
FINE-GRAIN STATE PROCESSORS

By

PENG ZHOU

A DISSERTATION

Submitted in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

(Computer Science)

MICHIGAN TECHNOLOGICAL UNIVERSITY

2009

Copyright © Peng Zhou 2009

This dissertation, “Fine-grain State Processors,” is hereby approved in partial fulfillment of

the requirements for the degree of DOCTOR OF PHILOSOPHY in the field of Computer

Science.

DEPARTMENT:
Computer Science

Signatures:

Dissertation Advisor
Dr. Soner Önder

Committee
Dr. Steven M. Carr

Dr. David A. Poplawski

Dr. Brian T. Davis

Department Chair
Dr. Linda M. Ott

Date

To My Parents and My Wife

iv

Acknowledgement

First and foremost, I would like to thank my advisor Dr. SonerÖnder, for his support,

guidance, and encouragement in the Ph.D program. He showed me the way to approach

research problems and taught me how to express my ideas. I am deeply impressed by his

inspiring and encouraging way to guide me to a deeper understanding of knowledge. I am

grateful for his advise and comments in this dissertation.

I also would like to thank the rest of my thesis committee: Dr.Steve Carr, Dr. David

Poplawski, and Dr. Brian Davis, for their kind help and valuable comments on this work.

Thanks also go to Dr. Zhenlin Wang from our research group, who gave me the suggestion

and helped me on the career selection.

I really appreciate my friends and colleagues in school, whohad fun with me and gave

me the help in a place far away from home. I really enjoyed the life with them in the

beautiful Keweenaw Peninsula.

Last but not least, I wish to thank my parents and my sister, for their continued support

and encouragement. I am also very grateful to my wife Xiaodi,for her love and patience

during my Ph.D period.

1

Abstract

Proper manipulation of processor state is crucial for high performance speculative super-

scalar processors. This dissertation presents a new state paradigm. In this paradigm, the

processor is aware of the in-order, speculative and architectural states on an individual data

location basis, rather than with respect to a particular point in the program’s execution.

We refer to the traditional processors which adopt a lump-sum approach with respect to

the processor state asCoarse-grain State Processors (CSP), and those which can classify

individual data locations belonging to a particular state as Fine-grain State Processors

(FSP).

Fine-grain State Processors break the atomic state set intofiner granularity at the

individual value level. As a result, they can utilize correct values upon a mis-speculation.

Furthermore, they can continue execution with a partially correct state and still maintain

correct program semantics. Performing the state recovery without stopping the execution

of future instructions potentially can hide the latency of the recovery process, resulting in

zero-penalty speculation under ideal conditions.

This dissertation also presents a taxonomy of FSP. The taxonomy categorizes existing

fine-grain state handling techniques and outlines the design space of future FSP designs.

Based on the developed general framework, the dissertation explores applications of FSP

on sophisticated uni-processor as well as multi-core/multi-threaded organizations. Two

detailed FSP models are evaluated,EMRandFSG-RA, regarding control speculation and

value speculation, respectively. In both models, the FSP technique handles processor

states more efficiently and obtains much higher performancethan traditional mechanisms.

For example, EMR achieves an average of 9.0% and up to 19.9% better performance

than traditional course grain state handling on the SPEC CINT2000 benchmark suite,

while FSG-RA obtains an average of 38.9% and up to 160.0% better performance than

a comparably equipped CSP processor on the SPEC CFP2000 benchmark suite.

2

Contents

Acknowledgement iv

Abstract 1

List of Figures 8

List of Tables 9

1 Introduction 10

1.1 Motivation. 10

1.2 Research Goals. 16

1.3 Dissertation Organization. 20

2 Background 21

2.1 Out-of-order Execution and Speculative Execution. 21

2.2 Processor States. 24

2.3 State Maintenance and Recovery. 26

2.3.1 State re-constructing. 26

2.3.2 Checkpointing . 33

2.4 Register Renaming and State Maintenance and Recovery. 37

2.4.1 RAM-structured MAP. 39

2.4.2 CAM-structured MAP. 43

3

2.5 Summary of Background. 46

3 Simulation and Experimental Setup 47

3.1 Simulation Tools . 47

3.2 Benchmark Suites and Environment. 49

4 Taxonomy of Fine-grain State Processors 53

4.1 Roll-back + Reuse Results. 54

4.1.1 Squash and Re-fetch Instructions. 54

4.1.2 Re-issue Fetched Instructions. 56

4.2 Continue Without Roll-back. 57

4.2.1 Sequential Recovery. 57

4.2.2 Parallel Recovery. 58

4.3 Summary of Taxonomy. 59

5 Fine-grain State Processor 60

5.1 A General FSP Framework. 60

5.2 Coarse-grain State VS. Fine-grain State. 65

5.3 Summary of FSP’s Framework. 68

6 Eager branch Mis-prediction Recovery 69

6.1 Introduction. 69

6.2 Design Space. 71

6.2.1 Identifying Speculative State. 71

6.2.2 Handling Multiple Mis-predictions 74

6.2.3 Blocking and Shelving Dependent Instructions. 79

4

6.2.4 Correcting Incorrect Speculative State. 80

6.2.5 Parallelism in Recovery. 82

6.3 Optimization . 83

6.4 Experimental Evaluation. 85

6.4.1 Experimental Methodology. 85

6.4.2 Performance Results. 86

6.4.3 Mis-predictions-under-Mis-predictions. 91

6.4.4 Towards a Large Instruction Window. 93

6.5 Related Work. 94

6.6 Summary of EMR. 96

7 Fine-grain State Guided Runahead Execution 98

7.1 Introduction. 98

7.2 SMT FSG-RA. 101

7.3 State Maintenance. 105

7.4 Termination of Runahead Mode. 108

7.5 Thread Memory Dependencies. 111

7.6 Detecting Memory Order Violations. 114

7.7 Re-Executing Only Dependent Instructions. 117

7.7.1 Handling the Register State. 119

7.7.2 Handling the Memory State. 120

7.8 Experimental Evaluation. 121

5

7.8.1 Performance Results. 122

7.8.2 Efficiency of FSG-RA . 125

7.8.3 Effect of Branches. 128

7.9 Related Work. 130

7.10 Summary of FSG-RA. 132

8 Conclusion 133

8.1 Dissertation Contributions. 134

8.2 Future Directions for Research. 136

6

List of Figures

1.1 Mis-speculation and its effect on state. 12

1.2 Percentage of Speculative State upon Mis-predictions. 14

1.3 Distribution of References to Damaged/Non-Damaged Registers upon

Mis-predictions . 15

2.1 Exception and Mis-speculation Boundaries. 22

2.2 In-order, Speculative and Architectural States upon Speculation. 25

2.3 Reorder Buffer . 28

2.4 History Buffer. 30

2.5 Future File. 32

2.6 Checkpointing Maintenance and Recovery Scheme. 33

2.7 Logical Space of Memory by Backward Difference. 36

2.8 Logical Space of Memory by Forward Difference. 37

2.9 RAM-structured Map Table. 39

2.10 Checkpoint Stack in MIPS R10000. 41

2.11 State Re-constructing in Pentium IV. 42

7

2.12 CAM-structured Map Table. 44

2.13 Per-Instruction Boundary State Recovery in Alpha 21264. 45

3.1 Fast Functional Simulator. 48

3.2 5-Stage Pipeline Simulator. 48

3.3 Superscalar Simulator. 49

4.1 Taxonomy of Fine-grain State Processors. 53

5.1 Control Speculation. 65

5.2 Value Speculation. 67

6.1 Identifying Speculative State. 72

6.2 Checkpointing to Handle Multiple Mis-predictions. 76

6.3 Three Cases of Multiple Mis-predictions. 77

6.4 Restoring Speculative State. 81

6.5 EMR+WALK . 84

6.6 Performance of five models. 88

6.7 Speedup of RMAP+WALK, EMR/+WALK (M=4) and UL_CHK over

RMAP . 89

6.8 Performance of EMR/+WALK with Different M. 92

6.9 Performance of 5 Models with Different SW/ROB sizes. 94

7.1 Value Speculation. 100

7.2 SMT FSG-RA machine model. 102

8

7.3 Fine grain state recovery. 107

7.4 Memory Ordering in FSG-RA. 113

7.5 Mis-speculations Enhanced Store Set Algorithm. 116

7.6 Example of FSG-RA-dep. 118

7.7 Multiple Handles . 119

7.8 Performance of 4 Models. 123

7.9 ∆ Performance . 124

7.10 ∆ Number of Instructions. 126

9

List of Tables

6.1 Machine Configurations. 87

6.2 CINT2000 Branch Prediction Accuracies(%). 90

6.3 CFP2000 Branch Prediction Accuracies(%). 91

7.1 Machine’s configurations. 122

7.2 SPEC CINT2000 Efficiencies. 128

7.3 SPEC CFP2000 Efficiencies. 128

7.4 CFP2000 Branch statistics in FSG-RA-all. 129

7.5 CINT2000 Branch statistics in FSG-RA-all. 130

10

Chapter 1

Introduction

1.1 Motivation

Out-of-order and speculative executions have been the hallmark of high performance

superscalar processors which dominated a large variety of systems from laptop computers

to workstations and servers during the last decade. Processors utilizing these mechanisms

need to handle processor states properly. For instance, if an exception occurs or a

speculation misses, the processor state must be restored toa previous correct point to

maintain the correct semantics. Proper manipulation of processor states is crucial for the

successful implementation of speculation in contemporaryprocessors [21, 47].

In this dissertation, we present a new state paradigm in which the processor is aware of

the in-order, speculative and architectural states [24] on an individual data location basis,

rather than with respect to a particular point in the program’s execution. We refer to the

traditional processors which adopt a lump-sum approach with respect to the processor

state asCoarse-grain State Processors (CSP), and those which can classify individual

data locations belonging to a particular state asFine-grain State Processors (FSP). We

CHAPTER 1. INTRODUCTION 11

illustrate that if appropriate mechanisms are implementedto answer queries regarding the

current state of data values on an individual basis, it is possible to salvage part of the work

done during speculative execution after a mis-speculation, or, even better yet, to continue

execution without a roll-back and recover only the damaged part of the statein parallel

with the execution of useful instructions.

Various micro-architecture techniques that salvage work from a failed speculation

attempt [48, 10, 44, 36], as well as reducing branch mis-prediction penalty [62, 16], all

implement a variation of a fine-grain state maintenance mechanism. However, to the best

of our knowledge no one to date pointed out the commonality ofthese micro-architectural

mechanisms and named it. Furthermore, very few existing techniques [62, 16, 61]

harvest the performance benefits of overlapping the state recovery with useful instruction

execution.

In order to better illustrate this perspective, consider a simple example shown in

Figure1.1. Assume that the processor mis-predicted the branch instruction and reached

point C. A processor that has the concept of only a coarse grain stateneeds to roll back

to pointA, restore the state to the in-order state at that point, and re-execute instructionI4

to arrive at pointC with a correct architectural state. On the other hand, if theprocessor

knows which data values have been modified speculatively, ithas two options. It can either

restore the state as before by rolling back to pointA but skip the execution of instructionI4,

i.e., salvage part of the work done during the speculative execution, or continue executing

past pointC without restoring the state, but clearly identify which values that make-up the

CHAPTER 1. INTRODUCTION 12

I2 z = 4

I1 x = 5

I3 x = 7

I4 z = 3

A

B

C

C
or

re
ct

 p
at

h

Incorrect path

Figure 1.1. Mis-speculation and its effect on state

architectural state at pointC have been damaged during the speculative execution (i.e.,x)

and block the references to those locations until their correct values are restored.

For most applications, rolling back and re-using salvaged results provide only limited

benefits [35]. This is because the salvaged instructions may not be on thecritical path of

the program to shorten the execution latency when their results are reused. Furthermore,

skipping over a subset of instructions is not easy and in general requires sophisticated

micro-architecture techniques [8]. A majority of these techniques would pose significant

design complexity in a processor implementation. Alternatively, continuing execution in

parallel with the recovery of damaged values is quite feasible because all that is needed is

the capability to identify the part of the state that is damaged and the means to restore these

CHAPTER 1. INTRODUCTION 13

values on an individual basis. If the recovery process can beoverlapped with the useful

execution, this technique can significantly reduce and in some cases completely eliminate

the performance penalty of mis-speculations.

Our experimental results show that values modified speculatively along the mis-predicted

branch path are only a small part of the whole architectural state. Figure1.2illustrates that

on an average the wrong speculative state upon branch mis-predictions of 17 SPEC2000

CPU benchmarks accounts for around 20% of the whole architectural state. Moreover, our

experimental results show that more than 60% of the newly fetched instructions from the

correct branch path do not reference those damaged values. Illustrated in Figure1.3, on

average only 18% and 40% of instructions along the correct path of a mis-predicted branch

will reference damaged register values in CFP2000 and CINT2000, respectively.

As we can see, there exists a large potential for improving the performance. Upon

a mis-speculation, an FSP which is aware of the processor state on an individual basis

can potentially continue processing execution before the whole process state at the mis-

speculation point is restored. For this purpose, newly fetched instructions accessing

incorrect speculative values need to be blocked until the correct data values are restored.

On the other hand, more than 60% instructions, which access only correct values, will be

able to execute while the state recovery continues. Thus, the long latency of the branch

mis-prediction recovery can be overlapped with those useful instructions. Under ideal

circumstances an FSP can achieve a zero-latency recovery ifthere are enough independent

instructions.

CHAPTER 1. INTRODUCTION 14

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

18
1.

m
cf

18
6.

cr
af

ty
19

7.
pa

rs
er

25
3.

pe
rlb

m
k

25
6.

bz
ip

2
30

0.
tw

ol
f

A-m
ea

n

0%

10%

20%

30%

40%

Integer Registers
Floating-Point Registers

(a) SPEC CINT2000

17
1.

sw
im

17
2.

m
gr

id
17

3.
ap

pl
u

17
7.

m
es

a
17

9.
ar

t
18

3.
eq

ua
ke

18
8.

am
m

p
30

1.
ap

si

A-m
ea

n

0%

10%

20%

30%

40%

Integer Register
Floating-Point Register

(b) SPEC CFP2000

Figure 1.2. Percentage of Speculative State upon Mis-predi ctions

CHAPTER 1. INTRODUCTION 15

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

18
1.

m
cf

18
6.

cr
af

ty
19

7.
pa

rs
er

25
3.

pe
rlb

m
k

25
6.

bz
ip

2
30

0.
tw

ol
f

A-m
ea

n

0%

20%

40%

60%

80%

100%

Accessing Damaged Registers
Accessing Non-Damaged Resiters

(a) SPEC CINT2000

17
1.

sw
im

17
2.

m
gr

id
17

3.
ap

pl
u

17
7.

m
es

a
17

9.
ar

t
18

3.
eq

ua
ke

18
8.

am
m

p
30

1.
ap

si

A-m
ea

n

0%

20%

40%

60%

80%

100%

Accessing Damaged Registers
Accessing Non-Damaged Registers

(b) SPEC CFP2000

Figure 1.3. Distribution of References to Damaged/Non-Dam aged Registers upon Mis-
predictions

CHAPTER 1. INTRODUCTION 16

1.2 Research Goals

FSP breaks the main limitation of the state maintenance in CSP, which cannot utilize

correct values within the architectural state when an exception occurs. Although retaining

the usable results has been a significant focus in a number of recent proposals [48, 44, 35],

most of these proposals have provided ad-hoc solutions tailored to the specific problem at

hand. The fundamental concept of fine-grain state handling provides a key insight into the

design of future systems where a systematic approach can be employed to separate usable

values from dmaged values. Doing so can enable researchers to design processors which

can aggressively pursue optimization opportunities upon an exception without waiting to

restore the whole state to a known point. In this dissertation, our first research goal is to

propose a general framework of fine-grain state handling. Wedefine an FSP having the

following properties:

1. Identification property:

The processor can identify an individual data item such as a register file entry or a

memory location as belonging to thein-order or speculativestate, or as adamaged

value;

2. Block and shelve property:

The processor can block an instruction which references damaged values by shelving

it until the damaged values are corrected;

3. Correction property:

CHAPTER 1. INTRODUCTION 17

The processor has the means to correct damaged locations on an individual basis

after a mis-speculation;

4. Unblocking property:

The processor can wake-up and execute shelved instructionswhich reference

damaged values upon restoration of the damaged values in an arbitrary order;

5. Parallelism-in-recovery property:

The processor can overlap the restoration of damaged valueswith the execution of

instructions which do not reference damaged values. In other words, upon a mis-

speculation, execution can continue with a partially correct state as the damaged

values are repaired. This novel concept allows mis-speculation recovery to become

free if there is independent work to do for the processor.

The design space of FSP is quite large. In principle, it can beapplied in many

different kinds of speculative execution environments by exploring the parallelism in

mis-speculation recovery to improve performance. In this dissertation, we demonstrate

that the FSP concept is applicable for both the control speculative execution and the

value speculative execution. For this purpose we evaluate two FSP models: regarding

control speculation the technique of Eager branch Mis-prediction Recovery, and for value

speculation the technique of Fine-grain State Guided Runahead Execution.

Eager branch Mis-prediction Recovery (EMR) illustrates how one can apply the FSP

concept for control speculation. In a nutshell, a traditional CSP either checkpoints the state

CHAPTER 1. INTRODUCTION 18

at branches for faster recovery, or sequentially re-constructs the in-order state at the mis-

predicted point by waiting until the mis-predicted branch reaches the head of the reorder

buffer. It cannot restart the execution from the correct path until the whole state at the mis-

predicted branch is fully restored. However, the state checkpointing scheme is costly and

the state re-constructing scheme is slow.

In contrast to the traditional schemes, EMR allows continuing the execution with

a partially correct state, allowing branch mis-predictionrecovery overlap with useful

execution. The required hardware of EMR is modest. The hardware cost can be estimated

roughly as the cost to save the checkpoints of the processor states. Comparing with the

traditional checkpointing scheme, EMR needs to create the checkpoints only upon the mis-

predicted branch instruction, instead of on every branch instruction.

Our second technique to illustrate the effectiveness of theconcept of FSP investigates

value speculation by using Runahead execution. Runahead execution was first proposed by

Dundas and Mudge [14] for in-order processors and later applied to out-of-orderprocessors

by Mutlu et al. [37]. It is an effective method to tolerate rapidly growing memory latency

in a superscalar processor. In this technique, When the instruction window is blocked by an

L2-cache missing load instruction, the processor enters the “runahead mode” by providing

a bogus value for the blocking load operation and pseudo-retiring it out of the instruction

window. Under the “runahead mode”, all the instructions following the blocking load are

fetched, executed, and pseudo-retired from the instruction window. Once the blocking load

instruction completes, the processor rolls back to the point it entered the “runahead mode”

CHAPTER 1. INTRODUCTION 19

and returns to the “normal mode”. Though all instructions and results obtained during

the “runahead mode” are discarded, the runahead execution warms up the data cache and

significantly enhances the memory level parallelism.

As it can be seen, Runahead execution behaves as a value speculation during which part

of the state will become damaged. After the correct value of the blocking load instruction

is fetched from the main memory, the Runahead processor, which is a CSP, has to roll back

to the missing point and restart the execution with the correct processor state.

Application of FSP concepts in this realm results in a fine-grain state technique called

Fine-grain State Guided Runahead execution (FSG-RA). FSG-RA is implemented as an

SMT-like multi-threaded processor. When the missing load isresolved, FSG-RA is able to

continue executing new instructions with a partially correct state, without rolling back. On

the other hand, it only needs to re-execute those miss dependent instructions to repair the

incorrect values updated during the “runahead mode”. Furthermore, it can execute those

instructions via an idle thread, in parallel with executingthe newer instructions by the

original thread. Thus, FSG-RA can improve the single-threadprogram’s performance by

exploiting the parallelism in the Runahead execution recovery in a multi-thread processor

environment.

The concept of the fine-grain state is natural to reason aboutspeculative executions

and optimize speculative efforts. Comparing with the traditional CSP, our proposed FSP

models, EMR and FSG-RA demonstrate that such an approach can provide impressive

speed-ups without difficulties to scale processor key elements. With the fine-grain state

CHAPTER 1. INTRODUCTION 20

concept, mis-speculation recovery essentially becomes free if there is enough independent

work to do for the processor. We therefore believe that the concept of FSP will open up

new and exciting research opportunities in the micro-architecture community.

1.3 Dissertation Organization

The remainder of this dissertation is organized as follows.Chapter2 presents the

background for this dissertation. In Chapter3, the simulation and experimental setup of

this work is described. In Chapter4, a taxonomy of FSP is introduced and related work are

summarized and classified based on the taxonomy. Next, Chapter 5 introduces the design

space of FSP and a general framework in which the concept can be implemented. This

chapter also compares FSP and CSP regarding to the control speculation and the value

speculation at a high level. Two FSP models, EMR and FSG-RA, based on the proposed

general framework, are introduced in Chapter6 and Chapter7, respectively. Finally, a

summary and the conclusion are given in Chapter8.

21

Chapter 2

Background

This chapter is devoted to presenting a foundation for understanding this dissertation

work. First, we discuss out-of-order execution and speculative execution as employed in

contemporary processors. Then, the concept of processor states is illustrated. Next, we

describe the traditional state maintenance and recovery mechanisms. Finally, the effect of

register renaming technique on state recovery is presented.

2.1 Out-of-order Execution and Speculative Execution

Out-of-order execution and speculative execution are two milestones in the evolution

of modern microprocessor architectures. These two techniques explore instruction level

parallelism to achieve great performance.

Out-of-order execution breaks the limitation of the strictsequential execution defined by

the program order. Instead of waiting for previous instructions to be finished, an instruction

is issued and executed once its operands are ready. Given enough computing resources,

a processor can issue multiple independent instructions out of program order to exploit

parallelism at the instruction level. However, an out-of-order executed instruction might

CHAPTER 2. BACKGROUND 22

modify the processor state before it should. In such a case, the processor state will not

be consistent with the sequential execution model. For example, illustrated in Figure2.1,

suppose that instructionI2 executes beforeI1 out of order, and writes the result to the

register file beforeI1 executes. If laterI1 raises some exception,e.g.,a page fault, then

the modification to the state introduced byI2 needs to be reverted, before proper exception

handling function is invoked.

I2I1

Speculative
Update

B

Mis−predictionException

Register

File

Out−of−order
Update

Dynamic Instruction Stream

Figure 2.1. Exception and Mis-speculation Boundaries

Speculative execution is another important technique for modern microprocessors. There

exists several different kinds of speculation techniques,such as control speculation, value

prediction, and load speculation. Let us use the control speculation as an example to

illustrate the effect of speculation on the processor state.

Control speculation is a technique which is based on the prediction of the direction and

CHAPTER 2. BACKGROUND 23

the target address of branch instructions. Without controlspeculation, a processor has to

stall upon encountering a branch instruction until its target address and direction become

known. Given that on an average there is a branch instructionin every 3~5 dynamic

instructions [34], it is not acceptable to stall the instruction stream upon each branch in

a modern wide-issue superscalar processor. With control speculation, the target of a branch

instruction is predicted based on the history pattern of dynamic branch instructions. The

dynamic instruction stream can continue along a speculative path even before that branch

is executed. Though a significant body of branch prediction methods has provided us with

increasingly better prediction accuracies [59, 33, 50, 9, 23], branch predictors cannot be

perfect. If a prediction is wrong, all instructions along the wrong path (i.e., following the

branchB in Figure2.1) have to be flushed from the pipeline. Accordingly, modifications

to the processor state introduced by those speculatively executed instructions need to be

eliminated.

