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Abstract

Proper manipulation of processor state is crucial for higifggmance speculative super-
scalar processors. This dissertation presents a new stetdigm. In this paradigm, the
processor is aware of the in-order, speculative and anthital states on an individual data
location basis, rather than with respect to a particulantpmi the program’s execution.
We refer to the traditional processors which adopt a lump-gspproach with respect to
the processor state &arse-grain State Processors (CSBhd those which can classify
individual data locations belonging to a particular stadeFme-grain State Processors
(FSP)

Fine-grain State Processors break the atomic state seffirgo granularity at the
individual value level. As a result, they can utilize cotrealues upon a mis-speculation.
Furthermore, they can continue execution with a partiadigrect state and still maintain
correct program semantics. Performing the state recovéhput stopping the execution
of future instructions potentially can hide the latencylwé tecovery process, resulting in
zero-penalty speculation under ideal conditions.

This dissertation also presents a taxonomy of FSP. The temgrcategorizes existing
fine-grain state handling techniques and outlines the despgce of future FSP designs.
Based on the developed general framework, the dissertatjgores applications of FSP
on sophisticated uni-processor as well as multi-coreirthuleaded organizations. Two
detailed FSP models are evaluated/R and FSG-RA regarding control speculation and
value speculation, respectively. In both models, the F®Rnigue handles processor
states more efficiently and obtains much higher perform#mae traditional mechanisms.
For example, EMR achieves an average of 9.0% and up to 19.%8%r lperformance
than traditional course grain state handling on the SPEC €000 benchmark suite,
while FSG-RA obtains an average of 38.9% and up to 160.0%rhattdormance than
a comparably equipped CSP processor on the SPEC CFP2000 mehduite.
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Chapter 1

Introduction

1.1 Motivation

Out-of-order and speculative executions have been thenagdl of high performance
superscalar processors which dominated a large varietystésis from laptop computers
to workstations and servers during the last decade. Praisesslizing these mechanisms
need to handle processor states properly. For instancey #xaeption occurs or a
speculation misses, the processor state must be restor@gievious correct point to
maintain the correct semantics. Proper manipulation ofgssor states is crucial for the
successful implementation of speculation in contempagpaogessorsdl, 47).

In this dissertation, we present a new state paradigm intwihie processor is aware of
the in-order, speculative and architectural staB$ ¢n an individual data location basis,
rather than with respect to a particular point in the progsaemecution. We refer to the
traditional processors which adopt a lump-sum approach veéispect to the processor
state asCoarse-grain State Processor€%P), and those which can classify individual

data locations belonging to a particular stateFage-grain State Processors§P). We
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illustrate that if appropriate mechanisms are implemetdeghswer queries regarding the
current state of data values on an individual basis, it isipesto salvage part of the work
done during speculative execution after a mis-speculatigreven better yet, to continue
execution without a roll-back and recover only the damagad @f the staten parallel
with the execution of useful instructions

Various micro-architecture techniques that salvage wodmfa failed speculation
attempt §8, 10, 44, 36], as well as reducing branch mis-prediction pena, [16], all
implement a variation of a fine-grain state maintenance ar@sim. However, to the best
of our knowledge no one to date pointed out the commonalithe$e micro-architectural
mechanisms and named it. Furthermore, very few existingnigaes 62, 16, 61]
harvest the performance benefits of overlapping the stateveey with useful instruction
execution.

In order to better illustrate this perspective, considerirapke example shown in
Figurel.l Assume that the processor mis-predicted the branch etgiruand reached
pointC. A processor that has the concept of only a coarse grain isée@s to roll back
to pointA, restore the state to the in-order state at that point, afect@eute instructiomy
to arrive at pointC with a correct architectural state. On the other hand, ifpteeessor
knows which data values have been modified speculativéigsitwo options. It can either
restore the state as before by rolling back to pgibut skip the execution of instructidg,
i.e., salvage part of the work done during the speculatiez@tion, or continue executing

past poiniC without restoring the state, but clearly identify whichwes that make-up the
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Figure 1.1. Mis-speculation and its effect on state

architectural state at poidt have been damaged during the speculative executionxj.e.,
and block the references to those locations until theirembvalues are restored.

For most applications, rolling back and re-using salvagesllts provide only limited
benefits B5]. This is because the salvaged instructions may not be oaritieal path of
the program to shorten the execution latency when theilteeate reused. Furthermore,
skipping over a subset of instructions is not easy and in rg¢mequires sophisticated
micro-architecture technique8][ A majority of these techniques would pose significant
design complexity in a processor implementation. Altewedy, continuing execution in
parallel with the recovery of damaged values is quite fdasibcause all that is needed is

the capability to identify the part of the state that is daathgnd the means to restore these
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values on an individual basis. If the recovery process caovieeapped with the useful
execution, this technique can significantly reduce and mesoases completely eliminate
the performance penalty of mis-speculations.

Our experimental results show that values modified spaeelgtlong the mis-predicted
branch path are only a small part of the whole architectusaésFigurel.2illustrates that
on an average the wrong speculative state upon branch eusepons of 17 SPEC2000
CPU benchmarks accounts for around 20% of the whole archrsctate. Moreover, our
experimental results show that more than 60% of the newbhéat instructions from the
correct branch path do not reference those damaged valligstrated in Figurel.3, on
average only 18% and 40% of instructions along the corrdbt@iza mis-predicted branch
will reference damaged register values in CFP2000 and CINT,2@8pectively.

As we can see, there exists a large potential for improvirgparformance. Upon
a mis-speculation, an FSP which is aware of the processtw staan individual basis
can potentially continue processing execution before thelevprocess state at the mis-
speculation point is restored. For this purpose, newlyhicinstructions accessing
incorrect speculative values need to be blocked until theecbdata values are restored.
On the other hand, more than 60% instructions, which acaadgscorrect values, will be
able to execute while the state recovery continues. Thesloting latency of the branch
mis-prediction recovery can be overlapped with those dgefiructions. Under ideal
circumstances an FSP can achieve a zero-latency recovergré are enough independent

instructions.
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1.2 Research Goals

FSP breaks the main limitation of the state maintenance in @Bieh cannot utilize
correct values within the architectural state when an eimeccurs. Although retaining
the usable results has been a significant focus in a numbecenht proposalsiB, 44, 35,
most of these proposals have provided ad-hoc solutioreédilto the specific problem at
hand. The fundamental concept of fine-grain state handliogges a key insight into the
design of future systems where a systematic approach cambleyed to separate usable
values from dmaged values. Doing so can enable researchdesign processors which
can aggressively pursue optimization opportunities upgoexaeption without waiting to
restore the whole state to a known point. In this dissematr first research goal is to
propose a general framework of fine-grain state handling.défeme an FSP having the

following properties:

1. Identification property:

The processor can identify an individual data item such agester file entry or a
memory location as belonging to tieorder or speculativestate, or as damaged
value;

2. Block and shelve property:
The processor can block an instruction which referencesadanhvalues by shelving

it until the damaged values are corrected,

3. Correction property:
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The processor has the means to correct damaged locations ionigidual basis

after a mis-speculation;

4. Unblocking property:

The processor can wake-up and execute shelved instructibmsh reference

damaged values upon restoration of the damaged values nbignagy order;

5. Parallelism-in-recovery property:

The processor can overlap the restoration of damaged velitieshe execution of
instructions which do not reference damaged values. Inratioeds, upon a mis-
speculation, execution can continue with a partially odristate as the damaged
values are repaired. This novel concept allows mis-spaounlaecovery to become

free if there is independent work to do for the processor.

The design space of FSP is quite large. In principle, it canapplied in many
different kinds of speculative execution environments Bplering the parallelism in
mis-speculation recovery to improve performance. In thsseftation, we demonstrate
that the FSP concept is applicable for both the control dp&ee execution and the
value speculative execution. For this purpose we evalwabeRSP models: regarding
control speculation the technique of Eager branch Mis-iptieh Recovery, and for value
speculation the technique of Fine-grain State Guided RwathBgecution.

Eager branch Mis-prediction RecovergNIR) illustrates how one can apply the FSP

concept for control speculation. In a nutshell, a tradaid®SP either checkpoints the state
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at branches for faster recovery, or sequentially re-cantrthe in-order state at the mis-
predicted point by waiting until the mis-predicted branelaches the head of the reorder
buffer. It cannot restart the execution from the correchpattil the whole state at the mis-

predicted branch is fully restored. However, the state igh@ating scheme is costly and

the state re-constructing scheme is slow.

In contrast to the traditional schemes, EMR allows contiguthe execution with
a partially correct state, allowing branch mis-predicti@tovery overlap with useful
execution. The required hardware of EMR is modest. The harelwost can be estimated
roughly as the cost to save the checkpoints of the processt®ss Comparing with the
traditional checkpointing scheme, EMR needs to createtibekpoints only upon the mis-
predicted branch instruction, instead of on every branstruiction.

Our second technique to illustrate the effectiveness ottreept of FSP investigates
value speculation by using Runahead execution. Runaheadt®sxewas first proposed by
Dundas and Mudgelf] for in-order processors and later applied to out-of-optecessors
by Mutlu et al. [37]. It is an effective method to tolerate rapidly growing mesntatency
in a superscalar processor. In this technique, When theigtgin window is blocked by an
L2-cache missing load instruction, the processor enterSrttnahead mode” by providing
a bogus value for the blocking load operation and pseudonagit out of the instruction
window. Under the “runahead mode”, all the instructionsdfeing the blocking load are
fetched, executed, and pseudo-retired from the instnugtiaodow. Once the blocking load

instruction completes, the processor rolls back to thetppantered the “runahead mode”
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and returns to the “normal mode”. Though all instructionsl assults obtained during
the “runahead mode” are discarded, the runahead execuiomswp the data cache and
significantly enhances the memory level parallelism.

As it can be seen, Runahead execution behaves as a valueagpecdlring which part
of the state will become damaged. After the correct valudefiocking load instruction
is fetched from the main memory, the Runahead processorhwha CSP, has to roll back
to the missing point and restart the execution with the cbpeocessor state.

Application of FSP concepts in this realm results in a finggstate technique called
Fine-grain State Guided Runahead executie8G-RA). FSG-RA is implemented as an
SMT-like multi-threaded processor. When the missing loadsslved, FSG-RA is able to
continue executing new instructions with a partially cotrgate, without rolling back. On
the other hand, it only needs to re-execute those miss depemtbtructions to repair the
incorrect values updated during the “runahead mode”. Euntbre, it can execute those
instructions via an idle thread, in parallel with executihg@ newer instructions by the
original thread. Thus, FSG-RA can improve the single-thigagjram’s performance by
exploiting the parallelism in the Runahead execution regoiea multi-thread processor
environment.

The concept of the fine-grain state is natural to reason afjeetulative executions
and optimize speculative efforts. Comparing with the tiadal CSP, our proposed FSP
models, EMR and FSG-RA demonstrate that such an approachrogitg impressive

speed-ups without difficulties to scale processor key etgsneWith the fine-grain state
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concept, mis-speculation recovery essentially beconeesifithere is enough independent
work to do for the processor. We therefore believe that threeept of FSP will open up

new and exciting research opportunities in the micro-aechire community.

1.3 Dissertation Organization

The remainder of this dissertation is organized as followZhapter2 presents the
background for this dissertation. In Chap8rthe simulation and experimental setup of
this work is described. In Chaptdya taxonomy of FSP is introduced and related work are
summarized and classified based on the taxonomy. Next, GHapteoduces the design
space of FSP and a general framework in which the concept eamfiemented. This
chapter also compares FSP and CSP regarding to the contmllapen and the value
speculation at a high level. Two FSP models, EMR and FSG-R#edan the proposed
general framework, are introduced in Chapeand Chaptef7, respectively. Finally, a

summary and the conclusion are given in Chapter
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Chapter 2

Background

This chapter is devoted to presenting a foundation for witderding this dissertation
work. First, we discuss out-of-order execution and spéival@xecution as employed in
contemporary processors. Then, the concept of processesss illustrated. Next, we
describe the traditional state maintenance and recovechamesms. Finally, the effect of

register renaming technique on state recovery is presented

2.1 Out-of-order Execution and Speculative Execution

Out-of-order execution and speculative execution are twestones in the evolution
of modern microprocessor architectures. These two tedlesi@xplore instruction level
parallelism to achieve great performance.

Out-of-order execution breaks the limitation of the stsetjuential execution defined by
the program order. Instead of waiting for previous insiiaret to be finished, an instruction
is issued and executed once its operands are ready. Givelglecomputing resources,
a processor can issue multiple independent instructioh®foprogram order to exploit

parallelism at the instruction level. However, an out-oder executed instruction might
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modify the processor state before it should. In such a cagepiocessor state will not
be consistent with the sequential execution model. For gi@nilustrated in Figur.1,
suppose that instructiol» executes beforé; out of order, and writes the result to the
register file beford, executes. If latet; raises some exceptiom,g.,a page fault, then
the modification to the state introduced Ibyneeds to be reverted, before proper exception

handling function is invoked.

Register

File

) , Speculative
| I Update
Out-of-order l
Update | |
Il |2 B o o o -
Dynamic Instruction Strear
Exception Mis—prediction

Figure 2.1. Exception and Mis-speculation Boundaries

Speculative execution is another important technique foatenn microprocessors. There
exists several different kinds of speculation technigsash as control speculation, value
prediction, and load speculation. Let us use the controtidpdon as an example to
illustrate the effect of speculation on the processor state

Control speculation is a technique which is based on the grediof the direction and
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the target address of branch instructions. Without corgpelculation, a processor has to
stall upon encountering a branch instruction until its ¢ar@ddress and direction become
known. Given that on an average there is a branch instruaticgvery 3-5 dynamic
instructions B4, it is not acceptable to stall the instruction stream upaohebranch in

a modern wide-issue superscalar processor. With conteglgation, the target of a branch
instruction is predicted based on the history pattern ofadyic branch instructions. The
dynamic instruction stream can continue along a specelai@th even before that branch
is executed. Though a significant body of branch predictiethads has provided us with
increasingly better prediction accuracié®,[33, 50, 9, 23], branch predictors cannot be
perfect. If a prediction is wrong, all instructions alon@ throng path (i.e., following the
branchB in Figure2.1) have to be flushed from the pipeline. Accordingly, modifimas

to the processor state introduced by those speculativelguted instructions need to be
eliminated.

Once an exception or a mis-speculation occurs, the mackeasrto repair its state. This
process is the state recovery. The machine in Figut@eeds to roll back precisely to the
exception boundary befoteg, if instructionl, brings an exception. Or, it needs to roll back
to the mis-speculation boundary aftif the conditional branclB is mis-predicted (Note
that the precise recovery point fBris the right boundary of the last delay slot instruction,

if the delayed branch semantics is used.).
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2.2 Processor States

In order to support out-of-order and speculative executionels and be able to recover
from exceptions and mis-speculations, modern superspab@essors must be aware of
different machine states, namely, in-order, speculativé architectural state24] so
that processor can always use the correct state for anynalievisible changes in data
locations and maintain correct program semantics.

The processor state contains the full set of architectegasters or logical registers that
are visible at the ISA architecture level of the processar fne memory system. Let us
consider Figure2.2 which illustrates the different states when a branch is spégely
executed. For simplicity, assume that the architectuigikter file has 3 register1~R3
and the memory has only one location at addxess

We define the in-order state as the state that would have leaehed if the program
is executed in program order, up to the point of interest, #dredspeculative state as
the set of values produced that have not been committed. #lsoitld be clear, newer
instructions should use the values from the in-order stiatbe values have not been
modified (i.e., they are not part of the speculative state) strould use values from the
speculative state otherwise. The architectural statefinetbas the union of the in-order
and speculative states, and conveniently describes tloéw@tes which any speculatively
fetched instruction should reference. For example, inil@gLR2 the set of values produced
before the branch is defined as theorder state at Bthe set of speculative values produced

after B is defined as thgpeculative state after,nd the architectural state at the point of
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branch resolution is described as the&rent architectural state Obviously, the in-order

state at B is the same state as the architectural state wadmnahch has been fetched.
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| R3 = .. In—order State
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] Architectural State

In—-order State at B Speculative State after B When B is resolved
lo x) =... Iy R3=..
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(b) State Sets

Figure 2.2. In-order, Speculative and Architectural State s upon Speculation

As it can be seen from the figure, the in-order state at B iredxg R3, R1 andR2
which are defined by instructioly, l», I3 and l4, respectively. Let us express it as
{x(l0),R3(l2),R1(I3),R2(l4)}. Note that the assignment ®2 in I, is superseded by

the assignment t&2 in 4. Therefore, it does not belong to the in-order state at B.
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Assignments td&R1, R2 andx in instructionds, lg andl7 make up the speculative state after
B, {R1(I5),R2(ls),x(I7)}, because they are speculatively executed instructionthaydre
control depended on B. Any newer instructions after this cmtpience will reference the
state{R3(l2),R1(l5),R2(lg),x(I7) }, which is the architectural state combining the in-order
state at B and the speculative state after B.

If the speculation is correct where B is resolved, all assignts along the speculative
path become non-speculative. The speculative state bacpare of the in-order state,
because the speculative path after B is the correct prograams. The current architectural
state also becomes the in-order state at this point. Inasiif B is mis-predicted, then the
speculative execution was wrong. The processor needsa@ tbp incorrect architectural

state back to the correct in-order state at B.

2.3 State Maintenance and Recovery

Traditionally, there have been two kinds of state mainteaand recovery mechanisms.
One is referred to as tt&tate re-constructingnechanism proposed by Smith and Pleszkun
[47]. The other is referred to as tl@&heckpointingnechanism proposed by Hwu and Patt

[21].

2.3.1 State re-constructing

To address the problems of out-of-order execution and geeaiterrupts in pipelined
processors, Smith and Pleszkun proposed the reorder KRfBEB), the history buffer and

the future file designs to support the state recovery andterance. We refer to them all
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as theState re-constructingnechanisms.

