Skip to main content
Log in

Short-term hydropower optimization in the day-ahead market using a nonlinear stochastic programming model

  • Original Paper
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

Hydropower producers participate in electricity markets by providing bids in market auctions, typically day-ahead. Making good bids that obey all market rules and consider uncertain prices for large, interconnected hydropower watercourses is challenging. This investigation aims to find bidding strategies that attend to the market aspects and all constraints relevant to short-term hydropower production. We present a stochastic mixed-integer nonlinear model and a nonlinear heuristic method for the bidding optimization problem and show a comparison of the model’s performance in two case studies. The comparison of the two models shows that their results are close and that the heuristic method can reach the optimal solution after a few iterations. The numerical experiments are also compared with results from the Short-term Hydro Optimization Program (SHOP), which is a piece of software used for operational planning in the Nordic electricity market.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from €37.37 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Norway)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The dataset generated during the current study is not publicly available as it contains proprietary information that the authors acquired through a license. Information on how to obtain it and reproduce the analysis is available from the corresponding author on request.

Abbreviations

T :

Set of periods

C :

Set of hydropower plants

S :

Set of scenarios

I :

Set of bid points

\(J_t^c\) :

Set of the number of active turbines (surfaces) in plant \(c \in C\) at period \(t \in T\)

\(r^c\) :

Set of hydropower plants upstream of plant \(c \in C\)

\(w_{t}\) :

Duration of period \(t \in T\) (h)

\(\zeta\) :

Conversion factor from (m\(^{3}\)/s) to (Mm\(^{3}\)/h)

\(q_{min}^{c}\) :

Minimum water discharge at plant \(c \in C\) (m\(^{3}\)/s)

\(q_{max}^{c}\) :

Maximum water discharge at plant \(c \in C\)(m\(^{3}\)/s)

\(v_{min}^{c}\) :

Minimal volume of plant \(c \in C\) reservoir (Mm\(^{3}\))

\(v_{max}^{c}\) :

Maximum volume of plant \(c \in C\) reservoir (Mm\(^{3}\))

\(v_{Initial}^c\) :

Initial volume of reservoir \(c \in C\) (Mm\(^{3}\))

\(v_{final}^c\) :

Final volume of reservoir \(c \in C\) (Mm\(^{3}\))

\(P_i\) :

Fixed prices in bid point \(i \in I\) for the day-ahead market

\(\pi ^{s}\) :

Probability of scenario \(s \in S\)

\(\rho _{t}\) :

Day-ahead market price at period \(t \in T\)

\(\alpha _{t}\) :

Reward factor for excess supply in period \(t \in T\)

\(\beta _{t}\) :

Penalty factor for the lack of supply at period \(t \in T\)

\(q^{c}_t\) :

Water discharge at plant \(c \in C\) and period \(t \in T\) (m\(^3\)/s)

\(v^{c}_t\) :

Reservoir volume of plant \(c \in C\) at period \(t \in T\) (Mm\(^{3}\)/h)

\(g^{c}_t\) :

Water spillage at plant \(c \in C\) and period \(t \in T\)(m\(^{3}\)/s)

\(z^{c}_{j,t}\) :

\(\left\{ \begin{array}{ll}1&{}\quad \text {if surface j is chosen at period }t \in T\text { for plant }c \in C\\ 0&{}\quad \text {otherwise}\end{array}\right.\)

\(\chi ^{c} _{j,t}\) :

Power production for surface \(j \in J_t^c\) at period \(t \in T\) and plant \(c \in C\) (MW)

\(yd_{t}\) :

Committed hourly volume in the day-ahead market at period \(t \in T\)

\(xd_{i,t}\) :

Bid volume for the day-ahead market at period \(t \in T\) and bid point \(i \in I\)

\(H^{s} _t\) :

Produced volumes of scenario \(s \in S\) at period \(t \in T\) for hourly bids

\(zd^{s} _t\) :

Supply shortage for scenario \(s \in S\) at period \(t \in T\)

\(zu^{s} _t\) :

Oversupply for scenario \(s \in S\) at period \(t \in T\)

References

  1. Warnick, C.C., Mayo, H.A., Carson, J.L., Sheldon, L.H.: Hydropower Engineering. Prentice-Hall, Englewood Cliffs (1984)

    Google Scholar 

  2. Min, H., Wagh, S., Kadier, A., Gondal, I., Azim, N., Mishra, M.: Renewable Energy Technologies. Ideal International E-Publication, Publication Pvt. Ltd (2018)

  3. Parvez, I., Shen, J., Khan, M., Cheng, C.: Modeling and solution techniques used for hydro generation scheduling. Water 11(7), 1392 (2019)