Once an exception or a mis-speculation occurs, the machine needs to repair its state. This

process is the state recovery. The machine in Figure2.1needs to roll back precisely to the

exception boundary beforeI1, if instructionI1 brings an exception. Or, it needs to roll back

to the mis-speculation boundary afterB if the conditional branchB is mis-predicted (Note

that the precise recovery point forB is the right boundary of the last delay slot instruction,

if the delayed branch semantics is used.).

CHAPTER 2. BACKGROUND 24

2.2 Processor States

In order to support out-of-order and speculative executionmodels and be able to recover

from exceptions and mis-speculations, modern superscalarprocessors must be aware of

different machine states, namely, in-order, speculative and architectural states [24] so

that processor can always use the correct state for any externally visible changes in data

locations and maintain correct program semantics.

The processor state contains the full set of architectural registers or logical registers that

are visible at the ISA architecture level of the processor and the memory system. Let us

consider Figure2.2 which illustrates the different states when a branch is speculatively

executed. For simplicity, assume that the architectural register file has 3 registers,R1~R3

and the memory has only one location at addressx.

We define the in-order state as the state that would have been reached if the program

is executed in program order, up to the point of interest, andthe speculative state as

the set of values produced that have not been committed. As itshould be clear, newer

instructions should use the values from the in-order state if the values have not been

modified (i.e., they are not part of the speculative state) and should use values from the

speculative state otherwise. The architectural state is defined as the union of the in-order

and speculative states, and conveniently describes the setof values which any speculatively

fetched instruction should reference. For example, in Figure2.2the set of values produced

before the branch is defined as thein-order state at B, the set of speculative values produced

after B is defined as thespeculative state after B, and the architectural state at the point of

CHAPTER 2. BACKGROUND 25

branch resolution is described as thecurrent architectural state. Obviously, the in-order

state at B is the same state as the architectural state when the branch has been fetched.

S
pe

cu
la

tiv
e

P
at

h
...

I1 R2 = ...

I2 R3 = ...
...

I3 R1 = ...

I4 R2 = ...

I6 R2 = ...

I5 R1 = ...

...

...

...

I0

I7

branch B

Speculative State
after B

In−order State
at B

Current
Architectural State

B is resolved

st .., 0(x)

st .., 0(x)

(a) State Definitions

I0 (x) = ...

I2 R3 = ...

I3 R1 = ...

I4 R2 = ...

I6 R2 = ...

I5 R1 = ...

I7 (x) = ...

Speculative State after B

I2 R3 = ...

I5 R1 = ...

I6 R2 = ...

I7 (x) = ...

Architectural State
When B is resolvedIn−order State at B

(b) State Sets

Figure 2.2. In-order, Speculative and Architectural State s upon Speculation

As it can be seen from the figure, the in-order state at B includes x, R3, R1 andR2

which are defined by instructionI0, I2, I3 and I4, respectively. Let us express it as

{x(I0),R3(I2),R1(I3),R2(I4)}. Note that the assignment toR2 in I1 is superseded by

the assignment toR2 in I4. Therefore, it does not belong to the in-order state at B.

CHAPTER 2. BACKGROUND 26

Assignments toR1, R2 andx in instructionsI5, I6 andI7 make up the speculative state after

B, {R1(I5),R2(I6),x(I7)}, because they are speculatively executed instructions andthey are

control depended on B. Any newer instructions after this codesequence will reference the

state{R3(I2),R1(I5),R2(I6),x(I7)}, which is the architectural state combining the in-order

state at B and the speculative state after B.

If the speculation is correct where B is resolved, all assignments along the speculative

path become non-speculative. The speculative state becomes part of the in-order state,

because the speculative path after B is the correct program stream. The current architectural

state also becomes the in-order state at this point. In contrast, if B is mis-predicted, then the

speculative execution was wrong. The processor needs to repair the incorrect architectural

state back to the correct in-order state at B.

2.3 State Maintenance and Recovery

Traditionally, there have been two kinds of state maintenance and recovery mechanisms.

One is referred to as theState re-constructingmechanism proposed by Smith and Pleszkun

[47]. The other is referred to as theCheckpointingmechanism proposed by Hwu and Patt

[21].

2.3.1 State re-constructing

To address the problems of out-of-order execution and precise interrupts in pipelined

processors, Smith and Pleszkun proposed the reorder buffer(ROB), the history buffer and

the future file designs to support the state recovery and maintenance. We refer to them all

CHAPTER 2. BACKGROUND 27

as theState re-constructingmechanisms.

Reorder Buffer

The reorder buffer (ROB) is implemented as a circular buffer with a head pointer and a

tail pointer. Shown in Figure2.3, once an instruction is fetched and decoded, it is inserted

into the tail of the ROB. After it is executed, its result and the exception flag are stored in

the corresponding entry in the ROB. When this instruction reaches the head of the ROB, it

will write its result to the logical register file and releasethe entry, if it is exception-free;

Otherwise, the processor needs to flush the pipeline and restart the execution.

Similar to other producer instructions, a store instruction is only allowed to commit its

result to the memory hierarchy, including the cache and the main memory, when it reaches

the head of the ROB. This is, at this point, all previous instructions, including all memory

operations, are already committed and known to be exception-free. Before it is committed

to the memory, a store instruction can keep the value to be written to the memory in its

allocated ROB entry, or, generally, in some associated buffer,e.g.,the store queue.

From the point of view of states, one can vision that the logical register file always has

the in-order register state, and the memory system always has the in-order memory state.

On the other hand, the ROB entries store the speculative state of registers, and the store

queue entries store the speculative memory state. The unionof the in-order state and the

speculative state is the processor’s architectural state.

Any newly fetched instruction will reference the architectural state of registers by

accessing the logical register file and the ROB entries simultaneously. In order to do that,

CHAPTER 2. BACKGROUND 28

Speculative State

Bypass Network

ROB

Register File

Logical

Store Queue

Memory

decoded
instruction

Units

Functional

Result Bus

In−order State

Figure 2.3. Reorder Buffer

processor implements the bypass paths from the ROB entries to the register file. In order

to reference the architectural memory state, load instructions need to access the memory

system and the store queue simultaneously.

In a speculative processor with a ROB, once an exception occurs, the exception is not

handled until the instruction triggering the exception reaches the head of the ROB. At this

point, it is easy for the processor to roll back the damaged architectural state into the correct

in-order state, because the desired state is already storedin the register file and the memory.

The processor simply discards the wrong speculative state stored in the ROB and the store

queue, and then restarts from the exception point with the correct in-order state.

In another words, the in-order state at the exception point is constructed by waiting for

CHAPTER 2. BACKGROUND 29

the instruction rising the exception to reach the head of theROB, and retiring previous

instructions one by one in the program order. This is the reason why the technique is

referred to as theState re-constructingmechanism.

History Buffer

In the above reorder buffer mechanism, the speculative register state is stored in the

ROB entries, and the in-order register state is always present in the logical register file.

Alternatively, the register file can be used to store the architectural register state and

the history information of the in-order register state can be buffered to support the state

recovery if an exception occurs. This method is called the history buffer technique.

The history buffer is implemented in a similar way to the reorder buffer, illustrated in

Figure2.4. The history buffer is a circular buffer which has a head pointer and a tail pointer.

Once an instruction is fetched and decoded, it is assigned anempty entry and inserted into

the tail of the history buffer. Meanwhile, if it is a registerproducer instruction, the current

value of its destination register is read from the register file and stored into the allocated

entry. After the instruction is executed, the execution result is written into the register file

immediately, and the exception flag is recorded in the history buffer entry.

From the point of view of states, the logical register file in the History Buffer mechanism

always represents the latest architectural state of registers. The previous in-order values of

all speculatively executed instructions’ destinations are stored in the history buffer entries,

in program order. In other words, the history buffer represents thecomplementset of the

speculative register state.

CHAPTER 2. BACKGROUND 30

decoded
instruction

Register File

Logical

Units

Functional

Exception
Upon

History Buffer

Complement of Speculative State Result Bus

Architectural State

Figure 2.4. History Buffer

When an instruction reaches the head of the history buffer, its history buffer entry can

be safely released if there are no associated exceptions. Ifthis instruction’s exception flag

is set, the pipeline of the processor is stalled, and the state recovery process is invoked. In

order to restore the correct state, the processor empties the history buffer entries one by one

from the tail towards the head, and restores each saved history value back into the register

file.

After all saved previous in-order values are written back into the register file in reverse

program order, the wrong speculative state in the architectural state is totally eliminated,

CHAPTER 2. BACKGROUND 31

and the correct in-order state at the exception point is restored. Once the head entry

allocated for the exception instruction is scanned and processed, the processor is able to

restart from the exception point with a correct in-order state.

The history buffer scheme is different from the reorder buffer scheme only with how to

handle the register state. To handle the memory state, the history buffer scheme utilizes the

same method as the reorder buffer scheme. That is, a store instruction only commits to the

memory when all preceding instructions are committed without any exception. Before the

retirement, a store instruction keeps the values to be written in the store queue. Like in the

reorder buffer scheme, the memory hierarchy always represents the in-order memory state

and the store queue holds the speculative memory state.

Future File

The third variant of theState re-constructingmechanism is the future file, an optimization

of the reorder buffer implementation. The idea of the futurefile is to maintain two separate

register files, the future file and the architectural file, illustrated in Figure2.5. When an

instruction is executed and finished, its result is written into the future file. When an

instruction retires from the head of the ROB, it will update its result into the architectural

file.

From the point of view of states, the future file maintains thearchitectural state of

registers. It consists the in-order values and the speculative (future) values, so it is called the

future file. The architectural file always reflects the in-order state of machine’s architectural

registers. If an instruction reaches the head of the ROB withan error, the architectural file

CHAPTER 2. BACKGROUND 32

decoded
instruction

In−order
State

Units

Functional

Reorder Buffer

Speculative State

Architectural State

Register File

Architectural

Result Bus

Upon Exception

Register File

Future

Figure 2.5. Future File

is then used to restore the future file. Either the whole register file is copied as a set, or

only speculatively modified registers are restored. To implement the latter, those register

designators associated with ROB entries are copied from theROB’s head to the ROB’s tail.

As it can be seen from the figure, the future file in fact implements the functionality of

the physical register file with respect to the register renaming, though Smith and Pleszkun

did not use the term of the register renaming in [47]. The future file can be considered as a

physical renaming register file which has the same size as thearchitectural logical register

file. Therefore, the register renaming map table can be omitted.

In the future file scheme, the memory state is also handled in the same way as in the

reorder buffer and the history buffer. The memory is always an in-order state memory, and

the speculative memory state is buffered in the store queue.

CHAPTER 2. BACKGROUND 33

2.3.2 Checkpointing

An alternative to sequential re-construction of processorstates is to save a snapshot of

machine state at appropriate points of the execution. This approach is referred to as the

Checkpointingmechanism, which was first introduced by Hwu and Patt [21].

With checkpointing, the processor maintains a collection of logical spaces, where each

logical space is a full set of architectural registers and memory locations visible at the

ISA level of the machine. There is only one logical space usedas thecurrent space for

the current execution which represents the architectural state. Other backup logical spaces

contain the copies of the in-order state that correspond to previous points in the execution.

Current
Space

Bacekup
Space 1

Backup
Space C

Backup
Space 2

dynamic instruciton stream

Result Bus

Figure 2.6. Checkpointing Maintenance and Recovery Scheme

During the execution, the processor creates a checkpoint ofthe state by copying the

current logical space into a backup space, as shown in Figure2.6. Upon each checkpoint,

CHAPTER 2. BACKGROUND 34

the effect to the current architectural state introduced byall instructions to the left of that

checkpoint are allowed, and the effect introduced by all instructions to the right of the

checkpoint are excluded. Therefore, each logical space represents the in-order state at the

creating point. The logical spaces are maintained as a stack. If the stack is full, making

a checkpoint has to wait until the oldest one is safely released. When a fault exception or

a branch mis-prediction occurs, the architectural state can be restored to the in-order state

at the exception point by recovering the current space back to the corresponding logical

space.

Ideally, a checkpoint should be created at each instructionboundary so that a processor is

able to restore the correct state if any instruction meets anexception. Otherwise, if there is

no backup state available at the exception point, the processor has to roll back to the nearest

checkpoint and discard some useful work. However, the cost and overhead of creating a

checkpoint at each dynamic instruction boundary is too high. This is the fundamental

dilemma of the checkpointing recovery mechanism.

On one hand, we need to create as many checkpoints as possibleto make the exception

recovery fast. On the other hand, we need to keep the cost of checkpoints as low as possible.

To address this issue to some degree, Hwu and Patt distinguished fault exceptions and

branch mis-predictions with respect to the state recovery,because fault exceptions actually

happen much less frequently than branch mis-predictions. Accordingly, they proposed to

create a checkpoint at each branch instruction for the mis-prediction recovery, and to create

checkpoints at widely separated points in the instruction sequence for the fault exception

CHAPTER 2. BACKGROUND 35

recovery.

Another issue of the checkpointing scheme is how to implement the backup spaces of

the state. Generally, there are two types of techniques for implementing multiple logical

spaces:copyinganddifferencetechniques.

The copying technique is normally used to create the logicalspace of the register state.

When a checkpoint is created, the architectural register state in the current space is copied

into the logical space. Since some instructions to the left of the checkpoint might have

not been issued yet, the copied state is not the in-order state at that time. Therefore, the

copied state needs to be updated as instructions to the left of the checkpoint complete. To

avoid extra increase of the access bandwidth of the registerfile, each bit of the registers is

implemented byC+1 physical cells, one cell for the current space andC cells forC backup

logical spaces.

The difference technique maintains a list which records thedifference of the execution

state from one instruction boundary to another. Normally, the checkpoint of the main

memory state is implemented via the difference technique. There are two directions a

state difference can be recorded, backward and forward. Each logical space implements

either the backward difference or the forward difference tomanipulate the memory state.

The backward difference maintains a history value list in which each entry keeps the

history value prior to the modification to the state. Figure2.7 illustrates the memory

design when a backward difference is employed. When a store instruction commits its

value to the memory, the address and the previous value at this location in the memory

CHAPTER 2. BACKGROUND 36

Previous data

Backward difference

Memory

Complement of Speculative State

Out−of−order Issue

Recovery

Architectural State

store Addr/Data

Figure 2.7. Logical Space of Memory by Backward Difference

are saved in the backward difference list. The backward difference list preserves the

store instruction’s committing order to the memory, not theprogram order they appear in

the dynamic instruction sequence. As it can be seen from the figure, the main memory

represents the architectural state, including the in-order state and the speculative state.

The backward difference holds the complement of the speculative state. During the state

recovery, the history data saved in the list are stored back to undo all modifications to

the memory introduced by the wrong speculative state. Thereby the in-order state of the

memory at the checkpoint can be repaired.

In contrast to the backward difference, the forward difference keeps all speculative

values within a logical space, and preserves the program order of stores. Shown in Figure

2.8, when a checkpoint is created, the memory holds the in-orderstate at this point,

CHAPTER 2. BACKGROUND 37

Speculative State

Addr/Data
store

Result Bus

Memory

In−order State

Forward Difference

Program

Order

Figure 2.8. Logical Space of Memory by Forward Difference

and the forward difference will keep the speculative state of this logical space, until the

next checkpoint is created. From this point of view, the memory manipulation scheme

introduced in the previous state re-constructing mechanism is a special case of the forward

difference technique on which the memory system always represents the machine’s in-

order memory state and the store queue keeps the speculativememory state introduced by

all in-flight instructions.

2.4 Register Renaming and State Maintenance and Recovery

In order to eliminate WAR (write after read) and WAW (write after write) data hazards,

modern superscalar processors normally utilize the register renaming technique. The

design space of register renaming is large and it is beyond the scope of this work. In

this work, we only consider the effect of register renaming on the state maintenance and

recovery.

The reorder buffer scheme, described in Section2.3.1, provides a straightforward

implementation of register renaming. In ROB, an architectural logical register can have

multiple definitions in-flight, which are kept in different ROB entries in program order. In

CHAPTER 2. BACKGROUND 38

order to read the correct value of an operand, an instructioncan associatively search the

ROB and access the entry for the most recent definition of its source operand when it is

issued. The ROB entries implement the renaming functionality.

Generally, processors utilize a physical register file to implement register renaming.

The physical register file can be separated from the logical register file, or they can be

combined together as a unified register file. In order to eliminate the false data dependences

and exploit deep speculation, physical register file size will be larger than the size of the

logical register file visible at the ISA level. Once a producer instruction is decoded, it is

allocated a free physical register as the renaming locationfor its destination. This mapping

of information between the logical register designator andthe physical register designator

is then recorded so that subsequent instructions can reference the latest value from the

renaming physical register.

The mapping information is normally stored in the register map table (MAP), which is

also referred to as the register alias table (RAT) [58, 20]. In a superscalar processor, if

multiple instructions need to be decoded and renamed simultaneously in every cycle, then

the map table, or the alias table, has to be multi-ported. Forinstance, if it is a 4-issue

superscalar processor, then the map table needs 8 read portsand 4 write ports, assuming

each instruction has two source operands and one destination.

The map table structure can be implemented in at least two ways: the RAM structure

and the CAM structure [40]. The different structures have the different implications for the

state maintenance and recovery.

CHAPTER 2. BACKGROUND 39

2.4.1 RAM-structured MAP

The RAM-structured map table is illustrated in Figure2.9. In this structure, the total

number of the map table entries is equal to the total number ofthe architectural logical

registers. Each logical register has a corresponding entryin the map table, and the logical

register’s designator can be used as the index to access the table. Each entry contains

a physical register designator which is allocated and associated with this logical register.

The RAM-structured map table itself is implemented as a register file in which each cell

holds just enough bits to specify a physical register’s designator, instead of a 32- or 64-bit

value.

As it can be seen, the map table represents the register state. Register values stored in

the physical register file can be referenced through indicesin the map table. Normally,

processor employs a front-end map table as the working map table, corresponding to the

current architectural state. If an exception occurs, processor needs to repair the front-end

map table to restore the correct register state. The restoration process can be done via either

the checkpointing method or the state re-constructing method.

P12

P23

P18

physical register #

physical register #logical register #

de
co

de
r

31

0

1

Figure 2.9. RAM-structured Map Table

CHAPTER 2. BACKGROUND 40

Examples of processors which employ a RAM-structured map table are the MIPS

R10000 processor and the Intel Pentium IV processor. Regarding to the branch mis-

speculation recovery, the MIPS R10000 processor utilizes the checkpointing method to

manipulate the state, and the Pentium IV processor utilizesthe state re-constructing

method.

MIPS R10000

The MIPS R10000 maintains a branch stack where each entry contains a complete copy

of the integer and floating-point register map tables [58]. At the point of recognizing

a mis-prediction, the processor restores the front-end maptable from the corresponding

checkpoint. While the checkpoint scheme yields fast recovery, its hardware cost can be

prohibitive. Suppose there areN physical registers, and the instruction set contains 32

integer and 32 floating-point logical registers, then the size (bits) of each checkpoint is:

Checkpoint Size= 32× log2N+32× log2N = 64× log2N (2.1)

If C checkpoints are implemented, then the total size of the checkpoint stack is:

Total Checkpoint Size= C×64× log2N (2.2)

As we can see, checkpointing the map table at each outstanding branch instruction is

costly. The available space for storing the checkpoints, onthe other hand limits the number

of pending branches that can be in-flight. In the MIPS R10000, only 4 pending branches

CHAPTER 2. BACKGROUND 41

are allowed to be in-flight because its branch stack has only 4entries as shown in Figure

2.10.

R0

R31

Front−end RAT

In
−o

rd
er

 S
ta

te

at
 B

0 In
−o

rd
er

 S
ta

te

at
 B

1 In
−o

rd
er

 S
ta

te

at
 B

2 In
−o

rd
er

 S
ta

te

at
 B

3

B2 B3B0 B1

ROB

CHK 0

CHK 2

CHK 3

CHK 1

Architectural State

Figure 2.10. Checkpoint Stack in MIPS R10000

To some degree, the register renaming technique makes creating checkpoints easier.

Consider the original checkpoint scheme described in Section 2.3.2. When a checkpoint

is created, some instructions left to this point may have notbeen finished yet. In order to

bring this checkpoint into the desired in-order state later, the results of these instructions

have to be written into the corresponding backup space when they are ready.

Using the register renaming technique, processor allocates a free physical register for

each instruction with a register destination during decoding. Therefore, in-order state at a

particular point can be represented as the format of the physical register designators stored

in the map table at that point. The in-order values can be referenced by means of the

physical register designators. Thus, updating values intothe backup space can be omitted.

CHAPTER 2. BACKGROUND 42

Intel Pentium IV

The NetBurst micro-architecture of the Pentium IV also utilizes the RAM-structure. Unlike

the MIPS R10000 processor which uses a checkpointing recovery mechanism, it utilizes a

state re-constructing recovery scheme. Two map tables named the front-end RAT and the

retirement RAT [20] are maintained. The front-end RAT stores the architecturalstate and

the retirement RAT stores the machine’s in-order state, shown in Figure2.11.

R0

R31

R0

R31

ROB

Retirement RAT Front−end RAT

Architectural StateMachine’s In−order State

Figure 2.11. State Re-constructing in Pentium IV

Any newly fetched and decoded instruction will access and modify the front-end RAT,

thus, it always contains the latest architectural state. When an instruction retires, it updates

the retirement RAT to indicate that its result register is in the in-order state. The retirement

logic ensures that an exception occurs only if the operationcausing the exception is the

oldest, non-retired operation in the machine. That is, an instruction can rise an exception

CHAPTER 2. BACKGROUND 43

only when it reaches the head of the ROB. At this point, the machine’s in-order state is also

the in-order state at the exception point. Therefore, processor can restore the architectural

state, or the front-end RAT, from the retirement RAT.

Although Pentium IV requires only two RAM-structured RATs, the recovery process

may take a long time as renaming cannot start until all instructions prior to the mis-

predicted branch retire. If a long latency operation prior to the branch exists,e.g., a cache

miss, the mis-prediction penalty increases significantly.

2.4.2 CAM-structured MAP

Alternative to the RAM-structured scheme, the other way to implement the map table

is to use a content-addressable memory (CAM). Illustrated inFigure 2.12, in a CAM-

structured map table, the total number of table entries is equal to the total number of

physical registers. Each entry has two fields, the logical register designator field and the

valid bit field. Since a logical register might have multipledefinitions in-flight, the valid

bit is always set by the latest definition. Once a logical destination register is mapped into

a free physical register, this logical register number is written into the corresponding entry

in the table. Also, its valid bit is set and the previous validbit of the same logical register

is located through an associative search and cleared.

When an instruction accesses the table to read its operand’s renaming physical register

designator, the operand’s logical register number is used to search the table’s logical register

designator field associatively. If there is a match and the corresponding valid bit is set, then

this entry’s index is generated through an encoder as the renaming physical register number.

CHAPTER 2. BACKGROUND 44

0

1

0

1

1

1

0

=?

=?

=?

=?

=?

=?

=?

=?