Reorder Buffer

The reorder buffer (ROB) is implemented as a circular bufféhva head pointer and a
tail pointer. Shown in Figur@.3, once an instruction is fetched and decoded, it is inserted
into the tail of the ROB. After it is executed, its result and #xception flag are stored in
the corresponding entry in the ROB. When this instructionlea¢he head of the ROB, it
will write its result to the logical register file and releabe entry, if it is exception-free;
Otherwise, the processor needs to flush the pipeline amattrés¢ execution.

Similar to other producer instructions, a store instruti®only allowed to commit its
result to the memory hierarchy, including the cache and thimmemory, when it reaches
the head of the ROB. This is, at this point, all previous ingians, including all memory
operations, are already committed and known to be excefrian Before it is committed
to the memory, a store instruction can keep the value to beewrto the memory in its
allocated ROB entry, or, generally, in some associateceh@fy.,the store queue.

From the point of view of states, one can vision that the lalgiegister file always has
the in-order register state, and the memory system always$higain-order memory state.
On the other hand, the ROB entries store the speculative statgisters, and the store
gueue entries store the speculative memory state. The ofite in-order state and the
speculative state is the processor’s architectural state.

Any newly fetched instruction will reference the architgei state of registers by

accessing the logical register file and the ROB entries sanabusly. In order to do that,
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Figure 2.3. Reorder Buffer

processor implements the bypass paths from the ROB entrib® tregister file. In order
to reference the architectural memory state, load instmstneed to access the memory
system and the store queue simultaneously.

In a speculative processor with a ROB, once an exception sctug exception is not
handled until the instruction triggering the exceptionctess the head of the ROB. At this
point, it is easy for the processor to roll back the damagekli@ctural state into the correct
in-order state, because the desired state is already stateglregister file and the memory.
The processor simply discards the wrong speculative statedsin the ROB and the store
gueue, and then restarts from the exception point with theecbin-order state.

In another words, the in-order state at the exception peinbnstructed by waiting for
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the instruction rising the exception to reach the head ofR@d, and retiring previous
instructions one by one in the program order. This is theamaghy the technique is

referred to as th8tate re-constructinghechanism.

History Buffer

In the above reorder buffer mechanism, the speculativestesgstate is stored in the
ROB entries, and the in-order register state is always ptasethe logical register file.
Alternatively, the register file can be used to store the itgctural register state and
the history information of the in-order register state canblffered to support the state
recovery if an exception occurs. This method is called tiseohy buffer technique.

The history buffer is implemented in a similar way to the darbuffer, illustrated in
Figure2.4. The history buffer is a circular buffer which has a head fiand a tail pointer.
Once an instruction is fetched and decoded, it is assignednguty entry and inserted into
the tail of the history buffer. Meanwhile, if it is a regist@roducer instruction, the current
value of its destination register is read from the registerdnd stored into the allocated
entry. After the instruction is executed, the executiomultas written into the register file
immediately, and the exception flag is recorded in the hydbaffer entry.

From the point of view of states, the logical register filehia History Buffer mechanism
always represents the latest architectural state of exgisthe previous in-order values of
all speculatively executed instructions’ destinatiorsstored in the history buffer entries,
in program order. In other words, the history buffer repneséhecomplemenset of the

speculative register state.
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When an instruction reaches the head of the history bufehigtory buffer entry can
be safely released if there are no associated exceptiotiss ihstruction’s exception flag
is set, the pipeline of the processor is stalled, and the st@bvery process is invoked. In
order to restore the correct state, the processor empédsdtory buffer entries one by one
from the tail towards the head, and restores each savedhigtlue back into the register
file.

After all saved previous in-order values are written badk the register file in reverse

program order, the wrong speculative state in the architacstate is totally eliminated,
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and the correct in-order state at the exception point ioredt Once the head entry
allocated for the exception instruction is scanned andge®ed, the processor is able to
restart from the exception point with a correct in-ordetesta

The history buffer scheme is different from the reorder &uficheme only with how to
handle the register state. To handle the memory state, stmhbuffer scheme utilizes the
same method as the reorder buffer scheme. That is, a stomecitinen only commits to the
memory when all preceding instructions are committed wittamy exception. Before the
retirement, a store instruction keeps the values to beeritt the store queue. Like in the
reorder buffer scheme, the memory hierarchy always reptesee in-order memory state

and the store queue holds the speculative memory state.

Future File

The third variant of thé&State re-constructingnechanism is the future file, an optimization
of the reorder buffer implementation. The idea of the fufiesis to maintain two separate
register files, the future file and the architectural filaystrated in Figur@.5. When an
instruction is executed and finished, its result is writteto ithe future file. When an
instruction retires from the head of the ROB, it will updatenésult into the architectural
file.

From the point of view of states, the future file maintains #nehitectural state of
registers. It consists the in-order values and the spewaifd@titure) values, so itis called the
future file. The architectural file always reflects the inarstate of machine’s architectural

registers. If an instruction reaches the head of the ROB antkrror, the architectural file



CHAPTER 2. BACKGROUND 32

Architectural State

Upon Exception } Future : .
e R : Functional
‘ ‘ Register File : Units
In—ordeﬁ Architectural
State 3 Register File
: Result Bus
S : decoded
e SRR ; : instruction

‘o o 0 =

Speculative State

Figure 2.5. Future File

is then used to restore the future file. Either the whole tegide is copied as a set, or
only speculatively modified registers are restored. To @mnt the latter, those register
designators associated with ROB entries are copied frolR@i#&'s head to the ROB’s tail.

As it can be seen from the figure, the future file in fact implataghe functionality of
the physical register file with respect to the register rangpthough Smith and Pleszkun
did not use the term of the register renamingdid|[ The future file can be considered as a
physical renaming register file which has the same size aasrtinétectural logical register
file. Therefore, the register renaming map table can be editt

In the future file scheme, the memory state is also handledarsame way as in the
reorder buffer and the history buffer. The memory is alwaysaorder state memory, and

the speculative memory state is buffered in the store queue.
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2.3.2 Checkpointing

An alternative to sequential re-construction of processates is to save a snapshot of
machine state at appropriate points of the execution. Tppsoach is referred to as the
Checkpointingnechanism, which was first introduced by Hwu and Pzi}.[

With checkpointing, the processor maintains a collectiblogical spaceswhere each
logical space is a full set of architectural registers andnory locations visible at the
ISA level of the machine. There is only one logical space wsethecurrent space for
the current execution which represents the architecttated sOther backup logical spaces

contain the copies of the in-order state that correspondeaqus points in the execution.

Backup Backup Bacekup Current
Space C Space 2 Spacel Space

Result Bus

dynamic instruciton stream

Figure 2.6. Checkpointing Maintenance and Recovery Scheme

During the execution, the processor creates a checkpoititeotate by copying the

current logical space into a backup space, as shown in FRjGré&Jpon each checkpoint,
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the effect to the current architectural state introduce@lbynstructions to the left of that
checkpoint are allowed, and the effect introduced by alfrirtdions to the right of the
checkpoint are excluded. Therefore, each logical spaagesepts the in-order state at the
creating point. The logical spaces are maintained as a.sththke stack is full, making
a checkpoint has to wait until the oldest one is safely reléa¥vhen a fault exception or
a branch mis-prediction occurs, the architectural statebearestored to the in-order state
at the exception point by recovering the current space batke corresponding logical
space.

Ideally, a checkpoint should be created at each instrubibamdary so that a processor is
able to restore the correct state if any instruction meetxaaption. Otherwise, if there is
no backup state available at the exception point, the psocéss to roll back to the nearest
checkpoint and discard some useful work. However, the austorerhead of creating a
checkpoint at each dynamic instruction boundary is too highis is the fundamental
dilemma of the checkpointing recovery mechanism.

On one hand, we need to create as many checkpoints as pdesibiédke the exception
recovery fast. On the other hand, we need to keep the coséokpbints as low as possible.
To address this issue to some degree, Hwu and Patt distirglifgult exceptions and
branch mis-predictions with respect to the state recobayause fault exceptions actually
happen much less frequently than branch mis-predictiormso/lingly, they proposed to
create a checkpoint at each branch instruction for the madigtion recovery, and to create

checkpoints at widely separated points in the instructesusnce for the fault exception
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recovery.

Another issue of the checkpointing scheme is how to implérttembackup spaces of
the state. Generally, there are two types of techniquesripleimenting multiple logical
spacescopyinganddifferencetechniques.

The copying technique is normally used to create the logipate of the register state.
When a checkpoint is created, the architectural registéz stahe current space is copied
into the logical space. Since some instructions to the lethe checkpoint might have
not been issued yet, the copied state is not the in-orde¥ atahat time. Therefore, the
copied state needs to be updated as instructions to thef lsié @heckpoint complete. To
avoid extra increase of the access bandwidth of the redikgeach bit of the registers is
implemented by + 1 physical cells, one cell for the current space @ratlls forC backup
logical spaces.

The difference technique maintains a list which recordsdifference of the execution
state from one instruction boundary to another. Normahg theckpoint of the main
memory state is implemented via the difference techniqukerd are two directions a
state difference can be recorded, backward and forwardh Baical space implements
either the backward difference or the forward differencenemipulate the memory state.

The backward difference maintains a history value list inclreach entry keeps the
history value prior to the modification to the state. Fig@r& illustrates the memory
design when a backward difference is employed. When a steteugtion commits its

value to the memory, the address and the previous valuesatadation in the memory
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are saved in the backward difference list. The backwarcedifice list preserves the
store instruction’s committing order to the memory, not phegram order they appear in
the dynamic instruction sequence. As it can be seen from gjoeefi the main memory
represents the architectural state, including the infostiée and the speculative state.
The backward difference holds the complement of the speesilstate. During the state
recovery, the history data saved in the list are stored baakntlo all modifications to
the memory introduced by the wrong speculative state. Hyettee in-order state of the
memory at the checkpoint can be repaired.

In contrast to the backward difference, the forward diffeee keeps all speculative
values within a logical space, and preserves the prograer ofdstores. Shown in Figure

2.8, when a checkpoint is created, the memory holds the in-osthe at this point,
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and the forward difference will keep the speculative stdtthis logical space, until the
next checkpoint is created. From this point of view, the mgmmuanipulation scheme
introduced in the previous state re-constructing mechargsa special case of the forward
difference technique on which the memory system alwaysesgmts the machine’s in-
order memory state and the store queue keeps the speculegtivery state introduced by

all in-flight instructions.

2.4 Register Renaming and State Maintenance and Recovery

In order to eliminate WAR (write after read) and WAW (writeexfwrite) data hazards,
modern superscalar processors normally utilize the mgignaming technique. The
design space of register renaming is large and it is beyoadstpe of this work. In
this work, we only consider the effect of register renamimgtlee state maintenance and
recovery.

The reorder buffer scheme, described in SecttoB.]l, provides a straightforward
implementation of register renaming. In ROB, an architedtlogical register can have

multiple definitions in-flight, which are kept in differentO® entries in program order. In
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order to read the correct value of an operand, an instructmnassociatively search the
ROB and access the entry for the most recent definition ofiisce operand when it is
issued. The ROB entries implement the renaming functignali

Generally, processors utilize a physical register file tplament register renaming.
The physical register file can be separated from the logegikter file, or they can be
combined together as a unified register file. In order to elata the false data dependences
and exploit deep speculation, physical register file sizelw larger than the size of the
logical register file visible at the ISA level. Once a produicestruction is decoded, it is
allocated a free physical register as the renaming locébioits destination. This mapping
of information between the logical register designator #nedphysical register designator
is then recorded so that subsequent instructions can neferthe latest value from the
renaming physical register.

The mapping information is normally stored in the registapnable (MAP), which is
also referred to as the register alias table (RAI9, [20]. In a superscalar processor, if
multiple instructions need to be decoded and renamed simedusly in every cycle, then
the map table, or the alias table, has to be multi-ported. ifsiance, if it is a 4-issue
superscalar processor, then the map table needs 8 reachpdrswrite ports, assuming
each instruction has two source operands and one destinatio

The map table structure can be implemented in at least twewég RAM structure
and the CAM structured0]. The different structures have the different implicagdar the

state maintenance and recovery.
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2.4.1 RAM-structured MAP

The RAM-structured map table is illustrated in Fig@®. In this structure, the total

number of the map table entries is equal to the total numbéheofirchitectural logical

registers. Each logical register has a corresponding @mthe map table, and the logical

register’s designator can be used as the index to accesalilee tEach entry contains

a physical register designator which is allocated and @stsacwith this logical register.

The RAM-structured map table itself is implemented as a tegide in which each cell

holds just enough bits to specify a physical register'sgiestior, instead of a 32- or 64-bit

value.

As it can be seen, the map table represents the register Reggster values stored in

the physical register file can be referenced through indicgbe map table. Normally,

processor employs a front-end map table as the working nid@, teorresponding to the

current architectural state. If an exception occurs, gsaeneeds to repair the front-end

map table to restore the correct register state. The résto@ocess can be done via either

the checkpointing method or the state re-constructing ateth
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Figure 2.9. RAM-structured Map Table

physical register #

P12

P23

physical register #

_—t

P18




CHAPTER 2. BACKGROUND 40

Examples of processors which employ a RAM-structured mage take the MIPS
R10000 processor and the Intel Pentium IV processor. Regpatdirthe branch mis-
speculation recovery, the MIPS R10000 processor utilizesctieckpointing method to
manipulate the state, and the Pentium IV processor utilthesstate re-constructing

method.

MIPS R10000

The MIPS R10000 maintains a branch stack where each entrginerd complete copy
of the integer and floating-point register map tabl8§].[ At the point of recognizing

a mis-prediction, the processor restores the front-end talale from the corresponding
checkpoint. While the checkpoint scheme vyields fast regoves hardware cost can be
prohibitive. Suppose there aM physical registers, and the instruction set contains 32

integer and 32 floating-point logical registers, then tlze $bits) of each checkpoint is:

Checkpoint Size- 32 x logoN + 32 x logaN = 64 x logaN (2.1)

If C checkpoints are implemented, then the total size of thekguaot stack is:

Total Checkpoint Size C x 64 x log2N (2.2)

As we can see, checkpointing the map table at each outstabdamch instruction is
costly. The available space for storing the checkpointsherther hand limits the number

of pending branches that can be in-flight. In the MIPS R10000; 4 pending branches
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are allowed to be in-flight because its branch stack has oelytdes as shown in Figure

2.10

ROB

Figure 2.10. Checkpoint Stack in MIPS R10000

To some degree, the register renaming technique makesngredieckpoints easier.
Consider the original checkpoint scheme described in Seéti®.2 When a checkpoint
is created, some instructions left to this point may havebeen finished yet. In order to
bring this checkpoint into the desired in-order state |ates results of these instructions
have to be written into the corresponding backup space wienare ready.

Using the register renaming technique, processor allecatieee physical register for
each instruction with a register destination during deagdiTherefore, in-order state at a
particular point can be represented as the format of theigdiy®gister designators stored
in the map table at that point. The in-order values can beeeréed by means of the

physical register designators. Thus, updating valuestir@dackup space can be omitted.



CHAPTER 2. BACKGROUND 42

Intel Pentium IV

The NetBurst micro-architecture of the Pentium IV also zéif the RAM-structure. Unlike
the MIPS R10000 processor which uses a checkpointing regcavechanism, it utilizes a
state re-constructing recovery scheme. Two map tableschémeeront-end RAT and the
retirement RAT R0] are maintained. The front-end RAT stores the architectstete and

the retirement RAT stores the machine’s in-order state, showigure2.11

Retirement RAT Front-end RAT:
RO RO
R31 R31
A Machine’s In—order State A Architectural State
e o o
ROB

Figure 2.11. State Re-constructing in Pentium IV

Any newly fetched and decoded instruction will access andifpdhe front-end RAT,
thus, it always contains the latest architectural state. M@meinstruction retires, it updates
the retirement RAT to indicate that its result register isha in-order state. The retirement
logic ensures that an exception occurs only if the operatarsing the exception is the

oldest, non-retired operation in the machine. That is, atruiction can rise an exception
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only when it reaches the head of the ROB. At this point, the nm&thin-order state is also
the in-order state at the exception point. Therefore, amecan restore the architectural
state, or the front-end RAT, from the retirement RAT.

Although Pentium IV requires only two RAM-structured RATsgtrecovery process
may take a long time as renaming cannot start until all im$iwas prior to the mis-
predicted branch retire. If a long latency operation proothte branch exist®.g, a cache

miss, the mis-prediction penalty increases significantly.

2.4.2 CAM-structured MAP

Alternative to the RAM-structured scheme, the other way tplement the map table
is to use a content-addressable memory (CAM). lllustrateBigure 2.12 in a CAM-
structured map table, the total number of table entries isletp the total number of
physical registers. Each entry has two fields, the logiagikter designator field and the
valid bit field. Since a logical register might have multiplefinitions in-flight, the valid
bit is always set by the latest definition. Once a logical idesibn register is mapped into
a free physical register, this logical register number igtem into the corresponding entry
in the table. Also, its valid bit is set and the previous vdlidof the same logical register
is located through an associative search and cleared.

When an instruction accesses the table to read its operadisning physical register
designator, the operand’s logical register number is useddrch the table’s logical register
designator field associatively. If there is a match and tleesponding valid bit is set, then

this entry’s index is generated through an encoder as tlzenieg physical register number.
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Figure 2.12. CAM-structured Map Table

The valid bit indicates the latest renaming physical regist each logical register. From
this perspective, the valid bit vector presents the curaechitectural register state. To
create a checkpoint of the register state, processor negdoanake a shadow copy of the
valid bit vector. Suppose there axephysical registers, the size (bits) of each checkpoint

is:

Checkpoint Size- N (2.3)

If C checkpoints are implemented, then the total siz€ oheckpoints is:

Total Checkpoint Size C x N (2.4)

In the CAM-structure implementation, creating checkpoistsot expensive. Only valid
bits, not the whole map table, need to be copied. The CAM-&tregnap table is utilized

in the DEC Alpha 2126413, 26]. The Alpha 21264 supports up to 80 instructions in-
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flight, and a checkpoint is created at every instruction lolamn Illustrated in Figur@.13

it provides the capability of precise state recovery at drth@ 80 in-flight instructions.
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Figure 2.13. Per-Instruction Boundary State Recovery in Al pha 21264

Though the hardware cost of creating checkpoints with the &fcture map table
is not too expensive, the CAM-structure itself may becomettidreeck. With the CAM-
structure, the total number of entries in the maple tablegisakto the total number of
physical registers. Moreover, processor needs to perforesaociative search to access
it. On the other hand, with the RAM-structure, the number dfies in the map table
is equal to the number of ISA logical registers, independdrthe number of physical
registers, and the table access is fast. That makes the CAlelste less scalable than the
RAM-structure.

