN&LPMrI);NZ@UEJUr@d_P*B8sUb=_}5cke4y?ZbJ;spw;VMn57spZCa zX^`i|x~^8at(eA-yMefDpKvIa;LU{7l%5;35i|#qI;nQat7&NTrAbHn5q6VuTE3fa z4h#zqm!!kTV=LWjba8R1+VA3BSYBo|>3baSainf;VX-~d@H%VoV0${jq(41r(DZc9 zpXsx|f9NR*rI1~rpfN{Gl%S_TK|z72nAmfVvjb|+={}13p`nP`#!ve_A~@f}!~fjV zbr(`mi6~-&udv=B=llDWkWL|Mup^cmA71ELr>C8xZoqPtJsPP zo_Lp~`#kn557SQQw#t{u$={#o@$vJY?zJenvy{=5TG$7FFtH&v`stFoH=}PEr!Xs`i3IPEJnAtG2Pe{-aTX z2a&wId<4Dvqjghwx$V(PCnkt;C#R>o3!(B;4q2X7L!WV}K7an42=8lEb1IH03Kt{^ zZEb=DPs7M)*cSGz)Z%*CkealPEV)>**ov$mg&}dLxNVkQYi8H!pY5xVkP5uEwRYy{ zKqvEC?C;N=i!>N?Jr2VsZajHx{9e}5lCdR-A|p5V+rO>K?UG4DYntV|lN?U^2V1@8 zYCH4Yx)KhIl%yg%>hmH}>TM4E%L#9Z49(sWLqvBl{8<_=J`9l}3DU z;^`AuXw-Cc{;;oL%nFK%sw|kKOp+Gfo{Hf~<9iO>9*rvB_e;nNGNNeEZctR8DxbHQ zoScMAg!ZO0n!RriMuLgkVT}N?)WQ1jcFA=2g5jp0O4^fx$KU5F=FI$Ld08Ftw(zEQ z*jWu}55r>_c{(pQE<}yQ@DnKH6)hAS^()Hkle}|pnEn}TT)ngOU_ok-P^nFc>xW(N z#pplDXVT@HB3ajNprIfUy}W~Ai*}g(GV|xphmc-jF}NPCIgH<18C4&h)teWRbGT!& zXi{dXb?s%|%ct-RM&9uT)8QT{1NYZYj`m8kCDlc83W%yDgT|CPjca=YtOUu?>Ci77 z&#X>H&UQ>!vbfA*UAB7c_y(3Je_;>4Q!xm674Dr-O_AqYBaYrOUdp&q^KVNeYtVM7 z3SDoiYUTm?lALhva?OClgFf>%s(2z1Vra3w~^89Mweu!BAObjR4QZF7R56;jeqHaEr#HupF%X)&4UI%63G{CnRu8J`_; zM=~!n6A-DYvTJH+ywx}HZgv01#CyCp=^gTEj?gksDluk8QK}ktCOC_hrn9Wm7 zmu`S6%wlxBOwI8-i^u&fj;*3%Gif>HJJt^Ju^Ye4m(ID+VJaJ98;x@;0>c}=7XC5v zbR&Oh;3R=L(cPVw6iEZ4RvR7`rl6*F>qBTLKJ6fd(-*EfN)#M3966%+1)1IZ6_rjc zItKE0RK1&hzOeo=;!<}GQNB>^{gZZ^R+{j%__VeRE#ukF&JIfMmYkZR;>WnSxFTUn zJ2r>}uT@l%Rk8qZmO5N?T=o4bvUl9*z;O|@PTskxXsI|tWAXmzhp7m=gl&*@?!p5z zrJ)_=HdU?68etV>qT=Q;YULS0Z2m)6{`>du_g(kBiTwg_6d@tu$oP1QO4ilRy^+pB zQk0zH9FrUikIrOXUtcddxj1K*8A%mgwa(k0bZ1%`C|puEsfr4%T8`DH?aJqDLusvj zg+FFwJaw&(2drlDaW40b-ep|4etRU75o9s~BBI~6i&7Pio35I=3V}&}eP>D=uN{q* zH4doxeT!8;Su&E`dmTY*8d$vWdU?iTJ+Mzn(#3;2%^?kCpvsfLDM_;n#|ay?1%$hR%z$X5?gYZ}&d-Ztm*3 z6DTgCt{!z$mg;o%MY*79c=26X0b|IjinQTj5fMt7nsiTwZo!t%TV=qs8AcDRuI9(| z_44w%zS_%X+jFkS`4h8u!8_eyeQ0EKR8d|18Gp2R;_y18n-^(H>{=dp$!Y&4+h5ky z)L?tM(9zL7C&uEmKg?`aYmCq4FB&RI&#npBH&}+@yyb|Mo~5ZupPvXnBD>Ff%LbFO zkOen{ux`Y^&wHj1Rqpyg-7rn3YmCn^f)?CxPa!T3pNDzz?!F@S2zc14r$#KSLT4A(c!YcBe2P3dX8 z6V+5&j)&%Z`t$EkzDTdEjNsDw5@s4?u5`Nca61TF^}W*nNy*6c?M6Ae+WYN2(y31; z8G50WmH#ZJ@svLsvf7`misRm!$#(b0GVn+zBnq5AIcKUOIwHZ8MzxdcN@{j? z=+%g-2?%JzBDXr`!kO4dL3V!j3~{3dj=stXz0TGtOE^)ud;9@6yC2D(>E6js(sms|; zqbsX#o88_mI$Rh{G>RIsAt_fbZ(91pGGIhg*kH7qIPGmNJuPl2yM-Ouc)G8us|y%E z?GR(N_qQFf5Pp}N7Pr>GiH7|rUrVD0`7UPm#m~K8FeZ6^rh>VGu|SR7<$W{q7sY1 z!saOJNNWhk5=LqI#_LJ$?o0Z#YjiVcyicH5M8SUg2-t&tE2t66%F5Vo29BE7%)X+% z@!)zs>u7y#(Aw78Sh$8h!z$rwk)83Uzy`mgild+O%3;Hiuhdju{`8=cTf2HtIbNTB zqqte)tLfL5jIzy=n?9wRgEPPDu0tNFGS7=U-YMSyBev;ygS4HmSaPR<`1Ok-5G62LS2}tCoLB`Dq6iemJ~Op1VMR}S(k0|6M}qP*j5zB z#){K~b#1iKd(|~2&II_L%Ez0JkUU~xQPM~V=8nEHG&7Ta^X8#OP6QN_Qv;nJB=){3 zygTn+nkHqmc#+a`H}SUdNwn{(X`V>N(5%U(ey3x4_YYS)g zsP2et4a(L88dBX4zYpO=ci-)*a@nC~gU`sni{*(mCe`+R$sf|hTSHsenlclXZpT|` zfL;Nzs1woyX!5tC*RK3+GcW%3?c1N(*;TVH(fDFde>hkZc~_x-*ZJPn;N#1Oe}Dx^ zi1u(eUgeFIL3efh@ozylL9441jz)LC@2{hpel;mqO{^N2E0@^YZHnUrkylxtpr)hB zrwpmJ1Jp8EsXoW!G~=XapjVHm!h)U7J;+Tjr6vlSb3bkQSteb1j&HTu@Zh|bco4Zq zqli4^*4M<<@lqyoa`L9;=8*r@keI%66`sAf$#fFSa)02+xqs+WYCV`)t-`$&Z_Hng z*11JAv27=ac^lOq@7}KK`8rotToj>z|L$f>ilP=-NzPVjv>?R=t0(`d>UH~TSQh+Y z08sKq{g-N8#$ES=bgpLN^tYMU{wexY`s^!ZL~_Blx9Y1&G8)>9;RJ#PDkZ`XPvf11 zHR8)Ee^}M6=ha#ct=ccC>Us=ny?SM*Ef}gBYDHe`7IxZSm=I03M%NLTmR!@|o;>4I zKBYFjQ+yKZyx&+!!Er@*s=JiFRM;)Rx^B<24}46A@Pvh>v7g=FV9K(JirE@YSn4HNzqy#asnm#VM;?Y*`RDWtiReHJ~HYtaKx_ax$?)+k2OmOSW zbYF@D4%Adotj)sp8{e@^7Tnu1SpUO3tykqV$FGu+ZD=$1HX@ata)3K*%W^VCDd>A% z?PW9&9kcWEjXg;sX@eLT(bLHaGzjUEo106oRTkVH>3QXI4e}kzKa`1_NlzPrB}4T$ z_2*mrtJA*(HTz1eX^!vWoCwsJ>E$IUo5aXmTV7t?UyRgMQc$QnSnUT;*0+YKDueSTNAi+{(F z7ax6Zc6Pd+t!CWkvVMq;L;h~6%EiguLiUvcP*PAMA7->;Y$c zZ|`?*yQP`M#Xl7e>uULL>a{)2-gtVvw)_0FMI3f@j9}&?!A0*g?ylr7&s0#IeUkj6Z;*Ewq z2NOg6^yw!tf1-l-7p|7pE^>uVFgipLZ28)vqSy@Bn1x|fdR*aLAlYaoo22`hQxa8*qp2vZ^kBNwgoZZ}5 z?UrQP+S*Re*7Kq`t;l)ez5#eA(*6MTDsVDC2D4Q0$;rDkt*XU>$oVaeZ(~zxR5jO- z@jZXu%lEeFR-sZRn}nEH)bZxH5l55^!`{$wLxb?Xeh|N*3T^mOV&cR7blI49f+&>l zua(YA;^X0Uq(}sD0E}1Q3=Iu+x^5*y&@3zC0_sQz2-?}% zS$d74&qCg4lE-SFb!{}g(12Tv0-{w>RaHV*_&P$+Qipyiu^6A5ndzZ#Ob0?DN3)bg zui@rbfB!FEzrO8F7PH@;($)yM>-5NYX3eVxxLM#@%A9u}@j7lK78Mb|k_4`x;P-D+ zBH!0Qc*1=V_G>6x9qK~yK$1VepkZKQhNwJl+Af>DFt!wj1w+bVJ_Fl+zUd48|K&yc zO0A}2c&OHbl84tN<>i5(Q@78CmVzwvQtsBKll? zjK2!qfDhL#b;gYTHjr*S!h?Nbbh0xG^h6Mh$W#GN!KgVk2nkdY-|{WSOZ;A7;ou-2 z2q5L$`c@+V>V#zvY^l)#eRQ{@4N3t4a#B*#v%_@>cq)X5g47Ls?DUbZ6_CVxd$u8= zp$HKnA15Rtjs_juW!*0_+FmQ!tqauKb(hr5PUoj&7o& z;*yX^si}=%Q>Y!g!E)uYnY#(x?xSbVzAP-f>+A0az9SJniAB!$1DNmrayz5g*w_Wf z>y*)EJ?E*gI)JdWo@>JRM$RuKBZKwq*)!u}4Md#S-=|_`4(^KM?N5`wH&$d~_bMqg zE)Jo40r7Fcilbs+2s}8jmy(jQc5p~@+MYVt7!8Hh0EG;QD0s}mMPZ4jUv%=Ga&kt( zyU8U8bbh>n{`o%+3BOn)5M-69sVTUdmX=nJX)&lS=H}-4#l?T1f(n-sGcb4pat1^Y zj&q=c(~641CML9OZEYdji)Ibt5fX|4+rK(iOa~Wnc5!LFEBQI%0ozp$ zUh+wNdoT+rCN(4Dm4X6_7XNplG^J~aN|_{#p`=)7z~_TxQLQtb?{X&3p9+x@I3Y10 zDHs_U0UXZE%sk8y`drCieCcF-_^La#rY8RE%yn;nzqP9?9UchiO22KmPLYO1qaZpu zI;cj#;)wpIBjpzq2xSdQb&K7CoMgyG@|+~_hYU3^*Do4zs|B^+mjGPr>%)T@TR18B zl;}TYiy=Il5C1<+3(>j$)3k)_`a#V3nUfPvLXdplSVe+{1PhIYl~qz!b`jDEWGD&8 zQhZ^rbQ=N!g5cQL4q(E$Y!_}J>>Lv11TS8LG=>qa85$Yc@|{Y8%YNl9)Ud!eqj7R_ zLcVo5-);Hw`E&4pmk+spgo%mC<-GH7+VhGZ;4+k}c*Mjn-@SW`i;D~7^;6 zOTZr&07!M*7!lIadXScucCa-W1Jq&=C|lQW+$bn5jnu>d5w84Hug?qh_DGox6(~-k z;^Hi}3on6VheRTlqatmAK`D|Eqt6k8Y;Y#e)7$@!w;_8*!XoPf%F*53J$eHJL-?~{ zU&`~CP7s<{ZRSLkl$2H`D>(}dJ0Edzsg+pY6?SC{Y<$Da?6{$Jv<)<3YpBb`;joRZ zZN(;O$Zg84^v!?M-C1SBzujFjQH_;`rc*m|1TJC4=^3? z?KQk%zDq_X3sDc08{j7NU?HYi;&wmKwAJBcU+1h|92XMi~%bPN2N-D>C7v_Be z4~lsho##<9vHWfk+cp2bou9kIuCTVYev#7qw^~-1%}#b{YZD|sB=YiS6I7rWCv15hnTN-RiYIIYCflyG4I!B%xS8Z|N* z{1rZsjyznKFJCf)^ zAh4=FBmxNtu)Hn6j7+`%eh%{8=YW8Pxj+7(;Jw7YO)1oWV$VYcm>)zG*k@1K>5=Jf z|NHkLCFM1!-o{F;nEv-OKwB!)JkEt25F<`m&^ksOy zwxvrn8ESkGn)N_PrPnOMN>gg3%d2Vt+^s+xu7ph91c`Tjozt{O3*awgZ$sqb+wWlI zJDKqY?nrVI6V~)TsNP(5OIXNAkC#}yGcb7WdSKifL?JIK>f;k|S5~I50yPQZCd_{! zlvIf3EF;s@-5mtt&vWCRhviX9FxD}k1~wmUj-M{YSb-+}5W+u@|MBj7l1SA2bcYOL zcla2x44Q%N{cSZZ01#6i#-5v-8wn4JDdNwqXI?;VG5GNq2-QxYcxIp$F$6gvH9Z}+ zwJ@warmCImpsjInb4%ige>O~<oj0{W>4CLxIZ^{l30Flrm83qMqxcK}13bPNmG$ zA!M&|kB*L3!LtEDNCL1M;DXCyxauto451{2zhBUiv8sxWCaJkRGt=?BaDX^>3kPQz z5Q2VBqL31=aM4{S`)}!x5D~ls0ty84C>8@u5ZVADshj>6L^FohPmji}ke`Di;QX}P zbE$keK9mF(0`M;41b`H)Z)MdzZdJ=bNhNyQv1My&3N`{14gn#zE0=1gUTdF5Lai+G56E4YRL^zXkza9*Ln-mN|(3DdM#0_Yii;X6Mqg5Cj_2o z{u9M}WD8hXS;4HQIg%*8m3-7q?iwMz7

|buQKMQ3|bhPGsrZBIdr)a@GiY6e#2)5VefDV)dFnX7sPa)jy%9nDXM#HrU;l|ebI zLyEuzr6v7Nk|?G&z=lDvtvF%BIpu#G{**sj(@0P6BS@66jM7!}bhvnUY-j4OA^Il( zO9YbuUV%vb#>C_qyJIL(to8>Wi0+B#G^v>Q7x$4o4aCnSQEgjq$LK?~dAxmV`|^Zw z7j@U&?NpP8%dxJ%IkY=OV7~K&^K@nb-Mp;mBac4WEaR-I+Y1*#=6@&VAOfD$7GAYH zH4>Pu4A|z^N88q8wUdFN$kOJmUoKsN7L|^U=TA7uea|{N1|#r8RD~Vm}Q-`{?=$f#ZFX zh79+Jll#Z6KxR*WA0ReWi>M0t_KnPByC**EH$en7)01+x`yX1y1;3RJk%o>oX=+a; zf6~M;#bO8E8GjL1EST}y$bbv>Avm_YIs;^kQBN!pkw$4}{f$vUQb z@y)GpKZcL+gy1$F(ado;g*J!7>|sit9osPt@HOzyH&cl!i)x$KynS6YWIS|a4$V9| zTL&x@_7@*AZX_5g=7|9xZ+VO8!|yYeigE}23y*b|hARyBA_1;nWEj@BUS##*CEkA1 z5=<6wMCP&iAg+&uf;Yi$dfjCHOM~#oHYH#9$2V<5=&{f~I#SkIRqdj+d?T9&jsFqA znUN7S@ox_#)zpZg#!Ac1#;Vp~Vn5{tMvH!>;Dgsw%oEGMPFUvb!Q1;aM(++@ray>n z2>(S_dt$dOUe%6&DX)-|xAbmSGJ=|6QFs(Jz)-(YA6{s6X$;#et(c(5_`T3RzLAlU z&ihk?xw$#DB4b=YP*0ecf+BTXzW^PF#8Zf+%p`$IDYc29P%BB|5uRaYhYw*LkpGpK z6r7v+>|Hf|=<#ilLjU5=q2NF6l+nNSvEDKhg5Rfrzf#(ePL0TzGu(9SoHq~S5UgZl z5G}kN?N{4YQX&JjJ5;onhk2gQ0o_6NbeZ+N=L|@K8!#@E2TEC2DTyT?D5tUY8q=_U zoOWBkGD}MPB!N>^JVh`_c(Jhzq_YdvB{rWq--!E_;Zfj7%fyylulj1Pg(y*kn#Nzz zYGa^-r=dWu2j5K>fYp`ZJPHuYjezKYoEuP8#g{pHHK(^JWE9y&FRRgpb1GHIF@$?<*`l)KIKx9C zBB0QF?!5D6V{^0I{geebo|QvaaDy#$WL%xi{4@374)OGfi*yQk9o_VOf@-7YcMKJ` z#LD_$B#?;uSw&CssDmhMJs%dbgeoj6fZ)Rw;^Z?Ct<@DCt8aCrLtl`ZUlRN#C6xsIp!4yZHmg-2Rc`6_Cmis3@4!?`D;+HU3r#SJ9z&BZg@D)TC1 zvuPsVKZA?6(+<;$9E_#mjj&5!eqPE{kE_0LgSreTuZ7}a9T6bbdL<}8V#LWbpnUf& z9k1I-hYV4WADna3$9OHe z=|Nzx@d9A&s-rQp2R!z-{%1i%ct#w7lZVF>c0mJSfbKcF%{fAYgX^Gv_}kUBH08Fv z=zC8m(evukmPDBKus{7B`21XBlTEPVkbS=#=Y)K$poLt2YoeTsr)`S56B*Nris-&R zC8bxdfN)9%Hx+m`rDi|#Qm_>l7jH~elQJ}gj(6hZBml~$ibpHf!R*@YEl9#NG=dKYOr$OC?fww*D(qLi0s{jH z!i-6T^i52@fJhD%Fr-2+fPd0CY`c_7rlz#uws8NqS-LS@O96T?)C|PzrUYP>Nk#R zEm^phLgvDX#;%>y`LEDki`LN*jJF)@0z{0|205#ZfyFEZ&T7H}`aO4&*TTP?7xO}`D= znTfFwgB&bGC>yDKsVrZHjrz&+S@OH zMeZFGWZd9JG9+&$Gvum{urr1Q0p`B9Nr%&jiPvx5% z8@*vHYz|fwp=AB4kweYQd>3rQZZ|m}sj8|19SdGPeW>w)xx@kA@aUf%Rd9=~1vtDW z{gwHA0FqCOIfuT9-l%m`9uyd%*Fr}JtVxywD|(lEVh)D+j%sy{!0hDRYVCl}?LYo+ z)FdJ%6i~oEtf@kSb|R#B!oZkC7@OlsCkpWNu-J@#)^S~ZQggm14O~6N`x8nWz8#c1 zckbY=UG3`$ymI$bzNdm4c@Gink7(U0DjW<x%Nbl@aDiQ!8PXt zy86k#E_7{oDa7R?m1tz97{6DFMf9nV$Pl9@{0B13bXsn{>+Sc(vi(kiWhE8 z&sQ2O<{6mRu^z^4JZwp+`vr>dYE(SbGox$-*-KG#!Vg#9@6_M1H zhuCd&kIDzXx;s@eg~wLg)Y9?^*(IBsvJjh)G6hN}VD*#Xc?t^Z$Hp|SFB7S$tM^tq zSs?;hXQu(!tIelt;=pm(VOSXUJpZ^&2lR3y!;C1IgM^nK7(XyFYOgHz`XAmK?w?BH zzr1t#pi{7|D}t%G6?Ay#Y%CN$wv zzyiN37-axzRXcFKL|BEaI+;_9PJG72GPQL^n%g zhq{p~GtOFpw`Zz`KX)j%gP%Qeq)H830*XHgib~D8RWo%9=w0qtvN$0o50I>T+A0VI z90h3T2_{PC1!N5IWBND?F6UfXez73Nt=P2(53(PWNx0!8#9xF_xk%h{xbsJHb6}@} zC|>iWy$Ty@F)CQ)@V6ew0epM@Uf;UVu~H+_;ZKv+mwG5&!GI7JA%zir1sQj+$HU3m z`r)HTUJ$-Pn}IyC3?kuE@J>QJodGV=#Ks@q3?crtE9{|e{|F@W9SVUCs235m2NZR< zly6`lHqoQihhT=R_j}-NPQ8ut&*Gyx$;yT6wLr!X;v{7>@sk~?2WvXg= zf331-I=Xy|hDo4CQhK$B8%WM-bXRui>HvRZpK*J~6qEY9F*SF01x>|Qn;48^f}0HB zSBdsib7t}@EE9g8JKxAGHG|Se$-ihq8bMGsBnT3cV&K{yKKy{x4G+!=0*?~$2)xxo=-%^2EGIX5K4V~eS7n!iwn0Qp@Zce@4Pdgw2zCGX;2JnUO^E^D!kc|;84v0X_jo`NP?JHldPd%;W_^9lt z;OY#0`KX1FO#l6y`vE3DtC!LFG0wG_T$|;ugM>r68sLG&ReNFTLJO0wv(M}5d{C#+ z%Vkm4tk4MMRd#Jzd{s0bnk&x2_mZHVvE0K=3#QHjTQgJBlau)%#Jb!X@&r=P#hk7j z#t%ViYXsSW+nJcn_$~mXry!Mq%47$45m}3%R1@>N+WTucDwzE=kXX6{r2?OI_YLO} z=NWL%KK_nnL);L)M@KJMdp?#pyXG1J8xV@hKZ9f8P|@%9o&_sK?-jOp@X%?`SE=YT zRQ`4>;IerxP$E!8eEtaRSF=BBF3_*DwI?DW0l*UqV8_n@m!I3OD4Y&V3t{?R2irJE z0xN@A_n_ebeBs#H+LaLqolYUx1*|`ail#Oqt+&(ejd&UeT9A$5Et2@6sxqBcs+GTC zyI-Ju=^hgb5xd~DU?AGmCAZP;=GygZBOx`Y-lNtQqZ|#v%>hxc^&_4zq~sWB>R`Hm z;fUrabtoIi_D=ux>nljcsk0BZz^50%peYWG3#sV+qTqVy1A98mAhLn4PFe)jD(s&j zZ7I67&<#^dw68OW$qqYoqxN@#lYDLa-5|;nQ;$s6p2>uv1l1 zLv+4>3r{0-8FT^9t2CG@8_Pd&M|ffx1+tb8mSd~>UB*0#fD#d0&ShFQ_tA@QRI)nh zH#B+VY?=M=H#zyBNh8T5zbw;xU#acYOB%_wS%CBGFB_I%e@#2GfTg+YHB9Wy4Ii?&$T_Ad9pdrbfl*b*(CkcQ zZf|}ke>X8klT(f`uECfC@e?LI^^o&1y9tAX%^ymqtU3~3Kt?5gPIj*DphuXwm}zgf z?%26#fr3w6l4?cC!9#y}!SY6gC0m{2Bs-vag|K1RnG;SVjK$-vbVs_*qz`XrVf%4wy08!s$Gp zze9n#TCLQQ3{s3zmTZ`}_l+RIORmAe!SkI)9Hoa)f_H;sLsCx8a-}+e*yeC+7@{u6 zMw=%pD9-=NtDvf(|HYH8nMn9)#A0Iu$A7 z?Csg07*#5i9e@Z8tsGEOyuh4i?4xJ20+hMGk`jc7_PSLXP{h=MI^Th)^dLGSKo(3Uw_>jxV$teoUG8ta#2Zsd-Xio@?2hLF{>2HtZ z=VnDs&Gy#NrwH#4><3bepx!3>oAjYC1vh!u6}H=R#FPOZkF%rAcKEx6m)g(o(|qu*AMHyFvQJ;9}${wIAXxR1br~j zCx?zfVsrd6D{CI=b0`86fX4y}JWxC(36aXdQUEn&ACx`=ro{w9vcEDjDWNM4+zm+A zU%E_GL*2(4PmG%;cZUz5C_qYZupNP(e+?-kA^aslty^R|D8=DjiwYhuq!9=ld5}GY zp}~wc{FnN6`C}of+;Lbwryz+T?m>XLpb0&PE+2Sgui9F{t*tGZ@V->bAt=Vwt6kZV zqy#Gt0vy=7+h77^5S{SwFdW)Fc29SKzWQt(2yW_YfWk+U3!TlXfeixY*flg>JF4Nw59o?m}>nJ8q7N z!Q(nQIwIxmbN%KX7!V+1qce)3N4k}HSK^Y!NZ_;cCgw3jYhC6)$N`9K`>W`s0__dkEy6` z041Q~ai|Qu=@;n0f}1m>e{$BG7AsDQrWGNiF2q0qgCvwG4$T#22aSMd$1=-kTH7)W7v)*+e|1G~uV7GtJI8O${ zJgdbR8(^De=<-pkad#=)uHi%#Pl28BjTr=OcsiGzdh{r0Zu1{6y6|kR(>RwA61s-4 z0;F5A8dc5(J~C82>xV#0hk`zY_~yV)))w+aTEqSC%OLS{g!uRlQ}67|Md7}44dzve zCh#HnE;y&0Z@?HJ1wO1P+u^F?adI}W-~)5%=};rCD;8Jqt)oo_?<;XNN@3_qqbHe#mbESuYY~~uZ@A;uQiVxgqPLn=o7TD1O zIvzcl4#S5dSNtbZ6WnCHj)?Y%Q1giPIA4Ja?Q3(ZtCFs+XWHdUDM_aYhXZC3YU zf}TeQA}Cl%^-)g2mz9A`e4v-)8*LhK_z!}!qfC4fF|e@>j<+VEp${Jy7kVxxC-*P6 z4{kF@$!>H{btl{Tr?PY4g8PdPq9zm}2=M^Po#fj?B2I}U1#9p_&91Jt!jDd%Z;F|C zE52CYiO(2T9^mf>Ok9j`TZPQme0zVXs?PV?!7jl9Y!U(w6cxV{bTJ$mBSkTE`9B`Ll@O{lLE)G88#0X8qt!)MK9`cjzZFz98{eXTx&#Qma2rmQ5D(H@W08U%c zREJv|8m>d_Pwu`W1SkiI6PhLFl$4Yo57&oTfsq8hNg7&hGzJDUVMUBHTIm}#cTKwo z^qMb#8f5ZOHWr=)NEk2?hg7>A|9<-i6F&V1!XI!bh7CR#kVa;5D?)7PvU74)C(2o2 z^B_fHwq|LrUPc4E*$^|_1ss<$z?Eo<&P)s?g7bFv?Vmr>6qU4WMNY;{IeA|Si;JPd zkr5mVEa1L_!14zyriiEmZWlo3yML*Im;p&@X&Yz{Y=c+@Ml9sv!7+hYuwtxg^d>7D z&M&q-jo?qdgB}rNMc9Mx?sB{UMfRy9zY7E)Q<1~NC-G@`=vnKvHrr6bEP{YMZ{_)q z6p~7q%0G10n9hNrAtfy>q*oPDOQ2=t=WE*Y^K<8eUWq6^m)|$Lut6+&t*ROtAKwN1 z8bUyzz~(?4T2ZV7H)kT8(ggO{dv@|qKFJVD+BJH;0z@#CK zwa}DX<-GgW&cGmzpbs1B>zv{hj_hLQ4f)-zFHWP5E~MaV@A$FUtB%7I746;6&2k9N9HRP6>3!b6bdD2>3Fv-Zn=2AR@g#F;9ncaL<|s!!6~%W z-U%nJuf4xBXw#!(LSGtZ|5upuQeQ>im3^r!+WyCl8%wyA;y=8H(4*uD<3o~O-7bd3 z`Tv}j=Og+-Q2@)*6fBjrwc}iX^ zDt0$!`W}Nc=+_?}M2&yukAYt2;NajFmX`gKc*iBv>tR~a9c{PiY=*e5=8glYsX#-L z^f#G>H1{7T4UrJMM{glsL6X|Nra}vCQLtw?Ru^xSvKxb#G(u}}N_mV<@0qgyj+yk9 zBW8q3e*-jOg#tB@B=QNdxc~+PK6f8!rM`dv8R`JB=iks!(g++tL~C1E(f>3j<)Iy9 z_)slJi7qD{6**G@8oeMs>;fbW2@7iin;ckZ5Y&NzPu&C7DIiT#^DPy@wgrvvAbR+M z4W}P$7nQ8W6WNnJzjB#gghl+;7qf%z@n`h(kKuBFHjyI=TwQs}%gZ5HgPl_ZGH^Hl z@dM~*Zke8@fYT73m5F0Ufvvd!h%Cg705;B;14_@*!~W`{ISrLq=(PyK9zfkYtxk}> zZ8`@>8URddYHC6}WN>9)Uth35LOcn8CNVudJ>-c2et;iS1gLA!1sJyYR(XZ;hV8(^ zdAWUc83eb6_VPbwdDY@z8w;J1n}a39KjyZwI<;RxzMc|J#UEV(B=T>F8h~SAzb02z zJpjX{sOU{NrQiuIEhZ@Xpfr+R7B@}KZH4_`N*}tnX~2i6Tl*e>RVXZAaNa~8nAPS8 z_4lVd#m&Wq(f0La`wNxwudk>3%Z28nEZ`X?Eny($v8O=>1hk?+aqqxD*-)#UPWCq? zR?}VJwt6Wg)zH=T&1uR7VL_AoSEI$EriT)t%dECsO`Z)0>5%VFmxUmz451w&-kT!K2N_^Rz|J6fy4I@zp|9_4RR8PoSY$8 zCCn$vkWNDwSmZl-HD|QYg7lla-1ro{V<qs$0P_KMctd~e`xqp< zm5{Yg+I26zK;W`l>d@O?>V#b=T|e=#aI_JkRf z;n38uEB1?0=0dotj^5xe<==$M*tFo(1LM6Ow2w}>ZC69Y{sfr+jhUI7YLzFHOWMdO z2Ve*Dg>(Tm1M=C~y~TDV=HXQ^__<%6E`tuf3*n#hU;7}Z6t(vs2gR&GnJ5-i;4B1A z7x0M~wO)dy@Kw4@5*WgjUewORE8m!bLk4Qrg~h$ZC#**TC=tnQc^QbjlNn>Pbf+Ntt>%J^bR?80`yk!s7?{$ z$8a`+7y~wFkVK59Yc3{-EmJW*lcp)qfIy-L2ZOi+vIn|5AHW*;{hL7;gJ2XQd`1C& z)I<<3p%Y{x&NC6d6tg)B71A!8o=^Z=liY3NIn?0oq*hh+$O$2^Hx{xtuMlS%3S`t4 zxDc3x%XFYw0eoKgL`2Qtb2xT-fb?U4pRE%{(rq|fA|w$v zkc3M|M+fm+ZcJ82LO~J?zVNVTuU3EngTPFT!o3dG?tG_h9iTFh z?iNtJ7Nd;f!CD^=VF?ROr2QWi8+h$UJ9m94xU4@w3Csc>LlA!!LMKIwEyg22*~5Z@ z50VeJ%id$i08e;%Nr7wtIcTeG-Uhm`SEp+Q0dgXhFUVFO7uzF2mi_<(L=p(`s{d_? zRCpq8X&hMEfS#WP0a_&Ubx3%)7#N?S%KHPFFc^C)9cc!^K?<1D4{FNA#YF^jBPVl! zx}&eJ@2!zzdGb_<3Mz8=PsA67MZyM@N+1};KtY?<_WT(e7e@xrGX(^2#H$Be3|y&d z01iO}f}Wrx1sY&nI*+Jj)bG<@D!{bEry^hsV;}^AWS^>V*$F}tUf*8#W zRsVL?{vDVu#EbxFAD4*8uduKXj!dc@-wBf{=Uh`oFdnQbSgVb|5OIN38u2h7D;-K9 zzO$7SBc#Slfx!P1OwXWwB&Vc6U&U=uXcqzYB1H`BW=S}}$ubTUOj_EnfFtfgOHHKi`&O84 zIGSkzY4-tFBRJT5xj;Grahe&Lo)M-8G8Htl)PrRK49^xJdFATaSRmlC!TJMl`o+>b z?8ndFzAeECO?@O{{^?4YE6{)eC!Zj0>Hje)F&pa^L_+h>y97S!`<#{!Aff&n#dZ}W z^ScD-w~GiAOH0%Yibc-QAOeL&ADo>8s0^rcu$vNgb#=k{I^K|;c461Cys1NhoQPfr z00kKxB)&&7>88Vi!_J_??CpyKdjNbEIl}~a0=Rb(GiRu#ICRGlbC?r@68>+n1);TI z`OSj`fI*?i7<930jpDDs;DB$T4oZ|(*ksY><5nD@^)OD?bI@}J2RZ( zKDxur&OJio`M!Vd?BCG5$$aYwzrIUGJ1_K99#q7aZjP07tnv9jy%B#t*&@f!MhG3B zRz9^KD~tbO*M6#2J+jT5!vmkEPs*9#u_)mH5i{L;B1$<*8Jzg3?Df_+%*d$|kWpY; zn2-KWqf~=^37stv#`=oQRH4*_1}f8%mQl7!RJRgvw?Q5CG{OD1-quoPMtn%{DFv0TiyRqZuns=P!5ue7RjnmB z9RSqxvhlM1)=Ydj8$-PC`@vWH+}GNaf1lq{?etVBif7`Nw>4oI9UO(zURX;y)w&|% zm#s3c#KAs%*t}HT>jK3`mTI0M9HIr#2Wc>X4i(@Qkig2YmwRM*pAE*hYOjs1YNz2g zEZ1Vm?vm-=-15;EIR!`2dC%wxprsp_Bi8v(_uYFoZ-`H@dWn>OQuEMb*Xz;)X*X0c zN(i)pZZ!UO@Ao*#$|g|+tY1cP3tf12Ofb!Et2a(X&=@* zQ%NahvQ=6sDO;A3R#XUeBH5KaLdnRMio}$pQb?9V%dzjtz9b3BdXS|_mZB7Cl-{wchInQ%H_kI1Z?Qn;wM;osqNj6cqOPi4_*>}HtNcN2)3-w1hb9<=B=~2Vi z()p57pxqQfI-bb>WG}tvH$8SW9WdCh)tM8Q+|73w)<3zSbMtHs+r#bKJN!}auh#V& z>ur+kYFe_*({$TprUyNnO^vjRj!q_ros$a>To)peCgHN8K~XC<&%;&gkBGO2Uagi0 zmE?KR6us@pS-<4##$;6e%kHY%w(pjhQ%Vq@W@hRv`M?+8^YUVITQfWV`rk=coZ%qY zKXQGT?ciNr^?W|WVEDG-m3|w0WTo62cc5}>L3Lf2|?aA42%qQd(Zvg*TkI(Wgm$d4t}U3Z21uDqF)ah`Zlr9D&2do(_3UrY%a zasE8@rmi(>M2@!zod!yS(^8*SBuC11U=%?cgI?c_O}em*PrNg_dh~&6LL>9A4SFFu z8g&yM#>3+Q#7; zc@xj!lc||wKa4k`n`T9XqSQp>--9n&N-nnlhOPzwGeK)!3vf-KguKz^4F|U2;Q)*#R~sMsmsR=B~9ayG)L=c3Z~$?5NN;yLdN{KgGAO6oh)* z-8kp?!9NfKKdhtoEGN60Bb9M%^2DKz8niiqq=YHt3|y&sR{fGmyW6D-)M{brfF)I3 zJ19~~aAKV|*AFs}pWieV47;&doax{1-$O-Ndq6|O9N^uxruF?2*>}Bu99F#Il8Nu> ziGr5_t_Wh;QRczUI-%!S?=01~YDBAc?SoA{{2qF+twwBA8qE;5t_i~k3gY7-jxo4T zCi$Q22##KSDZyDb_;WCMr13&u)!W5Mc`l6fa*L~3+Y*1?`%;6M%#C9=UqC&#(4F+G z&&{)QmF412S>Y83t+hJynlo!D*K8Eg5rN7 zqzOjVmq6htPINpyq%+`Ng#16uhPR!QH;Bmc!A7OMTE-k$T%JB;j66L6X9{>{(Zj>AN2QX8G z_c(G~DJBIrP4P=9KLqZ|{!KP_($T9(T^c0uX;k&P#T>(X5>s9zAD z&M3!e7C%2fF!Jk@_qtwPlG%@!%!YzS2`LOd97JZ4qZ4kGnv-2Z`0U|1Oy(M7e9MqG zqkt%=BVteibN!2pi>=bWWBl^BDn{%Jo=*@V#504hgR@o2bIfTDw~)%ALp*S}K$G(~ z)H`xS8Solo`&yVJ;J{w9W(|QqilqVhX%2JgW^hyCA(EF@+f8--yH5Nn&U{BvT1a#l zs?1=~n?K(i-FiyjTg)}#`A$q$Y-((D8vAk_HEpk8OSztru?3Ob`r&8B<>0ts`oq)@ z(Nh5AHnN(4v#FVxagJSunhu>0_3b@Fz(0WnrTR9!a|=t$81{gmynSe<;%Rm|;+&WS z5bA@@Py&(%)C@9Am9IbSTPGrt=019o+`PaBpq6~ET-gGQPM;YIf&zPd>wni<6z7v* zcvv>;4PUs$YX~iAXFo7-E%!kmgIq%FF!ae#&=;T!pjp+Y``Sp96+HYy7P%+#sY@13 z+(gV4gKDU(?UEp+VNTov8`*Ha(B=Pg@p@OZm>Q>BGW8Zv8B-yZFP zov51PaYVit?((<#aJJ62uxjFZXcVi3AbP8@RfEBspSe-adxB<yxk0rEraA;NBAlJ*8?H;MjjbABvfB4lE;XZgU9X6FY#xp3Y+9}A3$(krs_ zQ@_`s;Jmd@%1zGgtn1J#jn$H<^k6mWksDh-^}rKVGX=sRsLPl zu_*n0rwFwR;*SXlKg!g3H}qCpU5yL54OEHAPsTKOXTVzy>Vf>skfXj(!6lkxK{`@< z07XkNhjM#3aMtPQA~cpHSkL~m4>w&y9&vZ1c~PwyEE=5e~tdvsrU zJ71Jx_3%j5vO>pa2kxh#+~;h~Kp}g?1n~zO>#pm4iaW1d$(p-tj)R$Rt-oJIqmUg! zY_7f@(OtLKR&$(&GR6u6&bm?rq(Kqo;9>4kNKj^)j~jKs9xk*0lVOypS_p)Hr+U zV=aY2<{Hmko|x?SSJ0;>x60{)Rra>0T_V>%QM{`faP^#MzaXl;)>Mlu2vgt{*=-wRKW5B#OxDOvT|%vQ)I7yGw_jHB ztmnnFQx)=230mxiGN8gSw12XTrb1@&%|U=xpe`tZ0RzLW+qZoqgw}@tCuFZG+=gpE z3!bhi`o8d!_o(%t?)R2sQ&UnZ7^kmzEShQ^h_cYJkg};*^&j?J8RY-cH)aS4_r;yw z%d&~s>04)S(Q`TETSw>JzkYHR<_?LQaCBz^WQXAScs=@s=%~i&#MqhmZC>p{F%OOk6BM((YT= zQ=}lbm|G9;?Vmp=oP96y^A5-4hSx^(ClREf{@wSr-cwspzTNd3!tfyUE3S|=Y3a3$2-Rmj+7x2wVD5%1?E z=WG7C->7B8$}MHzEqvZp5{0?u9^wR^{pbx|i8YvE{&_ zjat(ZRc99kAK>GUnxouy=I=(jKVZ5>q!Qbm!JDk!Gv$_4&}U*<8+So%!LTqquYQf` zI{EemoX!jFa)v{W2KyzwymQ`U5?hPWro0y+AH{LR`GLuhOQ}8l=>UdQ>%VGw;^s4R zvP1Ex;y__fI5W1Rud>RetM@hYRi~DQMmMw+GRsl1@smz>jaR516g$glP=60$d~<*Z zFnE+Gg7P&JWcLI;hbxWUQQh4=w=osC;K^M$VTF)Cdid42&@&9f1I_DZX3@WX8n{vh zgS;sGCdk7hL9W^eHIzrLT z1E=_%*&fKu*SK3cp-yI{_k=V$f@7FW%H)h7NCD}a|F-&r#$=xQ*r#rY4tm0n>j@Z3 zSQj-dot`6_qFNFDNl8hF#MAG<>PGY%q^w(EVe^c3EIWxtqqF_5_hkS46><-&u|k0e zq(9nez|}JJ-CR7%;EW>+Nb8t7r=ViTa=6P-#tjpIeMfExL9~d7s zz~z~;I9w%#S2M-(48{^*LUSD6P;9$V?E~aarZ<>kZf_G zD}S`v5Qa8wgwF*PU!?5itEI_=yKGv4j5J!4S3ay>m3$uRXIF|QkQsX81-wMoH*gGjIRW$j@kwIlC zvO7WV11Qfa#!j>8IHm6Q>&>}WV+H(9g;4l?