R12

R11

R18

logical register #

R12

R12

R18

R09

Valid

physical register #
encoder

logical register #

0

1

2

3

4

5

N

Figure 2.12. CAM-structured Map Table

The valid bit indicates the latest renaming physical register of each logical register. From

this perspective, the valid bit vector presents the currentarchitectural register state. To

create a checkpoint of the register state, processor needs only to make a shadow copy of the

valid bit vector. Suppose there areN physical registers, the size (bits) of each checkpoint

is:

Checkpoint Size= N (2.3)

If C checkpoints are implemented, then the total size ofC checkpoints is:

Total Checkpoint Size= C×N (2.4)

In the CAM-structure implementation, creating checkpointsis not expensive. Only valid

bits, not the whole map table, need to be copied. The CAM-structure map table is utilized

in the DEC Alpha 21264 [13, 26]. The Alpha 21264 supports up to 80 instructions in-

CHAPTER 2. BACKGROUND 45

flight, and a checkpoint is created at every instruction boundary. Illustrated in Figure2.13,

it provides the capability of precise state recovery at any of the 80 in-flight instructions.

PN

P0R11

R29

R08

R11

R23

R08

I1 I80 ROB

80 in−flight instructions

Map Table

1

0

1

0

1

1

V

In−order State at Per−Instruction Boundary

CHK
CHK

CHK

Figure 2.13. Per-Instruction Boundary State Recovery in Al pha 21264

Though the hardware cost of creating checkpoints with the CAM-structure map table

is not too expensive, the CAM-structure itself may become a bottleneck. With the CAM-

structure, the total number of entries in the maple table is equal to the total number of

physical registers. Moreover, processor needs to perform an associative search to access

it. On the other hand, with the RAM-structure, the number of entries in the map table

is equal to the number of ISA logical registers, independentof the number of physical

registers, and the table access is fast. That makes the CAM-structure less scalable than the

RAM-structure.

Given these observations, the CAM-structure may not scale well with future wide-issue

high performance microprocessors. In this work, we mainly focus on the RAM-structure

CHAPTER 2. BACKGROUND 46

designs with respect to the state maintenance and recovery.

2.5 Summary of Background

In this chapter, the basic concept of process states is described. In order to support out-

of-order and speculative executions, processor needs to beaware of the in-order state, the

speculative state, and the architectural state at different interest points. To recover from an

exception or a mis-speculation, processor needs to eliminate the wrong speculative state,

introduced within the speculative execution, from the architectural state and restore it back

to the in-order state at the exception point.

Traditionally, there have been two main mechanisms to manipulate states, state re-

constructing and checkpointing. Despite the fact that theyappear to be drastically different,

they share a common property. Both are based on the coarse-grain state concept. As we

can see, any processor utilizing these mechanisms can be classified as a CFP. Upon an

exception, neither of these mechanisms allows the resumption of fetching and renaming of

new instructions from the correct path until the whole set ofprocessor state is restored.

47

Chapter 3

Simulation and Experimental Setup

In this chapter the simulation tool and the experimental setup used for this dissertation are

introduced and presented.

3.1 Simulation Tools

For processor architecture researchers, realizing novel micro-architecture designs in

hardware is too expensive and time-consuming, especially at the prototype stage of

development. Thus most research relies on simulation toolsthat can estimate the

performance of the micro-architecture by simulating a variety of benchmark programs. A

commonly used approach for developing micro-architecturesimulators is hand coding them

in a general purpose programming language. For instance, widely used in the computer

architecture research community, the SimpleScalar simulator [7] is written in C and the

M5 simulator [6] is written in C++.

Although writing simulators in the general purpose languages is a straightforward

process, it is difficult to retarget such simulators to a modified micro-architecture or an

instruction set architecture once they are built. In this work, instead of hand coding

CHAPTER 3. SIMULATION AND EXPERIMENTAL SETUP 48

simulators, we use theFlexible Architecture Simulation Tool(FAST) [38] to generate

simulators automatically, in which processor specifications are written in a domain specific

language calledArchitectural Description Language(ADL). FAST currently supports the

MIPS ISA [41] which is also implemented in ADL.

&
Execute

DecodeInstruction In Instruction Out

Figure 3.1. Fast Functional Simulator

DecodeFetch Execute Memory
Access

Commit

Instruction In Instruction Out

Figure 3.2. 5-Stage Pipeline Simulator

Shown in Figure3.1, Figure 3.2 and Figure3.3, FAST is comprised of a variety of

different cycle-accurate processor simulators that are from a fast functional simulator which

executes instructions one by one through a simple one stage pipeline, and a 5-stage in-order

pipeline processor simulator, to a complex out-of-order superscalar simulator [38]. In this

work, the out-of-order superscalar simulator is mainly used for exploring the fine-grain

state processor designs and evaluating their performance.

The out-of-order superscalar description of FAST lacked the cache simulator and

assumed a perfect cache hierarchy system. As one of the contributions, this work

implements a cache hierarchy simulation system written in ADL and integrates it into the

FAST superscalar description and extends the previous simulators. This cache simulation

CHAPTER 3. SIMULATION AND EXPERIMENTAL SETUP 49

CommitFetch Decode
Rename

Wakeup
Select

Execute Memory
Access

ISSUE

WINDOW

D
is

am
bi

gu
at

or

M
em

or
y

Array

�����
�����
�����
�����

����
����
����
����

����
����
����
����

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

����
����
����
����

��������

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

�����������������
�����������������
�����������������
�����������������

������

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

������
������
������
������

in
st

ru
ct

io
n

ca
ch

e

in
st

ru
ct

io
n

bu
ffe

rs

de
co

de
re

na
m

e
di

sp
at

ch
R

eg
is

te
r

F
ile

D
at

a
C

ac
he

Reorder and Commit

Functional

Unit

Figure 3.3. Superscalar Simulator

system supports multiple levels of caches, either blockingor non-blocking, from direct-

mapped to n-way associativity. It also supports different replacement policies, including

FIFO, LRU, and RANDOM. Moreover, it actually moves data from and to the CPU cores.

Unlike the Dinero IV [15] cache simulator which was tried to be integrated with FAST,it

can generate not only the hit and miss information but also the accurate latency information.

Shown in Listing3.1, each level of the cache is defined as aCache Artifact, allowing it

easily to be integrated with different simulators.

3.2 Benchmark Suites and Environment

In this work, we use the SPEC CPU2000 V1.2 [49] benchmark programs to evaluate

different Fine-grain State Processor designs. SPEC CPU2000V1.2 benchmark suites were

CHAPTER 3. SIMULATION AND EXPERIMENTAL SETUP 50

released by SPEC in 2001, including two sub-suites, CINT2000and CFP2000. CINT2000

is used to measure and compare the compute-intensive integer performance. It contains

12 applications (11 in C and 1 in C++). CFP2000 is used to measureand compare the

compute-intensive floating-point performance. It contains 14 applications (6 in Fortran-77,

4 in Fortran-90 and 4 in C).

a r t i f a c t L1_cache
a t t r i b u t e s

(s i z e , # cache s i z ei n KB
bpl , # cache l i n e s i z e i n b y t e s
assoc , # n−way a s s o c i a t i v i t y
r e p l _ p o l i c y , # block r e p l a c e m e n t p o l i c y
num_ports , # numberof cache p o r t s
num_mshrs , # numberof o u t s t a n d i n g misses
h i t _ l a t e n c y , # l a t e n c y to a c c e s s cache
bandwid th # d a t a bus bandwid th

)
begin

. . .
end

Listing 3.1. Cache Artifact

Our experimental hardware consists of a cluster of 20 machines with Intel(R) Xeon(R)

CPUs, running the Linux OS. The SPEC CPU2000 benchmark programs are compiled

with the GNU GCC cross compiler targeting the MIPS IV instruction set. Some of these

benchmarks have not been simulated because of system libraries, e.g., Fortran 90 and C++

benchmarks. Therefore they have been excluded from our experiments. Nine integer

programs and eight floating-point programs are used to analyze the FSP performance,

which are shown in Listing3.2and Listing3.3, respectively.

CHAPTER 3. SIMULATION AND EXPERIMENTAL SETUP 51

Name Remarks
164 . gz ip Data compress ion u t i l i t y
175 . vpr FPGA c i r c u i t p lacement and r o u t i n g
176 . gcc C comp i l e r
181 . mcf Minimum c o s t network f low s o l v e r
186 . c r a f t y Chess program
197 . p a r s e r N a t u r a l l anguage p r o c e s s i n g
253 . per lbmk P e r l
256 . bz ip 2 Data compress ion u t i l i t y
300 . t w o l f P l a c e and r o u t e s i m u l a t o r

Listing 3.2. CINT2000 Benchmarks

Name Remarks
171 . swim Shal low wate r model ing
172 . mgrid Mul t i−g r i d s o l v e r i n 3D p o t e n t i a l

f i e l d
173 . app lu P a r a b o l i c / e l l i p t i c p a r t i a l d i f f e r e n t i a l

e q u a t i o n s
177 . mesa 3D Graph ics l i b r a r y
179 . a r t Neura l network s i m u l a t i o n ;

a d a p t i v e r e s o n a n c e t h e o r y
183 . equake F i n i t e e lemen t s i m u l a t i o n ;

e a r t h q u a k e model ing
188 .ammp Compu ta t i ona l c h e m i s t r y
301 . a p s i So l ves prob lems r e g a r d i n g t e m p e r a t u r e ,

wind , v e l o c i t y and d i s t r i b u t i o n o f
p o l l u t a n t s

Listing 3.3. CFP2000 Benchmarks

Another important consideration about the simulation is the simulation time. As it is

well known, it is really time-consuming and resource-consuming to run an application

through an execution-driven cycle-accurate superscalar processor simulator. It can easily

take a couple of weeks to emulate a SPEC CPU2000 benchmark running with the default

reference input. In this work, in order to evaluate and compare different FPS designs, we

CHAPTER 3. SIMULATION AND EXPERIMENTAL SETUP 52

need to run CPU benchmarks using different simulators with many different configurations.

It will be impracticable to run them all to completion with the default reference inputs. We

therefore choose to run SPEC CPU2000 benchmarks to completion with a reduced input

[29].

When SPEC CPU95 benchmark suites were integrated into FAST, the reduced input

scheme was already applied. Compared to the partial running schemes, it can achieve much

more accurate analysis within a reasonable time. In this work, we apply the MinneSPEC

[29] reduced workload to emulate SPEC CPU2000 benchmark suites in FAST. MinneSPEC

has been officially recognized by SPEC and is distributed with Version 1.2 and higher of

SPEC CPU2000 benchmark suites. Although some benchmarks produce very different

behavior with the MinneSPEC workload, most match the default reference workload

program behavior very closely, in terms of function-level execution patterns, instruction

mixes, and memory behavior [29]. From our experiments, MinneSPEC works well in

FAST and it satisfies our research requirements.

53

Chapter 4

Taxonomy of Fine-grain State Processors

In this chapter, we introduce a taxonomy of the fine-grain state processors. It has two

main categories, which can be divided further into four sub-categories, shown in Figure

4.1. Based on this taxonomy, those traditional proposals can be summarized and classified

into the proper categories.

Re−issue
fetched instructions

Sequential recovery
 &

Blocking

Parallel recovery

Non−blocking
 &

Roll−back + Reuse Results

Re−fetch instructions
Squash and

Continue Without Roll−back

Fine−grain State Processors

Figure 4.1. Taxonomy of Fine-grain State Processors

CHAPTER 4. TAXONOMY OF FINE-GRAIN STATE PROCESSORS 54

4.1 Roll-back + Reuse Results

The first main category is referred to asRoll-back + Reuse Results. Utilizing this

technique, a processor is able to salvage part of finished work during the speculative

execution after a missed speculation. When a mis-speculation happens, the processor

rolls back from the exception point and restarts the execution. Those mis-speculation

independent instructions may reuse previously generated results and skip different phases

of execution (e.g., issue, execute, and result bypass). Thus, performance is improved.

Furthermore, it can be divided into two sub-categories:Squash and Re-fetch instructions

andRe-issue fetched instructions.

4.1.1 Squash and Re-fetch Instructions

Utilizing this technique, upon a mis-speculation, processor squashes all instructions

following the mis-speculation point. It rolls back to the mis-speculation point and re-

fetches all instructions. With the fine-grain state information, fetched instructions will

reuse the buffered previous results if they are mis-speculation independent. The previously

generated results are explicitly reused.

A typical application of this technique is the recovery of branch mis-predictions. The

scenario of control independence gives the opportunity to reuse results based on the

fine-grain state concept. A study of the control independence in superscalar processors

[43] reported typical performance improvements of 10-30% whenmicro-architectural

implementation issues are realistically modeled to exploit the control independence.

CHAPTER 4. TAXONOMY OF FINE-GRAIN STATE PROCESSORS 55

Several mechanisms have been proposed to reuse the results of control independent

instructions.

Sodani and Sohi introduced the concept of dynamic instruction reuse in [48]. In their

mechanism, the fine-grain state of previously executed instructions are buffered in the

Reuse Buffer (RB), including the operands and destination results. Querying RB via the

program counter, an instruction can reuse the result of the previous instance if the operands

are the same. Their initial goal was to reduce the branch mis-prediction penalty by reusing

control independent instructions. Interestingly, this concept can be extended to the general

reuse.

Roth and Sohi proposed the register integration mechanism in[44] to reuse the results.

Upon a mis-speculation, instructions after the mis-speculation point are squashed in the

reverse order. Instead of recycling the allocated physicalregisters, register mappings of

each instruction’s operands and results are entered into the Integration Table (IT). Any new

instruction will index IT using its PC to check if the register mappings of the operands

match. If so, it can reuse the previous instance’s destination physical register. Reusing is

achieved through the register renaming, and no additional values are read from or written

to the physical register file.

Chou et al. [10] presented the concept of dynamic control independence (DCI) to

implement the reuse. A shadow copy of the Reorder Buffer, DCI buffer, is used to

remember the state of recently fetched instruction. After abranch mis-prediction, all

instructions following the mis-predicted branch are flushed from the ROB but they remain

CHAPTER 4. TAXONOMY OF FINE-GRAIN STATE PROCESSORS 56

in the DCI buffer. When a new instruction is fetched from the correct path, it associatively

searches the DCI buffer. It can reuse its previous state stored in the DCI buffer if it proves

to be control and data independent.

Besides the branch speculation,Squash and Re-fetch instructionsis also utilized for other

speculation mechanisms. Mutluet al. [35] evaluated reusing the results of pre-executed

instructions in a runahead execution processor. They reported that even an ideal reuse

scheme can achieve only 3% improvement. The reason is the results of a small number of

instructions pre-executed in runahead mode can be reused.

4.1.2 Re-issue Fetched Instructions

Using theRe-issue fetched instructionstechnique, upon a mis-speculation, the processor

still needs to roll back to the mis-speculation point and restart execution. However, it does

not need to squash instructions and re-fetch instructions from the cache. The key point

is that speculation dependent instructions are kept in the scheduling window even after

they are issued. If the speculation is resolved as a miss, theprocessor can roll back to the

mis-speculation point and re-issue only dependent instructions without re-fetching. On the

other hand, since the independent instructions were already processed, their results can be

implicitly reused.

A typical application of this technique is the recovery of load mis-speculations. When

a load mis-speculation is detected, instead of squashing all instructions following the

load and re-fetching instructions from the cache, the processor will re-issue instructions

dependent on the mis-speculated load. In [20], Pentium 4 processor schedules instructions

CHAPTER 4. TAXONOMY OF FINE-GRAIN STATE PROCESSORS 57

dependent on loads assuming that loads would hit in the L1 data cache. If a load misses,

a selective recovery mechanism calledreplay is used to wake up and re-issue dependent

instructions previously executed using incorrect data.

Gandhi et al. [16] utilized this technique and proposed Selective Branch Recovery

(SBR) to reuse results of convergence instructions. SBR exploits a frequently occurring

type of control independence, called exact convergence, where the mis-predicted path

converges exactly at the beginning of the correct path. Thus, upon a mis-prediction,

correct instructions from the correct path are in fact already in the pipeline. In this case,

the processor can reuse results of data independent convergent instructions and re-issue

convergent false data dependent instructions without having to fetch/rename them again.

4.2 Continue Without Roll-back

The second main category of the fine-grain state guided speculation recovery technique,

Continue Without Roll-back, utilizes the fine-grain state concept more efficiently thanRoll-

back + Reuse Results. It is able to continue execution without rolling back to themis-

speculation point. It can also be divided into two sub-categories: Sequential recoveryand

Parallel Recovery.

4.2.1 Sequential Recovery

With the Sequential recoveryscheme, the processor stops moving forward when a

speculation is resolved as a miss. The miss dependent instructions, which should have

been already buffered on on-chip structures,e.g., slicing buffer,are re-executed to repair the

CHAPTER 4. TAXONOMY OF FINE-GRAIN STATE PROCESSORS 58

state. Once recovery is processed, the processor achieves acorrect state at the resolution

point and it can move forward.

Sarangiet al. [45] applied this technique in the context of Thread-Level Speculation

(TLS) and proposed a novel architecture,ReSlice. If a value mis-prediction is declared,

only the speculatively-retired instructions depended on the mis-predicted value,Forward

Slice, are re-executed to restore the damaged state. Once the damaged state is repaired and

merged into the processor state, processor is able to resumeexecution at the mis-speculation

resolution point.

The Sequential recoverytechnique is also applied in the context of data cache miss

speculation. In [51], Srinivasanet al. proposed the continual flow pipelines (CFP) model.

Once a load instruction misses in the L2 data cache, the miss-dependent instructions

(slices) are drained out of the pipeline into a slice buffer.In the meantime, CFP executes

independent instructions. After the L2-miss is serviced, new front-end instructions wait

until the slice instructions are inserted back into the pipeline to construct the correct state.

4.2.2 Parallel Recovery

Although theSequential recoveryscheme is an efficient fine-grain state based technique,

it does not fully exploit the power of the fine-grain state concept. That is, at the mis-

speculation resolution point, the execution is blocked needlessly until the recovery is done.

Because of the blocking, the parallelism available during the recovery is not exploited.

Since an FSP is aware of the state at the individual basis, it can continue processing

seamlessly with a partially correct state, before the wholestate is repaired. In parallel

CHAPTER 4. TAXONOMY OF FINE-GRAIN STATE PROCESSORS 59

with the recovery, the processor can move forward and execute new instructions.

This method is referred to as theParallel recoverytechnique because it is able to exploit

the parallelism-in-recovery. Parallel recovery hence is capable of utilizing the full power

of the fine-grain state concept. As described in Chapter1, our research goal is to design

such an FSP model and apply it in the context of the control speculation and the runahead

speculation. Parallel recovery is one of the most importantcontributions of this dissertation.

4.3 Summary of Taxonomy

In this chapter, a taxonomy of the fine-grain state maintenance and recovery is described.

The concept of the fine-grain state have been utilized for thecontrol speculation, the value

speculation, the load speculation, and the thread level speculation. Based on the introduced

taxonomy, those proposals are classified from the simpleRe-use resultsmodel, to the

Sequential recoverymodel. The most efficient model,Parallel recovery, is able to exploit

the full power of the fine-grain state concept. In the next chapter, a general framework for

theParallel recoveryFSP model is presented.

60

Chapter 5

Fine-grain State Processor

In this chapter, a general framework for FSP is introduced. This framework is comprised of

the five properties described in Chapter1.2. We discuss the design space of each property

and compare FSP and CSP regarding to the control speculation and the value speculation.

5.1 A General FSP Framework

The essential idea behind an FSP is that it breaks the atomic state set into finer granularity

at the individual value level. Breaking up the state in this manner allows treatment of the

recovery process efficiently. After a mis-speculation, mis-speculation dependent values,

in either registers or memory locations, are invalid and need to be repaired. On the other

hand, mis-speculation independent values are immediatelyavailable and can be used as

necessary. This separation enables the processor to continue execution with a partially

correct state and still maintain correct program semantics, while the damaged part of the

state is being repaired. Ideally, the latency of recovery can be fully hidden by useful

execution so that a zero-penalty speculation can be realized. To implement such an FSP,

a general high-level framework should implement the five properties described in Chapter

CHAPTER 5. FINE-GRAIN STATE PROCESSOR 61

1.2.

1. Identification property: First of all, a mechanism is needed to precisely identify

in-order or speculative state on an individual location basis. A common method is to use

the tag scheme. A tag, normally one bit, is associated with each value location to indicate

if it is speculative or not. For the register values, the speculative bits can be appended to the

register file, or the register renaming table, or both. For the memory values, the speculative

bits can also be attached with the entries in the store queue,or with the memory words/lines

in the memory hierarchy system. Since the memory size normally is large, an alternative

method is to keep the individual in-order history values in abackward list [21] while the

memory hierarchy system presents the whole architectural state.

Although setting and propagating tags is normally straightforward, it is slightly different

between the two kinds of speculations, the value speculation and the control speculation.

In case of value speculation, the destination of the first value speculative instruction is set

as the seed. Then its speculative bit is propagated through the dependence chain. Any

instruction accessing a speculative value will set its destination as speculative as well.

On the other hand, if all the operands of a producer instruction are non-speculative, its

destination’s tag is reset.

In case of control speculation, there are two scenarios. If the branch convergence is

not considered, then all instructions along the speculative path, from the point of the

branch instruction to the resolution point, are treated as speculative. If the convergence

is considered, instructions after the convergence point are control independent. However,

CHAPTER 5. FINE-GRAIN STATE PROCESSOR 62

some of them still belong to the control-speculation if theyaccess values which are

modified through the speculative path. Like in the value speculation, the data dependence

tracking can be done by means of propagating the speculativebits.

2. Block and shelve property: With the identification property, after a speculation is

resolved as a miss, FSP is aware of which values are speculative and need to be repaired.

New fetched instructions which access damaged values have to be blocked and shelved

until the values are corrected.

A simple method is to block those instructions in the reservation stations (RS). When

a new instruction is decoded, it is marked as operand-not-ready and blocked in RS if

any speculative tag of its operands is set. This method demands little modification to the

superscalar pipelines. Our proposal of EMR utilizes thisblocking in RSsmethod, described

in Section6. However, it may prevent FSP from exploring the far-flung ILPand degrade

the performance significantly because blocking dependent instructions in the pipeline will

consume critical resources.

An alternative method to blocking is to pseudo-retire dependent instructions from the

pipeline and then release resources to execute further independent instructions. In this

manner, critical resources can be released and used. The drained dependent instructions

will be re-fetched and re-executed once the damaged values on which they depend are

restored.Draining technique is an attractive choice if the blockage of critical resources is

crucial for the performance. More important, by doing so opens up an opportunity for FSP

to utilize idle thread/core resources in a multi-thread/core environment.

CHAPTER 5. FINE-GRAIN STATE PROCESSOR 63

For instance, in the case of a value mis-speculation, instructions which were executed

with wrong operand values before the resolution point need to be re-executed to restore the

state. If the draining method is utilized, drained instructions can be sent to an idle thread.

This thread is responsible for executing only dependent instructions to maintain the correct

state, while the original thread still keeps processing. InSection7, an FSG-RA model is

proposed which utilizes this method for the runahead execution in an SMT environment.