    Article  Google Scholar 

  4. Allawi, M., Jaafar, O., Hamzah, F.M., Abdullah, S.S., El-shafie, A.: Review on applications of artificial intelligence methods for dam and reservoir-hydro-environment models. Environ. Sci. Pollut. Res. 25, 1–24 (2018). https://doi.org/10.1007/s11356-018-1867-8

    Article  Google Scholar 

  5. Chang, G.W., Aganagic, M., Waight, J.G., Medina, J., Burton, T., Reeves, S., Christoforidis, M.: Experiences with mixed integer linear programming based approaches on short-term hydro scheduling. IEEE Trans. Power Syst. 16(4), 743–749 (2001). https://doi.org/10.1109/59.962421

    Article  Google Scholar 

  6. Firouz, M.H., Ghadimi, N.: Short-term management of hydro-power systems based on uncertainty model in electricity markets. J. Power Technol. 95(4), 265–272 (2015)

    Google Scholar 

  7. Fleten, S.-E., Kristoffersen, T.K.: Short-term hydropower production planning by stochastic programming. Comput. Oper. Res. 35(8), 2656–2671 (2008). https://doi.org/10.1016/j.cor.2006.12.022

    Article  MATH  Google Scholar 

  8. Aasgård, E.K., Andersen, G.S., Fleten, S.-E., Haugstvedt, D.: Evaluating a stochastic-programming-based bidding model for a multireservoir system. IEEE Trans. Power Syst. 29(4), 1748–1757 (2014). https://doi.org/10.1109/TPWRS.2014.2298311

    Article  Google Scholar 

  9. Aasgård, E.K., Fleten, S.-E., Kaut, M., Midthun, K., Perez-Valdes, G.A.: Hydropower bidding in a multi-market setting. Energy Syst. 10(3), 543–565 (2019)

    Article  Google Scholar 

  10. De Ladurantaye, D., Gendreau, M., Potvin, J.Y.: Strategic bidding for price-taker hydroelectricity producers. IEEE Trans. Power Syst. 22(4), 2187–2203 (2007)

    Article  Google Scholar 

  11. Fleten, S.-E., Kristoffersen, T.K.: Stochastic programming for optimizing bidding strategies of a Nordic hydropower producer. Eur. J. Oper. Res. 181(2), 916–928 (2007). https://doi.org/10.1016/j.ejor.2006.08.023

    Article  MATH  Google Scholar 

  12. Faria, E., Fleten, S.-E.: Day-ahead market bidding for a Nordic hydropower producer: taking the Elbas market into account. Comput. Manag. Sci. 8(1), 75–101 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Löhndorf, N., Wozabal, D., Minner, S.: Optimizing trading decisions for hydro storage systems using approximate dual dynamic programming. Oper. Res. 61(4), 810–823 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Aasgård, E.K.: Hydropower bidding using linearized start-ups. Energies 10(12), 1975 (2017)

    Article  Google Scholar 

  15. Belsnes, M.M., Wolfgang, O., Follestad, T., Aasgård, E.K.: Applying successive linear programming for stochastic short-term hydropower optimization. Electr. Power Syst. Res. 130, 167–180 (2016). https://doi.org/10.1016/j.epsr.2015.08.020

    Article  Google Scholar 

  16. Aasgård, E.K., Naversen, C., Fodstad, M., Skjelbred, H.I.: Optimizing day-ahead bid curves in hydropower production. Energy Syst. 9, 257–275 (2017). https://doi.org/10.1007/s12667-017-0234-z

    Article  Google Scholar 

  17. Aasgård, E.K., Skjelbred, H.I., Solbakk, F.: Comparing bidding methods for hydropower. Energy Proc. 87, 181–188 (2016)

    Article  Google Scholar 

  18. Kong, J., Skjelbred, H.I., Fosso, O.B.: An overview on formulations and optimization methods for the unit-based short-term hydro scheduling problem. Electr. Power Syst. Res. 178, 106027 (2020). https://doi.org/10.1016/j.epsr.2019.106027

    Article  Google Scholar 

  19. Fosso, O.B., Belsnes, M.M.: Short-term hydro scheduling in a liberalized power system. In: 2004 International Conference on Power System Technology, 2004. PowerCon 2004, vol. 2, pp. 1321–1326. IEEE (2004)

  20. SHOP: https://shop.sintef.energy/. Last Accessed September 2022. https://shop.sintef.energy/

  21. Skjelbred, H.I., Kong, J., Fosso, O.B.: Dynamic incorporation of nonlinearity into MILP formulation for short-term hydro scheduling. Int. J. Electr. Power Energy Syst. 116, 105530 (2020)