Given these observations, the CAM-structure may not scallewite future wide-issue

high performance microprocessors. In this work, we maious on the RAM-structure
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designs with respect to the state maintenance and recovery.

2.5 Summary of Background

In this chapter, the basic concept of process states isidedciin order to support out-
of-order and speculative executions, processor needsdwaee of the in-order state, the
speculative state, and the architectural state at diffenégrest points. To recover from an
exception or a mis-speculation, processor needs to elimiha wrong speculative state,
introduced within the speculative execution, from the aedtural state and restore it back
to the in-order state at the exception point.

Traditionally, there have been two main mechanisms to madai@ states, state re-
constructing and checkpointing. Despite the fact that #pear to be drastically different,
they share a common property. Both are based on the coarsestate concept. As we
can see, any processor utilizing these mechanisms can &&fidd as a CFP. Upon an
exception, neither of these mechanisms allows the resampfifetching and renaming of

new instructions from the correct path until the whole sqtrofcessor state is restored.
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Chapter 3

Simulation and Experimental Setup

In this chapter the simulation tool and the experimentalsesed for this dissertation are

introduced and presented.

3.1 Simulation Tools

For processor architecture researchers, realizing novw&lorarchitecture designs in
hardware is too expensive and time-consuming, especiallhea prototype stage of
development. Thus most research relies on simulation ttdw$ can estimate the
performance of the micro-architecture by simulating aaetgrof benchmark programs. A
commonly used approach for developing micro-architectumeilators is hand coding them
in a general purpose programming language. For instanckelyvused in the computer
architecture research community, the SimpleScalar stmu[d] is written in C and the
M5 simulator p] is written in C++.

Although writing simulators in the general purpose langsags a straightforward
process, it is difficult to retarget such simulators to a rfiedimicro-architecture or an

instruction set architecture once they are built. In thigkyanstead of hand coding
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simulators, we use th&lexible Architecture Simulation ToqFAST) [38] to generate
simulators automatically, in which processor specificatiare written in a domain specific
language calledrchitectural Description Languag@\DL). FAST currently supports the

MIPS ISA [41] which is also implemented in ADL.

Instruction In Instruction Oul

Decode

_ = & _ =

Execute

Figure 3.1. Fast Functional Simulator

Instruction In Instruction Oul

B Fetch Decode Execute| Memory | commit | ———
Access

Figure 3.2. 5-Stage Pipeline Simulator

Shown in Figure3.1, Figure 3.2 and Figure3.3, FAST is comprised of a variety of
different cycle-accurate processor simulators that ara fx fast functional simulator which
executes instructions one by one through a simple one sipgkne, and a 5-stage in-order
pipeline processor simulator, to a complex out-of-ordgresscalar simulatoi3g]. In this
work, the out-of-order superscalar simulator is mainlydus@ exploring the fine-grain
state processor designs and evaluating their performance.

The out-of-order superscalar description of FAST lacked tlache simulator and
assumed a perfect cache hierarchy system. As one of theilbwdiuns, this work
implements a cache hierarchy simulation system written.And integrates it into the

FAST superscalar description and extends the previoudaions. This cache simulation
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Figure 3.3. Superscalar Simulator

system supports multiple levels of caches, either blockingon-blocking, from direct-

mapped to n-way associativity. It also supports differemiacement policies, including

FIFO, LRU, and RANDOM. Moreover, it actually moves data fronddo the CPU cores.

Unlike the Dinero IV [L5] cache simulator which was tried to be integrated with FAST,

can generate not only the hit and miss information but als@atturate latency information.

Shown in Listing3.1, each level of the cache is defined aSache Artifact allowing it

easily to be integrated with different simulators.

3.2 Benchmark Suites and Environment

In this work, we use the SPEC CPU2000 V148|[benchmark programs to evaluate

different Fine-grain State Processor designs. SPEC CPU20@benchmark suites were
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released by SPEC in 2001, including two sub-suites, CINT20@DCFP2000. CINT2000
is used to measure and compare the compute-intensive lirjegermance. It contains
12 applications (11 in C and 1 in C++). CFP2000 is used to measwtecompare the
compute-intensive floating-point performance. It corgdid applications (6 in Fortran-77,

4 in Fortran-90 and 4 in C).

artifact L1 cache
attributes

( size , # cache sizein KB
bpl, # cache line sizein bytes
assoc , # Away associativity
repl_policy , # block replacement policy
num_ports, # numberof cache ports
num_mshrs , # numbenf outstanding misses
hit_latency , # latencyto access cache
bandwidth # databus bandwidth

Listing 3.1. Cache Artifact

Our experimental hardware consists of a cluster of 20 mashwith Intel(R) Xeon(R)
CPUs, running the Linux OS. The SPEC CPU2000 benchmark pregeaencompiled
with the GNU GCC cross compiler targeting the MIPS |V instroictset. Some of these
benchmarks have not been simulated because of systemdgreug., Fortran 90 and C++
benchmarks. Therefore they have been excluded from ouriexgets. Nine integer
programs and eight floating-point programs are used to aedlye FSP performance,

which are shown in Listin@.2and Listing3.3, respectively.
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Name Remarks

164.9zip Data compression utility

175.vpr FPGA circuit placement and routing
176.gcc C compiler

181.mcf Minimum cost network flow solver

186.crafty Chess program

197.parser Natural language processing
253.perlbmk Perl

256.bzip2 Data compression utility
300.twolf Place and route simulator

Listing 3.2. CINT2000 Benchmarks

Name Remarks

171.swim Shallow water modeling

172.mgrid Multi—grid solver in 3D potential
field

173.applu Parabolic/elliptic partial differential
equations

177.mesa 3D Graphics library

179. art Neural network simulation;

adaptive resonance theory

183.equake Finite element simulation;
earthquake modeling

188.ammp Computational chemistry

301.apsi Solves problems regarding temperature ,
wind, velocity and distribution of
pollutants

Listing 3.3. CFP2000 Benchmarks

Another important consideration about the simulation & shmulation time. As it is
well known, it is really time-consuming and resource-conslg to run an application
through an execution-driven cycle-accurate superscataregsor simulator. It can easily
take a couple of weeks to emulate a SPEC CPU2000 benchmarikgunith the default

reference input. In this work, in order to evaluate and camplifferent FPS designs, we
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need to run CPU benchmarks using different simulators withyna#ferent configurations.
It will be impracticable to run them all to completion withetidefault reference inputs. We
therefore choose to run SPEC CPU2000 benchmarks to commpletib areduced input
[29].

When SPEC CPU95 benchmark suites were integrated into FA8Tretfuced input
scheme was already applied. Compared to the partial runoirenges, it can achieve much
more accurate analysis within a reasonable time. In thikwee apply the MinneSPEC
[29] reduced workload to emulate SPEC CPU2000 benchmark sniksST. MinneSPEC
has been officially recognized by SPEC and is distributet Wérsion 1.2 and higher of
SPEC CPU2000 benchmark suites. Although some benchmarksqaoery different
behavior with the MinneSPEC workload, most match the defeeference workload
program behavior very closely, in terms of function-leveéeution patterns, instruction
mixes, and memory behavioR9]. From our experiments, MinneSPEC works well in

FAST and it satisfies our research requirements.
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Chapter 4

Taxonomy of Fine-grain State Processors

In this chapter, we introduce a taxonomy of the fine-graitespaocessors. It has two
main categories, which can be divided further into four sategories, shown in Figure
4.1 Based on this taxonomy, those traditional proposals canfensrized and classified

into the proper categories.

Fine—grain State Processors

Roll-back + Reuse Results Continue Without Roll-back
Squash and Re-issue Blocking Non-blocking
Re-fetch instructions fetched instructions & &
Sequential recovery Parallel recoven

Figure 4.1. Taxonomy of Fine-grain State Processors
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4.1 Roll-back + Reuse Results

The first main category is referred to &®oll-back + Reuse ResultsUtilizing this
technique, a processor is able to salvage part of finished woring the speculative
execution after a missed speculation. When a mis-specul&t@ppens, the processor
rolls back from the exception point and restarts the exenutiThose mis-speculation
independent instructions may reuse previously generamdts and skip different phases
of execution (e.g., issue, execute, and result bypass).s, Tperformance is improved.
Furthermore, it can be divided into two sub-categorigéquash and Re-fetch instructions

andRe-issue fetched instructians

4.1.1 Squash and Re-fetch Instructions

Utilizing this technique, upon a mis-speculation, prooessgquashes all instructions
following the mis-speculation point. It rolls back to thesspeculation point and re-
fetches all instructions. With the fine-grain state infotior, fetched instructions will
reuse the buffered previous results if they are mis-spgounlandependent. The previously
generated results are explicitly reused.

A typical application of this technique is the recovery oaich mis-predictions. The
scenario of control independence gives the opportunityetesse results based on the
fine-grain state concept. A study of the control independencsuperscalar processors
[43] reported typical performance improvements of 10-30% wh&oro-architectural

implementation issues are realistically modeled to explloeé control independence.
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Several mechanisms have been proposed to reuse the resdtntomol independent
instructions.

Sodani and Sohi introduced the concept of dynamic instinateuse in48]. In their
mechanism, the fine-grain state of previously executeduasons are buffered in the
Reuse Buffer (RB), including the operands and destinationtsesQuerying RB via the
program counter, an instruction can reuse the result ofréngqus instance if the operands
are the same. Their initial goal was to reduce the branchpnadiction penalty by reusing
control independent instructions. Interestingly, thin@gpt can be extended to the general
reuse.

Roth and Sohi proposed the register integration mechaniga¥jro reuse the results.
Upon a mis-speculation, instructions after the mis-sg@@mn point are squashed in the
reverse order. Instead of recycling the allocated physwgikters, register mappings of
each instruction’s operands and results are entered iatimtegration Table (IT). Any new
instruction will index IT using its PC to check if the regist@appings of the operands
match. If so, it can reuse the previous instance’s destingthysical register. Reusing is
achieved through the register renaming, and no additicelaleg are read from or written
to the physical register file.

Chou et al. [10] presented the concept of dynamic control independence )(BCI
implement the reuse. A shadow copy of the Reorder Buffer, DCtehufs used to
remember the state of recently fetched instruction. Aftdranch mis-prediction, all

instructions following the mis-predicted branch are flusfrem the ROB but they remain
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in the DCI buffer. When a new instruction is fetched from thereot path, it associatively
searches the DCI buffer. It can reuse its previous statedstorte DCI buffer if it proves
to be control and data independent.

Besides the branch speculati®@guash and Re-fetch instructiaaslso utilized for other
speculation mechanisms. Mutét al. [35] evaluated reusing the results of pre-executed
instructions in a runahead execution processor. They tegdhat even an ideal reuse
scheme can achieve only 3% improvement. The reason is thikssre$ a small number of

instructions pre-executed in runahead mode can be reused.

4.1.2 Re-issue Fetched Instructions

Using theRe-issue fetched instructiotechnique, upon a mis-speculation, the processor
still needs to roll back to the mis-speculation point andarg®xecution. However, it does
not need to squash instructions and re-fetch instructiooms the cache. The key point
is that speculation dependent instructions are kept in theduling window even after
they are issued. If the speculation is resolved as a misgrtessor can roll back to the
mis-speculation point and re-issue only dependent insbrng without re-fetching. On the
other hand, since the independent instructions were alngatessed, their results can be
implicitly reused.

A typical application of this technique is the recovery chdomis-speculations. When
a load mis-speculation is detected, instead of squashinmsfuctions following the
load and re-fetching instructions from the cache, the msoewill re-issue instructions

dependent on the mis-speculated load.20],[ Pentium 4 processor schedules instructions
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dependent on loads assuming that loads would hit in the L4 ckthe. If a load misses,
a selective recovery mechanism calleglay is used to wake up and re-issue dependent
instructions previously executed using incorrect data.

Gandhiet al. [16] utilized this technique and proposed Selective Branch Ragov
(SBR) to reuse results of convergence instructions. SBR dgpoirequently occurring
type of control independence, called exact convergenc&ravthe mis-predicted path
converges exactly at the beginning of the correct path. Thpsn a mis-prediction,
correct instructions from the correct path are in fact ayem the pipeline. In this case,
the processor can reuse results of data independent cenvengtructions and re-issue

convergent false data dependent instructions withoutlgata fetch/rename them again.

4.2 Continue Without Roll-back

The second main category of the fine-grain state guided &d@ourecovery technique,
Continue Without Roll-bagkitilizes the fine-grain state concept more efficiently tRaf-
back + Reuse Resultdt is able to continue execution without rolling back to timés-
speculation point. It can also be divided into two sub-catieg: Sequential recovergind

Parallel Recovery

4.2.1 Sequential Recovery

With the Sequential recovergcheme, the processor stops moving forward when a
speculation is resolved as a miss. The miss dependentatistrs, which should have

been already buffered on on-chip structueeg,, slicing bufferre re-executed to repair the
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state. Once recovery is processed, the processor achieoeeeat state at the resolution
point and it can move forward.

Sarangiet al. [45] applied this technique in the context of Thread-Level $yetton
(TLS) and proposed a novel architectuReSlice If a value mis-prediction is declared,
only the speculatively-retired instructions dependedhenmis-predicted valudsorward
Slice are re-executed to restore the damaged state. Once th@eidstate is repaired and
merged into the processor state, processor is able to restenation at the mis-speculation
resolution point.

The Sequential recoveryechnique is also applied in the context of data cache miss
speculation. In%1], Srinivasaret al. proposed the continual flow pipelines (CFP) model.
Once a load instruction misses in the L2 data cache, the dejgendent instructions
(slices) are drained out of the pipeline into a slice buffarthe meantime, CFP executes
independent instructions. After the L2-miss is servicesly firont-end instructions wait

until the slice instructions are inserted back into the jmgeto construct the correct state.

4.2.2 Parallel Recovery

Although theSequential recoverscheme is an efficient fine-grain state based technique,
it does not fully exploit the power of the fine-grain state cgpt. That is, at the mis-
speculation resolution point, the execution is blockedltessly until the recovery is done.
Because of the blocking, the parallelism available durirg rdcovery is not exploited.
Since an FSP is aware of the state at the individual basisanitoontinue processing

seamlessly with a partially correct state, before the wistdee is repaired. In parallel
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with the recovery, the processor can move forward and egeww instructions.

This method is referred to as tRarallel recoverytechnique because it is able to exploit
the parallelism-in-recovery. Parallel recovery henceajgable of utilizing the full power
of the fine-grain state concept. As described in Chapteur research goal is to design
such an FSP model and apply it in the context of the contralidpdon and the runahead

speculation. Parallel recovery is one of the most importantributions of this dissertation.

4.3 Summary of Taxonomy

In this chapter, a taxonomy of the fine-grain state mainteeand recovery is described.
The concept of the fine-grain state have been utilized foctimérol speculation, the value
speculation, the load speculation, and the thread levelsaigon. Based on the introduced
taxonomy, those proposals are classified from the sirR@ause resultsnodel, to the
Sequential recoversnodel. The most efficient moddParallel recovery is able to exploit
the full power of the fine-grain state concept. In the nexjptba a general framework for

the Parallel recoveryFSP model is presented.



60

Chapter 5

Fine-grain State Processor

In this chapter, a general framework for FSP is introducdds framework is comprised of
the five properties described in Chapie?. We discuss the design space of each property

and compare FSP and CSP regarding to the control speculatibthe value speculation.

5.1 A General FSP Framework

The essential idea behind an FSP is that it breaks the at¢aécset into finer granularity
at the individual value level. Breaking up the state in thisynex allows treatment of the
recovery process efficiently. After a mis-speculation,-speculation dependent values,
in either registers or memory locations, are invalid anddrieebe repaired. On the other
hand, mis-speculation independent values are immediatglijable and can be used as
necessary. This separation enables the processor to ewergxecution with a partially
correct state and still maintain correct program semanitsle the damaged part of the
state is being repaired. ldeally, the latency of recoveny lsa fully hidden by useful
execution so that a zero-penalty speculation can be realize implement such an FSP,

a general high-level framework should implement the fivgppraes described in Chapter
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1.2

1. Identification property: First of all, a mechanism is needed to precisely identify
in-order or speculative state on an individual locationidad common method is to use
thetag scheme. A tag, normally one bit, is associated with eacheMalcation to indicate
if it is speculative or not. For the register values, the sigw/e bits can be appended to the
register file, or the register renaming table, or both. Femttemory values, the speculative
bits can also be attached with the entries in the store qoewath the memory words/lines
in the memory hierarchy system. Since the memory size néynsalarge, an alternative
method is to keep the individual in-order history values inagakward list 21] while the
memory hierarchy system presents the whole architecttaia.s

Although setting and propagating tags is normally strdagitard, it is slightly different
between the two kinds of speculations, the value speculatnal the control speculation.
In case of value speculation, the destination of the firstesapeculative instruction is set
as the seed. Then its speculative bit is propagated thrdugllépendence chain. Any
instruction accessing a speculative value will set itsidasbn as speculative as well.
On the other hand, if all the operands of a producer instvacire non-speculative, its
destination’s tag is reset.