3. Correction property: After a mis-speculation is detected, FSP needs to restore

damaged values during the speculative execution. Generally, there are two scenarios. If

a correct in-order version of a damaged data location is available, e.g., in a checkpointed

register file or in a history buffer, then FSP can copy the correct value into the data location

to restore it. If no such an in-order value saved in somewhere, then FSP needs to re-

execute the latest producer instruction to generate the correct value for this destination

location, as soon as needed operands become ready. Typically, FSP will utilize the former

method regarding to the control speculation, and the lattermethod regarding to the value

speculation. Note that both methods are processed on the individual location basis, not on

an atomic state set basis. Once a single damaged value is repaired, it is available and all

blocked instructions depending on it can execute.

4. Unblocking property: After damaged values are restored, the process of unblocking

and executing shelved dependent instructions is straightforward. If dependent instructions

are blocked in RS, they can be woken up and selected via the conventional wake-up logic

in RS automatically. If the instructions had been drained from the pipeline, they will be re-

CHAPTER 5. FINE-GRAIN STATE PROCESSOR 64

fetched and re-executed once the damaged values on which they are depended are repaired.

Note if a second thread/core is forked to maintain the state,it may fetch drained instructions

immediately, before the necessary values have been restored, to shorten the pipeline filling

latency.

5. Parallelism-in-recovery property: Upon a mis-speculation, FSP can continue

execution with a partially correct state while the damaged values are being repaired. Thus,

it can explore the parallelism in speculation recovery.

The parallelism-in-recovery can be achieved in either a uni-thread environment or

a multi-thread environment. Under a uni-thread environment, FSP can interleave the

recovery with the execution of independent instructions. In this manner, available resources

which would otherwise be idle can be used for recovery. Thus,processor’s resources will

be utilized more efficiently. We refer to such recovery schemes asimplicit parallel recovery

techniques. In a multi-core environment, an idle thread/core can be forked exclusively to

repair the state while the original thread/core is executing new instructions. As a result,

a single-threaded program can obtain better performance byutilizing multi-threading

resources. It makes the fine-grain state design as an interesting extension to the current

multi-core design trend. We refer to such recovery mechanisms asexplicit parallel recovery

techniques. In this work, both implicit and explicit parallel recovery techniques have been

implemented and demonstrated in proposed EMR and FSG-RA designs, respectively.

CHAPTER 5. FINE-GRAIN STATE PROCESSOR 65

5.2 Coarse-grain State VS. Fine-grain State

Figure5.1depicts the difference between a CSP and an FSP with respect tothe control

speculation recovery. In this figure, a branch instruction is followed by block B along the

wrong path and block C along the correct path. Both paths eventually converge at block D,

which is control independent. As a reference, an ideal speculation processor would make

the correct prediction att1, and execute block C and D, respectively. Timeline (b) through

timeline (e2) show different recovery techniques for an incorrect prediction which resolves

at t2. In timeline (b), a processor with the ideal recovery schemecan immediately restart

from the correct path once the speculation is detected as a miss att2, if a zero-latency

recovery is supported.

���
���
���
���

���
���
���

���
���
���

B C

speculation point

D

wrong
path

correct
path

t2

t1

t3

Ideal

C

D

Ideal

C

D

B

D

Sequential

C

D

B

D

B

D

B

D

C

D

state
recovery

(a) (b) (c) (e1) (e2)

Parallel recovery

CC

saving

(d2)

C

(d1)

Reuse results

B

D

B

D

UselessUseful

br

Program sequence Timeline

recovered

resolved

speculation
control

speculation recovery recovery
Ideal

data dependence

D

Fine−grain stateCoarse−grain state

D
D

Fine−grain state

Realistic

Figure 5.1. Control Speculation

Timeline (c) shows a CSP that has to sequentially restore the state by t3. Either a

CHAPTER 5. FINE-GRAIN STATE PROCESSOR 66

retirement map table method, RAMP [20], or a checkpointing method can be used. A

CSP cannot execute any instructions from block C until the whole state has been fully

restored (albeit the time between the detection of the mis-prediction and resumption being

considerably shorter in case of checkpointing). In Timeline (d1), a processor which is

aware of the fine-grain state is able to improve the performance by salvaging part of block

D when it restarts from the mis-speculation point. However,if the salvaged instructions

are not on the critical path or they are already hidden withinthe generic ILP, shown in

Timeline (d2), re-using will provide little benefit. In contrast, shown in Timeline (e1), an

FSP can restore the damaged state in parallel with the execution of block C and D. Ideally,

the latency of recovery can be fully overlapped with the useful execution. In this case, FSP

will achieve the same performance as that of ideal recovery.In reality, however, it is hard

to obtain the same performance of an ideal recovery processor due to the data dependences.

A realistic FSP model is illustrated in Timeline (e2).

Similar to the above control speculation example, a value speculation example is

illustrated in Figure5.2. In this figure, a lead producer instruction, A, is followed by a

number of independent (empty circles) and dependent (full circles) instructions. Assuming

one instruction per cycle, a speculation for the lead instruction is made att1 and resolved at

t2. Timeline (a) shows an ideal speculation processor that never misses; it will continue the

execution from instruction B and reach C att3. If the speculation is wrong, the state at point

of B is damaged and it needs to be restored. Timeline (b) through timeline (e) show the

different recovery techniques. In timeline (b), a CSP has to roll-back to A and re-execute all

CHAPTER 5. FINE-GRAIN STATE PROCESSOR 67

C

(b) (e)(c)(a)

independent

Ideal
speculationsequence

Program
Roll−back

(d)

t1

t2

t3

A

C

A

C

B

B

B

recovery

recovery
recoveryC

A

B

dependent on

Parallel
recovery

Coarse−grain state Fine−grain state
Roll−back Reuse

Fine−grain state

C

B

recovery

Sequential
recovery

C

B

Timeline

speculation
value

resolved

speculation point

A

Figure 5.2. Value Speculation

instructions until B to repair the state. In this case, all instructions between A and B, will be

executed twice, and the execution of independent instructions during the speculation phase

will be wasted. In Timeline (c), a processor which is aware ofthe fine-grain state is able

to avoid wasting finished work. It can reuse independent instructions’ results generated

in the speculation pass and shorten the recovery process. However, similar to the control

speculation case, salvaging may achieve little improvement if those instructions are not on

the critical path.

A better implementation of the fine-grain state would be to re-execute only dependent

instructions, shown in Timeline (d). During the speculation phase, dependent ones are

inserted into aslicing buffer. At resolution pointt2, the processor restores the correct state

via re-executing only dependent instructions.Slicing was first introduced by Weiser [57]

CHAPTER 5. FINE-GRAIN STATE PROCESSOR 68

and it used to recover the state in [51, 45]. Although Slicing outperforms salvaging, it still

has to restore the state first and then restart from point B. In contrast, a fully implemented

FSP can seamlessly process independent instructions crossing B, which access only correct

values, while the damaged state are being repaired. Shown inTimeline (e), fromt2, the

parallelism-in-recovery is exposed. If there is enough independent work, FSP is able to

obtain a zero-latency recovery.

The above two figures illustrate the high-level view of the FSP properties for the control

speculation and the value speculation. In the next two sections, based on the framework,

two detailed realistic models are implemented for control speculation recovery and value

speculation recovery, respectively.

5.3 Summary of FSP’s Framework

A general framework of FSP and its design space is introducedin this chapter. An FSP

based on this framework will satisfy the five essential FSP properties and implement the

Parallel recoverymode. The comparison between FSP and CSP with respect to the control

speculation and the value speculation is also discussed, asa timeline view.

Based on the presented general FSP framework, we propose two novel FSP models to

speed up the branch mis-prediction recovery and the runahead execution recovery. Both

models achieve much higher performance via exploring parallelism-in-recovery, compared

to the traditional CFP models.

69

Chapter 6

Eager branch Mis-prediction Recovery

In this chapter, we apply the FSP concept in the field of control speculative execution. We

demonstrate that such an FSP can break the limitation of CSP and exploit the performance

potential which exists in recovery from control mis-speculations. The application of the

FSP concept in control speculation is called Eager branch Mis-prediction Recovery (EMR).

By exploring parallelism in recovery, EMR obtains almost thesame performance with a

machine utilizing unlimited checkpoints. We also show thatthis technique uses on-chip

checkpoint buffers more effectively.

6.1 Introduction

In modern out-of-order processors, the branch mis-prediction penalty becomes a critical

factor in overall performance. To recover from the mis-prediction, a traditional CSP either

utilizes checkpointing at branches for faster recovery, orsequentially rolls back to the in-

order state by waiting until the mis-predicted branch reaches the head of the reorder buffer.

However, both methods treat the processor state as a unique set at a coarse-grain level.

A checkpointing [21] mechanism would either have to dedicate a large fraction ofthe

CHAPTER 6. EAGER BRANCH MIS-PREDICTION RECOVERY 70

chip area for checkpoint data, or limit the number of in-flight instructions, in essence

limiting the amount of instruction level parallelism that can be exploited. For example, the

MIPS R10000 allows only 4 pending branches to be in-flight since its branch stack has only

4 entries, in which each entry contains a complete copy of theinteger and floating-point

RAM-structured map tables [58]. The Alpha 21264 [13], which uses the CAM-structured

map table, supports up to 80 checkpoints, in essence providing the capability to recover

the state associated with any of the 80 in-flight instructions. However, as discussed in

Chapter2.4.2, the CAM-structure itself may not scale well since higher degrees of ILP

with increased issue widths require a large number of physical registers.

A commonly employed mechanism of sequential recovery is to use a retirement map

table called RMAP [20]. If a RMAP is used, when an instruction retires, it updates

the retirement map table to indicate that the result register is in the in-order state. The

retirement logic ensures that exceptions occur only if the operation causing the exception

is the oldest, non-retired operation in the machine [20]. At this point, the retirement state

is also the in-order state of this exception point. If a mis-prediction occurs, the processor

restores the architectural state, or the front-end map table, from the retirement map table.

Although RMAP needs only one extra map table, its recovery takes longer than necessary

as renaming cannot start until all instructions prior to themis-predicted branch retire. If

a long latency operation prior to the branch exists,e.g., a cache miss, the mis-prediction

penalty increases significantly. Akkary,et al., discuss some optimizations when using a

retirement map table [1, 2]. These optimizations walk through the reorder buffer to restore

CHAPTER 6. EAGER BRANCH MIS-PREDICTION RECOVERY 71

the map table without waiting for all prior instructions to retire. However, the front-end

stalls and instruction processing occurs sequentially, giving anO(n) complexity wheren is

the number of instructions in-flight. Since more instructions appear in a processor with a

large instruction window, this results in a significant increase in the mis-prediction penalty.

As we can see, due to the limitation of coarse-grain state handling, neither of above

mechanisms allows resumption of the fetching and renaming of new instructions from the

correct path until a known processor state is restored. As a result, the opportunity to utilize

the correct values within the architectural state is lost.

In this chapter, we develop an FSP model based on the framework described in Chapter

5.1 to explore this opportunity that has not been previously considered. EMRallows

fetching and renaming instructions immediately upon a branch mis-predictionand restores

the state to the correct stateas the instruction fetching/renaming continues. In other words,

it effectively explores the parallelism in branch mis-prediction recovery and hides the state

recovery latency in a RAM based map table design. The design space of EMR is described

in the following section.

6.2 Design Space

6.2.1 Identifying Speculative State

When a branch mis-prediction occurs, the set of all registersthat are defined on the

speculative path comprises the speculative state. Note that no speculative memory data

is written into the cache/memory during the branch speculation. The memory hierarchy

CHAPTER 6. EAGER BRANCH MIS-PREDICTION RECOVERY 72

system always keeps the in-order state. As a result, EMR onlyneeds to identify the

speculative register values.

iB

J

B i+2
iSS

B i+1

K

I

B i+2

iSS

B i+1

iB

J: R7 = ...

K: R8 = ...

{R5, R7, R8}=

I: R5 = ...

(a) Speculative State

1

1

1

...

...

R8

R7

R5

 P45

 P38

 P23

1

1

1

...

...

R8

R7

R5

OR

1

1

1

SSM
i

 i

 i+1

 i+2

>=

>=
>=

D
R

M

mispredicted
branch

000001011000...0000

Index S

DBIT

i+2

GBIC

Map Table
Front−end

(b) State Masks

Figure 6.1. Identifying Speculative State

To identify the speculative register state, EMR maintains aGlobal Branch Index Counter

(GBIC) for branches and a Dependent Branch Index Table (DBIT) forlogical registers. The

GBIC records the index of the youngest in-flight branch. When a branch is decoded, the

GBIC is incremented by 1 and assigned to it. The DBIT is indexed by the logical register

CHAPTER 6. EAGER BRANCH MIS-PREDICTION RECOVERY 73

number, which includes two fields: one is the speculative (S)bit; the other is the branch

index field. Initially, all S bits are reset. When a producer instruction is decoded, the current

GBIC value is copied into the corresponding entry of its destination in the DBIT, and the

S-bit is set. That indicates the destination register is speculative and it is dependent on the

current youngest branch. When a producer instruction retires, if it is still the latest definition

of its logical destination, the corresponding S-bit of the logical destination register is reset

since it is in-order now and it does not depend on any branch. The DBIT can be accessed

in parallel with the front-end map table, therefore it will not increase the cycle time of the

decoding stage.

When a branch is mis-predicted, in the DBIT entries, those registers whose S-bit is set

and the index value is greater than or equal to this branch index are defined on its speculative

path. They make up the speculative state for the mis-predicted branch.

The index counter needs log2N bits if the maximum number of branches allowed to be

in-flight is N. Since the counter zeroes when it overflows, an extracolor bit is needed to

handle the relative order of branches correctly. Once the counter overflows and zeroes, the

color bit is flipped, from 0 to 1 or from 1 to 0. Each index is assigned boththe counter

value and the color bit. When two indices A and B are compared: Ais greater than B if

A’s value is greater than B’s and both color bits are the same. Or, A is greater than B if

A’s value is less than B’s and their color bits are different. As a result, the GBIC and each

branch index field in the DBIT need log2N+1 bits.

Figure6.1 illustrates the speculative state identification process.The speculative state is

CHAPTER 6. EAGER BRANCH MIS-PREDICTION RECOVERY 74

represented by a mask of registers, called Speculative State Mask (SSM). Suppose when

a mis-prediction occurs on the branchBi, the branchesBi+1 andBi+2, and the producer

instructionsI , J andK have already been fetched and decoded speculatively, as shown in

Figure6.1(a). Figure6.1(b)shows that the processor generates the SSM ofBi by comparing

its index i with index values in the DBIT entries whose S bits are set. If a register’s

index value is greater than or equal toi, with respect to the circular order, then it is in

the speculative state set ofBi, and the corresponding bit in the SSM is set. In this example,

R5, R7 andR8 comprise the speculative state set ofBi. They are damaged and not available

as the operands for subsequent instructions until the correct values are restored.

The speculative state represents exactly what registers need to be restored. Specifically,

the recovery process only needs to recover damaged registers contained in the SSM. If

the speculative state only contains a few registers, the recovery process will be effectively

hidden by the execution of useful instructions from the correct path.

Our experimental results show that on an average the speculative state upon mis-

predictions for 17 SPEC2000 benchmarks accounts for around 20% of the architectural

state. We obtain these results by running the benchmarks on our baseline micro-architecture

model presented in Section6.4.

6.2.2 Handling Multiple Mis-predictions

Since EMR continues execution in parallel with recovery, new mis-predictions may

occur before the current one is fully restored. Multiple mis-predictions may be in-flight.

To handle this situation, we use a global Damaged Register Mask (DRM), that is visible

CHAPTER 6. EAGER BRANCH MIS-PREDICTION RECOVERY 75

to new instructions, as shown in Figure6.1(b). Once the speculative state is identified, we

combine it with the DRM,DRM= DRM∨SSM, to reflect the new global speculative state.

In addition, EMR needs to record the precise fine-grain stateinformation for each

individual mis-prediction. Upon a mis-prediction, EMR creates a copy of the current front-

end map table and the SSM. The combination is called the Mis-predictions Map Table

(MMAP), which has two fields, the Mapping Tag and the Speculative bit, as shown in

Figure6.2(a). The Speculative bit decides whether the corresponding logical register is

damaged or not. The mapping tag shows the renaming register to which the correct value

needs to be restored.

An N-entry circular queue of checkpoints is needed if as many asN pending mis-

predictions are allowed to be in-flight. Shown in Figure6.2(b), the checkpoint queue is

maintained as a circular buffer. The head pointer refers thefirst checkpoint, and the tail

pointer always points the next free entry. Upon a mis-prediction, the MMAP of it is created

and inserted into the tail of the checkpoint queue. When the first pending mis-prediction is

recovered, the head pointer moves to the next entry towards the tail pointer and its allocated

checkpoint entry is released. To maintain multiple mis-predictions, we need to consider

three cases when a mis-prediction occurs:

Case 1 No pending mis-prediction exists. Since the current mis-prediction is the only one

in the pipeline,DRM = 0. LetBf be the mis-predicted branch. SSM is generated as

described in Section6.2.1, which represents the speculative state set ofBf . In this

case, the DRM is set to the SSM since the set of damaged registers consists only of

CHAPTER 6. EAGER BRANCH MIS-PREDICTION RECOVERY 76

...

...

R8

R7

R5

1

1

1

1

1

1

...

...

 P23

 P45

 P38

Misprediction Map Table

Mapping Tag S

+

 P23

 P45

 P38

SSMMap Table

R8

R7

R5

Front−end

(a) Checkpoint

MMAP
i
0

MMAP i n−1

.

.

.

.

.

.

checkpoint
stack

head

MMAP
f

MMAP
i
0

MMAP i n−1

tail

tail

.

.

.

.

.

.

checkpoint
stack

head

(b) Checkpoint Stack

Figure 6.2. Checkpointing to Handle Multiple Mis-predicti ons

those on the speculative path ofBf . Thus,

DRM= DRM∨SSM= SSf (6.1)

The current front-end map table and the SSM are copied into MMAPf and MMAPf

is inserted into the checkpoint queue as shown in Figure6.3(a). B f is the only mis-

prediction in-flight.

Case 2 A mis-prediction occurs while the processor recovers fromnearlier mis-predictions.

In this situation, the younger branch,Bf occurs while the processor is recovering

CHAPTER 6. EAGER BRANCH MIS-PREDICTION RECOVERY 77

from n previously mis-predicted branches,Bi0 . . . Bin−1. Here i0 <.. .< in−1 < f .

Then the DRM will be the union of the speculative state ofBf , SSf in the SSM, and

the speculative states ofBi0 . . . Bin−1, which areSSi0 . . . SSin−1. SinceSSi0 . . . SSin−1

have already been generated and are contained in the DRM,

DRM= DRM∨SSM= SSi0∨. . .∨SSin−1∨SSf (6.2)

In Figure6.3(b), the copy of the current front-end map table and the SSM are copied

into MMAP f and MMAPf is inserted into the checkpoint queue. There aren+ 1

mis-predictions in flight afterBf is mis-predicted.

checkpoint
stack

head

tail

MMAP
f

tail

checkpoint
stack

head

(a) Case 1

MMAP
i
0

MMAP i n−1

.

.

.

.

.

.

checkpoint
stack

head

MMAP
f

MMAP
i
0

MMAP i n−1

tail

tail

.

.

.

.

.

.

checkpoint
stack

head

(b) Case 2

MMAP
i
0

M
M

A
P i j

MMAP
i
0

MMAP i j+1

M
M

A
P i j

M
M

A
P

i
n−1

tail

.

.
.

checkpoint
stack

head

.

.
.

checkpoint
stack

head

. . .
MMAP f

tail

(c) Case 3

Figure 6.3. Three Cases of Multiple Mis-predictions

Case 3 A mis-prediction occurs whilen mis-predictions are in-flight. Assume that the

CHAPTER 6. EAGER BRANCH MIS-PREDICTION RECOVERY 78

processor is recovering fromn mis-predicted branches,Bi0 . . . Bin−1. The DRM

contains the union ofSSi0. . .SSin−1. Since branches can be resolved out-of-order,

it is possible the new mis-prediction is detected on a branchBf , which is younger

thanBi j and older thanBi j+1. Herei j < f < i j+1, andi0 ≤ i j+1 ≤ in−1. Obviously,

branches fromBi j+1 to Bin−1 are on the speculative path ofBf . Any mis-predictions

of Bi j+1 throughBin−1 are false mis-predictions. The speculative stateSSf generated

in the SSM contains the speculative statesSSi j+1 . . . SSin−1. Thus,

DRM = DRM∨SSM

= SSi0∨. . .∨SSi j ∨SSi j+1∨. . .∨SSin−1∨SSf

= SSi0∨. . .∨SSi j ∨SSf (6.3)

The DRM now represents the new union of the speculative state of Bf and the

speculative states ofBi0 . . .Bi j . Any false mis-predictions that are caused by invalid

branches through the speculative path ofBf are covered by the mis-prediction of

Bf . In Figure6.3(c), the MMAPs forBi j+1 . . .Bin−1 are flushed from the checkpoint

queue. The MMAP forBf is created and inserted into the queue.

The DRM always represents the complete set of all damaged registers of multiple

in-flight mis-predictions. With the DRM, the processor can easily distinguish those

instructions from the correct path that reference any incorrect state.

CHAPTER 6. EAGER BRANCH MIS-PREDICTION RECOVERY 79

6.2.3 Blocking and Shelving Dependent Instructions

After the processor identifies the speculative state, it changes the PC to the correct

target of the mis-predicted branch and continues the execution. To handle new instructions

which may reference values in incorrect speculative state,EMR utilizes theblocking in RSs

method.

Traditionally, when the processor dispatches an instruction into the instruction window,

the ready bit of an operand is set to valid if the operand has already been computed [46].

In our mechanism, if an operand belongs to the in-order state, the ready bit will be set

normally, depending on whether this value is computed or not. If it belongs to the incorrect

speculative state, the ready bit should be set toinvalid, even if the value has already been

computed. Using the DRM, simple logic is enough to handle bothcases:R = Di ∧Vj ,

whereDi is theith bit in the DRM, corresponding theith logical register,R is the operand

ready bit andVj is the value ready bit of the physical register allocated to the ith logical

register. IfDi is 0, this operand is not damaged and is ready if the value has already been

computed. IfDi is 1, this operand is damaged and is not ready.

During the renaming stage, each producer instruction resets the D-bit of its logical

destination in the DRM. Any subsequent instruction which needs that logical register as

an operand will reference the new, undamaged state.

When theD-bit is set to 1, instructions that reference the damaged speculative state wait

in the reservation stations until the correct state is restored. Instructions that access only

undamaged registers proceed without waiting.

CHAPTER 6. EAGER BRANCH MIS-PREDICTION RECOVERY 80

Our experimental results show that in the SPEC2000 benchmarksuite, on average

only 18% and 40% of all instructions reference damaged registers in CFP2000 and

CINT2000, respectively. Using EMR, instructions referencing undamaged registers never

wait unnecessarily because of a branch mis-prediction as new instructions are fetched and

renamed using the current map table values without interruption.

6.2.4 Correcting Incorrect Speculative State

To maintain the program’s correctness, EMR needs to repair the speculative state by

restoring the correct data from the in-order state. Once thecorrect state is restored,

instructions which reference the damaged state can be executed correctly and correct

program semantics is maintained.

Like RMAP, EMR uses a retirement map table to construct the in-order state at the mis-

prediction point sequentially through the retire logic. When an instruction retires, it updates

the retirement map table to indicate that the result register is in the in-order state. When a

mis-predicted branch reaches the head of the reorder buffer, the retirement state is also the

in-order state of this mis-predicted branch. EMR records the speculative state in the MMAP

when a mis-prediction happens. When the mis-predicted branch causing it reaches the head

of the reorder buffer, all previous mis-predictions shouldhave already been recovered. The

first entry of the checkpoint queue contains the MMAP of this mis-prediction.