@*17VjiVQTe>)>J8ty`vOBUka@kyG1 zh4Z44CvYyHJ=MAA;Q~CTwv_g#sIsV%L{k;H_0Zyc2TK&-8$(L^G$Gz6$xu28j)MCJ z_q*TCZ5yr@(Xyb?px$933ob@AKyNdaQkorG;@>_51P8HM*U~xmr^&t!$iB}BV z5}}B|4~mpl!3>C_0T+>$3Swg=kdyHrOZC?cKovYJk7O%^8xf|z)Qk*sIP4Y(%J^c- z1E(#LC5DQHq=bZowa`kC62{d)X#wn4?O}p|=Q? zQLo6tg`&6)C^DL9-tgYgGcZ5{8YFTYS{gIe8_?q@pJ&5PUIABg@XS_21vR)Wk?tSG zP%I&U#{&c?wjrk2HTm%Fo>R9feSgv1Hz8d?v^kb-F9?Gl9m+4oQ@%Xo)y7vr{K|R$ z@UqGf^eNfx<>ggYG&Xh)BE>TpQSn6YNjlmMeg!L(0?8jb3-THhaSw~S%wZIb!7zk@ z7#E-drXIwxa2td{x`R9U3-Nj0QFpqTy<|ww| z1Im;rUVvv9u1r)YKW=2=&#)Dg;u8}o`iH`BKjL}ODGZ?&EhHpW0NkNz4cb}-nyyc3 zQISUC0%*%tkYYFKr~6{2MwTex+O>5MULel2CK_>msB0I(O(R_nKm-HquXl;X^7gHn z4m=t+=mCo8tcIpC>l}=Z0tyZhgJO8#oGbVT;jnfdY>~$8r`mN93)+VQjl~}@_*&*s zuZ~TY0RV>B=FL55=3uP-_26QP6g?Qa+rYq}Om{t%>%=k=nn<_=ubB=T43dN@l+*h) zUiLlOVL`~uahm4F4BH`(T`t9%~OhLPwu8u2_G=N^Rc-b-yG?1+H`UV5sVi*pfN>I0ma7|KP zU!+GrtZA@gELS>r1G{nbp$%WYe@EM|Rw=c5Jck;!2YWSkn{}e1>Br0FfNA%I@eLR& zJx7~<<2b4_@kVX2PRq;7DcyjVF_RU7L9L{&ZZTrCGY@wlgS8Gh89;P&M5sZ|9$=@e zM~enDZp4IeTNt#l%E-V+a?1Gt(dm9XgtaGL&Y= zphX9i8kL@*9toy_wXypG$t4dj6-@l}fNR6{g0db;q+qK+Xc%95@tc73iQn<5WRCx8 zvw{7T60Ug5saT(Qrl4=zaz@~BfD7WmL$ugDm78fb!}F*Nr#P8yQPqcBBwWUCs>W9M-n9>t`camg2JUDvS4K>ZG@6qWom$8(uiUE&bm&y!`Kn h|NHtErr4Nw!`rYPn?qtL_?{XLHB~K@{tIN8PBj1k literal 0 HcmV?d00001 diff --git a/images/multithreading-gil.png b/images/multithreading-gil.png new file mode 100644 index 0000000000000000000000000000000000000000..283a0426ff829336ed7b8765971567487a733b9f GIT binary patch literal 13034 zcmYMbV{j$F)-`-$b7I@JCbpeSII$+SZQHh!iEZ1qZR5Q2+5?jK4+el-?a<4 z->E=gTg%hTt3D9;{0R-D`Tha|fdXB%l|64en%%iE89o`lKR^9mTJC(O1ge0xU(w(B zXTAry3}3k)NLQFIJ)b#8zH6^$r?GE@B|bwyg7>Fq{VU*>?=CR(tLs(a+8f< z=Idn@^B(CaciXq#XZat`{4;R1Hq$ra`{B*@6YLOku{H)607Ur~0W!YTZsi)xZ1!}$ zN4}Ll+dlYi18Mnt1(JOwfeK%-FPxvQ|K><&C2@MV-cbjbwi~!};+-n=LA)kRt3&z&_3oW}PQW?)A z(Y`+-=gD_%>6|b&D{`c|(3<{TAS1F;TDJc(W|A!vli30 z!|pT3edn)vrZ%aSOQvQnS<>@8E2H+dfGP#tGyG}8f(X?Q&%mHr zERwlIc;SXCQC%s3uc>u=m%|Q3>PAr1SWuKVM4{G%@9uk~v+S!Tk%}>`Q;>D9EZvIs z?teu731@=Y539s&9^goQ;MaWGX=K~yu5Gx|AYV%9#AZ_X+%q8Jx4pK<^L*rA&7A(L z2xqIYTx}eW6q$%)V^W<<|DwQLQtrIDYoMvkhP-^X(?@AH?cneDDMA|#E-;UQj+snO zA&sH*`qCUFM##D|mAzuMRd?caPyBu9^Nea-w2Ob*akxsOA%;6+X_NXDMFef+7@VzHVnahQ)-(=8h&`;=&`3yP#eCa zb_Ct1>M&#A!@nNLLXeFWoSN0iYgSZ(RFTQYKVJ76{JP<~Q-};w&RBpS+>;2vI$vsE zo*v-k;9_)1|O#vug~IFNC<*`bc^snN+$kGhmw z#6IiOvi?!&Vi(`jg5Chc&Yb#qu^{l%2E%RCiPEe(ffOli$*B2I{$Pq|RLc2cG&O8( zp;_g-uH$|w#!>!n-X?ft*+^^=bHsNVuuU|wSa!dRH;70-u5(}#v&!D~1Pk9B*UDC1 zbl#~_z%;ijORO#mbt+$71L>}&^RmY^HnB=3Yd2fj^8JOTDaE@Pd>SSTUA$*laFi$^ zeHl;SLGSE6;5qT?JNjk}B3o|?ox6Ky7}$w#p$85eW9=aUn>&h&v*nJgSe$Ci#Pd^Q z-jk`Twp6BszEX=C2`V;M4VR87CoWq)7mmha95-*Z>$E#8w%IW4KR#UJUwX#P9KgUP zLwe9ie8%IKf52lux=(;~5Lv>CjKY^wWtIygA*=zFXkf9)*%vP)794(YChvGHwO}T{ z*OY}=9Bf}47v1lua1J?)mCE>iH^zzJqWGhJfothsvYM@!mS(w_L@(Ej$|-e3QVq)H@+J}9()TwX*^xZCopTp<_J)e?pU3pxjDizh z6-?NNT#PEcg>)J&5o+(ZhXw6RGPKMSQ z%uJ?~DERj{o0`Liy*nX^V9Pwz-ih(>6g#j8bpI_MVc*5Fl?1V_qI~0p)+3KLD z?%S|Wb(KKcCHk$Kg6IHz)23()kzt(I^FCf+sLqC(5Rgwvx153i; z$T8c#d3KgXk{Cj%ofFgD76jn6A7Rmw6O*RwbJo3gFG>$ zF;%8G?{3cw$|h3Ingf>cR65LNq9?o-4o_eB=KRLr(#0!VD9GRVGVD-ZQ?+@HxsL& z3kF7K9b{^V!4|*G+1A+iWssG)H2}KcdnCv=mdB@zCrGB9H(=TTJp`jO*2K2DfGOm9 zQ}d^yN8vo|um0~{^_xzVsXN!sxO#&Pc;dYvKBmwRhHZMX2P+5`vpNPz{j9JE)iJRA6R^ zna9f>x@Pm5n8;X{}ZLE|Zhu9-EgfA0FxtWA-?fcq+ zBy6gLU*tKE@B5A<>Tg!mPM68`-DR+LLV{Qae!E4HS7K40(#} zwpShC#9xv^k);t^osjF_hwXmb=?+iq{*1H4f1B$^_q8QFASxDGbcmz3yW+z|; zo>j|C4M5!V6K)OGYgrMW0(=6O5aG9S=Wn}+C|8@7o=_PRux6AM3nMB}+MlxDIOeMw zeCk=UgYa6qq1s84HuLPpN=J~a4TJw8_Sr%HcD}YaEow|bvyA_HbZ9DSiTEw)P9-8{VTmT^3S`ABCYRKE79@7ngTlarR1)PMAbRRvTqvHzJHgbnB?@tZe*T5ItN~ z?Me+NMP9FF9ORprTitWZ!Qt{b#UqZ_{}MrU!f0NJ4i*WEV(fsESh}CmB4yY+I(EK_ zPk1&-eU!t%!a0Psru0aLoC3@OtPM~miLTr?Z6Fq515U{C}9ez`Af#CrhD>J#_M1Mo@zVPiW z3kvYmV5#u@oADMDmZ-Kb;)>9%mV9&lzN>xkbeCNJ%Adh7J(84}IjzIPrusC$YZGdp zI&Yu0w~+@v_0dFV)Fy)TvGCutBuEKdIX;^K9{0C4EBq|D9hSXh&SZ78)PU!1(mOhw&@KU>sp~48qk8Hw`*0nwOf|9 z#Qs8$TEYhn(`YxYycQ#Ps8)RjjlVs;%`GLM3D>e;z@Hgk+-@uke8`)vB=FZJhKg1+{diy~WG#-UBmRkqSVgXGDU$zL{ zY`|D>lN#Liqx#gkw#o@pj4el5=vX#~bSa8gi0s?zHV$|I-0g_PsCCz9TYH2^akh+X zW%xU>zssPVO{;`(gjX6_Q!5+;JsI0hWWljb-PuVU#zq4Bv2P|JI$g%n+$KWTLH@86 zdjFp9LoWNfI$dYvqd1*k2>J>Cmoaj6HG^)ukgf_brWc?Xa4k@ZeOK|f{mAZ6j10c z;pPC=?9w#HfSo5H#Auyit(9xVtr&(}q7_=}GO0;F1}$ghrt%~9qfGk3Z0O=vf;@jC z@+H{4h|C}lE&#i!6aDwCK7y&)$b>+2Iy&cJ@NbUYHaDkK%oNI;Nw`>cZcgKq7bZg? zU%bb@u^)r=v#~U*Gt{SUc4}&yXQxzv*RlRYDD7NNnmI-rYVo*we12)Be6+l>l|&Xc zzu74kVT|S3(1UYv=XL`~!~uXq=Uob{LaMqiUVnjb<**?(I{rhD^z{(6%qykk z(SncO&Td@?3Kh+v83g-`>-9L7xLHsYmJ%sjYK_7@nI4a95)i&|Cwp66Kj3J&x5tbO=0c;*w&!D$khw&mnHlo6*~J#O)Yj5B-NN;-H_YdN8V4oVK*jR1V1cy2Htqyc;-<1JJl zWea^Ktmz;n7HZsk4{<(fhKzTxMLW&-(l!M0D`A$s3>&Nvpl=tlR|rc6gD6%wMNn_z zKc71OdJovz2@)uMbeT9M1;C)HwV0Kgb?m?zSVZe+y)y>zkKrPAVDxa5Jh#dmerT}U zG1=hUkc={D=lyP+IEH&!gGBVFw%HkusW7C@P`%vAgiS6U1Q|w|wRZg@>b)jQV7m7E zIa{hGax+lV42LlAE}&O(epx4rDGQPsdBn;OHDy5b8gy!qXF78 z+}x?omkJrU@%L!m{3Y5GCS|0ovbHCag5Sg~5#nKEjV9RS;|C2cjDx{5Uh#*aKMJg7 zl$~V#PU>KerQ+{ta`w#!>$;CA7CYfhDyHDv)~iXeM(i-ZU2uj9jSa zA4aE8wGqdvn9~K&S+Juh3vRlP;Z?xagC(6(KBWPlUcZ2>^WTye#6BbP8)JVfF)A{V zmB|$mzDjw?c6?FWf(U?a=8U+p2T&FWVAYjr%0)s8>0!1BROyb_M5=}v{4f^3=!~pV zuoKyUGfXr900hl|SXt7zt@d9+FB!fAgdwSI*FE)3G;oVKG7bOJ#V1*F?5WZrj~rH; z?3R*WOY+#5Idk+F$O5`Ews5S>6H7qhVx%Mz{TXqmL9`FG=M-m#-|cw7nnWMJj5;Sl+?7t-Db$a}|2B=?mrg|b#K+qMxTR^j^H9F~`1o>cN$FrIJRa~bBMs{7U|?m2Mku;weHbL?8) z@HKx|{8%EFTIE|3anpzvCD5#UH7s>uYcYlS+hmz0CCLc{KllG`DXi0SRA z)cSFjS<&&(UgnB;CS52JcU$DAWw{PxcZ-niRO2~C=`iE0y59;FND3ycz!>bq?10n~eop>Wk#K*=b{!Y~1d#Z71Az8ol12k)v@($i$d^DkjOTT)F12bf~FBc zdjHx23lP(Zvz*#UqvSTCrOTxlJ1%BnCX!C1zk!3TM%DP9){bU1lf?USJ(%w79^N=c zi52w2T5I#?wmTJr=mTY@9z%xOrk(Ry(OG(Fp$vC$PiYA1&_uLE=li;ty=o^CUK!zbxnm z8FYMOOK(#Q3qO^x`UH#X+ZE*sZpNf+F2*7W-zimsIf73$$PpyW$&&S?sH?f0k5-vT z=}UFs97U)3rYAR*z_m;PH|5EO>7`sZGjYG9mKhT{uzXnZMh-sNR4u^L!U74+qV%8- zbi!0+7d5&9j&6OTQ_XNv%{bB+J_O1U8lI!Wt=EDE!4;G{sH|eG*OsC!0}toaF2eo^ zN9hs0YphtG7PTJ|5(C%t{Miqx&RNyfk$WP~J~vU&kLe04lVYG{z|oP>D5%!w88!Yy zb%}HPYb&1smS+KN3gk5px(fahplz?=ofzHLOn73G^I}b%DHl(ifmYbDzdH#UHxLBOyxV-X`%oblaXhgo$)c zHoN`Pg*OO$eFO%5+K%5iQa(gkHpNN)8n7V7tl3{p0jqkPm=vB#LPesB!NUR+@r09 zbgnfWWl>FV3}Zz&@0kzlIoNZq5o4(vO2!0GAFwp3AydAr+kL97Sn}<34?Y^EqWixU zi;4~Us%a&VY|0lM0U>Rbhcl?@5X*HkmsG}}Yd)R?i&|Cq#9xD7&9dtvI_2*O)+L3X>2HV=5$4 zM_j=6vkCOb&y_Gki0pJZ3h^JXm{uLbupt(Hj1#+RwtM+gGa&ay>nX>(!c{4$Z{G^; z66N){x9&gSAEH)Gs^^nS`Sp{YEXMIq3|H9#yCUhjK7!>)6gE`t z3cd6Ywk)nSQ9-%rFhV%P`cb(wG$g>;jI`X_7_h4!0dlSW$cf^T=Bcbm955+xQTPkE z{l1O~I3v#3ZCRWG7L0-0B2kF!v1_$;L&v?S%sChW(D^6dPHCsOvM+?w+oapCF2 zErP_IU^%2LMzx-Vwbof_ZW##wPz7`{bhGl+!^LN z%|u-XG()YQHReifyeSt6CLcACmR1N$7sZxphE%_Wpr0%upKm!Dd%=Cbs_U)*wM9eT zpSAprkgr!EH`>}5Cu7>&iQqy6QE_-E--AYv`%->6N}3^ioxX(g^4SYjOJ7CBFf4S% zqy%DTo5z2LSndF4RvN##b3LOze3&}-8`1zr{IwObu7$I5$%<6@mqq3mt@799tN!h$ zeQY$(r}ZF8Gyj!>(TS&)1FeVZ{AxHn#?hUb@ zO9DfK;hk)4HgtLrf7i<9)PyoPK933!Wvd=1_X zoK`?yju#p&-mwM!j*5RNfe<*EVLqytyu?Q*p~sz+A~&JtI$iOB zkepqX6y*0Z`7&a!*es__g3@06O=^E-$9W|<=f?TIY=0p^+FtO=d^D+M@1%^$JY>v- zvFB@Y80>81^RuIZYyp`(q9^$xjULK6BG_S}V8#_oNWo-t zN%fW6gJAbiWJ-e5UHiLC2V{Y1A%-<77I`@rByUt=}6l6}W|GwcmsV#;6o-ML0ZC;;t5 z8=KuaPEHBfZD28oT(Aze(bJH6*WmDv{bl#PO5a{C-a%8ex5q0B>?MC;P}+>WvsvZ- z6jV)J0I|HvI`SQ^Pn+>}Df9Q!qEBpxKSB`n9rfo*{nXH+1trg)zHa%J__;3$>%q#s zY8;`x{5$AVrE{-#p)k5Tk67>q0@-6lrmjRYZmW0FchuZWsoqmR(sL*v=aJ%qJIl@% zzkfpqp+3mnY9|F>CBOavje+W@Cw{`&-mT3N282F{Wp1rf&qxor%QM7CQ@ z=;swYTl6YQdo|qzJ=HJO;+18J+A82r9*YC*6rgW1^xZpa!UqF}jH|gAyRP%At549k zO~D!*Rl_t-4=L#f+0l&bU-LSX9phdFeDV&w>uE&`Gp`MDxe!keGJIhT&c!51Hw>#I z3^Nv{blbNXO0=pEq1cd4*EvHsh^?%&iofKkq^0-_voVoHoOn)o7}BRG5t~!Ta4cZw zhWZv=CQDM?wJ21Vrm}Yk&GBg@@$Ei*!G-^ntOw;3HG=3xHsrJ9e~ zd2W&@%_pv_EOEj6=Vc~WN`kierRdc6nq(b8+c!XE_5Ju+ShWQ^fCcqEC7UwYg986&SxJr_o}k2O zSAEurS1R*3f;*}fhxi^uhAl0kj z`o`=6$+eUg`6ld-9`)X_pkV`vmUl=bsKS!B21?0CR`>kvMiH_Za(Kuve8pVRrl`9} z?&s@E{*w}(q_Ku5&kfeT+YTG{X@o~jNYJ2rMjo>hbBAg{+)2-4+9g8Ek@9RV^klaW zrel_}ucP^fR6`*oN#B(|-sE^E&jJxhOF6{%#Qk+H=kXAh>ljT_SyM4a*g9V;i(cMH zSX|U1VXI3d&V8&18)&(ui~bmsJdv+Jc+k?`TX`6&%1D&KvG~u#H=@ecUk6KD1|8DH zy0t>j3GLNI1HWDa2Bp&o}7A5Bu;RbR;6j7NPaX9Z)`^NY!cMUw91Q zr}Bm3uTmj|E`m@WXKkxx?xtBA^kM^71k=+8X$W&d=nH{5)`nCCRcMKgCQ3XeD&ccX z5DcP;s6|I9ku=yAJK7vKww(-XO)~Ov&C@`b<~NdN0=gEvl`u(UN$nc1LBf5g_#^y; zWo+55_vgG?V?RWJofBJ{?}GhV68yn18n&Nf;V*qrjVuz47J8-i<6~DU$u~$l&m1A)mND5>+hngM&QNt?OI4vn6 z77$J~Ho1CXj+iw(eU8R#rTv_E1C?wp>wjWdJ?WWh`ZE-llZRb}%j4ffYkjUwjivv{ zc;_h{3mi62X*`ohm)tkhQclzU%7!#8-|8gt?IJUQy%`;K~k&$07NvBxJtJ5$9Ig<$F{#v`JZNQu9tr>(>X zUW$D~UYN)i17rp=g>Wx)K1QN;1&!xJ$s=d_>1m`njk|bw#6(+C4d70o46)6IitJTD z#nVg022ECkqlOD4GNh{%b~gyuD>d2i=XG)w#%6bSE>LvIS0yDsF`tH1F8u69wT-(i zW(0!T?Y2yb&fBo^-Mr%$<|g1qSH=*3ZImzt{p1VT+CQy|%{bWx}JLwfmKS?*^DaO@8ur1!n;eP|TxhkKFdy{3*`yRklyS!*HSkaz9#mE+lK8{ir z=G?sO0=qRAoF zkEn;?DT<*LJqIQZ7X@^sd&d6w)q#LSb4X~uuVUnl2V${IlT%IDty^gL!f|&)MItEN zgID~G^z$a>k9B`NGL}g7@i;bTl%}~%y?Y!r0eEy-Mhoj`zRi_U=UsQ!B_vH?;uuwH zNgzm!u>*RMQpE85aBA3_=>pxl-!|Lgp$i9N7?C{soN?rONpq})7K>5ktLUu{k{Eg3 zG+nG>kNn8qCg^P^wSq%dWYc7#`fW_94rypv^Hx304`*;2utv0*6^4Q+3Z{bqpXEv_ z#|3JJv#cu_4V)8jH`W1m13*bg_m zr3oCb?Nf(MdkhzWp|bg}NK5 z28{wl;x9-&TJ9{PrJ@2jy6~@FgB8%w@84y+3<`AYdR*c)1KP+HN;m?)tDm>FT8$-( z-aNC|`Ry78XT6LF2IIZ0(JrM`=)be8eX$?mk}E7`-I9d$J?TS!x>ydHyskN1o8nb1 zKy58qJYJHZt<>)bs*UNmVBi6Dl4*g6o zh?zw)vg{@eU>dhnZouf*I(VzDhncQn!B~dUUvV$QIlX$+0KGYhARJyO~g9DjAD97ZuBhoI=UcWEb5LRd~|AK|+ z1eMV(cUv+!U^hSQ%*Xhvu)g$c_l8&}EEcWGC-}0rUYfyXB;Xp9Eit&+c~iHYT4UyK zA~?`|tSkCLBu}g%T?Nl*>Y4bsnlXkZroG);-BHjsX7&!Lw(yt&>{4x?vo~{coU`x= z*XJqJ&c;GyQ`m3JP5-i{E-hrHJ<}v(zd6SJc0w1XqWCAMRe^)Mtp?Y^2j+hnYPiH< zk7##}*r$1^hdK%PB%`iAtWy4T!Uz^y3@7RB*aorS2q&>ck}kyMiq3R6+b=Zbat@^8 z!JQuyhZ9OQ{kyvaej=RCAJOLNM%R?PI8u$r+2k&I6su7LQrez}VgLa2;djfvk%x7? zBI3oj(cOh^st{EDZk}Cz9WrWvnbc`fS`z~CzZ{TmFA>{pkjx4byD?*JlnqN$1Ui4U zT|`UyUJR)FI3i~FDq$YIH4=lGhKWKY?(^qH)FvLX^1FYFEe%qQ1I+tFFh0YVvC)jH zdbk>dUCYavyVzo~;mh(f3>Weebj1A9z#v`GAXahB7w5ZE1~>0ejB zuh_I9A+r&5WA3RwJh8FPWP+~TD?bpb69|v?$e@xce)~{SqCX;PrLNSO!^o>7O%fs! zkLeUyMZ?GYF1ff>p;1byz_Ha_s{8M!Oq~}@a-8Z~Ab4Nr-(W(w;2(767DUDS%xT;X zp7HhHXnO)c^wF`ClRG~6JyPnk#1nn4UNG3SC++9X)$QuF2_0mTb3g9N*eyn+HzEL{ z@hd4EZ{K-r`4MT0F!NDKn&xr|B!czA#h0%(>lWgzJd zdNP%RL78!ouwHEGug)HXe%wg@SmGVmG}Ti*tT2%6wAJIUYpWb&o&iL>d)V~>pHL2% z&>YM)CAIn^QA8!O&UwqI!u*B|RuULPVA&Vo${<)&HEIG3ohqy@v%###+XHQa*r+uu zpWV)*ZMK{TXs}-A=LjHaEcm7nzIfu0JOHU-d=U)KEYM1Z$RsbRBlorqO=g-04-$1# z9xI9;Y>{UIgOVTR8rwD4)_;@+0LF_`p3AK-ggf0VK3CVckErj?rq_|hp2yB0H&kRw z1fgH`n;2_kgo+6tjB-9wO$9)=Wxuw<^OHOSMKP~k&;vP_8?dtW06$~T^`fpz?JO%n z^L4^!TKsGP~euhTYwM^gf2{=G1uXXx!Re3GUc9m4sito~cXG^NDb|3NV~3sV3< zN{Z$`zeFGbs32efkbnOFt2iJK|FP=-Fz)}b-akzBzZlSe_y_3!A8!!~{-5}Ng#Rg$ z|JwiK`Tr~=01yWS0RQJDze literal 0 HcmV?d00001 diff --git a/images/threading_vs_processes.png b/images/threading_vs_processes.png new file mode 100644 index 0000000000000000000000000000000000000000..b3095969c73e38cb5739a631b8c91b91d8fb2c0a GIT binary patch literal 113090 zcmaI71yEc;voH#Q06~L8u;3QlgDgRV2M_KR+?^#MxVuY`5CXxS#bxou-EDD)WwCvH z_r81ozv@-Ju9}*eGdTZ=Kl9w%~Bl(At@bRsy0a24D5jtC{e#Ms5ZYOy`1H$L|N(|QK zJT4AfaaTPR;zaVx4aodJGmBmzsn4Pofo-MoS;;1m8U^+3cL|qQjRD`K1|s9*k-wll zbdDSyO}rZ>7D}xG#vychh@yyIAthiB>PdwbAh}^7`IJdAaiIp2q1`l2V_C70NDC(Q zBGE!LT;syh%Y~JCmuCbO-WU$5ASKuZbcmrNtqT6JA%5dlK(i{Juv#J&NrWU$Kltet zj|qmzo6CqFKg!th&==n7<~XoCZXUb%;TO-|PzG$RQ8kPp~Kd>BKd z{Rr6Ic!yg(*?0K|Rr|R*Oz7&jTzLjsi+mO_Md@FGohE``zfX}0v}$VbH+LaWTT|)gi1a&`ju=%%(8ZeAtwaqvlrQtPHz=N zhC+g5qTcX?v|z}ZZDy_1cqQ`dWpjC{>5yd=|brDyygb$&HR@ z{h6(~O%tC;Jiu(X)yL-!x7ZfA*pPjX=JJWm6q(UM&y;QOb<%C#0QH>`9|7{6B(7U9 zMzftj2%p9*y@rnpD&q#;XSxEiEYiQ!#NX-uAcTu&4Ob-_{pvr9)8mPS86p*al6d^5 z1xdpFm-dSKQ|t~+IhJV!yt-`QxolffB}S)+@_J;7qMjj)us1@z52KLJDGYrR*#{dG z*0uM&&b71K7O+f6P52Q54`Uu9_osm-L&;^8IXU{rUkD7x0X-Az7*WamH6IpgjCN^= zFrg5NQ!}YycnErLYWuIW@>qjZ(WCVpk(6#yf%zr%6;>82GRB`<*Eh;Wq(*17Tz{j2 z^k`Hn^rW?SabpA8C1BAXvCL?m8W2F6B#Sj1Y;4Nsis%~j4M}p)7!7bvWVQ?39e^~h zg^_Ye7mKTFgmG?HfPTiJY5K-tQ*;E!2Z`n_l9Z${8P=90!Dp0Yv)q0cz(}_TH`XY+ zRl%zd==NQH)#MJZMZ4ooX>3u$yIox{bI{Yf1Y9Ui^EuD4uYb%J(0qDJASF*0!D=45 zKwlYw-Xr%T!G!@$L2@cVnE^eKPSKL27O6~9hwdnm<1@!4p&N!sT#oF=1cSlAVhT8x zZ@f7Rj(`-$7jzGzVL1_7{;Z#>QtlIWwr^VB8b#^+64-aDM;4FEldt-fyU$mThmwIi z&{x4D6cg)OBm9ACWMF53vVyX_?_0HB1^M%|ZnbI!x_>yKE82L^>IQXOPqHhr1WtYk zSNHt3=mi=Gr}M`;*#ANe^<#I=hT=K%IR+ty$j^hHyi$y2qMPqG89>>s7*&xnbjkal zuS2~p-tnXhCpZ6WPHYZekUD-Z!El@SnL#s&oi%|-ek&PM!K&D^c(vG~c%+zf%Agi^ zG3xkJ-22kxk{t~P=$c9it4?{fH__K*(RY`uqdQs=B)qdQ}?g6GJ^ibzWaNl??uu^`qZhm`TWsZHa zd}g`ITfIs?zwoR8G7CL|OjgYSih-ch{sCod%6I;W@Q5 zS4L-w&x9Bbtbjq|0f13+GMfzBg)Ot2UQRrJ3*HrmJ{e05r&{n%){wtunq9M9-T~&c z+;p3Db7u6SPu+oa_NZ#s4YtrbYHmYrP{3WsW@lE>9_QYhJ-)G~EEDdty6XCf`UJg- zI$^U(i=le#n$ZSBN8g#+~N6*ni?=+t1-eDW38 zf^mXFf+d3f4yQ{Rj*E?pjpdF8j{YYV#{-LFwdHjWvw7x_M$+Y~27n`CpnH;bcGDnS zF1$33DNYPb0R9LTRrM$}Ewxh>P}R+i9Cv_V;n?e;R~(UI#D*!HGOP)pwFbYkV}hmpo9mctp2%HXP3*Rz8P9w7GDp{emI#7 zD+0%HQmu;JbK#NVeV1{IamBw^cD#k+XKg6*w&W6h@|APK5^nUC{^cXh24(^-)<|FcvosfNz+g|0xxl+=I>|P?|%1$kRkBY z!AXgXgoIp&dXCzOERV87;?el0ij1m^k&JV(_s-~G8jF;c$4t~83Nfs_VBL`;sv}Xa z+l5A3eGl{N`+amCPM*t*J=gu_nr)rfHbQ$E_E^Ul6jxBQwyXCx)plt=LM%^MA}HYI z4*aHw(3&wv)sjI~VI}qMBP+k1-qeX@sil>heU!1HoTB4!_DuCmYFRF!oJxlHW*>gr`yxMv~i1*ZLWCofMh zWq1@OwQNxVYg{b3DeEj}q_2s!N!xStcmshopK9vwda%>Uqiw`kBU#{POcI*hb)IQA z74W)K$lmB0FM4LOK&fZt$x5hu+n((BvPk|%fb%m~$!Q6@k_pFWqY2Q2`6eh7uQT%T zccpTZva#3pa1zyRT>Wzx^Me?hL&c{QI<#up+#QsC~*wC)J)^fL3ds|1K!ulVl$_w92l|)?DGg z_@)vE(I=FL@TC*$W%fqk3hnA-3!j;d!9Qom6V5B6k;93PRz|SXnAP+k?1!4NwSPe) z)O&eR?WR?3XJ-JbXOBRW>yEjn}1pLE*1!!Th7P`;J6HUV4-`o4U z8zbPVpGG2{sopn_4GZ>E^T}1~phVZAtKa8)(+2P+<465#d&G&aH-`7{+2Q&>kWEn4 zo)C2X*5lrTx`oCI(G${#-b8~*E#Y76bN$PH)8c-6m{~{dTfU!|_zKlz-~lYM(_1`Q z{OFAJp?4!52a=mdbH}#>!D=V;Ycn1+!G3JmDLELSssb4|-1fs({f*9B5h`$l=_b+j zn)TeE{QGAG#5G|s-2YAQL9el?r_ip;^*OArZof)t#GhO|xa7?klx zNBDJc<8qa`@MCc(GjX z#4g^h;bMd8k%DKiyX4_rl8Axt-{a3?qE=rOSY_>1lo8O0Q3RZo6poB;`EIaJ=16xA zUK~;Xq5GnSFhFoM!y~e%$_HRCYDbjSR|RVo6(qKoG6oVV@;jv0FD2xcB!NuvzhyaO zmjBjOkX|7nh1(&a{=Yb?FZq8U;U)d2&wuAANnuFnFExUfug-Vzr{fH_AafT ziPd27EIoBzeJJm|X_{FjUeYMy;J}rQZj=5IMs|_B3Wb4^1lFntAo;2n1|6XaFI4TNo!$drYKVs!Tyd|94W{Fm|hG-cb7uaC>sUdXloOP+98^?cK-8x`4b zrq7v20+Ui~xTPP1w7sfBX5H%kuvY|_|JRZ(&Nefsk-tcGf9EIRdJeBYew9_fKN$SH z>dIO-_1=8r>Tn@9j$UF`V?L0q&}G3foRK*!ZoV{qdS%xmV?O>17gn_NFC=F(K_wD| z^f!IMi&z65+b<@Cl*9D^e2_7XU^vPN24B>#hY1`PVca@rDb)D+Xry5T;1y^3G$_FG zo8Eu%__18rdLD_z^dJR7CRP9-HFBl$UI`Ml7#B+<9B&C5d$|14m6xhX=K9DYXa$e^ zgIo~oYd}@+;U; z>9@<&269ZtKIUojlNTqsJ6eb;*;wJ2oi)851XGnJhyds;!t1ZqRZ*1(1(nnEj&1HH zgHjlC7CPBa^qUH`M|7+u>{i33$J^3;kG%BZeg7pabP*PAmyeQ9LBXJe;! zYswBmD4+KwJ-;)NwEpnB)8;Ly%8mmblIIItFB=A%4E9{A$JVhua2 z+Hv@Nr^akKs4`$*B&^;UHCR+A7VjBGNorV|FY690u(O<%TmQzMPh`?`8Tp@0C>!WL zBY^amZ@!r>vprjcpM3%}YuR z=4pVY2Vq)US@mW!8I$$)1oqlaaprE*f;Hwwf)J3ekYhF@Qo>555Lf3THvO4Tc8W4y zu0?Y5VXJHXHzEZmKQ?ftFg56|YA2Th4OXU@$ zAMTuD5BRsM$nPpeHZ*v#2CN01df(zFD z;K#B~UaN79o_B)K9C!K25-aof`Nfrp@G~YArjdxP(Mb#PnUWG#d!LMlc`oHA|JQ7V z$fdDj>7R@Yej)W{LuO2vd2ANtdbW~;p(~Rf&eIIVR|+brZT~qU!E~P5Vbp0cv~=Jl zd6^x_VZc<0dT~q#oOLm!R%nBhPUEWr3s^$0qKR*5<=-lQYZADVw`;apP9WNn{s`YdEj-~JAbS53$<(@cngjH99 zgN{x#O(pSruD)W^+LP56#M;z*iBHr%SEZOYE4&YUk;=ym>{EdRqZN?6x4ONzwY19| zRjYz>7rc1 zpUf!)lRt%^D>dQ%D^_2A=5;@z#>a=lR}sm3Lt`a~g6^q0dw&JnHR&LeJhnpUP+)q_ zhe#EJk%I1!65V-Rg5(8tCa!f>zfI$o!KQeHZHmFvco01`@UGj>+Bt_dmLO{gQhuw%O<@znhM$OI zdHDMS9KO4}+w5MIz&=jRDSnTgboQGo30x_nWNuEOu>L8e#Qq^|s#;bJ?%K_yxuE-= zYt8k0U!P!7PzajRnG+QQXH9zmpMP#d#D_Huh~Rcqk#!tj-zN@F?cj2246uS zA>W#ah<$k5&JOjE+sK`XZ1ERPsyT%)lgnUBk^?%r+MOnE#sTYOW{F%5I%|}Tneseh z9!#qh)~DSxXlJ7NobrQ~e$y%IRg+b8%B1T^4i_UY+b5@HsJicAS?Nw$XiH)Cm*Aq)H+Z;ZsU#BS}a|v@!#R{uWMkW<|-x@J` zx8oY=wD9TK@I~0^@>be;Pb)t0o|aYZNFJIWEdI)VthP0f?1WLbO5NuLmLIF>F{x1W z4L<-K&rOEXz4L%lK^g6;w^fhYbVU?HXXRs3u)Ecpi;dTvu)-f;01Pw;yVspv7R>Sy8v$4*PUE#*+Ae%SDyl$E&_BlmU_ z5;+lnCFD#`si1oq>=sfrMK{H&3wSPxxT8Q~HsJ~*ySz&+9okzwSgg_bxf$}sp(f3PETz$1yopv$dh?9g&J0j_=JSfEe-}`*b4W*F9q^$>J@WFPUfcS8o}ur~A>Z!x z(KGvNk>%Z=r@6Z~`6Nm_$?LwKmtYi(ZLpHh>pB;g8{vGf<~sr(WZ@g(EgJRCq5QG& ziA|*yHzuqJFyjCXCS?O-Hr4-@DvQ7hHOHX1R#r&?h4o}k^QFg0hp+8FWTQ!Wy!Sku zI`)+svJ!cUQiGwbZ`b0m;_)9RCJ63d)^;KWA5aHR> z+X4uAy6Zsj{JBs2_w$rh)zh_`QR9w0h8tpwJzxm!#stW+xYByB@CN&vKy^x-B5PkV zxPrCw?EycOo85qnbnWJq_qwaNVAuA=lxvrWVc?u(3ekBlm!=4G08F-4LjFpIp?>fA z!D*{LyTjV1n@|~kB6J_$5~kTIB#$JoWwC~EC6P5Y+x%&>n3UIF3R&+hm7r0yYp(OI z{icU28v8&lQcqX~@C6hbbq5CpwrqBQkywVS-KFNk#I81sicLI`pYCrrPr>=96?RDS zq9^xxqs0gG3#~x{(WD&a&ntRj0llH1HD~_yfQyf@{Gl3qmtID&mopDg*?#Qd9*)eB zw6-dG8E7nV$D09%Fje~8GiHHX-WF)D*ER3Qd_Tq=XU>ZK0TO?N!vM|MJ#dRXbFv?+ zzY-HWLI5@&wm`@nO6+Asg06M8b3}r&&5urkVMYN$u$4fH$*fGZta|Dm4&B`E(r*B2 z_nAS^)j>Eob2^z4KeieAy$ya}+@@D2l&=kZRGj{0(R|$J^cxt*l6Swsd>I|!kc}W7 zX)48ko^)4!7(`d3J#}d0H0U30N3&3+831qRzmF8hrk;q$asr_v6>;bCg?sJ&E2Zx0 zKq%hB&PF_8Vwhk5`;u6ADr`-G#BPlk&N^n{lz^gsyrGmV%|mJ4S~6I?hM}V6xd{+* zw&hH|VT_l5+e2T-q9c~n*HrHFHWmrSoxYI#mcsLf@b_?9YKyBAe&nBLFljX~(cOR+!QP%Db)y7X| ziyu9^-qJRHBJ3dwj=#P}VYso|nqSEgB~M;R5ib3tYAj*rKW(?t>~C7mkDOx7%-f@? zYK<0V&CJg=+H5bZLLs<>KIA>wQ99Fe(4)_O#;QzvPglYV!q{(B{aQ4~9~pX3N6OO*X<>Qqel^o20thv$iNxv|QN&9O7#*g`JWW!z3H|QQbqg=PPSpu;( z{g>KZW#5k|(zs~XiPg3jY_kOI`)KUvQ^AY~( zXHL#uML6IqSxFW3rUK;ofzg^Y?VEg#A_ zRcS@Z_ZzY|?(SEJWHN^qlv|TxJRi&6LCk|)XikxwFcHjG6&TS5IiNoOHlK#`S-BsM ziXULC)|FrDs-6Mw8)e1SZ*=Hc(PrmiS;Q0ZT*bVF_k8|FrsNj=+ab60yVUy?uFmUt zNM`d)Z?onSK2`eQc2%cR_@5+~xqo_U+nDJFyMAYrB-Kt|L{}0pe?lj7si_2-=5c(;mtwS{v$eGc-nCB znY1?f@<3gps@_1saEiIjJ9l9Ns(IaaUvWw&wlc)gH+Gbq3bBq_?rN96RtKOQkdq%T z)F;WGHmBzLv5%8YAyLu%iI|UOXt4=vyBTM zZrmgbk9^W92o$lqRm;w4b_+)AhC-N<(-OO<$N?_UZD;o$IO*h|oyCqXwB``(?R#+q z7#bWjU93=8@q=1eF4G-|n-g(F>A2odLF%k@-`R-@xu02;y01BMCAB-#7s+97XT~$v zanXkyA1hDsx!1Jxd|v0xPY$C5KL8+%^e^8llzDN93LL-{kx%UVp2Lhei>l3+TkIKv zz}NrbhQi|DUHGZ#xS*(o8dc2c&DM<%x6E5<@HT6*ng^G06{(9Wm`aG}=n1{~u@T+Z z@lh#;+*4#3tIJG?!