In case of control speculation, there are two scenarioshdfiiranch convergence is
not considered, then all instructions along the specdapiath, from the point of the
branch instruction to the resolution point, are treatedpeglative. If the convergence

is considered, instructions after the convergence poatantrol independent. However,
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some of them still belong to the control-speculation if thegycess values which are
modified through the speculative path. Like in the value s[zion, the data dependence
tracking can be done by means of propagating the speculats.e

2. Block and shelve property: With the identification property, after a speculation is
resolved as a miss, FSP is aware of which values are speeutaitd need to be repaired.
New fetched instructions which access damaged values babe blocked and shelved
until the values are corrected.

A simple method is to block those instructions in the resgmastations (RS). When
a new instruction is decoded, it is marked as operand-ramtyrend blocked in RS if
any speculative tag of its operands is set. This method désnl#@tie modification to the
superscalar pipelines. Our proposal of EMR utilizes tthigking in RSsnethod, described
in Section6. However, it may prevent FSP from exploring the far-flung & degrade
the performance significantly because blocking dependsirictions in the pipeline will
consume critical resources.

An alternative method to blocking is to pseudo-retire deleen instructions from the
pipeline and then release resources to execute furthepémdient instructions. In this
manner, critical resources can be released and used. Timedlidependent instructions
will be re-fetched and re-executed once the damaged valueshah they depend are
restored.Draining technique is an attractive choice if the blockage of critiegources is
crucial for the performance. More important, by doing sorpgp an opportunity for FSP

to utilize idle thread/core resources in a multi-threatBeanvironment.
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For instance, in the case of a value mis-speculation, icistns which were executed
with wrong operand values before the resolution point nedxktre-executed to restore the
state. If the draining method is utilized, drained instimts can be sent to an idle thread.
This thread is responsible for executing only dependeiituiosons to maintain the correct
state, while the original thread still keeps processingSéwetion7, an FSG-RA model is
proposed which utilizes this method for the runahead exacut an SMT environment.

3. Correction property: After a mis-speculation is detected, FSP needs to restore
damaged values during the speculative execution. Gepettadire are two scenarios. |If
a correct in-order version of a damaged data location idablal e.g., in a checkpointed
register file or in a history buffer, then FSP can copy theemivalue into the data location
to restore it. If no such an in-order value saved in somewhéen FSP needs to re-
execute the latest producer instruction to generate theeaovalue for this destination
location, as soon as needed operands become ready. TypkaR will utilize the former
method regarding to the control speculation, and the latethod regarding to the value
speculation. Note that both methods are processed on tivedunal location basis, not on
an atomic state set basis. Once a single damaged value isetkptis available and all
blocked instructions depending on it can execute.

4. Unblocking property: After damaged values are restored, the process of unbigckin
and executing shelved dependent instructions is straigidird. If dependent instructions
are blocked in RS, they can be woken up and selected via thecbomal wake-up logic

in RS automatically. If the instructions had been drainethftbe pipeline, they will be re-
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fetched and re-executed once the damaged values on whicarthndepended are repaired.
Note if a second thread/core is forked to maintain the sitategy fetch drained instructions
immediately, before the necessary values have been rdstorghorten the pipeline filling
latency.

5. Parallelism-in-recovery property: Upon a mis-speculation, FSP can continue
execution with a partially correct state while the damagades are being repaired. Thus,
it can explore the parallelism in speculation recovery.

The parallelism-in-recovery can be achieved in either atlu@ad environment or
a multi-thread environment. Under a uni-thread environm&s$P can interleave the
recovery with the execution of independent instructionghis manner, available resources
which would otherwise be idle can be used for recovery. Thus;essor’s resources will
be utilized more efficiently. We refer to such recovery scasasmplicit parallel recovery
techniques. In a multi-core environment, an idle threa®@@an be forked exclusively to
repair the state while the original thread/core is exegutiaw instructions. As a result,
a single-threaded program can obtain better performanceatibging multi-threading
resources. It makes the fine-grain state design as an ititgrextension to the current
multi-core design trend. We refer to such recovery mechaseexplicit parallel recovery
techniques. In this work, both implicit and explicit paghliecovery techniques have been

implemented and demonstrated in proposed EMR and FSG-R4rdesespectively.
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5.2 Coarse-grain State VS. Fine-grain State

Figure5.1 depicts the difference between a CSP and an FSP with respibet tontrol

speculation recovery. In this figure, a branch instruct®followed by block B along the

wrong path and block C along the correct path. Both paths eaéiptconverge at block D,

which is control independent. As a reference, an ideal dpgon processor would make

the correct prediction dt, and execute block C and D, respectively. Timeline (b) thlrou

timeline (e2) show different recovery techniques for ammect prediction which resolves

atto. In timeline (b), a processor with the ideal recovery schear@immediately restart

from the correct path once the speculation is detected ass ati,, if a zero-latency

recovery is supported.
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Timeline (c) shows a CSP that has to sequentially restore tdte byts. Either a
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retirement map table method, RAMR(], or a checkpointing method can be used. A
CSP cannot execute any instructions from block C until thelevistate has been fully
restored (albeit the time between the detection of the masgliption and resumption being
considerably shorter in case of checkpointing). In Timel{d1), a processor which is
aware of the fine-grain state is able to improve the perfooadny salvaging part of block
D when it restarts from the mis-speculation point. Howelfethe salvaged instructions
are not on the critical path or they are already hidden withi& generic ILP, shown in
Timeline (d2), re-using will provide little benefit. In comst, shown in Timeline (el), an
FSP can restore the damaged state in parallel with the esraftblock C and D. Ideally,
the latency of recovery can be fully overlapped with the ukefecution. In this case, FSP
will achieve the same performance as that of ideal recovarseality, however, it is hard
to obtain the same performance of an ideal recovery procdsgado the data dependences.
A realistic FSP model is illustrated in Timeline (e2).

Similar to the above control speculation example, a valuecsiation example is
illustrated in Figures.2 In this figure, a lead producer instruction, A, is followey &
number of independent (empty circles) and dependent (fales) instructions. Assuming
one instruction per cycle, a speculation for the lead ision is made at; and resolved at
to. Timeline (a) shows an ideal speculation processor thanaisses; it will continue the
execution from instruction B and reach Qatlf the speculation is wrong, the state at point
of B is damaged and it needs to be restored. Timeline (b) girduneline (e) show the

different recovery techniques. Intimeline (b), a CSP hasltdback to A and re-execute all
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instructions until B to repair the state. In this case, atinctions between A and B, will be
executed twice, and the execution of independent instmstiluring the speculation phase
will be wasted. In Timeline (c), a processor which is awar¢hef fine-grain state is able
to avoid wasting finished work. It can reuse independentuntbns’ results generated
in the speculation pass and shorten the recovery procesgseudq similar to the control
speculation case, salvaging may achieve little improvenfi¢mose instructions are not on
the critical path.

A better implementation of the fine-grain state would be t@xecute only dependent
instructions, shown in Timeline (d). During the speculatighase, dependent ones are
inserted into alicing buffer At resolution point,, the processor restores the correct state

via re-executing only dependent instructior®icing was first introduced by WeisebT]
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and it used to recover the state 51 45]. Although Slicing outperforms salvaging, it still
has to restore the state first and then restart from point Bomtrast, a fully implemented
FSP can seamlessly process independent instructionsmg&swvhich access only correct
values, while the damaged state are being repaired. Showimieline (e), fromt,, the
parallelism-in-recovery is exposed. If there is enouglrepehdent work, FSP is able to
obtain a zero-latency recovery.

The above two figures illustrate the high-level view of thé>Rf8operties for the control
speculation and the value speculation. In the next two @estibased on the framework,
two detailed realistic models are implemented for contpacsilation recovery and value

speculation recovery, respectively.

5.3 Summary of FSP’s Framework

A general framework of FSP and its design space is introductdds chapter. An FSP
based on this framework will satisfy the five essential FSéperties and implement the
Parallel recoverymode. The comparison between FSP and CSP with respect toritrelco
speculation and the value speculation is also discussedtiagline view.

Based on the presented general FSP framework, we proposeotw@bFSP models to
speed up the branch mis-prediction recovery and the rudagrescution recovery. Both
models achieve much higher performance via exploring edisah-in-recovery, compared

to the traditional CFP models.
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Chapter 6

Eager branch Mis-prediction Recovery

In this chapter, we apply the FSP concept in the field of cdsreculative execution. We
demonstrate that such an FSP can break the limitation of C&Bxautoit the performance
potential which exists in recovery from control mis-spetiains. The application of the
FSP concept in control speculation is called Eager branshgvidiction Recovery (EMR).
By exploring parallelism in recovery, EMR obtains almost faene performance with a
machine utilizing unlimited checkpoints. We also show ttas technique uses on-chip

checkpoint buffers more effectively.

6.1 Introduction

In modern out-of-order processors, the branch mis-priedigtenalty becomes a critical
factor in overall performance. To recover from the mis-predn, a traditional CSP either
utilizes checkpointing at branches for faster recovengemuentially rolls back to the in-
order state by waiting until the mis-predicted branch readhe head of the reorder buffer.
However, both methods treat the processor state as a uretjaeacoarse-grain level.

A checkpointing 1] mechanism would either have to dedicate a large fractiothef
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chip area for checkpoint data, or limit the number of in-ftighstructions, in essence
limiting the amount of instruction level parallelism tharcbe exploited. For example, the
MIPS R10000 allows only 4 pending branches to be in-flightesitecbranch stack has only
4 entries, in which each entry contains a complete copy ofrttegyer and floating-point
RAM-structured map table$§]. The Alpha 21264 13], which uses the CAM-structured
map table, supports up to 80 checkpoints, in essence pngvitie capability to recover
the state associated with any of the 80 in-flight instruciotdowever, as discussed in
Chapter2.4.2 the CAM-structure itself may not scale well since higherrdeg of ILP
with increased issue widths require a large number of paysagisters.

A commonly employed mechanism of sequential recovery iss® airetirement map
table called RMAP 20]. If a RMAP is used, when an instruction retires, it updates
the retirement map table to indicate that the result registen the in-order state. The
retirement logic ensures that exceptions occur only if fheration causing the exception
is the oldest, non-retired operation in the mach2@.[ At this point, the retirement state
is also the in-order state of this exception point. If a migdiction occurs, the processor
restores the architectural state, or the front-end maje tétdm the retirement map table.
Although RMAP needs only one extra map table, its recoverggasnger than necessary
as renaming cannot start until all instructions prior to mhis-predicted branch retire. If
a long latency operation prior to the branch existg,, a cache miss, the mis-prediction
penalty increases significantly. Akkamt al, discuss some optimizations when using a

retirement map tablel] 2]. These optimizations walk through the reorder buffer sioee



CHAPTER 6. EAGER BRANCH MIS-PREDICTION RECOVERY 71

the map table without waiting for all prior instructions tetire. However, the front-end
stalls and instruction processing occurs sequentialyngianO(n) complexity wheren is
the number of instructions in-flight. Since more instrusi@ppear in a processor with a
large instruction window, this results in a significant &se in the mis-prediction penalty.

As we can see, due to the limitation of coarse-grain statelllma neither of above
mechanisms allows resumption of the fetching and renamimgw instructions from the
correct path until a known processor state is restored. &sultr the opportunity to utilize
the correct values within the architectural state is lost.

In this chapter, we develop an FSP model based on the frarkelescribed in Chapter
5.1 to explore this opportunity that has not been previouslysatered. EMRallows
fetching and renaming instructions immediately upon a bramis-predictiorand restores
the state to the correct stais the instruction fetching/renaming continuésother words,
it effectively explores the parallelism in branch mis-po#idn recovery and hides the state
recovery latency in a RAM based map table design. The desapesyf EMR is described

in the following section.

6.2 Design Space

6.2.1 Identifying Speculative State

When a branch mis-prediction occurs, the set of all regidteas are defined on the
speculative path comprises the speculative state. Notenthapeculative memory data

is written into the cache/memory during the branch speimnatThe memory hierarchy
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system always keeps the in-order state. As a result, EMR pnegds to identify the

speculative register values.

Bi+1

Bi+2
K: R8=...

SS ={R5, R7, R8}

(a) Speculative State

GBIC
i+2 mispredicted
branch
Front-end
Map Table r DBIT SSM
| ) Index L]
R5 P23 1 R5 i 1
=
I _ L
R7 P45 1|0 R7 i+1 1
R8 P38 i R8 i+2 i

L]

L@
000001011000...0000

(b) State Masks

Figure 6.1. Identifying Speculative State

To identify the speculative register state, EMR maintai@8abal Branch Index Counter
(GBIC) for branches and a Dependent Branch Index Table (DBITiptpcal registers. The
GBIC records the index of the youngest in-flight branch. Whemaath is decoded, the

GBIC is incremented by 1 and assigned to it. The DBIT is indexethb logical register
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number, which includes two fields: one is the speculativeb{B)the other is the branch
index field. Initially, all S bits are reset. When a producstinction is decoded, the current
GBIC value is copied into the corresponding entry of its aedion in the DBIT, and the
S-bit is set. That indicates the destination register isslaive and it is dependent on the
current youngest branch. When a producer instruction sefir s still the latest definition
of its logical destination, the corresponding S-bit of tbgital destination register is reset
since it is in-order now and it does not depend on any branble.OBIT can be accessed
in parallel with the front-end map table, therefore it widitnncrease the cycle time of the
decoding stage.

When a branch is mis-predicted, in the DBIT entries, thosesteg whose S-bit is set
and the index value is greater than or equal to this branaxiace defined on its speculative
path. They make up the speculative state for the mis-prifmtanch.

The index counter needs lgly bits if the maximum number of branches allowed to be
in-flight is N. Since the counter zeroes when it overflows, an exttar bit is needed to
handle the relative order of branches correctly. Once th@ateo overflows and zeroes, the
color bit is flipped, from 0 to 1 or from 1 to 0. Each index is assigned kbghcounter
value and the color bit. When two indices A and B are compared dreater than B if
As value is greater than B’s and both color bits are the same AGs greater than B if
As value is less than B’s and their color bits are differens. aresult, the GBIC and each
branch index field in the DBIT need lodl + 1 bits.

Figure6.lillustrates the speculative state identification proc&bg speculative state is
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represented by a mask of registers, called Speculative Btask (SSM). Suppose when

a mis-prediction occurs on the branBp the branche®;.1 andB;. >, and the producer
instructionsl, J andK have already been fetched and decoded speculatively, as s$ho
Figure6.1(a) Figure6.1(b)shows that the processor generates the SSB{loy comparing

its indexi with index values in the DBIT entries whose S bits are set. legister's
index value is greater than or equalitowith respect to the circular order, then it is in
the speculative state setBf, and the corresponding bit in the SSM is set. In this example,
R5, R7 andR8 comprise the speculative state seBpfThey are damaged and not available
as the operands for subsequent instructions until the @oradues are restored.

The speculative state represents exactly what registexstoebe restored. Specifically,
the recovery process only needs to recover damaged reggiatained in the SSM. If
the speculative state only contains a few registers, thevegg process will be effectively
hidden by the execution of useful instructions from the ecrpath.

Our experimental results show that on an average the spigeuktate upon mis-
predictions for 17 SPEC2000 benchmarks accounts for aro0f@ & the architectural
state. We obtain these results by running the benchmarkgrdraseline micro-architecture

model presented in Secti@¥.

6.2.2 Handling Multiple Mis-predictions

Since EMR continues execution in parallel with recovery mais-predictions may
occur before the current one is fully restored. Multiple 1pisdictions may be in-flight.

To handle this situation, we use a global Damaged Registek M2RM), that is visible
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to new instructions, as shown in Figuel(b) Once the speculative state is identified, we
combine it with the DRMPRM = DRMV SSM to reflect the new global speculative state.

In addition, EMR needs to record the precise fine-grain sttamation for each
individual mis-prediction. Upon a mis-prediction, EMR ates a copy of the current front-
end map table and the SSM. The combination is called the kdigtions Map Table
(MMAP), which has two fields, the Mapping Tag and the Speargabit, as shown in
Figure6.2(a) The Speculative bit decides whether the correspondinigdbgegister is
damaged or not. The mapping tag shows the renaming registenich the correct value
needs to be restored.

An N-entry circular queue of checkpoints is needed if as many ggending mis-
predictions are allowed to be in-flight. Shown in Fig@2(b) the checkpoint queue is
maintained as a circular buffer. The head pointer referditeecheckpoint, and the tall
pointer always points the next free entry. Upon a mis-ptesticthe MMAP of it is created
and inserted into the tail of the checkpoint queue. When teedending mis-prediction is
recovered, the head pointer moves to the next entry towhedsil pointer and its allocated
checkpoint entry is released. To maintain multiple misdpréons, we need to consider

three cases when a mis-prediction occurs:

Case 1 No pending mis-prediction exists. Since the current medmtion is the only one
in the pipelineDRM = 0. LetB; be the mis-predicted branch. SSM is generated as
described in Sectiof.2.1, which represents the speculative state séofIn this

case, the DRM is set to the SSM since the set of damaged ragistesists only of
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Front-end Misprediction Map Table

Map Table SSM Mapping Tag S

RS P23 1] R5 P23 1
L )

R7 P45 1 R7 P45

RS P3s 1 R8 P38

(&) Checkpoint
head head

| |

checkpoint checkpoint
stack stack

tail

tail

(b) Checkpoint Stack

Figure 6.2. Checkpointing to Handle Multiple Mis-predicti ons

those on the speculative path®{. Thus,

DRM = DRMV SSM= S§ (6.1)

The current front-end map table and the SSM are copied intcAMMand MMAPs
is inserted into the checkpoint queue as shown in FiguBéa) B is the only mis-

prediction in-flight.

Case 2 A mis-prediction occurs while the processor recovers fragarlier mis-predictions.