With the retirement map table, RMAP, and the MMAP popped from the checkpoint

queue, EMR can restore the correct data from the in-order state to the speculative state.

Figure6.4 illustrates the recovery process for the mis-prediction ofBf . The S-bit in the

CHAPTER 6. EAGER BRANCH MIS-PREDICTION RECOVERY 81

...

...

...

Ri

Rj Px

MMAP f

Ri

Rj

...

...

...

PyPx Py

Py

Bf

head tail

. . .ROB

Py Px

RMAP

Mapping Tag

Pa

update RSs Mapping Tag S

1

0Pa
FU

mov ,

Figure 6.4. Restoring Speculative State

MMAP indicates whether a logical register is in the speculative state or not. For example,

the S-bit ofRi is not set indicating thatRi is not damaged through the speculative path of

Bf . As a result, the corresponding entries are the same both in the RMAP and the MMAP

(Pa). On the contrary, the S-bit ofRj is set indicating it belongs to the speculative state of

Bf . The correct data needs to be restored from the in-order state to the speculative state:

Px −→ Py. After restoring the correct data value, EMR broadcasts thetag of Py to the

reservation stations to wake up blocked instructions that need this value. IfPy is still the

latest renaming tag ofRj in the front-end map table, the corresponding D-bit ofRj in the

DRM is reset. Doing so will permit subsequent instructions which may accessRj as their

operand to continue normally.

CHAPTER 6. EAGER BRANCH MIS-PREDICTION RECOVERY 82

After all registers in the speculative state are restored, the recovery of the current mis-

prediction is done. At this point, retirement continues normally and the first entry in the

checkpoint queue is released.

6.2.5 Parallelism in Recovery

Since EMR is based on a uni-thread model, it utilizes theimplicit parallel recovery

scheme. EMR interleaves the recovery process with the normal execution without

increasing the processors’ complexity.

Simply stated, EMR issues copy operations of the formmov Py, Px, into the free

functional units to restore the correct data. The copy operations execute as normal

instructions as they read from and write to the register file,and wake up dependent

instructions blocked in the reservation stations. Moreover, the copy operations update the

retirement map table and the DBIT after they restore the data just as normal producer

instructions do. Thus, a uniform pipeline design can be usedfor normal execution and

recovery operations. Furthermore, the complexity of the pipeline design does not increase.

No extra read/write ports of the register file, and no extra tag buses are needed.

Each cycle, EMR can restore as many damaged registers as there are free functional

units. Note that, if there are not many free functional units, this implies that the newly

fetched instructions do not reference the damaged state. Incontrast, when there are many

free functional units, the newly fetched instructions reference the damaged state. In the

former case we can afford to be slow in the recovery; in the latter case we can quickly

restore values and unblock waiting instructions. In eithercase, the parallelism between the

CHAPTER 6. EAGER BRANCH MIS-PREDICTION RECOVERY 83

recovery and the newly useful instruction execution can be achieved.

6.3 Optimization

So far the fundamental design space of EMR has been discussed. Although EMR allows

execution of instructions which do not reference damaged values, it cannot start repairing

damaged values before a known in-order state is obtained. This state is obtained by waiting

until the mis-predicted branch reaches the head of the reorder buffer and under normal

circumstances this may not be a significant problem. However, when the head of the reorder

buffer is blocked by a long latency operation such as a cache miss, the time for the mis-

predicted branch to reach the head of the reorder buffer may become significant. During

this time, the likelihood of finding instructions which do not reference the damaged state

will rapidly diminish and the processor will eventually stall.

From the point of view of state, EMR still handles part of the repair process at a coarse-

grain level. It has to wait until the whole in-order state at the mis-predicted branch point is

fully restored. In order to fully utilize the power of the FSPconcept, EMR needs to repair

the damaged values as early as possible, at a single value level.

We therefore augment our basic technique with an appropriate variation of WALK

algorithms [1, 2]. Both RMAP+WALK and HISTORY+WALK are optimizations on

the basic RMAP mechanism and both methods walk through the reorder buffer entries to

reconstruct the in-order state without waiting for all instructions prior to the mis-predicted

branch to retire. This technique is orthogonal to EMR and EMRcan also be improved by

incorporating the WALK scheme. We refer to the combined technique as EMR+WALK.

CHAPTER 6. EAGER BRANCH MIS-PREDICTION RECOVERY 84

As illustrated in Figure6.5, the technique requires some additional fields in the MMAP.

Py

P

MMAP f

F

0

1

1

...

Px

...

...

R8

In−order Tag

−−

Pa

R5

R9

Py

Px Py

Py Pxmov ,

update RSs

FU

Bf

S

1

1

1Pb

i

Speculative Tag R

0

0

1

head tail

. . .ROB

WALK

Px Pa

Figure 6.5. EMR+WALK

In order to repair the damaged speculative state in the MMAP,EMR+WALK needs to

restore the correct value for each damaged register from thelatest definition of the same

logical destination prior to the mis-prediction point. EMR+WALK walks from the mis-

predicted branch towards the head of the reorder buffer to retrieve the latest definition

information from each ROB entry. When a definition ROB entry isscanned, it is the latest

definition of the speculative destination register prior tothe mis-prediction point if the

correspondingS-bit (Speculative) is 1 and theF-bit (Found) is 0 in the MMAP. If this is the

case, the renaming tag of the destination register is put into theIn-order Tagfield and the

F-bit is set. After EMR+WALK walks to the head of the ROB, if thereis any entry with

CHAPTER 6. EAGER BRANCH MIS-PREDICTION RECOVERY 85

S= 1 andF = 0 left, its In-order Tagcan be retrieved from the retirement map table.

Since thisWALK process is independent from the retirement logic, restoring correct

values can be started as early as possible, without waiting for all instructions prior to the

mis-predicted branch to retire. Any entry in the MMAP withS= 1, F = 1 andR = 0

(Recovered) will trigger a move operation:In-order Tag−→ Speculative Tag, if the correct

value is ready and there is a free functional unit. After the correct value is restored, itsR-bit

is set.

Since there can be multiple mis-predictions in-flight, multiple walk units are needed

and the walk process of a younger mis-prediction may cross older ones. All make the

implementation complicated. To simplify the implementation, we only allow a simple walk

process for the first pending mis-prediction. Once a mis-prediction becomes the oldest one,

its walk process and restoring process can start immediately.

6.4 Experimental Evaluation

6.4.1 Experimental Methodology

The simulation tool and the experimental environment are presented in Chapter3. In

order to evaluate the performance of EMR, we have collected results from 17 benchmarks

of the SPEC2000 benchmark suite. All benchmarks were run to completion using

the reduced reference inputs from the MinneSPEC workload [29]. The cycle-accurate

superscalar simulator is used as the baseline. The parameters of the baseline model

are shown in Table6.1. Both load and store instructions are allowed to issue out-of-

CHAPTER 6. EAGER BRANCH MIS-PREDICTION RECOVERY 86

order [11, 39] using the store set memory dependence predictor. Five models with different

mis-prediction recovery mechanisms have been evaluated and compared:

1. RMAP, the traditional coarse-grain sequential recovery model.A retirement map

table is used to restore the state.

2. RMAP+WALK, the optimization of the above method. With the retirement map table,

it walks from the head of ROB towards to the mis-prediction point to restore the state.

3. EMR (M=4), the FSP model which can handle 4 pending mis-predictions.

4. EMR+WALK (M=4), the optimization of EMR, which is combined with the WALK

method.

5. UL_CHK(UNLIMITED CHECKPOINTS), the ideal recovery model, in which a

checkpoint is made with every branch. It can immediately restore the correct state

from the checkpoint when a mis-prediction is detected.

All five machines were kep identical in all aspects except thebranch mis-prediction

recovery scheme. RMAP+WALK and EMR+WALK both use the resources available to

the retirement logic. The walking step assumes the same number of instructions as the

retirement width.

6.4.2 Performance Results

The instructions per cycle (IPC) for each program in the benchmark suite using the

5 recovery models stated previously is shown in Figure6.6. EMR/+WALK has been

CHAPTER 6. EAGER BRANCH MIS-PREDICTION RECOVERY 87

Parameter Configuration
Issue/Fetch/Retire width 8/8/8
Instruction window size 128
Reorder buffer size 256
Register file entries 256
Functional units Issue width Symmetric
Branch predictor 16K gshare
BTB 1024-entry
Return-address stack 32-entry
Dcache L1: 32KB, 4-way, 64B/line, 2 cycles

L2: 512KB, 8-way, 64B/line, 10 cycles
Memory 8B/line, 40 cycles first chunk,

4 cycles inter-chunk.

Table 6.1. Machine Configurations

implemented usingM = 4, handling at most 4 branch mis-predictions simultaneously. We

will discuss the selection of different values ofM in Section6.4.3. As can be seen from

Figure 6.6, EMR outperforms the traditional RMAP mechanism across all benchmarks,

while EMR+WALK performs better than RMAP+WALK. Furthermore,EMR+WALK

performs nearly as well as UL_CHK.

To help understand the performance results for the 5 different models, Figure6.7

illustrates the percent speedup over RMAP of the other four models. As shown in

Figure6.7, RMAP+WALK obtains a 2.9% and 0.4% harmonic mean improvementover

RMAP on CINT2000 and CFP2000, respectively. EMR achieves a 4.7%and 1.0%

improvement over RMAP. Recall as discussed in Section6.3, the restoring process of

EMR can be delayed significantly due to some long latency operations, such as cache

misses or floating point operations. Long latency operations cause EMR to perform worse

than RMAP+WALK on several CFP2000 benchmarks, particularly on 181.mcf, which

CHAPTER 6. EAGER BRANCH MIS-PREDICTION RECOVERY 88

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

18
1.

m
cf

18
6.

cr
af

ty

19
7.

pa
rs

er

25
3.

pe
rlb

m
k

25
6.

bz
ip

2

30
0.

tw
ol

f

A-m
ea

n

H-m
ea

n

0

1

2

3

4

IP
C

RMAP
RMAP+WALK
EMR (M=4)
EMR+WALK (M=4)
UL_CHK

(a) SPEC2000 INT

17
1.

sw
im

17
2.

m
gr

id

17
3.

ap
pl

u

17
7.

m
es

a

17
9.

ar
t

18
3.

eq
ua

ke

18
8.

am
m

p

30
1.

ap
si

A-m
ea

n

H-m
ea

n

0

1

2

3

4

5

IP
C

RMAP
RMAP+WALK
EMR (M=4)
EMR+WALK (M=4)
UL_CHK

(b) SPEC2000 FP

Figure 6.6. Performance of five models

CHAPTER 6. EAGER BRANCH MIS-PREDICTION RECOVERY 89

2.7

8.3

5.9
5.0

5.7
5.3

0.8

4.7

2.5

4.5

2.9
3.8

14.9

9.5

1.6

12.3

4.7

10.1

3.9
4.4

7.2

4.7
5.3

19.9

13.3

7.0

15.6

9.8
10.5

6.1

8.3

10.7

9.0

6.0

21.0

13.7

8.8

16.6

12.3

10.8

8.2 8.3

11.7

10.2

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

18
1.

m
cf

18
6.

cr
af

ty

19
7.

pa
rs

er

25
3.

pe
rlb

m
k

25
6.

bz
ip

2

30
0.

tw
ol

f

A-m
ea

n

H-m
ea

n

0%

4%

8%

12%

16%

20%

S
pe

ed
up

 O
ve

r
R

M
A

P

RMAP+WALK
EMR (M=4)
EMR+WALK (M=4)
UL_CHK

(a) SPEC2000 INT

6.6

3.0

4.4

0.1 0.4

5.7

0.4

1.7

2.8

0.4
1.4

3.1 3.4

0.9
0.4

6.1

0.4

2.2 2.2

1.0

9.1

3.7

5.7

0.9
0.4

12.5

0.6

5.4
4.8

1.3

9.5

3.9

6.0

0.9
0.4

13.2

0.6

7.4

5.2

1.3

17
1.

sw
im

17
2.

m
gr

id

17
3.

ap
pl

u

17
7.

m
es

a

17
9.

ar
t

18
3.

eq
ua

ke

18
8.

am
m

p

30
1.

ap
si

A-m
ea

n

H-m
ea

n

0%

4%

8%

12%

16%

20%

S
pe

ed
up

 O
ve

r
R

M
A

P

RMAP+WALK
EMR (M=4)
EMR+WALK (M=4)
UL_CHK

(b) SPEC2000 FP

Figure 6.7. Speedup of RMAP+WALK, EMR/+WALK (M=4) and UL_CH K over RMAP

CHAPTER 6. EAGER BRANCH MIS-PREDICTION RECOVERY 90

has a high cache miss rate. On the other hand, EMR+WALK appropriately overcomes

this shortcoming. As shown in Figure6.7(a), on the nine benchmarks. As shown in

Figure6.7(a), on the nine with a maximum improvement of 19.9% (175.vpr). The best

method, UL_CHK, improves the performance by a harmonic mean of 10.2%. In other

words, EMR+WALK achieves(1+ 9.0%)/(1+ 10.2%) = 99% of the harmonic mean

performance of UL_CHK.

Although EMR+WALK obtains a lower performance improvement on CFP2000 com-

pared to CINT2000, our technique obtains an arithmetic mean improvement of 4.8% and

a harmonic mean improvement of 1.3% on eight CFP2000 benchmarks. As shown in

Figure6.7(b), EMR+WALK achieves the same harmonic mean performance as UL_CHK.

In most cases, floating-point programs have relatively better branch prediction accuracies

using advanced branch prediction techniques. Therefore, they are less sensitive than integer

programs to the mis-prediction recovery mechanisms.

164.gzip 175.vpr 176.gcc 181.mcf
RMAP 95.31 88.68 85.79 94.92
RMAP+WALK 95.31 88.70 85.78 94.92
EMR 95.28 88.68 85.76 94.94
EMR+WALK 95.29 88.68 85.82 94.98
UL_CHK 95.30 88.70 85.78 94.97

186.crafty 197.parser 253.perlbmk 256.bzip2 300.twolf
RMAP 89.53 94.21 90.37 94.08 88.54
RMAP+WALK 89.53 94.21 89.84 94.11 88.45
EMR 89.53 94.18 89.84 94.07 88.54
EMR+WALK 89.52 94.19 89.84 94.11 88.38
UL_CHK 89.53 94.20 89.84 94.09 88.46

Table 6.2. CINT2000 Branch Prediction Accuracies(%)

CHAPTER 6. EAGER BRANCH MIS-PREDICTION RECOVERY 91

Table 6.2 and Table6.3 show the branch prediction accuracies of 17 benchmarks in

five models with a 16Kgshare[33] predictor. As it can be seen from the table, almost

all floating-point benchmarks have higher prediction accuracy than integer benchmarks.

Therefore the possible performance improvement is relatively small in the floating-point

programs.

171.swim 172.mgrid 173.applu 177.mesa
RMAP 96.63 95.43 97.38 99.20
RMAP+WALK 96.63 95.44 97.36 99.20
EMR 96.63 95.44 97.38 99.20
EMR+WALK 96.63 95.44 97.38 99.20
UL_CHK 96.63 95.54 97.37 99.20

179.art 183.equake 188.ammp 301.apsi
RMAP 98.80 96.86 99.26 94.37
RMAP+WALK 98.80 96.85 99.30 94.45
EMR 98.80 96.82 99.31 94.46
EMR+WALK 98.80 96.83 99.30 94.42
UL_CHK 98.80 96.83 99.30 94.54

Table 6.3. CFP2000 Branch Prediction Accuracies(%)

6.4.3 Mis-predictions-under-Mis-predictions

This section evaluates the performance of EMR/+WALK when thenumber of allowed

outstanding mis-predictions varies. In order to achieve a good trade-off between per-

formance and the hardware cost associated with the mis-prediction checkpoints, EMR

implementations need to choose a reasonable value forM. Figure 6.8 illustrates the

respective performance of different EMR implementations where the number of mis-

prediction maps is varied fromM = 1 toM = 16. We only present the harmonic mean IPC

CHAPTER 6. EAGER BRANCH MIS-PREDICTION RECOVERY 92

for the entire suite of SPEC2000 benchmarks and omit the data for individual benchmarks.

As it can be seen from the figure, both performance lines of EMRand EMR+WALK have a

steep gradient fromM = 1 to M = 2, and at larger values ofM, performance improvement

levels off. Recall that the front-end is stalled when theith mis-prediction is detected in

EMR/+WALK with M = i. When M = 1, EMR and EMR+WALK stall fetching new

instructions until the current mis-prediction is recovered resulting in poor performance.

As the value of M is increased, EMR and EMR+WALK can better hidethe latency of state

recovery.

M=1 M=2 M=4 M=8 M=12 M=16
The Number of In-flight Mispredictions

1.6

1.65

1.7

1.75

1.8

H
ar

m
on

ic
 M

ea
n

IP
C

EMR+WALK with M
EMR with M

Figure 6.8. Performance of EMR/+WALK with Different M

With a highly accurate branch predictor, the probability ofhaving many mis-predictions

in succession diminishes. Under such circumstances allowing many mis-predictions to be

in-flight will not provide significant performance improvements. Figure6.8 shows that

CHAPTER 6. EAGER BRANCH MIS-PREDICTION RECOVERY 93

selectingM = 4 provides the best trade-off between performance and hardware complexity

for both recovery models.

Theoretical analysis verifies the experimental results. Inboth EMR models, checkpoints

are created only upon mis-predictions. If the number of in-flight branches isB, then

M = B × mis− prediction rate. (6.4)

In our experimental models, the number of total in-flight instructions is 256. Given that a

branch is encountered on an average every 3-5 instructions [34], B is around 50. Assume

that a gshare predictor, utilized in the experiment, has less than 10% mis-prediction rate,

thenM ≈ 4 based on Equation6.4. Since UL_CHK would need about 50 checkpoints,

EMR mechanism roughly requiresmis-prediction rate%of the hardware cost of the ideal

UL_CHK while capturing 99% performance.

6.4.4 Towards a Large Instruction Window

This section studies the performance variation of the five recovery methods when the

scheduling window size and the reorder buffer size increase. Figure6.9shows the harmonic

mean IPCs when the reorder buffer size varies from 64 to 512. Tofocus the performance

study on the mis-prediction recovery mechanism exclusively, the physical register file size

is kept idealized in this group of experiments.

As shown in Figure6.9, all five models obtain performance improvement due to an

increased instruction window size. However, the strides ofthe improvement are not equal.

As it can be seen, the performance gap between RMAP and UL_CHK becomes larger as

CHAPTER 6. EAGER BRANCH MIS-PREDICTION RECOVERY 94

32/64 64/128 128/256 256/512
Scheduling Window Size / Reorder Buffer Size

1.5

1.6

1.7

1.8

1.9

H
ar

m
on

ic
 M

ea
n

IP
C

UL_CHK
EMR+WALK (M=4)
EMR (M=4)
RMAP+WALK
RMAP

Figure 6.9. Performance of 5 Models with Different SW/ROB siz es

the instruction window size increases. The performance of RMAP reduces from 96% of the

performance of UL_CHK down to 93% as the instruction window size is increased from 64

to 512. This phenomenon indicates that mis-prediction recovery becomes more critical for

large instruction window processors. In contrast, EMR+WALKalways achieves close to

99% of the performance of UL_CHK across all window sizes. We conclude that in general,

FSP may lead to more scalable designs than coarse-grain state recovery methods.

6.5 Related Work

In [1, 2], Akkary et al. use selective checkpoints at low-confidence branches to

recover from branch mis-predictions. Selective checkpointing provides better scalability

as the instruction window becomes larger. However, as the size of the instruction

CHAPTER 6. EAGER BRANCH MIS-PREDICTION RECOVERY 95

window is increased, the distance between a valid checkpoint and the current instruction

pointer increases, which in-turn increases the possibility of re-executing already executed

instructions since the confidence estimator cannot be perfect.

Gandhiet al. [16] propose Selective Branch Recovery (SBR) to reduce branch mis-

prediction penalty by exploiting a frequently occurring type of control flow independence,

called exact convergence. The results of some convergent instructions computed on the

mis-predicted path can be reused. Thus, the recovery penalty is reduced since convergent

instructions do not need to be fetched/renamed again. Non-convergent instructions on the

mis-predicted path are re-issued as move operations. Each such move operation copies

the value from the previous renaming physical register of its destination to its renaming

physical register. Thus the correct value of each logical destination is restored one by one

through the definition chain similar to EMR state recovery.

In [4], Aragonet al. analyze the performance loss due to branch mis-predictions. They

break the mis-prediction penalty into three subcategories: pipeline-fill penalty, window-

fill penalty, and serialization penalty. They propose a DualPath Instruction Processing

(DPIP) to reduce the pipeline-fill penalty. In DPIP, a low-confidence branch is forked

and both paths are fetched and renamed, however, the alternative path is not executed. A

checkpoint of the map table is created upon the low-confidence branch to support the dual

path processing. Thus, when a mis-prediction happens, someinstructions from the correct

path have already been fetched and renamed in the pipeline. DPIP can only fork once since

only two active paths are allowed at the same time.

CHAPTER 6. EAGER BRANCH MIS-PREDICTION RECOVERY 96

A significant body of research has provided us with increasingly better branch prediction

accuracies [59, 33, 50, 9, 23]. Although the type of branch predictor is orthogonal to

the EMR technique, EMR will provide diminishing returns as the accuracy of branch

prediction increases. Similarly, it provides significant performance benefits as branch

predictor accuracy decreases. EMR may tend to blur the differences between different

branch predictors and hence may favor less accurate but faster branch predictors.

Armstronget al. [5] propose to reduce performance degradation caused by branch mis-

prediction. They propose a mechanism to leverage wrong pathevents (WPEs), which occur

during periods of mis-prediction, such as a NULL pointer memory access. WPEs can be

used to detect whether a branch was mis-predicted before it is executed. Thus, the time

for detecting mis-prediction is reduced. When a wrong path event occurs, mis-prediction

recovery can be initiated early. Utilization of WPEs is orthogonal to EMR.

6.6 Summary of EMR

As the pipeline depth increases, branch mis-prediction becomes a primary bottleneck

in obtaining high performance. Utilization of the FSP concept for branch mis-prediction

recovery mechanism can significantly reduce the latency of branch mis-predictions by

immediately starting to process instructions from the correct target without waiting for

the processor state to be restored. Furthermore, the fine-grain processor state can be kept

appropriately in checkpoints, and correct values can be forwarded to blocked instructions

by using free functional units, resulting in a complexity-effective approach.

As an implementation of the FSP concept, EMR+WALK obtains an average performance

CHAPTER 6. EAGER BRANCH MIS-PREDICTION RECOVERY 97

speedup of 9.0% over the traditional technique on CINT2000. Moreover, it achieves 99%

of the performance obtained by an unlimited checkpoint recovery method using only 4

checkpoints.

98

Chapter 7

Fine-grain State Guided Runahead
Execution

In this chapter, we apply the FSP concept in the field of value speculative execution by

using Runahead execution. We apply the fine-grain state maintenance techniques in a multi-

threaded environment and present Fine-grain State Guided Runahead Execution (FSG-RA),

an SMT-like FSP model of runahead execution where the data values dependent on a missed

load are treated as damaged values. These values are verifiedand recovered as necessary

by an independent thread, while the original thread continues to execute new instructions.