^DFsemS<69Bc)p1}ni<2c55UlM)lVD`?h#c_X$n8-h&W>A7S+ zV#YBcIre{!B*dsqHemZoRhH11_-0rMWHB|byOnXec7%p1Xai7ebGp0auC~>P z2(OrykLc-Yck=-|F=p*0u0>%4gj5_j6atBy zD5^`i9Y7V%mSfEw{dM#k;7GM!zOhT+1M=Vb*Ejqh<~ zO3Wj!r7?-x{#PSLTpiG>(z65#>HwjF@Vm?1SozBI-?8r$wLI$k2ABskbyu0&98r`uwxqD9sR-Va80*ZOb)@y*ab;TkFU2DL_ zl=u`Kt9oHk5hIhJ@e)kLILHX3(#Mj55O--{U=&QT?KF%xgAN8DI2CrMyZ*?v>hXGV zyfDZ4%Dm<7`d89Sb7G&2yi$NvVf~5V=e6gcw1^0zV{9)9k(+jlc=_sN;ruDBL|IMvuheW=-kz)%y?PChC^$8$^Eq2p7n zvYKz=Ra0yLx%!-sNoR6p>sC*dcUi6xN8uehX_)yno2lM3?fQj9$va{G)T#5v{wk;K zyO@!Y5lPD?S?|MMeuqBY2|@O-+6YXCtn=@_)~K`dD#r=BAw!GyB^cBSoTe1{d!};2i%8=1wJjhEj2^gW8D|4abYdghxg)8>=YhYhwf(JTI- zImmS+Yd6|ze8soc!o;iWi1^U=kB`>5KO|0t*XGnvug1x~rAJ@Ja{e}U?*?aixW9qh zrt?Do8*M>R@xTW4=nliqu}C>qtveYbO%RudvR(o3UC$m;3L)9Rq#X1F(+ z%bu+POKml-$qSE?_ic(17quK;X}N?%-E48X$47j=KRw~~J~f2f%!X+gBt%8{VBrl; z$zEBGKlUf3X=)wn>*)U-%@@_(8#Q2fz$Hp+O>49-&kQHwOdWl7_UWckVh(CbgP*9D z-zrD9MOY#`Ph0DuoA-I5;f7BlS@qxYXN@9D-@r>={7FWrWL$HgUl(5fJO{d)n=EPK zzpIW!FRHM?un$IP6p$qRbTKwPbhkd6h-0NihH}BvKU(Pxzz%kNmDZu*r~Vd& zzT|vHH51_Pz6L7JvKBwqr%N~Y{*zf07`1Q$<4aGJ&XA|MK&PS6;UtihTIhTiwfSHUO-ZEw(eyGXwRMN zJf+y^A~y^|pQ*PyU6GN4vY3=>;bkh}w~5hmw;9hiyM8}&0?lwjBGcdrKMU72ZuP9M zKNghgfWy@?g`iw5cGqvF&gxxjt0b#tAoOqQKDvtL95uL(-BY&bM+pZ2u;I6%%M3Ly z2Az%Ne5*B(-sJ)gQ~?}hGkjnFL-9#GiMyPzskg*r=b?M%Dr>5F5;vnHC z&L)GS>(mYOlGPd3L6_Arh!&pIF-AEi~v!J(r5aK?c8c|DzAKbv>ua`sNX*kIW*GB!4y*2a(yODK~HZLw`` zh)Opu>Gzup0*dtaz2nWo6K`s~x9M8GT}Mu_Na(y+2ot9{n?LFNwoHpkkNCWHS~A7S zru=+1tyi+OGp?8jlX#TzvTp0oZO}e#K9$o0(aX!Y?Oe1uCwl`Pw8jBe1$_epifyMM zyH}lQ@SB^#pF%Y0rzc5_f{nj&Trd7z9v8ue-D#ef=;(kQu!3vhXGH`?uv!rO?)AZR zOT&LUuWuGvE?o{c%?rx%T3W&^TW){=w8bBTN<#5Te4K5%)GbfEc1drU-;6DdJRu$w zL17VjotmeuaFR@kGiP!kw?Eh7{SLt&vhQPa7S;n!sr+zLW&q`AVxX}8D8=+edST}xUG@>`!MuL$c)en2)K z%%J1x0ISD93;5N8n(y`r{pf1$LrFKL%8zS_sbkQxfCzv3pq;$XQSJXG#x=WG0oZ$ZYwG z`w-oWbuQ~y+y^)EKF95LD^Dx_%Fl3v`~Kgq{n||l#v8j&HmBBGwRCHbTcS)VcRw4y zVZjjVNBf0W*WyAo!lIFC9S@Ob5`l#B!yl;qH#M;ptF$8=R#HWsMDpj)T7#9GLD6cR zxqW|QMJKkh+*g~~?MROLbQAhbI-j~bP@E)f7VFPiV9(449s@VZS=Zt=9&RoWBfR8) zy%msrn-vsims=GzZo4T|w7xTFO{uZv?m&A#D^f64#?`FS%EhRz;ng|2a-LY^wCEz4 zH(bDB!Nh0chKM+oowGDHGg-o#!tu_$2Tv?;njCbyAU^svKk~QOhaBEW#EL5ozWDg= z4fNFFY|Eti_+FmOZOG_lsLbW@BXH5YNjHuC6wAsJ9;rzH;ZQHvZn#47-A3v|25ihe z;QYwE3tZ=I*l!Q0+Ps(tnDsDkyB=qZ*#J5FPS;7pH;P`~X6n!rjiZpr3ET9N%W-2mIMB285l%=~OV*(h z4!XOLS=!vGlS|4=Gvb-cWy;H zVIx)kF$dhpN;1#hZ82Y{71H%*maR5-YV-Myr-1WG(wIkxl9>N|YQ`ja*HXXIt2X$X z;HfU%K?7&tz>w}rFDptL-K+HVAQ~W~B^UzC1W#|P{+*#tVKe!A4|3AK5zWRM0DK~I znYviLyFAL*Yp^3Nt&az%C#yX0q+i`n3n874dU_`c`+P{x6~GR4Sqc@Z{`PFR1~;XX zJ_SUEn>_tgsuIH^{gN>qXUr8}I&sol=gdg+2>NN$k@TjskE)^%2o6&Yh)06t0LogH3@$}Jg`^iAp zUiBkvUnRQlD^h^OzQ~48lsAcSgU6f5-22I16F9oUkVEhT|awc${I0mL$kox;OS@E$lv{K&0d>eSWc}*BL4N~zBqx5D=H~ffJ z(&M{TGT-v>jM(nmelFI27{>-2eBkVGVR%9HI*G8$4oh+A!5~v;H_MG5i;vQQ(jDL`W@vsl<>6EKulTD-ouanft zRq7J6+tUAudQ~5`EZ=R3AnaHarOhVHAbE-!qi5wQYU=rww(~9MW}lj5KN=OFa(9tH zBAIb-Oh&Ap1~^6y_`^Grjj?k23+%;d?;-V>iJcZ=oo8vyO_03~POZDuR*o)x9V`dZW%qUDrR`+%$Hm-&Su=7RU*c^2y ziKnbK3>A>`=*`{vw+-gQeUk}@n**t5?^epH(E0>NS2jmLPVb^#Lm6sJOJkkoaZn(6 z8ZcyA{UK~qHFacJx>P8=_I(tY1h&6)$73M1?An%MQ%G@G6o)a*Fmdmj(p(j2Gp}39 zLZ~(S;{Du#+oqQd9I}7Def4GIcGE?qX3?QJL=6iaxA=^9*^#;Xpoe-fLU-*cl+T}k z;O!?n!JZsk!$h7wxv+}^Jk7<1K*A9c2sAo=ZLi2VXe-{NquBE-8NLa@e=!q%@5kCZ zKX_0(hpSD)pUN-#!pnj?lz>6W6a$b=NEskupMQI)HcS(EDlc@T*EwwL9sZzK@ycOWYSxTtu zvy%wr!oSKSg~)2X(|1i`6;-TrUo)yY?@_VY;zKPV;!MX1=Zo1*UbkAQONJjG;T_Bs z;$wb2hl}oqZFsaIb=wdLQ7B`sQsbIiA-)~{#TKW`EONq;yxF6sdH34#bhSHW2*B&Q z1$(UXbANvo;+v4TY{18%`y!dTLb!nzZ(C1`22Tb~yfn4C!8RCSr@hGB<>_uVDYevT5VL>?i^+}OE;f0(Y%R$|~->B)waP1fq5 z%RzBvCF4> z<-TRywGhMrif$d_<_BZohWYgm4~fSO_ORIYC{7iNug4G|KrJZ0nHR36-WNie`x2KZ z_{y|Sw0fDysmYhkMP|Da^x`)FU38xLLQ9=(skGrek4uus6gI%#8;Gh|PgVZpg554o zbe1g4kHzi5f6FLV7;%hj=z?eqxL%oGK$3AGCC)^b`}ofNv0zTj^=kJx!&?yDtHNqG z?4(bWq9}UtD+ik!I@^zbqV+c2?T~5f8_K=$%rF8PCp87j5j$wXs|IO-d)Mj5(@cC*ZBuDHUWp5LQwaYw7g$aMEtbbAFrB8W?m|3@x zR)j9sDlPQN=RD=3@n}6(z8PxAkzC|B>6!;uexSEtNLb$Z;HLOulcz|swd3Xp;H=a; z9xD*_7myQ>!1hcX{WH}IMr`q=jxYBaV@<##c#Y7ya-A=AY9df~?o zn-s1q)q6*8Hot6;#z(C^wF_7tb3TM3_5mrO#gPXlb}!h3@D^*&l1GWk6VKuUK67fo zd{EkjQ>iqASa7|7i#-w<74@sfxAhg~EF|*ct?9X?e<(a$*^q^#P~XQi}uzOKJ3_Tc=naCHND;VHmiv{`$W{M z&_Dnf{Z1}evkH_?VuPuQIIFAlPhoB6GM}i9`>hftu-O2SDAj`rV&GB--DuL~0rSYC zNv5m@7XzMwYCOPh{X%{hkB@or06Wz>mO9dhHQ}AM3(R;S_x|>u)+FmQkq#lDh@PVQg`#Ay9nLUcj5huTPmuAmN9*Gj+ z%$G1U{hK@Jkz&-KIbn|~{PK$3o4ejf8g<`)?nW8T7&*WG9Pt{H8w9|v_~-noa(rf`SKOYo`&zUz zy{iX8z1x)^o|!Lhgb4MjU1;$y6bumyM}|R@wghx1cRBxjkLuzNR(R1qUF2!mq6YtZ)* zE>Bt2enE{z!da}@sjmD0`R8Hx&gkGuHhOOe)owvj~+P-O!OK@A!76p{UdHLLp6+%SL}sd z7;Hx)HkuJ0WOY(W%AyeK@g}(w zk#0qiBf zyNV?_pIO;*@po?hnI|PQ-=A%>ahRQg{HS!|sM-E5U=vN%mXO>9agC_ln!Xu>UoX}u z-+2-EHloFJY)JXlJH&5xT8Z><`7AI(++Db|C;6Hg9gu|N7U*kGSg z*-BcTEcU1Yo_o?($@y*PzProE7kX}INcP*FHEJtooD-5$liK76r2*I4;!QB`d3M_$ zkjvAr*5ig($Gbi;Zz+D0{nbu9%> z=+rUuDdV{px+8Gd`)9lL;x3iBuI8WwIBNi#+-~Nx-8Sl$#Zxw)18CYF)?S9mj=5Ej=hZr;3iz;Z znZk6e#K$))aQ>>6>TAE-LBE21-qM+TA{O6{x&|UP?e9E+N=zLvGF4N^p(C9!zX@XFsTPVED&it($4KL&Ade57CP6R+;N~;eBrzHbjL=kZhEcDruUAcL0_}d*^8G%*e!~PQ#_v3#4i;JK;(*!Q^<68 z;282+^8-tLY}dsS&zO~E`cxhWo%f*Lr>v>0QM^rVC!wU=&ZXf@7x)2}rv?F6;1gw^ z2cE)X#`d?}FG22uArT^d7>VCw_FP&&8wrG7alvuM@a5)CPe9Mzs4qdK$)~YbzK4|t z3e+Ee_;#u?m7S5tkntxkSG8s-%fI4L4QX2Ui7kIVqcU!__~1VevECVs9(-dj)w|E_ z6`^upV^9%4vekp-QD86ltwqMYLQ!U*tYK z7@hHOAgXMXHk=VOhWu5?n>YK$dIhLK^Xz*@#WZ$#KKBWX_@!wp znb9f0J{-s8Oxk4VitHO|3bVZ08hLRd_Gmc?my-h8pRj?{wm@BQZusyDZs{wp=G2D2D?pZ~zuV4M^LR|U z)2^Zme7KxNa>iZ)$<8hL(`p8iQVzoY-lyg}Cu;89)wi>Lg4(kUAH7@|AdtWN;ezt3 zbQ@W6!Hpr{^L~HGISdMMc}#f5rVM)LEpg4ym*&8*09sec*FA_Q6m% z|Fx2i3*vR)-Ep=8QowU3SkI+Eq>hB+#We0a`us%Lb2)W!_oFrhs2d6~_RC2@W3F~P zQQR9d=*qI<6Xu5TNjy60m3%}ekxv^k%HsXJ+Me!j3{UcPM_9wR4(exwuBJz43k*Mx zQ!_oaWO)NKhn!71x{WJTS-oSs-iHIy6XBUfS`F%slYvpos%!mF60u=$W{^md6q$joaI415D!#= zo*=}*fiS=*X>t%W)SnB_czVd97`k zkqmJRrb?_VYTezR<^={;Jor$SglM@udHB*QekDQ;bf!%QmZ!!eG<>?}`&3-6 zTeFJ}1|1ns!hdq0M6QN}kf>(J^ZP6UfyqGn4h zT$^WUm6)zAQLBVocA}JgpiABgtj&?dj{=XvHt3KiKiqEz*;alT!(U}(IrO@YyeuL% zZknH9tSPTbf8e-xLOaqW@K%=pAIjb`Dvqv;8pPd$dywEBJh&wg+=5$h*9IC34ox5= z5Zr?Vf=eU8-DwCejXN~%(9_TR&8+!3YwBP1T2)==-l}tt?7i>a71v!S&0vZl&->uj zJ=Ts76jcm>j?jnX2x+NSe&4tjx30bO=?>WYfv>a)7~FZ66f`q}_fI>RcNgdk>`|ij zgh%AZHnZkAq9NHD2Flc+ms|w{4H3}XNf+51Eh=H?c>3g`p_Ckq9G{3$umB&h=EWK+ zBem>AY4T5~z#xP+OAv)U3zTRUnBs+tzRI0Q_Xh(BLn!1a^C@~&{IQw-ir(j4J0{&E zK6te^VKR63%7lJ*x`MZFrv`l(3&DrbQ2Br%=!2?0Lv;Qv%|zDAa=WYVfYUtJws1-o zN8E!kZ-3jL`t3(7Q}LtkM+X6>)xC*vNXf+7a=a2ucbacVwRlNh(V%Fh1HyWkA{Op2 zSo&I@=7p;|PBbulT}GC~WzJSgg~Xk=Ga6ji(z^%oiy=pymRO|Qd--~laroA%QF;H^ zkxjHe2>5xF>)w45e9cxgHsbBoDYQ@eg4a1_u8`CKgJcof`49S&^KmaS{R`SbbC(2s zlMdpzE={RlCHr7qq>K!1PLK7v)r&-&o)P%8zFtTP?NiOSDjFc=Lmn9!>)Q2zpx~;{2me$7)bil|>#` zB4N0v&>XAwVvF+U?`C!^e8d>z|CiFppWkZ2E;pK*vZXJ3bqIgWhkc1$G=I%i8v9ES zvw%^)<$A_CUysF10&F>#kg*TWwmPNW*4P>xuGdBlM31A%w|1CrCdQv^|1$3;CFQ{* z<%=tBd~C(1D33+UYChMlsB{_VQe@XRD7tyZ|2ZVi9!0TC>uJ{A$?o?W}Grq%3!0u$9q-I?Pih>;`McbN5kX-9iVLL;JU_{2*u z9!V(e{{tPJOYG!H1sfHQWhGhON7FLbDD z&A;QR)%g^tNrSpoqT1E#jQrJuGz*}GqjR*IJKr}Ad*MG?&xUxm(h>X^#AQzx5Zx;( ziSO4yTnAEyi9XT1olZE-q)^hzaLX1w3o~<6b!Seb(?SMF^JHS?c6DH^_~^YRbg&Pc zw+@m?vjOOtX4H#4h<&2hf06u4ui4cx@poHQ=Or*HP7Sx^>F=vCNgujuI8xQGU7m#| zC(a*se;B2L2`v&rGac1*Jr>5T-`@tDlPy>4_~YDM&bGm~<^w7qDLphkBxQ2Ldd+o# z)GvQOwQe{c60bOj26f2h&IOzQUHkrb=DxY!ani1;n9|FQ&_|PGwK5& zt*oiy!M2(UB=>YJl9A$TqEuk=6bnMhrP$pfQ#Ag1aCss$7s0LHs;6nNrd1Qkpfb-Aq<-jMyW=vikNX0X$2i%1 zG(b8iqN1uTE5za*p$MD$^385#Qf{%*(P!zWtKgT%i{-zMYl0X#A@op<=6H%+|L?37 zfU~|?@cHq@R|MEK;NAXgoKyPPZ?>;2c3^|wYbxGU2&SgCK!Isq-RD1oSLrgC`IP9C zxj}Q4CYpZc#I;|)AN(s|^;6|b!_IZmT7>C)m(~oQOaf9lh&D-4p8w@L!qCK?=Q4L_6>_r5I+ z_5W0FjlLKqALAw!=j%Uw%f4yNM7R;r-x(Eg;%hdyOB!ZA6mQGL!EfpVTYVKHnkL^X z=c0Ef_gpyE*b6z(YBfj^jjwLI6f|nIlcFb+o2Orm!>_0Fx;H(){>O9lelhFA)=xTz zW$wg;v3Hv^eI_$u|6`gS(p4Z6Df)8J+V1QH-P7)^UP}{7-_k}%2;02y<()kcR@@ze zhwYRhrC=atJ32mSw-+fvlzWsXg>R!r1?gf+2xUd%d{3~O_D9V4IIuEyejutO2 zHx+{0T!Qp}SgQX~RcRGIVSf4FX(VZC&aaS~S97E06@0gw&MFGD1jRFuO%3$<#3p;= zEQwkDhxtei_)mN7ACpy0HOl|Tba{+k{!dLVRBm9&^|?PrLI`Yg-29f+L7nY>D}n6R zz*ooRCZ5)+dY1#8cjkOZ_|$LnbxSp3u}0H)ifYQR!qU?zTYZl(x<*pDhDS$H83hHy zbESaDHGbpNb%eA?T{~WoHh}wEbsNO3ewCJ@S^~uOXWB&l+H#(rf(-tALJli&ygFFL zEFJxztxb%$YcG);vJ~(d!7W0mo*%6%Ry)7nnra6E5a`EoF>aIS!7b!`1mdo5aPV=f zCcCFl9%%{eu34n~b)>(*x59u$*wtyk>cqINz8?9#+s}`npFBtl4W7)8&z>F&Cs(I4 zm~E>QO|Hue_4b;K1nt1vfgP{p%uH1$CnrX_!27Kl0L;9}ZI#*sHdjd_ARvHv=6cVq zfiPgHMvlW&J~C!qy-~fNYgfBjn;*-YH{a9J1`(#Co>m$+7CO$9kdl$rx-1IDSFrUT zz|I3dH8li1pt?Xia#q^_X{w=NIg)_y-@ohdKHr`!5B}sa8M{h~&9~jD{bN)=5adUI*$$eK;mafAikR-ybkEi>Y`KEXwux?RZ0t9eK{VX#ho?;Y4kpqecyx%V)j6#& zs3s>)mIB_yuDTI6Pi6?IAW*+vUM#%4yz4JBnlhl+*!jI5h~y4)Mds?UVnS{+U z@TW`U+l@g&!e*#9ObYo{z-9n##mvg8E)*U@Ox*GkO{03y>iQ@`OdN2x5u?_^XHhG! zsQ7Z*X{gpRnJtd6O&Y!l(m92~&mv-D5pY{r@d`8;CPhqa)a+ozaciF&V4$ctS8ZW2 z@;o8?0OS1el7_zNcR4ParWQ(^Joo~u#hHO$&s$XUKX<-798Disd}2o+uwL%%yQG-J zp5fwSSI{=F-h)NZIqR3JBz#r4u7-GV&lPMLtQmCxEm6;srKgsDx(fr!%PS1?v5Pr8 zK(*dHgWZ-x&aOfmeI6#yN<+;qD}Xmr1l0O~s>d(pGEqMNrv^YQxZom!floiS77Rpnb6svg z?mF=CTJaoAwy?Zm@jF}~<_8MJ5YVXxDr3mzr)hG0{ep^#5m*bnJ*7LVcZYT;Dk`H) zb(lSd0VmDdJsyEpS#MYiQpEY8#cGCr_dv?6%}oz6S|mj!6-aexC=w!B_h>Oiij0X7 z@}IK&+e#SqpA$lgnHjFxO2oZd8R#3p*p%`=v%G<6Vxr?yi<}M030SVnQj0pG5Z&QU zm1iJ@<2XXghdn1J10dBCQN)$&zDMMOl1Vs1{BF*nz}Bs^Pskm^-B z7R->7U-o7ZpL!Uu7GahhMjIOo3lb4DUykGU*P9Q!^`Lm(owdJ8-tc;mLy&CTEJX3bAKoM2DElgHQvG81m_Ai%>0u-ECn&gj+lA=clx_&@feTlo!FED6ybC) zThczj5&j&*2mhB0T42vOFc2+pIqR)s!Z<@r-GK#dj9>9IROwT?V=vF>uTVYK1BN}# zQ1yC&&qJ0s#l^_12Za2VT}agTz-Q15G(jORjDFmt0jn7RgCLq@-kEWM3crG`4(YC=Bc$Z;sYcI>&w5we1DeI)ZgF#-!zdjqI~$U`(8;;>jAal zY7pV=ke3>TUB`^xzyXJ**)Jl|cvRNAq4}YmA(rI^&P7Obq>TTq)}U{j(07AkDL&uDd#o+g;xR~PBi0Q4(Y#O-+bW53>_&SnL(e_Y`s3 zztY~KjJ^C$JPAwANR-m?B{EUlrC&Ig!?AP4^%rmJ^sYOK|k25<`*5 z<_k$O%6|dJhwgO9*Uc_oFJ$YV6}3*v>Yufh-}C&lCD<{4C8%PoL02r;ifN*wnH}Nw zyKgd61^Y`>8rg=?1J%QgxFz8PUxE29qI|%^9PSmlA#pCC_sKLMu7`VNCQmVlUdxuv zBhom4vfS3e_p|(;cYh9AD^9!DoWv5>(o%o;pZ8OI=#+^#U2U5;Rw%lmMzYR_8Hal^ zq8Bg9sTvFDS8zsoNltvnCd-I-J+KtS(ay(1J>S;1j)^fzmJy^H*6alb^NtWF#(EAh z71wP_UwtMG|M%sidVgudYD(pseP0rCiGBV3 z8$J@FW}<>38_QO^6p91|Mh+>u1>D|uwhrnewAtkbdr4*7S~$dV-iqO;m10Dz5q!R{ z{c*=I!eaHK4cK)<|1*lf;PmI6|K}aI;#+nicVf;GjtLx=z?*#|&XuKn@=_#@l<_Zh z;&R?$m`ag-g&I%RBF4_`_##*XpO4Jq55U9WuI~>{i zh}AJZ2fuoGgLo|-!V2bB;kFL3!+N>Z6`!IHrHNK$3Vn#wT{QTE@)yT6#=|sKEEWw6 z1%GDlrl5d8!lTt}@FCU97T8acy#`+p^FqAs}rI~?1us`3N2-TL58F2+; zp;d-+N}!v59kNu|~}4Ejd*X?Y0Bu&qO5ba;l97{eYF?--Bcu2uX6yA3+6B=cDiC&-ty5 zO%Sg&{N?$-D9`U?Nq;@*;;1BM%)4TrUaiDQ4~!>0UGpnG7fm#VY`{t?CRD8j$ST(L zkjue_A1+9%p!xRD<9Em!$?;9ZtvW|2((LSbPvKikaN)Gn;Lm;|TIud0LQkk@Aj-6`^W3x0x;pD8R! ztvmVu?_8zYnQ$Uqt}gq-J#_*~QUFP8sHOpO%C3BWL*LqY zP6#YiExFeEt1U@euxUKa(ESWy z(Vu|+LY|uK43kZ%>_AduYr?*)ub(RiC1D(WTdXca=+~9Sahx3eBbm^jl_tZ(!v(%a za|i;uK|PaO8=WZ_o%#~U7HQS`0Lw03i}FGZtV3PkS6`31C?RHuSLv6J}hp?9e)TAs~^ zL@#vcDS@m}=~A57r(Y$EwHc-LK4bQ%bb>Ab?>?N0tO(I}r`3@Mk80ipCUhsKm`ayy zqUK>9Zxok?+{KU4^Jd|?#IV=l@oip)*{Lj=rLL7Aos*|C^G!s2+<3J*#uk2%XE0oQ z9F2J%04KX=p(MKkS8*dm9C|VEQ9HSoFy7u-zyBljicb;n+GQ-uA>>u+3Qu#XRJi+I z;FbE1skWqnHL>6FM(6iqUSeY59rAtrT21^l`qqGc(q-uD<2AghE*V)*qPBU^*g?>U z!D+kxgEV2Gq4jN`^h07NJC*G{+G7Nx$uO0?qkhY|rHTK%S%^ONrhs$Oks5seyiaWlsn>9i7DZ612vlfX{ zr=;s@IpLzV!Xxx?HtPz_4~b}+7^fM88>`Jo(4}ffTXr;0l^^G943qzb=lMft{AtTc zlga%v7<&H_!$2t%=u??))&h1M$2U$j03Vaa6xkxFrp7BDh&i5{c{b35cfe@+vJyQR z>9Ux=78+GEOJgR=!R2iiUw9;FrM$`3QlUjK^DoV~TErg~GV{WU20t~F30|7CBc3N11Q?}d z;iIFiUC6u=zWnfG?#nW1J}ff|Fq?EYEfQ9sh2OTZAHtDnAf@^wba7sJPY(OpLP;e_ zgv?VS++@JEc`Q!8BWPj$Jue*4KYyo_X1RSTT8b`m9A31=PD__meS!L?VwiBYFcH^D zAyS=2bn`OM5n6yck^ftW6%;y7p<1@Rz23m?_RRs}>ggkmZE+}}C=-_4f=SIDZ}&Hr z^ugn*9e;cw9(az>n{hx`mB=$4m0L>-D`yz1o7auS(d?N!R74D;0w{r-u7-^cHsXHn zngdGCb6g76kvU%F?OJQr|84R$N9gR&1933?4gcGQ$WyUai}-e1@OS^ul>_zGC=aKp z@4J!fS2T~mw2z{T8Q*fAbGu9Cl38r2nK|u>@{Bb+Y7}|;P}-GzwU;?PAk1eN!fYG; zQ%2PY&aaiwdn?zVqvvT;An`I^lR#7hue)^;IPvt6Acj_bT_5ckTEY}CkGJbcAf*y} zfF|y)h5^q@W9c;)hUROO#HMD_HqC^GKLRz072o!rf+bB9{quzkQLln=$Lj(njq8bt zSE+$nx*k3>Mu8*A2wk6Y?7OD1fuT_(d(`7fjRD9}p-vNb2G{wY^w%p zex;3KUCl`Tj!HAXXIwdK+r7ZyVs#%V62XI)y`fdZ0DaNFYnos^9!skgbtAYtd%2WZ z!R=HG3MVIzh{c2s#O?pa{ibU%04c|%L~pj2N&t+z#5%=QF3P5C7nE{$wcC&f?n?Kl zm|~)5aXg&J+}*(BoEPX!E)(B(yIoawt}lz=ir>wEoClIb z1GDk90$&DQu}k&76XmFW6p4X3D8CK`u4Q&8Rg6o9u+ z2*CT$Q5l(c&p)z|1ROE**PScs2lTB45p533LIrXPU4{6)@_J_B$Hu{PzH&J?FQ{(d zEL~0UC`6UI&T;0=Qj@C*?^9PBt0FaWf3=f-2^oXSEz;eEfX=QZDfN1M_xp_Sx zL%fm14twgTPMO5yA5mV4;k|L&d|&H*Js?MH*OBqQtzJSMvIYv&(+6QHfgC7*rYl!j5j70r&txzI3m(59AFTaYrHkSAS92RY*rpWv73xFSb!4VkyMPS~Tpl*Q44lv*5r3 z*DPYdvWOyP-&%Hd`~0hC6PPpLGh!MCRGj_e{z3XabmJmd0Vm|3`ZbkJRy zDH04D_hkmMWIUy1k4Yd+(a_hQK1^1GbV8Z#c+( z&}-##t!wQ{{mi8w98Be)alBf^7Btm@fpLkY`8oHd{rB_md;a@Hn(^y-fOZ@ z8HU@QNo<*GkrWizVbZy)1;LG2_A_i?F#zj(eR3g{W&vzDVGjnb5e-EhHj00Q0lG^! z_I+t4){3;YH;wLO{?hEO8{JVikq6gC*>9{qiH73?vo5h^c9bvs(=Kq8yrm;oDk)o9 z98SsZZd@=-NE49>HxE|`ktR1O&Z@G$)&i&s^T@1mC(7l7OBeM--8shUk$x4{o_9$V z{D=WH615XCdt+{fR!~2}yX!Yay_eF-Pr#3~-Z+utppG2`{6W;TJy9V_R6bc5vT{xt zAnt&T>OmJO+H|K(*;b#>6ZXXe>-m`s>+Te;_? z9S!*YyX{}w@BLYviBAJyHv1y9?Xa%JBNs#hVBbCJFZ%q|zT0`hGm2)RxuX-_GM+oi;KF4XpdXrf?~o!F3f6-+k;b`|f&w(Fp};8!1FnMVxw5 z;#8pPBf~As(DL)ixlEK9!yri*P<)5#`;GlnU%BV!rkFPT}hVLMN|-Bt;Q5%=n^UzJ!MU zeaGc)`UsmLo8~27^e!Pd$Ga?Y>tpk9$QBFjYIQ$E%D;h#1<0Dq`brLsr?Yo!jG{-BH_^hoE87WV?}`+*>w zPBSg9A8t)kXZJO}(wHVLEZ?ot5gWJ6I*3{Ay-ONL#B|Gd*nu}8DecG;UjUZw);BKV ztrkfg0P(d(ZwUA~4zC%h*nJS}D^TdNAZeOVzZ{3OP&A>4af~RiqAL!(ZY6{c$PguA zRxWagJ?7erxG}%-xalMfzLiKA)4#iM8$^gWQOA@NR6nLLeHff;U^BjW&m>`{blxLj z;VJr4JM0!_|Bay3(s_kyFf7J{p26%nhFT}xET(`2|24}`A^O)iZzaEX=Jvq&IQ-;% z2xA#rDNM3-YlPi!luSMn_k!XNlouAOtw10luBA4(EEG&<3+jSA+R^f~GKaPIMp0%s z^OHZv=1R~>0ce}pMc2O8BSp9qRWC*`-Jx~{vO#!2ob-N4l*gV+}sb&HXw8IY`oFpBes}+Ss%;n2$P~_R3da;Bj?=rx& zr2nd!D_v*|{``k;l6K^I)mc4}7gFZQ62QgHolsN5@7+))f>P%A7IV9@_^b`2w&Fv` zxPDpKC`o2gq{u!bSWRWF=fc;c+z~JJ1_L=Er_=gaQ_hiC>|r&$D8O*$RMI?LD46V& z^#??^q+riHj)#d5S|XlLYCM{}`_BGj8-SpdzH!6dLm0W5F!+e!y_~dhZ-E%5>6hI) ztEFfCI~_yDmaOyQs=-|>p=)8U^QY&A&J|ds%~X+?3Yx2J`Qq4P3L#9Unh{f@H}@YI zFv-LNFR<*N4aWzjywEj;52fo6y|v#FPvwS)DX9w_3vjBon(?FYnc=sRYklGb4d7 zZHRULwK3kri)fM3?DO2o&S8oil#6p@f1jNdbOB~%C;?(LJ=9VBgJUiK_r|LBQAW?V(3CqOi!y`vbAorwG87=~esX6kt+G+(s+; zYpt*(!C;u@f;G**=~vZKBfNXx9-!Zu6$AO4aY8@#A>{?c#@$cMGyXxo`B}O_?NubM z-ji3`H-)&4J}Xor2}$`uxvw;$9@%)yuejvB<5!7@6Slq|aoeB6c_r*-rDSb43cIT9wy@^XDf@~h@?J`b>p=r%$M_5IHuDWJOBeZPJQ|D8g|(%FAZPD zZ+kKN?8CT_O{}w~{qh#58lYqMqb-XI?-5>J&LagVv#^wtRJnSO#QxWRT7;>Ie+VkO z0WMN?f?6}uixyH8z>K22hcd(@#s}L1qz7`vn*oy|qtCGe3z-Z_^>DFVeA|3kvza-K59f6t z$_=ZWF>1!JAS`bdG9WUm5tbq5Y5k0!np@j#>Q6I=Wnz7#<7e-@f?cdGaKg)mTGy0G zlNKr3ox4!J?dVV|mJ~{Rw(PY;%OZoh<55^00{VLm`&qU(j9Scp(Ufm*Ywa#YqB2;F zSd0{*Qn27G-r)+pLxOMDFp4&Jx4rvSqorx7qF_Azr2?S57pnbt)WVi)pdj$(Wz*aPA7RCW$u-uUgdFIPd0--4HsW9r;q{Sj-SN zjT9AY#hWtS&MNgLv$E$k(0RN5p`x>VSwyKf z2a)3jczIxcm}=As)yHzFI8X^HE8`W5S>4Yw=gvPaSsfI{ULhB|jlenXxWhxX)GKmfi(XJ6v*URmMJRR6#)aw%0__Xb5TWUs;weDnr zOA;)6=!lRMLim|P;Nn9HGxfZurVT7G-z`B~~ z*M}IaMDGP(hkpEzwkjak2y#OmD&B*^hJw^uN!vTZTHTwAHsXgP)>x~bjje;Ul?F|! zl2cVYY zgcx*mw^swO0Oi)z{4)PuPZRtMCbd0%{j>rvh>}b`o+W+04n@SfC_8;~PApXgU~4r8 z<7a!bA80sr@p%O(Zhy~}L*UPVHyYVPW!gnf#k5tk!bq&Cb48&c^*#I)Xie09XU!=m zb_DVu=Qtf4PgwtuhKlp|?OPfa$^I3M(OD!iD(qZE@7IZwUz0oNB(4bVirio5CkN2W zhUS{16BLwK!#eN_+lWJMetg-hLh8-ImqsNcw?93rv85Ly@$hLwQc1%la;NXO&fChp zL{{E#yGkI{gQx}pn+i8uH}}1HG`iS7_CDVJ@Shu(6P&Xo-L~=`@bb}FIjn*k1D>6= zexyHt9HEb?y!Lcx;!N<+`Fp#cV&#!1=3Wbx!$3L%9wvgxQhI1xQ4 z31d9Pf3Ht6qXDy|HEip&fs)1_U-ADeFy+CLywr!|&cLeKFoVoJ1{edD&)x2DwY3-8 zvXc)j`x{huP1UkWO+AoHoNTG_r(Kf^nH9Cro}opT-OC|z z;oI1wxK`TVB*chDUzFy&e4TCO>9ln< zvxs=7h@!pJkhaOb$H`IupX$m4E`3A8vLFWo?PG-oUJnN~&Vvek_(E4(|03f){h9BkXL^6-;UCiTOf{36UdMWj< z6Fb0L$1)G!CQH}KK9kNIArwXf1+JEs#Vg1G^eJ8N_#&Sd!jdKAStXeU^xrz6s#a?B z;qkFZ?h?7hc}(anjM7*CIQ&KUFpy1VtQ@RF8p>`KG8@n#=dRhYfJp=IA(3G0Q*_w6 z$t`oBANdGzbo;DUO37wjPR_ZDeuefp&lW)J_4Q5cR6`W zY0kGmYq=l0&u$`SY^s}Ztlw-8r?|ahJ9jg&75V7mcPZVAx$#xYO2w+$E^LZAnFK3i z^v!m_De_T>)b}&ZlZ?17l&Gbb%$`NmbQT4 zM|Xd4C5iyQm&is2{LNaU%%<9MoL97!voI|!!FCtUirO11e<{mmL@`#eJB@i5{zP&W z4AjmK3J_cQ0EAey7yt*dStlmg+rIg&pzzw5Y7xUhGqsvdXXh~n-z_3Zk9UK}9j>{6Jp zx+DRwx{qyZqJ)#JRIyl11E>(|qOObtsTNQ`@G_r2;Ew>5aFOPW*B=+Q^kM%I5FvyI z9Nl1VqZ>9(v>)cPYpJH#Sbm~Iw@6@tUye=*O(*|JMU*F0AXlYlt`;^TT5nZ8v@k%h z$mpZD-Mgi3(PvKQCq-$tGf|6=cJ~{F=*hHeS1Z=BV(?;$KE|@sXJadt>j`sY_~}ra zOd~bye>&S)H+v9Jc58Ap1n#Y`@-M%QcoR{h6kQ-plMo*(8z6Mf{Y=`*X?VBPQD<|h%vU~J zy4d`;^&MX}B4P*1_$j`(5#MI-ab(`Gtl@)*dK)yoSr#y@@TUr`&nh1l{yaJRHT<$# z_+e~)Y#PbuTOe+oT8G6fQ#$ayP$GpTPj89cukE=FX?An2rLh$w{|-(xEI2E#IHr^! zO{jWHcX7gOo!@hnDxVA@`)mgykN9ads?sdgT;iQPI1=eb&s~k=A@1{A zaq1}U1mEi^c0Tqk0%(mtDGh=clp@DgkVEN{rzA1g&xrWn?V`M0HHm8L53O!{T3ff` z@x*VA?>X2K@KY~Xe-w7ufV^MR@J`wvYCO;#wtHwT8bKRwGf(3AE$$HRe0JTu7ZT>a zLqqBU$KILZCpdn)H`PQ1YPYq2Yl53CwYzC1`Revc@|;&)nJS7B(=UPt12|c6bW)R% zDL>o0>4S`b1#@t7|M6kV-%PW6-m^YuxN_)V7|8|bZagEm@jZty7UEYS8*07X!oT_l zWq%4`<>ba0R_|vYlT-5T5?@yhh1d>4V9G&25k!-}_xW+$-#Sayiu!vS1KHwI0}x*i zG~?ly`2~3G^A|U_4>8CoC0Ty3b1PV&KvN%!-pY=c-=98ku((pESxmem${Ol>4eF89 z$a>f;dmEx5W1786zF{UqbNf&7jMoiA8QIHHbivy5ikf0yi8pFP$;Ul)t;lz@fQO^` zR^lz^Tf25eAHtC{11setxntfsR7AskBllWlAkl*T$xWP-n*-C{3|3tue88{$d1r_&JpMyFZHK(I}i# z^_6(rj|CrYj#Lm@vd-#B#yKdYB=_6zYnAeaX<|9KWz`%)hn7>B2}~|5Q!pFK?&=IZ zuUhEHAZU~27W~uT*8%2w{;ymrl{b$=rJC-(zv6Ek7$o+)0r``MBy<3H0tb{+5P9F| zj3+@eHt-ev9}1AR>W77Fe`k{WD3sDDi@3IEvu%A}jNHC@GwK@wEh>YevtM?A$HxIb zMbf72t=dL00+k~okk(=?}Nyx-3vB} z!-}YP6rHCjdW5tgIfPUUh$_vT3u7Nye!nO$V0G>sr^oEv|EGo`v=h6?lCPQC+FgiN zrSqtUt&#hjtAxhN{+aN$=N1B}>Ka-=yK!()kJ;Myrb`rAeHM-0puG{}EN5NApAjH% zQNhy^sPw#gM`Pcq_Wan)b-e1XsCFFTKI(GS@YNFQW&pKTm?6IXgg-?=A$CA`Gr*aN{e3OXdESpLzDykT`_ z)-%=YnG8X{?I9df=$#e~7b54mN6SV;5o;qBo?66WF*0%SZc%`lj|r$I#0o;CIt?^& zi2jFNh%YO#-|o>}(??O@hs){iIlRg(rG=&3$aYVf85tmV)erN&IX{et#Cys`pq!e# zvk-~N(W~*~xC=s@N^L@yQ>+GMx^l!Oa1rGlujH$kb#Z&=8e}*hkT|PmUR&6X&`14z zhlL~MP>a1&wcKV7@?u>#dXWlzAZG~`jTG)#JN-O!N&=d9cU%BMmD4MTbMDXD0>>A%iBea>#L?q8c;k&8Y1+%pk` z`uNjv|2IhBLQoqrJ|%%@ppJi7h$n2QAKa4Iv2{6l@&h3DLRPNTe=?3qe2oUboE9LjUt?