In this situation, the younger brancB; occurs while the processor is recovering
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from n previously mis-predicted branche;, ... B, ;. Hereig <...<ip_1 < f.
Then the DRM will be the union of the speculative stat®ef SS in the SSM, and
the speculative states Bf, ... Bj, ,, which areS§, ... S§, ,. SinceS§, ... S§, ;

have already been generated and are contained in the DRM,

DRM = DRMV SSM= S§,V...VSS, , VSS (6.2)

In Figure6.3(b) the copy of the current front-end map table and the SSM giedo
into MMAP; and MMAP; is inserted into the checkpoint queue. There raxel

mis-predictions in flight afteBs is mis-predicted.

head head
tall

tall

‘ checkpoint ‘ i ‘ checkpoint ‘

head head

tail

(b) Case 2 (c) Case 3

Figure 6.3. Three Cases of Multiple Mis-predictions

Case 3 A mis-prediction occurs while mis-predictions are in-flight. Assume that the
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processor is recovering from mis-predicted branches;, ... Bj, ;. The DRM
contains the union 08S,...SS, ,. Since branches can be resolved out-of-order,
it is possible the new mis-prediction is detected on a braghwhich is younger
thanB;; and older tharB;; ,. Hereij < f <ij;1, andip <ij4+1 <in-1. Obviously,
branches fronB; .1 0Bj _, areon the speculative path Bf. Any mis-predictions
of Bim throughB;, , are false mis-predictions. The speculative s&fegenerated

in the SSM contains the speculative ste&,, ... S§,_;. Thus,

DRM = DRMVSSM

— S$,V...VS$,VSS ,V...VSS, VST

+1

— S$,V...VSS VSS (6.3)

The DRM now represents the new union of the speculative stat&; and the
speculative states &, ...B;;. Any false mis-predictions that are caused by invalid
branches through the speculative pathBgfare covered by the mis-prediction of
Bt. In Figure6.3(c) the MMAPs forB;, , ...B;,_, are flushed from the checkpoint

gueue. The MMAP foB; is created and inserted into the queue.

The DRM always represents the complete set of all damagedteegjiof multiple
in-flight mis-predictions. With the DRM, the processor carsilgadistinguish those

instructions from the correct path that reference any irmistate.
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6.2.3 Blocking and Shelving Dependent Instructions

After the processor identifies the speculative state, ingha the PC to the correct
target of the mis-predicted branch and continues the eixeculo handle new instructions
which may reference values in incorrect speculative sE#R utilizes theblocking in RSs
method.

Traditionally, when the processor dispatches an inswuaatito the instruction window,
the ready bit of an operand is set to valid if the operand ha&ady been computed§)].

In our mechanism, if an operand belongs to the in-order ;sthgeready bit will be set
normally, depending on whether this value is computed arlfhdtbelongs to the incorrect
speculative state, the ready bit should be semvtalid, even if the value has already been
computed. Using the DRM, simple logic is enough to handle lates:R = D; AV,
whereD; is theit" bit in the DRM, corresponding th&" logical registerR is the operand
ready bit andv; is the value ready bit of the physical register allocatechai't! logical
register. IfD;j is 0, this operand is not damaged and is ready if the value lheedy been
computed. ID; is 1, this operand is damaged and is not ready.

During the renaming stage, each producer instruction seetD-bit of its logical
destination in the DRM. Any subsequent instruction whichdsethat logical register as
an operand will reference the new, undamaged state.

When theD-bit is set to 1, instructions that reference the damaged.datve state wait
in the reservation stations until the correct state is restolnstructions that access only

undamaged registers proceed without waiting.
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Our experimental results show that in the SPEC2000 benchsistk, on average
only 18% and 40% of all instructions reference damaged tagisn CFP2000 and
CINT2000, respectively. Using EMR, instructions referegaimdamaged registers never
wait unnecessarily because of a branch mis-prediction\asnegructions are fetched and

renamed using the current map table values without intéomip

6.2.4 Correcting Incorrect Speculative State

To maintain the program’s correctness, EMR needs to repaiispeculative state by
restoring the correct data from the in-order state. Oncectireect state is restored,
instructions which reference the damaged state can be texecorrectly and correct
program semantics is maintained.

Like RMAP, EMR uses a retirement map table to construct therder state at the mis-
prediction point sequentially through the retire logic. Wiae instruction retires, it updates
the retirement map table to indicate that the result registe the in-order state. When a
mis-predicted branch reaches the head of the reorder ptiféeretirement state is also the
in-order state of this mis-predicted branch. EMR recordstheculative state in the MMAP
when a mis-prediction happens. When the mis-predicted hresugsing it reaches the head
of the reorder buffer, all previous mis-predictions shdwdge already been recovered. The
first entry of the checkpoint queue contains the MMAP of this-prediction.

With the retirement map table, RMAP, and the MMAP popped frov ¢theckpoint
gueue, EMR can restore the correct data from the in-ordes &idhe speculative state.

Figure6.4illustrates the recovery process for the mis-predictioBof The S-bit in the
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RMAP MMAP
Mapping Tag update RSs Mapping Tag S
Py
R; P, P, 0| R
R P P 1R
i X y i
P, Py
mov Py Py
ROB | B;
head tail

Figure 6.4. Restoring Speculative State

MMAP indicates whether a logical register is in the speduastate or not. For example,
the S-bit ofR; is not set indicating tha®; is not damaged through the speculative path of
B¢. As a result, the corresponding entries are the same botteiRMAP and the MMAP
(Pa). On the contrary, the S-bit d&?; is set indicating it belongs to the speculative state of
B¢. The correct data needs to be restored from the in-ordex &idhe speculative state:
P« — PB. After restoring the correct data value, EMR broadcaststdigeof R, to the
reservation stations to wake up blocked instructions teatrthis value. IR, is still the
latest renaming tag d®; in the front-end map table, the corresponding D-biRpfin the
DRM is reset. Doing so will permit subsequent instructionsolvimay accesR; as their

operand to continue normally.
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After all registers in the speculative state are restoreel récovery of the current mis-
prediction is done. At this point, retirement continuesmally and the first entry in the

checkpoint queue is released.

6.2.5 Parallelism in Recovery

Since EMR is based on a uni-thread model, it utilizes ithplicit parallel recovery
scheme. EMR interleaves the recovery process with the roexecution without
increasing the processors’ complexity.

Simply stated, EMR issues copy operations of the fonov R, P, into the free
functional units to restore the correct data. The copy dmers execute as normal
instructions as they read from and write to the register flegd wake up dependent
instructions blocked in the reservation stations. MoreoVes copy operations update the
retirement map table and the DBIT after they restore the deatags normal producer
instructions do. Thus, a uniform pipeline design can be dsedormal execution and
recovery operations. Furthermore, the complexity of tipelme design does not increase.
No extra read/write ports of the register file, and no extgaases are needed.

Each cycle, EMR can restore as many damaged registers a&sdtefree functional
units. Note that, if there are not many free functional yrtités implies that the newly
fetched instructions do not reference the damaged statoninast, when there are many
free functional units, the newly fetched instructions refeee the damaged state. In the
former case we can afford to be slow in the recovery; in thiedatase we can quickly

restore values and unblock waiting instructions. In eittae, the parallelism between the
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recovery and the newly useful instruction execution candbgeed.

6.3 Optimization

So far the fundamental design space of EMR has been discusisedugh EMR allows
execution of instructions which do not reference damagéaksgait cannot start repairing
damaged values before a known in-order state is obtainad sfdte is obtained by waiting
until the mis-predicted branch reaches the head of the eedwdffer and under normal
circumstances this may not be a significant problem. Howewszn the head of the reorder
buffer is blocked by a long latency operation such as a cadhs, ithe time for the mis-
predicted branch to reach the head of the reorder buffer raagrbe significant. During
this time, the likelihood of finding instructions which dotreference the damaged state
will rapidly diminish and the processor will eventually lsta

From the point of view of state, EMR still handles part of thpair process at a coarse-
grain level. It has to wait until the whole in-order statelad tmis-predicted branch point is
fully restored. In order to fully utilize the power of the F8Bncept, EMR needs to repair
the damaged values as early as possible, at a single vakle lev

We therefore augment our basic technique with an apprepsatiation of WALK
algorithms [, 2]. Both RMAP+WALK and HISTORY+WALK are optimizations on
the basic RMAP mechanism and both methods walk through thrdeebuffer entries to
reconstruct the in-order state without waiting for all hastions prior to the mis-predicted
branch to retire. This technique is orthogonal to EMR and EMR also be improved by

incorporating the WALK scheme. We refer to the combined nemplie as EMR+WALK.
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As illustrated in Figurés.5, the technique requires some additional fields in the MMAP.

MMAP ;
In-order Tag F Speculative TagS R
update RSs
P
Rs —- 0 P, 1|0 y
Rg Py P, 1
R, P, P, 1 Pe Py
mov Py ,Py
ROB P, P, B;
i
WALK
head tail

Figure 6.5. EMR+WALK

In order to repair the damaged speculative state in the MMEAFR+WALK needs to
restore the correct value for each damaged register frortatbst definition of the same
logical destination prior to the mis-prediction point. EMRALK walks from the mis-
predicted branch towards the head of the reorder bufferttteve the latest definition
information from each ROB entry. When a definition ROB entrgdaanned, it is the latest
definition of the speculative destination register priorthie mis-prediction point if the
corresponding-bit (Speculative) is 1 and tHe-bit (Found) is 0 in the MMAP. If this is the
case, the renaming tag of the destination register is paotti&in-order Tagfield and the

F-bit is set. After EMR+WALK walks to the head of the ROB, if thaseany entry with
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S=1 andF = 0 left, itsIn-order Tagcan be retrieved from the retirement map table.

Since thisSWALK process is independent from the retirement logic, resjocorrect
values can be started as early as possible, without waitinglf instructions prior to the
mis-predicted branch to retire. Any entry in the MMAP with=1, F =1 andR=0
(Recovered) will trigger a move operatiom-order Tag— Speculative Tagf the correct
value is ready and there is a free functional unit. After theect value is restored, i bit
is set.

Since there can be multiple mis-predictions in-flight, npldt walk units are needed
and the walk process of a younger mis-prediction may crodsraines. All make the
implementation complicated. To simplify the implemeraatiwe only allow a simple walk
process for the first pending mis-prediction. Once a mishpt®n becomes the oldest one,

its walk process and restoring process can start immeyliatel

6.4 Experimental Evaluation

6.4.1 Experimental Methodology

The simulation tool and the experimental environment aesgmted in Chapte3. In
order to evaluate the performance of EMR, we have collectaaltsefrom 17 benchmarks
of the SPEC2000 benchmark suite. All benchmarks were run toptsion using
the reduced reference inputs from the MinneSPEC workl@8}l [ The cycle-accurate
superscalar simulator is used as the baseline. The panmsnwdtehe baseline model

are shown in Tablé.1 Both load and store instructions are allowed to issue out-of
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order [L1, 39 using the store set memory dependence predictor. Five isaakh different

mis-prediction recovery mechanisms have been evaluattdanpared:

1. RMAR, the traditional coarse-grain sequential recovery modeketirement map

table is used to restore the state.

2. RMAP+WALK the optimization of the above method. With the retiremeapitable,

it walks from the head of ROB towards to the mis-predictiompto restore the state.

3. EMR (M=4), the FSP model which can handle 4 pending mis-predictions.

4. EMR+WALK (M=4) the optimization of EMR, which is combined with the WALK

method.

5. UL_CHK(UNLIMITED CHECKPOINTS)the ideal recovery model, in which a
checkpoint is made with every branch. It can immediatelyoresthe correct state

from the checkpoint when a mis-prediction is detected.

All five machines were kep identical in all aspects except bh@nch mis-prediction
recovery scheme. RMAP+WALK and EMR+WALK both use the resosiraeailable to
the retirement logic. The walking step assumes the same ewoflinstructions as the

retirement width.

6.4.2 Performance Results

The instructions per cycle (IPC) for each program in the beverk suite using the

5 recovery models stated previously is shown in Figoi@ EMR/+WALK has been
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Parameter Configuration
Issue/Fetch/Retire width 8/8/8
Instruction window size 128
Reorder buffer size 256
Register file entries 256
Functional units Issue width Symmetric
Branch predictor 16K gshare
BTB 1024-entry
Return-address stack 32-entry
Dcache L1: 32KB, 4-way, 64B/line, 2 cycles

L2: 512KB, 8-way, 64B/line, 10 cycles
Memory 8Bl/line, 40 cycles first chunk,

4 cycles inter-chunk.

Table 6.1. Machine Configurations

implemented using/l = 4, handling at most 4 branch mis-predictions simultangoske
will discuss the selection of different values Mfin Section6.4.3 As can be seen from
Figure 6.6, EMR outperforms the traditional RMAP mechanism across aldhmarks,
while EMR+WALK performs better than RMAP+WALK. Furthermor&VR+WALK
performs nearly as well as UL_CHK.

To help understand the performance results for the 5 difteneodels, Figures.7
illustrates the percent speedup over RMAP of the other foudelso As shown in
Figure 6.7, RMAP+WALK obtains a 2.9% and 0.4% harmonic mean improvenoset
RMAP on CINT2000 and CFP2000, respectively. EMR achieves a 4aiéh 1.0%
improvement over RMAP. Recall as discussed in Secfd@) the restoring process of
EMR can be delayed significantly due to some long latency ajjmers, such as cache
misses or floating point operations. Long latency operateause EMR to perform worse

than RMAP+WALK on several CFP2000 benchmarks, particularyl81.mcf, which
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DEBE0

RMAP
RMAP+WALK
EMR (M=4)
EMR+WALK (M=4)
UL_CHK

(a) SPEC2000 INT

CEEE0

RMAP
RMAP+WALK
EMR (M=4)
EMR+WALK (M=4)
UL_CHK

(b) SPEC2000 FP

Figure 6.6. Performance of five models
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Speedup Over RMAP

Speedup Over RMAP

20%| RMAP+WALK
EMR (M=4)
EMR+WALK (M=4)
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(a) SPEC2000 INT
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(b) SPEC2000 FP

Figure 6.7. Speedup of RMAP+WALK, EMR/+WALK (M=4) and UL_CH K over RMAP
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has a high cache miss rate. On the other hand, EMR+WALK apiatefyr overcomes
this shortcoming. As shown in Figu&7(a) on the nine benchmarks. As shown in
Figure6.7(a) on the nine with a maximum improvement of 19.9% (175.vprhe best
method, UL_CHK, improves the performance by a harmonic mdatD®%. In other
words, EMR+WALK achieveg1+ 9.0%)/(1+ 10.2%) = 99% of the harmonic mean
performance of UL_CHK.

Although EMR+WALK obtains a lower performance improvement©FP2000 com-
pared to CINT2000, our technique obtains an arithmetic megmavement of 4.8% and
a harmonic mean improvement of 1.3% on eight CFP2000 ben&ismaks shown in
Figure6.7(b) EMR+WALK achieves the same harmonic mean performance aCHK.

In most cases, floating-point programs have relativelyebbdttanch prediction accuracies
using advanced branch prediction techniques. Therefweg dare less sensitive than integer

programs to the mis-prediction recovery mechanisms.

164.9zip| 175.vpr| 176.gcc| 181.mcf

RMAP 95.31 88.68 | 85.79 94.92

RMAP+WALK | 95.31 88.70 | 85.78 94.92

EMR 95.28 88.68 | 85.76 94.94

EMR+WALK 95.29 88.68 | 85.82 94.98

UL _CHK 95.30 88.70 | 85.78 94.97
186.crafty| 197.parser 253.perlomk| 256.bzip2| 300.twolf
RMAP 89.53 94.21 90.37 94.08 88.54
RMAP+WALK 89.53 94.21 89.84 94.11 88.45
EMR 89.53 94.18 89.84 94.07 88.54
EMR+WALK 89.52 94.19 89.84 94.11 88.38
UL _CHK 89.53 94.20 89.84 94.09 88.46

Table 6.2. CINT2000 Branch Prediction Accuracies(%)
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Table 6.2 and Table6.3 show the branch prediction accuracies of 17 benchmarks in
five models with a 16Kgshare[33] predictor. As it can be seen from the table, almost
all floating-point benchmarks have higher prediction aacyrthan integer benchmarks.

Therefore the possible performance improvement is retismall in the floating-point

programs.
171.swim| 172.mgrid| 173.applu] 177.mesaq
RMAP 96.63 95.43 97.38 99.20
RMAP+WALK 96.63 95.44 97.36 99.20
EMR 96.63 95.44 97.38 99.20
EMR+WALK 96.63 95.44 97.38 99.20
UL_CHK 96.63 95.54 97.37 99.20
179.art| 183.equake 188.ammp| 301.apsi
RMAP 98.80 96.86 99.26 94.37
RMAP+WALK | 98.80 96.85 99.30 94.45
EMR 98.80 96.82 99.31 94.46
EMR+WALK 98.80 96.83 99.30 94.42
UL_CHK 98.80 96.83 99.30 94.54

Table 6.3. CFP2000 Branch Prediction Accuracies(%)

6.4.3 Mis-predictions-under-Mis-predictions

This section evaluates the performance of EMR/+WALK whenrthmber of allowed
outstanding mis-predictions varies. In order to achieveoadgtrade-off between per-
formance and the hardware cost associated with the misepiced checkpoints, EMR
implementations need to choose a reasonable valudforFigure 6.8 illustrates the
respective performance of different EMR implementatiorfsere the number of mis-

prediction maps is varied froi = 1 toM = 16. We only present the harmonic mean IPC



CHAPTER 6. EAGER BRANCH MIS-PREDICTION RECOVERY 92

for the entire suite of SPEC2000 benchmarks and omit the datadividual benchmarks.
As it can be seen from the figure, both performance lines of BMREMR+WALK have a

steep gradient froril = 1 toM = 2, and at larger values ™, performance improvement
levels off. Recall that the front-end is stalled when tfemis-prediction is detected in
EMR/+WALK with M =i. WhenM = 1, EMR and EMR+WALK stall fetching new
instructions until the current mis-prediction is recowkresulting in poor performance.