    Article  Google Scholar 

  22. Flatabø, N., Haugstad, A., Mo, B., Fosso, O.B.: Short-term and medium-term generation scheduling in the Norwegian hydro system under a competitive power market structure. In: EPSOM’98 (International Conference on Electrical Power System Operation and Management), Switzerland (1998)

  23. Osorio, G.J., Matias, J.C.O., Catalao, J.P.S.: A review of short-term hydro scheduling tools. In: 2013 48th International Universities’ Power Engineering Conference (UPEC), pp. 1–6. IEEE (2013)

  24. Santos, K., Finardi, E.: Piecewise linear approximations for hydropower production function applied on the hydrothermal unit commitment problem. Int. J. Electr. Power Energy Syst. 135, 107464 (2022)

    Article  Google Scholar 

  25. dos Santos Abreu, D.L., Finardi, E.C.: Continuous piecewise linear approximation of plant-based hydro production function for generation scheduling problems. Energies 15(5), 1699 (2022)

    Article  Google Scholar 

  26. Pérez-Díaz, J.I., Wilhelmi, J.R., Arévalo, L.A.: Optimal short-term operation schedule of a hydropower plant in a competitive electricity market. Energy Conver. Manag. 51(12), 2955–2966 (2010)

    Article  Google Scholar 

  27. Guedes, L.S., de Mendonça Maia, P., Lisboa, A.C., Vieira, D.A.G., Saldanha, R.R.: A unit commitment algorithm and a compact MILP model for short-term hydro-power generation scheduling. IEEE Trans. Power Syst. 32(5), 3381–3390 (2016)

  28. Chang, G.W., Su, C.T.: A practical mixed integer linear programming-based short-term hydro scheduling. In: IEEE/PES Transmission and Distribution Conference and Exhibition, vol. 3, pp. 1606–1610. IEEE (2002)

  29. Feng, Z.K., Niu, W.J., Wang, W.C., Zhou, J.Z., Cheng, C.T.: A mixed integer linear programming model for unit commitment of thermal plants with peak shaving operation aspect in regional power grid lack of flexible hydropower energy. Energy 175, 618–629 (2019). https://doi.org/10.1016/j.energy.2019.03.117

    Article  Google Scholar 

  30. Daadaa, M., Séguin, S., Demeester, K., Anjos, M.F.: An optimization model to maximize energy generation in short-term hydropower unit commitment using efficiency points. Int. J. Electr. Power Energy Syst. 125, 106419 (2021). https://doi.org/10.1016/j.ijepes.2020.106419

    Article  Google Scholar 

  31. Finardi, E., Silva, E.: Unit commitment of single hydroelectric plant. Electr. Power Syst. Res. 75, 116–123 (2005). https://doi.org/10.1016/j.epsr.2005.01.008

    Article  Google Scholar 

  32. Séguin, S., Côté, P., Audet, C.: Self-scheduling short-term unit commitment and loading problem. IEEE Trans. Power Syst. 31(1), 133–142 (2016). https://doi.org/10.1109/TPWRS.2014.2383911

    Article  Google Scholar 

  33. Wolsey, L.A.: Integer Programming. Wiley, New York (2020)

    Book  MATH  Google Scholar 

  34. Bringedal, A.S., Søvikhagen, A.M.L., Aasgård, E.K., Fleten, S.-E.: Backtesting coordinated hydropower bidding using neural network forecasting. Energy Syst. 1–21 (2021)

  35. Fleten, S.-E., Pettersen, E.: Constructing bidding curves for a price-taking retailer in the Norwegian electricity market. IEEE Trans. Power Syst. 20(2), 701–708 (2005)

    Article  Google Scholar 

  36. Sorokin, A., Rebennack, S., Pardalos, P.M., Iliadis, N.A., Pereira, M.V.: Handbook of Networks in Power Systems I. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  37. Bonami, P., Biegler, L.T., Conn, A.R., Cornuéjols, G., Grossmann, I.E., Laird, C.D., Lee, J., Lodi, A., Margot, F., Sawaya, N., et al.: An algorithmic framework for convex mixed integer nonlinear programs. Discr. Optim. 5(2), 186–204 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Forrest, J., Lougee-Heimer, R.: CBC user guide. In: Emerging theory, methods, and applications (pp. 257–277). INFORMS (2005)

  39. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Prog. 106(1), 25–57 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was funded by a Discovery grant provided by the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Jafari Aminabadi.

Ethics declarations

Conflict of interest

There is no conflict of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafari Aminabadi, M., Séguin, S., Fofana, I. et al. Short-term hydropower optimization in the day-ahead market using a nonlinear stochastic programming model. Energy Syst (2023). https://doi.org/10.1007/s12667-023-00618-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1007/s12667-023-00618-8

Keywords