We demonstrate that FSG-RA can improve the single-thread program’s performance by

exploiting the parallelism in the Runahead execution recovery in a multi-thread processor

environment.

7.1 Introduction

Runahead execution was first proposed by Dundas and Mudge [14] for in-order

processors and later applied to out-of-order processors byMutlu et al. [37]. It increases the

effective instruction window of a processor by continuing execution when the instruction

CHAPTER 7. FINE-GRAIN STATE GUIDED RUNAHEAD EXECUTION 99

window is blocked by a long latency operation,e.g., an L2-cache miss load. In this case,

the processor enters the “runahead mode” by providing a bogus value for the blocking

operation and pseudo-retiring it out of the instruction window. Under the “runahead mode”,

all the instructions following the blocking operation are fetched, executed, and pseudo-

retired from the instruction window. Once the blocking operation completes, the processor

rolls back to the point it entered the runahead mode and returns to the “normal mode”.

Though all instructions and results obtained during the “runahead mode” are discarded, the

runahead execution warms up the data cache and significantlyenhances the memory level

parallelism.

Similar to the general value speculation example depicted in Chapter5.2, one can

envision the runahead execution as a value speculation during which part of the state

is damaged. Consider the timelines shown in Figure7.1. Timeline (b) represents the

conventional runahead execution which uses a coarse-grainstate recovery method to

maintain the state. It has to roll back when the load miss is resolved. Timeline (c) illustrates

a runahead processor that reuses the independent results generated during the “runahead”.

This Roll-back + Reuse method, however, obtains little improvement [35].

On the other hand, an ideal FSG-RA processor can achieve much better performance,

because it only needs to re-execute miss-dependent instructions which updated the

processor state with incorrect values during the runahead execution. Furthermore, it can

execute these instructions in an arbitrary order (pending the dependencies among them)

because it is able to continue executing new instructions with a partially correct state.

CHAPTER 7. FINE-GRAIN STATE GUIDED RUNAHEAD EXECUTION 100

C

(b) (e)(c)(a)

independent

Ideal
speculationsequence

Program
Roll−back

(d)

t1

t2

t3

A

C

A

C

B

B

B

recovery

recovery
recoveryC

A

B

dependent on

Parallel
recovery

Coarse−grain state Fine−grain state
Roll−back Reuse

Fine−grain state

C

B

recovery

Sequential
recovery

C

B

Timeline

speculation
value

resolved

speculation point

A

Figure 7.1. Value Speculation

This ability enables a typicalexplicit parallel recoveryversion shown in timeline (e) to

completely overlap the recovery process with the executionof new instructions. In this

approach, a second thread can be made responsible from repairing the state, and under

favorable conditions, it can match the performance of the processor equipped with an ideal

cache.

Notice that a similar effect is achieved by recentContinual Flow Pipelines(CFP)

proposal [51]. It drains load-dependent instructions into a slice buffer, and then executes

the slice to restore the correct state. However, CFP does not exploit the parallelism that is

available during the speculation recovery. Therefore its operation corresponds to timeline

(d) rather that timeline (e) in which the execution of new instructions is blocked until the

recovery is done and the slice is executed. In effect, the recovery is performed sequentially.

CHAPTER 7. FINE-GRAIN STATE GUIDED RUNAHEAD EXECUTION 101

A full-fledged implementation of FSG-RA is difficult due to thememory dependencies.

Although the distinction of independent versus dependent instructions is clear in terms

of register values and a simpletag propagation scheme suffices to identify the miss-

independent instructions, such is not the case with the memory references. When a

store instruction’s address is miss-dependent, it is virtually impossible to know whether

a subsequent load instruction is miss-dependent or not. Similarly, assuming independence

for a following store instruction which references the samelocation results in a violation of

output dependencies and the violation can’t be detected until the cache miss is complete.

In order to handle the memory dependencies, we permit load speculation guided by a

dependence predictor and re-execute memory operations forverification and correction.

We extend the store-set [11] dependence prediction algorithm for a multi-threaded envi-

ronment. This contrasts withContinual Flow Pipelines(CFP) [51] approach which needs

to buffer all the memory instructions to ensure correct memory ordering.

In the next section we present an overview of an SMT-like FSP and show how the

runahead concept can be implemented in such a FSP model.

7.2 SMT FSG-RA

In order to implement FSG-RA, we utilize aresource replicating SMT[55] design where

most front-end resources such as the register file, the reorder buffer and the front-end

pipelines are replicated (Figure7.2). The two halves are organized such that the instructions

retiring from one half can be sent to the reorder buffer of theother half. An optional

FIFO calledInstruction Stream Queue(ISQ) is placed between the two reorder buffers,

CHAPTER 7. FINE-GRAIN STATE GUIDED RUNAHEAD EXECUTION 102

which enable further buffering of additional instructionswhen the destination reorder buffer

becomes full. We refer to each of the halves as anexecution engine(EE). Each EE is a fully

out-of-order engine.

Wakeup
Select

Wakeup
Select

ROB

Physical
register file

Physical
register file

RenameFetch Decode

Mode

ROB

Fetch Decode Rename

Mode

In
st

ru
ct

io
n

C
ac

he

D
at

a
C

ac
he

recovery thread
hasISQ

F
un

ct
io

na
l U

ni
t A

rr
ay

higher priority

Figure 7.2. SMT FSG-RA machine model

We present two designs. In the first, the recovery thread simply re-executes all the

pseudo-retired instructions from the main thread, including the miss-dependent and miss-

independent instructions. We refer to this design asFSG-RA-all. The second design re-

executes only miss-dependent instructions. We refer to this design asFSG-RA-dep. In case

of FSG-RA-all, the ISQ FIFO carries the instruction stream and acts as a trace-cache. In

case ofFSG-RA-dep, only dependent instructions and memory operations are placed into

the ISQ FIFO alongside their current available operand values. As discussed previously,

in order to satisfy the correction property,FSG-RA-depneeds to buffer the current value

of the operands which are miss-independent together with the instruction. Instruction flow

into each EE is controlled by the currentmodeof that particular engine. There are three

CHAPTER 7. FINE-GRAIN STATE GUIDED RUNAHEAD EXECUTION 103

modesof operation:

1. Normal Mode: The EE fetches instructions from the instruction cache and executes

a particular thread, processing and retiring instructionsnormally. When both halves are in

thenormal mode, the processor exploits thread level parallelism. As long as there are no

cache misses, the machine behaves like a conventional SMT processor.

2. Runahead Mode:The EE suppliesinvalid values to the result registers of missing

loads and pseudo-retires instructions from its reorder buffer into the ISQ. When the ISQ is

full, the retirement of that particular engine is stalled.

3. Recovery Mode:The EE retires and commits instructions in program order just as

a normal processor, but retrieves its instructions from theISQ instead of the instruction

cache.

Improving the uni-thread performance requires both halvesas follows. For simplicity,

let us assume that the program is executing as a single threadon one of the halves referred

to as themain thread. As long as the reorder buffer of the EE executing themain thread

is not blocked by a long latency operation, the thread executes normally and retires and

commits instructions. Once a load that missed in the L2 data cache reaches the head of the

reorder buffer (ROB) of themain thread, the particular engine switches to therunahead

mode. This load is called therunahead trigger:

Switching to the runahead mode:When the EE which is processing themain thread

switches to therunahead modethe second EE is placed into therecovery mode. The

execution of themain threadis carried out in a way similar to the original runahead proposal

CHAPTER 7. FINE-GRAIN STATE GUIDED RUNAHEAD EXECUTION 104

[37]. The processor supplies an invalid value to the missing load and starts pseudo-retiring

instructions which are fed to theISQ and from there to the tail of the recovery thread’s

reorder buffer. In case ofFSG-RA-all, the recovery thread executes instructions which are

independent of the missing load value in parallel with the main thread until its reorder buffer

becomes full. Once the recovery thread’s ROB becomes full, the ISQ still continues to

buffer instructions pseudo-retired from the main thread. Note that the state of the recovery

thread is always behind the state of the main thread. During execution both threads can use

any form of load speculation guided by a dependence predictor.

Cache Miss is Complete:After the L2-miss data is back, as opposed to the original

runahead proposal, the main thread continues to run and doesnot roll back. Meanwhile,

the recovery thread can move forward because the L2-miss is serviced. It can begin to

verify, repair, and catch up with the main thread’s state. Assuming that the validation of

the main thread’s state succeeds, the recovery thread eventually catches up with the main

thread because it is given priority in the use of the execution resources. If the validation

fails, the main thread is possibly executing on the wrong path, fetching data irrelevant to the

current execution, or replacing useful data from the cache.In such cases, the main thread

is stopped.

Validation Complete: Once the recovery thread finishes the validation (i.e., either

detects an error, or catches the main thread) it is at the correct point in the program with a

correct state. Once this state is reached, the recovery thread switches to the normal mode

and continues its execution as the main thread. The other EE is now available to be used to

CHAPTER 7. FINE-GRAIN STATE GUIDED RUNAHEAD EXECUTION 105

either improve uni-thread performance, or improve throughput via multi-threading.

This scheme improves performance regardless of whether therecovery thread executes

all instructions (FSG-RA-all), or only the dependent instructions (FSG-RA-dep). The

purpose of “running ahead” is to avoid the structural blockage caused by the cache miss

and touch as many future cache misses as possible. Because theblocking load is discarded

from the pipeline, during the L2 miss the main thread can run far ahead in the program path

with a partially correct state to generate useful data cacheprefetches. In case ofFSG-RA-

all, forking the recovery thread simultaneously with the switching to the runahead mode

allows it to start with the same state as the main thread and follow it from behind. Instead

of waiting for the L2-miss to be serviced, this early start allows the recovery thread to fill in

the pipelines and execute all miss-independent instructions until its reorder buffer becomes

full. Once the cache miss completes, the recovery thread rapidly repairs the state on an

individual location basis. The timeline for this mode of operation is similar to the DCE

proposal [60] during arunahead, but unlike DCE, instructions are not executed twice all the

time. In the next section, we outline the fine-grain state maintenance that we implemented

which is applicable to both models of FSG-RA.

7.3 State Maintenance

TheIdentification Propertyof FSP requires that the machine has the capability to classify

individual locations with respect to the processor state. The fine-grain processor state is

maintained for both threads by incorporating a set ofINV bits with each physical register.

Similarly, the rename map tables also incorporate a set ofINV bits and a set of counters

CHAPTER 7. FINE-GRAIN STATE GUIDED RUNAHEAD EXECUTION 106

(CNT) as shown in Figure7.3. TheINV bits serve the purpose of distinguishing the miss-

dependent and miss-independent values and each store-queue entry also accommodates

these bits. Note thatINV bits are first set by the missing loads and then propagated by

instructions which source those registers.

An instruction is ready to be issued if its operands are readyor the correspondingINV

bits are set. A store instruction becomes a no operation (NOP) if its address is miss-data

dependent. If its address is valid but the data to be written is invalid, the corresponding

entry in the store queue is also marked asINV. Branch instructions which reference an

invalid operand are not resolved and do not raise mis-predictions. Since the main thread is

running speculatively, the store instructions with the valid address do not write values into

the data cache. To prevent subsequent loads from getting stale values from the data cache,

FSG-RA also incorporates a 4KBrunahead cache[37]. Address-valid store instructions

write their values withINV-bits into the runahead cache. Load instructions access thestore

buffer, the runahead cache, and the data cache simultaneously.

Attached counters on rename map table entries are used to track the fine-grain processor

state between the two halves. During the runahead mode, the main thread increments the

corresponding counter as each register definition is encountered. Similarly, the recovery

thread increments its own counters as each definition is encountered. When the two

counters are equal, all the definitions of a particular register name have been seen, and

the processor state with respect to that register is consistent. At this point, the recovery

thread either needs to verify the value, or repair it, depending on the setting of theINV bit

CHAPTER 7. FINE-GRAIN STATE GUIDED RUNAHEAD EXECUTION 107

on the main thread’s RMAP entry (Correction Property). Shown in Figure7.3, the logical

registerR7 needs to be repaired andR9 needs to be verified.

Pa Px

Pb Py ?

=?

...

...

Pa

Pb

Px

Py

−

−

−

INV

...

...

R7

R9

=?
#retired−insts #retired−insts

<−−

!=

Main thread

INV

Recovery thread

verify

repair

mismatch

register

catch−up

5

CNTPhy Tag

RMAP

5

8

CNT Phy Tag

RMAP

1

0

INV

R9

R7

8

catch−up
global

Figure 7.3. Fine grain state recovery

Instructions retire in-order as usual to maintain the execution. The in-order state of

the main thread, though speculative, is presented in the in-order map table, RMAP [20].

All INV andCNT fields are reset at the beginning of runahead mode. When a producer

instruction retires, it updates the RMAP as usual. TheINV bit of its physical destination

register is copied to the RMAP, and theCNT is incremented by one. When theINV bit of

the RMAP in the main thread is set, it indicates the value is miss-dependent and it needs to

be repaired. The correct value is copied from therecovery thread’s renamed register to the

main thread’s renamed register:Pa← Px. Such a repair permits the main thread to use the

correct value of the register in its future references during the recovery.

CHAPTER 7. FINE-GRAIN STATE GUIDED RUNAHEAD EXECUTION 108

When theINV bit of an RMAP entry in the main thread is not set, it indicates the

value is miss-independent. However, as previously discussed, we still need to verify its

value because the main thread might have computed the wrong value because of load/store

communication through the memory. For example, if a store instruction is dependent on the

value of therunahead triggerto compute its address, and a subsequent miss-independent

load references the same location, it will acquire the stalevalue from the data cache, and the

correspondingINV bit won’t be set. In this case, therecovery threaddetects the mismatch

and signals a validation failure ifPb 6= Py, resulting in the main thread to be stopped.

Although one could detect that the state recovery is complete with respect to the register

values when all the counters on both halves become equal, this approach won’t detect

the proper memory state. Therefore, in the case ofFSG-RA-all, in addition to the above

mechanisms, we incorporate two global counters on each sideof the SMT. These count

the number of retired instructions from the main thread and the recovery thread under the

runahead mode and the recovery mode, respectively. These counters are initialized to zero

when one EE enters the runahead mode and the other is put into the recovery mode. When

the two global retired-instruction counters become equal,the recovery thread has caught

the main thread and the recovery process is complete. Detection and correct handling of

the memory state in case ofFSG-RA-depis more involved and is elaborated in Section7.7.

7.4 Termination of Runahead Mode

The use of two threads to maintain the runahead execution gives excellent control over

the runahead mode. Specifically, runahead mode can be held until it is detected that it is

CHAPTER 7. FINE-GRAIN STATE GUIDED RUNAHEAD EXECUTION 109

not providing benefits and can also be exited upon appropriate state recovery, or when it is

detected that the runahead mode is not providing benefits. There are three conditions under

which the runahead execution is terminated: (1) The normal completion of the recovery

after an L2 miss; (2) Detection of useless runahead; and (3) Detection of a control or data

mis-speculation.

Upon normal completion, the main thread is ahead of the recovery thread, possibly has

touched a few more useful misses, and the recovery thread hasa known state with respect to

the initial cache miss. Even though this mode could continue, there is little benefit in dual

execution and the main thread is stopped. The recovery thread becomes the main thread

and resumes normal mode. The EE running the old main thread isavailable to improve

multi-thread performance, or to be used as the next recoveryengine.

i n t
l i s t _ l e n g t h (t)
{

r e g i s t e r t r e e t a i l ;
r e g i s t e r i n t l e n = 0 ;

f o r (t a i l = t ; t a i l ; t a i l = TREE_CHAIN(t a i l))
l e n ++;

re turn l e n ;
}

Listing 7.1. list_length in 176.gcc

When the trigger load is the head of a chain of pointers, runahead execution cannot

generate useful prefetches. An interesting example is a C function of 176.gccin SPEC

CINT2000 suite. Shown in Listing7.1, the list_length function returns the length of a node

CHAPTER 7. FINE-GRAIN STATE GUIDED RUNAHEAD EXECUTION 110

chain via TREE_CHAIN. This pointer-chasing of the loop alwaysbrings an L2-miss if the

root node loading is an L2-miss. As a result, a conventional runahead processor enters the

runahead mode for each loop iteration. However, no useful work can be found with running

ahead.

In order to optimize the runahead behavior we have implemented a mechanism to detect

such useless runahead. For this purpose, we associate a single issue-bitwith each load

instruction in the main thread under the runahead mode. If a load instruction is valid and

issued into the data cache then its issue-bit is set. Otherwise, the issue-bit is reset. This

issue-bit is fed to the recovery thread together with the instruction into the ISQ. Under

the recovery mode, the recovery thread can tell a cache miss is a pointer-chasing miss if

its issue-bit is zero. It indicates that it is dependent on the original runahead trigger miss

and it was not issued in the main thread. In order to stop the runahead mode properly, we

stop pseudo retirement in the main thread and let the recovery thread catch on the main

thread with respect to the damaged state. When pseudo-retirement is stopped in the main

thread, the thread is said to be in theblocking mode. Once the recovery is complete, we

allow the main thread to continue normally, instead of allowing the recovery thread to

continue as the main thread. This is because the main thread will be further ahead in the

execution sequence than the recovery thread once its damaged state is repaired. Note that

this technique effectively utilizes useful instructions executed during the recovery process

without special micro-architecture mechanisms. Thus the latency of the recovery process

is effectively hidden by the useful executions in the main thread, improving the ILP.

CHAPTER 7. FINE-GRAIN STATE GUIDED RUNAHEAD EXECUTION 111

The outlined mechanisms provide easy detection and handling of control and data mis-

speculations. Naturally, a branch mis-prediction by the runahead engine goes undetected

when the branch instruction is load-miss dependent. In addition, when there is a

dependence through memory whereINV bits cannot be propagated, the main thread may

be computing an incorrect value. Both of these cases are easily detected by the recovery

thread. In case of a branch mis-prediction, the branch instruction is at the head of the ROB

of the recovery thread; in case of a load value mis-speculation, the load instruction is at the

head of the ROB of the recovery thread. Upon detection of the mis-speculation, the main

thread is stopped and the EE is released. The recovery threadenters the normal mode of

operation with the correct target (or from the load instruction with the correct value) and

the execution is resumed.

7.5 Thread Memory Dependencies

For intra-thread memory dependencies, FSG-RA utilizes the store set [11] algorithm to

predict the memory dependencies in the usual way: When a load instruction is decoded, it

accesses the Store Set Identifier Table (SSIT) based on its PCand gets its store set identifier

(SSID). If it has a valid SSID, it accesses the Last Fetched Store Table (LFST) and gets

the ROB index of the most recently fetched store instructionon which it depends. If a

dependence is predicted between a load and a previous store instruction belonging to the

same thread, it is blocked until the dependent store instruction issues.

Handling of inter-thread dependencies requires an extension to the algorithm. Under

the blocking mode, a load instruction executed by the main thread may be dependent on a

CHAPTER 7. FINE-GRAIN STATE GUIDED RUNAHEAD EXECUTION 112

store instruction that will be issued by the recovery threadand it has to wait until that store

is issued. Unfortunately, it is very difficult for a load instruction in the main thread to be

aware of its dependence in the recovery thread. Even if the main thread’s load instruction is

allowed to access the recovery thread’s LFST, it will not always get the correct information

since it is quite possible the store instruction has not yet been fetched into the recovery

thread’s pipeline when the load instruction is decoded in the main thread.

Our solution extends the algorithm by sharing the SSIT tablebetween the two threads

and incorporating private LFSTs for each engine. We also include a new table called Store

Set Counter Table (SSCT). The SSCT counts the number of pseudo-retired stores for each

live store set in the main thread under the runahead mode. Whena store in the main

thread is pseudo-retired, the corresponding counter entryin the SSCT is incremented by

one if it has a valid SSID. Note that all pseudo-retired instructions from the main thread

are fetched and re-executed by the recovery thread. Thus, under the blocking mode, loads

in the main thread can be aware of the memory dependence information in the recovery

thread by accessing the SSCT, even before those stores belonging to the store sets appear

in the pipeline. This algorithm is depicted in Figure7.4.

Under the blocking mode, when a load is decoded in the main thread, it accesses the

LFST and the SSCT in parallel, if it belongs to a store set. The LFST and the SSCT

together provide the accurate dependence prediction for the load. There are three cases for

LFST and SSCT values:

LFST= 0,SSCT= 0: There is no intra-thread or inter-thread dependence. Theload is

CHAPTER 7. FINE-GRAIN STATE GUIDED RUNAHEAD EXECUTION 113

WLQ

ld

Load Queue

ld

0

3

SSCT

ROB Index

LFST

ROB Index

LFST

ld

SILQcase 1 & 2

Store
SSID

Load

Main thread Recovery thread

case 3
<addr, data>

<SSID, addr, data>

SSID

Figure 7.4. Memory Ordering in FSG-RA

inserted into the main thread’s load queue and it is issued when it becomes ready.

LFST> 0,SSCT= 0or SSCT> 0: There exists an intra-thread dependence. LFST holds

the ROB index of the most recently fetched store instructionin the main thread on which the

load depends. Since it is dependent on a store in the main thread, the load is inserted into the

main thread’s load queue and it is issued after that store is issued regardless of whether an

inter-thread dependence exits in the recovery thread. The intra-thread dependence overrides

the inter-thread dependence.

LFST= 0,SSCT> 0: The store set predicts that this load is not dependent on any store

in the main thread, but it depends on some stores in the recovery thread. The load is inserted

into a Waiting Load Queue (WLQ) where it waits until the lateststore in the same store

set commits the value to the data cache in the recovery thread. Each entry in the WLQ

contains the load’s address and SSID. It is implemented as a CAM structure which can be

CHAPTER 7. FINE-GRAIN STATE GUIDED RUNAHEAD EXECUTION 114

associatively searched using the SSID as the key.

After the L2 cache miss which triggered the runahead execution is completed, the

recovery thread can move forward. In the recovery thread, once a store instruction is retired,

it commits its result into the data cache. Meanwhile, it decrements the counter in the SSCT

if it has a valid SSID. If the counter becomes zero, it indicates it is the last store instruction

in this store set. Then it sends the< SSID,address,data> into the WLQ to forward the

data to those loads belonging to the same store set. The SSID is used to associatively search

the WLQ, if there is a match and both addresses are the same, thestore’s data is forwarded

to that load. If there is a match but their addresses are different, then it indicates that load

is not dependent on the store. It is then removed from the WLQ and inserted back into

the load queue of the main thread. This technique effectively provides load forwarding

between the two threads as well as reducing the load-queue pressure during the blocking

mode.

7.6 Detecting Memory Order Violations

The intra-thread memory violations are handled locally in the main thread and the

recovery thread as usual. When a store instruction is issued,the local load queue CAM

is associatively searched with its address. If there is a matching load that is incorrectly

speculatively issued prior to the store instruction, it is marked as a mis-speculation.