As the value of M is increased, EMR and EMR+WALK can better hidelatency of state

recovery.
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Figure 6.8. Performance of EMR/+WALK with Different M

With a highly accurate branch predictor, the probabilithaing many mis-predictions
in succession diminishes. Under such circumstances altpmiany mis-predictions to be

in-flight will not provide significant performance improvemts. Figure6.8 shows that
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selectingM = 4 provides the best trade-off between performance and laaiedvomplexity
for both recovery models.
Theoretical analysis verifies the experimental resultdotin EMR models, checkpoints

are created only upon mis-predictions. If the number ofighflbranches i8, then

M = B x mis— prediction rate (6.4)

In our experimental models, the number of total in-flightiastions is 256. Given that a
branch is encountered on an average every 3-5 instruct8asg is around 50. Assume
that a gshare predictor, utilized in the experiment, has tlean 10% mis-prediction rate,
thenM =~ 4 based on Equatiof.4. Since UL_CHK would need about 50 checkpoints,
EMR mechanism roughly requiresis-prediction rate%of the hardware cost of the ideal

UL_CHK while capturing 99% performance.

6.4.4 Towards a Large Instruction Window

This section studies the performance variation of the fie®very methods when the
scheduling window size and the reorder buffer size increaiggire6.9shows the harmonic
mean IPCs when the reorder buffer size varies from 64 to 51Zodus the performance
study on the mis-prediction recovery mechanism exclugivee physical register file size
is kept idealized in this group of experiments.

As shown in Figure6.9, all five models obtain performance improvement due to an
increased instruction window size. However, the stridehefimprovement are not equal.

As it can be seen, the performance gap between RMAP and UL_Cldéhies larger as
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Figure 6.9. Performance of 5 Models with Different SW/ROB siz  es

the instruction window size increases. The performance oARIveduces from 96% of the
performance of UL_CHK down to 93% as the instruction windaress increased from 64
to 512. This phenomenon indicates that mis-predictionweigobecomes more critical for
large instruction window processors. In contrast, EMR+WA&Mays achieves close to
99% of the performance of UL_CHK across all window sizes. Wectade that in general,

FSP may lead to more scalable designs than coarse-graatatvery methods.

6.5 Related Work

In [1, 2], Akkary et al. use selective checkpoints at low-confidence branches to
recover from branch mis-predictions. Selective checkpugnprovides better scalability

as the instruction window becomes larger. However, as the ef the instruction
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window is increased, the distance between a valid checkpoith the current instruction
pointer increases, which in-turn increases the possilofire-executing already executed
instructions since the confidence estimator cannot be gierfe

Gandhiet al. [16] propose Selective Branch Recovery (SBR) to reduce branch mis-
prediction penalty by exploiting a frequently occurringéyof control flow independence,
called exact convergence. The results of some convergstmtations computed on the
mis-predicted path can be reused. Thus, the recovery yasakduced since convergent
instructions do not need to be fetched/renamed again. Mowecgent instructions on the
mis-predicted path are re-issued as move operations. Emthrsove operation copies
the value from the previous renaming physical register ofigstination to its renaming
physical register. Thus the correct value of each logicatidation is restored one by one
through the definition chain similar to EMR state recovery.

In [4], Aragonet al. analyze the performance loss due to branch mis-predictiimsy
break the mis-prediction penalty into three subcategonpgseline-fill penalty, window-
fill penalty, and serialization penalty. They propose a DRalh Instruction Processing
(DPIP) to reduce the pipeline-fill penalty. In DPIP, a lowafidence branch is forked
and both paths are fetched and renamed, however, the dilterpath is not executed. A
checkpoint of the map table is created upon the low-confielénanch to support the dual
path processing. Thus, when a mis-prediction happens, swtractions from the correct
path have already been fetched and renamed in the pipelPk €n only fork once since

only two active paths are allowed at the same time.
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A significant body of research has provided us with increggibetter branch prediction
accuraciesq9, 33, 50, 9, 23]. Although the type of branch predictor is orthogonal to
the EMR technique, EMR will provide diminishing returns & taccuracy of branch
prediction increases. Similarly, it provides significamrfprmance benefits as branch
predictor accuracy decreases. EMR may tend to blur therdiftes between different
branch predictors and hence may favor less accurate bat fastnch predictors.

Armstronget al. [5] propose to reduce performance degradation caused byroraise
prediction. They propose a mechanism to leverage wronggvaithts (WPES), which occur
during periods of mis-prediction, such as a NULL pointer noeyraccess. WPEs can be
used to detect whether a branch was mis-predicted befoseeitdcuted. Thus, the time
for detecting mis-prediction is reduced. When a wrong pa#newccurs, mis-prediction

recovery can be initiated early. Utilization of WPEs is ogboal to EMR.

6.6 Summary of EMR

As the pipeline depth increases, branch mis-predictiorofnes a primary bottleneck
in obtaining high performance. Utilization of the FSP cquic®r branch mis-prediction
recovery mechanism can significantly reduce the latencyrafhdh mis-predictions by
immediately starting to process instructions from the ectrtarget without waiting for
the processor state to be restored. Furthermore, the faie-grocessor state can be kept
appropriately in checkpoints, and correct values can bsdated to blocked instructions
by using free functional units, resulting in a complexiffeetive approach.

As an implementation of the FSP concept, EMR+WALK obtains\anage performance
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speedup of 9.0% over the traditional technique on CINT2000rddver, it achieves 99%
of the performance obtained by an unlimited checkpoint vego method using only 4

checkpoints.
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Chapter 7

Fine-grain State Guided Runahead
Execution

In this chapter, we apply the FSP concept in the field of vapexglative execution by
using Runahead execution. We apply the fine-grain state emante techniques in a multi-
threaded environment and present Fine-grain State Guideat®ad Execution (FSG-RA),
an SMT-like FSP model of runahead execution where the datavdependent on a missed
load are treated as damaged values. These values are vantlegcovered as necessary
by an independent thread, while the original thread coesio execute new instructions.
We demonstrate that FSG-RA can improve the single-threagt@ngs performance by
exploiting the parallelism in the Runahead execution regowea multi-thread processor

environment.

7.1 Introduction

Runahead execution was first proposed by Dundas and Mutifjefqr in-order
processors and later applied to out-of-order processokéubly et al. [37]. It increases the

effective instruction window of a processor by continuing@@ution when the instruction
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window is blocked by a long latency operatiag, an L2-cache miss load. In this case,
the processor enters the “runahead mode” by providing aweglue for the blocking
operation and pseudo-retiring it out of the instructionaaw. Under the “runahead mode”,
all the instructions following the blocking operation aetdhed, executed, and pseudo-
retired from the instruction window. Once the blocking aggigmm completes, the processor
rolls back to the point it entered the runahead mode andn®tiar the “normal mode”.
Though all instructions and results obtained during thedhead mode” are discarded, the
runahead execution warms up the data cache and signifientignces the memory level
parallelism.

Similar to the general value speculation example depicte€hapter5.2, one can
envision the runahead execution as a value speculatiomgluhich part of the state
is damaged. Consider the timelines shown in Figtue Timeline (b) represents the
conventional runahead execution which uses a coarse-gtate recovery method to
maintain the state. It has to roll back when the load misssislved. Timeline (c) illustrates
a runahead processor that reuses the independent reswétsiggel during the “runahead”.
This Roll-back + Reuse method, however, obtains little imprognt B5|.

On the other hand, an ideal FSG-RA processor can achieve naitgdr performance,
because it only needs to re-execute miss-dependent ifistrsicwhich updated the
processor state with incorrect values during the runahgeduéion. Furthermore, it can
execute these instructions in an arbitrary order (pendiegdependencies among them)

because it is able to continue executing new instructiorth @ipartially correct state.
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Figure 7.1. Value Speculation

This ability enables a typicadxplicit parallel recoveryersion shown in timeline (e) to
completely overlap the recovery process with the executfonew instructions. In this
approach, a second thread can be made responsible fromimgphie state, and under
favorable conditions, it can match the performance of tlegssor equipped with an ideal
cache.

Notice that a similar effect is achieved by recadontinual Flow Pipeline€CFP)
proposal 1]. It drains load-dependent instructions into a slice buféad then executes
the slice to restore the correct state. However, CFP doesptiiethe parallelism that is
available during the speculation recovery. Therefore sration corresponds to timeline
(d) rather that timeline (e) in which the execution of newtrinstions is blocked until the

recovery is done and the slice is executed. In effect, thevexy is performed sequentially.
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A full-fledged implementation of FSG-RA is difficult due to theemory dependencies.
Although the distinction of independent versus dependesiructions is clear in terms
of register values and a simptag propagation scheme suffices to identify the miss-
independent instructions, such is not the case with the memeferences. When a
store instruction’s address is miss-dependent, it is aflgumpossible to know whether
a subsequent load instruction is miss-dependent or notil&iynassuming independence
for a following store instruction which references the sdogation results in a violation of
output dependencies and the violation can’t be detecteltiiatcache miss is complete.

In order to handle the memory dependencies, we permit loadusgtion guided by a
dependence predictor and re-execute memory operationgefiication and correction.
We extend the store-set]] dependence prediction algorithm for a multi-threadedi-env
ronment. This contrasts witGontinual Flow PipelinegCFP) b1] approach which needs
to buffer all the memory instructions to ensure correct mgnoodering.

In the next section we present an overview of an SMT-like F&8& show how the

runahead concept can be implemented in such a FSP model.

7.2 SMT FSG-RA

In order to implement FSG-RA, we utilizerasource replicating SM[55] design where
most front-end resources such as the register file, the eedrnaffer and the front-end
pipelines are replicated (Figure?). The two halves are organized such that the instructions
retiring from one half can be sent to the reorder buffer of dtieer half. An optional

FIFO calledInstruction Stream Queu@SQ) is placed between the two reorder buffers,
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which enable further buffering of additional instructiomsen the destination reorder buffer
becomes full. We refer to each of the halves asxetution enginéEE). Each EE is a fully

out-of-order engine.

Mode
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Figure 7.2. SMT FSG-RA machine model

We present two designs. In the first, the recovery thread Igimgexecutes all the
pseudo-retired instructions from the main thread, ineclgdhe miss-dependent and miss-
independent instructions. We refer to this desigi-8&-RA-all The second design re-
executes only miss-dependent instructions. We refer sabsign a&SG-RA-depln case
of FSG-RA-al] the 1SQ FIFO carries the instruction stream and acts asa-trache. In
case ofFSG-RA-deponly dependent instructions and memory operations aeglato
the ISQ FIFO alongside their current available operandesllAs discussed previously,
in order to satisfy the correction properfySG-RA-demeeds to buffer the current value
of the operands which are miss-independent together watimgtruction. Instruction flow

into each EE is controlled by the currambdeof that particular engine. There are three
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modesof operation:

1. Normal Mode: The EE fetches instructions from the instruction cache xedw@es
a particular thread, processing and retiring instructiomsnally. When both halves are in
the normal modethe processor exploits thread level parallelism. As losgh&re are no
cache misses, the machine behaves like a conventional SMEEgsOTr.

2. Runahead Mode: The EE suppliesnvalid values to the result registers of missing
loads and pseudo-retires instructions from its reordefebirito the 1ISQ. When the 1SQ is
full, the retirement of that particular engine is stalled.

3. Recovery Mode: The EE retires and commits instructions in program ordergss
a normal processor, but retrieves its instructions fromI8@ instead of the instruction
cache.

Improving the uni-thread performance requires both haasfllows. For simplicity,
let us assume that the program is executing as a single tbreade of the halves referred
to as themain thread As long as the reorder buffer of the EE executing rtinen thread
is not blocked by a long latency operation, the thread exscobrmally and retires and
commits instructions. Once a load that missed in the L2 dathereaches the head of the
reorder buffer (ROB) of thenain thread the particular engine switches to thenahead
mode This load is called theunahead trigger

Switching to the runahead mode:When the EE which is processing theain thread
switches to theeunahead modéehe second EE is placed into tmecovery mode The

execution of thenain threads carried out in a way similar to the original runahead psgio
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[37]. The processor supplies an invalid value to the missing k&l starts pseudo-retiring
instructions which are fed to th&Q and from there to the tail of the recovery thread’s
reorder buffer. In case dfSG-RA-all the recovery thread executes instructions which are
independent of the missing load value in parallel with tha@rttaread until its reorder buffer
becomes full. Once the recovery thread’s ROB becomes fdl]SQ still continues to
buffer instructions pseudo-retired from the main threadteNhat the state of the recovery
thread is always behind the state of the main thread. Dusagwion both threads can use
any form of load speculation guided by a dependence predicto

Cache Miss is Complete:After the L2-miss data is back, as opposed to the original
runahead proposal, the main thread continues to run andraesll back. Meanwhile,
the recovery thread can move forward because the L2-missrvéced. It can begin to
verify, repair, and catch up with the main thread’s statesuising that the validation of
the main thread’s state succeeds, the recovery threaduallgntatches up with the main
thread because it is given priority in the use of the exeautesources. If the validation
fails, the main thread is possibly executing on the wrong datching data irrelevant to the
current execution, or replacing useful data from the caéisuch cases, the main thread
is stopped.

Validation Complete: Once the recovery thread finishes the validation (i.e.,eeith
detects an error, or catches the main thread) it is at thecigooint in the program with a
correct state. Once this state is reached, the recovergdiswitches to the normal mode

and continues its execution as the main thread. The othes B&w available to be used to
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either improve uni-thread performance, or improve thrgugtvia multi-threading.

This scheme improves performance regardless of whetheetowery thread executes
all instructions ESG-RA-al), or only the dependent instructions§G-RA-dep The
purpose of “running ahead” is to avoid the structural blggkaaused by the cache miss
and touch as many future cache misses as possible. Becauldedkiag load is discarded
from the pipeline, during the L2 miss the main thread can anahead in the program path
with a partially correct state to generate useful data cacefetches. In case #iISG-RA-
all, forking the recovery thread simultaneously with the shiitg to the runahead mode
allows it to start with the same state as the main thread diahfa from behind. Instead
of waiting for the L2-miss to be serviced, this early staidwak the recovery thread to fill in
the pipelines and execute all miss-independent instnustimtil its reorder buffer becomes
full. Once the cache miss completes, the recovery threadlyagpairs the state on an
individual location basis. The timeline for this mode of ogtéon is similar to the DCE
proposal §0] during arunahead but unlike DCE, instructions are not executed twice all the
time. In the next section, we outline the fine-grain statentemiance that we implemented

which is applicable to both models of FSG-RA.

7.3 State Maintenance

Theldentification Propertyf FSP requires that the machine has the capability to §jassi
individual locations with respect to the processor statke fine-grain processor state is
maintained for both threads by incorporating a se\df bits with each physical register.

Similarly, the rename map tables also incorporate a s#¥\gfbits and a set of counters
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(CNT) as shown in Figur&@.3. ThelNV bits serve the purpose of distinguishing the miss-
dependent and miss-independent values and each store-guay also accommodates
these bits. Note thdlNV bits are first set by the missing loads and then propagated by
instructions which source those registers.

An instruction is ready to be issued if its operands are readire correspondingNV
bits are set. A store instruction becomes a no operation NI address is miss-data
dependent. If its address is valid but the data to be writteinvalid, the corresponding
entry in the store queue is also markedlld¥. Branch instructions which reference an
invalid operand are not resolved and do not raise mis-ptied& Since the main thread is
running speculatively, the store instructions with thedzaddress do not write values into
the data cache. To prevent subsequent loads from gettilegvstiaes from the data cache,
FSG-RA also incorporates a 4KfBnahead cache[37]. Address-valid store instructions
write their values witHNV-bits into the runahead cache. Load instructions accesstdhe
buffer, the runahead cache, and the data cache simultdpeous

Attached counters on rename map table entries are usedkdteafine-grain processor
state between the two halves. During the runahead mode, direthread increments the
corresponding counter as each register definition is ertecesh Similarly, the recovery
thread increments its own counters as each definition iswmieced. When the two
counters are equal, all the definitions of a particular tegisame have been seen, and
the processor state with respect to that register is cemsistAt this point, the recovery

thread either needs to verify the value, or repair it, dependn the setting of th&\V bit
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on the main thread’s RMAP entrnZorrection Property. Shown in Figurer.3 the logical

registerR7 needs to be repaired aR9 needs to be verified.
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Figure 7.3. Fine grain state recovery

Instructions retire in-order as usual to maintain the etienu The in-order state of
the main thread, though speculative, is presented in tloedar map table, RMAP 20].
All INV andCNT fields are reset at the beginning of runahead mode. When ageodu
instruction retires, it updates the RMAP as usual. TH¥ bit of its physical destination
register is copied to the RMAP, and te&T is incremented by one. When theV bit of
the RMAP in the main thread is set, it indicates the value isfdependent and it needs to
be repaired. The correct value is copied fromtbeovery threald renamed register to the
main threads renamed registei?, < Py. Such a repair permits the main thread to use the

correct value of the register in its future references dytire recovery.



CHAPTER 7. FINE-GRAIN STATE GUIDED RUNAHEAD EXECUTION 108

When thelNV bit of an RMAP entry in the main thread is not set, it indicates t
value is miss-independent. However, as previously digdjsse still need to verify its
value because the main thread might have computed the wedag ecause of load/store
communication through the memory. For example, if a stastruiction is dependent on the
value of therunahead triggetto compute its address, and a subsequent miss-independent
load references the same location, it will acquire the sialge from the data cache, and the
correspondingNV bit won't be set. In this case, thecovery threadletects the mismatch
and signals a validation failure i, # P,, resulting in the main thread to be stopped.

Although one could detect that the state recovery is cormapieh respect to the register
values when all the counters on both halves become equalagiproach won't detect
the proper memory state. Therefore, in the casE®6G-RA-all in addition to the above
mechanisms, we incorporate two global counters on eachafittee SMT. These count
the number of retired instructions from the main thread &edrécovery thread under the
runahead mode and the recovery mode, respectively. Thesd¢ers are initialized to zero
when one EE enters the runahead mode and the other is pubéitedovery mode. When
the two global retired-instruction counters become eqi&,recovery thread has caught
the main thread and the recovery process is complete. Dwteantd correct handling of

the memory state in case BEG-RA-defis more involved and is elaborated in Sectibii

7.4 Termination of Runahead Mode

The use of two threads to maintain the runahead executi@s gxcellent control over

the runahead mode. Specifically, runahead mode can be hidlit isydetected that it is
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not providing benefits and can also be exited upon apprepstate recovery, or when it is
detected that the runahead mode is not providing benefiexeTdre three conditions under
which the runahead execution is terminated: (1) The norrmaipietion of the recovery

after an L2 miss; (2) Detection of useless runahead; and é8dion of a control or data
mis-speculation.