>BNpWT}okqm}rf2UhS zBlFvCuIxqw+ga5; zvaL5s$P3#7N!wh8n{PBiL;qL+=$hl{0QpJ~0$g+J%W=aX{)aM zon2t6k@}P4X~X!+44&V!71!*K!ddrJ|MPD!X;3h-G6eZ}7!{l0*{ucWqySdXe!lf* z-Jon0!>rO(iE&I+&h-C*H&M++jCJmRtiyHr1-S^f539ivXcP)?lA zHfl(_SX)xR@Fv9THYIaMUoG(818II2ICM0t7J~@szaa96Q`Mm?eVdaEm-7!Y=kb(@ zj{%#wlL&T&Zp%BtjPfL;e>rYne&gwrS3m9eN9P+;dtgsSDi*9KbY~2GDs((&8a}l%u#HFRtAU1PaK_Wvod-cta zFr66<|Ipglm_1Dw6Ue5=`%0{WHFD(euyc?LTg5vgi(jvw5Qt_Rl*Jikr2qJ*BJjgd z3dKlvh=E8F*Ltd*b>0cm(Awmgwz3mj=>n-M0v_ z2Q>|1VnIQn#k}0a>M;V!ohxySx={h5{y?QCXQc9{>`Js+F_dt_Y*Ie8vRG&c{OhFj zV}k2)(`+X1e=YI(OwJQyk?#idb!9U0lMhazJ>wg%M%o2_exx(@q@%X8q{!b&D%BlK z-0?&H-W9y-v^+IBOs?{Zb;pgYiPKQOwIUln3mN{7ZI+Rl|4TaPo7YFx=ig)_>d588 zaur=y7$cgVSdAlz{hfL7X-oh3`V~S8#J+CqQ}%&BJ7u*tsUr&t2@Q{pDe|@1e3+8z zhox$biju=MQc}3%tLr}c_SAlsH!gW2Fj^bW<<^$R{fSYtO@eTdQJo;&1~ zE%tNQGH9wTvrx6gBW6Jpfr111coH!VrJ7f&@ujBC@Fzme8O}{OT82sLQ9$g1K_8##VfX4;2HMP#5Ar z+JOQ0M&&Zs9~Fs(leHw1fdcrxQ+bWlf0j?|`mouiTD;kGbh*~h%j%%yAor8ZxISX1FpVD4 z*TTZ72pZJ-b)cGA1sEea3Z2M{j{sEk{k!0wO%7RG(M3(MISt zfS5QwX(KQK z5UPlPR*$xExci!F4U{8#r#i3)YQ3y_VIPd>S<8UbC39ZT%MqUzLrxf{wd68Qg6lidV`Q1P*JwWC|; z$yn4D6}zSshJ>MctRXp)6B%X;so) z6C!1G-OE_iIR2@~Wy>%HeDMDJOrJiTP8~basbi;FDdTE=pg+`hIkB(^Nn@1Y-l+Oh z;+ScyA2Sg>GU_^~6z>9b@<}Jry<0a@Q%dgwR8Ai&2`!Eg@vi}>vME_MXK@4suQ(}Q z|5p*3e;#hxPLP_U+z3F;4JMV2Rml{G>W5PuLa?fLP>!T*Ihx{Hzh!9XmEc1CF9I%m zT3@IRMwgmCS>13dIfDJ5GSvwu#AK>P9TzNO7_48vp1phb;_-M&Ukj*YzEEm2Cm$>2 z>CqHVsM$0Ro(y!z=b)-|S0(-*nty9LRP+pvrnuHd8BhmrW7rJgBObB0zSLU{ui1s)}wE z=~r7anu1tY-5=spUa$IZ2oyiBkeJ3$19`MAWTe!8hck$O_<@G%GpMdib*O9G6r}>Y z03B+Tj;f_bfFW?8NDixfFTST(zq*pKYY^kAzBLr-kYC9=vL@nF6{;!|W>-Ww4#VRb zL`liYqbkcB#=UMG@;t>89IO8Ps`?HIzFr-fU|e=ZWEIn)>@%op-l~pnH7#RP5F1u| zC9RnT71vDu```bT`du5;@+Nr2ZR?u#@o+N6ihTwTP4|}D?IRS7EBLy{2dB2xxOa%- zu%DL#3cYaKA70W61X~668Y&sg5NHstc<(F+k<&)~>EvLi5+wZ(XL4H1s8#k`d4^@kKSOI(UgqtRN@C9XuP$@%$@fy&v zp~mZ{o3*j(q|uxmI?w&>Bg|g^@j2M_A|G7T)y8#w?6pv4S9LT{p;YaJJ}*`0nK?dO z2dS0SRX#kJjN1oey4bk6@8PF|0&?8Kjgvj(dg^9}v+Bm*XF$_v#XDy?aoUc&j49Sb zihn?rN203}PF1M220(GkCU~Tyru;n|d;)o%(BJOQ?K68~s*51xdxSi9=eQ+FJ`X4QFa7Dq~T^0)vtn~kyOop)$| zYOxRzfjqBS2?%A&@fuL*J+cSkHOzOUufi>E>Zd%ch$5fhF7=MAsc@=OJ*-YR2gheX zuE$J|P^QRd)>o>F0Qp|i=IV2c<3phvrk*uL@aPK_d@swdlP8n1V+W_7aR#khw?6D} zszR;q0u-!Bnd!xKic+C%Xuu&)UaguR3Qd!cj;nd#Rn510E2eZ9r80&HQsEq=x}Csr zc)b&~ubT*m%&b16xUwMFG=*KOo@T{IpjXFU)nRSpSwR3*5Em%7KubZ$oY_#9)aNK! z9J4^Y6Xue`#v>C>4oaUyM6x2~0PuGSg=<(^wTy+K0Q zzG|4GC#E4$nFyiBr65Ee%E6~0iGU8YPt@qvP@xQ1pJuQ=OAf!V6mZxf%mxJ>4r_ny zz%XhpKKfW8QsLKHM*(iPhx5-LOIlhQ-+lib$<2~0 z>^*}zSVt7%gGVZ;GFI($3gP&bMukW@X>lx2tELv1S6F%Gv)Rq+xmJsXT&=DFD49%9 zzw?`qn)2<4kdi;49O2>@RtV@=w<{1Trreys`s5(CBLdjqhCvR_Yo(E0C@32=blUi1 zjm~S!b-V=4bM!yjvW@ z9&L5e4TD9C7O`*NK8gy9N?j|fLv8643fZwL)JS8v{)@pXQG4ZN)t+KWUu|u1lq7^j zjZ)btX2*^l*}s23@eSf@E$mu73Ah-=q2A`l8ny8{Ri*w^Kb*Rd5$gTKsSqn`>#~AX zsSZk2`jYh+aA7|Om$p&7KHJNr9R|v#xUjFC8+zK=o?-Cy4#BQK(;&)eF8I!Ko4++> zP8+h@Akq%GMW8f@4^x4PzgHl_0S?U^74Ts;3TiRNm0l6RX@^)RjGyCWW4;g_t}&{M zjfYNfz+WCF?=~0Q+x&6Dzuw4DrtFY5Hrjg)e%@kGC}yL_>3}es!Z3t9ueo05;8CpK zf>X-;tqYWrl3jqx%)zRw$%BEwsx26bz9(0u6PQN0I$9F zTA90Qo?1T%xYR=6`XD3?t>UGpHSK5hm*Lg6Ob8Tos!ppC2c@`YxW3nJOYoPVM$Am2gHV24L_->_-CQdubt`I|L)>z}FzBYO_)X=@c>@7MUuGGo!LhD40 zTl?GT7N2a2vCifK!BJ5%Nd=151_rE4Ggz7f zHgp#5F?emHgNwV_n7Z3XizXU3_p#AAPD6BI(RQ8j%M5N9?qGOBg$)}YoUOQHvX|zq zZCumMM)OF8$0Pi;LFeN&Iz=2R?dz`)D?VwruBw^>*zHc9d;WRya&u{vm{@7arh-1T zqFc4it8UBP&?v=fpW2IO)!qdGI}6D=#ZiU|{l;r;PA?4Z*Qn1mWwkm5C?txfqoi~^ zay5^VhywMM@k8|q6;F8y1u9ZQH=uF6BH0PQ>@v_bZ~$oFEfQXu<3$0{QHn=LI7o0C zyfoWORGi|rzIGx7o?4~zpP_a-+F<?w<6~7GT-4jn z{|$v(r~1gFf(mjS%p)tdQo9CD%^aC1Dijv&6|QWiNQ_ck*WXSfkHHhuJ;cOoJUGx! zN`{v&mikBtx09?3FD~+7L}~n|znz__I&aN4=+Z*t=Ds#o@6nl_4z9{t0QLNiJluWH zYXZC7#3if6iu}*~&*jHfSuz?cDC=d+Mu-O!` zPEeYnMVy9RGb`DDZPm#$%5NZ0oLB1VAh1AZjexG8NtB|XK*%y+OdmVvwA6^SK}Mkv zrkQ1l!&b6go?TOfhbgWZU}ta>4Vxhx@PKAWXrH*?SFG4Z>!Nf~fZOBYnsMVuPfzFL zk3S|UDXDz*OcghmRlQCD62LG7q5igTJiH)7*4hq9#c5pA?}W-_0^K#WRaRH=C18m8 zDc(x6?o;&0LOi_p-M<|FROE`vFq_@xzoqsbR;^Dv4z#U9G{JSloPXRnTG1*_(a`1J zzOR~Z6pwBmK6d!j#DMm}AF_z4pIbK%@^I_s!75cfc*GD>=7`QIsmC@-NzkEXi~>PB z0n}$BPAY7yYYNh`g~b`dh;}xToKWZ!3cS#|iQ>!_8k#O_%M`p0#mOx-3>{oy8mG3@ z$jUKTmt~M+!0_f8b^)71F}#I_4e)w}lw846Bs@3W%eB9HcypyrYPPVepq3isRqd4s z$}>J-P#YVkHdFk)UB?xzaYaXszt{RWf1;ZQ=J?1n{G%fN7qr6$ZlBP(xsB7BD?a_( z%h>NcytGV5G=*V=cC)?INOc`y=sJJ?^%qm7Od&r%ze0VAsjYJWN&=|-l211kY8tE2 zDozpWFm0te<)escV|q0rbEv-SnxNFXBj{7*cZXrhABm2&(UEArb~8M+979ihBpyS-Zu@k2?g%VeJ21W4)P`JXk{@K2GC~J~pE5C6%iE2ZY}@ z=`2Z?gPtHP0hKB#Zy%(i|w+{ovZS0qd}{LWUmXz+6WTacLUPY*sT$yLG<_lWsbH!8rN^aq&kJG z7HQ0>vLjiwcT1l7#NfVl7DnI6BVb9WDi?h7AdUa7Hh8^3qNlJmm#KEJEU2ndxcUH< z(uldk;^_?*?=?!4KB8G!5^5_2lZpi&?6dI7)c7`28;L<@pnkI!2|X2o%^c8HUk z1Va^Ea*)cbauISr_4*{QZ?Sl8yM@P!5n?)+s|1Hbu((#Ry~$#?JN_n8V*QhTrt9&5 zioNY8ftzo>1E%&jp z8xEVIa@Bl|5(R#~(nPBEPEX+CQxNuHKsAtW@UkDvvcF$4R>4$N z^3^38n6PrQ!QCI3)cftezk7wBPj;y+tQ8nOi`TYUtZkJPY4F&42HP4W2h|EZ9*f&s zBr~c6tp@CCwD|TjewIy8sBsFOTWhj>hlNkZ7W5HJmrV6ye&`KVz}9+;dq1>y@$LSR z{Od!D*LMXLz?~M?J@4n32`VK>-rjDZln4$SCh(Z>&(#Lr4wYglS-0Eb2QT(KubL%<_EjV`s@)5!wM+!Z2hm^LfoTe)rK1Sig_4cl% z8kjriXYS~&Sfw8la5@D?jaB$)r^Sb@5{Cwh#;E*ZvdSM`_VdI}d(jfCQ;;xS1&;yq zCaC;yn&7N|SaeBS@$iSu9YJeZUp$@b4H6-38IVjnr$e8z?_d#p;|Pu8YXmo~@bh+~ zWZFoDZy&7j3m06q+@PDld90u_fw0322SX{FL2H4uT^Z+&QYdW<+@>9+t0;lFJT`5~ zaa!y)=sOQ7VE$;8sfy(3trnJm3Dtt{9I3N-t-;UUF)`@z;0Qt$c0cJwg6o&*{OLI# zn>r+=dThO>Pkk&43}=%PyDcoAN7{JTx4er=v`)QXJ34V6G&Ls;q zUf<)V-h@LZDV#7-rCft84Hgf7Y*Ia1ZUv5zph})h8>^ES=R+BdZzo`OV+iu6qcdF3TF1h~$6D#mr(2qVIjhQ?Hpee9ruf<dt1#9gTL(dQ|}$ByVp4rv|b^^7r@b-<%qJvd7}XT~;XnPg~5;O~G+%k`GKF zQ!l`j-Q}V46N8@^3-OFF3Y|fkRJNY|kBK#qjgv9bCFl@;~~oy8$DRL-BQAe`{?<1}u2%V4cnaL!DXgK7oBgx9y2JhRopM?Wl|v5xM4pxLt8 zz7#NX=shnQ7R(u^aO!AG|3(X^2Af(;oG!s7lLg~SV09Zzty4I2n#$M`*wJM1 z#HSWpyKH(V*D0JkLuI%QwjGjf9RN#c^D#wpg@OmUqtu=Y8A)Zx1WL7Q(@|F^I zG+6xUZ39!-y6{;CYFsl{}D zxp#xbA(K^3oS;yy!R7{we|~DR%M*VQknU~{j?V~7Rv(t=Rqwq=V`C!=7A&B)wl?W< z5<$k!0Q6efq^U7enNVUuQDNy=g*^=xAGSz}bbC^EDRA2xe!lgxL9+>mP1E?@(HbK) z$&OAq^FWPX9j4)uFmIyDua43ftwFsXE<8}9R<{Q%DtzlmjWfpyHZ@Cz4HNukna-4w z)P45)uc_>(f$Sf36^bZ;#X|my#{*lA~v8T(?-o@JjY| z+ga@EkTm+>bBi>7aFB+(Te7=}ZN)KPSDc?f&=G7$Qz{rE26HSenGt|7_6K zxA@Qk%CFC`eJnMlw^9=1FPGMPu^axIuG+7`9Z^NG73CtWC+bi<3X?->15QE~k?srxPWPtmv@{l`BQU@nKFVQf(lAT?W&mE-mwK)o{-O%I(%M$ErhfYiI^}}_poUPE< zCTX_dTSw@8W~{(x_Ct$^`kYdI68Ww#WJ*@Y&f5eQj!`f?lGpcII0L#$i4HHWF}Uo% zel~W(l#vR*KVD~X6>M#jES#+I$Ky06xS*y=;kV0l4yqFD=&(3#uEzWdfgx>u*O^rUn_47O#;E-2 zNR>(fyE-J6gyt^Eo^HvKsVcuaLZd=THn&NRnW^!^gESmuM~sBmDZGdKn&W=({qJ+) z2`BK{Yp*3WMZcbg>@ zO$yf@u5r#}gAaxsX_rP*f?B3sQR0H5E_x4!i)nwy%q z@sEFGL|t94@`JYJOdSG_o2LY)4y77w?2=fBp1DIny9W#@sVrAGZ>GY_YYhHpg^5SP z+JkhyH(O=?MvGIXs(iG?;M*^ow3)DMw#IJ`QSn=F&_tE_WpLx`CY!opL#O1rB^oD; zHo0eug&MwPnW6gkpl3TaT2847bcW^*_;jbqcXyk-z1yOsRAKCJg{jpF@4sX4pK8IJ zse+r{HfRy>`g()s-;=CruoypFWx*)>Aa!!#A=4!f6U)bz)rr!VK3S~@`^NNck9~W1 z_)~sUvZoV-A~X`Ebcg2=Y(+z`^punq~xp5`*^QKQdcFp^;8`s zRF(@qH%;*7CnnGAkf=J0ty1r?6MSLfAfKvqme-Efc)F+hSxf zy!Nq0rv;@te7e`7!IVs_5Y!dJrrj2eemnN}j%JIdfNRjmN`XTNK6`-1xr%)zz~h!U zbde#mOOJBjuj~oa?<@%}hyA|Q2c3R6V7$r|2WvPLs4NmR1`Y^2ReMqA&}<*oZWGR! zrSYA^?SneQT!K}5`tRtx(7p0#+ckek$s;$UJ`h?%7LYlFHFCDw+B8fadH7)(8yorg zFMh#@y1LMBA^r?(B4m8xj+UnZ>sPl4RYfAg8e~d1WRl8AMe<$;RBNy*aB*G{uyVJF zcdpLFQbCOq-q!l>${2Ty}_tst8O=($pm>a|)EG5h}uDdCL9N zUmMEUk699m9JcDx>XUQ{h0o4X`Q}oAQ?uuTk6S=f0{3_Xc5|g4{0Polq;g%kz@-U> z>47s3ebOR^_P~!*H%mf?Pg3L*6l>7rv%fbj7%@!c$WemVwwjD7h0XPnoo*;|!mbvJ z4V^H$T;MDfG`31McR`s$(Ar_KsZ&w`3@;OuX@bM1t1O*v_ovr@z1ZcoTiM_6iCLbs z?_ViVq1_AZei&V&aM1x8Wjd5O1^$40MbNEMSM5t2JN=Rc(^M`$SffaV3YVazvG1@{ z8D+I#{rYIw>gsAnj2J<2QBlUo$mkgW0f9Kzxm7HBl`X(BC2#MNd~>?O^fFl422Mrd zm4fpQ)HuW;d47vUg9oM!7wBuD%LmiODpaesiK*5Nb1DSIilo^mm|klOGKn2G-IDO@ z7ks?Y1WsKryH?=tk_n%;%8nvr_e&pg08A9;H#-A^H0%gFSAzY^jEVJrTxbtQ=Z`qLEqCd1A<_L8Lz< zvUtoF40J{sEcMLg&WVWpm`zi;!(s1AMDKouXb@4K(~P*Ld12oMy{g{gt^o~$v- zC%NkbgI!(l#e+4907D88whNKR4`me!KRa4u`*xGt-Zg3Q!}pJ|C(gdYHfByvCf15Q zGhl`g$9k^<@9(zw(qxT;h6^@slL*y5e|6+^m8)h5R&F)f)dj~^395A1?URhCRvBLc zFLg5eRzFJwL%Hl=T&kjD=it&RTP{5 zj-IGctHRs6EKZuIartb)-Kz{fY?e$Jt8v+6VY^@lSh^@zV1_MtoF(gT||vr3wxW z4jHeqph|GdYX*C~;7|lo+6Qjtj8s@yBdCpFY;hW8*SaC68MVY^znUj`6}Fp*;#gvg)8NC5%lwlieZYc`-LFnsuM z{CjT_%HX|)8W&()abf*aPEGmxc#2CAD}mYHnt*p=24_-Kd4 zs|}LN4$*0|3|2KumW)>T!c>J7>kKxvOP*hEa_TV}zdAG%As+-slvNIUvzMu|Pn zMhp{NFkiz2Ce@+Qe zWiKW)MKEiW;J_L|rBpbmR`BXRnS~p%A`vnG^x*wsKL{59K_BM~Ue%rm;uNkZ z(9&k{qZj>Ly;$QnCpnM;q#=3YeS^E#+mTLQ_}IYoNzRy}a#F42gG~kxtTAb`VAW=m zpDS?IRF%`J;Qj3udn*;{z2I|8ezx4tMRPSyo~F{-E&26J1~2W29pic6Z4@hq@I{z? z;nD~7lIkjj)2r?88`~{@`ku+lyCk}RJ69O6K;@JfDqHGJ?p|eZ(o~gku12B*(Kug}wXl;^kLf!LlqWDk|biHWBuh5!&Lgm!`m$ zJr+NF+0WM(Y5eVU+uy+Jk=*vCpa1NX6shpwN`sCrl@lkZ%t7+s4-Fn#Yho(!%o+pD zf|DnxOqP;Y*O^SJ6|@`B)M|0TEfuWXX0g0ZuyBIPTU-77 z?;8de%~CmMh8^4e_Kze-)(NT{f<3<2y_uEQsvJF8#q>+=UE$~PjTUjP<48}X`e;Z+!lovRk_y2|Q*9!Ae#t%W z7(B7j#8BYbj|^%xjl(9XG`Cy)>m!qvsS0B&1s&T=?*G{2*wG40YAo(p;YV4hancNx zt@S2%tui=ms>;|>f!r5|-!eF`f=69sALXoDzmC?{Hl|LU%CKR>GD1g2U4SxfGD`$~ z6t5|;t-<1Z&-j=yOrb=D=1z+popzKUCBUOEd}{LII@7-4(*h9|+Hm2WFZ-ju#ii$8AhAuO0Su+dJS2 zU>TCfRvSF=At4zVjLR-fczm_NKLfv6ft`Itfnv?RgW{(z+HyGPA`tI#uwWZxY9XX5 z(A;A2ji;@i0!8n+mDHFU!Rx(*(UkP3sz`;G+IpF*&I1{+>c%V_?BbR zKID667r%hakA(Oos0ws+Nq)85&;6BxVGcp3N3yj|Vu^soM8JpJO;+zPL-RMHhi}&G zH2J|!)9xSpClq1t@O!-FGQF*IM*mrrNtMoFh zMtu&aIo9f54|_gbP$#!hkekMk5%031KJ<%_90(aq^1$UIPk1#RZ1QBETJk z$mK#O2X1l#I||Uxe)=<7TU+?)&wk4An&A;ju1%W=jRO#ePoTpSG*S1PHuZsTqBn@LO0r{)M;5Rkuccl+P!*!ML zIwfk=$n^}7$$M^s$e`DOhWN;t_Z}`mx(qk>jHOnT0>^F2WyFJ-L$dw`Y zq}a%hby1%Pj+JZ($o(3D=FPUFm1!8cZCd5)Q^vWQwWvY@1OacOXlTKIrx==JR5>v0nz#1Tx`EJNc`hY8P zER>d(QeIvj_cru&Aj3BShv^eTwg=M#krvG>Uu-UYBZq6j0P>3&CE*r;T=t*DuR##rhtI~c`=Cm&&EY(>o)a7#7Z=?Dry7e-34?s@=F$&Ey zAW>*t7AL#Cfp&rNJ|Z!PSK66$0TZe>{y%0=L|HD_*acVU?8`Yp-4lfK;j) zJ540XJqk|h<)nha!)R%0jX^MB*~mVjJ*DLrSL8!?N$h(bu0KY{-&ZWYI7nsbIgm73 zz*jn%^kJ@~oIh9Ngvn~$5O>*FN+(i=1x&7tt(;_S1c_{KEeJ|VN+>NYjT;73&@-WA zjJA9jm<5E8*^R^mLY0ezo{Gvf8IpS(lG3AtWhPCsh%TpR(G@?p{Az>rGhL4dlnnbH ziK?)Jzgb%Vq*B#*X+rJ|^fviqOSTG;Z|YuONJFa(f=MfU^3EoD^Fi)8BPa&*fln0y zbB4z^N#-MxX|wQJjjs@luNd6*%$f|%^e%fCB;a&9dHI!BFin%X7`Ffip9{__8KW)N z12O^hR;-3Day?q@aUhXN5Ry)PDu2=>$7!+4={t{nXoGARhiy3)`@HOq9Xsjl>SXlj z(Ug^yWu*KJM;=VSQ$s#5M&>ZoMR*u;P*u_AyWF5>2O>Xi;gy5zuTanIAe%B&5rUB; zMlfddXml;Mm#WC4F`P^E?56G~?U1p-(0}XMvO3duFXY2$?+;@CV74@OMT9$L=tFGx zGXZ?{t6yc#?Aa`T@x`Q?JDF!Qwg3pOYzVxjE9geD*`!+RU>Jsx2&f8!f$*#ekG>j1 z#A&Wn8gSrg5>x+kL)-qDrhp)_DMJO|Hw=Dv!wvlS$3Ld2xjBB`nHG10#2A);3TdX& z$f*8ES2@Y%lPOu9Xx;@3Mg%z`yodW5yOw2QSr%53%5ySLXY?YlAR#ixE5`k2`WM8z zPCRcQ39WiFkJ$dh_6LcKY2(YTjVWaMOQ_rO+5R=u(i9LxcK!ds@AvbYU;mn>rY0`B z=pw4Cs$%Yt1y=x>pe^w+nPX&p&nKV9Xu8rQmXAFS5^e1vE~f^=*vM0a%a-s(L3ERP zy83uyG$Up%vu_c0sa9k^dufb;x;5&SZI?- z3WEC=K|jX$$8$23#U6R8>V&)m{p|40|Tx zbDCjEY?*9Hgb;ZpL&M=SB_3m7!oxJdZS(7_)X$zdY(-!joT3TGjbDG zVkd3F&s$^yrnKj8q=?|}c(ZxLcVR#EuXUu7rYEV}lmqSuj{$C@k1)(B(w5FNeha)t zBAE;fQufwFByiyc7esu{1TuOPa1bI#E2>vvEw3s&zAFGxeLCyK*h3mu<}ZVhQpLlTijPo`i2CiRtvsz zpo*>}PMe7LV_#|d%%uOk{U#hRGX2LEljH5ojf6?V6uxqxX7@u_Y2oeG#}XiGY5W$< zuS>ljTq>MDN5y9nF}4z-EeRcLplK|i+$rLQiXI4p9x*-VWP5W~Lt`TzkB92&>X1b= z-N@(}0Q-LiuWC;KI>)Q@>2EWkaJ}>a06e?>7ZxuXE-ER z0R=2;$m@Ig*L{q&5; z-;DM`rcGvv)3ASFf2wOL$X73$ctRi(NJUx7R+@An6J_rY?G_8Upv7+({Qd8Lr?az@ zFMa7tR8&+%&?5uyGD%xL^+BewKh-rFy~S>PK`i@!WI)(o`eA>mXP<~L^~G)xx7$s3 zcQ=NSIX|R~x&YRgQ`^nPjR`@6_*5=)bKIi@r?WAxVGzH`sJxW4; zF{32h0+3!+rpddTo!#rv6-Pf52(quf_P~^We3m=Od}2VT2)zi@_zRvyU`ijm-5W76 z;w}JskZ2nua0)WXyiI9j)K5Rwq10@^GEJnE$f!$jdM&tQLHRErb@aF?CvhIEz;Fc& z0O2ZsUo!j3uYNW3K2t2$YXOix6(Ex29t9`$atbJ5Ac)+*&L3oQ94JCX6B?>WeyyL) z<$#UEQ^wnUPc}__2vkJ_3q+FUnQXV4BGib_X@|(31waB0hm)tCej1<8$C$BWBg*Y@ z1?rhl3KoC@295;oViyTL6_snQwp0pfGLw zDhdnc&u8&L2jOx$V?GmF2;||oDPU+q1P*My?klqcL2-P(c6k$ClN>i`fb&AUOo(RD?@>;6p5qYHe+y zv9S@a*PBu~i6CPOfZ)o;9yGF-3sCC$=5LyCe3(tz2Gc0c98#4JsiyP!e0=q*U!}3JkwXtXl=8B&n0XJy%ku^k$Hi~^ ze0JbS#d$Cq13$ZyZ)t`G-{m)A(cRZYV1BNS+4bRQ5vi?5!0 zxBdiET7k0G?Y0Ibncl zBo@VL1s6~J1unHXPo!u8sXzc8)6Lyme@vIria-gQkYeZ((E>3-U(akBzw~l&^{E^= z{Ii3f=Yn+;!rqLG`dI?s``-5=K4$_MT}lbS3cL;xIh_zJY0&C#z>>ij;z{hGg&s|1 z-z~W`rZgy3tCB2Zs31Q?NSK~gKw6Nd)=YBP4mm^#?QAuL1RPEWkN)FPJRUEjM~{kK zuIPDws6ZlV_czmK)T3ZWc8YBH1bZRFX)G)Z%TM51tRaBJq;QY3#!!Q#-QP%uzs0_H zBhUCP2%q%eHaq&ydypZXo!RU2VObUqT}M&XjFg?xn}CB5`rRXRdX;&_+OxjASx2tqqj{Dk9!xu1$M(ZH7+U#YZ-IQ&kj>IQ)p1We?@e zBmpQwK|u|Lb`AZIN@kf#BSnC|q0tk`IQ7UO>dl}CHN<;)$8Q0sQnf7{C#8YU@?ynvA4)9Y;)s#o!tZjab z|L%DJk202X$Nz}gC8Oy!x|v^l6&H-X2&~S4r>}(}efTU7e#?s~&F~yCtl)1xEc+YE zU2{09_B?8|A}ncPNH2cN7o*kFa}px0oE(E3OZq8u&F8%F-(k4Y&I@~P*tTufPs=jE=Q$LcZG_u#b_;W&N zyDZ@@8XRqqaux*)7!l{8qp)Pj5>7bb1V)Y;m9g?OXaR`y#mzUlmKEgrpxWQMq<44Z zzJr4MFd218w7-gY0)?0W=+&c^QTd}-nj7*{lv4rLnCipNl@4d%ieC|%>D)|Y5AyLNf$+-`TwC_vHcWD($^p(D%k zY#j87!9;6pBvXUXT`hyZ+L4G+pM17m3@Hdfta#)S_{GnE5%D<_$ap~2(B9tu*2{vl zU4E7+*bB3vGj;ZdeD!sdg!4)U`Xfxr3KaZS8~eQV%q%~SBWw1szUxz3eCxS&!&eY! zEUNtq)mkZ$fZ)d@Vj^?%spGdX3A-tG9%SUUU*7|L_( za&P0~#@qO`Nu@}i#K9#q(F9bvrZUp`Av=l==E4czM>p$fG2PVEoXOnwe{uiLzf)0s zBwrZ!HJq}A4%1@k@N-zT@2~u~X*B?r^x@Pea^|>esWjK}P|JU?vV06KWTDDZc@ofd z2Y1|gCvLZ!x)CG#bkLAP^Gs%*BfsS5K+xl+oWyysAQXuk-reKjYMDInde0-CM55)F$Hbe!`HnD9xBiAk6OJ5t4T~#|;_cQ? zFr5Hj*jbiD*{<&{_R>T9p@$3Om&W0x(< zh-~P!07&O5F67=oZx@ICNbl?gNx-x%K*@Djt9Z-LA&A(%=eb2tc@ZLm)I^Uxq0-@7 z$G>-6&x=|Wb*?E)t2l~dMtz$y1^!k4s_j}K6ja5D&)mnF_EjvXJc)~IE~3gg4yUl) zdg_X2;P-E3UFSMWJ_;PPd?dq(+1jCs zOe9c*#rl?ivZd`g${iyaQ#^-7)t}+K@zc0x)3xjg_@*mDMHedjx>r%59l^5E-=$ou zrp`41!&rx^Rx`#`$Cl__76VeD7I9n2H6Jyh+&3wFO4Q;Kh87n`- z5+waj4f#Bv`p-jRN+l1sr2ki7^a(Y*CH;S_*148 z)zRkN#QQC;;FS_7O?;*sO)0^p==d!ULK(*VVaGGdF${@BVDS3hzp=7o56eb=nL5oC z#_!=6c0b+QC&2j11p!{5CTPLv~<7CW4rEW zc-aXYR&@}D=sL$u)jMGo&h{F$O*Up_W^AUM8hSLSv>rLdZhV-K;#gyrl z6ssjz(jOLL*TR%WcIJ*DsrUEKMYgOSO7^B`^sZM(U(s!SMa0lotO2!0GWyEkb^(fT zr;Pd#s|96>VYriNql}#a2(E1GK_k=V51*>LKsM6E$|KzE#FQ|p;uMY^ehPJtYLH&G zcdlUhz6aUuYef?!j4mESmv0yCW_JqgZUJQ+G4k`6o_Bbw^*t2PR~JhLNvNU}5#0mf zun*tFwhCn5$SD)*?Gz1`5oZ9P+uuT|b0UY-oW@SyJ+v6z)ViiqqnFa!wHLp%7bB(m zXeO4<#H)>@Oi@_V{wnWvZedErskns7aMu{tcf3QlIF=JeT*yn!Z!)R!Y>uv)&jTCZ zqC+YOd~9legS{P1%$V|HPN+Sd2X{Y$j1d$xF;0x%2JzFU*lrQq%K|C=beKNIS1sef ziZ^+?eKkTI#`xkHD44YRn-RDGosq?J7}?oCwPPfPv6odXPvNGDqbsY?RS(q~eBAy4 zCs&`z;qE=`@GG1&`f7@Nud}*!4XV&+@~q|ErhhZCY%xpgzRZTMjcoI_XZ`ZNR3${} zl0~BHI>J6-9yjk?U7nXw#H_BwLSt_Axg1_~G{f|AEUS}^?Jx6U{bRJ49vn&~qnvfL zc(>7Q`s}t#0ul=$$~ki6dH6jmc)R6&6h)(NXS@Dv|H)C1yEMsiQ6gmywl*N@J6m6w zP<}GU3_qC>&Ki(Dc66>_`M!tPqh! zMD(Mt4Ce73i}rXIfdR~!Gl%x}c1*oflw@7gHCpVlZQJOwZQHhO+qPX@UAB!b+qP|< zeBSTBICnWR$Jk@<+-t>}Gh)t&Kh{>ibmVwUT*wm()tOvcER{mY;KI-t_8N`p2XA|3 zK(&9uM_+iPT+f(%{4UW_ph1-@51di_{(UAf84`hgz0%q5&R{Ts4fwMJrGf4li5=a^ z&}2rCRVzUDucmW_#!L&N`mW8J;@*^Bu4g1QmX#Z(>sYvW@$X0KA}HuN(W=Y5(WuLQ z(WJ|M;{W+E&a3jr2DZ7<5bXTB|F?ce#M-O<9#!Q-zxAQ*OkbKh#Bcii5t zZ*#91r#T$nDmy}FK3Otuc;_hzxx2UGfm6!CUM4KrP||}G8At`!A5l0zk2zP~c*J?P zd?L)S(wdLgIdhmFdRC~hcNqTy&{fU@Jk!?_{selP>j+4G8WKO2zXeBq!;|AE8EQPh z(Yu>_(M;}-?0NTVay$9^8~WoS?Y4Ezf~2&T3Ysp6Cvn}lXCDzCt=}Pl*Em_1RQ&eY zMni@2E39H~6ROul@XUip&Bk|l06G$XDnUYLvVtSdk_;u$_l!o^Heq5{`V%gW z|8oza>+5*~*Yz+FtIBVL7ASEkN!YuX6Ieq@=^{(8{=-4+9|5(^uf5OfJieKxG+hVUX(x(CmrY{DSr5dh;JEhD|Rznu6aU%O0g9<9qV(>3Tr(I!T`sHJvrWy*7Ujnf7Sni@|Lfl4%yKOA-=g z$#(k~ckxzd0$;3Kj5t4WeJ#Jbw;d)TTo{ev{*~4GjBY4Nuw{nvV*3r2zTao>x>paY zXYGSHaZgy1p6>P&i1vh5A+c%39R{Xq@oBx`F8Ds1ipZ-C)Ux?QBhqLeF8|>*ceL+Opdga3{(_xQmT>E{^sd-)2GPp;1gZ3(oj(8 zAKNFx)$yi|Qs8X6M#h!>IqZIRm7(NMS~G=lpbF~VBB<+lqT5Uh3>{ycAIwy*M})v< zYw4b*$R!|3#GLPmA4uRkk4ksaSn9X2^Ujm!Vt>x#hQPbJ5}mQ}9QU&*g*|Jhpv45qnFhX0$8~;Ra|WWicGjvb5il?m zR71fN()7>3^t8L?)-yc5DjmHm zz0)rrd|>kS%>{5n(=v?sy|^oOMQuMWjF|Qi`Wvk**ng77HO563Z1_7b=mz14wC;Fg z?Z&;qwIASVovnflr8MT|yAMEbM6v^qe`$pZphMku%(fqF>Uxo&qh=LAle-Xio7e9o z6heZ6LN_c#p#zCkWY%QUsT2?^ghrb>&YDVm9XJd|noH8{27?i$`uhJBELaFe7(719 z5Xx3#h4W}bHR!&yxUF`o0InB;ZZ>tdVEGDyp=p^hFI#>l2DZLs+_V9sP*_BKmr*T2 zg$TF@ZL6@n{_kyb*Il?rQ8h$U+{xq5sz1~ix*mq7&XZ1}1if%dLsiklv~HdJBMRtF z>lw8VauZdTr`u!WzW)2RmP)!Vi15RFgf&nQgqd8IJoK2(^qrmC#lxt$ocC5ET+|*G zGY6A@+EW_Eb4Gfumt0uF8Yyr`BY1oFLXTx7Y$gOtt%*+JKH&3ePWC79grOoO_wdbQ z3lT&ivv~674Rc58NotEK-Z)!aYt5x6gg;By+iX`Pqe!Y~arAYdKmsoz~s%i5p!>Ai1LcI3EC z^fxg53?h{(Q>p#oXgg+U>(oD*wq>6;qoS?sj2b3uq*PZok_uK@;o;-|cGk!{+U$Lh z`?Tn`Tf)5zxB3+#@N?*8Ow@#w;Hv&BFbMtjA@-}Y+9%8xowsvlj=C!XX)8S79$V3D zB-HD0Z+5b&vinr=Kvgs%0tKGIW7sk)B!3bXFB|?$O6H%eAwejDRkty zg~Ah&UHVU&<3NRdAxt!2Gv8T#f&RVmil%tsYWJFF_w>Dy^_gu>r$YP9(|(ZNwe!ve z2=IR+d(D*QNORUH)0T6_;+DnR-A{O5MX*L=d%_%togG?i`jdW{)`0u?4PY>KvQ%pi8r+NAL?__)#3@>P=1x4gG85IrFIYo|Yz+<9ZN zzqoU!xDd><)0D(yDy`A;5&tY2pElhvx8i8BW}2#@bauJ?ko+5Gg&=i%Eo3E6GyuV#?yvi zR}!W%O$JhaUet3Ti+|>mOI)3$wW5*+`vYPg_eGDFU1JztNrXrl6<1@?^yWq=CAZ%d z*;}qbS1d#jx6}JewaTc(7?V4TuV5kxm5RFR`71Itpe9bph^fN`DlLT-E0qHk&0j`+ zoi%q7KL)XdI?;L?cHMw9lRF{#g6kOCvhwBIh7?A)1$`Xk_T5LvqaU1=mDOSA>xIQ@ zu|m&Oyv@usvPFi(4-Ylx&ve?e`ReL3ZK)R>NtBtR$QA~t`z3pu>w@bms2aPfV*!+4 zqdNskmE7UP?-QjGHHFHR+4(o5VJ|$@tYCI-wFB`{s?V;r2lD^{b#Y_KXr@x>I)J~1 zW)2PQN5Nu~578Cdx>s2KMa*uQ0}TUC*Zx7`BpcOwX|aR6(c|^a$L!MmbkhY+8}vPj z+J#lLc&imf>ey*}2!~Qlx^mW<>C1X<3Hm%o_0r-yKyIQ)!u8hgOW(6ruc(3qI9jn3 z!dObOsux7p!sCPa0}gnsVnqW{>i8mCuv1Urj({sSjf=EQh0|xzRflPB0~IFNt~e0@ zYws_&M-j&zMlfRGaAQy)-uQX`r zy!@8K?}_Qwy}4iS@zz}GK_^o2QDfgKtFEP-UsfMUVK^A-Xrx4k7P4S7N zDaC&f;`^N|ms#YIc8NBS5w&5mISh$e%%@8LMH^!ilTX+_#Pfy{qJfr5QoUy{H%E`H zdR(>Um=$exgFmX1)jVK<*r}CcW8Pexb$UK1lK_y`F2#vmtWX?l{)kKNA&oeO~UqW24+L zGz*mviVy;1Z-s^7luFz3|z2$%vNKCk044Sfs3zvh>-AtIN+2J zcgVQh!DYqBA}+pQX=~Gb_9PQwc%%E{@vj93#!*jmlXUt4rq`u&D^as#Q4UO1_ZHZP z)KMwKU1q#++jtz0k}*!p3Py3|T6edC8{&YvjnO)7EQksk&|?QHJ+Tfb4}#NH zIJ}3A{%C@*)s4DYrVh7!_< zUW_BZZpg9|m5M}6dQzM8gH!ss1QW$G{#eRV{~gHy|tUD!d2Him4a%9f z5U*`N%j;G6g9Q_>`*t$PAapQ#c7D^3bo2}gs!pu7dC9)7Bk*>jtagtf+!VknA-c`7X=igH&${IPy#13uwXiQQD=S+W!j#KS z5Wcc1+dgShF}#27(XLRaHCfBB=A1tlD=_|tp10x4;{A!Q(jJ*wO~Bar>2d7Y`tX^j z&0#szp2K)vb$Q{H?~apiv{y$aNEf-rx|h zy_i_D>f7t?H2H2fgUF?SZ9GGV(O@`BoDgPiI&<$6F`N%0CM+ImP7cz33gEf3sK}IG zooE;=gaE2a9>xh`+%RslXaz{H)zMZ@bEtN!9ix0oFR({P~T5Dy~FTpt;+35C$q7 z6`jo4$u=F0B512zHsrRg7vrv()%|!L|J?