Abstract
Si quantum dots (Si q-dots) with a size below ~5 nm have great potential in electronics and photovoltaics and are candidate materials for down conversion of light due to their strong photoluminescence (PL) properties. Proper control of size and size distribution as well as the surface characteristics of the Si q-dots are critical for applications in order to control the PL response. Here we report on the synthesis of Si q-dots by a chemical route using potassium-naphthalide as a reducing agent. A narrow size distribution of the Si q-dots, with size in the range from 3 to 30 nm, was achieved by controlling the concentration of the reduction agent, the concentration of silicon tetrachloride (SiCl4) precursor, temperature and the reaction time. The crystallinity and the narrow size distribution of Si q-dots were demonstrated by electron microscopy and electron diffraction. The optical absorption and PL response in the blue region of the visible spectrum is reported for 3.1 ± 0.6 nm octanoxy capped Si q-dots and 4.2 ± 1.4 nm methoxy capped Si q-dots in 1,2-dimethoxyethane solution. A quantum efficiency of (1.63 ± 0.16) × 10−3% was detected for the octanoxy terminated Si q-dots.












Similar content being viewed by others
References
A. G. Cullis, L. T. Canham, and P. D. Calcott (1997). J. Appl. Phys. 82, 909.
L. Brus (1994). J. Phys. Chem. 98, 3575.
N. Arul Dhas, C. Paul Raj, and A. Gedanken (1998). Chem. Mater. 10, 3278.
H. Takagi, H. Ogawa, Y. Yamazaki, A. Ishizaki, and T. Nakagiri (1990). Appl. Phys. Lett. 56, 2379.
S. Amir, Handbook of Nanophysics (CRC Press, Boca Raton, 2010), pp. 21-1–25-25.
W.-Q. Huang, S.-R. Liu, C.-J. Qin, Q. Lü, and L. Xu (2011). Opt. Commun. 284, 1992.
B.-H. Kim, C.-H. Cho, S.-J. Park, N.-M. Park, and G. Y. Sung (2006). Appl. Phys. Lett. 89, 063509.
G. Conibeer, M. Green, E.-C. Cho, D. König, Y.-H. Cho, T. Fangsuwannarak, G. Scardera, E. Pink, Y. Huang, T. Puzzer, S. Huang, D. Song, C. Flynn, S. Park, X. Hao, and D. Mansfield (2008). Thin Solid Films 516, 6748.
Z. F. Li and E. Ruckenstein (2004). Nano Lett. 4, 1463.
X. Peng, J. Wickham, and A. P. Alivisatos (1998). J. Am. Chem. Soc. 120, 5343.
R. A. Bley and S. M. Kauzlarich (1996). J. Am. Chem. Soc. 118, 12461.
J. R. Heath (1992). Science 258, 1131.
A. Kornowski, M. Giersig, R. Vogel, A. Chemseddine, and H. Weller (1993). Adv. Mater. 5, 634.
R. K. Baldwin, K. A. Pettigrew, J. C. Garno, P. P. Power, G. Y. Liu, and S. M. Kauzlarich (2002). J. Am. Chem. Soc. 124, 1150.
R. K. Baldwin, K. A. Pettigrew, E. Ratai, M. P. Augustine, and S. M. Kauzlarich (2002). Chem. Commun. 17, 1822.
R. D. Tilley, J. H. Warner, K. Yamamoto, I. Matsui, and H. Fujimoro (2005). Chem. Commun. 14, 1833.
B. D. Rowsell and J. G. C. Veinot (2005). Nanotechnology 16, 732.
T. U. M. S. Murthy, N. Miyamoto, M. Shimbo, and J. Nishizawa (1976). J. Cryst. Growth 33, 1.
W. R. Cannon, S. C. Danforth, J. H. Flint, J. S. Haggerty, and R. A. Marra (1982). J. Am. Ceram. Soc. 65, 324.
H. Wei Chiu and S. M. Kauzlarich (2006). Chem. Mater. 18, 1023.
A. Sa’ar (2009). J. Nanophotonics 3, 032501.
Z. Kang, Y. Liu, C. H. A. Tsang, D. D. D. Ma, X. Fan, N.-B. Wong, and S.-T. Lee (2009). Adv. Mater. 21, 661.
J. N. Demas and G. A. Crosby (1971). J. Phys. Chem. 75, 991.
C. A. Barrett, C. Dickinson, S. Ahmed, T. Hantschel, K. Arstila, and K. M. Ryan (2009). Nanotechnology 20, 275605.
V. K. LaMer and R. H. Dinegar (1950). J. Am. Chem. Soc. 72, 4847.
T. Sugimato (2003). Chem. Eng. Technol. 26, 3.
T. A. Scott, B. A. Ooro, D. J. Collins, M. Shatruk, A. Yakovenko, K. R. Dunbar, and H.-C. Zhou (2009). Chem. Commun. 2009, 65.
J. Zou, P. Sanelle, K. A. Pettigrew, and S. M. Kauzlarich (2006). J. Clust. Sci. 17, 565.
Y. Kurokawa, S. Tomita, S. Miyajima, A. Yamada, and M. Konagai (2007). Jpn. J. Appl. Phys. 46, L833.
Acknowledgments
This work was performed within “The Norwegian Research Centre for Solar Cell Technology” (project number 193829), a Centre for Environment-friendly Energy Research (FME) co-sponsored by the Norwegian Research Council and research and industry partners in Norway. Senior Engineer Yingda Yu is acknowledged for the assistance with the TEM work.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Balcı, M.H., Maria, J., Vullum-Bruer, F. et al. Synthesis of Monodisperse Silicon Quantum Dots Through a K-Naphthalide Reduction Route. J Clust Sci 23, 421–435 (2012). https://doi.org/10.1007/s10876-012-0448-0
Received:
Published:
Issue date:
DOI: https://doi.org/10.1007/s10876-012-0448-0