Upon normal completion, the main thread is ahead of the ergawread, possibly has
touched a few more useful misses, and the recovery threaakrasvn state with respect to
the initial cache miss. Even though this mode could contithere is little benefit in dual
execution and the main thread is stopped. The recoverydiyeeomes the main thread
and resumes normal mode. The EE running the old main threaghitable to improve

multi-thread performance, or to be used as the next recaregine.

int

list_length (t)

{
register tree tail;
register int len = 0;

for (tail = t; tail; tail = TREE CHAIN(tail))
len++;

return len;

Listing 7.1. list_length in 176.gcc

When the trigger load is the head of a chain of pointers, rusmélexecution cannot
generate useful prefetches. An interesting example is anCtiitn of 176.gccin SPEC

CINT2000 suite. Shown in Listing.1, the list_length function returns the length of a node
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chain via TREE_CHAIN. This pointer-chasing of the loop alwaysgs an L2-miss if the
root node loading is an L2-miss. As a result, a conventiomahhead processor enters the
runahead mode for each loop iteration. However, no usefth wan be found with running
ahead.

In order to optimize the runahead behavior we have impleeteatmechanism to detect
such useless runahead. For this purpose, we associatel@isguge-bitwith each load
instruction in the main thread under the runahead mode. d&d Instruction is valid and
issued into the data cache then its issue-bit is set. Otkenhe issue-bit is reset. This
issue-bit is fed to the recovery thread together with théruesion into the ISQ. Under
the recovery mode, the recovery thread can tell a cache smispointer-chasing miss if
its issue-bit is zero. It indicates that it is dependent andhginal runahead trigger miss
and it was not issued in the main thread. In order to stop thahre@ad mode properly, we
stop pseudo retirement in the main thread and let the regdlieead catch on the main
thread with respect to the damaged state. When pseudaoanetités stopped in the main
thread, the thread is said to be in thiecking mode Once the recovery is complete, we
allow the main thread to continue normally, instead of altaythe recovery thread to
continue as the main thread. This is because the main thrildoewurther ahead in the
execution sequence than the recovery thread once its danstage is repaired. Note that
this technique effectively utilizes useful instructiongeuted during the recovery process
without special micro-architecture mechanisms. Thusdkenky of the recovery process

is effectively hidden by the useful executions in the maned#d, improving the ILP.



CHAPTER 7. FINE-GRAIN STATE GUIDED RUNAHEAD EXECUTION 111

The outlined mechanisms provide easy detection and handfinontrol and data mis-
speculations. Naturally, a branch mis-prediction by theahead engine goes undetected
when the branch instruction is load-miss dependent. Intaddi when there is a
dependence through memory whélg/ bits cannot be propagated, the main thread may
be computing an incorrect value. Both of these cases arey eletéécted by the recovery
thread. In case of a branch mis-prediction, the branchuostm is at the head of the ROB
of the recovery thread; in case of a load value mis-speoulatine load instruction is at the
head of the ROB of the recovery thread. Upon detection of tisesmeculation, the main
thread is stopped and the EE is released. The recovery tereacs the normal mode of
operation with the correct target (or from the load instiuctiwith the correct value) and

the execution is resumed.

7.5 Thread Memory Dependencies

For intra-thread memory dependencies, FSG-RA utilizesttire set 11] algorithm to
predict the memory dependencies in the usual way: When ahsadiction is decoded, it
accesses the Store Set Identifier Table (SSIT) based on asné@ets its store set identifier
(SSID). If it has a valid SSID, it accesses the Last FetchedeSIable (LFST) and gets
the ROB index of the most recently fetched store instructanwhich it depends. If a
dependence is predicted between a load and a previous ssbrection belonging to the
same thread, it is blocked until the dependent store inshrussues.

Handling of inter-thread dependencies requires an exiertsi the algorithm. Under

the blocking mode, a load instruction executed by the maweith may be dependent on a
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store instruction that will be issued by the recovery thraad it has to wait until that store
is issued. Unfortunately, it is very difficult for a load insttion in the main thread to be
aware of its dependence in the recovery thread. Even if thie thieead’s load instruction is

allowed to access the recovery thread’s LFST, it will notate/get the correct information
since it is quite possible the store instruction has not yemnbfetched into the recovery
thread’s pipeline when the load instruction is decoded @xtiain thread.

Our solution extends the algorithm by sharing the SSIT takeleveen the two threads
and incorporating private LFSTs for each engine. We alsludea new table called Store
Set Counter Table (SSCT). The SSCT counts the number of psetidedrstores for each
live store set in the main thread under the runahead mode. \Wlstare in the main
thread is pseudo-retired, the corresponding counter émtitye SSCT is incremented by
one if it has a valid SSID. Note that all pseudo-retired mstions from the main thread
are fetched and re-executed by the recovery thread. Thdsy time blocking mode, loads
in the main thread can be aware of the memory dependencenafion in the recovery
thread by accessing the SSCT, even before those stores bgjdaghe store sets appear
in the pipeline. This algorithm is depicted in Figufe.

Under the blocking mode, when a load is decoded in the maeathrit accesses the
LFST and the SSCT in parallel, if it belongs to a store set. TR8T and the SSCT
together provide the accurate dependence predictionédotd. There are three cases for
LFST and SSCT values:

LFST=0,SSCT= 0: There is no intra-thread or inter-thread dependence.lddtkis
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<SSID, addr, data>

Figure 7.4. Memory Ordering in FSG-RA

inserted into the main thread’s load queue and it is issueshvttbecomes ready.

LFST> 0,SSCT=0o0r SSCT> 0: There exists an intra-thread dependence. LFST holds
the ROB index of the most recently fetched store instruatidhe main thread on which the
load depends. Since itis dependent on a store in the maedthiee load is inserted into the
main thread’s load queue and it is issued after that stossiged regardless of whether an
inter-thread dependence exits in the recovery thread. nMtreethread dependence overrides
the inter-thread dependence.

LFST=0,SSCT> 0: The store set predicts that this load is not dependent pstane
in the main thread, but it depends on some stores in the recthvead. The load is inserted
into a Waiting Load Queue (WLQ) where it waits until the lateire in the same store
set commits the value to the data cache in the recovery threadh entry in the WLQ

contains the load’s address and SSID. It is implemented ashM §Aicture which can be
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associatively searched using the SSID as the key.

After the L2 cache miss which triggered the runahead exacus completed, the
recovery thread can move forward. In the recovery threack arstore instruction is retired,
it commits its result into the data cache. Meanwhile, it dawents the counter in the SSCT
if it has a valid SSID. If the counter becomes zero, it indésat is the last store instruction
in this store set. Then it sends thkeSSIDaddressdata> into the WLQ to forward the
data to those loads belonging to the same store set. The S8#2d to associatively search
the WLQ, if there is a match and both addresses are the sanstptkés data is forwarded
to that load. If there is a match but their addresses arerdiftethen it indicates that load
is not dependent on the store. It is then removed from the WL®Qiaserted back into
the load queue of the main thread. This technique effegtigebvides load forwarding
between the two threads as well as reducing the load-quessyre during the blocking

mode.

7.6 Detecting Memory Order Violations

The intra-thread memory violations are handled locally he tmain thread and the
recovery thread as usual. When a store instruction is isshedpcal load queue CAM
is associatively searched with its address. If there is aimvay load that is incorrectly
speculatively issued prior to the store instruction, it srked as a mis-speculation.

In order to detect the inter-thread violations between twedds, FSG-RA maintains
a load queue called the Speculative Inter-thread Load Q(®iL€)). Under the blocking

mode, when a load instruction is issued in the main thread, put into the SILQ if it
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gets the value from the data cache or the forwarding data thentcommitting stores of
the recovery thread. Note that the load is not put into the(BilLit gets the forwarding
data from the store queue of the main thread. This is the setype of case where the
intra-thread dependence overrides the inter-thread diegmee. When a store instruction is
retired in the recovery thread, it associatively searchesSiLQ with its address. If there
is a match and their values are not equal, then the mis-sgtemuiflag of the matching
load is set. If there is a match and their values are equat, ttie mis-speculation flag
is reset if it has been set. This value-based violation tietealgorithm is adopted from
[39]. Note that this detection process can only set/reset tiee-thread violation flag. If
a load instruction in the main thread is issued out-of-otzkdpre a previous store which
is also in the main thread and writes to the same addressmaiked as an intra-thread
mis-speculation locally and is not reset by the SILQ detecfirocess.

If a memory ordering violation is detected, the thread'sesteeeds to be restored. FSG-
RA utilizes the conventional state recovery method to hatitienemory mis-speculation
exceptions. Since load mis-speculations do not changeythantic program path, they
can be handled locally. When a load instruction reaches the bkthe reorder buffer, the
recovery process is invoked if its mis-speculation flag ts $be thread’s state is restored
by copying the retirement map table to the front-end mapetadhd the thread restarts
from the mis-speculated load instruction. This multi-ddenemory ordering algorithm
significantly reduces the number of memory order violatibmsa set of benchmarks

(Figures7.5(a)and7.5(b)).
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Figure 7.5. Mis-speculations Enhanced Store Set Algorithm
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7.7 Re-Executing Only Dependent Instructions

We refer to the presented design where the recovery threaplysire-executes all
pseudo-retired instructions from the main threadF&G-RA-all An alternative is to
re-execute only miss-dependent instructions which wer riefeas FSG-RA-dep This
policy effectively increases the efficiency of FSG-RA at thostcof increased hardware
complexity. In FSG-RA-dep, the main thread drains only thesadependent instructions
into the ISQ during the runahead mode. Obviously, each sugthuiction has at least one
operand that is dependent on the runahead trigger. As migyidiscussed, the value of
the independent operand must also be buffered in the camdspy entry and all memory
operations need to be re-executed by the recovery threadisift@y these reasons, it
is important to remember that store instructions only s|aeely commit their values
into the runahead cache, and they should commit into theeda&mory by the recovery
thread in the precise program order. Moreover, it is posditit a miss-independent load
instruction in the main thread may get a stale value from teenory during the runahead
mode. Therefore the recovery thread needs to verify allimgspendent load instructions
to detect such errors. Despite these complications, adlibevshown in the experimental
section, th&=SG-RA-deplesign is quite favorable since it greatly boosts the parémce
with a manageable increase in complexity.

Recall that the recovery thread in FSG-RA-all is able to maindacorrect state at any
point because it re-executes all instructions. Howevdf3G-RA-dep, the recovery thread

may not have a correct state when it finishes the validatiaadmee it will have correct
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miss-dependent state, but not necessarily a correct migependent state.

Main Thread Recovery Threac
1SQ

ly ld R7,068f0) ‘ ls ‘ I ‘ I ‘ I ‘ . Id  R7, 0($fp)

I, R3 =R1+R2 ©
g CHK "é
1S — —
3 Is R10 = R7 - R5 000...0104 I3 R10 =R7 - R5 >
o) >
< 3
g Iy bne R10, $L120 Handle 255 E I, bne R10, $L120 @

Ig R4 =R4-1

lg sw R4, 16($fp) lg sw R3, 16($fp)

Figure 7.6. Example of FSG-RA-dep

Consider the example shown in Figuté. Suppose the load instructiontriggers the
runahead executionlz andl4 are dependent on the trigger and instructignds andlg
are not. When they are pseudo-retired one by one from the mmaad,|1, 13, |4 andlg (it
iS @ memory operation) are drained into the 1SQ. Brainatannot be resolved because it
is miss-dependent. When the recovery thread fetches thetsadtions from the 1ISQ and
re-executes them after the L2-misslgfin the main thread is serviced}, in the recovery
thread can get the data from the cache/memory, and the myabwead can move forward
to repair the state. Branch instructibymight have been mis-predicted by the main thread
and the main thread may be running along the wrong path. tinfately, at this point
neither the recovery thread nor the main thread has theat@tate at,.

To address this issue, FSG-RA-dep combineheckpoint21] scheme to repair the
register state and a history buffer to repair the memorgstbth of these techniques are

employed as differential techniques and using these tquksiFSG-RA-dep is capable of



CHAPTER 7. FINE-GRAIN STATE GUIDED RUNAHEAD EXECUTION 119

salvaging the independent work that has already been ddhe main thread.

7.7.1 Handling the Register State

To handle the register state, the main thread creates thekmbiats of the miss-
independent register state at instructions referred toaaslleinstructions. Suppose that
the main thread creates a checkpointjatlt contains the destination result bf for the
miss-independent registBB. When the recovery thread retires the same instrudsioih
reads the checkpoint and writes the value into the in-orgleaming register dk3. Thus,
the recovery thread maintains a correct statg.af an exception occurs, it can restart the

execution from this point with a correct state.

Main Thread (runahead mode) Recovery Thread (recovery mode
T RFDL T
VAN f”””””””> —1— Handle_1
Handle_ 1 —71— N1 i ol
ANy —| Handle_
N2
Handle 2 —7— —t— Handle_3
N3 —
Handle 3 —1— AN\ 4 — [ Handle_4
N 4
Handle_ 4 —7—
| A

Figure 7.7. Multiple Handles

FSG-RA-dep implements the checkpoints using the differéaclenique introduced in
[21]. Each checkpoint buffers the difference of the miss-iredefent register state from

one handle to another. A register mask is used to record whiss-independent registers
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are defined between two handles. In the above example, hisnpseudo-retired, the
corresponding bit of the mask is set. Later, if the main tire@ates the first handle kat
when it retires, then the current register mask is inseriealthe checkpoint. It indicates
that R3 is miss-independent, has the difference value ftpno 14, and provides the in-
order state value oR3. The main thread creates multiple handles on its pseudede
instruction stream such that each forward differebbetween the two successive handles
is inserted into a list in the program order. We refer to thisJrlist as the Register Forward
Difference List (RFDL), shown in Figuré.7,

Since the overhead of creating a handle at each instruciamdie prohibitively high,
FSG-RA-dep creates handles only at branch instructions.h Wis scheme, when an
exception happens and the current point is not a handle xé@iBon is restarted at the
previous handle. Unfortunately, there may be committed orgraperations between the
current point and the most recent handle. As a result, gpliack will not only discard
some useful work, but the memory state will not be correcartter to maintain the correct

memory state, we employ the history buffer technique for iwgnoperations.

7.7.2 Handling the Memory State

Similar to the miss-independent register state, the merstate can be repaired by
using the difference technique. Before a store instructsoreiired and committed into
the cache/memory, the data in that location is read andtewserto aHistory List When
a handle instruction is retired, the history list is flushethus, the history list always

keeps the backward difference of the memory state from ttestlaetired handle point
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to the current retirement point. If the recovery thread setdroll back to the most
recently retired handle point, the history list is used tstoee the memory state. The
history data saved in the list are stored back to undo all fivadions to the memory
introduced by the wrong speculative state. Thereby therderostate of the memory at
the latest retired handle is repaired. Note that the alte#o using a history-difference
is to buffer the store instructions in the recovery threatil anhandle is received without
an exception. This alternative is more suitable when FSG-Ramployed in a multi-

processor environment. It would require snooping by thenrtiaiead into the store buffer
kept for this purpose in the recovery thread.

It is also possible to extend the History List based algaritto a multi-processor

environment. In a multi-processor setting, the fact thabmmit is speculative must be
communicated to other processors, a problem which is sitail@hread Level Speculation

(TLS) [17, 45]. We leave this to future work.

7.8 Experimental Evaluation

We evaluated and compared four machine models: the Basebdelpnthe Runahead
CSP model, and the two FSG-RA FSP models. We kept the above tmielsidentical in
all aspects except the L2-miss latency tolerance scheme.ERg in FSG-RA are based
on the baseline mode’s configuration. Each has its own phlysgister file and internal
gueues. They share the functional units and the cache/nyesystem. We model a one-
cycle delay when copying a register value between the tweatts. The parameters of

machine models are shown in Tafld.
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Parameter Configuration
Issue/Fetch/Retire width 8/8/8
Scheduling window size 64
Reorder buffer size 128
Load/Store queue size 128
WLQ size 128
SILQ size 128
Register file entries 256

Functional units

Issue width Symmetric

Branch predictor

16K-bit gshare, 32K-entry BTB

ISQ size

1K-entry

Memory disambiguatior

N

Store set

Runahead cache

4KB, 4-way, 8B/line, LRU

Split Data cache

L1: 32KB, 2-way, 64B/line,

2-cycles, LRU, 4-port, 128 MSHRs

L2: 512KB, 4-way, 64B/line,
10-cycles, LRU, 1-port, 128 MSHR

Memory

D

220 CPU cycles

Table 7.1. Machine’s configurations

7.8.1 Performance Results

The normalized execution time for each program in the berecksuite for each model

is shown in Figure3.8(a)and7.8(b) The average bar shows the average of the normalized

execution time, which is calculated as the arithmetic mdéaaoh benchmark’s normalized

execution time. All evaluated machines achieve signifipantormance improvement over

the baseline model and both FSG-RA models outperform the Ruatkimodel across all

CINT2000 and CFP2000 benchmarks.

The speedup for each benchmark is calculated from its naretbéxecution time shown

in Figures7.8(a)and7.8(b) The average bar shows the mean of all individual speedups.