In order to detect the inter-thread violations between two threads, FSG-RA maintains

a load queue called the Speculative Inter-thread Load Queue(SILQ). Under the blocking

mode, when a load instruction is issued in the main thread, itis put into the SILQ if it

CHAPTER 7. FINE-GRAIN STATE GUIDED RUNAHEAD EXECUTION 115

gets the value from the data cache or the forwarding data fromthe committing stores of

the recovery thread. Note that the load is not put into the SILQ if it gets the forwarding

data from the store queue of the main thread. This is the second type of case where the

intra-thread dependence overrides the inter-thread dependence. When a store instruction is

retired in the recovery thread, it associatively searches the SILQ with its address. If there

is a match and their values are not equal, then the mis-speculation flag of the matching

load is set. If there is a match and their values are equal, then the mis-speculation flag

is reset if it has been set. This value-based violation detection algorithm is adopted from

[39]. Note that this detection process can only set/reset the inter-thread violation flag. If

a load instruction in the main thread is issued out-of-orderbefore a previous store which

is also in the main thread and writes to the same address, it ismarked as an intra-thread

mis-speculation locally and is not reset by the SILQ detection process.

If a memory ordering violation is detected, the thread’s state needs to be restored. FSG-

RA utilizes the conventional state recovery method to handlethe memory mis-speculation

exceptions. Since load mis-speculations do not change the dynamic program path, they

can be handled locally. When a load instruction reaches the head of the reorder buffer, the

recovery process is invoked if its mis-speculation flag is set. The thread’s state is restored

by copying the retirement map table to the front-end map table, and the thread restarts

from the mis-speculated load instruction. This multi-thread memory ordering algorithm

significantly reduces the number of memory order violationsfor a set of benchmarks

(Figures7.5(a)and7.5(b)).

CHAPTER 7. FINE-GRAIN STATE GUIDED RUNAHEAD EXECUTION 116

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

18
1.

m
cf

18
6.

cr
af

ty
19

7.
pa

rs
er

25
3.

pe
rlb

m
k

25
6.

bz
ip

2
30

0.
tw

ol
f

1000

10000

100000
T

he
 N

um
be

r
of

 L
oa

d
M

is
sp

ec
ul

at
io

ns

w/t MT Store Set
w/o MT Store Set

(a) CINT2000

17
1.

sw
im

17
2.

m
gr

id

17
3.

ap
pl

u

17
7.

m
es

a

17
9.

ar
t

18
3.

eq
ua

ke
18

8.
am

m
p

30
1.

ap
si

100

1000

10000

T
he

 N
um

be
r

of
 L

oa
d

M
is

sp
ec

ul
at

io
ns

w/t MT Store Set
w/o MT Store Set

(b) CFP2000

Figure 7.5. Mis-speculations Enhanced Store Set Algorithm

CHAPTER 7. FINE-GRAIN STATE GUIDED RUNAHEAD EXECUTION 117

7.7 Re-Executing Only Dependent Instructions

We refer to the presented design where the recovery thread simply re-executes all

pseudo-retired instructions from the main thread asFSG-RA-all. An alternative is to

re-execute only miss-dependent instructions which we refer to as FSG-RA-dep. This

policy effectively increases the efficiency of FSG-RA at the cost of increased hardware

complexity. In FSG-RA-dep, the main thread drains only the miss-dependent instructions

into the ISQ during the runahead mode. Obviously, each such instruction has at least one

operand that is dependent on the runahead trigger. As previously discussed, the value of

the independent operand must also be buffered in the corresponding entry and all memory

operations need to be re-executed by the recovery thread. Revisiting these reasons, it

is important to remember that store instructions only speculatively commit their values

into the runahead cache, and they should commit into the cache/memory by the recovery

thread in the precise program order. Moreover, it is possible that a miss-independent load

instruction in the main thread may get a stale value from the memory during the runahead

mode. Therefore the recovery thread needs to verify all miss-independent load instructions

to detect such errors. Despite these complications, as it will be shown in the experimental

section, theFSG-RA-depdesign is quite favorable since it greatly boosts the performance

with a manageable increase in complexity.

Recall that the recovery thread in FSG-RA-all is able to maintain a correct state at any

point because it re-executes all instructions. However, inFSG-RA-dep, the recovery thread

may not have a correct state when it finishes the validation because it will have correct

CHAPTER 7. FINE-GRAIN STATE GUIDED RUNAHEAD EXECUTION 118

miss-dependent state, but not necessarily a correct miss-independent state.

I1

I3

I4

I1

I2 R3 = R1 + R2

I5

I1I3I4I6. . .

I6 sw R4, 16($fp) I6 sw R3, 16($fp)

I3 R10 = R7 − R5000...0100

255

CHK

I4 bne R10, $L120E:

ld R7, 0($fp)

bne R10, $L120

ld R7, 0($fp)

Main Thread

ru
na

he
ad

 m
od

e

R4 = R4 − 1

ISQ

Handle

Recovery Thread

re
co

ve
ry

 m
od

e

R10 = R7 − R5

Figure 7.6. Example of FSG-RA-dep

Consider the example shown in Figure7.6. Suppose the load instructionI1 triggers the

runahead execution.I3 and I4 are dependent on the trigger and instructionsI2, I5 and I6

are not. When they are pseudo-retired one by one from the main thread,I1, I3, I4 andI6 (it

is a memory operation) are drained into the ISQ. BranchI4 cannot be resolved because it

is miss-dependent. When the recovery thread fetches these instructions from the ISQ and

re-executes them after the L2-miss ofI1 in the main thread is serviced,I1 in the recovery

thread can get the data from the cache/memory, and the recovery thread can move forward

to repair the state. Branch instructionI4 might have been mis-predicted by the main thread

and the main thread may be running along the wrong path. Unfortunately, at this point

neither the recovery thread nor the main thread has the correct state atI4.

To address this issue, FSG-RA-dep combines acheckpoint[21] scheme to repair the

register state and a history buffer to repair the memory state. Both of these techniques are

employed as differential techniques and using these techniques FSG-RA-dep is capable of

CHAPTER 7. FINE-GRAIN STATE GUIDED RUNAHEAD EXECUTION 119

salvaging the independent work that has already been done inthe main thread.

7.7.1 Handling the Register State

To handle the register state, the main thread creates the checkpoints of the miss-

independent register state at instructions referred to ashandleinstructions. Suppose that

the main thread creates a checkpoint atI4. It contains the destination result ofI2 for the

miss-independent registerR3. When the recovery thread retires the same instructionI4, it

reads the checkpoint and writes the value into the in-order renaming register ofR3. Thus,

the recovery thread maintains a correct state atI4. If an exception occurs, it can restart the

execution from this point with a correct state.

Handle_1

Handle_2

Handle_3

Handle_4

1

2

3

4

Main Thread (runahead mode)

3

4

1

2

Recovery Thread (recovery mode)

Handle_1

Handle_2

Handle_3

Handle_4

RFDL

Figure 7.7. Multiple Handles

FSG-RA-dep implements the checkpoints using the differencetechnique introduced in

[21]. Each checkpoint buffers the difference of the miss-independent register state from

one handle to another. A register mask is used to record whichmiss-independent registers

CHAPTER 7. FINE-GRAIN STATE GUIDED RUNAHEAD EXECUTION 120

are defined between two handles. In the above example, whenI2 is pseudo-retired, the

corresponding bit of the mask is set. Later, if the main thread creates the first handle atI4

when it retires, then the current register mask is inserted into the checkpoint. It indicates

that R3 is miss-independent, has the difference value fromI1 to I4, and provides the in-

order state value ofR3. The main thread creates multiple handles on its pseudo-retired

instruction stream such that each forward differenceδ between the two successive handles

is inserted into a list in the program order. We refer to this FIFO list as the Register Forward

Difference List (RFDL), shown in Figure7.7,

Since the overhead of creating a handle at each instruction would be prohibitively high,

FSG-RA-dep creates handles only at branch instructions. With this scheme, when an

exception happens and the current point is not a handle, the execution is restarted at the

previous handle. Unfortunately, there may be committed memory operations between the

current point and the most recent handle. As a result, rolling back will not only discard

some useful work, but the memory state will not be correct. Inorder to maintain the correct

memory state, we employ the history buffer technique for memory operations.

7.7.2 Handling the Memory State

Similar to the miss-independent register state, the memorystate can be repaired by

using the difference technique. Before a store instruction is retired and committed into

the cache/memory, the data in that location is read and inserted into aHistory List. When

a handle instruction is retired, the history list is flushed.Thus, the history list always

keeps the backward difference of the memory state from the latest retired handle point

CHAPTER 7. FINE-GRAIN STATE GUIDED RUNAHEAD EXECUTION 121

to the current retirement point. If the recovery thread needs to roll back to the most

recently retired handle point, the history list is used to restore the memory state. The

history data saved in the list are stored back to undo all modifications to the memory

introduced by the wrong speculative state. Thereby the in-order state of the memory at

the latest retired handle is repaired. Note that the alternative to using a history-difference

is to buffer the store instructions in the recovery thread until a handle is received without

an exception. This alternative is more suitable when FSG-RA is employed in a multi-

processor environment. It would require snooping by the main-thread into the store buffer

kept for this purpose in the recovery thread.

It is also possible to extend the History List based algorithm to a multi-processor

environment. In a multi-processor setting, the fact that a commit is speculative must be

communicated to other processors, a problem which is similar to Thread Level Speculation

(TLS) [17, 45]. We leave this to future work.

7.8 Experimental Evaluation

We evaluated and compared four machine models: the Baseline model, the Runahead

CSP model, and the two FSG-RA FSP models. We kept the above four models identical in

all aspects except the L2-miss latency tolerance scheme. Two EEs in FSG-RA are based

on the baseline mode’s configuration. Each has its own physical register file and internal

queues. They share the functional units and the cache/memory system. We model a one-

cycle delay when copying a register value between the two threads. The parameters of

machine models are shown in Table7.1.

CHAPTER 7. FINE-GRAIN STATE GUIDED RUNAHEAD EXECUTION 122

Parameter Configuration
Issue/Fetch/Retire width 8/8/8
Scheduling window size 64
Reorder buffer size 128
Load/Store queue size 128
WLQ size 128
SILQ size 128
Register file entries 256
Functional units Issue width Symmetric
Branch predictor 16K-bit gshare, 32K-entry BTB
ISQ size 1K-entry
Memory disambiguation Store set
Runahead cache 4KB, 4-way, 8B/line, LRU
Split Data cache L1: 32KB, 2-way, 64B/line,

2-cycles, LRU, 4-port, 128 MSHRs
L2: 512KB, 4-way, 64B/line,

10-cycles, LRU, 1-port, 128 MSHRs
Memory 220 CPU cycles

Table 7.1. Machine’s configurations

7.8.1 Performance Results

The normalized execution time for each program in the benchmark suite for each model

is shown in Figures7.8(a)and7.8(b). The average bar shows the average of the normalized

execution time, which is calculated as the arithmetic mean of each benchmark’s normalized

execution time. All evaluated machines achieve significantperformance improvement over

the baseline model and both FSG-RA models outperform the Runahead model across all

CINT2000 and CFP2000 benchmarks.

The speedup for each benchmark is calculated from its normalized execution time shown

in Figures7.8(a)and7.8(b). The average bar shows the mean of all individual speedups.

Figures7.9(a)and7.9(b)illustrate the percent speedup over the baseline model. As it can

CHAPTER 7. FINE-GRAIN STATE GUIDED RUNAHEAD EXECUTION 123

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

18
1.

m
cf

18
6.

cr
af

ty
19

7.
pa

rs
er

25
3.

pe
rlb

m
k

25
6.

bz
ip

2
30

0.
tw

ol
f

Ave
ra

ge

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

Baseline
Runahead
FSG-RA-all
FSG-RA-dep

(a) CINT2000

17
1.

sw
im

17
2.

m
gr

id
17

3.
ap

pl
u

17
7.

m
es

a
17

9.
ar

t
18

3.
eq

ua
ke

18
8.

am
m

p
30

1.
ap

si

Ave
ra

ge

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

Baseline
Runahead
FSG-RA-all
FSG-RA-dep

(b) CFP2000

Figure 7.8. Performance of 4 Models

CHAPTER 7. FINE-GRAIN STATE GUIDED RUNAHEAD EXECUTION 124

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

18
1.

m
cf

18
6.

cr
af

ty
19

7.
pa

rs
er

25
3.

pe
rlb

m
k

25
6.

bz
ip

2
30

0.
tw

ol
f

Ave
ra

ge

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S
pe

ed
up

 o
ve

r
B

as
el

in
e

Runahead
FSG-RA-all
FSG-RA-dep

(a) CINT2000

17
1.

sw
im

17
2.

m
gr

id
17

3.
ap

pl
u

17
7.

m
es

a
17

9.
ar

t
18

3.
eq

ua
ke

18
8.

am
m

p
30

1.
ap

si

Ave
ra

ge

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S
pe

ed
up

 o
ve

r
B

as
el

in
e

Runahead
FSG-RA-all
FSG-RA-dep

(b) CFP2000

Figure 7.9. ∆ Performance

CHAPTER 7. FINE-GRAIN STATE GUIDED RUNAHEAD EXECUTION 125

be seen from Figure7.9(a)the three models obtain limited performance improvement for

the integer benchmarks. The Runahead model achieves a 2.6% average speedup while the

FSG-RA-all and the FSG-RA-dep obtain 4.6% and 5.5%, respectively. An exception is on

181.mcf, where the cache miss rate is relatively high. The three models outperform the

baseline model on 181.mcf by 21.3%, 25.2% and 25.2%, respectively.

For floating point benchmarks (Figure7.9(b)), the Runahead model obtains an average

speedup of 21.4% and up to 87.3% (171.swim). Meanwhile, the FSG-RA-all model

achieves a speedup over the baseline model on CFP2000 by an average of 31.1% with

a maximum improvement of 135.6% on 171.swim. Since FSG-RA-dep model re-executes

only miss-dependent instructions to recover the state, FSG-RA-dep gains an average

speedup of 38.9% on CFP2000 and up to 160.0% (171.swim). Multi-threaded store set

algorithm is very effective in terms of performance gains for applu and equake, boosting

performance by 6-8 % compared to a FSG-RA-dep without the multi-threaded store set

algorithm.

Figure 7.9(a) also shows that the three models do not achieve any improvement for

certain benchmarks such as 253.perlbmk and 300.twolf because of few L2 misses. The

Runahead model degrades performance for the benchmarks 175.vpr and 197.parser. The

degradation is a result of short runahead periods [36].

7.8.2 Efficiency of FSG-RA

Both runahead execution and FSG-RA execute more instructionsthan the baseline

processor. Using a recent analysis method [36], we evaluated the efficiency of FSG-RA

C
H

A
P

T
E

R
7.

F
IN

E
-G

R
A

IN
S

TAT
E

G
U

ID
E

D
R

U
N

A
H

E
A

D
E

X
E

C
U

T
IO

N
126

164.gzip
175.vpr
176.gcc

181.m
cf

186.crafty197.parser253.perlbm
k256.bzip2

300.twolf

Average

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Increase in Executed Instructions over Baseline
R

unahead
F

S
G

-R
A

-all
F

S
G

-R
A

-dep

(a)
C

IN
T

2000

171.swim
172.m

grid
173.applu
177.m

esa
179.art

183.equake188.am
m

p
301.apsi

Average

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

Increase in Executed Instructions over Baseline

R
unahead

F
S

G
-R

A
-all

F
S

G
-R

A
-dep

(b)
C

F
P

2000

F
igure

7.10.∆
N

um
ber

ofInstructions

CHAPTER 7. FINE-GRAIN STATE GUIDED RUNAHEAD EXECUTION 127

algorithms. Following the definition ofEfficiencyin [36] given by:

E f f iciency=
Percent Increase In Per f ormance

Percent Increase In Executed Instructions
=

∆ Per f ormance
∆ Instructions

(7.1)

Note that, this is only an indirect measure of the dynamic power consumption of the

processor. Given the additional structures that makes an SMT, there will be non-negligible

increase in the static power consumption compared to a uni-processor. However, since we

use an idle thread to speed-up a single-threaded program, webelieve a fair comparison

should be between an SMT that employs pure runahead and one that employs FSG-RA.

Figure 7.10(a) and Figure7.10(b) show the increase in the number of executed

instructions for the three models over the baseline model. As it can be seen from the figure,

on an average, the Runahead model executes 35.8% more instructions than the Baseline

model on CFP2000 and it achieves a 21.4% speedup. Meanwhile, FSG-RA-all model

increases the number of executed instructions by an averageof 40.6% in order to obtain the

speedup of 31.1% on CFP2000. The FSG-RA-all model outperformsthe Runahead model

at the cost of executing 4.8% more instructions.

The FSG-RA-dep model, reduces the number of executed instructions over the Runahead

model across all floating point benchmarks and outperforms it (Figure7.10(b)). It executes

25.9% more instructions than the Baseline model.

Efficienciesof three models are listed in Table7.2 and Table7.3. On an average, the

FSG-RA-dep model obtains the efficiencies of 0.84 and 3.0 in CINT2000 and CFP2000,

CHAPTER 7. FINE-GRAIN STATE GUIDED RUNAHEAD EXECUTION 128

respectively. Meanwhile, the Runahead model achieves only 0.39 and 1.47, respectively.

Shown in the table, the efficiencies of the FSG-RA-all model are also higher than that of

the Runahead model. This is because the FSG-RA-all model has much better performance

than the Runahead model.

164.gzip 175.vpr 176.gcc 181.mcf 186.crafty
Runahead 1.52 -0.56 0.16 1.53 0.24

FSG-RA-all 1.39 -0.33 0.34 1.47 0.35
FSG-RA-dep 2.54 -0.35 0.61 1.57 1.03

197.parser 253.perlbmk 256.bzip2 300.twolf Average
Runahead -0.12 0.30 0.00 0.47 0.39

FSG-RA-all 0.10 0.49 0.20 0.73 0.53
FSG-RA-dep 0.11 0.57 0.35 1.15 0.84

Table 7.2. SPEC CINT2000 Efficiencies

171.swim 172.mgrid 173.applu 177.mesa
Runahead 1.32 0.10 0.15 0.11

FSG-RA-all 1.91 0.27 0.18 0.67
FSG-RA-dep 4.60 0.67 0.64 3.88

179.art 183.equake 188.ammp 301.apsi Average
Runahead 0.54 0.52 7.60 1.39 1.47

FSG-RA-all 0.62 0.74 6.98 2.04 1.67
FSG-RA-dep 0.84 1.80 7.51 4.08 3.00

Table 7.3. SPEC CFP2000 Efficiencies

7.8.3 Effect of Branches

By allowing the recovery thread to verify and repair the statewhile the main thread

continues the execution, FSG-RA can fully utilize the multi-threading computing power

for the uni-thread programs in the presence of a long L2-miss. However, it is possible

CHAPTER 7. FINE-GRAIN STATE GUIDED RUNAHEAD EXECUTION 129

that the main thread is running on the wrong path because somebranch instructions are

dependent on the missing L2 data and cannot be resolved. If the main thread is on the

wrong path, the data cache will be polluted and no useful miss-independent instructions

will be executed. As discussed in Section7.4, , if the recovery thread detects that the main

thread is on the wrong path, FSG-RA will stop the main thread before the recovery thread’s

state catches up with the main thread’s state.

Table7.4and Table7.5show the collected data of branch instructions under the runahead

execution in the FSG-RA-all model. The first row shows the number of branch instructions

per 1000 pseudo-retired instructions. The second row showsthe percentage of these branch

instructions which are dependent on the original L2 miss data. The higher this number, the

more likely that the main thread will follow the wrong path. The last row of the table

indicates the percentage of killed main threads due to the branch mis-predictions.

171.swim 172.mgrid 173.applu 177.mesa
BR/1K pseudo-retired 10.7 14.0 43.4 190.1

% miss-dependent 0.1% 1.5% 0.2% 3.8%
% main thread killed
due to branch-misp. 29.3% 43.2% 2.3% 100.0%

179.art 183.equake 188.ammp 301.apsi average
BR/1K pseudo-retired 127.1 80.7 199.1 61.4 34.0

% miss-dependent 15.1% 2.0% 15.6% 3.9% 0.3%
% main thread killed
due to branch-misp. 59.2% 14.6% 97.5% 62.2% 13.1%

Table 7.4. CFP2000 Branch statistics in FSG-RA-all

As it can be seen from Table7.4, on an average, there are 34.0 branches in every 1000

pseudo-retired instructions on CFP2000 benchmarks. Moreover, only 0.3% of them are

CHAPTER 7. FINE-GRAIN STATE GUIDED RUNAHEAD EXECUTION 130

164.gzip 175.vpr 176.gcc 181.mcf 186.crafty
BR/1K pseudo-retired 46.0 174.9 162.1 233.8 113.5

% miss-dependent 6.0% 21.7% 5.4% 48.0% 6.9%
% main thread killed
due to branch-misp. 94.4% 97.8% 51.7% 87.5% 48.5%

197.parser 253.perlbmk 256.bzip2 300.twolf average
BR/1K pseudo-retired 235.9 145.6 95.7 144.0 119.6

% miss-dependent 57.2% 18.0% 22.6% 22.5% 12.4%
% main thread killed
due to branch-misp. 98.8% 95.8% 73.9% 92.5% 76.9%

Table 7.5. CINT2000 Branch statistics in FSG-RA-all

dependent on the runahead trigger load’s data. It is highly possible that the main thread can

stay on the correct program path. Accordingly, under the two-thread running mode, on an

average, only 13.1% main thread executions are stopped prematurely since the recovery

thread detects a branch mis-prediction. On the other hand, it is relatively difficult for

FSG-RA to keep the main thread running on the correct path on CINT2000 benchmarks,

since there are 119.6 branches in every 1000 pseudo-retiredinstructions and 12.4% of them

are miss-dependent. Shown in Table7.5, 76.9% main thread executions are killed due to

mis-predictions of miss-dependent branches. Mis-predicted branches which depend on the

missing load is a main factor for terminating the runahead mode.

7.9 Related Work

Karkhanis and Smith [25] showed that the structural blockages due to a full ROB are

the major reason behind performance loss with cache misses.If the structural resources

are available, the processor can continuously issue instructions and overlap even very

long cache miss latencies. However, they also concluded that mis-predicted branches

CHAPTER 7. FINE-GRAIN STATE GUIDED RUNAHEAD EXECUTION 131

which depend on the missing load will inhibit performance insome cases because useful

instruction issue stops immediately after the mis-predicted branch. Our work supports their

observations and analyses.

Zhou proposed the dual-core execution (DCE) micro-architecture [60]. The front

processor always runs far ahead to warm up the data cache. It commits a branch-fixed

instruction stream to the back processor. In the term of processor states, the back processor

is responsible for correcting the state of the missing load and its dependent instructions.

However, in DCE, all instructions are executed twice, once bythe front processor and once

the back-end processor. SinceFSG-RA only re-executes instructions when the main thread

is under the runahead mode, there are significant power/energy differences between the

two approaches.

Srinivasanet al. proposed the continual flow pipelines (CFP) [51]. Unlike CFP which

employs asequential recoverymethod and utilizes very large hierarchical load and store

queues to buffer all in-flight load and store instructions, FSG-RA needs small load/store

queues and forks a second thread to verify and maintain the processor state. FSG-RA is a

fully parallel recovery FSP model.

The SlipStream paradigm [53, 42] uses the A-stream to reduce the length of a running

program by dynamically skipping ineffective instructions. The R-stream uses the A-

stream’s outcomes only as predictions. FSG-RA utilizes multiple threads only when L2

misses occur.