{5gpkzdd^939boHn6hI^t?5zX*xOf?Up z^ED<{4gntp>7=-D+TMV+u;4hn-r9rraueXenRrTSS>Lgdgv3+vw>Lj1wkubFBMskP zN1q9bp}?iznMw`;=@uh>X7l=nJ$gQiE&?LRO{Dy%&R&@0F@W+y+dTOz??v9l)9kLC%Hf_P=Ywhk-tGl7V+tL za+#^@MV{hQXj^bvg)d|Q3H#i^Zx+9CjE?pj)d>R?6)A`2vR&B7Pzr`fg;m5t53!;G zq=dDuZjj@bVb~N(fBPWhr1+l8Iwo{Az6eNtfXIw;BdhsDM7yDX$=yC!2-;c=c}$F6c)&t;BgSX7dPXPeI2LvtL=-u$MHGpc&W*t9aK+4Cz7g+Mt7S`k z+lAw#yf9KXgr=X2K~ex2qcV8O>hM}KEGc%3eZdiFxJsCKkA}*8s7+V}TENWB361_6 zw0W*8y7%*Stme$D5MlBGImGG4Fe#!VV76??HjRqS-*zDp8>UBohQ~Y#FMGvHab+>E zAP6?epp$z|^hY@qnsi2A(bH~vhs$dJ$EV6xH*+=|DEc*8RjMiXpx+DdDSb? zq#_e~HF+`nmk5rsRC21^8Bl5zPt*jyq4mLWSAwTY0n&0H3e~Wb7O1$o6_Iab36h0W zayTio^$q#)KBC3LbCg7KxsIl?e?ibWvRGDF4@U9sE=SI3Q^d*^s0T9 z-l9lJq^{T{YveMGAI?y%ViXCJOJTaiA3owxHVMwy%WmOpyAo<5C3%W^+K>IDQ-C7E z)BNYYijqz7 zb>zyGT>4K8>IJD0rYHLSu#4_}BrKMfC7R5(w?fkuKX)c=J9~<&M4}K{OXiQjB8U^1}05_5ep+ zUsl_iW-v^3xP-#wH%?S^fKBlXQ+8BQ#*Ewh;RVW}|Hp4dI~*I^1mcEvGc2iu{`6Nk zfb6H3K%Seq1t{Wg8tyvIR4|sK+iDn3NQAM+1QK%-eAS}0KKKA$k|o0R z>h|H=M|vK1IYhf%^ks`SYEewECj}V@7#tZ?8UeDUzlc%sn4eLFgLcwbeW4*GN#4f| z%g-0X%a%KVcB|c##u}C`kU&Q9px+2=@ZdgE8^RJSWZ?Hd*Dqll;D!RA5(wgvPLN+w zHg{z}pMLx+J};d*PG_ZyD=XrU#@~&2W5S=?SYUVz5GStH}~Ce|5H*F>lqgo6$SnILyc=_ z4m=+Viw~0a(fm)wh^SPQQo;3>OlJXR<(sgfk~vi@grB~?PNk|&mMKW)`Rmn0}X3NCRDzry&|E>gqkI!)Vt z_~u1fO)afn%bXQ@R)M=UkrE6fT`7w6{?{-cGU<+jrG&8*Xt`F33Hg~2JqiBfiUU9n zkwQ)S`aVICewD^x$(*YUEHJ%!$f|lU5KUiH+MXG8e;={qH6lGk$0GcTz8N!LHHvsK zXA&y1Z(yi0jWofrVJw`JNY8jxkmPR;U7JVo#f}wA^SY7&TtA4(F5nWAoJf4?Czl%7g^scZ^68w5$JF7N!yN z3$<|_yVobsOZqk?;SJL6KZ{~xaw6cZ!iVskAHMxgy&GX}3*iGRa;Vd&#d+j(B z2iQyb9&`FwUz@o~bcA;|`H?RQ7Y&w|1+jHP;Bc*>bc!$Ln46$p(jxzaW>#be%74Q{ zGvXrH0$}y~i7=PmKzwf|bm=~C6O-BO3?xs}72rSvGA+UuvyTv>6)9F|?c^keu+PA$ zlwRkV`jeEAO+n}i0zHIj;QZ+kM~(>$O>n3nf{|L=Kf#_sg|pXt&O!rESkPz)!httV z5P~va1Oejso*_pJ^e4B2@Wy~{&sbEwfWAb&_!fzNvUAYW0Gy5|CBvmMyTO*^4SDa5 z3k#31Ja*HdIBg)8j4bjD5Psfb{p$UgvbV6dJ^-|;BTI?Qbf`1BeA_EU5D(;LNYYgZyHBXLVb-4cOq6Tlf}&;1pboiapf4 z;IO)n_$F^mTT+m@XfqVB_z25FSu(^ML{@NvyCXREhwi-}cvDkTzFsy6WJkRKeIcZA zhlnSAzNsLQEZ=G2^IDRI3r8-!4n0Oz8mD+JY$p)7@04VA%JhAEGDsMr$Rl^=hu`&G zZQ5GIKkkx5Z$m!T#B;0wmC>{W-cCJYxda=e*?|U6zQTaQnD5f?DQj>$8p7Wq4ss!9 zrL7;CV0Jx6W<2-^zXz?8_S;N2SdC$Tur$_IgT=zYp86i9b^y{-93z6L7Q>A)BW>^o zYo8P%FJ|p&1$h+zNqE=r!B3Gt%qog#a=cfpS=cyKRCKY~?uFuwft&FcljV}8mf2FA zAKFQx4*w1laR<%8$4$95C5kf1bPet63O|8-<)!61>_#eaL@JL zA_ZuVzBDwp6ofh6=imn<3`k_P>azPUYTtiCw7;1wo_lX6Eab<`en=Ujztph+>T>3L z;lJT$nw~;)2I7Ti3qg6d&$FX8&3^%b&ufCt#l^+p4NYA^Qxhw=C+`#sy!I00SC|9U z=8JMDnmO>9*sWir1^lB|w@0_0%)%rfdiO#Q9-b;-vV$L@fB?K7JH* zFjHChCRKRgyDvDOGxB~y&dMm}`Mzv})HEbT-;W$KfZPU17&$T|5Ohd85E^DpKp;Rz zH>QWg9IT)MP6Q_OFXukz4qSj)&lzyvzau=t0~(`m@g`O1O#k6aPPpat6K6~%oF>>_~Kq|0+43B&C zve^;pMR4t>LZ!pD?S=#(+2O#0(O8)7nUt7`3U9x_Zs-WW7!HP0 zdk)k17KJ|vJl72Q6+39)idtcmbmA#$gxRgTZ!;(o%7D)WDeA;gI%CgU9{HZIjg>5h z>q+88WiBWOQ{_y2Yp9t@S+8mQ5g*&!by}UtWd?-zV$|4Dnw(Oa;6+U!)(g~KGyDi~ z0vl=SggMyXXz~Z%_ESJoQY10-J`A5I&f=gz->vv%SK}~u_UqwFicvq6*%rO$#4&Vm zmCdpl**YzVF(8le{-43>`ktY4#p0tac4ND%R24t}i1Ld^4nJ}T2jL6KwE%%oS)c>y zdL1)%xrOZ<2m98e8z8v|Mh}qC-wev3CtN}7-agWU{PpCARF5nHQlk}B`>uIf{IkS; z=iiiFRI3-y*FpN&-TwAFWH5C0DdI2^8-E}_I+dJRMQ`U!5Mm1|3!AV8=4Hpeuhj`{ zBnv^HN~~fH4zFNwy5O+07s~f}^G!GA$EM)byI0Khk!R(tB*=l|-8NohhaxMCqxZ>6 zZ2?IR^n6~L@?)-55p3*Own^WU{@R}>?s;nhWsHf9>Fw|twHt=UWY4M$ zL`gjUL!Q_o3B4Of5Cdf$hAN-FDN9Vm!f?qS)w|>(2QO%;J6j)U>btM1Gv-MTsBQ zV?cFYk%cIGy!>*@Q6irI{7I+5hAyWXi!H%00`!i`lX z0e#+>7!TOrMJ7Z6h@j`>y8mm)c+3vw>UKuq@eM{%3Ri=hf9T^=n?s%#^oGR0uUA>& z{b8p7Gu8vY9qy*8mRJ<(o#{l$<(U)Gd`4(=vkv;;pjiTDG4f&dct)6#m-UU`19)ce z#o&51oY@vi)I29bK~+J;qpe;?KWR=kkNCZn7h{$>DaS1y)Z$>iz8e z^3eGtSKQOnlff%Ug4RzO7<@?VH79|Q;J?_!Du}5315r@i7`(i!=EJ8yGJXRPPUW*_ zl6tk$tY6gBky8?8kBR$9yWCJIhK#5#l9Gi8Xy~@t_u%`^CALks0sV0Q6ke387jNE! z#YO(kpvfQZwC0SuEtJ!a;WI`a8J(HGD<&wW=fYYskL%NTK*n3~%S_VW4!-EC%-tuufAXa*p++ThRkmcGek^_YHMa&B>_eA93C7?1<}%UgQjM{ox&#Cd zr#bGd$mh?Rg|fC4dye$v4?x5il#4OOYE>JO_%zJx1E1D+xtqA`rxi?*ekj=;(aXhJurJX_dk@nMZ z2$!87`6&Nqpc)bc0ie8I|NI(?{F2j&^deOEy`F~|N|>4Q%XEGsOf)&){Z^OHce8Av zYB1a5%{(tH{7v^y)E~Rp`I}r8LNd;a)+^{hd?(fDEo-6`&U;f-48}vGmf}pxnWIK= z|Nnz=p(S%pG9c{VcVb%FS{Z!CVk0Jixx64KyyWYwON3~F`PBfR#qO00oX~!Ag3peb zS%&h)yifL6-PETV={L5=>$*IlKpjo!F*bHvJk1I1JI&#}dHs&+ykVDepMKW0$J>X$ zu$;H0k>6s(>Rw3j?b)z+wTLLW9ynS&g9&j* z&w=ztIC-^M^tDrJSv1Z6t9l;mU9J)f{($5=FnhI|A}pWA@GBN{})Zh zc(6_F=+C$Jskm&xVF!*QE-Q-l4!nsqi<&frkSdap!Ef7v-saGv8(;FnZO~ngbJ)dR zen>S3edb-K<}1*SpXc7!R!_>eH(3ty6}X5|WnR#P^Hrq~0|0JcTw2<5;W{|9Wf$Sg zm8UddEcQP$e9#KqfR=zm%0b~8H1UrZR%|qTZd)TCbo}RFF@g@XXN`@-2&mEp;YZlp zmo1oPb`DV zqc^D%9K+P)LO+R&My!ZnD!%=^Aex+8KtwC0T>2exF69lpcO&5Dt@x*Cz>``|#8Wea z8CSG6<_2R;9cPH3vGQ5|uv5XnST>r6!9X+7RzoFBNex@Vn2?)Wpgv(LmUj&Xe3Z$& zAg)3H76+JaX0OMecTehA`wo15a8GI@zjAZ!kVjNKfW zg0itzQyy~~RFsFHJT7YbTZpdTb1&Y3E(h~nZ-4ZUy`baoh41Rx!n}KwsA(>~+p55o z+l>ooad0V1q~#vo#ADfoSQ|@G%KGPpeY(~CB?hDt3Ry}E>wI4{1x-_hx(iCQRLbOI z1-CB*lDwv@XF*4@ZU0Z$7nrA%9WU-EyYx$Y-AGnC(gKx5Le$8mRj`mJVR!C^#^?h1 zgqzCVS=W_bs_$>xwzSEs{6(a71EV9Bn^U07}<)!(!-pC2rmEgP_QDF%mn}88NyNRjaB4!-NDQgd?Vw!!yt(GX@_8ZZV5$Y|FMog&~HUiX`aC!gUCdR4s#$YVE@`XuiPqo z?+-Wb`61nI<`$CA#L+9diZ0*V>B6v{fj2S7X{bl)!jD1FFZ$^D=m+D`B z#c7-%pzI&`*nwcY;1+Nv%X9YU+RQdO5=F4$bP|@WM~@!Ga)i*j_Ro`udFnBzu0YF zU&kaS0&-O?u3A)(=P5*AeCzpMxHIJhhORCOK4VBJ`7Y!YRyC41hhqrIW^K{JTIARh zB3|7Q6_i{`QYAAuM{XqjC*Ujvq?kPtrixUBuTeJ(-@*0^-%qxu59S6}Z>T@x@>K74 zcoigN`&>t;9Rxl2Kg#}M9Jv+B=m$D(uzBKs;ofsbIw$@ZKYw7(+U|95#R$6FaA^nXED7&R!jeDNuC?PF~21_7YL#3IC290E=7>wD3_KI$l|2- z3qu*e84DP7l*0SeHrMlgP-jL72z~WBb~NJntZ0WJ@O3gCe+Bii8P%kQCsYYzMCQlBsx=lELB$|TYLAcj8naT>mxNUBnBLO5)^8qA$k63j4S{!(@W(#Huz1dVM$B#Lfa6VhG4lWsZ8+uoTd?b= z3uEUzUcstd@xDeR~pI*hJVz>P%;w8 zq9=v2--ga4+(qI*B$qGndYuw(I0NVkBv6W_xYBbv#4V3o{uV+qx}w)vJk!cwfn0@f zB{j*l*cT)&VI>AZM2kR5fqL9^kwpe@PE4FUdA_2r#NJ?2B3aOh zi?Zi+{o|~^UBX4*P(&C7AcMmq3fpcxUmVx1`rs1<7f0rE=VFQ-j}=0Vp(L}IAd<8U zgixRN>b-~AJMZW)81$1G8>T+M2{9`=z=;V!QBhjT=K8M(F2p+Yi{k_I(*Z>Lcp%gC z1MZBebu*PhmH6RWyfyCKQB@AKT(l}>Uv;3i+l7VVi~k@Vm9oeR;KH_NNW67Sx)Am05pv{IjFL{|LwF^XlGH4$HX`&A z)D*C)dqM-R{`0Gl8(lU)_n-dSmZq z+l1^!*$smruqXuHtodX<6fXYbjgC2Zh#Vz5VNO|M&k)Jh5Y?>y#b1^|0pkz7L40Po z8t7{3+&xnlEXvCUVgcbc6aJU7P74i;GALE~(o7IRu=GI0?iSDz_#ky$+!nsC^d*)7 zWQx{Sic-?fvRc>)6Q|%`nU0O(+LWpm(v7`7_nha#cE!@Dhca16%*y6CAmxLB3wr{Q z4e>8A>HlNr^@IV_C;3Ak|Exl4NOI^O6ODyWe3NEuE6OEJ-1l0HhSEJVla~jvz&sUiaH6(QNTg%x)@z= z#rmJ9eHamjgO0XIh91iRBW>?NQEg<3E8N`7IYaYiQ$y3Gn}K;SZ_3i))X_$_ZhN8B zu8b0e;|eJ%DxS8U>S_?dsIv@*{@K(0AQDndEEBW z>BMTcwYo^J*hIHW8z-FVsqskhQmhaj8!j#A&vbP=In@o~|0>DgVbL&!6&&O;VmM6D z%|*ynrBIEf^*k50Ru$UfdX3Sq7Zmd4qUeEgrcHU^#6Wq z1|z?QW3*`C-BX2G~) zvNjZe0VV$psVa)67VE#_RwvVxXp9sJoQiz^)K*Dq05$oW2pkm==Br)297_n&%G#Pq z2BkSZRG_6AB^U~MRy?+uZbbH};E%=c=5})HS>m8k=mswO5QSN>xRG946d|d_^F2z@ zVZdICH`JHFwod-cD2|8kCP)F;&~>Z+;pLn$%p5iX`aa0?-+L+K(EqK0k3!Ij(&D7G zx4@A>oVzi({@~o~&s~3fPpNpqsEFYBBTQp8T4@_*RX5xUFhnsNf#NQA(V>b6 zYQbX|iM$xTnal~K{z8Pw=f(RJyZ?d-wAPeE$~ZM*&~>X`f3LZ^AS@Z!+Gx4Q3y?|v zAhLY!%x3-vYvresz%gTjS}i4mxrQnDA7t++>PL&6gaFpB(*yFLA|uw{vri+^RFgRE z1S^^H$xwFKfU030E3!hkY9Sl}R8)}nlJ;whJ^d-okn;=F`B)-iAA9ecEIijKp`O>< zQOP<(=JwPo2%!&J(y6RB_+uEDPUG=j4l^DsXtkF|;cpZ%0y?q-yqS`q(QmoX=}0g96omg(8A%J28UHfsAxPar@Sr^Xr_BqyWu? znZ?A?yvpjpB+x)k{Vr5_s?>?3#u>A47_+dQWS0rU!H`@OCQwj+0etZxb+=raPd^Yo zdIS`?9>frIT0_&h+{R+x|H=!qYZ*JaEdB41LKeW4_BUE83C)xQ0+*1(fi?l~#QaGr zWuAF5jXb98T_-u!KLSz{!&}o1(+!nyVq6Ec05%^O2u1-ps$N@whl5;xl*yDUtrO?w zJswHUyhalH@bvC<^7p_XCOUZ*$o((Hy~>7;1$qI+r5+NKwduxC79d{%D(VqVU-^x4aT+AX>4#2VFGqw-%nDPg}$%tje;}44zDFT^G%NgtLb^Sn&vow zh3C2L>-U7jgdQ|4NRZ&l^MakY>bJ2exGZUOn99)3xcwFN|1grLXM&5x<2+UVziHQ< z=g^GKbU7vN*Lt#hPWe=t1 zOl~&-2Qv=x3&^q%zG}qA zet5MJCEj%J?a?^un3ghT4s*;k+r$AFQRNc`)Vg3+JYLvqix9PB55ku+V^K-bbs@8i zq0!#WGTD&eV}{86%FNY$4lq#`)7y;*jv$wTfAExl+w{R)%@Su5QQ(80py{hI6et{} z&?+V0$84G+#Nu#(S9XOJ(2?d|k5xqIIHaW?1gZjU5b+Ow7JJC)l~sa=U3rd+Z_ zbjbfIxCU0iE`kNii-D#=MFyUmkl`etN3c#JA;4GNlJo%=elB=7e?7wUKOf6+TU;yw zbWaQcIJ#m5BqPG^Lgcxr&)06r4h*>! zsH7G+>l!l1r$HGdJ($JZisbbxIY%)nT2W^hvK$5&&^ykf(|t@PS64%+!E*wA*?twE zSc!kFHtzx(o!(6k$qdp`4OUXI*%|s{#bG`p&s6>y&6@np8aWBY{15aLAf@;PPXzXU zs}*uBKuP^R#&l{-fhuN+3${U~X5aNN&E0i70CTz3NMU?r4*2s`OFHRtH13*! zkhm1gyAd9;u`dRM-oOfYB|7H53J_lc+UA-st zyk-IrkkT#?-^(E#l+;$l)fc2;qe=$-dsBG+PY1vpqU8GfMu%So?uQ8=$l*=2n*?3a z_4e#Ss){s!68>aaH~b>IPyF#J$~xpP0ek7JHNM<{Q!0wbjx|1y>B>YHJR3Vxph;}ovMX>$Er<~98soDKhU(GXaO~{`vBV+-vock! zksP-s-S@E!&9$Mu)v;+)uN_!zM=Ly|6cvTkWoS}mH5rng%%Axgc$jVgtRaWHrhOd)RLu3J<*Rc-e)bD2?jiz0&~v^yTlwj#?#m-Nb3_gRGZmU z;}e>!=zEt2zI)BTahRcXSd73Wfxnajz3)r4950*Bo+r77(>~-6HX|j1uV~W5hCdx5 z_kgl^rqC#i{G8iOwL~w*NsK3lIm6g*$zZUCc=@{=`-U0A$nt5r7aBQ?_YB9^7Mnh& z&N-_KL^+Cvc-FNdx+Q%lU|f+X;Q!!YNyqMx{>3%F#t z#r6Q|IF46>Vl6;)7dwuj?~^D_;G1&A-BPY1M?40=E1TlHbBb zu^r^et|=ivzy!V0B}z#4y~TZJyOE<$i-@jAaZxNHBrXmCsA6}+1BajfD+WLvz*^(8 zBUUr##`KFB@qHUM4hE|~P(VY3Ni!{4iWTF)lUNwAv4a-nrXhqyBDyg09?N-HbADT2 z>7545l?5O!vB7}#@?$|s$`L!@yWOltAm2reu8U>D9J$4Yd!1y~F(Qzvi%k|&56nTq z!Uagf@V_c5B`e`eYmr)NOdJ+7B!Dxe@Qjd5$lZYL_i2K(S1P>nk58oKV zRX5sa{L#iBv;ub00=TNO(}3Y7en0;CgbK7&0Em}Q1Rx`j_$LJ5wz8=qPFM0CxcmUU z5CB{UK$PF4-S($xeQ4^B?l|v#iFe*WPPImGc92Aj*e``@YDB2uic07mXl((&guCv^ z)<;ApdTGJNe*x!r5ZPSV%KlC}IF0-bFr?q~sH8TKnmfj~?#8TG{3u}kiYW{Kw-;?% zi_5HZ-cxI5*XM;yMMW9326m3D2~I#Kr{PO>1ga~BEUZNE_=s0X0eI<7{#4V#jFWV^ zAh^%QQizJKQFsPW-^Pst1Y>{5+XMk}e_D#zu~(1)R(zmseZ$MO*c4>nP0}cMt*n*r zfnbPdbn}`GCf53pVV0Sd&;Zs?%vd;!W|F&`4dJ^1;n@qZqb|7Mh%yrW(`|x$B_lG*lnz z76pv-+fmTe5V1lJ@;agaGmsU({GZ~(p)Uv=%W@Dl z4;YgAJG796kP>9#qW|leCSxkrrS};mPkse9P;JWfF{o#`z#;aV*BQwoUVd6Ke}$(xTpUnM#=3O9*vGAj$9g6(cK zAWbmVt!wq&h`;-Ml||=oD99%d0gA^H0M>)aQ8E*5e?eYiY2@l^|E7?URTd~4L8e07bKAx`z zV>%ugy)e|q29{*%34vE0HB<1sq5IX8qokdsl=+HAzbGOF$o`jHxJb$U#KKK34>lyk z<+8%pMbAX|U(N$1K4*X5NJ?6I&Xw1=3BUmmoth|Nvla=-a%cE0S)zanty)0T`hXI` z{}|yXEy4isM1BaL5h^8g-pfvZt1rM;b`>#Z#aUeBFCoBz+jfj+q5aIYe&+M^rjv|@ z!g;0*C1%jdrG`p)T1b=s!I_R2aI)~*gZ-~4D%!?%D3%K8FB+58&LIy;)QlPi3CWXa z07e266@&!O2`wP&Ms$PJ7%`xN+Vr}x_35y~8^w3uG>8EqC7Hx|^J!z+DNIujYPx&? z+S1jys%CU@srg4u2nVTda_{S-Q6_lt)q1eeg-^;sE+E|lm#;+TUtmFF&)g=12O9oylK0$HUPi4AR4q5 zkJ|2(8(_V%RnPp^bR=rTd{Z#`=-GBzkmb1_BZ;Y~iq>>{1>W@`U~dlqi!z%U{q3DM zWgh4)|88CNeH`tRGt($2Ez$`GqM6GADYzz?53E}6In6B0o;NBxKcoNZ{1y~Ai~NuK z8Bhs+gWA3Byg3f%|0E*tzn2_2&)bXc6NwLyTZoV}J<6?S%?tqIA@Gl|A5~LOrL7%p z0U`xjYfGEf*N;C+h9nYj4k%lNh$P#6Da3n0(}AHr?f5_fsBt*gZ<98cH!O-jyN&E$bJlWxn&z2^mCpQ@;l#qfcH(pU6%}3^I=#Ge z<|zK_tl4 zLU(4rM2OepU+Xhy+7GcSIC+;;bzA42U(aThUioT=Z!yX!2QaAIBE~*Y=@We~+anJq zGFdFUflP6C0u}WowXtk;yMy(LK{qCnU3;V^^L`ot3-5R{3+jD zAY0mlmx1?y@^RzJ@SZD=^NJMd%jl4eHF-#i39oPZI`Fs9# z<1-10YmyY$+?nW$KWrohs0<5a>-7dH$!Xn)B9ZM5_HzE^2V?%8uPf!+5N|~zib!@R zs)Yp7_ai>PU)^zTN5KhuHlv@1x0${von5L@-4TH?oJ_gFjTlu~8$$kU-Px=NB5kJR z2waV+q~J5Y^gr@|k_0)-420@p^1`MfKZfB9eT6vLS=5Vs5L+aXD>G z<_Y>iUR-^)TWCU@%UiKnrp3^s)s-bCj2-P>DY)*+v>h=x64cVP8eQ z(%8YWgn*Sm@k;9~Kjy1_7Nw}>{v0Xee2ZAv3^p(iuKT=EB{7fxLjY_jyv7d zx*gH2(L9vvoIxQ2+bmRR*2`Jh)I8LZerr?zYa1^@p95;fSBChi)sEyrT<%|Cs5BA} z{jFJLg;jWR&?tNsD^N7rGYbo$5cU9+r@_w+xpAoe^4)pc9bY1a6-q>9)KU9CV}h@Y zT6etvnV6Sjvsy9@XMBSBFF~5$Vs!+3+7Vd!BiRibv>838&gE~03hDIwKgN3*dO^Km zjRT@u&z;_J$|$5hIl~)qPsC^F;!bOUDMdoDvIMBM4&kwNH{ke}SH3^;371M4Lw~dR zTpwmVBx<`WKP;qsEh(moMoj`&lXtAMQg#~Z3>?@X1nq?@J*6aR1}>?HHT;NO;@tZl zdFDN1RFz8`(+Bu;DMH`2)Us2pB=29bg~M+r0e@}ujXL3u7~(Ip10w_PbyYZ;#FfgQ z zzJ@*)jFj7P;@*_-{Dw^~jWpB@ax(W@AA4}X3U^5%gDgnQk8|crBEp!VCN|Zfq8pnE zCOZ#grlE7Y==Xokcgb<48Xon-+ID^Xb02$ExOLCt1H#yUKfrPF4^z<~pf-v#`;Kd{ zY!n@spHg(&izLOK7wJ@H_D%3$`4h2_KGQC*_?B8&3~RX{HO+Ld@_#4O<)cD z=K~|`rj4Hc@4&TNq}ob$7v&s<-Jt#?}w#$Inds`FiW!CGt}rkZ{=yRa4beC9sj-U{YY81+9(Jnp!%$;t0V zAAPHQGV+g`?tRC%!9-C>jRbih;Gjb8WU{~wpNM4vB+ahAi--f=!33AJ#g|R%$0q+t z&yfc~IZ(mu$Ga8zkyvZwk8+V0SeTBRN!%TOl`;k7@KK$N!sYgpw-0U>5D;QL&}&@# z?N?ZQ4=pMI?=z}y!B@k2CvQ_oDxBcW9T2Yjk!{3184dWveXNzp+r1x&(?*|Y7b~$e ze1UL>rw4BD2R`QI(d3GBF^F+3#}BydK5i@QKSf8d!JZ3Ekql)D?lLi~KOe=tguGx* zE+O)nB_ob=>5i9a1gWNP14YJcq`?Yi^21zipm4H13YV3j6pb%!3*TBIXYJ%~dcD|t zkg$N&y0KW-1mB73!(XPgCY5C0Q^7I0c)Rl_&0t3T};LOjY)_UG>{fPZy%;b>r zd>zGfu6f4;UT%YWT=3RP(3%3T%4IX%)Ft|^sDLW@-)W+UpW5|r0f6?6(CmR}UF|ZJ zm#Af!#I0^sBLn{|rpE)h^YQcr6<*H!tK3fqq~FRzc{yxQ(S%UP{V+sPPqmR*zdfJV zM%yDGn@)FA^Sz0Xdf!tPd+Y_rxfbI{rL81ofy0@ zgGA1)WV&?zl4^$z6d&8Di z;G8^~aV-^VX%%WAip$YE9miWpO??BD5-;vraYC(d=Z=3*h(VJlOujWjNFULFG2jCT z$JH2DFUn#^&2Q_i6q`z{f`_HS6?rj2{t&3YdrF||03}O5sC1X-MM0xHH}qzDU1q-T z^)Y`3qyJfqth3|#R{+xUYH8}*Ir2i~Ez7ch(7A_M%`>D1VIllv;`ZRb4jLgx9qmAR zo&-Lm$CNAdqnwi zsg_z2S^4_@BAXOYVf*-QbBNmo98f6`#xwdLU0 z?42awhw4s=VnwZBib@Dn4Wns@vAhTqZfltLGuh#SA>4NTkGcG=Km)cm;<%i+rBxeD z3!4cXj1t~|C56R2gC``<3zNoCqcW6@EVtd#Qnc}KA6VD|OtV{VZ1-DL7Cp^0X8X1^DA#_`-!}&DgGrS__#Zm|y+R!@{igKh`v0kxarJE@fkX+$E!9BB|8kbw zJ%kG=CM%?@HXG8@ddMxas#R#t>CdC;*LNpeuJLX=WR^NczGF2@k=fLfhC3yIg)#}B z$*>&4AVIZgexRO+T-=p(Nh2R0@T&C@m}d4P9Q_+jqH(+t_j)P3r+345Sldm5aa5Rk z%te`-E7O~xM&N;mi#kmfCNJ;YlMpH*=F3Rno3e4xG-G3nyFoC%(~=UkQbXp7;$Q!2|>qJit7o{rrxqL&~87 zv^++t5_7~Sizkk}AId*@I*Jo(#jCM0)Shs;Hd*kMPY&|h;7P(TmhM-Mq9Vh*9J~A{ zwR|tpk)PNbL=iT>+5#G*wxYJlxG2uKS1BETh=57Ck{kRIaGJp`3%>JxRm9E{g2e?L z%RpqwGi1y;|6F1(t|+eV*O8iS{p8+zD`|E@P)jxKy7TOC3Jhs@P2a~c01s+ERV~?u z&{#-nHf}cKYAH&rgo~Cht|U5S}_^{_CN)41iRiosj+cGnV%{$xN2!Y)*9-P_wBKqKXLj#CbB#g1i z5s&PS#u8${zt76k+`3do)9#)$-qLRi3t z=>QyJpW;NTP4{4UvG_);2UZj{Ti12FeVc5(?_>-xj`RmC=-;;SWp~-o-)$v>JHaSwAF21TIQ4F8{ zsOuFdGuKeh#CARYs2=8r)~V{g{V+YtC}oy(@a~?NF4nMoLSOR^Nt}P@h4W8;i92}d zwq)X3_n}SWQ+G*kFFGXulUeQRkJzL5NAbjGqwbU?1f{{&O1RZo_)Eu0cj7gH)=P(u zfLpT~CE|u+xQH2%d{&|>@mAA?))ijg^=qN;{8}03+(lYO_lS!Uu%^T08GZSmSD#*< z2XYBQhnaCx4m!~g6oo9-YT-pY+bvLUKwpBDG``fkVP@7qq38rW(gT9HzO!K^0;#k zRE0N*D-XC&7J6O1K)n=&IvaQpemEJ4y&fDDFlR;DuOzg0qLmh5+GOHt9RE|%B#7c= z)vKe>@}!>I7o~%@w1Uy{JCPs>GwSMfmV-t*MyyW$);?XJ0q&@gtV20sS)u+jvM#znoG0Ca(WxSU+YVJl@xcI%H`PjA0%G%-@F$m*+P z@X1REDqug5`3p(xAO_9Waqs?}W4rK;8fb*n^JIC^og}unK2PQ$$CHEn zahv}cCN$a%6?HzxwX$RI2}d~dF)vhc1l;&7+>_i-j6S=rgAI1NQBFj%f*UDA&-m8NkYO2uC@K{YgVe`xhg`5 z4Z@!oW@lWl-@CG0tcz_~XPzOnxTDkvFDjVTKU!tI^1Sg@cSVIy;B(}$cYJRd7tjV_ zYA7fHH#`Y&cAk-KbliG+2xegDQL7@e*w_opT>u382PT*z_F8Cf3;{nZnX6k zLctfG4d0HIsZJouMFU^w@7;*KE(jrq?jK41kvyG|KU}kIcU!z|b=8OY1F%z8n}{A? z=|vX%k3@Y00eg_iM`x`u%IiCcfQLsW^jwY z6sZ+863@yv znDYdf_XSWdBiL}v-KR+?aX$L=5K2oBn;ZCc|Bgq|R*?H7+NpBFchlMK&ud0-*@+$( z^EnW8@6_}?|D13Rpo$y1_Pa-K!o4N$!5*Y8KtajQ9-S%wYj;aNca~yR!r)6LXnKwy z>zh9ow*7X<4Q!s1B=Wyg9Z4k4N6VWy#tn)x)3qrIa3)TYC5oAsoDG(@mz0N{jPT!4 z_Fv{)l@uqNk@&pNP_CJowPEi+Cwno-ley_PCq)qVa~aS((GQCtb$2!bl4 z(ca7jT($pd`GVsG znZdeF4Ed+~l+l;f2?w?uqqL%A+pS%!s)&E_1K2>gZ0Mi%&B#B^v6Ua>4Kxb|aUcR7 zWKdC1>XU~fP`gx^M^*1Y+fB?j>|o-!^}tE+5#e|X zjyIfFU>es1wBdTF|7pW8R?v_D2BtaqYAoA?W`>F^{TU5k;Iv4&RmAbiRd&5O35-(s z!y&fpqLgoj;L%IGOCtuV8An)y#@C;>B#)8%k?!xE%w_8K8T~!VKE{a@GR9O{@y6qG z&~qMMUEUt>eqG}7A!GpIxv3+GHVkv}$R)RyXp^mShBh(auW6iP6$c zTYHD12b<9B6PPCVIR!rI1t@JUjK_;bg(y4$Tr=97tc2JP#@L%j zTLf4!IfTY;B=;xSlI=*Y?={`mlbj~c5m7(f>&aCZGkb%~KJ&Y85fh6$@UDHWs(swA zx*s8+@y&eL7gJG5u4jD_et^Nr%7~$h!J(2silLK;1pV>78pg5T-|ACjN?t6zaP1+c z2Q|%A*?C$Wyb8^%to`J5ondr6TyjMb%G~Pq8E#t>9P&mIc^@tQBILn2OA~J58KxKG z!QbOv&Ci*kK9BR&u*N(|OsALT_o%PTn=lM#z!&H_rI$V+gX-4mmCVpj4SqG zRdm;&XQgsYg&Ie1by$mn9OTsb=!VrBCtc~fCW(wrtqM=;KdCdlPa)Wben~}yk}e4R zm*il4`<)RXbw_D?xx12m2b3nowI_J)w~omMLT6_>ay6f|G<|nI&NG>z-O9poH3atU zQ0dQpT#CZgW#wRH+mYQ@U~^>`2tnQXn&n`eUhA^vnI73lol{Ha^D8@~Qj!6BrEfZL zP)|#>L$CK%L1J%0CE@p&zWf)@@EmT~(M-;u0+q_7jg9m4##1TNy~zgYI7EI0^h;Os=?5;UHPq*y^z#mTcB61~jkC%gxNa zR&^7iP050s7Qg%1^^j}mq8rAV?&b!8veMzNowmZ9-s#@(zlCl_u+^j_%)&+!&{sb~ zxLtZ5xxC$sHkutxAJ2X-x?SYk_gWhKJvPkiLr~=?7~Z|zM`35Ks8JlK*DF0wWbggV z1C1;i0SbxTN$R zEHu^r7m5RK(OH7?8Z~)*K+7-YD%V{%9V$$+{UGr=>^m`m=CJXJL8RcYv-CCC9Rh)z zyLV)YwsIUXs^E*XodbfkRodUlreZWacMFdD^ zt9^^m*bFJtKH0y0399?n4_<$& zB;`UJlWHeh@>06oQbdBX61PaTbyXjd`h46Z1Nsfn>eqIPd zavk*-jGiNDfAZe7Wtj^CFuH_UPH|p3NH5@?{^NC$eex$ewPP92B|o_IAH_bU{X8C| z(Wu#{^gsjd`+?GwMhpqwE&Fd4{H!$AO`Rp2u3F%vy(m{PPH>kS$m4yyrVI}QPu?`g zG)oHYD?pqAlNNAk!a;Q?wX+z>AT?KwyZmT5BMTa6M4TWKoRu@r1`v6XcnJ(6t{tY@ z7vEo7=I88*Rm*wBrw3Lt`RzsxnhgZI4eG7v)!q4D?EJVGV(k`qa>z&b^qNyuY*Q> z$c(|`n%w3dekOkB0q?J&sdg>5Mar7~+DZpeqPUH%mtV)P+1LRuM!3$%u1dk@1m)bm z;di|oS!383AsU+P3l4u~ad7zkA6nnX;@UmmVU8K*3E|N((5d!_A2s9>tfmb7=;mJHy()krIw-c4 znw5OqQEZdNpwkdGBlJm-xQu_hPD*&*x`~gLkKI^ApnyS6jlDcn$=A&%yYH@4Xkr!DFg>h5FTkI3K&l4l*y;YsKY{AwfC0&-G|9Fu%=Zi2| zx&Ew6`jcnMVlTrI#YnE+tCB0i`947wtt||1oW{0{4y4!b9d$=oBxF1halnU@Ytcok z$qTrLMWtgL*>XZfXRALr+&>nkS+#AJBfF^GKC;>!2tV)L4zS;D0UcP$7x!|i()2m= z-1xmxj$6X0t0-kCRb$z#BU#g}9Ge#-;`d+Z!D24PJ7!VQ36ihc>V#m|K-tZ= zU@mh$3?*rEJ}yC~_EIC>9LSg!V`x8`!M@gidK8%F1NP^aY4vmb>v-@ic6NhXsRSMn zdVwV72ecx&sb_8hG@^^W*^HCKGHG2(SP)@V)hZ`Hjd6ek-uv2;qI`M+a9O3%ksLKf zq>e=YYiQd+?Gg)0NBfr;>KaNZxsO-nY zABVFW3~+j|B@~jwrCmakXsBkH$E$@eO)ANM3}Oh6ECeinA0zxkpC4-Vfr=QEWx*V( zsf^&mcFJ8>=S>?u?1%^)#JgUIfC&;@lz4QlvwUi za=JPsE`O7xxw^a8qi-<_eE7Zz{s{vTR6=_>jzT}L8^v^z*}e2Hd70eDtiR=^|2VCM zBTROPxZxUGp!JlPPF@Lux<#(!HgWYa%8GKBRCcmDP!jqFQ$T7Q@mgin-%rI?5Prm> z2)+Giwp(VizTUAssJ=;6Gk7p94pMPI0uagowLS8j<&1--B*c$>Nkxc#rUu`a81IS`f8hqq&y|#SIatn zSo`Ti}3v3WK0Y4HFCVPp7BTIV+YleMP>&`n4WLI9SUhgP5-eIT`BpzELL|5U-fk zdRq$vzb640i3=o~jrRDy>5DO~u{qc&0~`9Ch6yIKwWi9h&n@4|3n-ah!(3^w#xkl6 zJskL?mKgzpaDTTfkF*YN?y*_{iBlb{ZI}Wg-(Ny22tMksC%y}QPgvu136ELYQVUf$ zI;$)H5MVF2M4#1B%-ZIGn*o6$pqNoTtodx|zlJ2gkK;os`f1qkLCr@n=Gw|UcWwYCb6MEiLK*{$%B7}8wpi+ZS zv^Vg}Vh`IiH@N?#O#RAAh{+pv(Xx*%G3u9uK6XU1^W3rHMAOZO(i4b%D zUT*q7BVyO8C`lJ2V#OEmNYVgeOHHVccsn2h5Ga1oj=qrK#BFaW!>z(9%zIPpz;u3j%#21w3^FNTSl3%YOTM@-Y`y^QKRt6L*G?($ z9jB z4sc9a`l3o~CI0TxdC#?hyIC^5Vn@|eBHDW_-oCYVQ-OARU8f9gMB_WkCzBmaY(r zW2`Ic;f$C1a+RCuYfD~nsl7Y_K_D98Ti4?!4hF0(`~)=r@#~aa@e|K9IKhIoZ1|nO z!xU>+NeP0^bE#am!?azS`M)ZSk2l4ew5G5=l2mQ`Bb_7LKZmb;zuiOEQZDHEJ)AY} zH9l6((fO-0+UyI7LWu*Y(}piRlPZ`|c<1?nK5mlX`%D{{uVJCmv=ZupSEE7N#ZW=P z>}B%Ol+K{zXycvT&>0j|e-TKACFpy5G6>K3Ak|LEcoayvJ<_}cVdD>|bjc zJ4sbtF9673(DnG?3mHlZjYNRMzafL7ySGeJ0$+Ga*R}00UT2Q|Gm=<&q$|{&kF&5p z+y#apO?$u5L{=hf=Q7u;=MCpTiTp9{*5&Rp!@ik8G8Nyf^amE#*jl|Sb#rs`-N}4p zT-=j=S$Z2M*h}dNfn1XJA2goG#E}|?^1FUvjE!!2YO9R89V-?|EO35kxisN+=Mn_|Fd{TznN(6`Te_X>{}Dn_<`H&B)+i(7N$2=wZ07IX30US%620nQSts(>W2)&|qh}D>_6Q*)%Kln6<#yxDb#tD zTL{HeCMUpG`0abM*wbXk?