Skip to main content
Log in

Synthesis of Monodisperse Silicon Quantum Dots Through a K-Naphthalide Reduction Route

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Si quantum dots (Si q-dots) with a size below ~5 nm have great potential in electronics and photovoltaics and are candidate materials for down conversion of light due to their strong photoluminescence (PL) properties. Proper control of size and size distribution as well as the surface characteristics of the Si q-dots are critical for applications in order to control the PL response. Here we report on the synthesis of Si q-dots by a chemical route using potassium-naphthalide as a reducing agent. A narrow size distribution of the Si q-dots, with size in the range from 3 to 30 nm, was achieved by controlling the concentration of the reduction agent, the concentration of silicon tetrachloride (SiCl4) precursor, temperature and the reaction time. The crystallinity and the narrow size distribution of Si q-dots were demonstrated by electron microscopy and electron diffraction. The optical absorption and PL response in the blue region of the visible spectrum is reported for 3.1 ± 0.6 nm octanoxy capped Si q-dots and 4.2 ± 1.4 nm methoxy capped Si q-dots in 1,2-dimethoxyethane solution. A quantum efficiency of (1.63 ± 0.16) × 10−3% was detected for the octanoxy terminated Si q-dots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from €37.37 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Norway)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. G. Cullis, L. T. Canham, and P. D. Calcott (1997). J. Appl. Phys. 82, 909.

    Article  CAS  Google Scholar 

  2. L. Brus (1994). J. Phys. Chem. 98, 3575.

    Article  CAS  Google Scholar 

  3. N. Arul Dhas, C. Paul Raj, and A. Gedanken (1998). Chem. Mater. 10, 3278.

    Article  Google Scholar 

  4. H. Takagi, H. Ogawa, Y. Yamazaki, A. Ishizaki, and T. Nakagiri (1990). Appl. Phys. Lett. 56, 2379.

    Article  CAS  Google Scholar 

  5. S. Amir, Handbook of Nanophysics (CRC Press, Boca Raton, 2010), pp. 21-1–25-25.

  6. W.-Q. Huang, S.-R. Liu, C.-J. Qin, Q. Lü, and L. Xu (2011). Opt. Commun. 284, 1992.

  7. B.-H. Kim, C.-H. Cho, S.-J. Park, N.-M. Park, and G. Y. Sung (2006). Appl. Phys. Lett. 89, 063509.

    Article  Google Scholar 

  8. G. Conibeer, M. Green, E.-C. Cho, D. König, Y.-H. Cho, T. Fangsuwannarak, G. Scardera, E. Pink, Y. Huang, T. Puzzer, S. Huang, D. Song, C. Flynn, S. Park, X. Hao, and D. Mansfield (2008). Thin Solid Films 516, 6748.

    Article  CAS  Google Scholar 

  9. Z. F. Li and E. Ruckenstein (2004). Nano Lett. 4, 1463.

    Article  CAS  Google Scholar 

  10. X. Peng, J. Wickham, and A. P. Alivisatos (1998). J. Am. Chem. Soc. 120, 5343.

    Article  CAS  Google Scholar 

  11. R. A. Bley and S. M. Kauzlarich (1996). J. Am. Chem. Soc. 118, 12461.

    Article  CAS  Google Scholar 

  12. J. R. Heath (1992). Science 258, 1131.

    Article  CAS  Google Scholar 

  13. A. Kornowski, M. Giersig, R. Vogel, A. Chemseddine, and H. Weller (1993). Adv. Mater. 5, 634.

    Article  CAS  Google Scholar 

  14. R. K. Baldwin, K. A. Pettigrew, J. C. Garno, P. P. Power, G. Y. Liu, and S. M. Kauzlarich (2002). J. Am. Chem. Soc. 124, 1150.

    Article  CAS  Google Scholar 

  15. R. K. Baldwin, K. A. Pettigrew, E. Ratai, M. P. Augustine, and S. M. Kauzlarich (2002). Chem. Commun. 17, 1822.

    Article  Google Scholar 

  16. R. D. Tilley, J. H. Warner, K. Yamamoto, I. Matsui, and H. Fujimoro (2005). Chem. Commun. 14, 1833.

    Article  Google Scholar 

  17. B. D. Rowsell and J. G. C. Veinot (2005). Nanotechnology 16, 732.

    Article  CAS  Google Scholar 

  18. T. U. M. S. Murthy, N. Miyamoto, M. Shimbo, and J. Nishizawa (1976). J. Cryst. Growth 33, 1.

    Article  CAS  Google Scholar 

  19. W. R. Cannon, S. C. Danforth, J. H. Flint, J. S. Haggerty, and R. A. Marra (1982). J. Am. Ceram. Soc. 65, 324.

    Article  CAS  Google Scholar 

  20. H. Wei Chiu and S. M. Kauzlarich (2006). Chem. Mater. 18, 1023.

    Article  Google Scholar 

  21. A. Sa’ar (2009). J. Nanophotonics 3, 032501.

    Google Scholar 

  22. Z. Kang, Y. Liu, C. H. A. Tsang, D. D. D. Ma, X. Fan, N.-B. Wong, and S.-T. Lee (2009). Adv. Mater. 21, 661.

    Article  CAS  Google Scholar 

  23. J. N. Demas and G. A. Crosby (1971). J. Phys. Chem. 75, 991.

    Article  Google Scholar 

  24. C. A. Barrett, C. Dickinson, S. Ahmed, T. Hantschel, K. Arstila, and K. M. Ryan (2009). Nanotechnology 20, 275605.

    Article  Google Scholar 

  25. V. K. LaMer and R. H. Dinegar (1950). J. Am. Chem. Soc. 72, 4847.

    Article  CAS  Google Scholar 

  26. T. Sugimato (2003). Chem. Eng. Technol. 26, 3.

    Article  Google Scholar 

  27. T. A. Scott, B. A. Ooro, D. J. Collins, M. Shatruk, A. Yakovenko, K. R. Dunbar, and H.-C. Zhou (2009). Chem. Commun. 2009, 65.

    Article  Google Scholar 

  28. J. Zou, P. Sanelle, K. A. Pettigrew, and S. M. Kauzlarich (2006). J. Clust. Sci. 17, 565.

    Article  CAS  Google Scholar 

  29. Y. Kurokawa, S. Tomita, S. Miyajima, A. Yamada, and M. Konagai (2007). Jpn. J. Appl. Phys. 46, L833.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was performed within “The Norwegian Research Centre for Solar Cell Technology” (project number 193829), a Centre for Environment-friendly Energy Research (FME) co-sponsored by the Norwegian Research Council and research and industry partners in Norway. Senior Engineer Yingda Yu is acknowledged for the assistance with the TEM work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mari-Ann Einarsrud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balcı, M.H., Maria, J., Vullum-Bruer, F. et al. Synthesis of Monodisperse Silicon Quantum Dots Through a K-Naphthalide Reduction Route. J Clust Sci 23, 421–435 (2012). https://doi.org/10.1007/s10876-012-0448-0

Download citation

  • Received:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s10876-012-0448-0

Keywords