CHAPTER 7. FINE-GRAIN STATE GUIDED RUNAHEAD EXECUTION 132

7.10 Summary of FSG-RA

We have presented an exploration of fine-grain state processor. Our results indicate that

by allowing a processor to continue execution with a partially correct state and repairing

the state in parallel by using a second thread may prove valuable in addressing the speed

gap between the memory and the high-performance processorsof today.

133

Chapter 8

Conclusion

Processor states can be manipulated either at the coarse-grain level or at the fine-grain level.

If appropriate mechanisms have been implemented to answer queries regarding the current

state of data values at a finer granularity level, it is possible to salvage part of the work

done during speculative execution after a mis-speculation, or to recover only the part of

the state that has been damaged without a roll-back. Conventional fine-grain state guided

speculation recovery methods are ad-hoc and fail to explorethe full potential of fine-grain

processor state handling, namely the parallelism in speculation recovery. This dissertation

introduces the concept of FSP and provides a general FSP framework for handling the

processor state at a fine-grain level and lays the foundations of parallel speculation recovery.

Under this general framework, a processor can continue execution past a mis-speculation

resolution point before the state is fully recovered. In such an organization, newly fetched

instructions which access incorrect speculative values are blocked until the correct data

are restored; however, those instructions that access the correct values continue execution

while the recovery occurs. In parallel with the recovery, the processor is capable of moving

CHAPTER 8. CONCLUSION 134

forward seamlessly with a partially correct state. Thus, the long latency of mis-speculation

recovery is overlapped with useful execution.

Based on the proposed framework, this dissertation has explored applications of FSP

on a sophisticated uni-processor setting as well as a simplemulti-core/multi-threaded

organization. It has presented two detailed FSP models, EMRand FSG-RA, regarding

control speculation and value speculation, respectively.Both models have demonstrated

that the FSP technique handles processor states more efficiently and obtains much higher

performance than the traditional CSP mechanism does.

In next section, the contributions of this dissertation aresummarized, and the future

research directions are briefly discussed.

8.1 Dissertation Contributions

This dissertation has made the following contributions:

1. The concept ofFine-grain State Processors (FSP). FSP can utilize partially correct

processor state upon an exception, which cannot be seen and used byCoarse-grain

State Processors (CSP).

2. A taxonomy of fine-grain state processors. The taxonomy summarizes and catego-

rizes existing fine-grain state guided speculation recovery mechanisms.

3. A general FSP framework, including a novel concept of exploiting parallelism in

speculation recovery. This framework is made of the following properties:

• Identification property.

CHAPTER 8. CONCLUSION 135

• Block and shelve property.

• Correction property.

• Unblocking property.

• Parallelism-in-recovery property.

4. An FSP model for control speculation,Eager branch Misprediction (EMR). EMR

obtains an average performance speedup of 9.0% over the traditional RMAP on

CINT2000. Moreover, it achieves 99% of the performance obtained by an unlimited

checkpoint recovery method using only 4 checkpoints.

5. An FSP model for value speculation,Fine-grain State Guided Runahead execution

(FSG-RA)which investigates value speculation by using runahead execution. FSG-

RA improves the single-thread program’s performance by exploiting the parallelism

in the Runahead execution recovery in a multi-thread processor environment. FSG-

RA can obtain an average of 38.9% and up to 160.0% better performance than coarse-

grain baseline processor on the SPEC CFP2000 benchmark suite.

6. An extension of the store set algorithm to detect the inter-thread memory depen-

dences. This algorithm is applicable for not only the FSG-RA model, but also other

general multi-threaded processor models.

7. Implementation of a cycle-accurate and function-drivencache hierarchy simulator

usingADL and its integration into theFASTsimulation system.

CHAPTER 8. CONCLUSION 136

8.2 Future Directions for Research

This work has focused on a uni-processor configuration whichhas only a single core, and

the processor states are private to this core. Under such a uni-processor environment, EMR

and FSG-RA models have demonstrated that the FSP techniques can provide impressive

speed-ups without using difficult to scale processor elements. With the fine-grain state

concept, mis-speculation recovery essentially becomes free if there is enough independent

work to do for the processor.

In the near future, we believe more and more processor cores will be integrated into a

single die [3, 22]. In addition to increasing throughput, efficiently utilizing multi-threading

or multi-core resources will play a crucial role to achieve high performance and to reduce

the hardware complexity. Furthermore, aggressive speculation mechanisms become more

feasible than ever by using the FSP techniques developed in this dissertation. In the

following, future directions and possible extensions of the current FSP techniques are

briefly discussed:

Architectural State Memory

In Chapter7.7.2, FSG-RA-all model allows store instructions speculativelycommit their

values into the memory. Thus, the memory contains both in-order values and speculative

values. Also, FSG-RA-all utilizes aHistory List as the recovery method. Before a store

instruction is retired and committed into the memory, the data in that location is read and

inserted into a History List. If it needs to roll back to the most recently retired handle point,

CHAPTER 8. CONCLUSION 137

the history list is used to restore the in-order memory state.

This memory design is referred to asArchitectural State Memory (ASM). Under a uni-

processor environment, the ASM method works well using the History List as the recovery

method. However, under a multi-processor environment, a single uni-processor History

List is not enough. Assuming a centralized shared memory is used, processors need to

communicate with each other through the shared memory. When ASM is employed in such

a configuration, a speculative commit into the memory must beknown by other processors.

A simple way is to append a speculative bit with each memory line or even word to

indicate this memory line (word) is speculative or not. It isalso possible to extend the

History List based algorithm to a multi-processor environment. If a processor needs to

read the in-order value from a particular address, it needs to access ASM and the History

Lists of other processors simultaneously.

Fine-grain State Multi-core Processors

Once a practical micro-architecture mechanism of the multi-core version ASM is

designed, the concept of Fine-grain State Processors can beextended intoFine-grain State

Multi-core Processors (FSMP).

Like FSP, FSMP would have the ability to identify machine states on an individual value

basis. Each single core of an FSMP should be able to preciselyidentify the fine-grain

register state of its own, as well as the fine-grain shared memory state of the whole multi-

core processor. Therefore, the concept of fine-grain state can be utilized in the context of

not only the intra-core speculative executions but also theinter-core ones.

CHAPTER 8. CONCLUSION 138

For example, when a speculation is detected as a miss, the core executing the program

can continue running with a partially correct state, other idle cores can be used to

repair the state. Similar to FSG-RA, which can improve a single-thread program’s

performance by exploiting the parallelism in the Runahead execution recovery in a multi-

thread processor environment, such an FSMP model will be able to speed up a single-thread

program’s performance by exploiting the parallelism-in-recovery in a multi-core processor

configuration.

Thread Level Speculation

An attractive speculative execution technique utilized ina multi-core environment is

Thread Level Speculation (TLS). With more cores integrated into a single die, different TLS

methods [30, 18, 31, 12, 52, 32] have been proposed to utilize available hardware resources

to optimistically execute non-analyzable serial programsin parallel to boost performance.

With TLS, a sequential program is divided into tasks which can be executed in parallel

by different cores. There is one non-speculative main task which precedes all other

speculative tasks. If any inter-task dependence violationis detected, either control

dependence or data dependence, incorrect tasks need to squash and polluted processor

states need to be repaired. Utilizing traditional TLS techniques, coarse-grain state

multi-core processors have to squash tasks, repair states,and then re-execute tasks from

speculation point, sequentially. An improvement mechanism [45] would re-execute only

speculation dependent instructions, which is categorizedas Sequential Recovery fine-grain

state scheme introduced in Chapter4.2.1.

CHAPTER 8. CONCLUSION 139

In FSMP, each core would have the ability to precisely identify state at a single register

or a single memory location basis. Thus, an FSMP would be ableto apply the concept of

fine-grain state in the context of TLS. Once a dependence violation occurs, the main task

can continue execution, and can even fork new tasks with a partially correct processor state.

Only dependent instructions will be re-executed to restorethe correct state in parallel with

the main task.

Dual Path Branch Execution.

In order to reduce branch mis-prediction penalty, several dual path branch execution

techniques have been proposed in [54, 19, 27, 28, 56, 4]. Normally, a dual path execution

mechanism uses a spare hardware context to process the alternative path of a hard-to-

predict branch at the same time as the predicted path is beingexecuted. Thus, mis-

prediction penalty can be significantly reduced if the branch is mis-predicted. However,

most proposed models belong to the CSP category and they have to maintain the complete

set of states for each path. It makes the dual path execution quite complex.

Unlike CSP, an FSP or an FSMP should be able to identify individual data items

belonging to the either path of an branch instruction. At a hard-to-predict branch

instruction, an FSP or an FSMP can follow both paths and wouldnot need to maintain

the complete set of machine states for each path. It can even commit speculative memory

values into ASM without utilizing a complex store buffer. Thus, the hardware complexity

can be reduced and the dual path execution can be processed atdeeper depth.

Moreover, passing the convergence point of branch, control-independent instructions

CHAPTER 8. CONCLUSION 140

can be processed seamlessly, whether they are data- dependent or independent on any

values along both paths of the predicted branch. Data-dependent instructions can be simply

blocked and they can wait for the correct values to be resolved. Once the branch is resolved

and the correct values are recognized, execution of these instructions can be resumed. At

the same time, processor can execute data-independent instructions in parallel. Therefore,

the parallelism-in-resolutioncan be achieved to boost performance in such a setting as

well.

141

Bibliography

[1] H. Akkary, R. Rajwar, and S. T. Srinivasan. Checkpoint processing and recovery: Towards

scalable large instruction window processors. InProceedings of the 36th International Sym-

posium on Microarchitecture, pages 423–434, December 2003.

[2] H. Akkary, R. Rajwar, and S. T. Srinivasan. An analysis of a resource efficient checkpoint

architecture.ACM Transactions on Architecture and Code Optimization, Volume 1:418–444,

December 2004.

[3] AMD. Six-core amd opteron processor.http://www.amd.com.

[4] J. L. Aragon, J. Gonzalez, A. Gonzalez, and J. E. Smith. Dual pathinstruction processing. In

Proceedings of the 2002 International Conference on Supercomputing, pages 220–229, June

2002.

[5] D. N. Armstrong, H. Kim, O.Mutlu, and Y. N. Patt. Wrong path events: Exploiting unusual

and illegal program behavior for early misprediction detection and recovery. In Proceed-

ings of the 37th International Symposium on Microarchitecture (MICRO-37), pages 119–128,

Portland, Oregon, December 2004.

[6] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and S. K. Reinhardt. The

m5 simulator: Modeling networked systems.IEEE Micro, 26(4):52–60, 2006.

[7] D. C. Burger and T. M. Austin. The SimpleScalar Tool Set, Version 2.0. Technical Report

CS-TR-97-1342, Computer Science Department, University of WisconsinMadison, 1997.

BIBLIOGRAPHY 142

[8] C.-Y. Cher and T. N. Vijaykumar. Skipper: a microarchitecture for exploiting control-flow

independence. InMICRO 34: Proceedings of the 34th annual ACM/IEEE international sym-

posium on Microarchitecture, pages 4–15, Washington, DC, USA, 2001. IEEE Computer

Society.

[9] I.-C. K. Chih-Chieh Lee and T. N. Mudge. The bi-mode branch predictor. In The 30th Annual

IEEE-ACM International Symposium on Microarchitecture, pages –, December 1997.

[10] Y. C. Chou, J. Fung, and J. P. Shen. Reducing branch misprediction penalties via dynamic

control independence detection. InProceedings of the 13th ACM International Conference

on Supercomputing, pages 109–118, 1999.

[11] G. Z. Chrysos and J. S. Emer. Memory dependence prediction using store sets. InProceedings

of the 25th International Conference on Computer Architecture, pages 142–153, June 1998.

[12] M. Cintra, J. F. Martínez, and J. Torrellas. Architectural support for scalable speculative

parallelization in shared-memory multiprocessors. InISCA ’00: Proceedings of the 27th

annual international symposium on Computer architecture, pages 13–24, New York, NY,

USA, 2000. ACM.

[13] COMPAQ. Alpha 21264 microprocessor hardware reference manual. July 1999.

[14] J. Dundas and T. Mudge. Improving data cache performance by pre-executing instructions

under a cache miss. InProceedings of the 1997 ACM International Conference on Supercom-

puting, pages 68–75, Vienna, Austria, July 1997.

[15] J. Edler and M. D. Hill. Dinero iv trace-driven uniprocessor cache simulator.

http://pages.cs.wisc.edu/ markhill/DineroIV.

[16] A. Gandhi, H. Akkary, and S. T. Srinivasan. Reducing branchmisprediction penalty via selec-

tive branch recovery.Proceedings of the 10th International Symposium on High-Performance

Computer Architecture, pages 254–264, February 2004.

[17] M. J. Garzarán, M. Prvulovic, J. M. Llabería, V. Vi nals, L. Rauchwerger, and J. Torrellas.

Tradeoffs in buffering memory state for thread-level speculation in multiprocessors. InHPCA

BIBLIOGRAPHY 143

’03: Proceedings of the 9th International Symposium on High-Performance Computer Archi-

tecture, page 191, Washington, DC, USA, 2003. IEEE Computer Society.

[18] L. Hammond, M. Willey, and K. Olukotun. Data speculation support fora chip multiprocessor.

SIGOPS Oper. Syst. Rev., 32(5):58–69, 1998.

[19] T. H. Heil and J. E. Smith. Selective dual path execution. Technicalreport, University of

Wisconsin Technical Report, 1997.

[20] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker,and P. Roussel. The

microarchitecture of the pentium 4 processor. InIntel Technology Journal, February 2001.

[21] W. W. Hwu and Y. N. Patt. Checkpoint repair for out-of-order execution machines. InPro-

ceedings of the 14th Annual International Symposium on Computer Architecture, pages 18–

26, June 1987.

[22] Intel. Intel xeon ’nehalem-ex’ processor.http://www.intel.com.

[23] D. A. Jimenez and C. Lin. Dynamic branch prediction with perceptrons. Proceedings of the

Seventh International Symposium on High-Performance Computer Architecture, pages 197–

206, January 2001.

[24] M. Johnson.Superscalar Microprocessor Design. Prentice Hall, 1991.

[25] T. Karkhanis and J. E. Smith. A day in the life of a data cache miss. InWorkshop on Memory

Performance Issues, Anchorage, AK, May 2002.

[26] R. Kessler, E. McLellan, and D. Webb. The alpha 21264 microprocessor architecture. In

International Conference on Computer Design, December 1998.

[27] A. Klauser.Reducing branch misprediction penalty through multipath execution. PhD thesis,

Boulder, CO, USA, 1999. Director-Grunwald, Dirk.

[28] A. Klauser, A. Paithankar, and D. Grunwald. Selective eager execution on the polypath archi-

tecture. InISCA ’98: Proceedings of the 25th annual international symposium on Computer

architecture, pages 250–259, Washington, DC, USA, 1998. IEEE Computer Society.

BIBLIOGRAPHY 144

[29] A. KleinOsowski and D. J. Lilja. Minnespec: A new spec benchmarkworkload for simulation-

based computer architecture research.Computer Architecture Letters, Volume 1, June 2002.

[30] V. Krishnan and J. Torrellas. A chip-multiprocessor architecture with speculative multithread-

ing. IEEE Trans. Comput., 48(9):866–880, 1999.

[31] P. Marcuello and A. González. Clustered speculative multithreaded processors. InICS ’99:

Proceedings of the 13th international conference on Supercomputing, pages 365–372, New

York, NY, USA, 1999. ACM.

[32] J. F. Martínez and J. Torrellas. Speculative synchronization: applying thread-level speculation

to explicitly parallel applications.SIGPLAN Not., 37(10):18–29, 2002.

[33] S. McFarling. Combining branch predictors. Technical Report WRL-TN-36, Digital Western

Research Laboratory, 1993.

[34] S. McFarling and J. Hennesey. Reducing the cost of branches.SIGARCH Comput. Archit.

News, 14(2):396–403, 1986.

[35] O. Mutlu, H. Kim, and Y. N. Patt. On reusing the results of pre-executed instructions in a

runahead execution processor. InComputer Architecture Letters, January 2005.

[36] O. Mutlu, H. Kim, and Y. N. Patt. Techniques for efficient processing in runahead execution

engines. InProceedings of the 32st International Symposium on Computer Architecture, pages

370–381, Madison, WI, June 2005.

[37] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt. Runahead execution: An effective alternative

to large instruction windows.IEEE Micro, 23(6):20–25, 2003.

[38] S. Önder and R. Gupta. Automatic generation of microarchitecture simulators. In IEEE

International Conference on Computer Languages, pages 80–89, Chicago, May 1998.

[39] S. Önder and R. Gupta. Dynamic memory disambiguation in the presence of out-of-order

store issuing. In32nd Annual IEEE-ACM International Symposium on Microarchitecture,

pages 170 – 176, November 1999.

BIBLIOGRAPHY 145

[40] S. Palacharla, N. P. Jouppi, and J. E. Smith. Quantifying the complexityof superscalar pro-

cessors. Technical Report CS-TR-96-1328, University of Wisconsin Technical Report, 1996.

[41] C. Price.MIPS IV Instruction Set Revision 3.2. MIPS Technologies Inc., September 1995.

[42] Z. Purser, K. Sundaramoorthy, , and E. Rotenberg. A study of slipstream processors. In

Proceedings of the 33th Annual IEEE/ACM International Symposium on Microarchitecture,

pages 269–280, Monterey, CA, December 2000.

[43] E. Rotenberg, Q. Jacobson, and J. Smith. A study of control independence in superscalar pro-

cessors. InHPCA ’99: Proceedings of the 5th International Symposium on High Performance

Computer Architecture, page 115, Washington, DC, USA, 1999. IEEE Computer Society.

[44] A. Roth and G. S. Sohi. Register integration: a simple and efficient implementation of squash

reuse. InProceedings of the 33th Annual IEEE/ACM International Symposium on Microar-

chitecture, pages 223–234, Monterey, CA, December 2000.

[45] S. R. Sarangi, W. Liu, J. Torrellas, and Y. Zhou. Reslice: Selective re-execution of long-

retired misspeculated instructions using forward slicing. InProceedings of the 38th Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO’05), Barcelona, Spain,

November 2005. IEEE Computer Society.

[46] D. Sima, T. Fountain, and P. Kacsuk.Advanced Computer Architectures, A Design Space

Approach. ADDISON-WESLEY, 1997.

[47] J. E. Smith and A. R. Pleszkun. Implementing precise interrupts in pipelined processors.IEEE

Trans. Computers, 37(5):562–573, 1988.

[48] A. Sodani and G. S. Sohi. Dynamic instruction reuse. InProceedings of the 24th International

Conference on Computer Architecture, 1997.

[49] SPEC. http://www.spec.org/cpu2000/.

[50] E. Sprangle, R. S. Chappell, M. Alsup, and Y. N. Patt. The agree predictor:a mechanism

for reducing negative branch history interference. InProceedings of the 24th International

Conference on Computer Architecture, pages 284–291, 1997.

BIBLIOGRAPHY 146

[51] S. T. Srinivasan, R. Rajwar, H. Akkary, A. Gandhi, and M. Upton. Continual flow pipelines.

In ASPLOS-XI: Proceedings of the 11th international conference on Architectural support for

programming languages and operating systems, pages 107–119, New York, NY, USA, 2004.

ACM Press.

[52] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry. A scalable approach to thread-level

speculation.SIGARCH Comput. Archit. News, 28(2):1–12, 2000.

[53] K. Sundaramoorthy, Z. Purser, and E. Rotenberg. Slipstream processors: Improving both

performance and fault tolerance. InProceedings of the Symposium on Architectural Support

for Programming Languages and Operating Systems, 2000.

[54] A. K. Uht, V. Sindagi, and K. Hall. Disjoint eager execution: an optimalform of specula-

tive execution. InMICRO 28: Proceedings of the 28th annual international symposium on

Microarchitecture, pages 313–325, Los Alamitos, CA, USA, 1995. IEEE Computer Society

Press.

[55] T. Ungerer, B. Robic, and J. Silc. A survey of processors with explicit multithreading. In

ACM Computing Surveys, volume 35, pages 29–63. ACM, March 2003.

[56] S. Wallace, B. Calder, and D. M. Tullsen. Threaded multiple path execution. In ISCA ’98:

Proceedings of the 25th annual international symposium on Computer architecture, pages

238–249, Washington, DC, USA, 1998. IEEE Computer Society.

[57] M. Weiser. Program slicing. InICSE ’81: Proceedings of the 5th international conference on

Software engineering, pages 439–449, Piscataway, NJ, USA, 1981. IEEE Press.

[58] K. C. Yeager. The mips r10000 superscalar microprocessor. InIEEE Micro, pages 28–44,

April 1996.

[59] T.-Y. Yeh and Y. N. Patt. Alternative implementations of two-level adaptive branch prediction.

In Proceedings of the 19th International Conference on Computer Architecture, pages 124–

134, 1992.

BIBLIOGRAPHY 147

[60] H. Zhou. Dual-core execution: Building a highly scalable single-thread instruction window.

In PACT ’05: Proceedings of the 14th International Conference on Parallel Architectures and

Compilation Techniques (PACT’05), pages 231–242, Washington, DC, 2005. IEEE Computer

Society.

[61] P. Zhou and S. Önder. Improving single-thread performance with fine-grain state maintenance.

In CF ’08: Proceedings of the 2008 conference on Computing frontiers, pages 251–260, New

York, NY, USA, 2008. ACM.

[62] P. Zhou, S. Önder, and S. Carr. Fast branch misprediction recovery in out-of-order superscalar

processors. InProceedings of the 2005 ACM International Conference on Supercomputing,

pages 41–50, Boston, MA, June 2005.

	Acknowledgement
	Abstract
	List of Figures
	List of Tables
	Introduction
	Motivation
	Research Goals
	Dissertation Organization

	Background
	Out-of-order Execution and Speculative Execution
	Processor States
	State Maintenance and Recovery
	State re-constructing
	Checkpointing

	Register Renaming and State Maintenance and Recovery
	RAM-structured MAP
	CAM-structured MAP

	Summary of Background

	Simulation and Experimental Setup
	Simulation Tools
	Benchmark Suites and Environment

	Taxonomy of Fine-grain State Processors
	Roll-back + Reuse Results
	Squash and Re-fetch Instructions
	Re-issue Fetched Instructions

	Continue Without Roll-back
	Sequential Recovery
	Parallel Recovery

	Summary of Taxonomy

	Fine-grain State Processor
	A General FSP Framework
	Coarse-grain State VS. Fine-grain State
	Summary of FSP's Framework

	Eager branch Mis-prediction Recovery
	Introduction
	Design Space
	Identifying Speculative State
	Handling Multiple Mis-predictions
	Blocking and Shelving Dependent Instructions
	Correcting Incorrect Speculative State
	Parallelism in Recovery

	Optimization
	Experimental Evaluation
	Experimental Methodology
	Performance Results
	Mis-predictions-under-Mis-predictions
	Towards a Large Instruction Window

	Related Work
	Summary of EMR

	Fine-grain State Guided Runahead Execution
	Introduction
	SMT FSG-RA
	State Maintenance
	Termination of Runahead Mode
	Thread Memory Dependencies
	Detecting Memory Order Violations
	Re-Executing Only Dependent Instructions
	Handling the Register State
	Handling the Memory State

	Experimental Evaluation
	Performance Results
	Efficiency of FSG-RA
	Effect of Branches

	Related Work
	Summary of FSG-RA

	Conclusion
	Dissertation Contributions
	Future Directions for Research