@V8Kr3a?iH|v%(KCeH&p{Ck)M+$5HljeQ_nq?d%k9E4JVcKi{(ZxrYLFhNrZp3mrAc3KpAloMniH?j1zj7HaG zrY?8&;5||O(JTBSEZ>BbG6zhR+mlzXo+nfSrMSCEq6QQZwn`^=>fX~Ien@MPU=KO^ z1cOrOD>`9GDbg<=FeVd|azA;rqnm!Z!hXFHTeWYqni^#FvIb640>@j1%qu9>^sUWB z;imv@M)mW+;)tMi$9c0tT~}N~pkUCGA5FHPKJ9#y$OI*A)sfb+xvnHQXRL7XVQ8z0 z2ep(Xl~lqOOaZQ<{?hR2-?klKNh!Z2;#JqXhpi8I)#o?&q0w3@c)0M2k7GsvctrY- z_}HQ*LU|%7(w<6})Tq*&Y1aE#jNHAlR@1>cz7yGVop--z+aih3p;gt8s5C+Sht9OH zqY4BHFclJ z=8J;mB<_)|FsG(rv8zI(zx?h zyaAavEABZ`^moZ&aVz6_A!R-PWkfgF^H1SGA+ymq8{oeDaGKrD&_e6uw1nWL&OV}a`DhM@i;=GKSv)X<9bGBfhC~6h$2;CkA>xMtA)mjrSn*3>O&ka`sIXwD zY*THOXpgx;oCXrK`o$xm5J#C~yIStoJmoga!U-tkAd1 zm6D7y=>PsfDvks6{ca3InSJTwi)B#9h0^H0f!HdIbxFWM;)2;jxeH1(w5saZq$KC~ zB{xK#^DxGdH^1?Kk(}X(4zGGYT@46v;4Ey7tok;f@geEfh5v41i0xm}xX?IUzzsj9 zRmmIA$B$uSmkMj?KioS8t6owf^ZqCqXk}U$)OVSyA@In913k{s$?}!_XA2)1TYN7R z$RC4GcS#M9Z(yJ_dT;6SDD(FT1OzrraHF;{(^E^CPBj06I!B9|-wbi@`H6uGp)^>&Y>C%#Gaz!@4BZP4QRVZpZ(eBMW z?yhOcVy{TAD<3oPoVOhSF(`1*b&nT`t}<^v-fD2*IZW8hT~B1h{!ppor&H5Jbn zN;D|y%<%W_P1Db*t_Pvtvbo(G$db(Ua%p~Y^}x;TvSozW{E?J^{5-rm+rW1suXA88 z+%s^2tEN^l`kQPqu_pvo(F_D5Ka2eeTcfjLj*{~k3QZ*8^0n&N5*?*#{HNNiRkG|m z;zESQ?UDp-xbJ{QT#bIJ34ny;At*at9!{L#K%fF~U(`NUHwkk`d*^RxTNXz9=fX7Y zF`T7IR}m5kJa`fPLXB3^0i%fAbD?EEeb&}Fz=i#SA|giB(@gIYpItIv1-E-w(b%{2 zL{P#dXHrtSkH=3dpt-;?h%aSJ#$o7Elq#mXLUFb$O=NjrwV31oz^jnO!OC<6^4Lv+ z_?zQ{+|nf`<{MLwf)kSj;)XcGTT&3L4h$UPpbb1UdeUNo>LeUI8F1DHYUIm8U$i8_ z^PI5NpZDfz%IV)`C#Mx#bkhg+@7475Vr`_3%*7LbE@n@RNrF9=RGKpig!iQ@;wXLd zg0G~CsTl6Q7&z79d;ZG+XnlR8VR9a3XPYp-0fhm|*?(9XRZV@sH2PAMg~oC{x5l!X ztM|*K^*4i-di6V&3vX!({tcH`y#IAbosczNw|v82vSnX@%gX5gn=$_4N&cMGlmH>d zxd+lDQ7M>2PL;H0k9=Qc!sLRiAGiUV2yx0+$6T6`TST`C@0Q5{p|eMx?y>k)7K zgrdz1zsLQiy0456lt!s}WXhkHLWscyQDBrgZDxM3kcRoCu?F%poj4hkT$UYmXRX^s zMjj+cpDonefwBDCW#u~p%f`vEKNw#En75UY+|o_CiMhGS-@irnEdXF3gZsrEQ|ErB z)ndPj?h?M7lW@O&nY$3r@DqaUY3Y}g+m`}$jxG0r(-yu}8c#eNXqs>xgK&U!8GPDF z_#a7TM#x$#@;ZO`B?y0bK_lbga2xDB+#|Qzv5pCyO3WP*g+YFy z@yy}`ZVB+BC9okpPkHqFVlXXQSCH!c(gg7D27nM<`4btEKD$om(**PRcvk7NF9}ct zlL`7Jx8a(boW+E3cX+gre&h9-^y#yud9=RSa$+cKLj({0Oj3d`kzw6RHl}}kXyqvJ za}^{gx<Bg4<=k<0UZw4@ozdH&OICJ_Eiac@uF&Ir%+yq>QYR>?_^Tjy{?*g1n1 z|HC%(KWEH~%=bdr>W;8~uwJ324n{Zdvus?N+odJT%o8(S^d*U?+4$t(!tWY%;N19J zgA5a#4%9+?<&r^KVH&d1P+s4d$eVnrKdzPmIu5aYdN8I{y?#=&>E4kea5IF_^)x4c zcd^WT=$gEn$FZowgnbFrCMV#8Mj1E$4j`3N zRbh_Om*^vbpbp^4qRokn;`Cd*W znm(hZ_UEr$D)(Dw3jq&84*~Bk@jpc>iUa@> znn=ZTX6pW3;O>w3hTrWJgAq~h>~7ot;EWA%rvX{rJq#=q+{J2q!@5gic8Rc`K~aFj zI9_;zVVcJ8`IyfSgzc(QfM{Kfmp*YhHT=(&x@LG!uFA-RfGV6ruM+m=24viM3U!PV zsNYAoF2DODS-j^cS{ygmYWz5JV+tpX>?cp@Le{y9Ri2h>Da@w90Y#>$B;-I5Ng}MT zWh!$~GmMTN?H9~rDlT8RUSTORRyL!)AopIIBlWZ$*xj|xwYBFo@vu5?y)M zWxVMWH~g1bWpzIHwpt+F@a-eJB1Iek$8fRE%{eFFp~#`FbS13~=btsj$gaze{U^;t zudtOxyZ+Ta{}Mrxhu1aHGt#Q%3vMe_%n8Og1(7A>4}E(yQ|@`S<)Tgw_ziX)5e=(@ zUzy0y@7C^o?@eo!in87te&|%G50B?jLH^cpgZ{X$uJCyeT=97v+42ms=!vWspw&hL zpQBPN-YK$MeSgIl>Eqp~QV+s=%cEux)C|Qg(Dq()ga6?OIRr?oaIenItE8wRwB2^! z)w9;uR+g5lxK?dxvO)bw6;lx>_oe_q{$D%=J`EBV1&oIBaDmk{{$@)>U?sn&23ofWBgf{Vt2@;%3$#8}McJ!SOUy}~K zRPVGHkvus;N|*0{jB6oBDmOQ};Q)e%Q0cPwGr-o??gX%AHCB?6$=xHQ5=&Gx6se*pi**l=-pJmJ8a3sPXXJweq7;Bb4=jM#V_UK3QWARp z`}=C;m+f9TRVg~)vu2>J{1cQ52F-x!n^C*(+V}=5;BP~oIRBLI=QxIb!(RqMuaH1# zL){X{%29gSf}tzquD^O7@bp^jcdvoH;VX3}E^xe;ogqz2GgUUk{kf7PR8m^Vg)wX) zl6rvbCRc>_Sz0thk@7MogVe2xMTuE*+I+-PU5%QLBHatVg5awoWmbJWiv@qp@C>ot zk+!Sa9YnmG2?u0R-grN5?R`ZXiCi%`H}L{Wv9zx;eTg{GEgJ$|^y#`jgYD+1EuHRI z+Snybs$bNke~JXSFc8QsB{M32Fycg`@0wWY&n+P_I1hYIRDs9?tIJ#?k2La^SMQI}D|(Hvgal@?eO8eWOh@W9xQ`3rTQzxpDmBrfJpj_ygln2+iB?5Cg zJ0f4Bx?ItCtnKcXugqd(e$NLP=WERfzqlW|+$-nlXa7@W47*ty8dNCx;Vx)LdR+){ zUnl2J7G+a|R{JGyv>JG$lU*M0QEPu0?`_vX-+1%u8`Z1%?aA70zt0wr)&YY-|NZ;7 zhZV3<4rbF40j3j49Ba2hL4h-5zZ+U1t4Jo81t>IVBpNM|fAaR6OBb&sAp}iCefC(p ziGUCq?B)+3-n*sJD+MlwnxrV~0<14ip1l`_(O|&G0bm~jt0F~7FQGwUVNPXg-Qt*7 z&}3-hh@g#6$)qd-{>udjmZR#PTS3guX9k#%HV8~{oe+f~O!YAg!fQ>&_vM}aPdVbM zA=L(oqN_Fa6br2B6NKKALAv8;&Cms(B2Ft*QnFioXo&moqCmvN0<4=nBE+ z)nlEeJd<|OKS!GRa&=4YdyFssl=uU(jSV3nVDH{5{ts{ta+`MPs3i31?!4|z8j zCrOl{**q;Ii@xKWs%OB zG=u4Bxoj?V@RkristC?TVvZX0FY(%*RjtIbXOaiCZemO3yF0mfmcmLFq zUbW|eM)`t?4r@Fy-M>|>OjqH^OCTOmOu)nfH8jL)p4mL7s{8(vBg=rMKCTY@B5U^cC_*Cr|=ZErOrWqVdffEmnQ|R4HJQ^cl}B?i@pTbgNZ3 zD%xpYm%cp5kkFUJ9lkB`empAQNeX-`1 zQsu)31v)u>b{BDeV&FWV3iQf8&rbfoCjDfJ)4=MU(j}203cz=68&xK4yN3b1?7CGz zpu4v=T`)}((u3#%8?L8X-6>N9FiP$y3+%-PvRvW0huDEHto?SnJxGnfE?#DFMylb5 z9IL8GofmhQLh7byg%@|ffn>UWGpGt%q@pZKMbVvSKNK9GpA>qf)~D#q9sg2r6xfHd zoqERbow`JU-ucEe#f(o~-u#qsh{-IxkWxy3We!o)+2n4)kWdlIV&n#Zieb~zNeWR{ zE&!AQ>$v=i#aZfdhK}1Ctc<6{K?^|bH8BEZFeZQxc z=b1XbAS~ixnkds(vecTTXYA#1;a_>mtH_y5FgGdaG^wPwMC<4zfC{i}8Xra*pVSH7 zVW{;=GilI!XVas|%p;`JHB#X1x|!}f8vrY5;)%Pq^yMOB5XqzbKccrAADIlwJg^?q z@&2M}r{o6F68E1>6#ke!({DMNo)!u!U|H4GNf@zY)Pm^+LlJu7mVnHjN(YWT$7U#G zNM@cc1rAtWdUhfsw{qYUU$E`NgqY@tlwd8^934EkpPkm8UU!^|EGvL2`|A=~D%k`j zz=Mk%{)2KFYDbKN4T6n?x4yt8Py((1k3l324XxyFDt{!hN6aRCSe@;nW@1lnNMOf* zMwtEnZC-88o2BBin->>K2C#tyt->Om5=&LK%B$u^roNARMDGbA1QrrKatxc*>JotZ|k(ffvt1 zh)~pwctsatV+{vfM=2KsaImQTKcOJy<@*rPHrfGShO>NjV?p8|8O)4~8T@TDf;H6hl)A z)XY$6w7^*4WHxh#$?bh3L6=T`e6ed5pi*xIDrW>Xhpx&GyO-h8(}GM89=nz<7#Hx7S{Tf{OZP7ELBBm-vC`F;@h)u7x)c(ca>l-t9n=dtub6j2!D8v1s zq|R}illuBy7l;%v<12o!$2MBoB^qb|u~5t*sF3U&0o#F(?ub7#4LWtN6EJlUe>`!* zR|bJ41blHp#6y3W%1a7oqz3S)PD0%#sIjku#2sO}kep?Xy$=(3iXu0E%9s&CY`ID- zPuz=5vI8lIdMD=R5p@`Cszd?DsVf?>1R-5&ZE@ zC$B}Phg4YyrBhg6spbQk4w)MG2Tzc3A4_lnD;6qD#lm~VPKsbaR#L1VRax*JQ~Bda zSVL1&(x5uAvBA%kx1EOMKR$-FvO?_p{c0 z#99*cv}y(jSg=9$D}Z`@S*@cq|1tdd=7>hF=VVh5Mt&(9VThs6%E8960e7)JQRR?~ zr0a>!pye#-Q0cep?jlbzkSa$Qvw!x|)n#IZn|C2-0%jQuNJ)o#$G|gqqr2=`nxiy0&6RoW)=cNziO)u$+O4!F*7fg%q zu7KNzH>I|XuPXLF5x@+T+;}mu+;H zDbZB4hDJ(yve_3gOrE9K#AfyvzfViGd-xQkn2|_lD;E}}NR|2x3VD)OHeGf-{N64xJ1pr$*ob8he*SBp&? z9i?z1Q)!2U2Lsxk3aAG(#}PYqC6)(rTJ#B}V%x3#Zr-xAF@B(`k)it>bTeq+90P4dxW;!?Hbb)cN(z~&H_qMks?C46@?iuXI7t%QyTI}1GWBwwNlZ) zk)K5b(zk6wZoJ7W+F8F_j*&yTW;sSB-%23>Cx8$)l9!k?t<1C z@sTSxv-nv!&o=~2m@uO6C+MdAkb^17JT_rpy*7MP(q%CH`B-cKBPr(JQyRDI>!YuF z_eILD;bu9&Nb-ti&x!cHMJ$Rsn1Bt)p=E$=(t9{tF;C2*AT=>GM8nL?%(DQ)efRBG zWBeNH7O?;lc&Ls6(Lze#Rq@!>$?c7e>-+itVwpNsRKT%4Wu*H)udlyDr{jg1kh+0= z`2@T)Fki_AXhfeR-mR>4bcaVBKyh&z;aXMYR%1)MbFvM!f{K0 zt3wC4M;J&M<=a=A!eA!0iX4=)kpgsdls2Exhc!lmxX(xkvivI%JPywNO;6ihNt_M} zDh?3KP1<7o%mGsxK-jPrn~Bi$%AP}Qz8V)Sn{+L3zpa?1YCa*cMeHhvY@&Y?^?*Ma z7k)z@tNt0}WqWwIczyK-|GfD55@gak4KOhZ>Phd)$}G(i5)%Wb3g4@Akui_;ZS;Wb^z?`P=T4u;+f(^0 zA-^XWE57`9G77lBW!F%O3dF`=(e5NfP7ArpEkISOzE+)NOGl6_j(aRXTN7s&ceqyq zG!I=Gd^Jn22pGUQmCf@f#JMrm)Y{r;Wc}w9osj)}2t{H|2Vkg&fH|9a_VP%A{IFY; zSeXnSMb!WuHO2CuaAR0ZTyGazhXG&PiJMKRPCl8{^i=W>jk->thcE?YcAqpr`7P8p zFOJx*HOKPUEPT-*732H)FNoplIws_O|H|^?_j|-8TZRsFYG&qt+DqidG23I!d>Sv^ z$Ch@nmDj&ChAk+)F#j^2sefiX1Zzei$gV=!L7C%~oHu|Ii;K_@%a(_DTv5@Cl}K(1 zWF!V)84*Q*U$kSm7(t(paFoV`V$7fO(Eaod4c?p(n0z`e8gm(E{>Io=7Kfi7YFkw# zBCSQ5Gyq``Iy6nucv002x%uRzH6(SK`!aEZn-9-nxSxQ_@i)S{FF0rR8tzk3!H)W+ z(^n1P7@F*c#J2eF2+H5KyXDfH-!6Rf1juqGxz6#fcS58}TIQb+F1-LXL;T}%)k__C zU&{MQF2e58?+YACC`#%H(hQKsn0bhV(w!hO5bjR8ulBOpw}nnmPt#$PygzH4Ak4j0 z5wHD;N`e7|Rps??=k+zf@VmrIW9=o(YSP@0GXcv89pV0@cW6k0F%-xtf;!v|?i;0k zYktstL5bI&NA*xbYln=`=UhdNGKG)nR9E=AKaE~9FkQOC=Hbzki!(jnR(8w9^*pJb%{zwq}FOr!BBAFg? zyN*~r|Lga6CrdNxB?n@E9^W6(z6A_jYp(r(42F&z6<70-PU=XiPU*T|j7#f5#kh4E z`lbV0fN6B{OCN|}X#w@=3-?*8%1?7KVvI8Qj+b_s!x9^V|}{IiTS%)XW+b!i!qz=s8(1m>)~(MW0fE4k9-AV@uvMy5%uuN8)! znfzT-b91AUgLTX0?Hjg?sK&;NLaU--X=9wWzN7KIUFxPLgl0eTvo<&W;SA^eJzIr( zYi-HtxTIpiv%jlyy!5J^fNHfR2eRHK6h>Qk7$(ISmAi~YMo;yNJWNpuKqm7@(5TdM z9x4c@0W!&ZbUL07WYIk8mFTKZs@B#IAR~ZAMzMqB8V}p$_~qn7zhxbXs9AD) z?vH=prULdRuqrShAK~SB;QXQy-LW)grQpdO0+o5N37&ut|Fny?jHayq*dOE`!QlL9wOmyst|cNh02h&Avip@n!$Z zbP%`L(p)Lu3orcSyzIGoy8NXZmzYMT15feMM$4{BZk9Np-I0%Z*ZD=?Vg`<88rp4IS|<)zwcEQ>qbkVn)LMU?TL=nNOSxYd2PJpEOG zS0o*0wz^o?nmv(L<}C|$Jw9aUX|cl(fn(@{G4H#X{gx-oGVR6qlN`~et-TaBK?Upl zincsP0VT9YrM>%$Oy5mE($T2e2R3m6LkCy@8rV9;@Pa)WdQWyA+w=RgucXY(N3@pr z09zR{^82lS>bQ8nqs>8X4EKvkpy5J@a?Jr;!LlwunMEh2;-2ASAY#Q2etE2{>gFFL ziLKt4HLILvYRc=3cd~>*jd7qB$E71gy#xx&F495Ip;u9hUE$aS`I<~V?*KN0AHZ}F zUIJ!)`I79fzu=4P&+?Ag4X&4w_ih_(;lhOhD|+jcP)(6;Z;5^FN+pXA&jNISz=u;D z@)jgb-b6b^s(4E1Jj2PbC#_aIY{x0tT;T;ELbh z;XZi4VRIlbV*``r&vyjsYR)G4LoOb)MH+DG``FS-Hu>$mc3`r9X%{C zF*DRDWZ}?5^eLcz)d!dYaX&060_q}(?^Ey>hO+3!!-kGp9qpepZnEFnYTV8xU~@G_ zFa7S(dkeo8pK@UW^z*vLXiqIJ(-J-z?cFR@FGUH|E8r&cX$uJPC+lkf5Cb50*(;eH z(TL&zZXiYEmxij%%y0EwTxH=%4$}d4r`@4eMAAWZ`wXak{*Ctx91e=g>*`L5*e%0$ zH7($90yQkEc6{r58^)t!(m{Sey%ixZyW&qHZ;VN;Jc^jT9y7B&}O{td8}tMQX2Ck8(u0BGs7BLJfh6GGRsgDr^q zGIsTaDc3Wmk&%molk4)sE80^)?_zy@f;iS-!qyh*fMEn29MIoX=M}w|RL>EEG}3vo z{6c0rWoU2`BA;wJp0lq z&@m+3|M;GeNM{ihl|x=0<%|(y0~a;X^Us@`?k&xjlWa2?wqBRw52tH;7+jzFqoE}y zbs!+{esj7UXbD+ZtarNj041gtc^d?)pse`EPy+;^TBkJ%Ao?xpz|cK6+ILLU)kLTx zfM@8=yd*W9qA#W-g!l`2Zadru61DLA#W@LwhOsk%>M3I%@kl)RCt9f z6!FddLD3`65-DqeT~Lb7(ewZ!psMWzK70zi;GQJv`Dkbf|1I4|>9Fs9Tko0_II*kA zmfM7!aOVqofiw7Lq?OgMdW#5Jpt}!E{_ds?lSiM3GNe71ME5iNUFh!i zA6__^)Xn}wIQ|?ZL*G*#U>$mRWQ-Ucw%!fI@f4}rH_@mZ*FUh|@R=w+n8$gYUY~51U!WK!fP(lb`7Bmi0$EB?% ze?{0VHxfN<>pU}#Z1oHcp)F{2=GGP^cZCeR5VJIS|NL3`1}WIg%xp74&46{uHLi;o z7La$gb2*a%TsUPFViUB|0*D1{`ks7v+m+6+bHynPKhRUC)K#NcKrniKY&2LsBHzh5 zF-4@cUQP1>V^#XL;L>Z?%vTRj<>?lD@_5@sc$kT22z`I@f~0yq!R#UGiCIzc`vzDU ztMF(>k%$6|X^3$MH54~Th!nP>=wLZzc;Cg%%)EGeoVWdQCx6A(mKy^f-*dml zrw)1*10Z+~W@aFDUA@*dLO_3Sp&?MPoddWe0|FK}5kNVmiW0&0HSW(3${zZ~s+byu zwM0lWrAp>`OAU@4MFd#9RWeo&3&i%0L8?)WOHZb|yQ-I~JL+8zc+H(~F)>vR)T#&# zrS%0@M)4*A8C!B%8nnMS01A!VJMYzuO_&IrU*J9WwA^{}hgH$roX92!@OmVGatTVn zBocAoklPGLU-Z6}63D@B$(t^}BJZs&ND0&ddIzQkce#uGIUf`;f2R{p+MuQJ8psQF zoA-t#=JMjU2fethju-*TWb8W~CPZGX+28RVq{Rtn0Y$ZZUG@(m%|W6W8mXVzvHXaR zvis-RaAG1&0N6sKMohW95Dk1V4A@QY^>lURia&bq=_Okq64jZ()CyU9A6Neo`cXak z)!e;>=zPGx<-WVw4CbT@d5c7l7#hZtBI3ihUC}!<9Q@goI}GF{<QKe7sU=2RN4l-SAucB>L?Y$oh1I7L)CY*v02a#&FY%Gx)Su>KLIAnm zN6HCGYAk=4!N01zxjt?WL@c38YvF5awv-NqC}9%9K=*m!yG7Ig6us!;j9FiklZhe7 z-D3P5Sp`Khbmw}A|DxQ%yt|!q^$_<^HX&_|jVZKV=<47lOGZttGQ_X>Rw)b z$RF_FI3j_A=O;F2-~GAPgCK5e2MAAN#)|vPsxAK<_ndu8VXq@iN=Z#s)z^=iJdVxD zT@%+YgJBd;fnAsL$y0aRt<;Hv|0rTWS$_YU<#G1>E^bHN6_!YfECJ z-a;02yC+!l1{1c=^ws`6fi-6z$1v2%_5O~_aYoIj$1}q_-HrF&#|o{k)ZhWNEF95Y z0a0V4aRPUhXn)isZ;vO7Y9IBVDqNmoH$Bhs(zKa$8P!;bv2Ny=O z78VzW+#W9^r>4$zdX?hIEur{avq@Nost)5Q>nRp_C$SWv4do`s+B*^#{DdhG>3}U# zZTkj+;9LMVfD@6~85e>(2*)Syr3BtiLx}6{s|XQdMyizSM#%g*9^Oc;iKcDe{h^Vd zC~qmvblrj<(FaRR^p217os=mr_Q*IWILk|ck5L=p^-GR7vh+5u#teSw8)bQosW+$f z9c$Dxi|<^dOMR^wnrOEOT7Su6F^`E;tOoFnzav&(6Zc6s{PFRV#3sui^j2(}SY57& zf@R~Q)i>g~Q6Gj5Yyt8v&QDodJx3FvBO?jhY$#W>I59?nvYsh{|HNqvZ2D~~x{Qw~ z9v5uBg_2&bRdusrF>qSV$&J`b!pF}M3z9>6dY0u81}4>IXFCNc=$7O{ho-h6yrRKv zQi8?CEd%tCoMCIy^Jw&YmL33`y>crOXt1|c0jDU}<<$N=6u>Gb zz80J)k-U(!hVAZM?)vjs5Ht_0w-5jc|Sb@YsRe?>1U%V@~H^`G$)L0v4Gno{fDaseg8DWl+*E zETV>O5vM9vwaZG_S`Eb~uCc8be4;iXU##ndd1GvLGoZiTvv{>NHvF8qWCVY4YP{eESH{yL4xBLY4KK)dA}!oA%8bU z3v;QreH~2CetcQZRU{azPh<3^`y@{9URq-f&${3n+Ji{NI!GoL@|sSL+hxzILL^%0 z6#7KGgdsrZToz`bkIT&=a@vMW6lPgISC@kxzM}i%Ir6$*$&8LvH$9@gtUz54{0b|7 zDBwSi%$1wa1Ua?+)2@M1xOjDqAfn%ZVB01pO73kadN^ZI;C@t5)MOv@Yw}Y8UW(`? zyZ6}xI=_L*AdM?fQR}_!0_1P1FK3lN5*w1O2F1Le)oGQE9hmZWxJqfkt2?!!!0O>v zB*Bnrcu{F**=^;8*$xO5qH0HMD9t)@H!9oy*YUfyxnLToK_wX5`t>{b5OuoUtB+rE#6rj z?uW#<$i@Oiu~5wj(44CHX%bsGa59*T{MvunG*HsU##CJplZC@yJ`D+SBm4BX6qxqkhT0=>_B(DYw0-ca`-E^-p&u=%$W2?2S}(KYnPwV{j7*LUqs3kBAi zJp#~sf1iujC*g+{WP#_}J|UWwvx=Xmos*m{rGIJUN`-)a3&R3;X8Oq%;-+jErI8OW zfM-LPxx_CMBVA&dKRxZbXM{_D%G#OrEMJ3pez)R5nPk%UbefLP@*Syz6ew`(dfX-! z3mprN`z5>#~)IveJa%@Y{pO!fa< zg^r#{ci#ELTGRQ+)I_Gd+xgAO<)%~a3UU@9DGx^coL9%zMxPhiw>R*sXWm1-q8&$% zUHmbkuJ!RI*cb&69>#O$G?)9iFxFf}Q?FQbz#Ysiw$_JcTzBg*- zJ#$R1u-$j!=p5o~wB#GuJw)@mL9`7W2gh4;8%V)`1A6fcJ$TkrH*i)p@N#F~8$aJDy)2M^gs=Vq({0Rz8!aH4Mkw>{X28#%`A3w=l~DU z5@7Lu`d$}17wZ2Q@At{kkz>Q}iAAkUNh$zXBmrRZV24IVXv9D;0U{+O*zN^HhlhA~ zs5PNX%xqe7738*Xvv1G@Z67=;&RW9@zM0XN7W;Bt)`x#H49pg!UXGYajwj|WTP5kqI*erz^nck!&@u7k_g@MhrZ zg=qUx%&$?b@zo`!<1I$Rj{?-@FWK1R(~fIZlvjO>;c~ZpMzTZa%I)353T4Z>@qm?# zO2N18l055tHB7&t{F)xk+Rotg3dE98*tP^X~Cj6%2(;`bS0#fsK5yU0)~tUmGGKstmgXkDe#}UY)VA zmzux-0D>i{i9GjL2o=>AO+!{hM8w2v`fP`Wt;Fl6$u+UU<5_Dp zYB0S*29^NGxHo7B@-Y}Ga_|@*J5eh3N{o$7`7R}mcho<9losGtfmeU%4M983+J)R+ z#qK=Do-q-EIRW|00>VbcX*v+|@3+$sWjOE&?8F%*Ar`0C=k{j;?6#ZwQQ|%5o4RXg zzyQSG{^Z&JYIq1jDH$HMa1IQfZ^Mh3$u3^_>T|<0@-C+Tv#I1OGroZTn(IRU7}R+J zB8H94$i|%fJNsk^5`4{N{?y4)Z!z(i$jshj;?)@}?UKXms$2A&w`lPSx<2dRxb`1T zq6Pj176boEDBbY9QRkcv+!ef|(2<`^|IlNhD`+0eE|ipX1e(37&&bMXod(4SmyC*v z+D+55OYFlCQUHiwT3sKyMu=J;7ts6RIALdK z+mp<1LXNLyyU)O4TU6kudvYuRF}o8&Kd&`ck8Vg(BYGuAKz@&SSQev;>+gcCA) zuf{#u{pkwd6-n8stc4~&>Gjoh+w0>oha#?d`DbNUX$vHv-x-f+9$ONUi4H-!ftyY- zfio~z@z(U~ptr0MH*%QoMTHBGmHnJ}!$~^P1N>fyg%xw$maWG!IH;>+49S|?`%4B% zy+24EUx|rO!?y?tQ!VjBNimRhmbO4(;1o;1SWIMN3qk2)?318<$Di=QdH$mP{r%#S zukhKo$qoPd6aP(s!jxrup{kXIjegzX>~z?YK*9jlitl!XU^)O-aDrybv8(#)`365! z=F^1o57914DDq8wHaVZ2{;rSTM_6DKMUvqdu~93VjWMuv9WE1#iA#HO03*Z9Zp>ja3W)zkLCBSAM13DWO$d=-)YsR;42_TPl`R;A>$Gq=nwaoIxu$2@j(%2B z6`|ci&K>w$Z>Hrds?g&9G-g9_-)}o;?mXua32fv(D=RC<$FOrx_;>Whjh^mnfgUwJ zu^Mg!r|2Pcwy0i1WKJIY@jolNdeC>NBs@FUP(eFKrwlc@BgJ7g>_NYO85u~Lf~;{+ z{yu?0^x#&tM1D`k16c+NZOxHps8Aqa3}Dv~ZQuV3Xm8r~Cbz6LAG_kR$eB4NT=#um zn$!i9V{A@EjdYZjzVoSG-7zzyzoo{bvYFNP61gBB8k3FXZ*=T#5Y%DB7#1}0ukM%} zO`2S~9j&}bKkcnSqaiHbfEq~ehc0M~VyqRYxerpVAJjDW%jWUET{yVR5M{$bEhJHz zz8A`0LJ}ZW?8KtD?&)J}Jt8oX*8qp93Xo*L`aih^&Qb)3u;qz@y59nQtyDl1+KfOs zjY_P$<64KcFdOB3+eCIcp3p`re{xQA9W>~3nd;y3{%mesPUkOl7@EVA9s`s*;GHzL zWJ@e!E{@d>GSos_w-}u#nKjcnewT2iHPUd8BGBr)L5DI`k8w6f<=nt6C3^55E{FKc zj9R$DDHw+E;4w(}SLOr!brl9ei4w~M4zRevJD~s=>*O+^=M>MX2d88N5tZpWB>FJhtXyOQAG! zEwj?Ff!hWrt*;XQ`i&9uWp?|wl6!v~bi10jT9yO^CQD+qks4Bn9N$vwPgt zCV202QHFFOyDh8sFguuHtf)We=+@jU*sD#!#+R%BQImfnQoxZ#A~BbW!0R6mw0jE!cH06R~P;el6BlD$b%8Gk9e~CC?!Y2lY7Wf~IjQqKk zO>|0?tr!6RE562S@e{|=U20G5TV?(lzM;wDff3|lt`gx?JU@(4a6c?G=gw-bt7rMk zxg4geC|zV7l{#X>w8Y3f+8C~0NA8#hm%{X>0QeT-Sm~lEnxr(Qt(;7%W$et>GlZ&u zA9mf5lVVT8xxIf#nQKNDICZ6q4kNW8zB8O6%F;!$NcZdRY`6o;5jxiK_l>1Mst41p zbA^5m)UtF2|DTOoeF?j&zbXzTy+;Ztny`HNS3cM2d0qH|#b;N#z^6wwepgCRO*4~W zmu6kJA~E_$x%3deUAA3$42ev_a4RcxTu zcgAG!rqXbJ1X2zh*R{z1j+%TS%#7ZIUQPEHb4~Zaw5y)#oy%QjOMq#dST4L}j3l;! zwHi!;uBgurzM;=8Pq%J2thqav%^6&rkqaua0_mIrUC`lPQOmlScUzg_nzZ5)vR40n z6(f(f$DhE~55j3j)r-BAHU2~S6;E6?C;9KrE0sI$jr=py4LxJ~nRyFOtjBU&0&w5u z{9a|G79w%G+}G&5hRE%cxpBi^&j^u6x~Uk{hiYv=VmKNw&5ka*Piw})g*%@fD?h*T zW31at0JX}%89O$P`rL_uof!I-0F`1=_&Vk@N#At1=*^Tf@M7Uy-ms%HJu1b-m_Cu9 zOF0_RtPvVkjDo;%nSTTm&;S+Xt@NJO-@Qu3asE@3#JnKYBFC z81lHkPlGk%x%_VvRy{^YIKoINghbE(r7WCNceD~=cAFgp3ePo7>9NZLIEzeVNn%&dXIpW;vjs=4-?+i z4EW)m^!*dP-)PF;isItnl3XM$s)4enh0%2vzo4syqBgZ{L{NX zxy!S1sJz`}rC%{u+|$20mvZ?G!DPp|WkAFkCqDH`lP%B~SXWn*zMSDP_;*gw zE?Nct2k65fZjIx^cd+!~PBo*cjq001+Z$5$h?B;BeCs~4c@uE+xVqQ#?(La!O?J$? z8#a@tUz{huT#zt{0=hyQ%bC{3<3#ZJS2NMx&tjJKA#t49kVwy5tGaWy8vBulZB^xy9|hWQBjqYpvKUFJP{`v* zMjXuU7uv8JuqZDF_m6}>HYQ73YeB)~zVTauVrv5&PjTNqcZl=EKOZ7lDCP~!GOA?= zx-xNDoDPzcdBXbd$h^n+*<1~*<{NK%S4E_d!=1=DV{tv`-zis{s8rgL4SIPcwwTD6 zXtY+#6t?EPj(f%?uURH5@g7neG2k=$eN&V=_ILZyvnoO)4AJqz+_# z=Y;S6bDHhqL?5UtDAH8gaT(uTuk%}~;J?$TC_O{UO`56jb0^Sa(s>#vKQ6%ZZM?_A z)_FXFFBG5XIAu)KJWCd@BjG7%F~blLZ=MaQd4A#pzo9_Rb_nde9bWkI#gMkns)p6S z>&`4t0kW}Ot?ESe5dvXEj$j7GE9AK5Kksd@4K2GK@9r$*r9{4Pm7LG+6qnO6P*H98 zKNh#5r9bbkI+xfR29nerD6~DDvwgnJJvZNqDVX*@dA-`LBp+%AKD-oepI+c;m+3d# z|7H6PpjMRjvyJ|N6@dHv@mzGeOu6Pl5M_F=nO?MfW|r;V07?zpk?s0IzPFNkY<3#e zf3;FMnbh5d`sY`Q{zI9iZVV`b5!$*(0=wIj%$n9BW-$G2IkZp6pobRx`aF4cI?`0X z-%+!tmHq*zc9bQ)la`7q?-k6;abicrV^^>5vvXQ+)~~Ar8Mkyg`@Iw-V)WX=-^nX3 z!Q(V4AQK_vUi-XtKKb9kgSGO~Ah^i#>wkUsj>pZno`QIsjv+E{iib-;ZOYwx4N96U zFZy=E{)soN3|R1zey>A9R8&r2DH&7&Q!~X#P~tk3ykWZ@4CHC0vJY(2G91`fZ+2!4 zid(&&hUb%Or#6`Ax}2M(6jkQyo7MBF#S=+PFanUZ^zKo-um?&P`YzA&`8z62-dg-OVS zOyU*uyxj~Mk};}DXy@rWot7^yfW27VX8Ct@v|Y}6!W}w6E9FZ#pdC9nfreM>%OX@% zSAAe;s=^P-vrdz%^Okg}v!{FeiFd2;yTRyts#o$xZOSKvSLx~9_=)-YE{ocfrWwMJ zJFPD|JNPv%((gbot!N|cW>7V|ci4$ZJm<3Z^iD%o}#q6Xg!gf=0s{DB8H+`$g%0eR_|uPs`nc95IO1HW%H?9%&3T= z{hC*LB2)p$JVxhsI%KUI%KqpZ`&Y%pk@c0_FHL_Ls z{@i#e3J9=9{M$BVWRl4i``}w%V&E;5_VPo)wLbFJ9k;gMmt%-fw-3ZJi}saaiNlm*~ z{#_&YuB|iJ>2ln?&bFUv-49|tA#}>H8i@1y*zrC?$dnkF+?{pfI}4)m<&*sv5(RJ- zmvWS_8cd8nnHNND-S@~%A60=1VNqbKxTxs2o4Hx?8G^Fn;@*)So3Jv4J-0L6jrs9> zwQYqEldZ2dyD9g1_Z8e*bxW=TPvPopF@Im@@0m-wH`xMZNL$$W;0pDf8=1Td z1xwET`&P*y`DRq!OCos=cylKmD%~ybdP>TNsAb1{*i2V8-j4r9I{5M}?9Bd{U28>Y z%=c8o<{GawS<_sZ;@*7*MA7)XH$VJ)qNCsb>IxNEnZI6tIxnIbiX)}nHA5j&OH}3C z=(2iptKDNSHo8VEZ+k(S9>uUQfX}C0(adx6>_T=L;-Gg1e&8hzC&oK37GLx)uU7=t zz`LUhWcgOd?;Q5H%9RZpEb;D06-+kTH>d)Vv&RlZV8+^!etg*yEgu(>&v$~CITxx^ zDkYO**z8kHkd2gKSXM>I>>^xcZpnNNg-1$OloX~$<&o@v{V=zt*Vu)Ea?!wr3AT)# z{!rzP6=ZF@qB>xOZ@9P*97IhBL#bKX~3WAA3Gm%Gp8oTouT8LLfwTXce0^d_oM>m7hD-tc@QlZlzg3 zh!h9c+dO&`q=;272aHPXyYBjqPp0|~yR!$4$3iK9Jgt19f6u}v@@$m$e1SYYvxvbO$!uXwVcGZQT*%0?(<1Mt*Ue_RM4jb zGB$Ze`J*LF7E^p8Mbj#6_gD}Cg+cN>4LUO>&9}@nGgRrZ?P5u~>(gWCzJH#bm6N4! z=)^9$e_JxkoWt@V{SHFClk;M`6XK-sy;q8YDQ-$?CWc4F<%3{>J+AHp-OtBmJKvr! zWsWaWA~CX{j)&(TO;e6C4=+-KoTmv~jF>zjOJA<$TF^=-GbC!wkbfEWW$5Q& zsQrfeL#B&Xp|kH7(K5Kd6F<0L^z$8O^*b+t^HksoU5luAf4~NcbHyvK_&<>K+UB~t zLb$(8tFO+gm|Jikd~u((eMs5ZxWwXFjQmtxJ+CO2>~$wOsx2iwLza|Tzl;u~{dH(t zp1X(7Hwz%sd}mC898coOE)X7Q>2J+h_3F4Js3Yn4+$$|I{FR&_hnpZk)bt)a7CPer z&GX-$modzres48PU|)aKK+p!RTNozhjIJnJUU?#)V%lHQb_F?zaE_Fj-9TZ0`K$B# zvdTL;4|;5b}!T$~Q{COw-`D`k^ zJW8$ui&@k+&^yl~`NX6llbt`F5jn3%G`Qhmw7R9fzFgSp{3t$es~76`r&E&Pi*dM$ znt#>!Zw#Y6|KCJ0<4oXo8+!}yOnN8Z)3QmYIaiRWOf~6y_MHedeg_v(|Mo-h2S@=w z&SW*S=x%z87*6UK^*~(6v|{Hy((3=c-FUEFro;wdoStum=4rolmXE2z4 z>@LlkPEfs_HCnSBoZ2z$SdnXRzF@`uhBDKlm_FX%8+R7or+@;k_^l0pP%;-=XPgxB zxY_b5q5_cs7MBVj>WW$Hm6FD+KoQ9Ncim8DVjL_xS%QtAdz8F(VyQ;C?r_jnXC&uR zd`MefV^XJ#wm%RQ;3dxjAgfzK%xbzs{dp{Km=exz7K3Jzu0i zdTpPLA>;>&x4w?wyYR)g?|#&p=(gr(gYFTZdETfh3G69g}&TyI2HI#Ia+I`G;!#dev$>e^&sq?89jL?95+2iZ~ z)hZ1(X0JE=94upLH1I6otj%soJfb)7bnerW53zI{Wc&RiG&Cr%yfNaBk%F)x%IskZ zm&ZG($Bm(%%NfsD?hEYGWOjhZ2;?C+p3r$!>iMvp9DZ|zbV3s96Cx!hm=1rRIZkM^>8!