Figures7.9(a)and7.9(b)illustrate the percent speedup over the baseline modelt @i
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Speedup over Baseline
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be seen from Figur&.9(a)the three models obtain limited performance improvement fo
the integer benchmarks. The Runahead model achieves a 2&#gea\speedup while the
FSG-RA-all and the FSG-RA-dep obtain 4.6% and 5.5%, respagtian exception is on
181.mcf, where the cache miss rate is relatively high. Theettmodels outperform the
baseline model on 181.mcf by 21.3%, 25.2% and 25.2%, resphct

For floating point benchmarks (Figure9(b), the Runahead model obtains an average
speedup of 21.4% and up to 87.3% (171.swim). Meanwhile, tB&-RA-all model
achieves a speedup over the baseline model on CFP2000 by mye\ed 31.1% with
a maximum improvement of 135.6% on 171.swim. Since FSG-R#\rdedel re-executes
only miss-dependent instructions to recover the state,-R8&lep gains an average
speedup of 38.9% on CFP2000 and up to 160.0% (171.swim). f#huétaded store set
algorithm is very effective in terms of performance gainsdpplu and equake, boosting
performance by 6-8 % compared to a FSG-RA-dep without thei+thutaded store set
algorithm.

Figure 7.9(a) also shows that the three models do not achieve any improvefoe
certain benchmarks such as 253.perlbmk and 300.twolf Isecafifew L2 misses. The
Runahead model degrades performance for the benchmarkgi@bd 197.parser. The

degradation is a result of short runahead peri@és [

7.8.2 Efficiency of FSG-RA

Both runahead execution and FSG-RA execute more instructloars the baseline

processor. Using a recent analysis meth®g],[we evaluated the efficiency of FSG-RA
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Increase in Executed Instructions over Baseline
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algorithms. Following the definition dfficiencyin [36] given by:

Percent Increase In Per formance A Per formance

E f ficiency= - = .
y Percent Increase In Executed Instructions A Instructions

(7.1)

Note that, this is only an indirect measure of the dynamic groeonsumption of the
processor. Given the additional structures that makes an 8idre will be non-negligible
increase in the static power consumption compared to anagiegsor. However, since we
use an idle thread to speed-up a single-threaded prograrbelieye a fair comparison
should be between an SMT that employs pure runahead and anentiploys FSG-RA.

Figure 7.10(a) and Figure7.10(b) show the increase in the number of executed
instructions for the three models over the baseline modeit éan be seen from the figure,
on an average, the Runahead model executes 35.8% more tiastsuihian the Baseline
model on CFP2000 and it achieves a 21.4% speedup. MeanwlsB;FA-all model
increases the number of executed instructions by an avefaf6% in order to obtain the
speedup of 31.1% on CFP2000. The FSG-RA-all model outperftrenRunahead model
at the cost of executing 4.8% more instructions.

The FSG-RA-dep model, reduces the number of executed itisinsover the Runahead
model across all floating point benchmarks and outperforifgsgure7.10(b). It executes
25.9% more instructions than the Baseline model.

Efficienciesof three models are listed in Tablfe2 and Table7.3. On an average, the

FSG-RA-dep model obtains the efficiencies of 0.84 and 3.0 inTRQDNO and CFP2000,
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respectively. Meanwhile, the Runahead model achieves aB§ &nd 1.47, respectively.
Shown in the table, the efficiencies of the FSG-RA-all modelaso higher than that of
the Runahead model. This is because the FSG-RA-all model hels better performance

than the Runahead model.

164.9zip| 175.vpr| 176.gcc| 181.mcf| 186.crafty
Runahead 1.52 -0.56 0.16 1.53 0.24
FSG-RA-all 1.39 -0.33 0.34 1.47 0.35
FSG-RA-dep| 2.54 -0.35 0.61 1.57 1.03

197.parser 253.perlbmk| 256.bzip2| 300.twolf | Average
Runahead -0.12 0.30 0.00 0.47 0.39
FSG-RA-all 0.10 0.49 0.20 0.73 0.53
FSG-RA-dep, 0.11 0.57 0.35 1.15 0.84

Table 7.2. SPEC CINT2000 Efficiencies

171.swim| 172.mgrid| 173.applul 177.mesa
Runahead 1.32 0.10 0.15 0.11
FSG-RA-all 1.91 0.27 0.18 0.67
FSG-RA-dep| 4.60 0.67 0.64 3.88

179.art| 183.equake 188.ammp| 301.apsi| Average
Runahead | 0.54 0.52 7.60 1.39 1.47
FSG-RA-all | 0.62 0.74 6.98 2.04 1.67

FSG-RA-dep| 0.84 1.80 7.51 4.08 3.00

Table 7.3. SPEC CFP2000 Efficiencies

7.8.3 Effect of Branches

By allowing the recovery thread to verify and repair the statele the main thread
continues the execution, FSG-RA can fully utilize the mthtieading computing power

for the uni-thread programs in the presence of a long L2-midswever, it is possible
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that the main thread is running on the wrong path because boameh instructions are
dependent on the missing L2 data and cannot be resolvede Iintdin thread is on the
wrong path, the data cache will be polluted and no useful smiggpendent instructions
will be executed. As discussed in Sectibd, , if the recovery thread detects that the main
thread is on the wrong path, FSG-RA will stop the main threddrieehe recovery thread’s
state catches up with the main thread'’s state.

Table7.4and Tabler.5show the collected data of branch instructions under thatread
execution in the FSG-RA-all model. The first row shows the neinab branch instructions
per 1000 pseudo-retired instructions. The second row stimysercentage of these branch
instructions which are dependent on the original L2 misa.dahe higher this number, the
more likely that the main thread will follow the wrong path.hd last row of the table

indicates the percentage of killed main threads due to ttedbr mis-predictions.

171.swim| 172.mgrid| 173.applul 177.mesa

BR/1K pseudo-retired  10.7 14.0 43.4 190.1
% miss-dependent| 0.1% 1.5% 0.2% 3.8%

% main thread killed
due to branch-misp.| 29.3% 43.2% 2.3% 100.0%

179.art| 183.equake 188.ammp 301.apsi| average
BR/1K pseudo-retired 127.1 80.7 199.1 61.4 34.0
% miss-dependent | 15.1% 2.0% 15.6% 3.9% 0.3%
% main thread killed
due to branch-misp.| 59.2% 14.6% 97.5% 62.2% | 13.1%

Table 7.4. CFP2000 Branch statistics in FSG-RA-all

As it can be seen from Tablg4, on an average, there are 34.0 branches in every 1000

pseudo-retired instructions on CFP2000 benchmarks. Mereowly 0.3% of them are
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164.gzip| 175.vpr| 176.gcc| 181.mcf| 186.crafty

BR/1K pseudo-retired 46.0 1749 | 162.1 | 233.8 113.5
% miss-dependent| 6.0% | 21.7% | 5.4% | 48.0% 6.9%
% main thread killed
due to branch-misp.| 94.4% | 97.8% | 51.7% | 87.5% 48.5%

197.parser 253.perlbmk| 256.bzip2| 300.twolf | average
BR/1K pseudo-retired 235.9 145.6 95.7 144.0 119.6
% miss-dependent| 57.2% 18.0% 22.6% 22.5% | 12.4%
% main thread killed
due to branch-misp.| 98.8% 95.8% 73.9% 92.5% | 76.9%

Table 7.5. CINT2000 Branch statistics in FSG-RA-all

dependent on the runahead trigger load’s data. It is higbdgible that the main thread can
stay on the correct program path. Accordingly, under thettwead running mode, on an
average, only 13.1% main thread executions are stoppedagpuegly since the recovery
thread detects a branch mis-prediction. On the other hand,relatively difficult for
FSG-RA to keep the main thread running on the correct path o200 benchmarks,
since there are 119.6 branches in every 1000 pseudo-retgtedctions and 12.4% of them
are miss-dependent. Shown in TalBl&, 76.9% main thread executions are killed due to
mis-predictions of miss-dependent branches. Mis-predibtanches which depend on the

missing load is a main factor for terminating the runaheadeno

7.9 Related Work

Karkhanis and Smith2b] showed that the structural blockages due to a full ROB are
the major reason behind performance loss with cache migk#se structural resources
are available, the processor can continuously issue tigins and overlap even very

long cache miss latencies. However, they also concludedntispredicted branches
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which depend on the missing load will inhibit performancesome cases because useful
instruction issue stops immediately after the mis-predidtranch. Our work supports their
observations and analyses.

Zhou proposed the dual-core execution (DCE) micro-architec[60]. The front
processor always runs far ahead to warm up the data cach@emtnits a branch-fixed
instruction stream to the back processor. In the term ofgsear states, the back processor
is responsible for correcting the state of the missing laadl its dependent instructions.
However, in DCE, all instructions are executed twice, oncéheyfront processor and once
the back-end processor. SifE8G-RA only re-executes instructions when the main thread
is under the runahead modéhere are significant power/energy differences between th
two approaches.

Srinivasanret al. proposed the continual flow pipelines (CFBY]. Unlike CFP which
employs asequential recoverynethod and utilizes very large hierarchical load and store
gueues to buffer all in-flight load and store instructionSG-RA needs small load/store
gueues and forks a second thread to verify and maintain tieepsor state. FSG-RA is a
fully parallel recovery FSP model.

The SlipStream paradignd$, 42] uses the A-stream to reduce the length of a running
program by dynamically skipping ineffective instructiond’he R-stream uses the A-
stream’s outcomes only as predictions. FSG-RA utilizes ipialthreads only when L2

misses occur.
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7.10 Summary of FSG-RA

We have presented an exploration of fine-grain state proceSsir results indicate that
by allowing a processor to continue execution with a pdytiebrrect state and repairing
the state in parallel by using a second thread may prove bigua addressing the speed

gap between the memory and the high-performance procesStoday.
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Chapter 8

Conclusion

Processor states can be manipulated either at the coaisdeayel or at the fine-grain level.
If appropriate mechanisms have been implemented to ansveeleg regarding the current
state of data values at a finer granularity level, it is pdesib salvage part of the work
done during speculative execution after a mis-speculatorio recover only the part of
the state that has been damaged without a roll-back. Coovehiine-grain state guided
speculation recovery methods are ad-hoc and fail to exptharéull potential of fine-grain
processor state handling, namely the parallelism in spdoulrecovery. This dissertation
introduces the concept of FSP and provides a general FSRvrark for handling the
processor state at a fine-grain level and lays the foundatibparallel speculation recovery.
Under this general framework, a processor can continueuinegast a mis-speculation
resolution point before the state is fully recovered. Inhsao organization, newly fetched
instructions which access incorrect speculative valuesbéocked until the correct data
are restored; however, those instructions that accessthect values continue execution

while the recovery occurs. In parallel with the recoverg, pinocessor is capable of moving
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forward seamlessly with a partially correct state. Thus,|timg latency of mis-speculation
recovery is overlapped with useful execution.

Based on the proposed framework, this dissertation has rexpkpplications of FSP
on a sophisticated uni-processor setting as well as a simpl#-core/multi-threaded
organization. It has presented two detailed FSP models, BRMIRFSG-RA, regarding
control speculation and value speculation, respectivBlyth models have demonstrated
that the FSP technique handles processor states morergffiaad obtains much higher
performance than the traditional CSP mechanism does.

In next section, the contributions of this dissertation smenmarized, and the future

research directions are briefly discussed.

8.1 Dissertation Contributions

This dissertation has made the following contributions:

1. The concept oFine-grain State Processors (FSHHSP can utilize partially correct
processor state upon an exception, which cannot be seersaddyCoarse-grain

State Processors (CSP)

2. A taxonomy of fine-grain state processors. The taxonomynsarizes and catego-

rizes existing fine-grain state guided speculation regorerchanisms.

3. A general FSP framework, including a novel concept of exiplg parallelism in

speculation recovery. This framework is made of the follayyoroperties:

* |dentification property.
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Block and shelve property.

Correction property.

Unblocking property.

Parallelism-in-recovery property.

4. An FSP model for control speculatioBager branch Misprediction (EMREMR
obtains an average performance speedup of 9.0% over théanatl RMAP on
CINT2000. Moreover, it achieves 99% of the performance olethby an unlimited

checkpoint recovery method using only 4 checkpoints.

5. An FSP model for value speculatidfine-grain State Guided Runahead execution
(FSG-RA)which investigates value speculation by using runaheadutia. FSG-
RA improves the single-thread program’s performance byatipg the parallelism
in the Runahead execution recovery in a multi-thread pracess/ironment. FSG-
RA can obtain an average of 38.9% and up to 160.0% better peafaze than coarse-

grain baseline processor on the SPEC CFP2000 benchmark suite

6. An extension of the store set algorithm to detect the {titerad memory depen-
dences. This algorithm is applicable for not only the FSG-R&dsi, but also other

general multi-threaded processor models.

7. Implementation of a cycle-accurate and function-dricanhe hierarchy simulator

usingADL and its integration into thEASTsimulation system.
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8.2 Future Directions for Research

This work has focused on a uni-processor configuration wihashonly a single core, and
the processor states are private to this core. Under suckhpaagsessor environment, EMR
and FSG-RA models have demonstrated that the FSP technigngsa@vide impressive
speed-ups without using difficult to scale processor eleselVith the fine-grain state
concept, mis-speculation recovery essentially beconeesifithere is enough independent
work to do for the processor.

In the near future, we believe more and more processor cdtelenntegrated into a
single die B, 22]. In addition to increasing throughput, efficiently utihg multi-threading
or multi-core resources will play a crucial role to achiewghhperformance and to reduce
the hardware complexity. Furthermore, aggressive spgenlmechanisms become more
feasible than ever by using the FSP techniques developekisndissertation. In the
following, future directions and possible extensions & tturrent FSP techniques are

briefly discussed:

Architectural State Memory

In Chapter7.7.2 FSG-RA-all model allows store instructions speculativeaynmit their
values into the memory. Thus, the memory contains both defovalues and speculative
values. Also, FSG-RA-all utilizes History Listas the recovery method. Before a store
instruction is retired and committed into the memory, theada that location is read and

inserted into a History List. If it needs to roll back to thesheecently retired handle point,
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the history list is used to restore the in-order memory state

This memory design is referred to Aschitectural State Memory (ASMYnder a uni-
processor environment, the ASM method works well using tisédry List as the recovery
method. However, under a multi-processor environmentngleiuni-processor History
List is not enough. Assuming a centralized shared memorgési uprocessors need to
communicate with each other through the shared memory. WB&hi& employed in such
a configuration, a speculative commit into the memory mustrimsvn by other processors.

A simple way is to append a speculative bit with each memarg br even word to
indicate this memory line (word) is speculative or not. ltalso possible to extend the
History List based algorithm to a multi-processor enviremi If a processor needs to
read the in-order value from a particular address, it nee@dstess ASM and the History

Lists of other processors simultaneously.

Fine-grain State Multi-core Processors

Once a practical micro-architecture mechanism of the roolte version ASM is
designed, the concept of Fine-grain State Processors oaxtdraded intd-ine-grain State
Multi-core Processors (FSMP)

Like FSP, FSMP would have the ability to identify machindesaon an individual value
basis. Each single core of an FSMP should be able to preddehtify the fine-grain
register state of its own, as well as the fine-grain sharedangstate of the whole multi-
core processor. Therefore, the concept of fine-grain statdéoe utilized in the context of

not only the intra-core speculative executions but alsarttez-core ones.
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For example, when a speculation is detected as a miss, thesgecuting the program
can continue running with a partially correct state, othdle icores can be used to
repair the state. Similar to FSG-RA, which can improve a sifigtead program’s
performance by exploiting the parallelism in the Runaheateton recovery in a multi-
thread processor environment, such an FSMP model will ketalsipeed up a single-thread
program’s performance by exploiting the parallelism-@cavery in a multi-core processor

configuration.

Thread Level Speculation

An attractive speculative execution technique utilizecaimulti-core environment is
Thread Level Speculation (TLSYith more cores integrated into a single die, different TLS
methods 80, 18, 31, 12, 52, 32] have been proposed to utilize available hardware ressurce
to optimistically execute non-analyzable serial programsarallel to boost performance.

With TLS, a sequential program is divided into tasks which ba executed in parallel
by different cores. There is one non-speculative main taklclwprecedes all other
speculative tasks. If any inter-task dependence violaisomletected, either control
dependence or data dependence, incorrect tasks need whsaua polluted processor
states need to be repaired. Utilizing traditional TLS teghes, coarse-grain state
multi-core processors have to squash tasks, repair statdsghen re-execute tasks from
speculation point, sequentially. An improvement mecharé5] would re-execute only
speculation dependent instructions, which is catego@se8equential Recovery fine-grain

state scheme introduced in Chapte2.1
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In FSMP, each core would have the ability to precisely idgrdiate at a single register
or a single memory location basis. Thus, an FSMP would betald@ply the concept of
fine-grain state in the context of TLS. Once a dependencatidol occurs, the main task
can continue execution, and can even fork new tasks withtefhacorrect processor state.
Only dependent instructions will be re-executed to redfioeecorrect state in parallel with

the main task.

Dual Path Branch Execution.

In order to reduce branch mis-prediction penalty, seveual ggath branch execution
techniques have been proposedsa, [19, 27, 28, 56, 4]. Normally, a dual path execution
mechanism uses a spare hardware context to process theatterpath of a hard-to-
predict branch at the same time as the predicted path is Bxeguted. Thus, mis-
prediction penalty can be significantly reduced if the bhaiscmis-predicted. However,
most proposed models belong to the CSP category and theydanartitain the complete
set of states for each path. It makes the dual path executite@pmplex.

Unlike CSP, an FSP or an FSMP should be able to identify indalicdata items
belonging to the either path of an branch instruction. At ada-predict branch
instruction, an FSP or an FSMP can follow both paths and wooldneed to maintain
the complete set of machine states for each path. It can @ramit speculative memory
values into ASM without utilizing a complex store buffer. i) the hardware complexity
can be reduced and the dual path execution can be processsspatr depth.

Moreover, passing the convergence point of branch, coemdapendent instructions
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can be processed seamlessly, whether they are data- depemdadependent on any
values along both paths of the predicted branch. Data-digp¢imstructions can be simply
blocked and they can wait for the correct values to be redol@ace the branch is resolved
and the correct values are recognized, execution of theseigtions can be resumed. At
the same time, processor can execute data-independenttiets in parallel. Therefore,
the parallelism-in-resolutioncan be achieved to boost performance in such a setting as

well.
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