{PBHBCc**m;Wm-Tjw1peCfVclGYx zQsA()Z&)6aUJk_3z<=H;PqakO%=AIaO>Cm;LAZ2`7+-)7-1_#xY2;P-{)Eft@zl#U zw6FDL%7*_nBY4<}du)ZA2h1<}{FQ1_^o9G}zX?ZXz~S{~@&~`|5sabV;rD^@92jv6 zsH`w_0{QvL2)aFb&YPslp4L(GM14JI!R4OUHkPH*@?|M^Sk}@gM!+X8BF=YkVlOtn zdpDIJZztAWbWolcyx~GX&nB1~2-)&E<#Iv-=eUa|hiiL+jR4^&GM1Cp4?Yu>A7ErX z0lUz1KhsjX(JIjp2e=@X6<!$JY0pQRBy~*9h zunMpWST$GMR7PDCfj7`#Ft5O|6n(d9KoV~`$1eN2VOpXIY|A<>^*&=3Fe<)rYYvV8 zGJ@6nEGM-9m;b-4{R=ifJdFEvaHK?PR9jDahA`*In_1IOrYWY$oIBQ<5mB$Qc2KBn zdjsb0o^&#I)#Cm#@yp5L2eNc5Mt?g5_WlDQy4GNeP143 zQ_{5>9n)QPErt_Rdrn(6CK@J1N11CnC29=2u%Zvx1AS4N$?^2YtO4d%Qo-`+6sGd1t!X>Im=z&6K$0+oEvnUb6=t$Wzn@ z3pM004HlE7S|%n*O;c9eGCH0DVL{!#Pnet~Ef+S_O z5>QF$4-8)l|6^Qm>v~#GSyQ*4$Wmq8x}1zJ4KL zoc05hBrHXBaHuFq!Qzsh3(dagy(7)}9p-qO*O2l&^=-_DfLzNBZ=CVf05>|0|25TC z*KOvGCePl=i~_e3%~x|hEPtZ8gAI?cWbMq{Pa~)B`ESGiUAgc6c{7TGe@zWy>%Ok> z>=DD{Fn)kseq)Cv%_hzKd(;^`fL)Q6Wp74poNIcB;E=7khPY-f98vHph|QVSCK2?4q=BmKEN`o|e(&b~KwYL$IdG&du%J)6)N_X%WVHo|Pg4I|;gglka}b5~uhqWlmda?R0E! zN6W_-PQ+#D^!sw~xZdvLb~k1K9WSbOi=D_!sd7nkY4g(UKZ-*P;DPd8o^+BQ88+`* zUUGlfbyh6#q>uLVZTO5nT<+Y+NF-k|CrA~K ziUQINy&`wwgjn})f!&BSjW;MCZAY9^3rGrqDUylb9%24v>sD=_*9|}%JPZbqg&PXi z_6sWMIFhB4XY+J}Qf6otSul*i($e!b0m#;kMMNa$|0(P|qne1iH5@>|0wN%S(gdX| z2uSZrkuD%0z4zXGmnu!Fbd=ta5;~!W8l>0IA%xyTN#Ks(ch~)UvsTthCYi~Z$vOM% z+2`HQ&ImYu^zWO@v7*xAxrJKzWX~Hv)22@0~U-*W)bA6JsDs!pPS^(74pDr4afu zaKwClK1cui$kMyAMf2L@iGQ!nCpO`~xADYDhzrndR(;SN zWwTbV&}s$~+$}Fw2?PdphEaFe4$-$l89H(8^bFvtGCH#Z=U`LWF6bqPrBQ>c%{XPM zZP6JV!haV3ksd-Ma`ySLw&Ul9@I0ibD^3TtuIq8{50$`Em{=SZ=4Kz4jNZnR<1bfa zBJoQOzSJT1N2p5#0^u@Hkm^oP1y~vW)l1T!0xpc8@6X;E&(~SWg7>GZfnOmr)0PHh z7&(sA&lm$qKt_&s@MRGQdtx(iHVMRrN4XLJ$9HaHYs-06%ID)D#N1(PxE5x-0-U8& zUm5`|uR_4f_aY=%i}vK2dVV}eBvRLFN_{{>HZPJ5pW5{afP_Q@UY%-H8wP>*pD|V1 zi=UHBU$|^0YjPQ_N#dOy5^dMn5NU9;3y#jq`0LXEOVPA|f(hTXxt^RY*(1whA2F$> z+Pz>x<-o8^YK*;b-I)5SA_#*>alZ1Q(qIR;uky(Q~j1c@BS!-hpj)F zf|I^bCe8F$;LeUUO~Bd%08G2fSM*gI`mxWPBI46!gbBYaPawQsmMKeex!o_3w2_7W zm|s$Iy260zTdgeZ_4YL2`@u*f)#mnXy&!VDLD3{@$b*qf_O<1&-G%$FKh9CFQ52nHmoz(fF< zoSe*!-e8}xPFHv+1&ChhyGn|(qZan<)%t3_HkI#7aZ&QxZ(smy-oCTj(XV3}me2{L z>Dl%eP;9Jd3^yU$-X|tHbUT(=><)dJl$2yxXS}eURp(>}0)6|ycy)Cp44~1DAIsH} zAI(5+lYwGwzq33ZMN%x42i!4i1Mj!iWVgtK^k8vDQBEEuOr;SBNb!$udjD=k$B~{ z+?2c1OKyw*Jg7*91*QE^C>aMU*Z4a#~?s&rNfO8-JfwzM0YbS(*m4mS4!uGqiTyBCTcd3I%m zLe(c5*Ua!byBSy7!7jYX!DcH}95yX^5p2LKexJ^s3z)^5YE|447L94e#1~%&w0Uhn zJvO{rY6fH1Qsb_8diEsY$rgDB)La!}EKP^O{-iv|opNOPg|6nytFgZU3ByF9NmFw*H zT}r0Y-hUGP{l()v!!@lC$-4jbUgjVeS_&39maif;a}oRqAib$|;3{bV;4?%)X3%@x zqCrEWWtXOGBKuIs#|)_b^=54z6rtKPNb^?klb-@BYHww?s@-s^Z{M&n?VTSUcabvV zkk$7npTCC%<-b|CYN;w+PinY7zt7jSbHkmg$8tV7b(+t^x9UPYATuktRHVGRYNFsw z0E0`hAq zT_@`EwRhLYvTrGEQKK`D9~UuW)_mbLm&RHD;8G+>{YzrX4@L84Ho1@7+j;qQ*qnP$ zpKY0Zw;Xf!RgFrzTq|(A?i0tVC+mHqg(e%C@r{cN;Y=*zw3&W?GEOD_5&Tnvw!kcz zvv%OXH8CfV%xpoVUj56I=fL0qbib}Qo}_ee=;$6DhZs={F}#?aVtgxO^mHuRg3V<93GM;dCmR(V2So-Re<^+aJ%puT zvE$C1>uP&QBF99j@k0_=3Sg7tO8pr$Tqf;8~5g!2r< zfY<=uUDgo5riQ;Y=x>3cC()lc(rmlo7#JN%wmI1*r;*tqhQD^1Pv`Tp!b9yk<|R1&KxIYyQJ`k0d|S2G*9@fgfiA>CZdS!S0? zZm0QiK~JwNeEbbmV>w1I-zzI=Iy7B@-A|^eZ^Z&{eo<9p$F?~Li0BDgqF8qa(-@#x zE^W4NDwF%rt5Kw{`S@fOD;dG?G)7W$ShCJxfVMTxst=A?hH2;Jhvy!{QmSf9%kR;4 z@&-SGnwm}$4Ma&EdL6rN(X$ge)${$6{dqk5L)<-m6bqEbOZYnk<$TQ`hJZ3r z$yV9&`GBhsVsW=I(1W%#V41}W`DbCkB~+%YlueGMDr{XDLyT*6(I4odhId4D(7sU2EoxswyRpMCh$2k66<&R;=iapnfYtvUnC| z;BZ4GCb;!!Fel*q_t>;CHHBD43FZ&z8*mx_P2bJ)clKhp=#`w=fa|ZeYZk{c4$jMZ zD8~y~=&IiV54*589?1N!^6`Q5!@kkgYCkBSw|2z&Q2Sa_z-{PgyB-vJcpFEIYwx>c zJvf9~dGzy7@=IZF9gP>SziI}G^x6pQH-^5cKn~F!_$QTg-&CK4Ag-?7&irxhW?%AM zbFZN)xr{2iXA}NpjLXx1#&R~~B$bV*U|q#DENzgdX7^0-BF>0et@CqA}E(kNQU&b|oD{>-A5aF)lhQNVOy zBp%D{>^Gf>!++3^Be3z;r0HZZ0Y_v(ID2-)6KC~5`d13 zZvK|juTCu?$%yO?1Zz%u9=Hi?1d_rY53qvN7!igda2HVMUQ{c(a!0eq3dCE z|G8Ez%3|zKxXY|WxC@+Y#(CS{fm3+&fgCZ(&-x=_n)dy>-`Q5ztWB8toTFMud&hc} zf9G2Z>IhXlLmQqEf^PA-=m?Rk?JJopM@8Jb>myQ_py5-{%|QzXES(;P*mMig4S61_#AmU;SU5%VqGQ9;@+XQh{`w5WV1kN1RDxnS*A68@(vD#D)d0T9Lg z*+*BK@BoV(tb<}1d!1t%8Jgz!@WZB58+QI5L1957=7tURTQ-F-Fy(pTj~50(aoMdQ zkha=1EmAyH8}Oo~5<`0B{HMYzg%xQ-pgci3{^9MT+wxzFZYWxc`1O1w|8aGij7zTo zlWP4fce`!_spX|O9%hwhxDO@7_3&yeP6<1>9A3x6+BnV1p;(pn>!m(qpm@NA-*0Tp zbiTv3`6`&P@+^N+qa%#NVBMgKV|~S?3Nhb27_eUR$e#TgNvN=sF|<(CF7f3q`lqM0 zhzb`d4?#6zq!wOda^o#mx=Ros^d|THb%SNM^K?omzw;P9*O%_o{kd*_!)Xd|)oqHM znfDo6`&poNz*DSSr$YngMC@DFQR?V}tg&G*il$9$#=xDi#z%mb1OAkO`r##gz|68k zV~xN$v}hH3+WxXVmcjRLb% z_H9Rdcv|5K=4G<&sar?>9oC1K@X*hDMsAVW&TLI*vR+h($^nQC(dR%c z)HSK&gW7vw;XPhU@JB--W(v^|pW74i3o%bs(kx%wG=9xb^pnW+w+Adl135^D~XRpC%*WLNd*u?%z*QdLM=W9gEh7ATz`*8u^ zzR!Z;{WP#4gUTMt_x;6eOXpjHU^^leZ56^Wobc{qg9nT3`x(T{h-Lsh;MjSk>vV$6 zekU`Ub~_J~{CLj~IET)PZnji3eOu2mBpz=fzj`2Hu&!9v}%JxSz~NX8ZQVs^`W9?a-!X zbj&v`+7=FjOQBKU)*#F%MhwsVED#R_-xL<0`Knn9`wX_>UU0vjLv0{U>ra~bGm&Te z6N|Ol9fx+N3s@g~A!}^**Hc;d)CKYPgz6`n%@AbqdMH$%SZCc zm}n}>dkn%+QyNXS>A!8n{1a?$FR37yL;UDBj@Y-ee1*)BFDPw@yzk}W%w{Rsb{vQ> zR4gG%Sj{G;v!0$&OD?02SU-_c@cRm@$q+_()7AJ8tzIT7ZT|d-SSgpMm+~8G5;zYn zx=KhZ^Z*i(C03POh)gekzT2eWVl?DXO^fA89Q#MG8#&pH2#zm$3>Z;l*I4XYV zvAy|Q5e9X-uow!Z=I;9o?wh8Adl=?nS6=H(R%zvhIJE#*!3h~2?f9jw_kG)CQ!O*j z$X>o`z$!Ye{z%+~2|CRZB&~M9(O4|u$>nCi;!dl1u54mcyM{Gxed-cUnA%UgA;>MB z7-B8IN#b)y>gZi^Xe#>0LiY8~q1ZIM`w}a~r~aJ=Rob(AP3MzEvYunnb5Vad9{^B# zuK6k1S+(eAUxnC9G_rM|ef`I;Rs)u6eBtI7l%geb)DK^Ng-sRFbRmXU7Kn0s&D1_I z-%tDKb%ac%$bu^nSkA{6Ohprh2CoW~xP`XqZ;e3h5sO3irl~v77!P!!4TnIYZ^M{% z?QA-?vrd9lTOHF(nD&+89)FV`-dICwmin@&lS-;N37N%e<(}>rhpsGK%o8GZm(~BWrFoKE8x}Mm|_Whd~ zRZAwtI6dz>H9Gd=M2FgOOdJ-;3ch1onF+aYhTNmmtqkJO_fGQAJXom{D7!+|&rAz& zab8(&D!GS?u0`2Y8Xb&TI1YABm{jUi@5qsrjSmm^+TdwVL|K{*<_?tz2=&*qv&tYFSsVd|{YMYJiL6b#T}4FBknZC$ zYiN0xnI~o;e_M`NUwn%gAljXIDGq6Gdxa3aI?T#+g`J-*A-;%S?a2Fkj3{eYpeKTF z?Zzfd-;WS?q=`l2)-wHZK`yjj4}?8C^gG=oFDZS-7#Ei<1o#uLMy)Ga5#$%xAIi0E zKGs^WfgD(Dz|VgCSV%<+GkLn7vef^m z*)R0fPhtbXd)!>Ze#vL-!U-Z7ny35Y1#fh~(Pl#_YTEm~fJf~yl=8<;)2kt0!otj( zBvOZEMvkre)$8-n8ieD(Cb>}+9HySCH!@G1{6l~E`bNz2#Gc06pYtZ$ncYR2?3*$# z%Z(k9+XaTz$mw<2?!#P4@cz+yQ-ElHlrilMjq6JR5u*wdqRv6uO4vL9gAYmqh6FjH zUVISmqk?8!145bHnurXC#z@uV5h?PlvDK?@*t0J9oB>;s7v;V=5DY@kl0@3>Sdiut z8qg^ckFf|PAMlZ%c0N~jFggmdI9;-ds~z3;|6#%Fr>Xkl4=j4!-22m`0AOL+Eb03x zdrS12!K*o-N~x)u(-$q(4!$a}LFzl-kU#i$Kf4PF?J-_&-+5gKpHLmmeni#ydnneP zTwhGY9bH{J7t-?Qv@5-Aa-GApe2&^&ez0rW26WL#`Lylxg7m#e5)06>yL_A9D&1bsff)q|zj^s6l%g;T* z99!)&**L$u?`x1bEr-Mf4Xy@aim=}8|K;{X7NmOaRy25_;2yiND1Q4KI)ZfXH;0fL z_L)ro&vO1Y6|)oyzzrD?3LHx-a!ri}ohmhD8u(s5hoBb{hZh{k5Lp3_U5er)eARu= zwocLKolH(dIo*1YrWYQGSA=x6SM+^fjiSYlB-sU#MhE@}%fklMF^@(?5+l2BNKVv` zFCHnMtcc|>*>t?GYA2;) z^2#aS=*C%MoRPRcV+(K9)*pyiM~nQl%k??R`J`2a82Op`e&=VQWg)&)_!0Llsxz+f zDsx@y_E;*@b<(#6?(S}nj)jPM(&hm9Q<0kR-di`qon8l#?irmjfm0dMD|ChCgY=jW zB#ss+qb00bN2#`e5)|^;lpTgquW-)MXPplIY|$luTt+)kHau&m&yOM+zlc;Zeb^7gZTe|!+H+#=j}rIs7LaXoeF8I!9VS)2U3!{#KMCbU zHzwB~7rdMp$hOt9pA2r8FJR?J6GQ*!+};^Xyhq)Syk| zU#yUa_ErXu@WpFB;UnvoadF8W&2~lqfc-mJNbvABF>i~GIS0SW(xtWDutj9V7qYjB z80p6ekNh!*G(Wat*4+VV%EOnby3UaWYmD^H=Tn-GUN&G>|2H;>hC`jVx^P~1n|){f zj*F2QAPl%oo&5Hi#DEyG=y_qpW!cqPQ`+cv*c#D4PLz|Hx1~s$`qo=gplIev({^D? zL5~`FM1-){4H=i?-5F~Il99L$;CCQ zv`o@2BO>-#|1Tg2@9j+)s~B>6qfF0=l<1x8ubK04Z^|<=3=Vo@ly}>krgH zNR7^Jjnj3;9GXsD)cn6uKsY7j$9E;64>c2+DrTHzjuE=oLp}wQ7Sd~MK(0i6QGf0) z?#Ur7d=TBP?m?xNd_p03LXkFN6o1NyuwpkBdCwS#9yw_DEx z-fP!@3Ch9j;SFt1t9O}=ZG^j(eFYm6w&%*4`->GSWyswHSErWsIi26Mep7I4f>Z48 zWvYS-vP1(+#6N-Gm$7i+{XAzz zzW?c-61kF(=dFdZEb0!85JO)=#ms@SlEOearIg52Y%nl6uSkS60{Q?Ty6T}L-B77& zPzm;fgcS^Fs_Z^WNP&N6nJD6F^q_g7*N*K^+Zn&&+(NJPe4bo7UeQLQ*7#hz6^qnD z0}J2+nOQ=D&5e4x4o{7ZSKQtH+LhpzDA%WPThy2ikceXTxGyrenOMwN>FPh?ige3O zsn8}5w~7wyIeLDd+2yo#AD`Ictg0uImROb;J`^e*dH4G>o|Tmq^+V+eH+rkAL7q{H zZ}@41VX@i$f5%8O^lYMrHtmnK%Zw=4rIj;b+mRC{`c=?X*Hz1Pq1>UiLhi}bjJiGS zi!_gSH+7C}G-k7(4s$CiAcuDgEvGBYrNWO_ATuJ|0!&nNPa@2dLm9r^BY7Yf+Y7RP zBTrm6==fk){Wn{q1{TTY*V50ff8NJ4N3q?T$t_Ew*kFDf$<7u`rFB1iBO%@}@QJCj zf_b4&q0e1lH68S)!j>oZDdvltgxS{2srkvS!S%V%X|o3;C`r)Buqe*stTwPiyk+#% z+&Uwm^IV(p3EbU+0C*~d$2AmA;Ko-bLiZqHVR+D9!k zRmn*VDU~K9jC-xaN%ZF$-*M7zzg_#0FN90xIO!1P`8E)Cl)ej#M#wHW*m>6Y8WTPT zF&!7sU=}Z2UN*iMtL~l-5H0L}CpPn>YkG$YZ5M+xQ;P6sp4C;1JSd*Wk%# zqjorl9cuNqGgyvOwl&}e%8sCWu`2=&o`Tg`L5R8HTVj&{w|6`3DX0}KVMO99 z6mp-v=ZJb;e%=kF%ac*QZ^=7~FL3n8Yh6@$R9cE47WYU|I48-i!A^JvyC*lS+2LXQ zPG;PTNGy=Q#HK}`Q;U0X7J6BqK%D$2jc+C~a}*rJw{pBVWk(INsIUn7MYk=OU5m@< z3-!z%%yft6L+Aa2t#|44w)*ce9z7PObvUr4WV{m}b-j2nKlDcPu26R#tFeGixXKbs zGzu!pXWaTKjI{L(w09E58*H-Z(dyMrGO8!mwAKW^(jwfHs@O&eGGiTd(z5SxjP&=oP@OtcL{%d7EeBX#(+Y49Hc@_2KFX{y` zUS4&a9HSE>Sfkh35hRh8mP8lFuZYtkDn0H?sfOw+FMQO2^R$rY6@5M2j{`*2c`xW* zU$FtiKihurZE(m(%i{zFQ!bu7aEQx0>1bjA{Ne-b^er@Wtj28UQ^M;>cQNz#FRB29 zg6OmA<<-jYB+BD6Nr814dz%w*5RZ*uADsA^-%VcX~!WR`}HwgiGhg;N=$ry z0B-?g0C)p6zC)p|SxQX!xVTz7ySpEsn@kod=k)#k`*$lWEbMbg=aUbTX9G+*R6lv` z=0$)UhbGM`eWQv~y@b~Tw!AuL-hRw3UF5ih=H@iM*J&2606Q#iL3HaxJ+RuyWonw| zK!>4oA_t#$dC7APIf|X(;Gl=dzCJ*X;!x6NC^m^MvPAv9?re7JT>v}WRRPBzBLw8G zU>npyVimi-udA!7>f8mjkpCM|ubNd!r$1oB-RWBGifL)d{73hnJf;*$s2J1ef`C;65W0!F614!#gda*zAJ8C0ycyz4 zZ8nZpQB)iWESLH&osycG<52HVUs=hnFj3R0jSn2wY-zFSIF((G>ukfX(U6|fMZXn_Hre`nlc%BA&{Ih9itzqq8r4#}i`AYBE^dX4`mj10f2tf<)M3+N2) z8yu7yYHe~!?2Dz=(KaxkHG2OdPmK75n{UznCp0|v; z`qThgF++9FFD6$HAB0NA0nxYHU>Se@h~)`&c`L3kYGdi==huI-ITXjC*ZjVwva%A1 zEXsbEC2At=rmn8O575YN4LLNP+?$@9d>WsfO_PzFd=6jJG*I-}{uS>3n1EpN9xm{mRjS zWu+GI<@a3e3I)odSV4hayYLORX737;lug(G%tQP+C2z4+Ny*2%t79k>2OGPbF;UhM zQ(#0--$y|zHTLYulb6g!Ki=%dE<+PzHKz9(|p+S;#8qOIz+Ir;g&0;D<$!+Px@ zA)Any7!b&ndURbXVpRwabSWxL-0cw^(C8GZ2lVpj2usuf+zGf`qBmpL=c})zqc596 z5F{qirdnXxgnV`T#Vrv|PEPYpN(ZW?Rxg*DG0RDY*Nob6)Iz-Fz@vr%P>8Moe7c@` zfD>mUuBN8e4{$^(AHR5S*>SYm&E|11OZ=3QQixwv)ZbD;VR&VGdt2f+bJT_X`KH^e z|BPNxb{~aWNN_NAa7c(c{qMfMz7^y|A+G;5Ffj3nsGIEoq?ru6UbE@+?z!<&7-46N z`@WoEG-uuzGbI6D+lYCh&IOOh!D1ctLIZggztfrrpqC`N+nZ1xDpJTU&j3hwC~|h) z>h_Ebp_8_H8+mC!qUa8Aw+d=4M#e2nP4{wme8ATzKsu~Q!Lx(zi6jjG<}*_*^TP_g z4A%Qu1_&Aa|FpCtHny^G!IqbfjjgP;E`MW77X$ds@E_?3#{Ng0_{#bDh3V(sZJ*WE z8IqHerAUbfYRU;HdEcC5?d|=}&CTU}>ja$o-Q{*37BCLP2&wqrxuLQ}<}-P0q8fa! z%sv5US^}71165Vkgvf~7^D6`v<>?9Rd5kn2U`7Gr0!s=SjoukgAgN%EvUZk>V!a=n zTWTG?&q!|^)pm^apH_-#0)62*Ejc;EPz{*rW?;Dv38ciI^`M8gdq}%#!V$)8{4%`&+%*dYE`sEcORE{MOz^hb+vAfK?sBjd~1py{KMoBthoI2Fg28C_ht k|JfbbTl&Ap>2SKk@yrPsC3Dn!_iu}=l#*oS2gBh10h@{LivR!s literal 0 HcmV?d00001 From d401910919e5c852f1e1e9c4a6f3114711d32e98 Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Thu, 26 Jun 2025 16:41:21 -0700 Subject: [PATCH 89/94] add threading notebook --- H-Multithreading.ipynb | 233 +++++++++++++++++++++++++++++++++++++++++ 1 file changed, 233 insertions(+) create mode 100644 H-Multithreading.ipynb diff --git a/H-Multithreading.ipynb b/H-Multithreading.ipynb new file mode 100644 index 0000000..b0e6f61 --- /dev/null +++ b/H-Multithreading.ipynb @@ -0,0 +1,233 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "88d53049", + "metadata": {}, + "source": [ + "# H - Multi-Threading\n", + "\n", + "Differences between processes and threads\n", + "\n", + "## What is it?\n", + "Multi-threading enables us to do more than one thing at the same time. One multi-core CPUs, threads can occupy more than one core and both perform work concurrently. Even on a single core, threads can take turns running so that if one thread is waiting for a response (network, user input, disk read, etc) another thread can still be productive. \n", + "\n", + "\n", + "### Processes vs threads\n", + "Processes are allocated by the operating system and have their own protected memory. It is expensive to create and destroy processes and sharing data between processes is difficult. Eace process can start multiple threads that all share the process' memory, so threads can communicate, e.g. worker threads can take turns retreiving tasks from a queue in \"shared memory\" to work on them in parallel. We need to take precautions to avoid reading/changing memory at the same time between threads using locks and/or mutexes. \n", + "* A lock can be used to protect a critical section of code from being interrupted by a task switch to another thread\n", + "* A mutex can be used to ensure only one thread interacts with something in memory at a time. This is sort of like a baton. Each thread waits to receive the mutex before doing the thing and then releases it for another thread. \n", + "\n", + "## What for?\n", + "Using multiple threads lets us run multiple operations in parallel. We might want to do this for a few reasons:\n", + "* Tasks that have blocking operations can be executed in parallel so whichever are currently unblocked get to run while the waiting ones sit idle. \n", + " * Web Servers can use a thread for each user session\n", + "* Large operatoins can be broken up into smaller chunks and run in parallel on more than one cpu core to improve performance. \n", + "\n", + "**Alternatives**\n", + "Many libraries are written in C and implement threading on their own to improve performance for their specific tasks. Exmalpes:\n", + "* numpy - pandas is built on this. \n", + "* pytorch - used for neural networks\n", + "* opencv - for image processing\n", + "* ...\n", + "\n", + "\n", + "## What is the Gil?\n", + "The GIL - Global Interpreter Lock - is a sort of mutex that only lets one thread execute at a time. Python was designed using the gil initially to make the language more simple and maintainable and to focus on single threaded performance. Many python programs are slowed more by I/O wait than cpu and don't see performance penalty from the gil. \n", + "\n", + "Work is ongoing now to remove the gil, and even standard python can be compiled now without it if you have need for truly concurrent multi-threading with python. Just note that some libraries are not thread safe or not yet updated to work without the gil. \n", + "\n", + "https://py-free-threading.github.io/running-gil-disabled/\n", + "\n", + "# Simple first example\n", + "Let's create two threads that each execute the worker function. \n", + "* threading.Thread returns a handle for a new thread\n", + " * target= specifies the function it will run\n", + " * args= specifies any arguments that should be passed to the function\n", + "* t.start() tells the thread to start running.\n", + "* t.join() waits for the thread to complete. This is \"blocking\". " + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "698765cd", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Thread-A is working on step 0\n", + "Thread-B is working on step 0\n", + "Thread-A is working on step 1\n", + "Thread-B is working on step 1\n", + "Thread-A is working on step 2\n", + "Thread-B is working on step 2\n", + "All threads are done.\n" + ] + } + ], + "source": [ + "import threading\n", + "import time\n", + "\n", + "def worker(name):\n", + " for i in range(3):\n", + " print(f\"{name} is working on step {i}\")\n", + " time.sleep(1)\n", + "\n", + "# Create threads\n", + "t1 = threading.Thread(target=worker, args=(\"Thread-A\",))\n", + "t2 = threading.Thread(target=worker, args=(\"Thread-B\",))\n", + "\n", + "# Start threads\n", + "t1.start()\n", + "t2.start()\n", + "\n", + "# Wait for threads to finish\n", + "t1.join()\n", + "t2.join()\n", + "\n", + "print(\"All threads are done.\")" + ] + }, + { + "cell_type": "markdown", + "id": "c01345f2", + "metadata": {}, + "source": [ + "## Working with shared memory\n", + "What happens when more than one thread each try to use a counter variable/object with no coordination? In this example, each thread should add 10000 to our counter, so the conter should increment up to 50000 with 5 threads. \n", + "\n", + "Run it couple of times and then uncomment the time.sleep line and run it a few more times. Time.sleep forces a context switch to another thread. This is something that always has a chance of happening at any point in our code but may be infrequent and hard to observe without adding the time.sleep to make it obvious. \n", + "\n", + "Why does the counter total change from 50000 to 10000 or 10001, 10002, 10003, ... when addding the sleep? \n", + "\n", + "Each thread checks the counter and adds to it in it's own variable. If another thread context switches in before the first thread puts its change back on the counter, the second thread will try to make the same change, e.g. both of them try to add 1 to the same number.\n", + "\n", + "With more complicated code these interactins can cause all kinds of unintended behavior." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "cfccad59", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Final counter value: 50000\n" + ] + } + ], + "source": [ + "import threading\n", + "\n", + "counter = 0\n", + "\n", + "def increment():\n", + " global counter\n", + " for _ in range(10000):\n", + " new_value = counter + 1\n", + " # time.sleep(0)\n", + " counter = new_value\n", + "\n", + "threads = [threading.Thread(target=increment) for _ in range(5)]\n", + "\n", + "for t in threads:\n", + " t.start()\n", + "for t in threads:\n", + " t.join()\n", + "\n", + "print(\"Final counter value:\", counter) # Usually not 50000!" + ] + }, + { + "cell_type": "markdown", + "id": "79a5e01b", + "metadata": {}, + "source": [ + "Let's fix this unexpected behavior using locks" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "62ecb28b", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Final counter value: 50000\n" + ] + } + ], + "source": [ + "import threading\n", + "\n", + "counter = 0\n", + "lock = threading.Lock()\n", + "\n", + "def increment():\n", + " global counter\n", + " for _ in range(10000):\n", + " with lock:\n", + " # only one thread at a time can execute this code block\n", + " new_value = counter + 1\n", + " time.sleep(0)\n", + " counter = new_value\n", + "\n", + "threads = [threading.Thread(target=increment) for _ in range(5)]\n", + "\n", + "for t in threads:\n", + " t.start()\n", + "for t in threads:\n", + " t.join()\n", + "\n", + "print(\"Final counter value:\", counter) # Always 50000!" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "9767c387", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c5ac7244", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.3" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} From a66f4895eaa3189a988184eec7bce58c05be4e3f Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Thu, 26 Jun 2025 17:30:33 -0700 Subject: [PATCH 90/94] finished notebook --- H-Multithreading.ipynb | 186 +++++++++++++++++++++++++++++++---------- 1 file changed, 142 insertions(+), 44 deletions(-) diff --git a/H-Multithreading.ipynb b/H-Multithreading.ipynb index b0e6f61..aed8d5b 100644 --- a/H-Multithreading.ipynb +++ b/H-Multithreading.ipynb @@ -12,33 +12,88 @@ "## What is it?\n", "Multi-threading enables us to do more than one thing at the same time. One multi-core CPUs, threads can occupy more than one core and both perform work concurrently. Even on a single core, threads can take turns running so that if one thread is waiting for a response (network, user input, disk read, etc) another thread can still be productive. \n", "\n", + "**Options:**\n", + "* Single thread (a process with a single thread)\n", + "* Multiple threads (a process with multiple threads)\n", + "* Multiple processes (multiple processes each having one or more threads)\n", + "* Single thread using asyncio (library enabling single thread to manage multiple io-bound tasks consurrenty)\n", + "* Stackless python - uses greenlets (like threads in a thread) to manage multiple tasks pseudo-concurrently like asyncio.\n", + "* Native Libraries that handle concurrency on their own - numpy, pytorch, etc\n", "\n", - "### Processes vs threads\n", - "Processes are allocated by the operating system and have their own protected memory. It is expensive to create and destroy processes and sharing data between processes is difficult. Eace process can start multiple threads that all share the process' memory, so threads can communicate, e.g. worker threads can take turns retreiving tasks from a queue in \"shared memory\" to work on them in parallel. We need to take precautions to avoid reading/changing memory at the same time between threads using locks and/or mutexes. \n", - "* A lock can be used to protect a critical section of code from being interrupted by a task switch to another thread\n", - "* A mutex can be used to ensure only one thread interacts with something in memory at a time. This is sort of like a baton. Each thread waits to receive the mutex before doing the thing and then releases it for another thread. \n", + "\n", "\n", - "## What for?\n", - "Using multiple threads lets us run multiple operations in parallel. We might want to do this for a few reasons:\n", - "* Tasks that have blocking operations can be executed in parallel so whichever are currently unblocked get to run while the waiting ones sit idle. \n", - " * Web Servers can use a thread for each user session\n", - "* Large operatoins can be broken up into smaller chunks and run in parallel on more than one cpu core to improve performance. \n", + "## Reasons for needing threading/concurrency\n", + "* Performance - get things done faster\n", + " * Avoid doing nothing while waiting for a long io bound operation to complete\n", + "* Responsiveness - one thread can check for user input while other threads do the work efficiently\n", "\n", - "**Alternatives**\n", - "Many libraries are written in C and implement threading on their own to improve performance for their specific tasks. Exmalpes:\n", - "* numpy - pandas is built on this. \n", - "* pytorch - used for neural networks\n", - "* opencv - for image processing\n", - "* ...\n", + "## Pitfalls of threading\n", + "* Python GIL limits actuall parallelism and limits performance.\n", + " * Use multiprocessing or native extensions (e.g., NumPy, PyTorch) for parallel computation.\n", + "* Race Conditions - Multiple threads try to use the same resources at the same time.\n", + " * Use threading.Lock() or higher-level synchronization primitives.\n", + "* Deadlocks - if threads don't release resources then work in other threads can be blocked.\n", + " * Prefer context managers (with lock:) over lock.acquire() / lock.release() manually\n", "\n", + "## Threading library \n", "\n", - "## What is the Gil?\n", + "**Create a new thread**\n", + "Pass it the functiion that it will execute and the arguments to pass to the function\n", + "```\n", + "import threading\n", + "\n", + "def worker(name_of_worker):\n", + " work()\n", + " work_more()\n", + " print(f'{name_of_worker} is done')\n", + "\n", + "t1 = threading.Thread(target=worker, args=(\"Thread-A\",))\n", + "```\n", + "\n", + "**Start the thread**\n", + "Threads don't start running until told to.\n", + "```\n", + "t1.start()\n", + "```\n", + "\n", + "**Check if the thread is still running**\n", + "```\n", + "if t.is_alive():\n", + " print(\"Thread is still running...\")\n", + "```\n", + "\n", + "**End the thread**\n", + "This is a blocking call that waits for the thread to finish. Don't call this if you need to run other code in the main thread while the worker thread is still running.\n", + "```\n", + "t1.join()\n", + "```\n", + "\n", + "### Locks\n", + "We need to take precautions to avoid reading/changing memory at the same time between threads using locks and/or mutexes. \n", + "\n", + "```\n", + "lock = threading.Lock()\n", + "...\n", + "with lock:\n", + " do_something_with_shared_resource()\n", + "```\n", + "\n", + "## Processes vs threads\n", + "Processes are allocated by the operating system and have their own protected memory. It is expensive to create and destroy processes and sharing data between processes is difficult. Eace process can start multiple threads that all share the process' memory, so threads can communicate, e.g. worker threads can take turns retreiving tasks from a queue in \"shared memory\" to work on them in parallel. \n", + "\n", + "\n", + "\n", + "\n", + "## What is the GIL?\n", "The GIL - Global Interpreter Lock - is a sort of mutex that only lets one thread execute at a time. Python was designed using the gil initially to make the language more simple and maintainable and to focus on single threaded performance. Many python programs are slowed more by I/O wait than cpu and don't see performance penalty from the gil. \n", "\n", "Work is ongoing now to remove the gil, and even standard python can be compiled now without it if you have need for truly concurrent multi-threading with python. Just note that some libraries are not thread safe or not yet updated to work without the gil. \n", "\n", "https://py-free-threading.github.io/running-gil-disabled/\n", "\n", + "\n", + "\n", + "\n", "# Simple first example\n", "Let's create two threads that each execute the worker function. \n", "* threading.Thread returns a handle for a new thread\n", @@ -50,24 +105,10 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "id": "698765cd", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Thread-A is working on step 0\n", - "Thread-B is working on step 0\n", - "Thread-A is working on step 1\n", - "Thread-B is working on step 1\n", - "Thread-A is working on step 2\n", - "Thread-B is working on step 2\n", - "All threads are done.\n" - ] - } - ], + "outputs": [], "source": [ "import threading\n", "import time\n", @@ -114,15 +155,7 @@ "execution_count": null, "id": "cfccad59", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Final counter value: 50000\n" - ] - } - ], + "outputs": [], "source": [ "import threading\n", "\n", @@ -150,7 +183,7 @@ "id": "79a5e01b", "metadata": {}, "source": [ - "Let's fix this unexpected behavior using locks" + "Let's fix this unexpected behavior using a lock that only lets one thread at a time execute the contentious bit of code. This ensures that, even with a task switch in the middle, no thread is able to read the counter between the time that another thread reads it and increments it. The read & update block is atomic. " ] }, { @@ -182,6 +215,7 @@ " time.sleep(0)\n", " counter = new_value\n", "\n", + "# Create 5 threads\n", "threads = [threading.Thread(target=increment) for _ in range(5)]\n", "\n", "for t in threads:\n", @@ -192,13 +226,48 @@ "print(\"Final counter value:\", counter) # Always 50000!" ] }, + { + "cell_type": "markdown", + "id": "f641e652", + "metadata": {}, + "source": [ + "## Problem\n", + "The following code downloads several URLs in a single thread using a loop. Re-write this in the cell below using threads and measure how long it takes to complete compared to the single threaded version. \n", + "\n", + "**Bonus tasks**\n", + "* Add print statements to the thread function to say what each one is doing. Add a name argument so they can say which thread they are.\n", + "* Have the thread function get a lock on the \"urls\" list and pop a url off rather than initializing the threads each with a url." + ] + }, { "cell_type": "code", "execution_count": null, "id": "9767c387", "metadata": {}, "outputs": [], - "source": [] + "source": [ + "# Example single threaded code:\n", + "import requests\n", + "import time\n", + "\n", + "urls = [\n", + " 'https://example.com',\n", + " 'https://httpbin.org/delay/2',\n", + " 'https://httpbin.org/uuid',\n", + " 'https://httpbin.org/ip',\n", + "]\n", + "\n", + "def save_url(url):\n", + " response = requests.get(url)\n", + " with open(f'result_{i}.txt', 'w') as f:\n", + " f.write(response.text)\n", + " \n", + "start_time = time.time()\n", + "for i, url in enumerate(urls):\n", + " save_url(url)\n", + "end_time = time.time()\n", + "print(f\"Single-threaded execution time: {end_time - start_time:.2f} seconds\")" + ] }, { "cell_type": "code", @@ -206,7 +275,36 @@ "id": "c5ac7244", "metadata": {}, "outputs": [], - "source": [] + "source": [ + "# Example single threaded code:\n", + "import requests\n", + "import time\n", + "\n", + "urls = [\n", + " 'https://example.com',\n", + " 'https://httpbin.org/delay/2',\n", + " 'https://httpbin.org/uuid',\n", + " 'https://httpbin.org/ip',\n", + "]\n", + "\n", + "def save_url(url):\n", + " response = requests.get(url)\n", + " with open(f'result_{i}.txt', 'w') as f:\n", + " f.write(response.text)\n", + "\n", + "# Create threads for each url\n", + "...\n", + "\n", + "start_time = time.time()\n", + "# Start the threads and see how long until are all done\n", + "...\n", + "\n", + "# Wait for the threads to finish\n", + "...\n", + "\n", + "end_time = time.time()\n", + "print(f\"Multi-threaded execution time: {end_time - start_time:.2f} seconds\")" + ] } ], "metadata": { From 3f2a19ae84730dcfbf0b420a3f72029dac14df7d Mon Sep 17 00:00:00 2001 From: Daniel Norris Date: Thu, 3 Jul 2025 17:15:39 -0700 Subject: [PATCH 91/94] cleanup --- H-Multithreading.ipynb | 41 ++++++++++++++++++++++++++++++++--------- 1 file changed, 32 insertions(+), 9 deletions(-) diff --git a/H-Multithreading.ipynb b/H-Multithreading.ipynb index aed8d5b..560c62f 100644 --- a/H-Multithreading.ipynb +++ b/H-Multithreading.ipynb @@ -7,10 +7,11 @@ "source": [ "# H - Multi-Threading\n", "\n", - "Differences between processes and threads\n", "\n", "## What is it?\n", - "Multi-threading enables us to do more than one thing at the same time. One multi-core CPUs, threads can occupy more than one core and both perform work concurrently. Even on a single core, threads can take turns running so that if one thread is waiting for a response (network, user input, disk read, etc) another thread can still be productive. \n", + "Multi-threading enables us to do more than one thing at the same time.\n", + "* One multi-core CPUs, multiple threads can run on multiple cores and perform work concurrently. \n", + "* Even on a single core, threads can take turns running so that if one thread is waiting for a response (network, user input, disk read, etc) another thread can still be productive. \n", "\n", "**Options:**\n", "* Single thread (a process with a single thread)\n", @@ -244,7 +245,21 @@ "execution_count": null, "id": "9767c387", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Working on: https://example.com\n", + "Working on: https://httpbin.org/delay/2\n", + "Working on: https://httpbin.org/uuid\n", + "Working on: https://httpbin.org/ip\n", + "Working on: https://httpbin.org/image/png\n", + "Working on: https://httpbin.org/image/svg\n", + "Single-threaded execution time: 4.17 seconds\n" + ] + } + ], "source": [ "# Example single threaded code:\n", "import requests\n", @@ -252,19 +267,23 @@ "\n", "urls = [\n", " 'https://example.com',\n", + " 'https://www.iana.org/help/example-domains',\n", " 'https://httpbin.org/delay/2',\n", " 'https://httpbin.org/uuid',\n", " 'https://httpbin.org/ip',\n", + " 'https://httpbin.org/image/png',\n", + " 'https://httpbin.org/image/svg',\n", "]\n", "\n", - "def save_url(url):\n", + "def save_url(url, number):\n", " response = requests.get(url)\n", - " with open(f'result_{i}.txt', 'w') as f:\n", + " with open(f'result_{number}.txt', 'w') as f:\n", " f.write(response.text)\n", " \n", "start_time = time.time()\n", "for i, url in enumerate(urls):\n", - " save_url(url)\n", + " print(\"Working on:\", url)\n", + " save_url(url, i)\n", "end_time = time.time()\n", "print(f\"Single-threaded execution time: {end_time - start_time:.2f} seconds\")" ] @@ -276,20 +295,24 @@ "metadata": {}, "outputs": [], "source": [ - "# Example single threaded code:\n", + "# Your multi-threaded code here:\n", "import requests\n", "import time\n", + "import threading\n", "\n", "urls = [\n", " 'https://example.com',\n", + " 'https://www.iana.org/help/example-domains',\n", " 'https://httpbin.org/delay/2',\n", " 'https://httpbin.org/uuid',\n", " 'https://httpbin.org/ip',\n", + " 'https://httpbin.org/image/png',\n", + " 'https://httpbin.org/image/svg',\n", "]\n", "\n", - "def save_url(url):\n", + "def save_url(url, number):\n", " response = requests.get(url)\n", - " with open(f'result_{i}.txt', 'w') as f:\n", + " with open(f'result_{number}.txt', 'w') as f:\n", " f.write(response.text)\n", "\n", "# Create threads for each url\n", From ab57ca7977d3331214b98697f6280c2a0be778a8 Mon Sep 17 00:00:00 2001 From: Dan Date: Thu, 3 Jul 2025 17:19:31 -0700 Subject: [PATCH 92/94] Update README.md --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index e87ab61..b6bde36 100644 --- a/README.md +++ b/README.md @@ -14,7 +14,7 @@ See the Notebooks list below for a more detailed list. We were meeting on wednesdays during October, but due to a scheduling conflict, we'll bo moving to Thursdays. * Thursday Jun 12 - 5:30PM * Thursday Jun 19 - NO MEETING (writers group) -* Thursday Jun 26 - NO MEETING (schedule conflict) +* Thursday Jun 26 - 5:30PM * Thursday Jul 03 - 5:30PM * Thursday Jul 10 - 5:30PM * Thursday Jul 17 - NO MEETING (writers group) From 975aaee81b2cfecabd211c036791876a64cea686 Mon Sep 17 00:00:00 2001 From: Dan Date: Thu, 3 Jul 2025 17:30:03 -0700 Subject: [PATCH 93/94] Update README.md --- README.md | 9 ++++++++- 1 file changed, 8 insertions(+), 1 deletion(-) diff --git a/README.md b/README.md index b6bde36..6337861 100644 --- a/README.md +++ b/README.md @@ -84,7 +84,14 @@ We have a series of python notebooks ready to work through to learn from. They * https://replit.com/ **Online Classes, videos, etc*** -There are sooo many good resources online. This course is assembled by a great instructor at GATech and is recommended pre-cursor to their online Masters in Comp Sci program: https://www.edx.org/certificates/professional-certificate/the-georgia-institute-of-technology-introduction-to-python-programming +* Kaggle Courses; e.g. Intro to Programming: + * https://www.kaggle.com/learn +* Many Youtube Python Programming tutorials: + * https://www.youtube.com/watch?v=eWRfhZUzrAc&list=PLWKjhJtqVAbnqBxcdjVGgT3uVR10bzTEB + * https://www.youtube.com/watch?v=K5KVEU3aaeQ + * ... search ... +* More structured fancy courses/programs. This one is assembled by a great instructor at GATech and is recommended pre-cursor to their online Masters in Comp Sci program + * https://www.edx.org/certificates/professional-certificate/the-georgia-institute-of-technology-introduction-to-python-programming ### Notes on AI like ChatGPT These tools are **very** helpful for learning. For this course, use them to explain how things work, but don't ask them to write code for you. If you don't experiment and learn for yourself, you won't retain as much. Keep all of your code and use your past code as the start for each more complicated problem. You'll build a toolkit of libraries and code bits that you understand and make all kinds of things from. From 545322c599c2a10a091c141651f833e751e523dd Mon Sep 17 00:00:00 2001 From: Dan Date: Thu, 7 Aug 2025 17:26:45 -0700 Subject: [PATCH 94/94] Update README.md --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index 6337861..fb4eb5f 100644 --- a/README.md +++ b/README.md @@ -22,7 +22,7 @@ We were meeting on wednesdays during October, but due to a scheduling conflict, * Thursday Jul 30 - NO MEETING (schedule conflict) * Thursday Aug 07 - 5:30PM * Thursday Aug 14 - 5:30PM -* Thursdays ongoing at 5:30PM except third thursday of each month and special events. +* THE END, doing other stuff for a while... Please check the library calendar here to confirm dates/times: **https://engagedpatrons.org/EventsCalendar.cfm?SiteID=7839** * Set "limit by location" to "Cameron Park Library".